xref: /linux/fs/btrfs/file.c (revision 5a087a6b17eeb64893b81d08d38e6f6300419ee5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 
40 /*
41  * Helper to fault in page and copy.  This should go away and be replaced with
42  * calls into generic code.
43  */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct folio * folio,struct iov_iter * i)44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 					 struct folio *folio, struct iov_iter *i)
46 {
47 	size_t copied = 0;
48 	size_t total_copied = 0;
49 	int offset = offset_in_page(pos);
50 
51 	while (write_bytes > 0) {
52 		size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes);
53 		/*
54 		 * Copy data from userspace to the current page
55 		 */
56 		copied = copy_folio_from_iter_atomic(folio, offset, count, i);
57 
58 		/* Flush processor's dcache for this page */
59 		flush_dcache_folio(folio);
60 
61 		/*
62 		 * if we get a partial write, we can end up with
63 		 * partially up to date page.  These add
64 		 * a lot of complexity, so make sure they don't
65 		 * happen by forcing this copy to be retried.
66 		 *
67 		 * The rest of the btrfs_file_write code will fall
68 		 * back to page at a time copies after we return 0.
69 		 */
70 		if (unlikely(copied < count)) {
71 			if (!folio_test_uptodate(folio)) {
72 				iov_iter_revert(i, copied);
73 				copied = 0;
74 			}
75 			if (!copied)
76 				break;
77 		}
78 
79 		write_bytes -= copied;
80 		total_copied += copied;
81 		offset += copied;
82 	}
83 	return total_copied;
84 }
85 
86 /*
87  * Unlock folio after btrfs_file_write() is done with it.
88  */
btrfs_drop_folio(struct btrfs_fs_info * fs_info,struct folio * folio,u64 pos,u64 copied)89 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
90 			     u64 pos, u64 copied)
91 {
92 	u64 block_start = round_down(pos, fs_info->sectorsize);
93 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
94 
95 	ASSERT(block_len <= U32_MAX);
96 	/*
97 	 * Folio checked is some magic around finding folios that have been
98 	 * modified without going through btrfs_dirty_folio().  Clear it here.
99 	 * There should be no need to mark the pages accessed as
100 	 * prepare_one_folio() should have marked them accessed in
101 	 * prepare_one_folio() via find_or_create_page()
102 	 */
103 	btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
104 	folio_unlock(folio);
105 	folio_put(folio);
106 }
107 
108 /*
109  * After btrfs_copy_from_user(), update the following things for delalloc:
110  * - Mark newly dirtied folio as DELALLOC in the io tree.
111  *   Used to advise which range is to be written back.
112  * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
113  * - Update inode size for past EOF write
114  */
btrfs_dirty_folio(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)115 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
116 		      size_t write_bytes, struct extent_state **cached, bool noreserve)
117 {
118 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
119 	int ret = 0;
120 	u64 num_bytes;
121 	u64 start_pos;
122 	u64 end_of_last_block;
123 	u64 end_pos = pos + write_bytes;
124 	loff_t isize = i_size_read(&inode->vfs_inode);
125 	unsigned int extra_bits = 0;
126 
127 	if (write_bytes == 0)
128 		return 0;
129 
130 	if (noreserve)
131 		extra_bits |= EXTENT_NORESERVE;
132 
133 	start_pos = round_down(pos, fs_info->sectorsize);
134 	num_bytes = round_up(write_bytes + pos - start_pos,
135 			     fs_info->sectorsize);
136 	ASSERT(num_bytes <= U32_MAX);
137 	ASSERT(folio_pos(folio) <= pos &&
138 	       folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
139 
140 	end_of_last_block = start_pos + num_bytes - 1;
141 
142 	/*
143 	 * The pages may have already been dirty, clear out old accounting so
144 	 * we can set things up properly
145 	 */
146 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
147 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
148 			 cached);
149 
150 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
151 					extra_bits, cached);
152 	if (ret)
153 		return ret;
154 
155 	btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
156 	btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
157 	btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
158 
159 	/*
160 	 * we've only changed i_size in ram, and we haven't updated
161 	 * the disk i_size.  There is no need to log the inode
162 	 * at this time.
163 	 */
164 	if (end_pos > isize)
165 		i_size_write(&inode->vfs_inode, end_pos);
166 	return 0;
167 }
168 
169 /*
170  * this is very complex, but the basic idea is to drop all extents
171  * in the range start - end.  hint_block is filled in with a block number
172  * that would be a good hint to the block allocator for this file.
173  *
174  * If an extent intersects the range but is not entirely inside the range
175  * it is either truncated or split.  Anything entirely inside the range
176  * is deleted from the tree.
177  *
178  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
179  * to deal with that. We set the field 'bytes_found' of the arguments structure
180  * with the number of allocated bytes found in the target range, so that the
181  * caller can update the inode's number of bytes in an atomic way when
182  * replacing extents in a range to avoid races with stat(2).
183  */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)184 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
185 		       struct btrfs_root *root, struct btrfs_inode *inode,
186 		       struct btrfs_drop_extents_args *args)
187 {
188 	struct btrfs_fs_info *fs_info = root->fs_info;
189 	struct extent_buffer *leaf;
190 	struct btrfs_file_extent_item *fi;
191 	struct btrfs_key key;
192 	struct btrfs_key new_key;
193 	u64 ino = btrfs_ino(inode);
194 	u64 search_start = args->start;
195 	u64 disk_bytenr = 0;
196 	u64 num_bytes = 0;
197 	u64 extent_offset = 0;
198 	u64 extent_end = 0;
199 	u64 last_end = args->start;
200 	int del_nr = 0;
201 	int del_slot = 0;
202 	int extent_type;
203 	int recow;
204 	int ret;
205 	int modify_tree = -1;
206 	int update_refs;
207 	int found = 0;
208 	struct btrfs_path *path = args->path;
209 
210 	args->bytes_found = 0;
211 	args->extent_inserted = false;
212 
213 	/* Must always have a path if ->replace_extent is true */
214 	ASSERT(!(args->replace_extent && !args->path));
215 
216 	if (!path) {
217 		path = btrfs_alloc_path();
218 		if (!path) {
219 			ret = -ENOMEM;
220 			goto out;
221 		}
222 	}
223 
224 	if (args->drop_cache)
225 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
226 
227 	if (args->start >= inode->disk_i_size && !args->replace_extent)
228 		modify_tree = 0;
229 
230 	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
231 	while (1) {
232 		recow = 0;
233 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
234 					       search_start, modify_tree);
235 		if (ret < 0)
236 			break;
237 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
238 			leaf = path->nodes[0];
239 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
240 			if (key.objectid == ino &&
241 			    key.type == BTRFS_EXTENT_DATA_KEY)
242 				path->slots[0]--;
243 		}
244 		ret = 0;
245 next_slot:
246 		leaf = path->nodes[0];
247 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
248 			BUG_ON(del_nr > 0);
249 			ret = btrfs_next_leaf(root, path);
250 			if (ret < 0)
251 				break;
252 			if (ret > 0) {
253 				ret = 0;
254 				break;
255 			}
256 			leaf = path->nodes[0];
257 			recow = 1;
258 		}
259 
260 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
261 
262 		if (key.objectid > ino)
263 			break;
264 		if (WARN_ON_ONCE(key.objectid < ino) ||
265 		    key.type < BTRFS_EXTENT_DATA_KEY) {
266 			ASSERT(del_nr == 0);
267 			path->slots[0]++;
268 			goto next_slot;
269 		}
270 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
271 			break;
272 
273 		fi = btrfs_item_ptr(leaf, path->slots[0],
274 				    struct btrfs_file_extent_item);
275 		extent_type = btrfs_file_extent_type(leaf, fi);
276 
277 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
278 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
279 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
280 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
281 			extent_offset = btrfs_file_extent_offset(leaf, fi);
282 			extent_end = key.offset +
283 				btrfs_file_extent_num_bytes(leaf, fi);
284 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
285 			extent_end = key.offset +
286 				btrfs_file_extent_ram_bytes(leaf, fi);
287 		} else {
288 			/* can't happen */
289 			BUG();
290 		}
291 
292 		/*
293 		 * Don't skip extent items representing 0 byte lengths. They
294 		 * used to be created (bug) if while punching holes we hit
295 		 * -ENOSPC condition. So if we find one here, just ensure we
296 		 * delete it, otherwise we would insert a new file extent item
297 		 * with the same key (offset) as that 0 bytes length file
298 		 * extent item in the call to setup_items_for_insert() later
299 		 * in this function.
300 		 */
301 		if (extent_end == key.offset && extent_end >= search_start) {
302 			last_end = extent_end;
303 			goto delete_extent_item;
304 		}
305 
306 		if (extent_end <= search_start) {
307 			path->slots[0]++;
308 			goto next_slot;
309 		}
310 
311 		found = 1;
312 		search_start = max(key.offset, args->start);
313 		if (recow || !modify_tree) {
314 			modify_tree = -1;
315 			btrfs_release_path(path);
316 			continue;
317 		}
318 
319 		/*
320 		 *     | - range to drop - |
321 		 *  | -------- extent -------- |
322 		 */
323 		if (args->start > key.offset && args->end < extent_end) {
324 			BUG_ON(del_nr > 0);
325 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
326 				ret = -EOPNOTSUPP;
327 				break;
328 			}
329 
330 			memcpy(&new_key, &key, sizeof(new_key));
331 			new_key.offset = args->start;
332 			ret = btrfs_duplicate_item(trans, root, path,
333 						   &new_key);
334 			if (ret == -EAGAIN) {
335 				btrfs_release_path(path);
336 				continue;
337 			}
338 			if (ret < 0)
339 				break;
340 
341 			leaf = path->nodes[0];
342 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
343 					    struct btrfs_file_extent_item);
344 			btrfs_set_file_extent_num_bytes(leaf, fi,
345 							args->start - key.offset);
346 
347 			fi = btrfs_item_ptr(leaf, path->slots[0],
348 					    struct btrfs_file_extent_item);
349 
350 			extent_offset += args->start - key.offset;
351 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
352 			btrfs_set_file_extent_num_bytes(leaf, fi,
353 							extent_end - args->start);
354 			btrfs_mark_buffer_dirty(trans, leaf);
355 
356 			if (update_refs && disk_bytenr > 0) {
357 				struct btrfs_ref ref = {
358 					.action = BTRFS_ADD_DELAYED_REF,
359 					.bytenr = disk_bytenr,
360 					.num_bytes = num_bytes,
361 					.parent = 0,
362 					.owning_root = btrfs_root_id(root),
363 					.ref_root = btrfs_root_id(root),
364 				};
365 				btrfs_init_data_ref(&ref, new_key.objectid,
366 						    args->start - extent_offset,
367 						    0, false);
368 				ret = btrfs_inc_extent_ref(trans, &ref);
369 				if (ret) {
370 					btrfs_abort_transaction(trans, ret);
371 					break;
372 				}
373 			}
374 			key.offset = args->start;
375 		}
376 		/*
377 		 * From here on out we will have actually dropped something, so
378 		 * last_end can be updated.
379 		 */
380 		last_end = extent_end;
381 
382 		/*
383 		 *  | ---- range to drop ----- |
384 		 *      | -------- extent -------- |
385 		 */
386 		if (args->start <= key.offset && args->end < extent_end) {
387 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
388 				ret = -EOPNOTSUPP;
389 				break;
390 			}
391 
392 			memcpy(&new_key, &key, sizeof(new_key));
393 			new_key.offset = args->end;
394 			btrfs_set_item_key_safe(trans, path, &new_key);
395 
396 			extent_offset += args->end - key.offset;
397 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
398 			btrfs_set_file_extent_num_bytes(leaf, fi,
399 							extent_end - args->end);
400 			btrfs_mark_buffer_dirty(trans, leaf);
401 			if (update_refs && disk_bytenr > 0)
402 				args->bytes_found += args->end - key.offset;
403 			break;
404 		}
405 
406 		search_start = extent_end;
407 		/*
408 		 *       | ---- range to drop ----- |
409 		 *  | -------- extent -------- |
410 		 */
411 		if (args->start > key.offset && args->end >= extent_end) {
412 			BUG_ON(del_nr > 0);
413 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
414 				ret = -EOPNOTSUPP;
415 				break;
416 			}
417 
418 			btrfs_set_file_extent_num_bytes(leaf, fi,
419 							args->start - key.offset);
420 			btrfs_mark_buffer_dirty(trans, leaf);
421 			if (update_refs && disk_bytenr > 0)
422 				args->bytes_found += extent_end - args->start;
423 			if (args->end == extent_end)
424 				break;
425 
426 			path->slots[0]++;
427 			goto next_slot;
428 		}
429 
430 		/*
431 		 *  | ---- range to drop ----- |
432 		 *    | ------ extent ------ |
433 		 */
434 		if (args->start <= key.offset && args->end >= extent_end) {
435 delete_extent_item:
436 			if (del_nr == 0) {
437 				del_slot = path->slots[0];
438 				del_nr = 1;
439 			} else {
440 				BUG_ON(del_slot + del_nr != path->slots[0]);
441 				del_nr++;
442 			}
443 
444 			if (update_refs &&
445 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
446 				args->bytes_found += extent_end - key.offset;
447 				extent_end = ALIGN(extent_end,
448 						   fs_info->sectorsize);
449 			} else if (update_refs && disk_bytenr > 0) {
450 				struct btrfs_ref ref = {
451 					.action = BTRFS_DROP_DELAYED_REF,
452 					.bytenr = disk_bytenr,
453 					.num_bytes = num_bytes,
454 					.parent = 0,
455 					.owning_root = btrfs_root_id(root),
456 					.ref_root = btrfs_root_id(root),
457 				};
458 				btrfs_init_data_ref(&ref, key.objectid,
459 						    key.offset - extent_offset,
460 						    0, false);
461 				ret = btrfs_free_extent(trans, &ref);
462 				if (ret) {
463 					btrfs_abort_transaction(trans, ret);
464 					break;
465 				}
466 				args->bytes_found += extent_end - key.offset;
467 			}
468 
469 			if (args->end == extent_end)
470 				break;
471 
472 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
473 				path->slots[0]++;
474 				goto next_slot;
475 			}
476 
477 			ret = btrfs_del_items(trans, root, path, del_slot,
478 					      del_nr);
479 			if (ret) {
480 				btrfs_abort_transaction(trans, ret);
481 				break;
482 			}
483 
484 			del_nr = 0;
485 			del_slot = 0;
486 
487 			btrfs_release_path(path);
488 			continue;
489 		}
490 
491 		BUG();
492 	}
493 
494 	if (!ret && del_nr > 0) {
495 		/*
496 		 * Set path->slots[0] to first slot, so that after the delete
497 		 * if items are move off from our leaf to its immediate left or
498 		 * right neighbor leafs, we end up with a correct and adjusted
499 		 * path->slots[0] for our insertion (if args->replace_extent).
500 		 */
501 		path->slots[0] = del_slot;
502 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
503 		if (ret)
504 			btrfs_abort_transaction(trans, ret);
505 	}
506 
507 	leaf = path->nodes[0];
508 	/*
509 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
510 	 * which case it unlocked our path, so check path->locks[0] matches a
511 	 * write lock.
512 	 */
513 	if (!ret && args->replace_extent &&
514 	    path->locks[0] == BTRFS_WRITE_LOCK &&
515 	    btrfs_leaf_free_space(leaf) >=
516 	    sizeof(struct btrfs_item) + args->extent_item_size) {
517 
518 		key.objectid = ino;
519 		key.type = BTRFS_EXTENT_DATA_KEY;
520 		key.offset = args->start;
521 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
522 			struct btrfs_key slot_key;
523 
524 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
525 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
526 				path->slots[0]++;
527 		}
528 		btrfs_setup_item_for_insert(trans, root, path, &key,
529 					    args->extent_item_size);
530 		args->extent_inserted = true;
531 	}
532 
533 	if (!args->path)
534 		btrfs_free_path(path);
535 	else if (!args->extent_inserted)
536 		btrfs_release_path(path);
537 out:
538 	args->drop_end = found ? min(args->end, last_end) : args->end;
539 
540 	return ret;
541 }
542 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)543 static int extent_mergeable(struct extent_buffer *leaf, int slot,
544 			    u64 objectid, u64 bytenr, u64 orig_offset,
545 			    u64 *start, u64 *end)
546 {
547 	struct btrfs_file_extent_item *fi;
548 	struct btrfs_key key;
549 	u64 extent_end;
550 
551 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
552 		return 0;
553 
554 	btrfs_item_key_to_cpu(leaf, &key, slot);
555 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
556 		return 0;
557 
558 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
559 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
560 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
561 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
562 	    btrfs_file_extent_compression(leaf, fi) ||
563 	    btrfs_file_extent_encryption(leaf, fi) ||
564 	    btrfs_file_extent_other_encoding(leaf, fi))
565 		return 0;
566 
567 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
568 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
569 		return 0;
570 
571 	*start = key.offset;
572 	*end = extent_end;
573 	return 1;
574 }
575 
576 /*
577  * Mark extent in the range start - end as written.
578  *
579  * This changes extent type from 'pre-allocated' to 'regular'. If only
580  * part of extent is marked as written, the extent will be split into
581  * two or three.
582  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)583 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
584 			      struct btrfs_inode *inode, u64 start, u64 end)
585 {
586 	struct btrfs_root *root = inode->root;
587 	struct extent_buffer *leaf;
588 	struct btrfs_path *path;
589 	struct btrfs_file_extent_item *fi;
590 	struct btrfs_ref ref = { 0 };
591 	struct btrfs_key key;
592 	struct btrfs_key new_key;
593 	u64 bytenr;
594 	u64 num_bytes;
595 	u64 extent_end;
596 	u64 orig_offset;
597 	u64 other_start;
598 	u64 other_end;
599 	u64 split;
600 	int del_nr = 0;
601 	int del_slot = 0;
602 	int recow;
603 	int ret = 0;
604 	u64 ino = btrfs_ino(inode);
605 
606 	path = btrfs_alloc_path();
607 	if (!path)
608 		return -ENOMEM;
609 again:
610 	recow = 0;
611 	split = start;
612 	key.objectid = ino;
613 	key.type = BTRFS_EXTENT_DATA_KEY;
614 	key.offset = split;
615 
616 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
617 	if (ret < 0)
618 		goto out;
619 	if (ret > 0 && path->slots[0] > 0)
620 		path->slots[0]--;
621 
622 	leaf = path->nodes[0];
623 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
624 	if (key.objectid != ino ||
625 	    key.type != BTRFS_EXTENT_DATA_KEY) {
626 		ret = -EINVAL;
627 		btrfs_abort_transaction(trans, ret);
628 		goto out;
629 	}
630 	fi = btrfs_item_ptr(leaf, path->slots[0],
631 			    struct btrfs_file_extent_item);
632 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
633 		ret = -EINVAL;
634 		btrfs_abort_transaction(trans, ret);
635 		goto out;
636 	}
637 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
638 	if (key.offset > start || extent_end < end) {
639 		ret = -EINVAL;
640 		btrfs_abort_transaction(trans, ret);
641 		goto out;
642 	}
643 
644 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
645 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
646 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
647 	memcpy(&new_key, &key, sizeof(new_key));
648 
649 	if (start == key.offset && end < extent_end) {
650 		other_start = 0;
651 		other_end = start;
652 		if (extent_mergeable(leaf, path->slots[0] - 1,
653 				     ino, bytenr, orig_offset,
654 				     &other_start, &other_end)) {
655 			new_key.offset = end;
656 			btrfs_set_item_key_safe(trans, path, &new_key);
657 			fi = btrfs_item_ptr(leaf, path->slots[0],
658 					    struct btrfs_file_extent_item);
659 			btrfs_set_file_extent_generation(leaf, fi,
660 							 trans->transid);
661 			btrfs_set_file_extent_num_bytes(leaf, fi,
662 							extent_end - end);
663 			btrfs_set_file_extent_offset(leaf, fi,
664 						     end - orig_offset);
665 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
666 					    struct btrfs_file_extent_item);
667 			btrfs_set_file_extent_generation(leaf, fi,
668 							 trans->transid);
669 			btrfs_set_file_extent_num_bytes(leaf, fi,
670 							end - other_start);
671 			btrfs_mark_buffer_dirty(trans, leaf);
672 			goto out;
673 		}
674 	}
675 
676 	if (start > key.offset && end == extent_end) {
677 		other_start = end;
678 		other_end = 0;
679 		if (extent_mergeable(leaf, path->slots[0] + 1,
680 				     ino, bytenr, orig_offset,
681 				     &other_start, &other_end)) {
682 			fi = btrfs_item_ptr(leaf, path->slots[0],
683 					    struct btrfs_file_extent_item);
684 			btrfs_set_file_extent_num_bytes(leaf, fi,
685 							start - key.offset);
686 			btrfs_set_file_extent_generation(leaf, fi,
687 							 trans->transid);
688 			path->slots[0]++;
689 			new_key.offset = start;
690 			btrfs_set_item_key_safe(trans, path, &new_key);
691 
692 			fi = btrfs_item_ptr(leaf, path->slots[0],
693 					    struct btrfs_file_extent_item);
694 			btrfs_set_file_extent_generation(leaf, fi,
695 							 trans->transid);
696 			btrfs_set_file_extent_num_bytes(leaf, fi,
697 							other_end - start);
698 			btrfs_set_file_extent_offset(leaf, fi,
699 						     start - orig_offset);
700 			btrfs_mark_buffer_dirty(trans, leaf);
701 			goto out;
702 		}
703 	}
704 
705 	while (start > key.offset || end < extent_end) {
706 		if (key.offset == start)
707 			split = end;
708 
709 		new_key.offset = split;
710 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
711 		if (ret == -EAGAIN) {
712 			btrfs_release_path(path);
713 			goto again;
714 		}
715 		if (ret < 0) {
716 			btrfs_abort_transaction(trans, ret);
717 			goto out;
718 		}
719 
720 		leaf = path->nodes[0];
721 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
722 				    struct btrfs_file_extent_item);
723 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
724 		btrfs_set_file_extent_num_bytes(leaf, fi,
725 						split - key.offset);
726 
727 		fi = btrfs_item_ptr(leaf, path->slots[0],
728 				    struct btrfs_file_extent_item);
729 
730 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
731 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
732 		btrfs_set_file_extent_num_bytes(leaf, fi,
733 						extent_end - split);
734 		btrfs_mark_buffer_dirty(trans, leaf);
735 
736 		ref.action = BTRFS_ADD_DELAYED_REF;
737 		ref.bytenr = bytenr;
738 		ref.num_bytes = num_bytes;
739 		ref.parent = 0;
740 		ref.owning_root = btrfs_root_id(root);
741 		ref.ref_root = btrfs_root_id(root);
742 		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
743 		ret = btrfs_inc_extent_ref(trans, &ref);
744 		if (ret) {
745 			btrfs_abort_transaction(trans, ret);
746 			goto out;
747 		}
748 
749 		if (split == start) {
750 			key.offset = start;
751 		} else {
752 			if (start != key.offset) {
753 				ret = -EINVAL;
754 				btrfs_abort_transaction(trans, ret);
755 				goto out;
756 			}
757 			path->slots[0]--;
758 			extent_end = end;
759 		}
760 		recow = 1;
761 	}
762 
763 	other_start = end;
764 	other_end = 0;
765 
766 	ref.action = BTRFS_DROP_DELAYED_REF;
767 	ref.bytenr = bytenr;
768 	ref.num_bytes = num_bytes;
769 	ref.parent = 0;
770 	ref.owning_root = btrfs_root_id(root);
771 	ref.ref_root = btrfs_root_id(root);
772 	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
773 	if (extent_mergeable(leaf, path->slots[0] + 1,
774 			     ino, bytenr, orig_offset,
775 			     &other_start, &other_end)) {
776 		if (recow) {
777 			btrfs_release_path(path);
778 			goto again;
779 		}
780 		extent_end = other_end;
781 		del_slot = path->slots[0] + 1;
782 		del_nr++;
783 		ret = btrfs_free_extent(trans, &ref);
784 		if (ret) {
785 			btrfs_abort_transaction(trans, ret);
786 			goto out;
787 		}
788 	}
789 	other_start = 0;
790 	other_end = start;
791 	if (extent_mergeable(leaf, path->slots[0] - 1,
792 			     ino, bytenr, orig_offset,
793 			     &other_start, &other_end)) {
794 		if (recow) {
795 			btrfs_release_path(path);
796 			goto again;
797 		}
798 		key.offset = other_start;
799 		del_slot = path->slots[0];
800 		del_nr++;
801 		ret = btrfs_free_extent(trans, &ref);
802 		if (ret) {
803 			btrfs_abort_transaction(trans, ret);
804 			goto out;
805 		}
806 	}
807 	if (del_nr == 0) {
808 		fi = btrfs_item_ptr(leaf, path->slots[0],
809 			   struct btrfs_file_extent_item);
810 		btrfs_set_file_extent_type(leaf, fi,
811 					   BTRFS_FILE_EXTENT_REG);
812 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
813 		btrfs_mark_buffer_dirty(trans, leaf);
814 	} else {
815 		fi = btrfs_item_ptr(leaf, del_slot - 1,
816 			   struct btrfs_file_extent_item);
817 		btrfs_set_file_extent_type(leaf, fi,
818 					   BTRFS_FILE_EXTENT_REG);
819 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
820 		btrfs_set_file_extent_num_bytes(leaf, fi,
821 						extent_end - key.offset);
822 		btrfs_mark_buffer_dirty(trans, leaf);
823 
824 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
825 		if (ret < 0) {
826 			btrfs_abort_transaction(trans, ret);
827 			goto out;
828 		}
829 	}
830 out:
831 	btrfs_free_path(path);
832 	return ret;
833 }
834 
835 /*
836  * On error return an unlocked folio and the error value
837  * On success return a locked folio and 0
838  */
prepare_uptodate_folio(struct inode * inode,struct folio * folio,u64 pos,u64 len,bool force_uptodate)839 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
840 				  u64 len, bool force_uptodate)
841 {
842 	u64 clamp_start = max_t(u64, pos, folio_pos(folio));
843 	u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
844 	int ret = 0;
845 
846 	if (folio_test_uptodate(folio))
847 		return 0;
848 
849 	if (!force_uptodate &&
850 	    IS_ALIGNED(clamp_start, PAGE_SIZE) &&
851 	    IS_ALIGNED(clamp_end, PAGE_SIZE))
852 		return 0;
853 
854 	ret = btrfs_read_folio(NULL, folio);
855 	if (ret)
856 		return ret;
857 	folio_lock(folio);
858 	if (!folio_test_uptodate(folio)) {
859 		folio_unlock(folio);
860 		return -EIO;
861 	}
862 
863 	/*
864 	 * Since btrfs_read_folio() will unlock the folio before it returns,
865 	 * there is a window where btrfs_release_folio() can be called to
866 	 * release the page.  Here we check both inode mapping and page
867 	 * private to make sure the page was not released.
868 	 *
869 	 * The private flag check is essential for subpage as we need to store
870 	 * extra bitmap using folio private.
871 	 */
872 	if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
873 		folio_unlock(folio);
874 		return -EAGAIN;
875 	}
876 	return 0;
877 }
878 
get_prepare_gfp_flags(struct inode * inode,bool nowait)879 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
880 {
881 	gfp_t gfp;
882 
883 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
884 	if (nowait) {
885 		gfp &= ~__GFP_DIRECT_RECLAIM;
886 		gfp |= GFP_NOWAIT;
887 	}
888 
889 	return gfp;
890 }
891 
892 /*
893  * Get folio into the page cache and lock it.
894  */
prepare_one_folio(struct inode * inode,struct folio ** folio_ret,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)895 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
896 				      loff_t pos, size_t write_bytes,
897 				      bool force_uptodate, bool nowait)
898 {
899 	unsigned long index = pos >> PAGE_SHIFT;
900 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
901 	fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN);
902 	struct folio *folio;
903 	int ret = 0;
904 
905 again:
906 	folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
907 	if (IS_ERR(folio)) {
908 		if (nowait)
909 			ret = -EAGAIN;
910 		else
911 			ret = PTR_ERR(folio);
912 		return ret;
913 	}
914 	folio_wait_writeback(folio);
915 	/* Only support page sized folio yet. */
916 	ASSERT(folio_order(folio) == 0);
917 	ret = set_folio_extent_mapped(folio);
918 	if (ret < 0) {
919 		folio_unlock(folio);
920 		folio_put(folio);
921 		return ret;
922 	}
923 	ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate);
924 	if (ret) {
925 		/* The folio is already unlocked. */
926 		folio_put(folio);
927 		if (!nowait && ret == -EAGAIN) {
928 			ret = 0;
929 			goto again;
930 		}
931 		return ret;
932 	}
933 	*folio_ret = folio;
934 	return 0;
935 }
936 
937 /*
938  * Locks the extent and properly waits for data=ordered extents to finish
939  * before allowing the folios to be modified if need.
940  *
941  * Return:
942  * 1 - the extent is locked
943  * 0 - the extent is not locked, and everything is OK
944  * -EAGAIN - need to prepare the folios again
945  */
946 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct folio * folio,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)947 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
948 				loff_t pos, size_t write_bytes,
949 				u64 *lockstart, u64 *lockend, bool nowait,
950 				struct extent_state **cached_state)
951 {
952 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
953 	u64 start_pos;
954 	u64 last_pos;
955 	int ret = 0;
956 
957 	start_pos = round_down(pos, fs_info->sectorsize);
958 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
959 
960 	if (start_pos < inode->vfs_inode.i_size) {
961 		struct btrfs_ordered_extent *ordered;
962 
963 		if (nowait) {
964 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
965 					     cached_state)) {
966 				folio_unlock(folio);
967 				folio_put(folio);
968 				return -EAGAIN;
969 			}
970 		} else {
971 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
972 		}
973 
974 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
975 						     last_pos - start_pos + 1);
976 		if (ordered &&
977 		    ordered->file_offset + ordered->num_bytes > start_pos &&
978 		    ordered->file_offset <= last_pos) {
979 			unlock_extent(&inode->io_tree, start_pos, last_pos,
980 				      cached_state);
981 			folio_unlock(folio);
982 			folio_put(folio);
983 			btrfs_start_ordered_extent(ordered);
984 			btrfs_put_ordered_extent(ordered);
985 			return -EAGAIN;
986 		}
987 		if (ordered)
988 			btrfs_put_ordered_extent(ordered);
989 
990 		*lockstart = start_pos;
991 		*lockend = last_pos;
992 		ret = 1;
993 	}
994 
995 	/*
996 	 * We should be called after prepare_one_folio() which should have locked
997 	 * all pages in the range.
998 	 */
999 	WARN_ON(!folio_test_locked(folio));
1000 
1001 	return ret;
1002 }
1003 
1004 /*
1005  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1006  *
1007  * @pos:         File offset.
1008  * @write_bytes: The length to write, will be updated to the nocow writeable
1009  *               range.
1010  *
1011  * This function will flush ordered extents in the range to ensure proper
1012  * nocow checks.
1013  *
1014  * Return:
1015  * > 0          If we can nocow, and updates @write_bytes.
1016  *  0           If we can't do a nocow write.
1017  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1018  *              root is in progress.
1019  * < 0          If an error happened.
1020  *
1021  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1022  */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1023 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1024 			   size_t *write_bytes, bool nowait)
1025 {
1026 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1027 	struct btrfs_root *root = inode->root;
1028 	struct extent_state *cached_state = NULL;
1029 	u64 lockstart, lockend;
1030 	u64 num_bytes;
1031 	int ret;
1032 
1033 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1034 		return 0;
1035 
1036 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1037 		return -EAGAIN;
1038 
1039 	lockstart = round_down(pos, fs_info->sectorsize);
1040 	lockend = round_up(pos + *write_bytes,
1041 			   fs_info->sectorsize) - 1;
1042 	num_bytes = lockend - lockstart + 1;
1043 
1044 	if (nowait) {
1045 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1046 						  &cached_state)) {
1047 			btrfs_drew_write_unlock(&root->snapshot_lock);
1048 			return -EAGAIN;
1049 		}
1050 	} else {
1051 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1052 						   &cached_state);
1053 	}
1054 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1055 			       NULL, nowait, false);
1056 	if (ret <= 0)
1057 		btrfs_drew_write_unlock(&root->snapshot_lock);
1058 	else
1059 		*write_bytes = min_t(size_t, *write_bytes ,
1060 				     num_bytes - pos + lockstart);
1061 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1062 
1063 	return ret;
1064 }
1065 
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1066 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1067 {
1068 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1069 }
1070 
btrfs_write_check(struct kiocb * iocb,size_t count)1071 int btrfs_write_check(struct kiocb *iocb, size_t count)
1072 {
1073 	struct file *file = iocb->ki_filp;
1074 	struct inode *inode = file_inode(file);
1075 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1076 	loff_t pos = iocb->ki_pos;
1077 	int ret;
1078 	loff_t oldsize;
1079 	loff_t start_pos;
1080 
1081 	/*
1082 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1083 	 * prealloc flags, as without those flags we always have to COW. We will
1084 	 * later check if we can really COW into the target range (using
1085 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1086 	 */
1087 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1088 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1089 		return -EAGAIN;
1090 
1091 	ret = file_remove_privs(file);
1092 	if (ret)
1093 		return ret;
1094 
1095 	/*
1096 	 * We reserve space for updating the inode when we reserve space for the
1097 	 * extent we are going to write, so we will enospc out there.  We don't
1098 	 * need to start yet another transaction to update the inode as we will
1099 	 * update the inode when we finish writing whatever data we write.
1100 	 */
1101 	if (!IS_NOCMTIME(inode)) {
1102 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1103 		inode_inc_iversion(inode);
1104 	}
1105 
1106 	start_pos = round_down(pos, fs_info->sectorsize);
1107 	oldsize = i_size_read(inode);
1108 	if (start_pos > oldsize) {
1109 		/* Expand hole size to cover write data, preventing empty gap */
1110 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1111 
1112 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1113 		if (ret)
1114 			return ret;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1120 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
1121 {
1122 	struct file *file = iocb->ki_filp;
1123 	loff_t pos;
1124 	struct inode *inode = file_inode(file);
1125 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1126 	struct extent_changeset *data_reserved = NULL;
1127 	u64 release_bytes = 0;
1128 	u64 lockstart;
1129 	u64 lockend;
1130 	size_t num_written = 0;
1131 	ssize_t ret;
1132 	loff_t old_isize = i_size_read(inode);
1133 	unsigned int ilock_flags = 0;
1134 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1135 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1136 	bool only_release_metadata = false;
1137 
1138 	if (nowait)
1139 		ilock_flags |= BTRFS_ILOCK_TRY;
1140 
1141 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1142 	if (ret < 0)
1143 		return ret;
1144 
1145 	ret = generic_write_checks(iocb, i);
1146 	if (ret <= 0)
1147 		goto out;
1148 
1149 	ret = btrfs_write_check(iocb, ret);
1150 	if (ret < 0)
1151 		goto out;
1152 
1153 	pos = iocb->ki_pos;
1154 	while (iov_iter_count(i) > 0) {
1155 		struct extent_state *cached_state = NULL;
1156 		size_t offset = offset_in_page(pos);
1157 		size_t sector_offset;
1158 		size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset);
1159 		size_t reserve_bytes;
1160 		size_t copied;
1161 		size_t dirty_sectors;
1162 		size_t num_sectors;
1163 		struct folio *folio = NULL;
1164 		int extents_locked;
1165 		bool force_page_uptodate = false;
1166 
1167 		/*
1168 		 * Fault pages before locking them in prepare_one_folio()
1169 		 * to avoid recursive lock
1170 		 */
1171 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1172 			ret = -EFAULT;
1173 			break;
1174 		}
1175 
1176 		only_release_metadata = false;
1177 		sector_offset = pos & (fs_info->sectorsize - 1);
1178 
1179 		extent_changeset_release(data_reserved);
1180 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1181 						  &data_reserved, pos,
1182 						  write_bytes, nowait);
1183 		if (ret < 0) {
1184 			int can_nocow;
1185 
1186 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1187 				ret = -EAGAIN;
1188 				break;
1189 			}
1190 
1191 			/*
1192 			 * If we don't have to COW at the offset, reserve
1193 			 * metadata only. write_bytes may get smaller than
1194 			 * requested here.
1195 			 */
1196 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1197 							   &write_bytes, nowait);
1198 			if (can_nocow < 0)
1199 				ret = can_nocow;
1200 			if (can_nocow > 0)
1201 				ret = 0;
1202 			if (ret)
1203 				break;
1204 			only_release_metadata = true;
1205 		}
1206 
1207 		reserve_bytes = round_up(write_bytes + sector_offset,
1208 					 fs_info->sectorsize);
1209 		WARN_ON(reserve_bytes == 0);
1210 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1211 						      reserve_bytes,
1212 						      reserve_bytes, nowait);
1213 		if (ret) {
1214 			if (!only_release_metadata)
1215 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1216 						data_reserved, pos,
1217 						write_bytes);
1218 			else
1219 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1220 
1221 			if (nowait && ret == -ENOSPC)
1222 				ret = -EAGAIN;
1223 			break;
1224 		}
1225 
1226 		release_bytes = reserve_bytes;
1227 again:
1228 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1229 		if (ret) {
1230 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1231 			break;
1232 		}
1233 
1234 		ret = prepare_one_folio(inode, &folio, pos, write_bytes,
1235 					force_page_uptodate, false);
1236 		if (ret) {
1237 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1238 						       reserve_bytes);
1239 			break;
1240 		}
1241 
1242 		extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode),
1243 						folio, pos, write_bytes, &lockstart,
1244 						&lockend, nowait, &cached_state);
1245 		if (extents_locked < 0) {
1246 			if (!nowait && extents_locked == -EAGAIN)
1247 				goto again;
1248 
1249 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1250 						       reserve_bytes);
1251 			ret = extents_locked;
1252 			break;
1253 		}
1254 
1255 		copied = btrfs_copy_from_user(pos, write_bytes, folio, i);
1256 
1257 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1258 		dirty_sectors = round_up(copied + sector_offset,
1259 					fs_info->sectorsize);
1260 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1261 
1262 		if (copied == 0) {
1263 			force_page_uptodate = true;
1264 			dirty_sectors = 0;
1265 		} else {
1266 			force_page_uptodate = false;
1267 		}
1268 
1269 		if (num_sectors > dirty_sectors) {
1270 			/* release everything except the sectors we dirtied */
1271 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1272 			if (only_release_metadata) {
1273 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1274 							release_bytes, true);
1275 			} else {
1276 				u64 release_start = round_up(pos + copied,
1277 							     fs_info->sectorsize);
1278 				btrfs_delalloc_release_space(BTRFS_I(inode),
1279 						data_reserved, release_start,
1280 						release_bytes, true);
1281 			}
1282 		}
1283 
1284 		release_bytes = round_up(copied + sector_offset,
1285 					fs_info->sectorsize);
1286 
1287 		ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied,
1288 					&cached_state, only_release_metadata);
1289 
1290 		/*
1291 		 * If we have not locked the extent range, because the range's
1292 		 * start offset is >= i_size, we might still have a non-NULL
1293 		 * cached extent state, acquired while marking the extent range
1294 		 * as delalloc through btrfs_dirty_page(). Therefore free any
1295 		 * possible cached extent state to avoid a memory leak.
1296 		 */
1297 		if (extents_locked)
1298 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1299 				      lockend, &cached_state);
1300 		else
1301 			free_extent_state(cached_state);
1302 
1303 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1304 		if (ret) {
1305 			btrfs_drop_folio(fs_info, folio, pos, copied);
1306 			break;
1307 		}
1308 
1309 		release_bytes = 0;
1310 		if (only_release_metadata)
1311 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1312 
1313 		btrfs_drop_folio(fs_info, folio, pos, copied);
1314 
1315 		cond_resched();
1316 
1317 		pos += copied;
1318 		num_written += copied;
1319 	}
1320 
1321 	if (release_bytes) {
1322 		if (only_release_metadata) {
1323 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1324 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1325 					release_bytes, true);
1326 		} else {
1327 			btrfs_delalloc_release_space(BTRFS_I(inode),
1328 					data_reserved,
1329 					round_down(pos, fs_info->sectorsize),
1330 					release_bytes, true);
1331 		}
1332 	}
1333 
1334 	extent_changeset_free(data_reserved);
1335 	if (num_written > 0) {
1336 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1337 		iocb->ki_pos += num_written;
1338 	}
1339 out:
1340 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1341 	return num_written ? num_written : ret;
1342 }
1343 
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1344 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1345 			const struct btrfs_ioctl_encoded_io_args *encoded)
1346 {
1347 	struct file *file = iocb->ki_filp;
1348 	struct inode *inode = file_inode(file);
1349 	loff_t count;
1350 	ssize_t ret;
1351 
1352 	btrfs_inode_lock(BTRFS_I(inode), 0);
1353 	count = encoded->len;
1354 	ret = generic_write_checks_count(iocb, &count);
1355 	if (ret == 0 && count != encoded->len) {
1356 		/*
1357 		 * The write got truncated by generic_write_checks_count(). We
1358 		 * can't do a partial encoded write.
1359 		 */
1360 		ret = -EFBIG;
1361 	}
1362 	if (ret || encoded->len == 0)
1363 		goto out;
1364 
1365 	ret = btrfs_write_check(iocb, encoded->len);
1366 	if (ret < 0)
1367 		goto out;
1368 
1369 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1370 out:
1371 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1372 	return ret;
1373 }
1374 
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1375 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1376 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1377 {
1378 	struct file *file = iocb->ki_filp;
1379 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1380 	ssize_t num_written, num_sync;
1381 
1382 	/*
1383 	 * If the fs flips readonly due to some impossible error, although we
1384 	 * have opened a file as writable, we have to stop this write operation
1385 	 * to ensure consistency.
1386 	 */
1387 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1388 		return -EROFS;
1389 
1390 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1391 		return -EOPNOTSUPP;
1392 
1393 	if (encoded) {
1394 		num_written = btrfs_encoded_write(iocb, from, encoded);
1395 		num_sync = encoded->len;
1396 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1397 		num_written = btrfs_direct_write(iocb, from);
1398 		num_sync = num_written;
1399 	} else {
1400 		num_written = btrfs_buffered_write(iocb, from);
1401 		num_sync = num_written;
1402 	}
1403 
1404 	btrfs_set_inode_last_sub_trans(inode);
1405 
1406 	if (num_sync > 0) {
1407 		num_sync = generic_write_sync(iocb, num_sync);
1408 		if (num_sync < 0)
1409 			num_written = num_sync;
1410 	}
1411 
1412 	return num_written;
1413 }
1414 
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1415 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1416 {
1417 	return btrfs_do_write_iter(iocb, from, NULL);
1418 }
1419 
btrfs_release_file(struct inode * inode,struct file * filp)1420 int btrfs_release_file(struct inode *inode, struct file *filp)
1421 {
1422 	struct btrfs_file_private *private = filp->private_data;
1423 
1424 	if (private) {
1425 		kfree(private->filldir_buf);
1426 		free_extent_state(private->llseek_cached_state);
1427 		kfree(private);
1428 		filp->private_data = NULL;
1429 	}
1430 
1431 	/*
1432 	 * Set by setattr when we are about to truncate a file from a non-zero
1433 	 * size to a zero size.  This tries to flush down new bytes that may
1434 	 * have been written if the application were using truncate to replace
1435 	 * a file in place.
1436 	 */
1437 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1438 			       &BTRFS_I(inode)->runtime_flags))
1439 			filemap_flush(inode->i_mapping);
1440 	return 0;
1441 }
1442 
start_ordered_ops(struct btrfs_inode * inode,loff_t start,loff_t end)1443 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1444 {
1445 	int ret;
1446 	struct blk_plug plug;
1447 
1448 	/*
1449 	 * This is only called in fsync, which would do synchronous writes, so
1450 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1451 	 * multiple disks using raid profile, a large IO can be split to
1452 	 * several segments of stripe length (currently 64K).
1453 	 */
1454 	blk_start_plug(&plug);
1455 	ret = btrfs_fdatawrite_range(inode, start, end);
1456 	blk_finish_plug(&plug);
1457 
1458 	return ret;
1459 }
1460 
skip_inode_logging(const struct btrfs_log_ctx * ctx)1461 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1462 {
1463 	struct btrfs_inode *inode = ctx->inode;
1464 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1465 
1466 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1467 	    list_empty(&ctx->ordered_extents))
1468 		return true;
1469 
1470 	/*
1471 	 * If we are doing a fast fsync we can not bail out if the inode's
1472 	 * last_trans is <= then the last committed transaction, because we only
1473 	 * update the last_trans of the inode during ordered extent completion,
1474 	 * and for a fast fsync we don't wait for that, we only wait for the
1475 	 * writeback to complete.
1476 	 */
1477 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1478 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1479 	     list_empty(&ctx->ordered_extents)))
1480 		return true;
1481 
1482 	return false;
1483 }
1484 
1485 /*
1486  * fsync call for both files and directories.  This logs the inode into
1487  * the tree log instead of forcing full commits whenever possible.
1488  *
1489  * It needs to call filemap_fdatawait so that all ordered extent updates are
1490  * in the metadata btree are up to date for copying to the log.
1491  *
1492  * It drops the inode mutex before doing the tree log commit.  This is an
1493  * important optimization for directories because holding the mutex prevents
1494  * new operations on the dir while we write to disk.
1495  */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1496 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1497 {
1498 	struct dentry *dentry = file_dentry(file);
1499 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1500 	struct btrfs_root *root = inode->root;
1501 	struct btrfs_fs_info *fs_info = root->fs_info;
1502 	struct btrfs_trans_handle *trans;
1503 	struct btrfs_log_ctx ctx;
1504 	int ret = 0, err;
1505 	u64 len;
1506 	bool full_sync;
1507 	bool skip_ilock = false;
1508 
1509 	if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1510 		skip_ilock = true;
1511 		current->journal_info = NULL;
1512 		btrfs_assert_inode_locked(inode);
1513 	}
1514 
1515 	trace_btrfs_sync_file(file, datasync);
1516 
1517 	btrfs_init_log_ctx(&ctx, inode);
1518 
1519 	/*
1520 	 * Always set the range to a full range, otherwise we can get into
1521 	 * several problems, from missing file extent items to represent holes
1522 	 * when not using the NO_HOLES feature, to log tree corruption due to
1523 	 * races between hole detection during logging and completion of ordered
1524 	 * extents outside the range, to missing checksums due to ordered extents
1525 	 * for which we flushed only a subset of their pages.
1526 	 */
1527 	start = 0;
1528 	end = LLONG_MAX;
1529 	len = (u64)LLONG_MAX + 1;
1530 
1531 	/*
1532 	 * We write the dirty pages in the range and wait until they complete
1533 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1534 	 * multi-task, and make the performance up.  See
1535 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1536 	 */
1537 	ret = start_ordered_ops(inode, start, end);
1538 	if (ret)
1539 		goto out;
1540 
1541 	if (skip_ilock)
1542 		down_write(&inode->i_mmap_lock);
1543 	else
1544 		btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1545 
1546 	atomic_inc(&root->log_batch);
1547 
1548 	/*
1549 	 * Before we acquired the inode's lock and the mmap lock, someone may
1550 	 * have dirtied more pages in the target range. We need to make sure
1551 	 * that writeback for any such pages does not start while we are logging
1552 	 * the inode, because if it does, any of the following might happen when
1553 	 * we are not doing a full inode sync:
1554 	 *
1555 	 * 1) We log an extent after its writeback finishes but before its
1556 	 *    checksums are added to the csum tree, leading to -EIO errors
1557 	 *    when attempting to read the extent after a log replay.
1558 	 *
1559 	 * 2) We can end up logging an extent before its writeback finishes.
1560 	 *    Therefore after the log replay we will have a file extent item
1561 	 *    pointing to an unwritten extent (and no data checksums as well).
1562 	 *
1563 	 * So trigger writeback for any eventual new dirty pages and then we
1564 	 * wait for all ordered extents to complete below.
1565 	 */
1566 	ret = start_ordered_ops(inode, start, end);
1567 	if (ret) {
1568 		if (skip_ilock)
1569 			up_write(&inode->i_mmap_lock);
1570 		else
1571 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1572 		goto out;
1573 	}
1574 
1575 	/*
1576 	 * Always check for the full sync flag while holding the inode's lock,
1577 	 * to avoid races with other tasks. The flag must be either set all the
1578 	 * time during logging or always off all the time while logging.
1579 	 * We check the flag here after starting delalloc above, because when
1580 	 * running delalloc the full sync flag may be set if we need to drop
1581 	 * extra extent map ranges due to temporary memory allocation failures.
1582 	 */
1583 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1584 
1585 	/*
1586 	 * We have to do this here to avoid the priority inversion of waiting on
1587 	 * IO of a lower priority task while holding a transaction open.
1588 	 *
1589 	 * For a full fsync we wait for the ordered extents to complete while
1590 	 * for a fast fsync we wait just for writeback to complete, and then
1591 	 * attach the ordered extents to the transaction so that a transaction
1592 	 * commit waits for their completion, to avoid data loss if we fsync,
1593 	 * the current transaction commits before the ordered extents complete
1594 	 * and a power failure happens right after that.
1595 	 *
1596 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1597 	 * logical address recorded in the ordered extent may change. We need
1598 	 * to wait for the IO to stabilize the logical address.
1599 	 */
1600 	if (full_sync || btrfs_is_zoned(fs_info)) {
1601 		ret = btrfs_wait_ordered_range(inode, start, len);
1602 		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1603 	} else {
1604 		/*
1605 		 * Get our ordered extents as soon as possible to avoid doing
1606 		 * checksum lookups in the csum tree, and use instead the
1607 		 * checksums attached to the ordered extents.
1608 		 */
1609 		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1610 		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1611 		if (ret)
1612 			goto out_release_extents;
1613 
1614 		/*
1615 		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1616 		 * starting and waiting for writeback, because for buffered IO
1617 		 * it may have been set during the end IO callback
1618 		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1619 		 * case an error happened and we need to wait for ordered
1620 		 * extents to complete so that any extent maps that point to
1621 		 * unwritten locations are dropped and we don't log them.
1622 		 */
1623 		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1624 			ret = btrfs_wait_ordered_range(inode, start, len);
1625 	}
1626 
1627 	if (ret)
1628 		goto out_release_extents;
1629 
1630 	atomic_inc(&root->log_batch);
1631 
1632 	if (skip_inode_logging(&ctx)) {
1633 		/*
1634 		 * We've had everything committed since the last time we were
1635 		 * modified so clear this flag in case it was set for whatever
1636 		 * reason, it's no longer relevant.
1637 		 */
1638 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1639 		/*
1640 		 * An ordered extent might have started before and completed
1641 		 * already with io errors, in which case the inode was not
1642 		 * updated and we end up here. So check the inode's mapping
1643 		 * for any errors that might have happened since we last
1644 		 * checked called fsync.
1645 		 */
1646 		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1647 		goto out_release_extents;
1648 	}
1649 
1650 	btrfs_init_log_ctx_scratch_eb(&ctx);
1651 
1652 	/*
1653 	 * We use start here because we will need to wait on the IO to complete
1654 	 * in btrfs_sync_log, which could require joining a transaction (for
1655 	 * example checking cross references in the nocow path).  If we use join
1656 	 * here we could get into a situation where we're waiting on IO to
1657 	 * happen that is blocked on a transaction trying to commit.  With start
1658 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1659 	 * before we start blocking joiners.  This comment is to keep somebody
1660 	 * from thinking they are super smart and changing this to
1661 	 * btrfs_join_transaction *cough*Josef*cough*.
1662 	 */
1663 	trans = btrfs_start_transaction(root, 0);
1664 	if (IS_ERR(trans)) {
1665 		ret = PTR_ERR(trans);
1666 		goto out_release_extents;
1667 	}
1668 	trans->in_fsync = true;
1669 
1670 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1671 	/*
1672 	 * Scratch eb no longer needed, release before syncing log or commit
1673 	 * transaction, to avoid holding unnecessary memory during such long
1674 	 * operations.
1675 	 */
1676 	if (ctx.scratch_eb) {
1677 		free_extent_buffer(ctx.scratch_eb);
1678 		ctx.scratch_eb = NULL;
1679 	}
1680 	btrfs_release_log_ctx_extents(&ctx);
1681 	if (ret < 0) {
1682 		/* Fallthrough and commit/free transaction. */
1683 		ret = BTRFS_LOG_FORCE_COMMIT;
1684 	}
1685 
1686 	/* we've logged all the items and now have a consistent
1687 	 * version of the file in the log.  It is possible that
1688 	 * someone will come in and modify the file, but that's
1689 	 * fine because the log is consistent on disk, and we
1690 	 * have references to all of the file's extents
1691 	 *
1692 	 * It is possible that someone will come in and log the
1693 	 * file again, but that will end up using the synchronization
1694 	 * inside btrfs_sync_log to keep things safe.
1695 	 */
1696 	if (skip_ilock)
1697 		up_write(&inode->i_mmap_lock);
1698 	else
1699 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1700 
1701 	if (ret == BTRFS_NO_LOG_SYNC) {
1702 		ret = btrfs_end_transaction(trans);
1703 		goto out;
1704 	}
1705 
1706 	/* We successfully logged the inode, attempt to sync the log. */
1707 	if (!ret) {
1708 		ret = btrfs_sync_log(trans, root, &ctx);
1709 		if (!ret) {
1710 			ret = btrfs_end_transaction(trans);
1711 			goto out;
1712 		}
1713 	}
1714 
1715 	/*
1716 	 * At this point we need to commit the transaction because we had
1717 	 * btrfs_need_log_full_commit() or some other error.
1718 	 *
1719 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1720 	 * the ordered extents, start it again and commit the transaction.  If
1721 	 * we attempt to wait on the ordered extents here we could deadlock with
1722 	 * something like fallocate() that is holding the extent lock trying to
1723 	 * start a transaction while some other thread is trying to commit the
1724 	 * transaction while we (fsync) are currently holding the transaction
1725 	 * open.
1726 	 */
1727 	if (!full_sync) {
1728 		ret = btrfs_end_transaction(trans);
1729 		if (ret)
1730 			goto out;
1731 		ret = btrfs_wait_ordered_range(inode, start, len);
1732 		if (ret)
1733 			goto out;
1734 
1735 		/*
1736 		 * This is safe to use here because we're only interested in
1737 		 * making sure the transaction that had the ordered extents is
1738 		 * committed.  We aren't waiting on anything past this point,
1739 		 * we're purely getting the transaction and committing it.
1740 		 */
1741 		trans = btrfs_attach_transaction_barrier(root);
1742 		if (IS_ERR(trans)) {
1743 			ret = PTR_ERR(trans);
1744 
1745 			/*
1746 			 * We committed the transaction and there's no currently
1747 			 * running transaction, this means everything we care
1748 			 * about made it to disk and we are done.
1749 			 */
1750 			if (ret == -ENOENT)
1751 				ret = 0;
1752 			goto out;
1753 		}
1754 	}
1755 
1756 	ret = btrfs_commit_transaction(trans);
1757 out:
1758 	free_extent_buffer(ctx.scratch_eb);
1759 	ASSERT(list_empty(&ctx.list));
1760 	ASSERT(list_empty(&ctx.conflict_inodes));
1761 	err = file_check_and_advance_wb_err(file);
1762 	if (!ret)
1763 		ret = err;
1764 	return ret > 0 ? -EIO : ret;
1765 
1766 out_release_extents:
1767 	btrfs_release_log_ctx_extents(&ctx);
1768 	if (skip_ilock)
1769 		up_write(&inode->i_mmap_lock);
1770 	else
1771 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1772 	goto out;
1773 }
1774 
1775 /*
1776  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1777  * called from a page fault handler when a page is first dirtied. Hence we must
1778  * be careful to check for EOF conditions here. We set the page up correctly
1779  * for a written page which means we get ENOSPC checking when writing into
1780  * holes and correct delalloc and unwritten extent mapping on filesystems that
1781  * support these features.
1782  *
1783  * We are not allowed to take the i_mutex here so we have to play games to
1784  * protect against truncate races as the page could now be beyond EOF.  Because
1785  * truncate_setsize() writes the inode size before removing pages, once we have
1786  * the page lock we can determine safely if the page is beyond EOF. If it is not
1787  * beyond EOF, then the page is guaranteed safe against truncation until we
1788  * unlock the page.
1789  */
btrfs_page_mkwrite(struct vm_fault * vmf)1790 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1791 {
1792 	struct page *page = vmf->page;
1793 	struct folio *folio = page_folio(page);
1794 	struct inode *inode = file_inode(vmf->vma->vm_file);
1795 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1796 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1797 	struct btrfs_ordered_extent *ordered;
1798 	struct extent_state *cached_state = NULL;
1799 	struct extent_changeset *data_reserved = NULL;
1800 	unsigned long zero_start;
1801 	loff_t size;
1802 	vm_fault_t ret;
1803 	int ret2;
1804 	int reserved = 0;
1805 	u64 reserved_space;
1806 	u64 page_start;
1807 	u64 page_end;
1808 	u64 end;
1809 
1810 	ASSERT(folio_order(folio) == 0);
1811 
1812 	reserved_space = PAGE_SIZE;
1813 
1814 	sb_start_pagefault(inode->i_sb);
1815 	page_start = folio_pos(folio);
1816 	page_end = page_start + folio_size(folio) - 1;
1817 	end = page_end;
1818 
1819 	/*
1820 	 * Reserving delalloc space after obtaining the page lock can lead to
1821 	 * deadlock. For example, if a dirty page is locked by this function
1822 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1823 	 * dirty page write out, then the btrfs_writepages() function could
1824 	 * end up waiting indefinitely to get a lock on the page currently
1825 	 * being processed by btrfs_page_mkwrite() function.
1826 	 */
1827 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1828 					    page_start, reserved_space);
1829 	if (!ret2) {
1830 		ret2 = file_update_time(vmf->vma->vm_file);
1831 		reserved = 1;
1832 	}
1833 	if (ret2) {
1834 		ret = vmf_error(ret2);
1835 		if (reserved)
1836 			goto out;
1837 		goto out_noreserve;
1838 	}
1839 
1840 	/* Make the VM retry the fault. */
1841 	ret = VM_FAULT_NOPAGE;
1842 again:
1843 	down_read(&BTRFS_I(inode)->i_mmap_lock);
1844 	folio_lock(folio);
1845 	size = i_size_read(inode);
1846 
1847 	if ((folio->mapping != inode->i_mapping) ||
1848 	    (page_start >= size)) {
1849 		/* Page got truncated out from underneath us. */
1850 		goto out_unlock;
1851 	}
1852 	folio_wait_writeback(folio);
1853 
1854 	lock_extent(io_tree, page_start, page_end, &cached_state);
1855 	ret2 = set_folio_extent_mapped(folio);
1856 	if (ret2 < 0) {
1857 		ret = vmf_error(ret2);
1858 		unlock_extent(io_tree, page_start, page_end, &cached_state);
1859 		goto out_unlock;
1860 	}
1861 
1862 	/*
1863 	 * We can't set the delalloc bits if there are pending ordered
1864 	 * extents.  Drop our locks and wait for them to finish.
1865 	 */
1866 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1867 	if (ordered) {
1868 		unlock_extent(io_tree, page_start, page_end, &cached_state);
1869 		folio_unlock(folio);
1870 		up_read(&BTRFS_I(inode)->i_mmap_lock);
1871 		btrfs_start_ordered_extent(ordered);
1872 		btrfs_put_ordered_extent(ordered);
1873 		goto again;
1874 	}
1875 
1876 	if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
1877 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1878 		if (reserved_space < PAGE_SIZE) {
1879 			end = page_start + reserved_space - 1;
1880 			btrfs_delalloc_release_space(BTRFS_I(inode),
1881 					data_reserved, page_start,
1882 					PAGE_SIZE - reserved_space, true);
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * page_mkwrite gets called when the page is firstly dirtied after it's
1888 	 * faulted in, but write(2) could also dirty a page and set delalloc
1889 	 * bits, thus in this case for space account reason, we still need to
1890 	 * clear any delalloc bits within this page range since we have to
1891 	 * reserve data&meta space before lock_page() (see above comments).
1892 	 */
1893 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1894 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1895 			  EXTENT_DEFRAG, &cached_state);
1896 
1897 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1898 					&cached_state);
1899 	if (ret2) {
1900 		unlock_extent(io_tree, page_start, page_end, &cached_state);
1901 		ret = VM_FAULT_SIGBUS;
1902 		goto out_unlock;
1903 	}
1904 
1905 	/* Page is wholly or partially inside EOF. */
1906 	if (page_start + folio_size(folio) > size)
1907 		zero_start = offset_in_folio(folio, size);
1908 	else
1909 		zero_start = PAGE_SIZE;
1910 
1911 	if (zero_start != PAGE_SIZE)
1912 		folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1913 
1914 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
1915 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1916 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1917 
1918 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1919 
1920 	unlock_extent(io_tree, page_start, page_end, &cached_state);
1921 	up_read(&BTRFS_I(inode)->i_mmap_lock);
1922 
1923 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1924 	sb_end_pagefault(inode->i_sb);
1925 	extent_changeset_free(data_reserved);
1926 	return VM_FAULT_LOCKED;
1927 
1928 out_unlock:
1929 	folio_unlock(folio);
1930 	up_read(&BTRFS_I(inode)->i_mmap_lock);
1931 out:
1932 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1933 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1934 				     reserved_space, (ret != 0));
1935 out_noreserve:
1936 	sb_end_pagefault(inode->i_sb);
1937 	extent_changeset_free(data_reserved);
1938 	return ret;
1939 }
1940 
1941 static const struct vm_operations_struct btrfs_file_vm_ops = {
1942 	.fault		= filemap_fault,
1943 	.map_pages	= filemap_map_pages,
1944 	.page_mkwrite	= btrfs_page_mkwrite,
1945 };
1946 
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1947 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1948 {
1949 	struct address_space *mapping = filp->f_mapping;
1950 
1951 	if (!mapping->a_ops->read_folio)
1952 		return -ENOEXEC;
1953 
1954 	file_accessed(filp);
1955 	vma->vm_ops = &btrfs_file_vm_ops;
1956 
1957 	return 0;
1958 }
1959 
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)1960 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1961 			  int slot, u64 start, u64 end)
1962 {
1963 	struct btrfs_file_extent_item *fi;
1964 	struct btrfs_key key;
1965 
1966 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1967 		return 0;
1968 
1969 	btrfs_item_key_to_cpu(leaf, &key, slot);
1970 	if (key.objectid != btrfs_ino(inode) ||
1971 	    key.type != BTRFS_EXTENT_DATA_KEY)
1972 		return 0;
1973 
1974 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1975 
1976 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1977 		return 0;
1978 
1979 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1980 		return 0;
1981 
1982 	if (key.offset == end)
1983 		return 1;
1984 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1985 		return 1;
1986 	return 0;
1987 }
1988 
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)1989 static int fill_holes(struct btrfs_trans_handle *trans,
1990 		struct btrfs_inode *inode,
1991 		struct btrfs_path *path, u64 offset, u64 end)
1992 {
1993 	struct btrfs_fs_info *fs_info = trans->fs_info;
1994 	struct btrfs_root *root = inode->root;
1995 	struct extent_buffer *leaf;
1996 	struct btrfs_file_extent_item *fi;
1997 	struct extent_map *hole_em;
1998 	struct btrfs_key key;
1999 	int ret;
2000 
2001 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2002 		goto out;
2003 
2004 	key.objectid = btrfs_ino(inode);
2005 	key.type = BTRFS_EXTENT_DATA_KEY;
2006 	key.offset = offset;
2007 
2008 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2009 	if (ret <= 0) {
2010 		/*
2011 		 * We should have dropped this offset, so if we find it then
2012 		 * something has gone horribly wrong.
2013 		 */
2014 		if (ret == 0)
2015 			ret = -EINVAL;
2016 		return ret;
2017 	}
2018 
2019 	leaf = path->nodes[0];
2020 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2021 		u64 num_bytes;
2022 
2023 		path->slots[0]--;
2024 		fi = btrfs_item_ptr(leaf, path->slots[0],
2025 				    struct btrfs_file_extent_item);
2026 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2027 			end - offset;
2028 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2029 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2030 		btrfs_set_file_extent_offset(leaf, fi, 0);
2031 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2032 		btrfs_mark_buffer_dirty(trans, leaf);
2033 		goto out;
2034 	}
2035 
2036 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2037 		u64 num_bytes;
2038 
2039 		key.offset = offset;
2040 		btrfs_set_item_key_safe(trans, path, &key);
2041 		fi = btrfs_item_ptr(leaf, path->slots[0],
2042 				    struct btrfs_file_extent_item);
2043 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2044 			offset;
2045 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2046 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2047 		btrfs_set_file_extent_offset(leaf, fi, 0);
2048 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2049 		btrfs_mark_buffer_dirty(trans, leaf);
2050 		goto out;
2051 	}
2052 	btrfs_release_path(path);
2053 
2054 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2055 				       end - offset);
2056 	if (ret)
2057 		return ret;
2058 
2059 out:
2060 	btrfs_release_path(path);
2061 
2062 	hole_em = alloc_extent_map();
2063 	if (!hole_em) {
2064 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2065 		btrfs_set_inode_full_sync(inode);
2066 	} else {
2067 		hole_em->start = offset;
2068 		hole_em->len = end - offset;
2069 		hole_em->ram_bytes = hole_em->len;
2070 
2071 		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2072 		hole_em->disk_num_bytes = 0;
2073 		hole_em->generation = trans->transid;
2074 
2075 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2076 		free_extent_map(hole_em);
2077 		if (ret)
2078 			btrfs_set_inode_full_sync(inode);
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 /*
2085  * Find a hole extent on given inode and change start/len to the end of hole
2086  * extent.(hole/vacuum extent whose em->start <= start &&
2087  *	   em->start + em->len > start)
2088  * When a hole extent is found, return 1 and modify start/len.
2089  */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2090 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2091 {
2092 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2093 	struct extent_map *em;
2094 	int ret = 0;
2095 
2096 	em = btrfs_get_extent(inode, NULL,
2097 			      round_down(*start, fs_info->sectorsize),
2098 			      round_up(*len, fs_info->sectorsize));
2099 	if (IS_ERR(em))
2100 		return PTR_ERR(em);
2101 
2102 	/* Hole or vacuum extent(only exists in no-hole mode) */
2103 	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2104 		ret = 1;
2105 		*len = em->start + em->len > *start + *len ?
2106 		       0 : *start + *len - em->start - em->len;
2107 		*start = em->start + em->len;
2108 	}
2109 	free_extent_map(em);
2110 	return ret;
2111 }
2112 
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2113 static void btrfs_punch_hole_lock_range(struct inode *inode,
2114 					const u64 lockstart,
2115 					const u64 lockend,
2116 					struct extent_state **cached_state)
2117 {
2118 	/*
2119 	 * For subpage case, if the range is not at page boundary, we could
2120 	 * have pages at the leading/tailing part of the range.
2121 	 * This could lead to dead loop since filemap_range_has_page()
2122 	 * will always return true.
2123 	 * So here we need to do extra page alignment for
2124 	 * filemap_range_has_page().
2125 	 */
2126 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2127 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2128 
2129 	while (1) {
2130 		truncate_pagecache_range(inode, lockstart, lockend);
2131 
2132 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2133 			    cached_state);
2134 		/*
2135 		 * We can't have ordered extents in the range, nor dirty/writeback
2136 		 * pages, because we have locked the inode's VFS lock in exclusive
2137 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2138 		 * we have flushed all delalloc in the range and we have waited
2139 		 * for any ordered extents in the range to complete.
2140 		 * We can race with anyone reading pages from this range, so after
2141 		 * locking the range check if we have pages in the range, and if
2142 		 * we do, unlock the range and retry.
2143 		 */
2144 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2145 					    page_lockend))
2146 			break;
2147 
2148 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2149 			      cached_state);
2150 	}
2151 
2152 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2153 }
2154 
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2155 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2156 				     struct btrfs_inode *inode,
2157 				     struct btrfs_path *path,
2158 				     struct btrfs_replace_extent_info *extent_info,
2159 				     const u64 replace_len,
2160 				     const u64 bytes_to_drop)
2161 {
2162 	struct btrfs_fs_info *fs_info = trans->fs_info;
2163 	struct btrfs_root *root = inode->root;
2164 	struct btrfs_file_extent_item *extent;
2165 	struct extent_buffer *leaf;
2166 	struct btrfs_key key;
2167 	int slot;
2168 	int ret;
2169 
2170 	if (replace_len == 0)
2171 		return 0;
2172 
2173 	if (extent_info->disk_offset == 0 &&
2174 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2175 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2176 		return 0;
2177 	}
2178 
2179 	key.objectid = btrfs_ino(inode);
2180 	key.type = BTRFS_EXTENT_DATA_KEY;
2181 	key.offset = extent_info->file_offset;
2182 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2183 				      sizeof(struct btrfs_file_extent_item));
2184 	if (ret)
2185 		return ret;
2186 	leaf = path->nodes[0];
2187 	slot = path->slots[0];
2188 	write_extent_buffer(leaf, extent_info->extent_buf,
2189 			    btrfs_item_ptr_offset(leaf, slot),
2190 			    sizeof(struct btrfs_file_extent_item));
2191 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2192 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2193 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2194 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2195 	if (extent_info->is_new_extent)
2196 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2197 	btrfs_mark_buffer_dirty(trans, leaf);
2198 	btrfs_release_path(path);
2199 
2200 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2201 						replace_len);
2202 	if (ret)
2203 		return ret;
2204 
2205 	/* If it's a hole, nothing more needs to be done. */
2206 	if (extent_info->disk_offset == 0) {
2207 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2208 		return 0;
2209 	}
2210 
2211 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2212 
2213 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2214 		key.objectid = extent_info->disk_offset;
2215 		key.type = BTRFS_EXTENT_ITEM_KEY;
2216 		key.offset = extent_info->disk_len;
2217 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2218 						       btrfs_ino(inode),
2219 						       extent_info->file_offset,
2220 						       extent_info->qgroup_reserved,
2221 						       &key);
2222 	} else {
2223 		struct btrfs_ref ref = {
2224 			.action = BTRFS_ADD_DELAYED_REF,
2225 			.bytenr = extent_info->disk_offset,
2226 			.num_bytes = extent_info->disk_len,
2227 			.owning_root = btrfs_root_id(root),
2228 			.ref_root = btrfs_root_id(root),
2229 		};
2230 		u64 ref_offset;
2231 
2232 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2233 		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2234 		ret = btrfs_inc_extent_ref(trans, &ref);
2235 	}
2236 
2237 	extent_info->insertions++;
2238 
2239 	return ret;
2240 }
2241 
2242 /*
2243  * The respective range must have been previously locked, as well as the inode.
2244  * The end offset is inclusive (last byte of the range).
2245  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2246  * the file range with an extent.
2247  * When not punching a hole, we don't want to end up in a state where we dropped
2248  * extents without inserting a new one, so we must abort the transaction to avoid
2249  * a corruption.
2250  */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2251 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2252 			       struct btrfs_path *path, const u64 start,
2253 			       const u64 end,
2254 			       struct btrfs_replace_extent_info *extent_info,
2255 			       struct btrfs_trans_handle **trans_out)
2256 {
2257 	struct btrfs_drop_extents_args drop_args = { 0 };
2258 	struct btrfs_root *root = inode->root;
2259 	struct btrfs_fs_info *fs_info = root->fs_info;
2260 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2261 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2262 	struct btrfs_trans_handle *trans = NULL;
2263 	struct btrfs_block_rsv *rsv;
2264 	unsigned int rsv_count;
2265 	u64 cur_offset;
2266 	u64 len = end - start;
2267 	int ret = 0;
2268 
2269 	if (end <= start)
2270 		return -EINVAL;
2271 
2272 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2273 	if (!rsv) {
2274 		ret = -ENOMEM;
2275 		goto out;
2276 	}
2277 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2278 	rsv->failfast = true;
2279 
2280 	/*
2281 	 * 1 - update the inode
2282 	 * 1 - removing the extents in the range
2283 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2284 	 *     replacing the range with a new extent
2285 	 */
2286 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2287 		rsv_count = 3;
2288 	else
2289 		rsv_count = 2;
2290 
2291 	trans = btrfs_start_transaction(root, rsv_count);
2292 	if (IS_ERR(trans)) {
2293 		ret = PTR_ERR(trans);
2294 		trans = NULL;
2295 		goto out_free;
2296 	}
2297 
2298 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2299 				      min_size, false);
2300 	if (WARN_ON(ret))
2301 		goto out_trans;
2302 	trans->block_rsv = rsv;
2303 
2304 	cur_offset = start;
2305 	drop_args.path = path;
2306 	drop_args.end = end + 1;
2307 	drop_args.drop_cache = true;
2308 	while (cur_offset < end) {
2309 		drop_args.start = cur_offset;
2310 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2311 		/* If we are punching a hole decrement the inode's byte count */
2312 		if (!extent_info)
2313 			btrfs_update_inode_bytes(inode, 0,
2314 						 drop_args.bytes_found);
2315 		if (ret != -ENOSPC) {
2316 			/*
2317 			 * The only time we don't want to abort is if we are
2318 			 * attempting to clone a partial inline extent, in which
2319 			 * case we'll get EOPNOTSUPP.  However if we aren't
2320 			 * clone we need to abort no matter what, because if we
2321 			 * got EOPNOTSUPP via prealloc then we messed up and
2322 			 * need to abort.
2323 			 */
2324 			if (ret &&
2325 			    (ret != -EOPNOTSUPP ||
2326 			     (extent_info && extent_info->is_new_extent)))
2327 				btrfs_abort_transaction(trans, ret);
2328 			break;
2329 		}
2330 
2331 		trans->block_rsv = &fs_info->trans_block_rsv;
2332 
2333 		if (!extent_info && cur_offset < drop_args.drop_end &&
2334 		    cur_offset < ino_size) {
2335 			ret = fill_holes(trans, inode, path, cur_offset,
2336 					 drop_args.drop_end);
2337 			if (ret) {
2338 				/*
2339 				 * If we failed then we didn't insert our hole
2340 				 * entries for the area we dropped, so now the
2341 				 * fs is corrupted, so we must abort the
2342 				 * transaction.
2343 				 */
2344 				btrfs_abort_transaction(trans, ret);
2345 				break;
2346 			}
2347 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2348 			/*
2349 			 * We are past the i_size here, but since we didn't
2350 			 * insert holes we need to clear the mapped area so we
2351 			 * know to not set disk_i_size in this area until a new
2352 			 * file extent is inserted here.
2353 			 */
2354 			ret = btrfs_inode_clear_file_extent_range(inode,
2355 					cur_offset,
2356 					drop_args.drop_end - cur_offset);
2357 			if (ret) {
2358 				/*
2359 				 * We couldn't clear our area, so we could
2360 				 * presumably adjust up and corrupt the fs, so
2361 				 * we need to abort.
2362 				 */
2363 				btrfs_abort_transaction(trans, ret);
2364 				break;
2365 			}
2366 		}
2367 
2368 		if (extent_info &&
2369 		    drop_args.drop_end > extent_info->file_offset) {
2370 			u64 replace_len = drop_args.drop_end -
2371 					  extent_info->file_offset;
2372 
2373 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2374 					extent_info, replace_len,
2375 					drop_args.bytes_found);
2376 			if (ret) {
2377 				btrfs_abort_transaction(trans, ret);
2378 				break;
2379 			}
2380 			extent_info->data_len -= replace_len;
2381 			extent_info->data_offset += replace_len;
2382 			extent_info->file_offset += replace_len;
2383 		}
2384 
2385 		/*
2386 		 * We are releasing our handle on the transaction, balance the
2387 		 * dirty pages of the btree inode and flush delayed items, and
2388 		 * then get a new transaction handle, which may now point to a
2389 		 * new transaction in case someone else may have committed the
2390 		 * transaction we used to replace/drop file extent items. So
2391 		 * bump the inode's iversion and update mtime and ctime except
2392 		 * if we are called from a dedupe context. This is because a
2393 		 * power failure/crash may happen after the transaction is
2394 		 * committed and before we finish replacing/dropping all the
2395 		 * file extent items we need.
2396 		 */
2397 		inode_inc_iversion(&inode->vfs_inode);
2398 
2399 		if (!extent_info || extent_info->update_times)
2400 			inode_set_mtime_to_ts(&inode->vfs_inode,
2401 					      inode_set_ctime_current(&inode->vfs_inode));
2402 
2403 		ret = btrfs_update_inode(trans, inode);
2404 		if (ret)
2405 			break;
2406 
2407 		btrfs_end_transaction(trans);
2408 		btrfs_btree_balance_dirty(fs_info);
2409 
2410 		trans = btrfs_start_transaction(root, rsv_count);
2411 		if (IS_ERR(trans)) {
2412 			ret = PTR_ERR(trans);
2413 			trans = NULL;
2414 			break;
2415 		}
2416 
2417 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2418 					      rsv, min_size, false);
2419 		if (WARN_ON(ret))
2420 			break;
2421 		trans->block_rsv = rsv;
2422 
2423 		cur_offset = drop_args.drop_end;
2424 		len = end - cur_offset;
2425 		if (!extent_info && len) {
2426 			ret = find_first_non_hole(inode, &cur_offset, &len);
2427 			if (unlikely(ret < 0))
2428 				break;
2429 			if (ret && !len) {
2430 				ret = 0;
2431 				break;
2432 			}
2433 		}
2434 	}
2435 
2436 	/*
2437 	 * If we were cloning, force the next fsync to be a full one since we
2438 	 * we replaced (or just dropped in the case of cloning holes when
2439 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2440 	 * maps for the replacement extents (or holes).
2441 	 */
2442 	if (extent_info && !extent_info->is_new_extent)
2443 		btrfs_set_inode_full_sync(inode);
2444 
2445 	if (ret)
2446 		goto out_trans;
2447 
2448 	trans->block_rsv = &fs_info->trans_block_rsv;
2449 	/*
2450 	 * If we are using the NO_HOLES feature we might have had already an
2451 	 * hole that overlaps a part of the region [lockstart, lockend] and
2452 	 * ends at (or beyond) lockend. Since we have no file extent items to
2453 	 * represent holes, drop_end can be less than lockend and so we must
2454 	 * make sure we have an extent map representing the existing hole (the
2455 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2456 	 * map representing the existing hole), otherwise the fast fsync path
2457 	 * will not record the existence of the hole region
2458 	 * [existing_hole_start, lockend].
2459 	 */
2460 	if (drop_args.drop_end <= end)
2461 		drop_args.drop_end = end + 1;
2462 	/*
2463 	 * Don't insert file hole extent item if it's for a range beyond eof
2464 	 * (because it's useless) or if it represents a 0 bytes range (when
2465 	 * cur_offset == drop_end).
2466 	 */
2467 	if (!extent_info && cur_offset < ino_size &&
2468 	    cur_offset < drop_args.drop_end) {
2469 		ret = fill_holes(trans, inode, path, cur_offset,
2470 				 drop_args.drop_end);
2471 		if (ret) {
2472 			/* Same comment as above. */
2473 			btrfs_abort_transaction(trans, ret);
2474 			goto out_trans;
2475 		}
2476 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2477 		/* See the comment in the loop above for the reasoning here. */
2478 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2479 					drop_args.drop_end - cur_offset);
2480 		if (ret) {
2481 			btrfs_abort_transaction(trans, ret);
2482 			goto out_trans;
2483 		}
2484 
2485 	}
2486 	if (extent_info) {
2487 		ret = btrfs_insert_replace_extent(trans, inode, path,
2488 				extent_info, extent_info->data_len,
2489 				drop_args.bytes_found);
2490 		if (ret) {
2491 			btrfs_abort_transaction(trans, ret);
2492 			goto out_trans;
2493 		}
2494 	}
2495 
2496 out_trans:
2497 	if (!trans)
2498 		goto out_free;
2499 
2500 	trans->block_rsv = &fs_info->trans_block_rsv;
2501 	if (ret)
2502 		btrfs_end_transaction(trans);
2503 	else
2504 		*trans_out = trans;
2505 out_free:
2506 	btrfs_free_block_rsv(fs_info, rsv);
2507 out:
2508 	return ret;
2509 }
2510 
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2511 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2512 {
2513 	struct inode *inode = file_inode(file);
2514 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2515 	struct btrfs_root *root = BTRFS_I(inode)->root;
2516 	struct extent_state *cached_state = NULL;
2517 	struct btrfs_path *path;
2518 	struct btrfs_trans_handle *trans = NULL;
2519 	u64 lockstart;
2520 	u64 lockend;
2521 	u64 tail_start;
2522 	u64 tail_len;
2523 	u64 orig_start = offset;
2524 	int ret = 0;
2525 	bool same_block;
2526 	u64 ino_size;
2527 	bool truncated_block = false;
2528 	bool updated_inode = false;
2529 
2530 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2531 
2532 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2533 	if (ret)
2534 		goto out_only_mutex;
2535 
2536 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2537 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2538 	if (ret < 0)
2539 		goto out_only_mutex;
2540 	if (ret && !len) {
2541 		/* Already in a large hole */
2542 		ret = 0;
2543 		goto out_only_mutex;
2544 	}
2545 
2546 	ret = file_modified(file);
2547 	if (ret)
2548 		goto out_only_mutex;
2549 
2550 	lockstart = round_up(offset, fs_info->sectorsize);
2551 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2552 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2553 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2554 	/*
2555 	 * We needn't truncate any block which is beyond the end of the file
2556 	 * because we are sure there is no data there.
2557 	 */
2558 	/*
2559 	 * Only do this if we are in the same block and we aren't doing the
2560 	 * entire block.
2561 	 */
2562 	if (same_block && len < fs_info->sectorsize) {
2563 		if (offset < ino_size) {
2564 			truncated_block = true;
2565 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2566 						   0);
2567 		} else {
2568 			ret = 0;
2569 		}
2570 		goto out_only_mutex;
2571 	}
2572 
2573 	/* zero back part of the first block */
2574 	if (offset < ino_size) {
2575 		truncated_block = true;
2576 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2577 		if (ret) {
2578 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2579 			return ret;
2580 		}
2581 	}
2582 
2583 	/* Check the aligned pages after the first unaligned page,
2584 	 * if offset != orig_start, which means the first unaligned page
2585 	 * including several following pages are already in holes,
2586 	 * the extra check can be skipped */
2587 	if (offset == orig_start) {
2588 		/* after truncate page, check hole again */
2589 		len = offset + len - lockstart;
2590 		offset = lockstart;
2591 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2592 		if (ret < 0)
2593 			goto out_only_mutex;
2594 		if (ret && !len) {
2595 			ret = 0;
2596 			goto out_only_mutex;
2597 		}
2598 		lockstart = offset;
2599 	}
2600 
2601 	/* Check the tail unaligned part is in a hole */
2602 	tail_start = lockend + 1;
2603 	tail_len = offset + len - tail_start;
2604 	if (tail_len) {
2605 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2606 		if (unlikely(ret < 0))
2607 			goto out_only_mutex;
2608 		if (!ret) {
2609 			/* zero the front end of the last page */
2610 			if (tail_start + tail_len < ino_size) {
2611 				truncated_block = true;
2612 				ret = btrfs_truncate_block(BTRFS_I(inode),
2613 							tail_start + tail_len,
2614 							0, 1);
2615 				if (ret)
2616 					goto out_only_mutex;
2617 			}
2618 		}
2619 	}
2620 
2621 	if (lockend < lockstart) {
2622 		ret = 0;
2623 		goto out_only_mutex;
2624 	}
2625 
2626 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2627 
2628 	path = btrfs_alloc_path();
2629 	if (!path) {
2630 		ret = -ENOMEM;
2631 		goto out;
2632 	}
2633 
2634 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2635 					 lockend, NULL, &trans);
2636 	btrfs_free_path(path);
2637 	if (ret)
2638 		goto out;
2639 
2640 	ASSERT(trans != NULL);
2641 	inode_inc_iversion(inode);
2642 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2643 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2644 	updated_inode = true;
2645 	btrfs_end_transaction(trans);
2646 	btrfs_btree_balance_dirty(fs_info);
2647 out:
2648 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2649 		      &cached_state);
2650 out_only_mutex:
2651 	if (!updated_inode && truncated_block && !ret) {
2652 		/*
2653 		 * If we only end up zeroing part of a page, we still need to
2654 		 * update the inode item, so that all the time fields are
2655 		 * updated as well as the necessary btrfs inode in memory fields
2656 		 * for detecting, at fsync time, if the inode isn't yet in the
2657 		 * log tree or it's there but not up to date.
2658 		 */
2659 		struct timespec64 now = inode_set_ctime_current(inode);
2660 
2661 		inode_inc_iversion(inode);
2662 		inode_set_mtime_to_ts(inode, now);
2663 		trans = btrfs_start_transaction(root, 1);
2664 		if (IS_ERR(trans)) {
2665 			ret = PTR_ERR(trans);
2666 		} else {
2667 			int ret2;
2668 
2669 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2670 			ret2 = btrfs_end_transaction(trans);
2671 			if (!ret)
2672 				ret = ret2;
2673 		}
2674 	}
2675 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2676 	return ret;
2677 }
2678 
2679 /* Helper structure to record which range is already reserved */
2680 struct falloc_range {
2681 	struct list_head list;
2682 	u64 start;
2683 	u64 len;
2684 };
2685 
2686 /*
2687  * Helper function to add falloc range
2688  *
2689  * Caller should have locked the larger range of extent containing
2690  * [start, len)
2691  */
add_falloc_range(struct list_head * head,u64 start,u64 len)2692 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2693 {
2694 	struct falloc_range *range = NULL;
2695 
2696 	if (!list_empty(head)) {
2697 		/*
2698 		 * As fallocate iterates by bytenr order, we only need to check
2699 		 * the last range.
2700 		 */
2701 		range = list_last_entry(head, struct falloc_range, list);
2702 		if (range->start + range->len == start) {
2703 			range->len += len;
2704 			return 0;
2705 		}
2706 	}
2707 
2708 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2709 	if (!range)
2710 		return -ENOMEM;
2711 	range->start = start;
2712 	range->len = len;
2713 	list_add_tail(&range->list, head);
2714 	return 0;
2715 }
2716 
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2717 static int btrfs_fallocate_update_isize(struct inode *inode,
2718 					const u64 end,
2719 					const int mode)
2720 {
2721 	struct btrfs_trans_handle *trans;
2722 	struct btrfs_root *root = BTRFS_I(inode)->root;
2723 	int ret;
2724 	int ret2;
2725 
2726 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2727 		return 0;
2728 
2729 	trans = btrfs_start_transaction(root, 1);
2730 	if (IS_ERR(trans))
2731 		return PTR_ERR(trans);
2732 
2733 	inode_set_ctime_current(inode);
2734 	i_size_write(inode, end);
2735 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2736 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2737 	ret2 = btrfs_end_transaction(trans);
2738 
2739 	return ret ? ret : ret2;
2740 }
2741 
2742 enum {
2743 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2744 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2745 	RANGE_BOUNDARY_HOLE,
2746 };
2747 
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2748 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2749 						 u64 offset)
2750 {
2751 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2752 	struct extent_map *em;
2753 	int ret;
2754 
2755 	offset = round_down(offset, sectorsize);
2756 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2757 	if (IS_ERR(em))
2758 		return PTR_ERR(em);
2759 
2760 	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2761 		ret = RANGE_BOUNDARY_HOLE;
2762 	else if (em->flags & EXTENT_FLAG_PREALLOC)
2763 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2764 	else
2765 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2766 
2767 	free_extent_map(em);
2768 	return ret;
2769 }
2770 
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2771 static int btrfs_zero_range(struct inode *inode,
2772 			    loff_t offset,
2773 			    loff_t len,
2774 			    const int mode)
2775 {
2776 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2777 	struct extent_map *em;
2778 	struct extent_changeset *data_reserved = NULL;
2779 	int ret;
2780 	u64 alloc_hint = 0;
2781 	const u64 sectorsize = fs_info->sectorsize;
2782 	u64 alloc_start = round_down(offset, sectorsize);
2783 	u64 alloc_end = round_up(offset + len, sectorsize);
2784 	u64 bytes_to_reserve = 0;
2785 	bool space_reserved = false;
2786 
2787 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2788 			      alloc_end - alloc_start);
2789 	if (IS_ERR(em)) {
2790 		ret = PTR_ERR(em);
2791 		goto out;
2792 	}
2793 
2794 	/*
2795 	 * Avoid hole punching and extent allocation for some cases. More cases
2796 	 * could be considered, but these are unlikely common and we keep things
2797 	 * as simple as possible for now. Also, intentionally, if the target
2798 	 * range contains one or more prealloc extents together with regular
2799 	 * extents and holes, we drop all the existing extents and allocate a
2800 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2801 	 */
2802 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2803 		const u64 em_end = em->start + em->len;
2804 
2805 		if (em_end >= offset + len) {
2806 			/*
2807 			 * The whole range is already a prealloc extent,
2808 			 * do nothing except updating the inode's i_size if
2809 			 * needed.
2810 			 */
2811 			free_extent_map(em);
2812 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2813 							   mode);
2814 			goto out;
2815 		}
2816 		/*
2817 		 * Part of the range is already a prealloc extent, so operate
2818 		 * only on the remaining part of the range.
2819 		 */
2820 		alloc_start = em_end;
2821 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2822 		len = offset + len - alloc_start;
2823 		offset = alloc_start;
2824 		alloc_hint = extent_map_block_start(em) + em->len;
2825 	}
2826 	free_extent_map(em);
2827 
2828 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2829 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2830 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2831 		if (IS_ERR(em)) {
2832 			ret = PTR_ERR(em);
2833 			goto out;
2834 		}
2835 
2836 		if (em->flags & EXTENT_FLAG_PREALLOC) {
2837 			free_extent_map(em);
2838 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2839 							   mode);
2840 			goto out;
2841 		}
2842 		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2843 			free_extent_map(em);
2844 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2845 						   0);
2846 			if (!ret)
2847 				ret = btrfs_fallocate_update_isize(inode,
2848 								   offset + len,
2849 								   mode);
2850 			return ret;
2851 		}
2852 		free_extent_map(em);
2853 		alloc_start = round_down(offset, sectorsize);
2854 		alloc_end = alloc_start + sectorsize;
2855 		goto reserve_space;
2856 	}
2857 
2858 	alloc_start = round_up(offset, sectorsize);
2859 	alloc_end = round_down(offset + len, sectorsize);
2860 
2861 	/*
2862 	 * For unaligned ranges, check the pages at the boundaries, they might
2863 	 * map to an extent, in which case we need to partially zero them, or
2864 	 * they might map to a hole, in which case we need our allocation range
2865 	 * to cover them.
2866 	 */
2867 	if (!IS_ALIGNED(offset, sectorsize)) {
2868 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2869 							    offset);
2870 		if (ret < 0)
2871 			goto out;
2872 		if (ret == RANGE_BOUNDARY_HOLE) {
2873 			alloc_start = round_down(offset, sectorsize);
2874 			ret = 0;
2875 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2876 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2877 			if (ret)
2878 				goto out;
2879 		} else {
2880 			ret = 0;
2881 		}
2882 	}
2883 
2884 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2885 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2886 							    offset + len);
2887 		if (ret < 0)
2888 			goto out;
2889 		if (ret == RANGE_BOUNDARY_HOLE) {
2890 			alloc_end = round_up(offset + len, sectorsize);
2891 			ret = 0;
2892 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2893 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2894 						   0, 1);
2895 			if (ret)
2896 				goto out;
2897 		} else {
2898 			ret = 0;
2899 		}
2900 	}
2901 
2902 reserve_space:
2903 	if (alloc_start < alloc_end) {
2904 		struct extent_state *cached_state = NULL;
2905 		const u64 lockstart = alloc_start;
2906 		const u64 lockend = alloc_end - 1;
2907 
2908 		bytes_to_reserve = alloc_end - alloc_start;
2909 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2910 						      bytes_to_reserve);
2911 		if (ret < 0)
2912 			goto out;
2913 		space_reserved = true;
2914 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2915 					    &cached_state);
2916 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2917 						alloc_start, bytes_to_reserve);
2918 		if (ret) {
2919 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2920 				      lockend, &cached_state);
2921 			goto out;
2922 		}
2923 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2924 						alloc_end - alloc_start,
2925 						fs_info->sectorsize,
2926 						offset + len, &alloc_hint);
2927 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2928 			      &cached_state);
2929 		/* btrfs_prealloc_file_range releases reserved space on error */
2930 		if (ret) {
2931 			space_reserved = false;
2932 			goto out;
2933 		}
2934 	}
2935 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2936  out:
2937 	if (ret && space_reserved)
2938 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
2939 					       alloc_start, bytes_to_reserve);
2940 	extent_changeset_free(data_reserved);
2941 
2942 	return ret;
2943 }
2944 
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2945 static long btrfs_fallocate(struct file *file, int mode,
2946 			    loff_t offset, loff_t len)
2947 {
2948 	struct inode *inode = file_inode(file);
2949 	struct extent_state *cached_state = NULL;
2950 	struct extent_changeset *data_reserved = NULL;
2951 	struct falloc_range *range;
2952 	struct falloc_range *tmp;
2953 	LIST_HEAD(reserve_list);
2954 	u64 cur_offset;
2955 	u64 last_byte;
2956 	u64 alloc_start;
2957 	u64 alloc_end;
2958 	u64 alloc_hint = 0;
2959 	u64 locked_end;
2960 	u64 actual_end = 0;
2961 	u64 data_space_needed = 0;
2962 	u64 data_space_reserved = 0;
2963 	u64 qgroup_reserved = 0;
2964 	struct extent_map *em;
2965 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2966 	int ret;
2967 
2968 	/* Do not allow fallocate in ZONED mode */
2969 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
2970 		return -EOPNOTSUPP;
2971 
2972 	alloc_start = round_down(offset, blocksize);
2973 	alloc_end = round_up(offset + len, blocksize);
2974 	cur_offset = alloc_start;
2975 
2976 	/* Make sure we aren't being give some crap mode */
2977 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2978 		     FALLOC_FL_ZERO_RANGE))
2979 		return -EOPNOTSUPP;
2980 
2981 	if (mode & FALLOC_FL_PUNCH_HOLE)
2982 		return btrfs_punch_hole(file, offset, len);
2983 
2984 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2985 
2986 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2987 		ret = inode_newsize_ok(inode, offset + len);
2988 		if (ret)
2989 			goto out;
2990 	}
2991 
2992 	ret = file_modified(file);
2993 	if (ret)
2994 		goto out;
2995 
2996 	/*
2997 	 * TODO: Move these two operations after we have checked
2998 	 * accurate reserved space, or fallocate can still fail but
2999 	 * with page truncated or size expanded.
3000 	 *
3001 	 * But that's a minor problem and won't do much harm BTW.
3002 	 */
3003 	if (alloc_start > inode->i_size) {
3004 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3005 					alloc_start);
3006 		if (ret)
3007 			goto out;
3008 	} else if (offset + len > inode->i_size) {
3009 		/*
3010 		 * If we are fallocating from the end of the file onward we
3011 		 * need to zero out the end of the block if i_size lands in the
3012 		 * middle of a block.
3013 		 */
3014 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3015 		if (ret)
3016 			goto out;
3017 	}
3018 
3019 	/*
3020 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3021 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3022 	 * locking the file range, flush all dealloc in the range and wait for
3023 	 * all ordered extents in the range to complete. After this we can lock
3024 	 * the file range and, due to the previous locking we did, we know there
3025 	 * can't be more delalloc or ordered extents in the range.
3026 	 */
3027 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3028 				       alloc_end - alloc_start);
3029 	if (ret)
3030 		goto out;
3031 
3032 	if (mode & FALLOC_FL_ZERO_RANGE) {
3033 		ret = btrfs_zero_range(inode, offset, len, mode);
3034 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3035 		return ret;
3036 	}
3037 
3038 	locked_end = alloc_end - 1;
3039 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3040 		    &cached_state);
3041 
3042 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3043 
3044 	/* First, check if we exceed the qgroup limit */
3045 	while (cur_offset < alloc_end) {
3046 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3047 				      alloc_end - cur_offset);
3048 		if (IS_ERR(em)) {
3049 			ret = PTR_ERR(em);
3050 			break;
3051 		}
3052 		last_byte = min(extent_map_end(em), alloc_end);
3053 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3054 		last_byte = ALIGN(last_byte, blocksize);
3055 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3056 		    (cur_offset >= inode->i_size &&
3057 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3058 			const u64 range_len = last_byte - cur_offset;
3059 
3060 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3061 			if (ret < 0) {
3062 				free_extent_map(em);
3063 				break;
3064 			}
3065 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3066 					&data_reserved, cur_offset, range_len);
3067 			if (ret < 0) {
3068 				free_extent_map(em);
3069 				break;
3070 			}
3071 			qgroup_reserved += range_len;
3072 			data_space_needed += range_len;
3073 		}
3074 		free_extent_map(em);
3075 		cur_offset = last_byte;
3076 	}
3077 
3078 	if (!ret && data_space_needed > 0) {
3079 		/*
3080 		 * We are safe to reserve space here as we can't have delalloc
3081 		 * in the range, see above.
3082 		 */
3083 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3084 						      data_space_needed);
3085 		if (!ret)
3086 			data_space_reserved = data_space_needed;
3087 	}
3088 
3089 	/*
3090 	 * If ret is still 0, means we're OK to fallocate.
3091 	 * Or just cleanup the list and exit.
3092 	 */
3093 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3094 		if (!ret) {
3095 			ret = btrfs_prealloc_file_range(inode, mode,
3096 					range->start,
3097 					range->len, blocksize,
3098 					offset + len, &alloc_hint);
3099 			/*
3100 			 * btrfs_prealloc_file_range() releases space even
3101 			 * if it returns an error.
3102 			 */
3103 			data_space_reserved -= range->len;
3104 			qgroup_reserved -= range->len;
3105 		} else if (data_space_reserved > 0) {
3106 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3107 					       data_reserved, range->start,
3108 					       range->len);
3109 			data_space_reserved -= range->len;
3110 			qgroup_reserved -= range->len;
3111 		} else if (qgroup_reserved > 0) {
3112 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3113 					       range->start, range->len, NULL);
3114 			qgroup_reserved -= range->len;
3115 		}
3116 		list_del(&range->list);
3117 		kfree(range);
3118 	}
3119 	if (ret < 0)
3120 		goto out_unlock;
3121 
3122 	/*
3123 	 * We didn't need to allocate any more space, but we still extended the
3124 	 * size of the file so we need to update i_size and the inode item.
3125 	 */
3126 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3127 out_unlock:
3128 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3129 		      &cached_state);
3130 out:
3131 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3132 	extent_changeset_free(data_reserved);
3133 	return ret;
3134 }
3135 
3136 /*
3137  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3138  * that has unflushed and/or flushing delalloc. There might be other adjacent
3139  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3140  * looping while it gets adjacent subranges, and merging them together.
3141  */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3142 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3143 				   struct extent_state **cached_state,
3144 				   bool *search_io_tree,
3145 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3146 {
3147 	u64 len = end + 1 - start;
3148 	u64 delalloc_len = 0;
3149 	struct btrfs_ordered_extent *oe;
3150 	u64 oe_start;
3151 	u64 oe_end;
3152 
3153 	/*
3154 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3155 	 * means we have delalloc (dirty pages) for which writeback has not
3156 	 * started yet.
3157 	 */
3158 	if (*search_io_tree) {
3159 		spin_lock(&inode->lock);
3160 		if (inode->delalloc_bytes > 0) {
3161 			spin_unlock(&inode->lock);
3162 			*delalloc_start_ret = start;
3163 			delalloc_len = count_range_bits(&inode->io_tree,
3164 							delalloc_start_ret, end,
3165 							len, EXTENT_DELALLOC, 1,
3166 							cached_state);
3167 		} else {
3168 			spin_unlock(&inode->lock);
3169 		}
3170 	}
3171 
3172 	if (delalloc_len > 0) {
3173 		/*
3174 		 * If delalloc was found then *delalloc_start_ret has a sector size
3175 		 * aligned value (rounded down).
3176 		 */
3177 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3178 
3179 		if (*delalloc_start_ret == start) {
3180 			/* Delalloc for the whole range, nothing more to do. */
3181 			if (*delalloc_end_ret == end)
3182 				return true;
3183 			/* Else trim our search range for ordered extents. */
3184 			start = *delalloc_end_ret + 1;
3185 			len = end + 1 - start;
3186 		}
3187 	} else {
3188 		/* No delalloc, future calls don't need to search again. */
3189 		*search_io_tree = false;
3190 	}
3191 
3192 	/*
3193 	 * Now also check if there's any ordered extent in the range.
3194 	 * We do this because:
3195 	 *
3196 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3197 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3198 	 *    an ordered extent for the write. So we might just have been called
3199 	 *    after delalloc is flushed and before the ordered extent completes
3200 	 *    and inserts the new file extent item in the subvolume's btree;
3201 	 *
3202 	 * 2) We may have an ordered extent created by flushing delalloc for a
3203 	 *    subrange that starts before the subrange we found marked with
3204 	 *    EXTENT_DELALLOC in the io tree.
3205 	 *
3206 	 * We could also use the extent map tree to find such delalloc that is
3207 	 * being flushed, but using the ordered extents tree is more efficient
3208 	 * because it's usually much smaller as ordered extents are removed from
3209 	 * the tree once they complete. With the extent maps, we mau have them
3210 	 * in the extent map tree for a very long time, and they were either
3211 	 * created by previous writes or loaded by read operations.
3212 	 */
3213 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3214 	if (!oe)
3215 		return (delalloc_len > 0);
3216 
3217 	/* The ordered extent may span beyond our search range. */
3218 	oe_start = max(oe->file_offset, start);
3219 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3220 
3221 	btrfs_put_ordered_extent(oe);
3222 
3223 	/* Don't have unflushed delalloc, return the ordered extent range. */
3224 	if (delalloc_len == 0) {
3225 		*delalloc_start_ret = oe_start;
3226 		*delalloc_end_ret = oe_end;
3227 		return true;
3228 	}
3229 
3230 	/*
3231 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3232 	 * If the ranges are adjacent returned a combined range, otherwise
3233 	 * return the leftmost range.
3234 	 */
3235 	if (oe_start < *delalloc_start_ret) {
3236 		if (oe_end < *delalloc_start_ret)
3237 			*delalloc_end_ret = oe_end;
3238 		*delalloc_start_ret = oe_start;
3239 	} else if (*delalloc_end_ret + 1 == oe_start) {
3240 		*delalloc_end_ret = oe_end;
3241 	}
3242 
3243 	return true;
3244 }
3245 
3246 /*
3247  * Check if there's delalloc in a given range.
3248  *
3249  * @inode:               The inode.
3250  * @start:               The start offset of the range. It does not need to be
3251  *                       sector size aligned.
3252  * @end:                 The end offset (inclusive value) of the search range.
3253  *                       It does not need to be sector size aligned.
3254  * @cached_state:        Extent state record used for speeding up delalloc
3255  *                       searches in the inode's io_tree. Can be NULL.
3256  * @delalloc_start_ret:  Output argument, set to the start offset of the
3257  *                       subrange found with delalloc (may not be sector size
3258  *                       aligned).
3259  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3260  *                       of the subrange found with delalloc.
3261  *
3262  * Returns true if a subrange with delalloc is found within the given range, and
3263  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3264  * end offsets of the subrange.
3265  */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3266 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3267 				  struct extent_state **cached_state,
3268 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3269 {
3270 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3271 	u64 prev_delalloc_end = 0;
3272 	bool search_io_tree = true;
3273 	bool ret = false;
3274 
3275 	while (cur_offset <= end) {
3276 		u64 delalloc_start;
3277 		u64 delalloc_end;
3278 		bool delalloc;
3279 
3280 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3281 						  cached_state, &search_io_tree,
3282 						  &delalloc_start,
3283 						  &delalloc_end);
3284 		if (!delalloc)
3285 			break;
3286 
3287 		if (prev_delalloc_end == 0) {
3288 			/* First subrange found. */
3289 			*delalloc_start_ret = max(delalloc_start, start);
3290 			*delalloc_end_ret = delalloc_end;
3291 			ret = true;
3292 		} else if (delalloc_start == prev_delalloc_end + 1) {
3293 			/* Subrange adjacent to the previous one, merge them. */
3294 			*delalloc_end_ret = delalloc_end;
3295 		} else {
3296 			/* Subrange not adjacent to the previous one, exit. */
3297 			break;
3298 		}
3299 
3300 		prev_delalloc_end = delalloc_end;
3301 		cur_offset = delalloc_end + 1;
3302 		cond_resched();
3303 	}
3304 
3305 	return ret;
3306 }
3307 
3308 /*
3309  * Check if there's a hole or delalloc range in a range representing a hole (or
3310  * prealloc extent) found in the inode's subvolume btree.
3311  *
3312  * @inode:      The inode.
3313  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3314  * @start:      Start offset of the hole region. It does not need to be sector
3315  *              size aligned.
3316  * @end:        End offset (inclusive value) of the hole region. It does not
3317  *              need to be sector size aligned.
3318  * @start_ret:  Return parameter, used to set the start of the subrange in the
3319  *              hole that matches the search criteria (seek mode), if such
3320  *              subrange is found (return value of the function is true).
3321  *              The value returned here may not be sector size aligned.
3322  *
3323  * Returns true if a subrange matching the given seek mode is found, and if one
3324  * is found, it updates @start_ret with the start of the subrange.
3325  */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3326 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3327 					struct extent_state **cached_state,
3328 					u64 start, u64 end, u64 *start_ret)
3329 {
3330 	u64 delalloc_start;
3331 	u64 delalloc_end;
3332 	bool delalloc;
3333 
3334 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3335 						&delalloc_start, &delalloc_end);
3336 	if (delalloc && whence == SEEK_DATA) {
3337 		*start_ret = delalloc_start;
3338 		return true;
3339 	}
3340 
3341 	if (delalloc && whence == SEEK_HOLE) {
3342 		/*
3343 		 * We found delalloc but it starts after out start offset. So we
3344 		 * have a hole between our start offset and the delalloc start.
3345 		 */
3346 		if (start < delalloc_start) {
3347 			*start_ret = start;
3348 			return true;
3349 		}
3350 		/*
3351 		 * Delalloc range starts at our start offset.
3352 		 * If the delalloc range's length is smaller than our range,
3353 		 * then it means we have a hole that starts where the delalloc
3354 		 * subrange ends.
3355 		 */
3356 		if (delalloc_end < end) {
3357 			*start_ret = delalloc_end + 1;
3358 			return true;
3359 		}
3360 
3361 		/* There's delalloc for the whole range. */
3362 		return false;
3363 	}
3364 
3365 	if (!delalloc && whence == SEEK_HOLE) {
3366 		*start_ret = start;
3367 		return true;
3368 	}
3369 
3370 	/*
3371 	 * No delalloc in the range and we are seeking for data. The caller has
3372 	 * to iterate to the next extent item in the subvolume btree.
3373 	 */
3374 	return false;
3375 }
3376 
find_desired_extent(struct file * file,loff_t offset,int whence)3377 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3378 {
3379 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3380 	struct btrfs_file_private *private;
3381 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3382 	struct extent_state *cached_state = NULL;
3383 	struct extent_state **delalloc_cached_state;
3384 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3385 	const u64 ino = btrfs_ino(inode);
3386 	struct btrfs_root *root = inode->root;
3387 	struct btrfs_path *path;
3388 	struct btrfs_key key;
3389 	u64 last_extent_end;
3390 	u64 lockstart;
3391 	u64 lockend;
3392 	u64 start;
3393 	int ret;
3394 	bool found = false;
3395 
3396 	if (i_size == 0 || offset >= i_size)
3397 		return -ENXIO;
3398 
3399 	/*
3400 	 * Quick path. If the inode has no prealloc extents and its number of
3401 	 * bytes used matches its i_size, then it can not have holes.
3402 	 */
3403 	if (whence == SEEK_HOLE &&
3404 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3405 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3406 		return i_size;
3407 
3408 	spin_lock(&inode->lock);
3409 	private = file->private_data;
3410 	spin_unlock(&inode->lock);
3411 
3412 	if (private && private->owner_task != current) {
3413 		/*
3414 		 * Not allocated by us, don't use it as its cached state is used
3415 		 * by the task that allocated it and we don't want neither to
3416 		 * mess with it nor get incorrect results because it reflects an
3417 		 * invalid state for the current task.
3418 		 */
3419 		private = NULL;
3420 	} else if (!private) {
3421 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3422 		/*
3423 		 * No worries if memory allocation failed.
3424 		 * The private structure is used only for speeding up multiple
3425 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3426 		 * so everything will still be correct.
3427 		 */
3428 		if (private) {
3429 			bool free = false;
3430 
3431 			private->owner_task = current;
3432 
3433 			spin_lock(&inode->lock);
3434 			if (file->private_data)
3435 				free = true;
3436 			else
3437 				file->private_data = private;
3438 			spin_unlock(&inode->lock);
3439 
3440 			if (free) {
3441 				kfree(private);
3442 				private = NULL;
3443 			}
3444 		}
3445 	}
3446 
3447 	if (private)
3448 		delalloc_cached_state = &private->llseek_cached_state;
3449 	else
3450 		delalloc_cached_state = NULL;
3451 
3452 	/*
3453 	 * offset can be negative, in this case we start finding DATA/HOLE from
3454 	 * the very start of the file.
3455 	 */
3456 	start = max_t(loff_t, 0, offset);
3457 
3458 	lockstart = round_down(start, fs_info->sectorsize);
3459 	lockend = round_up(i_size, fs_info->sectorsize);
3460 	if (lockend <= lockstart)
3461 		lockend = lockstart + fs_info->sectorsize;
3462 	lockend--;
3463 
3464 	path = btrfs_alloc_path();
3465 	if (!path)
3466 		return -ENOMEM;
3467 	path->reada = READA_FORWARD;
3468 
3469 	key.objectid = ino;
3470 	key.type = BTRFS_EXTENT_DATA_KEY;
3471 	key.offset = start;
3472 
3473 	last_extent_end = lockstart;
3474 
3475 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3476 
3477 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3478 	if (ret < 0) {
3479 		goto out;
3480 	} else if (ret > 0 && path->slots[0] > 0) {
3481 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3482 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3483 			path->slots[0]--;
3484 	}
3485 
3486 	while (start < i_size) {
3487 		struct extent_buffer *leaf = path->nodes[0];
3488 		struct btrfs_file_extent_item *extent;
3489 		u64 extent_end;
3490 		u8 type;
3491 
3492 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3493 			ret = btrfs_next_leaf(root, path);
3494 			if (ret < 0)
3495 				goto out;
3496 			else if (ret > 0)
3497 				break;
3498 
3499 			leaf = path->nodes[0];
3500 		}
3501 
3502 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3503 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3504 			break;
3505 
3506 		extent_end = btrfs_file_extent_end(path);
3507 
3508 		/*
3509 		 * In the first iteration we may have a slot that points to an
3510 		 * extent that ends before our start offset, so skip it.
3511 		 */
3512 		if (extent_end <= start) {
3513 			path->slots[0]++;
3514 			continue;
3515 		}
3516 
3517 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3518 		if (last_extent_end < key.offset) {
3519 			u64 search_start = last_extent_end;
3520 			u64 found_start;
3521 
3522 			/*
3523 			 * First iteration, @start matches @offset and it's
3524 			 * within the hole.
3525 			 */
3526 			if (start == offset)
3527 				search_start = offset;
3528 
3529 			found = find_desired_extent_in_hole(inode, whence,
3530 							    delalloc_cached_state,
3531 							    search_start,
3532 							    key.offset - 1,
3533 							    &found_start);
3534 			if (found) {
3535 				start = found_start;
3536 				break;
3537 			}
3538 			/*
3539 			 * Didn't find data or a hole (due to delalloc) in the
3540 			 * implicit hole range, so need to analyze the extent.
3541 			 */
3542 		}
3543 
3544 		extent = btrfs_item_ptr(leaf, path->slots[0],
3545 					struct btrfs_file_extent_item);
3546 		type = btrfs_file_extent_type(leaf, extent);
3547 
3548 		/*
3549 		 * Can't access the extent's disk_bytenr field if this is an
3550 		 * inline extent, since at that offset, it's where the extent
3551 		 * data starts.
3552 		 */
3553 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3554 		    (type == BTRFS_FILE_EXTENT_REG &&
3555 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3556 			/*
3557 			 * Explicit hole or prealloc extent, search for delalloc.
3558 			 * A prealloc extent is treated like a hole.
3559 			 */
3560 			u64 search_start = key.offset;
3561 			u64 found_start;
3562 
3563 			/*
3564 			 * First iteration, @start matches @offset and it's
3565 			 * within the hole.
3566 			 */
3567 			if (start == offset)
3568 				search_start = offset;
3569 
3570 			found = find_desired_extent_in_hole(inode, whence,
3571 							    delalloc_cached_state,
3572 							    search_start,
3573 							    extent_end - 1,
3574 							    &found_start);
3575 			if (found) {
3576 				start = found_start;
3577 				break;
3578 			}
3579 			/*
3580 			 * Didn't find data or a hole (due to delalloc) in the
3581 			 * implicit hole range, so need to analyze the next
3582 			 * extent item.
3583 			 */
3584 		} else {
3585 			/*
3586 			 * Found a regular or inline extent.
3587 			 * If we are seeking for data, adjust the start offset
3588 			 * and stop, we're done.
3589 			 */
3590 			if (whence == SEEK_DATA) {
3591 				start = max_t(u64, key.offset, offset);
3592 				found = true;
3593 				break;
3594 			}
3595 			/*
3596 			 * Else, we are seeking for a hole, check the next file
3597 			 * extent item.
3598 			 */
3599 		}
3600 
3601 		start = extent_end;
3602 		last_extent_end = extent_end;
3603 		path->slots[0]++;
3604 		if (fatal_signal_pending(current)) {
3605 			ret = -EINTR;
3606 			goto out;
3607 		}
3608 		cond_resched();
3609 	}
3610 
3611 	/* We have an implicit hole from the last extent found up to i_size. */
3612 	if (!found && start < i_size) {
3613 		found = find_desired_extent_in_hole(inode, whence,
3614 						    delalloc_cached_state, start,
3615 						    i_size - 1, &start);
3616 		if (!found)
3617 			start = i_size;
3618 	}
3619 
3620 out:
3621 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3622 	btrfs_free_path(path);
3623 
3624 	if (ret < 0)
3625 		return ret;
3626 
3627 	if (whence == SEEK_DATA && start >= i_size)
3628 		return -ENXIO;
3629 
3630 	return min_t(loff_t, start, i_size);
3631 }
3632 
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3633 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3634 {
3635 	struct inode *inode = file->f_mapping->host;
3636 
3637 	switch (whence) {
3638 	default:
3639 		return generic_file_llseek(file, offset, whence);
3640 	case SEEK_DATA:
3641 	case SEEK_HOLE:
3642 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3643 		offset = find_desired_extent(file, offset, whence);
3644 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3645 		break;
3646 	}
3647 
3648 	if (offset < 0)
3649 		return offset;
3650 
3651 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3652 }
3653 
btrfs_file_open(struct inode * inode,struct file * filp)3654 static int btrfs_file_open(struct inode *inode, struct file *filp)
3655 {
3656 	int ret;
3657 
3658 	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3659 
3660 	ret = fsverity_file_open(inode, filp);
3661 	if (ret)
3662 		return ret;
3663 	return generic_file_open(inode, filp);
3664 }
3665 
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3666 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3667 {
3668 	ssize_t ret = 0;
3669 
3670 	if (iocb->ki_flags & IOCB_DIRECT) {
3671 		ret = btrfs_direct_read(iocb, to);
3672 		if (ret < 0 || !iov_iter_count(to) ||
3673 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3674 			return ret;
3675 	}
3676 
3677 	return filemap_read(iocb, to, ret);
3678 }
3679 
3680 const struct file_operations btrfs_file_operations = {
3681 	.llseek		= btrfs_file_llseek,
3682 	.read_iter      = btrfs_file_read_iter,
3683 	.splice_read	= filemap_splice_read,
3684 	.write_iter	= btrfs_file_write_iter,
3685 	.splice_write	= iter_file_splice_write,
3686 	.mmap		= btrfs_file_mmap,
3687 	.open		= btrfs_file_open,
3688 	.release	= btrfs_release_file,
3689 	.get_unmapped_area = thp_get_unmapped_area,
3690 	.fsync		= btrfs_sync_file,
3691 	.fallocate	= btrfs_fallocate,
3692 	.unlocked_ioctl	= btrfs_ioctl,
3693 #ifdef CONFIG_COMPAT
3694 	.compat_ioctl	= btrfs_compat_ioctl,
3695 #endif
3696 	.remap_file_range = btrfs_remap_file_range,
3697 	.uring_cmd	= btrfs_uring_cmd,
3698 	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3699 };
3700 
btrfs_fdatawrite_range(struct btrfs_inode * inode,loff_t start,loff_t end)3701 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3702 {
3703 	struct address_space *mapping = inode->vfs_inode.i_mapping;
3704 	int ret;
3705 
3706 	/*
3707 	 * So with compression we will find and lock a dirty page and clear the
3708 	 * first one as dirty, setup an async extent, and immediately return
3709 	 * with the entire range locked but with nobody actually marked with
3710 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3711 	 * expect it to work since it will just kick off a thread to do the
3712 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3713 	 * since it will wait on the page lock, which won't be unlocked until
3714 	 * after the pages have been marked as writeback and so we're good to go
3715 	 * from there.  We have to do this otherwise we'll miss the ordered
3716 	 * extents and that results in badness.  Please Josef, do not think you
3717 	 * know better and pull this out at some point in the future, it is
3718 	 * right and you are wrong.
3719 	 */
3720 	ret = filemap_fdatawrite_range(mapping, start, end);
3721 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3722 		ret = filemap_fdatawrite_range(mapping, start, end);
3723 
3724 	return ret;
3725 }
3726