1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/jiffies.h> 4 #include <linux/kernel.h> 5 #include <linux/ktime.h> 6 #include <linux/list.h> 7 #include <linux/math64.h> 8 #include <linux/sizes.h> 9 #include <linux/workqueue.h> 10 #include "ctree.h" 11 #include "block-group.h" 12 #include "discard.h" 13 #include "free-space-cache.h" 14 #include "fs.h" 15 16 /* 17 * This contains the logic to handle async discard. 18 * 19 * Async discard manages trimming of free space outside of transaction commit. 20 * Discarding is done by managing the block_groups on a LRU list based on free 21 * space recency. Two passes are used to first prioritize discarding extents 22 * and then allow for trimming in the bitmap the best opportunity to coalesce. 23 * The block_groups are maintained on multiple lists to allow for multiple 24 * passes with different discard filter requirements. A delayed work item is 25 * used to manage discarding with timeout determined by a max of the delay 26 * incurred by the iops rate limit, the byte rate limit, and the max delay of 27 * BTRFS_DISCARD_MAX_DELAY. 28 * 29 * Note, this only keeps track of block_groups that are explicitly for data. 30 * Mixed block_groups are not supported. 31 * 32 * The first list is special to manage discarding of fully free block groups. 33 * This is necessary because we issue a final trim for a full free block group 34 * after forgetting it. When a block group becomes unused, instead of directly 35 * being added to the unused_bgs list, we add it to this first list. Then 36 * from there, if it becomes fully discarded, we place it onto the unused_bgs 37 * list. 38 * 39 * The in-memory free space cache serves as the backing state for discard. 40 * Consequently this means there is no persistence. We opt to load all the 41 * block groups in as not discarded, so the mount case degenerates to the 42 * crashing case. 43 * 44 * As the free space cache uses bitmaps, there exists a tradeoff between 45 * ease/efficiency for find_free_extent() and the accuracy of discard state. 46 * Here we opt to let untrimmed regions merge with everything while only letting 47 * trimmed regions merge with other trimmed regions. This can cause 48 * overtrimming, but the coalescing benefit seems to be worth it. Additionally, 49 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, 50 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, 51 * this resets the state and we will retry trimming the whole bitmap. This is a 52 * tradeoff between discard state accuracy and the cost of accounting. 53 */ 54 55 /* This is an initial delay to give some chance for block reuse */ 56 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) 57 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) 58 59 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) 60 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) 61 #define BTRFS_DISCARD_MAX_IOPS (1000U) 62 63 /* Monotonically decreasing minimum length filters after index 0 */ 64 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { 65 0, 66 BTRFS_ASYNC_DISCARD_MAX_FILTER, 67 BTRFS_ASYNC_DISCARD_MIN_FILTER 68 }; 69 70 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, 71 const struct btrfs_block_group *block_group) 72 { 73 return &discard_ctl->discard_list[block_group->discard_index]; 74 } 75 76 /* 77 * Determine if async discard should be running. 78 * 79 * @discard_ctl: discard control 80 * 81 * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. 82 */ 83 static bool btrfs_run_discard_work(const struct btrfs_discard_ctl *discard_ctl) 84 { 85 struct btrfs_fs_info *fs_info = container_of(discard_ctl, 86 struct btrfs_fs_info, 87 discard_ctl); 88 89 return (!(fs_info->sb->s_flags & SB_RDONLY) && 90 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); 91 } 92 93 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 94 struct btrfs_block_group *block_group) 95 { 96 lockdep_assert_held(&discard_ctl->lock); 97 98 if (list_empty(&block_group->discard_list) || 99 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { 100 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) 101 block_group->discard_index = BTRFS_DISCARD_INDEX_START; 102 block_group->discard_eligible_time = (ktime_get_ns() + 103 BTRFS_DISCARD_DELAY); 104 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 105 } 106 if (list_empty(&block_group->discard_list)) 107 btrfs_get_block_group(block_group); 108 109 list_move_tail(&block_group->discard_list, 110 get_discard_list(discard_ctl, block_group)); 111 } 112 113 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 114 struct btrfs_block_group *block_group) 115 { 116 if (!btrfs_is_block_group_data_only(block_group)) 117 return; 118 119 if (!btrfs_run_discard_work(discard_ctl)) 120 return; 121 122 spin_lock(&discard_ctl->lock); 123 __add_to_discard_list(discard_ctl, block_group); 124 spin_unlock(&discard_ctl->lock); 125 } 126 127 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, 128 struct btrfs_block_group *block_group) 129 { 130 bool queued; 131 132 spin_lock(&discard_ctl->lock); 133 134 queued = !list_empty(&block_group->discard_list); 135 136 if (!btrfs_run_discard_work(discard_ctl)) { 137 spin_unlock(&discard_ctl->lock); 138 return; 139 } 140 141 list_del_init(&block_group->discard_list); 142 143 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 144 block_group->discard_eligible_time = (ktime_get_ns() + 145 BTRFS_DISCARD_UNUSED_DELAY); 146 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 147 if (!queued) 148 btrfs_get_block_group(block_group); 149 list_add_tail(&block_group->discard_list, 150 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); 151 152 spin_unlock(&discard_ctl->lock); 153 } 154 155 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, 156 struct btrfs_block_group *block_group) 157 { 158 bool running = false; 159 bool queued = false; 160 161 spin_lock(&discard_ctl->lock); 162 163 if (block_group == discard_ctl->block_group) { 164 running = true; 165 discard_ctl->block_group = NULL; 166 } 167 168 block_group->discard_eligible_time = 0; 169 queued = !list_empty(&block_group->discard_list); 170 list_del_init(&block_group->discard_list); 171 if (queued) 172 btrfs_put_block_group(block_group); 173 174 spin_unlock(&discard_ctl->lock); 175 176 return running; 177 } 178 179 /* 180 * Find block_group that's up next for discarding. 181 * 182 * @discard_ctl: discard control 183 * @now: current time 184 * 185 * Iterate over the discard lists to find the next block_group up for 186 * discarding checking the discard_eligible_time of block_group. 187 */ 188 static struct btrfs_block_group *find_next_block_group( 189 struct btrfs_discard_ctl *discard_ctl, 190 u64 now) 191 { 192 struct btrfs_block_group *ret_block_group = NULL, *block_group; 193 int i; 194 195 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 196 struct list_head *discard_list = &discard_ctl->discard_list[i]; 197 198 if (!list_empty(discard_list)) { 199 block_group = list_first_entry(discard_list, 200 struct btrfs_block_group, 201 discard_list); 202 203 if (!ret_block_group) 204 ret_block_group = block_group; 205 206 if (ret_block_group->discard_eligible_time < now) 207 break; 208 209 if (ret_block_group->discard_eligible_time > 210 block_group->discard_eligible_time) 211 ret_block_group = block_group; 212 } 213 } 214 215 return ret_block_group; 216 } 217 218 /* 219 * Check whether a block group is empty. 220 * 221 * "Empty" here means that there are no extents physically located within the 222 * device extents corresponding to this block group. 223 * 224 * For a remapped block group, this means that all of its identity remaps have 225 * been removed. For a non-remapped block group, this means that no extents 226 * have an address within its range, and that nothing has been remapped to be 227 * within it. 228 */ 229 static bool block_group_is_empty(const struct btrfs_block_group *bg) 230 { 231 if (bg->flags & BTRFS_BLOCK_GROUP_REMAPPED) 232 return bg->identity_remap_count == 0; 233 234 return bg->used == 0 && bg->remap_bytes == 0; 235 } 236 237 /* 238 * Look up next block group and set it for use. 239 * 240 * @discard_ctl: discard control 241 * @discard_state: the discard_state of the block_group after state management 242 * @discard_index: the discard_index of the block_group after state management 243 * @now: time when discard was invoked, in ns 244 * 245 * Wrap find_next_block_group() and set the block_group to be in use. 246 * @discard_state's control flow is managed here. Variables related to 247 * @discard_state are reset here as needed (eg. @discard_cursor). @discard_state 248 * and @discard_index are remembered as it may change while we're discarding, 249 * but we want the discard to execute in the context determined here. 250 */ 251 static struct btrfs_block_group *peek_discard_list( 252 struct btrfs_discard_ctl *discard_ctl, 253 enum btrfs_discard_state *discard_state, 254 int *discard_index, u64 now) 255 { 256 struct btrfs_block_group *block_group; 257 258 spin_lock(&discard_ctl->lock); 259 again: 260 block_group = find_next_block_group(discard_ctl, now); 261 262 if (block_group && now >= block_group->discard_eligible_time) { 263 const bool empty = block_group_is_empty(block_group); 264 265 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && 266 !empty) { 267 if (btrfs_is_block_group_data_only(block_group)) { 268 __add_to_discard_list(discard_ctl, block_group); 269 /* 270 * The block group must have been moved to other 271 * discard list even if discard was disabled in 272 * the meantime or a transaction abort happened, 273 * otherwise we can end up in an infinite loop, 274 * always jumping into the 'again' label and 275 * keep getting this block group over and over 276 * in case there are no other block groups in 277 * the discard lists. 278 */ 279 ASSERT(block_group->discard_index != 280 BTRFS_DISCARD_INDEX_UNUSED, 281 "discard_index=%d", 282 block_group->discard_index); 283 } else { 284 list_del_init(&block_group->discard_list); 285 btrfs_put_block_group(block_group); 286 } 287 goto again; 288 } 289 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { 290 block_group->discard_cursor = block_group->start; 291 292 if (block_group->flags & BTRFS_BLOCK_GROUP_REMAPPED && empty) { 293 block_group->discard_state = BTRFS_DISCARD_FULLY_REMAPPED; 294 } else { 295 block_group->discard_state = BTRFS_DISCARD_EXTENTS; 296 } 297 } 298 } 299 if (block_group) { 300 btrfs_get_block_group(block_group); 301 discard_ctl->block_group = block_group; 302 *discard_state = block_group->discard_state; 303 *discard_index = block_group->discard_index; 304 } 305 spin_unlock(&discard_ctl->lock); 306 307 return block_group; 308 } 309 310 /* 311 * Update a block group's filters. 312 * 313 * @block_group: block group of interest 314 * @bytes: recently freed region size after coalescing 315 * 316 * Async discard maintains multiple lists with progressively smaller filters 317 * to prioritize discarding based on size. Should a free space that matches 318 * a larger filter be returned to the free_space_cache, prioritize that discard 319 * by moving @block_group to the proper filter. 320 */ 321 void btrfs_discard_check_filter(struct btrfs_block_group *block_group, 322 u64 bytes) 323 { 324 struct btrfs_discard_ctl *discard_ctl; 325 326 if (!block_group || 327 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 328 return; 329 330 discard_ctl = &block_group->fs_info->discard_ctl; 331 332 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && 333 bytes >= discard_minlen[block_group->discard_index - 1]) { 334 int i; 335 336 remove_from_discard_list(discard_ctl, block_group); 337 338 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; 339 i++) { 340 if (bytes >= discard_minlen[i]) { 341 block_group->discard_index = i; 342 add_to_discard_list(discard_ctl, block_group); 343 break; 344 } 345 } 346 } 347 } 348 349 /* 350 * Move a block group along the discard lists. 351 * 352 * @discard_ctl: discard control 353 * @block_group: block_group of interest 354 * 355 * Increment @block_group's discard_index. If it falls of the list, let it be. 356 * Otherwise add it back to the appropriate list. 357 */ 358 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, 359 struct btrfs_block_group *block_group) 360 { 361 block_group->discard_index++; 362 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { 363 block_group->discard_index = 1; 364 return; 365 } 366 367 add_to_discard_list(discard_ctl, block_group); 368 } 369 370 /* 371 * Remove a block_group from the discard lists. 372 * 373 * @discard_ctl: discard control 374 * @block_group: block_group of interest 375 * 376 * Remove @block_group from the discard lists. If necessary, wait on the 377 * current work and then reschedule the delayed work. 378 */ 379 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, 380 struct btrfs_block_group *block_group) 381 { 382 if (remove_from_discard_list(discard_ctl, block_group)) { 383 cancel_delayed_work_sync(&discard_ctl->work); 384 btrfs_discard_schedule_work(discard_ctl, true); 385 } 386 } 387 388 /* 389 * Handles queuing the block_groups. 390 * 391 * @discard_ctl: discard control 392 * @block_group: block_group of interest 393 * 394 * Maintain the LRU order of the discard lists. 395 */ 396 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, 397 struct btrfs_block_group *block_group) 398 { 399 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 400 return; 401 402 if (block_group_is_empty(block_group)) 403 add_to_discard_unused_list(discard_ctl, block_group); 404 else 405 add_to_discard_list(discard_ctl, block_group); 406 407 if (!delayed_work_pending(&discard_ctl->work)) 408 btrfs_discard_schedule_work(discard_ctl, false); 409 } 410 411 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 412 u64 now, bool override) 413 { 414 struct btrfs_block_group *block_group; 415 416 if (!btrfs_run_discard_work(discard_ctl)) 417 return; 418 if (!override && delayed_work_pending(&discard_ctl->work)) 419 return; 420 421 block_group = find_next_block_group(discard_ctl, now); 422 if (block_group) { 423 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; 424 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); 425 426 /* 427 * A single delayed workqueue item is responsible for 428 * discarding, so we can manage the bytes rate limit by keeping 429 * track of the previous discard. 430 */ 431 if (kbps_limit && discard_ctl->prev_discard) { 432 u64 bps_limit = ((u64)kbps_limit) * SZ_1K; 433 u64 bps_delay = div64_u64(discard_ctl->prev_discard * 434 NSEC_PER_SEC, bps_limit); 435 436 delay = max(delay, bps_delay); 437 } 438 439 /* 440 * This timeout is to hopefully prevent immediate discarding 441 * in a recently allocated block group. 442 */ 443 if (now < block_group->discard_eligible_time) { 444 u64 bg_timeout = block_group->discard_eligible_time - now; 445 446 delay = max(delay, bg_timeout); 447 } 448 449 if (override && discard_ctl->prev_discard) { 450 u64 elapsed = now - discard_ctl->prev_discard_time; 451 452 if (delay > elapsed) 453 delay -= elapsed; 454 else 455 delay = 0; 456 } 457 458 mod_delayed_work(discard_ctl->discard_workers, 459 &discard_ctl->work, nsecs_to_jiffies(delay)); 460 } 461 } 462 463 /* 464 * Responsible for scheduling the discard work. 465 * 466 * @discard_ctl: discard control 467 * @override: override the current timer 468 * 469 * Discards are issued by a delayed workqueue item. @override is used to 470 * update the current delay as the baseline delay interval is reevaluated on 471 * transaction commit. This is also maxed with any other rate limit. 472 */ 473 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 474 bool override) 475 { 476 const u64 now = ktime_get_ns(); 477 478 spin_lock(&discard_ctl->lock); 479 __btrfs_discard_schedule_work(discard_ctl, now, override); 480 spin_unlock(&discard_ctl->lock); 481 } 482 483 /* 484 * Determine next step of a block_group. 485 * 486 * @discard_ctl: discard control 487 * @block_group: block_group of interest 488 * 489 * Determine the next step for a block group after it's finished going through 490 * a pass on a discard list. If it is unused and fully trimmed, we can mark it 491 * unused and send it to the unused_bgs path. Otherwise, pass it onto the 492 * appropriate filter list or let it fall off. 493 */ 494 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, 495 struct btrfs_block_group *block_group) 496 { 497 remove_from_discard_list(discard_ctl, block_group); 498 499 if (block_group_is_empty(block_group)) { 500 if (btrfs_is_free_space_trimmed(block_group)) 501 btrfs_mark_bg_unused(block_group); 502 else 503 add_to_discard_unused_list(discard_ctl, block_group); 504 } else { 505 btrfs_update_discard_index(discard_ctl, block_group); 506 } 507 } 508 509 /* 510 * Discard work queue callback 511 * 512 * @work: work 513 * 514 * Find the next block_group to start discarding and then discard a single 515 * region. It does this in a two-pass fashion: first extents and second 516 * bitmaps. Completely discarded block groups are sent to the unused_bgs path. 517 */ 518 static void btrfs_discard_workfn(struct work_struct *work) 519 { 520 struct btrfs_discard_ctl *discard_ctl; 521 struct btrfs_block_group *block_group; 522 enum btrfs_discard_state discard_state; 523 int discard_index = 0; 524 u64 trimmed = 0; 525 u64 minlen = 0; 526 u64 now = ktime_get_ns(); 527 528 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); 529 530 block_group = peek_discard_list(discard_ctl, &discard_state, 531 &discard_index, now); 532 if (!block_group) 533 return; 534 if (!btrfs_run_discard_work(discard_ctl)) { 535 spin_lock(&discard_ctl->lock); 536 btrfs_put_block_group(block_group); 537 discard_ctl->block_group = NULL; 538 spin_unlock(&discard_ctl->lock); 539 return; 540 } 541 if (now < block_group->discard_eligible_time) { 542 spin_lock(&discard_ctl->lock); 543 btrfs_put_block_group(block_group); 544 discard_ctl->block_group = NULL; 545 spin_unlock(&discard_ctl->lock); 546 btrfs_discard_schedule_work(discard_ctl, false); 547 return; 548 } 549 550 /* Perform discarding */ 551 minlen = discard_minlen[discard_index]; 552 553 switch (discard_state) { 554 case BTRFS_DISCARD_BITMAPS: { 555 u64 maxlen = 0; 556 557 /* 558 * Use the previous levels minimum discard length as the max 559 * length filter. In the case something is added to make a 560 * region go beyond the max filter, the entire bitmap is set 561 * back to BTRFS_TRIM_STATE_UNTRIMMED. 562 */ 563 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) 564 maxlen = discard_minlen[discard_index - 1]; 565 566 btrfs_trim_block_group_bitmaps(block_group, &trimmed, 567 block_group->discard_cursor, 568 btrfs_block_group_end(block_group), 569 minlen, maxlen, true); 570 discard_ctl->discard_bitmap_bytes += trimmed; 571 572 break; 573 } 574 575 case BTRFS_DISCARD_FULLY_REMAPPED: 576 btrfs_trim_fully_remapped_block_group(block_group); 577 break; 578 579 default: 580 btrfs_trim_block_group_extents(block_group, &trimmed, 581 block_group->discard_cursor, 582 btrfs_block_group_end(block_group), 583 minlen, true); 584 discard_ctl->discard_extent_bytes += trimmed; 585 586 break; 587 } 588 589 /* Determine next steps for a block_group */ 590 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { 591 if (discard_state == BTRFS_DISCARD_BITMAPS || 592 discard_state == BTRFS_DISCARD_FULLY_REMAPPED) { 593 btrfs_finish_discard_pass(discard_ctl, block_group); 594 } else { 595 block_group->discard_cursor = block_group->start; 596 spin_lock(&discard_ctl->lock); 597 if (block_group->discard_state != 598 BTRFS_DISCARD_RESET_CURSOR) 599 block_group->discard_state = 600 BTRFS_DISCARD_BITMAPS; 601 spin_unlock(&discard_ctl->lock); 602 } 603 } 604 605 now = ktime_get_ns(); 606 spin_lock(&discard_ctl->lock); 607 discard_ctl->prev_discard = trimmed; 608 discard_ctl->prev_discard_time = now; 609 btrfs_put_block_group(block_group); 610 discard_ctl->block_group = NULL; 611 __btrfs_discard_schedule_work(discard_ctl, now, false); 612 spin_unlock(&discard_ctl->lock); 613 } 614 615 /* 616 * Recalculate the base delay. 617 * 618 * @discard_ctl: discard control 619 * 620 * Recalculate the base delay which is based off the total number of 621 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) 622 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). 623 */ 624 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) 625 { 626 s32 discardable_extents; 627 s64 discardable_bytes; 628 u32 iops_limit; 629 unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC; 630 unsigned long delay; 631 632 discardable_extents = atomic_read(&discard_ctl->discardable_extents); 633 if (!discardable_extents) 634 return; 635 636 spin_lock(&discard_ctl->lock); 637 638 /* 639 * The following is to fix a potential -1 discrepancy that we're not 640 * sure how to reproduce. But given that this is the only place that 641 * utilizes these numbers and this is only called by from 642 * btrfs_finish_extent_commit() which is synchronized, we can correct 643 * here. 644 */ 645 if (discardable_extents < 0) 646 atomic_add(-discardable_extents, 647 &discard_ctl->discardable_extents); 648 649 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); 650 if (discardable_bytes < 0) 651 atomic64_add(-discardable_bytes, 652 &discard_ctl->discardable_bytes); 653 654 if (discardable_extents <= 0) { 655 spin_unlock(&discard_ctl->lock); 656 return; 657 } 658 659 iops_limit = READ_ONCE(discard_ctl->iops_limit); 660 661 if (iops_limit) { 662 delay = MSEC_PER_SEC / iops_limit; 663 } else { 664 /* 665 * Unset iops_limit means go as fast as possible, so allow a 666 * delay of 0. 667 */ 668 delay = 0; 669 min_delay = 0; 670 } 671 672 delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC); 673 discard_ctl->delay_ms = delay; 674 675 spin_unlock(&discard_ctl->lock); 676 } 677 678 /* 679 * Propagate discard counters. 680 * 681 * @block_group: block_group of interest 682 * 683 * Propagate deltas of counters up to the discard_ctl. It maintains a current 684 * counter and a previous counter passing the delta up to the global stat. 685 * Then the current counter value becomes the previous counter value. 686 */ 687 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) 688 { 689 struct btrfs_free_space_ctl *ctl; 690 struct btrfs_discard_ctl *discard_ctl; 691 s32 extents_delta; 692 s64 bytes_delta; 693 694 if (!block_group || 695 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || 696 !btrfs_is_block_group_data_only(block_group)) 697 return; 698 699 ctl = block_group->free_space_ctl; 700 discard_ctl = &block_group->fs_info->discard_ctl; 701 702 lockdep_assert_held(&ctl->tree_lock); 703 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - 704 ctl->discardable_extents[BTRFS_STAT_PREV]; 705 if (extents_delta) { 706 atomic_add(extents_delta, &discard_ctl->discardable_extents); 707 ctl->discardable_extents[BTRFS_STAT_PREV] = 708 ctl->discardable_extents[BTRFS_STAT_CURR]; 709 } 710 711 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - 712 ctl->discardable_bytes[BTRFS_STAT_PREV]; 713 if (bytes_delta) { 714 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); 715 ctl->discardable_bytes[BTRFS_STAT_PREV] = 716 ctl->discardable_bytes[BTRFS_STAT_CURR]; 717 } 718 } 719 720 /* 721 * Punt unused_bgs list to discard lists. 722 * 723 * @fs_info: fs_info of interest 724 * 725 * The unused_bgs list needs to be punted to the discard lists because the 726 * order of operations is changed. In the normal synchronous discard path, the 727 * block groups are trimmed via a single large trim in transaction commit. This 728 * is ultimately what we are trying to avoid with asynchronous discard. Thus, 729 * it must be done before going down the unused_bgs path. 730 */ 731 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) 732 { 733 struct btrfs_block_group *block_group, *next; 734 735 spin_lock(&fs_info->unused_bgs_lock); 736 /* We enabled async discard, so punt all to the queue */ 737 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, 738 bg_list) { 739 list_del_init(&block_group->bg_list); 740 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 741 /* 742 * This put is for the get done by btrfs_mark_bg_unused. 743 * Queueing discard incremented it for discard's reference. 744 */ 745 btrfs_put_block_group(block_group); 746 } 747 spin_unlock(&fs_info->unused_bgs_lock); 748 } 749 750 /* 751 * Purge discard lists. 752 * 753 * @discard_ctl: discard control 754 * 755 * If we are disabling async discard, we may have intercepted block groups that 756 * are completely free and ready for the unused_bgs path. As discarding will 757 * now happen in transaction commit or not at all, we can safely mark the 758 * corresponding block groups as unused and they will be sent on their merry 759 * way to the unused_bgs list. 760 */ 761 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) 762 { 763 struct btrfs_block_group *block_group, *next; 764 int i; 765 766 spin_lock(&discard_ctl->lock); 767 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 768 list_for_each_entry_safe(block_group, next, 769 &discard_ctl->discard_list[i], 770 discard_list) { 771 list_del_init(&block_group->discard_list); 772 spin_unlock(&discard_ctl->lock); 773 if (block_group->used == 0) 774 btrfs_mark_bg_unused(block_group); 775 spin_lock(&discard_ctl->lock); 776 btrfs_put_block_group(block_group); 777 } 778 } 779 spin_unlock(&discard_ctl->lock); 780 } 781 782 void btrfs_discard_resume(struct btrfs_fs_info *fs_info) 783 { 784 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 785 btrfs_discard_cleanup(fs_info); 786 return; 787 } 788 789 btrfs_discard_punt_unused_bgs_list(fs_info); 790 791 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 792 } 793 794 void btrfs_discard_stop(struct btrfs_fs_info *fs_info) 795 { 796 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 797 } 798 799 void btrfs_discard_init(struct btrfs_fs_info *fs_info) 800 { 801 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; 802 int i; 803 804 spin_lock_init(&discard_ctl->lock); 805 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); 806 807 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) 808 INIT_LIST_HEAD(&discard_ctl->discard_list[i]); 809 810 discard_ctl->prev_discard = 0; 811 discard_ctl->prev_discard_time = 0; 812 atomic_set(&discard_ctl->discardable_extents, 0); 813 atomic64_set(&discard_ctl->discardable_bytes, 0); 814 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; 815 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; 816 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; 817 discard_ctl->kbps_limit = 0; 818 discard_ctl->discard_extent_bytes = 0; 819 discard_ctl->discard_bitmap_bytes = 0; 820 atomic64_set(&discard_ctl->discard_bytes_saved, 0); 821 } 822 823 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) 824 { 825 btrfs_discard_stop(fs_info); 826 cancel_delayed_work_sync(&fs_info->discard_ctl.work); 827 btrfs_discard_purge_list(&fs_info->discard_ctl); 828 } 829