xref: /linux/fs/btrfs/extent-tree.c (revision 7a40974fd0efa3698de4c6d1d0ee0436bcc4445d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 			       struct btrfs_delayed_ref_head *href,
49 			       struct btrfs_delayed_ref_node *node,
50 			       struct btrfs_delayed_extent_op *extra_op);
51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 				    struct extent_buffer *leaf,
53 				    struct btrfs_extent_item *ei);
54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 				      u64 parent, u64 root_objectid,
56 				      u64 flags, u64 owner, u64 offset,
57 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 				     struct btrfs_delayed_ref_node *node,
60 				     struct btrfs_delayed_extent_op *extent_op);
61 static int find_next_key(struct btrfs_path *path, int level,
62 			 struct btrfs_key *key);
63 
block_group_bits(struct btrfs_block_group * cache,u64 bits)64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
65 {
66 	return (cache->flags & bits) == bits;
67 }
68 
69 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71 {
72 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 	int ret;
74 	struct btrfs_key key;
75 	struct btrfs_path *path;
76 
77 	path = btrfs_alloc_path();
78 	if (!path)
79 		return -ENOMEM;
80 
81 	key.objectid = start;
82 	key.offset = len;
83 	key.type = BTRFS_EXTENT_ITEM_KEY;
84 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
85 	btrfs_free_path(path);
86 	return ret;
87 }
88 
89 /*
90  * helper function to lookup reference count and flags of a tree block.
91  *
92  * the head node for delayed ref is used to store the sum of all the
93  * reference count modifications queued up in the rbtree. the head
94  * node may also store the extent flags to set. This way you can check
95  * to see what the reference count and extent flags would be if all of
96  * the delayed refs are not processed.
97  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags,u64 * owning_root)98 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
99 			     struct btrfs_fs_info *fs_info, u64 bytenr,
100 			     u64 offset, int metadata, u64 *refs, u64 *flags,
101 			     u64 *owning_root)
102 {
103 	struct btrfs_root *extent_root;
104 	struct btrfs_delayed_ref_head *head;
105 	struct btrfs_delayed_ref_root *delayed_refs;
106 	struct btrfs_path *path;
107 	struct btrfs_key key;
108 	u64 num_refs;
109 	u64 extent_flags;
110 	u64 owner = 0;
111 	int ret;
112 
113 	/*
114 	 * If we don't have skinny metadata, don't bother doing anything
115 	 * different
116 	 */
117 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
118 		offset = fs_info->nodesize;
119 		metadata = 0;
120 	}
121 
122 	path = btrfs_alloc_path();
123 	if (!path)
124 		return -ENOMEM;
125 
126 search_again:
127 	key.objectid = bytenr;
128 	key.offset = offset;
129 	if (metadata)
130 		key.type = BTRFS_METADATA_ITEM_KEY;
131 	else
132 		key.type = BTRFS_EXTENT_ITEM_KEY;
133 
134 	extent_root = btrfs_extent_root(fs_info, bytenr);
135 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
136 	if (ret < 0)
137 		goto out_free;
138 
139 	if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
140 		if (path->slots[0]) {
141 			path->slots[0]--;
142 			btrfs_item_key_to_cpu(path->nodes[0], &key,
143 					      path->slots[0]);
144 			if (key.objectid == bytenr &&
145 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
146 			    key.offset == fs_info->nodesize)
147 				ret = 0;
148 		}
149 	}
150 
151 	if (ret == 0) {
152 		struct extent_buffer *leaf = path->nodes[0];
153 		struct btrfs_extent_item *ei;
154 		const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
155 
156 		if (unlikely(item_size < sizeof(*ei))) {
157 			ret = -EUCLEAN;
158 			btrfs_err(fs_info,
159 			"unexpected extent item size, has %u expect >= %zu",
160 				  item_size, sizeof(*ei));
161 			btrfs_abort_transaction(trans, ret);
162 			goto out_free;
163 		}
164 
165 		ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
166 		num_refs = btrfs_extent_refs(leaf, ei);
167 		if (unlikely(num_refs == 0)) {
168 			ret = -EUCLEAN;
169 			btrfs_err(fs_info,
170 		"unexpected zero reference count for extent item (%llu %u %llu)",
171 				  key.objectid, key.type, key.offset);
172 			btrfs_abort_transaction(trans, ret);
173 			goto out_free;
174 		}
175 		extent_flags = btrfs_extent_flags(leaf, ei);
176 		owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
177 	} else {
178 		num_refs = 0;
179 		extent_flags = 0;
180 		ret = 0;
181 	}
182 
183 	delayed_refs = &trans->transaction->delayed_refs;
184 	spin_lock(&delayed_refs->lock);
185 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
186 	if (head) {
187 		if (!mutex_trylock(&head->mutex)) {
188 			refcount_inc(&head->refs);
189 			spin_unlock(&delayed_refs->lock);
190 
191 			btrfs_release_path(path);
192 
193 			/*
194 			 * Mutex was contended, block until it's released and try
195 			 * again
196 			 */
197 			mutex_lock(&head->mutex);
198 			mutex_unlock(&head->mutex);
199 			btrfs_put_delayed_ref_head(head);
200 			goto search_again;
201 		}
202 		spin_lock(&head->lock);
203 		if (head->extent_op && head->extent_op->update_flags)
204 			extent_flags |= head->extent_op->flags_to_set;
205 
206 		num_refs += head->ref_mod;
207 		spin_unlock(&head->lock);
208 		mutex_unlock(&head->mutex);
209 	}
210 	spin_unlock(&delayed_refs->lock);
211 
212 	WARN_ON(num_refs == 0);
213 	if (refs)
214 		*refs = num_refs;
215 	if (flags)
216 		*flags = extent_flags;
217 	if (owning_root)
218 		*owning_root = owner;
219 out_free:
220 	btrfs_free_path(path);
221 	return ret;
222 }
223 
224 /*
225  * Back reference rules.  Back refs have three main goals:
226  *
227  * 1) differentiate between all holders of references to an extent so that
228  *    when a reference is dropped we can make sure it was a valid reference
229  *    before freeing the extent.
230  *
231  * 2) Provide enough information to quickly find the holders of an extent
232  *    if we notice a given block is corrupted or bad.
233  *
234  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
235  *    maintenance.  This is actually the same as #2, but with a slightly
236  *    different use case.
237  *
238  * There are two kinds of back refs. The implicit back refs is optimized
239  * for pointers in non-shared tree blocks. For a given pointer in a block,
240  * back refs of this kind provide information about the block's owner tree
241  * and the pointer's key. These information allow us to find the block by
242  * b-tree searching. The full back refs is for pointers in tree blocks not
243  * referenced by their owner trees. The location of tree block is recorded
244  * in the back refs. Actually the full back refs is generic, and can be
245  * used in all cases the implicit back refs is used. The major shortcoming
246  * of the full back refs is its overhead. Every time a tree block gets
247  * COWed, we have to update back refs entry for all pointers in it.
248  *
249  * For a newly allocated tree block, we use implicit back refs for
250  * pointers in it. This means most tree related operations only involve
251  * implicit back refs. For a tree block created in old transaction, the
252  * only way to drop a reference to it is COW it. So we can detect the
253  * event that tree block loses its owner tree's reference and do the
254  * back refs conversion.
255  *
256  * When a tree block is COWed through a tree, there are four cases:
257  *
258  * The reference count of the block is one and the tree is the block's
259  * owner tree. Nothing to do in this case.
260  *
261  * The reference count of the block is one and the tree is not the
262  * block's owner tree. In this case, full back refs is used for pointers
263  * in the block. Remove these full back refs, add implicit back refs for
264  * every pointers in the new block.
265  *
266  * The reference count of the block is greater than one and the tree is
267  * the block's owner tree. In this case, implicit back refs is used for
268  * pointers in the block. Add full back refs for every pointers in the
269  * block, increase lower level extents' reference counts. The original
270  * implicit back refs are entailed to the new block.
271  *
272  * The reference count of the block is greater than one and the tree is
273  * not the block's owner tree. Add implicit back refs for every pointer in
274  * the new block, increase lower level extents' reference count.
275  *
276  * Back Reference Key composing:
277  *
278  * The key objectid corresponds to the first byte in the extent,
279  * The key type is used to differentiate between types of back refs.
280  * There are different meanings of the key offset for different types
281  * of back refs.
282  *
283  * File extents can be referenced by:
284  *
285  * - multiple snapshots, subvolumes, or different generations in one subvol
286  * - different files inside a single subvolume
287  * - different offsets inside a file (bookend extents in file.c)
288  *
289  * The extent ref structure for the implicit back refs has fields for:
290  *
291  * - Objectid of the subvolume root
292  * - objectid of the file holding the reference
293  * - original offset in the file
294  * - how many bookend extents
295  *
296  * The key offset for the implicit back refs is hash of the first
297  * three fields.
298  *
299  * The extent ref structure for the full back refs has field for:
300  *
301  * - number of pointers in the tree leaf
302  *
303  * The key offset for the implicit back refs is the first byte of
304  * the tree leaf
305  *
306  * When a file extent is allocated, The implicit back refs is used.
307  * the fields are filled in:
308  *
309  *     (root_key.objectid, inode objectid, offset in file, 1)
310  *
311  * When a file extent is removed file truncation, we find the
312  * corresponding implicit back refs and check the following fields:
313  *
314  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
315  *
316  * Btree extents can be referenced by:
317  *
318  * - Different subvolumes
319  *
320  * Both the implicit back refs and the full back refs for tree blocks
321  * only consist of key. The key offset for the implicit back refs is
322  * objectid of block's owner tree. The key offset for the full back refs
323  * is the first byte of parent block.
324  *
325  * When implicit back refs is used, information about the lowest key and
326  * level of the tree block are required. These information are stored in
327  * tree block info structure.
328  */
329 
330 /*
331  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
332  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
333  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
334  */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)335 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
336 				     struct btrfs_extent_inline_ref *iref,
337 				     enum btrfs_inline_ref_type is_data)
338 {
339 	struct btrfs_fs_info *fs_info = eb->fs_info;
340 	int type = btrfs_extent_inline_ref_type(eb, iref);
341 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
342 
343 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
344 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
345 		return type;
346 	}
347 
348 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
349 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
350 	    type == BTRFS_SHARED_DATA_REF_KEY ||
351 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
352 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
353 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
354 				return type;
355 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
356 				ASSERT(fs_info);
357 				/*
358 				 * Every shared one has parent tree block,
359 				 * which must be aligned to sector size.
360 				 */
361 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
362 					return type;
363 			}
364 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
365 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
366 				return type;
367 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
368 				ASSERT(fs_info);
369 				/*
370 				 * Every shared one has parent tree block,
371 				 * which must be aligned to sector size.
372 				 */
373 				if (offset &&
374 				    IS_ALIGNED(offset, fs_info->sectorsize))
375 					return type;
376 			}
377 		} else {
378 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
379 			return type;
380 		}
381 	}
382 
383 	WARN_ON(1);
384 	btrfs_print_leaf(eb);
385 	btrfs_err(fs_info,
386 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
387 		  eb->start, (unsigned long)iref, type);
388 
389 	return BTRFS_REF_TYPE_INVALID;
390 }
391 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)392 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
393 {
394 	u32 high_crc = ~(u32)0;
395 	u32 low_crc = ~(u32)0;
396 	__le64 lenum;
397 
398 	lenum = cpu_to_le64(root_objectid);
399 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
400 	lenum = cpu_to_le64(owner);
401 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
402 	lenum = cpu_to_le64(offset);
403 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
404 
405 	return ((u64)high_crc << 31) ^ (u64)low_crc;
406 }
407 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)408 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
409 				     struct btrfs_extent_data_ref *ref)
410 {
411 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
412 				    btrfs_extent_data_ref_objectid(leaf, ref),
413 				    btrfs_extent_data_ref_offset(leaf, ref));
414 }
415 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)416 static int match_extent_data_ref(struct extent_buffer *leaf,
417 				 struct btrfs_extent_data_ref *ref,
418 				 u64 root_objectid, u64 owner, u64 offset)
419 {
420 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
421 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
422 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
423 		return 0;
424 	return 1;
425 }
426 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)427 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
428 					   struct btrfs_path *path,
429 					   u64 bytenr, u64 parent,
430 					   u64 root_objectid,
431 					   u64 owner, u64 offset)
432 {
433 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
434 	struct btrfs_key key;
435 	struct btrfs_extent_data_ref *ref;
436 	struct extent_buffer *leaf;
437 	u32 nritems;
438 	int recow;
439 	int ret;
440 
441 	key.objectid = bytenr;
442 	if (parent) {
443 		key.type = BTRFS_SHARED_DATA_REF_KEY;
444 		key.offset = parent;
445 	} else {
446 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
447 		key.offset = hash_extent_data_ref(root_objectid,
448 						  owner, offset);
449 	}
450 again:
451 	recow = 0;
452 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
453 	if (ret < 0)
454 		return ret;
455 
456 	if (parent) {
457 		if (ret)
458 			return -ENOENT;
459 		return 0;
460 	}
461 
462 	ret = -ENOENT;
463 	leaf = path->nodes[0];
464 	nritems = btrfs_header_nritems(leaf);
465 	while (1) {
466 		if (path->slots[0] >= nritems) {
467 			ret = btrfs_next_leaf(root, path);
468 			if (ret) {
469 				if (ret > 0)
470 					return -ENOENT;
471 				return ret;
472 			}
473 
474 			leaf = path->nodes[0];
475 			nritems = btrfs_header_nritems(leaf);
476 			recow = 1;
477 		}
478 
479 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
480 		if (key.objectid != bytenr ||
481 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
482 			goto fail;
483 
484 		ref = btrfs_item_ptr(leaf, path->slots[0],
485 				     struct btrfs_extent_data_ref);
486 
487 		if (match_extent_data_ref(leaf, ref, root_objectid,
488 					  owner, offset)) {
489 			if (recow) {
490 				btrfs_release_path(path);
491 				goto again;
492 			}
493 			ret = 0;
494 			break;
495 		}
496 		path->slots[0]++;
497 	}
498 fail:
499 	return ret;
500 }
501 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)502 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
503 					   struct btrfs_path *path,
504 					   struct btrfs_delayed_ref_node *node,
505 					   u64 bytenr)
506 {
507 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
508 	struct btrfs_key key;
509 	struct extent_buffer *leaf;
510 	u64 owner = btrfs_delayed_ref_owner(node);
511 	u64 offset = btrfs_delayed_ref_offset(node);
512 	u32 size;
513 	u32 num_refs;
514 	int ret;
515 
516 	key.objectid = bytenr;
517 	if (node->parent) {
518 		key.type = BTRFS_SHARED_DATA_REF_KEY;
519 		key.offset = node->parent;
520 		size = sizeof(struct btrfs_shared_data_ref);
521 	} else {
522 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
523 		key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
524 		size = sizeof(struct btrfs_extent_data_ref);
525 	}
526 
527 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
528 	if (ret && ret != -EEXIST)
529 		goto fail;
530 
531 	leaf = path->nodes[0];
532 	if (node->parent) {
533 		struct btrfs_shared_data_ref *ref;
534 		ref = btrfs_item_ptr(leaf, path->slots[0],
535 				     struct btrfs_shared_data_ref);
536 		if (ret == 0) {
537 			btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
538 		} else {
539 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
540 			num_refs += node->ref_mod;
541 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
542 		}
543 	} else {
544 		struct btrfs_extent_data_ref *ref;
545 		while (ret == -EEXIST) {
546 			ref = btrfs_item_ptr(leaf, path->slots[0],
547 					     struct btrfs_extent_data_ref);
548 			if (match_extent_data_ref(leaf, ref, node->ref_root,
549 						  owner, offset))
550 				break;
551 			btrfs_release_path(path);
552 			key.offset++;
553 			ret = btrfs_insert_empty_item(trans, root, path, &key,
554 						      size);
555 			if (ret && ret != -EEXIST)
556 				goto fail;
557 
558 			leaf = path->nodes[0];
559 		}
560 		ref = btrfs_item_ptr(leaf, path->slots[0],
561 				     struct btrfs_extent_data_ref);
562 		if (ret == 0) {
563 			btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
564 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
565 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
566 			btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
567 		} else {
568 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
569 			num_refs += node->ref_mod;
570 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
571 		}
572 	}
573 	btrfs_mark_buffer_dirty(trans, leaf);
574 	ret = 0;
575 fail:
576 	btrfs_release_path(path);
577 	return ret;
578 }
579 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)580 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
581 					   struct btrfs_root *root,
582 					   struct btrfs_path *path,
583 					   int refs_to_drop)
584 {
585 	struct btrfs_key key;
586 	struct btrfs_extent_data_ref *ref1 = NULL;
587 	struct btrfs_shared_data_ref *ref2 = NULL;
588 	struct extent_buffer *leaf;
589 	u32 num_refs = 0;
590 	int ret = 0;
591 
592 	leaf = path->nodes[0];
593 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
594 
595 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
596 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
597 				      struct btrfs_extent_data_ref);
598 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
599 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
600 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
601 				      struct btrfs_shared_data_ref);
602 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
603 	} else {
604 		btrfs_err(trans->fs_info,
605 			  "unrecognized backref key (%llu %u %llu)",
606 			  key.objectid, key.type, key.offset);
607 		btrfs_abort_transaction(trans, -EUCLEAN);
608 		return -EUCLEAN;
609 	}
610 
611 	BUG_ON(num_refs < refs_to_drop);
612 	num_refs -= refs_to_drop;
613 
614 	if (num_refs == 0) {
615 		ret = btrfs_del_item(trans, root, path);
616 	} else {
617 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
618 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
619 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
620 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
621 		btrfs_mark_buffer_dirty(trans, leaf);
622 	}
623 	return ret;
624 }
625 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)626 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
627 					  struct btrfs_extent_inline_ref *iref)
628 {
629 	struct btrfs_key key;
630 	struct extent_buffer *leaf;
631 	struct btrfs_extent_data_ref *ref1;
632 	struct btrfs_shared_data_ref *ref2;
633 	u32 num_refs = 0;
634 	int type;
635 
636 	leaf = path->nodes[0];
637 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
638 
639 	if (iref) {
640 		/*
641 		 * If type is invalid, we should have bailed out earlier than
642 		 * this call.
643 		 */
644 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
645 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
646 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
647 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
648 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
649 		} else {
650 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
651 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
652 		}
653 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
654 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
655 				      struct btrfs_extent_data_ref);
656 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
657 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
658 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
659 				      struct btrfs_shared_data_ref);
660 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
661 	} else {
662 		WARN_ON(1);
663 	}
664 	return num_refs;
665 }
666 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)667 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
668 					  struct btrfs_path *path,
669 					  u64 bytenr, u64 parent,
670 					  u64 root_objectid)
671 {
672 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
673 	struct btrfs_key key;
674 	int ret;
675 
676 	key.objectid = bytenr;
677 	if (parent) {
678 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
679 		key.offset = parent;
680 	} else {
681 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
682 		key.offset = root_objectid;
683 	}
684 
685 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
686 	if (ret > 0)
687 		ret = -ENOENT;
688 	return ret;
689 }
690 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_ref_node * node,u64 bytenr)691 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
692 					  struct btrfs_path *path,
693 					  struct btrfs_delayed_ref_node *node,
694 					  u64 bytenr)
695 {
696 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
697 	struct btrfs_key key;
698 	int ret;
699 
700 	key.objectid = bytenr;
701 	if (node->parent) {
702 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
703 		key.offset = node->parent;
704 	} else {
705 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
706 		key.offset = node->ref_root;
707 	}
708 
709 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
710 	btrfs_release_path(path);
711 	return ret;
712 }
713 
extent_ref_type(u64 parent,u64 owner)714 static inline int extent_ref_type(u64 parent, u64 owner)
715 {
716 	int type;
717 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
718 		if (parent > 0)
719 			type = BTRFS_SHARED_BLOCK_REF_KEY;
720 		else
721 			type = BTRFS_TREE_BLOCK_REF_KEY;
722 	} else {
723 		if (parent > 0)
724 			type = BTRFS_SHARED_DATA_REF_KEY;
725 		else
726 			type = BTRFS_EXTENT_DATA_REF_KEY;
727 	}
728 	return type;
729 }
730 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)731 static int find_next_key(struct btrfs_path *path, int level,
732 			 struct btrfs_key *key)
733 
734 {
735 	for (; level < BTRFS_MAX_LEVEL; level++) {
736 		if (!path->nodes[level])
737 			break;
738 		if (path->slots[level] + 1 >=
739 		    btrfs_header_nritems(path->nodes[level]))
740 			continue;
741 		if (level == 0)
742 			btrfs_item_key_to_cpu(path->nodes[level], key,
743 					      path->slots[level] + 1);
744 		else
745 			btrfs_node_key_to_cpu(path->nodes[level], key,
746 					      path->slots[level] + 1);
747 		return 0;
748 	}
749 	return 1;
750 }
751 
752 /*
753  * look for inline back ref. if back ref is found, *ref_ret is set
754  * to the address of inline back ref, and 0 is returned.
755  *
756  * if back ref isn't found, *ref_ret is set to the address where it
757  * should be inserted, and -ENOENT is returned.
758  *
759  * if insert is true and there are too many inline back refs, the path
760  * points to the extent item, and -EAGAIN is returned.
761  *
762  * NOTE: inline back refs are ordered in the same way that back ref
763  *	 items in the tree are ordered.
764  */
765 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)766 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
767 				 struct btrfs_path *path,
768 				 struct btrfs_extent_inline_ref **ref_ret,
769 				 u64 bytenr, u64 num_bytes,
770 				 u64 parent, u64 root_objectid,
771 				 u64 owner, u64 offset, int insert)
772 {
773 	struct btrfs_fs_info *fs_info = trans->fs_info;
774 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
775 	struct btrfs_key key;
776 	struct extent_buffer *leaf;
777 	struct btrfs_extent_item *ei;
778 	struct btrfs_extent_inline_ref *iref;
779 	u64 flags;
780 	u64 item_size;
781 	unsigned long ptr;
782 	unsigned long end;
783 	int extra_size;
784 	int type;
785 	int want;
786 	int ret;
787 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
788 	int needed;
789 
790 	key.objectid = bytenr;
791 	key.type = BTRFS_EXTENT_ITEM_KEY;
792 	key.offset = num_bytes;
793 
794 	want = extent_ref_type(parent, owner);
795 	if (insert) {
796 		extra_size = btrfs_extent_inline_ref_size(want);
797 		path->search_for_extension = 1;
798 		path->keep_locks = 1;
799 	} else
800 		extra_size = -1;
801 
802 	/*
803 	 * Owner is our level, so we can just add one to get the level for the
804 	 * block we are interested in.
805 	 */
806 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
807 		key.type = BTRFS_METADATA_ITEM_KEY;
808 		key.offset = owner;
809 	}
810 
811 again:
812 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
813 	if (ret < 0)
814 		goto out;
815 
816 	/*
817 	 * We may be a newly converted file system which still has the old fat
818 	 * extent entries for metadata, so try and see if we have one of those.
819 	 */
820 	if (ret > 0 && skinny_metadata) {
821 		skinny_metadata = false;
822 		if (path->slots[0]) {
823 			path->slots[0]--;
824 			btrfs_item_key_to_cpu(path->nodes[0], &key,
825 					      path->slots[0]);
826 			if (key.objectid == bytenr &&
827 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
828 			    key.offset == num_bytes)
829 				ret = 0;
830 		}
831 		if (ret) {
832 			key.objectid = bytenr;
833 			key.type = BTRFS_EXTENT_ITEM_KEY;
834 			key.offset = num_bytes;
835 			btrfs_release_path(path);
836 			goto again;
837 		}
838 	}
839 
840 	if (ret && !insert) {
841 		ret = -ENOENT;
842 		goto out;
843 	} else if (WARN_ON(ret)) {
844 		btrfs_print_leaf(path->nodes[0]);
845 		btrfs_err(fs_info,
846 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
847 			  bytenr, num_bytes, parent, root_objectid, owner,
848 			  offset);
849 		ret = -EUCLEAN;
850 		goto out;
851 	}
852 
853 	leaf = path->nodes[0];
854 	item_size = btrfs_item_size(leaf, path->slots[0]);
855 	if (unlikely(item_size < sizeof(*ei))) {
856 		ret = -EUCLEAN;
857 		btrfs_err(fs_info,
858 			  "unexpected extent item size, has %llu expect >= %zu",
859 			  item_size, sizeof(*ei));
860 		btrfs_abort_transaction(trans, ret);
861 		goto out;
862 	}
863 
864 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
865 	flags = btrfs_extent_flags(leaf, ei);
866 
867 	ptr = (unsigned long)(ei + 1);
868 	end = (unsigned long)ei + item_size;
869 
870 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
871 		ptr += sizeof(struct btrfs_tree_block_info);
872 		BUG_ON(ptr > end);
873 	}
874 
875 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
876 		needed = BTRFS_REF_TYPE_DATA;
877 	else
878 		needed = BTRFS_REF_TYPE_BLOCK;
879 
880 	ret = -ENOENT;
881 	while (ptr < end) {
882 		iref = (struct btrfs_extent_inline_ref *)ptr;
883 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
884 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
885 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
886 			ptr += btrfs_extent_inline_ref_size(type);
887 			continue;
888 		}
889 		if (type == BTRFS_REF_TYPE_INVALID) {
890 			ret = -EUCLEAN;
891 			goto out;
892 		}
893 
894 		if (want < type)
895 			break;
896 		if (want > type) {
897 			ptr += btrfs_extent_inline_ref_size(type);
898 			continue;
899 		}
900 
901 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
902 			struct btrfs_extent_data_ref *dref;
903 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
904 			if (match_extent_data_ref(leaf, dref, root_objectid,
905 						  owner, offset)) {
906 				ret = 0;
907 				break;
908 			}
909 			if (hash_extent_data_ref_item(leaf, dref) <
910 			    hash_extent_data_ref(root_objectid, owner, offset))
911 				break;
912 		} else {
913 			u64 ref_offset;
914 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
915 			if (parent > 0) {
916 				if (parent == ref_offset) {
917 					ret = 0;
918 					break;
919 				}
920 				if (ref_offset < parent)
921 					break;
922 			} else {
923 				if (root_objectid == ref_offset) {
924 					ret = 0;
925 					break;
926 				}
927 				if (ref_offset < root_objectid)
928 					break;
929 			}
930 		}
931 		ptr += btrfs_extent_inline_ref_size(type);
932 	}
933 
934 	if (unlikely(ptr > end)) {
935 		ret = -EUCLEAN;
936 		btrfs_print_leaf(path->nodes[0]);
937 		btrfs_crit(fs_info,
938 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
939 			   path->slots[0], root_objectid, owner, offset, parent);
940 		goto out;
941 	}
942 
943 	if (ret == -ENOENT && insert) {
944 		if (item_size + extra_size >=
945 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
946 			ret = -EAGAIN;
947 			goto out;
948 		}
949 		/*
950 		 * To add new inline back ref, we have to make sure
951 		 * there is no corresponding back ref item.
952 		 * For simplicity, we just do not add new inline back
953 		 * ref if there is any kind of item for this block
954 		 */
955 		if (find_next_key(path, 0, &key) == 0 &&
956 		    key.objectid == bytenr &&
957 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
958 			ret = -EAGAIN;
959 			goto out;
960 		}
961 	}
962 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
963 out:
964 	if (insert) {
965 		path->keep_locks = 0;
966 		path->search_for_extension = 0;
967 		btrfs_unlock_up_safe(path, 1);
968 	}
969 	return ret;
970 }
971 
972 /*
973  * helper to add new inline back ref
974  */
975 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)976 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
977 				 struct btrfs_path *path,
978 				 struct btrfs_extent_inline_ref *iref,
979 				 u64 parent, u64 root_objectid,
980 				 u64 owner, u64 offset, int refs_to_add,
981 				 struct btrfs_delayed_extent_op *extent_op)
982 {
983 	struct extent_buffer *leaf;
984 	struct btrfs_extent_item *ei;
985 	unsigned long ptr;
986 	unsigned long end;
987 	unsigned long item_offset;
988 	u64 refs;
989 	int size;
990 	int type;
991 
992 	leaf = path->nodes[0];
993 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
994 	item_offset = (unsigned long)iref - (unsigned long)ei;
995 
996 	type = extent_ref_type(parent, owner);
997 	size = btrfs_extent_inline_ref_size(type);
998 
999 	btrfs_extend_item(trans, path, size);
1000 
1001 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1002 	refs = btrfs_extent_refs(leaf, ei);
1003 	refs += refs_to_add;
1004 	btrfs_set_extent_refs(leaf, ei, refs);
1005 	if (extent_op)
1006 		__run_delayed_extent_op(extent_op, leaf, ei);
1007 
1008 	ptr = (unsigned long)ei + item_offset;
1009 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1010 	if (ptr < end - size)
1011 		memmove_extent_buffer(leaf, ptr + size, ptr,
1012 				      end - size - ptr);
1013 
1014 	iref = (struct btrfs_extent_inline_ref *)ptr;
1015 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1016 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1017 		struct btrfs_extent_data_ref *dref;
1018 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1019 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1020 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1021 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1022 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1023 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1024 		struct btrfs_shared_data_ref *sref;
1025 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1026 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1027 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1028 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1029 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1030 	} else {
1031 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1032 	}
1033 	btrfs_mark_buffer_dirty(trans, leaf);
1034 }
1035 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1036 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1037 				 struct btrfs_path *path,
1038 				 struct btrfs_extent_inline_ref **ref_ret,
1039 				 u64 bytenr, u64 num_bytes, u64 parent,
1040 				 u64 root_objectid, u64 owner, u64 offset)
1041 {
1042 	int ret;
1043 
1044 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1045 					   num_bytes, parent, root_objectid,
1046 					   owner, offset, 0);
1047 	if (ret != -ENOENT)
1048 		return ret;
1049 
1050 	btrfs_release_path(path);
1051 	*ref_ret = NULL;
1052 
1053 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1055 					    root_objectid);
1056 	} else {
1057 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1058 					     root_objectid, owner, offset);
1059 	}
1060 	return ret;
1061 }
1062 
1063 /*
1064  * helper to update/remove inline back ref
1065  */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1066 static noinline_for_stack int update_inline_extent_backref(
1067 				  struct btrfs_trans_handle *trans,
1068 				  struct btrfs_path *path,
1069 				  struct btrfs_extent_inline_ref *iref,
1070 				  int refs_to_mod,
1071 				  struct btrfs_delayed_extent_op *extent_op)
1072 {
1073 	struct extent_buffer *leaf = path->nodes[0];
1074 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1075 	struct btrfs_extent_item *ei;
1076 	struct btrfs_extent_data_ref *dref = NULL;
1077 	struct btrfs_shared_data_ref *sref = NULL;
1078 	unsigned long ptr;
1079 	unsigned long end;
1080 	u32 item_size;
1081 	int size;
1082 	int type;
1083 	u64 refs;
1084 
1085 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1086 	refs = btrfs_extent_refs(leaf, ei);
1087 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1088 		struct btrfs_key key;
1089 		u32 extent_size;
1090 
1091 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1092 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1093 			extent_size = fs_info->nodesize;
1094 		else
1095 			extent_size = key.offset;
1096 		btrfs_print_leaf(leaf);
1097 		btrfs_err(fs_info,
1098 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1099 			  key.objectid, extent_size, refs_to_mod, refs);
1100 		return -EUCLEAN;
1101 	}
1102 	refs += refs_to_mod;
1103 	btrfs_set_extent_refs(leaf, ei, refs);
1104 	if (extent_op)
1105 		__run_delayed_extent_op(extent_op, leaf, ei);
1106 
1107 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1108 	/*
1109 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1110 	 * error messages.
1111 	 */
1112 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1113 		return -EUCLEAN;
1114 
1115 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1116 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1117 		refs = btrfs_extent_data_ref_count(leaf, dref);
1118 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1119 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1120 		refs = btrfs_shared_data_ref_count(leaf, sref);
1121 	} else {
1122 		refs = 1;
1123 		/*
1124 		 * For tree blocks we can only drop one ref for it, and tree
1125 		 * blocks should not have refs > 1.
1126 		 *
1127 		 * Furthermore if we're inserting a new inline backref, we
1128 		 * won't reach this path either. That would be
1129 		 * setup_inline_extent_backref().
1130 		 */
1131 		if (unlikely(refs_to_mod != -1)) {
1132 			struct btrfs_key key;
1133 
1134 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 
1136 			btrfs_print_leaf(leaf);
1137 			btrfs_err(fs_info,
1138 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1139 				  key.objectid, refs_to_mod);
1140 			return -EUCLEAN;
1141 		}
1142 	}
1143 
1144 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1145 		struct btrfs_key key;
1146 		u32 extent_size;
1147 
1148 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1149 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1150 			extent_size = fs_info->nodesize;
1151 		else
1152 			extent_size = key.offset;
1153 		btrfs_print_leaf(leaf);
1154 		btrfs_err(fs_info,
1155 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1156 			  (unsigned long)iref, key.objectid, extent_size,
1157 			  refs_to_mod, refs);
1158 		return -EUCLEAN;
1159 	}
1160 	refs += refs_to_mod;
1161 
1162 	if (refs > 0) {
1163 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1164 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1165 		else
1166 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1167 	} else {
1168 		size =  btrfs_extent_inline_ref_size(type);
1169 		item_size = btrfs_item_size(leaf, path->slots[0]);
1170 		ptr = (unsigned long)iref;
1171 		end = (unsigned long)ei + item_size;
1172 		if (ptr + size < end)
1173 			memmove_extent_buffer(leaf, ptr, ptr + size,
1174 					      end - ptr - size);
1175 		item_size -= size;
1176 		btrfs_truncate_item(trans, path, item_size, 1);
1177 	}
1178 	btrfs_mark_buffer_dirty(trans, leaf);
1179 	return 0;
1180 }
1181 
1182 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1183 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1184 				 struct btrfs_path *path,
1185 				 u64 bytenr, u64 num_bytes, u64 parent,
1186 				 u64 root_objectid, u64 owner,
1187 				 u64 offset, int refs_to_add,
1188 				 struct btrfs_delayed_extent_op *extent_op)
1189 {
1190 	struct btrfs_extent_inline_ref *iref;
1191 	int ret;
1192 
1193 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1194 					   num_bytes, parent, root_objectid,
1195 					   owner, offset, 1);
1196 	if (ret == 0) {
1197 		/*
1198 		 * We're adding refs to a tree block we already own, this
1199 		 * should not happen at all.
1200 		 */
1201 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1202 			btrfs_print_leaf(path->nodes[0]);
1203 			btrfs_crit(trans->fs_info,
1204 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1205 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1206 			return -EUCLEAN;
1207 		}
1208 		ret = update_inline_extent_backref(trans, path, iref,
1209 						   refs_to_add, extent_op);
1210 	} else if (ret == -ENOENT) {
1211 		setup_inline_extent_backref(trans, path, iref, parent,
1212 					    root_objectid, owner, offset,
1213 					    refs_to_add, extent_op);
1214 		ret = 0;
1215 	}
1216 	return ret;
1217 }
1218 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1219 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1220 				 struct btrfs_root *root,
1221 				 struct btrfs_path *path,
1222 				 struct btrfs_extent_inline_ref *iref,
1223 				 int refs_to_drop, int is_data)
1224 {
1225 	int ret = 0;
1226 
1227 	BUG_ON(!is_data && refs_to_drop != 1);
1228 	if (iref)
1229 		ret = update_inline_extent_backref(trans, path, iref,
1230 						   -refs_to_drop, NULL);
1231 	else if (is_data)
1232 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1233 	else
1234 		ret = btrfs_del_item(trans, root, path);
1235 	return ret;
1236 }
1237 
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1238 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1239 			       u64 *discarded_bytes)
1240 {
1241 	int j, ret = 0;
1242 	u64 bytes_left, end;
1243 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1244 
1245 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1246 	if (start != aligned_start) {
1247 		len -= aligned_start - start;
1248 		len = round_down(len, 1 << SECTOR_SHIFT);
1249 		start = aligned_start;
1250 	}
1251 
1252 	*discarded_bytes = 0;
1253 
1254 	if (!len)
1255 		return 0;
1256 
1257 	end = start + len;
1258 	bytes_left = len;
1259 
1260 	/* Skip any superblocks on this device. */
1261 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1262 		u64 sb_start = btrfs_sb_offset(j);
1263 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1264 		u64 size = sb_start - start;
1265 
1266 		if (!in_range(sb_start, start, bytes_left) &&
1267 		    !in_range(sb_end, start, bytes_left) &&
1268 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1269 			continue;
1270 
1271 		/*
1272 		 * Superblock spans beginning of range.  Adjust start and
1273 		 * try again.
1274 		 */
1275 		if (sb_start <= start) {
1276 			start += sb_end - start;
1277 			if (start > end) {
1278 				bytes_left = 0;
1279 				break;
1280 			}
1281 			bytes_left = end - start;
1282 			continue;
1283 		}
1284 
1285 		if (size) {
1286 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1287 						   size >> SECTOR_SHIFT,
1288 						   GFP_NOFS);
1289 			if (!ret)
1290 				*discarded_bytes += size;
1291 			else if (ret != -EOPNOTSUPP)
1292 				return ret;
1293 		}
1294 
1295 		start = sb_end;
1296 		if (start > end) {
1297 			bytes_left = 0;
1298 			break;
1299 		}
1300 		bytes_left = end - start;
1301 	}
1302 
1303 	if (bytes_left) {
1304 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1305 					   bytes_left >> SECTOR_SHIFT,
1306 					   GFP_NOFS);
1307 		if (!ret)
1308 			*discarded_bytes += bytes_left;
1309 	}
1310 	return ret;
1311 }
1312 
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1313 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1314 {
1315 	struct btrfs_device *dev = stripe->dev;
1316 	struct btrfs_fs_info *fs_info = dev->fs_info;
1317 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1318 	u64 phys = stripe->physical;
1319 	u64 len = stripe->length;
1320 	u64 discarded = 0;
1321 	int ret = 0;
1322 
1323 	/* Zone reset on a zoned filesystem */
1324 	if (btrfs_can_zone_reset(dev, phys, len)) {
1325 		u64 src_disc;
1326 
1327 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1328 		if (ret)
1329 			goto out;
1330 
1331 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1332 		    dev != dev_replace->srcdev)
1333 			goto out;
1334 
1335 		src_disc = discarded;
1336 
1337 		/* Send to replace target as well */
1338 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1339 					      &discarded);
1340 		discarded += src_disc;
1341 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1342 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1343 	} else {
1344 		ret = 0;
1345 		*bytes = 0;
1346 	}
1347 
1348 out:
1349 	*bytes = discarded;
1350 	return ret;
1351 }
1352 
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1353 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1354 			 u64 num_bytes, u64 *actual_bytes)
1355 {
1356 	int ret = 0;
1357 	u64 discarded_bytes = 0;
1358 	u64 end = bytenr + num_bytes;
1359 	u64 cur = bytenr;
1360 
1361 	/*
1362 	 * Avoid races with device replace and make sure the devices in the
1363 	 * stripes don't go away while we are discarding.
1364 	 */
1365 	btrfs_bio_counter_inc_blocked(fs_info);
1366 	while (cur < end) {
1367 		struct btrfs_discard_stripe *stripes;
1368 		unsigned int num_stripes;
1369 		int i;
1370 
1371 		num_bytes = end - cur;
1372 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1373 		if (IS_ERR(stripes)) {
1374 			ret = PTR_ERR(stripes);
1375 			if (ret == -EOPNOTSUPP)
1376 				ret = 0;
1377 			break;
1378 		}
1379 
1380 		for (i = 0; i < num_stripes; i++) {
1381 			struct btrfs_discard_stripe *stripe = stripes + i;
1382 			u64 bytes;
1383 
1384 			if (!stripe->dev->bdev) {
1385 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1386 				continue;
1387 			}
1388 
1389 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1390 					&stripe->dev->dev_state))
1391 				continue;
1392 
1393 			ret = do_discard_extent(stripe, &bytes);
1394 			if (ret) {
1395 				/*
1396 				 * Keep going if discard is not supported by the
1397 				 * device.
1398 				 */
1399 				if (ret != -EOPNOTSUPP)
1400 					break;
1401 				ret = 0;
1402 			} else {
1403 				discarded_bytes += bytes;
1404 			}
1405 		}
1406 		kfree(stripes);
1407 		if (ret)
1408 			break;
1409 		cur += num_bytes;
1410 	}
1411 	btrfs_bio_counter_dec(fs_info);
1412 	if (actual_bytes)
1413 		*actual_bytes = discarded_bytes;
1414 	return ret;
1415 }
1416 
1417 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1418 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1419 			 struct btrfs_ref *generic_ref)
1420 {
1421 	struct btrfs_fs_info *fs_info = trans->fs_info;
1422 	int ret;
1423 
1424 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1425 	       generic_ref->action);
1426 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1427 	       generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1428 
1429 	if (generic_ref->type == BTRFS_REF_METADATA)
1430 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1431 	else
1432 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1433 
1434 	btrfs_ref_tree_mod(fs_info, generic_ref);
1435 
1436 	return ret;
1437 }
1438 
1439 /*
1440  * Insert backreference for a given extent.
1441  *
1442  * The counterpart is in __btrfs_free_extent(), with examples and more details
1443  * how it works.
1444  *
1445  * @trans:	    Handle of transaction
1446  *
1447  * @node:	    The delayed ref node used to get the bytenr/length for
1448  *		    extent whose references are incremented.
1449  *
1450  * @extent_op       Pointer to a structure, holding information necessary when
1451  *                  updating a tree block's flags
1452  *
1453  */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)1454 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1455 				  struct btrfs_delayed_ref_node *node,
1456 				  struct btrfs_delayed_extent_op *extent_op)
1457 {
1458 	struct btrfs_path *path;
1459 	struct extent_buffer *leaf;
1460 	struct btrfs_extent_item *item;
1461 	struct btrfs_key key;
1462 	u64 bytenr = node->bytenr;
1463 	u64 num_bytes = node->num_bytes;
1464 	u64 owner = btrfs_delayed_ref_owner(node);
1465 	u64 offset = btrfs_delayed_ref_offset(node);
1466 	u64 refs;
1467 	int refs_to_add = node->ref_mod;
1468 	int ret;
1469 
1470 	path = btrfs_alloc_path();
1471 	if (!path)
1472 		return -ENOMEM;
1473 
1474 	/* this will setup the path even if it fails to insert the back ref */
1475 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1476 					   node->parent, node->ref_root, owner,
1477 					   offset, refs_to_add, extent_op);
1478 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1479 		goto out;
1480 
1481 	/*
1482 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1483 	 * inline extent ref, so just update the reference count and add a
1484 	 * normal backref.
1485 	 */
1486 	leaf = path->nodes[0];
1487 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1488 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1489 	refs = btrfs_extent_refs(leaf, item);
1490 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1491 	if (extent_op)
1492 		__run_delayed_extent_op(extent_op, leaf, item);
1493 
1494 	btrfs_mark_buffer_dirty(trans, leaf);
1495 	btrfs_release_path(path);
1496 
1497 	/* now insert the actual backref */
1498 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1499 		ret = insert_tree_block_ref(trans, path, node, bytenr);
1500 	else
1501 		ret = insert_extent_data_ref(trans, path, node, bytenr);
1502 
1503 	if (ret)
1504 		btrfs_abort_transaction(trans, ret);
1505 out:
1506 	btrfs_free_path(path);
1507 	return ret;
1508 }
1509 
free_head_ref_squota_rsv(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * href)1510 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1511 				     struct btrfs_delayed_ref_head *href)
1512 {
1513 	u64 root = href->owning_root;
1514 
1515 	/*
1516 	 * Don't check must_insert_reserved, as this is called from contexts
1517 	 * where it has already been unset.
1518 	 */
1519 	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1520 	    !href->is_data || !is_fstree(root))
1521 		return;
1522 
1523 	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1524 				  BTRFS_QGROUP_RSV_DATA);
1525 }
1526 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1527 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1528 				struct btrfs_delayed_ref_head *href,
1529 				struct btrfs_delayed_ref_node *node,
1530 				struct btrfs_delayed_extent_op *extent_op,
1531 				bool insert_reserved)
1532 {
1533 	int ret = 0;
1534 	u64 parent = 0;
1535 	u64 flags = 0;
1536 
1537 	trace_run_delayed_data_ref(trans->fs_info, node);
1538 
1539 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1540 		parent = node->parent;
1541 
1542 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1543 		struct btrfs_key key;
1544 		struct btrfs_squota_delta delta = {
1545 			.root = href->owning_root,
1546 			.num_bytes = node->num_bytes,
1547 			.is_data = true,
1548 			.is_inc	= true,
1549 			.generation = trans->transid,
1550 		};
1551 		u64 owner = btrfs_delayed_ref_owner(node);
1552 		u64 offset = btrfs_delayed_ref_offset(node);
1553 
1554 		if (extent_op)
1555 			flags |= extent_op->flags_to_set;
1556 
1557 		key.objectid = node->bytenr;
1558 		key.type = BTRFS_EXTENT_ITEM_KEY;
1559 		key.offset = node->num_bytes;
1560 
1561 		ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1562 						 flags, owner, offset, &key,
1563 						 node->ref_mod,
1564 						 href->owning_root);
1565 		free_head_ref_squota_rsv(trans->fs_info, href);
1566 		if (!ret)
1567 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1568 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1569 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1570 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1571 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1572 	} else {
1573 		BUG();
1574 	}
1575 	return ret;
1576 }
1577 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1578 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1579 				    struct extent_buffer *leaf,
1580 				    struct btrfs_extent_item *ei)
1581 {
1582 	u64 flags = btrfs_extent_flags(leaf, ei);
1583 	if (extent_op->update_flags) {
1584 		flags |= extent_op->flags_to_set;
1585 		btrfs_set_extent_flags(leaf, ei, flags);
1586 	}
1587 
1588 	if (extent_op->update_key) {
1589 		struct btrfs_tree_block_info *bi;
1590 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1591 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1592 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1593 	}
1594 }
1595 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1596 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1597 				 struct btrfs_delayed_ref_head *head,
1598 				 struct btrfs_delayed_extent_op *extent_op)
1599 {
1600 	struct btrfs_fs_info *fs_info = trans->fs_info;
1601 	struct btrfs_root *root;
1602 	struct btrfs_key key;
1603 	struct btrfs_path *path;
1604 	struct btrfs_extent_item *ei;
1605 	struct extent_buffer *leaf;
1606 	u32 item_size;
1607 	int ret;
1608 	int metadata = 1;
1609 
1610 	if (TRANS_ABORTED(trans))
1611 		return 0;
1612 
1613 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1614 		metadata = 0;
1615 
1616 	path = btrfs_alloc_path();
1617 	if (!path)
1618 		return -ENOMEM;
1619 
1620 	key.objectid = head->bytenr;
1621 
1622 	if (metadata) {
1623 		key.type = BTRFS_METADATA_ITEM_KEY;
1624 		key.offset = head->level;
1625 	} else {
1626 		key.type = BTRFS_EXTENT_ITEM_KEY;
1627 		key.offset = head->num_bytes;
1628 	}
1629 
1630 	root = btrfs_extent_root(fs_info, key.objectid);
1631 again:
1632 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1633 	if (ret < 0) {
1634 		goto out;
1635 	} else if (ret > 0) {
1636 		if (metadata) {
1637 			if (path->slots[0] > 0) {
1638 				path->slots[0]--;
1639 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1640 						      path->slots[0]);
1641 				if (key.objectid == head->bytenr &&
1642 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1643 				    key.offset == head->num_bytes)
1644 					ret = 0;
1645 			}
1646 			if (ret > 0) {
1647 				btrfs_release_path(path);
1648 				metadata = 0;
1649 
1650 				key.objectid = head->bytenr;
1651 				key.offset = head->num_bytes;
1652 				key.type = BTRFS_EXTENT_ITEM_KEY;
1653 				goto again;
1654 			}
1655 		} else {
1656 			ret = -EUCLEAN;
1657 			btrfs_err(fs_info,
1658 		  "missing extent item for extent %llu num_bytes %llu level %d",
1659 				  head->bytenr, head->num_bytes, head->level);
1660 			goto out;
1661 		}
1662 	}
1663 
1664 	leaf = path->nodes[0];
1665 	item_size = btrfs_item_size(leaf, path->slots[0]);
1666 
1667 	if (unlikely(item_size < sizeof(*ei))) {
1668 		ret = -EUCLEAN;
1669 		btrfs_err(fs_info,
1670 			  "unexpected extent item size, has %u expect >= %zu",
1671 			  item_size, sizeof(*ei));
1672 		btrfs_abort_transaction(trans, ret);
1673 		goto out;
1674 	}
1675 
1676 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1677 	__run_delayed_extent_op(extent_op, leaf, ei);
1678 
1679 	btrfs_mark_buffer_dirty(trans, leaf);
1680 out:
1681 	btrfs_free_path(path);
1682 	return ret;
1683 }
1684 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1685 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1686 				struct btrfs_delayed_ref_head *href,
1687 				struct btrfs_delayed_ref_node *node,
1688 				struct btrfs_delayed_extent_op *extent_op,
1689 				bool insert_reserved)
1690 {
1691 	int ret = 0;
1692 	struct btrfs_fs_info *fs_info = trans->fs_info;
1693 	u64 parent = 0;
1694 	u64 ref_root = 0;
1695 
1696 	trace_run_delayed_tree_ref(trans->fs_info, node);
1697 
1698 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1699 		parent = node->parent;
1700 	ref_root = node->ref_root;
1701 
1702 	if (unlikely(node->ref_mod != 1)) {
1703 		btrfs_err(trans->fs_info,
1704 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1705 			  node->bytenr, node->ref_mod, node->action, ref_root,
1706 			  parent);
1707 		return -EUCLEAN;
1708 	}
1709 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1710 		struct btrfs_squota_delta delta = {
1711 			.root = href->owning_root,
1712 			.num_bytes = fs_info->nodesize,
1713 			.is_data = false,
1714 			.is_inc = true,
1715 			.generation = trans->transid,
1716 		};
1717 
1718 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1719 		if (!ret)
1720 			btrfs_record_squota_delta(fs_info, &delta);
1721 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1722 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1723 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1724 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1725 	} else {
1726 		BUG();
1727 	}
1728 	return ret;
1729 }
1730 
1731 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1732 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1733 			       struct btrfs_delayed_ref_head *href,
1734 			       struct btrfs_delayed_ref_node *node,
1735 			       struct btrfs_delayed_extent_op *extent_op,
1736 			       bool insert_reserved)
1737 {
1738 	int ret = 0;
1739 
1740 	if (TRANS_ABORTED(trans)) {
1741 		if (insert_reserved) {
1742 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1743 			free_head_ref_squota_rsv(trans->fs_info, href);
1744 		}
1745 		return 0;
1746 	}
1747 
1748 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1749 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1750 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1751 					   insert_reserved);
1752 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1753 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1754 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1755 					   insert_reserved);
1756 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1757 		ret = 0;
1758 	else
1759 		BUG();
1760 	if (ret && insert_reserved)
1761 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1762 	if (ret < 0)
1763 		btrfs_err(trans->fs_info,
1764 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1765 			  node->bytenr, node->num_bytes, node->type,
1766 			  node->action, node->ref_mod, ret);
1767 	return ret;
1768 }
1769 
1770 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1771 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1772 {
1773 	struct btrfs_delayed_ref_node *ref;
1774 
1775 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1776 		return NULL;
1777 
1778 	/*
1779 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1780 	 * This is to prevent a ref count from going down to zero, which deletes
1781 	 * the extent item from the extent tree, when there still are references
1782 	 * to add, which would fail because they would not find the extent item.
1783 	 */
1784 	if (!list_empty(&head->ref_add_list))
1785 		return list_first_entry(&head->ref_add_list,
1786 				struct btrfs_delayed_ref_node, add_list);
1787 
1788 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1789 		       struct btrfs_delayed_ref_node, ref_node);
1790 	ASSERT(list_empty(&ref->add_list));
1791 	return ref;
1792 }
1793 
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1794 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1795 				      struct btrfs_delayed_ref_head *head)
1796 {
1797 	spin_lock(&delayed_refs->lock);
1798 	head->processing = false;
1799 	delayed_refs->num_heads_ready++;
1800 	spin_unlock(&delayed_refs->lock);
1801 	btrfs_delayed_ref_unlock(head);
1802 }
1803 
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1804 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1805 				struct btrfs_delayed_ref_head *head)
1806 {
1807 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1808 
1809 	if (!extent_op)
1810 		return NULL;
1811 
1812 	if (head->must_insert_reserved) {
1813 		head->extent_op = NULL;
1814 		btrfs_free_delayed_extent_op(extent_op);
1815 		return NULL;
1816 	}
1817 	return extent_op;
1818 }
1819 
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1820 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1821 				     struct btrfs_delayed_ref_head *head)
1822 {
1823 	struct btrfs_delayed_extent_op *extent_op;
1824 	int ret;
1825 
1826 	extent_op = cleanup_extent_op(head);
1827 	if (!extent_op)
1828 		return 0;
1829 	head->extent_op = NULL;
1830 	spin_unlock(&head->lock);
1831 	ret = run_delayed_extent_op(trans, head, extent_op);
1832 	btrfs_free_delayed_extent_op(extent_op);
1833 	return ret ? ret : 1;
1834 }
1835 
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1836 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1837 				  struct btrfs_delayed_ref_root *delayed_refs,
1838 				  struct btrfs_delayed_ref_head *head)
1839 {
1840 	u64 ret = 0;
1841 
1842 	/*
1843 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1844 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1845 	 */
1846 	if (head->total_ref_mod < 0 && head->is_data) {
1847 		int nr_csums;
1848 
1849 		spin_lock(&delayed_refs->lock);
1850 		delayed_refs->pending_csums -= head->num_bytes;
1851 		spin_unlock(&delayed_refs->lock);
1852 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1853 
1854 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1855 
1856 		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1857 	}
1858 	/* must_insert_reserved can be set only if we didn't run the head ref. */
1859 	if (head->must_insert_reserved)
1860 		free_head_ref_squota_rsv(fs_info, head);
1861 
1862 	return ret;
1863 }
1864 
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,u64 * bytes_released)1865 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1866 			    struct btrfs_delayed_ref_head *head,
1867 			    u64 *bytes_released)
1868 {
1869 
1870 	struct btrfs_fs_info *fs_info = trans->fs_info;
1871 	struct btrfs_delayed_ref_root *delayed_refs;
1872 	int ret;
1873 
1874 	delayed_refs = &trans->transaction->delayed_refs;
1875 
1876 	ret = run_and_cleanup_extent_op(trans, head);
1877 	if (ret < 0) {
1878 		unselect_delayed_ref_head(delayed_refs, head);
1879 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1880 		return ret;
1881 	} else if (ret) {
1882 		return ret;
1883 	}
1884 
1885 	/*
1886 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1887 	 * and then re-check to make sure nobody got added.
1888 	 */
1889 	spin_unlock(&head->lock);
1890 	spin_lock(&delayed_refs->lock);
1891 	spin_lock(&head->lock);
1892 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1893 		spin_unlock(&head->lock);
1894 		spin_unlock(&delayed_refs->lock);
1895 		return 1;
1896 	}
1897 	btrfs_delete_ref_head(delayed_refs, head);
1898 	spin_unlock(&head->lock);
1899 	spin_unlock(&delayed_refs->lock);
1900 
1901 	if (head->must_insert_reserved) {
1902 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1903 		if (head->is_data) {
1904 			struct btrfs_root *csum_root;
1905 
1906 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1907 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1908 					      head->num_bytes);
1909 		}
1910 	}
1911 
1912 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1913 
1914 	trace_run_delayed_ref_head(fs_info, head, 0);
1915 	btrfs_delayed_ref_unlock(head);
1916 	btrfs_put_delayed_ref_head(head);
1917 	return ret;
1918 }
1919 
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1920 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1921 					struct btrfs_trans_handle *trans)
1922 {
1923 	struct btrfs_delayed_ref_root *delayed_refs =
1924 		&trans->transaction->delayed_refs;
1925 	struct btrfs_delayed_ref_head *head = NULL;
1926 	int ret;
1927 
1928 	spin_lock(&delayed_refs->lock);
1929 	head = btrfs_select_ref_head(delayed_refs);
1930 	if (!head) {
1931 		spin_unlock(&delayed_refs->lock);
1932 		return head;
1933 	}
1934 
1935 	/*
1936 	 * Grab the lock that says we are going to process all the refs for
1937 	 * this head
1938 	 */
1939 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1940 	spin_unlock(&delayed_refs->lock);
1941 
1942 	/*
1943 	 * We may have dropped the spin lock to get the head mutex lock, and
1944 	 * that might have given someone else time to free the head.  If that's
1945 	 * true, it has been removed from our list and we can move on.
1946 	 */
1947 	if (ret == -EAGAIN)
1948 		head = ERR_PTR(-EAGAIN);
1949 
1950 	return head;
1951 }
1952 
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,u64 * bytes_released)1953 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1954 					   struct btrfs_delayed_ref_head *locked_ref,
1955 					   u64 *bytes_released)
1956 {
1957 	struct btrfs_fs_info *fs_info = trans->fs_info;
1958 	struct btrfs_delayed_ref_root *delayed_refs;
1959 	struct btrfs_delayed_extent_op *extent_op;
1960 	struct btrfs_delayed_ref_node *ref;
1961 	bool must_insert_reserved;
1962 	int ret;
1963 
1964 	delayed_refs = &trans->transaction->delayed_refs;
1965 
1966 	lockdep_assert_held(&locked_ref->mutex);
1967 	lockdep_assert_held(&locked_ref->lock);
1968 
1969 	while ((ref = select_delayed_ref(locked_ref))) {
1970 		if (ref->seq &&
1971 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1972 			spin_unlock(&locked_ref->lock);
1973 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1974 			return -EAGAIN;
1975 		}
1976 
1977 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1978 		RB_CLEAR_NODE(&ref->ref_node);
1979 		if (!list_empty(&ref->add_list))
1980 			list_del(&ref->add_list);
1981 		/*
1982 		 * When we play the delayed ref, also correct the ref_mod on
1983 		 * head
1984 		 */
1985 		switch (ref->action) {
1986 		case BTRFS_ADD_DELAYED_REF:
1987 		case BTRFS_ADD_DELAYED_EXTENT:
1988 			locked_ref->ref_mod -= ref->ref_mod;
1989 			break;
1990 		case BTRFS_DROP_DELAYED_REF:
1991 			locked_ref->ref_mod += ref->ref_mod;
1992 			break;
1993 		default:
1994 			WARN_ON(1);
1995 		}
1996 		atomic_dec(&delayed_refs->num_entries);
1997 
1998 		/*
1999 		 * Record the must_insert_reserved flag before we drop the
2000 		 * spin lock.
2001 		 */
2002 		must_insert_reserved = locked_ref->must_insert_reserved;
2003 		/*
2004 		 * Unsetting this on the head ref relinquishes ownership of
2005 		 * the rsv_bytes, so it is critical that every possible code
2006 		 * path from here forward frees all reserves including qgroup
2007 		 * reserve.
2008 		 */
2009 		locked_ref->must_insert_reserved = false;
2010 
2011 		extent_op = locked_ref->extent_op;
2012 		locked_ref->extent_op = NULL;
2013 		spin_unlock(&locked_ref->lock);
2014 
2015 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2016 					  must_insert_reserved);
2017 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2018 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2019 
2020 		btrfs_free_delayed_extent_op(extent_op);
2021 		if (ret) {
2022 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2023 			btrfs_put_delayed_ref(ref);
2024 			return ret;
2025 		}
2026 
2027 		btrfs_put_delayed_ref(ref);
2028 		cond_resched();
2029 
2030 		spin_lock(&locked_ref->lock);
2031 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 /*
2038  * Returns 0 on success or if called with an already aborted transaction.
2039  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2040  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2041 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2042 					     u64 min_bytes)
2043 {
2044 	struct btrfs_fs_info *fs_info = trans->fs_info;
2045 	struct btrfs_delayed_ref_root *delayed_refs;
2046 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2047 	int ret;
2048 	unsigned long count = 0;
2049 	unsigned long max_count = 0;
2050 	u64 bytes_processed = 0;
2051 
2052 	delayed_refs = &trans->transaction->delayed_refs;
2053 	if (min_bytes == 0) {
2054 		max_count = delayed_refs->num_heads_ready;
2055 		min_bytes = U64_MAX;
2056 	}
2057 
2058 	do {
2059 		if (!locked_ref) {
2060 			locked_ref = btrfs_obtain_ref_head(trans);
2061 			if (IS_ERR_OR_NULL(locked_ref)) {
2062 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2063 					continue;
2064 				} else {
2065 					break;
2066 				}
2067 			}
2068 			count++;
2069 		}
2070 		/*
2071 		 * We need to try and merge add/drops of the same ref since we
2072 		 * can run into issues with relocate dropping the implicit ref
2073 		 * and then it being added back again before the drop can
2074 		 * finish.  If we merged anything we need to re-loop so we can
2075 		 * get a good ref.
2076 		 * Or we can get node references of the same type that weren't
2077 		 * merged when created due to bumps in the tree mod seq, and
2078 		 * we need to merge them to prevent adding an inline extent
2079 		 * backref before dropping it (triggering a BUG_ON at
2080 		 * insert_inline_extent_backref()).
2081 		 */
2082 		spin_lock(&locked_ref->lock);
2083 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2084 
2085 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2086 		if (ret < 0 && ret != -EAGAIN) {
2087 			/*
2088 			 * Error, btrfs_run_delayed_refs_for_head already
2089 			 * unlocked everything so just bail out
2090 			 */
2091 			return ret;
2092 		} else if (!ret) {
2093 			/*
2094 			 * Success, perform the usual cleanup of a processed
2095 			 * head
2096 			 */
2097 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2098 			if (ret > 0 ) {
2099 				/* We dropped our lock, we need to loop. */
2100 				ret = 0;
2101 				continue;
2102 			} else if (ret) {
2103 				return ret;
2104 			}
2105 		}
2106 
2107 		/*
2108 		 * Either success case or btrfs_run_delayed_refs_for_head
2109 		 * returned -EAGAIN, meaning we need to select another head
2110 		 */
2111 
2112 		locked_ref = NULL;
2113 		cond_resched();
2114 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2115 		 (max_count > 0 && count < max_count) ||
2116 		 locked_ref);
2117 
2118 	return 0;
2119 }
2120 
2121 #ifdef SCRAMBLE_DELAYED_REFS
2122 /*
2123  * Normally delayed refs get processed in ascending bytenr order. This
2124  * correlates in most cases to the order added. To expose dependencies on this
2125  * order, we start to process the tree in the middle instead of the beginning
2126  */
find_middle(struct rb_root * root)2127 static u64 find_middle(struct rb_root *root)
2128 {
2129 	struct rb_node *n = root->rb_node;
2130 	struct btrfs_delayed_ref_node *entry;
2131 	int alt = 1;
2132 	u64 middle;
2133 	u64 first = 0, last = 0;
2134 
2135 	n = rb_first(root);
2136 	if (n) {
2137 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2138 		first = entry->bytenr;
2139 	}
2140 	n = rb_last(root);
2141 	if (n) {
2142 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2143 		last = entry->bytenr;
2144 	}
2145 	n = root->rb_node;
2146 
2147 	while (n) {
2148 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2149 		WARN_ON(!entry->in_tree);
2150 
2151 		middle = entry->bytenr;
2152 
2153 		if (alt)
2154 			n = n->rb_left;
2155 		else
2156 			n = n->rb_right;
2157 
2158 		alt = 1 - alt;
2159 	}
2160 	return middle;
2161 }
2162 #endif
2163 
2164 /*
2165  * Start processing the delayed reference count updates and extent insertions
2166  * we have queued up so far.
2167  *
2168  * @trans:	Transaction handle.
2169  * @min_bytes:	How many bytes of delayed references to process. After this
2170  *		many bytes we stop processing delayed references if there are
2171  *		any more. If 0 it means to run all existing delayed references,
2172  *		but not new ones added after running all existing ones.
2173  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2174  *		plus any new ones that are added.
2175  *
2176  * Returns 0 on success or if called with an aborted transaction
2177  * Returns <0 on error and aborts the transaction
2178  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,u64 min_bytes)2179 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2180 {
2181 	struct btrfs_fs_info *fs_info = trans->fs_info;
2182 	struct btrfs_delayed_ref_root *delayed_refs;
2183 	int ret;
2184 
2185 	/* We'll clean this up in btrfs_cleanup_transaction */
2186 	if (TRANS_ABORTED(trans))
2187 		return 0;
2188 
2189 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2190 		return 0;
2191 
2192 	delayed_refs = &trans->transaction->delayed_refs;
2193 again:
2194 #ifdef SCRAMBLE_DELAYED_REFS
2195 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2196 #endif
2197 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2198 	if (ret < 0) {
2199 		btrfs_abort_transaction(trans, ret);
2200 		return ret;
2201 	}
2202 
2203 	if (min_bytes == U64_MAX) {
2204 		btrfs_create_pending_block_groups(trans);
2205 
2206 		spin_lock(&delayed_refs->lock);
2207 		if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
2208 			spin_unlock(&delayed_refs->lock);
2209 			return 0;
2210 		}
2211 		spin_unlock(&delayed_refs->lock);
2212 
2213 		cond_resched();
2214 		goto again;
2215 	}
2216 
2217 	return 0;
2218 }
2219 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2220 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2221 				struct extent_buffer *eb, u64 flags)
2222 {
2223 	struct btrfs_delayed_extent_op *extent_op;
2224 	int ret;
2225 
2226 	extent_op = btrfs_alloc_delayed_extent_op();
2227 	if (!extent_op)
2228 		return -ENOMEM;
2229 
2230 	extent_op->flags_to_set = flags;
2231 	extent_op->update_flags = true;
2232 	extent_op->update_key = false;
2233 
2234 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2235 					  btrfs_header_level(eb), extent_op);
2236 	if (ret)
2237 		btrfs_free_delayed_extent_op(extent_op);
2238 	return ret;
2239 }
2240 
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2241 static noinline int check_delayed_ref(struct btrfs_root *root,
2242 				      struct btrfs_path *path,
2243 				      u64 objectid, u64 offset, u64 bytenr)
2244 {
2245 	struct btrfs_delayed_ref_head *head;
2246 	struct btrfs_delayed_ref_node *ref;
2247 	struct btrfs_delayed_ref_root *delayed_refs;
2248 	struct btrfs_transaction *cur_trans;
2249 	struct rb_node *node;
2250 	int ret = 0;
2251 
2252 	spin_lock(&root->fs_info->trans_lock);
2253 	cur_trans = root->fs_info->running_transaction;
2254 	if (cur_trans)
2255 		refcount_inc(&cur_trans->use_count);
2256 	spin_unlock(&root->fs_info->trans_lock);
2257 	if (!cur_trans)
2258 		return 0;
2259 
2260 	delayed_refs = &cur_trans->delayed_refs;
2261 	spin_lock(&delayed_refs->lock);
2262 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2263 	if (!head) {
2264 		spin_unlock(&delayed_refs->lock);
2265 		btrfs_put_transaction(cur_trans);
2266 		return 0;
2267 	}
2268 
2269 	if (!mutex_trylock(&head->mutex)) {
2270 		if (path->nowait) {
2271 			spin_unlock(&delayed_refs->lock);
2272 			btrfs_put_transaction(cur_trans);
2273 			return -EAGAIN;
2274 		}
2275 
2276 		refcount_inc(&head->refs);
2277 		spin_unlock(&delayed_refs->lock);
2278 
2279 		btrfs_release_path(path);
2280 
2281 		/*
2282 		 * Mutex was contended, block until it's released and let
2283 		 * caller try again
2284 		 */
2285 		mutex_lock(&head->mutex);
2286 		mutex_unlock(&head->mutex);
2287 		btrfs_put_delayed_ref_head(head);
2288 		btrfs_put_transaction(cur_trans);
2289 		return -EAGAIN;
2290 	}
2291 	spin_unlock(&delayed_refs->lock);
2292 
2293 	spin_lock(&head->lock);
2294 	/*
2295 	 * XXX: We should replace this with a proper search function in the
2296 	 * future.
2297 	 */
2298 	for (node = rb_first_cached(&head->ref_tree); node;
2299 	     node = rb_next(node)) {
2300 		u64 ref_owner;
2301 		u64 ref_offset;
2302 
2303 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2304 		/* If it's a shared ref we know a cross reference exists */
2305 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2306 			ret = 1;
2307 			break;
2308 		}
2309 
2310 		ref_owner = btrfs_delayed_ref_owner(ref);
2311 		ref_offset = btrfs_delayed_ref_offset(ref);
2312 
2313 		/*
2314 		 * If our ref doesn't match the one we're currently looking at
2315 		 * then we have a cross reference.
2316 		 */
2317 		if (ref->ref_root != btrfs_root_id(root) ||
2318 		    ref_owner != objectid || ref_offset != offset) {
2319 			ret = 1;
2320 			break;
2321 		}
2322 	}
2323 	spin_unlock(&head->lock);
2324 	mutex_unlock(&head->mutex);
2325 	btrfs_put_transaction(cur_trans);
2326 	return ret;
2327 }
2328 
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2329 static noinline int check_committed_ref(struct btrfs_root *root,
2330 					struct btrfs_path *path,
2331 					u64 objectid, u64 offset, u64 bytenr,
2332 					bool strict)
2333 {
2334 	struct btrfs_fs_info *fs_info = root->fs_info;
2335 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2336 	struct extent_buffer *leaf;
2337 	struct btrfs_extent_data_ref *ref;
2338 	struct btrfs_extent_inline_ref *iref;
2339 	struct btrfs_extent_item *ei;
2340 	struct btrfs_key key;
2341 	u32 item_size;
2342 	u32 expected_size;
2343 	int type;
2344 	int ret;
2345 
2346 	key.objectid = bytenr;
2347 	key.offset = (u64)-1;
2348 	key.type = BTRFS_EXTENT_ITEM_KEY;
2349 
2350 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2351 	if (ret < 0)
2352 		goto out;
2353 	if (ret == 0) {
2354 		/*
2355 		 * Key with offset -1 found, there would have to exist an extent
2356 		 * item with such offset, but this is out of the valid range.
2357 		 */
2358 		ret = -EUCLEAN;
2359 		goto out;
2360 	}
2361 
2362 	ret = -ENOENT;
2363 	if (path->slots[0] == 0)
2364 		goto out;
2365 
2366 	path->slots[0]--;
2367 	leaf = path->nodes[0];
2368 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2369 
2370 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2371 		goto out;
2372 
2373 	ret = 1;
2374 	item_size = btrfs_item_size(leaf, path->slots[0]);
2375 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2376 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2377 
2378 	/* No inline refs; we need to bail before checking for owner ref. */
2379 	if (item_size == sizeof(*ei))
2380 		goto out;
2381 
2382 	/* Check for an owner ref; skip over it to the real inline refs. */
2383 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2384 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2385 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2386 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2387 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2388 	}
2389 
2390 	/* If extent item has more than 1 inline ref then it's shared */
2391 	if (item_size != expected_size)
2392 		goto out;
2393 
2394 	/*
2395 	 * If extent created before last snapshot => it's shared unless the
2396 	 * snapshot has been deleted. Use the heuristic if strict is false.
2397 	 */
2398 	if (!strict &&
2399 	    (btrfs_extent_generation(leaf, ei) <=
2400 	     btrfs_root_last_snapshot(&root->root_item)))
2401 		goto out;
2402 
2403 	/* If this extent has SHARED_DATA_REF then it's shared */
2404 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2405 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2406 		goto out;
2407 
2408 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2409 	if (btrfs_extent_refs(leaf, ei) !=
2410 	    btrfs_extent_data_ref_count(leaf, ref) ||
2411 	    btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2412 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2413 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2414 		goto out;
2415 
2416 	ret = 0;
2417 out:
2418 	return ret;
2419 }
2420 
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2421 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2422 			  u64 bytenr, bool strict, struct btrfs_path *path)
2423 {
2424 	int ret;
2425 
2426 	do {
2427 		ret = check_committed_ref(root, path, objectid,
2428 					  offset, bytenr, strict);
2429 		if (ret && ret != -ENOENT)
2430 			goto out;
2431 
2432 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2433 	} while (ret == -EAGAIN);
2434 
2435 out:
2436 	btrfs_release_path(path);
2437 	if (btrfs_is_data_reloc_root(root))
2438 		WARN_ON(ret > 0);
2439 	return ret;
2440 }
2441 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2442 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2443 			   struct btrfs_root *root,
2444 			   struct extent_buffer *buf,
2445 			   int full_backref, int inc)
2446 {
2447 	struct btrfs_fs_info *fs_info = root->fs_info;
2448 	u64 parent;
2449 	u64 ref_root;
2450 	u32 nritems;
2451 	struct btrfs_key key;
2452 	struct btrfs_file_extent_item *fi;
2453 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2454 	int i;
2455 	int action;
2456 	int level;
2457 	int ret = 0;
2458 
2459 	if (btrfs_is_testing(fs_info))
2460 		return 0;
2461 
2462 	ref_root = btrfs_header_owner(buf);
2463 	nritems = btrfs_header_nritems(buf);
2464 	level = btrfs_header_level(buf);
2465 
2466 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2467 		return 0;
2468 
2469 	if (full_backref)
2470 		parent = buf->start;
2471 	else
2472 		parent = 0;
2473 	if (inc)
2474 		action = BTRFS_ADD_DELAYED_REF;
2475 	else
2476 		action = BTRFS_DROP_DELAYED_REF;
2477 
2478 	for (i = 0; i < nritems; i++) {
2479 		struct btrfs_ref ref = {
2480 			.action = action,
2481 			.parent = parent,
2482 			.ref_root = ref_root,
2483 		};
2484 
2485 		if (level == 0) {
2486 			btrfs_item_key_to_cpu(buf, &key, i);
2487 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2488 				continue;
2489 			fi = btrfs_item_ptr(buf, i,
2490 					    struct btrfs_file_extent_item);
2491 			if (btrfs_file_extent_type(buf, fi) ==
2492 			    BTRFS_FILE_EXTENT_INLINE)
2493 				continue;
2494 			ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2495 			if (ref.bytenr == 0)
2496 				continue;
2497 
2498 			ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2499 			ref.owning_root = ref_root;
2500 
2501 			key.offset -= btrfs_file_extent_offset(buf, fi);
2502 			btrfs_init_data_ref(&ref, key.objectid, key.offset,
2503 					    btrfs_root_id(root), for_reloc);
2504 			if (inc)
2505 				ret = btrfs_inc_extent_ref(trans, &ref);
2506 			else
2507 				ret = btrfs_free_extent(trans, &ref);
2508 			if (ret)
2509 				goto fail;
2510 		} else {
2511 			/* We don't know the owning_root, leave as 0. */
2512 			ref.bytenr = btrfs_node_blockptr(buf, i);
2513 			ref.num_bytes = fs_info->nodesize;
2514 
2515 			btrfs_init_tree_ref(&ref, level - 1,
2516 					    btrfs_root_id(root), for_reloc);
2517 			if (inc)
2518 				ret = btrfs_inc_extent_ref(trans, &ref);
2519 			else
2520 				ret = btrfs_free_extent(trans, &ref);
2521 			if (ret)
2522 				goto fail;
2523 		}
2524 	}
2525 	return 0;
2526 fail:
2527 	return ret;
2528 }
2529 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2530 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2531 		  struct extent_buffer *buf, int full_backref)
2532 {
2533 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2534 }
2535 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2536 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2537 		  struct extent_buffer *buf, int full_backref)
2538 {
2539 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2540 }
2541 
get_alloc_profile_by_root(struct btrfs_root * root,int data)2542 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2543 {
2544 	struct btrfs_fs_info *fs_info = root->fs_info;
2545 	u64 flags;
2546 	u64 ret;
2547 
2548 	if (data)
2549 		flags = BTRFS_BLOCK_GROUP_DATA;
2550 	else if (root == fs_info->chunk_root)
2551 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2552 	else
2553 		flags = BTRFS_BLOCK_GROUP_METADATA;
2554 
2555 	ret = btrfs_get_alloc_profile(fs_info, flags);
2556 	return ret;
2557 }
2558 
first_logical_byte(struct btrfs_fs_info * fs_info)2559 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2560 {
2561 	struct rb_node *leftmost;
2562 	u64 bytenr = 0;
2563 
2564 	read_lock(&fs_info->block_group_cache_lock);
2565 	/* Get the block group with the lowest logical start address. */
2566 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2567 	if (leftmost) {
2568 		struct btrfs_block_group *bg;
2569 
2570 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2571 		bytenr = bg->start;
2572 	}
2573 	read_unlock(&fs_info->block_group_cache_lock);
2574 
2575 	return bytenr;
2576 }
2577 
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2578 static int pin_down_extent(struct btrfs_trans_handle *trans,
2579 			   struct btrfs_block_group *cache,
2580 			   u64 bytenr, u64 num_bytes, int reserved)
2581 {
2582 	struct btrfs_fs_info *fs_info = cache->fs_info;
2583 
2584 	spin_lock(&cache->space_info->lock);
2585 	spin_lock(&cache->lock);
2586 	cache->pinned += num_bytes;
2587 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2588 					     num_bytes);
2589 	if (reserved) {
2590 		cache->reserved -= num_bytes;
2591 		cache->space_info->bytes_reserved -= num_bytes;
2592 	}
2593 	spin_unlock(&cache->lock);
2594 	spin_unlock(&cache->space_info->lock);
2595 
2596 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2597 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2598 	return 0;
2599 }
2600 
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2601 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2602 		     u64 bytenr, u64 num_bytes, int reserved)
2603 {
2604 	struct btrfs_block_group *cache;
2605 
2606 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2607 	BUG_ON(!cache); /* Logic error */
2608 
2609 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2610 
2611 	btrfs_put_block_group(cache);
2612 	return 0;
2613 }
2614 
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)2615 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2616 				    const struct extent_buffer *eb)
2617 {
2618 	struct btrfs_block_group *cache;
2619 	int ret;
2620 
2621 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2622 	if (!cache)
2623 		return -EINVAL;
2624 
2625 	/*
2626 	 * Fully cache the free space first so that our pin removes the free space
2627 	 * from the cache.
2628 	 */
2629 	ret = btrfs_cache_block_group(cache, true);
2630 	if (ret)
2631 		goto out;
2632 
2633 	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2634 
2635 	/* remove us from the free space cache (if we're there at all) */
2636 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2637 out:
2638 	btrfs_put_block_group(cache);
2639 	return ret;
2640 }
2641 
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2642 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2643 				   u64 start, u64 num_bytes)
2644 {
2645 	int ret;
2646 	struct btrfs_block_group *block_group;
2647 
2648 	block_group = btrfs_lookup_block_group(fs_info, start);
2649 	if (!block_group)
2650 		return -EINVAL;
2651 
2652 	ret = btrfs_cache_block_group(block_group, true);
2653 	if (ret)
2654 		goto out;
2655 
2656 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2657 out:
2658 	btrfs_put_block_group(block_group);
2659 	return ret;
2660 }
2661 
btrfs_exclude_logged_extents(struct extent_buffer * eb)2662 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2663 {
2664 	struct btrfs_fs_info *fs_info = eb->fs_info;
2665 	struct btrfs_file_extent_item *item;
2666 	struct btrfs_key key;
2667 	int found_type;
2668 	int i;
2669 	int ret = 0;
2670 
2671 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2672 		return 0;
2673 
2674 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2675 		btrfs_item_key_to_cpu(eb, &key, i);
2676 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2677 			continue;
2678 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2679 		found_type = btrfs_file_extent_type(eb, item);
2680 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2681 			continue;
2682 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2683 			continue;
2684 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2685 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2686 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2687 		if (ret)
2688 			break;
2689 	}
2690 
2691 	return ret;
2692 }
2693 
2694 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2695 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2696 {
2697 	atomic_inc(&bg->reservations);
2698 }
2699 
2700 /*
2701  * Returns the free cluster for the given space info and sets empty_cluster to
2702  * what it should be based on the mount options.
2703  */
2704 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2705 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2706 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2707 {
2708 	struct btrfs_free_cluster *ret = NULL;
2709 
2710 	*empty_cluster = 0;
2711 	if (btrfs_mixed_space_info(space_info))
2712 		return ret;
2713 
2714 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2715 		ret = &fs_info->meta_alloc_cluster;
2716 		if (btrfs_test_opt(fs_info, SSD))
2717 			*empty_cluster = SZ_2M;
2718 		else
2719 			*empty_cluster = SZ_64K;
2720 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2721 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2722 		*empty_cluster = SZ_2M;
2723 		ret = &fs_info->data_alloc_cluster;
2724 	}
2725 
2726 	return ret;
2727 }
2728 
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2729 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2730 			      u64 start, u64 end,
2731 			      const bool return_free_space)
2732 {
2733 	struct btrfs_block_group *cache = NULL;
2734 	struct btrfs_space_info *space_info;
2735 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2736 	struct btrfs_free_cluster *cluster = NULL;
2737 	u64 len;
2738 	u64 total_unpinned = 0;
2739 	u64 empty_cluster = 0;
2740 	bool readonly;
2741 	int ret = 0;
2742 
2743 	while (start <= end) {
2744 		readonly = false;
2745 		if (!cache ||
2746 		    start >= cache->start + cache->length) {
2747 			if (cache)
2748 				btrfs_put_block_group(cache);
2749 			total_unpinned = 0;
2750 			cache = btrfs_lookup_block_group(fs_info, start);
2751 			if (cache == NULL) {
2752 				/* Logic error, something removed the block group. */
2753 				ret = -EUCLEAN;
2754 				goto out;
2755 			}
2756 
2757 			cluster = fetch_cluster_info(fs_info,
2758 						     cache->space_info,
2759 						     &empty_cluster);
2760 			empty_cluster <<= 1;
2761 		}
2762 
2763 		len = cache->start + cache->length - start;
2764 		len = min(len, end + 1 - start);
2765 
2766 		if (return_free_space)
2767 			btrfs_add_free_space(cache, start, len);
2768 
2769 		start += len;
2770 		total_unpinned += len;
2771 		space_info = cache->space_info;
2772 
2773 		/*
2774 		 * If this space cluster has been marked as fragmented and we've
2775 		 * unpinned enough in this block group to potentially allow a
2776 		 * cluster to be created inside of it go ahead and clear the
2777 		 * fragmented check.
2778 		 */
2779 		if (cluster && cluster->fragmented &&
2780 		    total_unpinned > empty_cluster) {
2781 			spin_lock(&cluster->lock);
2782 			cluster->fragmented = 0;
2783 			spin_unlock(&cluster->lock);
2784 		}
2785 
2786 		spin_lock(&space_info->lock);
2787 		spin_lock(&cache->lock);
2788 		cache->pinned -= len;
2789 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2790 		space_info->max_extent_size = 0;
2791 		if (cache->ro) {
2792 			space_info->bytes_readonly += len;
2793 			readonly = true;
2794 		} else if (btrfs_is_zoned(fs_info)) {
2795 			/* Need reset before reusing in a zoned block group */
2796 			btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2797 								    len);
2798 			readonly = true;
2799 		}
2800 		spin_unlock(&cache->lock);
2801 		if (!readonly && return_free_space &&
2802 		    global_rsv->space_info == space_info) {
2803 			spin_lock(&global_rsv->lock);
2804 			if (!global_rsv->full) {
2805 				u64 to_add = min(len, global_rsv->size -
2806 						      global_rsv->reserved);
2807 
2808 				global_rsv->reserved += to_add;
2809 				btrfs_space_info_update_bytes_may_use(fs_info,
2810 						space_info, to_add);
2811 				if (global_rsv->reserved >= global_rsv->size)
2812 					global_rsv->full = 1;
2813 				len -= to_add;
2814 			}
2815 			spin_unlock(&global_rsv->lock);
2816 		}
2817 		/* Add to any tickets we may have */
2818 		if (!readonly && return_free_space && len)
2819 			btrfs_try_granting_tickets(fs_info, space_info);
2820 		spin_unlock(&space_info->lock);
2821 	}
2822 
2823 	if (cache)
2824 		btrfs_put_block_group(cache);
2825 out:
2826 	return ret;
2827 }
2828 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2829 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2830 {
2831 	struct btrfs_fs_info *fs_info = trans->fs_info;
2832 	struct btrfs_block_group *block_group, *tmp;
2833 	struct list_head *deleted_bgs;
2834 	struct extent_io_tree *unpin;
2835 	u64 start;
2836 	u64 end;
2837 	int ret;
2838 
2839 	unpin = &trans->transaction->pinned_extents;
2840 
2841 	while (!TRANS_ABORTED(trans)) {
2842 		struct extent_state *cached_state = NULL;
2843 
2844 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2845 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2846 					   EXTENT_DIRTY, &cached_state)) {
2847 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2848 			break;
2849 		}
2850 
2851 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2852 			ret = btrfs_discard_extent(fs_info, start,
2853 						   end + 1 - start, NULL);
2854 
2855 		clear_extent_dirty(unpin, start, end, &cached_state);
2856 		ret = unpin_extent_range(fs_info, start, end, true);
2857 		BUG_ON(ret);
2858 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2859 		free_extent_state(cached_state);
2860 		cond_resched();
2861 	}
2862 
2863 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2864 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2865 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2866 	}
2867 
2868 	/*
2869 	 * Transaction is finished.  We don't need the lock anymore.  We
2870 	 * do need to clean up the block groups in case of a transaction
2871 	 * abort.
2872 	 */
2873 	deleted_bgs = &trans->transaction->deleted_bgs;
2874 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2875 		u64 trimmed = 0;
2876 
2877 		ret = -EROFS;
2878 		if (!TRANS_ABORTED(trans))
2879 			ret = btrfs_discard_extent(fs_info,
2880 						   block_group->start,
2881 						   block_group->length,
2882 						   &trimmed);
2883 
2884 		list_del_init(&block_group->bg_list);
2885 		btrfs_unfreeze_block_group(block_group);
2886 		btrfs_put_block_group(block_group);
2887 
2888 		if (ret) {
2889 			const char *errstr = btrfs_decode_error(ret);
2890 			btrfs_warn(fs_info,
2891 			   "discard failed while removing blockgroup: errno=%d %s",
2892 				   ret, errstr);
2893 		}
2894 	}
2895 
2896 	return 0;
2897 }
2898 
2899 /*
2900  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2901  *
2902  * @fs_info:	the btrfs_fs_info for this mount
2903  * @leaf:	a leaf in the extent tree containing the extent item
2904  * @slot:	the slot in the leaf where the extent item is found
2905  *
2906  * Returns the objectid of the root that originally allocated the extent item
2907  * if the inline owner ref is expected and present, otherwise 0.
2908  *
2909  * If an extent item has an owner ref item, it will be the first inline ref
2910  * item. Therefore the logic is to check whether there are any inline ref
2911  * items, then check the type of the first one.
2912  */
btrfs_get_extent_owner_root(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,int slot)2913 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2914 				struct extent_buffer *leaf, int slot)
2915 {
2916 	struct btrfs_extent_item *ei;
2917 	struct btrfs_extent_inline_ref *iref;
2918 	struct btrfs_extent_owner_ref *oref;
2919 	unsigned long ptr;
2920 	unsigned long end;
2921 	int type;
2922 
2923 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2924 		return 0;
2925 
2926 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2927 	ptr = (unsigned long)(ei + 1);
2928 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2929 
2930 	/* No inline ref items of any kind, can't check type. */
2931 	if (ptr == end)
2932 		return 0;
2933 
2934 	iref = (struct btrfs_extent_inline_ref *)ptr;
2935 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2936 
2937 	/* We found an owner ref, get the root out of it. */
2938 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2939 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2940 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2941 	}
2942 
2943 	/* We have inline refs, but not an owner ref. */
2944 	return 0;
2945 }
2946 
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,struct btrfs_squota_delta * delta)2947 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2948 				     u64 bytenr, struct btrfs_squota_delta *delta)
2949 {
2950 	int ret;
2951 	u64 num_bytes = delta->num_bytes;
2952 
2953 	if (delta->is_data) {
2954 		struct btrfs_root *csum_root;
2955 
2956 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2957 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2958 		if (ret) {
2959 			btrfs_abort_transaction(trans, ret);
2960 			return ret;
2961 		}
2962 
2963 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2964 		if (ret) {
2965 			btrfs_abort_transaction(trans, ret);
2966 			return ret;
2967 		}
2968 	}
2969 
2970 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
2971 	if (ret) {
2972 		btrfs_abort_transaction(trans, ret);
2973 		return ret;
2974 	}
2975 
2976 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2977 	if (ret) {
2978 		btrfs_abort_transaction(trans, ret);
2979 		return ret;
2980 	}
2981 
2982 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2983 	if (ret)
2984 		btrfs_abort_transaction(trans, ret);
2985 
2986 	return ret;
2987 }
2988 
2989 #define abort_and_dump(trans, path, fmt, args...)	\
2990 ({							\
2991 	btrfs_abort_transaction(trans, -EUCLEAN);	\
2992 	btrfs_print_leaf(path->nodes[0]);		\
2993 	btrfs_crit(trans->fs_info, fmt, ##args);	\
2994 })
2995 
2996 /*
2997  * Drop one or more refs of @node.
2998  *
2999  * 1. Locate the extent refs.
3000  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3001  *    Locate it, then reduce the refs number or remove the ref line completely.
3002  *
3003  * 2. Update the refs count in EXTENT/METADATA_ITEM
3004  *
3005  * Inline backref case:
3006  *
3007  * in extent tree we have:
3008  *
3009  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3010  *		refs 2 gen 6 flags DATA
3011  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3012  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3013  *
3014  * This function gets called with:
3015  *
3016  *    node->bytenr = 13631488
3017  *    node->num_bytes = 1048576
3018  *    root_objectid = FS_TREE
3019  *    owner_objectid = 257
3020  *    owner_offset = 0
3021  *    refs_to_drop = 1
3022  *
3023  * Then we should get some like:
3024  *
3025  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3026  *		refs 1 gen 6 flags DATA
3027  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3028  *
3029  * Keyed backref case:
3030  *
3031  * in extent tree we have:
3032  *
3033  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3034  *		refs 754 gen 6 flags DATA
3035  *	[...]
3036  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3037  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3038  *
3039  * This function get called with:
3040  *
3041  *    node->bytenr = 13631488
3042  *    node->num_bytes = 1048576
3043  *    root_objectid = FS_TREE
3044  *    owner_objectid = 866
3045  *    owner_offset = 0
3046  *    refs_to_drop = 1
3047  *
3048  * Then we should get some like:
3049  *
3050  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3051  *		refs 753 gen 6 flags DATA
3052  *
3053  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3054  */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)3055 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3056 			       struct btrfs_delayed_ref_head *href,
3057 			       struct btrfs_delayed_ref_node *node,
3058 			       struct btrfs_delayed_extent_op *extent_op)
3059 {
3060 	struct btrfs_fs_info *info = trans->fs_info;
3061 	struct btrfs_key key;
3062 	struct btrfs_path *path;
3063 	struct btrfs_root *extent_root;
3064 	struct extent_buffer *leaf;
3065 	struct btrfs_extent_item *ei;
3066 	struct btrfs_extent_inline_ref *iref;
3067 	int ret;
3068 	int is_data;
3069 	int extent_slot = 0;
3070 	int found_extent = 0;
3071 	int num_to_del = 1;
3072 	int refs_to_drop = node->ref_mod;
3073 	u32 item_size;
3074 	u64 refs;
3075 	u64 bytenr = node->bytenr;
3076 	u64 num_bytes = node->num_bytes;
3077 	u64 owner_objectid = btrfs_delayed_ref_owner(node);
3078 	u64 owner_offset = btrfs_delayed_ref_offset(node);
3079 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3080 	u64 delayed_ref_root = href->owning_root;
3081 
3082 	extent_root = btrfs_extent_root(info, bytenr);
3083 	ASSERT(extent_root);
3084 
3085 	path = btrfs_alloc_path();
3086 	if (!path)
3087 		return -ENOMEM;
3088 
3089 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3090 
3091 	if (!is_data && refs_to_drop != 1) {
3092 		btrfs_crit(info,
3093 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3094 			   node->bytenr, refs_to_drop);
3095 		ret = -EINVAL;
3096 		btrfs_abort_transaction(trans, ret);
3097 		goto out;
3098 	}
3099 
3100 	if (is_data)
3101 		skinny_metadata = false;
3102 
3103 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3104 				    node->parent, node->ref_root, owner_objectid,
3105 				    owner_offset);
3106 	if (ret == 0) {
3107 		/*
3108 		 * Either the inline backref or the SHARED_DATA_REF/
3109 		 * SHARED_BLOCK_REF is found
3110 		 *
3111 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3112 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3113 		 */
3114 		extent_slot = path->slots[0];
3115 		while (extent_slot >= 0) {
3116 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3117 					      extent_slot);
3118 			if (key.objectid != bytenr)
3119 				break;
3120 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3121 			    key.offset == num_bytes) {
3122 				found_extent = 1;
3123 				break;
3124 			}
3125 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3126 			    key.offset == owner_objectid) {
3127 				found_extent = 1;
3128 				break;
3129 			}
3130 
3131 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3132 			if (path->slots[0] - extent_slot > 5)
3133 				break;
3134 			extent_slot--;
3135 		}
3136 
3137 		if (!found_extent) {
3138 			if (iref) {
3139 				abort_and_dump(trans, path,
3140 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3141 					   path->slots[0]);
3142 				ret = -EUCLEAN;
3143 				goto out;
3144 			}
3145 			/* Must be SHARED_* item, remove the backref first */
3146 			ret = remove_extent_backref(trans, extent_root, path,
3147 						    NULL, refs_to_drop, is_data);
3148 			if (ret) {
3149 				btrfs_abort_transaction(trans, ret);
3150 				goto out;
3151 			}
3152 			btrfs_release_path(path);
3153 
3154 			/* Slow path to locate EXTENT/METADATA_ITEM */
3155 			key.objectid = bytenr;
3156 			key.type = BTRFS_EXTENT_ITEM_KEY;
3157 			key.offset = num_bytes;
3158 
3159 			if (!is_data && skinny_metadata) {
3160 				key.type = BTRFS_METADATA_ITEM_KEY;
3161 				key.offset = owner_objectid;
3162 			}
3163 
3164 			ret = btrfs_search_slot(trans, extent_root,
3165 						&key, path, -1, 1);
3166 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3167 				/*
3168 				 * Couldn't find our skinny metadata item,
3169 				 * see if we have ye olde extent item.
3170 				 */
3171 				path->slots[0]--;
3172 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3173 						      path->slots[0]);
3174 				if (key.objectid == bytenr &&
3175 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3176 				    key.offset == num_bytes)
3177 					ret = 0;
3178 			}
3179 
3180 			if (ret > 0 && skinny_metadata) {
3181 				skinny_metadata = false;
3182 				key.objectid = bytenr;
3183 				key.type = BTRFS_EXTENT_ITEM_KEY;
3184 				key.offset = num_bytes;
3185 				btrfs_release_path(path);
3186 				ret = btrfs_search_slot(trans, extent_root,
3187 							&key, path, -1, 1);
3188 			}
3189 
3190 			if (ret) {
3191 				if (ret > 0)
3192 					btrfs_print_leaf(path->nodes[0]);
3193 				btrfs_err(info,
3194 			"umm, got %d back from search, was looking for %llu, slot %d",
3195 					  ret, bytenr, path->slots[0]);
3196 			}
3197 			if (ret < 0) {
3198 				btrfs_abort_transaction(trans, ret);
3199 				goto out;
3200 			}
3201 			extent_slot = path->slots[0];
3202 		}
3203 	} else if (WARN_ON(ret == -ENOENT)) {
3204 		abort_and_dump(trans, path,
3205 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3206 			       bytenr, node->parent, node->ref_root, owner_objectid,
3207 			       owner_offset, path->slots[0]);
3208 		goto out;
3209 	} else {
3210 		btrfs_abort_transaction(trans, ret);
3211 		goto out;
3212 	}
3213 
3214 	leaf = path->nodes[0];
3215 	item_size = btrfs_item_size(leaf, extent_slot);
3216 	if (unlikely(item_size < sizeof(*ei))) {
3217 		ret = -EUCLEAN;
3218 		btrfs_err(trans->fs_info,
3219 			  "unexpected extent item size, has %u expect >= %zu",
3220 			  item_size, sizeof(*ei));
3221 		btrfs_abort_transaction(trans, ret);
3222 		goto out;
3223 	}
3224 	ei = btrfs_item_ptr(leaf, extent_slot,
3225 			    struct btrfs_extent_item);
3226 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3227 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3228 		struct btrfs_tree_block_info *bi;
3229 
3230 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3231 			abort_and_dump(trans, path,
3232 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3233 				       key.objectid, key.type, key.offset,
3234 				       path->slots[0], owner_objectid, item_size,
3235 				       sizeof(*ei) + sizeof(*bi));
3236 			ret = -EUCLEAN;
3237 			goto out;
3238 		}
3239 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3240 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3241 	}
3242 
3243 	refs = btrfs_extent_refs(leaf, ei);
3244 	if (refs < refs_to_drop) {
3245 		abort_and_dump(trans, path,
3246 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3247 			       refs_to_drop, refs, bytenr, path->slots[0]);
3248 		ret = -EUCLEAN;
3249 		goto out;
3250 	}
3251 	refs -= refs_to_drop;
3252 
3253 	if (refs > 0) {
3254 		if (extent_op)
3255 			__run_delayed_extent_op(extent_op, leaf, ei);
3256 		/*
3257 		 * In the case of inline back ref, reference count will
3258 		 * be updated by remove_extent_backref
3259 		 */
3260 		if (iref) {
3261 			if (!found_extent) {
3262 				abort_and_dump(trans, path,
3263 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3264 					       path->slots[0]);
3265 				ret = -EUCLEAN;
3266 				goto out;
3267 			}
3268 		} else {
3269 			btrfs_set_extent_refs(leaf, ei, refs);
3270 			btrfs_mark_buffer_dirty(trans, leaf);
3271 		}
3272 		if (found_extent) {
3273 			ret = remove_extent_backref(trans, extent_root, path,
3274 						    iref, refs_to_drop, is_data);
3275 			if (ret) {
3276 				btrfs_abort_transaction(trans, ret);
3277 				goto out;
3278 			}
3279 		}
3280 	} else {
3281 		struct btrfs_squota_delta delta = {
3282 			.root = delayed_ref_root,
3283 			.num_bytes = num_bytes,
3284 			.is_data = is_data,
3285 			.is_inc = false,
3286 			.generation = btrfs_extent_generation(leaf, ei),
3287 		};
3288 
3289 		/* In this branch refs == 1 */
3290 		if (found_extent) {
3291 			if (is_data && refs_to_drop !=
3292 			    extent_data_ref_count(path, iref)) {
3293 				abort_and_dump(trans, path,
3294 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3295 					       extent_data_ref_count(path, iref),
3296 					       refs_to_drop, path->slots[0]);
3297 				ret = -EUCLEAN;
3298 				goto out;
3299 			}
3300 			if (iref) {
3301 				if (path->slots[0] != extent_slot) {
3302 					abort_and_dump(trans, path,
3303 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3304 						       key.objectid, key.type,
3305 						       key.offset, path->slots[0]);
3306 					ret = -EUCLEAN;
3307 					goto out;
3308 				}
3309 			} else {
3310 				/*
3311 				 * No inline ref, we must be at SHARED_* item,
3312 				 * And it's single ref, it must be:
3313 				 * |	extent_slot	  ||extent_slot + 1|
3314 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3315 				 */
3316 				if (path->slots[0] != extent_slot + 1) {
3317 					abort_and_dump(trans, path,
3318 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3319 						       path->slots[0]);
3320 					ret = -EUCLEAN;
3321 					goto out;
3322 				}
3323 				path->slots[0] = extent_slot;
3324 				num_to_del = 2;
3325 			}
3326 		}
3327 		/*
3328 		 * We can't infer the data owner from the delayed ref, so we need
3329 		 * to try to get it from the owning ref item.
3330 		 *
3331 		 * If it is not present, then that extent was not written under
3332 		 * simple quotas mode, so we don't need to account for its deletion.
3333 		 */
3334 		if (is_data)
3335 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3336 								 leaf, extent_slot);
3337 
3338 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3339 				      num_to_del);
3340 		if (ret) {
3341 			btrfs_abort_transaction(trans, ret);
3342 			goto out;
3343 		}
3344 		btrfs_release_path(path);
3345 
3346 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3347 	}
3348 	btrfs_release_path(path);
3349 
3350 out:
3351 	btrfs_free_path(path);
3352 	return ret;
3353 }
3354 
3355 /*
3356  * when we free an block, it is possible (and likely) that we free the last
3357  * delayed ref for that extent as well.  This searches the delayed ref tree for
3358  * a given extent, and if there are no other delayed refs to be processed, it
3359  * removes it from the tree.
3360  */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3361 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3362 				      u64 bytenr)
3363 {
3364 	struct btrfs_delayed_ref_head *head;
3365 	struct btrfs_delayed_ref_root *delayed_refs;
3366 	int ret = 0;
3367 
3368 	delayed_refs = &trans->transaction->delayed_refs;
3369 	spin_lock(&delayed_refs->lock);
3370 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3371 	if (!head)
3372 		goto out_delayed_unlock;
3373 
3374 	spin_lock(&head->lock);
3375 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3376 		goto out;
3377 
3378 	if (cleanup_extent_op(head) != NULL)
3379 		goto out;
3380 
3381 	/*
3382 	 * waiting for the lock here would deadlock.  If someone else has it
3383 	 * locked they are already in the process of dropping it anyway
3384 	 */
3385 	if (!mutex_trylock(&head->mutex))
3386 		goto out;
3387 
3388 	btrfs_delete_ref_head(delayed_refs, head);
3389 	head->processing = false;
3390 
3391 	spin_unlock(&head->lock);
3392 	spin_unlock(&delayed_refs->lock);
3393 
3394 	BUG_ON(head->extent_op);
3395 	if (head->must_insert_reserved)
3396 		ret = 1;
3397 
3398 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3399 	mutex_unlock(&head->mutex);
3400 	btrfs_put_delayed_ref_head(head);
3401 	return ret;
3402 out:
3403 	spin_unlock(&head->lock);
3404 
3405 out_delayed_unlock:
3406 	spin_unlock(&delayed_refs->lock);
3407 	return 0;
3408 }
3409 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3410 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3411 			  u64 root_id,
3412 			  struct extent_buffer *buf,
3413 			  u64 parent, int last_ref)
3414 {
3415 	struct btrfs_fs_info *fs_info = trans->fs_info;
3416 	struct btrfs_block_group *bg;
3417 	int ret;
3418 
3419 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3420 		struct btrfs_ref generic_ref = {
3421 			.action = BTRFS_DROP_DELAYED_REF,
3422 			.bytenr = buf->start,
3423 			.num_bytes = buf->len,
3424 			.parent = parent,
3425 			.owning_root = btrfs_header_owner(buf),
3426 			.ref_root = root_id,
3427 		};
3428 
3429 		/*
3430 		 * Assert that the extent buffer is not cleared due to
3431 		 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3432 		 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3433 		 * detail.
3434 		 */
3435 		ASSERT(btrfs_header_bytenr(buf) != 0);
3436 
3437 		btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3438 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3439 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3440 		if (ret < 0)
3441 			return ret;
3442 	}
3443 
3444 	if (!last_ref)
3445 		return 0;
3446 
3447 	if (btrfs_header_generation(buf) != trans->transid)
3448 		goto out;
3449 
3450 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3451 		ret = check_ref_cleanup(trans, buf->start);
3452 		if (!ret)
3453 			goto out;
3454 	}
3455 
3456 	bg = btrfs_lookup_block_group(fs_info, buf->start);
3457 
3458 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3459 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3460 		btrfs_put_block_group(bg);
3461 		goto out;
3462 	}
3463 
3464 	/*
3465 	 * If there are tree mod log users we may have recorded mod log
3466 	 * operations for this node.  If we re-allocate this node we
3467 	 * could replay operations on this node that happened when it
3468 	 * existed in a completely different root.  For example if it
3469 	 * was part of root A, then was reallocated to root B, and we
3470 	 * are doing a btrfs_old_search_slot(root b), we could replay
3471 	 * operations that happened when the block was part of root A,
3472 	 * giving us an inconsistent view of the btree.
3473 	 *
3474 	 * We are safe from races here because at this point no other
3475 	 * node or root points to this extent buffer, so if after this
3476 	 * check a new tree mod log user joins we will not have an
3477 	 * existing log of operations on this node that we have to
3478 	 * contend with.
3479 	 */
3480 
3481 	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3482 		     || btrfs_is_zoned(fs_info)) {
3483 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3484 		btrfs_put_block_group(bg);
3485 		goto out;
3486 	}
3487 
3488 	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3489 
3490 	btrfs_add_free_space(bg, buf->start, buf->len);
3491 	btrfs_free_reserved_bytes(bg, buf->len, 0);
3492 	btrfs_put_block_group(bg);
3493 	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3494 
3495 out:
3496 
3497 	/*
3498 	 * Deleting the buffer, clear the corrupt flag since it doesn't
3499 	 * matter anymore.
3500 	 */
3501 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3502 	return 0;
3503 }
3504 
3505 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3506 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3507 {
3508 	struct btrfs_fs_info *fs_info = trans->fs_info;
3509 	int ret;
3510 
3511 	if (btrfs_is_testing(fs_info))
3512 		return 0;
3513 
3514 	/*
3515 	 * tree log blocks never actually go into the extent allocation
3516 	 * tree, just update pinning info and exit early.
3517 	 */
3518 	if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3519 		btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3520 		ret = 0;
3521 	} else if (ref->type == BTRFS_REF_METADATA) {
3522 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3523 	} else {
3524 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3525 	}
3526 
3527 	if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3528 		btrfs_ref_tree_mod(fs_info, ref);
3529 
3530 	return ret;
3531 }
3532 
3533 enum btrfs_loop_type {
3534 	/*
3535 	 * Start caching block groups but do not wait for progress or for them
3536 	 * to be done.
3537 	 */
3538 	LOOP_CACHING_NOWAIT,
3539 
3540 	/*
3541 	 * Wait for the block group free_space >= the space we're waiting for if
3542 	 * the block group isn't cached.
3543 	 */
3544 	LOOP_CACHING_WAIT,
3545 
3546 	/*
3547 	 * Allow allocations to happen from block groups that do not yet have a
3548 	 * size classification.
3549 	 */
3550 	LOOP_UNSET_SIZE_CLASS,
3551 
3552 	/*
3553 	 * Allocate a chunk and then retry the allocation.
3554 	 */
3555 	LOOP_ALLOC_CHUNK,
3556 
3557 	/*
3558 	 * Ignore the size class restrictions for this allocation.
3559 	 */
3560 	LOOP_WRONG_SIZE_CLASS,
3561 
3562 	/*
3563 	 * Ignore the empty size, only try to allocate the number of bytes
3564 	 * needed for this allocation.
3565 	 */
3566 	LOOP_NO_EMPTY_SIZE,
3567 };
3568 
3569 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3570 btrfs_lock_block_group(struct btrfs_block_group *cache,
3571 		       int delalloc)
3572 {
3573 	if (delalloc)
3574 		down_read(&cache->data_rwsem);
3575 }
3576 
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3577 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3578 		       int delalloc)
3579 {
3580 	btrfs_get_block_group(cache);
3581 	if (delalloc)
3582 		down_read(&cache->data_rwsem);
3583 }
3584 
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3585 static struct btrfs_block_group *btrfs_lock_cluster(
3586 		   struct btrfs_block_group *block_group,
3587 		   struct btrfs_free_cluster *cluster,
3588 		   int delalloc)
3589 	__acquires(&cluster->refill_lock)
3590 {
3591 	struct btrfs_block_group *used_bg = NULL;
3592 
3593 	spin_lock(&cluster->refill_lock);
3594 	while (1) {
3595 		used_bg = cluster->block_group;
3596 		if (!used_bg)
3597 			return NULL;
3598 
3599 		if (used_bg == block_group)
3600 			return used_bg;
3601 
3602 		btrfs_get_block_group(used_bg);
3603 
3604 		if (!delalloc)
3605 			return used_bg;
3606 
3607 		if (down_read_trylock(&used_bg->data_rwsem))
3608 			return used_bg;
3609 
3610 		spin_unlock(&cluster->refill_lock);
3611 
3612 		/* We should only have one-level nested. */
3613 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3614 
3615 		spin_lock(&cluster->refill_lock);
3616 		if (used_bg == cluster->block_group)
3617 			return used_bg;
3618 
3619 		up_read(&used_bg->data_rwsem);
3620 		btrfs_put_block_group(used_bg);
3621 	}
3622 }
3623 
3624 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3625 btrfs_release_block_group(struct btrfs_block_group *cache,
3626 			 int delalloc)
3627 {
3628 	if (delalloc)
3629 		up_read(&cache->data_rwsem);
3630 	btrfs_put_block_group(cache);
3631 }
3632 
3633 /*
3634  * Helper function for find_free_extent().
3635  *
3636  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3637  * Return >0 to inform caller that we find nothing
3638  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3639  */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3640 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3641 				      struct find_free_extent_ctl *ffe_ctl,
3642 				      struct btrfs_block_group **cluster_bg_ret)
3643 {
3644 	struct btrfs_block_group *cluster_bg;
3645 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3646 	u64 aligned_cluster;
3647 	u64 offset;
3648 	int ret;
3649 
3650 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3651 	if (!cluster_bg)
3652 		goto refill_cluster;
3653 	if (cluster_bg != bg && (cluster_bg->ro ||
3654 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3655 		goto release_cluster;
3656 
3657 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3658 			ffe_ctl->num_bytes, cluster_bg->start,
3659 			&ffe_ctl->max_extent_size);
3660 	if (offset) {
3661 		/* We have a block, we're done */
3662 		spin_unlock(&last_ptr->refill_lock);
3663 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3664 		*cluster_bg_ret = cluster_bg;
3665 		ffe_ctl->found_offset = offset;
3666 		return 0;
3667 	}
3668 	WARN_ON(last_ptr->block_group != cluster_bg);
3669 
3670 release_cluster:
3671 	/*
3672 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3673 	 * lets just skip it and let the allocator find whatever block it can
3674 	 * find. If we reach this point, we will have tried the cluster
3675 	 * allocator plenty of times and not have found anything, so we are
3676 	 * likely way too fragmented for the clustering stuff to find anything.
3677 	 *
3678 	 * However, if the cluster is taken from the current block group,
3679 	 * release the cluster first, so that we stand a better chance of
3680 	 * succeeding in the unclustered allocation.
3681 	 */
3682 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3683 		spin_unlock(&last_ptr->refill_lock);
3684 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3685 		return -ENOENT;
3686 	}
3687 
3688 	/* This cluster didn't work out, free it and start over */
3689 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3690 
3691 	if (cluster_bg != bg)
3692 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3693 
3694 refill_cluster:
3695 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3696 		spin_unlock(&last_ptr->refill_lock);
3697 		return -ENOENT;
3698 	}
3699 
3700 	aligned_cluster = max_t(u64,
3701 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3702 			bg->full_stripe_len);
3703 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3704 			ffe_ctl->num_bytes, aligned_cluster);
3705 	if (ret == 0) {
3706 		/* Now pull our allocation out of this cluster */
3707 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3708 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3709 				&ffe_ctl->max_extent_size);
3710 		if (offset) {
3711 			/* We found one, proceed */
3712 			spin_unlock(&last_ptr->refill_lock);
3713 			ffe_ctl->found_offset = offset;
3714 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3715 			return 0;
3716 		}
3717 	}
3718 	/*
3719 	 * At this point we either didn't find a cluster or we weren't able to
3720 	 * allocate a block from our cluster.  Free the cluster we've been
3721 	 * trying to use, and go to the next block group.
3722 	 */
3723 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3724 	spin_unlock(&last_ptr->refill_lock);
3725 	return 1;
3726 }
3727 
3728 /*
3729  * Return >0 to inform caller that we find nothing
3730  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3731  */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3732 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3733 					struct find_free_extent_ctl *ffe_ctl)
3734 {
3735 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3736 	u64 offset;
3737 
3738 	/*
3739 	 * We are doing an unclustered allocation, set the fragmented flag so
3740 	 * we don't bother trying to setup a cluster again until we get more
3741 	 * space.
3742 	 */
3743 	if (unlikely(last_ptr)) {
3744 		spin_lock(&last_ptr->lock);
3745 		last_ptr->fragmented = 1;
3746 		spin_unlock(&last_ptr->lock);
3747 	}
3748 	if (ffe_ctl->cached) {
3749 		struct btrfs_free_space_ctl *free_space_ctl;
3750 
3751 		free_space_ctl = bg->free_space_ctl;
3752 		spin_lock(&free_space_ctl->tree_lock);
3753 		if (free_space_ctl->free_space <
3754 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3755 		    ffe_ctl->empty_size) {
3756 			ffe_ctl->total_free_space = max_t(u64,
3757 					ffe_ctl->total_free_space,
3758 					free_space_ctl->free_space);
3759 			spin_unlock(&free_space_ctl->tree_lock);
3760 			return 1;
3761 		}
3762 		spin_unlock(&free_space_ctl->tree_lock);
3763 	}
3764 
3765 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3766 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3767 			&ffe_ctl->max_extent_size);
3768 	if (!offset)
3769 		return 1;
3770 	ffe_ctl->found_offset = offset;
3771 	return 0;
3772 }
3773 
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3774 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3775 				   struct find_free_extent_ctl *ffe_ctl,
3776 				   struct btrfs_block_group **bg_ret)
3777 {
3778 	int ret;
3779 
3780 	/* We want to try and use the cluster allocator, so lets look there */
3781 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3782 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3783 		if (ret >= 0)
3784 			return ret;
3785 		/* ret == -ENOENT case falls through */
3786 	}
3787 
3788 	return find_free_extent_unclustered(block_group, ffe_ctl);
3789 }
3790 
3791 /*
3792  * Tree-log block group locking
3793  * ============================
3794  *
3795  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3796  * indicates the starting address of a block group, which is reserved only
3797  * for tree-log metadata.
3798  *
3799  * Lock nesting
3800  * ============
3801  *
3802  * space_info::lock
3803  *   block_group::lock
3804  *     fs_info::treelog_bg_lock
3805  */
3806 
3807 /*
3808  * Simple allocator for sequential-only block group. It only allows sequential
3809  * allocation. No need to play with trees. This function also reserves the
3810  * bytes as in btrfs_add_reserved_bytes.
3811  */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3812 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3813 			       struct find_free_extent_ctl *ffe_ctl,
3814 			       struct btrfs_block_group **bg_ret)
3815 {
3816 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3817 	struct btrfs_space_info *space_info = block_group->space_info;
3818 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3819 	u64 start = block_group->start;
3820 	u64 num_bytes = ffe_ctl->num_bytes;
3821 	u64 avail;
3822 	u64 bytenr = block_group->start;
3823 	u64 log_bytenr;
3824 	u64 data_reloc_bytenr;
3825 	int ret = 0;
3826 	bool skip = false;
3827 
3828 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3829 
3830 	/*
3831 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3832 	 * group, and vice versa.
3833 	 */
3834 	spin_lock(&fs_info->treelog_bg_lock);
3835 	log_bytenr = fs_info->treelog_bg;
3836 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3837 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3838 		skip = true;
3839 	spin_unlock(&fs_info->treelog_bg_lock);
3840 	if (skip)
3841 		return 1;
3842 
3843 	/*
3844 	 * Do not allow non-relocation blocks in the dedicated relocation block
3845 	 * group, and vice versa.
3846 	 */
3847 	spin_lock(&fs_info->relocation_bg_lock);
3848 	data_reloc_bytenr = fs_info->data_reloc_bg;
3849 	if (data_reloc_bytenr &&
3850 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3851 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3852 		skip = true;
3853 	spin_unlock(&fs_info->relocation_bg_lock);
3854 	if (skip)
3855 		return 1;
3856 
3857 	/* Check RO and no space case before trying to activate it */
3858 	spin_lock(&block_group->lock);
3859 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3860 		ret = 1;
3861 		/*
3862 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3863 		 * Return the error after taking the locks.
3864 		 */
3865 	}
3866 	spin_unlock(&block_group->lock);
3867 
3868 	/* Metadata block group is activated at write time. */
3869 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3870 	    !btrfs_zone_activate(block_group)) {
3871 		ret = 1;
3872 		/*
3873 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3874 		 * Return the error after taking the locks.
3875 		 */
3876 	}
3877 
3878 	spin_lock(&space_info->lock);
3879 	spin_lock(&block_group->lock);
3880 	spin_lock(&fs_info->treelog_bg_lock);
3881 	spin_lock(&fs_info->relocation_bg_lock);
3882 
3883 	if (ret)
3884 		goto out;
3885 
3886 	ASSERT(!ffe_ctl->for_treelog ||
3887 	       block_group->start == fs_info->treelog_bg ||
3888 	       fs_info->treelog_bg == 0);
3889 	ASSERT(!ffe_ctl->for_data_reloc ||
3890 	       block_group->start == fs_info->data_reloc_bg ||
3891 	       fs_info->data_reloc_bg == 0);
3892 
3893 	if (block_group->ro ||
3894 	    (!ffe_ctl->for_data_reloc &&
3895 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3896 		ret = 1;
3897 		goto out;
3898 	}
3899 
3900 	/*
3901 	 * Do not allow currently using block group to be tree-log dedicated
3902 	 * block group.
3903 	 */
3904 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3905 	    (block_group->used || block_group->reserved)) {
3906 		ret = 1;
3907 		goto out;
3908 	}
3909 
3910 	/*
3911 	 * Do not allow currently used block group to be the data relocation
3912 	 * dedicated block group.
3913 	 */
3914 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3915 	    (block_group->used || block_group->reserved)) {
3916 		ret = 1;
3917 		goto out;
3918 	}
3919 
3920 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3921 	avail = block_group->zone_capacity - block_group->alloc_offset;
3922 	if (avail < num_bytes) {
3923 		if (ffe_ctl->max_extent_size < avail) {
3924 			/*
3925 			 * With sequential allocator, free space is always
3926 			 * contiguous
3927 			 */
3928 			ffe_ctl->max_extent_size = avail;
3929 			ffe_ctl->total_free_space = avail;
3930 		}
3931 		ret = 1;
3932 		goto out;
3933 	}
3934 
3935 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3936 		fs_info->treelog_bg = block_group->start;
3937 
3938 	if (ffe_ctl->for_data_reloc) {
3939 		if (!fs_info->data_reloc_bg)
3940 			fs_info->data_reloc_bg = block_group->start;
3941 		/*
3942 		 * Do not allow allocations from this block group, unless it is
3943 		 * for data relocation. Compared to increasing the ->ro, setting
3944 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3945 		 * writers to come in. See btrfs_inc_nocow_writers().
3946 		 *
3947 		 * We need to disable an allocation to avoid an allocation of
3948 		 * regular (non-relocation data) extent. With mix of relocation
3949 		 * extents and regular extents, we can dispatch WRITE commands
3950 		 * (for relocation extents) and ZONE APPEND commands (for
3951 		 * regular extents) at the same time to the same zone, which
3952 		 * easily break the write pointer.
3953 		 *
3954 		 * Also, this flag avoids this block group to be zone finished.
3955 		 */
3956 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3957 	}
3958 
3959 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3960 	block_group->alloc_offset += num_bytes;
3961 	spin_lock(&ctl->tree_lock);
3962 	ctl->free_space -= num_bytes;
3963 	spin_unlock(&ctl->tree_lock);
3964 
3965 	/*
3966 	 * We do not check if found_offset is aligned to stripesize. The
3967 	 * address is anyway rewritten when using zone append writing.
3968 	 */
3969 
3970 	ffe_ctl->search_start = ffe_ctl->found_offset;
3971 
3972 out:
3973 	if (ret && ffe_ctl->for_treelog)
3974 		fs_info->treelog_bg = 0;
3975 	if (ret && ffe_ctl->for_data_reloc)
3976 		fs_info->data_reloc_bg = 0;
3977 	spin_unlock(&fs_info->relocation_bg_lock);
3978 	spin_unlock(&fs_info->treelog_bg_lock);
3979 	spin_unlock(&block_group->lock);
3980 	spin_unlock(&space_info->lock);
3981 	return ret;
3982 }
3983 
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3984 static int do_allocation(struct btrfs_block_group *block_group,
3985 			 struct find_free_extent_ctl *ffe_ctl,
3986 			 struct btrfs_block_group **bg_ret)
3987 {
3988 	switch (ffe_ctl->policy) {
3989 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3990 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3991 	case BTRFS_EXTENT_ALLOC_ZONED:
3992 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3993 	default:
3994 		BUG();
3995 	}
3996 }
3997 
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3998 static void release_block_group(struct btrfs_block_group *block_group,
3999 				struct find_free_extent_ctl *ffe_ctl,
4000 				int delalloc)
4001 {
4002 	switch (ffe_ctl->policy) {
4003 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4004 		ffe_ctl->retry_uncached = false;
4005 		break;
4006 	case BTRFS_EXTENT_ALLOC_ZONED:
4007 		/* Nothing to do */
4008 		break;
4009 	default:
4010 		BUG();
4011 	}
4012 
4013 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4014 	       ffe_ctl->index);
4015 	btrfs_release_block_group(block_group, delalloc);
4016 }
4017 
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4018 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4019 				   struct btrfs_key *ins)
4020 {
4021 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4022 
4023 	if (!ffe_ctl->use_cluster && last_ptr) {
4024 		spin_lock(&last_ptr->lock);
4025 		last_ptr->window_start = ins->objectid;
4026 		spin_unlock(&last_ptr->lock);
4027 	}
4028 }
4029 
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)4030 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4031 			 struct btrfs_key *ins)
4032 {
4033 	switch (ffe_ctl->policy) {
4034 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4035 		found_extent_clustered(ffe_ctl, ins);
4036 		break;
4037 	case BTRFS_EXTENT_ALLOC_ZONED:
4038 		/* Nothing to do */
4039 		break;
4040 	default:
4041 		BUG();
4042 	}
4043 }
4044 
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4045 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4046 				    struct find_free_extent_ctl *ffe_ctl)
4047 {
4048 	/* Block group's activeness is not a requirement for METADATA block groups. */
4049 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4050 		return 0;
4051 
4052 	/* If we can activate new zone, just allocate a chunk and use it */
4053 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4054 		return 0;
4055 
4056 	/*
4057 	 * We already reached the max active zones. Try to finish one block
4058 	 * group to make a room for a new block group. This is only possible
4059 	 * for a data block group because btrfs_zone_finish() may need to wait
4060 	 * for a running transaction which can cause a deadlock for metadata
4061 	 * allocation.
4062 	 */
4063 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4064 		int ret = btrfs_zone_finish_one_bg(fs_info);
4065 
4066 		if (ret == 1)
4067 			return 0;
4068 		else if (ret < 0)
4069 			return ret;
4070 	}
4071 
4072 	/*
4073 	 * If we have enough free space left in an already active block group
4074 	 * and we can't activate any other zone now, do not allow allocating a
4075 	 * new chunk and let find_free_extent() retry with a smaller size.
4076 	 */
4077 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4078 		return -ENOSPC;
4079 
4080 	/*
4081 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4082 	 * activate a new block group, allocating it may not help. Let's tell a
4083 	 * caller to try again and hope it progress something by writing some
4084 	 * parts of the region. That is only possible for data block groups,
4085 	 * where a part of the region can be written.
4086 	 */
4087 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4088 		return -EAGAIN;
4089 
4090 	/*
4091 	 * We cannot activate a new block group and no enough space left in any
4092 	 * block groups. So, allocating a new block group may not help. But,
4093 	 * there is nothing to do anyway, so let's go with it.
4094 	 */
4095 	return 0;
4096 }
4097 
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4098 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4099 			      struct find_free_extent_ctl *ffe_ctl)
4100 {
4101 	switch (ffe_ctl->policy) {
4102 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4103 		return 0;
4104 	case BTRFS_EXTENT_ALLOC_ZONED:
4105 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4106 	default:
4107 		BUG();
4108 	}
4109 }
4110 
4111 /*
4112  * Return >0 means caller needs to re-search for free extent
4113  * Return 0 means we have the needed free extent.
4114  * Return <0 means we failed to locate any free extent.
4115  */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4116 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4117 					struct btrfs_key *ins,
4118 					struct find_free_extent_ctl *ffe_ctl,
4119 					bool full_search)
4120 {
4121 	struct btrfs_root *root = fs_info->chunk_root;
4122 	int ret;
4123 
4124 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4125 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4126 		ffe_ctl->orig_have_caching_bg = true;
4127 
4128 	if (ins->objectid) {
4129 		found_extent(ffe_ctl, ins);
4130 		return 0;
4131 	}
4132 
4133 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4134 		return 1;
4135 
4136 	ffe_ctl->index++;
4137 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4138 		return 1;
4139 
4140 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4141 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4142 		ffe_ctl->index = 0;
4143 		/*
4144 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4145 		 * any uncached bgs and we've already done a full search
4146 		 * through.
4147 		 */
4148 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4149 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4150 			ffe_ctl->loop++;
4151 		ffe_ctl->loop++;
4152 
4153 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4154 			struct btrfs_trans_handle *trans;
4155 			int exist = 0;
4156 
4157 			/* Check if allocation policy allows to create a new chunk */
4158 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4159 			if (ret)
4160 				return ret;
4161 
4162 			trans = current->journal_info;
4163 			if (trans)
4164 				exist = 1;
4165 			else
4166 				trans = btrfs_join_transaction(root);
4167 
4168 			if (IS_ERR(trans)) {
4169 				ret = PTR_ERR(trans);
4170 				return ret;
4171 			}
4172 
4173 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4174 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4175 
4176 			/* Do not bail out on ENOSPC since we can do more. */
4177 			if (ret == -ENOSPC) {
4178 				ret = 0;
4179 				ffe_ctl->loop++;
4180 			}
4181 			else if (ret < 0)
4182 				btrfs_abort_transaction(trans, ret);
4183 			else
4184 				ret = 0;
4185 			if (!exist)
4186 				btrfs_end_transaction(trans);
4187 			if (ret)
4188 				return ret;
4189 		}
4190 
4191 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4192 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4193 				return -ENOSPC;
4194 
4195 			/*
4196 			 * Don't loop again if we already have no empty_size and
4197 			 * no empty_cluster.
4198 			 */
4199 			if (ffe_ctl->empty_size == 0 &&
4200 			    ffe_ctl->empty_cluster == 0)
4201 				return -ENOSPC;
4202 			ffe_ctl->empty_size = 0;
4203 			ffe_ctl->empty_cluster = 0;
4204 		}
4205 		return 1;
4206 	}
4207 	return -ENOSPC;
4208 }
4209 
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4210 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4211 					      struct btrfs_block_group *bg)
4212 {
4213 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4214 		return true;
4215 	if (!btrfs_block_group_should_use_size_class(bg))
4216 		return true;
4217 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4218 		return true;
4219 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4220 	    bg->size_class == BTRFS_BG_SZ_NONE)
4221 		return true;
4222 	return ffe_ctl->size_class == bg->size_class;
4223 }
4224 
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4225 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4226 					struct find_free_extent_ctl *ffe_ctl,
4227 					struct btrfs_space_info *space_info,
4228 					struct btrfs_key *ins)
4229 {
4230 	/*
4231 	 * If our free space is heavily fragmented we may not be able to make
4232 	 * big contiguous allocations, so instead of doing the expensive search
4233 	 * for free space, simply return ENOSPC with our max_extent_size so we
4234 	 * can go ahead and search for a more manageable chunk.
4235 	 *
4236 	 * If our max_extent_size is large enough for our allocation simply
4237 	 * disable clustering since we will likely not be able to find enough
4238 	 * space to create a cluster and induce latency trying.
4239 	 */
4240 	if (space_info->max_extent_size) {
4241 		spin_lock(&space_info->lock);
4242 		if (space_info->max_extent_size &&
4243 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4244 			ins->offset = space_info->max_extent_size;
4245 			spin_unlock(&space_info->lock);
4246 			return -ENOSPC;
4247 		} else if (space_info->max_extent_size) {
4248 			ffe_ctl->use_cluster = false;
4249 		}
4250 		spin_unlock(&space_info->lock);
4251 	}
4252 
4253 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4254 					       &ffe_ctl->empty_cluster);
4255 	if (ffe_ctl->last_ptr) {
4256 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4257 
4258 		spin_lock(&last_ptr->lock);
4259 		if (last_ptr->block_group)
4260 			ffe_ctl->hint_byte = last_ptr->window_start;
4261 		if (last_ptr->fragmented) {
4262 			/*
4263 			 * We still set window_start so we can keep track of the
4264 			 * last place we found an allocation to try and save
4265 			 * some time.
4266 			 */
4267 			ffe_ctl->hint_byte = last_ptr->window_start;
4268 			ffe_ctl->use_cluster = false;
4269 		}
4270 		spin_unlock(&last_ptr->lock);
4271 	}
4272 
4273 	return 0;
4274 }
4275 
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4276 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4277 				    struct find_free_extent_ctl *ffe_ctl)
4278 {
4279 	if (ffe_ctl->for_treelog) {
4280 		spin_lock(&fs_info->treelog_bg_lock);
4281 		if (fs_info->treelog_bg)
4282 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4283 		spin_unlock(&fs_info->treelog_bg_lock);
4284 	} else if (ffe_ctl->for_data_reloc) {
4285 		spin_lock(&fs_info->relocation_bg_lock);
4286 		if (fs_info->data_reloc_bg)
4287 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4288 		spin_unlock(&fs_info->relocation_bg_lock);
4289 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4290 		struct btrfs_block_group *block_group;
4291 
4292 		spin_lock(&fs_info->zone_active_bgs_lock);
4293 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4294 			/*
4295 			 * No lock is OK here because avail is monotinically
4296 			 * decreasing, and this is just a hint.
4297 			 */
4298 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4299 
4300 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4301 			    avail >= ffe_ctl->num_bytes) {
4302 				ffe_ctl->hint_byte = block_group->start;
4303 				break;
4304 			}
4305 		}
4306 		spin_unlock(&fs_info->zone_active_bgs_lock);
4307 	}
4308 
4309 	return 0;
4310 }
4311 
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4312 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4313 			      struct find_free_extent_ctl *ffe_ctl,
4314 			      struct btrfs_space_info *space_info,
4315 			      struct btrfs_key *ins)
4316 {
4317 	switch (ffe_ctl->policy) {
4318 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4319 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4320 						    space_info, ins);
4321 	case BTRFS_EXTENT_ALLOC_ZONED:
4322 		return prepare_allocation_zoned(fs_info, ffe_ctl);
4323 	default:
4324 		BUG();
4325 	}
4326 }
4327 
4328 /*
4329  * walks the btree of allocated extents and find a hole of a given size.
4330  * The key ins is changed to record the hole:
4331  * ins->objectid == start position
4332  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4333  * ins->offset == the size of the hole.
4334  * Any available blocks before search_start are skipped.
4335  *
4336  * If there is no suitable free space, we will record the max size of
4337  * the free space extent currently.
4338  *
4339  * The overall logic and call chain:
4340  *
4341  * find_free_extent()
4342  * |- Iterate through all block groups
4343  * |  |- Get a valid block group
4344  * |  |- Try to do clustered allocation in that block group
4345  * |  |- Try to do unclustered allocation in that block group
4346  * |  |- Check if the result is valid
4347  * |  |  |- If valid, then exit
4348  * |  |- Jump to next block group
4349  * |
4350  * |- Push harder to find free extents
4351  *    |- If not found, re-iterate all block groups
4352  */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4353 static noinline int find_free_extent(struct btrfs_root *root,
4354 				     struct btrfs_key *ins,
4355 				     struct find_free_extent_ctl *ffe_ctl)
4356 {
4357 	struct btrfs_fs_info *fs_info = root->fs_info;
4358 	int ret = 0;
4359 	int cache_block_group_error = 0;
4360 	struct btrfs_block_group *block_group = NULL;
4361 	struct btrfs_space_info *space_info;
4362 	bool full_search = false;
4363 
4364 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4365 
4366 	ffe_ctl->search_start = 0;
4367 	/* For clustered allocation */
4368 	ffe_ctl->empty_cluster = 0;
4369 	ffe_ctl->last_ptr = NULL;
4370 	ffe_ctl->use_cluster = true;
4371 	ffe_ctl->have_caching_bg = false;
4372 	ffe_ctl->orig_have_caching_bg = false;
4373 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4374 	ffe_ctl->loop = 0;
4375 	ffe_ctl->retry_uncached = false;
4376 	ffe_ctl->cached = 0;
4377 	ffe_ctl->max_extent_size = 0;
4378 	ffe_ctl->total_free_space = 0;
4379 	ffe_ctl->found_offset = 0;
4380 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4381 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4382 
4383 	if (btrfs_is_zoned(fs_info))
4384 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4385 
4386 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4387 	ins->objectid = 0;
4388 	ins->offset = 0;
4389 
4390 	trace_find_free_extent(root, ffe_ctl);
4391 
4392 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4393 	if (!space_info) {
4394 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4395 		return -ENOSPC;
4396 	}
4397 
4398 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4399 	if (ret < 0)
4400 		return ret;
4401 
4402 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4403 				    first_logical_byte(fs_info));
4404 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4405 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4406 		block_group = btrfs_lookup_block_group(fs_info,
4407 						       ffe_ctl->search_start);
4408 		/*
4409 		 * we don't want to use the block group if it doesn't match our
4410 		 * allocation bits, or if its not cached.
4411 		 *
4412 		 * However if we are re-searching with an ideal block group
4413 		 * picked out then we don't care that the block group is cached.
4414 		 */
4415 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4416 		    block_group->cached != BTRFS_CACHE_NO) {
4417 			down_read(&space_info->groups_sem);
4418 			if (list_empty(&block_group->list) ||
4419 			    block_group->ro) {
4420 				/*
4421 				 * someone is removing this block group,
4422 				 * we can't jump into the have_block_group
4423 				 * target because our list pointers are not
4424 				 * valid
4425 				 */
4426 				btrfs_put_block_group(block_group);
4427 				up_read(&space_info->groups_sem);
4428 			} else {
4429 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4430 							block_group->flags);
4431 				btrfs_lock_block_group(block_group,
4432 						       ffe_ctl->delalloc);
4433 				ffe_ctl->hinted = true;
4434 				goto have_block_group;
4435 			}
4436 		} else if (block_group) {
4437 			btrfs_put_block_group(block_group);
4438 		}
4439 	}
4440 search:
4441 	trace_find_free_extent_search_loop(root, ffe_ctl);
4442 	ffe_ctl->have_caching_bg = false;
4443 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4444 	    ffe_ctl->index == 0)
4445 		full_search = true;
4446 	down_read(&space_info->groups_sem);
4447 	list_for_each_entry(block_group,
4448 			    &space_info->block_groups[ffe_ctl->index], list) {
4449 		struct btrfs_block_group *bg_ret;
4450 
4451 		ffe_ctl->hinted = false;
4452 		/* If the block group is read-only, we can skip it entirely. */
4453 		if (unlikely(block_group->ro)) {
4454 			if (ffe_ctl->for_treelog)
4455 				btrfs_clear_treelog_bg(block_group);
4456 			if (ffe_ctl->for_data_reloc)
4457 				btrfs_clear_data_reloc_bg(block_group);
4458 			continue;
4459 		}
4460 
4461 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4462 		ffe_ctl->search_start = block_group->start;
4463 
4464 		/*
4465 		 * this can happen if we end up cycling through all the
4466 		 * raid types, but we want to make sure we only allocate
4467 		 * for the proper type.
4468 		 */
4469 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4470 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4471 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4472 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4473 				BTRFS_BLOCK_GROUP_RAID10;
4474 
4475 			/*
4476 			 * if they asked for extra copies and this block group
4477 			 * doesn't provide them, bail.  This does allow us to
4478 			 * fill raid0 from raid1.
4479 			 */
4480 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4481 				goto loop;
4482 
4483 			/*
4484 			 * This block group has different flags than we want.
4485 			 * It's possible that we have MIXED_GROUP flag but no
4486 			 * block group is mixed.  Just skip such block group.
4487 			 */
4488 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4489 			continue;
4490 		}
4491 
4492 have_block_group:
4493 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4494 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4495 		if (unlikely(!ffe_ctl->cached)) {
4496 			ffe_ctl->have_caching_bg = true;
4497 			ret = btrfs_cache_block_group(block_group, false);
4498 
4499 			/*
4500 			 * If we get ENOMEM here or something else we want to
4501 			 * try other block groups, because it may not be fatal.
4502 			 * However if we can't find anything else we need to
4503 			 * save our return here so that we return the actual
4504 			 * error that caused problems, not ENOSPC.
4505 			 */
4506 			if (ret < 0) {
4507 				if (!cache_block_group_error)
4508 					cache_block_group_error = ret;
4509 				ret = 0;
4510 				goto loop;
4511 			}
4512 			ret = 0;
4513 		}
4514 
4515 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4516 			if (!cache_block_group_error)
4517 				cache_block_group_error = -EIO;
4518 			goto loop;
4519 		}
4520 
4521 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4522 			goto loop;
4523 
4524 		bg_ret = NULL;
4525 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4526 		if (ret > 0)
4527 			goto loop;
4528 
4529 		if (bg_ret && bg_ret != block_group) {
4530 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4531 			block_group = bg_ret;
4532 		}
4533 
4534 		/* Checks */
4535 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4536 						 fs_info->stripesize);
4537 
4538 		/* move on to the next group */
4539 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4540 		    block_group->start + block_group->length) {
4541 			btrfs_add_free_space_unused(block_group,
4542 					    ffe_ctl->found_offset,
4543 					    ffe_ctl->num_bytes);
4544 			goto loop;
4545 		}
4546 
4547 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4548 			btrfs_add_free_space_unused(block_group,
4549 					ffe_ctl->found_offset,
4550 					ffe_ctl->search_start - ffe_ctl->found_offset);
4551 
4552 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4553 					       ffe_ctl->num_bytes,
4554 					       ffe_ctl->delalloc,
4555 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4556 		if (ret == -EAGAIN) {
4557 			btrfs_add_free_space_unused(block_group,
4558 					ffe_ctl->found_offset,
4559 					ffe_ctl->num_bytes);
4560 			goto loop;
4561 		}
4562 		btrfs_inc_block_group_reservations(block_group);
4563 
4564 		/* we are all good, lets return */
4565 		ins->objectid = ffe_ctl->search_start;
4566 		ins->offset = ffe_ctl->num_bytes;
4567 
4568 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4569 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4570 		break;
4571 loop:
4572 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4573 		    !ffe_ctl->retry_uncached) {
4574 			ffe_ctl->retry_uncached = true;
4575 			btrfs_wait_block_group_cache_progress(block_group,
4576 						ffe_ctl->num_bytes +
4577 						ffe_ctl->empty_cluster +
4578 						ffe_ctl->empty_size);
4579 			goto have_block_group;
4580 		}
4581 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4582 		cond_resched();
4583 	}
4584 	up_read(&space_info->groups_sem);
4585 
4586 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4587 	if (ret > 0)
4588 		goto search;
4589 
4590 	if (ret == -ENOSPC && !cache_block_group_error) {
4591 		/*
4592 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4593 		 * any contiguous hole.
4594 		 */
4595 		if (!ffe_ctl->max_extent_size)
4596 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4597 		spin_lock(&space_info->lock);
4598 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4599 		spin_unlock(&space_info->lock);
4600 		ins->offset = ffe_ctl->max_extent_size;
4601 	} else if (ret == -ENOSPC) {
4602 		ret = cache_block_group_error;
4603 	}
4604 	return ret;
4605 }
4606 
4607 /*
4608  * Entry point to the extent allocator. Tries to find a hole that is at least
4609  * as big as @num_bytes.
4610  *
4611  * @root           -	The root that will contain this extent
4612  *
4613  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4614  *			is used for accounting purposes. This value differs
4615  *			from @num_bytes only in the case of compressed extents.
4616  *
4617  * @num_bytes      -	Number of bytes to allocate on-disk.
4618  *
4619  * @min_alloc_size -	Indicates the minimum amount of space that the
4620  *			allocator should try to satisfy. In some cases
4621  *			@num_bytes may be larger than what is required and if
4622  *			the filesystem is fragmented then allocation fails.
4623  *			However, the presence of @min_alloc_size gives a
4624  *			chance to try and satisfy the smaller allocation.
4625  *
4626  * @empty_size     -	A hint that you plan on doing more COW. This is the
4627  *			size in bytes the allocator should try to find free
4628  *			next to the block it returns.  This is just a hint and
4629  *			may be ignored by the allocator.
4630  *
4631  * @hint_byte      -	Hint to the allocator to start searching above the byte
4632  *			address passed. It might be ignored.
4633  *
4634  * @ins            -	This key is modified to record the found hole. It will
4635  *			have the following values:
4636  *			ins->objectid == start position
4637  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4638  *			ins->offset == the size of the hole.
4639  *
4640  * @is_data        -	Boolean flag indicating whether an extent is
4641  *			allocated for data (true) or metadata (false)
4642  *
4643  * @delalloc       -	Boolean flag indicating whether this allocation is for
4644  *			delalloc or not. If 'true' data_rwsem of block groups
4645  *			is going to be acquired.
4646  *
4647  *
4648  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4649  * case -ENOSPC is returned then @ins->offset will contain the size of the
4650  * largest available hole the allocator managed to find.
4651  */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4652 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4653 			 u64 num_bytes, u64 min_alloc_size,
4654 			 u64 empty_size, u64 hint_byte,
4655 			 struct btrfs_key *ins, int is_data, int delalloc)
4656 {
4657 	struct btrfs_fs_info *fs_info = root->fs_info;
4658 	struct find_free_extent_ctl ffe_ctl = {};
4659 	bool final_tried = num_bytes == min_alloc_size;
4660 	u64 flags;
4661 	int ret;
4662 	bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4663 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4664 
4665 	flags = get_alloc_profile_by_root(root, is_data);
4666 again:
4667 	WARN_ON(num_bytes < fs_info->sectorsize);
4668 
4669 	ffe_ctl.ram_bytes = ram_bytes;
4670 	ffe_ctl.num_bytes = num_bytes;
4671 	ffe_ctl.min_alloc_size = min_alloc_size;
4672 	ffe_ctl.empty_size = empty_size;
4673 	ffe_ctl.flags = flags;
4674 	ffe_ctl.delalloc = delalloc;
4675 	ffe_ctl.hint_byte = hint_byte;
4676 	ffe_ctl.for_treelog = for_treelog;
4677 	ffe_ctl.for_data_reloc = for_data_reloc;
4678 
4679 	ret = find_free_extent(root, ins, &ffe_ctl);
4680 	if (!ret && !is_data) {
4681 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4682 	} else if (ret == -ENOSPC) {
4683 		if (!final_tried && ins->offset) {
4684 			num_bytes = min(num_bytes >> 1, ins->offset);
4685 			num_bytes = round_down(num_bytes,
4686 					       fs_info->sectorsize);
4687 			num_bytes = max(num_bytes, min_alloc_size);
4688 			ram_bytes = num_bytes;
4689 			if (num_bytes == min_alloc_size)
4690 				final_tried = true;
4691 			goto again;
4692 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4693 			struct btrfs_space_info *sinfo;
4694 
4695 			sinfo = btrfs_find_space_info(fs_info, flags);
4696 			btrfs_err(fs_info,
4697 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4698 				  flags, num_bytes, for_treelog, for_data_reloc);
4699 			if (sinfo)
4700 				btrfs_dump_space_info(fs_info, sinfo,
4701 						      num_bytes, 1);
4702 		}
4703 	}
4704 
4705 	return ret;
4706 }
4707 
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4708 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4709 			       u64 start, u64 len, int delalloc)
4710 {
4711 	struct btrfs_block_group *cache;
4712 
4713 	cache = btrfs_lookup_block_group(fs_info, start);
4714 	if (!cache) {
4715 		btrfs_err(fs_info, "Unable to find block group for %llu",
4716 			  start);
4717 		return -ENOSPC;
4718 	}
4719 
4720 	btrfs_add_free_space(cache, start, len);
4721 	btrfs_free_reserved_bytes(cache, len, delalloc);
4722 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4723 
4724 	btrfs_put_block_group(cache);
4725 	return 0;
4726 }
4727 
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,const struct extent_buffer * eb)4728 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4729 			      const struct extent_buffer *eb)
4730 {
4731 	struct btrfs_block_group *cache;
4732 	int ret = 0;
4733 
4734 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4735 	if (!cache) {
4736 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4737 			  eb->start);
4738 		return -ENOSPC;
4739 	}
4740 
4741 	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4742 	btrfs_put_block_group(cache);
4743 	return ret;
4744 }
4745 
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4746 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4747 				 u64 num_bytes)
4748 {
4749 	struct btrfs_fs_info *fs_info = trans->fs_info;
4750 	int ret;
4751 
4752 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4753 	if (ret)
4754 		return ret;
4755 
4756 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4757 	if (ret) {
4758 		ASSERT(!ret);
4759 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4760 			  bytenr, num_bytes);
4761 		return ret;
4762 	}
4763 
4764 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4765 	return 0;
4766 }
4767 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod,u64 oref_root)4768 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4769 				      u64 parent, u64 root_objectid,
4770 				      u64 flags, u64 owner, u64 offset,
4771 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4772 {
4773 	struct btrfs_fs_info *fs_info = trans->fs_info;
4774 	struct btrfs_root *extent_root;
4775 	int ret;
4776 	struct btrfs_extent_item *extent_item;
4777 	struct btrfs_extent_owner_ref *oref;
4778 	struct btrfs_extent_inline_ref *iref;
4779 	struct btrfs_path *path;
4780 	struct extent_buffer *leaf;
4781 	int type;
4782 	u32 size;
4783 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4784 
4785 	if (parent > 0)
4786 		type = BTRFS_SHARED_DATA_REF_KEY;
4787 	else
4788 		type = BTRFS_EXTENT_DATA_REF_KEY;
4789 
4790 	size = sizeof(*extent_item);
4791 	if (simple_quota)
4792 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4793 	size += btrfs_extent_inline_ref_size(type);
4794 
4795 	path = btrfs_alloc_path();
4796 	if (!path)
4797 		return -ENOMEM;
4798 
4799 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4800 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4801 	if (ret) {
4802 		btrfs_free_path(path);
4803 		return ret;
4804 	}
4805 
4806 	leaf = path->nodes[0];
4807 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4808 				     struct btrfs_extent_item);
4809 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4810 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4811 	btrfs_set_extent_flags(leaf, extent_item,
4812 			       flags | BTRFS_EXTENT_FLAG_DATA);
4813 
4814 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4815 	if (simple_quota) {
4816 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4817 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4818 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4819 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4820 	}
4821 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4822 
4823 	if (parent > 0) {
4824 		struct btrfs_shared_data_ref *ref;
4825 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4826 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4827 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4828 	} else {
4829 		struct btrfs_extent_data_ref *ref;
4830 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4831 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4832 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4833 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4834 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4835 	}
4836 
4837 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4838 	btrfs_free_path(path);
4839 
4840 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4841 }
4842 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4843 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4844 				     struct btrfs_delayed_ref_node *node,
4845 				     struct btrfs_delayed_extent_op *extent_op)
4846 {
4847 	struct btrfs_fs_info *fs_info = trans->fs_info;
4848 	struct btrfs_root *extent_root;
4849 	int ret;
4850 	struct btrfs_extent_item *extent_item;
4851 	struct btrfs_key extent_key;
4852 	struct btrfs_tree_block_info *block_info;
4853 	struct btrfs_extent_inline_ref *iref;
4854 	struct btrfs_path *path;
4855 	struct extent_buffer *leaf;
4856 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4857 	const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4858 	/* The owner of a tree block is the level. */
4859 	int level = btrfs_delayed_ref_owner(node);
4860 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4861 
4862 	extent_key.objectid = node->bytenr;
4863 	if (skinny_metadata) {
4864 		/* The owner of a tree block is the level. */
4865 		extent_key.offset = level;
4866 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4867 	} else {
4868 		extent_key.offset = node->num_bytes;
4869 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4870 		size += sizeof(*block_info);
4871 	}
4872 
4873 	path = btrfs_alloc_path();
4874 	if (!path)
4875 		return -ENOMEM;
4876 
4877 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4878 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4879 				      size);
4880 	if (ret) {
4881 		btrfs_free_path(path);
4882 		return ret;
4883 	}
4884 
4885 	leaf = path->nodes[0];
4886 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4887 				     struct btrfs_extent_item);
4888 	btrfs_set_extent_refs(leaf, extent_item, 1);
4889 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4890 	btrfs_set_extent_flags(leaf, extent_item,
4891 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4892 
4893 	if (skinny_metadata) {
4894 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4895 	} else {
4896 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4897 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4898 		btrfs_set_tree_block_level(leaf, block_info, level);
4899 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4900 	}
4901 
4902 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4903 		btrfs_set_extent_inline_ref_type(leaf, iref,
4904 						 BTRFS_SHARED_BLOCK_REF_KEY);
4905 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4906 	} else {
4907 		btrfs_set_extent_inline_ref_type(leaf, iref,
4908 						 BTRFS_TREE_BLOCK_REF_KEY);
4909 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4910 	}
4911 
4912 	btrfs_mark_buffer_dirty(trans, leaf);
4913 	btrfs_free_path(path);
4914 
4915 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4916 }
4917 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4918 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4919 				     struct btrfs_root *root, u64 owner,
4920 				     u64 offset, u64 ram_bytes,
4921 				     struct btrfs_key *ins)
4922 {
4923 	struct btrfs_ref generic_ref = {
4924 		.action = BTRFS_ADD_DELAYED_EXTENT,
4925 		.bytenr = ins->objectid,
4926 		.num_bytes = ins->offset,
4927 		.owning_root = btrfs_root_id(root),
4928 		.ref_root = btrfs_root_id(root),
4929 	};
4930 
4931 	ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4932 
4933 	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4934 		generic_ref.owning_root = root->relocation_src_root;
4935 
4936 	btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4937 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4938 
4939 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4940 }
4941 
4942 /*
4943  * this is used by the tree logging recovery code.  It records that
4944  * an extent has been allocated and makes sure to clear the free
4945  * space cache bits as well
4946  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4947 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4948 				   u64 root_objectid, u64 owner, u64 offset,
4949 				   struct btrfs_key *ins)
4950 {
4951 	struct btrfs_fs_info *fs_info = trans->fs_info;
4952 	int ret;
4953 	struct btrfs_block_group *block_group;
4954 	struct btrfs_space_info *space_info;
4955 	struct btrfs_squota_delta delta = {
4956 		.root = root_objectid,
4957 		.num_bytes = ins->offset,
4958 		.generation = trans->transid,
4959 		.is_data = true,
4960 		.is_inc = true,
4961 	};
4962 
4963 	/*
4964 	 * Mixed block groups will exclude before processing the log so we only
4965 	 * need to do the exclude dance if this fs isn't mixed.
4966 	 */
4967 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4968 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4969 					      ins->offset);
4970 		if (ret)
4971 			return ret;
4972 	}
4973 
4974 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4975 	if (!block_group)
4976 		return -EINVAL;
4977 
4978 	space_info = block_group->space_info;
4979 	spin_lock(&space_info->lock);
4980 	spin_lock(&block_group->lock);
4981 	space_info->bytes_reserved += ins->offset;
4982 	block_group->reserved += ins->offset;
4983 	spin_unlock(&block_group->lock);
4984 	spin_unlock(&space_info->lock);
4985 
4986 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4987 					 offset, ins, 1, root_objectid);
4988 	if (ret)
4989 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4990 	ret = btrfs_record_squota_delta(fs_info, &delta);
4991 	btrfs_put_block_group(block_group);
4992 	return ret;
4993 }
4994 
4995 #ifdef CONFIG_BTRFS_DEBUG
4996 /*
4997  * Extra safety check in case the extent tree is corrupted and extent allocator
4998  * chooses to use a tree block which is already used and locked.
4999  */
check_eb_lock_owner(const struct extent_buffer * eb)5000 static bool check_eb_lock_owner(const struct extent_buffer *eb)
5001 {
5002 	if (eb->lock_owner == current->pid) {
5003 		btrfs_err_rl(eb->fs_info,
5004 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5005 			     eb->start, btrfs_header_owner(eb), current->pid);
5006 		return true;
5007 	}
5008 	return false;
5009 }
5010 #else
check_eb_lock_owner(struct extent_buffer * eb)5011 static bool check_eb_lock_owner(struct extent_buffer *eb)
5012 {
5013 	return false;
5014 }
5015 #endif
5016 
5017 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)5018 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5019 		      u64 bytenr, int level, u64 owner,
5020 		      enum btrfs_lock_nesting nest)
5021 {
5022 	struct btrfs_fs_info *fs_info = root->fs_info;
5023 	struct extent_buffer *buf;
5024 	u64 lockdep_owner = owner;
5025 
5026 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5027 	if (IS_ERR(buf))
5028 		return buf;
5029 
5030 	if (check_eb_lock_owner(buf)) {
5031 		free_extent_buffer(buf);
5032 		return ERR_PTR(-EUCLEAN);
5033 	}
5034 
5035 	/*
5036 	 * The reloc trees are just snapshots, so we need them to appear to be
5037 	 * just like any other fs tree WRT lockdep.
5038 	 *
5039 	 * The exception however is in replace_path() in relocation, where we
5040 	 * hold the lock on the original fs root and then search for the reloc
5041 	 * root.  At that point we need to make sure any reloc root buffers are
5042 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5043 	 * lockdep happy.
5044 	 */
5045 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5046 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5047 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5048 
5049 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5050 	btrfs_set_header_generation(buf, trans->transid);
5051 
5052 	/*
5053 	 * This needs to stay, because we could allocate a freed block from an
5054 	 * old tree into a new tree, so we need to make sure this new block is
5055 	 * set to the appropriate level and owner.
5056 	 */
5057 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5058 
5059 	btrfs_tree_lock_nested(buf, nest);
5060 	btrfs_clear_buffer_dirty(trans, buf);
5061 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5062 	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5063 
5064 	set_extent_buffer_uptodate(buf);
5065 
5066 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5067 	btrfs_set_header_level(buf, level);
5068 	btrfs_set_header_bytenr(buf, buf->start);
5069 	btrfs_set_header_generation(buf, trans->transid);
5070 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5071 	btrfs_set_header_owner(buf, owner);
5072 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5073 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5074 	if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5075 		buf->log_index = root->log_transid % 2;
5076 		/*
5077 		 * we allow two log transactions at a time, use different
5078 		 * EXTENT bit to differentiate dirty pages.
5079 		 */
5080 		if (buf->log_index == 0)
5081 			set_extent_bit(&root->dirty_log_pages, buf->start,
5082 				       buf->start + buf->len - 1,
5083 				       EXTENT_DIRTY, NULL);
5084 		else
5085 			set_extent_bit(&root->dirty_log_pages, buf->start,
5086 				       buf->start + buf->len - 1,
5087 				       EXTENT_NEW, NULL);
5088 	} else {
5089 		buf->log_index = -1;
5090 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5091 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5092 	}
5093 	/* this returns a buffer locked for blocking */
5094 	return buf;
5095 }
5096 
5097 /*
5098  * finds a free extent and does all the dirty work required for allocation
5099  * returns the tree buffer or an ERR_PTR on error.
5100  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,u64 reloc_src_root,enum btrfs_lock_nesting nest)5101 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5102 					     struct btrfs_root *root,
5103 					     u64 parent, u64 root_objectid,
5104 					     const struct btrfs_disk_key *key,
5105 					     int level, u64 hint,
5106 					     u64 empty_size,
5107 					     u64 reloc_src_root,
5108 					     enum btrfs_lock_nesting nest)
5109 {
5110 	struct btrfs_fs_info *fs_info = root->fs_info;
5111 	struct btrfs_key ins;
5112 	struct btrfs_block_rsv *block_rsv;
5113 	struct extent_buffer *buf;
5114 	u64 flags = 0;
5115 	int ret;
5116 	u32 blocksize = fs_info->nodesize;
5117 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5118 	u64 owning_root;
5119 
5120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5121 	if (btrfs_is_testing(fs_info)) {
5122 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5123 					    level, root_objectid, nest);
5124 		if (!IS_ERR(buf))
5125 			root->alloc_bytenr += blocksize;
5126 		return buf;
5127 	}
5128 #endif
5129 
5130 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5131 	if (IS_ERR(block_rsv))
5132 		return ERR_CAST(block_rsv);
5133 
5134 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5135 				   empty_size, hint, &ins, 0, 0);
5136 	if (ret)
5137 		goto out_unuse;
5138 
5139 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5140 				    root_objectid, nest);
5141 	if (IS_ERR(buf)) {
5142 		ret = PTR_ERR(buf);
5143 		goto out_free_reserved;
5144 	}
5145 	owning_root = btrfs_header_owner(buf);
5146 
5147 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5148 		if (parent == 0)
5149 			parent = ins.objectid;
5150 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5151 		owning_root = reloc_src_root;
5152 	} else
5153 		BUG_ON(parent > 0);
5154 
5155 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5156 		struct btrfs_delayed_extent_op *extent_op;
5157 		struct btrfs_ref generic_ref = {
5158 			.action = BTRFS_ADD_DELAYED_EXTENT,
5159 			.bytenr = ins.objectid,
5160 			.num_bytes = ins.offset,
5161 			.parent = parent,
5162 			.owning_root = owning_root,
5163 			.ref_root = root_objectid,
5164 		};
5165 
5166 		if (!skinny_metadata || flags != 0) {
5167 			extent_op = btrfs_alloc_delayed_extent_op();
5168 			if (!extent_op) {
5169 				ret = -ENOMEM;
5170 				goto out_free_buf;
5171 			}
5172 			if (key)
5173 				memcpy(&extent_op->key, key, sizeof(extent_op->key));
5174 			else
5175 				memset(&extent_op->key, 0, sizeof(extent_op->key));
5176 			extent_op->flags_to_set = flags;
5177 			extent_op->update_key = (skinny_metadata ? false : true);
5178 			extent_op->update_flags = (flags != 0);
5179 		} else {
5180 			extent_op = NULL;
5181 		}
5182 
5183 		btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5184 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5185 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5186 		if (ret) {
5187 			btrfs_free_delayed_extent_op(extent_op);
5188 			goto out_free_buf;
5189 		}
5190 	}
5191 	return buf;
5192 
5193 out_free_buf:
5194 	btrfs_tree_unlock(buf);
5195 	free_extent_buffer(buf);
5196 out_free_reserved:
5197 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5198 out_unuse:
5199 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5200 	return ERR_PTR(ret);
5201 }
5202 
5203 struct walk_control {
5204 	u64 refs[BTRFS_MAX_LEVEL];
5205 	u64 flags[BTRFS_MAX_LEVEL];
5206 	struct btrfs_key update_progress;
5207 	struct btrfs_key drop_progress;
5208 	int drop_level;
5209 	int stage;
5210 	int level;
5211 	int shared_level;
5212 	int update_ref;
5213 	int keep_locks;
5214 	int reada_slot;
5215 	int reada_count;
5216 	int restarted;
5217 	/* Indicate that extent info needs to be looked up when walking the tree. */
5218 	int lookup_info;
5219 };
5220 
5221 /*
5222  * This is our normal stage.  We are traversing blocks the current snapshot owns
5223  * and we are dropping any of our references to any children we are able to, and
5224  * then freeing the block once we've processed all of the children.
5225  */
5226 #define DROP_REFERENCE	1
5227 
5228 /*
5229  * We enter this stage when we have to walk into a child block (meaning we can't
5230  * simply drop our reference to it from our current parent node) and there are
5231  * more than one reference on it.  If we are the owner of any of the children
5232  * blocks from the current parent node then we have to do the FULL_BACKREF dance
5233  * on them in order to drop our normal ref and add the shared ref.
5234  */
5235 #define UPDATE_BACKREF	2
5236 
5237 /*
5238  * Decide if we need to walk down into this node to adjust the references.
5239  *
5240  * @root:	the root we are currently deleting
5241  * @wc:		the walk control for this deletion
5242  * @eb:		the parent eb that we're currently visiting
5243  * @refs:	the number of refs for wc->level - 1
5244  * @flags:	the flags for wc->level - 1
5245  * @slot:	the slot in the eb that we're currently checking
5246  *
5247  * This is meant to be called when we're evaluating if a node we point to at
5248  * wc->level should be read and walked into, or if we can simply delete our
5249  * reference to it.  We return true if we should walk into the node, false if we
5250  * can skip it.
5251  *
5252  * We have assertions in here to make sure this is called correctly.  We assume
5253  * that sanity checking on the blocks read to this point has been done, so any
5254  * corrupted file systems must have been caught before calling this function.
5255  */
visit_node_for_delete(struct btrfs_root * root,struct walk_control * wc,struct extent_buffer * eb,u64 refs,u64 flags,int slot)5256 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5257 				  struct extent_buffer *eb, u64 refs, u64 flags, int slot)
5258 {
5259 	struct btrfs_key key;
5260 	u64 generation;
5261 	int level = wc->level;
5262 
5263 	ASSERT(level > 0);
5264 	ASSERT(wc->refs[level - 1] > 0);
5265 
5266 	/*
5267 	 * The update backref stage we only want to skip if we already have
5268 	 * FULL_BACKREF set, otherwise we need to read.
5269 	 */
5270 	if (wc->stage == UPDATE_BACKREF) {
5271 		if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5272 			return false;
5273 		return true;
5274 	}
5275 
5276 	/*
5277 	 * We're the last ref on this block, we must walk into it and process
5278 	 * any refs it's pointing at.
5279 	 */
5280 	if (wc->refs[level - 1] == 1)
5281 		return true;
5282 
5283 	/*
5284 	 * If we're already FULL_BACKREF then we know we can just drop our
5285 	 * current reference.
5286 	 */
5287 	if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5288 		return false;
5289 
5290 	/*
5291 	 * This block is older than our creation generation, we can drop our
5292 	 * reference to it.
5293 	 */
5294 	generation = btrfs_node_ptr_generation(eb, slot);
5295 	if (!wc->update_ref || generation <= root->root_key.offset)
5296 		return false;
5297 
5298 	/*
5299 	 * This block was processed from a previous snapshot deletion run, we
5300 	 * can skip it.
5301 	 */
5302 	btrfs_node_key_to_cpu(eb, &key, slot);
5303 	if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5304 		return false;
5305 
5306 	/* All other cases we need to wander into the node. */
5307 	return true;
5308 }
5309 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5310 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5311 				     struct btrfs_root *root,
5312 				     struct walk_control *wc,
5313 				     struct btrfs_path *path)
5314 {
5315 	struct btrfs_fs_info *fs_info = root->fs_info;
5316 	u64 bytenr;
5317 	u64 generation;
5318 	u64 refs;
5319 	u64 flags;
5320 	u32 nritems;
5321 	struct extent_buffer *eb;
5322 	int ret;
5323 	int slot;
5324 	int nread = 0;
5325 
5326 	if (path->slots[wc->level] < wc->reada_slot) {
5327 		wc->reada_count = wc->reada_count * 2 / 3;
5328 		wc->reada_count = max(wc->reada_count, 2);
5329 	} else {
5330 		wc->reada_count = wc->reada_count * 3 / 2;
5331 		wc->reada_count = min_t(int, wc->reada_count,
5332 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5333 	}
5334 
5335 	eb = path->nodes[wc->level];
5336 	nritems = btrfs_header_nritems(eb);
5337 
5338 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5339 		if (nread >= wc->reada_count)
5340 			break;
5341 
5342 		cond_resched();
5343 		bytenr = btrfs_node_blockptr(eb, slot);
5344 		generation = btrfs_node_ptr_generation(eb, slot);
5345 
5346 		if (slot == path->slots[wc->level])
5347 			goto reada;
5348 
5349 		if (wc->stage == UPDATE_BACKREF &&
5350 		    generation <= root->root_key.offset)
5351 			continue;
5352 
5353 		/* We don't lock the tree block, it's OK to be racy here */
5354 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5355 					       wc->level - 1, 1, &refs,
5356 					       &flags, NULL);
5357 		/* We don't care about errors in readahead. */
5358 		if (ret < 0)
5359 			continue;
5360 
5361 		/*
5362 		 * This could be racey, it's conceivable that we raced and end
5363 		 * up with a bogus refs count, if that's the case just skip, if
5364 		 * we are actually corrupt we will notice when we look up
5365 		 * everything again with our locks.
5366 		 */
5367 		if (refs == 0)
5368 			continue;
5369 
5370 		/* If we don't need to visit this node don't reada. */
5371 		if (!visit_node_for_delete(root, wc, eb, refs, flags, slot))
5372 			continue;
5373 reada:
5374 		btrfs_readahead_node_child(eb, slot);
5375 		nread++;
5376 	}
5377 	wc->reada_slot = slot;
5378 }
5379 
5380 /*
5381  * helper to process tree block while walking down the tree.
5382  *
5383  * when wc->stage == UPDATE_BACKREF, this function updates
5384  * back refs for pointers in the block.
5385  *
5386  * NOTE: return value 1 means we should stop walking down.
5387  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5388 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5389 				   struct btrfs_root *root,
5390 				   struct btrfs_path *path,
5391 				   struct walk_control *wc)
5392 {
5393 	struct btrfs_fs_info *fs_info = root->fs_info;
5394 	int level = wc->level;
5395 	struct extent_buffer *eb = path->nodes[level];
5396 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5397 	int ret;
5398 
5399 	if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5400 		return 1;
5401 
5402 	/*
5403 	 * when reference count of tree block is 1, it won't increase
5404 	 * again. once full backref flag is set, we never clear it.
5405 	 */
5406 	if (wc->lookup_info &&
5407 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5408 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5409 		ASSERT(path->locks[level]);
5410 		ret = btrfs_lookup_extent_info(trans, fs_info,
5411 					       eb->start, level, 1,
5412 					       &wc->refs[level],
5413 					       &wc->flags[level],
5414 					       NULL);
5415 		if (ret)
5416 			return ret;
5417 		if (unlikely(wc->refs[level] == 0)) {
5418 			btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5419 				  eb->start);
5420 			return -EUCLEAN;
5421 		}
5422 	}
5423 
5424 	if (wc->stage == DROP_REFERENCE) {
5425 		if (wc->refs[level] > 1)
5426 			return 1;
5427 
5428 		if (path->locks[level] && !wc->keep_locks) {
5429 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5430 			path->locks[level] = 0;
5431 		}
5432 		return 0;
5433 	}
5434 
5435 	/* wc->stage == UPDATE_BACKREF */
5436 	if (!(wc->flags[level] & flag)) {
5437 		ASSERT(path->locks[level]);
5438 		ret = btrfs_inc_ref(trans, root, eb, 1);
5439 		if (ret) {
5440 			btrfs_abort_transaction(trans, ret);
5441 			return ret;
5442 		}
5443 		ret = btrfs_dec_ref(trans, root, eb, 0);
5444 		if (ret) {
5445 			btrfs_abort_transaction(trans, ret);
5446 			return ret;
5447 		}
5448 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5449 		if (ret) {
5450 			btrfs_abort_transaction(trans, ret);
5451 			return ret;
5452 		}
5453 		wc->flags[level] |= flag;
5454 	}
5455 
5456 	/*
5457 	 * the block is shared by multiple trees, so it's not good to
5458 	 * keep the tree lock
5459 	 */
5460 	if (path->locks[level] && level > 0) {
5461 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5462 		path->locks[level] = 0;
5463 	}
5464 	return 0;
5465 }
5466 
5467 /*
5468  * This is used to verify a ref exists for this root to deal with a bug where we
5469  * would have a drop_progress key that hadn't been updated properly.
5470  */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5471 static int check_ref_exists(struct btrfs_trans_handle *trans,
5472 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5473 			    int level)
5474 {
5475 	struct btrfs_delayed_ref_root *delayed_refs;
5476 	struct btrfs_delayed_ref_head *head;
5477 	struct btrfs_path *path;
5478 	struct btrfs_extent_inline_ref *iref;
5479 	int ret;
5480 	bool exists = false;
5481 
5482 	path = btrfs_alloc_path();
5483 	if (!path)
5484 		return -ENOMEM;
5485 again:
5486 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5487 				    root->fs_info->nodesize, parent,
5488 				    btrfs_root_id(root), level, 0);
5489 	if (ret != -ENOENT) {
5490 		/*
5491 		 * If we get 0 then we found our reference, return 1, else
5492 		 * return the error if it's not -ENOENT;
5493 		 */
5494 		btrfs_free_path(path);
5495 		return (ret < 0 ) ? ret : 1;
5496 	}
5497 
5498 	/*
5499 	 * We could have a delayed ref with this reference, so look it up while
5500 	 * we're holding the path open to make sure we don't race with the
5501 	 * delayed ref running.
5502 	 */
5503 	delayed_refs = &trans->transaction->delayed_refs;
5504 	spin_lock(&delayed_refs->lock);
5505 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
5506 	if (!head)
5507 		goto out;
5508 	if (!mutex_trylock(&head->mutex)) {
5509 		/*
5510 		 * We're contended, means that the delayed ref is running, get a
5511 		 * reference and wait for the ref head to be complete and then
5512 		 * try again.
5513 		 */
5514 		refcount_inc(&head->refs);
5515 		spin_unlock(&delayed_refs->lock);
5516 
5517 		btrfs_release_path(path);
5518 
5519 		mutex_lock(&head->mutex);
5520 		mutex_unlock(&head->mutex);
5521 		btrfs_put_delayed_ref_head(head);
5522 		goto again;
5523 	}
5524 
5525 	exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5526 	mutex_unlock(&head->mutex);
5527 out:
5528 	spin_unlock(&delayed_refs->lock);
5529 	btrfs_free_path(path);
5530 	return exists ? 1 : 0;
5531 }
5532 
5533 /*
5534  * We may not have an uptodate block, so if we are going to walk down into this
5535  * block we need to drop the lock, read it off of the disk, re-lock it and
5536  * return to continue dropping the snapshot.
5537  */
check_next_block_uptodate(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next)5538 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5539 				     struct btrfs_root *root,
5540 				     struct btrfs_path *path,
5541 				     struct walk_control *wc,
5542 				     struct extent_buffer *next)
5543 {
5544 	struct btrfs_tree_parent_check check = { 0 };
5545 	u64 generation;
5546 	int level = wc->level;
5547 	int ret;
5548 
5549 	btrfs_assert_tree_write_locked(next);
5550 
5551 	generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5552 
5553 	if (btrfs_buffer_uptodate(next, generation, 0))
5554 		return 0;
5555 
5556 	check.level = level - 1;
5557 	check.transid = generation;
5558 	check.owner_root = btrfs_root_id(root);
5559 	check.has_first_key = true;
5560 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5561 
5562 	btrfs_tree_unlock(next);
5563 	if (level == 1)
5564 		reada_walk_down(trans, root, wc, path);
5565 	ret = btrfs_read_extent_buffer(next, &check);
5566 	if (ret) {
5567 		free_extent_buffer(next);
5568 		return ret;
5569 	}
5570 	btrfs_tree_lock(next);
5571 	wc->lookup_info = 1;
5572 	return 0;
5573 }
5574 
5575 /*
5576  * If we determine that we don't have to visit wc->level - 1 then we need to
5577  * determine if we can drop our reference.
5578  *
5579  * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5580  *
5581  * If we are DROP_REFERENCE this will figure out if we need to drop our current
5582  * reference, skipping it if we dropped it from a previous incompleted drop, or
5583  * dropping it if we still have a reference to it.
5584  */
maybe_drop_reference(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,struct extent_buffer * next,u64 owner_root)5585 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5586 				struct btrfs_path *path, struct walk_control *wc,
5587 				struct extent_buffer *next, u64 owner_root)
5588 {
5589 	struct btrfs_ref ref = {
5590 		.action = BTRFS_DROP_DELAYED_REF,
5591 		.bytenr = next->start,
5592 		.num_bytes = root->fs_info->nodesize,
5593 		.owning_root = owner_root,
5594 		.ref_root = btrfs_root_id(root),
5595 	};
5596 	int level = wc->level;
5597 	int ret;
5598 
5599 	/* We are UPDATE_BACKREF, we're not dropping anything. */
5600 	if (wc->stage == UPDATE_BACKREF)
5601 		return 0;
5602 
5603 	if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5604 		ref.parent = path->nodes[level]->start;
5605 	} else {
5606 		ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5607 		if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5608 			btrfs_err(root->fs_info, "mismatched block owner");
5609 			return -EIO;
5610 		}
5611 	}
5612 
5613 	/*
5614 	 * If we had a drop_progress we need to verify the refs are set as
5615 	 * expected.  If we find our ref then we know that from here on out
5616 	 * everything should be correct, and we can clear the
5617 	 * ->restarted flag.
5618 	 */
5619 	if (wc->restarted) {
5620 		ret = check_ref_exists(trans, root, next->start, ref.parent,
5621 				       level - 1);
5622 		if (ret <= 0)
5623 			return ret;
5624 		ret = 0;
5625 		wc->restarted = 0;
5626 	}
5627 
5628 	/*
5629 	 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5630 	 * accounted them at merge time (replace_path), thus we could skip
5631 	 * expensive subtree trace here.
5632 	 */
5633 	if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5634 	    wc->refs[level - 1] > 1) {
5635 		u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5636 							   path->slots[level]);
5637 
5638 		ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5639 		if (ret) {
5640 			btrfs_err_rl(root->fs_info,
5641 "error %d accounting shared subtree, quota is out of sync, rescan required",
5642 				     ret);
5643 		}
5644 	}
5645 
5646 	/*
5647 	 * We need to update the next key in our walk control so we can update
5648 	 * the drop_progress key accordingly.  We don't care if find_next_key
5649 	 * doesn't find a key because that means we're at the end and are going
5650 	 * to clean up now.
5651 	 */
5652 	wc->drop_level = level;
5653 	find_next_key(path, level, &wc->drop_progress);
5654 
5655 	btrfs_init_tree_ref(&ref, level - 1, 0, false);
5656 	return btrfs_free_extent(trans, &ref);
5657 }
5658 
5659 /*
5660  * helper to process tree block pointer.
5661  *
5662  * when wc->stage == DROP_REFERENCE, this function checks
5663  * reference count of the block pointed to. if the block
5664  * is shared and we need update back refs for the subtree
5665  * rooted at the block, this function changes wc->stage to
5666  * UPDATE_BACKREF. if the block is shared and there is no
5667  * need to update back, this function drops the reference
5668  * to the block.
5669  *
5670  * NOTE: return value 1 means we should stop walking down.
5671  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5672 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5673 				 struct btrfs_root *root,
5674 				 struct btrfs_path *path,
5675 				 struct walk_control *wc)
5676 {
5677 	struct btrfs_fs_info *fs_info = root->fs_info;
5678 	u64 bytenr;
5679 	u64 generation;
5680 	u64 owner_root = 0;
5681 	struct extent_buffer *next;
5682 	int level = wc->level;
5683 	int ret = 0;
5684 
5685 	generation = btrfs_node_ptr_generation(path->nodes[level],
5686 					       path->slots[level]);
5687 	/*
5688 	 * if the lower level block was created before the snapshot
5689 	 * was created, we know there is no need to update back refs
5690 	 * for the subtree
5691 	 */
5692 	if (wc->stage == UPDATE_BACKREF &&
5693 	    generation <= root->root_key.offset) {
5694 		wc->lookup_info = 1;
5695 		return 1;
5696 	}
5697 
5698 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5699 
5700 	next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5701 					    level - 1);
5702 	if (IS_ERR(next))
5703 		return PTR_ERR(next);
5704 
5705 	btrfs_tree_lock(next);
5706 
5707 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5708 				       &wc->refs[level - 1],
5709 				       &wc->flags[level - 1],
5710 				       &owner_root);
5711 	if (ret < 0)
5712 		goto out_unlock;
5713 
5714 	if (unlikely(wc->refs[level - 1] == 0)) {
5715 		btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5716 			  bytenr);
5717 		ret = -EUCLEAN;
5718 		goto out_unlock;
5719 	}
5720 	wc->lookup_info = 0;
5721 
5722 	/* If we don't have to walk into this node skip it. */
5723 	if (!visit_node_for_delete(root, wc, path->nodes[level],
5724 				   wc->refs[level - 1], wc->flags[level - 1],
5725 				   path->slots[level]))
5726 		goto skip;
5727 
5728 	/*
5729 	 * We have to walk down into this node, and if we're currently at the
5730 	 * DROP_REFERNCE stage and this block is shared then we need to switch
5731 	 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5732 	 */
5733 	if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5734 		wc->stage = UPDATE_BACKREF;
5735 		wc->shared_level = level - 1;
5736 	}
5737 
5738 	ret = check_next_block_uptodate(trans, root, path, wc, next);
5739 	if (ret)
5740 		return ret;
5741 
5742 	level--;
5743 	ASSERT(level == btrfs_header_level(next));
5744 	if (level != btrfs_header_level(next)) {
5745 		btrfs_err(root->fs_info, "mismatched level");
5746 		ret = -EIO;
5747 		goto out_unlock;
5748 	}
5749 	path->nodes[level] = next;
5750 	path->slots[level] = 0;
5751 	path->locks[level] = BTRFS_WRITE_LOCK;
5752 	wc->level = level;
5753 	if (wc->level == 1)
5754 		wc->reada_slot = 0;
5755 	return 0;
5756 skip:
5757 	ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5758 	if (ret)
5759 		goto out_unlock;
5760 	wc->refs[level - 1] = 0;
5761 	wc->flags[level - 1] = 0;
5762 	wc->lookup_info = 1;
5763 	ret = 1;
5764 
5765 out_unlock:
5766 	btrfs_tree_unlock(next);
5767 	free_extent_buffer(next);
5768 
5769 	return ret;
5770 }
5771 
5772 /*
5773  * helper to process tree block while walking up the tree.
5774  *
5775  * when wc->stage == DROP_REFERENCE, this function drops
5776  * reference count on the block.
5777  *
5778  * when wc->stage == UPDATE_BACKREF, this function changes
5779  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5780  * to UPDATE_BACKREF previously while processing the block.
5781  *
5782  * NOTE: return value 1 means we should stop walking up.
5783  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5784 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5785 				 struct btrfs_root *root,
5786 				 struct btrfs_path *path,
5787 				 struct walk_control *wc)
5788 {
5789 	struct btrfs_fs_info *fs_info = root->fs_info;
5790 	int ret = 0;
5791 	int level = wc->level;
5792 	struct extent_buffer *eb = path->nodes[level];
5793 	u64 parent = 0;
5794 
5795 	if (wc->stage == UPDATE_BACKREF) {
5796 		ASSERT(wc->shared_level >= level);
5797 		if (level < wc->shared_level)
5798 			goto out;
5799 
5800 		ret = find_next_key(path, level + 1, &wc->update_progress);
5801 		if (ret > 0)
5802 			wc->update_ref = 0;
5803 
5804 		wc->stage = DROP_REFERENCE;
5805 		wc->shared_level = -1;
5806 		path->slots[level] = 0;
5807 
5808 		/*
5809 		 * check reference count again if the block isn't locked.
5810 		 * we should start walking down the tree again if reference
5811 		 * count is one.
5812 		 */
5813 		if (!path->locks[level]) {
5814 			ASSERT(level > 0);
5815 			btrfs_tree_lock(eb);
5816 			path->locks[level] = BTRFS_WRITE_LOCK;
5817 
5818 			ret = btrfs_lookup_extent_info(trans, fs_info,
5819 						       eb->start, level, 1,
5820 						       &wc->refs[level],
5821 						       &wc->flags[level],
5822 						       NULL);
5823 			if (ret < 0) {
5824 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5825 				path->locks[level] = 0;
5826 				return ret;
5827 			}
5828 			if (unlikely(wc->refs[level] == 0)) {
5829 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5830 				btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5831 					  eb->start);
5832 				return -EUCLEAN;
5833 			}
5834 			if (wc->refs[level] == 1) {
5835 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5836 				path->locks[level] = 0;
5837 				return 1;
5838 			}
5839 		}
5840 	}
5841 
5842 	/* wc->stage == DROP_REFERENCE */
5843 	ASSERT(path->locks[level] || wc->refs[level] == 1);
5844 
5845 	if (wc->refs[level] == 1) {
5846 		if (level == 0) {
5847 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5848 				ret = btrfs_dec_ref(trans, root, eb, 1);
5849 			else
5850 				ret = btrfs_dec_ref(trans, root, eb, 0);
5851 			if (ret) {
5852 				btrfs_abort_transaction(trans, ret);
5853 				return ret;
5854 			}
5855 			if (is_fstree(btrfs_root_id(root))) {
5856 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5857 				if (ret) {
5858 					btrfs_err_rl(fs_info,
5859 	"error %d accounting leaf items, quota is out of sync, rescan required",
5860 					     ret);
5861 				}
5862 			}
5863 		}
5864 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5865 		if (!path->locks[level]) {
5866 			btrfs_tree_lock(eb);
5867 			path->locks[level] = BTRFS_WRITE_LOCK;
5868 		}
5869 		btrfs_clear_buffer_dirty(trans, eb);
5870 	}
5871 
5872 	if (eb == root->node) {
5873 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5874 			parent = eb->start;
5875 		else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5876 			goto owner_mismatch;
5877 	} else {
5878 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5879 			parent = path->nodes[level + 1]->start;
5880 		else if (btrfs_root_id(root) !=
5881 			 btrfs_header_owner(path->nodes[level + 1]))
5882 			goto owner_mismatch;
5883 	}
5884 
5885 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5886 				    wc->refs[level] == 1);
5887 	if (ret < 0)
5888 		btrfs_abort_transaction(trans, ret);
5889 out:
5890 	wc->refs[level] = 0;
5891 	wc->flags[level] = 0;
5892 	return ret;
5893 
5894 owner_mismatch:
5895 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5896 		     btrfs_header_owner(eb), btrfs_root_id(root));
5897 	return -EUCLEAN;
5898 }
5899 
5900 /*
5901  * walk_down_tree consists of two steps.
5902  *
5903  * walk_down_proc().  Look up the reference count and reference of our current
5904  * wc->level.  At this point path->nodes[wc->level] should be populated and
5905  * uptodate, and in most cases should already be locked.  If we are in
5906  * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5907  * we can walk back up the tree.  If we are UPDATE_BACKREF we have to set
5908  * FULL_BACKREF on this node if it's not already set, and then do the
5909  * FULL_BACKREF conversion dance, which is to drop the root reference and add
5910  * the shared reference to all of this nodes children.
5911  *
5912  * do_walk_down().  This is where we actually start iterating on the children of
5913  * our current path->nodes[wc->level].  For DROP_REFERENCE that means dropping
5914  * our reference to the children that return false from visit_node_for_delete(),
5915  * which has various conditions where we know we can just drop our reference
5916  * without visiting the node.  For UPDATE_BACKREF we will skip any children that
5917  * visit_node_for_delete() returns false for, only walking down when necessary.
5918  * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5919  * snapshot deletion.
5920  */
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5921 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5922 				   struct btrfs_root *root,
5923 				   struct btrfs_path *path,
5924 				   struct walk_control *wc)
5925 {
5926 	int level = wc->level;
5927 	int ret = 0;
5928 
5929 	wc->lookup_info = 1;
5930 	while (level >= 0) {
5931 		ret = walk_down_proc(trans, root, path, wc);
5932 		if (ret)
5933 			break;
5934 
5935 		if (level == 0)
5936 			break;
5937 
5938 		if (path->slots[level] >=
5939 		    btrfs_header_nritems(path->nodes[level]))
5940 			break;
5941 
5942 		ret = do_walk_down(trans, root, path, wc);
5943 		if (ret > 0) {
5944 			path->slots[level]++;
5945 			continue;
5946 		} else if (ret < 0)
5947 			break;
5948 		level = wc->level;
5949 	}
5950 	return (ret == 1) ? 0 : ret;
5951 }
5952 
5953 /*
5954  * walk_up_tree() is responsible for making sure we visit every slot on our
5955  * current node, and if we're at the end of that node then we call
5956  * walk_up_proc() on our current node which will do one of a few things based on
5957  * our stage.
5958  *
5959  * UPDATE_BACKREF.  If we wc->level is currently less than our wc->shared_level
5960  * then we need to walk back up the tree, and then going back down into the
5961  * other slots via walk_down_tree to update any other children from our original
5962  * wc->shared_level.  Once we're at or above our wc->shared_level we can switch
5963  * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5964  *
5965  * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5966  * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5967  * in our current leaf.  After that we call btrfs_free_tree_block() on the
5968  * current node and walk up to the next node to walk down the next slot.
5969  */
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5970 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5971 				 struct btrfs_root *root,
5972 				 struct btrfs_path *path,
5973 				 struct walk_control *wc, int max_level)
5974 {
5975 	int level = wc->level;
5976 	int ret;
5977 
5978 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5979 	while (level < max_level && path->nodes[level]) {
5980 		wc->level = level;
5981 		if (path->slots[level] + 1 <
5982 		    btrfs_header_nritems(path->nodes[level])) {
5983 			path->slots[level]++;
5984 			return 0;
5985 		} else {
5986 			ret = walk_up_proc(trans, root, path, wc);
5987 			if (ret > 0)
5988 				return 0;
5989 			if (ret < 0)
5990 				return ret;
5991 
5992 			if (path->locks[level]) {
5993 				btrfs_tree_unlock_rw(path->nodes[level],
5994 						     path->locks[level]);
5995 				path->locks[level] = 0;
5996 			}
5997 			free_extent_buffer(path->nodes[level]);
5998 			path->nodes[level] = NULL;
5999 			level++;
6000 		}
6001 	}
6002 	return 1;
6003 }
6004 
6005 /*
6006  * drop a subvolume tree.
6007  *
6008  * this function traverses the tree freeing any blocks that only
6009  * referenced by the tree.
6010  *
6011  * when a shared tree block is found. this function decreases its
6012  * reference count by one. if update_ref is true, this function
6013  * also make sure backrefs for the shared block and all lower level
6014  * blocks are properly updated.
6015  *
6016  * If called with for_reloc == 0, may exit early with -EAGAIN
6017  */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)6018 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6019 {
6020 	const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6021 	struct btrfs_fs_info *fs_info = root->fs_info;
6022 	struct btrfs_path *path;
6023 	struct btrfs_trans_handle *trans;
6024 	struct btrfs_root *tree_root = fs_info->tree_root;
6025 	struct btrfs_root_item *root_item = &root->root_item;
6026 	struct walk_control *wc;
6027 	struct btrfs_key key;
6028 	const u64 rootid = btrfs_root_id(root);
6029 	int ret = 0;
6030 	int level;
6031 	bool root_dropped = false;
6032 	bool unfinished_drop = false;
6033 
6034 	btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6035 
6036 	path = btrfs_alloc_path();
6037 	if (!path) {
6038 		ret = -ENOMEM;
6039 		goto out;
6040 	}
6041 
6042 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6043 	if (!wc) {
6044 		btrfs_free_path(path);
6045 		ret = -ENOMEM;
6046 		goto out;
6047 	}
6048 
6049 	/*
6050 	 * Use join to avoid potential EINTR from transaction start. See
6051 	 * wait_reserve_ticket and the whole reservation callchain.
6052 	 */
6053 	if (for_reloc)
6054 		trans = btrfs_join_transaction(tree_root);
6055 	else
6056 		trans = btrfs_start_transaction(tree_root, 0);
6057 	if (IS_ERR(trans)) {
6058 		ret = PTR_ERR(trans);
6059 		goto out_free;
6060 	}
6061 
6062 	ret = btrfs_run_delayed_items(trans);
6063 	if (ret)
6064 		goto out_end_trans;
6065 
6066 	/*
6067 	 * This will help us catch people modifying the fs tree while we're
6068 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
6069 	 * dropped as we unlock the root node and parent nodes as we walk down
6070 	 * the tree, assuming nothing will change.  If something does change
6071 	 * then we'll have stale information and drop references to blocks we've
6072 	 * already dropped.
6073 	 */
6074 	set_bit(BTRFS_ROOT_DELETING, &root->state);
6075 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6076 
6077 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6078 		level = btrfs_header_level(root->node);
6079 		path->nodes[level] = btrfs_lock_root_node(root);
6080 		path->slots[level] = 0;
6081 		path->locks[level] = BTRFS_WRITE_LOCK;
6082 		memset(&wc->update_progress, 0,
6083 		       sizeof(wc->update_progress));
6084 	} else {
6085 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6086 		memcpy(&wc->update_progress, &key,
6087 		       sizeof(wc->update_progress));
6088 
6089 		level = btrfs_root_drop_level(root_item);
6090 		BUG_ON(level == 0);
6091 		path->lowest_level = level;
6092 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6093 		path->lowest_level = 0;
6094 		if (ret < 0)
6095 			goto out_end_trans;
6096 
6097 		WARN_ON(ret > 0);
6098 		ret = 0;
6099 
6100 		/*
6101 		 * unlock our path, this is safe because only this
6102 		 * function is allowed to delete this snapshot
6103 		 */
6104 		btrfs_unlock_up_safe(path, 0);
6105 
6106 		level = btrfs_header_level(root->node);
6107 		while (1) {
6108 			btrfs_tree_lock(path->nodes[level]);
6109 			path->locks[level] = BTRFS_WRITE_LOCK;
6110 
6111 			/*
6112 			 * btrfs_lookup_extent_info() returns 0 for success,
6113 			 * or < 0 for error.
6114 			 */
6115 			ret = btrfs_lookup_extent_info(trans, fs_info,
6116 						path->nodes[level]->start,
6117 						level, 1, &wc->refs[level],
6118 						&wc->flags[level], NULL);
6119 			if (ret < 0)
6120 				goto out_end_trans;
6121 
6122 			BUG_ON(wc->refs[level] == 0);
6123 
6124 			if (level == btrfs_root_drop_level(root_item))
6125 				break;
6126 
6127 			btrfs_tree_unlock(path->nodes[level]);
6128 			path->locks[level] = 0;
6129 			WARN_ON(wc->refs[level] != 1);
6130 			level--;
6131 		}
6132 	}
6133 
6134 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6135 	wc->level = level;
6136 	wc->shared_level = -1;
6137 	wc->stage = DROP_REFERENCE;
6138 	wc->update_ref = update_ref;
6139 	wc->keep_locks = 0;
6140 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6141 
6142 	while (1) {
6143 
6144 		ret = walk_down_tree(trans, root, path, wc);
6145 		if (ret < 0) {
6146 			btrfs_abort_transaction(trans, ret);
6147 			break;
6148 		}
6149 
6150 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6151 		if (ret < 0) {
6152 			btrfs_abort_transaction(trans, ret);
6153 			break;
6154 		}
6155 
6156 		if (ret > 0) {
6157 			BUG_ON(wc->stage != DROP_REFERENCE);
6158 			ret = 0;
6159 			break;
6160 		}
6161 
6162 		if (wc->stage == DROP_REFERENCE) {
6163 			wc->drop_level = wc->level;
6164 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6165 					      &wc->drop_progress,
6166 					      path->slots[wc->drop_level]);
6167 		}
6168 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
6169 				      &wc->drop_progress);
6170 		btrfs_set_root_drop_level(root_item, wc->drop_level);
6171 
6172 		BUG_ON(wc->level == 0);
6173 		if (btrfs_should_end_transaction(trans) ||
6174 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6175 			ret = btrfs_update_root(trans, tree_root,
6176 						&root->root_key,
6177 						root_item);
6178 			if (ret) {
6179 				btrfs_abort_transaction(trans, ret);
6180 				goto out_end_trans;
6181 			}
6182 
6183 			if (!is_reloc_root)
6184 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6185 
6186 			btrfs_end_transaction_throttle(trans);
6187 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6188 				btrfs_debug(fs_info,
6189 					    "drop snapshot early exit");
6190 				ret = -EAGAIN;
6191 				goto out_free;
6192 			}
6193 
6194 		       /*
6195 			* Use join to avoid potential EINTR from transaction
6196 			* start. See wait_reserve_ticket and the whole
6197 			* reservation callchain.
6198 			*/
6199 			if (for_reloc)
6200 				trans = btrfs_join_transaction(tree_root);
6201 			else
6202 				trans = btrfs_start_transaction(tree_root, 0);
6203 			if (IS_ERR(trans)) {
6204 				ret = PTR_ERR(trans);
6205 				goto out_free;
6206 			}
6207 		}
6208 	}
6209 	btrfs_release_path(path);
6210 	if (ret)
6211 		goto out_end_trans;
6212 
6213 	ret = btrfs_del_root(trans, &root->root_key);
6214 	if (ret) {
6215 		btrfs_abort_transaction(trans, ret);
6216 		goto out_end_trans;
6217 	}
6218 
6219 	if (!is_reloc_root) {
6220 		ret = btrfs_find_root(tree_root, &root->root_key, path,
6221 				      NULL, NULL);
6222 		if (ret < 0) {
6223 			btrfs_abort_transaction(trans, ret);
6224 			goto out_end_trans;
6225 		} else if (ret > 0) {
6226 			ret = 0;
6227 			/*
6228 			 * If we fail to delete the orphan item this time
6229 			 * around, it'll get picked up the next time.
6230 			 *
6231 			 * The most common failure here is just -ENOENT.
6232 			 */
6233 			btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6234 		}
6235 	}
6236 
6237 	/*
6238 	 * This subvolume is going to be completely dropped, and won't be
6239 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6240 	 * commit transaction time.  So free it here manually.
6241 	 */
6242 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6243 	btrfs_qgroup_free_meta_all_pertrans(root);
6244 
6245 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6246 		btrfs_add_dropped_root(trans, root);
6247 	else
6248 		btrfs_put_root(root);
6249 	root_dropped = true;
6250 out_end_trans:
6251 	if (!is_reloc_root)
6252 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6253 
6254 	btrfs_end_transaction_throttle(trans);
6255 out_free:
6256 	kfree(wc);
6257 	btrfs_free_path(path);
6258 out:
6259 	if (!ret && root_dropped) {
6260 		ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6261 		if (ret < 0)
6262 			btrfs_warn_rl(fs_info,
6263 				      "failed to cleanup qgroup 0/%llu: %d",
6264 				      rootid, ret);
6265 		ret = 0;
6266 	}
6267 	/*
6268 	 * We were an unfinished drop root, check to see if there are any
6269 	 * pending, and if not clear and wake up any waiters.
6270 	 */
6271 	if (!ret && unfinished_drop)
6272 		btrfs_maybe_wake_unfinished_drop(fs_info);
6273 
6274 	/*
6275 	 * So if we need to stop dropping the snapshot for whatever reason we
6276 	 * need to make sure to add it back to the dead root list so that we
6277 	 * keep trying to do the work later.  This also cleans up roots if we
6278 	 * don't have it in the radix (like when we recover after a power fail
6279 	 * or unmount) so we don't leak memory.
6280 	 */
6281 	if (!for_reloc && !root_dropped)
6282 		btrfs_add_dead_root(root);
6283 	return ret;
6284 }
6285 
6286 /*
6287  * drop subtree rooted at tree block 'node'.
6288  *
6289  * NOTE: this function will unlock and release tree block 'node'
6290  * only used by relocation code
6291  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)6292 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6293 			struct btrfs_root *root,
6294 			struct extent_buffer *node,
6295 			struct extent_buffer *parent)
6296 {
6297 	struct btrfs_fs_info *fs_info = root->fs_info;
6298 	struct btrfs_path *path;
6299 	struct walk_control *wc;
6300 	int level;
6301 	int parent_level;
6302 	int ret = 0;
6303 
6304 	BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6305 
6306 	path = btrfs_alloc_path();
6307 	if (!path)
6308 		return -ENOMEM;
6309 
6310 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6311 	if (!wc) {
6312 		btrfs_free_path(path);
6313 		return -ENOMEM;
6314 	}
6315 
6316 	btrfs_assert_tree_write_locked(parent);
6317 	parent_level = btrfs_header_level(parent);
6318 	atomic_inc(&parent->refs);
6319 	path->nodes[parent_level] = parent;
6320 	path->slots[parent_level] = btrfs_header_nritems(parent);
6321 
6322 	btrfs_assert_tree_write_locked(node);
6323 	level = btrfs_header_level(node);
6324 	path->nodes[level] = node;
6325 	path->slots[level] = 0;
6326 	path->locks[level] = BTRFS_WRITE_LOCK;
6327 
6328 	wc->refs[parent_level] = 1;
6329 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6330 	wc->level = level;
6331 	wc->shared_level = -1;
6332 	wc->stage = DROP_REFERENCE;
6333 	wc->update_ref = 0;
6334 	wc->keep_locks = 1;
6335 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6336 
6337 	while (1) {
6338 		ret = walk_down_tree(trans, root, path, wc);
6339 		if (ret < 0)
6340 			break;
6341 
6342 		ret = walk_up_tree(trans, root, path, wc, parent_level);
6343 		if (ret) {
6344 			if (ret > 0)
6345 				ret = 0;
6346 			break;
6347 		}
6348 	}
6349 
6350 	kfree(wc);
6351 	btrfs_free_path(path);
6352 	return ret;
6353 }
6354 
6355 /*
6356  * Unpin the extent range in an error context and don't add the space back.
6357  * Errors are not propagated further.
6358  */
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6359 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6360 {
6361 	unpin_extent_range(fs_info, start, end, false);
6362 }
6363 
6364 /*
6365  * It used to be that old block groups would be left around forever.
6366  * Iterating over them would be enough to trim unused space.  Since we
6367  * now automatically remove them, we also need to iterate over unallocated
6368  * space.
6369  *
6370  * We don't want a transaction for this since the discard may take a
6371  * substantial amount of time.  We don't require that a transaction be
6372  * running, but we do need to take a running transaction into account
6373  * to ensure that we're not discarding chunks that were released or
6374  * allocated in the current transaction.
6375  *
6376  * Holding the chunks lock will prevent other threads from allocating
6377  * or releasing chunks, but it won't prevent a running transaction
6378  * from committing and releasing the memory that the pending chunks
6379  * list head uses.  For that, we need to take a reference to the
6380  * transaction and hold the commit root sem.  We only need to hold
6381  * it while performing the free space search since we have already
6382  * held back allocations.
6383  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6384 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6385 {
6386 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6387 	int ret;
6388 
6389 	*trimmed = 0;
6390 
6391 	/* Discard not supported = nothing to do. */
6392 	if (!bdev_max_discard_sectors(device->bdev))
6393 		return 0;
6394 
6395 	/* Not writable = nothing to do. */
6396 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6397 		return 0;
6398 
6399 	/* No free space = nothing to do. */
6400 	if (device->total_bytes <= device->bytes_used)
6401 		return 0;
6402 
6403 	ret = 0;
6404 
6405 	while (1) {
6406 		struct btrfs_fs_info *fs_info = device->fs_info;
6407 		u64 bytes;
6408 
6409 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6410 		if (ret)
6411 			break;
6412 
6413 		find_first_clear_extent_bit(&device->alloc_state, start,
6414 					    &start, &end,
6415 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6416 
6417 		/* Check if there are any CHUNK_* bits left */
6418 		if (start > device->total_bytes) {
6419 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6420 			btrfs_warn_in_rcu(fs_info,
6421 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6422 					  start, end - start + 1,
6423 					  btrfs_dev_name(device),
6424 					  device->total_bytes);
6425 			mutex_unlock(&fs_info->chunk_mutex);
6426 			ret = 0;
6427 			break;
6428 		}
6429 
6430 		/* Ensure we skip the reserved space on each device. */
6431 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6432 
6433 		/*
6434 		 * If find_first_clear_extent_bit find a range that spans the
6435 		 * end of the device it will set end to -1, in this case it's up
6436 		 * to the caller to trim the value to the size of the device.
6437 		 */
6438 		end = min(end, device->total_bytes - 1);
6439 
6440 		len = end - start + 1;
6441 
6442 		/* We didn't find any extents */
6443 		if (!len) {
6444 			mutex_unlock(&fs_info->chunk_mutex);
6445 			ret = 0;
6446 			break;
6447 		}
6448 
6449 		ret = btrfs_issue_discard(device->bdev, start, len,
6450 					  &bytes);
6451 		if (!ret)
6452 			set_extent_bit(&device->alloc_state, start,
6453 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6454 		mutex_unlock(&fs_info->chunk_mutex);
6455 
6456 		if (ret)
6457 			break;
6458 
6459 		start += len;
6460 		*trimmed += bytes;
6461 
6462 		if (fatal_signal_pending(current)) {
6463 			ret = -ERESTARTSYS;
6464 			break;
6465 		}
6466 
6467 		cond_resched();
6468 	}
6469 
6470 	return ret;
6471 }
6472 
6473 /*
6474  * Trim the whole filesystem by:
6475  * 1) trimming the free space in each block group
6476  * 2) trimming the unallocated space on each device
6477  *
6478  * This will also continue trimming even if a block group or device encounters
6479  * an error.  The return value will be the last error, or 0 if nothing bad
6480  * happens.
6481  */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6482 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6483 {
6484 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6485 	struct btrfs_block_group *cache = NULL;
6486 	struct btrfs_device *device;
6487 	u64 group_trimmed;
6488 	u64 range_end = U64_MAX;
6489 	u64 start;
6490 	u64 end;
6491 	u64 trimmed = 0;
6492 	u64 bg_failed = 0;
6493 	u64 dev_failed = 0;
6494 	int bg_ret = 0;
6495 	int dev_ret = 0;
6496 	int ret = 0;
6497 
6498 	if (range->start == U64_MAX)
6499 		return -EINVAL;
6500 
6501 	/*
6502 	 * Check range overflow if range->len is set.
6503 	 * The default range->len is U64_MAX.
6504 	 */
6505 	if (range->len != U64_MAX &&
6506 	    check_add_overflow(range->start, range->len, &range_end))
6507 		return -EINVAL;
6508 
6509 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6510 	for (; cache; cache = btrfs_next_block_group(cache)) {
6511 		if (cache->start >= range_end) {
6512 			btrfs_put_block_group(cache);
6513 			break;
6514 		}
6515 
6516 		start = max(range->start, cache->start);
6517 		end = min(range_end, cache->start + cache->length);
6518 
6519 		if (end - start >= range->minlen) {
6520 			if (!btrfs_block_group_done(cache)) {
6521 				ret = btrfs_cache_block_group(cache, true);
6522 				if (ret) {
6523 					bg_failed++;
6524 					bg_ret = ret;
6525 					continue;
6526 				}
6527 			}
6528 			ret = btrfs_trim_block_group(cache,
6529 						     &group_trimmed,
6530 						     start,
6531 						     end,
6532 						     range->minlen);
6533 
6534 			trimmed += group_trimmed;
6535 			if (ret) {
6536 				bg_failed++;
6537 				bg_ret = ret;
6538 				continue;
6539 			}
6540 		}
6541 	}
6542 
6543 	if (bg_failed)
6544 		btrfs_warn(fs_info,
6545 			"failed to trim %llu block group(s), last error %d",
6546 			bg_failed, bg_ret);
6547 
6548 	mutex_lock(&fs_devices->device_list_mutex);
6549 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6550 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6551 			continue;
6552 
6553 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6554 
6555 		trimmed += group_trimmed;
6556 		if (ret) {
6557 			dev_failed++;
6558 			dev_ret = ret;
6559 			break;
6560 		}
6561 	}
6562 	mutex_unlock(&fs_devices->device_list_mutex);
6563 
6564 	if (dev_failed)
6565 		btrfs_warn(fs_info,
6566 			"failed to trim %llu device(s), last error %d",
6567 			dev_failed, dev_ret);
6568 	range->len = trimmed;
6569 	if (bg_ret)
6570 		return bg_ret;
6571 	return dev_ret;
6572 }
6573