xref: /linux/fs/btrfs/delayed-inode.c (revision 8ad2f2edc82b8ffde54eab36a677cfb3be2236e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32 	if (!delayed_node_cache)
33 		return -ENOMEM;
34 	return 0;
35 }
36 
37 void __cold btrfs_delayed_inode_exit(void)
38 {
39 	kmem_cache_destroy(delayed_node_cache);
40 }
41 
42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43 {
44 	atomic_set(&delayed_root->items, 0);
45 	atomic_set(&delayed_root->items_seq, 0);
46 	delayed_root->nodes = 0;
47 	spin_lock_init(&delayed_root->lock);
48 	init_waitqueue_head(&delayed_root->wait);
49 	INIT_LIST_HEAD(&delayed_root->node_list);
50 	INIT_LIST_HEAD(&delayed_root->prepare_list);
51 }
52 
53 static inline void btrfs_init_delayed_node(
54 				struct btrfs_delayed_node *delayed_node,
55 				struct btrfs_root *root, u64 inode_id)
56 {
57 	delayed_node->root = root;
58 	delayed_node->inode_id = inode_id;
59 	refcount_set(&delayed_node->refs, 0);
60 	btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61 	delayed_node->ins_root = RB_ROOT_CACHED;
62 	delayed_node->del_root = RB_ROOT_CACHED;
63 	mutex_init(&delayed_node->mutex);
64 	INIT_LIST_HEAD(&delayed_node->n_list);
65 	INIT_LIST_HEAD(&delayed_node->p_list);
66 }
67 
68 static struct btrfs_delayed_node *btrfs_get_delayed_node(
69 		struct btrfs_inode *btrfs_inode,
70 		struct btrfs_ref_tracker *tracker)
71 {
72 	struct btrfs_root *root = btrfs_inode->root;
73 	u64 ino = btrfs_ino(btrfs_inode);
74 	struct btrfs_delayed_node *node;
75 
76 	node = READ_ONCE(btrfs_inode->delayed_node);
77 	if (node) {
78 		refcount_inc(&node->refs);
79 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80 		return node;
81 	}
82 
83 	xa_lock(&root->delayed_nodes);
84 	node = xa_load(&root->delayed_nodes, ino);
85 
86 	if (node) {
87 		if (btrfs_inode->delayed_node) {
88 			refcount_inc(&node->refs);	/* can be accessed */
89 			btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90 			BUG_ON(btrfs_inode->delayed_node != node);
91 			xa_unlock(&root->delayed_nodes);
92 			return node;
93 		}
94 
95 		/*
96 		 * It's possible that we're racing into the middle of removing
97 		 * this node from the xarray.  In this case, the refcount
98 		 * was zero and it should never go back to one.  Just return
99 		 * NULL like it was never in the xarray at all; our release
100 		 * function is in the process of removing it.
101 		 *
102 		 * Some implementations of refcount_inc refuse to bump the
103 		 * refcount once it has hit zero.  If we don't do this dance
104 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
105 		 * of actually bumping the refcount.
106 		 *
107 		 * If this node is properly in the xarray, we want to bump the
108 		 * refcount twice, once for the inode and once for this get
109 		 * operation.
110 		 */
111 		if (refcount_inc_not_zero(&node->refs)) {
112 			refcount_inc(&node->refs);
113 			btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114 			btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115 							     GFP_ATOMIC);
116 			btrfs_inode->delayed_node = node;
117 		} else {
118 			node = NULL;
119 		}
120 
121 		xa_unlock(&root->delayed_nodes);
122 		return node;
123 	}
124 	xa_unlock(&root->delayed_nodes);
125 
126 	return NULL;
127 }
128 
129 /*
130  * Look up an existing delayed node associated with @btrfs_inode or create a new
131  * one and insert it to the delayed nodes of the root.
132  *
133  * Return the delayed node, or error pointer on failure.
134  */
135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136 		struct btrfs_inode *btrfs_inode,
137 		struct btrfs_ref_tracker *tracker)
138 {
139 	struct btrfs_delayed_node *node;
140 	struct btrfs_root *root = btrfs_inode->root;
141 	u64 ino = btrfs_ino(btrfs_inode);
142 	int ret;
143 	void *ptr;
144 
145 again:
146 	node = btrfs_get_delayed_node(btrfs_inode, tracker);
147 	if (node)
148 		return node;
149 
150 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151 	if (!node)
152 		return ERR_PTR(-ENOMEM);
153 	btrfs_init_delayed_node(node, root, ino);
154 
155 	/* Cached in the inode and can be accessed. */
156 	refcount_set(&node->refs, 2);
157 	btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
158 	btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_NOFS);
159 
160 	/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
161 	ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
162 	if (ret == -ENOMEM)
163 		goto cleanup;
164 
165 	xa_lock(&root->delayed_nodes);
166 	ptr = xa_load(&root->delayed_nodes, ino);
167 	if (ptr) {
168 		/* Somebody inserted it, go back and read it. */
169 		xa_unlock(&root->delayed_nodes);
170 		goto cleanup;
171 	}
172 	ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173 	ASSERT(xa_err(ptr) != -EINVAL);
174 	ASSERT(xa_err(ptr) != -ENOMEM);
175 	ASSERT(ptr == NULL);
176 	btrfs_inode->delayed_node = node;
177 	xa_unlock(&root->delayed_nodes);
178 
179 	return node;
180 cleanup:
181 	btrfs_delayed_node_ref_tracker_free(node, tracker);
182 	btrfs_delayed_node_ref_tracker_free(node, &node->inode_cache_tracker);
183 	btrfs_delayed_node_ref_tracker_dir_exit(node);
184 	kmem_cache_free(delayed_node_cache, node);
185 	if (ret)
186 		return ERR_PTR(ret);
187 	goto again;
188 }
189 
190 /*
191  * Call it when holding delayed_node->mutex
192  *
193  * If mod = 1, add this node into the prepared list.
194  */
195 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
196 				     struct btrfs_delayed_node *node,
197 				     int mod)
198 {
199 	spin_lock(&root->lock);
200 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201 		if (!list_empty(&node->p_list))
202 			list_move_tail(&node->p_list, &root->prepare_list);
203 		else if (mod)
204 			list_add_tail(&node->p_list, &root->prepare_list);
205 	} else {
206 		list_add_tail(&node->n_list, &root->node_list);
207 		list_add_tail(&node->p_list, &root->prepare_list);
208 		refcount_inc(&node->refs);	/* inserted into list */
209 		btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
210 						     GFP_ATOMIC);
211 		root->nodes++;
212 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
213 	}
214 	spin_unlock(&root->lock);
215 }
216 
217 /* Call it when holding delayed_node->mutex */
218 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
219 				       struct btrfs_delayed_node *node)
220 {
221 	spin_lock(&root->lock);
222 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
223 		root->nodes--;
224 		btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
225 		refcount_dec(&node->refs);	/* not in the list */
226 		list_del_init(&node->n_list);
227 		if (!list_empty(&node->p_list))
228 			list_del_init(&node->p_list);
229 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
230 	}
231 	spin_unlock(&root->lock);
232 }
233 
234 static struct btrfs_delayed_node *btrfs_first_delayed_node(
235 			struct btrfs_fs_info *fs_info,
236 			struct btrfs_ref_tracker *tracker)
237 {
238 	struct btrfs_delayed_node *node;
239 
240 	spin_lock(&fs_info->delayed_root.lock);
241 	node = list_first_entry_or_null(&fs_info->delayed_root.node_list,
242 					struct btrfs_delayed_node, n_list);
243 	if (node) {
244 		refcount_inc(&node->refs);
245 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
246 	}
247 	spin_unlock(&fs_info->delayed_root.lock);
248 
249 	return node;
250 }
251 
252 static struct btrfs_delayed_node *btrfs_next_delayed_node(
253 						struct btrfs_delayed_node *node,
254 						struct btrfs_ref_tracker *tracker)
255 {
256 	struct btrfs_delayed_root *delayed_root;
257 	struct list_head *p;
258 	struct btrfs_delayed_node *next = NULL;
259 
260 	delayed_root = &node->root->fs_info->delayed_root;
261 	spin_lock(&delayed_root->lock);
262 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
263 		/* not in the list */
264 		if (list_empty(&delayed_root->node_list))
265 			goto out;
266 		p = delayed_root->node_list.next;
267 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
268 		goto out;
269 	else
270 		p = node->n_list.next;
271 
272 	next = list_entry(p, struct btrfs_delayed_node, n_list);
273 	refcount_inc(&next->refs);
274 	btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
275 out:
276 	spin_unlock(&delayed_root->lock);
277 
278 	return next;
279 }
280 
281 static void __btrfs_release_delayed_node(
282 				struct btrfs_delayed_node *delayed_node,
283 				int mod, struct btrfs_ref_tracker *tracker)
284 {
285 	struct btrfs_delayed_root *delayed_root;
286 
287 	if (!delayed_node)
288 		return;
289 
290 	delayed_root = &delayed_node->root->fs_info->delayed_root;
291 
292 	mutex_lock(&delayed_node->mutex);
293 	if (delayed_node->count)
294 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
295 	else
296 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
297 	mutex_unlock(&delayed_node->mutex);
298 
299 	btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
300 	if (refcount_dec_and_test(&delayed_node->refs)) {
301 		struct btrfs_root *root = delayed_node->root;
302 
303 		xa_erase(&root->delayed_nodes, delayed_node->inode_id);
304 		/*
305 		 * Once our refcount goes to zero, nobody is allowed to bump it
306 		 * back up.  We can delete it now.
307 		 */
308 		ASSERT(refcount_read(&delayed_node->refs) == 0);
309 		btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
310 		kmem_cache_free(delayed_node_cache, delayed_node);
311 	}
312 }
313 
314 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
315 					      struct btrfs_ref_tracker *tracker)
316 {
317 	__btrfs_release_delayed_node(node, 0, tracker);
318 }
319 
320 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
321 					struct btrfs_delayed_root *delayed_root,
322 					struct btrfs_ref_tracker *tracker)
323 {
324 	struct btrfs_delayed_node *node;
325 
326 	spin_lock(&delayed_root->lock);
327 	node = list_first_entry_or_null(&delayed_root->prepare_list,
328 					struct btrfs_delayed_node, p_list);
329 	if (node) {
330 		list_del_init(&node->p_list);
331 		refcount_inc(&node->refs);
332 		btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
333 	}
334 	spin_unlock(&delayed_root->lock);
335 
336 	return node;
337 }
338 
339 static inline void btrfs_release_prepared_delayed_node(
340 					struct btrfs_delayed_node *node,
341 					struct btrfs_ref_tracker *tracker)
342 {
343 	__btrfs_release_delayed_node(node, 1, tracker);
344 }
345 
346 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
347 					   struct btrfs_delayed_node *node,
348 					   enum btrfs_delayed_item_type type)
349 {
350 	struct btrfs_delayed_item *item;
351 
352 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
353 	if (item) {
354 		item->data_len = data_len;
355 		item->type = type;
356 		item->bytes_reserved = 0;
357 		item->delayed_node = node;
358 		RB_CLEAR_NODE(&item->rb_node);
359 		INIT_LIST_HEAD(&item->log_list);
360 		item->logged = false;
361 		refcount_set(&item->refs, 1);
362 	}
363 	return item;
364 }
365 
366 static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
367 {
368 	const u64 *index = key;
369 	const struct btrfs_delayed_item *delayed_item = rb_entry(node,
370 						 struct btrfs_delayed_item, rb_node);
371 
372 	if (delayed_item->index < *index)
373 		return 1;
374 	else if (delayed_item->index > *index)
375 		return -1;
376 
377 	return 0;
378 }
379 
380 /*
381  * Look up the delayed item by key.
382  *
383  * @delayed_node: pointer to the delayed node
384  * @index:	  the dir index value to lookup (offset of a dir index key)
385  *
386  * Note: if we don't find the right item, we will return the prev item and
387  * the next item.
388  */
389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
390 				struct rb_root *root,
391 				u64 index)
392 {
393 	struct rb_node *node;
394 
395 	node = rb_find(&index, root, delayed_item_index_cmp);
396 	return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
397 }
398 
399 static int btrfs_delayed_item_cmp(const struct rb_node *new,
400 				  const struct rb_node *exist)
401 {
402 	const struct btrfs_delayed_item *new_item =
403 		rb_entry(new, struct btrfs_delayed_item, rb_node);
404 
405 	return delayed_item_index_cmp(&new_item->index, exist);
406 }
407 
408 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
409 				    struct btrfs_delayed_item *ins)
410 {
411 	struct rb_root_cached *root;
412 	struct rb_node *exist;
413 
414 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
415 		root = &delayed_node->ins_root;
416 	else
417 		root = &delayed_node->del_root;
418 
419 	exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
420 	if (exist)
421 		return -EEXIST;
422 
423 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
424 	    ins->index >= delayed_node->index_cnt)
425 		delayed_node->index_cnt = ins->index + 1;
426 
427 	delayed_node->count++;
428 	atomic_inc(&delayed_node->root->fs_info->delayed_root.items);
429 	return 0;
430 }
431 
432 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
433 {
434 	int seq = atomic_inc_return(&delayed_root->items_seq);
435 
436 	/* atomic_dec_return implies a barrier */
437 	if ((atomic_dec_return(&delayed_root->items) <
438 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
439 		cond_wake_up_nomb(&delayed_root->wait);
440 }
441 
442 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
443 {
444 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
445 	struct rb_root_cached *root;
446 
447 	/* Not inserted, ignore it. */
448 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
449 		return;
450 
451 	/* If it's in a rbtree, then we need to have delayed node locked. */
452 	lockdep_assert_held(&delayed_node->mutex);
453 
454 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
455 		root = &delayed_node->ins_root;
456 	else
457 		root = &delayed_node->del_root;
458 
459 	rb_erase_cached(&delayed_item->rb_node, root);
460 	RB_CLEAR_NODE(&delayed_item->rb_node);
461 	delayed_node->count--;
462 	finish_one_item(&delayed_node->root->fs_info->delayed_root);
463 }
464 
465 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
466 {
467 	if (item) {
468 		__btrfs_remove_delayed_item(item);
469 		if (refcount_dec_and_test(&item->refs))
470 			kfree(item);
471 	}
472 }
473 
474 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
475 					struct btrfs_delayed_node *delayed_node)
476 {
477 	struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
478 
479 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
480 }
481 
482 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
483 					struct btrfs_delayed_node *delayed_node)
484 {
485 	struct rb_node *p = rb_first_cached(&delayed_node->del_root);
486 
487 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
488 }
489 
490 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
491 						struct btrfs_delayed_item *item)
492 {
493 	struct rb_node *p = rb_next(&item->rb_node);
494 
495 	return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
496 }
497 
498 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
499 					       struct btrfs_delayed_item *item)
500 {
501 	struct btrfs_block_rsv *src_rsv;
502 	struct btrfs_block_rsv *dst_rsv;
503 	struct btrfs_fs_info *fs_info = trans->fs_info;
504 	u64 num_bytes;
505 	int ret;
506 
507 	if (!trans->bytes_reserved)
508 		return 0;
509 
510 	src_rsv = trans->block_rsv;
511 	dst_rsv = &fs_info->delayed_block_rsv;
512 
513 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
514 
515 	/*
516 	 * Here we migrate space rsv from transaction rsv, since have already
517 	 * reserved space when starting a transaction.  So no need to reserve
518 	 * qgroup space here.
519 	 */
520 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
521 	if (!ret) {
522 		trace_btrfs_space_reservation(fs_info, "delayed_item",
523 					      item->delayed_node->inode_id,
524 					      num_bytes, 1);
525 		/*
526 		 * For insertions we track reserved metadata space by accounting
527 		 * for the number of leaves that will be used, based on the delayed
528 		 * node's curr_index_batch_size and index_item_leaves fields.
529 		 */
530 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
531 			item->bytes_reserved = num_bytes;
532 	}
533 
534 	return ret;
535 }
536 
537 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
538 						struct btrfs_delayed_item *item)
539 {
540 	struct btrfs_block_rsv *rsv;
541 	struct btrfs_fs_info *fs_info = root->fs_info;
542 
543 	if (!item->bytes_reserved)
544 		return;
545 
546 	rsv = &fs_info->delayed_block_rsv;
547 	/*
548 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
549 	 * to release/reserve qgroup space.
550 	 */
551 	trace_btrfs_space_reservation(fs_info, "delayed_item",
552 				      item->delayed_node->inode_id,
553 				      item->bytes_reserved, 0);
554 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
555 }
556 
557 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
558 					      unsigned int num_leaves)
559 {
560 	struct btrfs_fs_info *fs_info = node->root->fs_info;
561 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
562 
563 	/* There are no space reservations during log replay, bail out. */
564 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
565 		return;
566 
567 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
568 				      bytes, 0);
569 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
570 }
571 
572 static int btrfs_delayed_inode_reserve_metadata(
573 					struct btrfs_trans_handle *trans,
574 					struct btrfs_root *root,
575 					struct btrfs_delayed_node *node)
576 {
577 	struct btrfs_fs_info *fs_info = root->fs_info;
578 	struct btrfs_block_rsv *src_rsv;
579 	struct btrfs_block_rsv *dst_rsv;
580 	u64 num_bytes;
581 	int ret;
582 
583 	src_rsv = trans->block_rsv;
584 	dst_rsv = &fs_info->delayed_block_rsv;
585 
586 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
587 
588 	/*
589 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
590 	 * which doesn't reserve space for speed.  This is a problem since we
591 	 * still need to reserve space for this update, so try to reserve the
592 	 * space.
593 	 *
594 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
595 	 * we always reserve enough to update the inode item.
596 	 */
597 	if (!src_rsv || (!trans->bytes_reserved &&
598 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
599 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
600 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
601 		if (ret < 0)
602 			return ret;
603 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
604 					  BTRFS_RESERVE_NO_FLUSH);
605 		/* NO_FLUSH could only fail with -ENOSPC */
606 		ASSERT(ret == 0 || ret == -ENOSPC);
607 		if (ret)
608 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
609 	} else {
610 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
611 	}
612 
613 	if (!ret) {
614 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
615 					      node->inode_id, num_bytes, 1);
616 		node->bytes_reserved = num_bytes;
617 	}
618 
619 	return ret;
620 }
621 
622 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
623 						struct btrfs_delayed_node *node,
624 						bool qgroup_free)
625 {
626 	struct btrfs_block_rsv *rsv;
627 
628 	if (!node->bytes_reserved)
629 		return;
630 
631 	rsv = &fs_info->delayed_block_rsv;
632 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
633 				      node->inode_id, node->bytes_reserved, 0);
634 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
635 	if (qgroup_free)
636 		btrfs_qgroup_free_meta_prealloc(node->root,
637 				node->bytes_reserved);
638 	else
639 		btrfs_qgroup_convert_reserved_meta(node->root,
640 				node->bytes_reserved);
641 	node->bytes_reserved = 0;
642 }
643 
644 /*
645  * Insert a single delayed item or a batch of delayed items, as many as possible
646  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
647  * in the rbtree, and if there's a gap between two consecutive dir index items,
648  * then it means at some point we had delayed dir indexes to add but they got
649  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
650  * into the subvolume tree. Dir index keys also have their offsets coming from a
651  * monotonically increasing counter, so we can't get new keys with an offset that
652  * fits within a gap between delayed dir index items.
653  */
654 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
655 				     struct btrfs_root *root,
656 				     struct btrfs_path *path,
657 				     struct btrfs_delayed_item *first_item)
658 {
659 	struct btrfs_fs_info *fs_info = root->fs_info;
660 	struct btrfs_delayed_node *node = first_item->delayed_node;
661 	LIST_HEAD(item_list);
662 	struct btrfs_delayed_item *curr;
663 	struct btrfs_delayed_item *next;
664 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
665 	struct btrfs_item_batch batch;
666 	struct btrfs_key first_key;
667 	const u32 first_data_size = first_item->data_len;
668 	int total_size;
669 	char AUTO_KFREE(ins_data);
670 	int ret;
671 	bool continuous_keys_only = false;
672 
673 	lockdep_assert_held(&node->mutex);
674 
675 	/*
676 	 * During normal operation the delayed index offset is continuously
677 	 * increasing, so we can batch insert all items as there will not be any
678 	 * overlapping keys in the tree.
679 	 *
680 	 * The exception to this is log replay, where we may have interleaved
681 	 * offsets in the tree, so our batch needs to be continuous keys only in
682 	 * order to ensure we do not end up with out of order items in our leaf.
683 	 */
684 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
685 		continuous_keys_only = true;
686 
687 	/*
688 	 * For delayed items to insert, we track reserved metadata bytes based
689 	 * on the number of leaves that we will use.
690 	 * See btrfs_insert_delayed_dir_index() and
691 	 * btrfs_delayed_item_reserve_metadata()).
692 	 */
693 	ASSERT(first_item->bytes_reserved == 0);
694 
695 	list_add_tail(&first_item->tree_list, &item_list);
696 	batch.total_data_size = first_data_size;
697 	batch.nr = 1;
698 	total_size = first_data_size + sizeof(struct btrfs_item);
699 	curr = first_item;
700 
701 	while (true) {
702 		int next_size;
703 
704 		next = __btrfs_next_delayed_item(curr);
705 		if (!next)
706 			break;
707 
708 		/*
709 		 * We cannot allow gaps in the key space if we're doing log
710 		 * replay.
711 		 */
712 		if (continuous_keys_only && (next->index != curr->index + 1))
713 			break;
714 
715 		ASSERT(next->bytes_reserved == 0);
716 
717 		next_size = next->data_len + sizeof(struct btrfs_item);
718 		if (total_size + next_size > max_size)
719 			break;
720 
721 		list_add_tail(&next->tree_list, &item_list);
722 		batch.nr++;
723 		total_size += next_size;
724 		batch.total_data_size += next->data_len;
725 		curr = next;
726 	}
727 
728 	if (batch.nr == 1) {
729 		first_key.objectid = node->inode_id;
730 		first_key.type = BTRFS_DIR_INDEX_KEY;
731 		first_key.offset = first_item->index;
732 		batch.keys = &first_key;
733 		batch.data_sizes = &first_data_size;
734 	} else {
735 		struct btrfs_key *ins_keys;
736 		u32 *ins_sizes;
737 		int i = 0;
738 
739 		ins_data = kmalloc_array(batch.nr,
740 					 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
741 		if (!ins_data)
742 			return -ENOMEM;
743 		ins_sizes = (u32 *)ins_data;
744 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
745 		batch.keys = ins_keys;
746 		batch.data_sizes = ins_sizes;
747 		list_for_each_entry(curr, &item_list, tree_list) {
748 			ins_keys[i].objectid = node->inode_id;
749 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
750 			ins_keys[i].offset = curr->index;
751 			ins_sizes[i] = curr->data_len;
752 			i++;
753 		}
754 	}
755 
756 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
757 	if (ret)
758 		return ret;
759 
760 	list_for_each_entry(curr, &item_list, tree_list) {
761 		char *data_ptr;
762 
763 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
764 		write_extent_buffer(path->nodes[0], &curr->data,
765 				    (unsigned long)data_ptr, curr->data_len);
766 		path->slots[0]++;
767 	}
768 
769 	/*
770 	 * Now release our path before releasing the delayed items and their
771 	 * metadata reservations, so that we don't block other tasks for more
772 	 * time than needed.
773 	 */
774 	btrfs_release_path(path);
775 
776 	ASSERT(node->index_item_leaves > 0);
777 
778 	/*
779 	 * For normal operations we will batch an entire leaf's worth of delayed
780 	 * items, so if there are more items to process we can decrement
781 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
782 	 *
783 	 * However for log replay we may not have inserted an entire leaf's
784 	 * worth of items, we may have not had continuous items, so decrementing
785 	 * here would mess up the index_item_leaves accounting.  For this case
786 	 * only clean up the accounting when there are no items left.
787 	 */
788 	if (next && !continuous_keys_only) {
789 		/*
790 		 * We inserted one batch of items into a leaf a there are more
791 		 * items to flush in a future batch, now release one unit of
792 		 * metadata space from the delayed block reserve, corresponding
793 		 * the leaf we just flushed to.
794 		 */
795 		btrfs_delayed_item_release_leaves(node, 1);
796 		node->index_item_leaves--;
797 	} else if (!next) {
798 		/*
799 		 * There are no more items to insert. We can have a number of
800 		 * reserved leaves > 1 here - this happens when many dir index
801 		 * items are added and then removed before they are flushed (file
802 		 * names with a very short life, never span a transaction). So
803 		 * release all remaining leaves.
804 		 */
805 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
806 		node->index_item_leaves = 0;
807 	}
808 
809 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
810 		list_del(&curr->tree_list);
811 		btrfs_release_delayed_item(curr);
812 	}
813 
814 	return 0;
815 }
816 
817 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
818 				      struct btrfs_path *path,
819 				      struct btrfs_root *root,
820 				      struct btrfs_delayed_node *node)
821 {
822 	int ret = 0;
823 
824 	while (ret == 0) {
825 		struct btrfs_delayed_item *curr;
826 
827 		mutex_lock(&node->mutex);
828 		curr = __btrfs_first_delayed_insertion_item(node);
829 		if (!curr) {
830 			mutex_unlock(&node->mutex);
831 			break;
832 		}
833 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
834 		mutex_unlock(&node->mutex);
835 	}
836 
837 	return ret;
838 }
839 
840 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 				    struct btrfs_root *root,
842 				    struct btrfs_path *path,
843 				    struct btrfs_delayed_item *item)
844 {
845 	const u64 ino = item->delayed_node->inode_id;
846 	struct btrfs_fs_info *fs_info = root->fs_info;
847 	struct btrfs_delayed_item *curr, *next;
848 	struct extent_buffer *leaf = path->nodes[0];
849 	LIST_HEAD(batch_list);
850 	int nitems, slot, last_slot;
851 	int ret;
852 	u64 total_reserved_size = item->bytes_reserved;
853 
854 	ASSERT(leaf != NULL);
855 
856 	slot = path->slots[0];
857 	last_slot = btrfs_header_nritems(leaf) - 1;
858 	/*
859 	 * Our caller always gives us a path pointing to an existing item, so
860 	 * this can not happen.
861 	 */
862 	ASSERT(slot <= last_slot);
863 	if (WARN_ON(slot > last_slot))
864 		return -ENOENT;
865 
866 	nitems = 1;
867 	curr = item;
868 	list_add_tail(&curr->tree_list, &batch_list);
869 
870 	/*
871 	 * Keep checking if the next delayed item matches the next item in the
872 	 * leaf - if so, we can add it to the batch of items to delete from the
873 	 * leaf.
874 	 */
875 	while (slot < last_slot) {
876 		struct btrfs_key key;
877 
878 		next = __btrfs_next_delayed_item(curr);
879 		if (!next)
880 			break;
881 
882 		slot++;
883 		btrfs_item_key_to_cpu(leaf, &key, slot);
884 		if (key.objectid != ino ||
885 		    key.type != BTRFS_DIR_INDEX_KEY ||
886 		    key.offset != next->index)
887 			break;
888 		nitems++;
889 		curr = next;
890 		list_add_tail(&curr->tree_list, &batch_list);
891 		total_reserved_size += curr->bytes_reserved;
892 	}
893 
894 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
895 	if (ret)
896 		return ret;
897 
898 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
899 	if (total_reserved_size > 0) {
900 		/*
901 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
902 		 * don't need to release/reserve qgroup space.
903 		 */
904 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
905 					      total_reserved_size, 0);
906 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
907 					total_reserved_size, NULL);
908 	}
909 
910 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
911 		list_del(&curr->tree_list);
912 		btrfs_release_delayed_item(curr);
913 	}
914 
915 	return 0;
916 }
917 
918 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
919 				      struct btrfs_path *path,
920 				      struct btrfs_root *root,
921 				      struct btrfs_delayed_node *node)
922 {
923 	struct btrfs_key key;
924 	int ret = 0;
925 
926 	key.objectid = node->inode_id;
927 	key.type = BTRFS_DIR_INDEX_KEY;
928 
929 	while (ret == 0) {
930 		struct btrfs_delayed_item *item;
931 
932 		mutex_lock(&node->mutex);
933 		item = __btrfs_first_delayed_deletion_item(node);
934 		if (!item) {
935 			mutex_unlock(&node->mutex);
936 			break;
937 		}
938 
939 		key.offset = item->index;
940 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
941 		if (ret > 0) {
942 			/*
943 			 * There's no matching item in the leaf. This means we
944 			 * have already deleted this item in a past run of the
945 			 * delayed items. We ignore errors when running delayed
946 			 * items from an async context, through a work queue job
947 			 * running btrfs_async_run_delayed_root(), and don't
948 			 * release delayed items that failed to complete. This
949 			 * is because we will retry later, and at transaction
950 			 * commit time we always run delayed items and will
951 			 * then deal with errors if they fail to run again.
952 			 *
953 			 * So just release delayed items for which we can't find
954 			 * an item in the tree, and move to the next item.
955 			 */
956 			btrfs_release_path(path);
957 			btrfs_release_delayed_item(item);
958 			ret = 0;
959 		} else if (ret == 0) {
960 			ret = btrfs_batch_delete_items(trans, root, path, item);
961 			btrfs_release_path(path);
962 		}
963 
964 		/*
965 		 * We unlock and relock on each iteration, this is to prevent
966 		 * blocking other tasks for too long while we are being run from
967 		 * the async context (work queue job). Those tasks are typically
968 		 * running system calls like creat/mkdir/rename/unlink/etc which
969 		 * need to add delayed items to this delayed node.
970 		 */
971 		mutex_unlock(&node->mutex);
972 	}
973 
974 	return ret;
975 }
976 
977 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
978 {
979 	if (delayed_node &&
980 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
981 		ASSERT(delayed_node->root);
982 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
983 		delayed_node->count--;
984 		finish_one_item(&delayed_node->root->fs_info->delayed_root);
985 	}
986 }
987 
988 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
989 {
990 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
991 		ASSERT(delayed_node->root);
992 		delayed_node->count--;
993 		finish_one_item(&delayed_node->root->fs_info->delayed_root);
994 	}
995 }
996 
997 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 					struct btrfs_root *root,
999 					struct btrfs_path *path,
1000 					struct btrfs_delayed_node *node)
1001 {
1002 	struct btrfs_fs_info *fs_info = root->fs_info;
1003 	struct btrfs_key key;
1004 	struct btrfs_inode_item *inode_item;
1005 	struct extent_buffer *leaf;
1006 	int mod;
1007 	int ret;
1008 
1009 	key.objectid = node->inode_id;
1010 	key.type = BTRFS_INODE_ITEM_KEY;
1011 	key.offset = 0;
1012 
1013 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014 		mod = -1;
1015 	else
1016 		mod = 1;
1017 
1018 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1019 	if (ret > 0)
1020 		ret = -ENOENT;
1021 	if (ret < 0) {
1022 		/*
1023 		 * If we fail to update the delayed inode we need to abort the
1024 		 * transaction, because we could leave the inode with the
1025 		 * improper counts behind.
1026 		 */
1027 		if (unlikely(ret != -ENOENT))
1028 			btrfs_abort_transaction(trans, ret);
1029 		goto out;
1030 	}
1031 
1032 	leaf = path->nodes[0];
1033 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1034 				    struct btrfs_inode_item);
1035 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1036 			    sizeof(struct btrfs_inode_item));
1037 
1038 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1039 		goto out;
1040 
1041 	/*
1042 	 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1043 	 * only one ref left.  Check if the next item is an INODE_REF/EXTREF.
1044 	 *
1045 	 * But if we're the last item already, release and search for the last
1046 	 * INODE_REF/EXTREF.
1047 	 */
1048 	if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1049 		key.objectid = node->inode_id;
1050 		key.type = BTRFS_INODE_EXTREF_KEY;
1051 		key.offset = (u64)-1;
1052 
1053 		btrfs_release_path(path);
1054 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 		if (unlikely(ret < 0)) {
1056 			btrfs_abort_transaction(trans, ret);
1057 			goto err_out;
1058 		}
1059 		ASSERT(ret > 0);
1060 		ASSERT(path->slots[0] > 0);
1061 		ret = 0;
1062 		path->slots[0]--;
1063 		leaf = path->nodes[0];
1064 	} else {
1065 		path->slots[0]++;
1066 	}
1067 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1068 	if (key.objectid != node->inode_id)
1069 		goto out;
1070 	if (key.type != BTRFS_INODE_REF_KEY &&
1071 	    key.type != BTRFS_INODE_EXTREF_KEY)
1072 		goto out;
1073 
1074 	/*
1075 	 * Delayed iref deletion is for the inode who has only one link,
1076 	 * so there is only one iref. The case that several irefs are
1077 	 * in the same item doesn't exist.
1078 	 */
1079 	ret = btrfs_del_item(trans, root, path);
1080 	if (ret < 0)
1081 		btrfs_abort_transaction(trans, ret);
1082 out:
1083 	btrfs_release_delayed_iref(node);
1084 	btrfs_release_path(path);
1085 err_out:
1086 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1087 	btrfs_release_delayed_inode(node);
1088 	return ret;
1089 }
1090 
1091 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1092 					     struct btrfs_root *root,
1093 					     struct btrfs_path *path,
1094 					     struct btrfs_delayed_node *node)
1095 {
1096 	int ret;
1097 
1098 	mutex_lock(&node->mutex);
1099 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1100 		mutex_unlock(&node->mutex);
1101 		return 0;
1102 	}
1103 
1104 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1105 	mutex_unlock(&node->mutex);
1106 	return ret;
1107 }
1108 
1109 static inline int
1110 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1111 				   struct btrfs_path *path,
1112 				   struct btrfs_delayed_node *node)
1113 {
1114 	int ret;
1115 
1116 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1121 	if (ret)
1122 		return ret;
1123 
1124 	ret = btrfs_record_root_in_trans(trans, node->root);
1125 	if (ret)
1126 		return ret;
1127 
1128 	return btrfs_update_delayed_inode(trans, node->root, path, node);
1129 }
1130 
1131 /*
1132  * Called when committing the transaction.
1133  * Returns 0 on success.
1134  * Returns < 0 on error and returns with an aborted transaction with any
1135  * outstanding delayed items cleaned up.
1136  */
1137 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1138 {
1139 	struct btrfs_fs_info *fs_info = trans->fs_info;
1140 	struct btrfs_delayed_node *curr_node, *prev_node;
1141 	struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1142 	struct btrfs_path *path;
1143 	struct btrfs_block_rsv *block_rsv;
1144 	int ret = 0;
1145 	bool count = (nr > 0);
1146 
1147 	if (TRANS_ABORTED(trans))
1148 		return -EIO;
1149 
1150 	path = btrfs_alloc_path();
1151 	if (!path)
1152 		return -ENOMEM;
1153 
1154 	block_rsv = trans->block_rsv;
1155 	trans->block_rsv = &fs_info->delayed_block_rsv;
1156 
1157 	curr_node = btrfs_first_delayed_node(fs_info, &curr_delayed_node_tracker);
1158 	while (curr_node && (!count || nr--)) {
1159 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1160 							 curr_node);
1161 		if (unlikely(ret)) {
1162 			btrfs_abort_transaction(trans, ret);
1163 			break;
1164 		}
1165 
1166 		prev_node = curr_node;
1167 		prev_delayed_node_tracker = curr_delayed_node_tracker;
1168 		curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1169 		/*
1170 		 * See the comment below about releasing path before releasing
1171 		 * node. If the commit of delayed items was successful the path
1172 		 * should always be released, but in case of an error, it may
1173 		 * point to locked extent buffers (a leaf at the very least).
1174 		 */
1175 		ASSERT(path->nodes[0] == NULL);
1176 		btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1177 	}
1178 
1179 	/*
1180 	 * Release the path to avoid a potential deadlock and lockdep splat when
1181 	 * releasing the delayed node, as that requires taking the delayed node's
1182 	 * mutex. If another task starts running delayed items before we take
1183 	 * the mutex, it will first lock the mutex and then it may try to lock
1184 	 * the same btree path (leaf).
1185 	 */
1186 	btrfs_free_path(path);
1187 
1188 	if (curr_node)
1189 		btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1190 	trans->block_rsv = block_rsv;
1191 
1192 	return ret;
1193 }
1194 
1195 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1196 {
1197 	return __btrfs_run_delayed_items(trans, -1);
1198 }
1199 
1200 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1201 {
1202 	return __btrfs_run_delayed_items(trans, nr);
1203 }
1204 
1205 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1206 				     struct btrfs_inode *inode)
1207 {
1208 	struct btrfs_ref_tracker delayed_node_tracker;
1209 	struct btrfs_delayed_node *delayed_node =
1210 		btrfs_get_delayed_node(inode, &delayed_node_tracker);
1211 	BTRFS_PATH_AUTO_FREE(path);
1212 	struct btrfs_block_rsv *block_rsv;
1213 	int ret;
1214 
1215 	if (!delayed_node)
1216 		return 0;
1217 
1218 	mutex_lock(&delayed_node->mutex);
1219 	if (!delayed_node->count) {
1220 		mutex_unlock(&delayed_node->mutex);
1221 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1222 		return 0;
1223 	}
1224 	mutex_unlock(&delayed_node->mutex);
1225 
1226 	path = btrfs_alloc_path();
1227 	if (!path) {
1228 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1229 		return -ENOMEM;
1230 	}
1231 
1232 	block_rsv = trans->block_rsv;
1233 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1234 
1235 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1236 
1237 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1238 	trans->block_rsv = block_rsv;
1239 
1240 	return ret;
1241 }
1242 
1243 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1244 {
1245 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1246 	struct btrfs_trans_handle *trans;
1247 	struct btrfs_ref_tracker delayed_node_tracker;
1248 	struct btrfs_delayed_node *delayed_node;
1249 	struct btrfs_path *path;
1250 	struct btrfs_block_rsv *block_rsv;
1251 	int ret;
1252 
1253 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1254 	if (!delayed_node)
1255 		return 0;
1256 
1257 	mutex_lock(&delayed_node->mutex);
1258 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1259 		mutex_unlock(&delayed_node->mutex);
1260 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1261 		return 0;
1262 	}
1263 	mutex_unlock(&delayed_node->mutex);
1264 
1265 	trans = btrfs_join_transaction(delayed_node->root);
1266 	if (IS_ERR(trans)) {
1267 		ret = PTR_ERR(trans);
1268 		goto out;
1269 	}
1270 
1271 	path = btrfs_alloc_path();
1272 	if (!path) {
1273 		ret = -ENOMEM;
1274 		goto trans_out;
1275 	}
1276 
1277 	block_rsv = trans->block_rsv;
1278 	trans->block_rsv = &fs_info->delayed_block_rsv;
1279 
1280 	mutex_lock(&delayed_node->mutex);
1281 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1282 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1283 						   path, delayed_node);
1284 	else
1285 		ret = 0;
1286 	mutex_unlock(&delayed_node->mutex);
1287 
1288 	btrfs_free_path(path);
1289 	trans->block_rsv = block_rsv;
1290 trans_out:
1291 	btrfs_end_transaction(trans);
1292 	btrfs_btree_balance_dirty(fs_info);
1293 out:
1294 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1295 
1296 	return ret;
1297 }
1298 
1299 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1300 {
1301 	struct btrfs_delayed_node *delayed_node;
1302 
1303 	delayed_node = READ_ONCE(inode->delayed_node);
1304 	if (!delayed_node)
1305 		return;
1306 
1307 	inode->delayed_node = NULL;
1308 
1309 	btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1310 }
1311 
1312 struct btrfs_async_delayed_work {
1313 	struct btrfs_delayed_root *delayed_root;
1314 	int nr;
1315 	struct btrfs_work work;
1316 };
1317 
1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1319 {
1320 	struct btrfs_async_delayed_work *async_work;
1321 	struct btrfs_delayed_root *delayed_root;
1322 	struct btrfs_trans_handle *trans;
1323 	struct btrfs_path *path;
1324 	struct btrfs_delayed_node *delayed_node = NULL;
1325 	struct btrfs_ref_tracker delayed_node_tracker;
1326 	struct btrfs_root *root;
1327 	struct btrfs_block_rsv *block_rsv;
1328 	int total_done = 0;
1329 
1330 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1331 	delayed_root = async_work->delayed_root;
1332 
1333 	path = btrfs_alloc_path();
1334 	if (!path)
1335 		goto out;
1336 
1337 	do {
1338 		if (atomic_read(&delayed_root->items) <
1339 		    BTRFS_DELAYED_BACKGROUND / 2)
1340 			break;
1341 
1342 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1343 								 &delayed_node_tracker);
1344 		if (!delayed_node)
1345 			break;
1346 
1347 		root = delayed_node->root;
1348 
1349 		trans = btrfs_join_transaction(root);
1350 		if (IS_ERR(trans)) {
1351 			btrfs_release_path(path);
1352 			btrfs_release_prepared_delayed_node(delayed_node,
1353 							    &delayed_node_tracker);
1354 			total_done++;
1355 			continue;
1356 		}
1357 
1358 		block_rsv = trans->block_rsv;
1359 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1360 
1361 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1362 
1363 		trans->block_rsv = block_rsv;
1364 		btrfs_end_transaction(trans);
1365 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1366 
1367 		btrfs_release_path(path);
1368 		btrfs_release_prepared_delayed_node(delayed_node,
1369 						    &delayed_node_tracker);
1370 		total_done++;
1371 
1372 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1373 		 || total_done < async_work->nr);
1374 
1375 	btrfs_free_path(path);
1376 out:
1377 	wake_up(&delayed_root->wait);
1378 	kfree(async_work);
1379 }
1380 
1381 
1382 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1383 				     struct btrfs_fs_info *fs_info, int nr)
1384 {
1385 	struct btrfs_async_delayed_work *async_work;
1386 
1387 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1388 	if (!async_work)
1389 		return -ENOMEM;
1390 
1391 	async_work->delayed_root = delayed_root;
1392 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1393 	async_work->nr = nr;
1394 
1395 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1396 	return 0;
1397 }
1398 
1399 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1400 {
1401 	struct btrfs_ref_tracker delayed_node_tracker;
1402 	struct btrfs_delayed_node *node;
1403 
1404 	node = btrfs_first_delayed_node(fs_info, &delayed_node_tracker);
1405 	if (WARN_ON(node)) {
1406 		btrfs_delayed_node_ref_tracker_free(node,
1407 						    &delayed_node_tracker);
1408 		refcount_dec(&node->refs);
1409 	}
1410 }
1411 
1412 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1413 {
1414 	int val = atomic_read(&delayed_root->items_seq);
1415 
1416 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1417 		return true;
1418 
1419 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1420 		return true;
1421 
1422 	return false;
1423 }
1424 
1425 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1426 {
1427 	struct btrfs_delayed_root *delayed_root = &fs_info->delayed_root;
1428 
1429 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1430 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1431 		return;
1432 
1433 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1434 		int seq;
1435 		int ret;
1436 
1437 		seq = atomic_read(&delayed_root->items_seq);
1438 
1439 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1440 		if (ret)
1441 			return;
1442 
1443 		wait_event_interruptible(delayed_root->wait,
1444 					 could_end_wait(delayed_root, seq));
1445 		return;
1446 	}
1447 
1448 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1449 }
1450 
1451 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1452 {
1453 	struct btrfs_fs_info *fs_info = trans->fs_info;
1454 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1455 
1456 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1457 		return;
1458 
1459 	/*
1460 	 * Adding the new dir index item does not require touching another
1461 	 * leaf, so we can release 1 unit of metadata that was previously
1462 	 * reserved when starting the transaction. This applies only to
1463 	 * the case where we had a transaction start and excludes the
1464 	 * transaction join case (when replaying log trees).
1465 	 */
1466 	trace_btrfs_space_reservation(fs_info, "transaction",
1467 				      trans->transid, bytes, 0);
1468 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1469 	ASSERT(trans->bytes_reserved >= bytes);
1470 	trans->bytes_reserved -= bytes;
1471 }
1472 
1473 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1474 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1475 				   const char *name, int name_len,
1476 				   struct btrfs_inode *dir,
1477 				   const struct btrfs_disk_key *disk_key, u8 flags,
1478 				   u64 index)
1479 {
1480 	struct btrfs_fs_info *fs_info = trans->fs_info;
1481 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1482 	struct btrfs_delayed_node *delayed_node;
1483 	struct btrfs_ref_tracker delayed_node_tracker;
1484 	struct btrfs_delayed_item *delayed_item;
1485 	struct btrfs_dir_item *dir_item;
1486 	bool reserve_leaf_space;
1487 	u32 data_len;
1488 	int ret;
1489 
1490 	delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1491 	if (IS_ERR(delayed_node))
1492 		return PTR_ERR(delayed_node);
1493 
1494 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1495 						delayed_node,
1496 						BTRFS_DELAYED_INSERTION_ITEM);
1497 	if (!delayed_item) {
1498 		ret = -ENOMEM;
1499 		goto release_node;
1500 	}
1501 
1502 	delayed_item->index = index;
1503 
1504 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1505 	dir_item->location = *disk_key;
1506 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1507 	btrfs_set_stack_dir_data_len(dir_item, 0);
1508 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1509 	btrfs_set_stack_dir_flags(dir_item, flags);
1510 	memcpy((char *)(dir_item + 1), name, name_len);
1511 
1512 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1513 
1514 	mutex_lock(&delayed_node->mutex);
1515 
1516 	/*
1517 	 * First attempt to insert the delayed item. This is to make the error
1518 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1519 	 * any other task coming in and running the delayed item before we do
1520 	 * the metadata space reservation below, because we are holding the
1521 	 * delayed node's mutex and that mutex must also be locked before the
1522 	 * node's delayed items can be run.
1523 	 */
1524 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1525 	if (unlikely(ret)) {
1526 		btrfs_err(trans->fs_info,
1527 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1528 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1529 			  delayed_node->inode_id, dir->index_cnt,
1530 			  delayed_node->index_cnt, ret);
1531 		btrfs_release_delayed_item(delayed_item);
1532 		btrfs_release_dir_index_item_space(trans);
1533 		mutex_unlock(&delayed_node->mutex);
1534 		goto release_node;
1535 	}
1536 
1537 	if (delayed_node->index_item_leaves == 0 ||
1538 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1539 		delayed_node->curr_index_batch_size = data_len;
1540 		reserve_leaf_space = true;
1541 	} else {
1542 		delayed_node->curr_index_batch_size += data_len;
1543 		reserve_leaf_space = false;
1544 	}
1545 
1546 	if (reserve_leaf_space) {
1547 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1548 		/*
1549 		 * Space was reserved for a dir index item insertion when we
1550 		 * started the transaction, so getting a failure here should be
1551 		 * impossible.
1552 		 */
1553 		if (WARN_ON(ret)) {
1554 			btrfs_release_delayed_item(delayed_item);
1555 			mutex_unlock(&delayed_node->mutex);
1556 			goto release_node;
1557 		}
1558 
1559 		delayed_node->index_item_leaves++;
1560 	} else {
1561 		btrfs_release_dir_index_item_space(trans);
1562 	}
1563 	mutex_unlock(&delayed_node->mutex);
1564 
1565 release_node:
1566 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1567 	return ret;
1568 }
1569 
1570 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1571 						u64 index)
1572 {
1573 	struct btrfs_delayed_item *item;
1574 
1575 	mutex_lock(&node->mutex);
1576 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1577 	if (!item) {
1578 		mutex_unlock(&node->mutex);
1579 		return false;
1580 	}
1581 
1582 	/*
1583 	 * For delayed items to insert, we track reserved metadata bytes based
1584 	 * on the number of leaves that we will use.
1585 	 * See btrfs_insert_delayed_dir_index() and
1586 	 * btrfs_delayed_item_reserve_metadata()).
1587 	 */
1588 	ASSERT(item->bytes_reserved == 0);
1589 	ASSERT(node->index_item_leaves > 0);
1590 
1591 	/*
1592 	 * If there's only one leaf reserved, we can decrement this item from the
1593 	 * current batch, otherwise we can not because we don't know which leaf
1594 	 * it belongs to. With the current limit on delayed items, we rarely
1595 	 * accumulate enough dir index items to fill more than one leaf (even
1596 	 * when using a leaf size of 4K).
1597 	 */
1598 	if (node->index_item_leaves == 1) {
1599 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1600 
1601 		ASSERT(node->curr_index_batch_size >= data_len);
1602 		node->curr_index_batch_size -= data_len;
1603 	}
1604 
1605 	btrfs_release_delayed_item(item);
1606 
1607 	/* If we now have no more dir index items, we can release all leaves. */
1608 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1609 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1610 		node->index_item_leaves = 0;
1611 	}
1612 
1613 	mutex_unlock(&node->mutex);
1614 	return true;
1615 }
1616 
1617 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1618 				   struct btrfs_inode *dir, u64 index)
1619 {
1620 	struct btrfs_delayed_node *node;
1621 	struct btrfs_ref_tracker delayed_node_tracker;
1622 	struct btrfs_delayed_item *item;
1623 	int ret;
1624 
1625 	node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1626 	if (IS_ERR(node))
1627 		return PTR_ERR(node);
1628 
1629 	if (btrfs_delete_delayed_insertion_item(node, index)) {
1630 		ret = 0;
1631 		goto end;
1632 	}
1633 
1634 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1635 	if (!item) {
1636 		ret = -ENOMEM;
1637 		goto end;
1638 	}
1639 
1640 	item->index = index;
1641 
1642 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1643 	/*
1644 	 * we have reserved enough space when we start a new transaction,
1645 	 * so reserving metadata failure is impossible.
1646 	 */
1647 	if (ret < 0) {
1648 		btrfs_err(trans->fs_info,
1649 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1650 			  index, btrfs_root_id(node->root), node->inode_id, ret);
1651 		btrfs_release_delayed_item(item);
1652 		goto end;
1653 	}
1654 
1655 	mutex_lock(&node->mutex);
1656 	ret = __btrfs_add_delayed_item(node, item);
1657 	if (unlikely(ret)) {
1658 		btrfs_err(trans->fs_info,
1659 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1660 			  index, btrfs_root_id(node->root), node->inode_id, ret);
1661 		btrfs_delayed_item_release_metadata(dir->root, item);
1662 		btrfs_release_delayed_item(item);
1663 	}
1664 	mutex_unlock(&node->mutex);
1665 end:
1666 	btrfs_release_delayed_node(node, &delayed_node_tracker);
1667 	return ret;
1668 }
1669 
1670 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1671 {
1672 	struct btrfs_ref_tracker delayed_node_tracker;
1673 	struct btrfs_delayed_node *delayed_node;
1674 
1675 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1676 	if (!delayed_node)
1677 		return -ENOENT;
1678 
1679 	/*
1680 	 * Since we have held i_mutex of this directory, it is impossible that
1681 	 * a new directory index is added into the delayed node and index_cnt
1682 	 * is updated now. So we needn't lock the delayed node.
1683 	 */
1684 	if (!delayed_node->index_cnt) {
1685 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1686 		return -EINVAL;
1687 	}
1688 
1689 	inode->index_cnt = delayed_node->index_cnt;
1690 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1691 	return 0;
1692 }
1693 
1694 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1695 				     u64 last_index,
1696 				     struct list_head *ins_list,
1697 				     struct list_head *del_list)
1698 {
1699 	struct btrfs_delayed_node *delayed_node;
1700 	struct btrfs_delayed_item *item;
1701 	struct btrfs_ref_tracker delayed_node_tracker;
1702 
1703 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1704 	if (!delayed_node)
1705 		return false;
1706 
1707 	/*
1708 	 * We can only do one readdir with delayed items at a time because of
1709 	 * item->readdir_list.
1710 	 */
1711 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1712 	btrfs_inode_lock(inode, 0);
1713 
1714 	mutex_lock(&delayed_node->mutex);
1715 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1716 	while (item && item->index <= last_index) {
1717 		refcount_inc(&item->refs);
1718 		list_add_tail(&item->readdir_list, ins_list);
1719 		item = __btrfs_next_delayed_item(item);
1720 	}
1721 
1722 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1723 	while (item && item->index <= last_index) {
1724 		refcount_inc(&item->refs);
1725 		list_add_tail(&item->readdir_list, del_list);
1726 		item = __btrfs_next_delayed_item(item);
1727 	}
1728 	mutex_unlock(&delayed_node->mutex);
1729 	/*
1730 	 * This delayed node is still cached in the btrfs inode, so refs
1731 	 * must be > 1 now, and we needn't check it is going to be freed
1732 	 * or not.
1733 	 *
1734 	 * Besides that, this function is used to read dir, we do not
1735 	 * insert/delete delayed items in this period. So we also needn't
1736 	 * requeue or dequeue this delayed node.
1737 	 */
1738 	btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1739 	refcount_dec(&delayed_node->refs);
1740 
1741 	return true;
1742 }
1743 
1744 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1745 				     struct list_head *ins_list,
1746 				     struct list_head *del_list)
1747 {
1748 	struct btrfs_delayed_item *curr, *next;
1749 
1750 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1751 		list_del(&curr->readdir_list);
1752 		if (refcount_dec_and_test(&curr->refs))
1753 			kfree(curr);
1754 	}
1755 
1756 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1757 		list_del(&curr->readdir_list);
1758 		if (refcount_dec_and_test(&curr->refs))
1759 			kfree(curr);
1760 	}
1761 
1762 	/*
1763 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1764 	 * read lock.
1765 	 */
1766 	downgrade_write(&inode->vfs_inode.i_rwsem);
1767 }
1768 
1769 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1770 {
1771 	struct btrfs_delayed_item *curr;
1772 	bool ret = false;
1773 
1774 	list_for_each_entry(curr, del_list, readdir_list) {
1775 		if (curr->index > index)
1776 			break;
1777 		if (curr->index == index) {
1778 			ret = true;
1779 			break;
1780 		}
1781 	}
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Read dir info stored in the delayed tree.
1787  */
1788 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1789 				     const struct list_head *ins_list)
1790 {
1791 	struct btrfs_dir_item *di;
1792 	struct btrfs_delayed_item *curr, *next;
1793 	struct btrfs_key location;
1794 	char *name;
1795 	int name_len;
1796 	unsigned char d_type;
1797 
1798 	/*
1799 	 * Changing the data of the delayed item is impossible. So
1800 	 * we needn't lock them. And we have held i_mutex of the
1801 	 * directory, nobody can delete any directory indexes now.
1802 	 */
1803 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1804 		bool over;
1805 
1806 		list_del(&curr->readdir_list);
1807 
1808 		if (curr->index < ctx->pos) {
1809 			if (refcount_dec_and_test(&curr->refs))
1810 				kfree(curr);
1811 			continue;
1812 		}
1813 
1814 		ctx->pos = curr->index;
1815 
1816 		di = (struct btrfs_dir_item *)curr->data;
1817 		name = (char *)(di + 1);
1818 		name_len = btrfs_stack_dir_name_len(di);
1819 
1820 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1821 		btrfs_disk_key_to_cpu(&location, &di->location);
1822 
1823 		over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1824 
1825 		if (refcount_dec_and_test(&curr->refs))
1826 			kfree(curr);
1827 
1828 		if (over)
1829 			return true;
1830 		ctx->pos++;
1831 	}
1832 	return false;
1833 }
1834 
1835 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1836 				  struct btrfs_inode_item *inode_item,
1837 				  struct btrfs_inode *inode)
1838 {
1839 	struct inode *vfs_inode = &inode->vfs_inode;
1840 	u64 flags;
1841 
1842 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1843 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1844 	btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1845 	btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1846 	btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1847 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1848 	btrfs_set_stack_inode_generation(inode_item, inode->generation);
1849 	btrfs_set_stack_inode_sequence(inode_item,
1850 				       inode_peek_iversion(vfs_inode));
1851 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1852 	btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1853 	flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1854 	btrfs_set_stack_inode_flags(inode_item, flags);
1855 	btrfs_set_stack_inode_block_group(inode_item, 0);
1856 
1857 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1858 				     inode_get_atime_sec(vfs_inode));
1859 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1860 				      inode_get_atime_nsec(vfs_inode));
1861 
1862 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1863 				     inode_get_mtime_sec(vfs_inode));
1864 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1865 				      inode_get_mtime_nsec(vfs_inode));
1866 
1867 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1868 				     inode_get_ctime_sec(vfs_inode));
1869 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1870 				      inode_get_ctime_nsec(vfs_inode));
1871 
1872 	btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1873 	btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1874 }
1875 
1876 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1877 {
1878 	struct btrfs_delayed_node *delayed_node;
1879 	struct btrfs_ref_tracker delayed_node_tracker;
1880 	struct btrfs_inode_item *inode_item;
1881 	struct inode *vfs_inode = &inode->vfs_inode;
1882 
1883 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1884 	if (!delayed_node)
1885 		return -ENOENT;
1886 
1887 	mutex_lock(&delayed_node->mutex);
1888 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1889 		mutex_unlock(&delayed_node->mutex);
1890 		btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1891 		return -ENOENT;
1892 	}
1893 
1894 	inode_item = &delayed_node->inode_item;
1895 
1896 	i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1897 	i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1898 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1899 	vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1900 	set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1901 	inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1902 	inode->generation = btrfs_stack_inode_generation(inode_item);
1903 	inode->last_trans = btrfs_stack_inode_transid(inode_item);
1904 
1905 	inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1906 	vfs_inode->i_rdev = 0;
1907 	*rdev = btrfs_stack_inode_rdev(inode_item);
1908 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1909 				&inode->flags, &inode->ro_flags);
1910 
1911 	inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1912 			btrfs_stack_timespec_nsec(&inode_item->atime));
1913 
1914 	inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1915 			btrfs_stack_timespec_nsec(&inode_item->mtime));
1916 
1917 	inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1918 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1919 
1920 	inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1921 	inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1922 
1923 	vfs_inode->i_generation = inode->generation;
1924 	if (S_ISDIR(vfs_inode->i_mode))
1925 		inode->index_cnt = (u64)-1;
1926 
1927 	mutex_unlock(&delayed_node->mutex);
1928 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1929 	return 0;
1930 }
1931 
1932 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1933 			       struct btrfs_inode *inode)
1934 {
1935 	struct btrfs_root *root = inode->root;
1936 	struct btrfs_delayed_node *delayed_node;
1937 	struct btrfs_ref_tracker delayed_node_tracker;
1938 	int ret = 0;
1939 
1940 	delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1941 	if (IS_ERR(delayed_node))
1942 		return PTR_ERR(delayed_node);
1943 
1944 	mutex_lock(&delayed_node->mutex);
1945 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1946 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1947 		goto release_node;
1948 	}
1949 
1950 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1951 	if (ret)
1952 		goto release_node;
1953 
1954 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1955 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1956 	delayed_node->count++;
1957 	atomic_inc(&root->fs_info->delayed_root.items);
1958 release_node:
1959 	mutex_unlock(&delayed_node->mutex);
1960 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1961 	return ret;
1962 }
1963 
1964 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1965 {
1966 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1967 	struct btrfs_delayed_node *delayed_node;
1968 	struct btrfs_ref_tracker delayed_node_tracker;
1969 
1970 	/*
1971 	 * we don't do delayed inode updates during log recovery because it
1972 	 * leads to enospc problems.  This means we also can't do
1973 	 * delayed inode refs
1974 	 */
1975 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1976 		return -EAGAIN;
1977 
1978 	delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1979 	if (IS_ERR(delayed_node))
1980 		return PTR_ERR(delayed_node);
1981 
1982 	/*
1983 	 * We don't reserve space for inode ref deletion is because:
1984 	 * - We ONLY do async inode ref deletion for the inode who has only
1985 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1986 	 *   And in most case, the inode ref and the inode item are in the
1987 	 *   same leaf, and we will deal with them at the same time.
1988 	 *   Since we are sure we will reserve the space for the inode item,
1989 	 *   it is unnecessary to reserve space for inode ref deletion.
1990 	 * - If the inode ref and the inode item are not in the same leaf,
1991 	 *   We also needn't worry about enospc problem, because we reserve
1992 	 *   much more space for the inode update than it needs.
1993 	 * - At the worst, we can steal some space from the global reservation.
1994 	 *   It is very rare.
1995 	 */
1996 	mutex_lock(&delayed_node->mutex);
1997 	if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1998 		delayed_node->count++;
1999 		atomic_inc(&fs_info->delayed_root.items);
2000 	}
2001 	mutex_unlock(&delayed_node->mutex);
2002 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2003 	return 0;
2004 }
2005 
2006 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2007 {
2008 	struct btrfs_root *root = delayed_node->root;
2009 	struct btrfs_fs_info *fs_info = root->fs_info;
2010 	struct btrfs_delayed_item *curr_item, *prev_item;
2011 
2012 	mutex_lock(&delayed_node->mutex);
2013 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2014 	while (curr_item) {
2015 		prev_item = curr_item;
2016 		curr_item = __btrfs_next_delayed_item(prev_item);
2017 		btrfs_release_delayed_item(prev_item);
2018 	}
2019 
2020 	if (delayed_node->index_item_leaves > 0) {
2021 		btrfs_delayed_item_release_leaves(delayed_node,
2022 					  delayed_node->index_item_leaves);
2023 		delayed_node->index_item_leaves = 0;
2024 	}
2025 
2026 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2027 	while (curr_item) {
2028 		btrfs_delayed_item_release_metadata(root, curr_item);
2029 		prev_item = curr_item;
2030 		curr_item = __btrfs_next_delayed_item(prev_item);
2031 		btrfs_release_delayed_item(prev_item);
2032 	}
2033 
2034 	btrfs_release_delayed_iref(delayed_node);
2035 
2036 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2037 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2038 		btrfs_release_delayed_inode(delayed_node);
2039 	}
2040 	mutex_unlock(&delayed_node->mutex);
2041 }
2042 
2043 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2044 {
2045 	struct btrfs_delayed_node *delayed_node;
2046 	struct btrfs_ref_tracker delayed_node_tracker;
2047 
2048 	delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2049 	if (!delayed_node)
2050 		return;
2051 
2052 	__btrfs_kill_delayed_node(delayed_node);
2053 	btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2054 }
2055 
2056 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2057 {
2058 	unsigned long index = 0;
2059 	struct btrfs_delayed_node *delayed_nodes[8];
2060 	struct btrfs_ref_tracker delayed_node_trackers[8];
2061 
2062 	while (1) {
2063 		struct btrfs_delayed_node *node;
2064 		int count;
2065 
2066 		xa_lock(&root->delayed_nodes);
2067 		if (xa_empty(&root->delayed_nodes)) {
2068 			xa_unlock(&root->delayed_nodes);
2069 			return;
2070 		}
2071 
2072 		count = 0;
2073 		xa_for_each_start(&root->delayed_nodes, index, node, index) {
2074 			/*
2075 			 * Don't increase refs in case the node is dead and
2076 			 * about to be removed from the tree in the loop below
2077 			 */
2078 			if (refcount_inc_not_zero(&node->refs)) {
2079 				btrfs_delayed_node_ref_tracker_alloc(node,
2080 						     &delayed_node_trackers[count],
2081 						     GFP_ATOMIC);
2082 				delayed_nodes[count] = node;
2083 				count++;
2084 			}
2085 			if (count >= ARRAY_SIZE(delayed_nodes))
2086 				break;
2087 		}
2088 		xa_unlock(&root->delayed_nodes);
2089 		index++;
2090 
2091 		for (int i = 0; i < count; i++) {
2092 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2093 			btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2094 			btrfs_release_delayed_node(delayed_nodes[i],
2095 						   &delayed_node_trackers[i]);
2096 		}
2097 	}
2098 }
2099 
2100 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2101 {
2102 	struct btrfs_delayed_node *curr_node, *prev_node;
2103 	struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2104 
2105 	curr_node = btrfs_first_delayed_node(fs_info, &curr_delayed_node_tracker);
2106 	while (curr_node) {
2107 		__btrfs_kill_delayed_node(curr_node);
2108 
2109 		prev_node = curr_node;
2110 		prev_delayed_node_tracker = curr_delayed_node_tracker;
2111 		curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2112 		btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2113 	}
2114 }
2115 
2116 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2117 				 struct list_head *ins_list,
2118 				 struct list_head *del_list)
2119 {
2120 	struct btrfs_delayed_node *node;
2121 	struct btrfs_delayed_item *item;
2122 	struct btrfs_ref_tracker delayed_node_tracker;
2123 
2124 	node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2125 	if (!node)
2126 		return;
2127 
2128 	mutex_lock(&node->mutex);
2129 	item = __btrfs_first_delayed_insertion_item(node);
2130 	while (item) {
2131 		/*
2132 		 * It's possible that the item is already in a log list. This
2133 		 * can happen in case two tasks are trying to log the same
2134 		 * directory. For example if we have tasks A and task B:
2135 		 *
2136 		 * Task A collected the delayed items into a log list while
2137 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2138 		 * only releases the items after logging the inodes they point
2139 		 * to (if they are new inodes), which happens after unlocking
2140 		 * the log mutex;
2141 		 *
2142 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2143 		 * of the same directory inode, before task B releases the
2144 		 * delayed items. This can happen for example when logging some
2145 		 * inode we need to trigger logging of its parent directory, so
2146 		 * logging two files that have the same parent directory can
2147 		 * lead to this.
2148 		 *
2149 		 * If this happens, just ignore delayed items already in a log
2150 		 * list. All the tasks logging the directory are under a log
2151 		 * transaction and whichever finishes first can not sync the log
2152 		 * before the other completes and leaves the log transaction.
2153 		 */
2154 		if (!item->logged && list_empty(&item->log_list)) {
2155 			refcount_inc(&item->refs);
2156 			list_add_tail(&item->log_list, ins_list);
2157 		}
2158 		item = __btrfs_next_delayed_item(item);
2159 	}
2160 
2161 	item = __btrfs_first_delayed_deletion_item(node);
2162 	while (item) {
2163 		/* It may be non-empty, for the same reason mentioned above. */
2164 		if (!item->logged && list_empty(&item->log_list)) {
2165 			refcount_inc(&item->refs);
2166 			list_add_tail(&item->log_list, del_list);
2167 		}
2168 		item = __btrfs_next_delayed_item(item);
2169 	}
2170 	mutex_unlock(&node->mutex);
2171 
2172 	/*
2173 	 * We are called during inode logging, which means the inode is in use
2174 	 * and can not be evicted before we finish logging the inode. So we never
2175 	 * have the last reference on the delayed inode.
2176 	 * Also, we don't use btrfs_release_delayed_node() because that would
2177 	 * requeue the delayed inode (change its order in the list of prepared
2178 	 * nodes) and we don't want to do such change because we don't create or
2179 	 * delete delayed items.
2180 	 */
2181 	ASSERT(refcount_read(&node->refs) > 1);
2182 	btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2183 	refcount_dec(&node->refs);
2184 }
2185 
2186 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2187 				 struct list_head *ins_list,
2188 				 struct list_head *del_list)
2189 {
2190 	struct btrfs_delayed_node *node;
2191 	struct btrfs_delayed_item *item;
2192 	struct btrfs_delayed_item *next;
2193 	struct btrfs_ref_tracker delayed_node_tracker;
2194 
2195 	node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2196 	if (!node)
2197 		return;
2198 
2199 	mutex_lock(&node->mutex);
2200 
2201 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2202 		item->logged = true;
2203 		list_del_init(&item->log_list);
2204 		if (refcount_dec_and_test(&item->refs))
2205 			kfree(item);
2206 	}
2207 
2208 	list_for_each_entry_safe(item, next, del_list, log_list) {
2209 		item->logged = true;
2210 		list_del_init(&item->log_list);
2211 		if (refcount_dec_and_test(&item->refs))
2212 			kfree(item);
2213 	}
2214 
2215 	mutex_unlock(&node->mutex);
2216 
2217 	/*
2218 	 * We are called during inode logging, which means the inode is in use
2219 	 * and can not be evicted before we finish logging the inode. So we never
2220 	 * have the last reference on the delayed inode.
2221 	 * Also, we don't use btrfs_release_delayed_node() because that would
2222 	 * requeue the delayed inode (change its order in the list of prepared
2223 	 * nodes) and we don't want to do such change because we don't create or
2224 	 * delete delayed items.
2225 	 */
2226 	ASSERT(refcount_read(&node->refs) > 1);
2227 	btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2228 	refcount_dec(&node->refs);
2229 }
2230