1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0); 32 if (!delayed_node_cache) 33 return -ENOMEM; 34 return 0; 35 } 36 37 void __cold btrfs_delayed_inode_exit(void) 38 { 39 kmem_cache_destroy(delayed_node_cache); 40 } 41 42 void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root) 43 { 44 atomic_set(&delayed_root->items, 0); 45 atomic_set(&delayed_root->items_seq, 0); 46 delayed_root->nodes = 0; 47 spin_lock_init(&delayed_root->lock); 48 init_waitqueue_head(&delayed_root->wait); 49 INIT_LIST_HEAD(&delayed_root->node_list); 50 INIT_LIST_HEAD(&delayed_root->prepare_list); 51 } 52 53 static inline void btrfs_init_delayed_node( 54 struct btrfs_delayed_node *delayed_node, 55 struct btrfs_root *root, u64 inode_id) 56 { 57 delayed_node->root = root; 58 delayed_node->inode_id = inode_id; 59 refcount_set(&delayed_node->refs, 0); 60 btrfs_delayed_node_ref_tracker_dir_init(delayed_node); 61 delayed_node->ins_root = RB_ROOT_CACHED; 62 delayed_node->del_root = RB_ROOT_CACHED; 63 mutex_init(&delayed_node->mutex); 64 INIT_LIST_HEAD(&delayed_node->n_list); 65 INIT_LIST_HEAD(&delayed_node->p_list); 66 } 67 68 static struct btrfs_delayed_node *btrfs_get_delayed_node( 69 struct btrfs_inode *btrfs_inode, 70 struct btrfs_ref_tracker *tracker) 71 { 72 struct btrfs_root *root = btrfs_inode->root; 73 u64 ino = btrfs_ino(btrfs_inode); 74 struct btrfs_delayed_node *node; 75 76 node = READ_ONCE(btrfs_inode->delayed_node); 77 if (node) { 78 refcount_inc(&node->refs); 79 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS); 80 return node; 81 } 82 83 xa_lock(&root->delayed_nodes); 84 node = xa_load(&root->delayed_nodes, ino); 85 86 if (node) { 87 if (btrfs_inode->delayed_node) { 88 refcount_inc(&node->refs); /* can be accessed */ 89 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 90 BUG_ON(btrfs_inode->delayed_node != node); 91 xa_unlock(&root->delayed_nodes); 92 return node; 93 } 94 95 /* 96 * It's possible that we're racing into the middle of removing 97 * this node from the xarray. In this case, the refcount 98 * was zero and it should never go back to one. Just return 99 * NULL like it was never in the xarray at all; our release 100 * function is in the process of removing it. 101 * 102 * Some implementations of refcount_inc refuse to bump the 103 * refcount once it has hit zero. If we don't do this dance 104 * here, refcount_inc() may decide to just WARN_ONCE() instead 105 * of actually bumping the refcount. 106 * 107 * If this node is properly in the xarray, we want to bump the 108 * refcount twice, once for the inode and once for this get 109 * operation. 110 */ 111 if (refcount_inc_not_zero(&node->refs)) { 112 refcount_inc(&node->refs); 113 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 114 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, 115 GFP_ATOMIC); 116 btrfs_inode->delayed_node = node; 117 } else { 118 node = NULL; 119 } 120 121 xa_unlock(&root->delayed_nodes); 122 return node; 123 } 124 xa_unlock(&root->delayed_nodes); 125 126 return NULL; 127 } 128 129 /* 130 * Look up an existing delayed node associated with @btrfs_inode or create a new 131 * one and insert it to the delayed nodes of the root. 132 * 133 * Return the delayed node, or error pointer on failure. 134 */ 135 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 136 struct btrfs_inode *btrfs_inode, 137 struct btrfs_ref_tracker *tracker) 138 { 139 struct btrfs_delayed_node *node; 140 struct btrfs_root *root = btrfs_inode->root; 141 u64 ino = btrfs_ino(btrfs_inode); 142 int ret; 143 void *ptr; 144 145 again: 146 node = btrfs_get_delayed_node(btrfs_inode, tracker); 147 if (node) 148 return node; 149 150 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 151 if (!node) 152 return ERR_PTR(-ENOMEM); 153 btrfs_init_delayed_node(node, root, ino); 154 155 /* Cached in the inode and can be accessed. */ 156 refcount_set(&node->refs, 2); 157 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS); 158 btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_NOFS); 159 160 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */ 161 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS); 162 if (ret == -ENOMEM) 163 goto cleanup; 164 165 xa_lock(&root->delayed_nodes); 166 ptr = xa_load(&root->delayed_nodes, ino); 167 if (ptr) { 168 /* Somebody inserted it, go back and read it. */ 169 xa_unlock(&root->delayed_nodes); 170 goto cleanup; 171 } 172 ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC); 173 ASSERT(xa_err(ptr) != -EINVAL); 174 ASSERT(xa_err(ptr) != -ENOMEM); 175 ASSERT(ptr == NULL); 176 btrfs_inode->delayed_node = node; 177 xa_unlock(&root->delayed_nodes); 178 179 return node; 180 cleanup: 181 btrfs_delayed_node_ref_tracker_free(node, tracker); 182 btrfs_delayed_node_ref_tracker_free(node, &node->inode_cache_tracker); 183 btrfs_delayed_node_ref_tracker_dir_exit(node); 184 kmem_cache_free(delayed_node_cache, node); 185 if (ret) 186 return ERR_PTR(ret); 187 goto again; 188 } 189 190 /* 191 * Call it when holding delayed_node->mutex 192 * 193 * If mod = 1, add this node into the prepared list. 194 */ 195 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 196 struct btrfs_delayed_node *node, 197 int mod) 198 { 199 spin_lock(&root->lock); 200 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 201 if (!list_empty(&node->p_list)) 202 list_move_tail(&node->p_list, &root->prepare_list); 203 else if (mod) 204 list_add_tail(&node->p_list, &root->prepare_list); 205 } else { 206 list_add_tail(&node->n_list, &root->node_list); 207 list_add_tail(&node->p_list, &root->prepare_list); 208 refcount_inc(&node->refs); /* inserted into list */ 209 btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker, 210 GFP_ATOMIC); 211 root->nodes++; 212 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 213 } 214 spin_unlock(&root->lock); 215 } 216 217 /* Call it when holding delayed_node->mutex */ 218 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 219 struct btrfs_delayed_node *node) 220 { 221 spin_lock(&root->lock); 222 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 223 root->nodes--; 224 btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker); 225 refcount_dec(&node->refs); /* not in the list */ 226 list_del_init(&node->n_list); 227 if (!list_empty(&node->p_list)) 228 list_del_init(&node->p_list); 229 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 230 } 231 spin_unlock(&root->lock); 232 } 233 234 static struct btrfs_delayed_node *btrfs_first_delayed_node( 235 struct btrfs_fs_info *fs_info, 236 struct btrfs_ref_tracker *tracker) 237 { 238 struct btrfs_delayed_node *node; 239 240 spin_lock(&fs_info->delayed_root.lock); 241 node = list_first_entry_or_null(&fs_info->delayed_root.node_list, 242 struct btrfs_delayed_node, n_list); 243 if (node) { 244 refcount_inc(&node->refs); 245 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 246 } 247 spin_unlock(&fs_info->delayed_root.lock); 248 249 return node; 250 } 251 252 static struct btrfs_delayed_node *btrfs_next_delayed_node( 253 struct btrfs_delayed_node *node, 254 struct btrfs_ref_tracker *tracker) 255 { 256 struct btrfs_delayed_root *delayed_root; 257 struct list_head *p; 258 struct btrfs_delayed_node *next = NULL; 259 260 delayed_root = &node->root->fs_info->delayed_root; 261 spin_lock(&delayed_root->lock); 262 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 263 /* not in the list */ 264 if (list_empty(&delayed_root->node_list)) 265 goto out; 266 p = delayed_root->node_list.next; 267 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 268 goto out; 269 else 270 p = node->n_list.next; 271 272 next = list_entry(p, struct btrfs_delayed_node, n_list); 273 refcount_inc(&next->refs); 274 btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC); 275 out: 276 spin_unlock(&delayed_root->lock); 277 278 return next; 279 } 280 281 static void __btrfs_release_delayed_node( 282 struct btrfs_delayed_node *delayed_node, 283 int mod, struct btrfs_ref_tracker *tracker) 284 { 285 struct btrfs_delayed_root *delayed_root; 286 287 if (!delayed_node) 288 return; 289 290 delayed_root = &delayed_node->root->fs_info->delayed_root; 291 292 mutex_lock(&delayed_node->mutex); 293 if (delayed_node->count) 294 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 295 else 296 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 297 mutex_unlock(&delayed_node->mutex); 298 299 btrfs_delayed_node_ref_tracker_free(delayed_node, tracker); 300 if (refcount_dec_and_test(&delayed_node->refs)) { 301 struct btrfs_root *root = delayed_node->root; 302 303 xa_erase(&root->delayed_nodes, delayed_node->inode_id); 304 /* 305 * Once our refcount goes to zero, nobody is allowed to bump it 306 * back up. We can delete it now. 307 */ 308 ASSERT(refcount_read(&delayed_node->refs) == 0); 309 btrfs_delayed_node_ref_tracker_dir_exit(delayed_node); 310 kmem_cache_free(delayed_node_cache, delayed_node); 311 } 312 } 313 314 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node, 315 struct btrfs_ref_tracker *tracker) 316 { 317 __btrfs_release_delayed_node(node, 0, tracker); 318 } 319 320 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 321 struct btrfs_delayed_root *delayed_root, 322 struct btrfs_ref_tracker *tracker) 323 { 324 struct btrfs_delayed_node *node; 325 326 spin_lock(&delayed_root->lock); 327 node = list_first_entry_or_null(&delayed_root->prepare_list, 328 struct btrfs_delayed_node, p_list); 329 if (node) { 330 list_del_init(&node->p_list); 331 refcount_inc(&node->refs); 332 btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC); 333 } 334 spin_unlock(&delayed_root->lock); 335 336 return node; 337 } 338 339 static inline void btrfs_release_prepared_delayed_node( 340 struct btrfs_delayed_node *node, 341 struct btrfs_ref_tracker *tracker) 342 { 343 __btrfs_release_delayed_node(node, 1, tracker); 344 } 345 346 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 347 struct btrfs_delayed_node *node, 348 enum btrfs_delayed_item_type type) 349 { 350 struct btrfs_delayed_item *item; 351 352 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 353 if (item) { 354 item->data_len = data_len; 355 item->type = type; 356 item->bytes_reserved = 0; 357 item->delayed_node = node; 358 RB_CLEAR_NODE(&item->rb_node); 359 INIT_LIST_HEAD(&item->log_list); 360 item->logged = false; 361 refcount_set(&item->refs, 1); 362 } 363 return item; 364 } 365 366 static int delayed_item_index_cmp(const void *key, const struct rb_node *node) 367 { 368 const u64 *index = key; 369 const struct btrfs_delayed_item *delayed_item = rb_entry(node, 370 struct btrfs_delayed_item, rb_node); 371 372 if (delayed_item->index < *index) 373 return 1; 374 else if (delayed_item->index > *index) 375 return -1; 376 377 return 0; 378 } 379 380 /* 381 * Look up the delayed item by key. 382 * 383 * @delayed_node: pointer to the delayed node 384 * @index: the dir index value to lookup (offset of a dir index key) 385 * 386 * Note: if we don't find the right item, we will return the prev item and 387 * the next item. 388 */ 389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 390 struct rb_root *root, 391 u64 index) 392 { 393 struct rb_node *node; 394 395 node = rb_find(&index, root, delayed_item_index_cmp); 396 return rb_entry_safe(node, struct btrfs_delayed_item, rb_node); 397 } 398 399 static int btrfs_delayed_item_cmp(const struct rb_node *new, 400 const struct rb_node *exist) 401 { 402 const struct btrfs_delayed_item *new_item = 403 rb_entry(new, struct btrfs_delayed_item, rb_node); 404 405 return delayed_item_index_cmp(&new_item->index, exist); 406 } 407 408 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 409 struct btrfs_delayed_item *ins) 410 { 411 struct rb_root_cached *root; 412 struct rb_node *exist; 413 414 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 415 root = &delayed_node->ins_root; 416 else 417 root = &delayed_node->del_root; 418 419 exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp); 420 if (exist) 421 return -EEXIST; 422 423 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 424 ins->index >= delayed_node->index_cnt) 425 delayed_node->index_cnt = ins->index + 1; 426 427 delayed_node->count++; 428 atomic_inc(&delayed_node->root->fs_info->delayed_root.items); 429 return 0; 430 } 431 432 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 433 { 434 int seq = atomic_inc_return(&delayed_root->items_seq); 435 436 /* atomic_dec_return implies a barrier */ 437 if ((atomic_dec_return(&delayed_root->items) < 438 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 439 cond_wake_up_nomb(&delayed_root->wait); 440 } 441 442 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 443 { 444 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 445 struct rb_root_cached *root; 446 447 /* Not inserted, ignore it. */ 448 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 449 return; 450 451 /* If it's in a rbtree, then we need to have delayed node locked. */ 452 lockdep_assert_held(&delayed_node->mutex); 453 454 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 455 root = &delayed_node->ins_root; 456 else 457 root = &delayed_node->del_root; 458 459 rb_erase_cached(&delayed_item->rb_node, root); 460 RB_CLEAR_NODE(&delayed_item->rb_node); 461 delayed_node->count--; 462 finish_one_item(&delayed_node->root->fs_info->delayed_root); 463 } 464 465 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 466 { 467 if (item) { 468 __btrfs_remove_delayed_item(item); 469 if (refcount_dec_and_test(&item->refs)) 470 kfree(item); 471 } 472 } 473 474 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 475 struct btrfs_delayed_node *delayed_node) 476 { 477 struct rb_node *p = rb_first_cached(&delayed_node->ins_root); 478 479 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 480 } 481 482 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 483 struct btrfs_delayed_node *delayed_node) 484 { 485 struct rb_node *p = rb_first_cached(&delayed_node->del_root); 486 487 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 488 } 489 490 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 491 struct btrfs_delayed_item *item) 492 { 493 struct rb_node *p = rb_next(&item->rb_node); 494 495 return rb_entry_safe(p, struct btrfs_delayed_item, rb_node); 496 } 497 498 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 499 struct btrfs_delayed_item *item) 500 { 501 struct btrfs_block_rsv *src_rsv; 502 struct btrfs_block_rsv *dst_rsv; 503 struct btrfs_fs_info *fs_info = trans->fs_info; 504 u64 num_bytes; 505 int ret; 506 507 if (!trans->bytes_reserved) 508 return 0; 509 510 src_rsv = trans->block_rsv; 511 dst_rsv = &fs_info->delayed_block_rsv; 512 513 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 514 515 /* 516 * Here we migrate space rsv from transaction rsv, since have already 517 * reserved space when starting a transaction. So no need to reserve 518 * qgroup space here. 519 */ 520 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 521 if (!ret) { 522 trace_btrfs_space_reservation(fs_info, "delayed_item", 523 item->delayed_node->inode_id, 524 num_bytes, 1); 525 /* 526 * For insertions we track reserved metadata space by accounting 527 * for the number of leaves that will be used, based on the delayed 528 * node's curr_index_batch_size and index_item_leaves fields. 529 */ 530 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 531 item->bytes_reserved = num_bytes; 532 } 533 534 return ret; 535 } 536 537 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 538 struct btrfs_delayed_item *item) 539 { 540 struct btrfs_block_rsv *rsv; 541 struct btrfs_fs_info *fs_info = root->fs_info; 542 543 if (!item->bytes_reserved) 544 return; 545 546 rsv = &fs_info->delayed_block_rsv; 547 /* 548 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 549 * to release/reserve qgroup space. 550 */ 551 trace_btrfs_space_reservation(fs_info, "delayed_item", 552 item->delayed_node->inode_id, 553 item->bytes_reserved, 0); 554 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 555 } 556 557 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 558 unsigned int num_leaves) 559 { 560 struct btrfs_fs_info *fs_info = node->root->fs_info; 561 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 562 563 /* There are no space reservations during log replay, bail out. */ 564 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 565 return; 566 567 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 568 bytes, 0); 569 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 570 } 571 572 static int btrfs_delayed_inode_reserve_metadata( 573 struct btrfs_trans_handle *trans, 574 struct btrfs_root *root, 575 struct btrfs_delayed_node *node) 576 { 577 struct btrfs_fs_info *fs_info = root->fs_info; 578 struct btrfs_block_rsv *src_rsv; 579 struct btrfs_block_rsv *dst_rsv; 580 u64 num_bytes; 581 int ret; 582 583 src_rsv = trans->block_rsv; 584 dst_rsv = &fs_info->delayed_block_rsv; 585 586 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 587 588 /* 589 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 590 * which doesn't reserve space for speed. This is a problem since we 591 * still need to reserve space for this update, so try to reserve the 592 * space. 593 * 594 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 595 * we always reserve enough to update the inode item. 596 */ 597 if (!src_rsv || (!trans->bytes_reserved && 598 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 599 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 600 BTRFS_QGROUP_RSV_META_PREALLOC, true); 601 if (ret < 0) 602 return ret; 603 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 604 BTRFS_RESERVE_NO_FLUSH); 605 /* NO_FLUSH could only fail with -ENOSPC */ 606 ASSERT(ret == 0 || ret == -ENOSPC); 607 if (ret) 608 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 609 } else { 610 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 611 } 612 613 if (!ret) { 614 trace_btrfs_space_reservation(fs_info, "delayed_inode", 615 node->inode_id, num_bytes, 1); 616 node->bytes_reserved = num_bytes; 617 } 618 619 return ret; 620 } 621 622 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 623 struct btrfs_delayed_node *node, 624 bool qgroup_free) 625 { 626 struct btrfs_block_rsv *rsv; 627 628 if (!node->bytes_reserved) 629 return; 630 631 rsv = &fs_info->delayed_block_rsv; 632 trace_btrfs_space_reservation(fs_info, "delayed_inode", 633 node->inode_id, node->bytes_reserved, 0); 634 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 635 if (qgroup_free) 636 btrfs_qgroup_free_meta_prealloc(node->root, 637 node->bytes_reserved); 638 else 639 btrfs_qgroup_convert_reserved_meta(node->root, 640 node->bytes_reserved); 641 node->bytes_reserved = 0; 642 } 643 644 /* 645 * Insert a single delayed item or a batch of delayed items, as many as possible 646 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 647 * in the rbtree, and if there's a gap between two consecutive dir index items, 648 * then it means at some point we had delayed dir indexes to add but they got 649 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 650 * into the subvolume tree. Dir index keys also have their offsets coming from a 651 * monotonically increasing counter, so we can't get new keys with an offset that 652 * fits within a gap between delayed dir index items. 653 */ 654 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 655 struct btrfs_root *root, 656 struct btrfs_path *path, 657 struct btrfs_delayed_item *first_item) 658 { 659 struct btrfs_fs_info *fs_info = root->fs_info; 660 struct btrfs_delayed_node *node = first_item->delayed_node; 661 LIST_HEAD(item_list); 662 struct btrfs_delayed_item *curr; 663 struct btrfs_delayed_item *next; 664 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 665 struct btrfs_item_batch batch; 666 struct btrfs_key first_key; 667 const u32 first_data_size = first_item->data_len; 668 int total_size; 669 char AUTO_KFREE(ins_data); 670 int ret; 671 bool continuous_keys_only = false; 672 673 lockdep_assert_held(&node->mutex); 674 675 /* 676 * During normal operation the delayed index offset is continuously 677 * increasing, so we can batch insert all items as there will not be any 678 * overlapping keys in the tree. 679 * 680 * The exception to this is log replay, where we may have interleaved 681 * offsets in the tree, so our batch needs to be continuous keys only in 682 * order to ensure we do not end up with out of order items in our leaf. 683 */ 684 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 685 continuous_keys_only = true; 686 687 /* 688 * For delayed items to insert, we track reserved metadata bytes based 689 * on the number of leaves that we will use. 690 * See btrfs_insert_delayed_dir_index() and 691 * btrfs_delayed_item_reserve_metadata()). 692 */ 693 ASSERT(first_item->bytes_reserved == 0); 694 695 list_add_tail(&first_item->tree_list, &item_list); 696 batch.total_data_size = first_data_size; 697 batch.nr = 1; 698 total_size = first_data_size + sizeof(struct btrfs_item); 699 curr = first_item; 700 701 while (true) { 702 int next_size; 703 704 next = __btrfs_next_delayed_item(curr); 705 if (!next) 706 break; 707 708 /* 709 * We cannot allow gaps in the key space if we're doing log 710 * replay. 711 */ 712 if (continuous_keys_only && (next->index != curr->index + 1)) 713 break; 714 715 ASSERT(next->bytes_reserved == 0); 716 717 next_size = next->data_len + sizeof(struct btrfs_item); 718 if (total_size + next_size > max_size) 719 break; 720 721 list_add_tail(&next->tree_list, &item_list); 722 batch.nr++; 723 total_size += next_size; 724 batch.total_data_size += next->data_len; 725 curr = next; 726 } 727 728 if (batch.nr == 1) { 729 first_key.objectid = node->inode_id; 730 first_key.type = BTRFS_DIR_INDEX_KEY; 731 first_key.offset = first_item->index; 732 batch.keys = &first_key; 733 batch.data_sizes = &first_data_size; 734 } else { 735 struct btrfs_key *ins_keys; 736 u32 *ins_sizes; 737 int i = 0; 738 739 ins_data = kmalloc_array(batch.nr, 740 sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS); 741 if (!ins_data) 742 return -ENOMEM; 743 ins_sizes = (u32 *)ins_data; 744 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 745 batch.keys = ins_keys; 746 batch.data_sizes = ins_sizes; 747 list_for_each_entry(curr, &item_list, tree_list) { 748 ins_keys[i].objectid = node->inode_id; 749 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 750 ins_keys[i].offset = curr->index; 751 ins_sizes[i] = curr->data_len; 752 i++; 753 } 754 } 755 756 ret = btrfs_insert_empty_items(trans, root, path, &batch); 757 if (ret) 758 return ret; 759 760 list_for_each_entry(curr, &item_list, tree_list) { 761 char *data_ptr; 762 763 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 764 write_extent_buffer(path->nodes[0], &curr->data, 765 (unsigned long)data_ptr, curr->data_len); 766 path->slots[0]++; 767 } 768 769 /* 770 * Now release our path before releasing the delayed items and their 771 * metadata reservations, so that we don't block other tasks for more 772 * time than needed. 773 */ 774 btrfs_release_path(path); 775 776 ASSERT(node->index_item_leaves > 0); 777 778 /* 779 * For normal operations we will batch an entire leaf's worth of delayed 780 * items, so if there are more items to process we can decrement 781 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 782 * 783 * However for log replay we may not have inserted an entire leaf's 784 * worth of items, we may have not had continuous items, so decrementing 785 * here would mess up the index_item_leaves accounting. For this case 786 * only clean up the accounting when there are no items left. 787 */ 788 if (next && !continuous_keys_only) { 789 /* 790 * We inserted one batch of items into a leaf a there are more 791 * items to flush in a future batch, now release one unit of 792 * metadata space from the delayed block reserve, corresponding 793 * the leaf we just flushed to. 794 */ 795 btrfs_delayed_item_release_leaves(node, 1); 796 node->index_item_leaves--; 797 } else if (!next) { 798 /* 799 * There are no more items to insert. We can have a number of 800 * reserved leaves > 1 here - this happens when many dir index 801 * items are added and then removed before they are flushed (file 802 * names with a very short life, never span a transaction). So 803 * release all remaining leaves. 804 */ 805 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 806 node->index_item_leaves = 0; 807 } 808 809 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 810 list_del(&curr->tree_list); 811 btrfs_release_delayed_item(curr); 812 } 813 814 return 0; 815 } 816 817 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 818 struct btrfs_path *path, 819 struct btrfs_root *root, 820 struct btrfs_delayed_node *node) 821 { 822 int ret = 0; 823 824 while (ret == 0) { 825 struct btrfs_delayed_item *curr; 826 827 mutex_lock(&node->mutex); 828 curr = __btrfs_first_delayed_insertion_item(node); 829 if (!curr) { 830 mutex_unlock(&node->mutex); 831 break; 832 } 833 ret = btrfs_insert_delayed_item(trans, root, path, curr); 834 mutex_unlock(&node->mutex); 835 } 836 837 return ret; 838 } 839 840 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 841 struct btrfs_root *root, 842 struct btrfs_path *path, 843 struct btrfs_delayed_item *item) 844 { 845 const u64 ino = item->delayed_node->inode_id; 846 struct btrfs_fs_info *fs_info = root->fs_info; 847 struct btrfs_delayed_item *curr, *next; 848 struct extent_buffer *leaf = path->nodes[0]; 849 LIST_HEAD(batch_list); 850 int nitems, slot, last_slot; 851 int ret; 852 u64 total_reserved_size = item->bytes_reserved; 853 854 ASSERT(leaf != NULL); 855 856 slot = path->slots[0]; 857 last_slot = btrfs_header_nritems(leaf) - 1; 858 /* 859 * Our caller always gives us a path pointing to an existing item, so 860 * this can not happen. 861 */ 862 ASSERT(slot <= last_slot); 863 if (WARN_ON(slot > last_slot)) 864 return -ENOENT; 865 866 nitems = 1; 867 curr = item; 868 list_add_tail(&curr->tree_list, &batch_list); 869 870 /* 871 * Keep checking if the next delayed item matches the next item in the 872 * leaf - if so, we can add it to the batch of items to delete from the 873 * leaf. 874 */ 875 while (slot < last_slot) { 876 struct btrfs_key key; 877 878 next = __btrfs_next_delayed_item(curr); 879 if (!next) 880 break; 881 882 slot++; 883 btrfs_item_key_to_cpu(leaf, &key, slot); 884 if (key.objectid != ino || 885 key.type != BTRFS_DIR_INDEX_KEY || 886 key.offset != next->index) 887 break; 888 nitems++; 889 curr = next; 890 list_add_tail(&curr->tree_list, &batch_list); 891 total_reserved_size += curr->bytes_reserved; 892 } 893 894 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 895 if (ret) 896 return ret; 897 898 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 899 if (total_reserved_size > 0) { 900 /* 901 * Check btrfs_delayed_item_reserve_metadata() to see why we 902 * don't need to release/reserve qgroup space. 903 */ 904 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 905 total_reserved_size, 0); 906 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 907 total_reserved_size, NULL); 908 } 909 910 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 911 list_del(&curr->tree_list); 912 btrfs_release_delayed_item(curr); 913 } 914 915 return 0; 916 } 917 918 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 919 struct btrfs_path *path, 920 struct btrfs_root *root, 921 struct btrfs_delayed_node *node) 922 { 923 struct btrfs_key key; 924 int ret = 0; 925 926 key.objectid = node->inode_id; 927 key.type = BTRFS_DIR_INDEX_KEY; 928 929 while (ret == 0) { 930 struct btrfs_delayed_item *item; 931 932 mutex_lock(&node->mutex); 933 item = __btrfs_first_delayed_deletion_item(node); 934 if (!item) { 935 mutex_unlock(&node->mutex); 936 break; 937 } 938 939 key.offset = item->index; 940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 941 if (ret > 0) { 942 /* 943 * There's no matching item in the leaf. This means we 944 * have already deleted this item in a past run of the 945 * delayed items. We ignore errors when running delayed 946 * items from an async context, through a work queue job 947 * running btrfs_async_run_delayed_root(), and don't 948 * release delayed items that failed to complete. This 949 * is because we will retry later, and at transaction 950 * commit time we always run delayed items and will 951 * then deal with errors if they fail to run again. 952 * 953 * So just release delayed items for which we can't find 954 * an item in the tree, and move to the next item. 955 */ 956 btrfs_release_path(path); 957 btrfs_release_delayed_item(item); 958 ret = 0; 959 } else if (ret == 0) { 960 ret = btrfs_batch_delete_items(trans, root, path, item); 961 btrfs_release_path(path); 962 } 963 964 /* 965 * We unlock and relock on each iteration, this is to prevent 966 * blocking other tasks for too long while we are being run from 967 * the async context (work queue job). Those tasks are typically 968 * running system calls like creat/mkdir/rename/unlink/etc which 969 * need to add delayed items to this delayed node. 970 */ 971 mutex_unlock(&node->mutex); 972 } 973 974 return ret; 975 } 976 977 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 978 { 979 if (delayed_node && 980 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 981 ASSERT(delayed_node->root); 982 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 983 delayed_node->count--; 984 finish_one_item(&delayed_node->root->fs_info->delayed_root); 985 } 986 } 987 988 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 989 { 990 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 991 ASSERT(delayed_node->root); 992 delayed_node->count--; 993 finish_one_item(&delayed_node->root->fs_info->delayed_root); 994 } 995 } 996 997 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 998 struct btrfs_root *root, 999 struct btrfs_path *path, 1000 struct btrfs_delayed_node *node) 1001 { 1002 struct btrfs_fs_info *fs_info = root->fs_info; 1003 struct btrfs_key key; 1004 struct btrfs_inode_item *inode_item; 1005 struct extent_buffer *leaf; 1006 int mod; 1007 int ret; 1008 1009 key.objectid = node->inode_id; 1010 key.type = BTRFS_INODE_ITEM_KEY; 1011 key.offset = 0; 1012 1013 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1014 mod = -1; 1015 else 1016 mod = 1; 1017 1018 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1019 if (ret > 0) 1020 ret = -ENOENT; 1021 if (ret < 0) { 1022 /* 1023 * If we fail to update the delayed inode we need to abort the 1024 * transaction, because we could leave the inode with the 1025 * improper counts behind. 1026 */ 1027 if (unlikely(ret != -ENOENT)) 1028 btrfs_abort_transaction(trans, ret); 1029 goto out; 1030 } 1031 1032 leaf = path->nodes[0]; 1033 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1034 struct btrfs_inode_item); 1035 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1036 sizeof(struct btrfs_inode_item)); 1037 1038 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1039 goto out; 1040 1041 /* 1042 * Now we're going to delete the INODE_REF/EXTREF, which should be the 1043 * only one ref left. Check if the next item is an INODE_REF/EXTREF. 1044 * 1045 * But if we're the last item already, release and search for the last 1046 * INODE_REF/EXTREF. 1047 */ 1048 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) { 1049 key.objectid = node->inode_id; 1050 key.type = BTRFS_INODE_EXTREF_KEY; 1051 key.offset = (u64)-1; 1052 1053 btrfs_release_path(path); 1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1055 if (unlikely(ret < 0)) { 1056 btrfs_abort_transaction(trans, ret); 1057 goto err_out; 1058 } 1059 ASSERT(ret > 0); 1060 ASSERT(path->slots[0] > 0); 1061 ret = 0; 1062 path->slots[0]--; 1063 leaf = path->nodes[0]; 1064 } else { 1065 path->slots[0]++; 1066 } 1067 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1068 if (key.objectid != node->inode_id) 1069 goto out; 1070 if (key.type != BTRFS_INODE_REF_KEY && 1071 key.type != BTRFS_INODE_EXTREF_KEY) 1072 goto out; 1073 1074 /* 1075 * Delayed iref deletion is for the inode who has only one link, 1076 * so there is only one iref. The case that several irefs are 1077 * in the same item doesn't exist. 1078 */ 1079 ret = btrfs_del_item(trans, root, path); 1080 if (ret < 0) 1081 btrfs_abort_transaction(trans, ret); 1082 out: 1083 btrfs_release_delayed_iref(node); 1084 btrfs_release_path(path); 1085 err_out: 1086 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1087 btrfs_release_delayed_inode(node); 1088 return ret; 1089 } 1090 1091 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1092 struct btrfs_root *root, 1093 struct btrfs_path *path, 1094 struct btrfs_delayed_node *node) 1095 { 1096 int ret; 1097 1098 mutex_lock(&node->mutex); 1099 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1100 mutex_unlock(&node->mutex); 1101 return 0; 1102 } 1103 1104 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1105 mutex_unlock(&node->mutex); 1106 return ret; 1107 } 1108 1109 static inline int 1110 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1111 struct btrfs_path *path, 1112 struct btrfs_delayed_node *node) 1113 { 1114 int ret; 1115 1116 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1117 if (ret) 1118 return ret; 1119 1120 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1121 if (ret) 1122 return ret; 1123 1124 ret = btrfs_record_root_in_trans(trans, node->root); 1125 if (ret) 1126 return ret; 1127 1128 return btrfs_update_delayed_inode(trans, node->root, path, node); 1129 } 1130 1131 /* 1132 * Called when committing the transaction. 1133 * Returns 0 on success. 1134 * Returns < 0 on error and returns with an aborted transaction with any 1135 * outstanding delayed items cleaned up. 1136 */ 1137 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1138 { 1139 struct btrfs_fs_info *fs_info = trans->fs_info; 1140 struct btrfs_delayed_node *curr_node, *prev_node; 1141 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; 1142 struct btrfs_path *path; 1143 struct btrfs_block_rsv *block_rsv; 1144 int ret = 0; 1145 bool count = (nr > 0); 1146 1147 if (TRANS_ABORTED(trans)) 1148 return -EIO; 1149 1150 path = btrfs_alloc_path(); 1151 if (!path) 1152 return -ENOMEM; 1153 1154 block_rsv = trans->block_rsv; 1155 trans->block_rsv = &fs_info->delayed_block_rsv; 1156 1157 curr_node = btrfs_first_delayed_node(fs_info, &curr_delayed_node_tracker); 1158 while (curr_node && (!count || nr--)) { 1159 ret = __btrfs_commit_inode_delayed_items(trans, path, 1160 curr_node); 1161 if (unlikely(ret)) { 1162 btrfs_abort_transaction(trans, ret); 1163 break; 1164 } 1165 1166 prev_node = curr_node; 1167 prev_delayed_node_tracker = curr_delayed_node_tracker; 1168 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); 1169 /* 1170 * See the comment below about releasing path before releasing 1171 * node. If the commit of delayed items was successful the path 1172 * should always be released, but in case of an error, it may 1173 * point to locked extent buffers (a leaf at the very least). 1174 */ 1175 ASSERT(path->nodes[0] == NULL); 1176 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); 1177 } 1178 1179 /* 1180 * Release the path to avoid a potential deadlock and lockdep splat when 1181 * releasing the delayed node, as that requires taking the delayed node's 1182 * mutex. If another task starts running delayed items before we take 1183 * the mutex, it will first lock the mutex and then it may try to lock 1184 * the same btree path (leaf). 1185 */ 1186 btrfs_free_path(path); 1187 1188 if (curr_node) 1189 btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker); 1190 trans->block_rsv = block_rsv; 1191 1192 return ret; 1193 } 1194 1195 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1196 { 1197 return __btrfs_run_delayed_items(trans, -1); 1198 } 1199 1200 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1201 { 1202 return __btrfs_run_delayed_items(trans, nr); 1203 } 1204 1205 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1206 struct btrfs_inode *inode) 1207 { 1208 struct btrfs_ref_tracker delayed_node_tracker; 1209 struct btrfs_delayed_node *delayed_node = 1210 btrfs_get_delayed_node(inode, &delayed_node_tracker); 1211 BTRFS_PATH_AUTO_FREE(path); 1212 struct btrfs_block_rsv *block_rsv; 1213 int ret; 1214 1215 if (!delayed_node) 1216 return 0; 1217 1218 mutex_lock(&delayed_node->mutex); 1219 if (!delayed_node->count) { 1220 mutex_unlock(&delayed_node->mutex); 1221 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1222 return 0; 1223 } 1224 mutex_unlock(&delayed_node->mutex); 1225 1226 path = btrfs_alloc_path(); 1227 if (!path) { 1228 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1229 return -ENOMEM; 1230 } 1231 1232 block_rsv = trans->block_rsv; 1233 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1234 1235 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1236 1237 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1238 trans->block_rsv = block_rsv; 1239 1240 return ret; 1241 } 1242 1243 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1244 { 1245 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1246 struct btrfs_trans_handle *trans; 1247 struct btrfs_ref_tracker delayed_node_tracker; 1248 struct btrfs_delayed_node *delayed_node; 1249 struct btrfs_path *path; 1250 struct btrfs_block_rsv *block_rsv; 1251 int ret; 1252 1253 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1254 if (!delayed_node) 1255 return 0; 1256 1257 mutex_lock(&delayed_node->mutex); 1258 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1259 mutex_unlock(&delayed_node->mutex); 1260 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1261 return 0; 1262 } 1263 mutex_unlock(&delayed_node->mutex); 1264 1265 trans = btrfs_join_transaction(delayed_node->root); 1266 if (IS_ERR(trans)) { 1267 ret = PTR_ERR(trans); 1268 goto out; 1269 } 1270 1271 path = btrfs_alloc_path(); 1272 if (!path) { 1273 ret = -ENOMEM; 1274 goto trans_out; 1275 } 1276 1277 block_rsv = trans->block_rsv; 1278 trans->block_rsv = &fs_info->delayed_block_rsv; 1279 1280 mutex_lock(&delayed_node->mutex); 1281 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1282 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1283 path, delayed_node); 1284 else 1285 ret = 0; 1286 mutex_unlock(&delayed_node->mutex); 1287 1288 btrfs_free_path(path); 1289 trans->block_rsv = block_rsv; 1290 trans_out: 1291 btrfs_end_transaction(trans); 1292 btrfs_btree_balance_dirty(fs_info); 1293 out: 1294 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1295 1296 return ret; 1297 } 1298 1299 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1300 { 1301 struct btrfs_delayed_node *delayed_node; 1302 1303 delayed_node = READ_ONCE(inode->delayed_node); 1304 if (!delayed_node) 1305 return; 1306 1307 inode->delayed_node = NULL; 1308 1309 btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker); 1310 } 1311 1312 struct btrfs_async_delayed_work { 1313 struct btrfs_delayed_root *delayed_root; 1314 int nr; 1315 struct btrfs_work work; 1316 }; 1317 1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1319 { 1320 struct btrfs_async_delayed_work *async_work; 1321 struct btrfs_delayed_root *delayed_root; 1322 struct btrfs_trans_handle *trans; 1323 struct btrfs_path *path; 1324 struct btrfs_delayed_node *delayed_node = NULL; 1325 struct btrfs_ref_tracker delayed_node_tracker; 1326 struct btrfs_root *root; 1327 struct btrfs_block_rsv *block_rsv; 1328 int total_done = 0; 1329 1330 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1331 delayed_root = async_work->delayed_root; 1332 1333 path = btrfs_alloc_path(); 1334 if (!path) 1335 goto out; 1336 1337 do { 1338 if (atomic_read(&delayed_root->items) < 1339 BTRFS_DELAYED_BACKGROUND / 2) 1340 break; 1341 1342 delayed_node = btrfs_first_prepared_delayed_node(delayed_root, 1343 &delayed_node_tracker); 1344 if (!delayed_node) 1345 break; 1346 1347 root = delayed_node->root; 1348 1349 trans = btrfs_join_transaction(root); 1350 if (IS_ERR(trans)) { 1351 btrfs_release_path(path); 1352 btrfs_release_prepared_delayed_node(delayed_node, 1353 &delayed_node_tracker); 1354 total_done++; 1355 continue; 1356 } 1357 1358 block_rsv = trans->block_rsv; 1359 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1360 1361 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1362 1363 trans->block_rsv = block_rsv; 1364 btrfs_end_transaction(trans); 1365 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1366 1367 btrfs_release_path(path); 1368 btrfs_release_prepared_delayed_node(delayed_node, 1369 &delayed_node_tracker); 1370 total_done++; 1371 1372 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1373 || total_done < async_work->nr); 1374 1375 btrfs_free_path(path); 1376 out: 1377 wake_up(&delayed_root->wait); 1378 kfree(async_work); 1379 } 1380 1381 1382 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1383 struct btrfs_fs_info *fs_info, int nr) 1384 { 1385 struct btrfs_async_delayed_work *async_work; 1386 1387 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1388 if (!async_work) 1389 return -ENOMEM; 1390 1391 async_work->delayed_root = delayed_root; 1392 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL); 1393 async_work->nr = nr; 1394 1395 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1396 return 0; 1397 } 1398 1399 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1400 { 1401 struct btrfs_ref_tracker delayed_node_tracker; 1402 struct btrfs_delayed_node *node; 1403 1404 node = btrfs_first_delayed_node(fs_info, &delayed_node_tracker); 1405 if (WARN_ON(node)) { 1406 btrfs_delayed_node_ref_tracker_free(node, 1407 &delayed_node_tracker); 1408 refcount_dec(&node->refs); 1409 } 1410 } 1411 1412 static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1413 { 1414 int val = atomic_read(&delayed_root->items_seq); 1415 1416 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1417 return true; 1418 1419 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1420 return true; 1421 1422 return false; 1423 } 1424 1425 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1426 { 1427 struct btrfs_delayed_root *delayed_root = &fs_info->delayed_root; 1428 1429 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1430 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1431 return; 1432 1433 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1434 int seq; 1435 int ret; 1436 1437 seq = atomic_read(&delayed_root->items_seq); 1438 1439 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1440 if (ret) 1441 return; 1442 1443 wait_event_interruptible(delayed_root->wait, 1444 could_end_wait(delayed_root, seq)); 1445 return; 1446 } 1447 1448 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1449 } 1450 1451 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1452 { 1453 struct btrfs_fs_info *fs_info = trans->fs_info; 1454 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1455 1456 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1457 return; 1458 1459 /* 1460 * Adding the new dir index item does not require touching another 1461 * leaf, so we can release 1 unit of metadata that was previously 1462 * reserved when starting the transaction. This applies only to 1463 * the case where we had a transaction start and excludes the 1464 * transaction join case (when replaying log trees). 1465 */ 1466 trace_btrfs_space_reservation(fs_info, "transaction", 1467 trans->transid, bytes, 0); 1468 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1469 ASSERT(trans->bytes_reserved >= bytes); 1470 trans->bytes_reserved -= bytes; 1471 } 1472 1473 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1474 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1475 const char *name, int name_len, 1476 struct btrfs_inode *dir, 1477 const struct btrfs_disk_key *disk_key, u8 flags, 1478 u64 index) 1479 { 1480 struct btrfs_fs_info *fs_info = trans->fs_info; 1481 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1482 struct btrfs_delayed_node *delayed_node; 1483 struct btrfs_ref_tracker delayed_node_tracker; 1484 struct btrfs_delayed_item *delayed_item; 1485 struct btrfs_dir_item *dir_item; 1486 bool reserve_leaf_space; 1487 u32 data_len; 1488 int ret; 1489 1490 delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); 1491 if (IS_ERR(delayed_node)) 1492 return PTR_ERR(delayed_node); 1493 1494 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1495 delayed_node, 1496 BTRFS_DELAYED_INSERTION_ITEM); 1497 if (!delayed_item) { 1498 ret = -ENOMEM; 1499 goto release_node; 1500 } 1501 1502 delayed_item->index = index; 1503 1504 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1505 dir_item->location = *disk_key; 1506 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1507 btrfs_set_stack_dir_data_len(dir_item, 0); 1508 btrfs_set_stack_dir_name_len(dir_item, name_len); 1509 btrfs_set_stack_dir_flags(dir_item, flags); 1510 memcpy((char *)(dir_item + 1), name, name_len); 1511 1512 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1513 1514 mutex_lock(&delayed_node->mutex); 1515 1516 /* 1517 * First attempt to insert the delayed item. This is to make the error 1518 * handling path simpler in case we fail (-EEXIST). There's no risk of 1519 * any other task coming in and running the delayed item before we do 1520 * the metadata space reservation below, because we are holding the 1521 * delayed node's mutex and that mutex must also be locked before the 1522 * node's delayed items can be run. 1523 */ 1524 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1525 if (unlikely(ret)) { 1526 btrfs_err(trans->fs_info, 1527 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1528 name_len, name, index, btrfs_root_id(delayed_node->root), 1529 delayed_node->inode_id, dir->index_cnt, 1530 delayed_node->index_cnt, ret); 1531 btrfs_release_delayed_item(delayed_item); 1532 btrfs_release_dir_index_item_space(trans); 1533 mutex_unlock(&delayed_node->mutex); 1534 goto release_node; 1535 } 1536 1537 if (delayed_node->index_item_leaves == 0 || 1538 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1539 delayed_node->curr_index_batch_size = data_len; 1540 reserve_leaf_space = true; 1541 } else { 1542 delayed_node->curr_index_batch_size += data_len; 1543 reserve_leaf_space = false; 1544 } 1545 1546 if (reserve_leaf_space) { 1547 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1548 /* 1549 * Space was reserved for a dir index item insertion when we 1550 * started the transaction, so getting a failure here should be 1551 * impossible. 1552 */ 1553 if (WARN_ON(ret)) { 1554 btrfs_release_delayed_item(delayed_item); 1555 mutex_unlock(&delayed_node->mutex); 1556 goto release_node; 1557 } 1558 1559 delayed_node->index_item_leaves++; 1560 } else { 1561 btrfs_release_dir_index_item_space(trans); 1562 } 1563 mutex_unlock(&delayed_node->mutex); 1564 1565 release_node: 1566 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1567 return ret; 1568 } 1569 1570 static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node, 1571 u64 index) 1572 { 1573 struct btrfs_delayed_item *item; 1574 1575 mutex_lock(&node->mutex); 1576 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1577 if (!item) { 1578 mutex_unlock(&node->mutex); 1579 return false; 1580 } 1581 1582 /* 1583 * For delayed items to insert, we track reserved metadata bytes based 1584 * on the number of leaves that we will use. 1585 * See btrfs_insert_delayed_dir_index() and 1586 * btrfs_delayed_item_reserve_metadata()). 1587 */ 1588 ASSERT(item->bytes_reserved == 0); 1589 ASSERT(node->index_item_leaves > 0); 1590 1591 /* 1592 * If there's only one leaf reserved, we can decrement this item from the 1593 * current batch, otherwise we can not because we don't know which leaf 1594 * it belongs to. With the current limit on delayed items, we rarely 1595 * accumulate enough dir index items to fill more than one leaf (even 1596 * when using a leaf size of 4K). 1597 */ 1598 if (node->index_item_leaves == 1) { 1599 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1600 1601 ASSERT(node->curr_index_batch_size >= data_len); 1602 node->curr_index_batch_size -= data_len; 1603 } 1604 1605 btrfs_release_delayed_item(item); 1606 1607 /* If we now have no more dir index items, we can release all leaves. */ 1608 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1609 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1610 node->index_item_leaves = 0; 1611 } 1612 1613 mutex_unlock(&node->mutex); 1614 return true; 1615 } 1616 1617 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1618 struct btrfs_inode *dir, u64 index) 1619 { 1620 struct btrfs_delayed_node *node; 1621 struct btrfs_ref_tracker delayed_node_tracker; 1622 struct btrfs_delayed_item *item; 1623 int ret; 1624 1625 node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker); 1626 if (IS_ERR(node)) 1627 return PTR_ERR(node); 1628 1629 if (btrfs_delete_delayed_insertion_item(node, index)) { 1630 ret = 0; 1631 goto end; 1632 } 1633 1634 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1635 if (!item) { 1636 ret = -ENOMEM; 1637 goto end; 1638 } 1639 1640 item->index = index; 1641 1642 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1643 /* 1644 * we have reserved enough space when we start a new transaction, 1645 * so reserving metadata failure is impossible. 1646 */ 1647 if (ret < 0) { 1648 btrfs_err(trans->fs_info, 1649 "metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d", 1650 index, btrfs_root_id(node->root), node->inode_id, ret); 1651 btrfs_release_delayed_item(item); 1652 goto end; 1653 } 1654 1655 mutex_lock(&node->mutex); 1656 ret = __btrfs_add_delayed_item(node, item); 1657 if (unlikely(ret)) { 1658 btrfs_err(trans->fs_info, 1659 "failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d", 1660 index, btrfs_root_id(node->root), node->inode_id, ret); 1661 btrfs_delayed_item_release_metadata(dir->root, item); 1662 btrfs_release_delayed_item(item); 1663 } 1664 mutex_unlock(&node->mutex); 1665 end: 1666 btrfs_release_delayed_node(node, &delayed_node_tracker); 1667 return ret; 1668 } 1669 1670 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1671 { 1672 struct btrfs_ref_tracker delayed_node_tracker; 1673 struct btrfs_delayed_node *delayed_node; 1674 1675 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1676 if (!delayed_node) 1677 return -ENOENT; 1678 1679 /* 1680 * Since we have held i_mutex of this directory, it is impossible that 1681 * a new directory index is added into the delayed node and index_cnt 1682 * is updated now. So we needn't lock the delayed node. 1683 */ 1684 if (!delayed_node->index_cnt) { 1685 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1686 return -EINVAL; 1687 } 1688 1689 inode->index_cnt = delayed_node->index_cnt; 1690 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1691 return 0; 1692 } 1693 1694 bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode, 1695 u64 last_index, 1696 struct list_head *ins_list, 1697 struct list_head *del_list) 1698 { 1699 struct btrfs_delayed_node *delayed_node; 1700 struct btrfs_delayed_item *item; 1701 struct btrfs_ref_tracker delayed_node_tracker; 1702 1703 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1704 if (!delayed_node) 1705 return false; 1706 1707 /* 1708 * We can only do one readdir with delayed items at a time because of 1709 * item->readdir_list. 1710 */ 1711 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1712 btrfs_inode_lock(inode, 0); 1713 1714 mutex_lock(&delayed_node->mutex); 1715 item = __btrfs_first_delayed_insertion_item(delayed_node); 1716 while (item && item->index <= last_index) { 1717 refcount_inc(&item->refs); 1718 list_add_tail(&item->readdir_list, ins_list); 1719 item = __btrfs_next_delayed_item(item); 1720 } 1721 1722 item = __btrfs_first_delayed_deletion_item(delayed_node); 1723 while (item && item->index <= last_index) { 1724 refcount_inc(&item->refs); 1725 list_add_tail(&item->readdir_list, del_list); 1726 item = __btrfs_next_delayed_item(item); 1727 } 1728 mutex_unlock(&delayed_node->mutex); 1729 /* 1730 * This delayed node is still cached in the btrfs inode, so refs 1731 * must be > 1 now, and we needn't check it is going to be freed 1732 * or not. 1733 * 1734 * Besides that, this function is used to read dir, we do not 1735 * insert/delete delayed items in this period. So we also needn't 1736 * requeue or dequeue this delayed node. 1737 */ 1738 btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker); 1739 refcount_dec(&delayed_node->refs); 1740 1741 return true; 1742 } 1743 1744 void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode, 1745 struct list_head *ins_list, 1746 struct list_head *del_list) 1747 { 1748 struct btrfs_delayed_item *curr, *next; 1749 1750 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1751 list_del(&curr->readdir_list); 1752 if (refcount_dec_and_test(&curr->refs)) 1753 kfree(curr); 1754 } 1755 1756 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1757 list_del(&curr->readdir_list); 1758 if (refcount_dec_and_test(&curr->refs)) 1759 kfree(curr); 1760 } 1761 1762 /* 1763 * The VFS is going to do up_read(), so we need to downgrade back to a 1764 * read lock. 1765 */ 1766 downgrade_write(&inode->vfs_inode.i_rwsem); 1767 } 1768 1769 bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index) 1770 { 1771 struct btrfs_delayed_item *curr; 1772 bool ret = false; 1773 1774 list_for_each_entry(curr, del_list, readdir_list) { 1775 if (curr->index > index) 1776 break; 1777 if (curr->index == index) { 1778 ret = true; 1779 break; 1780 } 1781 } 1782 return ret; 1783 } 1784 1785 /* 1786 * Read dir info stored in the delayed tree. 1787 */ 1788 bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1789 const struct list_head *ins_list) 1790 { 1791 struct btrfs_dir_item *di; 1792 struct btrfs_delayed_item *curr, *next; 1793 struct btrfs_key location; 1794 char *name; 1795 int name_len; 1796 unsigned char d_type; 1797 1798 /* 1799 * Changing the data of the delayed item is impossible. So 1800 * we needn't lock them. And we have held i_mutex of the 1801 * directory, nobody can delete any directory indexes now. 1802 */ 1803 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1804 bool over; 1805 1806 list_del(&curr->readdir_list); 1807 1808 if (curr->index < ctx->pos) { 1809 if (refcount_dec_and_test(&curr->refs)) 1810 kfree(curr); 1811 continue; 1812 } 1813 1814 ctx->pos = curr->index; 1815 1816 di = (struct btrfs_dir_item *)curr->data; 1817 name = (char *)(di + 1); 1818 name_len = btrfs_stack_dir_name_len(di); 1819 1820 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1821 btrfs_disk_key_to_cpu(&location, &di->location); 1822 1823 over = !dir_emit(ctx, name, name_len, location.objectid, d_type); 1824 1825 if (refcount_dec_and_test(&curr->refs)) 1826 kfree(curr); 1827 1828 if (over) 1829 return true; 1830 ctx->pos++; 1831 } 1832 return false; 1833 } 1834 1835 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1836 struct btrfs_inode_item *inode_item, 1837 struct btrfs_inode *inode) 1838 { 1839 struct inode *vfs_inode = &inode->vfs_inode; 1840 u64 flags; 1841 1842 btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode)); 1843 btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode)); 1844 btrfs_set_stack_inode_size(inode_item, inode->disk_i_size); 1845 btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode); 1846 btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink); 1847 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode)); 1848 btrfs_set_stack_inode_generation(inode_item, inode->generation); 1849 btrfs_set_stack_inode_sequence(inode_item, 1850 inode_peek_iversion(vfs_inode)); 1851 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1852 btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev); 1853 flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags); 1854 btrfs_set_stack_inode_flags(inode_item, flags); 1855 btrfs_set_stack_inode_block_group(inode_item, 0); 1856 1857 btrfs_set_stack_timespec_sec(&inode_item->atime, 1858 inode_get_atime_sec(vfs_inode)); 1859 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1860 inode_get_atime_nsec(vfs_inode)); 1861 1862 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1863 inode_get_mtime_sec(vfs_inode)); 1864 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1865 inode_get_mtime_nsec(vfs_inode)); 1866 1867 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1868 inode_get_ctime_sec(vfs_inode)); 1869 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1870 inode_get_ctime_nsec(vfs_inode)); 1871 1872 btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec); 1873 btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec); 1874 } 1875 1876 int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev) 1877 { 1878 struct btrfs_delayed_node *delayed_node; 1879 struct btrfs_ref_tracker delayed_node_tracker; 1880 struct btrfs_inode_item *inode_item; 1881 struct inode *vfs_inode = &inode->vfs_inode; 1882 1883 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 1884 if (!delayed_node) 1885 return -ENOENT; 1886 1887 mutex_lock(&delayed_node->mutex); 1888 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1889 mutex_unlock(&delayed_node->mutex); 1890 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1891 return -ENOENT; 1892 } 1893 1894 inode_item = &delayed_node->inode_item; 1895 1896 i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item)); 1897 i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item)); 1898 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1899 vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item); 1900 set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item)); 1901 inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item)); 1902 inode->generation = btrfs_stack_inode_generation(inode_item); 1903 inode->last_trans = btrfs_stack_inode_transid(inode_item); 1904 1905 inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item)); 1906 vfs_inode->i_rdev = 0; 1907 *rdev = btrfs_stack_inode_rdev(inode_item); 1908 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1909 &inode->flags, &inode->ro_flags); 1910 1911 inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime), 1912 btrfs_stack_timespec_nsec(&inode_item->atime)); 1913 1914 inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime), 1915 btrfs_stack_timespec_nsec(&inode_item->mtime)); 1916 1917 inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1918 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1919 1920 inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime); 1921 inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime); 1922 1923 vfs_inode->i_generation = inode->generation; 1924 if (S_ISDIR(vfs_inode->i_mode)) 1925 inode->index_cnt = (u64)-1; 1926 1927 mutex_unlock(&delayed_node->mutex); 1928 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1929 return 0; 1930 } 1931 1932 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1933 struct btrfs_inode *inode) 1934 { 1935 struct btrfs_root *root = inode->root; 1936 struct btrfs_delayed_node *delayed_node; 1937 struct btrfs_ref_tracker delayed_node_tracker; 1938 int ret = 0; 1939 1940 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); 1941 if (IS_ERR(delayed_node)) 1942 return PTR_ERR(delayed_node); 1943 1944 mutex_lock(&delayed_node->mutex); 1945 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1946 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1947 goto release_node; 1948 } 1949 1950 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1951 if (ret) 1952 goto release_node; 1953 1954 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1955 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1956 delayed_node->count++; 1957 atomic_inc(&root->fs_info->delayed_root.items); 1958 release_node: 1959 mutex_unlock(&delayed_node->mutex); 1960 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 1961 return ret; 1962 } 1963 1964 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1965 { 1966 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1967 struct btrfs_delayed_node *delayed_node; 1968 struct btrfs_ref_tracker delayed_node_tracker; 1969 1970 /* 1971 * we don't do delayed inode updates during log recovery because it 1972 * leads to enospc problems. This means we also can't do 1973 * delayed inode refs 1974 */ 1975 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1976 return -EAGAIN; 1977 1978 delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker); 1979 if (IS_ERR(delayed_node)) 1980 return PTR_ERR(delayed_node); 1981 1982 /* 1983 * We don't reserve space for inode ref deletion is because: 1984 * - We ONLY do async inode ref deletion for the inode who has only 1985 * one link(i_nlink == 1), it means there is only one inode ref. 1986 * And in most case, the inode ref and the inode item are in the 1987 * same leaf, and we will deal with them at the same time. 1988 * Since we are sure we will reserve the space for the inode item, 1989 * it is unnecessary to reserve space for inode ref deletion. 1990 * - If the inode ref and the inode item are not in the same leaf, 1991 * We also needn't worry about enospc problem, because we reserve 1992 * much more space for the inode update than it needs. 1993 * - At the worst, we can steal some space from the global reservation. 1994 * It is very rare. 1995 */ 1996 mutex_lock(&delayed_node->mutex); 1997 if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 1998 delayed_node->count++; 1999 atomic_inc(&fs_info->delayed_root.items); 2000 } 2001 mutex_unlock(&delayed_node->mutex); 2002 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 2003 return 0; 2004 } 2005 2006 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 2007 { 2008 struct btrfs_root *root = delayed_node->root; 2009 struct btrfs_fs_info *fs_info = root->fs_info; 2010 struct btrfs_delayed_item *curr_item, *prev_item; 2011 2012 mutex_lock(&delayed_node->mutex); 2013 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2014 while (curr_item) { 2015 prev_item = curr_item; 2016 curr_item = __btrfs_next_delayed_item(prev_item); 2017 btrfs_release_delayed_item(prev_item); 2018 } 2019 2020 if (delayed_node->index_item_leaves > 0) { 2021 btrfs_delayed_item_release_leaves(delayed_node, 2022 delayed_node->index_item_leaves); 2023 delayed_node->index_item_leaves = 0; 2024 } 2025 2026 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2027 while (curr_item) { 2028 btrfs_delayed_item_release_metadata(root, curr_item); 2029 prev_item = curr_item; 2030 curr_item = __btrfs_next_delayed_item(prev_item); 2031 btrfs_release_delayed_item(prev_item); 2032 } 2033 2034 btrfs_release_delayed_iref(delayed_node); 2035 2036 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2037 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2038 btrfs_release_delayed_inode(delayed_node); 2039 } 2040 mutex_unlock(&delayed_node->mutex); 2041 } 2042 2043 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2044 { 2045 struct btrfs_delayed_node *delayed_node; 2046 struct btrfs_ref_tracker delayed_node_tracker; 2047 2048 delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2049 if (!delayed_node) 2050 return; 2051 2052 __btrfs_kill_delayed_node(delayed_node); 2053 btrfs_release_delayed_node(delayed_node, &delayed_node_tracker); 2054 } 2055 2056 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2057 { 2058 unsigned long index = 0; 2059 struct btrfs_delayed_node *delayed_nodes[8]; 2060 struct btrfs_ref_tracker delayed_node_trackers[8]; 2061 2062 while (1) { 2063 struct btrfs_delayed_node *node; 2064 int count; 2065 2066 xa_lock(&root->delayed_nodes); 2067 if (xa_empty(&root->delayed_nodes)) { 2068 xa_unlock(&root->delayed_nodes); 2069 return; 2070 } 2071 2072 count = 0; 2073 xa_for_each_start(&root->delayed_nodes, index, node, index) { 2074 /* 2075 * Don't increase refs in case the node is dead and 2076 * about to be removed from the tree in the loop below 2077 */ 2078 if (refcount_inc_not_zero(&node->refs)) { 2079 btrfs_delayed_node_ref_tracker_alloc(node, 2080 &delayed_node_trackers[count], 2081 GFP_ATOMIC); 2082 delayed_nodes[count] = node; 2083 count++; 2084 } 2085 if (count >= ARRAY_SIZE(delayed_nodes)) 2086 break; 2087 } 2088 xa_unlock(&root->delayed_nodes); 2089 index++; 2090 2091 for (int i = 0; i < count; i++) { 2092 __btrfs_kill_delayed_node(delayed_nodes[i]); 2093 btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]); 2094 btrfs_release_delayed_node(delayed_nodes[i], 2095 &delayed_node_trackers[i]); 2096 } 2097 } 2098 } 2099 2100 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2101 { 2102 struct btrfs_delayed_node *curr_node, *prev_node; 2103 struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker; 2104 2105 curr_node = btrfs_first_delayed_node(fs_info, &curr_delayed_node_tracker); 2106 while (curr_node) { 2107 __btrfs_kill_delayed_node(curr_node); 2108 2109 prev_node = curr_node; 2110 prev_delayed_node_tracker = curr_delayed_node_tracker; 2111 curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker); 2112 btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker); 2113 } 2114 } 2115 2116 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2117 struct list_head *ins_list, 2118 struct list_head *del_list) 2119 { 2120 struct btrfs_delayed_node *node; 2121 struct btrfs_delayed_item *item; 2122 struct btrfs_ref_tracker delayed_node_tracker; 2123 2124 node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2125 if (!node) 2126 return; 2127 2128 mutex_lock(&node->mutex); 2129 item = __btrfs_first_delayed_insertion_item(node); 2130 while (item) { 2131 /* 2132 * It's possible that the item is already in a log list. This 2133 * can happen in case two tasks are trying to log the same 2134 * directory. For example if we have tasks A and task B: 2135 * 2136 * Task A collected the delayed items into a log list while 2137 * under the inode's log_mutex (at btrfs_log_inode()), but it 2138 * only releases the items after logging the inodes they point 2139 * to (if they are new inodes), which happens after unlocking 2140 * the log mutex; 2141 * 2142 * Task B enters btrfs_log_inode() and acquires the log_mutex 2143 * of the same directory inode, before task B releases the 2144 * delayed items. This can happen for example when logging some 2145 * inode we need to trigger logging of its parent directory, so 2146 * logging two files that have the same parent directory can 2147 * lead to this. 2148 * 2149 * If this happens, just ignore delayed items already in a log 2150 * list. All the tasks logging the directory are under a log 2151 * transaction and whichever finishes first can not sync the log 2152 * before the other completes and leaves the log transaction. 2153 */ 2154 if (!item->logged && list_empty(&item->log_list)) { 2155 refcount_inc(&item->refs); 2156 list_add_tail(&item->log_list, ins_list); 2157 } 2158 item = __btrfs_next_delayed_item(item); 2159 } 2160 2161 item = __btrfs_first_delayed_deletion_item(node); 2162 while (item) { 2163 /* It may be non-empty, for the same reason mentioned above. */ 2164 if (!item->logged && list_empty(&item->log_list)) { 2165 refcount_inc(&item->refs); 2166 list_add_tail(&item->log_list, del_list); 2167 } 2168 item = __btrfs_next_delayed_item(item); 2169 } 2170 mutex_unlock(&node->mutex); 2171 2172 /* 2173 * We are called during inode logging, which means the inode is in use 2174 * and can not be evicted before we finish logging the inode. So we never 2175 * have the last reference on the delayed inode. 2176 * Also, we don't use btrfs_release_delayed_node() because that would 2177 * requeue the delayed inode (change its order in the list of prepared 2178 * nodes) and we don't want to do such change because we don't create or 2179 * delete delayed items. 2180 */ 2181 ASSERT(refcount_read(&node->refs) > 1); 2182 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); 2183 refcount_dec(&node->refs); 2184 } 2185 2186 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2187 struct list_head *ins_list, 2188 struct list_head *del_list) 2189 { 2190 struct btrfs_delayed_node *node; 2191 struct btrfs_delayed_item *item; 2192 struct btrfs_delayed_item *next; 2193 struct btrfs_ref_tracker delayed_node_tracker; 2194 2195 node = btrfs_get_delayed_node(inode, &delayed_node_tracker); 2196 if (!node) 2197 return; 2198 2199 mutex_lock(&node->mutex); 2200 2201 list_for_each_entry_safe(item, next, ins_list, log_list) { 2202 item->logged = true; 2203 list_del_init(&item->log_list); 2204 if (refcount_dec_and_test(&item->refs)) 2205 kfree(item); 2206 } 2207 2208 list_for_each_entry_safe(item, next, del_list, log_list) { 2209 item->logged = true; 2210 list_del_init(&item->log_list); 2211 if (refcount_dec_and_test(&item->refs)) 2212 kfree(item); 2213 } 2214 2215 mutex_unlock(&node->mutex); 2216 2217 /* 2218 * We are called during inode logging, which means the inode is in use 2219 * and can not be evicted before we finish logging the inode. So we never 2220 * have the last reference on the delayed inode. 2221 * Also, we don't use btrfs_release_delayed_node() because that would 2222 * requeue the delayed inode (change its order in the list of prepared 2223 * nodes) and we don't want to do such change because we don't create or 2224 * delete delayed items. 2225 */ 2226 ASSERT(refcount_read(&node->refs) > 1); 2227 btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker); 2228 refcount_dec(&node->refs); 2229 } 2230