1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "fs.h"
10 #include "messages.h"
11 #include "transaction.h"
12 #include "disk-io.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "accessors.h"
16 #include "root-tree.h"
17 #include "orphan.h"
18
19 /*
20 * Read a root item from the tree. In case we detect a root item smaller then
21 * sizeof(root_item), we know it's an old version of the root structure and
22 * initialize all new fields to zero. The same happens if we detect mismatching
23 * generation numbers as then we know the root was once mounted with an older
24 * kernel that was not aware of the root item structure change.
25 */
btrfs_read_root_item(struct extent_buffer * eb,int slot,struct btrfs_root_item * item)26 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
27 struct btrfs_root_item *item)
28 {
29 u32 len;
30 int need_reset = 0;
31
32 len = btrfs_item_size(eb, slot);
33 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
34 min_t(u32, len, sizeof(*item)));
35 if (len < sizeof(*item))
36 need_reset = 1;
37 if (!need_reset && btrfs_root_generation(item)
38 != btrfs_root_generation_v2(item)) {
39 if (btrfs_root_generation_v2(item) != 0) {
40 btrfs_warn(eb->fs_info,
41 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
42 }
43 need_reset = 1;
44 }
45 if (need_reset) {
46 /* Clear all members from generation_v2 onwards. */
47 memset_startat(item, 0, generation_v2);
48 generate_random_guid(item->uuid);
49 }
50 }
51
52 /*
53 * Lookup the root by the key.
54 *
55 * root: the root of the root tree
56 * search_key: the key to search
57 * path: the path we search
58 * root_item: the root item of the tree we look for
59 * root_key: the root key of the tree we look for
60 *
61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
62 * of the search key, just lookup the root with the highest offset for a
63 * given objectid.
64 *
65 * If we find something return 0, otherwise > 0, < 0 on error.
66 */
btrfs_find_root(struct btrfs_root * root,const struct btrfs_key * search_key,struct btrfs_path * path,struct btrfs_root_item * root_item,struct btrfs_key * root_key)67 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
68 struct btrfs_path *path, struct btrfs_root_item *root_item,
69 struct btrfs_key *root_key)
70 {
71 struct btrfs_key found_key;
72 struct extent_buffer *l;
73 int ret;
74 int slot;
75
76 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
77 if (ret < 0)
78 return ret;
79
80 if (search_key->offset != -1ULL) { /* the search key is exact */
81 if (ret > 0)
82 goto out;
83 } else {
84 /*
85 * Key with offset -1 found, there would have to exist a root
86 * with such id, but this is out of the valid range.
87 */
88 if (unlikely(ret == 0)) {
89 ret = -EUCLEAN;
90 goto out;
91 }
92 if (path->slots[0] == 0)
93 goto out;
94 path->slots[0]--;
95 ret = 0;
96 }
97
98 l = path->nodes[0];
99 slot = path->slots[0];
100
101 btrfs_item_key_to_cpu(l, &found_key, slot);
102 if (found_key.objectid != search_key->objectid ||
103 found_key.type != BTRFS_ROOT_ITEM_KEY) {
104 ret = 1;
105 goto out;
106 }
107
108 if (root_item)
109 btrfs_read_root_item(l, slot, root_item);
110 if (root_key)
111 memcpy(root_key, &found_key, sizeof(found_key));
112 out:
113 btrfs_release_path(path);
114 return ret;
115 }
116
btrfs_set_root_node(struct btrfs_root_item * item,struct extent_buffer * node)117 void btrfs_set_root_node(struct btrfs_root_item *item,
118 struct extent_buffer *node)
119 {
120 btrfs_set_root_bytenr(item, node->start);
121 btrfs_set_root_level(item, btrfs_header_level(node));
122 btrfs_set_root_generation(item, btrfs_header_generation(node));
123 }
124
125 /*
126 * copy the data in 'item' into the btree
127 */
btrfs_update_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)128 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
129 *root, struct btrfs_key *key, struct btrfs_root_item
130 *item)
131 {
132 struct btrfs_fs_info *fs_info = root->fs_info;
133 BTRFS_PATH_AUTO_FREE(path);
134 struct extent_buffer *l;
135 int ret;
136 int slot;
137 unsigned long ptr;
138 u32 old_len;
139
140 path = btrfs_alloc_path();
141 if (!path)
142 return -ENOMEM;
143
144 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
145 if (ret < 0)
146 return ret;
147
148 if (unlikely(ret > 0)) {
149 btrfs_crit(fs_info,
150 "unable to find root key (%llu %u %llu) in tree %llu",
151 key->objectid, key->type, key->offset, btrfs_root_id(root));
152 ret = -EUCLEAN;
153 btrfs_abort_transaction(trans, ret);
154 return ret;
155 }
156
157 l = path->nodes[0];
158 slot = path->slots[0];
159 ptr = btrfs_item_ptr_offset(l, slot);
160 old_len = btrfs_item_size(l, slot);
161
162 /*
163 * If this is the first time we update the root item which originated
164 * from an older kernel, we need to enlarge the item size to make room
165 * for the added fields.
166 */
167 if (old_len < sizeof(*item)) {
168 btrfs_release_path(path);
169 ret = btrfs_search_slot(trans, root, key, path,
170 -1, 1);
171 if (unlikely(ret < 0)) {
172 btrfs_abort_transaction(trans, ret);
173 return ret;
174 }
175
176 ret = btrfs_del_item(trans, root, path);
177 if (unlikely(ret < 0)) {
178 btrfs_abort_transaction(trans, ret);
179 return ret;
180 }
181 btrfs_release_path(path);
182 ret = btrfs_insert_empty_item(trans, root, path,
183 key, sizeof(*item));
184 if (unlikely(ret < 0)) {
185 btrfs_abort_transaction(trans, ret);
186 return ret;
187 }
188 l = path->nodes[0];
189 slot = path->slots[0];
190 ptr = btrfs_item_ptr_offset(l, slot);
191 }
192
193 /*
194 * Update generation_v2 so at the next mount we know the new root
195 * fields are valid.
196 */
197 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
198
199 write_extent_buffer(l, item, ptr, sizeof(*item));
200 return ret;
201 }
202
btrfs_insert_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_root_item * item)203 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
204 const struct btrfs_key *key, struct btrfs_root_item *item)
205 {
206 /*
207 * Make sure generation v1 and v2 match. See update_root for details.
208 */
209 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
210 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
211 }
212
btrfs_find_orphan_roots(struct btrfs_fs_info * fs_info)213 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
214 {
215 struct btrfs_root *tree_root = fs_info->tree_root;
216 struct extent_buffer *leaf;
217 BTRFS_PATH_AUTO_FREE(path);
218 struct btrfs_key key;
219 struct btrfs_root *root;
220 int err = 0;
221 int ret;
222
223 path = btrfs_alloc_path();
224 if (!path)
225 return -ENOMEM;
226
227 key.objectid = BTRFS_ORPHAN_OBJECTID;
228 key.type = BTRFS_ORPHAN_ITEM_KEY;
229 key.offset = 0;
230
231 while (1) {
232 u64 root_objectid;
233
234 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
235 if (ret < 0) {
236 err = ret;
237 break;
238 }
239
240 leaf = path->nodes[0];
241 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
242 ret = btrfs_next_leaf(tree_root, path);
243 if (ret < 0)
244 err = ret;
245 if (ret != 0)
246 break;
247 leaf = path->nodes[0];
248 }
249
250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
251 btrfs_release_path(path);
252
253 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
254 key.type != BTRFS_ORPHAN_ITEM_KEY)
255 break;
256
257 root_objectid = key.offset;
258 key.offset++;
259
260 root = btrfs_get_fs_root(fs_info, root_objectid, false);
261 err = PTR_ERR_OR_ZERO(root);
262 if (err && err != -ENOENT) {
263 break;
264 } else if (err == -ENOENT) {
265 struct btrfs_trans_handle *trans;
266
267 btrfs_release_path(path);
268
269 trans = btrfs_join_transaction(tree_root);
270 if (IS_ERR(trans)) {
271 err = PTR_ERR(trans);
272 btrfs_handle_fs_error(fs_info, err,
273 "Failed to start trans to delete orphan item");
274 break;
275 }
276 err = btrfs_del_orphan_item(trans, tree_root,
277 root_objectid);
278 btrfs_end_transaction(trans);
279 if (err) {
280 btrfs_handle_fs_error(fs_info, err,
281 "Failed to delete root orphan item");
282 break;
283 }
284 continue;
285 }
286
287 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
288 if (btrfs_root_refs(&root->root_item) == 0) {
289 struct btrfs_key drop_key;
290
291 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
292 /*
293 * If we have a non-zero drop_progress then we know we
294 * made it partly through deleting this snapshot, and
295 * thus we need to make sure we block any balance from
296 * happening until this snapshot is completely dropped.
297 */
298 if (drop_key.objectid != 0 || drop_key.type != 0 ||
299 drop_key.offset != 0) {
300 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
301 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
302 }
303
304 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
305 btrfs_add_dead_root(root);
306 }
307 btrfs_put_root(root);
308 }
309
310 return err;
311 }
312
313 /* drop the root item for 'key' from the tree root */
btrfs_del_root(struct btrfs_trans_handle * trans,const struct btrfs_key * key)314 int btrfs_del_root(struct btrfs_trans_handle *trans,
315 const struct btrfs_key *key)
316 {
317 struct btrfs_root *root = trans->fs_info->tree_root;
318 BTRFS_PATH_AUTO_FREE(path);
319 int ret;
320
321 path = btrfs_alloc_path();
322 if (!path)
323 return -ENOMEM;
324 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
325 if (ret < 0)
326 return ret;
327 if (unlikely(ret > 0))
328 /* The root must exist but we did not find it by the key. */
329 return -EUCLEAN;
330
331 return btrfs_del_item(trans, root, path);
332 }
333
btrfs_del_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 * sequence,const struct fscrypt_str * name)334 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
335 u64 ref_id, u64 dirid, u64 *sequence,
336 const struct fscrypt_str *name)
337 {
338 struct btrfs_root *tree_root = trans->fs_info->tree_root;
339 BTRFS_PATH_AUTO_FREE(path);
340 struct btrfs_root_ref *ref;
341 struct extent_buffer *leaf;
342 struct btrfs_key key;
343 unsigned long ptr;
344 int ret;
345
346 path = btrfs_alloc_path();
347 if (!path)
348 return -ENOMEM;
349
350 key.objectid = root_id;
351 key.type = BTRFS_ROOT_BACKREF_KEY;
352 key.offset = ref_id;
353 again:
354 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
355 if (ret < 0) {
356 return ret;
357 } else if (ret == 0) {
358 leaf = path->nodes[0];
359 ref = btrfs_item_ptr(leaf, path->slots[0],
360 struct btrfs_root_ref);
361 ptr = (unsigned long)(ref + 1);
362 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
363 (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
364 memcmp_extent_buffer(leaf, name->name, ptr, name->len))
365 return -ENOENT;
366
367 *sequence = btrfs_root_ref_sequence(leaf, ref);
368
369 ret = btrfs_del_item(trans, tree_root, path);
370 if (ret)
371 return ret;
372 } else {
373 return -ENOENT;
374 }
375
376 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
377 btrfs_release_path(path);
378 key.objectid = ref_id;
379 key.type = BTRFS_ROOT_REF_KEY;
380 key.offset = root_id;
381 goto again;
382 }
383
384 return ret;
385 }
386
387 /*
388 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
389 * or BTRFS_ROOT_BACKREF_KEY.
390 *
391 * The dirid, sequence, name and name_len refer to the directory entry
392 * that is referencing the root.
393 *
394 * For a forward ref, the root_id is the id of the tree referencing
395 * the root and ref_id is the id of the subvol or snapshot.
396 *
397 * For a back ref the root_id is the id of the subvol or snapshot and
398 * ref_id is the id of the tree referencing it.
399 *
400 * Will return 0, -ENOMEM, or anything from the CoW path
401 */
btrfs_add_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 sequence,const struct fscrypt_str * name)402 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
403 u64 ref_id, u64 dirid, u64 sequence,
404 const struct fscrypt_str *name)
405 {
406 struct btrfs_root *tree_root = trans->fs_info->tree_root;
407 struct btrfs_key key;
408 int ret;
409 BTRFS_PATH_AUTO_FREE(path);
410 struct btrfs_root_ref *ref;
411 struct extent_buffer *leaf;
412 unsigned long ptr;
413
414 path = btrfs_alloc_path();
415 if (!path)
416 return -ENOMEM;
417
418 key.objectid = root_id;
419 key.type = BTRFS_ROOT_BACKREF_KEY;
420 key.offset = ref_id;
421 again:
422 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
423 sizeof(*ref) + name->len);
424 if (unlikely(ret)) {
425 btrfs_abort_transaction(trans, ret);
426 return ret;
427 }
428
429 leaf = path->nodes[0];
430 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
431 btrfs_set_root_ref_dirid(leaf, ref, dirid);
432 btrfs_set_root_ref_sequence(leaf, ref, sequence);
433 btrfs_set_root_ref_name_len(leaf, ref, name->len);
434 ptr = (unsigned long)(ref + 1);
435 write_extent_buffer(leaf, name->name, ptr, name->len);
436
437 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
438 btrfs_release_path(path);
439 key.objectid = ref_id;
440 key.type = BTRFS_ROOT_REF_KEY;
441 key.offset = root_id;
442 goto again;
443 }
444
445 return 0;
446 }
447
448 /*
449 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
450 * for subvolumes. To work around this problem, we steal a bit from
451 * root_item->inode_item->flags, and use it to indicate if those fields
452 * have been properly initialized.
453 */
btrfs_check_and_init_root_item(struct btrfs_root_item * root_item)454 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
455 {
456 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
457
458 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
459 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
460 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
461 btrfs_set_root_flags(root_item, 0);
462 btrfs_set_root_limit(root_item, 0);
463 }
464 }
465
btrfs_update_root_times(struct btrfs_trans_handle * trans,struct btrfs_root * root)466 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
467 struct btrfs_root *root)
468 {
469 struct btrfs_root_item *item = &root->root_item;
470 struct timespec64 ct;
471
472 ktime_get_real_ts64(&ct);
473 spin_lock(&root->root_item_lock);
474 btrfs_set_root_ctransid(item, trans->transid);
475 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
476 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
477 spin_unlock(&root->root_item_lock);
478 }
479
480 /*
481 * Reserve space for subvolume operation.
482 *
483 * root: the root of the parent directory
484 * rsv: block reservation
485 * items: the number of items that we need do reservation
486 * use_global_rsv: allow fallback to the global block reservation
487 *
488 * This function is used to reserve the space for snapshot/subvolume
489 * creation and deletion. Those operations are different with the
490 * common file/directory operations, they change two fs/file trees
491 * and root tree, the number of items that the qgroup reserves is
492 * different with the free space reservation. So we can not use
493 * the space reservation mechanism in start_transaction().
494 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)495 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
496 struct btrfs_block_rsv *rsv, int items,
497 bool use_global_rsv)
498 {
499 u64 qgroup_num_bytes = 0;
500 u64 num_bytes;
501 int ret;
502 struct btrfs_fs_info *fs_info = root->fs_info;
503 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
504
505 if (btrfs_qgroup_enabled(fs_info)) {
506 /* One for parent inode, two for dir entries */
507 qgroup_num_bytes = 3 * fs_info->nodesize;
508 ret = btrfs_qgroup_reserve_meta_prealloc(root,
509 qgroup_num_bytes, true,
510 false);
511 if (ret)
512 return ret;
513 }
514
515 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
516 rsv->space_info = btrfs_find_space_info(fs_info,
517 BTRFS_BLOCK_GROUP_METADATA);
518 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
519 BTRFS_RESERVE_FLUSH_ALL);
520
521 if (ret == -ENOSPC && use_global_rsv)
522 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
523
524 if (ret && qgroup_num_bytes)
525 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
526
527 if (!ret) {
528 spin_lock(&rsv->lock);
529 rsv->qgroup_rsv_reserved += qgroup_num_bytes;
530 spin_unlock(&rsv->lock);
531 }
532 return ret;
533 }
534