1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "extent-tree.h"
13 #include "transaction.h"
14 #include "qgroup.h"
15 #include "space-info.h"
16 #include "tree-mod-log.h"
17 #include "fs.h"
18
19 struct kmem_cache *btrfs_delayed_ref_head_cachep;
20 struct kmem_cache *btrfs_delayed_ref_node_cachep;
21 struct kmem_cache *btrfs_delayed_extent_op_cachep;
22 /*
23 * delayed back reference update tracking. For subvolume trees
24 * we queue up extent allocations and backref maintenance for
25 * delayed processing. This avoids deep call chains where we
26 * add extents in the middle of btrfs_search_slot, and it allows
27 * us to buffer up frequently modified backrefs in an rb tree instead
28 * of hammering updates on the extent allocation tree.
29 */
30
btrfs_check_space_for_delayed_refs(struct btrfs_fs_info * fs_info)31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32 {
33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35 bool ret = false;
36 u64 reserved;
37
38 spin_lock(&global_rsv->lock);
39 reserved = global_rsv->reserved;
40 spin_unlock(&global_rsv->lock);
41
42 /*
43 * Since the global reserve is just kind of magic we don't really want
44 * to rely on it to save our bacon, so if our size is more than the
45 * delayed_refs_rsv and the global rsv then it's time to think about
46 * bailing.
47 */
48 spin_lock(&delayed_refs_rsv->lock);
49 reserved += delayed_refs_rsv->reserved;
50 if (delayed_refs_rsv->size >= reserved)
51 ret = true;
52 spin_unlock(&delayed_refs_rsv->lock);
53 return ret;
54 }
55
56 /*
57 * Release a ref head's reservation.
58 *
59 * @fs_info: the filesystem
60 * @nr_refs: number of delayed refs to drop
61 * @nr_csums: number of csum items to drop
62 *
63 * Drops the delayed ref head's count from the delayed refs rsv and free any
64 * excess reservation we had.
65 */
btrfs_delayed_refs_rsv_release(struct btrfs_fs_info * fs_info,int nr_refs,int nr_csums)66 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
67 {
68 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
69 u64 num_bytes;
70 u64 released;
71
72 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
73 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
74
75 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
76 if (released)
77 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
78 0, released, 0);
79 }
80
81 /*
82 * Adjust the size of the delayed refs rsv.
83 *
84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
86 * add it to the delayed_refs_rsv.
87 */
btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle * trans)88 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
89 {
90 struct btrfs_fs_info *fs_info = trans->fs_info;
91 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
92 struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
93 u64 num_bytes;
94 u64 reserved_bytes;
95
96 if (btrfs_is_testing(fs_info))
97 return;
98
99 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
100 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
101 trans->delayed_ref_csum_deletions);
102
103 if (num_bytes == 0)
104 return;
105
106 /*
107 * Try to take num_bytes from the transaction's local delayed reserve.
108 * If not possible, try to take as much as it's available. If the local
109 * reserve doesn't have enough reserved space, the delayed refs reserve
110 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
111 * by someone or if a transaction commit is triggered before that, the
112 * global block reserve will be used. We want to minimize using the
113 * global block reserve for cases we can account for in advance, to
114 * avoid exhausting it and reach -ENOSPC during a transaction commit.
115 */
116 spin_lock(&local_rsv->lock);
117 reserved_bytes = min(num_bytes, local_rsv->reserved);
118 local_rsv->reserved -= reserved_bytes;
119 local_rsv->full = (local_rsv->reserved >= local_rsv->size);
120 spin_unlock(&local_rsv->lock);
121
122 spin_lock(&delayed_rsv->lock);
123 delayed_rsv->size += num_bytes;
124 delayed_rsv->reserved += reserved_bytes;
125 delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
126 spin_unlock(&delayed_rsv->lock);
127 trans->delayed_ref_updates = 0;
128 trans->delayed_ref_csum_deletions = 0;
129 }
130
131 /*
132 * Adjust the size of the delayed refs block reserve for 1 block group item
133 * insertion, used after allocating a block group.
134 */
btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info * fs_info)135 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
136 {
137 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
138
139 spin_lock(&delayed_rsv->lock);
140 /*
141 * Inserting a block group item does not require changing the free space
142 * tree, only the extent tree or the block group tree, so this is all we
143 * need.
144 */
145 delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
146 delayed_rsv->full = false;
147 spin_unlock(&delayed_rsv->lock);
148 }
149
150 /*
151 * Adjust the size of the delayed refs block reserve to release space for 1
152 * block group item insertion.
153 */
btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info * fs_info)154 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
155 {
156 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
157 const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
158 u64 released;
159
160 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
161 if (released > 0)
162 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
163 0, released, 0);
164 }
165
166 /*
167 * Adjust the size of the delayed refs block reserve for 1 block group item
168 * update.
169 */
btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info * fs_info)170 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
171 {
172 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
173
174 spin_lock(&delayed_rsv->lock);
175 /*
176 * Updating a block group item does not result in new nodes/leaves and
177 * does not require changing the free space tree, only the extent tree
178 * or the block group tree, so this is all we need.
179 */
180 delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
181 delayed_rsv->full = false;
182 spin_unlock(&delayed_rsv->lock);
183 }
184
185 /*
186 * Adjust the size of the delayed refs block reserve to release space for 1
187 * block group item update.
188 */
btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info * fs_info)189 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
190 {
191 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
192 const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
193 u64 released;
194
195 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
196 if (released > 0)
197 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
198 0, released, 0);
199 }
200
201 /*
202 * Refill based on our delayed refs usage.
203 *
204 * @fs_info: the filesystem
205 * @flush: control how we can flush for this reservation.
206 *
207 * This will refill the delayed block_rsv up to 1 items size worth of space and
208 * will return -ENOSPC if we can't make the reservation.
209 */
btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush)210 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
211 enum btrfs_reserve_flush_enum flush)
212 {
213 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
214 struct btrfs_space_info *space_info = block_rsv->space_info;
215 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
216 u64 num_bytes = 0;
217 u64 refilled_bytes;
218 u64 to_free;
219 int ret = -ENOSPC;
220
221 spin_lock(&block_rsv->lock);
222 if (block_rsv->reserved < block_rsv->size) {
223 num_bytes = block_rsv->size - block_rsv->reserved;
224 num_bytes = min(num_bytes, limit);
225 }
226 spin_unlock(&block_rsv->lock);
227
228 if (!num_bytes)
229 return 0;
230
231 ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
232 if (ret)
233 return ret;
234
235 /*
236 * We may have raced with someone else, so check again if we the block
237 * reserve is still not full and release any excess space.
238 */
239 spin_lock(&block_rsv->lock);
240 if (block_rsv->reserved < block_rsv->size) {
241 u64 needed = block_rsv->size - block_rsv->reserved;
242
243 if (num_bytes >= needed) {
244 block_rsv->reserved += needed;
245 block_rsv->full = true;
246 to_free = num_bytes - needed;
247 refilled_bytes = needed;
248 } else {
249 block_rsv->reserved += num_bytes;
250 to_free = 0;
251 refilled_bytes = num_bytes;
252 }
253 } else {
254 to_free = num_bytes;
255 refilled_bytes = 0;
256 }
257 spin_unlock(&block_rsv->lock);
258
259 if (to_free > 0)
260 btrfs_space_info_free_bytes_may_use(space_info, to_free);
261
262 if (refilled_bytes > 0)
263 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
264 refilled_bytes, 1);
265 return 0;
266 }
267
268 /*
269 * compare two delayed data backrefs with same bytenr and type
270 */
comp_data_refs(const struct btrfs_delayed_ref_node * ref1,const struct btrfs_delayed_ref_node * ref2)271 static int comp_data_refs(const struct btrfs_delayed_ref_node *ref1,
272 const struct btrfs_delayed_ref_node *ref2)
273 {
274 if (ref1->data_ref.objectid < ref2->data_ref.objectid)
275 return -1;
276 if (ref1->data_ref.objectid > ref2->data_ref.objectid)
277 return 1;
278 if (ref1->data_ref.offset < ref2->data_ref.offset)
279 return -1;
280 if (ref1->data_ref.offset > ref2->data_ref.offset)
281 return 1;
282 return 0;
283 }
284
comp_refs(const struct btrfs_delayed_ref_node * ref1,const struct btrfs_delayed_ref_node * ref2,bool check_seq)285 static int comp_refs(const struct btrfs_delayed_ref_node *ref1,
286 const struct btrfs_delayed_ref_node *ref2,
287 bool check_seq)
288 {
289 int ret = 0;
290
291 if (ref1->type < ref2->type)
292 return -1;
293 if (ref1->type > ref2->type)
294 return 1;
295 if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
296 ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
297 if (ref1->parent < ref2->parent)
298 return -1;
299 if (ref1->parent > ref2->parent)
300 return 1;
301 } else {
302 if (ref1->ref_root < ref2->ref_root)
303 return -1;
304 if (ref1->ref_root > ref2->ref_root)
305 return 1;
306 if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
307 ret = comp_data_refs(ref1, ref2);
308 }
309 if (ret)
310 return ret;
311 if (check_seq) {
312 if (ref1->seq < ref2->seq)
313 return -1;
314 if (ref1->seq > ref2->seq)
315 return 1;
316 }
317 return 0;
318 }
319
cmp_refs_node(const struct rb_node * new,const struct rb_node * exist)320 static int cmp_refs_node(const struct rb_node *new, const struct rb_node *exist)
321 {
322 const struct btrfs_delayed_ref_node *new_node =
323 rb_entry(new, struct btrfs_delayed_ref_node, ref_node);
324 const struct btrfs_delayed_ref_node *exist_node =
325 rb_entry(exist, struct btrfs_delayed_ref_node, ref_node);
326
327 return comp_refs(new_node, exist_node, true);
328 }
329
tree_insert(struct rb_root_cached * root,struct btrfs_delayed_ref_node * ins)330 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
331 struct btrfs_delayed_ref_node *ins)
332 {
333 struct rb_node *node = &ins->ref_node;
334 struct rb_node *exist = rb_find_add_cached(node, root, cmp_refs_node);
335
336 return rb_entry_safe(exist, struct btrfs_delayed_ref_node, ref_node);
337 }
338
find_first_ref_head(struct btrfs_delayed_ref_root * dr)339 static struct btrfs_delayed_ref_head *find_first_ref_head(
340 struct btrfs_delayed_ref_root *dr)
341 {
342 unsigned long from = 0;
343
344 lockdep_assert_held(&dr->lock);
345
346 return xa_find(&dr->head_refs, &from, ULONG_MAX, XA_PRESENT);
347 }
348
btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)349 static bool btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
350 struct btrfs_delayed_ref_head *head)
351 {
352 lockdep_assert_held(&delayed_refs->lock);
353 if (mutex_trylock(&head->mutex))
354 return true;
355
356 refcount_inc(&head->refs);
357 spin_unlock(&delayed_refs->lock);
358
359 mutex_lock(&head->mutex);
360 spin_lock(&delayed_refs->lock);
361 if (!head->tracked) {
362 mutex_unlock(&head->mutex);
363 btrfs_put_delayed_ref_head(head);
364 return false;
365 }
366 btrfs_put_delayed_ref_head(head);
367 return true;
368 }
369
drop_delayed_ref(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref)370 static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
371 struct btrfs_delayed_ref_root *delayed_refs,
372 struct btrfs_delayed_ref_head *head,
373 struct btrfs_delayed_ref_node *ref)
374 {
375 lockdep_assert_held(&head->lock);
376 rb_erase_cached(&ref->ref_node, &head->ref_tree);
377 RB_CLEAR_NODE(&ref->ref_node);
378 if (!list_empty(&ref->add_list))
379 list_del(&ref->add_list);
380 btrfs_put_delayed_ref(ref);
381 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
382 }
383
merge_ref(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref,u64 seq)384 static bool merge_ref(struct btrfs_fs_info *fs_info,
385 struct btrfs_delayed_ref_root *delayed_refs,
386 struct btrfs_delayed_ref_head *head,
387 struct btrfs_delayed_ref_node *ref,
388 u64 seq)
389 {
390 struct btrfs_delayed_ref_node *next;
391 struct rb_node *node = rb_next(&ref->ref_node);
392 bool done = false;
393
394 while (!done && node) {
395 int mod;
396
397 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
398 node = rb_next(node);
399 if (seq && next->seq >= seq)
400 break;
401 if (comp_refs(ref, next, false))
402 break;
403
404 if (ref->action == next->action) {
405 mod = next->ref_mod;
406 } else {
407 if (ref->ref_mod < next->ref_mod) {
408 swap(ref, next);
409 done = true;
410 }
411 mod = -next->ref_mod;
412 }
413
414 drop_delayed_ref(fs_info, delayed_refs, head, next);
415 ref->ref_mod += mod;
416 if (ref->ref_mod == 0) {
417 drop_delayed_ref(fs_info, delayed_refs, head, ref);
418 done = true;
419 } else {
420 /*
421 * Can't have multiples of the same ref on a tree block.
422 */
423 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
424 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
425 }
426 }
427
428 return done;
429 }
430
btrfs_merge_delayed_refs(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)431 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
432 struct btrfs_delayed_ref_root *delayed_refs,
433 struct btrfs_delayed_ref_head *head)
434 {
435 struct btrfs_delayed_ref_node *ref;
436 struct rb_node *node;
437 u64 seq = 0;
438
439 lockdep_assert_held(&head->lock);
440
441 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
442 return;
443
444 /* We don't have too many refs to merge for data. */
445 if (head->is_data)
446 return;
447
448 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
449 again:
450 for (node = rb_first_cached(&head->ref_tree); node;
451 node = rb_next(node)) {
452 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
453 if (seq && ref->seq >= seq)
454 continue;
455 if (merge_ref(fs_info, delayed_refs, head, ref, seq))
456 goto again;
457 }
458 }
459
btrfs_check_delayed_seq(struct btrfs_fs_info * fs_info,u64 seq)460 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
461 {
462 int ret = 0;
463 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
464
465 if (min_seq != 0 && seq >= min_seq) {
466 btrfs_debug(fs_info,
467 "holding back delayed_ref %llu, lowest is %llu",
468 seq, min_seq);
469 ret = 1;
470 }
471
472 return ret;
473 }
474
btrfs_select_ref_head(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs)475 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
476 const struct btrfs_fs_info *fs_info,
477 struct btrfs_delayed_ref_root *delayed_refs)
478 {
479 struct btrfs_delayed_ref_head *head;
480 unsigned long start_index;
481 unsigned long found_index;
482 bool found_head = false;
483 bool locked;
484
485 spin_lock(&delayed_refs->lock);
486 again:
487 start_index = (delayed_refs->run_delayed_start >> fs_info->sectorsize_bits);
488 xa_for_each_start(&delayed_refs->head_refs, found_index, head, start_index) {
489 if (!head->processing) {
490 found_head = true;
491 break;
492 }
493 }
494 if (!found_head) {
495 if (delayed_refs->run_delayed_start == 0) {
496 spin_unlock(&delayed_refs->lock);
497 return NULL;
498 }
499 delayed_refs->run_delayed_start = 0;
500 goto again;
501 }
502
503 head->processing = true;
504 WARN_ON(delayed_refs->num_heads_ready == 0);
505 delayed_refs->num_heads_ready--;
506 delayed_refs->run_delayed_start = head->bytenr +
507 head->num_bytes;
508
509 locked = btrfs_delayed_ref_lock(delayed_refs, head);
510 spin_unlock(&delayed_refs->lock);
511
512 /*
513 * We may have dropped the spin lock to get the head mutex lock, and
514 * that might have given someone else time to free the head. If that's
515 * true, it has been removed from our list and we can move on.
516 */
517 if (!locked)
518 return ERR_PTR(-EAGAIN);
519
520 return head;
521 }
522
btrfs_unselect_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)523 void btrfs_unselect_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
524 struct btrfs_delayed_ref_head *head)
525 {
526 spin_lock(&delayed_refs->lock);
527 head->processing = false;
528 delayed_refs->num_heads_ready++;
529 spin_unlock(&delayed_refs->lock);
530 btrfs_delayed_ref_unlock(head);
531 }
532
btrfs_delete_ref_head(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)533 void btrfs_delete_ref_head(const struct btrfs_fs_info *fs_info,
534 struct btrfs_delayed_ref_root *delayed_refs,
535 struct btrfs_delayed_ref_head *head)
536 {
537 const unsigned long index = (head->bytenr >> fs_info->sectorsize_bits);
538
539 lockdep_assert_held(&delayed_refs->lock);
540 lockdep_assert_held(&head->lock);
541
542 xa_erase(&delayed_refs->head_refs, index);
543 head->tracked = false;
544 delayed_refs->num_heads--;
545 if (!head->processing)
546 delayed_refs->num_heads_ready--;
547 }
548
btrfs_select_delayed_ref(struct btrfs_delayed_ref_head * head)549 struct btrfs_delayed_ref_node *btrfs_select_delayed_ref(struct btrfs_delayed_ref_head *head)
550 {
551 struct btrfs_delayed_ref_node *ref;
552
553 lockdep_assert_held(&head->mutex);
554 lockdep_assert_held(&head->lock);
555
556 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
557 return NULL;
558
559 /*
560 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
561 * This is to prevent a ref count from going down to zero, which deletes
562 * the extent item from the extent tree, when there still are references
563 * to add, which would fail because they would not find the extent item.
564 */
565 if (!list_empty(&head->ref_add_list))
566 return list_first_entry(&head->ref_add_list,
567 struct btrfs_delayed_ref_node, add_list);
568
569 ref = rb_entry(rb_first_cached(&head->ref_tree),
570 struct btrfs_delayed_ref_node, ref_node);
571 ASSERT(list_empty(&ref->add_list));
572 return ref;
573 }
574
575 /*
576 * Helper to insert the ref_node to the tail or merge with tail.
577 *
578 * Return false if the ref was inserted.
579 * Return true if the ref was merged into an existing one (and therefore can be
580 * freed by the caller).
581 */
insert_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * ref)582 static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
583 struct btrfs_delayed_ref_head *href,
584 struct btrfs_delayed_ref_node *ref)
585 {
586 struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
587 struct btrfs_delayed_ref_node *exist;
588 int mod;
589
590 spin_lock(&href->lock);
591 exist = tree_insert(&href->ref_tree, ref);
592 if (!exist) {
593 if (ref->action == BTRFS_ADD_DELAYED_REF)
594 list_add_tail(&ref->add_list, &href->ref_add_list);
595 spin_unlock(&href->lock);
596 trans->delayed_ref_updates++;
597 return false;
598 }
599
600 /* Now we are sure we can merge */
601 if (exist->action == ref->action) {
602 mod = ref->ref_mod;
603 } else {
604 /* Need to change action */
605 if (exist->ref_mod < ref->ref_mod) {
606 exist->action = ref->action;
607 mod = -exist->ref_mod;
608 exist->ref_mod = ref->ref_mod;
609 if (ref->action == BTRFS_ADD_DELAYED_REF)
610 list_add_tail(&exist->add_list,
611 &href->ref_add_list);
612 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
613 ASSERT(!list_empty(&exist->add_list));
614 list_del_init(&exist->add_list);
615 } else {
616 ASSERT(0);
617 }
618 } else
619 mod = -ref->ref_mod;
620 }
621 exist->ref_mod += mod;
622
623 /* remove existing tail if its ref_mod is zero */
624 if (exist->ref_mod == 0)
625 drop_delayed_ref(trans->fs_info, root, href, exist);
626 spin_unlock(&href->lock);
627 return true;
628 }
629
630 /*
631 * helper function to update the accounting in the head ref
632 * existing and update must have the same bytenr
633 */
update_existing_head_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * existing,struct btrfs_delayed_ref_head * update)634 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
635 struct btrfs_delayed_ref_head *existing,
636 struct btrfs_delayed_ref_head *update)
637 {
638 struct btrfs_delayed_ref_root *delayed_refs =
639 &trans->transaction->delayed_refs;
640 struct btrfs_fs_info *fs_info = trans->fs_info;
641 int old_ref_mod;
642
643 BUG_ON(existing->is_data != update->is_data);
644
645 spin_lock(&existing->lock);
646
647 /*
648 * When freeing an extent, we may not know the owning root when we
649 * first create the head_ref. However, some deref before the last deref
650 * will know it, so we just need to update the head_ref accordingly.
651 */
652 if (!existing->owning_root)
653 existing->owning_root = update->owning_root;
654
655 if (update->must_insert_reserved) {
656 /* if the extent was freed and then
657 * reallocated before the delayed ref
658 * entries were processed, we can end up
659 * with an existing head ref without
660 * the must_insert_reserved flag set.
661 * Set it again here
662 */
663 existing->must_insert_reserved = update->must_insert_reserved;
664 existing->owning_root = update->owning_root;
665
666 /*
667 * update the num_bytes so we make sure the accounting
668 * is done correctly
669 */
670 existing->num_bytes = update->num_bytes;
671
672 }
673
674 if (update->extent_op) {
675 if (!existing->extent_op) {
676 existing->extent_op = update->extent_op;
677 } else {
678 if (update->extent_op->update_key) {
679 memcpy(&existing->extent_op->key,
680 &update->extent_op->key,
681 sizeof(update->extent_op->key));
682 existing->extent_op->update_key = true;
683 }
684 if (update->extent_op->update_flags) {
685 existing->extent_op->flags_to_set |=
686 update->extent_op->flags_to_set;
687 existing->extent_op->update_flags = true;
688 }
689 btrfs_free_delayed_extent_op(update->extent_op);
690 }
691 }
692 /*
693 * update the reference mod on the head to reflect this new operation,
694 * only need the lock for this case cause we could be processing it
695 * currently, for refs we just added we know we're a-ok.
696 */
697 old_ref_mod = existing->total_ref_mod;
698 existing->ref_mod += update->ref_mod;
699 existing->total_ref_mod += update->ref_mod;
700
701 /*
702 * If we are going to from a positive ref mod to a negative or vice
703 * versa we need to make sure to adjust pending_csums accordingly.
704 * We reserve bytes for csum deletion when adding or updating a ref head
705 * see add_delayed_ref_head() for more details.
706 */
707 if (existing->is_data) {
708 u64 csum_leaves =
709 btrfs_csum_bytes_to_leaves(fs_info,
710 existing->num_bytes);
711
712 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
713 delayed_refs->pending_csums -= existing->num_bytes;
714 btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
715 }
716 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
717 delayed_refs->pending_csums += existing->num_bytes;
718 trans->delayed_ref_csum_deletions += csum_leaves;
719 }
720 }
721
722 spin_unlock(&existing->lock);
723 }
724
init_delayed_ref_head(struct btrfs_delayed_ref_head * head_ref,struct btrfs_ref * generic_ref,struct btrfs_qgroup_extent_record * qrecord,u64 reserved)725 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
726 struct btrfs_ref *generic_ref,
727 struct btrfs_qgroup_extent_record *qrecord,
728 u64 reserved)
729 {
730 int count_mod = 1;
731 bool must_insert_reserved = false;
732
733 /* If reserved is provided, it must be a data extent. */
734 BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
735
736 switch (generic_ref->action) {
737 case BTRFS_ADD_DELAYED_REF:
738 /* count_mod is already set to 1. */
739 break;
740 case BTRFS_UPDATE_DELAYED_HEAD:
741 count_mod = 0;
742 break;
743 case BTRFS_DROP_DELAYED_REF:
744 /*
745 * The head node stores the sum of all the mods, so dropping a ref
746 * should drop the sum in the head node by one.
747 */
748 count_mod = -1;
749 break;
750 case BTRFS_ADD_DELAYED_EXTENT:
751 /*
752 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
753 * reserved accounting when the extent is finally added, or if a
754 * later modification deletes the delayed ref without ever
755 * inserting the extent into the extent allocation tree.
756 * ref->must_insert_reserved is the flag used to record that
757 * accounting mods are required.
758 *
759 * Once we record must_insert_reserved, switch the action to
760 * BTRFS_ADD_DELAYED_REF because other special casing is not
761 * required.
762 */
763 must_insert_reserved = true;
764 break;
765 }
766
767 refcount_set(&head_ref->refs, 1);
768 head_ref->bytenr = generic_ref->bytenr;
769 head_ref->num_bytes = generic_ref->num_bytes;
770 head_ref->ref_mod = count_mod;
771 head_ref->reserved_bytes = reserved;
772 head_ref->must_insert_reserved = must_insert_reserved;
773 head_ref->owning_root = generic_ref->owning_root;
774 head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
775 head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
776 head_ref->ref_tree = RB_ROOT_CACHED;
777 INIT_LIST_HEAD(&head_ref->ref_add_list);
778 head_ref->tracked = false;
779 head_ref->processing = false;
780 head_ref->total_ref_mod = count_mod;
781 spin_lock_init(&head_ref->lock);
782 mutex_init(&head_ref->mutex);
783
784 /* If not metadata set an impossible level to help debugging. */
785 if (generic_ref->type == BTRFS_REF_METADATA)
786 head_ref->level = generic_ref->tree_ref.level;
787 else
788 head_ref->level = U8_MAX;
789
790 if (qrecord) {
791 if (generic_ref->ref_root && reserved) {
792 qrecord->data_rsv = reserved;
793 qrecord->data_rsv_refroot = generic_ref->ref_root;
794 }
795 qrecord->num_bytes = generic_ref->num_bytes;
796 qrecord->old_roots = NULL;
797 }
798 }
799
800 /*
801 * helper function to actually insert a head node into the rbtree.
802 * this does all the dirty work in terms of maintaining the correct
803 * overall modification count.
804 *
805 * Returns an error pointer in case of an error.
806 */
807 static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,int action,bool * qrecord_inserted_ret)808 add_delayed_ref_head(struct btrfs_trans_handle *trans,
809 struct btrfs_delayed_ref_head *head_ref,
810 struct btrfs_qgroup_extent_record *qrecord,
811 int action, bool *qrecord_inserted_ret)
812 {
813 struct btrfs_fs_info *fs_info = trans->fs_info;
814 struct btrfs_delayed_ref_head *existing;
815 struct btrfs_delayed_ref_root *delayed_refs;
816 const unsigned long index = (head_ref->bytenr >> fs_info->sectorsize_bits);
817 bool qrecord_inserted = false;
818
819 delayed_refs = &trans->transaction->delayed_refs;
820 lockdep_assert_held(&delayed_refs->lock);
821
822 #if BITS_PER_LONG == 32
823 if (head_ref->bytenr >= MAX_LFS_FILESIZE) {
824 if (qrecord)
825 xa_release(&delayed_refs->dirty_extents, index);
826 btrfs_err_rl(fs_info,
827 "delayed ref head %llu is beyond 32bit page cache and xarray index limit",
828 head_ref->bytenr);
829 btrfs_err_32bit_limit(fs_info);
830 return ERR_PTR(-EOVERFLOW);
831 }
832 #endif
833
834 /* Record qgroup extent info if provided */
835 if (qrecord) {
836 int ret;
837
838 ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord,
839 head_ref->bytenr);
840 if (ret) {
841 /* Clean up if insertion fails or item exists. */
842 xa_release(&delayed_refs->dirty_extents, index);
843 /* Caller responsible for freeing qrecord on error. */
844 if (ret < 0)
845 return ERR_PTR(ret);
846 kfree(qrecord);
847 } else {
848 qrecord_inserted = true;
849 }
850 }
851
852 trace_add_delayed_ref_head(fs_info, head_ref, action);
853
854 existing = xa_load(&delayed_refs->head_refs, index);
855 if (existing) {
856 update_existing_head_ref(trans, existing, head_ref);
857 /*
858 * we've updated the existing ref, free the newly
859 * allocated ref
860 */
861 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
862 head_ref = existing;
863 } else {
864 existing = xa_store(&delayed_refs->head_refs, index, head_ref, GFP_ATOMIC);
865 if (xa_is_err(existing)) {
866 /* Memory was preallocated by the caller. */
867 ASSERT(xa_err(existing) != -ENOMEM);
868 return ERR_PTR(xa_err(existing));
869 } else if (WARN_ON(existing)) {
870 /*
871 * Shouldn't happen we just did a lookup before under
872 * delayed_refs->lock.
873 */
874 return ERR_PTR(-EEXIST);
875 }
876 head_ref->tracked = true;
877 /*
878 * We reserve the amount of bytes needed to delete csums when
879 * adding the ref head and not when adding individual drop refs
880 * since the csum items are deleted only after running the last
881 * delayed drop ref (the data extent's ref count drops to 0).
882 */
883 if (head_ref->is_data && head_ref->ref_mod < 0) {
884 delayed_refs->pending_csums += head_ref->num_bytes;
885 trans->delayed_ref_csum_deletions +=
886 btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes);
887 }
888 delayed_refs->num_heads++;
889 delayed_refs->num_heads_ready++;
890 }
891 if (qrecord_inserted_ret)
892 *qrecord_inserted_ret = qrecord_inserted;
893
894 return head_ref;
895 }
896
897 /*
898 * Initialize the structure which represents a modification to a an extent.
899 *
900 * @fs_info: Internal to the mounted filesystem mount structure.
901 *
902 * @ref: The structure which is going to be initialized.
903 *
904 * @bytenr: The logical address of the extent for which a modification is
905 * going to be recorded.
906 *
907 * @num_bytes: Size of the extent whose modification is being recorded.
908 *
909 * @ref_root: The id of the root where this modification has originated, this
910 * can be either one of the well-known metadata trees or the
911 * subvolume id which references this extent.
912 *
913 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
914 * BTRFS_ADD_DELAYED_EXTENT
915 *
916 * @ref_type: Holds the type of the extent which is being recorded, can be
917 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
918 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
919 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
920 */
init_delayed_ref_common(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * ref,struct btrfs_ref * generic_ref)921 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
922 struct btrfs_delayed_ref_node *ref,
923 struct btrfs_ref *generic_ref)
924 {
925 int action = generic_ref->action;
926 u64 seq = 0;
927
928 if (action == BTRFS_ADD_DELAYED_EXTENT)
929 action = BTRFS_ADD_DELAYED_REF;
930
931 if (btrfs_is_fstree(generic_ref->ref_root))
932 seq = atomic64_read(&fs_info->tree_mod_seq);
933
934 refcount_set(&ref->refs, 1);
935 ref->bytenr = generic_ref->bytenr;
936 ref->num_bytes = generic_ref->num_bytes;
937 ref->ref_mod = 1;
938 ref->action = action;
939 ref->seq = seq;
940 ref->type = btrfs_ref_type(generic_ref);
941 ref->ref_root = generic_ref->ref_root;
942 ref->parent = generic_ref->parent;
943 RB_CLEAR_NODE(&ref->ref_node);
944 INIT_LIST_HEAD(&ref->add_list);
945
946 if (generic_ref->type == BTRFS_REF_DATA)
947 ref->data_ref = generic_ref->data_ref;
948 else
949 ref->tree_ref = generic_ref->tree_ref;
950 }
951
btrfs_init_tree_ref(struct btrfs_ref * generic_ref,int level,u64 mod_root,bool skip_qgroup)952 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
953 bool skip_qgroup)
954 {
955 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
956 /* If @real_root not set, use @root as fallback */
957 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
958 #endif
959 generic_ref->tree_ref.level = level;
960 generic_ref->type = BTRFS_REF_METADATA;
961 if (skip_qgroup || !(btrfs_is_fstree(generic_ref->ref_root) &&
962 (!mod_root || btrfs_is_fstree(mod_root))))
963 generic_ref->skip_qgroup = true;
964 else
965 generic_ref->skip_qgroup = false;
966
967 }
968
btrfs_init_data_ref(struct btrfs_ref * generic_ref,u64 ino,u64 offset,u64 mod_root,bool skip_qgroup)969 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
970 u64 mod_root, bool skip_qgroup)
971 {
972 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
973 /* If @real_root not set, use @root as fallback */
974 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
975 #endif
976 generic_ref->data_ref.objectid = ino;
977 generic_ref->data_ref.offset = offset;
978 generic_ref->type = BTRFS_REF_DATA;
979 if (skip_qgroup || !(btrfs_is_fstree(generic_ref->ref_root) &&
980 (!mod_root || btrfs_is_fstree(mod_root))))
981 generic_ref->skip_qgroup = true;
982 else
983 generic_ref->skip_qgroup = false;
984 }
985
add_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op,u64 reserved)986 static int add_delayed_ref(struct btrfs_trans_handle *trans,
987 struct btrfs_ref *generic_ref,
988 struct btrfs_delayed_extent_op *extent_op,
989 u64 reserved)
990 {
991 struct btrfs_fs_info *fs_info = trans->fs_info;
992 struct btrfs_delayed_ref_node *node;
993 struct btrfs_delayed_ref_head *head_ref;
994 struct btrfs_delayed_ref_head *new_head_ref;
995 struct btrfs_delayed_ref_root *delayed_refs;
996 struct btrfs_qgroup_extent_record *record = NULL;
997 const unsigned long index = (generic_ref->bytenr >> fs_info->sectorsize_bits);
998 bool qrecord_reserved = false;
999 bool qrecord_inserted;
1000 int action = generic_ref->action;
1001 bool merged;
1002 int ret;
1003
1004 node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
1005 if (!node)
1006 return -ENOMEM;
1007
1008 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1009 if (!head_ref) {
1010 ret = -ENOMEM;
1011 goto free_node;
1012 }
1013
1014 delayed_refs = &trans->transaction->delayed_refs;
1015
1016 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1017 record = kzalloc(sizeof(*record), GFP_NOFS);
1018 if (!record) {
1019 ret = -ENOMEM;
1020 goto free_head_ref;
1021 }
1022 if (xa_reserve(&delayed_refs->dirty_extents, index, GFP_NOFS)) {
1023 ret = -ENOMEM;
1024 goto free_record;
1025 }
1026 qrecord_reserved = true;
1027 }
1028
1029 ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1030 if (ret) {
1031 if (qrecord_reserved)
1032 xa_release(&delayed_refs->dirty_extents, index);
1033 goto free_record;
1034 }
1035
1036 init_delayed_ref_common(fs_info, node, generic_ref);
1037 init_delayed_ref_head(head_ref, generic_ref, record, reserved);
1038 head_ref->extent_op = extent_op;
1039
1040 spin_lock(&delayed_refs->lock);
1041
1042 /*
1043 * insert both the head node and the new ref without dropping
1044 * the spin lock
1045 */
1046 new_head_ref = add_delayed_ref_head(trans, head_ref, record,
1047 action, &qrecord_inserted);
1048 if (IS_ERR(new_head_ref)) {
1049 xa_release(&delayed_refs->head_refs, index);
1050 spin_unlock(&delayed_refs->lock);
1051 ret = PTR_ERR(new_head_ref);
1052 goto free_record;
1053 }
1054 head_ref = new_head_ref;
1055
1056 merged = insert_delayed_ref(trans, head_ref, node);
1057 spin_unlock(&delayed_refs->lock);
1058
1059 /*
1060 * Need to update the delayed_refs_rsv with any changes we may have
1061 * made.
1062 */
1063 btrfs_update_delayed_refs_rsv(trans);
1064
1065 if (generic_ref->type == BTRFS_REF_DATA)
1066 trace_add_delayed_data_ref(trans->fs_info, node);
1067 else
1068 trace_add_delayed_tree_ref(trans->fs_info, node);
1069 if (merged)
1070 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1071
1072 if (qrecord_inserted)
1073 return btrfs_qgroup_trace_extent_post(trans, record, generic_ref->bytenr);
1074 return 0;
1075
1076 free_record:
1077 kfree(record);
1078 free_head_ref:
1079 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1080 free_node:
1081 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1082 return ret;
1083 }
1084
1085 /*
1086 * Add a delayed tree ref. This does all of the accounting required to make sure
1087 * the delayed ref is eventually processed before this transaction commits.
1088 */
btrfs_add_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op)1089 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1090 struct btrfs_ref *generic_ref,
1091 struct btrfs_delayed_extent_op *extent_op)
1092 {
1093 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1094 return add_delayed_ref(trans, generic_ref, extent_op, 0);
1095 }
1096
1097 /*
1098 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1099 */
btrfs_add_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,u64 reserved)1100 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1101 struct btrfs_ref *generic_ref,
1102 u64 reserved)
1103 {
1104 ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1105 return add_delayed_ref(trans, generic_ref, NULL, reserved);
1106 }
1107
btrfs_add_delayed_extent_op(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,u8 level,struct btrfs_delayed_extent_op * extent_op)1108 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1109 u64 bytenr, u64 num_bytes, u8 level,
1110 struct btrfs_delayed_extent_op *extent_op)
1111 {
1112 const unsigned long index = (bytenr >> trans->fs_info->sectorsize_bits);
1113 struct btrfs_delayed_ref_head *head_ref;
1114 struct btrfs_delayed_ref_head *head_ref_ret;
1115 struct btrfs_delayed_ref_root *delayed_refs;
1116 struct btrfs_ref generic_ref = {
1117 .type = BTRFS_REF_METADATA,
1118 .action = BTRFS_UPDATE_DELAYED_HEAD,
1119 .bytenr = bytenr,
1120 .num_bytes = num_bytes,
1121 .tree_ref.level = level,
1122 };
1123 int ret;
1124
1125 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1126 if (!head_ref)
1127 return -ENOMEM;
1128
1129 init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1130 head_ref->extent_op = extent_op;
1131
1132 delayed_refs = &trans->transaction->delayed_refs;
1133
1134 ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1135 if (ret) {
1136 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1137 return ret;
1138 }
1139
1140 spin_lock(&delayed_refs->lock);
1141 head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL,
1142 BTRFS_UPDATE_DELAYED_HEAD, NULL);
1143 if (IS_ERR(head_ref_ret)) {
1144 xa_release(&delayed_refs->head_refs, index);
1145 spin_unlock(&delayed_refs->lock);
1146 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1147 return PTR_ERR(head_ref_ret);
1148 }
1149 spin_unlock(&delayed_refs->lock);
1150
1151 /*
1152 * Need to update the delayed_refs_rsv with any changes we may have
1153 * made.
1154 */
1155 btrfs_update_delayed_refs_rsv(trans);
1156 return 0;
1157 }
1158
btrfs_put_delayed_ref(struct btrfs_delayed_ref_node * ref)1159 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1160 {
1161 if (refcount_dec_and_test(&ref->refs)) {
1162 WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1163 kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1164 }
1165 }
1166
1167 /*
1168 * This does a simple search for the head node for a given extent. Returns the
1169 * head node if found, or NULL if not.
1170 */
1171 struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,u64 bytenr)1172 btrfs_find_delayed_ref_head(const struct btrfs_fs_info *fs_info,
1173 struct btrfs_delayed_ref_root *delayed_refs,
1174 u64 bytenr)
1175 {
1176 const unsigned long index = (bytenr >> fs_info->sectorsize_bits);
1177
1178 lockdep_assert_held(&delayed_refs->lock);
1179
1180 return xa_load(&delayed_refs->head_refs, index);
1181 }
1182
find_comp(struct btrfs_delayed_ref_node * entry,u64 root,u64 parent)1183 static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent)
1184 {
1185 int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY;
1186
1187 if (type < entry->type)
1188 return -1;
1189 if (type > entry->type)
1190 return 1;
1191
1192 if (type == BTRFS_TREE_BLOCK_REF_KEY) {
1193 if (root < entry->ref_root)
1194 return -1;
1195 if (root > entry->ref_root)
1196 return 1;
1197 } else {
1198 if (parent < entry->parent)
1199 return -1;
1200 if (parent > entry->parent)
1201 return 1;
1202 }
1203 return 0;
1204 }
1205
1206 /*
1207 * Check to see if a given root/parent reference is attached to the head. This
1208 * only checks for BTRFS_ADD_DELAYED_REF references that match, as that
1209 * indicates the reference exists for the given root or parent. This is for
1210 * tree blocks only.
1211 *
1212 * @head: the head of the bytenr we're searching.
1213 * @root: the root objectid of the reference if it is a normal reference.
1214 * @parent: the parent if this is a shared backref.
1215 */
btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head * head,u64 root,u64 parent)1216 bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
1217 u64 root, u64 parent)
1218 {
1219 struct rb_node *node;
1220 bool found = false;
1221
1222 lockdep_assert_held(&head->mutex);
1223
1224 spin_lock(&head->lock);
1225 node = head->ref_tree.rb_root.rb_node;
1226 while (node) {
1227 struct btrfs_delayed_ref_node *entry;
1228 int ret;
1229
1230 entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
1231 ret = find_comp(entry, root, parent);
1232 if (ret < 0) {
1233 node = node->rb_left;
1234 } else if (ret > 0) {
1235 node = node->rb_right;
1236 } else {
1237 /*
1238 * We only want to count ADD actions, as drops mean the
1239 * ref doesn't exist.
1240 */
1241 if (entry->action == BTRFS_ADD_DELAYED_REF)
1242 found = true;
1243 break;
1244 }
1245 }
1246 spin_unlock(&head->lock);
1247 return found;
1248 }
1249
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans)1250 void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans)
1251 {
1252 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
1253 struct btrfs_fs_info *fs_info = trans->fs_info;
1254 bool testing = btrfs_is_testing(fs_info);
1255
1256 spin_lock(&delayed_refs->lock);
1257 while (true) {
1258 struct btrfs_delayed_ref_head *head;
1259 struct rb_node *n;
1260 bool pin_bytes = false;
1261
1262 head = find_first_ref_head(delayed_refs);
1263 if (!head)
1264 break;
1265
1266 if (!btrfs_delayed_ref_lock(delayed_refs, head))
1267 continue;
1268
1269 spin_lock(&head->lock);
1270 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
1271 struct btrfs_delayed_ref_node *ref;
1272
1273 ref = rb_entry(n, struct btrfs_delayed_ref_node, ref_node);
1274 drop_delayed_ref(fs_info, delayed_refs, head, ref);
1275 }
1276 if (head->must_insert_reserved)
1277 pin_bytes = true;
1278 btrfs_free_delayed_extent_op(head->extent_op);
1279 btrfs_delete_ref_head(fs_info, delayed_refs, head);
1280 spin_unlock(&head->lock);
1281 spin_unlock(&delayed_refs->lock);
1282 mutex_unlock(&head->mutex);
1283
1284 if (!testing && pin_bytes) {
1285 struct btrfs_block_group *bg;
1286
1287 bg = btrfs_lookup_block_group(fs_info, head->bytenr);
1288 if (WARN_ON_ONCE(bg == NULL)) {
1289 /*
1290 * Unexpected and there's nothing we can do here
1291 * because we are in a transaction abort path,
1292 * so any errors can only be ignored or reported
1293 * while attempting to cleanup all resources.
1294 */
1295 btrfs_err(fs_info,
1296 "block group for delayed ref at %llu was not found while destroying ref head",
1297 head->bytenr);
1298 } else {
1299 spin_lock(&bg->space_info->lock);
1300 spin_lock(&bg->lock);
1301 bg->pinned += head->num_bytes;
1302 btrfs_space_info_update_bytes_pinned(bg->space_info,
1303 head->num_bytes);
1304 bg->reserved -= head->num_bytes;
1305 bg->space_info->bytes_reserved -= head->num_bytes;
1306 spin_unlock(&bg->lock);
1307 spin_unlock(&bg->space_info->lock);
1308
1309 btrfs_put_block_group(bg);
1310 }
1311
1312 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
1313 head->bytenr + head->num_bytes - 1);
1314 }
1315 if (!testing)
1316 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1317 btrfs_put_delayed_ref_head(head);
1318 cond_resched();
1319 spin_lock(&delayed_refs->lock);
1320 }
1321
1322 if (!testing)
1323 btrfs_qgroup_destroy_extent_records(trans);
1324
1325 spin_unlock(&delayed_refs->lock);
1326 }
1327
btrfs_delayed_ref_exit(void)1328 void __cold btrfs_delayed_ref_exit(void)
1329 {
1330 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1331 kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
1332 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1333 }
1334
btrfs_delayed_ref_init(void)1335 int __init btrfs_delayed_ref_init(void)
1336 {
1337 btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1338 if (!btrfs_delayed_ref_head_cachep)
1339 return -ENOMEM;
1340
1341 btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1342 if (!btrfs_delayed_ref_node_cachep)
1343 goto fail;
1344
1345 btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1346 if (!btrfs_delayed_extent_op_cachep)
1347 goto fail;
1348
1349 return 0;
1350 fail:
1351 btrfs_delayed_ref_exit();
1352 return -ENOMEM;
1353 }
1354