1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37
38 /*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
62 * |
63 * Transaction N [[TRANS_STATE_COMMIT_START]]
64 * |
65 * | Then one of the following happens:
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 [TRANS_STATE_RUNNING] = 0U,
116 [TRANS_STATE_COMMIT_PREP] = 0U,
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_ATTACH |
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
137 };
138
btrfs_put_transaction(struct btrfs_transaction * transaction)139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(&transaction->use_count)) {
143 BUG_ON(!list_empty(&transaction->list));
144 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
145 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
159
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
162 bg_list);
163 /*
164 * Not strictly necessary to lock, as no other task will be using a
165 * block_group on the deleted_bgs list during a transaction abort.
166 */
167 spin_lock(&transaction->fs_info->unused_bgs_lock);
168 list_del_init(&cache->bg_list);
169 spin_unlock(&transaction->fs_info->unused_bgs_lock);
170 btrfs_unfreeze_block_group(cache);
171 btrfs_put_block_group(cache);
172 }
173 WARN_ON(!list_empty(&transaction->dev_update_list));
174 kfree(transaction);
175 }
176 }
177
switch_commit_roots(struct btrfs_trans_handle * trans)178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179 {
180 struct btrfs_transaction *cur_trans = trans->transaction;
181 struct btrfs_fs_info *fs_info = trans->fs_info;
182 struct btrfs_root *root, *tmp;
183
184 /*
185 * At this point no one can be using this transaction to modify any tree
186 * and no one can start another transaction to modify any tree either.
187 */
188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189
190 down_write(&fs_info->commit_root_sem);
191
192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 fs_info->last_reloc_trans = trans->transid;
194
195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196 dirty_list) {
197 list_del_init(&root->dirty_list);
198 free_extent_buffer(root->commit_root);
199 root->commit_root = btrfs_root_node(root);
200 extent_io_tree_release(&root->dirty_log_pages);
201 btrfs_qgroup_clean_swapped_blocks(root);
202 }
203
204 /* We can free old roots now. */
205 spin_lock(&cur_trans->dropped_roots_lock);
206 while (!list_empty(&cur_trans->dropped_roots)) {
207 root = list_first_entry(&cur_trans->dropped_roots,
208 struct btrfs_root, root_list);
209 list_del_init(&root->root_list);
210 spin_unlock(&cur_trans->dropped_roots_lock);
211 btrfs_free_log(trans, root);
212 btrfs_drop_and_free_fs_root(fs_info, root);
213 spin_lock(&cur_trans->dropped_roots_lock);
214 }
215 spin_unlock(&cur_trans->dropped_roots_lock);
216
217 up_write(&fs_info->commit_root_sem);
218 }
219
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 unsigned int type)
222 {
223 if (type & TRANS_EXTWRITERS)
224 atomic_inc(&trans->num_extwriters);
225 }
226
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 unsigned int type)
229 {
230 if (type & TRANS_EXTWRITERS)
231 atomic_dec(&trans->num_extwriters);
232 }
233
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)234 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 unsigned int type)
236 {
237 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238 }
239
extwriter_counter_read(struct btrfs_transaction * trans)240 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241 {
242 return atomic_read(&trans->num_extwriters);
243 }
244
245 /*
246 * To be called after doing the chunk btree updates right after allocating a new
247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248 * chunk after all chunk btree updates and after finishing the second phase of
249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250 * group had its chunk item insertion delayed to the second phase.
251 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253 {
254 struct btrfs_fs_info *fs_info = trans->fs_info;
255
256 if (!trans->chunk_bytes_reserved)
257 return;
258
259 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
260 trans->chunk_bytes_reserved, NULL);
261 trans->chunk_bytes_reserved = 0;
262 }
263
264 /*
265 * either allocate a new transaction or hop into the existing one
266 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)267 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 unsigned int type)
269 {
270 struct btrfs_transaction *cur_trans;
271
272 spin_lock(&fs_info->trans_lock);
273 loop:
274 /* The file system has been taken offline. No new transactions. */
275 if (BTRFS_FS_ERROR(fs_info)) {
276 spin_unlock(&fs_info->trans_lock);
277 return -EROFS;
278 }
279
280 cur_trans = fs_info->running_transaction;
281 if (cur_trans) {
282 if (TRANS_ABORTED(cur_trans)) {
283 const int abort_error = cur_trans->aborted;
284
285 spin_unlock(&fs_info->trans_lock);
286 return abort_error;
287 }
288 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
289 spin_unlock(&fs_info->trans_lock);
290 return -EBUSY;
291 }
292 refcount_inc(&cur_trans->use_count);
293 atomic_inc(&cur_trans->num_writers);
294 extwriter_counter_inc(cur_trans, type);
295 spin_unlock(&fs_info->trans_lock);
296 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
297 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
298 return 0;
299 }
300 spin_unlock(&fs_info->trans_lock);
301
302 /*
303 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
304 * current transaction, and commit it. If there is no transaction, just
305 * return ENOENT.
306 */
307 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
308 return -ENOENT;
309
310 /*
311 * JOIN_NOLOCK only happens during the transaction commit, so
312 * it is impossible that ->running_transaction is NULL
313 */
314 BUG_ON(type == TRANS_JOIN_NOLOCK);
315
316 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
317 if (!cur_trans)
318 return -ENOMEM;
319
320 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
321 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
322
323 spin_lock(&fs_info->trans_lock);
324 if (fs_info->running_transaction) {
325 /*
326 * someone started a transaction after we unlocked. Make sure
327 * to redo the checks above
328 */
329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 kfree(cur_trans);
332 goto loop;
333 } else if (BTRFS_FS_ERROR(fs_info)) {
334 spin_unlock(&fs_info->trans_lock);
335 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
336 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
337 kfree(cur_trans);
338 return -EROFS;
339 }
340
341 cur_trans->fs_info = fs_info;
342 atomic_set(&cur_trans->pending_ordered, 0);
343 init_waitqueue_head(&cur_trans->pending_wait);
344 atomic_set(&cur_trans->num_writers, 1);
345 extwriter_counter_init(cur_trans, type);
346 init_waitqueue_head(&cur_trans->writer_wait);
347 init_waitqueue_head(&cur_trans->commit_wait);
348 cur_trans->state = TRANS_STATE_RUNNING;
349 /*
350 * One for this trans handle, one so it will live on until we
351 * commit the transaction.
352 */
353 refcount_set(&cur_trans->use_count, 2);
354 cur_trans->flags = 0;
355 cur_trans->start_time = ktime_get_seconds();
356
357 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
358
359 xa_init(&cur_trans->delayed_refs.head_refs);
360 xa_init(&cur_trans->delayed_refs.dirty_extents);
361
362 /*
363 * although the tree mod log is per file system and not per transaction,
364 * the log must never go across transaction boundaries.
365 */
366 smp_mb();
367 if (!list_empty(&fs_info->tree_mod_seq_list))
368 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
369 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
370 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
371 atomic64_set(&fs_info->tree_mod_seq, 0);
372
373 spin_lock_init(&cur_trans->delayed_refs.lock);
374
375 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
376 INIT_LIST_HEAD(&cur_trans->dev_update_list);
377 INIT_LIST_HEAD(&cur_trans->switch_commits);
378 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
379 INIT_LIST_HEAD(&cur_trans->io_bgs);
380 INIT_LIST_HEAD(&cur_trans->dropped_roots);
381 mutex_init(&cur_trans->cache_write_mutex);
382 spin_lock_init(&cur_trans->dirty_bgs_lock);
383 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
384 spin_lock_init(&cur_trans->dropped_roots_lock);
385 list_add_tail(&cur_trans->list, &fs_info->trans_list);
386 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
387 IO_TREE_TRANS_DIRTY_PAGES);
388 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
389 IO_TREE_FS_PINNED_EXTENTS);
390 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
391 cur_trans->transid = fs_info->generation;
392 fs_info->running_transaction = cur_trans;
393 cur_trans->aborted = 0;
394 spin_unlock(&fs_info->trans_lock);
395
396 return 0;
397 }
398
399 /*
400 * This does all the record keeping required to make sure that a shareable root
401 * is properly recorded in a given transaction. This is required to make sure
402 * the old root from before we joined the transaction is deleted when the
403 * transaction commits.
404 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)405 static int record_root_in_trans(struct btrfs_trans_handle *trans,
406 struct btrfs_root *root,
407 int force)
408 {
409 struct btrfs_fs_info *fs_info = root->fs_info;
410 int ret = 0;
411
412 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
413 btrfs_get_root_last_trans(root) < trans->transid) || force) {
414 WARN_ON(!force && root->commit_root != root->node);
415
416 /*
417 * see below for IN_TRANS_SETUP usage rules
418 * we have the reloc mutex held now, so there
419 * is only one writer in this function
420 */
421 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
422
423 /* make sure readers find IN_TRANS_SETUP before
424 * they find our root->last_trans update
425 */
426 smp_wmb();
427
428 spin_lock(&fs_info->fs_roots_radix_lock);
429 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 return 0;
432 }
433 radix_tree_tag_set(&fs_info->fs_roots_radix,
434 (unsigned long)btrfs_root_id(root),
435 BTRFS_ROOT_TRANS_TAG);
436 spin_unlock(&fs_info->fs_roots_radix_lock);
437 btrfs_set_root_last_trans(root, trans->transid);
438
439 /* this is pretty tricky. We don't want to
440 * take the relocation lock in btrfs_record_root_in_trans
441 * unless we're really doing the first setup for this root in
442 * this transaction.
443 *
444 * Normally we'd use root->last_trans as a flag to decide
445 * if we want to take the expensive mutex.
446 *
447 * But, we have to set root->last_trans before we
448 * init the relocation root, otherwise, we trip over warnings
449 * in ctree.c. The solution used here is to flag ourselves
450 * with root IN_TRANS_SETUP. When this is 1, we're still
451 * fixing up the reloc trees and everyone must wait.
452 *
453 * When this is zero, they can trust root->last_trans and fly
454 * through btrfs_record_root_in_trans without having to take the
455 * lock. smp_wmb() makes sure that all the writes above are
456 * done before we pop in the zero below
457 */
458 ret = btrfs_init_reloc_root(trans, root);
459 smp_mb__before_atomic();
460 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
461 }
462 return ret;
463 }
464
465
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)466 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
467 struct btrfs_root *root)
468 {
469 struct btrfs_fs_info *fs_info = root->fs_info;
470 struct btrfs_transaction *cur_trans = trans->transaction;
471
472 /* Add ourselves to the transaction dropped list */
473 spin_lock(&cur_trans->dropped_roots_lock);
474 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
475 spin_unlock(&cur_trans->dropped_roots_lock);
476
477 /* Make sure we don't try to update the root at commit time */
478 spin_lock(&fs_info->fs_roots_radix_lock);
479 radix_tree_tag_clear(&fs_info->fs_roots_radix,
480 (unsigned long)btrfs_root_id(root),
481 BTRFS_ROOT_TRANS_TAG);
482 spin_unlock(&fs_info->fs_roots_radix_lock);
483 }
484
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)485 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
486 struct btrfs_root *root)
487 {
488 struct btrfs_fs_info *fs_info = root->fs_info;
489 int ret;
490
491 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
492 return 0;
493
494 /*
495 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
496 * and barriers
497 */
498 smp_rmb();
499 if (btrfs_get_root_last_trans(root) == trans->transid &&
500 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
501 return 0;
502
503 mutex_lock(&fs_info->reloc_mutex);
504 ret = record_root_in_trans(trans, root, 0);
505 mutex_unlock(&fs_info->reloc_mutex);
506
507 return ret;
508 }
509
is_transaction_blocked(struct btrfs_transaction * trans)510 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
511 {
512 return (trans->state >= TRANS_STATE_COMMIT_START &&
513 trans->state < TRANS_STATE_UNBLOCKED &&
514 !TRANS_ABORTED(trans));
515 }
516
517 /* wait for commit against the current transaction to become unblocked
518 * when this is done, it is safe to start a new transaction, but the current
519 * transaction might not be fully on disk.
520 */
wait_current_trans(struct btrfs_fs_info * fs_info)521 static void wait_current_trans(struct btrfs_fs_info *fs_info)
522 {
523 struct btrfs_transaction *cur_trans;
524
525 spin_lock(&fs_info->trans_lock);
526 cur_trans = fs_info->running_transaction;
527 if (cur_trans && is_transaction_blocked(cur_trans)) {
528 refcount_inc(&cur_trans->use_count);
529 spin_unlock(&fs_info->trans_lock);
530
531 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
532 wait_event(fs_info->transaction_wait,
533 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
534 TRANS_ABORTED(cur_trans));
535 btrfs_put_transaction(cur_trans);
536 } else {
537 spin_unlock(&fs_info->trans_lock);
538 }
539 }
540
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)541 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
542 {
543 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
544 return 0;
545
546 if (type == TRANS_START)
547 return 1;
548
549 return 0;
550 }
551
need_reserve_reloc_root(struct btrfs_root * root)552 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
553 {
554 struct btrfs_fs_info *fs_info = root->fs_info;
555
556 if (!fs_info->reloc_ctl ||
557 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
558 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
559 root->reloc_root)
560 return false;
561
562 return true;
563 }
564
btrfs_reserve_trans_metadata(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush,u64 num_bytes,u64 * delayed_refs_bytes)565 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
566 enum btrfs_reserve_flush_enum flush,
567 u64 num_bytes,
568 u64 *delayed_refs_bytes)
569 {
570 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
571 u64 bytes = num_bytes + *delayed_refs_bytes;
572 int ret;
573
574 /*
575 * We want to reserve all the bytes we may need all at once, so we only
576 * do 1 enospc flushing cycle per transaction start.
577 */
578 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
579
580 /*
581 * If we are an emergency flush, which can steal from the global block
582 * reserve, then attempt to not reserve space for the delayed refs, as
583 * we will consume space for them from the global block reserve.
584 */
585 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
586 bytes -= *delayed_refs_bytes;
587 *delayed_refs_bytes = 0;
588 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
589 }
590
591 return ret;
592 }
593
594 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)595 start_transaction(struct btrfs_root *root, unsigned int num_items,
596 unsigned int type, enum btrfs_reserve_flush_enum flush,
597 bool enforce_qgroups)
598 {
599 struct btrfs_fs_info *fs_info = root->fs_info;
600 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
601 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
602 struct btrfs_trans_handle *h;
603 struct btrfs_transaction *cur_trans;
604 u64 num_bytes = 0;
605 u64 qgroup_reserved = 0;
606 u64 delayed_refs_bytes = 0;
607 bool reloc_reserved = false;
608 bool do_chunk_alloc = false;
609 int ret;
610
611 if (BTRFS_FS_ERROR(fs_info))
612 return ERR_PTR(-EROFS);
613
614 if (current->journal_info) {
615 WARN_ON(type & TRANS_EXTWRITERS);
616 h = current->journal_info;
617 refcount_inc(&h->use_count);
618 WARN_ON(refcount_read(&h->use_count) > 2);
619 h->orig_rsv = h->block_rsv;
620 h->block_rsv = NULL;
621 goto got_it;
622 }
623
624 /*
625 * Do the reservation before we join the transaction so we can do all
626 * the appropriate flushing if need be.
627 */
628 if (num_items && root != fs_info->chunk_root) {
629 qgroup_reserved = num_items * fs_info->nodesize;
630 /*
631 * Use prealloc for now, as there might be a currently running
632 * transaction that could free this reserved space prematurely
633 * by committing.
634 */
635 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
636 enforce_qgroups, false);
637 if (ret)
638 return ERR_PTR(ret);
639
640 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
641 /*
642 * If we plan to insert/update/delete "num_items" from a btree,
643 * we will also generate delayed refs for extent buffers in the
644 * respective btree paths, so reserve space for the delayed refs
645 * that will be generated by the caller as it modifies btrees.
646 * Try to reserve them to avoid excessive use of the global
647 * block reserve.
648 */
649 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
650
651 /*
652 * Do the reservation for the relocation root creation
653 */
654 if (need_reserve_reloc_root(root)) {
655 num_bytes += fs_info->nodesize;
656 reloc_reserved = true;
657 }
658
659 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
660 &delayed_refs_bytes);
661 if (ret)
662 goto reserve_fail;
663
664 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
665
666 if (trans_rsv->space_info->force_alloc)
667 do_chunk_alloc = true;
668 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
669 !btrfs_block_rsv_full(delayed_refs_rsv)) {
670 /*
671 * Some people call with btrfs_start_transaction(root, 0)
672 * because they can be throttled, but have some other mechanism
673 * for reserving space. We still want these guys to refill the
674 * delayed block_rsv so just add 1 items worth of reservation
675 * here.
676 */
677 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
678 if (ret)
679 goto reserve_fail;
680 }
681 again:
682 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
683 if (!h) {
684 ret = -ENOMEM;
685 goto alloc_fail;
686 }
687
688 /*
689 * If we are JOIN_NOLOCK we're already committing a transaction and
690 * waiting on this guy, so we don't need to do the sb_start_intwrite
691 * because we're already holding a ref. We need this because we could
692 * have raced in and did an fsync() on a file which can kick a commit
693 * and then we deadlock with somebody doing a freeze.
694 *
695 * If we are ATTACH, it means we just want to catch the current
696 * transaction and commit it, so we needn't do sb_start_intwrite().
697 */
698 if (type & __TRANS_FREEZABLE)
699 sb_start_intwrite(fs_info->sb);
700
701 if (may_wait_transaction(fs_info, type))
702 wait_current_trans(fs_info);
703
704 do {
705 ret = join_transaction(fs_info, type);
706 if (ret == -EBUSY) {
707 wait_current_trans(fs_info);
708 if (unlikely(type == TRANS_ATTACH ||
709 type == TRANS_JOIN_NOSTART))
710 ret = -ENOENT;
711 }
712 } while (ret == -EBUSY);
713
714 if (ret < 0)
715 goto join_fail;
716
717 cur_trans = fs_info->running_transaction;
718
719 h->transid = cur_trans->transid;
720 h->transaction = cur_trans;
721 refcount_set(&h->use_count, 1);
722 h->fs_info = root->fs_info;
723
724 h->type = type;
725 INIT_LIST_HEAD(&h->new_bgs);
726 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
727
728 smp_mb();
729 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
730 may_wait_transaction(fs_info, type)) {
731 current->journal_info = h;
732 btrfs_commit_transaction(h);
733 goto again;
734 }
735
736 if (num_bytes) {
737 trace_btrfs_space_reservation(fs_info, "transaction",
738 h->transid, num_bytes, 1);
739 h->block_rsv = trans_rsv;
740 h->bytes_reserved = num_bytes;
741 if (delayed_refs_bytes > 0) {
742 trace_btrfs_space_reservation(fs_info,
743 "local_delayed_refs_rsv",
744 h->transid,
745 delayed_refs_bytes, 1);
746 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
747 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
748 delayed_refs_bytes = 0;
749 }
750 h->reloc_reserved = reloc_reserved;
751 }
752
753 got_it:
754 if (!current->journal_info)
755 current->journal_info = h;
756
757 /*
758 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
759 * ALLOC_FORCE the first run through, and then we won't allocate for
760 * anybody else who races in later. We don't care about the return
761 * value here.
762 */
763 if (do_chunk_alloc && num_bytes) {
764 u64 flags = h->block_rsv->space_info->flags;
765
766 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
767 CHUNK_ALLOC_NO_FORCE);
768 }
769
770 /*
771 * btrfs_record_root_in_trans() needs to alloc new extents, and may
772 * call btrfs_join_transaction() while we're also starting a
773 * transaction.
774 *
775 * Thus it need to be called after current->journal_info initialized,
776 * or we can deadlock.
777 */
778 ret = btrfs_record_root_in_trans(h, root);
779 if (ret) {
780 /*
781 * The transaction handle is fully initialized and linked with
782 * other structures so it needs to be ended in case of errors,
783 * not just freed.
784 */
785 btrfs_end_transaction(h);
786 goto reserve_fail;
787 }
788 /*
789 * Now that we have found a transaction to be a part of, convert the
790 * qgroup reservation from prealloc to pertrans. A different transaction
791 * can't race in and free our pertrans out from under us.
792 */
793 if (qgroup_reserved)
794 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
795
796 return h;
797
798 join_fail:
799 if (type & __TRANS_FREEZABLE)
800 sb_end_intwrite(fs_info->sb);
801 kmem_cache_free(btrfs_trans_handle_cachep, h);
802 alloc_fail:
803 if (num_bytes)
804 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
805 if (delayed_refs_bytes)
806 btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes);
807 reserve_fail:
808 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
809 return ERR_PTR(ret);
810 }
811
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)812 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
813 unsigned int num_items)
814 {
815 return start_transaction(root, num_items, TRANS_START,
816 BTRFS_RESERVE_FLUSH_ALL, true);
817 }
818
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)819 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
820 struct btrfs_root *root,
821 unsigned int num_items)
822 {
823 return start_transaction(root, num_items, TRANS_START,
824 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
825 }
826
btrfs_join_transaction(struct btrfs_root * root)827 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
828 {
829 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
830 true);
831 }
832
btrfs_join_transaction_spacecache(struct btrfs_root * root)833 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
834 {
835 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
836 BTRFS_RESERVE_NO_FLUSH, true);
837 }
838
839 /*
840 * Similar to regular join but it never starts a transaction when none is
841 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
842 * This is similar to btrfs_attach_transaction() but it allows the join to
843 * happen if the transaction commit already started but it's not yet in the
844 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
845 */
btrfs_join_transaction_nostart(struct btrfs_root * root)846 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
847 {
848 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
849 BTRFS_RESERVE_NO_FLUSH, true);
850 }
851
852 /*
853 * Catch the running transaction.
854 *
855 * It is used when we want to commit the current the transaction, but
856 * don't want to start a new one.
857 *
858 * Note: If this function return -ENOENT, it just means there is no
859 * running transaction. But it is possible that the inactive transaction
860 * is still in the memory, not fully on disk. If you hope there is no
861 * inactive transaction in the fs when -ENOENT is returned, you should
862 * invoke
863 * btrfs_attach_transaction_barrier()
864 */
btrfs_attach_transaction(struct btrfs_root * root)865 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
866 {
867 return start_transaction(root, 0, TRANS_ATTACH,
868 BTRFS_RESERVE_NO_FLUSH, true);
869 }
870
871 /*
872 * Catch the running transaction.
873 *
874 * It is similar to the above function, the difference is this one
875 * will wait for all the inactive transactions until they fully
876 * complete.
877 */
878 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)879 btrfs_attach_transaction_barrier(struct btrfs_root *root)
880 {
881 struct btrfs_trans_handle *trans;
882
883 trans = start_transaction(root, 0, TRANS_ATTACH,
884 BTRFS_RESERVE_NO_FLUSH, true);
885 if (trans == ERR_PTR(-ENOENT)) {
886 int ret;
887
888 ret = btrfs_wait_for_commit(root->fs_info, 0);
889 if (ret)
890 return ERR_PTR(ret);
891 }
892
893 return trans;
894 }
895
896 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)897 static noinline void wait_for_commit(struct btrfs_transaction *commit,
898 const enum btrfs_trans_state min_state)
899 {
900 struct btrfs_fs_info *fs_info = commit->fs_info;
901 u64 transid = commit->transid;
902 bool put = false;
903
904 /*
905 * At the moment this function is called with min_state either being
906 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
907 */
908 if (min_state == TRANS_STATE_COMPLETED)
909 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
910 else
911 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
912
913 while (1) {
914 wait_event(commit->commit_wait, commit->state >= min_state);
915 if (put)
916 btrfs_put_transaction(commit);
917
918 if (min_state < TRANS_STATE_COMPLETED)
919 break;
920
921 /*
922 * A transaction isn't really completed until all of the
923 * previous transactions are completed, but with fsync we can
924 * end up with SUPER_COMMITTED transactions before a COMPLETED
925 * transaction. Wait for those.
926 */
927
928 spin_lock(&fs_info->trans_lock);
929 commit = list_first_entry_or_null(&fs_info->trans_list,
930 struct btrfs_transaction,
931 list);
932 if (!commit || commit->transid > transid) {
933 spin_unlock(&fs_info->trans_lock);
934 break;
935 }
936 refcount_inc(&commit->use_count);
937 put = true;
938 spin_unlock(&fs_info->trans_lock);
939 }
940 }
941
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)942 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
943 {
944 struct btrfs_transaction *cur_trans = NULL, *t;
945 int ret = 0;
946
947 if (transid) {
948 if (transid <= btrfs_get_last_trans_committed(fs_info))
949 goto out;
950
951 /* find specified transaction */
952 spin_lock(&fs_info->trans_lock);
953 list_for_each_entry(t, &fs_info->trans_list, list) {
954 if (t->transid == transid) {
955 cur_trans = t;
956 refcount_inc(&cur_trans->use_count);
957 ret = 0;
958 break;
959 }
960 if (t->transid > transid) {
961 ret = 0;
962 break;
963 }
964 }
965 spin_unlock(&fs_info->trans_lock);
966
967 /*
968 * The specified transaction doesn't exist, or we
969 * raced with btrfs_commit_transaction
970 */
971 if (!cur_trans) {
972 if (transid > btrfs_get_last_trans_committed(fs_info))
973 ret = -EINVAL;
974 goto out;
975 }
976 } else {
977 /* find newest transaction that is committing | committed */
978 spin_lock(&fs_info->trans_lock);
979 list_for_each_entry_reverse(t, &fs_info->trans_list,
980 list) {
981 if (t->state >= TRANS_STATE_COMMIT_START) {
982 if (t->state == TRANS_STATE_COMPLETED)
983 break;
984 cur_trans = t;
985 refcount_inc(&cur_trans->use_count);
986 break;
987 }
988 }
989 spin_unlock(&fs_info->trans_lock);
990 if (!cur_trans)
991 goto out; /* nothing committing|committed */
992 }
993
994 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
995 ret = cur_trans->aborted;
996 btrfs_put_transaction(cur_trans);
997 out:
998 return ret;
999 }
1000
btrfs_throttle(struct btrfs_fs_info * fs_info)1001 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1002 {
1003 wait_current_trans(fs_info);
1004 }
1005
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)1006 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1007 {
1008 struct btrfs_transaction *cur_trans = trans->transaction;
1009
1010 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1011 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1012 return true;
1013
1014 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1015 return true;
1016
1017 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1018 }
1019
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)1020 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1021
1022 {
1023 struct btrfs_fs_info *fs_info = trans->fs_info;
1024
1025 if (!trans->block_rsv) {
1026 ASSERT(!trans->bytes_reserved);
1027 ASSERT(!trans->delayed_refs_bytes_reserved);
1028 return;
1029 }
1030
1031 if (!trans->bytes_reserved) {
1032 ASSERT(!trans->delayed_refs_bytes_reserved);
1033 return;
1034 }
1035
1036 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1037 trace_btrfs_space_reservation(fs_info, "transaction",
1038 trans->transid, trans->bytes_reserved, 0);
1039 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1040 trans->bytes_reserved, NULL);
1041 trans->bytes_reserved = 0;
1042
1043 if (!trans->delayed_refs_bytes_reserved)
1044 return;
1045
1046 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1047 trans->transid,
1048 trans->delayed_refs_bytes_reserved, 0);
1049 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1050 trans->delayed_refs_bytes_reserved, NULL);
1051 trans->delayed_refs_bytes_reserved = 0;
1052 }
1053
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1054 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1055 int throttle)
1056 {
1057 struct btrfs_fs_info *info = trans->fs_info;
1058 struct btrfs_transaction *cur_trans = trans->transaction;
1059 int ret = 0;
1060
1061 if (refcount_read(&trans->use_count) > 1) {
1062 refcount_dec(&trans->use_count);
1063 trans->block_rsv = trans->orig_rsv;
1064 return 0;
1065 }
1066
1067 btrfs_trans_release_metadata(trans);
1068 trans->block_rsv = NULL;
1069
1070 btrfs_create_pending_block_groups(trans);
1071
1072 btrfs_trans_release_chunk_metadata(trans);
1073
1074 if (trans->type & __TRANS_FREEZABLE)
1075 sb_end_intwrite(info->sb);
1076
1077 WARN_ON(cur_trans != info->running_transaction);
1078 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1079 atomic_dec(&cur_trans->num_writers);
1080 extwriter_counter_dec(cur_trans, trans->type);
1081
1082 cond_wake_up(&cur_trans->writer_wait);
1083
1084 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1085 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1086
1087 btrfs_put_transaction(cur_trans);
1088
1089 if (current->journal_info == trans)
1090 current->journal_info = NULL;
1091
1092 if (throttle)
1093 btrfs_run_delayed_iputs(info);
1094
1095 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1096 wake_up_process(info->transaction_kthread);
1097 if (TRANS_ABORTED(trans))
1098 ret = trans->aborted;
1099 else
1100 ret = -EROFS;
1101 }
1102
1103 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1104 return ret;
1105 }
1106
btrfs_end_transaction(struct btrfs_trans_handle * trans)1107 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1108 {
1109 return __btrfs_end_transaction(trans, 0);
1110 }
1111
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1112 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1113 {
1114 return __btrfs_end_transaction(trans, 1);
1115 }
1116
1117 /*
1118 * when btree blocks are allocated, they have some corresponding bits set for
1119 * them in one of two extent_io trees. This is used to make sure all of
1120 * those extents are sent to disk but does not wait on them
1121 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1122 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1123 struct extent_io_tree *dirty_pages, int mark)
1124 {
1125 int ret = 0;
1126 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1127 struct extent_state *cached_state = NULL;
1128 u64 start = 0;
1129 u64 end;
1130
1131 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1132 mark, &cached_state)) {
1133 bool wait_writeback = false;
1134
1135 ret = convert_extent_bit(dirty_pages, start, end,
1136 EXTENT_NEED_WAIT,
1137 mark, &cached_state);
1138 /*
1139 * convert_extent_bit can return -ENOMEM, which is most of the
1140 * time a temporary error. So when it happens, ignore the error
1141 * and wait for writeback of this range to finish - because we
1142 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1143 * to __btrfs_wait_marked_extents() would not know that
1144 * writeback for this range started and therefore wouldn't
1145 * wait for it to finish - we don't want to commit a
1146 * superblock that points to btree nodes/leafs for which
1147 * writeback hasn't finished yet (and without errors).
1148 * We cleanup any entries left in the io tree when committing
1149 * the transaction (through extent_io_tree_release()).
1150 */
1151 if (ret == -ENOMEM) {
1152 ret = 0;
1153 wait_writeback = true;
1154 }
1155 if (!ret)
1156 ret = filemap_fdatawrite_range(mapping, start, end);
1157 if (!ret && wait_writeback)
1158 ret = filemap_fdatawait_range(mapping, start, end);
1159 free_extent_state(cached_state);
1160 if (ret)
1161 break;
1162 cached_state = NULL;
1163 cond_resched();
1164 start = end + 1;
1165 }
1166 return ret;
1167 }
1168
1169 /*
1170 * when btree blocks are allocated, they have some corresponding bits set for
1171 * them in one of two extent_io trees. This is used to make sure all of
1172 * those extents are on disk for transaction or log commit. We wait
1173 * on all the pages and clear them from the dirty pages state tree
1174 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1175 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1176 struct extent_io_tree *dirty_pages)
1177 {
1178 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1179 struct extent_state *cached_state = NULL;
1180 u64 start = 0;
1181 u64 end;
1182 int ret = 0;
1183
1184 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1185 EXTENT_NEED_WAIT, &cached_state)) {
1186 /*
1187 * Ignore -ENOMEM errors returned by clear_extent_bit().
1188 * When committing the transaction, we'll remove any entries
1189 * left in the io tree. For a log commit, we don't remove them
1190 * after committing the log because the tree can be accessed
1191 * concurrently - we do it only at transaction commit time when
1192 * it's safe to do it (through extent_io_tree_release()).
1193 */
1194 ret = clear_extent_bit(dirty_pages, start, end,
1195 EXTENT_NEED_WAIT, &cached_state);
1196 if (ret == -ENOMEM)
1197 ret = 0;
1198 if (!ret)
1199 ret = filemap_fdatawait_range(mapping, start, end);
1200 free_extent_state(cached_state);
1201 if (ret)
1202 break;
1203 cached_state = NULL;
1204 cond_resched();
1205 start = end + 1;
1206 }
1207 return ret;
1208 }
1209
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1210 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1211 struct extent_io_tree *dirty_pages)
1212 {
1213 bool errors = false;
1214 int err;
1215
1216 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1217 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1218 errors = true;
1219
1220 if (errors && !err)
1221 err = -EIO;
1222 return err;
1223 }
1224
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1225 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1226 {
1227 struct btrfs_fs_info *fs_info = log_root->fs_info;
1228 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1229 bool errors = false;
1230 int err;
1231
1232 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1233
1234 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1235 if ((mark & EXTENT_DIRTY) &&
1236 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1237 errors = true;
1238
1239 if ((mark & EXTENT_NEW) &&
1240 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1241 errors = true;
1242
1243 if (errors && !err)
1244 err = -EIO;
1245 return err;
1246 }
1247
1248 /*
1249 * When btree blocks are allocated the corresponding extents are marked dirty.
1250 * This function ensures such extents are persisted on disk for transaction or
1251 * log commit.
1252 *
1253 * @trans: transaction whose dirty pages we'd like to write
1254 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1255 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1256 {
1257 int ret;
1258 int ret2;
1259 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1260 struct btrfs_fs_info *fs_info = trans->fs_info;
1261 struct blk_plug plug;
1262
1263 blk_start_plug(&plug);
1264 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1265 blk_finish_plug(&plug);
1266 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1267
1268 extent_io_tree_release(&trans->transaction->dirty_pages);
1269
1270 if (ret)
1271 return ret;
1272 else if (ret2)
1273 return ret2;
1274 else
1275 return 0;
1276 }
1277
1278 /*
1279 * this is used to update the root pointer in the tree of tree roots.
1280 *
1281 * But, in the case of the extent allocation tree, updating the root
1282 * pointer may allocate blocks which may change the root of the extent
1283 * allocation tree.
1284 *
1285 * So, this loops and repeats and makes sure the cowonly root didn't
1286 * change while the root pointer was being updated in the metadata.
1287 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1288 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1289 struct btrfs_root *root)
1290 {
1291 int ret;
1292 u64 old_root_bytenr;
1293 u64 old_root_used;
1294 struct btrfs_fs_info *fs_info = root->fs_info;
1295 struct btrfs_root *tree_root = fs_info->tree_root;
1296
1297 old_root_used = btrfs_root_used(&root->root_item);
1298
1299 while (1) {
1300 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1301 if (old_root_bytenr == root->node->start &&
1302 old_root_used == btrfs_root_used(&root->root_item))
1303 break;
1304
1305 btrfs_set_root_node(&root->root_item, root->node);
1306 ret = btrfs_update_root(trans, tree_root,
1307 &root->root_key,
1308 &root->root_item);
1309 if (ret)
1310 return ret;
1311
1312 old_root_used = btrfs_root_used(&root->root_item);
1313 }
1314
1315 return 0;
1316 }
1317
1318 /*
1319 * update all the cowonly tree roots on disk
1320 *
1321 * The error handling in this function may not be obvious. Any of the
1322 * failures will cause the file system to go offline. We still need
1323 * to clean up the delayed refs.
1324 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1325 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1326 {
1327 struct btrfs_fs_info *fs_info = trans->fs_info;
1328 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1329 struct list_head *io_bgs = &trans->transaction->io_bgs;
1330 struct list_head *next;
1331 struct extent_buffer *eb;
1332 int ret;
1333
1334 /*
1335 * At this point no one can be using this transaction to modify any tree
1336 * and no one can start another transaction to modify any tree either.
1337 */
1338 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1339
1340 eb = btrfs_lock_root_node(fs_info->tree_root);
1341 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1342 0, &eb, BTRFS_NESTING_COW);
1343 btrfs_tree_unlock(eb);
1344 free_extent_buffer(eb);
1345
1346 if (ret)
1347 return ret;
1348
1349 ret = btrfs_run_dev_stats(trans);
1350 if (ret)
1351 return ret;
1352 ret = btrfs_run_dev_replace(trans);
1353 if (ret)
1354 return ret;
1355 ret = btrfs_run_qgroups(trans);
1356 if (ret)
1357 return ret;
1358
1359 ret = btrfs_setup_space_cache(trans);
1360 if (ret)
1361 return ret;
1362
1363 again:
1364 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1365 struct btrfs_root *root;
1366 next = fs_info->dirty_cowonly_roots.next;
1367 list_del_init(next);
1368 root = list_entry(next, struct btrfs_root, dirty_list);
1369 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1370
1371 list_add_tail(&root->dirty_list,
1372 &trans->transaction->switch_commits);
1373 ret = update_cowonly_root(trans, root);
1374 if (ret)
1375 return ret;
1376 }
1377
1378 /* Now flush any delayed refs generated by updating all of the roots */
1379 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1380 if (ret)
1381 return ret;
1382
1383 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1384 ret = btrfs_write_dirty_block_groups(trans);
1385 if (ret)
1386 return ret;
1387
1388 /*
1389 * We're writing the dirty block groups, which could generate
1390 * delayed refs, which could generate more dirty block groups,
1391 * so we want to keep this flushing in this loop to make sure
1392 * everything gets run.
1393 */
1394 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1395 if (ret)
1396 return ret;
1397 }
1398
1399 if (!list_empty(&fs_info->dirty_cowonly_roots))
1400 goto again;
1401
1402 /* Update dev-replace pointer once everything is committed */
1403 fs_info->dev_replace.committed_cursor_left =
1404 fs_info->dev_replace.cursor_left_last_write_of_item;
1405
1406 return 0;
1407 }
1408
1409 /*
1410 * If we had a pending drop we need to see if there are any others left in our
1411 * dead roots list, and if not clear our bit and wake any waiters.
1412 */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1413 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1414 {
1415 /*
1416 * We put the drop in progress roots at the front of the list, so if the
1417 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1418 * up.
1419 */
1420 spin_lock(&fs_info->trans_lock);
1421 if (!list_empty(&fs_info->dead_roots)) {
1422 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1423 struct btrfs_root,
1424 root_list);
1425 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1426 spin_unlock(&fs_info->trans_lock);
1427 return;
1428 }
1429 }
1430 spin_unlock(&fs_info->trans_lock);
1431
1432 btrfs_wake_unfinished_drop(fs_info);
1433 }
1434
1435 /*
1436 * dead roots are old snapshots that need to be deleted. This allocates
1437 * a dirty root struct and adds it into the list of dead roots that need to
1438 * be deleted
1439 */
btrfs_add_dead_root(struct btrfs_root * root)1440 void btrfs_add_dead_root(struct btrfs_root *root)
1441 {
1442 struct btrfs_fs_info *fs_info = root->fs_info;
1443
1444 spin_lock(&fs_info->trans_lock);
1445 if (list_empty(&root->root_list)) {
1446 btrfs_grab_root(root);
1447
1448 /* We want to process the partially complete drops first. */
1449 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1450 list_add(&root->root_list, &fs_info->dead_roots);
1451 else
1452 list_add_tail(&root->root_list, &fs_info->dead_roots);
1453 }
1454 spin_unlock(&fs_info->trans_lock);
1455 }
1456
1457 /*
1458 * Update each subvolume root and its relocation root, if it exists, in the tree
1459 * of tree roots. Also free log roots if they exist.
1460 */
commit_fs_roots(struct btrfs_trans_handle * trans)1461 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1462 {
1463 struct btrfs_fs_info *fs_info = trans->fs_info;
1464 struct btrfs_root *gang[8];
1465 int i;
1466 int ret;
1467
1468 /*
1469 * At this point no one can be using this transaction to modify any tree
1470 * and no one can start another transaction to modify any tree either.
1471 */
1472 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1473
1474 spin_lock(&fs_info->fs_roots_radix_lock);
1475 while (1) {
1476 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1477 (void **)gang, 0,
1478 ARRAY_SIZE(gang),
1479 BTRFS_ROOT_TRANS_TAG);
1480 if (ret == 0)
1481 break;
1482 for (i = 0; i < ret; i++) {
1483 struct btrfs_root *root = gang[i];
1484 int ret2;
1485
1486 /*
1487 * At this point we can neither have tasks logging inodes
1488 * from a root nor trying to commit a log tree.
1489 */
1490 ASSERT(atomic_read(&root->log_writers) == 0);
1491 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1492 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1493
1494 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1495 (unsigned long)btrfs_root_id(root),
1496 BTRFS_ROOT_TRANS_TAG);
1497 btrfs_qgroup_free_meta_all_pertrans(root);
1498 spin_unlock(&fs_info->fs_roots_radix_lock);
1499
1500 btrfs_free_log(trans, root);
1501 ret2 = btrfs_update_reloc_root(trans, root);
1502 if (ret2)
1503 return ret2;
1504
1505 /* see comments in should_cow_block() */
1506 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1507 smp_mb__after_atomic();
1508
1509 if (root->commit_root != root->node) {
1510 list_add_tail(&root->dirty_list,
1511 &trans->transaction->switch_commits);
1512 btrfs_set_root_node(&root->root_item,
1513 root->node);
1514 }
1515
1516 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1517 &root->root_key,
1518 &root->root_item);
1519 if (ret2)
1520 return ret2;
1521 spin_lock(&fs_info->fs_roots_radix_lock);
1522 }
1523 }
1524 spin_unlock(&fs_info->fs_roots_radix_lock);
1525 return 0;
1526 }
1527
1528 /*
1529 * Do all special snapshot related qgroup dirty hack.
1530 *
1531 * Will do all needed qgroup inherit and dirty hack like switch commit
1532 * roots inside one transaction and write all btree into disk, to make
1533 * qgroup works.
1534 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1535 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1536 struct btrfs_root *src,
1537 struct btrfs_root *parent,
1538 struct btrfs_qgroup_inherit *inherit,
1539 u64 dst_objectid)
1540 {
1541 struct btrfs_fs_info *fs_info = src->fs_info;
1542 int ret;
1543
1544 /*
1545 * Save some performance in the case that qgroups are not enabled. If
1546 * this check races with the ioctl, rescan will kick in anyway.
1547 */
1548 if (!btrfs_qgroup_full_accounting(fs_info))
1549 return 0;
1550
1551 /*
1552 * Ensure dirty @src will be committed. Or, after coming
1553 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1554 * recorded root will never be updated again, causing an outdated root
1555 * item.
1556 */
1557 ret = record_root_in_trans(trans, src, 1);
1558 if (ret)
1559 return ret;
1560
1561 /*
1562 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1563 * src root, so we must run the delayed refs here.
1564 *
1565 * However this isn't particularly fool proof, because there's no
1566 * synchronization keeping us from changing the tree after this point
1567 * before we do the qgroup_inherit, or even from making changes while
1568 * we're doing the qgroup_inherit. But that's a problem for the future,
1569 * for now flush the delayed refs to narrow the race window where the
1570 * qgroup counters could end up wrong.
1571 */
1572 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1573 if (ret) {
1574 btrfs_abort_transaction(trans, ret);
1575 return ret;
1576 }
1577
1578 ret = commit_fs_roots(trans);
1579 if (ret)
1580 goto out;
1581 ret = btrfs_qgroup_account_extents(trans);
1582 if (ret < 0)
1583 goto out;
1584
1585 /* Now qgroup are all updated, we can inherit it to new qgroups */
1586 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1587 btrfs_root_id(parent), inherit);
1588 if (ret < 0)
1589 goto out;
1590
1591 /*
1592 * Now we do a simplified commit transaction, which will:
1593 * 1) commit all subvolume and extent tree
1594 * To ensure all subvolume and extent tree have a valid
1595 * commit_root to accounting later insert_dir_item()
1596 * 2) write all btree blocks onto disk
1597 * This is to make sure later btree modification will be cowed
1598 * Or commit_root can be populated and cause wrong qgroup numbers
1599 * In this simplified commit, we don't really care about other trees
1600 * like chunk and root tree, as they won't affect qgroup.
1601 * And we don't write super to avoid half committed status.
1602 */
1603 ret = commit_cowonly_roots(trans);
1604 if (ret)
1605 goto out;
1606 switch_commit_roots(trans);
1607 ret = btrfs_write_and_wait_transaction(trans);
1608 if (ret)
1609 btrfs_handle_fs_error(fs_info, ret,
1610 "Error while writing out transaction for qgroup");
1611
1612 out:
1613 /*
1614 * Force parent root to be updated, as we recorded it before so its
1615 * last_trans == cur_transid.
1616 * Or it won't be committed again onto disk after later
1617 * insert_dir_item()
1618 */
1619 if (!ret)
1620 ret = record_root_in_trans(trans, parent, 1);
1621 return ret;
1622 }
1623
1624 /*
1625 * new snapshots need to be created at a very specific time in the
1626 * transaction commit. This does the actual creation.
1627 *
1628 * Note:
1629 * If the error which may affect the commitment of the current transaction
1630 * happens, we should return the error number. If the error which just affect
1631 * the creation of the pending snapshots, just return 0.
1632 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1633 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1634 struct btrfs_pending_snapshot *pending)
1635 {
1636
1637 struct btrfs_fs_info *fs_info = trans->fs_info;
1638 struct btrfs_key key;
1639 struct btrfs_root_item *new_root_item;
1640 struct btrfs_root *tree_root = fs_info->tree_root;
1641 struct btrfs_root *root = pending->root;
1642 struct btrfs_root *parent_root;
1643 struct btrfs_block_rsv *rsv;
1644 struct btrfs_inode *parent_inode = pending->dir;
1645 struct btrfs_path *path;
1646 struct btrfs_dir_item *dir_item;
1647 struct extent_buffer *tmp;
1648 struct extent_buffer *old;
1649 struct timespec64 cur_time;
1650 int ret = 0;
1651 u64 to_reserve = 0;
1652 u64 index = 0;
1653 u64 objectid;
1654 u64 root_flags;
1655 unsigned int nofs_flags;
1656 struct fscrypt_name fname;
1657
1658 ASSERT(pending->path);
1659 path = pending->path;
1660
1661 ASSERT(pending->root_item);
1662 new_root_item = pending->root_item;
1663
1664 /*
1665 * We're inside a transaction and must make sure that any potential
1666 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1667 * filesystem.
1668 */
1669 nofs_flags = memalloc_nofs_save();
1670 pending->error = fscrypt_setup_filename(&parent_inode->vfs_inode,
1671 &pending->dentry->d_name, 0,
1672 &fname);
1673 memalloc_nofs_restore(nofs_flags);
1674 if (pending->error)
1675 goto free_pending;
1676
1677 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1678 if (pending->error)
1679 goto free_fname;
1680
1681 /*
1682 * Make qgroup to skip current new snapshot's qgroupid, as it is
1683 * accounted by later btrfs_qgroup_inherit().
1684 */
1685 btrfs_set_skip_qgroup(trans, objectid);
1686
1687 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1688
1689 if (to_reserve > 0) {
1690 pending->error = btrfs_block_rsv_add(fs_info,
1691 &pending->block_rsv,
1692 to_reserve,
1693 BTRFS_RESERVE_NO_FLUSH);
1694 if (pending->error)
1695 goto clear_skip_qgroup;
1696 }
1697
1698 key.objectid = objectid;
1699 key.type = BTRFS_ROOT_ITEM_KEY;
1700 key.offset = (u64)-1;
1701
1702 rsv = trans->block_rsv;
1703 trans->block_rsv = &pending->block_rsv;
1704 trans->bytes_reserved = trans->block_rsv->reserved;
1705 trace_btrfs_space_reservation(fs_info, "transaction",
1706 trans->transid,
1707 trans->bytes_reserved, 1);
1708 parent_root = parent_inode->root;
1709 ret = record_root_in_trans(trans, parent_root, 0);
1710 if (ret)
1711 goto fail;
1712 cur_time = current_time(&parent_inode->vfs_inode);
1713
1714 /*
1715 * insert the directory item
1716 */
1717 ret = btrfs_set_inode_index(parent_inode, &index);
1718 if (ret) {
1719 btrfs_abort_transaction(trans, ret);
1720 goto fail;
1721 }
1722
1723 /* check if there is a file/dir which has the same name. */
1724 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1725 btrfs_ino(parent_inode),
1726 &fname.disk_name, 0);
1727 if (dir_item != NULL && !IS_ERR(dir_item)) {
1728 pending->error = -EEXIST;
1729 goto dir_item_existed;
1730 } else if (IS_ERR(dir_item)) {
1731 ret = PTR_ERR(dir_item);
1732 btrfs_abort_transaction(trans, ret);
1733 goto fail;
1734 }
1735 btrfs_release_path(path);
1736
1737 ret = btrfs_create_qgroup(trans, objectid);
1738 if (ret && ret != -EEXIST) {
1739 btrfs_abort_transaction(trans, ret);
1740 goto fail;
1741 }
1742
1743 /*
1744 * pull in the delayed directory update
1745 * and the delayed inode item
1746 * otherwise we corrupt the FS during
1747 * snapshot
1748 */
1749 ret = btrfs_run_delayed_items(trans);
1750 if (ret) { /* Transaction aborted */
1751 btrfs_abort_transaction(trans, ret);
1752 goto fail;
1753 }
1754
1755 ret = record_root_in_trans(trans, root, 0);
1756 if (ret) {
1757 btrfs_abort_transaction(trans, ret);
1758 goto fail;
1759 }
1760 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1761 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1762 btrfs_check_and_init_root_item(new_root_item);
1763
1764 root_flags = btrfs_root_flags(new_root_item);
1765 if (pending->readonly)
1766 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1767 else
1768 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1769 btrfs_set_root_flags(new_root_item, root_flags);
1770
1771 btrfs_set_root_generation_v2(new_root_item,
1772 trans->transid);
1773 generate_random_guid(new_root_item->uuid);
1774 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1775 BTRFS_UUID_SIZE);
1776 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1777 memset(new_root_item->received_uuid, 0,
1778 sizeof(new_root_item->received_uuid));
1779 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1780 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1781 btrfs_set_root_stransid(new_root_item, 0);
1782 btrfs_set_root_rtransid(new_root_item, 0);
1783 }
1784 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1785 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1786 btrfs_set_root_otransid(new_root_item, trans->transid);
1787
1788 old = btrfs_lock_root_node(root);
1789 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1790 BTRFS_NESTING_COW);
1791 if (ret) {
1792 btrfs_tree_unlock(old);
1793 free_extent_buffer(old);
1794 btrfs_abort_transaction(trans, ret);
1795 goto fail;
1796 }
1797
1798 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1799 /* clean up in any case */
1800 btrfs_tree_unlock(old);
1801 free_extent_buffer(old);
1802 if (ret) {
1803 btrfs_abort_transaction(trans, ret);
1804 goto fail;
1805 }
1806 /* see comments in should_cow_block() */
1807 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1808 smp_wmb();
1809
1810 btrfs_set_root_node(new_root_item, tmp);
1811 /* record when the snapshot was created in key.offset */
1812 key.offset = trans->transid;
1813 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1814 btrfs_tree_unlock(tmp);
1815 free_extent_buffer(tmp);
1816 if (ret) {
1817 btrfs_abort_transaction(trans, ret);
1818 goto fail;
1819 }
1820
1821 /*
1822 * insert root back/forward references
1823 */
1824 ret = btrfs_add_root_ref(trans, objectid,
1825 btrfs_root_id(parent_root),
1826 btrfs_ino(parent_inode), index,
1827 &fname.disk_name);
1828 if (ret) {
1829 btrfs_abort_transaction(trans, ret);
1830 goto fail;
1831 }
1832
1833 key.offset = (u64)-1;
1834 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1835 if (IS_ERR(pending->snap)) {
1836 ret = PTR_ERR(pending->snap);
1837 pending->snap = NULL;
1838 btrfs_abort_transaction(trans, ret);
1839 goto fail;
1840 }
1841
1842 ret = btrfs_reloc_post_snapshot(trans, pending);
1843 if (ret) {
1844 btrfs_abort_transaction(trans, ret);
1845 goto fail;
1846 }
1847
1848 /*
1849 * Do special qgroup accounting for snapshot, as we do some qgroup
1850 * snapshot hack to do fast snapshot.
1851 * To co-operate with that hack, we do hack again.
1852 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1853 */
1854 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1855 ret = qgroup_account_snapshot(trans, root, parent_root,
1856 pending->inherit, objectid);
1857 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1858 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1859 btrfs_root_id(parent_root), pending->inherit);
1860 if (ret < 0)
1861 goto fail;
1862
1863 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1864 parent_inode, &key, BTRFS_FT_DIR,
1865 index);
1866 if (ret) {
1867 btrfs_abort_transaction(trans, ret);
1868 goto fail;
1869 }
1870
1871 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
1872 fname.disk_name.len * 2);
1873 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
1874 inode_set_ctime_current(&parent_inode->vfs_inode));
1875 ret = btrfs_update_inode_fallback(trans, parent_inode);
1876 if (ret) {
1877 btrfs_abort_transaction(trans, ret);
1878 goto fail;
1879 }
1880 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1881 BTRFS_UUID_KEY_SUBVOL,
1882 objectid);
1883 if (ret) {
1884 btrfs_abort_transaction(trans, ret);
1885 goto fail;
1886 }
1887 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1888 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1889 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1890 objectid);
1891 if (ret && ret != -EEXIST) {
1892 btrfs_abort_transaction(trans, ret);
1893 goto fail;
1894 }
1895 }
1896
1897 fail:
1898 pending->error = ret;
1899 dir_item_existed:
1900 trans->block_rsv = rsv;
1901 trans->bytes_reserved = 0;
1902 clear_skip_qgroup:
1903 btrfs_clear_skip_qgroup(trans);
1904 free_fname:
1905 fscrypt_free_filename(&fname);
1906 free_pending:
1907 kfree(new_root_item);
1908 pending->root_item = NULL;
1909 btrfs_free_path(path);
1910 pending->path = NULL;
1911
1912 return ret;
1913 }
1914
1915 /*
1916 * create all the snapshots we've scheduled for creation
1917 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1918 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1919 {
1920 struct btrfs_pending_snapshot *pending, *next;
1921 struct list_head *head = &trans->transaction->pending_snapshots;
1922 int ret = 0;
1923
1924 list_for_each_entry_safe(pending, next, head, list) {
1925 list_del(&pending->list);
1926 ret = create_pending_snapshot(trans, pending);
1927 if (ret)
1928 break;
1929 }
1930 return ret;
1931 }
1932
update_super_roots(struct btrfs_fs_info * fs_info)1933 static void update_super_roots(struct btrfs_fs_info *fs_info)
1934 {
1935 struct btrfs_root_item *root_item;
1936 struct btrfs_super_block *super;
1937
1938 super = fs_info->super_copy;
1939
1940 root_item = &fs_info->chunk_root->root_item;
1941 super->chunk_root = root_item->bytenr;
1942 super->chunk_root_generation = root_item->generation;
1943 super->chunk_root_level = root_item->level;
1944
1945 root_item = &fs_info->tree_root->root_item;
1946 super->root = root_item->bytenr;
1947 super->generation = root_item->generation;
1948 super->root_level = root_item->level;
1949 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1950 super->cache_generation = root_item->generation;
1951 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1952 super->cache_generation = 0;
1953 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1954 super->uuid_tree_generation = root_item->generation;
1955 }
1956
btrfs_transaction_blocked(struct btrfs_fs_info * info)1957 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1958 {
1959 struct btrfs_transaction *trans;
1960 int ret = 0;
1961
1962 spin_lock(&info->trans_lock);
1963 trans = info->running_transaction;
1964 if (trans)
1965 ret = is_transaction_blocked(trans);
1966 spin_unlock(&info->trans_lock);
1967 return ret;
1968 }
1969
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1970 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1971 {
1972 struct btrfs_fs_info *fs_info = trans->fs_info;
1973 struct btrfs_transaction *cur_trans;
1974
1975 /* Kick the transaction kthread. */
1976 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1977 wake_up_process(fs_info->transaction_kthread);
1978
1979 /* take transaction reference */
1980 cur_trans = trans->transaction;
1981 refcount_inc(&cur_trans->use_count);
1982
1983 btrfs_end_transaction(trans);
1984
1985 /*
1986 * Wait for the current transaction commit to start and block
1987 * subsequent transaction joins
1988 */
1989 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1990 wait_event(fs_info->transaction_blocked_wait,
1991 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1992 TRANS_ABORTED(cur_trans));
1993 btrfs_put_transaction(cur_trans);
1994 }
1995
1996 /*
1997 * If there is a running transaction commit it or if it's already committing,
1998 * wait for its commit to complete. Does not start and commit a new transaction
1999 * if there isn't any running.
2000 */
btrfs_commit_current_transaction(struct btrfs_root * root)2001 int btrfs_commit_current_transaction(struct btrfs_root *root)
2002 {
2003 struct btrfs_trans_handle *trans;
2004
2005 trans = btrfs_attach_transaction_barrier(root);
2006 if (IS_ERR(trans)) {
2007 int ret = PTR_ERR(trans);
2008
2009 return (ret == -ENOENT) ? 0 : ret;
2010 }
2011
2012 return btrfs_commit_transaction(trans);
2013 }
2014
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2015 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2016 {
2017 struct btrfs_fs_info *fs_info = trans->fs_info;
2018 struct btrfs_transaction *cur_trans = trans->transaction;
2019
2020 WARN_ON(refcount_read(&trans->use_count) > 1);
2021
2022 btrfs_abort_transaction(trans, err);
2023
2024 spin_lock(&fs_info->trans_lock);
2025
2026 /*
2027 * If the transaction is removed from the list, it means this
2028 * transaction has been committed successfully, so it is impossible
2029 * to call the cleanup function.
2030 */
2031 BUG_ON(list_empty(&cur_trans->list));
2032
2033 if (cur_trans == fs_info->running_transaction) {
2034 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2035 spin_unlock(&fs_info->trans_lock);
2036
2037 /*
2038 * The thread has already released the lockdep map as reader
2039 * already in btrfs_commit_transaction().
2040 */
2041 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2042 wait_event(cur_trans->writer_wait,
2043 atomic_read(&cur_trans->num_writers) == 1);
2044
2045 spin_lock(&fs_info->trans_lock);
2046 }
2047
2048 /*
2049 * Now that we know no one else is still using the transaction we can
2050 * remove the transaction from the list of transactions. This avoids
2051 * the transaction kthread from cleaning up the transaction while some
2052 * other task is still using it, which could result in a use-after-free
2053 * on things like log trees, as it forces the transaction kthread to
2054 * wait for this transaction to be cleaned up by us.
2055 */
2056 list_del_init(&cur_trans->list);
2057
2058 spin_unlock(&fs_info->trans_lock);
2059
2060 btrfs_cleanup_one_transaction(trans->transaction);
2061
2062 spin_lock(&fs_info->trans_lock);
2063 if (cur_trans == fs_info->running_transaction)
2064 fs_info->running_transaction = NULL;
2065 spin_unlock(&fs_info->trans_lock);
2066
2067 if (trans->type & __TRANS_FREEZABLE)
2068 sb_end_intwrite(fs_info->sb);
2069 btrfs_put_transaction(cur_trans);
2070 btrfs_put_transaction(cur_trans);
2071
2072 trace_btrfs_transaction_commit(fs_info);
2073
2074 if (current->journal_info == trans)
2075 current->journal_info = NULL;
2076
2077 /*
2078 * If relocation is running, we can't cancel scrub because that will
2079 * result in a deadlock. Before relocating a block group, relocation
2080 * pauses scrub, then starts and commits a transaction before unpausing
2081 * scrub. If the transaction commit is being done by the relocation
2082 * task or triggered by another task and the relocation task is waiting
2083 * for the commit, and we end up here due to an error in the commit
2084 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2085 * asking for scrub to stop while having it asked to be paused higher
2086 * above in relocation code.
2087 */
2088 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2089 btrfs_scrub_cancel(fs_info);
2090
2091 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2092 }
2093
2094 /*
2095 * Release reserved delayed ref space of all pending block groups of the
2096 * transaction and remove them from the list
2097 */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2098 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2099 {
2100 struct btrfs_fs_info *fs_info = trans->fs_info;
2101 struct btrfs_block_group *block_group, *tmp;
2102
2103 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2104 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2105 /*
2106 * Not strictly necessary to lock, as no other task will be using a
2107 * block_group on the new_bgs list during a transaction abort.
2108 */
2109 spin_lock(&fs_info->unused_bgs_lock);
2110 list_del_init(&block_group->bg_list);
2111 btrfs_put_block_group(block_group);
2112 spin_unlock(&fs_info->unused_bgs_lock);
2113 }
2114 }
2115
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2116 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2117 {
2118 /*
2119 * We use try_to_writeback_inodes_sb() here because if we used
2120 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2121 * Currently are holding the fs freeze lock, if we do an async flush
2122 * we'll do btrfs_join_transaction() and deadlock because we need to
2123 * wait for the fs freeze lock. Using the direct flushing we benefit
2124 * from already being in a transaction and our join_transaction doesn't
2125 * have to re-take the fs freeze lock.
2126 *
2127 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2128 * if it can read lock sb->s_umount. It will always be able to lock it,
2129 * except when the filesystem is being unmounted or being frozen, but in
2130 * those cases sync_filesystem() is called, which results in calling
2131 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2132 * Note that we don't call writeback_inodes_sb() directly, because it
2133 * will emit a warning if sb->s_umount is not locked.
2134 */
2135 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2136 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2137 return 0;
2138 }
2139
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2140 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2141 {
2142 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2143 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2144 }
2145
2146 /*
2147 * Add a pending snapshot associated with the given transaction handle to the
2148 * respective handle. This must be called after the transaction commit started
2149 * and while holding fs_info->trans_lock.
2150 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2151 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2152 * returns an error.
2153 */
add_pending_snapshot(struct btrfs_trans_handle * trans)2154 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2155 {
2156 struct btrfs_transaction *cur_trans = trans->transaction;
2157
2158 if (!trans->pending_snapshot)
2159 return;
2160
2161 lockdep_assert_held(&trans->fs_info->trans_lock);
2162 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2163
2164 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2165 }
2166
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2167 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2168 {
2169 fs_info->commit_stats.commit_count++;
2170 fs_info->commit_stats.last_commit_dur = interval;
2171 fs_info->commit_stats.max_commit_dur =
2172 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2173 fs_info->commit_stats.total_commit_dur += interval;
2174 }
2175
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2176 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2177 {
2178 struct btrfs_fs_info *fs_info = trans->fs_info;
2179 struct btrfs_transaction *cur_trans = trans->transaction;
2180 struct btrfs_transaction *prev_trans = NULL;
2181 int ret;
2182 ktime_t start_time;
2183 ktime_t interval;
2184
2185 ASSERT(refcount_read(&trans->use_count) == 1);
2186 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2187
2188 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2189
2190 /* Stop the commit early if ->aborted is set */
2191 if (TRANS_ABORTED(cur_trans)) {
2192 ret = cur_trans->aborted;
2193 goto lockdep_trans_commit_start_release;
2194 }
2195
2196 btrfs_trans_release_metadata(trans);
2197 trans->block_rsv = NULL;
2198
2199 /*
2200 * We only want one transaction commit doing the flushing so we do not
2201 * waste a bunch of time on lock contention on the extent root node.
2202 */
2203 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2204 &cur_trans->delayed_refs.flags)) {
2205 /*
2206 * Make a pass through all the delayed refs we have so far.
2207 * Any running threads may add more while we are here.
2208 */
2209 ret = btrfs_run_delayed_refs(trans, 0);
2210 if (ret)
2211 goto lockdep_trans_commit_start_release;
2212 }
2213
2214 btrfs_create_pending_block_groups(trans);
2215
2216 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2217 int run_it = 0;
2218
2219 /* this mutex is also taken before trying to set
2220 * block groups readonly. We need to make sure
2221 * that nobody has set a block group readonly
2222 * after a extents from that block group have been
2223 * allocated for cache files. btrfs_set_block_group_ro
2224 * will wait for the transaction to commit if it
2225 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2226 *
2227 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2228 * only one process starts all the block group IO. It wouldn't
2229 * hurt to have more than one go through, but there's no
2230 * real advantage to it either.
2231 */
2232 mutex_lock(&fs_info->ro_block_group_mutex);
2233 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2234 &cur_trans->flags))
2235 run_it = 1;
2236 mutex_unlock(&fs_info->ro_block_group_mutex);
2237
2238 if (run_it) {
2239 ret = btrfs_start_dirty_block_groups(trans);
2240 if (ret)
2241 goto lockdep_trans_commit_start_release;
2242 }
2243 }
2244
2245 spin_lock(&fs_info->trans_lock);
2246 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2247 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2248
2249 add_pending_snapshot(trans);
2250
2251 spin_unlock(&fs_info->trans_lock);
2252 refcount_inc(&cur_trans->use_count);
2253
2254 if (trans->in_fsync)
2255 want_state = TRANS_STATE_SUPER_COMMITTED;
2256
2257 btrfs_trans_state_lockdep_release(fs_info,
2258 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2259 ret = btrfs_end_transaction(trans);
2260 wait_for_commit(cur_trans, want_state);
2261
2262 if (TRANS_ABORTED(cur_trans))
2263 ret = cur_trans->aborted;
2264
2265 btrfs_put_transaction(cur_trans);
2266
2267 return ret;
2268 }
2269
2270 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2271 wake_up(&fs_info->transaction_blocked_wait);
2272 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2273
2274 if (cur_trans->list.prev != &fs_info->trans_list) {
2275 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2276
2277 if (trans->in_fsync)
2278 want_state = TRANS_STATE_SUPER_COMMITTED;
2279
2280 prev_trans = list_entry(cur_trans->list.prev,
2281 struct btrfs_transaction, list);
2282 if (prev_trans->state < want_state) {
2283 refcount_inc(&prev_trans->use_count);
2284 spin_unlock(&fs_info->trans_lock);
2285
2286 wait_for_commit(prev_trans, want_state);
2287
2288 ret = READ_ONCE(prev_trans->aborted);
2289
2290 btrfs_put_transaction(prev_trans);
2291 if (ret)
2292 goto lockdep_release;
2293 spin_lock(&fs_info->trans_lock);
2294 }
2295 } else {
2296 /*
2297 * The previous transaction was aborted and was already removed
2298 * from the list of transactions at fs_info->trans_list. So we
2299 * abort to prevent writing a new superblock that reflects a
2300 * corrupt state (pointing to trees with unwritten nodes/leafs).
2301 */
2302 if (BTRFS_FS_ERROR(fs_info)) {
2303 spin_unlock(&fs_info->trans_lock);
2304 ret = -EROFS;
2305 goto lockdep_release;
2306 }
2307 }
2308
2309 cur_trans->state = TRANS_STATE_COMMIT_START;
2310 wake_up(&fs_info->transaction_blocked_wait);
2311 spin_unlock(&fs_info->trans_lock);
2312
2313 /*
2314 * Get the time spent on the work done by the commit thread and not
2315 * the time spent waiting on a previous commit
2316 */
2317 start_time = ktime_get_ns();
2318
2319 extwriter_counter_dec(cur_trans, trans->type);
2320
2321 ret = btrfs_start_delalloc_flush(fs_info);
2322 if (ret)
2323 goto lockdep_release;
2324
2325 ret = btrfs_run_delayed_items(trans);
2326 if (ret)
2327 goto lockdep_release;
2328
2329 /*
2330 * The thread has started/joined the transaction thus it holds the
2331 * lockdep map as a reader. It has to release it before acquiring the
2332 * lockdep map as a writer.
2333 */
2334 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2335 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2336 wait_event(cur_trans->writer_wait,
2337 extwriter_counter_read(cur_trans) == 0);
2338
2339 /* some pending stuffs might be added after the previous flush. */
2340 ret = btrfs_run_delayed_items(trans);
2341 if (ret) {
2342 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2343 goto cleanup_transaction;
2344 }
2345
2346 btrfs_wait_delalloc_flush(fs_info);
2347
2348 /*
2349 * Wait for all ordered extents started by a fast fsync that joined this
2350 * transaction. Otherwise if this transaction commits before the ordered
2351 * extents complete we lose logged data after a power failure.
2352 */
2353 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2354 wait_event(cur_trans->pending_wait,
2355 atomic_read(&cur_trans->pending_ordered) == 0);
2356
2357 btrfs_scrub_pause(fs_info);
2358 /*
2359 * Ok now we need to make sure to block out any other joins while we
2360 * commit the transaction. We could have started a join before setting
2361 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2362 */
2363 spin_lock(&fs_info->trans_lock);
2364 add_pending_snapshot(trans);
2365 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2366 spin_unlock(&fs_info->trans_lock);
2367
2368 /*
2369 * The thread has started/joined the transaction thus it holds the
2370 * lockdep map as a reader. It has to release it before acquiring the
2371 * lockdep map as a writer.
2372 */
2373 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2374 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2375 wait_event(cur_trans->writer_wait,
2376 atomic_read(&cur_trans->num_writers) == 1);
2377
2378 /*
2379 * Make lockdep happy by acquiring the state locks after
2380 * btrfs_trans_num_writers is released. If we acquired the state locks
2381 * before releasing the btrfs_trans_num_writers lock then lockdep would
2382 * complain because we did not follow the reverse order unlocking rule.
2383 */
2384 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2385 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2386 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2387
2388 /*
2389 * We've started the commit, clear the flag in case we were triggered to
2390 * do an async commit but somebody else started before the transaction
2391 * kthread could do the work.
2392 */
2393 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2394
2395 if (TRANS_ABORTED(cur_trans)) {
2396 ret = cur_trans->aborted;
2397 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2398 goto scrub_continue;
2399 }
2400 /*
2401 * the reloc mutex makes sure that we stop
2402 * the balancing code from coming in and moving
2403 * extents around in the middle of the commit
2404 */
2405 mutex_lock(&fs_info->reloc_mutex);
2406
2407 /*
2408 * We needn't worry about the delayed items because we will
2409 * deal with them in create_pending_snapshot(), which is the
2410 * core function of the snapshot creation.
2411 */
2412 ret = create_pending_snapshots(trans);
2413 if (ret)
2414 goto unlock_reloc;
2415
2416 /*
2417 * We insert the dir indexes of the snapshots and update the inode
2418 * of the snapshots' parents after the snapshot creation, so there
2419 * are some delayed items which are not dealt with. Now deal with
2420 * them.
2421 *
2422 * We needn't worry that this operation will corrupt the snapshots,
2423 * because all the tree which are snapshoted will be forced to COW
2424 * the nodes and leaves.
2425 */
2426 ret = btrfs_run_delayed_items(trans);
2427 if (ret)
2428 goto unlock_reloc;
2429
2430 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2431 if (ret)
2432 goto unlock_reloc;
2433
2434 /*
2435 * make sure none of the code above managed to slip in a
2436 * delayed item
2437 */
2438 btrfs_assert_delayed_root_empty(fs_info);
2439
2440 WARN_ON(cur_trans != trans->transaction);
2441
2442 ret = commit_fs_roots(trans);
2443 if (ret)
2444 goto unlock_reloc;
2445
2446 /* commit_fs_roots gets rid of all the tree log roots, it is now
2447 * safe to free the root of tree log roots
2448 */
2449 btrfs_free_log_root_tree(trans, fs_info);
2450
2451 /*
2452 * Since fs roots are all committed, we can get a quite accurate
2453 * new_roots. So let's do quota accounting.
2454 */
2455 ret = btrfs_qgroup_account_extents(trans);
2456 if (ret < 0)
2457 goto unlock_reloc;
2458
2459 ret = commit_cowonly_roots(trans);
2460 if (ret)
2461 goto unlock_reloc;
2462
2463 /*
2464 * The tasks which save the space cache and inode cache may also
2465 * update ->aborted, check it.
2466 */
2467 if (TRANS_ABORTED(cur_trans)) {
2468 ret = cur_trans->aborted;
2469 goto unlock_reloc;
2470 }
2471
2472 cur_trans = fs_info->running_transaction;
2473
2474 btrfs_set_root_node(&fs_info->tree_root->root_item,
2475 fs_info->tree_root->node);
2476 list_add_tail(&fs_info->tree_root->dirty_list,
2477 &cur_trans->switch_commits);
2478
2479 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2480 fs_info->chunk_root->node);
2481 list_add_tail(&fs_info->chunk_root->dirty_list,
2482 &cur_trans->switch_commits);
2483
2484 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2485 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2486 fs_info->block_group_root->node);
2487 list_add_tail(&fs_info->block_group_root->dirty_list,
2488 &cur_trans->switch_commits);
2489 }
2490
2491 switch_commit_roots(trans);
2492
2493 ASSERT(list_empty(&cur_trans->dirty_bgs));
2494 ASSERT(list_empty(&cur_trans->io_bgs));
2495 update_super_roots(fs_info);
2496
2497 btrfs_set_super_log_root(fs_info->super_copy, 0);
2498 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2499 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2500 sizeof(*fs_info->super_copy));
2501
2502 btrfs_commit_device_sizes(cur_trans);
2503
2504 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2505 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2506
2507 btrfs_trans_release_chunk_metadata(trans);
2508
2509 /*
2510 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2511 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2512 * make sure that before we commit our superblock, no other task can
2513 * start a new transaction and commit a log tree before we commit our
2514 * superblock. Anyone trying to commit a log tree locks this mutex before
2515 * writing its superblock.
2516 */
2517 mutex_lock(&fs_info->tree_log_mutex);
2518
2519 spin_lock(&fs_info->trans_lock);
2520 cur_trans->state = TRANS_STATE_UNBLOCKED;
2521 fs_info->running_transaction = NULL;
2522 spin_unlock(&fs_info->trans_lock);
2523 mutex_unlock(&fs_info->reloc_mutex);
2524
2525 wake_up(&fs_info->transaction_wait);
2526 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2527
2528 /* If we have features changed, wake up the cleaner to update sysfs. */
2529 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2530 fs_info->cleaner_kthread)
2531 wake_up_process(fs_info->cleaner_kthread);
2532
2533 ret = btrfs_write_and_wait_transaction(trans);
2534 if (ret) {
2535 btrfs_handle_fs_error(fs_info, ret,
2536 "Error while writing out transaction");
2537 mutex_unlock(&fs_info->tree_log_mutex);
2538 goto scrub_continue;
2539 }
2540
2541 ret = write_all_supers(fs_info, 0);
2542 /*
2543 * the super is written, we can safely allow the tree-loggers
2544 * to go about their business
2545 */
2546 mutex_unlock(&fs_info->tree_log_mutex);
2547 if (ret)
2548 goto scrub_continue;
2549
2550 /*
2551 * We needn't acquire the lock here because there is no other task
2552 * which can change it.
2553 */
2554 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2555 wake_up(&cur_trans->commit_wait);
2556 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2557
2558 btrfs_finish_extent_commit(trans);
2559
2560 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2561 btrfs_clear_space_info_full(fs_info);
2562
2563 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2564 /*
2565 * We needn't acquire the lock here because there is no other task
2566 * which can change it.
2567 */
2568 cur_trans->state = TRANS_STATE_COMPLETED;
2569 wake_up(&cur_trans->commit_wait);
2570 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2571
2572 spin_lock(&fs_info->trans_lock);
2573 list_del_init(&cur_trans->list);
2574 spin_unlock(&fs_info->trans_lock);
2575
2576 btrfs_put_transaction(cur_trans);
2577 btrfs_put_transaction(cur_trans);
2578
2579 if (trans->type & __TRANS_FREEZABLE)
2580 sb_end_intwrite(fs_info->sb);
2581
2582 trace_btrfs_transaction_commit(fs_info);
2583
2584 interval = ktime_get_ns() - start_time;
2585
2586 btrfs_scrub_continue(fs_info);
2587
2588 if (current->journal_info == trans)
2589 current->journal_info = NULL;
2590
2591 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2592
2593 update_commit_stats(fs_info, interval);
2594
2595 return ret;
2596
2597 unlock_reloc:
2598 mutex_unlock(&fs_info->reloc_mutex);
2599 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2600 scrub_continue:
2601 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2602 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2603 btrfs_scrub_continue(fs_info);
2604 cleanup_transaction:
2605 btrfs_trans_release_metadata(trans);
2606 btrfs_cleanup_pending_block_groups(trans);
2607 btrfs_trans_release_chunk_metadata(trans);
2608 trans->block_rsv = NULL;
2609 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2610 if (current->journal_info == trans)
2611 current->journal_info = NULL;
2612 cleanup_transaction(trans, ret);
2613
2614 return ret;
2615
2616 lockdep_release:
2617 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2618 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2619 goto cleanup_transaction;
2620
2621 lockdep_trans_commit_start_release:
2622 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2623 btrfs_end_transaction(trans);
2624 return ret;
2625 }
2626
2627 /*
2628 * return < 0 if error
2629 * 0 if there are no more dead_roots at the time of call
2630 * 1 there are more to be processed, call me again
2631 *
2632 * The return value indicates there are certainly more snapshots to delete, but
2633 * if there comes a new one during processing, it may return 0. We don't mind,
2634 * because btrfs_commit_super will poke cleaner thread and it will process it a
2635 * few seconds later.
2636 */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2637 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2638 {
2639 struct btrfs_root *root;
2640 int ret;
2641
2642 spin_lock(&fs_info->trans_lock);
2643 if (list_empty(&fs_info->dead_roots)) {
2644 spin_unlock(&fs_info->trans_lock);
2645 return 0;
2646 }
2647 root = list_first_entry(&fs_info->dead_roots,
2648 struct btrfs_root, root_list);
2649 list_del_init(&root->root_list);
2650 spin_unlock(&fs_info->trans_lock);
2651
2652 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2653
2654 btrfs_kill_all_delayed_nodes(root);
2655
2656 if (btrfs_header_backref_rev(root->node) <
2657 BTRFS_MIXED_BACKREF_REV)
2658 ret = btrfs_drop_snapshot(root, 0, 0);
2659 else
2660 ret = btrfs_drop_snapshot(root, 1, 0);
2661
2662 btrfs_put_root(root);
2663 return (ret < 0) ? 0 : 1;
2664 }
2665
2666 /*
2667 * We only mark the transaction aborted and then set the file system read-only.
2668 * This will prevent new transactions from starting or trying to join this
2669 * one.
2670 *
2671 * This means that error recovery at the call site is limited to freeing
2672 * any local memory allocations and passing the error code up without
2673 * further cleanup. The transaction should complete as it normally would
2674 * in the call path but will return -EIO.
2675 *
2676 * We'll complete the cleanup in btrfs_end_transaction and
2677 * btrfs_commit_transaction.
2678 */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int error,bool first_hit)2679 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2680 const char *function,
2681 unsigned int line, int error, bool first_hit)
2682 {
2683 struct btrfs_fs_info *fs_info = trans->fs_info;
2684
2685 WRITE_ONCE(trans->aborted, error);
2686 WRITE_ONCE(trans->transaction->aborted, error);
2687 if (first_hit && error == -ENOSPC)
2688 btrfs_dump_space_info_for_trans_abort(fs_info);
2689 /* Wake up anybody who may be waiting on this transaction */
2690 wake_up(&fs_info->transaction_wait);
2691 wake_up(&fs_info->transaction_blocked_wait);
2692 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2693 }
2694
btrfs_transaction_init(void)2695 int __init btrfs_transaction_init(void)
2696 {
2697 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2698 if (!btrfs_trans_handle_cachep)
2699 return -ENOMEM;
2700 return 0;
2701 }
2702
btrfs_transaction_exit(void)2703 void __cold btrfs_transaction_exit(void)
2704 {
2705 kmem_cache_destroy(btrfs_trans_handle_cachep);
2706 }
2707