xref: /linux/fs/btrfs/transaction.c (revision fd71def6d9abc5ae362fb9995d46049b7b0ed391)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37 
38 /*
39  * Transaction states and transitions
40  *
41  * No running transaction (fs tree blocks are not modified)
42  * |
43  * | To next stage:
44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45  * V
46  * Transaction N [[TRANS_STATE_RUNNING]]
47  * |
48  * | New trans handles can be attached to transaction N by calling all
49  * | start_transaction() variants.
50  * |
51  * | To next stage:
52  * |  Call btrfs_commit_transaction() on any trans handle attached to
53  * |  transaction N
54  * V
55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56  * |
57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58  * | the race and the rest will wait for the winner to commit the transaction.
59  * |
60  * | The winner will wait for previous running transaction to completely finish
61  * | if there is one.
62  * |
63  * Transaction N [[TRANS_STATE_COMMIT_START]]
64  * |
65  * | Then one of the following happens:
66  * | - Wait for all other trans handle holders to release.
67  * |   The btrfs_commit_transaction() caller will do the commit work.
68  * | - Wait for current transaction to be committed by others.
69  * |   Other btrfs_commit_transaction() caller will do the commit work.
70  * |
71  * | At this stage, only btrfs_join_transaction*() variants can attach
72  * | to this running transaction.
73  * | All other variants will wait for current one to finish and attach to
74  * | transaction N+1.
75  * |
76  * | To next stage:
77  * |  Caller is chosen to commit transaction N, and all other trans handle
78  * |  haven been released.
79  * V
80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81  * |
82  * | The heavy lifting transaction work is started.
83  * | From running delayed refs (modifying extent tree) to creating pending
84  * | snapshots, running qgroups.
85  * | In short, modify supporting trees to reflect modifications of subvolume
86  * | trees.
87  * |
88  * | At this stage, all start_transaction() calls will wait for this
89  * | transaction to finish and attach to transaction N+1.
90  * |
91  * | To next stage:
92  * |  Until all supporting trees are updated.
93  * V
94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
95  * |						    Transaction N+1
96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
97  * | need to write them back to disk and update	    |
98  * | super blocks.				    |
99  * |						    |
100  * | At this stage, new transaction is allowed to   |
101  * | start.					    |
102  * | All new start_transaction() calls will be	    |
103  * | attached to transid N+1.			    |
104  * |						    |
105  * | To next stage:				    |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices			    |
108  * V						    |
109  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.	    | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 	[TRANS_STATE_RUNNING]		= 0U,
116 	[TRANS_STATE_COMMIT_PREP]	= 0U,
117 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
118 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
119 					   __TRANS_ATTACH |
120 					   __TRANS_JOIN |
121 					   __TRANS_JOIN_NOSTART),
122 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
123 					   __TRANS_ATTACH |
124 					   __TRANS_JOIN |
125 					   __TRANS_JOIN_NOLOCK |
126 					   __TRANS_JOIN_NOSTART),
127 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
128 					   __TRANS_ATTACH |
129 					   __TRANS_JOIN |
130 					   __TRANS_JOIN_NOLOCK |
131 					   __TRANS_JOIN_NOSTART),
132 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
133 					   __TRANS_ATTACH |
134 					   __TRANS_JOIN |
135 					   __TRANS_JOIN_NOLOCK |
136 					   __TRANS_JOIN_NOSTART),
137 };
138 
btrfs_put_transaction(struct btrfs_transaction * transaction)139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 	WARN_ON(refcount_read(&transaction->use_count) == 0);
142 	if (refcount_dec_and_test(&transaction->use_count)) {
143 		BUG_ON(!list_empty(&transaction->list));
144 		WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
145 		WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
146 		if (transaction->delayed_refs.pending_csums)
147 			btrfs_err(transaction->fs_info,
148 				  "pending csums is %llu",
149 				  transaction->delayed_refs.pending_csums);
150 		/*
151 		 * If any block groups are found in ->deleted_bgs then it's
152 		 * because the transaction was aborted and a commit did not
153 		 * happen (things failed before writing the new superblock
154 		 * and calling btrfs_finish_extent_commit()), so we can not
155 		 * discard the physical locations of the block groups.
156 		 */
157 		while (!list_empty(&transaction->deleted_bgs)) {
158 			struct btrfs_block_group *cache;
159 
160 			cache = list_first_entry(&transaction->deleted_bgs,
161 						 struct btrfs_block_group,
162 						 bg_list);
163 			/*
164 			 * Not strictly necessary to lock, as no other task will be using a
165 			 * block_group on the deleted_bgs list during a transaction abort.
166 			 */
167 			spin_lock(&transaction->fs_info->unused_bgs_lock);
168 			list_del_init(&cache->bg_list);
169 			spin_unlock(&transaction->fs_info->unused_bgs_lock);
170 			btrfs_unfreeze_block_group(cache);
171 			btrfs_put_block_group(cache);
172 		}
173 		WARN_ON(!list_empty(&transaction->dev_update_list));
174 		kfree(transaction);
175 	}
176 }
177 
switch_commit_roots(struct btrfs_trans_handle * trans)178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179 {
180 	struct btrfs_transaction *cur_trans = trans->transaction;
181 	struct btrfs_fs_info *fs_info = trans->fs_info;
182 	struct btrfs_root *root, *tmp;
183 
184 	/*
185 	 * At this point no one can be using this transaction to modify any tree
186 	 * and no one can start another transaction to modify any tree either.
187 	 */
188 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189 
190 	down_write(&fs_info->commit_root_sem);
191 
192 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 		fs_info->last_reloc_trans = trans->transid;
194 
195 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196 				 dirty_list) {
197 		list_del_init(&root->dirty_list);
198 		free_extent_buffer(root->commit_root);
199 		root->commit_root = btrfs_root_node(root);
200 		extent_io_tree_release(&root->dirty_log_pages);
201 		btrfs_qgroup_clean_swapped_blocks(root);
202 	}
203 
204 	/* We can free old roots now. */
205 	spin_lock(&cur_trans->dropped_roots_lock);
206 	while (!list_empty(&cur_trans->dropped_roots)) {
207 		root = list_first_entry(&cur_trans->dropped_roots,
208 					struct btrfs_root, root_list);
209 		list_del_init(&root->root_list);
210 		spin_unlock(&cur_trans->dropped_roots_lock);
211 		btrfs_free_log(trans, root);
212 		btrfs_drop_and_free_fs_root(fs_info, root);
213 		spin_lock(&cur_trans->dropped_roots_lock);
214 	}
215 	spin_unlock(&cur_trans->dropped_roots_lock);
216 
217 	up_write(&fs_info->commit_root_sem);
218 }
219 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 					 unsigned int type)
222 {
223 	if (type & TRANS_EXTWRITERS)
224 		atomic_inc(&trans->num_extwriters);
225 }
226 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 					 unsigned int type)
229 {
230 	if (type & TRANS_EXTWRITERS)
231 		atomic_dec(&trans->num_extwriters);
232 }
233 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)234 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 					  unsigned int type)
236 {
237 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238 }
239 
extwriter_counter_read(struct btrfs_transaction * trans)240 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241 {
242 	return atomic_read(&trans->num_extwriters);
243 }
244 
245 /*
246  * To be called after doing the chunk btree updates right after allocating a new
247  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248  * chunk after all chunk btree updates and after finishing the second phase of
249  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250  * group had its chunk item insertion delayed to the second phase.
251  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253 {
254 	struct btrfs_fs_info *fs_info = trans->fs_info;
255 
256 	if (!trans->chunk_bytes_reserved)
257 		return;
258 
259 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
260 				trans->chunk_bytes_reserved, NULL);
261 	trans->chunk_bytes_reserved = 0;
262 }
263 
264 /*
265  * either allocate a new transaction or hop into the existing one
266  */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)267 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 				     unsigned int type)
269 {
270 	struct btrfs_transaction *cur_trans;
271 
272 	spin_lock(&fs_info->trans_lock);
273 loop:
274 	/* The file system has been taken offline. No new transactions. */
275 	if (BTRFS_FS_ERROR(fs_info)) {
276 		spin_unlock(&fs_info->trans_lock);
277 		return -EROFS;
278 	}
279 
280 	cur_trans = fs_info->running_transaction;
281 	if (cur_trans) {
282 		if (TRANS_ABORTED(cur_trans)) {
283 			const int abort_error = cur_trans->aborted;
284 
285 			spin_unlock(&fs_info->trans_lock);
286 			return abort_error;
287 		}
288 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
289 			spin_unlock(&fs_info->trans_lock);
290 			return -EBUSY;
291 		}
292 		refcount_inc(&cur_trans->use_count);
293 		atomic_inc(&cur_trans->num_writers);
294 		extwriter_counter_inc(cur_trans, type);
295 		spin_unlock(&fs_info->trans_lock);
296 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
297 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
298 		return 0;
299 	}
300 	spin_unlock(&fs_info->trans_lock);
301 
302 	/*
303 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
304 	 * current transaction, and commit it. If there is no transaction, just
305 	 * return ENOENT.
306 	 */
307 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
308 		return -ENOENT;
309 
310 	/*
311 	 * JOIN_NOLOCK only happens during the transaction commit, so
312 	 * it is impossible that ->running_transaction is NULL
313 	 */
314 	BUG_ON(type == TRANS_JOIN_NOLOCK);
315 
316 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
317 	if (!cur_trans)
318 		return -ENOMEM;
319 
320 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
321 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
322 
323 	spin_lock(&fs_info->trans_lock);
324 	if (fs_info->running_transaction) {
325 		/*
326 		 * someone started a transaction after we unlocked.  Make sure
327 		 * to redo the checks above
328 		 */
329 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 		kfree(cur_trans);
332 		goto loop;
333 	} else if (BTRFS_FS_ERROR(fs_info)) {
334 		spin_unlock(&fs_info->trans_lock);
335 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
336 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
337 		kfree(cur_trans);
338 		return -EROFS;
339 	}
340 
341 	cur_trans->fs_info = fs_info;
342 	atomic_set(&cur_trans->pending_ordered, 0);
343 	init_waitqueue_head(&cur_trans->pending_wait);
344 	atomic_set(&cur_trans->num_writers, 1);
345 	extwriter_counter_init(cur_trans, type);
346 	init_waitqueue_head(&cur_trans->writer_wait);
347 	init_waitqueue_head(&cur_trans->commit_wait);
348 	cur_trans->state = TRANS_STATE_RUNNING;
349 	/*
350 	 * One for this trans handle, one so it will live on until we
351 	 * commit the transaction.
352 	 */
353 	refcount_set(&cur_trans->use_count, 2);
354 	cur_trans->flags = 0;
355 	cur_trans->start_time = ktime_get_seconds();
356 
357 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
358 
359 	xa_init(&cur_trans->delayed_refs.head_refs);
360 	xa_init(&cur_trans->delayed_refs.dirty_extents);
361 
362 	/*
363 	 * although the tree mod log is per file system and not per transaction,
364 	 * the log must never go across transaction boundaries.
365 	 */
366 	smp_mb();
367 	if (!list_empty(&fs_info->tree_mod_seq_list))
368 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
369 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
370 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
371 	atomic64_set(&fs_info->tree_mod_seq, 0);
372 
373 	spin_lock_init(&cur_trans->delayed_refs.lock);
374 
375 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
376 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
377 	INIT_LIST_HEAD(&cur_trans->switch_commits);
378 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
379 	INIT_LIST_HEAD(&cur_trans->io_bgs);
380 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
381 	mutex_init(&cur_trans->cache_write_mutex);
382 	spin_lock_init(&cur_trans->dirty_bgs_lock);
383 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
384 	spin_lock_init(&cur_trans->dropped_roots_lock);
385 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
386 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
387 			IO_TREE_TRANS_DIRTY_PAGES);
388 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
389 			IO_TREE_FS_PINNED_EXTENTS);
390 	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
391 	cur_trans->transid = fs_info->generation;
392 	fs_info->running_transaction = cur_trans;
393 	cur_trans->aborted = 0;
394 	spin_unlock(&fs_info->trans_lock);
395 
396 	return 0;
397 }
398 
399 /*
400  * This does all the record keeping required to make sure that a shareable root
401  * is properly recorded in a given transaction.  This is required to make sure
402  * the old root from before we joined the transaction is deleted when the
403  * transaction commits.
404  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)405 static int record_root_in_trans(struct btrfs_trans_handle *trans,
406 			       struct btrfs_root *root,
407 			       int force)
408 {
409 	struct btrfs_fs_info *fs_info = root->fs_info;
410 	int ret = 0;
411 
412 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
413 	    btrfs_get_root_last_trans(root) < trans->transid) || force) {
414 		WARN_ON(!force && root->commit_root != root->node);
415 
416 		/*
417 		 * see below for IN_TRANS_SETUP usage rules
418 		 * we have the reloc mutex held now, so there
419 		 * is only one writer in this function
420 		 */
421 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
422 
423 		/* make sure readers find IN_TRANS_SETUP before
424 		 * they find our root->last_trans update
425 		 */
426 		smp_wmb();
427 
428 		spin_lock(&fs_info->fs_roots_radix_lock);
429 		if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
430 			spin_unlock(&fs_info->fs_roots_radix_lock);
431 			return 0;
432 		}
433 		radix_tree_tag_set(&fs_info->fs_roots_radix,
434 				   (unsigned long)btrfs_root_id(root),
435 				   BTRFS_ROOT_TRANS_TAG);
436 		spin_unlock(&fs_info->fs_roots_radix_lock);
437 		btrfs_set_root_last_trans(root, trans->transid);
438 
439 		/* this is pretty tricky.  We don't want to
440 		 * take the relocation lock in btrfs_record_root_in_trans
441 		 * unless we're really doing the first setup for this root in
442 		 * this transaction.
443 		 *
444 		 * Normally we'd use root->last_trans as a flag to decide
445 		 * if we want to take the expensive mutex.
446 		 *
447 		 * But, we have to set root->last_trans before we
448 		 * init the relocation root, otherwise, we trip over warnings
449 		 * in ctree.c.  The solution used here is to flag ourselves
450 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
451 		 * fixing up the reloc trees and everyone must wait.
452 		 *
453 		 * When this is zero, they can trust root->last_trans and fly
454 		 * through btrfs_record_root_in_trans without having to take the
455 		 * lock.  smp_wmb() makes sure that all the writes above are
456 		 * done before we pop in the zero below
457 		 */
458 		ret = btrfs_init_reloc_root(trans, root);
459 		smp_mb__before_atomic();
460 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
461 	}
462 	return ret;
463 }
464 
465 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)466 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
467 			    struct btrfs_root *root)
468 {
469 	struct btrfs_fs_info *fs_info = root->fs_info;
470 	struct btrfs_transaction *cur_trans = trans->transaction;
471 
472 	/* Add ourselves to the transaction dropped list */
473 	spin_lock(&cur_trans->dropped_roots_lock);
474 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
475 	spin_unlock(&cur_trans->dropped_roots_lock);
476 
477 	/* Make sure we don't try to update the root at commit time */
478 	spin_lock(&fs_info->fs_roots_radix_lock);
479 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
480 			     (unsigned long)btrfs_root_id(root),
481 			     BTRFS_ROOT_TRANS_TAG);
482 	spin_unlock(&fs_info->fs_roots_radix_lock);
483 }
484 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)485 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
486 			       struct btrfs_root *root)
487 {
488 	struct btrfs_fs_info *fs_info = root->fs_info;
489 	int ret;
490 
491 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
492 		return 0;
493 
494 	/*
495 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
496 	 * and barriers
497 	 */
498 	smp_rmb();
499 	if (btrfs_get_root_last_trans(root) == trans->transid &&
500 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
501 		return 0;
502 
503 	mutex_lock(&fs_info->reloc_mutex);
504 	ret = record_root_in_trans(trans, root, 0);
505 	mutex_unlock(&fs_info->reloc_mutex);
506 
507 	return ret;
508 }
509 
is_transaction_blocked(struct btrfs_transaction * trans)510 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
511 {
512 	return (trans->state >= TRANS_STATE_COMMIT_START &&
513 		trans->state < TRANS_STATE_UNBLOCKED &&
514 		!TRANS_ABORTED(trans));
515 }
516 
517 /* wait for commit against the current transaction to become unblocked
518  * when this is done, it is safe to start a new transaction, but the current
519  * transaction might not be fully on disk.
520  */
wait_current_trans(struct btrfs_fs_info * fs_info)521 static void wait_current_trans(struct btrfs_fs_info *fs_info)
522 {
523 	struct btrfs_transaction *cur_trans;
524 
525 	spin_lock(&fs_info->trans_lock);
526 	cur_trans = fs_info->running_transaction;
527 	if (cur_trans && is_transaction_blocked(cur_trans)) {
528 		refcount_inc(&cur_trans->use_count);
529 		spin_unlock(&fs_info->trans_lock);
530 
531 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
532 		wait_event(fs_info->transaction_wait,
533 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
534 			   TRANS_ABORTED(cur_trans));
535 		btrfs_put_transaction(cur_trans);
536 	} else {
537 		spin_unlock(&fs_info->trans_lock);
538 	}
539 }
540 
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)541 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
542 {
543 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
544 		return 0;
545 
546 	if (type == TRANS_START)
547 		return 1;
548 
549 	return 0;
550 }
551 
need_reserve_reloc_root(struct btrfs_root * root)552 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
553 {
554 	struct btrfs_fs_info *fs_info = root->fs_info;
555 
556 	if (!fs_info->reloc_ctl ||
557 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
558 	    btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
559 	    root->reloc_root)
560 		return false;
561 
562 	return true;
563 }
564 
btrfs_reserve_trans_metadata(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush,u64 num_bytes,u64 * delayed_refs_bytes)565 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
566 					enum btrfs_reserve_flush_enum flush,
567 					u64 num_bytes,
568 					u64 *delayed_refs_bytes)
569 {
570 	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
571 	u64 bytes = num_bytes + *delayed_refs_bytes;
572 	int ret;
573 
574 	/*
575 	 * We want to reserve all the bytes we may need all at once, so we only
576 	 * do 1 enospc flushing cycle per transaction start.
577 	 */
578 	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
579 
580 	/*
581 	 * If we are an emergency flush, which can steal from the global block
582 	 * reserve, then attempt to not reserve space for the delayed refs, as
583 	 * we will consume space for them from the global block reserve.
584 	 */
585 	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
586 		bytes -= *delayed_refs_bytes;
587 		*delayed_refs_bytes = 0;
588 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
589 	}
590 
591 	return ret;
592 }
593 
594 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)595 start_transaction(struct btrfs_root *root, unsigned int num_items,
596 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
597 		  bool enforce_qgroups)
598 {
599 	struct btrfs_fs_info *fs_info = root->fs_info;
600 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
601 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
602 	struct btrfs_trans_handle *h;
603 	struct btrfs_transaction *cur_trans;
604 	u64 num_bytes = 0;
605 	u64 qgroup_reserved = 0;
606 	u64 delayed_refs_bytes = 0;
607 	bool reloc_reserved = false;
608 	bool do_chunk_alloc = false;
609 	int ret;
610 
611 	if (BTRFS_FS_ERROR(fs_info))
612 		return ERR_PTR(-EROFS);
613 
614 	if (current->journal_info) {
615 		WARN_ON(type & TRANS_EXTWRITERS);
616 		h = current->journal_info;
617 		refcount_inc(&h->use_count);
618 		WARN_ON(refcount_read(&h->use_count) > 2);
619 		h->orig_rsv = h->block_rsv;
620 		h->block_rsv = NULL;
621 		goto got_it;
622 	}
623 
624 	/*
625 	 * Do the reservation before we join the transaction so we can do all
626 	 * the appropriate flushing if need be.
627 	 */
628 	if (num_items && root != fs_info->chunk_root) {
629 		qgroup_reserved = num_items * fs_info->nodesize;
630 		/*
631 		 * Use prealloc for now, as there might be a currently running
632 		 * transaction that could free this reserved space prematurely
633 		 * by committing.
634 		 */
635 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
636 							 enforce_qgroups, false);
637 		if (ret)
638 			return ERR_PTR(ret);
639 
640 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
641 		/*
642 		 * If we plan to insert/update/delete "num_items" from a btree,
643 		 * we will also generate delayed refs for extent buffers in the
644 		 * respective btree paths, so reserve space for the delayed refs
645 		 * that will be generated by the caller as it modifies btrees.
646 		 * Try to reserve them to avoid excessive use of the global
647 		 * block reserve.
648 		 */
649 		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
650 
651 		/*
652 		 * Do the reservation for the relocation root creation
653 		 */
654 		if (need_reserve_reloc_root(root)) {
655 			num_bytes += fs_info->nodesize;
656 			reloc_reserved = true;
657 		}
658 
659 		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
660 						   &delayed_refs_bytes);
661 		if (ret)
662 			goto reserve_fail;
663 
664 		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
665 
666 		if (trans_rsv->space_info->force_alloc)
667 			do_chunk_alloc = true;
668 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
669 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
670 		/*
671 		 * Some people call with btrfs_start_transaction(root, 0)
672 		 * because they can be throttled, but have some other mechanism
673 		 * for reserving space.  We still want these guys to refill the
674 		 * delayed block_rsv so just add 1 items worth of reservation
675 		 * here.
676 		 */
677 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
678 		if (ret)
679 			goto reserve_fail;
680 	}
681 again:
682 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
683 	if (!h) {
684 		ret = -ENOMEM;
685 		goto alloc_fail;
686 	}
687 
688 	/*
689 	 * If we are JOIN_NOLOCK we're already committing a transaction and
690 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
691 	 * because we're already holding a ref.  We need this because we could
692 	 * have raced in and did an fsync() on a file which can kick a commit
693 	 * and then we deadlock with somebody doing a freeze.
694 	 *
695 	 * If we are ATTACH, it means we just want to catch the current
696 	 * transaction and commit it, so we needn't do sb_start_intwrite().
697 	 */
698 	if (type & __TRANS_FREEZABLE)
699 		sb_start_intwrite(fs_info->sb);
700 
701 	if (may_wait_transaction(fs_info, type))
702 		wait_current_trans(fs_info);
703 
704 	do {
705 		ret = join_transaction(fs_info, type);
706 		if (ret == -EBUSY) {
707 			wait_current_trans(fs_info);
708 			if (unlikely(type == TRANS_ATTACH ||
709 				     type == TRANS_JOIN_NOSTART))
710 				ret = -ENOENT;
711 		}
712 	} while (ret == -EBUSY);
713 
714 	if (ret < 0)
715 		goto join_fail;
716 
717 	cur_trans = fs_info->running_transaction;
718 
719 	h->transid = cur_trans->transid;
720 	h->transaction = cur_trans;
721 	refcount_set(&h->use_count, 1);
722 	h->fs_info = root->fs_info;
723 
724 	h->type = type;
725 	INIT_LIST_HEAD(&h->new_bgs);
726 	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
727 
728 	smp_mb();
729 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
730 	    may_wait_transaction(fs_info, type)) {
731 		current->journal_info = h;
732 		btrfs_commit_transaction(h);
733 		goto again;
734 	}
735 
736 	if (num_bytes) {
737 		trace_btrfs_space_reservation(fs_info, "transaction",
738 					      h->transid, num_bytes, 1);
739 		h->block_rsv = trans_rsv;
740 		h->bytes_reserved = num_bytes;
741 		if (delayed_refs_bytes > 0) {
742 			trace_btrfs_space_reservation(fs_info,
743 						      "local_delayed_refs_rsv",
744 						      h->transid,
745 						      delayed_refs_bytes, 1);
746 			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
747 			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
748 			delayed_refs_bytes = 0;
749 		}
750 		h->reloc_reserved = reloc_reserved;
751 	}
752 
753 got_it:
754 	if (!current->journal_info)
755 		current->journal_info = h;
756 
757 	/*
758 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
759 	 * ALLOC_FORCE the first run through, and then we won't allocate for
760 	 * anybody else who races in later.  We don't care about the return
761 	 * value here.
762 	 */
763 	if (do_chunk_alloc && num_bytes) {
764 		u64 flags = h->block_rsv->space_info->flags;
765 
766 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
767 				  CHUNK_ALLOC_NO_FORCE);
768 	}
769 
770 	/*
771 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
772 	 * call btrfs_join_transaction() while we're also starting a
773 	 * transaction.
774 	 *
775 	 * Thus it need to be called after current->journal_info initialized,
776 	 * or we can deadlock.
777 	 */
778 	ret = btrfs_record_root_in_trans(h, root);
779 	if (ret) {
780 		/*
781 		 * The transaction handle is fully initialized and linked with
782 		 * other structures so it needs to be ended in case of errors,
783 		 * not just freed.
784 		 */
785 		btrfs_end_transaction(h);
786 		goto reserve_fail;
787 	}
788 	/*
789 	 * Now that we have found a transaction to be a part of, convert the
790 	 * qgroup reservation from prealloc to pertrans. A different transaction
791 	 * can't race in and free our pertrans out from under us.
792 	 */
793 	if (qgroup_reserved)
794 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
795 
796 	return h;
797 
798 join_fail:
799 	if (type & __TRANS_FREEZABLE)
800 		sb_end_intwrite(fs_info->sb);
801 	kmem_cache_free(btrfs_trans_handle_cachep, h);
802 alloc_fail:
803 	if (num_bytes)
804 		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
805 	if (delayed_refs_bytes)
806 		btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes);
807 reserve_fail:
808 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
809 	return ERR_PTR(ret);
810 }
811 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)812 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
813 						   unsigned int num_items)
814 {
815 	return start_transaction(root, num_items, TRANS_START,
816 				 BTRFS_RESERVE_FLUSH_ALL, true);
817 }
818 
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)819 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
820 					struct btrfs_root *root,
821 					unsigned int num_items)
822 {
823 	return start_transaction(root, num_items, TRANS_START,
824 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
825 }
826 
btrfs_join_transaction(struct btrfs_root * root)827 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
828 {
829 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
830 				 true);
831 }
832 
btrfs_join_transaction_spacecache(struct btrfs_root * root)833 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
834 {
835 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
836 				 BTRFS_RESERVE_NO_FLUSH, true);
837 }
838 
839 /*
840  * Similar to regular join but it never starts a transaction when none is
841  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
842  * This is similar to btrfs_attach_transaction() but it allows the join to
843  * happen if the transaction commit already started but it's not yet in the
844  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
845  */
btrfs_join_transaction_nostart(struct btrfs_root * root)846 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
847 {
848 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
849 				 BTRFS_RESERVE_NO_FLUSH, true);
850 }
851 
852 /*
853  * Catch the running transaction.
854  *
855  * It is used when we want to commit the current the transaction, but
856  * don't want to start a new one.
857  *
858  * Note: If this function return -ENOENT, it just means there is no
859  * running transaction. But it is possible that the inactive transaction
860  * is still in the memory, not fully on disk. If you hope there is no
861  * inactive transaction in the fs when -ENOENT is returned, you should
862  * invoke
863  *     btrfs_attach_transaction_barrier()
864  */
btrfs_attach_transaction(struct btrfs_root * root)865 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
866 {
867 	return start_transaction(root, 0, TRANS_ATTACH,
868 				 BTRFS_RESERVE_NO_FLUSH, true);
869 }
870 
871 /*
872  * Catch the running transaction.
873  *
874  * It is similar to the above function, the difference is this one
875  * will wait for all the inactive transactions until they fully
876  * complete.
877  */
878 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)879 btrfs_attach_transaction_barrier(struct btrfs_root *root)
880 {
881 	struct btrfs_trans_handle *trans;
882 
883 	trans = start_transaction(root, 0, TRANS_ATTACH,
884 				  BTRFS_RESERVE_NO_FLUSH, true);
885 	if (trans == ERR_PTR(-ENOENT)) {
886 		int ret;
887 
888 		ret = btrfs_wait_for_commit(root->fs_info, 0);
889 		if (ret)
890 			return ERR_PTR(ret);
891 	}
892 
893 	return trans;
894 }
895 
896 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)897 static noinline void wait_for_commit(struct btrfs_transaction *commit,
898 				     const enum btrfs_trans_state min_state)
899 {
900 	struct btrfs_fs_info *fs_info = commit->fs_info;
901 	u64 transid = commit->transid;
902 	bool put = false;
903 
904 	/*
905 	 * At the moment this function is called with min_state either being
906 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
907 	 */
908 	if (min_state == TRANS_STATE_COMPLETED)
909 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
910 	else
911 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
912 
913 	while (1) {
914 		wait_event(commit->commit_wait, commit->state >= min_state);
915 		if (put)
916 			btrfs_put_transaction(commit);
917 
918 		if (min_state < TRANS_STATE_COMPLETED)
919 			break;
920 
921 		/*
922 		 * A transaction isn't really completed until all of the
923 		 * previous transactions are completed, but with fsync we can
924 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
925 		 * transaction. Wait for those.
926 		 */
927 
928 		spin_lock(&fs_info->trans_lock);
929 		commit = list_first_entry_or_null(&fs_info->trans_list,
930 						  struct btrfs_transaction,
931 						  list);
932 		if (!commit || commit->transid > transid) {
933 			spin_unlock(&fs_info->trans_lock);
934 			break;
935 		}
936 		refcount_inc(&commit->use_count);
937 		put = true;
938 		spin_unlock(&fs_info->trans_lock);
939 	}
940 }
941 
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)942 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
943 {
944 	struct btrfs_transaction *cur_trans = NULL, *t;
945 	int ret = 0;
946 
947 	if (transid) {
948 		if (transid <= btrfs_get_last_trans_committed(fs_info))
949 			goto out;
950 
951 		/* find specified transaction */
952 		spin_lock(&fs_info->trans_lock);
953 		list_for_each_entry(t, &fs_info->trans_list, list) {
954 			if (t->transid == transid) {
955 				cur_trans = t;
956 				refcount_inc(&cur_trans->use_count);
957 				ret = 0;
958 				break;
959 			}
960 			if (t->transid > transid) {
961 				ret = 0;
962 				break;
963 			}
964 		}
965 		spin_unlock(&fs_info->trans_lock);
966 
967 		/*
968 		 * The specified transaction doesn't exist, or we
969 		 * raced with btrfs_commit_transaction
970 		 */
971 		if (!cur_trans) {
972 			if (transid > btrfs_get_last_trans_committed(fs_info))
973 				ret = -EINVAL;
974 			goto out;
975 		}
976 	} else {
977 		/* find newest transaction that is committing | committed */
978 		spin_lock(&fs_info->trans_lock);
979 		list_for_each_entry_reverse(t, &fs_info->trans_list,
980 					    list) {
981 			if (t->state >= TRANS_STATE_COMMIT_START) {
982 				if (t->state == TRANS_STATE_COMPLETED)
983 					break;
984 				cur_trans = t;
985 				refcount_inc(&cur_trans->use_count);
986 				break;
987 			}
988 		}
989 		spin_unlock(&fs_info->trans_lock);
990 		if (!cur_trans)
991 			goto out;  /* nothing committing|committed */
992 	}
993 
994 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
995 	ret = cur_trans->aborted;
996 	btrfs_put_transaction(cur_trans);
997 out:
998 	return ret;
999 }
1000 
btrfs_throttle(struct btrfs_fs_info * fs_info)1001 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1002 {
1003 	wait_current_trans(fs_info);
1004 }
1005 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)1006 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1007 {
1008 	struct btrfs_transaction *cur_trans = trans->transaction;
1009 
1010 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1011 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1012 		return true;
1013 
1014 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1015 		return true;
1016 
1017 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1018 }
1019 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)1020 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1021 
1022 {
1023 	struct btrfs_fs_info *fs_info = trans->fs_info;
1024 
1025 	if (!trans->block_rsv) {
1026 		ASSERT(!trans->bytes_reserved);
1027 		ASSERT(!trans->delayed_refs_bytes_reserved);
1028 		return;
1029 	}
1030 
1031 	if (!trans->bytes_reserved) {
1032 		ASSERT(!trans->delayed_refs_bytes_reserved);
1033 		return;
1034 	}
1035 
1036 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1037 	trace_btrfs_space_reservation(fs_info, "transaction",
1038 				      trans->transid, trans->bytes_reserved, 0);
1039 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1040 				trans->bytes_reserved, NULL);
1041 	trans->bytes_reserved = 0;
1042 
1043 	if (!trans->delayed_refs_bytes_reserved)
1044 		return;
1045 
1046 	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1047 				      trans->transid,
1048 				      trans->delayed_refs_bytes_reserved, 0);
1049 	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1050 				trans->delayed_refs_bytes_reserved, NULL);
1051 	trans->delayed_refs_bytes_reserved = 0;
1052 }
1053 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1054 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1055 				   int throttle)
1056 {
1057 	struct btrfs_fs_info *info = trans->fs_info;
1058 	struct btrfs_transaction *cur_trans = trans->transaction;
1059 	int ret = 0;
1060 
1061 	if (refcount_read(&trans->use_count) > 1) {
1062 		refcount_dec(&trans->use_count);
1063 		trans->block_rsv = trans->orig_rsv;
1064 		return 0;
1065 	}
1066 
1067 	btrfs_trans_release_metadata(trans);
1068 	trans->block_rsv = NULL;
1069 
1070 	btrfs_create_pending_block_groups(trans);
1071 
1072 	btrfs_trans_release_chunk_metadata(trans);
1073 
1074 	if (trans->type & __TRANS_FREEZABLE)
1075 		sb_end_intwrite(info->sb);
1076 
1077 	WARN_ON(cur_trans != info->running_transaction);
1078 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1079 	atomic_dec(&cur_trans->num_writers);
1080 	extwriter_counter_dec(cur_trans, trans->type);
1081 
1082 	cond_wake_up(&cur_trans->writer_wait);
1083 
1084 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1085 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1086 
1087 	btrfs_put_transaction(cur_trans);
1088 
1089 	if (current->journal_info == trans)
1090 		current->journal_info = NULL;
1091 
1092 	if (throttle)
1093 		btrfs_run_delayed_iputs(info);
1094 
1095 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1096 		wake_up_process(info->transaction_kthread);
1097 		if (TRANS_ABORTED(trans))
1098 			ret = trans->aborted;
1099 		else
1100 			ret = -EROFS;
1101 	}
1102 
1103 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1104 	return ret;
1105 }
1106 
btrfs_end_transaction(struct btrfs_trans_handle * trans)1107 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1108 {
1109 	return __btrfs_end_transaction(trans, 0);
1110 }
1111 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1112 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1113 {
1114 	return __btrfs_end_transaction(trans, 1);
1115 }
1116 
1117 /*
1118  * when btree blocks are allocated, they have some corresponding bits set for
1119  * them in one of two extent_io trees.  This is used to make sure all of
1120  * those extents are sent to disk but does not wait on them
1121  */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1122 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1123 			       struct extent_io_tree *dirty_pages, int mark)
1124 {
1125 	int ret = 0;
1126 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1127 	struct extent_state *cached_state = NULL;
1128 	u64 start = 0;
1129 	u64 end;
1130 
1131 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1132 				     mark, &cached_state)) {
1133 		bool wait_writeback = false;
1134 
1135 		ret = convert_extent_bit(dirty_pages, start, end,
1136 					 EXTENT_NEED_WAIT,
1137 					 mark, &cached_state);
1138 		/*
1139 		 * convert_extent_bit can return -ENOMEM, which is most of the
1140 		 * time a temporary error. So when it happens, ignore the error
1141 		 * and wait for writeback of this range to finish - because we
1142 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1143 		 * to __btrfs_wait_marked_extents() would not know that
1144 		 * writeback for this range started and therefore wouldn't
1145 		 * wait for it to finish - we don't want to commit a
1146 		 * superblock that points to btree nodes/leafs for which
1147 		 * writeback hasn't finished yet (and without errors).
1148 		 * We cleanup any entries left in the io tree when committing
1149 		 * the transaction (through extent_io_tree_release()).
1150 		 */
1151 		if (ret == -ENOMEM) {
1152 			ret = 0;
1153 			wait_writeback = true;
1154 		}
1155 		if (!ret)
1156 			ret = filemap_fdatawrite_range(mapping, start, end);
1157 		if (!ret && wait_writeback)
1158 			ret = filemap_fdatawait_range(mapping, start, end);
1159 		free_extent_state(cached_state);
1160 		if (ret)
1161 			break;
1162 		cached_state = NULL;
1163 		cond_resched();
1164 		start = end + 1;
1165 	}
1166 	return ret;
1167 }
1168 
1169 /*
1170  * when btree blocks are allocated, they have some corresponding bits set for
1171  * them in one of two extent_io trees.  This is used to make sure all of
1172  * those extents are on disk for transaction or log commit.  We wait
1173  * on all the pages and clear them from the dirty pages state tree
1174  */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1175 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1176 				       struct extent_io_tree *dirty_pages)
1177 {
1178 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1179 	struct extent_state *cached_state = NULL;
1180 	u64 start = 0;
1181 	u64 end;
1182 	int ret = 0;
1183 
1184 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1185 				     EXTENT_NEED_WAIT, &cached_state)) {
1186 		/*
1187 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1188 		 * When committing the transaction, we'll remove any entries
1189 		 * left in the io tree. For a log commit, we don't remove them
1190 		 * after committing the log because the tree can be accessed
1191 		 * concurrently - we do it only at transaction commit time when
1192 		 * it's safe to do it (through extent_io_tree_release()).
1193 		 */
1194 		ret = clear_extent_bit(dirty_pages, start, end,
1195 				       EXTENT_NEED_WAIT, &cached_state);
1196 		if (ret == -ENOMEM)
1197 			ret = 0;
1198 		if (!ret)
1199 			ret = filemap_fdatawait_range(mapping, start, end);
1200 		free_extent_state(cached_state);
1201 		if (ret)
1202 			break;
1203 		cached_state = NULL;
1204 		cond_resched();
1205 		start = end + 1;
1206 	}
1207 	return ret;
1208 }
1209 
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1210 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1211 		       struct extent_io_tree *dirty_pages)
1212 {
1213 	bool errors = false;
1214 	int err;
1215 
1216 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1217 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1218 		errors = true;
1219 
1220 	if (errors && !err)
1221 		err = -EIO;
1222 	return err;
1223 }
1224 
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1225 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1226 {
1227 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1228 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1229 	bool errors = false;
1230 	int err;
1231 
1232 	ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1233 
1234 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1235 	if ((mark & EXTENT_DIRTY) &&
1236 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1237 		errors = true;
1238 
1239 	if ((mark & EXTENT_NEW) &&
1240 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1241 		errors = true;
1242 
1243 	if (errors && !err)
1244 		err = -EIO;
1245 	return err;
1246 }
1247 
1248 /*
1249  * When btree blocks are allocated the corresponding extents are marked dirty.
1250  * This function ensures such extents are persisted on disk for transaction or
1251  * log commit.
1252  *
1253  * @trans: transaction whose dirty pages we'd like to write
1254  */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1255 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1256 {
1257 	int ret;
1258 	int ret2;
1259 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1260 	struct btrfs_fs_info *fs_info = trans->fs_info;
1261 	struct blk_plug plug;
1262 
1263 	blk_start_plug(&plug);
1264 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1265 	blk_finish_plug(&plug);
1266 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1267 
1268 	extent_io_tree_release(&trans->transaction->dirty_pages);
1269 
1270 	if (ret)
1271 		return ret;
1272 	else if (ret2)
1273 		return ret2;
1274 	else
1275 		return 0;
1276 }
1277 
1278 /*
1279  * this is used to update the root pointer in the tree of tree roots.
1280  *
1281  * But, in the case of the extent allocation tree, updating the root
1282  * pointer may allocate blocks which may change the root of the extent
1283  * allocation tree.
1284  *
1285  * So, this loops and repeats and makes sure the cowonly root didn't
1286  * change while the root pointer was being updated in the metadata.
1287  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1288 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1289 			       struct btrfs_root *root)
1290 {
1291 	int ret;
1292 	u64 old_root_bytenr;
1293 	u64 old_root_used;
1294 	struct btrfs_fs_info *fs_info = root->fs_info;
1295 	struct btrfs_root *tree_root = fs_info->tree_root;
1296 
1297 	old_root_used = btrfs_root_used(&root->root_item);
1298 
1299 	while (1) {
1300 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1301 		if (old_root_bytenr == root->node->start &&
1302 		    old_root_used == btrfs_root_used(&root->root_item))
1303 			break;
1304 
1305 		btrfs_set_root_node(&root->root_item, root->node);
1306 		ret = btrfs_update_root(trans, tree_root,
1307 					&root->root_key,
1308 					&root->root_item);
1309 		if (ret)
1310 			return ret;
1311 
1312 		old_root_used = btrfs_root_used(&root->root_item);
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 /*
1319  * update all the cowonly tree roots on disk
1320  *
1321  * The error handling in this function may not be obvious. Any of the
1322  * failures will cause the file system to go offline. We still need
1323  * to clean up the delayed refs.
1324  */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1325 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1326 {
1327 	struct btrfs_fs_info *fs_info = trans->fs_info;
1328 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1329 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1330 	struct list_head *next;
1331 	struct extent_buffer *eb;
1332 	int ret;
1333 
1334 	/*
1335 	 * At this point no one can be using this transaction to modify any tree
1336 	 * and no one can start another transaction to modify any tree either.
1337 	 */
1338 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1339 
1340 	eb = btrfs_lock_root_node(fs_info->tree_root);
1341 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1342 			      0, &eb, BTRFS_NESTING_COW);
1343 	btrfs_tree_unlock(eb);
1344 	free_extent_buffer(eb);
1345 
1346 	if (ret)
1347 		return ret;
1348 
1349 	ret = btrfs_run_dev_stats(trans);
1350 	if (ret)
1351 		return ret;
1352 	ret = btrfs_run_dev_replace(trans);
1353 	if (ret)
1354 		return ret;
1355 	ret = btrfs_run_qgroups(trans);
1356 	if (ret)
1357 		return ret;
1358 
1359 	ret = btrfs_setup_space_cache(trans);
1360 	if (ret)
1361 		return ret;
1362 
1363 again:
1364 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1365 		struct btrfs_root *root;
1366 		next = fs_info->dirty_cowonly_roots.next;
1367 		list_del_init(next);
1368 		root = list_entry(next, struct btrfs_root, dirty_list);
1369 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1370 
1371 		list_add_tail(&root->dirty_list,
1372 			      &trans->transaction->switch_commits);
1373 		ret = update_cowonly_root(trans, root);
1374 		if (ret)
1375 			return ret;
1376 	}
1377 
1378 	/* Now flush any delayed refs generated by updating all of the roots */
1379 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1380 	if (ret)
1381 		return ret;
1382 
1383 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1384 		ret = btrfs_write_dirty_block_groups(trans);
1385 		if (ret)
1386 			return ret;
1387 
1388 		/*
1389 		 * We're writing the dirty block groups, which could generate
1390 		 * delayed refs, which could generate more dirty block groups,
1391 		 * so we want to keep this flushing in this loop to make sure
1392 		 * everything gets run.
1393 		 */
1394 		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1395 		if (ret)
1396 			return ret;
1397 	}
1398 
1399 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1400 		goto again;
1401 
1402 	/* Update dev-replace pointer once everything is committed */
1403 	fs_info->dev_replace.committed_cursor_left =
1404 		fs_info->dev_replace.cursor_left_last_write_of_item;
1405 
1406 	return 0;
1407 }
1408 
1409 /*
1410  * If we had a pending drop we need to see if there are any others left in our
1411  * dead roots list, and if not clear our bit and wake any waiters.
1412  */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1413 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1414 {
1415 	/*
1416 	 * We put the drop in progress roots at the front of the list, so if the
1417 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1418 	 * up.
1419 	 */
1420 	spin_lock(&fs_info->trans_lock);
1421 	if (!list_empty(&fs_info->dead_roots)) {
1422 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1423 							   struct btrfs_root,
1424 							   root_list);
1425 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1426 			spin_unlock(&fs_info->trans_lock);
1427 			return;
1428 		}
1429 	}
1430 	spin_unlock(&fs_info->trans_lock);
1431 
1432 	btrfs_wake_unfinished_drop(fs_info);
1433 }
1434 
1435 /*
1436  * dead roots are old snapshots that need to be deleted.  This allocates
1437  * a dirty root struct and adds it into the list of dead roots that need to
1438  * be deleted
1439  */
btrfs_add_dead_root(struct btrfs_root * root)1440 void btrfs_add_dead_root(struct btrfs_root *root)
1441 {
1442 	struct btrfs_fs_info *fs_info = root->fs_info;
1443 
1444 	spin_lock(&fs_info->trans_lock);
1445 	if (list_empty(&root->root_list)) {
1446 		btrfs_grab_root(root);
1447 
1448 		/* We want to process the partially complete drops first. */
1449 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1450 			list_add(&root->root_list, &fs_info->dead_roots);
1451 		else
1452 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1453 	}
1454 	spin_unlock(&fs_info->trans_lock);
1455 }
1456 
1457 /*
1458  * Update each subvolume root and its relocation root, if it exists, in the tree
1459  * of tree roots. Also free log roots if they exist.
1460  */
commit_fs_roots(struct btrfs_trans_handle * trans)1461 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1462 {
1463 	struct btrfs_fs_info *fs_info = trans->fs_info;
1464 	struct btrfs_root *gang[8];
1465 	int i;
1466 	int ret;
1467 
1468 	/*
1469 	 * At this point no one can be using this transaction to modify any tree
1470 	 * and no one can start another transaction to modify any tree either.
1471 	 */
1472 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1473 
1474 	spin_lock(&fs_info->fs_roots_radix_lock);
1475 	while (1) {
1476 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1477 						 (void **)gang, 0,
1478 						 ARRAY_SIZE(gang),
1479 						 BTRFS_ROOT_TRANS_TAG);
1480 		if (ret == 0)
1481 			break;
1482 		for (i = 0; i < ret; i++) {
1483 			struct btrfs_root *root = gang[i];
1484 			int ret2;
1485 
1486 			/*
1487 			 * At this point we can neither have tasks logging inodes
1488 			 * from a root nor trying to commit a log tree.
1489 			 */
1490 			ASSERT(atomic_read(&root->log_writers) == 0);
1491 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1492 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1493 
1494 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1495 					(unsigned long)btrfs_root_id(root),
1496 					BTRFS_ROOT_TRANS_TAG);
1497 			btrfs_qgroup_free_meta_all_pertrans(root);
1498 			spin_unlock(&fs_info->fs_roots_radix_lock);
1499 
1500 			btrfs_free_log(trans, root);
1501 			ret2 = btrfs_update_reloc_root(trans, root);
1502 			if (ret2)
1503 				return ret2;
1504 
1505 			/* see comments in should_cow_block() */
1506 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1507 			smp_mb__after_atomic();
1508 
1509 			if (root->commit_root != root->node) {
1510 				list_add_tail(&root->dirty_list,
1511 					&trans->transaction->switch_commits);
1512 				btrfs_set_root_node(&root->root_item,
1513 						    root->node);
1514 			}
1515 
1516 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1517 						&root->root_key,
1518 						&root->root_item);
1519 			if (ret2)
1520 				return ret2;
1521 			spin_lock(&fs_info->fs_roots_radix_lock);
1522 		}
1523 	}
1524 	spin_unlock(&fs_info->fs_roots_radix_lock);
1525 	return 0;
1526 }
1527 
1528 /*
1529  * Do all special snapshot related qgroup dirty hack.
1530  *
1531  * Will do all needed qgroup inherit and dirty hack like switch commit
1532  * roots inside one transaction and write all btree into disk, to make
1533  * qgroup works.
1534  */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1535 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1536 				   struct btrfs_root *src,
1537 				   struct btrfs_root *parent,
1538 				   struct btrfs_qgroup_inherit *inherit,
1539 				   u64 dst_objectid)
1540 {
1541 	struct btrfs_fs_info *fs_info = src->fs_info;
1542 	int ret;
1543 
1544 	/*
1545 	 * Save some performance in the case that qgroups are not enabled. If
1546 	 * this check races with the ioctl, rescan will kick in anyway.
1547 	 */
1548 	if (!btrfs_qgroup_full_accounting(fs_info))
1549 		return 0;
1550 
1551 	/*
1552 	 * Ensure dirty @src will be committed.  Or, after coming
1553 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1554 	 * recorded root will never be updated again, causing an outdated root
1555 	 * item.
1556 	 */
1557 	ret = record_root_in_trans(trans, src, 1);
1558 	if (ret)
1559 		return ret;
1560 
1561 	/*
1562 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1563 	 * src root, so we must run the delayed refs here.
1564 	 *
1565 	 * However this isn't particularly fool proof, because there's no
1566 	 * synchronization keeping us from changing the tree after this point
1567 	 * before we do the qgroup_inherit, or even from making changes while
1568 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1569 	 * for now flush the delayed refs to narrow the race window where the
1570 	 * qgroup counters could end up wrong.
1571 	 */
1572 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1573 	if (ret) {
1574 		btrfs_abort_transaction(trans, ret);
1575 		return ret;
1576 	}
1577 
1578 	ret = commit_fs_roots(trans);
1579 	if (ret)
1580 		goto out;
1581 	ret = btrfs_qgroup_account_extents(trans);
1582 	if (ret < 0)
1583 		goto out;
1584 
1585 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1586 	ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1587 				   btrfs_root_id(parent), inherit);
1588 	if (ret < 0)
1589 		goto out;
1590 
1591 	/*
1592 	 * Now we do a simplified commit transaction, which will:
1593 	 * 1) commit all subvolume and extent tree
1594 	 *    To ensure all subvolume and extent tree have a valid
1595 	 *    commit_root to accounting later insert_dir_item()
1596 	 * 2) write all btree blocks onto disk
1597 	 *    This is to make sure later btree modification will be cowed
1598 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1599 	 * In this simplified commit, we don't really care about other trees
1600 	 * like chunk and root tree, as they won't affect qgroup.
1601 	 * And we don't write super to avoid half committed status.
1602 	 */
1603 	ret = commit_cowonly_roots(trans);
1604 	if (ret)
1605 		goto out;
1606 	switch_commit_roots(trans);
1607 	ret = btrfs_write_and_wait_transaction(trans);
1608 	if (ret)
1609 		btrfs_handle_fs_error(fs_info, ret,
1610 			"Error while writing out transaction for qgroup");
1611 
1612 out:
1613 	/*
1614 	 * Force parent root to be updated, as we recorded it before so its
1615 	 * last_trans == cur_transid.
1616 	 * Or it won't be committed again onto disk after later
1617 	 * insert_dir_item()
1618 	 */
1619 	if (!ret)
1620 		ret = record_root_in_trans(trans, parent, 1);
1621 	return ret;
1622 }
1623 
1624 /*
1625  * new snapshots need to be created at a very specific time in the
1626  * transaction commit.  This does the actual creation.
1627  *
1628  * Note:
1629  * If the error which may affect the commitment of the current transaction
1630  * happens, we should return the error number. If the error which just affect
1631  * the creation of the pending snapshots, just return 0.
1632  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1633 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1634 				   struct btrfs_pending_snapshot *pending)
1635 {
1636 
1637 	struct btrfs_fs_info *fs_info = trans->fs_info;
1638 	struct btrfs_key key;
1639 	struct btrfs_root_item *new_root_item;
1640 	struct btrfs_root *tree_root = fs_info->tree_root;
1641 	struct btrfs_root *root = pending->root;
1642 	struct btrfs_root *parent_root;
1643 	struct btrfs_block_rsv *rsv;
1644 	struct btrfs_inode *parent_inode = pending->dir;
1645 	struct btrfs_path *path;
1646 	struct btrfs_dir_item *dir_item;
1647 	struct extent_buffer *tmp;
1648 	struct extent_buffer *old;
1649 	struct timespec64 cur_time;
1650 	int ret = 0;
1651 	u64 to_reserve = 0;
1652 	u64 index = 0;
1653 	u64 objectid;
1654 	u64 root_flags;
1655 	unsigned int nofs_flags;
1656 	struct fscrypt_name fname;
1657 
1658 	ASSERT(pending->path);
1659 	path = pending->path;
1660 
1661 	ASSERT(pending->root_item);
1662 	new_root_item = pending->root_item;
1663 
1664 	/*
1665 	 * We're inside a transaction and must make sure that any potential
1666 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1667 	 * filesystem.
1668 	 */
1669 	nofs_flags = memalloc_nofs_save();
1670 	pending->error = fscrypt_setup_filename(&parent_inode->vfs_inode,
1671 						&pending->dentry->d_name, 0,
1672 						&fname);
1673 	memalloc_nofs_restore(nofs_flags);
1674 	if (pending->error)
1675 		goto free_pending;
1676 
1677 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1678 	if (pending->error)
1679 		goto free_fname;
1680 
1681 	/*
1682 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1683 	 * accounted by later btrfs_qgroup_inherit().
1684 	 */
1685 	btrfs_set_skip_qgroup(trans, objectid);
1686 
1687 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1688 
1689 	if (to_reserve > 0) {
1690 		pending->error = btrfs_block_rsv_add(fs_info,
1691 						     &pending->block_rsv,
1692 						     to_reserve,
1693 						     BTRFS_RESERVE_NO_FLUSH);
1694 		if (pending->error)
1695 			goto clear_skip_qgroup;
1696 	}
1697 
1698 	key.objectid = objectid;
1699 	key.type = BTRFS_ROOT_ITEM_KEY;
1700 	key.offset = (u64)-1;
1701 
1702 	rsv = trans->block_rsv;
1703 	trans->block_rsv = &pending->block_rsv;
1704 	trans->bytes_reserved = trans->block_rsv->reserved;
1705 	trace_btrfs_space_reservation(fs_info, "transaction",
1706 				      trans->transid,
1707 				      trans->bytes_reserved, 1);
1708 	parent_root = parent_inode->root;
1709 	ret = record_root_in_trans(trans, parent_root, 0);
1710 	if (ret)
1711 		goto fail;
1712 	cur_time = current_time(&parent_inode->vfs_inode);
1713 
1714 	/*
1715 	 * insert the directory item
1716 	 */
1717 	ret = btrfs_set_inode_index(parent_inode, &index);
1718 	if (ret) {
1719 		btrfs_abort_transaction(trans, ret);
1720 		goto fail;
1721 	}
1722 
1723 	/* check if there is a file/dir which has the same name. */
1724 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1725 					 btrfs_ino(parent_inode),
1726 					 &fname.disk_name, 0);
1727 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1728 		pending->error = -EEXIST;
1729 		goto dir_item_existed;
1730 	} else if (IS_ERR(dir_item)) {
1731 		ret = PTR_ERR(dir_item);
1732 		btrfs_abort_transaction(trans, ret);
1733 		goto fail;
1734 	}
1735 	btrfs_release_path(path);
1736 
1737 	ret = btrfs_create_qgroup(trans, objectid);
1738 	if (ret && ret != -EEXIST) {
1739 		btrfs_abort_transaction(trans, ret);
1740 		goto fail;
1741 	}
1742 
1743 	/*
1744 	 * pull in the delayed directory update
1745 	 * and the delayed inode item
1746 	 * otherwise we corrupt the FS during
1747 	 * snapshot
1748 	 */
1749 	ret = btrfs_run_delayed_items(trans);
1750 	if (ret) {	/* Transaction aborted */
1751 		btrfs_abort_transaction(trans, ret);
1752 		goto fail;
1753 	}
1754 
1755 	ret = record_root_in_trans(trans, root, 0);
1756 	if (ret) {
1757 		btrfs_abort_transaction(trans, ret);
1758 		goto fail;
1759 	}
1760 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1761 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1762 	btrfs_check_and_init_root_item(new_root_item);
1763 
1764 	root_flags = btrfs_root_flags(new_root_item);
1765 	if (pending->readonly)
1766 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1767 	else
1768 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1769 	btrfs_set_root_flags(new_root_item, root_flags);
1770 
1771 	btrfs_set_root_generation_v2(new_root_item,
1772 			trans->transid);
1773 	generate_random_guid(new_root_item->uuid);
1774 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1775 			BTRFS_UUID_SIZE);
1776 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1777 		memset(new_root_item->received_uuid, 0,
1778 		       sizeof(new_root_item->received_uuid));
1779 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1780 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1781 		btrfs_set_root_stransid(new_root_item, 0);
1782 		btrfs_set_root_rtransid(new_root_item, 0);
1783 	}
1784 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1785 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1786 	btrfs_set_root_otransid(new_root_item, trans->transid);
1787 
1788 	old = btrfs_lock_root_node(root);
1789 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1790 			      BTRFS_NESTING_COW);
1791 	if (ret) {
1792 		btrfs_tree_unlock(old);
1793 		free_extent_buffer(old);
1794 		btrfs_abort_transaction(trans, ret);
1795 		goto fail;
1796 	}
1797 
1798 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1799 	/* clean up in any case */
1800 	btrfs_tree_unlock(old);
1801 	free_extent_buffer(old);
1802 	if (ret) {
1803 		btrfs_abort_transaction(trans, ret);
1804 		goto fail;
1805 	}
1806 	/* see comments in should_cow_block() */
1807 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1808 	smp_wmb();
1809 
1810 	btrfs_set_root_node(new_root_item, tmp);
1811 	/* record when the snapshot was created in key.offset */
1812 	key.offset = trans->transid;
1813 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1814 	btrfs_tree_unlock(tmp);
1815 	free_extent_buffer(tmp);
1816 	if (ret) {
1817 		btrfs_abort_transaction(trans, ret);
1818 		goto fail;
1819 	}
1820 
1821 	/*
1822 	 * insert root back/forward references
1823 	 */
1824 	ret = btrfs_add_root_ref(trans, objectid,
1825 				 btrfs_root_id(parent_root),
1826 				 btrfs_ino(parent_inode), index,
1827 				 &fname.disk_name);
1828 	if (ret) {
1829 		btrfs_abort_transaction(trans, ret);
1830 		goto fail;
1831 	}
1832 
1833 	key.offset = (u64)-1;
1834 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1835 	if (IS_ERR(pending->snap)) {
1836 		ret = PTR_ERR(pending->snap);
1837 		pending->snap = NULL;
1838 		btrfs_abort_transaction(trans, ret);
1839 		goto fail;
1840 	}
1841 
1842 	ret = btrfs_reloc_post_snapshot(trans, pending);
1843 	if (ret) {
1844 		btrfs_abort_transaction(trans, ret);
1845 		goto fail;
1846 	}
1847 
1848 	/*
1849 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1850 	 * snapshot hack to do fast snapshot.
1851 	 * To co-operate with that hack, we do hack again.
1852 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1853 	 */
1854 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1855 		ret = qgroup_account_snapshot(trans, root, parent_root,
1856 					      pending->inherit, objectid);
1857 	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1858 		ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1859 					   btrfs_root_id(parent_root), pending->inherit);
1860 	if (ret < 0)
1861 		goto fail;
1862 
1863 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1864 				    parent_inode, &key, BTRFS_FT_DIR,
1865 				    index);
1866 	if (ret) {
1867 		btrfs_abort_transaction(trans, ret);
1868 		goto fail;
1869 	}
1870 
1871 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
1872 						  fname.disk_name.len * 2);
1873 	inode_set_mtime_to_ts(&parent_inode->vfs_inode,
1874 			      inode_set_ctime_current(&parent_inode->vfs_inode));
1875 	ret = btrfs_update_inode_fallback(trans, parent_inode);
1876 	if (ret) {
1877 		btrfs_abort_transaction(trans, ret);
1878 		goto fail;
1879 	}
1880 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1881 				  BTRFS_UUID_KEY_SUBVOL,
1882 				  objectid);
1883 	if (ret) {
1884 		btrfs_abort_transaction(trans, ret);
1885 		goto fail;
1886 	}
1887 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1888 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1889 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1890 					  objectid);
1891 		if (ret && ret != -EEXIST) {
1892 			btrfs_abort_transaction(trans, ret);
1893 			goto fail;
1894 		}
1895 	}
1896 
1897 fail:
1898 	pending->error = ret;
1899 dir_item_existed:
1900 	trans->block_rsv = rsv;
1901 	trans->bytes_reserved = 0;
1902 clear_skip_qgroup:
1903 	btrfs_clear_skip_qgroup(trans);
1904 free_fname:
1905 	fscrypt_free_filename(&fname);
1906 free_pending:
1907 	kfree(new_root_item);
1908 	pending->root_item = NULL;
1909 	btrfs_free_path(path);
1910 	pending->path = NULL;
1911 
1912 	return ret;
1913 }
1914 
1915 /*
1916  * create all the snapshots we've scheduled for creation
1917  */
create_pending_snapshots(struct btrfs_trans_handle * trans)1918 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1919 {
1920 	struct btrfs_pending_snapshot *pending, *next;
1921 	struct list_head *head = &trans->transaction->pending_snapshots;
1922 	int ret = 0;
1923 
1924 	list_for_each_entry_safe(pending, next, head, list) {
1925 		list_del(&pending->list);
1926 		ret = create_pending_snapshot(trans, pending);
1927 		if (ret)
1928 			break;
1929 	}
1930 	return ret;
1931 }
1932 
update_super_roots(struct btrfs_fs_info * fs_info)1933 static void update_super_roots(struct btrfs_fs_info *fs_info)
1934 {
1935 	struct btrfs_root_item *root_item;
1936 	struct btrfs_super_block *super;
1937 
1938 	super = fs_info->super_copy;
1939 
1940 	root_item = &fs_info->chunk_root->root_item;
1941 	super->chunk_root = root_item->bytenr;
1942 	super->chunk_root_generation = root_item->generation;
1943 	super->chunk_root_level = root_item->level;
1944 
1945 	root_item = &fs_info->tree_root->root_item;
1946 	super->root = root_item->bytenr;
1947 	super->generation = root_item->generation;
1948 	super->root_level = root_item->level;
1949 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1950 		super->cache_generation = root_item->generation;
1951 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1952 		super->cache_generation = 0;
1953 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1954 		super->uuid_tree_generation = root_item->generation;
1955 }
1956 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1957 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1958 {
1959 	struct btrfs_transaction *trans;
1960 	int ret = 0;
1961 
1962 	spin_lock(&info->trans_lock);
1963 	trans = info->running_transaction;
1964 	if (trans)
1965 		ret = is_transaction_blocked(trans);
1966 	spin_unlock(&info->trans_lock);
1967 	return ret;
1968 }
1969 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1970 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1971 {
1972 	struct btrfs_fs_info *fs_info = trans->fs_info;
1973 	struct btrfs_transaction *cur_trans;
1974 
1975 	/* Kick the transaction kthread. */
1976 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1977 	wake_up_process(fs_info->transaction_kthread);
1978 
1979 	/* take transaction reference */
1980 	cur_trans = trans->transaction;
1981 	refcount_inc(&cur_trans->use_count);
1982 
1983 	btrfs_end_transaction(trans);
1984 
1985 	/*
1986 	 * Wait for the current transaction commit to start and block
1987 	 * subsequent transaction joins
1988 	 */
1989 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1990 	wait_event(fs_info->transaction_blocked_wait,
1991 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1992 		   TRANS_ABORTED(cur_trans));
1993 	btrfs_put_transaction(cur_trans);
1994 }
1995 
1996 /*
1997  * If there is a running transaction commit it or if it's already committing,
1998  * wait for its commit to complete. Does not start and commit a new transaction
1999  * if there isn't any running.
2000  */
btrfs_commit_current_transaction(struct btrfs_root * root)2001 int btrfs_commit_current_transaction(struct btrfs_root *root)
2002 {
2003 	struct btrfs_trans_handle *trans;
2004 
2005 	trans = btrfs_attach_transaction_barrier(root);
2006 	if (IS_ERR(trans)) {
2007 		int ret = PTR_ERR(trans);
2008 
2009 		return (ret == -ENOENT) ? 0 : ret;
2010 	}
2011 
2012 	return btrfs_commit_transaction(trans);
2013 }
2014 
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2015 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2016 {
2017 	struct btrfs_fs_info *fs_info = trans->fs_info;
2018 	struct btrfs_transaction *cur_trans = trans->transaction;
2019 
2020 	WARN_ON(refcount_read(&trans->use_count) > 1);
2021 
2022 	btrfs_abort_transaction(trans, err);
2023 
2024 	spin_lock(&fs_info->trans_lock);
2025 
2026 	/*
2027 	 * If the transaction is removed from the list, it means this
2028 	 * transaction has been committed successfully, so it is impossible
2029 	 * to call the cleanup function.
2030 	 */
2031 	BUG_ON(list_empty(&cur_trans->list));
2032 
2033 	if (cur_trans == fs_info->running_transaction) {
2034 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2035 		spin_unlock(&fs_info->trans_lock);
2036 
2037 		/*
2038 		 * The thread has already released the lockdep map as reader
2039 		 * already in btrfs_commit_transaction().
2040 		 */
2041 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2042 		wait_event(cur_trans->writer_wait,
2043 			   atomic_read(&cur_trans->num_writers) == 1);
2044 
2045 		spin_lock(&fs_info->trans_lock);
2046 	}
2047 
2048 	/*
2049 	 * Now that we know no one else is still using the transaction we can
2050 	 * remove the transaction from the list of transactions. This avoids
2051 	 * the transaction kthread from cleaning up the transaction while some
2052 	 * other task is still using it, which could result in a use-after-free
2053 	 * on things like log trees, as it forces the transaction kthread to
2054 	 * wait for this transaction to be cleaned up by us.
2055 	 */
2056 	list_del_init(&cur_trans->list);
2057 
2058 	spin_unlock(&fs_info->trans_lock);
2059 
2060 	btrfs_cleanup_one_transaction(trans->transaction);
2061 
2062 	spin_lock(&fs_info->trans_lock);
2063 	if (cur_trans == fs_info->running_transaction)
2064 		fs_info->running_transaction = NULL;
2065 	spin_unlock(&fs_info->trans_lock);
2066 
2067 	if (trans->type & __TRANS_FREEZABLE)
2068 		sb_end_intwrite(fs_info->sb);
2069 	btrfs_put_transaction(cur_trans);
2070 	btrfs_put_transaction(cur_trans);
2071 
2072 	trace_btrfs_transaction_commit(fs_info);
2073 
2074 	if (current->journal_info == trans)
2075 		current->journal_info = NULL;
2076 
2077 	/*
2078 	 * If relocation is running, we can't cancel scrub because that will
2079 	 * result in a deadlock. Before relocating a block group, relocation
2080 	 * pauses scrub, then starts and commits a transaction before unpausing
2081 	 * scrub. If the transaction commit is being done by the relocation
2082 	 * task or triggered by another task and the relocation task is waiting
2083 	 * for the commit, and we end up here due to an error in the commit
2084 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2085 	 * asking for scrub to stop while having it asked to be paused higher
2086 	 * above in relocation code.
2087 	 */
2088 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2089 		btrfs_scrub_cancel(fs_info);
2090 
2091 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2092 }
2093 
2094 /*
2095  * Release reserved delayed ref space of all pending block groups of the
2096  * transaction and remove them from the list
2097  */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2098 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2099 {
2100        struct btrfs_fs_info *fs_info = trans->fs_info;
2101        struct btrfs_block_group *block_group, *tmp;
2102 
2103        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2104                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2105 		/*
2106 		* Not strictly necessary to lock, as no other task will be using a
2107 		* block_group on the new_bgs list during a transaction abort.
2108 		*/
2109 	       spin_lock(&fs_info->unused_bgs_lock);
2110                list_del_init(&block_group->bg_list);
2111 	       btrfs_put_block_group(block_group);
2112 	       spin_unlock(&fs_info->unused_bgs_lock);
2113        }
2114 }
2115 
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2116 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2117 {
2118 	/*
2119 	 * We use try_to_writeback_inodes_sb() here because if we used
2120 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2121 	 * Currently are holding the fs freeze lock, if we do an async flush
2122 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2123 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2124 	 * from already being in a transaction and our join_transaction doesn't
2125 	 * have to re-take the fs freeze lock.
2126 	 *
2127 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2128 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2129 	 * except when the filesystem is being unmounted or being frozen, but in
2130 	 * those cases sync_filesystem() is called, which results in calling
2131 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2132 	 * Note that we don't call writeback_inodes_sb() directly, because it
2133 	 * will emit a warning if sb->s_umount is not locked.
2134 	 */
2135 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2136 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2137 	return 0;
2138 }
2139 
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2140 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2141 {
2142 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2143 		btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2144 }
2145 
2146 /*
2147  * Add a pending snapshot associated with the given transaction handle to the
2148  * respective handle. This must be called after the transaction commit started
2149  * and while holding fs_info->trans_lock.
2150  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2151  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2152  * returns an error.
2153  */
add_pending_snapshot(struct btrfs_trans_handle * trans)2154 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2155 {
2156 	struct btrfs_transaction *cur_trans = trans->transaction;
2157 
2158 	if (!trans->pending_snapshot)
2159 		return;
2160 
2161 	lockdep_assert_held(&trans->fs_info->trans_lock);
2162 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2163 
2164 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2165 }
2166 
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2167 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2168 {
2169 	fs_info->commit_stats.commit_count++;
2170 	fs_info->commit_stats.last_commit_dur = interval;
2171 	fs_info->commit_stats.max_commit_dur =
2172 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2173 	fs_info->commit_stats.total_commit_dur += interval;
2174 }
2175 
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2176 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2177 {
2178 	struct btrfs_fs_info *fs_info = trans->fs_info;
2179 	struct btrfs_transaction *cur_trans = trans->transaction;
2180 	struct btrfs_transaction *prev_trans = NULL;
2181 	int ret;
2182 	ktime_t start_time;
2183 	ktime_t interval;
2184 
2185 	ASSERT(refcount_read(&trans->use_count) == 1);
2186 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2187 
2188 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2189 
2190 	/* Stop the commit early if ->aborted is set */
2191 	if (TRANS_ABORTED(cur_trans)) {
2192 		ret = cur_trans->aborted;
2193 		goto lockdep_trans_commit_start_release;
2194 	}
2195 
2196 	btrfs_trans_release_metadata(trans);
2197 	trans->block_rsv = NULL;
2198 
2199 	/*
2200 	 * We only want one transaction commit doing the flushing so we do not
2201 	 * waste a bunch of time on lock contention on the extent root node.
2202 	 */
2203 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2204 			      &cur_trans->delayed_refs.flags)) {
2205 		/*
2206 		 * Make a pass through all the delayed refs we have so far.
2207 		 * Any running threads may add more while we are here.
2208 		 */
2209 		ret = btrfs_run_delayed_refs(trans, 0);
2210 		if (ret)
2211 			goto lockdep_trans_commit_start_release;
2212 	}
2213 
2214 	btrfs_create_pending_block_groups(trans);
2215 
2216 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2217 		int run_it = 0;
2218 
2219 		/* this mutex is also taken before trying to set
2220 		 * block groups readonly.  We need to make sure
2221 		 * that nobody has set a block group readonly
2222 		 * after a extents from that block group have been
2223 		 * allocated for cache files.  btrfs_set_block_group_ro
2224 		 * will wait for the transaction to commit if it
2225 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2226 		 *
2227 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2228 		 * only one process starts all the block group IO.  It wouldn't
2229 		 * hurt to have more than one go through, but there's no
2230 		 * real advantage to it either.
2231 		 */
2232 		mutex_lock(&fs_info->ro_block_group_mutex);
2233 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2234 				      &cur_trans->flags))
2235 			run_it = 1;
2236 		mutex_unlock(&fs_info->ro_block_group_mutex);
2237 
2238 		if (run_it) {
2239 			ret = btrfs_start_dirty_block_groups(trans);
2240 			if (ret)
2241 				goto lockdep_trans_commit_start_release;
2242 		}
2243 	}
2244 
2245 	spin_lock(&fs_info->trans_lock);
2246 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2247 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2248 
2249 		add_pending_snapshot(trans);
2250 
2251 		spin_unlock(&fs_info->trans_lock);
2252 		refcount_inc(&cur_trans->use_count);
2253 
2254 		if (trans->in_fsync)
2255 			want_state = TRANS_STATE_SUPER_COMMITTED;
2256 
2257 		btrfs_trans_state_lockdep_release(fs_info,
2258 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2259 		ret = btrfs_end_transaction(trans);
2260 		wait_for_commit(cur_trans, want_state);
2261 
2262 		if (TRANS_ABORTED(cur_trans))
2263 			ret = cur_trans->aborted;
2264 
2265 		btrfs_put_transaction(cur_trans);
2266 
2267 		return ret;
2268 	}
2269 
2270 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2271 	wake_up(&fs_info->transaction_blocked_wait);
2272 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2273 
2274 	if (cur_trans->list.prev != &fs_info->trans_list) {
2275 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2276 
2277 		if (trans->in_fsync)
2278 			want_state = TRANS_STATE_SUPER_COMMITTED;
2279 
2280 		prev_trans = list_entry(cur_trans->list.prev,
2281 					struct btrfs_transaction, list);
2282 		if (prev_trans->state < want_state) {
2283 			refcount_inc(&prev_trans->use_count);
2284 			spin_unlock(&fs_info->trans_lock);
2285 
2286 			wait_for_commit(prev_trans, want_state);
2287 
2288 			ret = READ_ONCE(prev_trans->aborted);
2289 
2290 			btrfs_put_transaction(prev_trans);
2291 			if (ret)
2292 				goto lockdep_release;
2293 			spin_lock(&fs_info->trans_lock);
2294 		}
2295 	} else {
2296 		/*
2297 		 * The previous transaction was aborted and was already removed
2298 		 * from the list of transactions at fs_info->trans_list. So we
2299 		 * abort to prevent writing a new superblock that reflects a
2300 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2301 		 */
2302 		if (BTRFS_FS_ERROR(fs_info)) {
2303 			spin_unlock(&fs_info->trans_lock);
2304 			ret = -EROFS;
2305 			goto lockdep_release;
2306 		}
2307 	}
2308 
2309 	cur_trans->state = TRANS_STATE_COMMIT_START;
2310 	wake_up(&fs_info->transaction_blocked_wait);
2311 	spin_unlock(&fs_info->trans_lock);
2312 
2313 	/*
2314 	 * Get the time spent on the work done by the commit thread and not
2315 	 * the time spent waiting on a previous commit
2316 	 */
2317 	start_time = ktime_get_ns();
2318 
2319 	extwriter_counter_dec(cur_trans, trans->type);
2320 
2321 	ret = btrfs_start_delalloc_flush(fs_info);
2322 	if (ret)
2323 		goto lockdep_release;
2324 
2325 	ret = btrfs_run_delayed_items(trans);
2326 	if (ret)
2327 		goto lockdep_release;
2328 
2329 	/*
2330 	 * The thread has started/joined the transaction thus it holds the
2331 	 * lockdep map as a reader. It has to release it before acquiring the
2332 	 * lockdep map as a writer.
2333 	 */
2334 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2335 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2336 	wait_event(cur_trans->writer_wait,
2337 		   extwriter_counter_read(cur_trans) == 0);
2338 
2339 	/* some pending stuffs might be added after the previous flush. */
2340 	ret = btrfs_run_delayed_items(trans);
2341 	if (ret) {
2342 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2343 		goto cleanup_transaction;
2344 	}
2345 
2346 	btrfs_wait_delalloc_flush(fs_info);
2347 
2348 	/*
2349 	 * Wait for all ordered extents started by a fast fsync that joined this
2350 	 * transaction. Otherwise if this transaction commits before the ordered
2351 	 * extents complete we lose logged data after a power failure.
2352 	 */
2353 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2354 	wait_event(cur_trans->pending_wait,
2355 		   atomic_read(&cur_trans->pending_ordered) == 0);
2356 
2357 	btrfs_scrub_pause(fs_info);
2358 	/*
2359 	 * Ok now we need to make sure to block out any other joins while we
2360 	 * commit the transaction.  We could have started a join before setting
2361 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2362 	 */
2363 	spin_lock(&fs_info->trans_lock);
2364 	add_pending_snapshot(trans);
2365 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2366 	spin_unlock(&fs_info->trans_lock);
2367 
2368 	/*
2369 	 * The thread has started/joined the transaction thus it holds the
2370 	 * lockdep map as a reader. It has to release it before acquiring the
2371 	 * lockdep map as a writer.
2372 	 */
2373 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2374 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2375 	wait_event(cur_trans->writer_wait,
2376 		   atomic_read(&cur_trans->num_writers) == 1);
2377 
2378 	/*
2379 	 * Make lockdep happy by acquiring the state locks after
2380 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2381 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2382 	 * complain because we did not follow the reverse order unlocking rule.
2383 	 */
2384 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2385 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2386 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2387 
2388 	/*
2389 	 * We've started the commit, clear the flag in case we were triggered to
2390 	 * do an async commit but somebody else started before the transaction
2391 	 * kthread could do the work.
2392 	 */
2393 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2394 
2395 	if (TRANS_ABORTED(cur_trans)) {
2396 		ret = cur_trans->aborted;
2397 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2398 		goto scrub_continue;
2399 	}
2400 	/*
2401 	 * the reloc mutex makes sure that we stop
2402 	 * the balancing code from coming in and moving
2403 	 * extents around in the middle of the commit
2404 	 */
2405 	mutex_lock(&fs_info->reloc_mutex);
2406 
2407 	/*
2408 	 * We needn't worry about the delayed items because we will
2409 	 * deal with them in create_pending_snapshot(), which is the
2410 	 * core function of the snapshot creation.
2411 	 */
2412 	ret = create_pending_snapshots(trans);
2413 	if (ret)
2414 		goto unlock_reloc;
2415 
2416 	/*
2417 	 * We insert the dir indexes of the snapshots and update the inode
2418 	 * of the snapshots' parents after the snapshot creation, so there
2419 	 * are some delayed items which are not dealt with. Now deal with
2420 	 * them.
2421 	 *
2422 	 * We needn't worry that this operation will corrupt the snapshots,
2423 	 * because all the tree which are snapshoted will be forced to COW
2424 	 * the nodes and leaves.
2425 	 */
2426 	ret = btrfs_run_delayed_items(trans);
2427 	if (ret)
2428 		goto unlock_reloc;
2429 
2430 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2431 	if (ret)
2432 		goto unlock_reloc;
2433 
2434 	/*
2435 	 * make sure none of the code above managed to slip in a
2436 	 * delayed item
2437 	 */
2438 	btrfs_assert_delayed_root_empty(fs_info);
2439 
2440 	WARN_ON(cur_trans != trans->transaction);
2441 
2442 	ret = commit_fs_roots(trans);
2443 	if (ret)
2444 		goto unlock_reloc;
2445 
2446 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2447 	 * safe to free the root of tree log roots
2448 	 */
2449 	btrfs_free_log_root_tree(trans, fs_info);
2450 
2451 	/*
2452 	 * Since fs roots are all committed, we can get a quite accurate
2453 	 * new_roots. So let's do quota accounting.
2454 	 */
2455 	ret = btrfs_qgroup_account_extents(trans);
2456 	if (ret < 0)
2457 		goto unlock_reloc;
2458 
2459 	ret = commit_cowonly_roots(trans);
2460 	if (ret)
2461 		goto unlock_reloc;
2462 
2463 	/*
2464 	 * The tasks which save the space cache and inode cache may also
2465 	 * update ->aborted, check it.
2466 	 */
2467 	if (TRANS_ABORTED(cur_trans)) {
2468 		ret = cur_trans->aborted;
2469 		goto unlock_reloc;
2470 	}
2471 
2472 	cur_trans = fs_info->running_transaction;
2473 
2474 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2475 			    fs_info->tree_root->node);
2476 	list_add_tail(&fs_info->tree_root->dirty_list,
2477 		      &cur_trans->switch_commits);
2478 
2479 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2480 			    fs_info->chunk_root->node);
2481 	list_add_tail(&fs_info->chunk_root->dirty_list,
2482 		      &cur_trans->switch_commits);
2483 
2484 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2485 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2486 				    fs_info->block_group_root->node);
2487 		list_add_tail(&fs_info->block_group_root->dirty_list,
2488 			      &cur_trans->switch_commits);
2489 	}
2490 
2491 	switch_commit_roots(trans);
2492 
2493 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2494 	ASSERT(list_empty(&cur_trans->io_bgs));
2495 	update_super_roots(fs_info);
2496 
2497 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2498 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2499 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2500 	       sizeof(*fs_info->super_copy));
2501 
2502 	btrfs_commit_device_sizes(cur_trans);
2503 
2504 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2505 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2506 
2507 	btrfs_trans_release_chunk_metadata(trans);
2508 
2509 	/*
2510 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2511 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2512 	 * make sure that before we commit our superblock, no other task can
2513 	 * start a new transaction and commit a log tree before we commit our
2514 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2515 	 * writing its superblock.
2516 	 */
2517 	mutex_lock(&fs_info->tree_log_mutex);
2518 
2519 	spin_lock(&fs_info->trans_lock);
2520 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2521 	fs_info->running_transaction = NULL;
2522 	spin_unlock(&fs_info->trans_lock);
2523 	mutex_unlock(&fs_info->reloc_mutex);
2524 
2525 	wake_up(&fs_info->transaction_wait);
2526 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2527 
2528 	/* If we have features changed, wake up the cleaner to update sysfs. */
2529 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2530 	    fs_info->cleaner_kthread)
2531 		wake_up_process(fs_info->cleaner_kthread);
2532 
2533 	ret = btrfs_write_and_wait_transaction(trans);
2534 	if (ret) {
2535 		btrfs_handle_fs_error(fs_info, ret,
2536 				      "Error while writing out transaction");
2537 		mutex_unlock(&fs_info->tree_log_mutex);
2538 		goto scrub_continue;
2539 	}
2540 
2541 	ret = write_all_supers(fs_info, 0);
2542 	/*
2543 	 * the super is written, we can safely allow the tree-loggers
2544 	 * to go about their business
2545 	 */
2546 	mutex_unlock(&fs_info->tree_log_mutex);
2547 	if (ret)
2548 		goto scrub_continue;
2549 
2550 	/*
2551 	 * We needn't acquire the lock here because there is no other task
2552 	 * which can change it.
2553 	 */
2554 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2555 	wake_up(&cur_trans->commit_wait);
2556 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2557 
2558 	btrfs_finish_extent_commit(trans);
2559 
2560 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2561 		btrfs_clear_space_info_full(fs_info);
2562 
2563 	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2564 	/*
2565 	 * We needn't acquire the lock here because there is no other task
2566 	 * which can change it.
2567 	 */
2568 	cur_trans->state = TRANS_STATE_COMPLETED;
2569 	wake_up(&cur_trans->commit_wait);
2570 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2571 
2572 	spin_lock(&fs_info->trans_lock);
2573 	list_del_init(&cur_trans->list);
2574 	spin_unlock(&fs_info->trans_lock);
2575 
2576 	btrfs_put_transaction(cur_trans);
2577 	btrfs_put_transaction(cur_trans);
2578 
2579 	if (trans->type & __TRANS_FREEZABLE)
2580 		sb_end_intwrite(fs_info->sb);
2581 
2582 	trace_btrfs_transaction_commit(fs_info);
2583 
2584 	interval = ktime_get_ns() - start_time;
2585 
2586 	btrfs_scrub_continue(fs_info);
2587 
2588 	if (current->journal_info == trans)
2589 		current->journal_info = NULL;
2590 
2591 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2592 
2593 	update_commit_stats(fs_info, interval);
2594 
2595 	return ret;
2596 
2597 unlock_reloc:
2598 	mutex_unlock(&fs_info->reloc_mutex);
2599 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2600 scrub_continue:
2601 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2602 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2603 	btrfs_scrub_continue(fs_info);
2604 cleanup_transaction:
2605 	btrfs_trans_release_metadata(trans);
2606 	btrfs_cleanup_pending_block_groups(trans);
2607 	btrfs_trans_release_chunk_metadata(trans);
2608 	trans->block_rsv = NULL;
2609 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2610 	if (current->journal_info == trans)
2611 		current->journal_info = NULL;
2612 	cleanup_transaction(trans, ret);
2613 
2614 	return ret;
2615 
2616 lockdep_release:
2617 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2618 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2619 	goto cleanup_transaction;
2620 
2621 lockdep_trans_commit_start_release:
2622 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2623 	btrfs_end_transaction(trans);
2624 	return ret;
2625 }
2626 
2627 /*
2628  * return < 0 if error
2629  * 0 if there are no more dead_roots at the time of call
2630  * 1 there are more to be processed, call me again
2631  *
2632  * The return value indicates there are certainly more snapshots to delete, but
2633  * if there comes a new one during processing, it may return 0. We don't mind,
2634  * because btrfs_commit_super will poke cleaner thread and it will process it a
2635  * few seconds later.
2636  */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2637 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2638 {
2639 	struct btrfs_root *root;
2640 	int ret;
2641 
2642 	spin_lock(&fs_info->trans_lock);
2643 	if (list_empty(&fs_info->dead_roots)) {
2644 		spin_unlock(&fs_info->trans_lock);
2645 		return 0;
2646 	}
2647 	root = list_first_entry(&fs_info->dead_roots,
2648 			struct btrfs_root, root_list);
2649 	list_del_init(&root->root_list);
2650 	spin_unlock(&fs_info->trans_lock);
2651 
2652 	btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2653 
2654 	btrfs_kill_all_delayed_nodes(root);
2655 
2656 	if (btrfs_header_backref_rev(root->node) <
2657 			BTRFS_MIXED_BACKREF_REV)
2658 		ret = btrfs_drop_snapshot(root, 0, 0);
2659 	else
2660 		ret = btrfs_drop_snapshot(root, 1, 0);
2661 
2662 	btrfs_put_root(root);
2663 	return (ret < 0) ? 0 : 1;
2664 }
2665 
2666 /*
2667  * We only mark the transaction aborted and then set the file system read-only.
2668  * This will prevent new transactions from starting or trying to join this
2669  * one.
2670  *
2671  * This means that error recovery at the call site is limited to freeing
2672  * any local memory allocations and passing the error code up without
2673  * further cleanup. The transaction should complete as it normally would
2674  * in the call path but will return -EIO.
2675  *
2676  * We'll complete the cleanup in btrfs_end_transaction and
2677  * btrfs_commit_transaction.
2678  */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int error,bool first_hit)2679 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2680 				      const char *function,
2681 				      unsigned int line, int error, bool first_hit)
2682 {
2683 	struct btrfs_fs_info *fs_info = trans->fs_info;
2684 
2685 	WRITE_ONCE(trans->aborted, error);
2686 	WRITE_ONCE(trans->transaction->aborted, error);
2687 	if (first_hit && error == -ENOSPC)
2688 		btrfs_dump_space_info_for_trans_abort(fs_info);
2689 	/* Wake up anybody who may be waiting on this transaction */
2690 	wake_up(&fs_info->transaction_wait);
2691 	wake_up(&fs_info->transaction_blocked_wait);
2692 	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2693 }
2694 
btrfs_transaction_init(void)2695 int __init btrfs_transaction_init(void)
2696 {
2697 	btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2698 	if (!btrfs_trans_handle_cachep)
2699 		return -ENOMEM;
2700 	return 0;
2701 }
2702 
btrfs_transaction_exit(void)2703 void __cold btrfs_transaction_exit(void)
2704 {
2705 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2706 }
2707