xref: /linux/fs/btrfs/disk-io.c (revision fd71def6d9abc5ae362fb9995d46049b7b0ed391)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53 
54 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55 				 BTRFS_HEADER_FLAG_RELOC |\
56 				 BTRFS_SUPER_FLAG_ERROR |\
57 				 BTRFS_SUPER_FLAG_SEEDING |\
58 				 BTRFS_SUPER_FLAG_METADUMP |\
59 				 BTRFS_SUPER_FLAG_METADUMP_V2)
60 
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 	if (fs_info->csum_shash)
67 		crypto_free_shash(fs_info->csum_shash);
68 }
69 
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
csum_tree_block(struct extent_buffer * buf,u8 * result)73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 	struct btrfs_fs_info *fs_info = buf->fs_info;
76 	int num_pages;
77 	u32 first_page_part;
78 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 	char *kaddr;
80 	int i;
81 
82 	shash->tfm = fs_info->csum_shash;
83 	crypto_shash_init(shash);
84 
85 	if (buf->addr) {
86 		/* Pages are contiguous, handle them as a big one. */
87 		kaddr = buf->addr;
88 		first_page_part = fs_info->nodesize;
89 		num_pages = 1;
90 	} else {
91 		kaddr = folio_address(buf->folios[0]);
92 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 		num_pages = num_extent_pages(buf);
94 	}
95 
96 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 			    first_page_part - BTRFS_CSUM_SIZE);
98 
99 	/*
100 	 * Multiple single-page folios case would reach here.
101 	 *
102 	 * nodesize <= PAGE_SIZE and large folio all handled by above
103 	 * crypto_shash_update() already.
104 	 */
105 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 		kaddr = folio_address(buf->folios[i]);
107 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 	}
109 	memset(result, 0, BTRFS_CSUM_SIZE);
110 	crypto_shash_final(shash, result);
111 }
112 
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 	if (!extent_buffer_uptodate(eb))
122 		return 0;
123 
124 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 		return 1;
126 
127 	if (atomic)
128 		return -EAGAIN;
129 
130 	if (!extent_buffer_uptodate(eb) ||
131 	    btrfs_header_generation(eb) != parent_transid) {
132 		btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 			eb->start, eb->read_mirror,
135 			parent_transid, btrfs_header_generation(eb));
136 		clear_extent_buffer_uptodate(eb);
137 		return 0;
138 	}
139 	return 1;
140 }
141 
btrfs_supported_super_csum(u16 csum_type)142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 	switch (csum_type) {
145 	case BTRFS_CSUM_TYPE_CRC32:
146 	case BTRFS_CSUM_TYPE_XXHASH:
147 	case BTRFS_CSUM_TYPE_SHA256:
148 	case BTRFS_CSUM_TYPE_BLAKE2:
149 		return true;
150 	default:
151 		return false;
152 	}
153 }
154 
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 			   const struct btrfs_super_block *disk_sb)
161 {
162 	char result[BTRFS_CSUM_SIZE];
163 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164 
165 	shash->tfm = fs_info->csum_shash;
166 
167 	/*
168 	 * The super_block structure does not span the whole
169 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 	 * filled with zeros and is included in the checksum.
171 	 */
172 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174 
175 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 		return 1;
177 
178 	return 0;
179 }
180 
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 				      int mirror_num)
183 {
184 	struct btrfs_fs_info *fs_info = eb->fs_info;
185 	int ret = 0;
186 
187 	if (sb_rdonly(fs_info->sb))
188 		return -EROFS;
189 
190 	for (int i = 0; i < num_extent_folios(eb); i++) {
191 		struct folio *folio = eb->folios[i];
192 		u64 start = max_t(u64, eb->start, folio_pos(folio));
193 		u64 end = min_t(u64, eb->start + eb->len,
194 				folio_pos(folio) + eb->folio_size);
195 		u32 len = end - start;
196 
197 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
198 					      start, folio, offset_in_folio(folio, start),
199 					      mirror_num);
200 		if (ret)
201 			break;
202 	}
203 
204 	return ret;
205 }
206 
207 /*
208  * helper to read a given tree block, doing retries as required when
209  * the checksums don't match and we have alternate mirrors to try.
210  *
211  * @check:		expected tree parentness check, see the comments of the
212  *			structure for details.
213  */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)214 int btrfs_read_extent_buffer(struct extent_buffer *eb,
215 			     const struct btrfs_tree_parent_check *check)
216 {
217 	struct btrfs_fs_info *fs_info = eb->fs_info;
218 	int failed = 0;
219 	int ret;
220 	int num_copies = 0;
221 	int mirror_num = 0;
222 	int failed_mirror = 0;
223 
224 	ASSERT(check);
225 
226 	while (1) {
227 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
228 		ret = read_extent_buffer_pages(eb, mirror_num, check);
229 		if (!ret)
230 			break;
231 
232 		num_copies = btrfs_num_copies(fs_info,
233 					      eb->start, eb->len);
234 		if (num_copies == 1)
235 			break;
236 
237 		if (!failed_mirror) {
238 			failed = 1;
239 			failed_mirror = eb->read_mirror;
240 		}
241 
242 		mirror_num++;
243 		if (mirror_num == failed_mirror)
244 			mirror_num++;
245 
246 		if (mirror_num > num_copies)
247 			break;
248 	}
249 
250 	if (failed && !ret && failed_mirror)
251 		btrfs_repair_eb_io_failure(eb, failed_mirror);
252 
253 	return ret;
254 }
255 
256 /*
257  * Checksum a dirty tree block before IO.
258  */
btree_csum_one_bio(struct btrfs_bio * bbio)259 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
260 {
261 	struct extent_buffer *eb = bbio->private;
262 	struct btrfs_fs_info *fs_info = eb->fs_info;
263 	u64 found_start = btrfs_header_bytenr(eb);
264 	u64 last_trans;
265 	u8 result[BTRFS_CSUM_SIZE];
266 	int ret;
267 
268 	/* Btree blocks are always contiguous on disk. */
269 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
270 		return BLK_STS_IOERR;
271 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
272 		return BLK_STS_IOERR;
273 
274 	/*
275 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
276 	 * checksum it but zero-out its content. This is done to preserve
277 	 * ordering of I/O without unnecessarily writing out data.
278 	 */
279 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
280 		memzero_extent_buffer(eb, 0, eb->len);
281 		return BLK_STS_OK;
282 	}
283 
284 	if (WARN_ON_ONCE(found_start != eb->start))
285 		return BLK_STS_IOERR;
286 	if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
287 		return BLK_STS_IOERR;
288 
289 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
290 				    offsetof(struct btrfs_header, fsid),
291 				    BTRFS_FSID_SIZE) == 0);
292 	csum_tree_block(eb, result);
293 
294 	if (btrfs_header_level(eb))
295 		ret = btrfs_check_node(eb);
296 	else
297 		ret = btrfs_check_leaf(eb);
298 
299 	if (ret < 0)
300 		goto error;
301 
302 	/*
303 	 * Also check the generation, the eb reached here must be newer than
304 	 * last committed. Or something seriously wrong happened.
305 	 */
306 	last_trans = btrfs_get_last_trans_committed(fs_info);
307 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
308 		ret = -EUCLEAN;
309 		btrfs_err(fs_info,
310 			"block=%llu bad generation, have %llu expect > %llu",
311 			  eb->start, btrfs_header_generation(eb), last_trans);
312 		goto error;
313 	}
314 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
315 	return BLK_STS_OK;
316 
317 error:
318 	btrfs_print_tree(eb, 0);
319 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
320 		  eb->start);
321 	/*
322 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
323 	 * a transaction in case there's a bad log tree extent buffer, we just
324 	 * fallback to a transaction commit. Still we want to know when there is
325 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
326 	 */
327 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
328 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
329 	return errno_to_blk_status(ret);
330 }
331 
check_tree_block_fsid(struct extent_buffer * eb)332 static bool check_tree_block_fsid(struct extent_buffer *eb)
333 {
334 	struct btrfs_fs_info *fs_info = eb->fs_info;
335 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
336 	u8 fsid[BTRFS_FSID_SIZE];
337 
338 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
339 			   BTRFS_FSID_SIZE);
340 
341 	/*
342 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
343 	 * This is then overwritten by metadata_uuid if it is present in the
344 	 * device_list_add(). The same true for a seed device as well. So use of
345 	 * fs_devices::metadata_uuid is appropriate here.
346 	 */
347 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
348 		return false;
349 
350 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
351 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
352 			return false;
353 
354 	return true;
355 }
356 
357 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)358 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
359 				 const struct btrfs_tree_parent_check *check)
360 {
361 	struct btrfs_fs_info *fs_info = eb->fs_info;
362 	u64 found_start;
363 	const u32 csum_size = fs_info->csum_size;
364 	u8 found_level;
365 	u8 result[BTRFS_CSUM_SIZE];
366 	const u8 *header_csum;
367 	int ret = 0;
368 	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
369 
370 	ASSERT(check);
371 
372 	found_start = btrfs_header_bytenr(eb);
373 	if (found_start != eb->start) {
374 		btrfs_err_rl(fs_info,
375 			"bad tree block start, mirror %u want %llu have %llu",
376 			     eb->read_mirror, eb->start, found_start);
377 		ret = -EIO;
378 		goto out;
379 	}
380 	if (check_tree_block_fsid(eb)) {
381 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
382 			     eb->start, eb->read_mirror);
383 		ret = -EIO;
384 		goto out;
385 	}
386 	found_level = btrfs_header_level(eb);
387 	if (found_level >= BTRFS_MAX_LEVEL) {
388 		btrfs_err(fs_info,
389 			"bad tree block level, mirror %u level %d on logical %llu",
390 			eb->read_mirror, btrfs_header_level(eb), eb->start);
391 		ret = -EIO;
392 		goto out;
393 	}
394 
395 	csum_tree_block(eb, result);
396 	header_csum = folio_address(eb->folios[0]) +
397 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
398 
399 	if (memcmp(result, header_csum, csum_size) != 0) {
400 		btrfs_warn_rl(fs_info,
401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
402 			      eb->start, eb->read_mirror,
403 			      CSUM_FMT_VALUE(csum_size, header_csum),
404 			      CSUM_FMT_VALUE(csum_size, result),
405 			      btrfs_header_level(eb),
406 			      ignore_csum ? ", ignored" : "");
407 		if (!ignore_csum) {
408 			ret = -EUCLEAN;
409 			goto out;
410 		}
411 	}
412 
413 	if (found_level != check->level) {
414 		btrfs_err(fs_info,
415 		"level verify failed on logical %llu mirror %u wanted %u found %u",
416 			  eb->start, eb->read_mirror, check->level, found_level);
417 		ret = -EIO;
418 		goto out;
419 	}
420 	if (unlikely(check->transid &&
421 		     btrfs_header_generation(eb) != check->transid)) {
422 		btrfs_err_rl(eb->fs_info,
423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
424 				eb->start, eb->read_mirror, check->transid,
425 				btrfs_header_generation(eb));
426 		ret = -EIO;
427 		goto out;
428 	}
429 	if (check->has_first_key) {
430 		const struct btrfs_key *expect_key = &check->first_key;
431 		struct btrfs_key found_key;
432 
433 		if (found_level)
434 			btrfs_node_key_to_cpu(eb, &found_key, 0);
435 		else
436 			btrfs_item_key_to_cpu(eb, &found_key, 0);
437 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
438 			btrfs_err(fs_info,
439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
440 				  eb->start, check->transid,
441 				  expect_key->objectid,
442 				  expect_key->type, expect_key->offset,
443 				  found_key.objectid, found_key.type,
444 				  found_key.offset);
445 			ret = -EUCLEAN;
446 			goto out;
447 		}
448 	}
449 	if (check->owner_root) {
450 		ret = btrfs_check_eb_owner(eb, check->owner_root);
451 		if (ret < 0)
452 			goto out;
453 	}
454 
455 	/*
456 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
457 	 * that we don't try and read the other copies of this block, just
458 	 * return -EIO.
459 	 */
460 	if (found_level == 0 && btrfs_check_leaf(eb)) {
461 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
462 		ret = -EIO;
463 	}
464 
465 	if (found_level > 0 && btrfs_check_node(eb))
466 		ret = -EIO;
467 
468 	if (ret)
469 		btrfs_err(fs_info,
470 		"read time tree block corruption detected on logical %llu mirror %u",
471 			  eb->start, eb->read_mirror);
472 out:
473 	return ret;
474 }
475 
476 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)477 static int btree_migrate_folio(struct address_space *mapping,
478 		struct folio *dst, struct folio *src, enum migrate_mode mode)
479 {
480 	/*
481 	 * we can't safely write a btree page from here,
482 	 * we haven't done the locking hook
483 	 */
484 	if (folio_test_dirty(src))
485 		return -EAGAIN;
486 	/*
487 	 * Buffers may be managed in a filesystem specific way.
488 	 * We must have no buffers or drop them.
489 	 */
490 	if (folio_get_private(src) &&
491 	    !filemap_release_folio(src, GFP_KERNEL))
492 		return -EAGAIN;
493 	return migrate_folio(mapping, dst, src, mode);
494 }
495 #else
496 #define btree_migrate_folio NULL
497 #endif
498 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)499 static int btree_writepages(struct address_space *mapping,
500 			    struct writeback_control *wbc)
501 {
502 	int ret;
503 
504 	if (wbc->sync_mode == WB_SYNC_NONE) {
505 		struct btrfs_fs_info *fs_info;
506 
507 		if (wbc->for_kupdate)
508 			return 0;
509 
510 		fs_info = inode_to_fs_info(mapping->host);
511 		/* this is a bit racy, but that's ok */
512 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
513 					     BTRFS_DIRTY_METADATA_THRESH,
514 					     fs_info->dirty_metadata_batch);
515 		if (ret < 0)
516 			return 0;
517 	}
518 	return btree_write_cache_pages(mapping, wbc);
519 }
520 
btree_release_folio(struct folio * folio,gfp_t gfp_flags)521 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
522 {
523 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
524 		return false;
525 
526 	return try_release_extent_buffer(folio);
527 }
528 
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)529 static void btree_invalidate_folio(struct folio *folio, size_t offset,
530 				 size_t length)
531 {
532 	struct extent_io_tree *tree;
533 
534 	tree = &folio_to_inode(folio)->io_tree;
535 	extent_invalidate_folio(tree, folio, offset);
536 	btree_release_folio(folio, GFP_NOFS);
537 	if (folio_get_private(folio)) {
538 		btrfs_warn(folio_to_fs_info(folio),
539 			   "folio private not zero on folio %llu",
540 			   (unsigned long long)folio_pos(folio));
541 		folio_detach_private(folio);
542 	}
543 }
544 
545 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)546 static bool btree_dirty_folio(struct address_space *mapping,
547 		struct folio *folio)
548 {
549 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
550 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
551 	struct btrfs_subpage *subpage;
552 	struct extent_buffer *eb;
553 	int cur_bit = 0;
554 	u64 page_start = folio_pos(folio);
555 
556 	if (fs_info->sectorsize == PAGE_SIZE) {
557 		eb = folio_get_private(folio);
558 		BUG_ON(!eb);
559 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
560 		BUG_ON(!atomic_read(&eb->refs));
561 		btrfs_assert_tree_write_locked(eb);
562 		return filemap_dirty_folio(mapping, folio);
563 	}
564 
565 	ASSERT(spi);
566 	subpage = folio_get_private(folio);
567 
568 	for (cur_bit = spi->dirty_offset;
569 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
570 	     cur_bit++) {
571 		unsigned long flags;
572 		u64 cur;
573 
574 		spin_lock_irqsave(&subpage->lock, flags);
575 		if (!test_bit(cur_bit, subpage->bitmaps)) {
576 			spin_unlock_irqrestore(&subpage->lock, flags);
577 			continue;
578 		}
579 		spin_unlock_irqrestore(&subpage->lock, flags);
580 		cur = page_start + cur_bit * fs_info->sectorsize;
581 
582 		eb = find_extent_buffer(fs_info, cur);
583 		ASSERT(eb);
584 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
585 		ASSERT(atomic_read(&eb->refs));
586 		btrfs_assert_tree_write_locked(eb);
587 		free_extent_buffer(eb);
588 
589 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
590 	}
591 	return filemap_dirty_folio(mapping, folio);
592 }
593 #else
594 #define btree_dirty_folio filemap_dirty_folio
595 #endif
596 
597 static const struct address_space_operations btree_aops = {
598 	.writepages	= btree_writepages,
599 	.release_folio	= btree_release_folio,
600 	.invalidate_folio = btree_invalidate_folio,
601 	.migrate_folio	= btree_migrate_folio,
602 	.dirty_folio	= btree_dirty_folio,
603 };
604 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)605 struct extent_buffer *btrfs_find_create_tree_block(
606 						struct btrfs_fs_info *fs_info,
607 						u64 bytenr, u64 owner_root,
608 						int level)
609 {
610 	if (btrfs_is_testing(fs_info))
611 		return alloc_test_extent_buffer(fs_info, bytenr);
612 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
613 }
614 
615 /*
616  * Read tree block at logical address @bytenr and do variant basic but critical
617  * verification.
618  *
619  * @check:		expected tree parentness check, see comments of the
620  *			structure for details.
621  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)622 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
623 				      struct btrfs_tree_parent_check *check)
624 {
625 	struct extent_buffer *buf = NULL;
626 	int ret;
627 
628 	ASSERT(check);
629 
630 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
631 					   check->level);
632 	if (IS_ERR(buf))
633 		return buf;
634 
635 	ret = btrfs_read_extent_buffer(buf, check);
636 	if (ret) {
637 		free_extent_buffer_stale(buf);
638 		return ERR_PTR(ret);
639 	}
640 	return buf;
641 
642 }
643 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)644 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
645 			 u64 objectid)
646 {
647 	bool dummy = btrfs_is_testing(fs_info);
648 
649 	memset(&root->root_key, 0, sizeof(root->root_key));
650 	memset(&root->root_item, 0, sizeof(root->root_item));
651 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
652 	root->fs_info = fs_info;
653 	root->root_key.objectid = objectid;
654 	root->node = NULL;
655 	root->commit_root = NULL;
656 	root->state = 0;
657 	RB_CLEAR_NODE(&root->rb_node);
658 
659 	btrfs_set_root_last_trans(root, 0);
660 	root->free_objectid = 0;
661 	root->nr_delalloc_inodes = 0;
662 	root->nr_ordered_extents = 0;
663 	xa_init(&root->inodes);
664 	xa_init(&root->delayed_nodes);
665 
666 	btrfs_init_root_block_rsv(root);
667 
668 	INIT_LIST_HEAD(&root->dirty_list);
669 	INIT_LIST_HEAD(&root->root_list);
670 	INIT_LIST_HEAD(&root->delalloc_inodes);
671 	INIT_LIST_HEAD(&root->delalloc_root);
672 	INIT_LIST_HEAD(&root->ordered_extents);
673 	INIT_LIST_HEAD(&root->ordered_root);
674 	INIT_LIST_HEAD(&root->reloc_dirty_list);
675 	spin_lock_init(&root->delalloc_lock);
676 	spin_lock_init(&root->ordered_extent_lock);
677 	spin_lock_init(&root->accounting_lock);
678 	spin_lock_init(&root->qgroup_meta_rsv_lock);
679 	mutex_init(&root->objectid_mutex);
680 	mutex_init(&root->log_mutex);
681 	mutex_init(&root->ordered_extent_mutex);
682 	mutex_init(&root->delalloc_mutex);
683 	init_waitqueue_head(&root->qgroup_flush_wait);
684 	init_waitqueue_head(&root->log_writer_wait);
685 	init_waitqueue_head(&root->log_commit_wait[0]);
686 	init_waitqueue_head(&root->log_commit_wait[1]);
687 	INIT_LIST_HEAD(&root->log_ctxs[0]);
688 	INIT_LIST_HEAD(&root->log_ctxs[1]);
689 	atomic_set(&root->log_commit[0], 0);
690 	atomic_set(&root->log_commit[1], 0);
691 	atomic_set(&root->log_writers, 0);
692 	atomic_set(&root->log_batch, 0);
693 	refcount_set(&root->refs, 1);
694 	atomic_set(&root->snapshot_force_cow, 0);
695 	atomic_set(&root->nr_swapfiles, 0);
696 	btrfs_set_root_log_transid(root, 0);
697 	root->log_transid_committed = -1;
698 	btrfs_set_root_last_log_commit(root, 0);
699 	root->anon_dev = 0;
700 	if (!dummy) {
701 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
702 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
703 		extent_io_tree_init(fs_info, &root->log_csum_range,
704 				    IO_TREE_LOG_CSUM_RANGE);
705 	}
706 
707 	spin_lock_init(&root->root_item_lock);
708 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
709 #ifdef CONFIG_BTRFS_DEBUG
710 	INIT_LIST_HEAD(&root->leak_list);
711 	spin_lock(&fs_info->fs_roots_radix_lock);
712 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
713 	spin_unlock(&fs_info->fs_roots_radix_lock);
714 #endif
715 }
716 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)717 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
718 					   u64 objectid, gfp_t flags)
719 {
720 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
721 	if (root)
722 		__setup_root(root, fs_info, objectid);
723 	return root;
724 }
725 
726 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
727 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)728 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
729 {
730 	struct btrfs_root *root;
731 
732 	if (!fs_info)
733 		return ERR_PTR(-EINVAL);
734 
735 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
736 	if (!root)
737 		return ERR_PTR(-ENOMEM);
738 
739 	/* We don't use the stripesize in selftest, set it as sectorsize */
740 	root->alloc_bytenr = 0;
741 
742 	return root;
743 }
744 #endif
745 
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)746 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
747 {
748 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
749 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
750 
751 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
752 }
753 
global_root_key_cmp(const void * k,const struct rb_node * node)754 static int global_root_key_cmp(const void *k, const struct rb_node *node)
755 {
756 	const struct btrfs_key *key = k;
757 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
758 
759 	return btrfs_comp_cpu_keys(key, &root->root_key);
760 }
761 
btrfs_global_root_insert(struct btrfs_root * root)762 int btrfs_global_root_insert(struct btrfs_root *root)
763 {
764 	struct btrfs_fs_info *fs_info = root->fs_info;
765 	struct rb_node *tmp;
766 	int ret = 0;
767 
768 	write_lock(&fs_info->global_root_lock);
769 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
770 	write_unlock(&fs_info->global_root_lock);
771 
772 	if (tmp) {
773 		ret = -EEXIST;
774 		btrfs_warn(fs_info, "global root %llu %llu already exists",
775 			   btrfs_root_id(root), root->root_key.offset);
776 	}
777 	return ret;
778 }
779 
btrfs_global_root_delete(struct btrfs_root * root)780 void btrfs_global_root_delete(struct btrfs_root *root)
781 {
782 	struct btrfs_fs_info *fs_info = root->fs_info;
783 
784 	write_lock(&fs_info->global_root_lock);
785 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
786 	write_unlock(&fs_info->global_root_lock);
787 }
788 
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)789 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
790 				     struct btrfs_key *key)
791 {
792 	struct rb_node *node;
793 	struct btrfs_root *root = NULL;
794 
795 	read_lock(&fs_info->global_root_lock);
796 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
797 	if (node)
798 		root = container_of(node, struct btrfs_root, rb_node);
799 	read_unlock(&fs_info->global_root_lock);
800 
801 	return root;
802 }
803 
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)804 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
805 {
806 	struct btrfs_block_group *block_group;
807 	u64 ret;
808 
809 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
810 		return 0;
811 
812 	if (bytenr)
813 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
814 	else
815 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
816 	ASSERT(block_group);
817 	if (!block_group)
818 		return 0;
819 	ret = block_group->global_root_id;
820 	btrfs_put_block_group(block_group);
821 
822 	return ret;
823 }
824 
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)825 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
826 {
827 	struct btrfs_key key = {
828 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
829 		.type = BTRFS_ROOT_ITEM_KEY,
830 		.offset = btrfs_global_root_id(fs_info, bytenr),
831 	};
832 
833 	return btrfs_global_root(fs_info, &key);
834 }
835 
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)836 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
837 {
838 	struct btrfs_key key = {
839 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
840 		.type = BTRFS_ROOT_ITEM_KEY,
841 		.offset = btrfs_global_root_id(fs_info, bytenr),
842 	};
843 
844 	return btrfs_global_root(fs_info, &key);
845 }
846 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)847 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
848 				     u64 objectid)
849 {
850 	struct btrfs_fs_info *fs_info = trans->fs_info;
851 	struct extent_buffer *leaf;
852 	struct btrfs_root *tree_root = fs_info->tree_root;
853 	struct btrfs_root *root;
854 	struct btrfs_key key;
855 	unsigned int nofs_flag;
856 	int ret = 0;
857 
858 	/*
859 	 * We're holding a transaction handle, so use a NOFS memory allocation
860 	 * context to avoid deadlock if reclaim happens.
861 	 */
862 	nofs_flag = memalloc_nofs_save();
863 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
864 	memalloc_nofs_restore(nofs_flag);
865 	if (!root)
866 		return ERR_PTR(-ENOMEM);
867 
868 	root->root_key.objectid = objectid;
869 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
870 	root->root_key.offset = 0;
871 
872 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
873 				      0, BTRFS_NESTING_NORMAL);
874 	if (IS_ERR(leaf)) {
875 		ret = PTR_ERR(leaf);
876 		leaf = NULL;
877 		goto fail;
878 	}
879 
880 	root->node = leaf;
881 	btrfs_mark_buffer_dirty(trans, leaf);
882 
883 	root->commit_root = btrfs_root_node(root);
884 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
885 
886 	btrfs_set_root_flags(&root->root_item, 0);
887 	btrfs_set_root_limit(&root->root_item, 0);
888 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
889 	btrfs_set_root_generation(&root->root_item, trans->transid);
890 	btrfs_set_root_level(&root->root_item, 0);
891 	btrfs_set_root_refs(&root->root_item, 1);
892 	btrfs_set_root_used(&root->root_item, leaf->len);
893 	btrfs_set_root_last_snapshot(&root->root_item, 0);
894 	btrfs_set_root_dirid(&root->root_item, 0);
895 	if (is_fstree(objectid))
896 		generate_random_guid(root->root_item.uuid);
897 	else
898 		export_guid(root->root_item.uuid, &guid_null);
899 	btrfs_set_root_drop_level(&root->root_item, 0);
900 
901 	btrfs_tree_unlock(leaf);
902 
903 	key.objectid = objectid;
904 	key.type = BTRFS_ROOT_ITEM_KEY;
905 	key.offset = 0;
906 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
907 	if (ret)
908 		goto fail;
909 
910 	return root;
911 
912 fail:
913 	btrfs_put_root(root);
914 
915 	return ERR_PTR(ret);
916 }
917 
alloc_log_tree(struct btrfs_fs_info * fs_info)918 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
919 {
920 	struct btrfs_root *root;
921 
922 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
923 	if (!root)
924 		return ERR_PTR(-ENOMEM);
925 
926 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
927 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
928 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
929 
930 	return root;
931 }
932 
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)933 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
934 			      struct btrfs_root *root)
935 {
936 	struct extent_buffer *leaf;
937 
938 	/*
939 	 * DON'T set SHAREABLE bit for log trees.
940 	 *
941 	 * Log trees are not exposed to user space thus can't be snapshotted,
942 	 * and they go away before a real commit is actually done.
943 	 *
944 	 * They do store pointers to file data extents, and those reference
945 	 * counts still get updated (along with back refs to the log tree).
946 	 */
947 
948 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
949 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
950 	if (IS_ERR(leaf))
951 		return PTR_ERR(leaf);
952 
953 	root->node = leaf;
954 
955 	btrfs_mark_buffer_dirty(trans, root->node);
956 	btrfs_tree_unlock(root->node);
957 
958 	return 0;
959 }
960 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)961 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
962 			     struct btrfs_fs_info *fs_info)
963 {
964 	struct btrfs_root *log_root;
965 
966 	log_root = alloc_log_tree(fs_info);
967 	if (IS_ERR(log_root))
968 		return PTR_ERR(log_root);
969 
970 	if (!btrfs_is_zoned(fs_info)) {
971 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
972 
973 		if (ret) {
974 			btrfs_put_root(log_root);
975 			return ret;
976 		}
977 	}
978 
979 	WARN_ON(fs_info->log_root_tree);
980 	fs_info->log_root_tree = log_root;
981 	return 0;
982 }
983 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)984 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
985 		       struct btrfs_root *root)
986 {
987 	struct btrfs_fs_info *fs_info = root->fs_info;
988 	struct btrfs_root *log_root;
989 	struct btrfs_inode_item *inode_item;
990 	int ret;
991 
992 	log_root = alloc_log_tree(fs_info);
993 	if (IS_ERR(log_root))
994 		return PTR_ERR(log_root);
995 
996 	ret = btrfs_alloc_log_tree_node(trans, log_root);
997 	if (ret) {
998 		btrfs_put_root(log_root);
999 		return ret;
1000 	}
1001 
1002 	btrfs_set_root_last_trans(log_root, trans->transid);
1003 	log_root->root_key.offset = btrfs_root_id(root);
1004 
1005 	inode_item = &log_root->root_item.inode;
1006 	btrfs_set_stack_inode_generation(inode_item, 1);
1007 	btrfs_set_stack_inode_size(inode_item, 3);
1008 	btrfs_set_stack_inode_nlink(inode_item, 1);
1009 	btrfs_set_stack_inode_nbytes(inode_item,
1010 				     fs_info->nodesize);
1011 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1012 
1013 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1014 
1015 	WARN_ON(root->log_root);
1016 	root->log_root = log_root;
1017 	btrfs_set_root_log_transid(root, 0);
1018 	root->log_transid_committed = -1;
1019 	btrfs_set_root_last_log_commit(root, 0);
1020 	return 0;
1021 }
1022 
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)1023 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1024 					      struct btrfs_path *path,
1025 					      const struct btrfs_key *key)
1026 {
1027 	struct btrfs_root *root;
1028 	struct btrfs_tree_parent_check check = { 0 };
1029 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1030 	u64 generation;
1031 	int ret;
1032 	int level;
1033 
1034 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1035 	if (!root)
1036 		return ERR_PTR(-ENOMEM);
1037 
1038 	ret = btrfs_find_root(tree_root, key, path,
1039 			      &root->root_item, &root->root_key);
1040 	if (ret) {
1041 		if (ret > 0)
1042 			ret = -ENOENT;
1043 		goto fail;
1044 	}
1045 
1046 	generation = btrfs_root_generation(&root->root_item);
1047 	level = btrfs_root_level(&root->root_item);
1048 	check.level = level;
1049 	check.transid = generation;
1050 	check.owner_root = key->objectid;
1051 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1052 				     &check);
1053 	if (IS_ERR(root->node)) {
1054 		ret = PTR_ERR(root->node);
1055 		root->node = NULL;
1056 		goto fail;
1057 	}
1058 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1059 		ret = -EIO;
1060 		goto fail;
1061 	}
1062 
1063 	/*
1064 	 * For real fs, and not log/reloc trees, root owner must
1065 	 * match its root node owner
1066 	 */
1067 	if (!btrfs_is_testing(fs_info) &&
1068 	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1069 	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1070 	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1071 		btrfs_crit(fs_info,
1072 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1073 			   btrfs_root_id(root), root->node->start,
1074 			   btrfs_header_owner(root->node),
1075 			   btrfs_root_id(root));
1076 		ret = -EUCLEAN;
1077 		goto fail;
1078 	}
1079 	root->commit_root = btrfs_root_node(root);
1080 	return root;
1081 fail:
1082 	btrfs_put_root(root);
1083 	return ERR_PTR(ret);
1084 }
1085 
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1086 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1087 					const struct btrfs_key *key)
1088 {
1089 	struct btrfs_root *root;
1090 	BTRFS_PATH_AUTO_FREE(path);
1091 
1092 	path = btrfs_alloc_path();
1093 	if (!path)
1094 		return ERR_PTR(-ENOMEM);
1095 	root = read_tree_root_path(tree_root, path, key);
1096 
1097 	return root;
1098 }
1099 
1100 /*
1101  * Initialize subvolume root in-memory structure.
1102  *
1103  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1104  *
1105  * In case of failure the caller is responsible to call btrfs_free_fs_root()
1106  */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1107 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1108 {
1109 	int ret;
1110 
1111 	btrfs_drew_lock_init(&root->snapshot_lock);
1112 
1113 	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1114 	    !btrfs_is_data_reloc_root(root) &&
1115 	    is_fstree(btrfs_root_id(root))) {
1116 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1117 		btrfs_check_and_init_root_item(&root->root_item);
1118 	}
1119 
1120 	/*
1121 	 * Don't assign anonymous block device to roots that are not exposed to
1122 	 * userspace, the id pool is limited to 1M
1123 	 */
1124 	if (is_fstree(btrfs_root_id(root)) &&
1125 	    btrfs_root_refs(&root->root_item) > 0) {
1126 		if (!anon_dev) {
1127 			ret = get_anon_bdev(&root->anon_dev);
1128 			if (ret)
1129 				return ret;
1130 		} else {
1131 			root->anon_dev = anon_dev;
1132 		}
1133 	}
1134 
1135 	mutex_lock(&root->objectid_mutex);
1136 	ret = btrfs_init_root_free_objectid(root);
1137 	if (ret) {
1138 		mutex_unlock(&root->objectid_mutex);
1139 		return ret;
1140 	}
1141 
1142 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1143 
1144 	mutex_unlock(&root->objectid_mutex);
1145 
1146 	return 0;
1147 }
1148 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1149 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1150 					       u64 root_id)
1151 {
1152 	struct btrfs_root *root;
1153 
1154 	spin_lock(&fs_info->fs_roots_radix_lock);
1155 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1156 				 (unsigned long)root_id);
1157 	root = btrfs_grab_root(root);
1158 	spin_unlock(&fs_info->fs_roots_radix_lock);
1159 	return root;
1160 }
1161 
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1162 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1163 						u64 objectid)
1164 {
1165 	struct btrfs_key key = {
1166 		.objectid = objectid,
1167 		.type = BTRFS_ROOT_ITEM_KEY,
1168 		.offset = 0,
1169 	};
1170 
1171 	switch (objectid) {
1172 	case BTRFS_ROOT_TREE_OBJECTID:
1173 		return btrfs_grab_root(fs_info->tree_root);
1174 	case BTRFS_EXTENT_TREE_OBJECTID:
1175 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1176 	case BTRFS_CHUNK_TREE_OBJECTID:
1177 		return btrfs_grab_root(fs_info->chunk_root);
1178 	case BTRFS_DEV_TREE_OBJECTID:
1179 		return btrfs_grab_root(fs_info->dev_root);
1180 	case BTRFS_CSUM_TREE_OBJECTID:
1181 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182 	case BTRFS_QUOTA_TREE_OBJECTID:
1183 		return btrfs_grab_root(fs_info->quota_root);
1184 	case BTRFS_UUID_TREE_OBJECTID:
1185 		return btrfs_grab_root(fs_info->uuid_root);
1186 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1187 		return btrfs_grab_root(fs_info->block_group_root);
1188 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1189 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1191 		return btrfs_grab_root(fs_info->stripe_root);
1192 	default:
1193 		return NULL;
1194 	}
1195 }
1196 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1197 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1198 			 struct btrfs_root *root)
1199 {
1200 	int ret;
1201 
1202 	ret = radix_tree_preload(GFP_NOFS);
1203 	if (ret)
1204 		return ret;
1205 
1206 	spin_lock(&fs_info->fs_roots_radix_lock);
1207 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1208 				(unsigned long)btrfs_root_id(root),
1209 				root);
1210 	if (ret == 0) {
1211 		btrfs_grab_root(root);
1212 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1213 	}
1214 	spin_unlock(&fs_info->fs_roots_radix_lock);
1215 	radix_tree_preload_end();
1216 
1217 	return ret;
1218 }
1219 
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1220 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1221 {
1222 #ifdef CONFIG_BTRFS_DEBUG
1223 	struct btrfs_root *root;
1224 
1225 	while (!list_empty(&fs_info->allocated_roots)) {
1226 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1227 
1228 		root = list_first_entry(&fs_info->allocated_roots,
1229 					struct btrfs_root, leak_list);
1230 		btrfs_err(fs_info, "leaked root %s refcount %d",
1231 			  btrfs_root_name(&root->root_key, buf),
1232 			  refcount_read(&root->refs));
1233 		WARN_ON_ONCE(1);
1234 		while (refcount_read(&root->refs) > 1)
1235 			btrfs_put_root(root);
1236 		btrfs_put_root(root);
1237 	}
1238 #endif
1239 }
1240 
free_global_roots(struct btrfs_fs_info * fs_info)1241 static void free_global_roots(struct btrfs_fs_info *fs_info)
1242 {
1243 	struct btrfs_root *root;
1244 	struct rb_node *node;
1245 
1246 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1247 		root = rb_entry(node, struct btrfs_root, rb_node);
1248 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1249 		btrfs_put_root(root);
1250 	}
1251 }
1252 
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1253 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1254 {
1255 	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1256 
1257 	percpu_counter_destroy(&fs_info->stats_read_blocks);
1258 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1259 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1260 	percpu_counter_destroy(&fs_info->ordered_bytes);
1261 	if (percpu_counter_initialized(em_counter))
1262 		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1263 	percpu_counter_destroy(em_counter);
1264 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1265 	btrfs_free_csum_hash(fs_info);
1266 	btrfs_free_stripe_hash_table(fs_info);
1267 	btrfs_free_ref_cache(fs_info);
1268 	kfree(fs_info->balance_ctl);
1269 	kfree(fs_info->delayed_root);
1270 	free_global_roots(fs_info);
1271 	btrfs_put_root(fs_info->tree_root);
1272 	btrfs_put_root(fs_info->chunk_root);
1273 	btrfs_put_root(fs_info->dev_root);
1274 	btrfs_put_root(fs_info->quota_root);
1275 	btrfs_put_root(fs_info->uuid_root);
1276 	btrfs_put_root(fs_info->fs_root);
1277 	btrfs_put_root(fs_info->data_reloc_root);
1278 	btrfs_put_root(fs_info->block_group_root);
1279 	btrfs_put_root(fs_info->stripe_root);
1280 	btrfs_check_leaked_roots(fs_info);
1281 	btrfs_extent_buffer_leak_debug_check(fs_info);
1282 	kfree(fs_info->super_copy);
1283 	kfree(fs_info->super_for_commit);
1284 	kvfree(fs_info);
1285 }
1286 
1287 
1288 /*
1289  * Get an in-memory reference of a root structure.
1290  *
1291  * For essential trees like root/extent tree, we grab it from fs_info directly.
1292  * For subvolume trees, we check the cached filesystem roots first. If not
1293  * found, then read it from disk and add it to cached fs roots.
1294  *
1295  * Caller should release the root by calling btrfs_put_root() after the usage.
1296  *
1297  * NOTE: Reloc and log trees can't be read by this function as they share the
1298  *	 same root objectid.
1299  *
1300  * @objectid:	root id
1301  * @anon_dev:	preallocated anonymous block device number for new roots,
1302  *		pass NULL for a new allocation.
1303  * @check_ref:	whether to check root item references, If true, return -ENOENT
1304  *		for orphan roots
1305  */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1306 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1307 					     u64 objectid, dev_t *anon_dev,
1308 					     bool check_ref)
1309 {
1310 	struct btrfs_root *root;
1311 	struct btrfs_path *path;
1312 	struct btrfs_key key;
1313 	int ret;
1314 
1315 	root = btrfs_get_global_root(fs_info, objectid);
1316 	if (root)
1317 		return root;
1318 
1319 	/*
1320 	 * If we're called for non-subvolume trees, and above function didn't
1321 	 * find one, do not try to read it from disk.
1322 	 *
1323 	 * This is namely for free-space-tree and quota tree, which can change
1324 	 * at runtime and should only be grabbed from fs_info.
1325 	 */
1326 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1327 		return ERR_PTR(-ENOENT);
1328 again:
1329 	root = btrfs_lookup_fs_root(fs_info, objectid);
1330 	if (root) {
1331 		/*
1332 		 * Some other caller may have read out the newly inserted
1333 		 * subvolume already (for things like backref walk etc).  Not
1334 		 * that common but still possible.  In that case, we just need
1335 		 * to free the anon_dev.
1336 		 */
1337 		if (unlikely(anon_dev && *anon_dev)) {
1338 			free_anon_bdev(*anon_dev);
1339 			*anon_dev = 0;
1340 		}
1341 
1342 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1343 			btrfs_put_root(root);
1344 			return ERR_PTR(-ENOENT);
1345 		}
1346 		return root;
1347 	}
1348 
1349 	key.objectid = objectid;
1350 	key.type = BTRFS_ROOT_ITEM_KEY;
1351 	key.offset = (u64)-1;
1352 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1353 	if (IS_ERR(root))
1354 		return root;
1355 
1356 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1357 		ret = -ENOENT;
1358 		goto fail;
1359 	}
1360 
1361 	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1362 	if (ret)
1363 		goto fail;
1364 
1365 	path = btrfs_alloc_path();
1366 	if (!path) {
1367 		ret = -ENOMEM;
1368 		goto fail;
1369 	}
1370 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1371 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1372 	key.offset = objectid;
1373 
1374 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1375 	btrfs_free_path(path);
1376 	if (ret < 0)
1377 		goto fail;
1378 	if (ret == 0)
1379 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1380 
1381 	ret = btrfs_insert_fs_root(fs_info, root);
1382 	if (ret) {
1383 		if (ret == -EEXIST) {
1384 			btrfs_put_root(root);
1385 			goto again;
1386 		}
1387 		goto fail;
1388 	}
1389 	return root;
1390 fail:
1391 	/*
1392 	 * If our caller provided us an anonymous device, then it's his
1393 	 * responsibility to free it in case we fail. So we have to set our
1394 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1395 	 * and once again by our caller.
1396 	 */
1397 	if (anon_dev && *anon_dev)
1398 		root->anon_dev = 0;
1399 	btrfs_put_root(root);
1400 	return ERR_PTR(ret);
1401 }
1402 
1403 /*
1404  * Get in-memory reference of a root structure
1405  *
1406  * @objectid:	tree objectid
1407  * @check_ref:	if set, verify that the tree exists and the item has at least
1408  *		one reference
1409  */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1410 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1411 				     u64 objectid, bool check_ref)
1412 {
1413 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1414 }
1415 
1416 /*
1417  * Get in-memory reference of a root structure, created as new, optionally pass
1418  * the anonymous block device id
1419  *
1420  * @objectid:	tree objectid
1421  * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1422  *		parameter value if not NULL
1423  */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1424 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1425 					 u64 objectid, dev_t *anon_dev)
1426 {
1427 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1428 }
1429 
1430 /*
1431  * Return a root for the given objectid.
1432  *
1433  * @fs_info:	the fs_info
1434  * @objectid:	the objectid we need to lookup
1435  *
1436  * This is exclusively used for backref walking, and exists specifically because
1437  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1438  * creation time, which means we may have to read the tree_root in order to look
1439  * up a fs root that is not in memory.  If the root is not in memory we will
1440  * read the tree root commit root and look up the fs root from there.  This is a
1441  * temporary root, it will not be inserted into the radix tree as it doesn't
1442  * have the most uptodate information, it'll simply be discarded once the
1443  * backref code is finished using the root.
1444  */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1445 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1446 						 struct btrfs_path *path,
1447 						 u64 objectid)
1448 {
1449 	struct btrfs_root *root;
1450 	struct btrfs_key key;
1451 
1452 	ASSERT(path->search_commit_root && path->skip_locking);
1453 
1454 	/*
1455 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1456 	 * since this is called via the backref walking code we won't be looking
1457 	 * up a root that doesn't exist, unless there's corruption.  So if root
1458 	 * != NULL just return it.
1459 	 */
1460 	root = btrfs_get_global_root(fs_info, objectid);
1461 	if (root)
1462 		return root;
1463 
1464 	root = btrfs_lookup_fs_root(fs_info, objectid);
1465 	if (root)
1466 		return root;
1467 
1468 	key.objectid = objectid;
1469 	key.type = BTRFS_ROOT_ITEM_KEY;
1470 	key.offset = (u64)-1;
1471 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1472 	btrfs_release_path(path);
1473 
1474 	return root;
1475 }
1476 
cleaner_kthread(void * arg)1477 static int cleaner_kthread(void *arg)
1478 {
1479 	struct btrfs_fs_info *fs_info = arg;
1480 	int again;
1481 
1482 	while (1) {
1483 		again = 0;
1484 
1485 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1486 
1487 		/* Make the cleaner go to sleep early. */
1488 		if (btrfs_need_cleaner_sleep(fs_info))
1489 			goto sleep;
1490 
1491 		/*
1492 		 * Do not do anything if we might cause open_ctree() to block
1493 		 * before we have finished mounting the filesystem.
1494 		 */
1495 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496 			goto sleep;
1497 
1498 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1499 			goto sleep;
1500 
1501 		/*
1502 		 * Avoid the problem that we change the status of the fs
1503 		 * during the above check and trylock.
1504 		 */
1505 		if (btrfs_need_cleaner_sleep(fs_info)) {
1506 			mutex_unlock(&fs_info->cleaner_mutex);
1507 			goto sleep;
1508 		}
1509 
1510 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1511 			btrfs_sysfs_feature_update(fs_info);
1512 
1513 		btrfs_run_delayed_iputs(fs_info);
1514 
1515 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1516 		mutex_unlock(&fs_info->cleaner_mutex);
1517 
1518 		/*
1519 		 * The defragger has dealt with the R/O remount and umount,
1520 		 * needn't do anything special here.
1521 		 */
1522 		btrfs_run_defrag_inodes(fs_info);
1523 
1524 		/*
1525 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1526 		 * with relocation (btrfs_relocate_chunk) and relocation
1527 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1528 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1529 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1530 		 * unused block groups.
1531 		 */
1532 		btrfs_delete_unused_bgs(fs_info);
1533 
1534 		/*
1535 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1536 		 * all unused block_groups. This possibly gives us some more free
1537 		 * space.
1538 		 */
1539 		btrfs_reclaim_bgs(fs_info);
1540 sleep:
1541 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1542 		if (kthread_should_park())
1543 			kthread_parkme();
1544 		if (kthread_should_stop())
1545 			return 0;
1546 		if (!again) {
1547 			set_current_state(TASK_INTERRUPTIBLE);
1548 			schedule();
1549 			__set_current_state(TASK_RUNNING);
1550 		}
1551 	}
1552 }
1553 
transaction_kthread(void * arg)1554 static int transaction_kthread(void *arg)
1555 {
1556 	struct btrfs_root *root = arg;
1557 	struct btrfs_fs_info *fs_info = root->fs_info;
1558 	struct btrfs_trans_handle *trans;
1559 	struct btrfs_transaction *cur;
1560 	u64 transid;
1561 	time64_t delta;
1562 	unsigned long delay;
1563 	bool cannot_commit;
1564 
1565 	do {
1566 		cannot_commit = false;
1567 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1568 		mutex_lock(&fs_info->transaction_kthread_mutex);
1569 
1570 		spin_lock(&fs_info->trans_lock);
1571 		cur = fs_info->running_transaction;
1572 		if (!cur) {
1573 			spin_unlock(&fs_info->trans_lock);
1574 			goto sleep;
1575 		}
1576 
1577 		delta = ktime_get_seconds() - cur->start_time;
1578 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1579 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1580 		    delta < fs_info->commit_interval) {
1581 			spin_unlock(&fs_info->trans_lock);
1582 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1583 			delay = min(delay,
1584 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1585 			goto sleep;
1586 		}
1587 		transid = cur->transid;
1588 		spin_unlock(&fs_info->trans_lock);
1589 
1590 		/* If the file system is aborted, this will always fail. */
1591 		trans = btrfs_attach_transaction(root);
1592 		if (IS_ERR(trans)) {
1593 			if (PTR_ERR(trans) != -ENOENT)
1594 				cannot_commit = true;
1595 			goto sleep;
1596 		}
1597 		if (transid == trans->transid) {
1598 			btrfs_commit_transaction(trans);
1599 		} else {
1600 			btrfs_end_transaction(trans);
1601 		}
1602 sleep:
1603 		wake_up_process(fs_info->cleaner_kthread);
1604 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1605 
1606 		if (BTRFS_FS_ERROR(fs_info))
1607 			btrfs_cleanup_transaction(fs_info);
1608 		if (!kthread_should_stop() &&
1609 				(!btrfs_transaction_blocked(fs_info) ||
1610 				 cannot_commit))
1611 			schedule_timeout_interruptible(delay);
1612 	} while (!kthread_should_stop());
1613 	return 0;
1614 }
1615 
1616 /*
1617  * This will find the highest generation in the array of root backups.  The
1618  * index of the highest array is returned, or -EINVAL if we can't find
1619  * anything.
1620  *
1621  * We check to make sure the array is valid by comparing the
1622  * generation of the latest  root in the array with the generation
1623  * in the super block.  If they don't match we pitch it.
1624  */
find_newest_super_backup(struct btrfs_fs_info * info)1625 static int find_newest_super_backup(struct btrfs_fs_info *info)
1626 {
1627 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1628 	u64 cur;
1629 	struct btrfs_root_backup *root_backup;
1630 	int i;
1631 
1632 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633 		root_backup = info->super_copy->super_roots + i;
1634 		cur = btrfs_backup_tree_root_gen(root_backup);
1635 		if (cur == newest_gen)
1636 			return i;
1637 	}
1638 
1639 	return -EINVAL;
1640 }
1641 
1642 /*
1643  * copy all the root pointers into the super backup array.
1644  * this will bump the backup pointer by one when it is
1645  * done
1646  */
backup_super_roots(struct btrfs_fs_info * info)1647 static void backup_super_roots(struct btrfs_fs_info *info)
1648 {
1649 	const int next_backup = info->backup_root_index;
1650 	struct btrfs_root_backup *root_backup;
1651 
1652 	root_backup = info->super_for_commit->super_roots + next_backup;
1653 
1654 	/*
1655 	 * make sure all of our padding and empty slots get zero filled
1656 	 * regardless of which ones we use today
1657 	 */
1658 	memset(root_backup, 0, sizeof(*root_backup));
1659 
1660 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1661 
1662 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1663 	btrfs_set_backup_tree_root_gen(root_backup,
1664 			       btrfs_header_generation(info->tree_root->node));
1665 
1666 	btrfs_set_backup_tree_root_level(root_backup,
1667 			       btrfs_header_level(info->tree_root->node));
1668 
1669 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1670 	btrfs_set_backup_chunk_root_gen(root_backup,
1671 			       btrfs_header_generation(info->chunk_root->node));
1672 	btrfs_set_backup_chunk_root_level(root_backup,
1673 			       btrfs_header_level(info->chunk_root->node));
1674 
1675 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1676 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1677 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1678 
1679 		btrfs_set_backup_extent_root(root_backup,
1680 					     extent_root->node->start);
1681 		btrfs_set_backup_extent_root_gen(root_backup,
1682 				btrfs_header_generation(extent_root->node));
1683 		btrfs_set_backup_extent_root_level(root_backup,
1684 					btrfs_header_level(extent_root->node));
1685 
1686 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1687 		btrfs_set_backup_csum_root_gen(root_backup,
1688 					       btrfs_header_generation(csum_root->node));
1689 		btrfs_set_backup_csum_root_level(root_backup,
1690 						 btrfs_header_level(csum_root->node));
1691 	}
1692 
1693 	/*
1694 	 * we might commit during log recovery, which happens before we set
1695 	 * the fs_root.  Make sure it is valid before we fill it in.
1696 	 */
1697 	if (info->fs_root && info->fs_root->node) {
1698 		btrfs_set_backup_fs_root(root_backup,
1699 					 info->fs_root->node->start);
1700 		btrfs_set_backup_fs_root_gen(root_backup,
1701 			       btrfs_header_generation(info->fs_root->node));
1702 		btrfs_set_backup_fs_root_level(root_backup,
1703 			       btrfs_header_level(info->fs_root->node));
1704 	}
1705 
1706 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1707 	btrfs_set_backup_dev_root_gen(root_backup,
1708 			       btrfs_header_generation(info->dev_root->node));
1709 	btrfs_set_backup_dev_root_level(root_backup,
1710 				       btrfs_header_level(info->dev_root->node));
1711 
1712 	btrfs_set_backup_total_bytes(root_backup,
1713 			     btrfs_super_total_bytes(info->super_copy));
1714 	btrfs_set_backup_bytes_used(root_backup,
1715 			     btrfs_super_bytes_used(info->super_copy));
1716 	btrfs_set_backup_num_devices(root_backup,
1717 			     btrfs_super_num_devices(info->super_copy));
1718 
1719 	/*
1720 	 * if we don't copy this out to the super_copy, it won't get remembered
1721 	 * for the next commit
1722 	 */
1723 	memcpy(&info->super_copy->super_roots,
1724 	       &info->super_for_commit->super_roots,
1725 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1726 }
1727 
1728 /*
1729  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1730  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1731  *
1732  * @fs_info:  filesystem whose backup roots need to be read
1733  * @priority: priority of backup root required
1734  *
1735  * Returns backup root index on success and -EINVAL otherwise.
1736  */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1737 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1738 {
1739 	int backup_index = find_newest_super_backup(fs_info);
1740 	struct btrfs_super_block *super = fs_info->super_copy;
1741 	struct btrfs_root_backup *root_backup;
1742 
1743 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1744 		if (priority == 0)
1745 			return backup_index;
1746 
1747 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1748 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1749 	} else {
1750 		return -EINVAL;
1751 	}
1752 
1753 	root_backup = super->super_roots + backup_index;
1754 
1755 	btrfs_set_super_generation(super,
1756 				   btrfs_backup_tree_root_gen(root_backup));
1757 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1758 	btrfs_set_super_root_level(super,
1759 				   btrfs_backup_tree_root_level(root_backup));
1760 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1761 
1762 	/*
1763 	 * Fixme: the total bytes and num_devices need to match or we should
1764 	 * need a fsck
1765 	 */
1766 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1767 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1768 
1769 	return backup_index;
1770 }
1771 
1772 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1773 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1774 {
1775 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1776 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1777 	btrfs_destroy_workqueue(fs_info->workers);
1778 	if (fs_info->endio_workers)
1779 		destroy_workqueue(fs_info->endio_workers);
1780 	if (fs_info->rmw_workers)
1781 		destroy_workqueue(fs_info->rmw_workers);
1782 	if (fs_info->compressed_write_workers)
1783 		destroy_workqueue(fs_info->compressed_write_workers);
1784 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1785 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1786 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1787 	btrfs_destroy_workqueue(fs_info->caching_workers);
1788 	btrfs_destroy_workqueue(fs_info->flush_workers);
1789 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1790 	if (fs_info->discard_ctl.discard_workers)
1791 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1792 	/*
1793 	 * Now that all other work queues are destroyed, we can safely destroy
1794 	 * the queues used for metadata I/O, since tasks from those other work
1795 	 * queues can do metadata I/O operations.
1796 	 */
1797 	if (fs_info->endio_meta_workers)
1798 		destroy_workqueue(fs_info->endio_meta_workers);
1799 }
1800 
free_root_extent_buffers(struct btrfs_root * root)1801 static void free_root_extent_buffers(struct btrfs_root *root)
1802 {
1803 	if (root) {
1804 		free_extent_buffer(root->node);
1805 		free_extent_buffer(root->commit_root);
1806 		root->node = NULL;
1807 		root->commit_root = NULL;
1808 	}
1809 }
1810 
free_global_root_pointers(struct btrfs_fs_info * fs_info)1811 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1812 {
1813 	struct btrfs_root *root, *tmp;
1814 
1815 	rbtree_postorder_for_each_entry_safe(root, tmp,
1816 					     &fs_info->global_root_tree,
1817 					     rb_node)
1818 		free_root_extent_buffers(root);
1819 }
1820 
1821 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1822 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1823 {
1824 	free_root_extent_buffers(info->tree_root);
1825 
1826 	free_global_root_pointers(info);
1827 	free_root_extent_buffers(info->dev_root);
1828 	free_root_extent_buffers(info->quota_root);
1829 	free_root_extent_buffers(info->uuid_root);
1830 	free_root_extent_buffers(info->fs_root);
1831 	free_root_extent_buffers(info->data_reloc_root);
1832 	free_root_extent_buffers(info->block_group_root);
1833 	free_root_extent_buffers(info->stripe_root);
1834 	if (free_chunk_root)
1835 		free_root_extent_buffers(info->chunk_root);
1836 }
1837 
btrfs_put_root(struct btrfs_root * root)1838 void btrfs_put_root(struct btrfs_root *root)
1839 {
1840 	if (!root)
1841 		return;
1842 
1843 	if (refcount_dec_and_test(&root->refs)) {
1844 		if (WARN_ON(!xa_empty(&root->inodes)))
1845 			xa_destroy(&root->inodes);
1846 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1847 		if (root->anon_dev)
1848 			free_anon_bdev(root->anon_dev);
1849 		free_root_extent_buffers(root);
1850 #ifdef CONFIG_BTRFS_DEBUG
1851 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1852 		list_del_init(&root->leak_list);
1853 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1854 #endif
1855 		kfree(root);
1856 	}
1857 }
1858 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1859 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1860 {
1861 	int ret;
1862 	struct btrfs_root *gang[8];
1863 	int i;
1864 
1865 	while (!list_empty(&fs_info->dead_roots)) {
1866 		gang[0] = list_entry(fs_info->dead_roots.next,
1867 				     struct btrfs_root, root_list);
1868 		list_del(&gang[0]->root_list);
1869 
1870 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1871 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1872 		btrfs_put_root(gang[0]);
1873 	}
1874 
1875 	while (1) {
1876 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1877 					     (void **)gang, 0,
1878 					     ARRAY_SIZE(gang));
1879 		if (!ret)
1880 			break;
1881 		for (i = 0; i < ret; i++)
1882 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1883 	}
1884 }
1885 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1886 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1887 {
1888 	mutex_init(&fs_info->scrub_lock);
1889 	atomic_set(&fs_info->scrubs_running, 0);
1890 	atomic_set(&fs_info->scrub_pause_req, 0);
1891 	atomic_set(&fs_info->scrubs_paused, 0);
1892 	atomic_set(&fs_info->scrub_cancel_req, 0);
1893 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1894 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1895 }
1896 
btrfs_init_balance(struct btrfs_fs_info * fs_info)1897 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1898 {
1899 	spin_lock_init(&fs_info->balance_lock);
1900 	mutex_init(&fs_info->balance_mutex);
1901 	atomic_set(&fs_info->balance_pause_req, 0);
1902 	atomic_set(&fs_info->balance_cancel_req, 0);
1903 	fs_info->balance_ctl = NULL;
1904 	init_waitqueue_head(&fs_info->balance_wait_q);
1905 	atomic_set(&fs_info->reloc_cancel_req, 0);
1906 }
1907 
btrfs_init_btree_inode(struct super_block * sb)1908 static int btrfs_init_btree_inode(struct super_block *sb)
1909 {
1910 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1911 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1912 					      fs_info->tree_root);
1913 	struct inode *inode;
1914 
1915 	inode = new_inode(sb);
1916 	if (!inode)
1917 		return -ENOMEM;
1918 
1919 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1920 	set_nlink(inode, 1);
1921 	/*
1922 	 * we set the i_size on the btree inode to the max possible int.
1923 	 * the real end of the address space is determined by all of
1924 	 * the devices in the system
1925 	 */
1926 	inode->i_size = OFFSET_MAX;
1927 	inode->i_mapping->a_ops = &btree_aops;
1928 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1929 
1930 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1931 			    IO_TREE_BTREE_INODE_IO);
1932 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1933 
1934 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1935 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1936 	__insert_inode_hash(inode, hash);
1937 	fs_info->btree_inode = inode;
1938 
1939 	return 0;
1940 }
1941 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1942 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1943 {
1944 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1945 	init_rwsem(&fs_info->dev_replace.rwsem);
1946 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1947 }
1948 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1949 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1950 {
1951 	spin_lock_init(&fs_info->qgroup_lock);
1952 	mutex_init(&fs_info->qgroup_ioctl_lock);
1953 	fs_info->qgroup_tree = RB_ROOT;
1954 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1955 	fs_info->qgroup_seq = 1;
1956 	fs_info->qgroup_ulist = NULL;
1957 	fs_info->qgroup_rescan_running = false;
1958 	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1959 	mutex_init(&fs_info->qgroup_rescan_lock);
1960 }
1961 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1962 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1963 {
1964 	u32 max_active = fs_info->thread_pool_size;
1965 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1966 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1967 
1968 	fs_info->workers =
1969 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1970 
1971 	fs_info->delalloc_workers =
1972 		btrfs_alloc_workqueue(fs_info, "delalloc",
1973 				      flags, max_active, 2);
1974 
1975 	fs_info->flush_workers =
1976 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1977 				      flags, max_active, 0);
1978 
1979 	fs_info->caching_workers =
1980 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1981 
1982 	fs_info->fixup_workers =
1983 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1984 
1985 	fs_info->endio_workers =
1986 		alloc_workqueue("btrfs-endio", flags, max_active);
1987 	fs_info->endio_meta_workers =
1988 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1989 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1990 	fs_info->endio_write_workers =
1991 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1992 				      max_active, 2);
1993 	fs_info->compressed_write_workers =
1994 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1995 	fs_info->endio_freespace_worker =
1996 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1997 				      max_active, 0);
1998 	fs_info->delayed_workers =
1999 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2000 				      max_active, 0);
2001 	fs_info->qgroup_rescan_workers =
2002 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2003 					      ordered_flags);
2004 	fs_info->discard_ctl.discard_workers =
2005 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2006 
2007 	if (!(fs_info->workers &&
2008 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2009 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2010 	      fs_info->compressed_write_workers &&
2011 	      fs_info->endio_write_workers &&
2012 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2013 	      fs_info->caching_workers && fs_info->fixup_workers &&
2014 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2015 	      fs_info->discard_ctl.discard_workers)) {
2016 		return -ENOMEM;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2022 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2023 {
2024 	struct crypto_shash *csum_shash;
2025 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2026 
2027 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2028 
2029 	if (IS_ERR(csum_shash)) {
2030 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2031 			  csum_driver);
2032 		return PTR_ERR(csum_shash);
2033 	}
2034 
2035 	fs_info->csum_shash = csum_shash;
2036 
2037 	/*
2038 	 * Check if the checksum implementation is a fast accelerated one.
2039 	 * As-is this is a bit of a hack and should be replaced once the csum
2040 	 * implementations provide that information themselves.
2041 	 */
2042 	switch (csum_type) {
2043 	case BTRFS_CSUM_TYPE_CRC32:
2044 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2045 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2046 		break;
2047 	case BTRFS_CSUM_TYPE_XXHASH:
2048 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2049 		break;
2050 	default:
2051 		break;
2052 	}
2053 
2054 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2055 			btrfs_super_csum_name(csum_type),
2056 			crypto_shash_driver_name(csum_shash));
2057 	return 0;
2058 }
2059 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2060 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2061 			    struct btrfs_fs_devices *fs_devices)
2062 {
2063 	int ret;
2064 	struct btrfs_tree_parent_check check = { 0 };
2065 	struct btrfs_root *log_tree_root;
2066 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2067 	u64 bytenr = btrfs_super_log_root(disk_super);
2068 	int level = btrfs_super_log_root_level(disk_super);
2069 
2070 	if (fs_devices->rw_devices == 0) {
2071 		btrfs_warn(fs_info, "log replay required on RO media");
2072 		return -EIO;
2073 	}
2074 
2075 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2076 					 GFP_KERNEL);
2077 	if (!log_tree_root)
2078 		return -ENOMEM;
2079 
2080 	check.level = level;
2081 	check.transid = fs_info->generation + 1;
2082 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2083 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2084 	if (IS_ERR(log_tree_root->node)) {
2085 		btrfs_warn(fs_info, "failed to read log tree");
2086 		ret = PTR_ERR(log_tree_root->node);
2087 		log_tree_root->node = NULL;
2088 		btrfs_put_root(log_tree_root);
2089 		return ret;
2090 	}
2091 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2092 		btrfs_err(fs_info, "failed to read log tree");
2093 		btrfs_put_root(log_tree_root);
2094 		return -EIO;
2095 	}
2096 
2097 	/* returns with log_tree_root freed on success */
2098 	ret = btrfs_recover_log_trees(log_tree_root);
2099 	if (ret) {
2100 		btrfs_handle_fs_error(fs_info, ret,
2101 				      "Failed to recover log tree");
2102 		btrfs_put_root(log_tree_root);
2103 		return ret;
2104 	}
2105 
2106 	if (sb_rdonly(fs_info->sb)) {
2107 		ret = btrfs_commit_super(fs_info);
2108 		if (ret)
2109 			return ret;
2110 	}
2111 
2112 	return 0;
2113 }
2114 
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2115 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2116 				      struct btrfs_path *path, u64 objectid,
2117 				      const char *name)
2118 {
2119 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2120 	struct btrfs_root *root;
2121 	u64 max_global_id = 0;
2122 	int ret;
2123 	struct btrfs_key key = {
2124 		.objectid = objectid,
2125 		.type = BTRFS_ROOT_ITEM_KEY,
2126 		.offset = 0,
2127 	};
2128 	bool found = false;
2129 
2130 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2131 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2132 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2133 		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2134 		return 0;
2135 	}
2136 
2137 	while (1) {
2138 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2139 		if (ret < 0)
2140 			break;
2141 
2142 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2143 			ret = btrfs_next_leaf(tree_root, path);
2144 			if (ret) {
2145 				if (ret > 0)
2146 					ret = 0;
2147 				break;
2148 			}
2149 		}
2150 		ret = 0;
2151 
2152 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2153 		if (key.objectid != objectid)
2154 			break;
2155 		btrfs_release_path(path);
2156 
2157 		/*
2158 		 * Just worry about this for extent tree, it'll be the same for
2159 		 * everybody.
2160 		 */
2161 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2162 			max_global_id = max(max_global_id, key.offset);
2163 
2164 		found = true;
2165 		root = read_tree_root_path(tree_root, path, &key);
2166 		if (IS_ERR(root)) {
2167 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2168 				ret = PTR_ERR(root);
2169 			break;
2170 		}
2171 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2172 		ret = btrfs_global_root_insert(root);
2173 		if (ret) {
2174 			btrfs_put_root(root);
2175 			break;
2176 		}
2177 		key.offset++;
2178 	}
2179 	btrfs_release_path(path);
2180 
2181 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2182 		fs_info->nr_global_roots = max_global_id + 1;
2183 
2184 	if (!found || ret) {
2185 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2186 			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2187 
2188 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2189 			ret = ret ? ret : -ENOENT;
2190 		else
2191 			ret = 0;
2192 		btrfs_err(fs_info, "failed to load root %s", name);
2193 	}
2194 	return ret;
2195 }
2196 
load_global_roots(struct btrfs_root * tree_root)2197 static int load_global_roots(struct btrfs_root *tree_root)
2198 {
2199 	BTRFS_PATH_AUTO_FREE(path);
2200 	int ret;
2201 
2202 	path = btrfs_alloc_path();
2203 	if (!path)
2204 		return -ENOMEM;
2205 
2206 	ret = load_global_roots_objectid(tree_root, path,
2207 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2208 	if (ret)
2209 		return ret;
2210 	ret = load_global_roots_objectid(tree_root, path,
2211 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2212 	if (ret)
2213 		return ret;
2214 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2215 		return ret;
2216 	ret = load_global_roots_objectid(tree_root, path,
2217 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2218 					 "free space");
2219 
2220 	return ret;
2221 }
2222 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2223 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2224 {
2225 	struct btrfs_root *tree_root = fs_info->tree_root;
2226 	struct btrfs_root *root;
2227 	struct btrfs_key location;
2228 	int ret;
2229 
2230 	ASSERT(fs_info->tree_root);
2231 
2232 	ret = load_global_roots(tree_root);
2233 	if (ret)
2234 		return ret;
2235 
2236 	location.type = BTRFS_ROOT_ITEM_KEY;
2237 	location.offset = 0;
2238 
2239 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2240 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2241 		root = btrfs_read_tree_root(tree_root, &location);
2242 		if (IS_ERR(root)) {
2243 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2244 				ret = PTR_ERR(root);
2245 				goto out;
2246 			}
2247 		} else {
2248 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2249 			fs_info->block_group_root = root;
2250 		}
2251 	}
2252 
2253 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2254 	root = btrfs_read_tree_root(tree_root, &location);
2255 	if (IS_ERR(root)) {
2256 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2257 			ret = PTR_ERR(root);
2258 			goto out;
2259 		}
2260 	} else {
2261 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2262 		fs_info->dev_root = root;
2263 	}
2264 	/* Initialize fs_info for all devices in any case */
2265 	ret = btrfs_init_devices_late(fs_info);
2266 	if (ret)
2267 		goto out;
2268 
2269 	/*
2270 	 * This tree can share blocks with some other fs tree during relocation
2271 	 * and we need a proper setup by btrfs_get_fs_root
2272 	 */
2273 	root = btrfs_get_fs_root(tree_root->fs_info,
2274 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2275 	if (IS_ERR(root)) {
2276 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2277 			ret = PTR_ERR(root);
2278 			goto out;
2279 		}
2280 	} else {
2281 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282 		fs_info->data_reloc_root = root;
2283 	}
2284 
2285 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2286 	root = btrfs_read_tree_root(tree_root, &location);
2287 	if (!IS_ERR(root)) {
2288 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2289 		fs_info->quota_root = root;
2290 	}
2291 
2292 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2293 	root = btrfs_read_tree_root(tree_root, &location);
2294 	if (IS_ERR(root)) {
2295 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2296 			ret = PTR_ERR(root);
2297 			if (ret != -ENOENT)
2298 				goto out;
2299 		}
2300 	} else {
2301 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 		fs_info->uuid_root = root;
2303 	}
2304 
2305 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2306 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2307 		root = btrfs_read_tree_root(tree_root, &location);
2308 		if (IS_ERR(root)) {
2309 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2310 				ret = PTR_ERR(root);
2311 				goto out;
2312 			}
2313 		} else {
2314 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315 			fs_info->stripe_root = root;
2316 		}
2317 	}
2318 
2319 	return 0;
2320 out:
2321 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2322 		   location.objectid, ret);
2323 	return ret;
2324 }
2325 
validate_sys_chunk_array(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb)2326 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2327 				    const struct btrfs_super_block *sb)
2328 {
2329 	unsigned int cur = 0; /* Offset inside the sys chunk array */
2330 	/*
2331 	 * At sb read time, fs_info is not fully initialized. Thus we have
2332 	 * to use super block sectorsize, which should have been validated.
2333 	 */
2334 	const u32 sectorsize = btrfs_super_sectorsize(sb);
2335 	u32 sys_array_size = btrfs_super_sys_array_size(sb);
2336 
2337 	if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2338 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2339 			  sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2340 		return -EUCLEAN;
2341 	}
2342 
2343 	while (cur < sys_array_size) {
2344 		struct btrfs_disk_key *disk_key;
2345 		struct btrfs_chunk *chunk;
2346 		struct btrfs_key key;
2347 		u64 type;
2348 		u16 num_stripes;
2349 		u32 len;
2350 		int ret;
2351 
2352 		disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2353 		len = sizeof(*disk_key);
2354 
2355 		if (cur + len > sys_array_size)
2356 			goto short_read;
2357 		cur += len;
2358 
2359 		btrfs_disk_key_to_cpu(&key, disk_key);
2360 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
2361 			btrfs_err(fs_info,
2362 			    "unexpected item type %u in sys_array at offset %u",
2363 				  key.type, cur);
2364 			return -EUCLEAN;
2365 		}
2366 		chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2367 		num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2368 		if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)
2369 			goto short_read;
2370 		type = btrfs_stack_chunk_type(chunk);
2371 		if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
2372 			btrfs_err(fs_info,
2373 			"invalid chunk type %llu in sys_array at offset %u",
2374 				  type, cur);
2375 			return -EUCLEAN;
2376 		}
2377 		ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2378 					      sectorsize);
2379 		if (ret < 0)
2380 			return ret;
2381 		cur += btrfs_chunk_item_size(num_stripes);
2382 	}
2383 	return 0;
2384 short_read:
2385 	btrfs_err(fs_info,
2386 	"super block sys chunk array short read, cur=%u sys_array_size=%u",
2387 		  cur, sys_array_size);
2388 	return -EUCLEAN;
2389 }
2390 
2391 /*
2392  * Real super block validation
2393  * NOTE: super csum type and incompat features will not be checked here.
2394  *
2395  * @sb:		super block to check
2396  * @mirror_num:	the super block number to check its bytenr:
2397  * 		0	the primary (1st) sb
2398  * 		1, 2	2nd and 3rd backup copy
2399  * 	       -1	skip bytenr check
2400  */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2401 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2402 			 const struct btrfs_super_block *sb, int mirror_num)
2403 {
2404 	u64 nodesize = btrfs_super_nodesize(sb);
2405 	u64 sectorsize = btrfs_super_sectorsize(sb);
2406 	int ret = 0;
2407 	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2408 
2409 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2410 		btrfs_err(fs_info, "no valid FS found");
2411 		ret = -EINVAL;
2412 	}
2413 	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2414 		if (!ignore_flags) {
2415 			btrfs_err(fs_info,
2416 			"unrecognized or unsupported super flag 0x%llx",
2417 				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2418 			ret = -EINVAL;
2419 		} else {
2420 			btrfs_info(fs_info,
2421 			"unrecognized or unsupported super flags: 0x%llx, ignored",
2422 				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2423 		}
2424 	}
2425 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2426 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2427 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2428 		ret = -EINVAL;
2429 	}
2430 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2431 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2432 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2433 		ret = -EINVAL;
2434 	}
2435 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2436 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2437 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2438 		ret = -EINVAL;
2439 	}
2440 
2441 	/*
2442 	 * Check sectorsize and nodesize first, other check will need it.
2443 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2444 	 */
2445 	if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE ||
2446 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2447 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2448 		ret = -EINVAL;
2449 	}
2450 
2451 	/*
2452 	 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE.
2453 	 *
2454 	 * For 4K page sized systems with non-debug builds, all 3 matches (4K).
2455 	 * For 4K page sized systems with debug builds, there are two block sizes
2456 	 * supported. (4K and 2K)
2457 	 *
2458 	 * We can support 16K sectorsize with 64K page size without problem,
2459 	 * but such sectorsize/pagesize combination doesn't make much sense.
2460 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2461 	 * beginning.
2462 	 */
2463 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K &&
2464 				       sectorsize != PAGE_SIZE &&
2465 				       sectorsize != BTRFS_MIN_BLOCKSIZE)) {
2466 		btrfs_err(fs_info,
2467 			"sectorsize %llu not yet supported for page size %lu",
2468 			sectorsize, PAGE_SIZE);
2469 		ret = -EINVAL;
2470 	}
2471 
2472 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2473 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2474 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2475 		ret = -EINVAL;
2476 	}
2477 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2478 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2479 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2480 		ret = -EINVAL;
2481 	}
2482 
2483 	/* Root alignment check */
2484 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2485 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2486 			   btrfs_super_root(sb));
2487 		ret = -EINVAL;
2488 	}
2489 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2490 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2491 			   btrfs_super_chunk_root(sb));
2492 		ret = -EINVAL;
2493 	}
2494 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2495 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2496 			   btrfs_super_log_root(sb));
2497 		ret = -EINVAL;
2498 	}
2499 
2500 	if (!fs_info->fs_devices->temp_fsid &&
2501 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2502 		btrfs_err(fs_info,
2503 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2504 			  sb->fsid, fs_info->fs_devices->fsid);
2505 		ret = -EINVAL;
2506 	}
2507 
2508 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2509 		   BTRFS_FSID_SIZE) != 0) {
2510 		btrfs_err(fs_info,
2511 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2512 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2513 		ret = -EINVAL;
2514 	}
2515 
2516 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2517 		   BTRFS_FSID_SIZE) != 0) {
2518 		btrfs_err(fs_info,
2519 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2520 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2521 		ret = -EINVAL;
2522 	}
2523 
2524 	/*
2525 	 * Artificial requirement for block-group-tree to force newer features
2526 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2527 	 */
2528 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2529 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2530 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2531 		btrfs_err(fs_info,
2532 		"block-group-tree feature requires free-space-tree and no-holes");
2533 		ret = -EINVAL;
2534 	}
2535 
2536 	/*
2537 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2538 	 * done later
2539 	 */
2540 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2541 		btrfs_err(fs_info, "bytes_used is too small %llu",
2542 			  btrfs_super_bytes_used(sb));
2543 		ret = -EINVAL;
2544 	}
2545 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2546 		btrfs_err(fs_info, "invalid stripesize %u",
2547 			  btrfs_super_stripesize(sb));
2548 		ret = -EINVAL;
2549 	}
2550 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2551 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2552 			   btrfs_super_num_devices(sb));
2553 	if (btrfs_super_num_devices(sb) == 0) {
2554 		btrfs_err(fs_info, "number of devices is 0");
2555 		ret = -EINVAL;
2556 	}
2557 
2558 	if (mirror_num >= 0 &&
2559 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2560 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2561 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2562 		ret = -EINVAL;
2563 	}
2564 
2565 	if (ret)
2566 		return ret;
2567 
2568 	ret = validate_sys_chunk_array(fs_info, sb);
2569 
2570 	/*
2571 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2572 	 * and one chunk
2573 	 */
2574 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2575 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2576 			  btrfs_super_sys_array_size(sb),
2577 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2578 		ret = -EINVAL;
2579 	}
2580 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2581 			+ sizeof(struct btrfs_chunk)) {
2582 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2583 			  btrfs_super_sys_array_size(sb),
2584 			  sizeof(struct btrfs_disk_key)
2585 			  + sizeof(struct btrfs_chunk));
2586 		ret = -EINVAL;
2587 	}
2588 
2589 	/*
2590 	 * The generation is a global counter, we'll trust it more than the others
2591 	 * but it's still possible that it's the one that's wrong.
2592 	 */
2593 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2594 		btrfs_warn(fs_info,
2595 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2596 			btrfs_super_generation(sb),
2597 			btrfs_super_chunk_root_generation(sb));
2598 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2599 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2600 		btrfs_warn(fs_info,
2601 			"suspicious: generation < cache_generation: %llu < %llu",
2602 			btrfs_super_generation(sb),
2603 			btrfs_super_cache_generation(sb));
2604 
2605 	return ret;
2606 }
2607 
2608 /*
2609  * Validation of super block at mount time.
2610  * Some checks already done early at mount time, like csum type and incompat
2611  * flags will be skipped.
2612  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2613 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2614 {
2615 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2616 }
2617 
2618 /*
2619  * Validation of super block at write time.
2620  * Some checks like bytenr check will be skipped as their values will be
2621  * overwritten soon.
2622  * Extra checks like csum type and incompat flags will be done here.
2623  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2624 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2625 				      struct btrfs_super_block *sb)
2626 {
2627 	int ret;
2628 
2629 	ret = btrfs_validate_super(fs_info, sb, -1);
2630 	if (ret < 0)
2631 		goto out;
2632 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2633 		ret = -EUCLEAN;
2634 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2635 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2636 		goto out;
2637 	}
2638 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2639 		ret = -EUCLEAN;
2640 		btrfs_err(fs_info,
2641 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2642 			  btrfs_super_incompat_flags(sb),
2643 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2644 		goto out;
2645 	}
2646 out:
2647 	if (ret < 0)
2648 		btrfs_err(fs_info,
2649 		"super block corruption detected before writing it to disk");
2650 	return ret;
2651 }
2652 
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2653 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2654 {
2655 	struct btrfs_tree_parent_check check = {
2656 		.level = level,
2657 		.transid = gen,
2658 		.owner_root = btrfs_root_id(root)
2659 	};
2660 	int ret = 0;
2661 
2662 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2663 	if (IS_ERR(root->node)) {
2664 		ret = PTR_ERR(root->node);
2665 		root->node = NULL;
2666 		return ret;
2667 	}
2668 	if (!extent_buffer_uptodate(root->node)) {
2669 		free_extent_buffer(root->node);
2670 		root->node = NULL;
2671 		return -EIO;
2672 	}
2673 
2674 	btrfs_set_root_node(&root->root_item, root->node);
2675 	root->commit_root = btrfs_root_node(root);
2676 	btrfs_set_root_refs(&root->root_item, 1);
2677 	return ret;
2678 }
2679 
load_important_roots(struct btrfs_fs_info * fs_info)2680 static int load_important_roots(struct btrfs_fs_info *fs_info)
2681 {
2682 	struct btrfs_super_block *sb = fs_info->super_copy;
2683 	u64 gen, bytenr;
2684 	int level, ret;
2685 
2686 	bytenr = btrfs_super_root(sb);
2687 	gen = btrfs_super_generation(sb);
2688 	level = btrfs_super_root_level(sb);
2689 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2690 	if (ret) {
2691 		btrfs_warn(fs_info, "couldn't read tree root");
2692 		return ret;
2693 	}
2694 	return 0;
2695 }
2696 
init_tree_roots(struct btrfs_fs_info * fs_info)2697 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2698 {
2699 	int backup_index = find_newest_super_backup(fs_info);
2700 	struct btrfs_super_block *sb = fs_info->super_copy;
2701 	struct btrfs_root *tree_root = fs_info->tree_root;
2702 	bool handle_error = false;
2703 	int ret = 0;
2704 	int i;
2705 
2706 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2707 		if (handle_error) {
2708 			if (!IS_ERR(tree_root->node))
2709 				free_extent_buffer(tree_root->node);
2710 			tree_root->node = NULL;
2711 
2712 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2713 				break;
2714 
2715 			free_root_pointers(fs_info, 0);
2716 
2717 			/*
2718 			 * Don't use the log in recovery mode, it won't be
2719 			 * valid
2720 			 */
2721 			btrfs_set_super_log_root(sb, 0);
2722 
2723 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2724 			ret = read_backup_root(fs_info, i);
2725 			backup_index = ret;
2726 			if (ret < 0)
2727 				return ret;
2728 		}
2729 
2730 		ret = load_important_roots(fs_info);
2731 		if (ret) {
2732 			handle_error = true;
2733 			continue;
2734 		}
2735 
2736 		/*
2737 		 * No need to hold btrfs_root::objectid_mutex since the fs
2738 		 * hasn't been fully initialised and we are the only user
2739 		 */
2740 		ret = btrfs_init_root_free_objectid(tree_root);
2741 		if (ret < 0) {
2742 			handle_error = true;
2743 			continue;
2744 		}
2745 
2746 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2747 
2748 		ret = btrfs_read_roots(fs_info);
2749 		if (ret < 0) {
2750 			handle_error = true;
2751 			continue;
2752 		}
2753 
2754 		/* All successful */
2755 		fs_info->generation = btrfs_header_generation(tree_root->node);
2756 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2757 		fs_info->last_reloc_trans = 0;
2758 
2759 		/* Always begin writing backup roots after the one being used */
2760 		if (backup_index < 0) {
2761 			fs_info->backup_root_index = 0;
2762 		} else {
2763 			fs_info->backup_root_index = backup_index + 1;
2764 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2765 		}
2766 		break;
2767 	}
2768 
2769 	return ret;
2770 }
2771 
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2772 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2773 {
2774 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2775 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2776 	INIT_LIST_HEAD(&fs_info->trans_list);
2777 	INIT_LIST_HEAD(&fs_info->dead_roots);
2778 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2779 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2780 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2781 	spin_lock_init(&fs_info->delalloc_root_lock);
2782 	spin_lock_init(&fs_info->trans_lock);
2783 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2784 	spin_lock_init(&fs_info->delayed_iput_lock);
2785 	spin_lock_init(&fs_info->defrag_inodes_lock);
2786 	spin_lock_init(&fs_info->super_lock);
2787 	spin_lock_init(&fs_info->buffer_lock);
2788 	spin_lock_init(&fs_info->unused_bgs_lock);
2789 	spin_lock_init(&fs_info->treelog_bg_lock);
2790 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2791 	spin_lock_init(&fs_info->relocation_bg_lock);
2792 	rwlock_init(&fs_info->tree_mod_log_lock);
2793 	rwlock_init(&fs_info->global_root_lock);
2794 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2795 	mutex_init(&fs_info->reclaim_bgs_lock);
2796 	mutex_init(&fs_info->reloc_mutex);
2797 	mutex_init(&fs_info->delalloc_root_mutex);
2798 	mutex_init(&fs_info->zoned_meta_io_lock);
2799 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2800 	seqlock_init(&fs_info->profiles_lock);
2801 
2802 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2803 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2804 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2805 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2806 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2807 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2808 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2809 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2810 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2811 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2812 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2813 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2814 
2815 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2816 	INIT_LIST_HEAD(&fs_info->space_info);
2817 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2818 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2819 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2820 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2821 #ifdef CONFIG_BTRFS_DEBUG
2822 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2823 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2824 	spin_lock_init(&fs_info->eb_leak_lock);
2825 #endif
2826 	fs_info->mapping_tree = RB_ROOT_CACHED;
2827 	rwlock_init(&fs_info->mapping_tree_lock);
2828 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2829 			     BTRFS_BLOCK_RSV_GLOBAL);
2830 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2831 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2832 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2833 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2834 			     BTRFS_BLOCK_RSV_DELOPS);
2835 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2836 			     BTRFS_BLOCK_RSV_DELREFS);
2837 
2838 	atomic_set(&fs_info->async_delalloc_pages, 0);
2839 	atomic_set(&fs_info->defrag_running, 0);
2840 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2841 	atomic64_set(&fs_info->tree_mod_seq, 0);
2842 	fs_info->global_root_tree = RB_ROOT;
2843 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2844 	fs_info->metadata_ratio = 0;
2845 	fs_info->defrag_inodes = RB_ROOT;
2846 	atomic64_set(&fs_info->free_chunk_space, 0);
2847 	fs_info->tree_mod_log = RB_ROOT;
2848 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2849 	btrfs_init_ref_verify(fs_info);
2850 
2851 	fs_info->thread_pool_size = min_t(unsigned long,
2852 					  num_online_cpus() + 2, 8);
2853 
2854 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2855 	spin_lock_init(&fs_info->ordered_root_lock);
2856 
2857 	btrfs_init_scrub(fs_info);
2858 	btrfs_init_balance(fs_info);
2859 	btrfs_init_async_reclaim_work(fs_info);
2860 	btrfs_init_extent_map_shrinker_work(fs_info);
2861 
2862 	rwlock_init(&fs_info->block_group_cache_lock);
2863 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2864 
2865 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2866 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2867 
2868 	mutex_init(&fs_info->ordered_operations_mutex);
2869 	mutex_init(&fs_info->tree_log_mutex);
2870 	mutex_init(&fs_info->chunk_mutex);
2871 	mutex_init(&fs_info->transaction_kthread_mutex);
2872 	mutex_init(&fs_info->cleaner_mutex);
2873 	mutex_init(&fs_info->ro_block_group_mutex);
2874 	init_rwsem(&fs_info->commit_root_sem);
2875 	init_rwsem(&fs_info->cleanup_work_sem);
2876 	init_rwsem(&fs_info->subvol_sem);
2877 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2878 
2879 	btrfs_init_dev_replace_locks(fs_info);
2880 	btrfs_init_qgroup(fs_info);
2881 	btrfs_discard_init(fs_info);
2882 
2883 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2884 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2885 
2886 	init_waitqueue_head(&fs_info->transaction_throttle);
2887 	init_waitqueue_head(&fs_info->transaction_wait);
2888 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2889 	init_waitqueue_head(&fs_info->async_submit_wait);
2890 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2891 
2892 	/* Usable values until the real ones are cached from the superblock */
2893 	fs_info->nodesize = 4096;
2894 	fs_info->sectorsize = 4096;
2895 	fs_info->sectorsize_bits = ilog2(4096);
2896 	fs_info->stripesize = 4096;
2897 
2898 	/* Default compress algorithm when user does -o compress */
2899 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2900 
2901 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2902 
2903 	spin_lock_init(&fs_info->swapfile_pins_lock);
2904 	fs_info->swapfile_pins = RB_ROOT;
2905 
2906 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2907 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2908 }
2909 
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2910 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2911 {
2912 	int ret;
2913 
2914 	fs_info->sb = sb;
2915 	/* Temporary fixed values for block size until we read the superblock. */
2916 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2917 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2918 
2919 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2920 	if (ret)
2921 		return ret;
2922 
2923 	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2924 	if (ret)
2925 		return ret;
2926 
2927 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2928 	if (ret)
2929 		return ret;
2930 
2931 	ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2932 	if (ret)
2933 		return ret;
2934 
2935 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2936 					(1 + ilog2(nr_cpu_ids));
2937 
2938 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2939 	if (ret)
2940 		return ret;
2941 
2942 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2943 			GFP_KERNEL);
2944 	if (ret)
2945 		return ret;
2946 
2947 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2948 					GFP_KERNEL);
2949 	if (!fs_info->delayed_root)
2950 		return -ENOMEM;
2951 	btrfs_init_delayed_root(fs_info->delayed_root);
2952 
2953 	if (sb_rdonly(sb))
2954 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2955 	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2956 		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2957 
2958 	return btrfs_alloc_stripe_hash_table(fs_info);
2959 }
2960 
btrfs_uuid_rescan_kthread(void * data)2961 static int btrfs_uuid_rescan_kthread(void *data)
2962 {
2963 	struct btrfs_fs_info *fs_info = data;
2964 	int ret;
2965 
2966 	/*
2967 	 * 1st step is to iterate through the existing UUID tree and
2968 	 * to delete all entries that contain outdated data.
2969 	 * 2nd step is to add all missing entries to the UUID tree.
2970 	 */
2971 	ret = btrfs_uuid_tree_iterate(fs_info);
2972 	if (ret < 0) {
2973 		if (ret != -EINTR)
2974 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2975 				   ret);
2976 		up(&fs_info->uuid_tree_rescan_sem);
2977 		return ret;
2978 	}
2979 	return btrfs_uuid_scan_kthread(data);
2980 }
2981 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2982 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2983 {
2984 	struct task_struct *task;
2985 
2986 	down(&fs_info->uuid_tree_rescan_sem);
2987 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2988 	if (IS_ERR(task)) {
2989 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2990 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2991 		up(&fs_info->uuid_tree_rescan_sem);
2992 		return PTR_ERR(task);
2993 	}
2994 
2995 	return 0;
2996 }
2997 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2998 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2999 {
3000 	u64 root_objectid = 0;
3001 	struct btrfs_root *gang[8];
3002 	int ret = 0;
3003 
3004 	while (1) {
3005 		unsigned int found;
3006 
3007 		spin_lock(&fs_info->fs_roots_radix_lock);
3008 		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3009 					     (void **)gang, root_objectid,
3010 					     ARRAY_SIZE(gang));
3011 		if (!found) {
3012 			spin_unlock(&fs_info->fs_roots_radix_lock);
3013 			break;
3014 		}
3015 		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
3016 
3017 		for (int i = 0; i < found; i++) {
3018 			/* Avoid to grab roots in dead_roots. */
3019 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3020 				gang[i] = NULL;
3021 				continue;
3022 			}
3023 			/* Grab all the search result for later use. */
3024 			gang[i] = btrfs_grab_root(gang[i]);
3025 		}
3026 		spin_unlock(&fs_info->fs_roots_radix_lock);
3027 
3028 		for (int i = 0; i < found; i++) {
3029 			if (!gang[i])
3030 				continue;
3031 			root_objectid = btrfs_root_id(gang[i]);
3032 			/*
3033 			 * Continue to release the remaining roots after the first
3034 			 * error without cleanup and preserve the first error
3035 			 * for the return.
3036 			 */
3037 			if (!ret)
3038 				ret = btrfs_orphan_cleanup(gang[i]);
3039 			btrfs_put_root(gang[i]);
3040 		}
3041 		if (ret)
3042 			break;
3043 
3044 		root_objectid++;
3045 	}
3046 	return ret;
3047 }
3048 
3049 /*
3050  * Mounting logic specific to read-write file systems. Shared by open_ctree
3051  * and btrfs_remount when remounting from read-only to read-write.
3052  */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3053 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3054 {
3055 	int ret;
3056 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3057 	bool rebuild_free_space_tree = false;
3058 
3059 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3060 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3061 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3062 			btrfs_warn(fs_info,
3063 				   "'clear_cache' option is ignored with extent tree v2");
3064 		else
3065 			rebuild_free_space_tree = true;
3066 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3067 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3068 		btrfs_warn(fs_info, "free space tree is invalid");
3069 		rebuild_free_space_tree = true;
3070 	}
3071 
3072 	if (rebuild_free_space_tree) {
3073 		btrfs_info(fs_info, "rebuilding free space tree");
3074 		ret = btrfs_rebuild_free_space_tree(fs_info);
3075 		if (ret) {
3076 			btrfs_warn(fs_info,
3077 				   "failed to rebuild free space tree: %d", ret);
3078 			goto out;
3079 		}
3080 	}
3081 
3082 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3083 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3084 		btrfs_info(fs_info, "disabling free space tree");
3085 		ret = btrfs_delete_free_space_tree(fs_info);
3086 		if (ret) {
3087 			btrfs_warn(fs_info,
3088 				   "failed to disable free space tree: %d", ret);
3089 			goto out;
3090 		}
3091 	}
3092 
3093 	/*
3094 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3095 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3096 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3097 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3098 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3099 	 * item before the root's tree is deleted - this means that if we unmount
3100 	 * or crash before the deletion completes, on the next mount we will not
3101 	 * delete what remains of the tree because the orphan item does not
3102 	 * exists anymore, which is what tells us we have a pending deletion.
3103 	 */
3104 	ret = btrfs_find_orphan_roots(fs_info);
3105 	if (ret)
3106 		goto out;
3107 
3108 	ret = btrfs_cleanup_fs_roots(fs_info);
3109 	if (ret)
3110 		goto out;
3111 
3112 	down_read(&fs_info->cleanup_work_sem);
3113 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3114 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3115 		up_read(&fs_info->cleanup_work_sem);
3116 		goto out;
3117 	}
3118 	up_read(&fs_info->cleanup_work_sem);
3119 
3120 	mutex_lock(&fs_info->cleaner_mutex);
3121 	ret = btrfs_recover_relocation(fs_info);
3122 	mutex_unlock(&fs_info->cleaner_mutex);
3123 	if (ret < 0) {
3124 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3125 		goto out;
3126 	}
3127 
3128 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3129 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3130 		btrfs_info(fs_info, "creating free space tree");
3131 		ret = btrfs_create_free_space_tree(fs_info);
3132 		if (ret) {
3133 			btrfs_warn(fs_info,
3134 				"failed to create free space tree: %d", ret);
3135 			goto out;
3136 		}
3137 	}
3138 
3139 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3140 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3141 		if (ret)
3142 			goto out;
3143 	}
3144 
3145 	ret = btrfs_resume_balance_async(fs_info);
3146 	if (ret)
3147 		goto out;
3148 
3149 	ret = btrfs_resume_dev_replace_async(fs_info);
3150 	if (ret) {
3151 		btrfs_warn(fs_info, "failed to resume dev_replace");
3152 		goto out;
3153 	}
3154 
3155 	btrfs_qgroup_rescan_resume(fs_info);
3156 
3157 	if (!fs_info->uuid_root) {
3158 		btrfs_info(fs_info, "creating UUID tree");
3159 		ret = btrfs_create_uuid_tree(fs_info);
3160 		if (ret) {
3161 			btrfs_warn(fs_info,
3162 				   "failed to create the UUID tree %d", ret);
3163 			goto out;
3164 		}
3165 	}
3166 
3167 out:
3168 	return ret;
3169 }
3170 
3171 /*
3172  * Do various sanity and dependency checks of different features.
3173  *
3174  * @is_rw_mount:	If the mount is read-write.
3175  *
3176  * This is the place for less strict checks (like for subpage or artificial
3177  * feature dependencies).
3178  *
3179  * For strict checks or possible corruption detection, see
3180  * btrfs_validate_super().
3181  *
3182  * This should be called after btrfs_parse_options(), as some mount options
3183  * (space cache related) can modify on-disk format like free space tree and
3184  * screw up certain feature dependencies.
3185  */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3186 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3187 {
3188 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3189 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3190 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3191 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3192 
3193 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3194 		btrfs_err(fs_info,
3195 		"cannot mount because of unknown incompat features (0x%llx)",
3196 		    incompat);
3197 		return -EINVAL;
3198 	}
3199 
3200 	/* Runtime limitation for mixed block groups. */
3201 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3202 	    (fs_info->sectorsize != fs_info->nodesize)) {
3203 		btrfs_err(fs_info,
3204 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3205 			fs_info->nodesize, fs_info->sectorsize);
3206 		return -EINVAL;
3207 	}
3208 
3209 	/* Mixed backref is an always-enabled feature. */
3210 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3211 
3212 	/* Set compression related flags just in case. */
3213 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3214 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3215 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3216 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3217 
3218 	/*
3219 	 * An ancient flag, which should really be marked deprecated.
3220 	 * Such runtime limitation doesn't really need a incompat flag.
3221 	 */
3222 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3223 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3224 
3225 	if (compat_ro_unsupp && is_rw_mount) {
3226 		btrfs_err(fs_info,
3227 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3228 		       compat_ro);
3229 		return -EINVAL;
3230 	}
3231 
3232 	/*
3233 	 * We have unsupported RO compat features, although RO mounted, we
3234 	 * should not cause any metadata writes, including log replay.
3235 	 * Or we could screw up whatever the new feature requires.
3236 	 */
3237 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3238 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3239 		btrfs_err(fs_info,
3240 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3241 			  compat_ro);
3242 		return -EINVAL;
3243 	}
3244 
3245 	/*
3246 	 * Artificial limitations for block group tree, to force
3247 	 * block-group-tree to rely on no-holes and free-space-tree.
3248 	 */
3249 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3250 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3251 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3252 		btrfs_err(fs_info,
3253 "block-group-tree feature requires no-holes and free-space-tree features");
3254 		return -EINVAL;
3255 	}
3256 
3257 	/*
3258 	 * Subpage runtime limitation on v1 cache.
3259 	 *
3260 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3261 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3262 	 * going to be deprecated anyway.
3263 	 */
3264 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3265 		btrfs_warn(fs_info,
3266 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3267 			   PAGE_SIZE, fs_info->sectorsize);
3268 		return -EINVAL;
3269 	}
3270 
3271 	/* This can be called by remount, we need to protect the super block. */
3272 	spin_lock(&fs_info->super_lock);
3273 	btrfs_set_super_incompat_flags(disk_super, incompat);
3274 	spin_unlock(&fs_info->super_lock);
3275 
3276 	return 0;
3277 }
3278 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices)3279 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3280 {
3281 	u32 sectorsize;
3282 	u32 nodesize;
3283 	u32 stripesize;
3284 	u64 generation;
3285 	u16 csum_type;
3286 	struct btrfs_super_block *disk_super;
3287 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3288 	struct btrfs_root *tree_root;
3289 	struct btrfs_root *chunk_root;
3290 	int ret;
3291 	int level;
3292 
3293 	ret = init_mount_fs_info(fs_info, sb);
3294 	if (ret)
3295 		goto fail;
3296 
3297 	/* These need to be init'ed before we start creating inodes and such. */
3298 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3299 				     GFP_KERNEL);
3300 	fs_info->tree_root = tree_root;
3301 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3302 				      GFP_KERNEL);
3303 	fs_info->chunk_root = chunk_root;
3304 	if (!tree_root || !chunk_root) {
3305 		ret = -ENOMEM;
3306 		goto fail;
3307 	}
3308 
3309 	ret = btrfs_init_btree_inode(sb);
3310 	if (ret)
3311 		goto fail;
3312 
3313 	invalidate_bdev(fs_devices->latest_dev->bdev);
3314 
3315 	/*
3316 	 * Read super block and check the signature bytes only
3317 	 */
3318 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3319 	if (IS_ERR(disk_super)) {
3320 		ret = PTR_ERR(disk_super);
3321 		goto fail_alloc;
3322 	}
3323 
3324 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3325 	/*
3326 	 * Verify the type first, if that or the checksum value are
3327 	 * corrupted, we'll find out
3328 	 */
3329 	csum_type = btrfs_super_csum_type(disk_super);
3330 	if (!btrfs_supported_super_csum(csum_type)) {
3331 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3332 			  csum_type);
3333 		ret = -EINVAL;
3334 		btrfs_release_disk_super(disk_super);
3335 		goto fail_alloc;
3336 	}
3337 
3338 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3339 
3340 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3341 	if (ret) {
3342 		btrfs_release_disk_super(disk_super);
3343 		goto fail_alloc;
3344 	}
3345 
3346 	/*
3347 	 * We want to check superblock checksum, the type is stored inside.
3348 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3349 	 */
3350 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3351 		btrfs_err(fs_info, "superblock checksum mismatch");
3352 		ret = -EINVAL;
3353 		btrfs_release_disk_super(disk_super);
3354 		goto fail_alloc;
3355 	}
3356 
3357 	/*
3358 	 * super_copy is zeroed at allocation time and we never touch the
3359 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3360 	 * the whole block of INFO_SIZE
3361 	 */
3362 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3363 	btrfs_release_disk_super(disk_super);
3364 
3365 	disk_super = fs_info->super_copy;
3366 
3367 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3368 	       sizeof(*fs_info->super_for_commit));
3369 
3370 	ret = btrfs_validate_mount_super(fs_info);
3371 	if (ret) {
3372 		btrfs_err(fs_info, "superblock contains fatal errors");
3373 		ret = -EINVAL;
3374 		goto fail_alloc;
3375 	}
3376 
3377 	if (!btrfs_super_root(disk_super)) {
3378 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3379 		ret = -EINVAL;
3380 		goto fail_alloc;
3381 	}
3382 
3383 	/* check FS state, whether FS is broken. */
3384 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3385 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3386 
3387 	/* Set up fs_info before parsing mount options */
3388 	nodesize = btrfs_super_nodesize(disk_super);
3389 	sectorsize = btrfs_super_sectorsize(disk_super);
3390 	stripesize = sectorsize;
3391 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3392 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3393 
3394 	fs_info->nodesize = nodesize;
3395 	fs_info->sectorsize = sectorsize;
3396 	fs_info->sectorsize_bits = ilog2(sectorsize);
3397 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3398 	fs_info->stripesize = stripesize;
3399 	fs_info->fs_devices->fs_info = fs_info;
3400 
3401 	/*
3402 	 * Handle the space caching options appropriately now that we have the
3403 	 * super block loaded and validated.
3404 	 */
3405 	btrfs_set_free_space_cache_settings(fs_info);
3406 
3407 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3408 		ret = -EINVAL;
3409 		goto fail_alloc;
3410 	}
3411 
3412 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3413 	if (ret < 0)
3414 		goto fail_alloc;
3415 
3416 	/*
3417 	 * At this point our mount options are validated, if we set ->max_inline
3418 	 * to something non-standard make sure we truncate it to sectorsize.
3419 	 */
3420 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3421 
3422 	ret = btrfs_init_workqueues(fs_info);
3423 	if (ret)
3424 		goto fail_sb_buffer;
3425 
3426 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3427 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3428 
3429 	/* Update the values for the current filesystem. */
3430 	sb->s_blocksize = sectorsize;
3431 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3432 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3433 
3434 	mutex_lock(&fs_info->chunk_mutex);
3435 	ret = btrfs_read_sys_array(fs_info);
3436 	mutex_unlock(&fs_info->chunk_mutex);
3437 	if (ret) {
3438 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3439 		goto fail_sb_buffer;
3440 	}
3441 
3442 	generation = btrfs_super_chunk_root_generation(disk_super);
3443 	level = btrfs_super_chunk_root_level(disk_super);
3444 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3445 			      generation, level);
3446 	if (ret) {
3447 		btrfs_err(fs_info, "failed to read chunk root");
3448 		goto fail_tree_roots;
3449 	}
3450 
3451 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3452 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3453 			   BTRFS_UUID_SIZE);
3454 
3455 	ret = btrfs_read_chunk_tree(fs_info);
3456 	if (ret) {
3457 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3458 		goto fail_tree_roots;
3459 	}
3460 
3461 	/*
3462 	 * At this point we know all the devices that make this filesystem,
3463 	 * including the seed devices but we don't know yet if the replace
3464 	 * target is required. So free devices that are not part of this
3465 	 * filesystem but skip the replace target device which is checked
3466 	 * below in btrfs_init_dev_replace().
3467 	 */
3468 	btrfs_free_extra_devids(fs_devices);
3469 	if (!fs_devices->latest_dev->bdev) {
3470 		btrfs_err(fs_info, "failed to read devices");
3471 		ret = -EIO;
3472 		goto fail_tree_roots;
3473 	}
3474 
3475 	ret = init_tree_roots(fs_info);
3476 	if (ret)
3477 		goto fail_tree_roots;
3478 
3479 	/*
3480 	 * Get zone type information of zoned block devices. This will also
3481 	 * handle emulation of a zoned filesystem if a regular device has the
3482 	 * zoned incompat feature flag set.
3483 	 */
3484 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3485 	if (ret) {
3486 		btrfs_err(fs_info,
3487 			  "zoned: failed to read device zone info: %d", ret);
3488 		goto fail_block_groups;
3489 	}
3490 
3491 	/*
3492 	 * If we have a uuid root and we're not being told to rescan we need to
3493 	 * check the generation here so we can set the
3494 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3495 	 * transaction during a balance or the log replay without updating the
3496 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3497 	 * even though it was perfectly fine.
3498 	 */
3499 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3500 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3501 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3502 
3503 	ret = btrfs_verify_dev_extents(fs_info);
3504 	if (ret) {
3505 		btrfs_err(fs_info,
3506 			  "failed to verify dev extents against chunks: %d",
3507 			  ret);
3508 		goto fail_block_groups;
3509 	}
3510 	ret = btrfs_recover_balance(fs_info);
3511 	if (ret) {
3512 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3513 		goto fail_block_groups;
3514 	}
3515 
3516 	ret = btrfs_init_dev_stats(fs_info);
3517 	if (ret) {
3518 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3519 		goto fail_block_groups;
3520 	}
3521 
3522 	ret = btrfs_init_dev_replace(fs_info);
3523 	if (ret) {
3524 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3525 		goto fail_block_groups;
3526 	}
3527 
3528 	ret = btrfs_check_zoned_mode(fs_info);
3529 	if (ret) {
3530 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3531 			  ret);
3532 		goto fail_block_groups;
3533 	}
3534 
3535 	ret = btrfs_sysfs_add_fsid(fs_devices);
3536 	if (ret) {
3537 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3538 				ret);
3539 		goto fail_block_groups;
3540 	}
3541 
3542 	ret = btrfs_sysfs_add_mounted(fs_info);
3543 	if (ret) {
3544 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3545 		goto fail_fsdev_sysfs;
3546 	}
3547 
3548 	ret = btrfs_init_space_info(fs_info);
3549 	if (ret) {
3550 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3551 		goto fail_sysfs;
3552 	}
3553 
3554 	ret = btrfs_read_block_groups(fs_info);
3555 	if (ret) {
3556 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3557 		goto fail_sysfs;
3558 	}
3559 
3560 	btrfs_free_zone_cache(fs_info);
3561 
3562 	btrfs_check_active_zone_reservation(fs_info);
3563 
3564 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3565 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3566 		btrfs_warn(fs_info,
3567 		"writable mount is not allowed due to too many missing devices");
3568 		ret = -EINVAL;
3569 		goto fail_sysfs;
3570 	}
3571 
3572 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3573 					       "btrfs-cleaner");
3574 	if (IS_ERR(fs_info->cleaner_kthread)) {
3575 		ret = PTR_ERR(fs_info->cleaner_kthread);
3576 		goto fail_sysfs;
3577 	}
3578 
3579 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3580 						   tree_root,
3581 						   "btrfs-transaction");
3582 	if (IS_ERR(fs_info->transaction_kthread)) {
3583 		ret = PTR_ERR(fs_info->transaction_kthread);
3584 		goto fail_cleaner;
3585 	}
3586 
3587 	ret = btrfs_read_qgroup_config(fs_info);
3588 	if (ret)
3589 		goto fail_trans_kthread;
3590 
3591 	if (btrfs_build_ref_tree(fs_info))
3592 		btrfs_err(fs_info, "couldn't build ref tree");
3593 
3594 	/* do not make disk changes in broken FS or nologreplay is given */
3595 	if (btrfs_super_log_root(disk_super) != 0 &&
3596 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3597 		btrfs_info(fs_info, "start tree-log replay");
3598 		ret = btrfs_replay_log(fs_info, fs_devices);
3599 		if (ret)
3600 			goto fail_qgroup;
3601 	}
3602 
3603 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3604 	if (IS_ERR(fs_info->fs_root)) {
3605 		ret = PTR_ERR(fs_info->fs_root);
3606 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3607 		fs_info->fs_root = NULL;
3608 		goto fail_qgroup;
3609 	}
3610 
3611 	if (sb_rdonly(sb))
3612 		return 0;
3613 
3614 	ret = btrfs_start_pre_rw_mount(fs_info);
3615 	if (ret) {
3616 		close_ctree(fs_info);
3617 		return ret;
3618 	}
3619 	btrfs_discard_resume(fs_info);
3620 
3621 	if (fs_info->uuid_root &&
3622 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3623 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3624 		btrfs_info(fs_info, "checking UUID tree");
3625 		ret = btrfs_check_uuid_tree(fs_info);
3626 		if (ret) {
3627 			btrfs_warn(fs_info,
3628 				"failed to check the UUID tree: %d", ret);
3629 			close_ctree(fs_info);
3630 			return ret;
3631 		}
3632 	}
3633 
3634 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3635 
3636 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3637 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3638 		wake_up_process(fs_info->cleaner_kthread);
3639 
3640 	return 0;
3641 
3642 fail_qgroup:
3643 	btrfs_free_qgroup_config(fs_info);
3644 fail_trans_kthread:
3645 	kthread_stop(fs_info->transaction_kthread);
3646 	btrfs_cleanup_transaction(fs_info);
3647 	btrfs_free_fs_roots(fs_info);
3648 fail_cleaner:
3649 	kthread_stop(fs_info->cleaner_kthread);
3650 
3651 	/*
3652 	 * make sure we're done with the btree inode before we stop our
3653 	 * kthreads
3654 	 */
3655 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3656 
3657 fail_sysfs:
3658 	btrfs_sysfs_remove_mounted(fs_info);
3659 
3660 fail_fsdev_sysfs:
3661 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3662 
3663 fail_block_groups:
3664 	btrfs_put_block_group_cache(fs_info);
3665 
3666 fail_tree_roots:
3667 	if (fs_info->data_reloc_root)
3668 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3669 	free_root_pointers(fs_info, true);
3670 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3671 
3672 fail_sb_buffer:
3673 	btrfs_stop_all_workers(fs_info);
3674 	btrfs_free_block_groups(fs_info);
3675 fail_alloc:
3676 	btrfs_mapping_tree_free(fs_info);
3677 
3678 	iput(fs_info->btree_inode);
3679 fail:
3680 	btrfs_close_devices(fs_info->fs_devices);
3681 	ASSERT(ret < 0);
3682 	return ret;
3683 }
3684 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3685 
btrfs_end_super_write(struct bio * bio)3686 static void btrfs_end_super_write(struct bio *bio)
3687 {
3688 	struct btrfs_device *device = bio->bi_private;
3689 	struct folio_iter fi;
3690 
3691 	bio_for_each_folio_all(fi, bio) {
3692 		if (bio->bi_status) {
3693 			btrfs_warn_rl_in_rcu(device->fs_info,
3694 				"lost super block write due to IO error on %s (%d)",
3695 				btrfs_dev_name(device),
3696 				blk_status_to_errno(bio->bi_status));
3697 			btrfs_dev_stat_inc_and_print(device,
3698 						     BTRFS_DEV_STAT_WRITE_ERRS);
3699 			/* Ensure failure if the primary sb fails. */
3700 			if (bio->bi_opf & REQ_FUA)
3701 				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3702 					   &device->sb_write_errors);
3703 			else
3704 				atomic_inc(&device->sb_write_errors);
3705 		}
3706 		folio_unlock(fi.folio);
3707 		folio_put(fi.folio);
3708 	}
3709 
3710 	bio_put(bio);
3711 }
3712 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3713 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3714 						   int copy_num, bool drop_cache)
3715 {
3716 	struct btrfs_super_block *super;
3717 	struct page *page;
3718 	u64 bytenr, bytenr_orig;
3719 	struct address_space *mapping = bdev->bd_mapping;
3720 	int ret;
3721 
3722 	bytenr_orig = btrfs_sb_offset(copy_num);
3723 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3724 	if (ret == -ENOENT)
3725 		return ERR_PTR(-EINVAL);
3726 	else if (ret)
3727 		return ERR_PTR(ret);
3728 
3729 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3730 		return ERR_PTR(-EINVAL);
3731 
3732 	if (drop_cache) {
3733 		/* This should only be called with the primary sb. */
3734 		ASSERT(copy_num == 0);
3735 
3736 		/*
3737 		 * Drop the page of the primary superblock, so later read will
3738 		 * always read from the device.
3739 		 */
3740 		invalidate_inode_pages2_range(mapping,
3741 				bytenr >> PAGE_SHIFT,
3742 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3743 	}
3744 
3745 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3746 	if (IS_ERR(page))
3747 		return ERR_CAST(page);
3748 
3749 	super = page_address(page);
3750 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3751 		btrfs_release_disk_super(super);
3752 		return ERR_PTR(-ENODATA);
3753 	}
3754 
3755 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3756 		btrfs_release_disk_super(super);
3757 		return ERR_PTR(-EINVAL);
3758 	}
3759 
3760 	return super;
3761 }
3762 
3763 
btrfs_read_dev_super(struct block_device * bdev)3764 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3765 {
3766 	struct btrfs_super_block *super, *latest = NULL;
3767 	int i;
3768 	u64 transid = 0;
3769 
3770 	/* we would like to check all the supers, but that would make
3771 	 * a btrfs mount succeed after a mkfs from a different FS.
3772 	 * So, we need to add a special mount option to scan for
3773 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3774 	 */
3775 	for (i = 0; i < 1; i++) {
3776 		super = btrfs_read_dev_one_super(bdev, i, false);
3777 		if (IS_ERR(super))
3778 			continue;
3779 
3780 		if (!latest || btrfs_super_generation(super) > transid) {
3781 			if (latest)
3782 				btrfs_release_disk_super(super);
3783 
3784 			latest = super;
3785 			transid = btrfs_super_generation(super);
3786 		}
3787 	}
3788 
3789 	return super;
3790 }
3791 
3792 /*
3793  * Write superblock @sb to the @device. Do not wait for completion, all the
3794  * folios we use for writing are locked.
3795  *
3796  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3797  * the expected device size at commit time. Note that max_mirrors must be
3798  * same for write and wait phases.
3799  *
3800  * Return number of errors when folio is not found or submission fails.
3801  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3802 static int write_dev_supers(struct btrfs_device *device,
3803 			    struct btrfs_super_block *sb, int max_mirrors)
3804 {
3805 	struct btrfs_fs_info *fs_info = device->fs_info;
3806 	struct address_space *mapping = device->bdev->bd_mapping;
3807 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3808 	int i;
3809 	int ret;
3810 	u64 bytenr, bytenr_orig;
3811 
3812 	atomic_set(&device->sb_write_errors, 0);
3813 
3814 	if (max_mirrors == 0)
3815 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3816 
3817 	shash->tfm = fs_info->csum_shash;
3818 
3819 	for (i = 0; i < max_mirrors; i++) {
3820 		struct folio *folio;
3821 		struct bio *bio;
3822 		struct btrfs_super_block *disk_super;
3823 		size_t offset;
3824 
3825 		bytenr_orig = btrfs_sb_offset(i);
3826 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3827 		if (ret == -ENOENT) {
3828 			continue;
3829 		} else if (ret < 0) {
3830 			btrfs_err(device->fs_info,
3831 				"couldn't get super block location for mirror %d",
3832 				i);
3833 			atomic_inc(&device->sb_write_errors);
3834 			continue;
3835 		}
3836 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3837 		    device->commit_total_bytes)
3838 			break;
3839 
3840 		btrfs_set_super_bytenr(sb, bytenr_orig);
3841 
3842 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3843 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3844 				    sb->csum);
3845 
3846 		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3847 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3848 					    GFP_NOFS);
3849 		if (IS_ERR(folio)) {
3850 			btrfs_err(device->fs_info,
3851 			    "couldn't get super block page for bytenr %llu",
3852 			    bytenr);
3853 			atomic_inc(&device->sb_write_errors);
3854 			continue;
3855 		}
3856 		ASSERT(folio_order(folio) == 0);
3857 
3858 		offset = offset_in_folio(folio, bytenr);
3859 		disk_super = folio_address(folio) + offset;
3860 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3861 
3862 		/*
3863 		 * Directly use bios here instead of relying on the page cache
3864 		 * to do I/O, so we don't lose the ability to do integrity
3865 		 * checking.
3866 		 */
3867 		bio = bio_alloc(device->bdev, 1,
3868 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3869 				GFP_NOFS);
3870 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3871 		bio->bi_private = device;
3872 		bio->bi_end_io = btrfs_end_super_write;
3873 		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3874 
3875 		/*
3876 		 * We FUA only the first super block.  The others we allow to
3877 		 * go down lazy and there's a short window where the on-disk
3878 		 * copies might still contain the older version.
3879 		 */
3880 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3881 			bio->bi_opf |= REQ_FUA;
3882 		submit_bio(bio);
3883 
3884 		if (btrfs_advance_sb_log(device, i))
3885 			atomic_inc(&device->sb_write_errors);
3886 	}
3887 	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3888 }
3889 
3890 /*
3891  * Wait for write completion of superblocks done by write_dev_supers,
3892  * @max_mirrors same for write and wait phases.
3893  *
3894  * Return -1 if primary super block write failed or when there were no super block
3895  * copies written. Otherwise 0.
3896  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3897 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3898 {
3899 	int i;
3900 	int errors = 0;
3901 	bool primary_failed = false;
3902 	int ret;
3903 	u64 bytenr;
3904 
3905 	if (max_mirrors == 0)
3906 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3907 
3908 	for (i = 0; i < max_mirrors; i++) {
3909 		struct folio *folio;
3910 
3911 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3912 		if (ret == -ENOENT) {
3913 			break;
3914 		} else if (ret < 0) {
3915 			errors++;
3916 			if (i == 0)
3917 				primary_failed = true;
3918 			continue;
3919 		}
3920 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3921 		    device->commit_total_bytes)
3922 			break;
3923 
3924 		folio = filemap_get_folio(device->bdev->bd_mapping,
3925 					  bytenr >> PAGE_SHIFT);
3926 		/* If the folio has been removed, then we know it completed. */
3927 		if (IS_ERR(folio))
3928 			continue;
3929 		ASSERT(folio_order(folio) == 0);
3930 
3931 		/* Folio will be unlocked once the write completes. */
3932 		folio_wait_locked(folio);
3933 		folio_put(folio);
3934 	}
3935 
3936 	errors += atomic_read(&device->sb_write_errors);
3937 	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3938 		primary_failed = true;
3939 	if (primary_failed) {
3940 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3941 			  device->devid);
3942 		return -1;
3943 	}
3944 
3945 	return errors < i ? 0 : -1;
3946 }
3947 
3948 /*
3949  * endio for the write_dev_flush, this will wake anyone waiting
3950  * for the barrier when it is done
3951  */
btrfs_end_empty_barrier(struct bio * bio)3952 static void btrfs_end_empty_barrier(struct bio *bio)
3953 {
3954 	bio_uninit(bio);
3955 	complete(bio->bi_private);
3956 }
3957 
3958 /*
3959  * Submit a flush request to the device if it supports it. Error handling is
3960  * done in the waiting counterpart.
3961  */
write_dev_flush(struct btrfs_device * device)3962 static void write_dev_flush(struct btrfs_device *device)
3963 {
3964 	struct bio *bio = &device->flush_bio;
3965 
3966 	device->last_flush_error = BLK_STS_OK;
3967 
3968 	bio_init(bio, device->bdev, NULL, 0,
3969 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3970 	bio->bi_end_io = btrfs_end_empty_barrier;
3971 	init_completion(&device->flush_wait);
3972 	bio->bi_private = &device->flush_wait;
3973 	submit_bio(bio);
3974 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3975 }
3976 
3977 /*
3978  * If the flush bio has been submitted by write_dev_flush, wait for it.
3979  * Return true for any error, and false otherwise.
3980  */
wait_dev_flush(struct btrfs_device * device)3981 static bool wait_dev_flush(struct btrfs_device *device)
3982 {
3983 	struct bio *bio = &device->flush_bio;
3984 
3985 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3986 		return false;
3987 
3988 	wait_for_completion_io(&device->flush_wait);
3989 
3990 	if (bio->bi_status) {
3991 		device->last_flush_error = bio->bi_status;
3992 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3993 		return true;
3994 	}
3995 
3996 	return false;
3997 }
3998 
3999 /*
4000  * send an empty flush down to each device in parallel,
4001  * then wait for them
4002  */
barrier_all_devices(struct btrfs_fs_info * info)4003 static int barrier_all_devices(struct btrfs_fs_info *info)
4004 {
4005 	struct list_head *head;
4006 	struct btrfs_device *dev;
4007 	int errors_wait = 0;
4008 
4009 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4010 	/* send down all the barriers */
4011 	head = &info->fs_devices->devices;
4012 	list_for_each_entry(dev, head, dev_list) {
4013 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4014 			continue;
4015 		if (!dev->bdev)
4016 			continue;
4017 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4018 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4019 			continue;
4020 
4021 		write_dev_flush(dev);
4022 	}
4023 
4024 	/* wait for all the barriers */
4025 	list_for_each_entry(dev, head, dev_list) {
4026 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4027 			continue;
4028 		if (!dev->bdev) {
4029 			errors_wait++;
4030 			continue;
4031 		}
4032 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4033 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4034 			continue;
4035 
4036 		if (wait_dev_flush(dev))
4037 			errors_wait++;
4038 	}
4039 
4040 	/*
4041 	 * Checks last_flush_error of disks in order to determine the device
4042 	 * state.
4043 	 */
4044 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4045 		return -EIO;
4046 
4047 	return 0;
4048 }
4049 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)4050 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4051 {
4052 	int raid_type;
4053 	int min_tolerated = INT_MAX;
4054 
4055 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4056 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4057 		min_tolerated = min_t(int, min_tolerated,
4058 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4059 				    tolerated_failures);
4060 
4061 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4062 		if (raid_type == BTRFS_RAID_SINGLE)
4063 			continue;
4064 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4065 			continue;
4066 		min_tolerated = min_t(int, min_tolerated,
4067 				    btrfs_raid_array[raid_type].
4068 				    tolerated_failures);
4069 	}
4070 
4071 	if (min_tolerated == INT_MAX) {
4072 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4073 		min_tolerated = 0;
4074 	}
4075 
4076 	return min_tolerated;
4077 }
4078 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4079 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4080 {
4081 	struct list_head *head;
4082 	struct btrfs_device *dev;
4083 	struct btrfs_super_block *sb;
4084 	struct btrfs_dev_item *dev_item;
4085 	int ret;
4086 	int do_barriers;
4087 	int max_errors;
4088 	int total_errors = 0;
4089 	u64 flags;
4090 
4091 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4092 
4093 	/*
4094 	 * max_mirrors == 0 indicates we're from commit_transaction,
4095 	 * not from fsync where the tree roots in fs_info have not
4096 	 * been consistent on disk.
4097 	 */
4098 	if (max_mirrors == 0)
4099 		backup_super_roots(fs_info);
4100 
4101 	sb = fs_info->super_for_commit;
4102 	dev_item = &sb->dev_item;
4103 
4104 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4105 	head = &fs_info->fs_devices->devices;
4106 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4107 
4108 	if (do_barriers) {
4109 		ret = barrier_all_devices(fs_info);
4110 		if (ret) {
4111 			mutex_unlock(
4112 				&fs_info->fs_devices->device_list_mutex);
4113 			btrfs_handle_fs_error(fs_info, ret,
4114 					      "errors while submitting device barriers.");
4115 			return ret;
4116 		}
4117 	}
4118 
4119 	list_for_each_entry(dev, head, dev_list) {
4120 		if (!dev->bdev) {
4121 			total_errors++;
4122 			continue;
4123 		}
4124 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4125 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4126 			continue;
4127 
4128 		btrfs_set_stack_device_generation(dev_item, 0);
4129 		btrfs_set_stack_device_type(dev_item, dev->type);
4130 		btrfs_set_stack_device_id(dev_item, dev->devid);
4131 		btrfs_set_stack_device_total_bytes(dev_item,
4132 						   dev->commit_total_bytes);
4133 		btrfs_set_stack_device_bytes_used(dev_item,
4134 						  dev->commit_bytes_used);
4135 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4136 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4137 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4138 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4139 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4140 		       BTRFS_FSID_SIZE);
4141 
4142 		flags = btrfs_super_flags(sb);
4143 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4144 
4145 		ret = btrfs_validate_write_super(fs_info, sb);
4146 		if (ret < 0) {
4147 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4148 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4149 				"unexpected superblock corruption detected");
4150 			return -EUCLEAN;
4151 		}
4152 
4153 		ret = write_dev_supers(dev, sb, max_mirrors);
4154 		if (ret)
4155 			total_errors++;
4156 	}
4157 	if (total_errors > max_errors) {
4158 		btrfs_err(fs_info, "%d errors while writing supers",
4159 			  total_errors);
4160 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4161 
4162 		/* FUA is masked off if unsupported and can't be the reason */
4163 		btrfs_handle_fs_error(fs_info, -EIO,
4164 				      "%d errors while writing supers",
4165 				      total_errors);
4166 		return -EIO;
4167 	}
4168 
4169 	total_errors = 0;
4170 	list_for_each_entry(dev, head, dev_list) {
4171 		if (!dev->bdev)
4172 			continue;
4173 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4174 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4175 			continue;
4176 
4177 		ret = wait_dev_supers(dev, max_mirrors);
4178 		if (ret)
4179 			total_errors++;
4180 	}
4181 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4182 	if (total_errors > max_errors) {
4183 		btrfs_handle_fs_error(fs_info, -EIO,
4184 				      "%d errors while writing supers",
4185 				      total_errors);
4186 		return -EIO;
4187 	}
4188 	return 0;
4189 }
4190 
4191 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4192 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4193 				  struct btrfs_root *root)
4194 {
4195 	bool drop_ref = false;
4196 
4197 	spin_lock(&fs_info->fs_roots_radix_lock);
4198 	radix_tree_delete(&fs_info->fs_roots_radix,
4199 			  (unsigned long)btrfs_root_id(root));
4200 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4201 		drop_ref = true;
4202 	spin_unlock(&fs_info->fs_roots_radix_lock);
4203 
4204 	if (BTRFS_FS_ERROR(fs_info)) {
4205 		ASSERT(root->log_root == NULL);
4206 		if (root->reloc_root) {
4207 			btrfs_put_root(root->reloc_root);
4208 			root->reloc_root = NULL;
4209 		}
4210 	}
4211 
4212 	if (drop_ref)
4213 		btrfs_put_root(root);
4214 }
4215 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4216 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4217 {
4218 	mutex_lock(&fs_info->cleaner_mutex);
4219 	btrfs_run_delayed_iputs(fs_info);
4220 	mutex_unlock(&fs_info->cleaner_mutex);
4221 	wake_up_process(fs_info->cleaner_kthread);
4222 
4223 	/* wait until ongoing cleanup work done */
4224 	down_write(&fs_info->cleanup_work_sem);
4225 	up_write(&fs_info->cleanup_work_sem);
4226 
4227 	return btrfs_commit_current_transaction(fs_info->tree_root);
4228 }
4229 
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4230 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4231 {
4232 	struct btrfs_transaction *trans;
4233 	struct btrfs_transaction *tmp;
4234 	bool found = false;
4235 
4236 	/*
4237 	 * This function is only called at the very end of close_ctree(),
4238 	 * thus no other running transaction, no need to take trans_lock.
4239 	 */
4240 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4241 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4242 		struct extent_state *cached = NULL;
4243 		u64 dirty_bytes = 0;
4244 		u64 cur = 0;
4245 		u64 found_start;
4246 		u64 found_end;
4247 
4248 		found = true;
4249 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4250 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4251 			dirty_bytes += found_end + 1 - found_start;
4252 			cur = found_end + 1;
4253 		}
4254 		btrfs_warn(fs_info,
4255 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4256 			   trans->transid, dirty_bytes);
4257 		btrfs_cleanup_one_transaction(trans);
4258 
4259 		if (trans == fs_info->running_transaction)
4260 			fs_info->running_transaction = NULL;
4261 		list_del_init(&trans->list);
4262 
4263 		btrfs_put_transaction(trans);
4264 		trace_btrfs_transaction_commit(fs_info);
4265 	}
4266 	ASSERT(!found);
4267 }
4268 
close_ctree(struct btrfs_fs_info * fs_info)4269 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4270 {
4271 	int ret;
4272 
4273 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4274 
4275 	/*
4276 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4277 	 * clear that bit and wake up relocation so it can stop.
4278 	 * We must do this before stopping the block group reclaim task, because
4279 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4280 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4281 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4282 	 * return 1.
4283 	 */
4284 	btrfs_wake_unfinished_drop(fs_info);
4285 
4286 	/*
4287 	 * We may have the reclaim task running and relocating a data block group,
4288 	 * in which case it may create delayed iputs. So stop it before we park
4289 	 * the cleaner kthread otherwise we can get new delayed iputs after
4290 	 * parking the cleaner, and that can make the async reclaim task to hang
4291 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4292 	 * parked and can not run delayed iputs - this will make us hang when
4293 	 * trying to stop the async reclaim task.
4294 	 */
4295 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4296 	/*
4297 	 * We don't want the cleaner to start new transactions, add more delayed
4298 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4299 	 * because that frees the task_struct, and the transaction kthread might
4300 	 * still try to wake up the cleaner.
4301 	 */
4302 	kthread_park(fs_info->cleaner_kthread);
4303 
4304 	/* wait for the qgroup rescan worker to stop */
4305 	btrfs_qgroup_wait_for_completion(fs_info, false);
4306 
4307 	/* wait for the uuid_scan task to finish */
4308 	down(&fs_info->uuid_tree_rescan_sem);
4309 	/* avoid complains from lockdep et al., set sem back to initial state */
4310 	up(&fs_info->uuid_tree_rescan_sem);
4311 
4312 	/* pause restriper - we want to resume on mount */
4313 	btrfs_pause_balance(fs_info);
4314 
4315 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4316 
4317 	btrfs_scrub_cancel(fs_info);
4318 
4319 	/* wait for any defraggers to finish */
4320 	wait_event(fs_info->transaction_wait,
4321 		   (atomic_read(&fs_info->defrag_running) == 0));
4322 
4323 	/* clear out the rbtree of defraggable inodes */
4324 	btrfs_cleanup_defrag_inodes(fs_info);
4325 
4326 	/*
4327 	 * Handle the error fs first, as it will flush and wait for all ordered
4328 	 * extents.  This will generate delayed iputs, thus we want to handle
4329 	 * it first.
4330 	 */
4331 	if (unlikely(BTRFS_FS_ERROR(fs_info)))
4332 		btrfs_error_commit_super(fs_info);
4333 
4334 	/*
4335 	 * Wait for any fixup workers to complete.
4336 	 * If we don't wait for them here and they are still running by the time
4337 	 * we call kthread_stop() against the cleaner kthread further below, we
4338 	 * get an use-after-free on the cleaner because the fixup worker adds an
4339 	 * inode to the list of delayed iputs and then attempts to wakeup the
4340 	 * cleaner kthread, which was already stopped and destroyed. We parked
4341 	 * already the cleaner, but below we run all pending delayed iputs.
4342 	 */
4343 	btrfs_flush_workqueue(fs_info->fixup_workers);
4344 	/*
4345 	 * Similar case here, we have to wait for delalloc workers before we
4346 	 * proceed below and stop the cleaner kthread, otherwise we trigger a
4347 	 * use-after-tree on the cleaner kthread task_struct when a delalloc
4348 	 * worker running submit_compressed_extents() adds a delayed iput, which
4349 	 * does a wake up on the cleaner kthread, which was already freed below
4350 	 * when we call kthread_stop().
4351 	 */
4352 	btrfs_flush_workqueue(fs_info->delalloc_workers);
4353 
4354 	/*
4355 	 * We can have ordered extents getting their last reference dropped from
4356 	 * the fs_info->workers queue because for async writes for data bios we
4357 	 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4358 	 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4359 	 * has an error, and that later function can do the final
4360 	 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4361 	 * which adds a delayed iput for the inode. So we must flush the queue
4362 	 * so that we don't have delayed iputs after committing the current
4363 	 * transaction below and stopping the cleaner and transaction kthreads.
4364 	 */
4365 	btrfs_flush_workqueue(fs_info->workers);
4366 
4367 	/*
4368 	 * When finishing a compressed write bio we schedule a work queue item
4369 	 * to finish an ordered extent - btrfs_finish_compressed_write_work()
4370 	 * calls btrfs_finish_ordered_extent() which in turns does a call to
4371 	 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4372 	 * completion either in the endio_write_workers work queue or in the
4373 	 * fs_info->endio_freespace_worker work queue. We flush those queues
4374 	 * below, so before we flush them we must flush this queue for the
4375 	 * workers of compressed writes.
4376 	 */
4377 	flush_workqueue(fs_info->compressed_write_workers);
4378 
4379 	/*
4380 	 * After we parked the cleaner kthread, ordered extents may have
4381 	 * completed and created new delayed iputs. If one of the async reclaim
4382 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4383 	 * can hang forever trying to stop it, because if a delayed iput is
4384 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4385 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4386 	 * no one else to run iputs.
4387 	 *
4388 	 * So wait for all ongoing ordered extents to complete and then run
4389 	 * delayed iputs. This works because once we reach this point no one
4390 	 * can either create new ordered extents nor create delayed iputs
4391 	 * through some other means.
4392 	 *
4393 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4394 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4395 	 * but the delayed iput for the respective inode is made only when doing
4396 	 * the final btrfs_put_ordered_extent() (which must happen at
4397 	 * btrfs_finish_ordered_io() when we are unmounting).
4398 	 */
4399 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4400 	/* Ordered extents for free space inodes. */
4401 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4402 	btrfs_run_delayed_iputs(fs_info);
4403 	/* There should be no more workload to generate new delayed iputs. */
4404 	set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state);
4405 
4406 	cancel_work_sync(&fs_info->async_reclaim_work);
4407 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4408 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4409 	cancel_work_sync(&fs_info->em_shrinker_work);
4410 
4411 	/* Cancel or finish ongoing discard work */
4412 	btrfs_discard_cleanup(fs_info);
4413 
4414 	if (!sb_rdonly(fs_info->sb)) {
4415 		/*
4416 		 * The cleaner kthread is stopped, so do one final pass over
4417 		 * unused block groups.
4418 		 */
4419 		btrfs_delete_unused_bgs(fs_info);
4420 
4421 		/*
4422 		 * There might be existing delayed inode workers still running
4423 		 * and holding an empty delayed inode item. We must wait for
4424 		 * them to complete first because they can create a transaction.
4425 		 * This happens when someone calls btrfs_balance_delayed_items()
4426 		 * and then a transaction commit runs the same delayed nodes
4427 		 * before any delayed worker has done something with the nodes.
4428 		 * We must wait for any worker here and not at transaction
4429 		 * commit time since that could cause a deadlock.
4430 		 * This is a very rare case.
4431 		 */
4432 		btrfs_flush_workqueue(fs_info->delayed_workers);
4433 
4434 		ret = btrfs_commit_super(fs_info);
4435 		if (ret)
4436 			btrfs_err(fs_info, "commit super ret %d", ret);
4437 	}
4438 
4439 	kthread_stop(fs_info->transaction_kthread);
4440 	kthread_stop(fs_info->cleaner_kthread);
4441 
4442 	ASSERT(list_empty(&fs_info->delayed_iputs));
4443 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4444 
4445 	if (btrfs_check_quota_leak(fs_info)) {
4446 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4447 		btrfs_err(fs_info, "qgroup reserved space leaked");
4448 	}
4449 
4450 	btrfs_free_qgroup_config(fs_info);
4451 	ASSERT(list_empty(&fs_info->delalloc_roots));
4452 
4453 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4454 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4455 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4456 	}
4457 
4458 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4459 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4460 			   percpu_counter_sum(&fs_info->ordered_bytes));
4461 
4462 	btrfs_sysfs_remove_mounted(fs_info);
4463 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4464 
4465 	btrfs_put_block_group_cache(fs_info);
4466 
4467 	/*
4468 	 * we must make sure there is not any read request to
4469 	 * submit after we stopping all workers.
4470 	 */
4471 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4472 	btrfs_stop_all_workers(fs_info);
4473 
4474 	/* We shouldn't have any transaction open at this point */
4475 	warn_about_uncommitted_trans(fs_info);
4476 
4477 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4478 	free_root_pointers(fs_info, true);
4479 	btrfs_free_fs_roots(fs_info);
4480 
4481 	/*
4482 	 * We must free the block groups after dropping the fs_roots as we could
4483 	 * have had an IO error and have left over tree log blocks that aren't
4484 	 * cleaned up until the fs roots are freed.  This makes the block group
4485 	 * accounting appear to be wrong because there's pending reserved bytes,
4486 	 * so make sure we do the block group cleanup afterwards.
4487 	 */
4488 	btrfs_free_block_groups(fs_info);
4489 
4490 	iput(fs_info->btree_inode);
4491 
4492 	btrfs_mapping_tree_free(fs_info);
4493 	btrfs_close_devices(fs_info->fs_devices);
4494 }
4495 
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4496 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4497 			     struct extent_buffer *buf)
4498 {
4499 	struct btrfs_fs_info *fs_info = buf->fs_info;
4500 	u64 transid = btrfs_header_generation(buf);
4501 
4502 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4503 	/*
4504 	 * This is a fast path so only do this check if we have sanity tests
4505 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4506 	 * outside of the sanity tests.
4507 	 */
4508 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4509 		return;
4510 #endif
4511 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4512 	ASSERT(trans->transid == fs_info->generation);
4513 	btrfs_assert_tree_write_locked(buf);
4514 	if (unlikely(transid != fs_info->generation)) {
4515 		btrfs_abort_transaction(trans, -EUCLEAN);
4516 		btrfs_crit(fs_info,
4517 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4518 			   buf->start, transid, fs_info->generation);
4519 	}
4520 	set_extent_buffer_dirty(buf);
4521 }
4522 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4523 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4524 					int flush_delayed)
4525 {
4526 	/*
4527 	 * looks as though older kernels can get into trouble with
4528 	 * this code, they end up stuck in balance_dirty_pages forever
4529 	 */
4530 	int ret;
4531 
4532 	if (current->flags & PF_MEMALLOC)
4533 		return;
4534 
4535 	if (flush_delayed)
4536 		btrfs_balance_delayed_items(fs_info);
4537 
4538 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4539 				     BTRFS_DIRTY_METADATA_THRESH,
4540 				     fs_info->dirty_metadata_batch);
4541 	if (ret > 0) {
4542 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4543 	}
4544 }
4545 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4546 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4547 {
4548 	__btrfs_btree_balance_dirty(fs_info, 1);
4549 }
4550 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4551 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4552 {
4553 	__btrfs_btree_balance_dirty(fs_info, 0);
4554 }
4555 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4556 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4557 {
4558 	/* cleanup FS via transaction */
4559 	btrfs_cleanup_transaction(fs_info);
4560 
4561 	down_write(&fs_info->cleanup_work_sem);
4562 	up_write(&fs_info->cleanup_work_sem);
4563 }
4564 
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4565 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4566 {
4567 	struct btrfs_root *gang[8];
4568 	u64 root_objectid = 0;
4569 	int ret;
4570 
4571 	spin_lock(&fs_info->fs_roots_radix_lock);
4572 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4573 					     (void **)gang, root_objectid,
4574 					     ARRAY_SIZE(gang))) != 0) {
4575 		int i;
4576 
4577 		for (i = 0; i < ret; i++)
4578 			gang[i] = btrfs_grab_root(gang[i]);
4579 		spin_unlock(&fs_info->fs_roots_radix_lock);
4580 
4581 		for (i = 0; i < ret; i++) {
4582 			if (!gang[i])
4583 				continue;
4584 			root_objectid = btrfs_root_id(gang[i]);
4585 			btrfs_free_log(NULL, gang[i]);
4586 			btrfs_put_root(gang[i]);
4587 		}
4588 		root_objectid++;
4589 		spin_lock(&fs_info->fs_roots_radix_lock);
4590 	}
4591 	spin_unlock(&fs_info->fs_roots_radix_lock);
4592 	btrfs_free_log_root_tree(NULL, fs_info);
4593 }
4594 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4595 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4596 {
4597 	struct btrfs_ordered_extent *ordered;
4598 
4599 	spin_lock(&root->ordered_extent_lock);
4600 	/*
4601 	 * This will just short circuit the ordered completion stuff which will
4602 	 * make sure the ordered extent gets properly cleaned up.
4603 	 */
4604 	list_for_each_entry(ordered, &root->ordered_extents,
4605 			    root_extent_list)
4606 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4607 	spin_unlock(&root->ordered_extent_lock);
4608 }
4609 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4610 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4611 {
4612 	struct btrfs_root *root;
4613 	LIST_HEAD(splice);
4614 
4615 	spin_lock(&fs_info->ordered_root_lock);
4616 	list_splice_init(&fs_info->ordered_roots, &splice);
4617 	while (!list_empty(&splice)) {
4618 		root = list_first_entry(&splice, struct btrfs_root,
4619 					ordered_root);
4620 		list_move_tail(&root->ordered_root,
4621 			       &fs_info->ordered_roots);
4622 
4623 		spin_unlock(&fs_info->ordered_root_lock);
4624 		btrfs_destroy_ordered_extents(root);
4625 
4626 		cond_resched();
4627 		spin_lock(&fs_info->ordered_root_lock);
4628 	}
4629 	spin_unlock(&fs_info->ordered_root_lock);
4630 
4631 	/*
4632 	 * We need this here because if we've been flipped read-only we won't
4633 	 * get sync() from the umount, so we need to make sure any ordered
4634 	 * extents that haven't had their dirty pages IO start writeout yet
4635 	 * actually get run and error out properly.
4636 	 */
4637 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4638 }
4639 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4640 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4641 {
4642 	struct btrfs_inode *btrfs_inode;
4643 	LIST_HEAD(splice);
4644 
4645 	spin_lock(&root->delalloc_lock);
4646 	list_splice_init(&root->delalloc_inodes, &splice);
4647 
4648 	while (!list_empty(&splice)) {
4649 		struct inode *inode = NULL;
4650 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4651 					       delalloc_inodes);
4652 		btrfs_del_delalloc_inode(btrfs_inode);
4653 		spin_unlock(&root->delalloc_lock);
4654 
4655 		/*
4656 		 * Make sure we get a live inode and that it'll not disappear
4657 		 * meanwhile.
4658 		 */
4659 		inode = igrab(&btrfs_inode->vfs_inode);
4660 		if (inode) {
4661 			unsigned int nofs_flag;
4662 
4663 			nofs_flag = memalloc_nofs_save();
4664 			invalidate_inode_pages2(inode->i_mapping);
4665 			memalloc_nofs_restore(nofs_flag);
4666 			iput(inode);
4667 		}
4668 		spin_lock(&root->delalloc_lock);
4669 	}
4670 	spin_unlock(&root->delalloc_lock);
4671 }
4672 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4673 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4674 {
4675 	struct btrfs_root *root;
4676 	LIST_HEAD(splice);
4677 
4678 	spin_lock(&fs_info->delalloc_root_lock);
4679 	list_splice_init(&fs_info->delalloc_roots, &splice);
4680 	while (!list_empty(&splice)) {
4681 		root = list_first_entry(&splice, struct btrfs_root,
4682 					 delalloc_root);
4683 		root = btrfs_grab_root(root);
4684 		BUG_ON(!root);
4685 		spin_unlock(&fs_info->delalloc_root_lock);
4686 
4687 		btrfs_destroy_delalloc_inodes(root);
4688 		btrfs_put_root(root);
4689 
4690 		spin_lock(&fs_info->delalloc_root_lock);
4691 	}
4692 	spin_unlock(&fs_info->delalloc_root_lock);
4693 }
4694 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4695 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4696 					 struct extent_io_tree *dirty_pages,
4697 					 int mark)
4698 {
4699 	struct extent_buffer *eb;
4700 	u64 start = 0;
4701 	u64 end;
4702 
4703 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4704 				     mark, NULL)) {
4705 		clear_extent_bits(dirty_pages, start, end, mark);
4706 		while (start <= end) {
4707 			eb = find_extent_buffer(fs_info, start);
4708 			start += fs_info->nodesize;
4709 			if (!eb)
4710 				continue;
4711 
4712 			btrfs_tree_lock(eb);
4713 			wait_on_extent_buffer_writeback(eb);
4714 			btrfs_clear_buffer_dirty(NULL, eb);
4715 			btrfs_tree_unlock(eb);
4716 
4717 			free_extent_buffer_stale(eb);
4718 		}
4719 	}
4720 }
4721 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4722 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4723 					struct extent_io_tree *unpin)
4724 {
4725 	u64 start;
4726 	u64 end;
4727 
4728 	while (1) {
4729 		struct extent_state *cached_state = NULL;
4730 
4731 		/*
4732 		 * The btrfs_finish_extent_commit() may get the same range as
4733 		 * ours between find_first_extent_bit and clear_extent_dirty.
4734 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4735 		 * the same extent range.
4736 		 */
4737 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4738 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4739 					   EXTENT_DIRTY, &cached_state)) {
4740 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4741 			break;
4742 		}
4743 
4744 		clear_extent_dirty(unpin, start, end, &cached_state);
4745 		free_extent_state(cached_state);
4746 		btrfs_error_unpin_extent_range(fs_info, start, end);
4747 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4748 		cond_resched();
4749 	}
4750 }
4751 
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4752 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4753 {
4754 	struct inode *inode;
4755 
4756 	inode = cache->io_ctl.inode;
4757 	if (inode) {
4758 		unsigned int nofs_flag;
4759 
4760 		nofs_flag = memalloc_nofs_save();
4761 		invalidate_inode_pages2(inode->i_mapping);
4762 		memalloc_nofs_restore(nofs_flag);
4763 
4764 		BTRFS_I(inode)->generation = 0;
4765 		cache->io_ctl.inode = NULL;
4766 		iput(inode);
4767 	}
4768 	ASSERT(cache->io_ctl.pages == NULL);
4769 	btrfs_put_block_group(cache);
4770 }
4771 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4772 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4773 			     struct btrfs_fs_info *fs_info)
4774 {
4775 	struct btrfs_block_group *cache;
4776 
4777 	spin_lock(&cur_trans->dirty_bgs_lock);
4778 	while (!list_empty(&cur_trans->dirty_bgs)) {
4779 		cache = list_first_entry(&cur_trans->dirty_bgs,
4780 					 struct btrfs_block_group,
4781 					 dirty_list);
4782 
4783 		if (!list_empty(&cache->io_list)) {
4784 			spin_unlock(&cur_trans->dirty_bgs_lock);
4785 			list_del_init(&cache->io_list);
4786 			btrfs_cleanup_bg_io(cache);
4787 			spin_lock(&cur_trans->dirty_bgs_lock);
4788 		}
4789 
4790 		list_del_init(&cache->dirty_list);
4791 		spin_lock(&cache->lock);
4792 		cache->disk_cache_state = BTRFS_DC_ERROR;
4793 		spin_unlock(&cache->lock);
4794 
4795 		spin_unlock(&cur_trans->dirty_bgs_lock);
4796 		btrfs_put_block_group(cache);
4797 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4798 		spin_lock(&cur_trans->dirty_bgs_lock);
4799 	}
4800 	spin_unlock(&cur_trans->dirty_bgs_lock);
4801 
4802 	/*
4803 	 * Refer to the definition of io_bgs member for details why it's safe
4804 	 * to use it without any locking
4805 	 */
4806 	while (!list_empty(&cur_trans->io_bgs)) {
4807 		cache = list_first_entry(&cur_trans->io_bgs,
4808 					 struct btrfs_block_group,
4809 					 io_list);
4810 
4811 		list_del_init(&cache->io_list);
4812 		spin_lock(&cache->lock);
4813 		cache->disk_cache_state = BTRFS_DC_ERROR;
4814 		spin_unlock(&cache->lock);
4815 		btrfs_cleanup_bg_io(cache);
4816 	}
4817 }
4818 
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4819 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4820 {
4821 	struct btrfs_root *gang[8];
4822 	int i;
4823 	int ret;
4824 
4825 	spin_lock(&fs_info->fs_roots_radix_lock);
4826 	while (1) {
4827 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4828 						 (void **)gang, 0,
4829 						 ARRAY_SIZE(gang),
4830 						 BTRFS_ROOT_TRANS_TAG);
4831 		if (ret == 0)
4832 			break;
4833 		for (i = 0; i < ret; i++) {
4834 			struct btrfs_root *root = gang[i];
4835 
4836 			btrfs_qgroup_free_meta_all_pertrans(root);
4837 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4838 					(unsigned long)btrfs_root_id(root),
4839 					BTRFS_ROOT_TRANS_TAG);
4840 		}
4841 	}
4842 	spin_unlock(&fs_info->fs_roots_radix_lock);
4843 }
4844 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans)4845 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4846 {
4847 	struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4848 	struct btrfs_device *dev, *tmp;
4849 
4850 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4851 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4852 	ASSERT(list_empty(&cur_trans->io_bgs));
4853 
4854 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4855 				 post_commit_list) {
4856 		list_del_init(&dev->post_commit_list);
4857 	}
4858 
4859 	btrfs_destroy_delayed_refs(cur_trans);
4860 
4861 	cur_trans->state = TRANS_STATE_COMMIT_START;
4862 	wake_up(&fs_info->transaction_blocked_wait);
4863 
4864 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4865 	wake_up(&fs_info->transaction_wait);
4866 
4867 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4868 				     EXTENT_DIRTY);
4869 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4870 
4871 	cur_trans->state =TRANS_STATE_COMPLETED;
4872 	wake_up(&cur_trans->commit_wait);
4873 }
4874 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4875 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4876 {
4877 	struct btrfs_transaction *t;
4878 
4879 	mutex_lock(&fs_info->transaction_kthread_mutex);
4880 
4881 	spin_lock(&fs_info->trans_lock);
4882 	while (!list_empty(&fs_info->trans_list)) {
4883 		t = list_first_entry(&fs_info->trans_list,
4884 				     struct btrfs_transaction, list);
4885 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4886 			refcount_inc(&t->use_count);
4887 			spin_unlock(&fs_info->trans_lock);
4888 			btrfs_wait_for_commit(fs_info, t->transid);
4889 			btrfs_put_transaction(t);
4890 			spin_lock(&fs_info->trans_lock);
4891 			continue;
4892 		}
4893 		if (t == fs_info->running_transaction) {
4894 			t->state = TRANS_STATE_COMMIT_DOING;
4895 			spin_unlock(&fs_info->trans_lock);
4896 			/*
4897 			 * We wait for 0 num_writers since we don't hold a trans
4898 			 * handle open currently for this transaction.
4899 			 */
4900 			wait_event(t->writer_wait,
4901 				   atomic_read(&t->num_writers) == 0);
4902 		} else {
4903 			spin_unlock(&fs_info->trans_lock);
4904 		}
4905 		btrfs_cleanup_one_transaction(t);
4906 
4907 		spin_lock(&fs_info->trans_lock);
4908 		if (t == fs_info->running_transaction)
4909 			fs_info->running_transaction = NULL;
4910 		list_del_init(&t->list);
4911 		spin_unlock(&fs_info->trans_lock);
4912 
4913 		btrfs_put_transaction(t);
4914 		trace_btrfs_transaction_commit(fs_info);
4915 		spin_lock(&fs_info->trans_lock);
4916 	}
4917 	spin_unlock(&fs_info->trans_lock);
4918 	btrfs_destroy_all_ordered_extents(fs_info);
4919 	btrfs_destroy_delayed_inodes(fs_info);
4920 	btrfs_assert_delayed_root_empty(fs_info);
4921 	btrfs_destroy_all_delalloc_inodes(fs_info);
4922 	btrfs_drop_all_logs(fs_info);
4923 	btrfs_free_all_qgroup_pertrans(fs_info);
4924 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4925 
4926 	return 0;
4927 }
4928 
btrfs_init_root_free_objectid(struct btrfs_root * root)4929 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4930 {
4931 	BTRFS_PATH_AUTO_FREE(path);
4932 	int ret;
4933 	struct extent_buffer *l;
4934 	struct btrfs_key search_key;
4935 	struct btrfs_key found_key;
4936 	int slot;
4937 
4938 	path = btrfs_alloc_path();
4939 	if (!path)
4940 		return -ENOMEM;
4941 
4942 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4943 	search_key.type = -1;
4944 	search_key.offset = (u64)-1;
4945 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4946 	if (ret < 0)
4947 		return ret;
4948 	if (ret == 0) {
4949 		/*
4950 		 * Key with offset -1 found, there would have to exist a root
4951 		 * with such id, but this is out of valid range.
4952 		 */
4953 		return -EUCLEAN;
4954 	}
4955 	if (path->slots[0] > 0) {
4956 		slot = path->slots[0] - 1;
4957 		l = path->nodes[0];
4958 		btrfs_item_key_to_cpu(l, &found_key, slot);
4959 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4960 					    BTRFS_FIRST_FREE_OBJECTID);
4961 	} else {
4962 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4963 	}
4964 
4965 	return 0;
4966 }
4967 
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4968 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4969 {
4970 	int ret;
4971 	mutex_lock(&root->objectid_mutex);
4972 
4973 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4974 		btrfs_warn(root->fs_info,
4975 			   "the objectid of root %llu reaches its highest value",
4976 			   btrfs_root_id(root));
4977 		ret = -ENOSPC;
4978 		goto out;
4979 	}
4980 
4981 	*objectid = root->free_objectid++;
4982 	ret = 0;
4983 out:
4984 	mutex_unlock(&root->objectid_mutex);
4985 	return ret;
4986 }
4987