1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
btrfs_put_super(struct super_block * sb)69 static void btrfs_put_super(struct super_block *sb)
70 {
71 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72
73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 close_ctree(fs_info);
75 }
76
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 char *subvol_name;
80 u64 subvol_objectid;
81 u64 max_inline;
82 u32 commit_interval;
83 u32 metadata_ratio;
84 u32 thread_pool_size;
85 unsigned long long mount_opt;
86 unsigned long compress_type:4;
87 int compress_level;
88 refcount_t refs;
89 };
90
91 enum {
92 Opt_acl,
93 Opt_clear_cache,
94 Opt_commit_interval,
95 Opt_compress,
96 Opt_compress_force,
97 Opt_compress_force_type,
98 Opt_compress_type,
99 Opt_degraded,
100 Opt_device,
101 Opt_fatal_errors,
102 Opt_flushoncommit,
103 Opt_max_inline,
104 Opt_barrier,
105 Opt_datacow,
106 Opt_datasum,
107 Opt_defrag,
108 Opt_discard,
109 Opt_discard_mode,
110 Opt_ratio,
111 Opt_rescan_uuid_tree,
112 Opt_skip_balance,
113 Opt_space_cache,
114 Opt_space_cache_version,
115 Opt_ssd,
116 Opt_ssd_spread,
117 Opt_subvol,
118 Opt_subvol_empty,
119 Opt_subvolid,
120 Opt_thread_pool,
121 Opt_treelog,
122 Opt_user_subvol_rm_allowed,
123 Opt_norecovery,
124
125 /* Rescue options */
126 Opt_rescue,
127 Opt_usebackuproot,
128
129 /* Debugging options */
130 Opt_enospc_debug,
131 #ifdef CONFIG_BTRFS_DEBUG
132 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
133 #endif
134 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
135 Opt_ref_verify,
136 #endif
137 Opt_err,
138 };
139
140 enum {
141 Opt_fatal_errors_panic,
142 Opt_fatal_errors_bug,
143 };
144
145 static const struct constant_table btrfs_parameter_fatal_errors[] = {
146 { "panic", Opt_fatal_errors_panic },
147 { "bug", Opt_fatal_errors_bug },
148 {}
149 };
150
151 enum {
152 Opt_discard_sync,
153 Opt_discard_async,
154 };
155
156 static const struct constant_table btrfs_parameter_discard[] = {
157 { "sync", Opt_discard_sync },
158 { "async", Opt_discard_async },
159 {}
160 };
161
162 enum {
163 Opt_space_cache_v1,
164 Opt_space_cache_v2,
165 };
166
167 static const struct constant_table btrfs_parameter_space_cache[] = {
168 { "v1", Opt_space_cache_v1 },
169 { "v2", Opt_space_cache_v2 },
170 {}
171 };
172
173 enum {
174 Opt_rescue_usebackuproot,
175 Opt_rescue_nologreplay,
176 Opt_rescue_ignorebadroots,
177 Opt_rescue_ignoredatacsums,
178 Opt_rescue_ignoremetacsums,
179 Opt_rescue_ignoresuperflags,
180 Opt_rescue_parameter_all,
181 };
182
183 static const struct constant_table btrfs_parameter_rescue[] = {
184 { "usebackuproot", Opt_rescue_usebackuproot },
185 { "nologreplay", Opt_rescue_nologreplay },
186 { "ignorebadroots", Opt_rescue_ignorebadroots },
187 { "ibadroots", Opt_rescue_ignorebadroots },
188 { "ignoredatacsums", Opt_rescue_ignoredatacsums },
189 { "ignoremetacsums", Opt_rescue_ignoremetacsums},
190 { "ignoresuperflags", Opt_rescue_ignoresuperflags},
191 { "idatacsums", Opt_rescue_ignoredatacsums },
192 { "imetacsums", Opt_rescue_ignoremetacsums},
193 { "isuperflags", Opt_rescue_ignoresuperflags},
194 { "all", Opt_rescue_parameter_all },
195 {}
196 };
197
198 #ifdef CONFIG_BTRFS_DEBUG
199 enum {
200 Opt_fragment_parameter_data,
201 Opt_fragment_parameter_metadata,
202 Opt_fragment_parameter_all,
203 };
204
205 static const struct constant_table btrfs_parameter_fragment[] = {
206 { "data", Opt_fragment_parameter_data },
207 { "metadata", Opt_fragment_parameter_metadata },
208 { "all", Opt_fragment_parameter_all },
209 {}
210 };
211 #endif
212
213 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
214 fsparam_flag_no("acl", Opt_acl),
215 fsparam_flag_no("autodefrag", Opt_defrag),
216 fsparam_flag_no("barrier", Opt_barrier),
217 fsparam_flag("clear_cache", Opt_clear_cache),
218 fsparam_u32("commit", Opt_commit_interval),
219 fsparam_flag("compress", Opt_compress),
220 fsparam_string("compress", Opt_compress_type),
221 fsparam_flag("compress-force", Opt_compress_force),
222 fsparam_string("compress-force", Opt_compress_force_type),
223 fsparam_flag_no("datacow", Opt_datacow),
224 fsparam_flag_no("datasum", Opt_datasum),
225 fsparam_flag("degraded", Opt_degraded),
226 fsparam_string("device", Opt_device),
227 fsparam_flag_no("discard", Opt_discard),
228 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
229 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
230 fsparam_flag_no("flushoncommit", Opt_flushoncommit),
231 fsparam_string("max_inline", Opt_max_inline),
232 fsparam_u32("metadata_ratio", Opt_ratio),
233 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
234 fsparam_flag("skip_balance", Opt_skip_balance),
235 fsparam_flag_no("space_cache", Opt_space_cache),
236 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
237 fsparam_flag_no("ssd", Opt_ssd),
238 fsparam_flag_no("ssd_spread", Opt_ssd_spread),
239 fsparam_string("subvol", Opt_subvol),
240 fsparam_flag("subvol=", Opt_subvol_empty),
241 fsparam_u64("subvolid", Opt_subvolid),
242 fsparam_u32("thread_pool", Opt_thread_pool),
243 fsparam_flag_no("treelog", Opt_treelog),
244 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
245
246 /* Rescue options. */
247 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
248 /* Deprecated, with alias rescue=usebackuproot */
249 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
250 /* For compatibility only, alias for "rescue=nologreplay". */
251 fsparam_flag("norecovery", Opt_norecovery),
252
253 /* Debugging options. */
254 fsparam_flag_no("enospc_debug", Opt_enospc_debug),
255 #ifdef CONFIG_BTRFS_DEBUG
256 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
257 #endif
258 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
259 fsparam_flag("ref_verify", Opt_ref_verify),
260 #endif
261 {}
262 };
263
264 /* No support for restricting writes to btrfs devices yet... */
btrfs_open_mode(struct fs_context * fc)265 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
266 {
267 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
268 }
269
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)270 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
271 {
272 struct btrfs_fs_context *ctx = fc->fs_private;
273 struct fs_parse_result result;
274 int opt;
275
276 opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
277 if (opt < 0)
278 return opt;
279
280 switch (opt) {
281 case Opt_degraded:
282 btrfs_set_opt(ctx->mount_opt, DEGRADED);
283 break;
284 case Opt_subvol_empty:
285 /*
286 * This exists because we used to allow it on accident, so we're
287 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow
288 * empty subvol= again").
289 */
290 break;
291 case Opt_subvol:
292 kfree(ctx->subvol_name);
293 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
294 if (!ctx->subvol_name)
295 return -ENOMEM;
296 break;
297 case Opt_subvolid:
298 ctx->subvol_objectid = result.uint_64;
299
300 /* subvolid=0 means give me the original fs_tree. */
301 if (!ctx->subvol_objectid)
302 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
303 break;
304 case Opt_device: {
305 struct btrfs_device *device;
306 blk_mode_t mode = btrfs_open_mode(fc);
307
308 mutex_lock(&uuid_mutex);
309 device = btrfs_scan_one_device(param->string, mode, false);
310 mutex_unlock(&uuid_mutex);
311 if (IS_ERR(device))
312 return PTR_ERR(device);
313 break;
314 }
315 case Opt_datasum:
316 if (result.negated) {
317 btrfs_set_opt(ctx->mount_opt, NODATASUM);
318 } else {
319 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
320 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
321 }
322 break;
323 case Opt_datacow:
324 if (result.negated) {
325 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
326 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
327 btrfs_set_opt(ctx->mount_opt, NODATACOW);
328 btrfs_set_opt(ctx->mount_opt, NODATASUM);
329 } else {
330 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
331 }
332 break;
333 case Opt_compress_force:
334 case Opt_compress_force_type:
335 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
336 fallthrough;
337 case Opt_compress:
338 case Opt_compress_type:
339 /*
340 * Provide the same semantics as older kernels that don't use fs
341 * context, specifying the "compress" option clears
342 * "force-compress" without the need to pass
343 * "compress-force=[no|none]" before specifying "compress".
344 */
345 if (opt != Opt_compress_force && opt != Opt_compress_force_type)
346 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
347
348 if (opt == Opt_compress || opt == Opt_compress_force) {
349 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
350 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
351 btrfs_set_opt(ctx->mount_opt, COMPRESS);
352 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
353 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
354 } else if (strncmp(param->string, "zlib", 4) == 0) {
355 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
356 ctx->compress_level =
357 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
358 param->string + 4);
359 btrfs_set_opt(ctx->mount_opt, COMPRESS);
360 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
361 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
362 } else if (strncmp(param->string, "lzo", 3) == 0) {
363 ctx->compress_type = BTRFS_COMPRESS_LZO;
364 ctx->compress_level = 0;
365 btrfs_set_opt(ctx->mount_opt, COMPRESS);
366 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
367 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
368 } else if (strncmp(param->string, "zstd", 4) == 0) {
369 ctx->compress_type = BTRFS_COMPRESS_ZSTD;
370 ctx->compress_level =
371 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
372 param->string + 4);
373 btrfs_set_opt(ctx->mount_opt, COMPRESS);
374 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
375 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
376 } else if (strncmp(param->string, "no", 2) == 0) {
377 ctx->compress_level = 0;
378 ctx->compress_type = 0;
379 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
380 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
381 } else {
382 btrfs_err(NULL, "unrecognized compression value %s",
383 param->string);
384 return -EINVAL;
385 }
386 break;
387 case Opt_ssd:
388 if (result.negated) {
389 btrfs_set_opt(ctx->mount_opt, NOSSD);
390 btrfs_clear_opt(ctx->mount_opt, SSD);
391 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
392 } else {
393 btrfs_set_opt(ctx->mount_opt, SSD);
394 btrfs_clear_opt(ctx->mount_opt, NOSSD);
395 }
396 break;
397 case Opt_ssd_spread:
398 if (result.negated) {
399 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
400 } else {
401 btrfs_set_opt(ctx->mount_opt, SSD);
402 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
403 btrfs_clear_opt(ctx->mount_opt, NOSSD);
404 }
405 break;
406 case Opt_barrier:
407 if (result.negated)
408 btrfs_set_opt(ctx->mount_opt, NOBARRIER);
409 else
410 btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
411 break;
412 case Opt_thread_pool:
413 if (result.uint_32 == 0) {
414 btrfs_err(NULL, "invalid value 0 for thread_pool");
415 return -EINVAL;
416 }
417 ctx->thread_pool_size = result.uint_32;
418 break;
419 case Opt_max_inline:
420 ctx->max_inline = memparse(param->string, NULL);
421 break;
422 case Opt_acl:
423 if (result.negated) {
424 fc->sb_flags &= ~SB_POSIXACL;
425 } else {
426 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
427 fc->sb_flags |= SB_POSIXACL;
428 #else
429 btrfs_err(NULL, "support for ACL not compiled in");
430 return -EINVAL;
431 #endif
432 }
433 /*
434 * VFS limits the ability to toggle ACL on and off via remount,
435 * despite every file system allowing this. This seems to be
436 * an oversight since we all do, but it'll fail if we're
437 * remounting. So don't set the mask here, we'll check it in
438 * btrfs_reconfigure and do the toggling ourselves.
439 */
440 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
441 fc->sb_flags_mask |= SB_POSIXACL;
442 break;
443 case Opt_treelog:
444 if (result.negated)
445 btrfs_set_opt(ctx->mount_opt, NOTREELOG);
446 else
447 btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
448 break;
449 case Opt_norecovery:
450 btrfs_info(NULL,
451 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
452 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
453 break;
454 case Opt_flushoncommit:
455 if (result.negated)
456 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
457 else
458 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
459 break;
460 case Opt_ratio:
461 ctx->metadata_ratio = result.uint_32;
462 break;
463 case Opt_discard:
464 if (result.negated) {
465 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
466 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
467 btrfs_set_opt(ctx->mount_opt, NODISCARD);
468 } else {
469 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
470 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
471 }
472 break;
473 case Opt_discard_mode:
474 switch (result.uint_32) {
475 case Opt_discard_sync:
476 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
477 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
478 break;
479 case Opt_discard_async:
480 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
481 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
482 break;
483 default:
484 btrfs_err(NULL, "unrecognized discard mode value %s",
485 param->key);
486 return -EINVAL;
487 }
488 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
489 break;
490 case Opt_space_cache:
491 if (result.negated) {
492 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
493 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
494 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
495 } else {
496 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
497 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
498 }
499 break;
500 case Opt_space_cache_version:
501 switch (result.uint_32) {
502 case Opt_space_cache_v1:
503 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
504 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
505 break;
506 case Opt_space_cache_v2:
507 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
508 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
509 break;
510 default:
511 btrfs_err(NULL, "unrecognized space_cache value %s",
512 param->key);
513 return -EINVAL;
514 }
515 break;
516 case Opt_rescan_uuid_tree:
517 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
518 break;
519 case Opt_clear_cache:
520 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
521 break;
522 case Opt_user_subvol_rm_allowed:
523 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
524 break;
525 case Opt_enospc_debug:
526 if (result.negated)
527 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
528 else
529 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
530 break;
531 case Opt_defrag:
532 if (result.negated)
533 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
534 else
535 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
536 break;
537 case Opt_usebackuproot:
538 btrfs_warn(NULL,
539 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
540 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
541
542 /* If we're loading the backup roots we can't trust the space cache. */
543 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
544 break;
545 case Opt_skip_balance:
546 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
547 break;
548 case Opt_fatal_errors:
549 switch (result.uint_32) {
550 case Opt_fatal_errors_panic:
551 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
552 break;
553 case Opt_fatal_errors_bug:
554 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
555 break;
556 default:
557 btrfs_err(NULL, "unrecognized fatal_errors value %s",
558 param->key);
559 return -EINVAL;
560 }
561 break;
562 case Opt_commit_interval:
563 ctx->commit_interval = result.uint_32;
564 if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
565 btrfs_warn(NULL, "excessive commit interval %u, use with care",
566 ctx->commit_interval);
567 }
568 if (ctx->commit_interval == 0)
569 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
570 break;
571 case Opt_rescue:
572 switch (result.uint_32) {
573 case Opt_rescue_usebackuproot:
574 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
575 break;
576 case Opt_rescue_nologreplay:
577 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
578 break;
579 case Opt_rescue_ignorebadroots:
580 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
581 break;
582 case Opt_rescue_ignoredatacsums:
583 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
584 break;
585 case Opt_rescue_ignoremetacsums:
586 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
587 break;
588 case Opt_rescue_ignoresuperflags:
589 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
590 break;
591 case Opt_rescue_parameter_all:
592 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
593 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
594 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
595 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
596 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
597 break;
598 default:
599 btrfs_info(NULL, "unrecognized rescue option '%s'",
600 param->key);
601 return -EINVAL;
602 }
603 break;
604 #ifdef CONFIG_BTRFS_DEBUG
605 case Opt_fragment:
606 switch (result.uint_32) {
607 case Opt_fragment_parameter_all:
608 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
609 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
610 break;
611 case Opt_fragment_parameter_metadata:
612 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
613 break;
614 case Opt_fragment_parameter_data:
615 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
616 break;
617 default:
618 btrfs_info(NULL, "unrecognized fragment option '%s'",
619 param->key);
620 return -EINVAL;
621 }
622 break;
623 #endif
624 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
625 case Opt_ref_verify:
626 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
627 break;
628 #endif
629 default:
630 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
631 return -EINVAL;
632 }
633
634 return 0;
635 }
636
637 /*
638 * Some options only have meaning at mount time and shouldn't persist across
639 * remounts, or be displayed. Clear these at the end of mount and remount code
640 * paths.
641 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)642 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
643 {
644 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
645 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
646 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
647 }
648
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)649 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
650 unsigned long long mount_opt, unsigned long long opt,
651 const char *opt_name)
652 {
653 if (mount_opt & opt) {
654 btrfs_err(fs_info, "%s must be used with ro mount option",
655 opt_name);
656 return true;
657 }
658 return false;
659 }
660
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)661 bool btrfs_check_options(const struct btrfs_fs_info *info,
662 unsigned long long *mount_opt,
663 unsigned long flags)
664 {
665 bool ret = true;
666
667 if (!(flags & SB_RDONLY) &&
668 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
669 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
670 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
671 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
672 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
673 ret = false;
674
675 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
676 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
677 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
678 btrfs_err(info, "cannot disable free-space-tree");
679 ret = false;
680 }
681 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
682 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
683 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
684 ret = false;
685 }
686
687 if (btrfs_check_mountopts_zoned(info, mount_opt))
688 ret = false;
689
690 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
691 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
692 btrfs_info(info, "disk space caching is enabled");
693 btrfs_warn(info,
694 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
695 }
696 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
697 btrfs_info(info, "using free-space-tree");
698 }
699
700 return ret;
701 }
702
703 /*
704 * This is subtle, we only call this during open_ctree(). We need to pre-load
705 * the mount options with the on-disk settings. Before the new mount API took
706 * effect we would do this on mount and remount. With the new mount API we'll
707 * only do this on the initial mount.
708 *
709 * This isn't a change in behavior, because we're using the current state of the
710 * file system to set the current mount options. If you mounted with special
711 * options to disable these features and then remounted we wouldn't revert the
712 * settings, because mounting without these features cleared the on-disk
713 * settings, so this being called on re-mount is not needed.
714 */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)715 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
716 {
717 if (fs_info->sectorsize < PAGE_SIZE) {
718 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
719 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
720 btrfs_info(fs_info,
721 "forcing free space tree for sector size %u with page size %lu",
722 fs_info->sectorsize, PAGE_SIZE);
723 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
724 }
725 }
726
727 /*
728 * At this point our mount options are populated, so we only mess with
729 * these settings if we don't have any settings already.
730 */
731 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
732 return;
733
734 if (btrfs_is_zoned(fs_info) &&
735 btrfs_free_space_cache_v1_active(fs_info)) {
736 btrfs_info(fs_info, "zoned: clearing existing space cache");
737 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
738 return;
739 }
740
741 if (btrfs_test_opt(fs_info, SPACE_CACHE))
742 return;
743
744 if (btrfs_test_opt(fs_info, NOSPACECACHE))
745 return;
746
747 /*
748 * At this point we don't have explicit options set by the user, set
749 * them ourselves based on the state of the file system.
750 */
751 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
752 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
753 else if (btrfs_free_space_cache_v1_active(fs_info))
754 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
755 }
756
set_device_specific_options(struct btrfs_fs_info * fs_info)757 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
758 {
759 if (!btrfs_test_opt(fs_info, NOSSD) &&
760 !fs_info->fs_devices->rotating)
761 btrfs_set_opt(fs_info->mount_opt, SSD);
762
763 /*
764 * For devices supporting discard turn on discard=async automatically,
765 * unless it's already set or disabled. This could be turned off by
766 * nodiscard for the same mount.
767 *
768 * The zoned mode piggy backs on the discard functionality for
769 * resetting a zone. There is no reason to delay the zone reset as it is
770 * fast enough. So, do not enable async discard for zoned mode.
771 */
772 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
773 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
774 btrfs_test_opt(fs_info, NODISCARD)) &&
775 fs_info->fs_devices->discardable &&
776 !btrfs_is_zoned(fs_info))
777 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
778 }
779
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)780 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
781 u64 subvol_objectid)
782 {
783 struct btrfs_root *root = fs_info->tree_root;
784 struct btrfs_root *fs_root = NULL;
785 struct btrfs_root_ref *root_ref;
786 struct btrfs_inode_ref *inode_ref;
787 struct btrfs_key key;
788 struct btrfs_path *path = NULL;
789 char *name = NULL, *ptr;
790 u64 dirid;
791 int len;
792 int ret;
793
794 path = btrfs_alloc_path();
795 if (!path) {
796 ret = -ENOMEM;
797 goto err;
798 }
799
800 name = kmalloc(PATH_MAX, GFP_KERNEL);
801 if (!name) {
802 ret = -ENOMEM;
803 goto err;
804 }
805 ptr = name + PATH_MAX - 1;
806 ptr[0] = '\0';
807
808 /*
809 * Walk up the subvolume trees in the tree of tree roots by root
810 * backrefs until we hit the top-level subvolume.
811 */
812 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
813 key.objectid = subvol_objectid;
814 key.type = BTRFS_ROOT_BACKREF_KEY;
815 key.offset = (u64)-1;
816
817 ret = btrfs_search_backwards(root, &key, path);
818 if (ret < 0) {
819 goto err;
820 } else if (ret > 0) {
821 ret = -ENOENT;
822 goto err;
823 }
824
825 subvol_objectid = key.offset;
826
827 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
828 struct btrfs_root_ref);
829 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
830 ptr -= len + 1;
831 if (ptr < name) {
832 ret = -ENAMETOOLONG;
833 goto err;
834 }
835 read_extent_buffer(path->nodes[0], ptr + 1,
836 (unsigned long)(root_ref + 1), len);
837 ptr[0] = '/';
838 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
839 btrfs_release_path(path);
840
841 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
842 if (IS_ERR(fs_root)) {
843 ret = PTR_ERR(fs_root);
844 fs_root = NULL;
845 goto err;
846 }
847
848 /*
849 * Walk up the filesystem tree by inode refs until we hit the
850 * root directory.
851 */
852 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
853 key.objectid = dirid;
854 key.type = BTRFS_INODE_REF_KEY;
855 key.offset = (u64)-1;
856
857 ret = btrfs_search_backwards(fs_root, &key, path);
858 if (ret < 0) {
859 goto err;
860 } else if (ret > 0) {
861 ret = -ENOENT;
862 goto err;
863 }
864
865 dirid = key.offset;
866
867 inode_ref = btrfs_item_ptr(path->nodes[0],
868 path->slots[0],
869 struct btrfs_inode_ref);
870 len = btrfs_inode_ref_name_len(path->nodes[0],
871 inode_ref);
872 ptr -= len + 1;
873 if (ptr < name) {
874 ret = -ENAMETOOLONG;
875 goto err;
876 }
877 read_extent_buffer(path->nodes[0], ptr + 1,
878 (unsigned long)(inode_ref + 1), len);
879 ptr[0] = '/';
880 btrfs_release_path(path);
881 }
882 btrfs_put_root(fs_root);
883 fs_root = NULL;
884 }
885
886 btrfs_free_path(path);
887 if (ptr == name + PATH_MAX - 1) {
888 name[0] = '/';
889 name[1] = '\0';
890 } else {
891 memmove(name, ptr, name + PATH_MAX - ptr);
892 }
893 return name;
894
895 err:
896 btrfs_put_root(fs_root);
897 btrfs_free_path(path);
898 kfree(name);
899 return ERR_PTR(ret);
900 }
901
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)902 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
903 {
904 struct btrfs_root *root = fs_info->tree_root;
905 struct btrfs_dir_item *di;
906 struct btrfs_path *path;
907 struct btrfs_key location;
908 struct fscrypt_str name = FSTR_INIT("default", 7);
909 u64 dir_id;
910
911 path = btrfs_alloc_path();
912 if (!path)
913 return -ENOMEM;
914
915 /*
916 * Find the "default" dir item which points to the root item that we
917 * will mount by default if we haven't been given a specific subvolume
918 * to mount.
919 */
920 dir_id = btrfs_super_root_dir(fs_info->super_copy);
921 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
922 if (IS_ERR(di)) {
923 btrfs_free_path(path);
924 return PTR_ERR(di);
925 }
926 if (!di) {
927 /*
928 * Ok the default dir item isn't there. This is weird since
929 * it's always been there, but don't freak out, just try and
930 * mount the top-level subvolume.
931 */
932 btrfs_free_path(path);
933 *objectid = BTRFS_FS_TREE_OBJECTID;
934 return 0;
935 }
936
937 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
938 btrfs_free_path(path);
939 *objectid = location.objectid;
940 return 0;
941 }
942
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)943 static int btrfs_fill_super(struct super_block *sb,
944 struct btrfs_fs_devices *fs_devices)
945 {
946 struct btrfs_inode *inode;
947 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
948 int err;
949
950 sb->s_maxbytes = MAX_LFS_FILESIZE;
951 sb->s_magic = BTRFS_SUPER_MAGIC;
952 sb->s_op = &btrfs_super_ops;
953 sb->s_d_op = &btrfs_dentry_operations;
954 sb->s_export_op = &btrfs_export_ops;
955 #ifdef CONFIG_FS_VERITY
956 sb->s_vop = &btrfs_verityops;
957 #endif
958 sb->s_xattr = btrfs_xattr_handlers;
959 sb->s_time_gran = 1;
960 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
961
962 err = super_setup_bdi(sb);
963 if (err) {
964 btrfs_err(fs_info, "super_setup_bdi failed");
965 return err;
966 }
967
968 err = open_ctree(sb, fs_devices);
969 if (err) {
970 btrfs_err(fs_info, "open_ctree failed: %d", err);
971 return err;
972 }
973
974 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
975 if (IS_ERR(inode)) {
976 err = PTR_ERR(inode);
977 btrfs_handle_fs_error(fs_info, err, NULL);
978 goto fail_close;
979 }
980
981 sb->s_root = d_make_root(&inode->vfs_inode);
982 if (!sb->s_root) {
983 err = -ENOMEM;
984 goto fail_close;
985 }
986
987 sb->s_flags |= SB_ACTIVE;
988 return 0;
989
990 fail_close:
991 close_ctree(fs_info);
992 return err;
993 }
994
btrfs_sync_fs(struct super_block * sb,int wait)995 int btrfs_sync_fs(struct super_block *sb, int wait)
996 {
997 struct btrfs_trans_handle *trans;
998 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
999 struct btrfs_root *root = fs_info->tree_root;
1000
1001 trace_btrfs_sync_fs(fs_info, wait);
1002
1003 if (!wait) {
1004 filemap_flush(fs_info->btree_inode->i_mapping);
1005 return 0;
1006 }
1007
1008 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1009
1010 trans = btrfs_attach_transaction_barrier(root);
1011 if (IS_ERR(trans)) {
1012 /* no transaction, don't bother */
1013 if (PTR_ERR(trans) == -ENOENT) {
1014 /*
1015 * Exit unless we have some pending changes
1016 * that need to go through commit
1017 */
1018 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1019 &fs_info->flags))
1020 return 0;
1021 /*
1022 * A non-blocking test if the fs is frozen. We must not
1023 * start a new transaction here otherwise a deadlock
1024 * happens. The pending operations are delayed to the
1025 * next commit after thawing.
1026 */
1027 if (sb_start_write_trylock(sb))
1028 sb_end_write(sb);
1029 else
1030 return 0;
1031 trans = btrfs_start_transaction(root, 0);
1032 }
1033 if (IS_ERR(trans))
1034 return PTR_ERR(trans);
1035 }
1036 return btrfs_commit_transaction(trans);
1037 }
1038
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1039 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1040 {
1041 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1042 *printed = true;
1043 }
1044
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1045 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1046 {
1047 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1048 const char *compress_type;
1049 const char *subvol_name;
1050 bool printed = false;
1051
1052 if (btrfs_test_opt(info, DEGRADED))
1053 seq_puts(seq, ",degraded");
1054 if (btrfs_test_opt(info, NODATASUM))
1055 seq_puts(seq, ",nodatasum");
1056 if (btrfs_test_opt(info, NODATACOW))
1057 seq_puts(seq, ",nodatacow");
1058 if (btrfs_test_opt(info, NOBARRIER))
1059 seq_puts(seq, ",nobarrier");
1060 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1061 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1062 if (info->thread_pool_size != min_t(unsigned long,
1063 num_online_cpus() + 2, 8))
1064 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1065 if (btrfs_test_opt(info, COMPRESS)) {
1066 compress_type = btrfs_compress_type2str(info->compress_type);
1067 if (btrfs_test_opt(info, FORCE_COMPRESS))
1068 seq_printf(seq, ",compress-force=%s", compress_type);
1069 else
1070 seq_printf(seq, ",compress=%s", compress_type);
1071 if (info->compress_level)
1072 seq_printf(seq, ":%d", info->compress_level);
1073 }
1074 if (btrfs_test_opt(info, NOSSD))
1075 seq_puts(seq, ",nossd");
1076 if (btrfs_test_opt(info, SSD_SPREAD))
1077 seq_puts(seq, ",ssd_spread");
1078 else if (btrfs_test_opt(info, SSD))
1079 seq_puts(seq, ",ssd");
1080 if (btrfs_test_opt(info, NOTREELOG))
1081 seq_puts(seq, ",notreelog");
1082 if (btrfs_test_opt(info, NOLOGREPLAY))
1083 print_rescue_option(seq, "nologreplay", &printed);
1084 if (btrfs_test_opt(info, USEBACKUPROOT))
1085 print_rescue_option(seq, "usebackuproot", &printed);
1086 if (btrfs_test_opt(info, IGNOREBADROOTS))
1087 print_rescue_option(seq, "ignorebadroots", &printed);
1088 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1089 print_rescue_option(seq, "ignoredatacsums", &printed);
1090 if (btrfs_test_opt(info, IGNOREMETACSUMS))
1091 print_rescue_option(seq, "ignoremetacsums", &printed);
1092 if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1093 print_rescue_option(seq, "ignoresuperflags", &printed);
1094 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1095 seq_puts(seq, ",flushoncommit");
1096 if (btrfs_test_opt(info, DISCARD_SYNC))
1097 seq_puts(seq, ",discard");
1098 if (btrfs_test_opt(info, DISCARD_ASYNC))
1099 seq_puts(seq, ",discard=async");
1100 if (!(info->sb->s_flags & SB_POSIXACL))
1101 seq_puts(seq, ",noacl");
1102 if (btrfs_free_space_cache_v1_active(info))
1103 seq_puts(seq, ",space_cache");
1104 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1105 seq_puts(seq, ",space_cache=v2");
1106 else
1107 seq_puts(seq, ",nospace_cache");
1108 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1109 seq_puts(seq, ",rescan_uuid_tree");
1110 if (btrfs_test_opt(info, CLEAR_CACHE))
1111 seq_puts(seq, ",clear_cache");
1112 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1113 seq_puts(seq, ",user_subvol_rm_allowed");
1114 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1115 seq_puts(seq, ",enospc_debug");
1116 if (btrfs_test_opt(info, AUTO_DEFRAG))
1117 seq_puts(seq, ",autodefrag");
1118 if (btrfs_test_opt(info, SKIP_BALANCE))
1119 seq_puts(seq, ",skip_balance");
1120 if (info->metadata_ratio)
1121 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1122 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1123 seq_puts(seq, ",fatal_errors=panic");
1124 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1125 seq_printf(seq, ",commit=%u", info->commit_interval);
1126 #ifdef CONFIG_BTRFS_DEBUG
1127 if (btrfs_test_opt(info, FRAGMENT_DATA))
1128 seq_puts(seq, ",fragment=data");
1129 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1130 seq_puts(seq, ",fragment=metadata");
1131 #endif
1132 if (btrfs_test_opt(info, REF_VERIFY))
1133 seq_puts(seq, ",ref_verify");
1134 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1135 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1136 btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1137 if (!IS_ERR(subvol_name)) {
1138 seq_show_option(seq, "subvol", subvol_name);
1139 kfree(subvol_name);
1140 }
1141 return 0;
1142 }
1143
1144 /*
1145 * subvolumes are identified by ino 256
1146 */
is_subvolume_inode(struct inode * inode)1147 static inline bool is_subvolume_inode(struct inode *inode)
1148 {
1149 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1150 return true;
1151 return false;
1152 }
1153
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1154 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1155 struct vfsmount *mnt)
1156 {
1157 struct dentry *root;
1158 int ret;
1159
1160 if (!subvol_name) {
1161 if (!subvol_objectid) {
1162 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1163 &subvol_objectid);
1164 if (ret) {
1165 root = ERR_PTR(ret);
1166 goto out;
1167 }
1168 }
1169 subvol_name = btrfs_get_subvol_name_from_objectid(
1170 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1171 if (IS_ERR(subvol_name)) {
1172 root = ERR_CAST(subvol_name);
1173 subvol_name = NULL;
1174 goto out;
1175 }
1176
1177 }
1178
1179 root = mount_subtree(mnt, subvol_name);
1180 /* mount_subtree() drops our reference on the vfsmount. */
1181 mnt = NULL;
1182
1183 if (!IS_ERR(root)) {
1184 struct super_block *s = root->d_sb;
1185 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1186 struct inode *root_inode = d_inode(root);
1187 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1188
1189 ret = 0;
1190 if (!is_subvolume_inode(root_inode)) {
1191 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1192 subvol_name);
1193 ret = -EINVAL;
1194 }
1195 if (subvol_objectid && root_objectid != subvol_objectid) {
1196 /*
1197 * This will also catch a race condition where a
1198 * subvolume which was passed by ID is renamed and
1199 * another subvolume is renamed over the old location.
1200 */
1201 btrfs_err(fs_info,
1202 "subvol '%s' does not match subvolid %llu",
1203 subvol_name, subvol_objectid);
1204 ret = -EINVAL;
1205 }
1206 if (ret) {
1207 dput(root);
1208 root = ERR_PTR(ret);
1209 deactivate_locked_super(s);
1210 }
1211 }
1212
1213 out:
1214 mntput(mnt);
1215 kfree(subvol_name);
1216 return root;
1217 }
1218
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1219 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1220 u32 new_pool_size, u32 old_pool_size)
1221 {
1222 if (new_pool_size == old_pool_size)
1223 return;
1224
1225 fs_info->thread_pool_size = new_pool_size;
1226
1227 btrfs_info(fs_info, "resize thread pool %d -> %d",
1228 old_pool_size, new_pool_size);
1229
1230 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1231 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1232 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1233 workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1234 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1235 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1236 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1237 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1238 }
1239
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1240 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1241 unsigned long long old_opts, int flags)
1242 {
1243 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1244 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1245 (flags & SB_RDONLY))) {
1246 /* wait for any defraggers to finish */
1247 wait_event(fs_info->transaction_wait,
1248 (atomic_read(&fs_info->defrag_running) == 0));
1249 if (flags & SB_RDONLY)
1250 sync_filesystem(fs_info->sb);
1251 }
1252 }
1253
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1254 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1255 unsigned long long old_opts)
1256 {
1257 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1258
1259 /*
1260 * We need to cleanup all defragable inodes if the autodefragment is
1261 * close or the filesystem is read only.
1262 */
1263 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1264 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1265 btrfs_cleanup_defrag_inodes(fs_info);
1266 }
1267
1268 /* If we toggled discard async */
1269 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1270 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1271 btrfs_discard_resume(fs_info);
1272 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1273 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1274 btrfs_discard_cleanup(fs_info);
1275
1276 /* If we toggled space cache */
1277 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1278 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1279 }
1280
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1281 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1282 {
1283 int ret;
1284
1285 if (BTRFS_FS_ERROR(fs_info)) {
1286 btrfs_err(fs_info,
1287 "remounting read-write after error is not allowed");
1288 return -EINVAL;
1289 }
1290
1291 if (fs_info->fs_devices->rw_devices == 0)
1292 return -EACCES;
1293
1294 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1295 btrfs_warn(fs_info,
1296 "too many missing devices, writable remount is not allowed");
1297 return -EACCES;
1298 }
1299
1300 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1301 btrfs_warn(fs_info,
1302 "mount required to replay tree-log, cannot remount read-write");
1303 return -EINVAL;
1304 }
1305
1306 /*
1307 * NOTE: when remounting with a change that does writes, don't put it
1308 * anywhere above this point, as we are not sure to be safe to write
1309 * until we pass the above checks.
1310 */
1311 ret = btrfs_start_pre_rw_mount(fs_info);
1312 if (ret)
1313 return ret;
1314
1315 btrfs_clear_sb_rdonly(fs_info->sb);
1316
1317 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1318
1319 /*
1320 * If we've gone from readonly -> read-write, we need to get our
1321 * sync/async discard lists in the right state.
1322 */
1323 btrfs_discard_resume(fs_info);
1324
1325 return 0;
1326 }
1327
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1328 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1329 {
1330 /*
1331 * This also happens on 'umount -rf' or on shutdown, when the
1332 * filesystem is busy.
1333 */
1334 cancel_work_sync(&fs_info->async_reclaim_work);
1335 cancel_work_sync(&fs_info->async_data_reclaim_work);
1336
1337 btrfs_discard_cleanup(fs_info);
1338
1339 /* Wait for the uuid_scan task to finish */
1340 down(&fs_info->uuid_tree_rescan_sem);
1341 /* Avoid complains from lockdep et al. */
1342 up(&fs_info->uuid_tree_rescan_sem);
1343
1344 btrfs_set_sb_rdonly(fs_info->sb);
1345
1346 /*
1347 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1348 * loop if it's already active. If it's already asleep, we'll leave
1349 * unused block groups on disk until we're mounted read-write again
1350 * unless we clean them up here.
1351 */
1352 btrfs_delete_unused_bgs(fs_info);
1353
1354 /*
1355 * The cleaner task could be already running before we set the flag
1356 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make
1357 * sure that after we finish the remount, i.e. after we call
1358 * btrfs_commit_super(), the cleaner can no longer start a transaction
1359 * - either because it was dropping a dead root, running delayed iputs
1360 * or deleting an unused block group (the cleaner picked a block
1361 * group from the list of unused block groups before we were able to
1362 * in the previous call to btrfs_delete_unused_bgs()).
1363 */
1364 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1365
1366 /*
1367 * We've set the superblock to RO mode, so we might have made the
1368 * cleaner task sleep without running all pending delayed iputs. Go
1369 * through all the delayed iputs here, so that if an unmount happens
1370 * without remounting RW we don't end up at finishing close_ctree()
1371 * with a non-empty list of delayed iputs.
1372 */
1373 btrfs_run_delayed_iputs(fs_info);
1374
1375 btrfs_dev_replace_suspend_for_unmount(fs_info);
1376 btrfs_scrub_cancel(fs_info);
1377 btrfs_pause_balance(fs_info);
1378
1379 /*
1380 * Pause the qgroup rescan worker if it is running. We don't want it to
1381 * be still running after we are in RO mode, as after that, by the time
1382 * we unmount, it might have left a transaction open, so we would leak
1383 * the transaction and/or crash.
1384 */
1385 btrfs_qgroup_wait_for_completion(fs_info, false);
1386
1387 return btrfs_commit_super(fs_info);
1388 }
1389
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1390 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1391 {
1392 fs_info->max_inline = ctx->max_inline;
1393 fs_info->commit_interval = ctx->commit_interval;
1394 fs_info->metadata_ratio = ctx->metadata_ratio;
1395 fs_info->thread_pool_size = ctx->thread_pool_size;
1396 fs_info->mount_opt = ctx->mount_opt;
1397 fs_info->compress_type = ctx->compress_type;
1398 fs_info->compress_level = ctx->compress_level;
1399 }
1400
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1401 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1402 {
1403 ctx->max_inline = fs_info->max_inline;
1404 ctx->commit_interval = fs_info->commit_interval;
1405 ctx->metadata_ratio = fs_info->metadata_ratio;
1406 ctx->thread_pool_size = fs_info->thread_pool_size;
1407 ctx->mount_opt = fs_info->mount_opt;
1408 ctx->compress_type = fs_info->compress_type;
1409 ctx->compress_level = fs_info->compress_level;
1410 }
1411
1412 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \
1413 do { \
1414 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1415 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1416 btrfs_info(fs_info, fmt, ##args); \
1417 } while (0)
1418
1419 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \
1420 do { \
1421 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1422 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1423 btrfs_info(fs_info, fmt, ##args); \
1424 } while (0)
1425
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1426 static void btrfs_emit_options(struct btrfs_fs_info *info,
1427 struct btrfs_fs_context *old)
1428 {
1429 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1430 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1431 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1432 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1433 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1434 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1435 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1436 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1437 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1438 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1439 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1440 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1441 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1442 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1443 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1444 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1445 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1446 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1447 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1448 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1449 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1450 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1451 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1452
1453 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1454 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1455 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1456 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1457 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1458 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1459 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1460 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1461 btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1462
1463 /* Did the compression settings change? */
1464 if (btrfs_test_opt(info, COMPRESS) &&
1465 (!old ||
1466 old->compress_type != info->compress_type ||
1467 old->compress_level != info->compress_level ||
1468 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1469 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1470 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1471
1472 btrfs_info(info, "%s %s compression, level %d",
1473 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1474 compress_type, info->compress_level);
1475 }
1476
1477 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1478 btrfs_info(info, "max_inline set to %llu", info->max_inline);
1479 }
1480
btrfs_reconfigure(struct fs_context * fc)1481 static int btrfs_reconfigure(struct fs_context *fc)
1482 {
1483 struct super_block *sb = fc->root->d_sb;
1484 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1485 struct btrfs_fs_context *ctx = fc->fs_private;
1486 struct btrfs_fs_context old_ctx;
1487 int ret = 0;
1488 bool mount_reconfigure = (fc->s_fs_info != NULL);
1489
1490 btrfs_info_to_ctx(fs_info, &old_ctx);
1491
1492 /*
1493 * This is our "bind mount" trick, we don't want to allow the user to do
1494 * anything other than mount a different ro/rw and a different subvol,
1495 * all of the mount options should be maintained.
1496 */
1497 if (mount_reconfigure)
1498 ctx->mount_opt = old_ctx.mount_opt;
1499
1500 sync_filesystem(sb);
1501 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1502
1503 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1504 return -EINVAL;
1505
1506 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1507 if (ret < 0)
1508 return ret;
1509
1510 btrfs_ctx_to_info(fs_info, ctx);
1511 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1512 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1513 old_ctx.thread_pool_size);
1514
1515 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1516 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1517 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1518 btrfs_warn(fs_info,
1519 "remount supports changing free space tree only from RO to RW");
1520 /* Make sure free space cache options match the state on disk. */
1521 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1522 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1523 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1524 }
1525 if (btrfs_free_space_cache_v1_active(fs_info)) {
1526 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1527 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1528 }
1529 }
1530
1531 ret = 0;
1532 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1533 ret = btrfs_remount_ro(fs_info);
1534 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1535 ret = btrfs_remount_rw(fs_info);
1536 if (ret)
1537 goto restore;
1538
1539 /*
1540 * If we set the mask during the parameter parsing VFS would reject the
1541 * remount. Here we can set the mask and the value will be updated
1542 * appropriately.
1543 */
1544 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1545 fc->sb_flags_mask |= SB_POSIXACL;
1546
1547 btrfs_emit_options(fs_info, &old_ctx);
1548 wake_up_process(fs_info->transaction_kthread);
1549 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1550 btrfs_clear_oneshot_options(fs_info);
1551 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1552
1553 return 0;
1554 restore:
1555 btrfs_ctx_to_info(fs_info, &old_ctx);
1556 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1557 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1558 return ret;
1559 }
1560
1561 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1562 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1563 {
1564 const struct btrfs_device_info *dev_info1 = a;
1565 const struct btrfs_device_info *dev_info2 = b;
1566
1567 if (dev_info1->max_avail > dev_info2->max_avail)
1568 return -1;
1569 else if (dev_info1->max_avail < dev_info2->max_avail)
1570 return 1;
1571 return 0;
1572 }
1573
1574 /*
1575 * sort the devices by max_avail, in which max free extent size of each device
1576 * is stored.(Descending Sort)
1577 */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1578 static inline void btrfs_descending_sort_devices(
1579 struct btrfs_device_info *devices,
1580 size_t nr_devices)
1581 {
1582 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1583 btrfs_cmp_device_free_bytes, NULL);
1584 }
1585
1586 /*
1587 * The helper to calc the free space on the devices that can be used to store
1588 * file data.
1589 */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1590 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1591 u64 *free_bytes)
1592 {
1593 struct btrfs_device_info *devices_info;
1594 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1595 struct btrfs_device *device;
1596 u64 type;
1597 u64 avail_space;
1598 u64 min_stripe_size;
1599 int num_stripes = 1;
1600 int i = 0, nr_devices;
1601 const struct btrfs_raid_attr *rattr;
1602
1603 /*
1604 * We aren't under the device list lock, so this is racy-ish, but good
1605 * enough for our purposes.
1606 */
1607 nr_devices = fs_info->fs_devices->open_devices;
1608 if (!nr_devices) {
1609 smp_mb();
1610 nr_devices = fs_info->fs_devices->open_devices;
1611 ASSERT(nr_devices);
1612 if (!nr_devices) {
1613 *free_bytes = 0;
1614 return 0;
1615 }
1616 }
1617
1618 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1619 GFP_KERNEL);
1620 if (!devices_info)
1621 return -ENOMEM;
1622
1623 /* calc min stripe number for data space allocation */
1624 type = btrfs_data_alloc_profile(fs_info);
1625 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1626
1627 if (type & BTRFS_BLOCK_GROUP_RAID0)
1628 num_stripes = nr_devices;
1629 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1630 num_stripes = rattr->ncopies;
1631 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1632 num_stripes = 4;
1633
1634 /* Adjust for more than 1 stripe per device */
1635 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1636
1637 rcu_read_lock();
1638 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1639 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1640 &device->dev_state) ||
1641 !device->bdev ||
1642 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1643 continue;
1644
1645 if (i >= nr_devices)
1646 break;
1647
1648 avail_space = device->total_bytes - device->bytes_used;
1649
1650 /* align with stripe_len */
1651 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1652
1653 /*
1654 * Ensure we have at least min_stripe_size on top of the
1655 * reserved space on the device.
1656 */
1657 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1658 continue;
1659
1660 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1661
1662 devices_info[i].dev = device;
1663 devices_info[i].max_avail = avail_space;
1664
1665 i++;
1666 }
1667 rcu_read_unlock();
1668
1669 nr_devices = i;
1670
1671 btrfs_descending_sort_devices(devices_info, nr_devices);
1672
1673 i = nr_devices - 1;
1674 avail_space = 0;
1675 while (nr_devices >= rattr->devs_min) {
1676 num_stripes = min(num_stripes, nr_devices);
1677
1678 if (devices_info[i].max_avail >= min_stripe_size) {
1679 int j;
1680 u64 alloc_size;
1681
1682 avail_space += devices_info[i].max_avail * num_stripes;
1683 alloc_size = devices_info[i].max_avail;
1684 for (j = i + 1 - num_stripes; j <= i; j++)
1685 devices_info[j].max_avail -= alloc_size;
1686 }
1687 i--;
1688 nr_devices--;
1689 }
1690
1691 kfree(devices_info);
1692 *free_bytes = avail_space;
1693 return 0;
1694 }
1695
1696 /*
1697 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1698 *
1699 * If there's a redundant raid level at DATA block groups, use the respective
1700 * multiplier to scale the sizes.
1701 *
1702 * Unused device space usage is based on simulating the chunk allocator
1703 * algorithm that respects the device sizes and order of allocations. This is
1704 * a close approximation of the actual use but there are other factors that may
1705 * change the result (like a new metadata chunk).
1706 *
1707 * If metadata is exhausted, f_bavail will be 0.
1708 */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1709 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1710 {
1711 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1712 struct btrfs_super_block *disk_super = fs_info->super_copy;
1713 struct btrfs_space_info *found;
1714 u64 total_used = 0;
1715 u64 total_free_data = 0;
1716 u64 total_free_meta = 0;
1717 u32 bits = fs_info->sectorsize_bits;
1718 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1719 unsigned factor = 1;
1720 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1721 int ret;
1722 u64 thresh = 0;
1723 int mixed = 0;
1724
1725 list_for_each_entry(found, &fs_info->space_info, list) {
1726 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1727 int i;
1728
1729 total_free_data += found->disk_total - found->disk_used;
1730 total_free_data -=
1731 btrfs_account_ro_block_groups_free_space(found);
1732
1733 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1734 if (!list_empty(&found->block_groups[i]))
1735 factor = btrfs_bg_type_to_factor(
1736 btrfs_raid_array[i].bg_flag);
1737 }
1738 }
1739
1740 /*
1741 * Metadata in mixed block group profiles are accounted in data
1742 */
1743 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1744 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1745 mixed = 1;
1746 else
1747 total_free_meta += found->disk_total -
1748 found->disk_used;
1749 }
1750
1751 total_used += found->disk_used;
1752 }
1753
1754 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1755 buf->f_blocks >>= bits;
1756 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1757
1758 /* Account global block reserve as used, it's in logical size already */
1759 spin_lock(&block_rsv->lock);
1760 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1761 if (buf->f_bfree >= block_rsv->size >> bits)
1762 buf->f_bfree -= block_rsv->size >> bits;
1763 else
1764 buf->f_bfree = 0;
1765 spin_unlock(&block_rsv->lock);
1766
1767 buf->f_bavail = div_u64(total_free_data, factor);
1768 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1769 if (ret)
1770 return ret;
1771 buf->f_bavail += div_u64(total_free_data, factor);
1772 buf->f_bavail = buf->f_bavail >> bits;
1773
1774 /*
1775 * We calculate the remaining metadata space minus global reserve. If
1776 * this is (supposedly) smaller than zero, there's no space. But this
1777 * does not hold in practice, the exhausted state happens where's still
1778 * some positive delta. So we apply some guesswork and compare the
1779 * delta to a 4M threshold. (Practically observed delta was ~2M.)
1780 *
1781 * We probably cannot calculate the exact threshold value because this
1782 * depends on the internal reservations requested by various
1783 * operations, so some operations that consume a few metadata will
1784 * succeed even if the Avail is zero. But this is better than the other
1785 * way around.
1786 */
1787 thresh = SZ_4M;
1788
1789 /*
1790 * We only want to claim there's no available space if we can no longer
1791 * allocate chunks for our metadata profile and our global reserve will
1792 * not fit in the free metadata space. If we aren't ->full then we
1793 * still can allocate chunks and thus are fine using the currently
1794 * calculated f_bavail.
1795 */
1796 if (!mixed && block_rsv->space_info->full &&
1797 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1798 buf->f_bavail = 0;
1799
1800 buf->f_type = BTRFS_SUPER_MAGIC;
1801 buf->f_bsize = fs_info->sectorsize;
1802 buf->f_namelen = BTRFS_NAME_LEN;
1803
1804 /* We treat it as constant endianness (it doesn't matter _which_)
1805 because we want the fsid to come out the same whether mounted
1806 on a big-endian or little-endian host */
1807 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1808 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1809 /* Mask in the root object ID too, to disambiguate subvols */
1810 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1811 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1812
1813 return 0;
1814 }
1815
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1816 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1817 {
1818 struct btrfs_fs_info *p = fc->s_fs_info;
1819 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1820
1821 return fs_info->fs_devices == p->fs_devices;
1822 }
1823
btrfs_get_tree_super(struct fs_context * fc)1824 static int btrfs_get_tree_super(struct fs_context *fc)
1825 {
1826 struct btrfs_fs_info *fs_info = fc->s_fs_info;
1827 struct btrfs_fs_context *ctx = fc->fs_private;
1828 struct btrfs_fs_devices *fs_devices = NULL;
1829 struct block_device *bdev;
1830 struct btrfs_device *device;
1831 struct super_block *sb;
1832 blk_mode_t mode = btrfs_open_mode(fc);
1833 int ret;
1834
1835 btrfs_ctx_to_info(fs_info, ctx);
1836 mutex_lock(&uuid_mutex);
1837
1838 /*
1839 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1840 * either a valid device or an error.
1841 */
1842 device = btrfs_scan_one_device(fc->source, mode, true);
1843 ASSERT(device != NULL);
1844 if (IS_ERR(device)) {
1845 mutex_unlock(&uuid_mutex);
1846 return PTR_ERR(device);
1847 }
1848
1849 fs_devices = device->fs_devices;
1850 fs_info->fs_devices = fs_devices;
1851
1852 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1853 mutex_unlock(&uuid_mutex);
1854 if (ret)
1855 return ret;
1856
1857 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1858 ret = -EACCES;
1859 goto error;
1860 }
1861
1862 bdev = fs_devices->latest_dev->bdev;
1863
1864 /*
1865 * From now on the error handling is not straightforward.
1866 *
1867 * If successful, this will transfer the fs_info into the super block,
1868 * and fc->s_fs_info will be NULL. However if there's an existing
1869 * super, we'll still have fc->s_fs_info populated. If we error
1870 * completely out it'll be cleaned up when we drop the fs_context,
1871 * otherwise it's tied to the lifetime of the super_block.
1872 */
1873 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1874 if (IS_ERR(sb)) {
1875 ret = PTR_ERR(sb);
1876 goto error;
1877 }
1878
1879 set_device_specific_options(fs_info);
1880
1881 if (sb->s_root) {
1882 btrfs_close_devices(fs_devices);
1883 /*
1884 * At this stage we may have RO flag mismatch between
1885 * fc->sb_flags and sb->s_flags. Caller should detect such
1886 * mismatch and reconfigure with sb->s_umount rwsem held if
1887 * needed.
1888 */
1889 } else {
1890 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1891 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1892 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1893 ret = btrfs_fill_super(sb, fs_devices);
1894 if (ret) {
1895 deactivate_locked_super(sb);
1896 return ret;
1897 }
1898 }
1899
1900 btrfs_clear_oneshot_options(fs_info);
1901
1902 fc->root = dget(sb->s_root);
1903 return 0;
1904
1905 error:
1906 btrfs_close_devices(fs_devices);
1907 return ret;
1908 }
1909
1910 /*
1911 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1912 * with different ro/rw options") the following works:
1913 *
1914 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1915 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1916 *
1917 * which looks nice and innocent but is actually pretty intricate and deserves
1918 * a long comment.
1919 *
1920 * On another filesystem a subvolume mount is close to something like:
1921 *
1922 * (iii) # create rw superblock + initial mount
1923 * mount -t xfs /dev/sdb /opt/
1924 *
1925 * # create ro bind mount
1926 * mount --bind -o ro /opt/foo /mnt/foo
1927 *
1928 * # unmount initial mount
1929 * umount /opt
1930 *
1931 * Of course, there's some special subvolume sauce and there's the fact that the
1932 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1933 * it's very close and will help us understand the issue.
1934 *
1935 * The old mount API didn't cleanly distinguish between a mount being made ro
1936 * and a superblock being made ro. The only way to change the ro state of
1937 * either object was by passing ms_rdonly. If a new mount was created via
1938 * mount(2) such as:
1939 *
1940 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1941 *
1942 * the MS_RDONLY flag being specified had two effects:
1943 *
1944 * (1) MNT_READONLY was raised -> the resulting mount got
1945 * @mnt->mnt_flags |= MNT_READONLY raised.
1946 *
1947 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1948 * made the superblock ro. Note, how SB_RDONLY has the same value as
1949 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1950 *
1951 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1952 * subtree mounted ro.
1953 *
1954 * But consider the effect on the old mount API on btrfs subvolume mounting
1955 * which combines the distinct step in (iii) into a single step.
1956 *
1957 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1958 * is issued the superblock is ro and thus even if the mount created for (ii) is
1959 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1960 * to rw for (ii) which it did using an internal remount call.
1961 *
1962 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1963 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1964 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1965 * passed by mount(8) to mount(2).
1966 *
1967 * Enter the new mount API. The new mount API disambiguates making a mount ro
1968 * and making a superblock ro.
1969 *
1970 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1971 * fsmount() or mount_setattr() this is a pure VFS level change for a
1972 * specific mount or mount tree that is never seen by the filesystem itself.
1973 *
1974 * (4) To turn a superblock ro the "ro" flag must be used with
1975 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1976 * in fc->sb_flags.
1977 *
1978 * But, currently the util-linux mount command already utilizes the new mount
1979 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1980 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting
1981 * work with different options work we need to keep backward compatibility.
1982 */
btrfs_reconfigure_for_mount(struct fs_context * fc,struct vfsmount * mnt)1983 static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt)
1984 {
1985 int ret = 0;
1986
1987 if (fc->sb_flags & SB_RDONLY)
1988 return ret;
1989
1990 down_write(&mnt->mnt_sb->s_umount);
1991 if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY))
1992 ret = btrfs_reconfigure(fc);
1993 up_write(&mnt->mnt_sb->s_umount);
1994 return ret;
1995 }
1996
btrfs_get_tree_subvol(struct fs_context * fc)1997 static int btrfs_get_tree_subvol(struct fs_context *fc)
1998 {
1999 struct btrfs_fs_info *fs_info = NULL;
2000 struct btrfs_fs_context *ctx = fc->fs_private;
2001 struct fs_context *dup_fc;
2002 struct dentry *dentry;
2003 struct vfsmount *mnt;
2004 int ret = 0;
2005
2006 /*
2007 * Setup a dummy root and fs_info for test/set super. This is because
2008 * we don't actually fill this stuff out until open_ctree, but we need
2009 * then open_ctree will properly initialize the file system specific
2010 * settings later. btrfs_init_fs_info initializes the static elements
2011 * of the fs_info (locks and such) to make cleanup easier if we find a
2012 * superblock with our given fs_devices later on at sget() time.
2013 */
2014 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2015 if (!fs_info)
2016 return -ENOMEM;
2017
2018 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2019 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2020 if (!fs_info->super_copy || !fs_info->super_for_commit) {
2021 btrfs_free_fs_info(fs_info);
2022 return -ENOMEM;
2023 }
2024 btrfs_init_fs_info(fs_info);
2025
2026 dup_fc = vfs_dup_fs_context(fc);
2027 if (IS_ERR(dup_fc)) {
2028 btrfs_free_fs_info(fs_info);
2029 return PTR_ERR(dup_fc);
2030 }
2031
2032 /*
2033 * When we do the sget_fc this gets transferred to the sb, so we only
2034 * need to set it on the dup_fc as this is what creates the super block.
2035 */
2036 dup_fc->s_fs_info = fs_info;
2037
2038 /*
2039 * We'll do the security settings in our btrfs_get_tree_super() mount
2040 * loop, they were duplicated into dup_fc, we can drop the originals
2041 * here.
2042 */
2043 security_free_mnt_opts(&fc->security);
2044 fc->security = NULL;
2045
2046 mnt = fc_mount(dup_fc);
2047 if (IS_ERR(mnt)) {
2048 put_fs_context(dup_fc);
2049 return PTR_ERR(mnt);
2050 }
2051 ret = btrfs_reconfigure_for_mount(dup_fc, mnt);
2052 put_fs_context(dup_fc);
2053 if (ret) {
2054 mntput(mnt);
2055 return ret;
2056 }
2057
2058 /*
2059 * This free's ->subvol_name, because if it isn't set we have to
2060 * allocate a buffer to hold the subvol_name, so we just drop our
2061 * reference to it here.
2062 */
2063 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2064 ctx->subvol_name = NULL;
2065 if (IS_ERR(dentry))
2066 return PTR_ERR(dentry);
2067
2068 fc->root = dentry;
2069 return 0;
2070 }
2071
btrfs_get_tree(struct fs_context * fc)2072 static int btrfs_get_tree(struct fs_context *fc)
2073 {
2074 /*
2075 * Since we use mount_subtree to mount the default/specified subvol, we
2076 * have to do mounts in two steps.
2077 *
2078 * First pass through we call btrfs_get_tree_subvol(), this is just a
2079 * wrapper around fc_mount() to call back into here again, and this time
2080 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and
2081 * everything to open the devices and file system. Then we return back
2082 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2083 * from there we can do our mount_subvol() call, which will lookup
2084 * whichever subvol we're mounting and setup this fc with the
2085 * appropriate dentry for the subvol.
2086 */
2087 if (fc->s_fs_info)
2088 return btrfs_get_tree_super(fc);
2089 return btrfs_get_tree_subvol(fc);
2090 }
2091
btrfs_kill_super(struct super_block * sb)2092 static void btrfs_kill_super(struct super_block *sb)
2093 {
2094 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2095 kill_anon_super(sb);
2096 btrfs_free_fs_info(fs_info);
2097 }
2098
btrfs_free_fs_context(struct fs_context * fc)2099 static void btrfs_free_fs_context(struct fs_context *fc)
2100 {
2101 struct btrfs_fs_context *ctx = fc->fs_private;
2102 struct btrfs_fs_info *fs_info = fc->s_fs_info;
2103
2104 if (fs_info)
2105 btrfs_free_fs_info(fs_info);
2106
2107 if (ctx && refcount_dec_and_test(&ctx->refs)) {
2108 kfree(ctx->subvol_name);
2109 kfree(ctx);
2110 }
2111 }
2112
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2113 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2114 {
2115 struct btrfs_fs_context *ctx = src_fc->fs_private;
2116
2117 /*
2118 * Give a ref to our ctx to this dup, as we want to keep it around for
2119 * our original fc so we can have the subvolume name or objectid.
2120 *
2121 * We unset ->source in the original fc because the dup needs it for
2122 * mounting, and then once we free the dup it'll free ->source, so we
2123 * need to make sure we're only pointing to it in one fc.
2124 */
2125 refcount_inc(&ctx->refs);
2126 fc->fs_private = ctx;
2127 fc->source = src_fc->source;
2128 src_fc->source = NULL;
2129 return 0;
2130 }
2131
2132 static const struct fs_context_operations btrfs_fs_context_ops = {
2133 .parse_param = btrfs_parse_param,
2134 .reconfigure = btrfs_reconfigure,
2135 .get_tree = btrfs_get_tree,
2136 .dup = btrfs_dup_fs_context,
2137 .free = btrfs_free_fs_context,
2138 };
2139
btrfs_init_fs_context(struct fs_context * fc)2140 static int btrfs_init_fs_context(struct fs_context *fc)
2141 {
2142 struct btrfs_fs_context *ctx;
2143
2144 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2145 if (!ctx)
2146 return -ENOMEM;
2147
2148 refcount_set(&ctx->refs, 1);
2149 fc->fs_private = ctx;
2150 fc->ops = &btrfs_fs_context_ops;
2151
2152 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2153 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2154 } else {
2155 ctx->thread_pool_size =
2156 min_t(unsigned long, num_online_cpus() + 2, 8);
2157 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2158 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2159 }
2160
2161 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2162 fc->sb_flags |= SB_POSIXACL;
2163 #endif
2164 fc->sb_flags |= SB_I_VERSION;
2165
2166 return 0;
2167 }
2168
2169 static struct file_system_type btrfs_fs_type = {
2170 .owner = THIS_MODULE,
2171 .name = "btrfs",
2172 .init_fs_context = btrfs_init_fs_context,
2173 .parameters = btrfs_fs_parameters,
2174 .kill_sb = btrfs_kill_super,
2175 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2176 FS_ALLOW_IDMAP | FS_MGTIME,
2177 };
2178
2179 MODULE_ALIAS_FS("btrfs");
2180
btrfs_control_open(struct inode * inode,struct file * file)2181 static int btrfs_control_open(struct inode *inode, struct file *file)
2182 {
2183 /*
2184 * The control file's private_data is used to hold the
2185 * transaction when it is started and is used to keep
2186 * track of whether a transaction is already in progress.
2187 */
2188 file->private_data = NULL;
2189 return 0;
2190 }
2191
2192 /*
2193 * Used by /dev/btrfs-control for devices ioctls.
2194 */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2195 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2196 unsigned long arg)
2197 {
2198 struct btrfs_ioctl_vol_args *vol;
2199 struct btrfs_device *device = NULL;
2200 dev_t devt = 0;
2201 int ret = -ENOTTY;
2202
2203 if (!capable(CAP_SYS_ADMIN))
2204 return -EPERM;
2205
2206 vol = memdup_user((void __user *)arg, sizeof(*vol));
2207 if (IS_ERR(vol))
2208 return PTR_ERR(vol);
2209 ret = btrfs_check_ioctl_vol_args_path(vol);
2210 if (ret < 0)
2211 goto out;
2212
2213 switch (cmd) {
2214 case BTRFS_IOC_SCAN_DEV:
2215 mutex_lock(&uuid_mutex);
2216 /*
2217 * Scanning outside of mount can return NULL which would turn
2218 * into 0 error code.
2219 */
2220 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2221 ret = PTR_ERR_OR_ZERO(device);
2222 mutex_unlock(&uuid_mutex);
2223 break;
2224 case BTRFS_IOC_FORGET_DEV:
2225 if (vol->name[0] != 0) {
2226 ret = lookup_bdev(vol->name, &devt);
2227 if (ret)
2228 break;
2229 }
2230 ret = btrfs_forget_devices(devt);
2231 break;
2232 case BTRFS_IOC_DEVICES_READY:
2233 mutex_lock(&uuid_mutex);
2234 /*
2235 * Scanning outside of mount can return NULL which would turn
2236 * into 0 error code.
2237 */
2238 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2239 if (IS_ERR_OR_NULL(device)) {
2240 mutex_unlock(&uuid_mutex);
2241 if (IS_ERR(device))
2242 ret = PTR_ERR(device);
2243 else
2244 ret = 0;
2245 break;
2246 }
2247 ret = !(device->fs_devices->num_devices ==
2248 device->fs_devices->total_devices);
2249 mutex_unlock(&uuid_mutex);
2250 break;
2251 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2252 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2253 break;
2254 }
2255
2256 out:
2257 kfree(vol);
2258 return ret;
2259 }
2260
btrfs_freeze(struct super_block * sb)2261 static int btrfs_freeze(struct super_block *sb)
2262 {
2263 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2264
2265 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2266 /*
2267 * We don't need a barrier here, we'll wait for any transaction that
2268 * could be in progress on other threads (and do delayed iputs that
2269 * we want to avoid on a frozen filesystem), or do the commit
2270 * ourselves.
2271 */
2272 return btrfs_commit_current_transaction(fs_info->tree_root);
2273 }
2274
check_dev_super(struct btrfs_device * dev)2275 static int check_dev_super(struct btrfs_device *dev)
2276 {
2277 struct btrfs_fs_info *fs_info = dev->fs_info;
2278 struct btrfs_super_block *sb;
2279 u64 last_trans;
2280 u16 csum_type;
2281 int ret = 0;
2282
2283 /* This should be called with fs still frozen. */
2284 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2285
2286 /* Missing dev, no need to check. */
2287 if (!dev->bdev)
2288 return 0;
2289
2290 /* Only need to check the primary super block. */
2291 sb = btrfs_read_disk_super(dev->bdev, 0, true);
2292 if (IS_ERR(sb))
2293 return PTR_ERR(sb);
2294
2295 /* Verify the checksum. */
2296 csum_type = btrfs_super_csum_type(sb);
2297 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2298 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2299 csum_type, btrfs_super_csum_type(fs_info->super_copy));
2300 ret = -EUCLEAN;
2301 goto out;
2302 }
2303
2304 if (btrfs_check_super_csum(fs_info, sb)) {
2305 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2306 ret = -EUCLEAN;
2307 goto out;
2308 }
2309
2310 /* Btrfs_validate_super() includes fsid check against super->fsid. */
2311 ret = btrfs_validate_super(fs_info, sb, 0);
2312 if (ret < 0)
2313 goto out;
2314
2315 last_trans = btrfs_get_last_trans_committed(fs_info);
2316 if (btrfs_super_generation(sb) != last_trans) {
2317 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2318 btrfs_super_generation(sb), last_trans);
2319 ret = -EUCLEAN;
2320 goto out;
2321 }
2322 out:
2323 btrfs_release_disk_super(sb);
2324 return ret;
2325 }
2326
btrfs_unfreeze(struct super_block * sb)2327 static int btrfs_unfreeze(struct super_block *sb)
2328 {
2329 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2330 struct btrfs_device *device;
2331 int ret = 0;
2332
2333 /*
2334 * Make sure the fs is not changed by accident (like hibernation then
2335 * modified by other OS).
2336 * If we found anything wrong, we mark the fs error immediately.
2337 *
2338 * And since the fs is frozen, no one can modify the fs yet, thus
2339 * we don't need to hold device_list_mutex.
2340 */
2341 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2342 ret = check_dev_super(device);
2343 if (ret < 0) {
2344 btrfs_handle_fs_error(fs_info, ret,
2345 "super block on devid %llu got modified unexpectedly",
2346 device->devid);
2347 break;
2348 }
2349 }
2350 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2351
2352 /*
2353 * We still return 0, to allow VFS layer to unfreeze the fs even the
2354 * above checks failed. Since the fs is either fine or read-only, we're
2355 * safe to continue, without causing further damage.
2356 */
2357 return 0;
2358 }
2359
btrfs_show_devname(struct seq_file * m,struct dentry * root)2360 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2361 {
2362 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2363
2364 /*
2365 * There should be always a valid pointer in latest_dev, it may be stale
2366 * for a short moment in case it's being deleted but still valid until
2367 * the end of RCU grace period.
2368 */
2369 rcu_read_lock();
2370 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2371 rcu_read_unlock();
2372
2373 return 0;
2374 }
2375
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2376 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2377 {
2378 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2379 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2380
2381 trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2382
2383 return nr;
2384 }
2385
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2386 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2387 {
2388 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2389 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2390
2391 btrfs_free_extent_maps(fs_info, nr_to_scan);
2392
2393 /* The extent map shrinker runs asynchronously, so always return 0. */
2394 return 0;
2395 }
2396
2397 static const struct super_operations btrfs_super_ops = {
2398 .drop_inode = btrfs_drop_inode,
2399 .evict_inode = btrfs_evict_inode,
2400 .put_super = btrfs_put_super,
2401 .sync_fs = btrfs_sync_fs,
2402 .show_options = btrfs_show_options,
2403 .show_devname = btrfs_show_devname,
2404 .alloc_inode = btrfs_alloc_inode,
2405 .destroy_inode = btrfs_destroy_inode,
2406 .free_inode = btrfs_free_inode,
2407 .statfs = btrfs_statfs,
2408 .freeze_fs = btrfs_freeze,
2409 .unfreeze_fs = btrfs_unfreeze,
2410 .nr_cached_objects = btrfs_nr_cached_objects,
2411 .free_cached_objects = btrfs_free_cached_objects,
2412 };
2413
2414 static const struct file_operations btrfs_ctl_fops = {
2415 .open = btrfs_control_open,
2416 .unlocked_ioctl = btrfs_control_ioctl,
2417 .compat_ioctl = compat_ptr_ioctl,
2418 .owner = THIS_MODULE,
2419 .llseek = noop_llseek,
2420 };
2421
2422 static struct miscdevice btrfs_misc = {
2423 .minor = BTRFS_MINOR,
2424 .name = "btrfs-control",
2425 .fops = &btrfs_ctl_fops
2426 };
2427
2428 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2429 MODULE_ALIAS("devname:btrfs-control");
2430
btrfs_interface_init(void)2431 static int __init btrfs_interface_init(void)
2432 {
2433 return misc_register(&btrfs_misc);
2434 }
2435
btrfs_interface_exit(void)2436 static __cold void btrfs_interface_exit(void)
2437 {
2438 misc_deregister(&btrfs_misc);
2439 }
2440
btrfs_print_mod_info(void)2441 static int __init btrfs_print_mod_info(void)
2442 {
2443 static const char options[] = ""
2444 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2445 ", experimental=on"
2446 #endif
2447 #ifdef CONFIG_BTRFS_DEBUG
2448 ", debug=on"
2449 #endif
2450 #ifdef CONFIG_BTRFS_ASSERT
2451 ", assert=on"
2452 #endif
2453 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2454 ", ref-verify=on"
2455 #endif
2456 #ifdef CONFIG_BLK_DEV_ZONED
2457 ", zoned=yes"
2458 #else
2459 ", zoned=no"
2460 #endif
2461 #ifdef CONFIG_FS_VERITY
2462 ", fsverity=yes"
2463 #else
2464 ", fsverity=no"
2465 #endif
2466 ;
2467
2468 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2469 if (btrfs_get_mod_read_policy() == NULL)
2470 pr_info("Btrfs loaded%s\n", options);
2471 else
2472 pr_info("Btrfs loaded%s, read_policy=%s\n",
2473 options, btrfs_get_mod_read_policy());
2474 #else
2475 pr_info("Btrfs loaded%s\n", options);
2476 #endif
2477
2478 return 0;
2479 }
2480
register_btrfs(void)2481 static int register_btrfs(void)
2482 {
2483 return register_filesystem(&btrfs_fs_type);
2484 }
2485
unregister_btrfs(void)2486 static void unregister_btrfs(void)
2487 {
2488 unregister_filesystem(&btrfs_fs_type);
2489 }
2490
2491 /* Helper structure for long init/exit functions. */
2492 struct init_sequence {
2493 int (*init_func)(void);
2494 /* Can be NULL if the init_func doesn't need cleanup. */
2495 void (*exit_func)(void);
2496 };
2497
2498 static const struct init_sequence mod_init_seq[] = {
2499 {
2500 .init_func = btrfs_props_init,
2501 .exit_func = NULL,
2502 }, {
2503 .init_func = btrfs_init_sysfs,
2504 .exit_func = btrfs_exit_sysfs,
2505 }, {
2506 .init_func = btrfs_init_compress,
2507 .exit_func = btrfs_exit_compress,
2508 }, {
2509 .init_func = btrfs_init_cachep,
2510 .exit_func = btrfs_destroy_cachep,
2511 }, {
2512 .init_func = btrfs_init_dio,
2513 .exit_func = btrfs_destroy_dio,
2514 }, {
2515 .init_func = btrfs_transaction_init,
2516 .exit_func = btrfs_transaction_exit,
2517 }, {
2518 .init_func = btrfs_ctree_init,
2519 .exit_func = btrfs_ctree_exit,
2520 }, {
2521 .init_func = btrfs_free_space_init,
2522 .exit_func = btrfs_free_space_exit,
2523 }, {
2524 .init_func = btrfs_extent_state_init_cachep,
2525 .exit_func = btrfs_extent_state_free_cachep,
2526 }, {
2527 .init_func = extent_buffer_init_cachep,
2528 .exit_func = extent_buffer_free_cachep,
2529 }, {
2530 .init_func = btrfs_bioset_init,
2531 .exit_func = btrfs_bioset_exit,
2532 }, {
2533 .init_func = btrfs_extent_map_init,
2534 .exit_func = btrfs_extent_map_exit,
2535 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2536 }, {
2537 .init_func = btrfs_read_policy_init,
2538 .exit_func = NULL,
2539 #endif
2540 }, {
2541 .init_func = ordered_data_init,
2542 .exit_func = ordered_data_exit,
2543 }, {
2544 .init_func = btrfs_delayed_inode_init,
2545 .exit_func = btrfs_delayed_inode_exit,
2546 }, {
2547 .init_func = btrfs_auto_defrag_init,
2548 .exit_func = btrfs_auto_defrag_exit,
2549 }, {
2550 .init_func = btrfs_delayed_ref_init,
2551 .exit_func = btrfs_delayed_ref_exit,
2552 }, {
2553 .init_func = btrfs_prelim_ref_init,
2554 .exit_func = btrfs_prelim_ref_exit,
2555 }, {
2556 .init_func = btrfs_interface_init,
2557 .exit_func = btrfs_interface_exit,
2558 }, {
2559 .init_func = btrfs_print_mod_info,
2560 .exit_func = NULL,
2561 }, {
2562 .init_func = btrfs_run_sanity_tests,
2563 .exit_func = NULL,
2564 }, {
2565 .init_func = register_btrfs,
2566 .exit_func = unregister_btrfs,
2567 }
2568 };
2569
2570 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2571
btrfs_exit_btrfs_fs(void)2572 static __always_inline void btrfs_exit_btrfs_fs(void)
2573 {
2574 int i;
2575
2576 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2577 if (!mod_init_result[i])
2578 continue;
2579 if (mod_init_seq[i].exit_func)
2580 mod_init_seq[i].exit_func();
2581 mod_init_result[i] = false;
2582 }
2583 }
2584
exit_btrfs_fs(void)2585 static void __exit exit_btrfs_fs(void)
2586 {
2587 btrfs_exit_btrfs_fs();
2588 btrfs_cleanup_fs_uuids();
2589 }
2590
init_btrfs_fs(void)2591 static int __init init_btrfs_fs(void)
2592 {
2593 int ret;
2594 int i;
2595
2596 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2597 ASSERT(!mod_init_result[i]);
2598 ret = mod_init_seq[i].init_func();
2599 if (ret < 0) {
2600 btrfs_exit_btrfs_fs();
2601 return ret;
2602 }
2603 mod_init_result[i] = true;
2604 }
2605 return 0;
2606 }
2607
2608 late_initcall(init_btrfs_fs);
2609 module_exit(exit_btrfs_fs)
2610
2611 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2612 MODULE_LICENSE("GPL");
2613 MODULE_SOFTDEP("pre: crc32c");
2614 MODULE_SOFTDEP("pre: xxhash64");
2615 MODULE_SOFTDEP("pre: sha256");
2616 MODULE_SOFTDEP("pre: blake2b-256");
2617