1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37
38 static struct kmem_cache *extent_buffer_cache;
39
40 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50
btrfs_leak_debug_del_eb(struct extent_buffer * eb)51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 btrfs_err(fs_info,
79 "buffer leak start %llu len %u refs %d bflags %lu owner %llu",
80 eb->start, eb->len, refcount_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
91 #endif
92
93 /*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97 struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 /* Last byte contained in bbio + 1 . */
100 loff_t next_file_offset;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
103 blk_opf_t opf;
104 /*
105 * For data read bios, we attempt to optimize csum lookups if the extent
106 * generation is older than the current one. To make this possible, we
107 * need to track the maximum generation of an extent in a bio_ctrl to
108 * make the decision when submitting the bio.
109 *
110 * The pattern between do_readpage(), submit_one_bio() and
111 * submit_extent_folio() is quite subtle, so tracking this is tricky.
112 *
113 * As we process extent E, we might submit a bio with existing built up
114 * extents before adding E to a new bio, or we might just add E to the
115 * bio. As a result, E's generation could apply to the current bio or
116 * to the next one, so we need to be careful to update the bio_ctrl's
117 * generation with E's only when we are sure E is added to bio_ctrl->bbio
118 * in submit_extent_folio().
119 *
120 * See the comment in btrfs_lookup_bio_sums() for more detail on the
121 * need for this optimization.
122 */
123 u64 generation;
124 btrfs_bio_end_io_t end_io_func;
125 struct writeback_control *wbc;
126
127 /*
128 * The sectors of the page which are going to be submitted by
129 * extent_writepage_io().
130 * This is to avoid touching ranges covered by compression/inline.
131 */
132 unsigned long submit_bitmap;
133 struct readahead_control *ractl;
134
135 /*
136 * The start offset of the last used extent map by a read operation.
137 *
138 * This is for proper compressed read merge.
139 * U64_MAX means we are starting the read and have made no progress yet.
140 *
141 * The current btrfs_bio_is_contig() only uses disk_bytenr as
142 * the condition to check if the read can be merged with previous
143 * bio, which is not correct. E.g. two file extents pointing to the
144 * same extent but with different offset.
145 *
146 * So here we need to do extra checks to only merge reads that are
147 * covered by the same extent map.
148 * Just extent_map::start will be enough, as they are unique
149 * inside the same inode.
150 */
151 u64 last_em_start;
152 };
153
154 /*
155 * Helper to set the csum search commit root option for a bio_ctrl's bbio
156 * before submitting the bio.
157 *
158 * Only for use by submit_one_bio().
159 */
bio_set_csum_search_commit_root(struct btrfs_bio_ctrl * bio_ctrl)160 static void bio_set_csum_search_commit_root(struct btrfs_bio_ctrl *bio_ctrl)
161 {
162 struct btrfs_bio *bbio = bio_ctrl->bbio;
163
164 ASSERT(bbio);
165
166 if (!(btrfs_op(&bbio->bio) == BTRFS_MAP_READ && is_data_inode(bbio->inode)))
167 return;
168
169 bio_ctrl->bbio->csum_search_commit_root =
170 (bio_ctrl->generation &&
171 bio_ctrl->generation < btrfs_get_fs_generation(bbio->inode->root->fs_info));
172 }
173
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)174 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
175 {
176 struct btrfs_bio *bbio = bio_ctrl->bbio;
177
178 if (!bbio)
179 return;
180
181 /* Caller should ensure the bio has at least some range added */
182 ASSERT(bbio->bio.bi_iter.bi_size);
183
184 bio_set_csum_search_commit_root(bio_ctrl);
185
186 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
187 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
188 btrfs_submit_compressed_read(bbio);
189 else
190 btrfs_submit_bbio(bbio, 0);
191
192 /* The bbio is owned by the end_io handler now */
193 bio_ctrl->bbio = NULL;
194 /*
195 * We used the generation to decide whether to lookup csums in the
196 * commit_root or not when we called bio_set_csum_search_commit_root()
197 * above. Now, reset the generation for the next bio.
198 */
199 bio_ctrl->generation = 0;
200 }
201
202 /*
203 * Submit or fail the current bio in the bio_ctrl structure.
204 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)205 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
206 {
207 struct btrfs_bio *bbio = bio_ctrl->bbio;
208
209 if (!bbio)
210 return;
211
212 if (ret) {
213 ASSERT(ret < 0);
214 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
215 /* The bio is owned by the end_io handler now */
216 bio_ctrl->bbio = NULL;
217 } else {
218 submit_one_bio(bio_ctrl);
219 }
220 }
221
extent_buffer_init_cachep(void)222 int __init extent_buffer_init_cachep(void)
223 {
224 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
225 sizeof(struct extent_buffer), 0, 0,
226 NULL);
227 if (!extent_buffer_cache)
228 return -ENOMEM;
229
230 return 0;
231 }
232
extent_buffer_free_cachep(void)233 void __cold extent_buffer_free_cachep(void)
234 {
235 /*
236 * Make sure all delayed rcu free are flushed before we
237 * destroy caches.
238 */
239 rcu_barrier();
240 kmem_cache_destroy(extent_buffer_cache);
241 }
242
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)243 static void process_one_folio(struct btrfs_fs_info *fs_info,
244 struct folio *folio, const struct folio *locked_folio,
245 unsigned long page_ops, u64 start, u64 end)
246 {
247 u32 len;
248
249 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
250 len = end + 1 - start;
251
252 if (page_ops & PAGE_SET_ORDERED)
253 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
254 if (page_ops & PAGE_START_WRITEBACK) {
255 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
256 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
257 }
258 if (page_ops & PAGE_END_WRITEBACK)
259 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
260
261 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
262 btrfs_folio_end_lock(fs_info, folio, start, len);
263 }
264
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)265 static void __process_folios_contig(struct address_space *mapping,
266 const struct folio *locked_folio, u64 start,
267 u64 end, unsigned long page_ops)
268 {
269 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
270 pgoff_t index = start >> PAGE_SHIFT;
271 pgoff_t end_index = end >> PAGE_SHIFT;
272 struct folio_batch fbatch;
273 int i;
274
275 folio_batch_init(&fbatch);
276 while (index <= end_index) {
277 int found_folios;
278
279 found_folios = filemap_get_folios_contig(mapping, &index,
280 end_index, &fbatch);
281 for (i = 0; i < found_folios; i++) {
282 struct folio *folio = fbatch.folios[i];
283
284 process_one_folio(fs_info, folio, locked_folio,
285 page_ops, start, end);
286 }
287 folio_batch_release(&fbatch);
288 cond_resched();
289 }
290 }
291
unlock_delalloc_folio(const struct inode * inode,struct folio * locked_folio,u64 start,u64 end)292 static noinline void unlock_delalloc_folio(const struct inode *inode,
293 struct folio *locked_folio,
294 u64 start, u64 end)
295 {
296 ASSERT(locked_folio);
297
298 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
299 PAGE_UNLOCK);
300 }
301
lock_delalloc_folios(struct inode * inode,struct folio * locked_folio,u64 start,u64 end)302 static noinline int lock_delalloc_folios(struct inode *inode,
303 struct folio *locked_folio,
304 u64 start, u64 end)
305 {
306 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
307 struct address_space *mapping = inode->i_mapping;
308 pgoff_t index = start >> PAGE_SHIFT;
309 pgoff_t end_index = end >> PAGE_SHIFT;
310 u64 processed_end = start;
311 struct folio_batch fbatch;
312
313 folio_batch_init(&fbatch);
314 while (index <= end_index) {
315 unsigned int found_folios, i;
316
317 found_folios = filemap_get_folios_contig(mapping, &index,
318 end_index, &fbatch);
319 if (found_folios == 0)
320 goto out;
321
322 for (i = 0; i < found_folios; i++) {
323 struct folio *folio = fbatch.folios[i];
324 u64 range_start;
325 u32 range_len;
326
327 if (folio == locked_folio)
328 continue;
329
330 folio_lock(folio);
331 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
332 folio_unlock(folio);
333 goto out;
334 }
335 range_start = max_t(u64, folio_pos(folio), start);
336 range_len = min_t(u64, folio_next_pos(folio), end + 1) - range_start;
337 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
338
339 processed_end = range_start + range_len - 1;
340 }
341 folio_batch_release(&fbatch);
342 cond_resched();
343 }
344
345 return 0;
346 out:
347 folio_batch_release(&fbatch);
348 if (processed_end > start)
349 unlock_delalloc_folio(inode, locked_folio, start, processed_end);
350 return -EAGAIN;
351 }
352
353 /*
354 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
355 * more than @max_bytes.
356 *
357 * @start: The original start bytenr to search.
358 * Will store the extent range start bytenr.
359 * @end: The original end bytenr of the search range
360 * Will store the extent range end bytenr.
361 *
362 * Return true if we find a delalloc range which starts inside the original
363 * range, and @start/@end will store the delalloc range start/end.
364 *
365 * Return false if we can't find any delalloc range which starts inside the
366 * original range, and @start/@end will be the non-delalloc range start/end.
367 */
368 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)369 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
370 struct folio *locked_folio,
371 u64 *start, u64 *end)
372 {
373 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
375 const u64 orig_start = *start;
376 const u64 orig_end = *end;
377 u64 max_bytes = fs_info->max_extent_size;
378 u64 delalloc_start;
379 u64 delalloc_end;
380 bool found;
381 struct extent_state *cached_state = NULL;
382 int ret;
383 int loops = 0;
384
385 /* Caller should pass a valid @end to indicate the search range end */
386 ASSERT(orig_end > orig_start);
387
388 /* The range should at least cover part of the folio */
389 ASSERT(!(orig_start >= folio_next_pos(locked_folio) ||
390 orig_end <= folio_pos(locked_folio)));
391 again:
392 /* step one, find a bunch of delalloc bytes starting at start */
393 delalloc_start = *start;
394 delalloc_end = 0;
395
396 /*
397 * If @max_bytes is smaller than a block, btrfs_find_delalloc_range() can
398 * return early without handling any dirty ranges.
399 */
400 ASSERT(max_bytes >= fs_info->sectorsize);
401
402 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
403 max_bytes, &cached_state);
404 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
405 *start = delalloc_start;
406
407 /* @delalloc_end can be -1, never go beyond @orig_end */
408 *end = min(delalloc_end, orig_end);
409 btrfs_free_extent_state(cached_state);
410 return false;
411 }
412
413 /*
414 * start comes from the offset of locked_folio. We have to lock
415 * folios in order, so we can't process delalloc bytes before
416 * locked_folio
417 */
418 if (delalloc_start < *start)
419 delalloc_start = *start;
420
421 /*
422 * make sure to limit the number of folios we try to lock down
423 */
424 if (delalloc_end + 1 - delalloc_start > max_bytes)
425 delalloc_end = delalloc_start + max_bytes - 1;
426
427 /* step two, lock all the folios after the folios that has start */
428 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
429 delalloc_end);
430 ASSERT(!ret || ret == -EAGAIN);
431 if (ret == -EAGAIN) {
432 /*
433 * Some of the folios are gone, lets avoid looping by
434 * shortening the size of the delalloc range we're searching.
435 */
436 btrfs_free_extent_state(cached_state);
437 cached_state = NULL;
438 if (!loops) {
439 max_bytes = fs_info->sectorsize;
440 loops = 1;
441 goto again;
442 } else {
443 found = false;
444 goto out_failed;
445 }
446 }
447
448 /* step three, lock the state bits for the whole range */
449 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
450
451 /* then test to make sure it is all still delalloc */
452 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end,
453 EXTENT_DELALLOC, cached_state);
454
455 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
456 if (!ret) {
457 unlock_delalloc_folio(inode, locked_folio, delalloc_start,
458 delalloc_end);
459 cond_resched();
460 goto again;
461 }
462 *start = delalloc_start;
463 *end = delalloc_end;
464 out_failed:
465 return found;
466 }
467
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)468 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
469 const struct folio *locked_folio,
470 struct extent_state **cached,
471 u32 clear_bits, unsigned long page_ops)
472 {
473 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
474
475 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
476 end, page_ops);
477 }
478
btrfs_verify_folio(struct folio * folio,u64 start,u32 len)479 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
480 {
481 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
482
483 if (!fsverity_active(folio->mapping->host) ||
484 btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
485 start >= i_size_read(folio->mapping->host))
486 return true;
487 return fsverity_verify_folio(folio);
488 }
489
end_folio_read(struct folio * folio,bool uptodate,u64 start,u32 len)490 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
491 {
492 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
493
494 ASSERT(folio_pos(folio) <= start &&
495 start + len <= folio_next_pos(folio));
496
497 if (uptodate && btrfs_verify_folio(folio, start, len))
498 btrfs_folio_set_uptodate(fs_info, folio, start, len);
499 else
500 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
501
502 if (!btrfs_is_subpage(fs_info, folio))
503 folio_unlock(folio);
504 else
505 btrfs_folio_end_lock(fs_info, folio, start, len);
506 }
507
508 /*
509 * After a write IO is done, we need to:
510 *
511 * - clear the uptodate bits on error
512 * - clear the writeback bits in the extent tree for the range
513 * - filio_end_writeback() if there is no more pending io for the folio
514 *
515 * Scheduling is not allowed, so the extent state tree is expected
516 * to have one and only one object corresponding to this IO.
517 */
end_bbio_data_write(struct btrfs_bio * bbio)518 static void end_bbio_data_write(struct btrfs_bio *bbio)
519 {
520 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
521 struct bio *bio = &bbio->bio;
522 int error = blk_status_to_errno(bio->bi_status);
523 struct folio_iter fi;
524 const u32 sectorsize = fs_info->sectorsize;
525
526 ASSERT(!bio_flagged(bio, BIO_CLONED));
527 bio_for_each_folio_all(fi, bio) {
528 struct folio *folio = fi.folio;
529 u64 start = folio_pos(folio) + fi.offset;
530 u32 len = fi.length;
531
532 /* Our read/write should always be sector aligned. */
533 if (!IS_ALIGNED(fi.offset, sectorsize))
534 btrfs_err(fs_info,
535 "partial page write in btrfs with offset %zu and length %zu",
536 fi.offset, fi.length);
537 else if (!IS_ALIGNED(fi.length, sectorsize))
538 btrfs_info(fs_info,
539 "incomplete page write with offset %zu and length %zu",
540 fi.offset, fi.length);
541
542 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
543 !error);
544 if (error)
545 mapping_set_error(folio->mapping, error);
546 btrfs_folio_clear_writeback(fs_info, folio, start, len);
547 }
548
549 bio_put(bio);
550 }
551
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)552 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
553 {
554 ASSERT(folio_test_locked(folio));
555 if (!btrfs_is_subpage(fs_info, folio))
556 return;
557
558 ASSERT(folio_test_private(folio));
559 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
560 }
561
562 /*
563 * After a data read IO is done, we need to:
564 *
565 * - clear the uptodate bits on error
566 * - set the uptodate bits if things worked
567 * - set the folio up to date if all extents in the tree are uptodate
568 * - clear the lock bit in the extent tree
569 * - unlock the folio if there are no other extents locked for it
570 *
571 * Scheduling is not allowed, so the extent state tree is expected
572 * to have one and only one object corresponding to this IO.
573 */
end_bbio_data_read(struct btrfs_bio * bbio)574 static void end_bbio_data_read(struct btrfs_bio *bbio)
575 {
576 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
577 struct bio *bio = &bbio->bio;
578 struct folio_iter fi;
579
580 ASSERT(!bio_flagged(bio, BIO_CLONED));
581 bio_for_each_folio_all(fi, &bbio->bio) {
582 bool uptodate = !bio->bi_status;
583 struct folio *folio = fi.folio;
584 struct inode *inode = folio->mapping->host;
585 u64 start = folio_pos(folio) + fi.offset;
586
587 btrfs_debug(fs_info,
588 "%s: bi_sector=%llu, err=%d, mirror=%u",
589 __func__, bio->bi_iter.bi_sector, bio->bi_status,
590 bbio->mirror_num);
591
592
593 if (likely(uptodate)) {
594 u64 end = start + fi.length - 1;
595 loff_t i_size = i_size_read(inode);
596
597 /*
598 * Zero out the remaining part if this range straddles
599 * i_size.
600 *
601 * Here we should only zero the range inside the folio,
602 * not touch anything else.
603 *
604 * NOTE: i_size is exclusive while end is inclusive and
605 * folio_contains() takes PAGE_SIZE units.
606 */
607 if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
608 i_size <= end) {
609 u32 zero_start = max(offset_in_folio(folio, i_size),
610 offset_in_folio(folio, start));
611 u32 zero_len = offset_in_folio(folio, end) + 1 -
612 zero_start;
613
614 folio_zero_range(folio, zero_start, zero_len);
615 }
616 }
617
618 /* Update page status and unlock. */
619 end_folio_read(folio, uptodate, start, fi.length);
620 }
621 bio_put(bio);
622 }
623
624 /*
625 * Populate every free slot in a provided array with folios using GFP_NOFS.
626 *
627 * @nr_folios: number of folios to allocate
628 * @order: the order of the folios to be allocated
629 * @folio_array: the array to fill with folios; any existing non-NULL entries in
630 * the array will be skipped
631 *
632 * Return: 0 if all folios were able to be allocated;
633 * -ENOMEM otherwise, the partially allocated folios would be freed and
634 * the array slots zeroed
635 */
btrfs_alloc_folio_array(unsigned int nr_folios,unsigned int order,struct folio ** folio_array)636 int btrfs_alloc_folio_array(unsigned int nr_folios, unsigned int order,
637 struct folio **folio_array)
638 {
639 for (int i = 0; i < nr_folios; i++) {
640 if (folio_array[i])
641 continue;
642 folio_array[i] = folio_alloc(GFP_NOFS, order);
643 if (!folio_array[i])
644 goto error;
645 }
646 return 0;
647 error:
648 for (int i = 0; i < nr_folios; i++) {
649 if (folio_array[i])
650 folio_put(folio_array[i]);
651 folio_array[i] = NULL;
652 }
653 return -ENOMEM;
654 }
655
656 /*
657 * Populate every free slot in a provided array with pages, using GFP_NOFS.
658 *
659 * @nr_pages: number of pages to allocate
660 * @page_array: the array to fill with pages; any existing non-null entries in
661 * the array will be skipped
662 * @nofail: whether using __GFP_NOFAIL flag
663 *
664 * Return: 0 if all pages were able to be allocated;
665 * -ENOMEM otherwise, the partially allocated pages would be freed and
666 * the array slots zeroed
667 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)668 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
669 bool nofail)
670 {
671 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
672 unsigned int allocated;
673
674 for (allocated = 0; allocated < nr_pages;) {
675 unsigned int last = allocated;
676
677 allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
678 if (unlikely(allocated == last)) {
679 /* No progress, fail and do cleanup. */
680 for (int i = 0; i < allocated; i++) {
681 __free_page(page_array[i]);
682 page_array[i] = NULL;
683 }
684 return -ENOMEM;
685 }
686 }
687 return 0;
688 }
689
690 /*
691 * Populate needed folios for the extent buffer.
692 *
693 * For now, the folios populated are always in order 0 (aka, single page).
694 */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)695 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
696 {
697 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
698 int num_pages = num_extent_pages(eb);
699 int ret;
700
701 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
702 if (ret < 0)
703 return ret;
704
705 for (int i = 0; i < num_pages; i++)
706 eb->folios[i] = page_folio(page_array[i]);
707 eb->folio_size = PAGE_SIZE;
708 eb->folio_shift = PAGE_SHIFT;
709 return 0;
710 }
711
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,loff_t file_offset)712 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
713 u64 disk_bytenr, loff_t file_offset)
714 {
715 struct bio *bio = &bio_ctrl->bbio->bio;
716 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
717
718 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
719 /*
720 * For compression, all IO should have its logical bytenr set
721 * to the starting bytenr of the compressed extent.
722 */
723 return bio->bi_iter.bi_sector == sector;
724 }
725
726 /*
727 * To merge into a bio both the disk sector and the logical offset in
728 * the file need to be contiguous.
729 */
730 return bio_ctrl->next_file_offset == file_offset &&
731 bio_end_sector(bio) == sector;
732 }
733
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)734 static void alloc_new_bio(struct btrfs_inode *inode,
735 struct btrfs_bio_ctrl *bio_ctrl,
736 u64 disk_bytenr, u64 file_offset)
737 {
738 struct btrfs_fs_info *fs_info = inode->root->fs_info;
739 struct btrfs_bio *bbio;
740
741 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, inode,
742 file_offset, bio_ctrl->end_io_func, NULL);
743 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
744 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
745 bio_ctrl->bbio = bbio;
746 bio_ctrl->len_to_oe_boundary = U32_MAX;
747 bio_ctrl->next_file_offset = file_offset;
748
749 /* Limit data write bios to the ordered boundary. */
750 if (bio_ctrl->wbc) {
751 struct btrfs_ordered_extent *ordered;
752
753 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
754 if (ordered) {
755 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
756 ordered->file_offset +
757 ordered->disk_num_bytes - file_offset);
758 bbio->ordered = ordered;
759 }
760
761 /*
762 * Pick the last added device to support cgroup writeback. For
763 * multi-device file systems this means blk-cgroup policies have
764 * to always be set on the last added/replaced device.
765 * This is a bit odd but has been like that for a long time.
766 */
767 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
768 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
769 }
770 }
771
772 /*
773 * @disk_bytenr: logical bytenr where the write will be
774 * @page: page to add to the bio
775 * @size: portion of page that we want to write to
776 * @pg_offset: offset of the new bio or to check whether we are adding
777 * a contiguous page to the previous one
778 * @read_em_generation: generation of the extent_map we are submitting
779 * (only used for read)
780 *
781 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
782 * new one in @bio_ctrl->bbio.
783 * The mirror number for this IO should already be initialized in
784 * @bio_ctrl->mirror_num.
785 */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset,u64 read_em_generation)786 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
787 u64 disk_bytenr, struct folio *folio,
788 size_t size, unsigned long pg_offset,
789 u64 read_em_generation)
790 {
791 struct btrfs_inode *inode = folio_to_inode(folio);
792 loff_t file_offset = folio_pos(folio) + pg_offset;
793
794 ASSERT(pg_offset + size <= folio_size(folio));
795 ASSERT(bio_ctrl->end_io_func);
796
797 if (bio_ctrl->bbio &&
798 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset))
799 submit_one_bio(bio_ctrl);
800
801 do {
802 u32 len = size;
803
804 /* Allocate new bio if needed */
805 if (!bio_ctrl->bbio)
806 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset);
807
808 /* Cap to the current ordered extent boundary if there is one. */
809 if (len > bio_ctrl->len_to_oe_boundary) {
810 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
811 ASSERT(is_data_inode(inode));
812 len = bio_ctrl->len_to_oe_boundary;
813 }
814
815 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
816 /* bio full: move on to a new one */
817 submit_one_bio(bio_ctrl);
818 continue;
819 }
820 /*
821 * Now that the folio is definitely added to the bio, include its
822 * generation in the max generation calculation.
823 */
824 bio_ctrl->generation = max(bio_ctrl->generation, read_em_generation);
825 bio_ctrl->next_file_offset += len;
826
827 if (bio_ctrl->wbc)
828 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len);
829
830 size -= len;
831 pg_offset += len;
832 disk_bytenr += len;
833 file_offset += len;
834
835 /*
836 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
837 * sector aligned. alloc_new_bio() then sets it to the end of
838 * our ordered extent for writes into zoned devices.
839 *
840 * When len_to_oe_boundary is tracking an ordered extent, we
841 * trust the ordered extent code to align things properly, and
842 * the check above to cap our write to the ordered extent
843 * boundary is correct.
844 *
845 * When len_to_oe_boundary is U32_MAX, the cap above would
846 * result in a 4095 byte IO for the last folio right before
847 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
848 * the checks required to make sure we don't overflow the bio,
849 * and we should just ignore len_to_oe_boundary completely
850 * unless we're using it to track an ordered extent.
851 *
852 * It's pretty hard to make a bio sized U32_MAX, but it can
853 * happen when the page cache is able to feed us contiguous
854 * folios for large extents.
855 */
856 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
857 bio_ctrl->len_to_oe_boundary -= len;
858
859 /* Ordered extent boundary: move on to a new bio. */
860 if (bio_ctrl->len_to_oe_boundary == 0)
861 submit_one_bio(bio_ctrl);
862 } while (size);
863 }
864
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_folio_state * prealloc)865 static int attach_extent_buffer_folio(struct extent_buffer *eb,
866 struct folio *folio,
867 struct btrfs_folio_state *prealloc)
868 {
869 struct btrfs_fs_info *fs_info = eb->fs_info;
870 int ret = 0;
871
872 /*
873 * If the page is mapped to btree inode, we should hold the private
874 * lock to prevent race.
875 * For cloned or dummy extent buffers, their pages are not mapped and
876 * will not race with any other ebs.
877 */
878 if (folio->mapping)
879 lockdep_assert_held(&folio->mapping->i_private_lock);
880
881 if (!btrfs_meta_is_subpage(fs_info)) {
882 if (!folio_test_private(folio))
883 folio_attach_private(folio, eb);
884 else
885 WARN_ON(folio_get_private(folio) != eb);
886 return 0;
887 }
888
889 /* Already mapped, just free prealloc */
890 if (folio_test_private(folio)) {
891 btrfs_free_folio_state(prealloc);
892 return 0;
893 }
894
895 if (prealloc)
896 /* Has preallocated memory for subpage */
897 folio_attach_private(folio, prealloc);
898 else
899 /* Do new allocation to attach subpage */
900 ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
901 return ret;
902 }
903
set_folio_extent_mapped(struct folio * folio)904 int set_folio_extent_mapped(struct folio *folio)
905 {
906 struct btrfs_fs_info *fs_info;
907
908 ASSERT(folio->mapping);
909
910 if (folio_test_private(folio))
911 return 0;
912
913 fs_info = folio_to_fs_info(folio);
914
915 if (btrfs_is_subpage(fs_info, folio))
916 return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
917
918 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
919 return 0;
920 }
921
clear_folio_extent_mapped(struct folio * folio)922 void clear_folio_extent_mapped(struct folio *folio)
923 {
924 struct btrfs_fs_info *fs_info;
925
926 ASSERT(folio->mapping);
927
928 if (!folio_test_private(folio))
929 return;
930
931 fs_info = folio_to_fs_info(folio);
932 if (btrfs_is_subpage(fs_info, folio))
933 return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
934
935 folio_detach_private(folio);
936 }
937
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)938 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
939 struct folio *folio, u64 start,
940 u64 len, struct extent_map **em_cached)
941 {
942 struct extent_map *em;
943
944 ASSERT(em_cached);
945
946 if (*em_cached) {
947 em = *em_cached;
948 if (btrfs_extent_map_in_tree(em) && start >= em->start &&
949 start < btrfs_extent_map_end(em)) {
950 refcount_inc(&em->refs);
951 return em;
952 }
953
954 btrfs_free_extent_map(em);
955 *em_cached = NULL;
956 }
957
958 em = btrfs_get_extent(inode, folio, start, len);
959 if (!IS_ERR(em)) {
960 BUG_ON(*em_cached);
961 refcount_inc(&em->refs);
962 *em_cached = em;
963 }
964
965 return em;
966 }
967
btrfs_readahead_expand(struct readahead_control * ractl,const struct extent_map * em)968 static void btrfs_readahead_expand(struct readahead_control *ractl,
969 const struct extent_map *em)
970 {
971 const u64 ra_pos = readahead_pos(ractl);
972 const u64 ra_end = ra_pos + readahead_length(ractl);
973 const u64 em_end = em->start + em->len;
974
975 /* No expansion for holes and inline extents. */
976 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE)
977 return;
978
979 ASSERT(em_end >= ra_pos,
980 "extent_map %llu %llu ends before current readahead position %llu",
981 em->start, em->len, ra_pos);
982 if (em_end > ra_end)
983 readahead_expand(ractl, ra_pos, em_end - ra_pos);
984 }
985
986 /*
987 * basic readpage implementation. Locked extent state structs are inserted
988 * into the tree that are removed when the IO is done (by the end_io
989 * handlers)
990 * XXX JDM: This needs looking at to ensure proper page locking
991 * return 0 on success, otherwise return error
992 */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl)993 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
994 struct btrfs_bio_ctrl *bio_ctrl)
995 {
996 struct inode *inode = folio->mapping->host;
997 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
998 u64 start = folio_pos(folio);
999 const u64 end = start + folio_size(folio) - 1;
1000 u64 extent_offset;
1001 u64 last_byte = i_size_read(inode);
1002 struct extent_map *em;
1003 int ret = 0;
1004 const size_t blocksize = fs_info->sectorsize;
1005
1006 ret = set_folio_extent_mapped(folio);
1007 if (ret < 0) {
1008 folio_unlock(folio);
1009 return ret;
1010 }
1011
1012 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
1013 size_t zero_offset = offset_in_folio(folio, last_byte);
1014
1015 if (zero_offset)
1016 folio_zero_range(folio, zero_offset,
1017 folio_size(folio) - zero_offset);
1018 }
1019 bio_ctrl->end_io_func = end_bbio_data_read;
1020 begin_folio_read(fs_info, folio);
1021 for (u64 cur = start; cur <= end; cur += blocksize) {
1022 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1023 unsigned long pg_offset = offset_in_folio(folio, cur);
1024 bool force_bio_submit = false;
1025 u64 disk_bytenr;
1026 u64 block_start;
1027 u64 em_gen;
1028
1029 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1030 if (cur >= last_byte) {
1031 folio_zero_range(folio, pg_offset, end - cur + 1);
1032 end_folio_read(folio, true, cur, end - cur + 1);
1033 break;
1034 }
1035 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1036 end_folio_read(folio, true, cur, blocksize);
1037 continue;
1038 }
1039 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
1040 if (IS_ERR(em)) {
1041 end_folio_read(folio, false, cur, end + 1 - cur);
1042 return PTR_ERR(em);
1043 }
1044 extent_offset = cur - em->start;
1045 BUG_ON(btrfs_extent_map_end(em) <= cur);
1046 BUG_ON(end < cur);
1047
1048 compress_type = btrfs_extent_map_compression(em);
1049
1050 /*
1051 * Only expand readahead for extents which are already creating
1052 * the pages anyway in add_ra_bio_pages, which is compressed
1053 * extents in the non subpage case.
1054 */
1055 if (bio_ctrl->ractl &&
1056 !btrfs_is_subpage(fs_info, folio) &&
1057 compress_type != BTRFS_COMPRESS_NONE)
1058 btrfs_readahead_expand(bio_ctrl->ractl, em);
1059
1060 if (compress_type != BTRFS_COMPRESS_NONE)
1061 disk_bytenr = em->disk_bytenr;
1062 else
1063 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1064
1065 if (em->flags & EXTENT_FLAG_PREALLOC)
1066 block_start = EXTENT_MAP_HOLE;
1067 else
1068 block_start = btrfs_extent_map_block_start(em);
1069
1070 /*
1071 * If we have a file range that points to a compressed extent
1072 * and it's followed by a consecutive file range that points
1073 * to the same compressed extent (possibly with a different
1074 * offset and/or length, so it either points to the whole extent
1075 * or only part of it), we must make sure we do not submit a
1076 * single bio to populate the folios for the 2 ranges because
1077 * this makes the compressed extent read zero out the folios
1078 * belonging to the 2nd range. Imagine the following scenario:
1079 *
1080 * File layout
1081 * [0 - 8K] [8K - 24K]
1082 * | |
1083 * | |
1084 * points to extent X, points to extent X,
1085 * offset 4K, length of 8K offset 0, length 16K
1086 *
1087 * [extent X, compressed length = 4K uncompressed length = 16K]
1088 *
1089 * If the bio to read the compressed extent covers both ranges,
1090 * it will decompress extent X into the folios belonging to the
1091 * first range and then it will stop, zeroing out the remaining
1092 * folios that belong to the other range that points to extent X.
1093 * So here we make sure we submit 2 bios, one for the first
1094 * range and another one for the third range. Both will target
1095 * the same physical extent from disk, but we can't currently
1096 * make the compressed bio endio callback populate the folios
1097 * for both ranges because each compressed bio is tightly
1098 * coupled with a single extent map, and each range can have
1099 * an extent map with a different offset value relative to the
1100 * uncompressed data of our extent and different lengths. This
1101 * is a corner case so we prioritize correctness over
1102 * non-optimal behavior (submitting 2 bios for the same extent).
1103 */
1104 if (compress_type != BTRFS_COMPRESS_NONE &&
1105 bio_ctrl->last_em_start != U64_MAX &&
1106 bio_ctrl->last_em_start != em->start)
1107 force_bio_submit = true;
1108
1109 bio_ctrl->last_em_start = em->start;
1110
1111 em_gen = em->generation;
1112 btrfs_free_extent_map(em);
1113 em = NULL;
1114
1115 /* we've found a hole, just zero and go on */
1116 if (block_start == EXTENT_MAP_HOLE) {
1117 folio_zero_range(folio, pg_offset, blocksize);
1118 end_folio_read(folio, true, cur, blocksize);
1119 continue;
1120 }
1121 /* the get_extent function already copied into the folio */
1122 if (block_start == EXTENT_MAP_INLINE) {
1123 end_folio_read(folio, true, cur, blocksize);
1124 continue;
1125 }
1126
1127 if (bio_ctrl->compress_type != compress_type) {
1128 submit_one_bio(bio_ctrl);
1129 bio_ctrl->compress_type = compress_type;
1130 }
1131
1132 if (force_bio_submit)
1133 submit_one_bio(bio_ctrl);
1134 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1135 pg_offset, em_gen);
1136 }
1137 return 0;
1138 }
1139
1140 /*
1141 * Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1142 *
1143 * @fileoff: Both input and output.
1144 * Input as the file offset where the check should start at.
1145 * Output as where the next check should start at,
1146 * if the function returns true.
1147 *
1148 * Return true if we can skip to @fileoff. The caller needs to check the new
1149 * @fileoff value to make sure it covers the full range, before skipping the
1150 * full OE.
1151 *
1152 * Return false if we must wait for the ordered extent.
1153 */
can_skip_one_ordered_range(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 * fileoff)1154 static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1155 struct btrfs_ordered_extent *ordered,
1156 u64 *fileoff)
1157 {
1158 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1159 struct folio *folio;
1160 const u32 blocksize = fs_info->sectorsize;
1161 u64 cur = *fileoff;
1162 bool ret;
1163
1164 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1165
1166 /*
1167 * We should have locked the folio(s) for range [start, end], thus
1168 * there must be a folio and it must be locked.
1169 */
1170 ASSERT(!IS_ERR(folio));
1171 ASSERT(folio_test_locked(folio));
1172
1173 /*
1174 * There are several cases for the folio and OE combination:
1175 *
1176 * 1) Folio has no private flag
1177 * The OE has all its IO done but not yet finished, and folio got
1178 * invalidated.
1179 *
1180 * Have we have to wait for the OE to finish, as it may contain the
1181 * to-be-inserted data checksum.
1182 * Without the data checksum inserted into the csum tree, read will
1183 * just fail with missing csum.
1184 */
1185 if (!folio_test_private(folio)) {
1186 ret = false;
1187 goto out;
1188 }
1189
1190 /*
1191 * 2) The first block is DIRTY.
1192 *
1193 * This means the OE is created by some other folios whose file pos is
1194 * before this one. And since we are holding the folio lock, the writeback
1195 * of this folio cannot start.
1196 *
1197 * We must skip the whole OE, because it will never start until we
1198 * finished our folio read and unlocked the folio.
1199 */
1200 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1201 u64 range_len = umin(folio_next_pos(folio),
1202 ordered->file_offset + ordered->num_bytes) - cur;
1203
1204 ret = true;
1205 /*
1206 * At least inside the folio, all the remaining blocks should
1207 * also be dirty.
1208 */
1209 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1210 *fileoff = ordered->file_offset + ordered->num_bytes;
1211 goto out;
1212 }
1213
1214 /*
1215 * 3) The first block is uptodate.
1216 *
1217 * At least the first block can be skipped, but we are still not fully
1218 * sure. E.g. if the OE has some other folios in the range that cannot
1219 * be skipped.
1220 * So we return true and update @next_ret to the OE/folio boundary.
1221 */
1222 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1223 u64 range_len = umin(folio_next_pos(folio),
1224 ordered->file_offset + ordered->num_bytes) - cur;
1225
1226 /*
1227 * The whole range to the OE end or folio boundary should also
1228 * be uptodate.
1229 */
1230 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1231 ret = true;
1232 *fileoff = cur + range_len;
1233 goto out;
1234 }
1235
1236 /*
1237 * 4) The first block is not uptodate.
1238 *
1239 * This means the folio is invalidated after the writeback was finished,
1240 * but by some other operations (e.g. block aligned buffered write) the
1241 * folio is inserted into filemap.
1242 * Very much the same as case 1).
1243 */
1244 ret = false;
1245 out:
1246 folio_put(folio);
1247 return ret;
1248 }
1249
can_skip_ordered_extent(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 start,u64 end)1250 static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1251 struct btrfs_ordered_extent *ordered,
1252 u64 start, u64 end)
1253 {
1254 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1255 u64 cur = max(start, ordered->file_offset);
1256
1257 while (cur < range_end) {
1258 bool can_skip;
1259
1260 can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1261 if (!can_skip)
1262 return false;
1263 }
1264 return true;
1265 }
1266
1267 /*
1268 * Locking helper to make sure we get a stable view of extent maps for the
1269 * involved range.
1270 *
1271 * This is for folio read paths (read and readahead), thus the involved range
1272 * should have all the folios locked.
1273 */
lock_extents_for_read(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1274 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1275 struct extent_state **cached_state)
1276 {
1277 u64 cur_pos;
1278
1279 /* Caller must provide a valid @cached_state. */
1280 ASSERT(cached_state);
1281
1282 /* The range must at least be page aligned, as all read paths are folio based. */
1283 ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1284 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1285
1286 again:
1287 btrfs_lock_extent(&inode->io_tree, start, end, cached_state);
1288 cur_pos = start;
1289 while (cur_pos < end) {
1290 struct btrfs_ordered_extent *ordered;
1291
1292 ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1293 end - cur_pos + 1);
1294 /*
1295 * No ordered extents in the range, and we hold the extent lock,
1296 * no one can modify the extent maps in the range, we're safe to return.
1297 */
1298 if (!ordered)
1299 break;
1300
1301 /* Check if we can skip waiting for the whole OE. */
1302 if (can_skip_ordered_extent(inode, ordered, start, end)) {
1303 cur_pos = min(ordered->file_offset + ordered->num_bytes,
1304 end + 1);
1305 btrfs_put_ordered_extent(ordered);
1306 continue;
1307 }
1308
1309 /* Now wait for the OE to finish. */
1310 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1311 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1312 btrfs_put_ordered_extent(ordered);
1313 /* We have unlocked the whole range, restart from the beginning. */
1314 goto again;
1315 }
1316 }
1317
btrfs_read_folio(struct file * file,struct folio * folio)1318 int btrfs_read_folio(struct file *file, struct folio *folio)
1319 {
1320 struct btrfs_inode *inode = folio_to_inode(folio);
1321 const u64 start = folio_pos(folio);
1322 const u64 end = start + folio_size(folio) - 1;
1323 struct extent_state *cached_state = NULL;
1324 struct btrfs_bio_ctrl bio_ctrl = {
1325 .opf = REQ_OP_READ,
1326 .last_em_start = U64_MAX,
1327 };
1328 struct extent_map *em_cached = NULL;
1329 int ret;
1330
1331 lock_extents_for_read(inode, start, end, &cached_state);
1332 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
1333 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1334
1335 btrfs_free_extent_map(em_cached);
1336
1337 /*
1338 * If btrfs_do_readpage() failed we will want to submit the assembled
1339 * bio to do the cleanup.
1340 */
1341 submit_one_bio(&bio_ctrl);
1342 return ret;
1343 }
1344
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1345 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1346 u64 start, u32 len)
1347 {
1348 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1349 const u64 folio_start = folio_pos(folio);
1350 unsigned int start_bit;
1351 unsigned int nbits;
1352
1353 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1354 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1355 nbits = len >> fs_info->sectorsize_bits;
1356 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1357 bitmap_set(delalloc_bitmap, start_bit, nbits);
1358 }
1359
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1360 static bool find_next_delalloc_bitmap(struct folio *folio,
1361 unsigned long *delalloc_bitmap, u64 start,
1362 u64 *found_start, u32 *found_len)
1363 {
1364 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1365 const u64 folio_start = folio_pos(folio);
1366 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1367 unsigned int start_bit;
1368 unsigned int first_zero;
1369 unsigned int first_set;
1370
1371 ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1372
1373 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1374 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1375 if (first_set >= bitmap_size)
1376 return false;
1377
1378 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1379 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1380 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1381 return true;
1382 }
1383
1384 /*
1385 * Do all of the delayed allocation setup.
1386 *
1387 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1388 * The @folio should no longer be touched (treat it as already unlocked).
1389 *
1390 * Return 0 if there is still dirty block that needs to be submitted through
1391 * extent_writepage_io().
1392 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1393 * submitted, and @folio is still kept locked.
1394 *
1395 * Return <0 if there is any error hit.
1396 * Any allocated ordered extent range covering this folio will be marked
1397 * finished (IOERR), and @folio is still kept locked.
1398 */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1399 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1400 struct folio *folio,
1401 struct btrfs_bio_ctrl *bio_ctrl)
1402 {
1403 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1404 struct writeback_control *wbc = bio_ctrl->wbc;
1405 const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1406 const u64 page_start = folio_pos(folio);
1407 const u64 page_end = page_start + folio_size(folio) - 1;
1408 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1409 unsigned long delalloc_bitmap = 0;
1410 /*
1411 * Save the last found delalloc end. As the delalloc end can go beyond
1412 * page boundary, thus we cannot rely on subpage bitmap to locate the
1413 * last delalloc end.
1414 */
1415 u64 last_delalloc_end = 0;
1416 /*
1417 * The range end (exclusive) of the last successfully finished delalloc
1418 * range.
1419 * Any range covered by ordered extent must either be manually marked
1420 * finished (error handling), or has IO submitted (and finish the
1421 * ordered extent normally).
1422 *
1423 * This records the end of ordered extent cleanup if we hit an error.
1424 */
1425 u64 last_finished_delalloc_end = page_start;
1426 u64 delalloc_start = page_start;
1427 u64 delalloc_end = page_end;
1428 u64 delalloc_to_write = 0;
1429 int ret = 0;
1430 int bit;
1431
1432 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1433 if (btrfs_is_subpage(fs_info, folio)) {
1434 ASSERT(blocks_per_folio > 1);
1435 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1436 } else {
1437 bio_ctrl->submit_bitmap = 1;
1438 }
1439
1440 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1441 u64 start = page_start + (bit << fs_info->sectorsize_bits);
1442
1443 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1444 }
1445
1446 /* Lock all (subpage) delalloc ranges inside the folio first. */
1447 while (delalloc_start < page_end) {
1448 delalloc_end = page_end;
1449 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1450 &delalloc_start, &delalloc_end)) {
1451 delalloc_start = delalloc_end + 1;
1452 continue;
1453 }
1454 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1455 min(delalloc_end, page_end) + 1 - delalloc_start);
1456 last_delalloc_end = delalloc_end;
1457 delalloc_start = delalloc_end + 1;
1458 }
1459 delalloc_start = page_start;
1460
1461 if (!last_delalloc_end)
1462 goto out;
1463
1464 /* Run the delalloc ranges for the above locked ranges. */
1465 while (delalloc_start < page_end) {
1466 u64 found_start;
1467 u32 found_len;
1468 bool found;
1469
1470 if (!is_subpage) {
1471 /*
1472 * For non-subpage case, the found delalloc range must
1473 * cover this folio and there must be only one locked
1474 * delalloc range.
1475 */
1476 found_start = page_start;
1477 found_len = last_delalloc_end + 1 - found_start;
1478 found = true;
1479 } else {
1480 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1481 delalloc_start, &found_start, &found_len);
1482 }
1483 if (!found)
1484 break;
1485 /*
1486 * The subpage range covers the last sector, the delalloc range may
1487 * end beyond the folio boundary, use the saved delalloc_end
1488 * instead.
1489 */
1490 if (found_start + found_len >= page_end)
1491 found_len = last_delalloc_end + 1 - found_start;
1492
1493 if (ret >= 0) {
1494 /*
1495 * Some delalloc range may be created by previous folios.
1496 * Thus we still need to clean up this range during error
1497 * handling.
1498 */
1499 last_finished_delalloc_end = found_start;
1500 /* No errors hit so far, run the current delalloc range. */
1501 ret = btrfs_run_delalloc_range(inode, folio,
1502 found_start,
1503 found_start + found_len - 1,
1504 wbc);
1505 if (ret >= 0)
1506 last_finished_delalloc_end = found_start + found_len;
1507 if (unlikely(ret < 0))
1508 btrfs_err_rl(fs_info,
1509 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1510 btrfs_root_id(inode->root),
1511 btrfs_ino(inode),
1512 folio_pos(folio),
1513 blocks_per_folio,
1514 &bio_ctrl->submit_bitmap,
1515 found_start, found_len, ret);
1516 } else {
1517 /*
1518 * We've hit an error during previous delalloc range,
1519 * have to cleanup the remaining locked ranges.
1520 */
1521 btrfs_unlock_extent(&inode->io_tree, found_start,
1522 found_start + found_len - 1, NULL);
1523 unlock_delalloc_folio(&inode->vfs_inode, folio,
1524 found_start,
1525 found_start + found_len - 1);
1526 }
1527
1528 /*
1529 * We have some ranges that's going to be submitted asynchronously
1530 * (compression or inline). These range have their own control
1531 * on when to unlock the pages. We should not touch them
1532 * anymore, so clear the range from the submission bitmap.
1533 */
1534 if (ret > 0) {
1535 unsigned int start_bit = (found_start - page_start) >>
1536 fs_info->sectorsize_bits;
1537 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1538 page_start) >> fs_info->sectorsize_bits;
1539 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1540 }
1541 /*
1542 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1543 * thus for the last range, we cannot touch the folio anymore.
1544 */
1545 if (found_start + found_len >= last_delalloc_end + 1)
1546 break;
1547
1548 delalloc_start = found_start + found_len;
1549 }
1550 /*
1551 * It's possible we had some ordered extents created before we hit
1552 * an error, cleanup non-async successfully created delalloc ranges.
1553 */
1554 if (unlikely(ret < 0)) {
1555 unsigned int bitmap_size = min(
1556 (last_finished_delalloc_end - page_start) >>
1557 fs_info->sectorsize_bits,
1558 blocks_per_folio);
1559
1560 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1561 btrfs_mark_ordered_io_finished(inode, folio,
1562 page_start + (bit << fs_info->sectorsize_bits),
1563 fs_info->sectorsize, false);
1564 return ret;
1565 }
1566 out:
1567 if (last_delalloc_end)
1568 delalloc_end = last_delalloc_end;
1569 else
1570 delalloc_end = page_end;
1571 /*
1572 * delalloc_end is already one less than the total length, so
1573 * we don't subtract one from PAGE_SIZE.
1574 */
1575 delalloc_to_write +=
1576 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1577
1578 /*
1579 * If all ranges are submitted asynchronously, we just need to account
1580 * for them here.
1581 */
1582 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1583 wbc->nr_to_write -= delalloc_to_write;
1584 return 1;
1585 }
1586
1587 if (wbc->nr_to_write < delalloc_to_write) {
1588 int thresh = 8192;
1589
1590 if (delalloc_to_write < thresh * 2)
1591 thresh = delalloc_to_write;
1592 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1593 thresh);
1594 }
1595
1596 return 0;
1597 }
1598
1599 /*
1600 * Return 0 if we have submitted or queued the sector for submission.
1601 * Return <0 for critical errors, and the sector will have its dirty flag cleared.
1602 *
1603 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1604 */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1605 static int submit_one_sector(struct btrfs_inode *inode,
1606 struct folio *folio,
1607 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1608 loff_t i_size)
1609 {
1610 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1611 struct extent_map *em;
1612 u64 block_start;
1613 u64 disk_bytenr;
1614 u64 extent_offset;
1615 u64 em_end;
1616 const u32 sectorsize = fs_info->sectorsize;
1617
1618 ASSERT(IS_ALIGNED(filepos, sectorsize));
1619
1620 /* @filepos >= i_size case should be handled by the caller. */
1621 ASSERT(filepos < i_size);
1622
1623 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1624 if (IS_ERR(em)) {
1625 /*
1626 * When submission failed, we should still clear the folio dirty.
1627 * Or the folio will be written back again but without any
1628 * ordered extent.
1629 */
1630 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1631 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1632 btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize);
1633 return PTR_ERR(em);
1634 }
1635
1636 extent_offset = filepos - em->start;
1637 em_end = btrfs_extent_map_end(em);
1638 ASSERT(filepos <= em_end);
1639 ASSERT(IS_ALIGNED(em->start, sectorsize));
1640 ASSERT(IS_ALIGNED(em->len, sectorsize));
1641
1642 block_start = btrfs_extent_map_block_start(em);
1643 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1644
1645 ASSERT(!btrfs_extent_map_is_compressed(em));
1646 ASSERT(block_start != EXTENT_MAP_HOLE);
1647 ASSERT(block_start != EXTENT_MAP_INLINE);
1648
1649 btrfs_free_extent_map(em);
1650 em = NULL;
1651
1652 /*
1653 * Although the PageDirty bit is cleared before entering this
1654 * function, subpage dirty bit is not cleared.
1655 * So clear subpage dirty bit here so next time we won't submit
1656 * a folio for a range already written to disk.
1657 */
1658 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1659 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1660 /*
1661 * Above call should set the whole folio with writeback flag, even
1662 * just for a single subpage sector.
1663 * As long as the folio is properly locked and the range is correct,
1664 * we should always get the folio with writeback flag.
1665 */
1666 ASSERT(folio_test_writeback(folio));
1667
1668 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1669 sectorsize, filepos - folio_pos(folio), 0);
1670 return 0;
1671 }
1672
1673 /*
1674 * Helper for extent_writepage(). This calls the writepage start hooks,
1675 * and does the loop to map the page into extents and bios.
1676 *
1677 * We return 1 if the IO is started and the page is unlocked,
1678 * 0 if all went well (page still locked)
1679 * < 0 if there were errors (page still locked)
1680 */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1681 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1682 struct folio *folio,
1683 u64 start, u32 len,
1684 struct btrfs_bio_ctrl *bio_ctrl,
1685 loff_t i_size)
1686 {
1687 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1688 unsigned long range_bitmap = 0;
1689 bool submitted_io = false;
1690 int found_error = 0;
1691 const u64 end = start + len;
1692 const u64 folio_start = folio_pos(folio);
1693 const u64 folio_end = folio_start + folio_size(folio);
1694 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1695 u64 cur;
1696 int bit;
1697 int ret = 0;
1698
1699 ASSERT(start >= folio_start, "start=%llu folio_start=%llu", start, folio_start);
1700 ASSERT(end <= folio_end, "start=%llu len=%u folio_start=%llu folio_size=%zu",
1701 start, len, folio_start, folio_size(folio));
1702
1703 ret = btrfs_writepage_cow_fixup(folio);
1704 if (ret == -EAGAIN) {
1705 /* Fixup worker will requeue */
1706 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1707 folio_unlock(folio);
1708 return 1;
1709 }
1710 if (ret < 0) {
1711 btrfs_folio_clear_dirty(fs_info, folio, start, len);
1712 btrfs_folio_set_writeback(fs_info, folio, start, len);
1713 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1714 return ret;
1715 }
1716
1717 for (cur = start; cur < end; cur += fs_info->sectorsize)
1718 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1719 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1720 blocks_per_folio);
1721
1722 bio_ctrl->end_io_func = end_bbio_data_write;
1723
1724 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1725 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1726
1727 if (cur >= i_size) {
1728 struct btrfs_ordered_extent *ordered;
1729
1730 ordered = btrfs_lookup_first_ordered_range(inode, cur,
1731 fs_info->sectorsize);
1732 /*
1733 * We have just run delalloc before getting here, so
1734 * there must be an ordered extent.
1735 */
1736 ASSERT(ordered != NULL);
1737 spin_lock(&inode->ordered_tree_lock);
1738 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
1739 ordered->truncated_len = min(ordered->truncated_len,
1740 cur - ordered->file_offset);
1741 spin_unlock(&inode->ordered_tree_lock);
1742 btrfs_put_ordered_extent(ordered);
1743
1744 btrfs_mark_ordered_io_finished(inode, folio, cur,
1745 fs_info->sectorsize, true);
1746 /*
1747 * This range is beyond i_size, thus we don't need to
1748 * bother writing back.
1749 * But we still need to clear the dirty subpage bit, or
1750 * the next time the folio gets dirtied, we will try to
1751 * writeback the sectors with subpage dirty bits,
1752 * causing writeback without ordered extent.
1753 */
1754 btrfs_folio_clear_dirty(fs_info, folio, cur, fs_info->sectorsize);
1755 continue;
1756 }
1757 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1758 if (unlikely(ret < 0)) {
1759 /*
1760 * bio_ctrl may contain a bio crossing several folios.
1761 * Submit it immediately so that the bio has a chance
1762 * to finish normally, other than marked as error.
1763 */
1764 submit_one_bio(bio_ctrl);
1765 /*
1766 * Failed to grab the extent map which should be very rare.
1767 * Since there is no bio submitted to finish the ordered
1768 * extent, we have to manually finish this sector.
1769 */
1770 btrfs_mark_ordered_io_finished(inode, folio, cur,
1771 fs_info->sectorsize, false);
1772 if (!found_error)
1773 found_error = ret;
1774 continue;
1775 }
1776 submitted_io = true;
1777 }
1778
1779 /*
1780 * If we didn't submitted any sector (>= i_size), folio dirty get
1781 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1782 * by folio_start_writeback() if the folio is not dirty).
1783 *
1784 * Here we set writeback and clear for the range. If the full folio
1785 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1786 *
1787 * If we hit any error, the corresponding sector will have its dirty
1788 * flag cleared and writeback finished, thus no need to handle the error case.
1789 */
1790 if (!submitted_io && !found_error) {
1791 btrfs_folio_set_writeback(fs_info, folio, start, len);
1792 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1793 }
1794 return found_error;
1795 }
1796
1797 /*
1798 * the writepage semantics are similar to regular writepage. extent
1799 * records are inserted to lock ranges in the tree, and as dirty areas
1800 * are found, they are marked writeback. Then the lock bits are removed
1801 * and the end_io handler clears the writeback ranges
1802 *
1803 * Return 0 if everything goes well.
1804 * Return <0 for error.
1805 */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1806 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1807 {
1808 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1809 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1810 int ret;
1811 size_t pg_offset;
1812 loff_t i_size = i_size_read(&inode->vfs_inode);
1813 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1814 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1815
1816 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1817
1818 WARN_ON(!folio_test_locked(folio));
1819
1820 pg_offset = offset_in_folio(folio, i_size);
1821 if (folio->index > end_index ||
1822 (folio->index == end_index && !pg_offset)) {
1823 folio_invalidate(folio, 0, folio_size(folio));
1824 folio_unlock(folio);
1825 return 0;
1826 }
1827
1828 if (folio_contains(folio, end_index))
1829 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1830
1831 /*
1832 * Default to unlock the whole folio.
1833 * The proper bitmap can only be initialized until writepage_delalloc().
1834 */
1835 bio_ctrl->submit_bitmap = (unsigned long)-1;
1836
1837 /*
1838 * If the page is dirty but without private set, it's marked dirty
1839 * without informing the fs.
1840 * Nowadays that is a bug, since the introduction of
1841 * pin_user_pages*().
1842 *
1843 * So here we check if the page has private set to rule out such
1844 * case.
1845 * But we also have a long history of relying on the COW fixup,
1846 * so here we only enable this check for experimental builds until
1847 * we're sure it's safe.
1848 */
1849 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1850 unlikely(!folio_test_private(folio))) {
1851 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1852 btrfs_err_rl(fs_info,
1853 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1854 btrfs_root_id(inode->root),
1855 btrfs_ino(inode), folio_pos(folio));
1856 ret = -EUCLEAN;
1857 goto done;
1858 }
1859
1860 ret = set_folio_extent_mapped(folio);
1861 if (ret < 0)
1862 goto done;
1863
1864 ret = writepage_delalloc(inode, folio, bio_ctrl);
1865 if (ret == 1)
1866 return 0;
1867 if (ret)
1868 goto done;
1869
1870 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1871 folio_size(folio), bio_ctrl, i_size);
1872 if (ret == 1)
1873 return 0;
1874 if (unlikely(ret < 0))
1875 btrfs_err_rl(fs_info,
1876 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1877 btrfs_root_id(inode->root), btrfs_ino(inode),
1878 folio_pos(folio), blocks_per_folio,
1879 &bio_ctrl->submit_bitmap, ret);
1880
1881 bio_ctrl->wbc->nr_to_write--;
1882
1883 done:
1884 if (ret < 0)
1885 mapping_set_error(folio->mapping, ret);
1886 /*
1887 * Only unlock ranges that are submitted. As there can be some async
1888 * submitted ranges inside the folio.
1889 */
1890 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1891 ASSERT(ret <= 0);
1892 return ret;
1893 }
1894
1895 /*
1896 * Lock extent buffer status and pages for writeback.
1897 *
1898 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1899 * extent buffer is not dirty)
1900 * Return %true is the extent buffer is submitted to bio.
1901 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1902 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1903 struct writeback_control *wbc)
1904 {
1905 struct btrfs_fs_info *fs_info = eb->fs_info;
1906 bool ret = false;
1907
1908 btrfs_tree_lock(eb);
1909 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1910 btrfs_tree_unlock(eb);
1911 if (wbc->sync_mode != WB_SYNC_ALL)
1912 return false;
1913 wait_on_extent_buffer_writeback(eb);
1914 btrfs_tree_lock(eb);
1915 }
1916
1917 /*
1918 * We need to do this to prevent races in people who check if the eb is
1919 * under IO since we can end up having no IO bits set for a short period
1920 * of time.
1921 */
1922 spin_lock(&eb->refs_lock);
1923 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1924 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1925 unsigned long flags;
1926
1927 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1928 spin_unlock(&eb->refs_lock);
1929
1930 xas_lock_irqsave(&xas, flags);
1931 xas_load(&xas);
1932 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
1933 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1934 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
1935 xas_unlock_irqrestore(&xas, flags);
1936
1937 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1938 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1939 -eb->len,
1940 fs_info->dirty_metadata_batch);
1941 ret = true;
1942 } else {
1943 spin_unlock(&eb->refs_lock);
1944 }
1945 btrfs_tree_unlock(eb);
1946 return ret;
1947 }
1948
set_btree_ioerr(struct extent_buffer * eb)1949 static void set_btree_ioerr(struct extent_buffer *eb)
1950 {
1951 struct btrfs_fs_info *fs_info = eb->fs_info;
1952
1953 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1954
1955 /*
1956 * A read may stumble upon this buffer later, make sure that it gets an
1957 * error and knows there was an error.
1958 */
1959 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1960
1961 /*
1962 * We need to set the mapping with the io error as well because a write
1963 * error will flip the file system readonly, and then syncfs() will
1964 * return a 0 because we are readonly if we don't modify the err seq for
1965 * the superblock.
1966 */
1967 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1968
1969 /*
1970 * If writeback for a btree extent that doesn't belong to a log tree
1971 * failed, increment the counter transaction->eb_write_errors.
1972 * We do this because while the transaction is running and before it's
1973 * committing (when we call filemap_fdata[write|wait]_range against
1974 * the btree inode), we might have
1975 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1976 * returns an error or an error happens during writeback, when we're
1977 * committing the transaction we wouldn't know about it, since the pages
1978 * can be no longer dirty nor marked anymore for writeback (if a
1979 * subsequent modification to the extent buffer didn't happen before the
1980 * transaction commit), which makes filemap_fdata[write|wait]_range not
1981 * able to find the pages which contain errors at transaction
1982 * commit time. So if this happens we must abort the transaction,
1983 * otherwise we commit a super block with btree roots that point to
1984 * btree nodes/leafs whose content on disk is invalid - either garbage
1985 * or the content of some node/leaf from a past generation that got
1986 * cowed or deleted and is no longer valid.
1987 *
1988 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1989 * not be enough - we need to distinguish between log tree extents vs
1990 * non-log tree extents, and the next filemap_fdatawait_range() call
1991 * will catch and clear such errors in the mapping - and that call might
1992 * be from a log sync and not from a transaction commit. Also, checking
1993 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1994 * not done and would not be reliable - the eb might have been released
1995 * from memory and reading it back again means that flag would not be
1996 * set (since it's a runtime flag, not persisted on disk).
1997 *
1998 * Using the flags below in the btree inode also makes us achieve the
1999 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2000 * writeback for all dirty pages and before filemap_fdatawait_range()
2001 * is called, the writeback for all dirty pages had already finished
2002 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2003 * filemap_fdatawait_range() would return success, as it could not know
2004 * that writeback errors happened (the pages were no longer tagged for
2005 * writeback).
2006 */
2007 switch (eb->log_index) {
2008 case -1:
2009 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2010 break;
2011 case 0:
2012 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2013 break;
2014 case 1:
2015 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2016 break;
2017 default:
2018 BUG(); /* unexpected, logic error */
2019 }
2020 }
2021
buffer_tree_set_mark(const struct extent_buffer * eb,xa_mark_t mark)2022 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark)
2023 {
2024 struct btrfs_fs_info *fs_info = eb->fs_info;
2025 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
2026 unsigned long flags;
2027
2028 xas_lock_irqsave(&xas, flags);
2029 xas_load(&xas);
2030 xas_set_mark(&xas, mark);
2031 xas_unlock_irqrestore(&xas, flags);
2032 }
2033
buffer_tree_clear_mark(const struct extent_buffer * eb,xa_mark_t mark)2034 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark)
2035 {
2036 struct btrfs_fs_info *fs_info = eb->fs_info;
2037 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
2038 unsigned long flags;
2039
2040 xas_lock_irqsave(&xas, flags);
2041 xas_load(&xas);
2042 xas_clear_mark(&xas, mark);
2043 xas_unlock_irqrestore(&xas, flags);
2044 }
2045
buffer_tree_tag_for_writeback(struct btrfs_fs_info * fs_info,unsigned long start,unsigned long end)2046 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info,
2047 unsigned long start, unsigned long end)
2048 {
2049 XA_STATE(xas, &fs_info->buffer_tree, start);
2050 unsigned int tagged = 0;
2051 void *eb;
2052
2053 xas_lock_irq(&xas);
2054 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) {
2055 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2056 if (++tagged % XA_CHECK_SCHED)
2057 continue;
2058 xas_pause(&xas);
2059 xas_unlock_irq(&xas);
2060 cond_resched();
2061 xas_lock_irq(&xas);
2062 }
2063 xas_unlock_irq(&xas);
2064 }
2065
2066 struct eb_batch {
2067 unsigned int nr;
2068 unsigned int cur;
2069 struct extent_buffer *ebs[PAGEVEC_SIZE];
2070 };
2071
eb_batch_add(struct eb_batch * batch,struct extent_buffer * eb)2072 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb)
2073 {
2074 batch->ebs[batch->nr++] = eb;
2075 return (batch->nr < PAGEVEC_SIZE);
2076 }
2077
eb_batch_init(struct eb_batch * batch)2078 static inline void eb_batch_init(struct eb_batch *batch)
2079 {
2080 batch->nr = 0;
2081 batch->cur = 0;
2082 }
2083
eb_batch_next(struct eb_batch * batch)2084 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch)
2085 {
2086 if (batch->cur >= batch->nr)
2087 return NULL;
2088 return batch->ebs[batch->cur++];
2089 }
2090
eb_batch_release(struct eb_batch * batch)2091 static inline void eb_batch_release(struct eb_batch *batch)
2092 {
2093 for (unsigned int i = 0; i < batch->nr; i++)
2094 free_extent_buffer(batch->ebs[i]);
2095 eb_batch_init(batch);
2096 }
2097
find_get_eb(struct xa_state * xas,unsigned long max,xa_mark_t mark)2098 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max,
2099 xa_mark_t mark)
2100 {
2101 struct extent_buffer *eb;
2102
2103 retry:
2104 eb = xas_find_marked(xas, max, mark);
2105
2106 if (xas_retry(xas, eb))
2107 goto retry;
2108
2109 if (!eb)
2110 return NULL;
2111
2112 if (!refcount_inc_not_zero(&eb->refs)) {
2113 xas_reset(xas);
2114 goto retry;
2115 }
2116
2117 if (unlikely(eb != xas_reload(xas))) {
2118 free_extent_buffer(eb);
2119 xas_reset(xas);
2120 goto retry;
2121 }
2122
2123 return eb;
2124 }
2125
buffer_tree_get_ebs_tag(struct btrfs_fs_info * fs_info,unsigned long * start,unsigned long end,xa_mark_t tag,struct eb_batch * batch)2126 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info,
2127 unsigned long *start,
2128 unsigned long end, xa_mark_t tag,
2129 struct eb_batch *batch)
2130 {
2131 XA_STATE(xas, &fs_info->buffer_tree, *start);
2132 struct extent_buffer *eb;
2133
2134 rcu_read_lock();
2135 while ((eb = find_get_eb(&xas, end, tag)) != NULL) {
2136 if (!eb_batch_add(batch, eb)) {
2137 *start = ((eb->start + eb->len) >> fs_info->nodesize_bits);
2138 goto out;
2139 }
2140 }
2141 if (end == ULONG_MAX)
2142 *start = ULONG_MAX;
2143 else
2144 *start = end + 1;
2145 out:
2146 rcu_read_unlock();
2147
2148 return batch->nr;
2149 }
2150
2151 /*
2152 * The endio specific version which won't touch any unsafe spinlock in endio
2153 * context.
2154 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2155 static struct extent_buffer *find_extent_buffer_nolock(
2156 struct btrfs_fs_info *fs_info, u64 start)
2157 {
2158 struct extent_buffer *eb;
2159 unsigned long index = (start >> fs_info->nodesize_bits);
2160
2161 rcu_read_lock();
2162 eb = xa_load(&fs_info->buffer_tree, index);
2163 if (eb && !refcount_inc_not_zero(&eb->refs))
2164 eb = NULL;
2165 rcu_read_unlock();
2166 return eb;
2167 }
2168
end_bbio_meta_write(struct btrfs_bio * bbio)2169 static void end_bbio_meta_write(struct btrfs_bio *bbio)
2170 {
2171 struct extent_buffer *eb = bbio->private;
2172 struct folio_iter fi;
2173
2174 if (bbio->bio.bi_status != BLK_STS_OK)
2175 set_btree_ioerr(eb);
2176
2177 bio_for_each_folio_all(fi, &bbio->bio) {
2178 btrfs_meta_folio_clear_writeback(fi.folio, eb);
2179 }
2180
2181 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK);
2182 clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2183 bio_put(&bbio->bio);
2184 }
2185
prepare_eb_write(struct extent_buffer * eb)2186 static void prepare_eb_write(struct extent_buffer *eb)
2187 {
2188 u32 nritems;
2189 unsigned long start;
2190 unsigned long end;
2191
2192 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2193
2194 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2195 nritems = btrfs_header_nritems(eb);
2196 if (btrfs_header_level(eb) > 0) {
2197 end = btrfs_node_key_ptr_offset(eb, nritems);
2198 memzero_extent_buffer(eb, end, eb->len - end);
2199 } else {
2200 /*
2201 * Leaf:
2202 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2203 */
2204 start = btrfs_item_nr_offset(eb, nritems);
2205 end = btrfs_item_nr_offset(eb, 0);
2206 if (nritems == 0)
2207 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2208 else
2209 end += btrfs_item_offset(eb, nritems - 1);
2210 memzero_extent_buffer(eb, start, end - start);
2211 }
2212 }
2213
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)2214 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2215 struct writeback_control *wbc)
2216 {
2217 struct btrfs_fs_info *fs_info = eb->fs_info;
2218 struct btrfs_bio *bbio;
2219
2220 prepare_eb_write(eb);
2221
2222 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
2223 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
2224 BTRFS_I(fs_info->btree_inode), eb->start,
2225 end_bbio_meta_write, eb);
2226 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
2227 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
2228 wbc_init_bio(wbc, &bbio->bio);
2229 for (int i = 0; i < num_extent_folios(eb); i++) {
2230 struct folio *folio = eb->folios[i];
2231 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
2232 u32 range_len = min_t(u64, folio_next_pos(folio),
2233 eb->start + eb->len) - range_start;
2234
2235 folio_lock(folio);
2236 btrfs_meta_folio_clear_dirty(folio, eb);
2237 btrfs_meta_folio_set_writeback(folio, eb);
2238 if (!folio_test_dirty(folio))
2239 wbc->nr_to_write -= folio_nr_pages(folio);
2240 bio_add_folio_nofail(&bbio->bio, folio, range_len,
2241 offset_in_folio(folio, range_start));
2242 wbc_account_cgroup_owner(wbc, folio, range_len);
2243 folio_unlock(folio);
2244 }
2245 /*
2246 * If the fs is already in error status, do not submit any writeback
2247 * but immediately finish it.
2248 */
2249 if (unlikely(BTRFS_FS_ERROR(fs_info))) {
2250 btrfs_bio_end_io(bbio, errno_to_blk_status(BTRFS_FS_ERROR(fs_info)));
2251 return;
2252 }
2253 btrfs_submit_bbio(bbio, 0);
2254 }
2255
2256 /*
2257 * Wait for all eb writeback in the given range to finish.
2258 *
2259 * @fs_info: The fs_info for this file system.
2260 * @start: The offset of the range to start waiting on writeback.
2261 * @end: The end of the range, inclusive. This is meant to be used in
2262 * conjunction with wait_marked_extents, so this will usually be
2263 * the_next_eb->start - 1.
2264 */
btrfs_btree_wait_writeback_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)2265 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start,
2266 u64 end)
2267 {
2268 struct eb_batch batch;
2269 unsigned long start_index = (start >> fs_info->nodesize_bits);
2270 unsigned long end_index = (end >> fs_info->nodesize_bits);
2271
2272 eb_batch_init(&batch);
2273 while (start_index <= end_index) {
2274 struct extent_buffer *eb;
2275 unsigned int nr_ebs;
2276
2277 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index,
2278 PAGECACHE_TAG_WRITEBACK, &batch);
2279 if (!nr_ebs)
2280 break;
2281
2282 while ((eb = eb_batch_next(&batch)) != NULL)
2283 wait_on_extent_buffer_writeback(eb);
2284 eb_batch_release(&batch);
2285 cond_resched();
2286 }
2287 }
2288
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)2289 int btree_writepages(struct address_space *mapping, struct writeback_control *wbc)
2290 {
2291 struct btrfs_eb_write_context ctx = { .wbc = wbc };
2292 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2293 int ret = 0;
2294 int done = 0;
2295 int nr_to_write_done = 0;
2296 struct eb_batch batch;
2297 unsigned int nr_ebs;
2298 unsigned long index;
2299 unsigned long end;
2300 int scanned = 0;
2301 xa_mark_t tag;
2302
2303 eb_batch_init(&batch);
2304 if (wbc->range_cyclic) {
2305 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits);
2306 end = -1;
2307
2308 /*
2309 * Start from the beginning does not need to cycle over the
2310 * range, mark it as scanned.
2311 */
2312 scanned = (index == 0);
2313 } else {
2314 index = (wbc->range_start >> fs_info->nodesize_bits);
2315 end = (wbc->range_end >> fs_info->nodesize_bits);
2316
2317 scanned = 1;
2318 }
2319 if (wbc->sync_mode == WB_SYNC_ALL)
2320 tag = PAGECACHE_TAG_TOWRITE;
2321 else
2322 tag = PAGECACHE_TAG_DIRTY;
2323 btrfs_zoned_meta_io_lock(fs_info);
2324 retry:
2325 if (wbc->sync_mode == WB_SYNC_ALL)
2326 buffer_tree_tag_for_writeback(fs_info, index, end);
2327 while (!done && !nr_to_write_done && (index <= end) &&
2328 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) {
2329 struct extent_buffer *eb;
2330
2331 while ((eb = eb_batch_next(&batch)) != NULL) {
2332 ctx.eb = eb;
2333
2334 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx);
2335 if (ret) {
2336 if (ret == -EBUSY)
2337 ret = 0;
2338
2339 if (ret) {
2340 done = 1;
2341 break;
2342 }
2343 continue;
2344 }
2345
2346 if (!lock_extent_buffer_for_io(eb, wbc))
2347 continue;
2348
2349 /* Implies write in zoned mode. */
2350 if (ctx.zoned_bg) {
2351 /* Mark the last eb in the block group. */
2352 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb);
2353 ctx.zoned_bg->meta_write_pointer += eb->len;
2354 }
2355 write_one_eb(eb, wbc);
2356 }
2357 nr_to_write_done = (wbc->nr_to_write <= 0);
2358 eb_batch_release(&batch);
2359 cond_resched();
2360 }
2361 if (!scanned && !done) {
2362 /*
2363 * We hit the last page and there is more work to be done: wrap
2364 * back to the start of the file
2365 */
2366 scanned = 1;
2367 index = 0;
2368 goto retry;
2369 }
2370 /*
2371 * If something went wrong, don't allow any metadata write bio to be
2372 * submitted.
2373 *
2374 * This would prevent use-after-free if we had dirty pages not
2375 * cleaned up, which can still happen by fuzzed images.
2376 *
2377 * - Bad extent tree
2378 * Allowing existing tree block to be allocated for other trees.
2379 *
2380 * - Log tree operations
2381 * Exiting tree blocks get allocated to log tree, bumps its
2382 * generation, then get cleaned in tree re-balance.
2383 * Such tree block will not be written back, since it's clean,
2384 * thus no WRITTEN flag set.
2385 * And after log writes back, this tree block is not traced by
2386 * any dirty extent_io_tree.
2387 *
2388 * - Offending tree block gets re-dirtied from its original owner
2389 * Since it has bumped generation, no WRITTEN flag, it can be
2390 * reused without COWing. This tree block will not be traced
2391 * by btrfs_transaction::dirty_pages.
2392 *
2393 * Now such dirty tree block will not be cleaned by any dirty
2394 * extent io tree. Thus we don't want to submit such wild eb
2395 * if the fs already has error.
2396 *
2397 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2398 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2399 */
2400 if (ret > 0)
2401 ret = 0;
2402 if (!ret && BTRFS_FS_ERROR(fs_info))
2403 ret = -EROFS;
2404
2405 if (ctx.zoned_bg)
2406 btrfs_put_block_group(ctx.zoned_bg);
2407 btrfs_zoned_meta_io_unlock(fs_info);
2408 return ret;
2409 }
2410
2411 /*
2412 * Walk the list of dirty pages of the given address space and write all of them.
2413 *
2414 * @mapping: address space structure to write
2415 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2416 * @bio_ctrl: holds context for the write, namely the bio
2417 *
2418 * If a page is already under I/O, write_cache_pages() skips it, even
2419 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2420 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2421 * and msync() need to guarantee that all the data which was dirty at the time
2422 * the call was made get new I/O started against them. If wbc->sync_mode is
2423 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2424 * existing IO to complete.
2425 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2426 static int extent_write_cache_pages(struct address_space *mapping,
2427 struct btrfs_bio_ctrl *bio_ctrl)
2428 {
2429 struct writeback_control *wbc = bio_ctrl->wbc;
2430 struct inode *inode = mapping->host;
2431 int ret = 0;
2432 int done = 0;
2433 int nr_to_write_done = 0;
2434 struct folio_batch fbatch;
2435 unsigned int nr_folios;
2436 pgoff_t index;
2437 pgoff_t end; /* Inclusive */
2438 pgoff_t done_index;
2439 int range_whole = 0;
2440 int scanned = 0;
2441 xa_mark_t tag;
2442
2443 /*
2444 * We have to hold onto the inode so that ordered extents can do their
2445 * work when the IO finishes. The alternative to this is failing to add
2446 * an ordered extent if the igrab() fails there and that is a huge pain
2447 * to deal with, so instead just hold onto the inode throughout the
2448 * writepages operation. If it fails here we are freeing up the inode
2449 * anyway and we'd rather not waste our time writing out stuff that is
2450 * going to be truncated anyway.
2451 */
2452 if (!igrab(inode))
2453 return 0;
2454
2455 folio_batch_init(&fbatch);
2456 if (wbc->range_cyclic) {
2457 index = mapping->writeback_index; /* Start from prev offset */
2458 end = -1;
2459 /*
2460 * Start from the beginning does not need to cycle over the
2461 * range, mark it as scanned.
2462 */
2463 scanned = (index == 0);
2464 } else {
2465 index = wbc->range_start >> PAGE_SHIFT;
2466 end = wbc->range_end >> PAGE_SHIFT;
2467 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2468 range_whole = 1;
2469 scanned = 1;
2470 }
2471
2472 /*
2473 * We do the tagged writepage as long as the snapshot flush bit is set
2474 * and we are the first one who do the filemap_flush() on this inode.
2475 *
2476 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2477 * not race in and drop the bit.
2478 */
2479 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2480 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2481 &BTRFS_I(inode)->runtime_flags))
2482 wbc->tagged_writepages = 1;
2483
2484 tag = wbc_to_tag(wbc);
2485 retry:
2486 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2487 tag_pages_for_writeback(mapping, index, end);
2488 done_index = index;
2489 while (!done && !nr_to_write_done && (index <= end) &&
2490 (nr_folios = filemap_get_folios_tag(mapping, &index,
2491 end, tag, &fbatch))) {
2492 unsigned i;
2493
2494 for (i = 0; i < nr_folios; i++) {
2495 struct folio *folio = fbatch.folios[i];
2496
2497 done_index = folio_next_index(folio);
2498 /*
2499 * At this point we hold neither the i_pages lock nor
2500 * the folio lock: the folio may be truncated or
2501 * invalidated (changing folio->mapping to NULL).
2502 */
2503 if (!folio_trylock(folio)) {
2504 submit_write_bio(bio_ctrl, 0);
2505 folio_lock(folio);
2506 }
2507
2508 if (unlikely(folio->mapping != mapping)) {
2509 folio_unlock(folio);
2510 continue;
2511 }
2512
2513 if (!folio_test_dirty(folio)) {
2514 /* Someone wrote it for us. */
2515 folio_unlock(folio);
2516 continue;
2517 }
2518
2519 /*
2520 * For subpage case, compression can lead to mixed
2521 * writeback and dirty flags, e.g:
2522 * 0 32K 64K 96K 128K
2523 * | |//////||/////| |//|
2524 *
2525 * In above case, [32K, 96K) is asynchronously submitted
2526 * for compression, and [124K, 128K) needs to be written back.
2527 *
2528 * If we didn't wait writeback for page 64K, [128K, 128K)
2529 * won't be submitted as the page still has writeback flag
2530 * and will be skipped in the next check.
2531 *
2532 * This mixed writeback and dirty case is only possible for
2533 * subpage case.
2534 *
2535 * TODO: Remove this check after migrating compression to
2536 * regular submission.
2537 */
2538 if (wbc->sync_mode != WB_SYNC_NONE ||
2539 btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2540 if (folio_test_writeback(folio))
2541 submit_write_bio(bio_ctrl, 0);
2542 folio_wait_writeback(folio);
2543 }
2544
2545 if (folio_test_writeback(folio) ||
2546 !folio_clear_dirty_for_io(folio)) {
2547 folio_unlock(folio);
2548 continue;
2549 }
2550
2551 ret = extent_writepage(folio, bio_ctrl);
2552 if (ret < 0) {
2553 done = 1;
2554 break;
2555 }
2556
2557 /*
2558 * The filesystem may choose to bump up nr_to_write.
2559 * We have to make sure to honor the new nr_to_write
2560 * at any time.
2561 */
2562 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2563 wbc->nr_to_write <= 0);
2564 }
2565 folio_batch_release(&fbatch);
2566 cond_resched();
2567 }
2568 if (!scanned && !done) {
2569 /*
2570 * We hit the last page and there is more work to be done: wrap
2571 * back to the start of the file
2572 */
2573 scanned = 1;
2574 index = 0;
2575
2576 /*
2577 * If we're looping we could run into a page that is locked by a
2578 * writer and that writer could be waiting on writeback for a
2579 * page in our current bio, and thus deadlock, so flush the
2580 * write bio here.
2581 */
2582 submit_write_bio(bio_ctrl, 0);
2583 goto retry;
2584 }
2585
2586 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2587 mapping->writeback_index = done_index;
2588
2589 btrfs_add_delayed_iput(BTRFS_I(inode));
2590 return ret;
2591 }
2592
2593 /*
2594 * Submit the pages in the range to bio for call sites which delalloc range has
2595 * already been ran (aka, ordered extent inserted) and all pages are still
2596 * locked.
2597 */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2598 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2599 u64 start, u64 end, struct writeback_control *wbc,
2600 bool pages_dirty)
2601 {
2602 bool found_error = false;
2603 int ret = 0;
2604 struct address_space *mapping = inode->i_mapping;
2605 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2606 const u32 sectorsize = fs_info->sectorsize;
2607 loff_t i_size = i_size_read(inode);
2608 u64 cur = start;
2609 struct btrfs_bio_ctrl bio_ctrl = {
2610 .wbc = wbc,
2611 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2612 };
2613
2614 if (wbc->no_cgroup_owner)
2615 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2616
2617 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2618
2619 while (cur <= end) {
2620 u64 cur_end;
2621 u32 cur_len;
2622 struct folio *folio;
2623
2624 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2625
2626 /*
2627 * This shouldn't happen, the pages are pinned and locked, this
2628 * code is just in case, but shouldn't actually be run.
2629 */
2630 if (IS_ERR(folio)) {
2631 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2632 cur_len = cur_end + 1 - cur;
2633 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2634 cur, cur_len, false);
2635 mapping_set_error(mapping, PTR_ERR(folio));
2636 cur = cur_end;
2637 continue;
2638 }
2639
2640 cur_end = min_t(u64, folio_next_pos(folio) - 1, end);
2641 cur_len = cur_end + 1 - cur;
2642
2643 ASSERT(folio_test_locked(folio));
2644 if (pages_dirty && folio != locked_folio)
2645 ASSERT(folio_test_dirty(folio));
2646
2647 /*
2648 * Set the submission bitmap to submit all sectors.
2649 * extent_writepage_io() will do the truncation correctly.
2650 */
2651 bio_ctrl.submit_bitmap = (unsigned long)-1;
2652 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2653 &bio_ctrl, i_size);
2654 if (ret == 1)
2655 goto next_page;
2656
2657 if (ret)
2658 mapping_set_error(mapping, ret);
2659 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2660 if (ret < 0)
2661 found_error = true;
2662 next_page:
2663 folio_put(folio);
2664 cur = cur_end + 1;
2665 }
2666
2667 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2668 }
2669
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2670 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2671 {
2672 struct inode *inode = mapping->host;
2673 int ret = 0;
2674 struct btrfs_bio_ctrl bio_ctrl = {
2675 .wbc = wbc,
2676 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2677 };
2678
2679 /*
2680 * Allow only a single thread to do the reloc work in zoned mode to
2681 * protect the write pointer updates.
2682 */
2683 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2684 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2685 submit_write_bio(&bio_ctrl, ret);
2686 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2687 return ret;
2688 }
2689
btrfs_readahead(struct readahead_control * rac)2690 void btrfs_readahead(struct readahead_control *rac)
2691 {
2692 struct btrfs_bio_ctrl bio_ctrl = {
2693 .opf = REQ_OP_READ | REQ_RAHEAD,
2694 .ractl = rac,
2695 .last_em_start = U64_MAX,
2696 };
2697 struct folio *folio;
2698 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2699 const u64 start = readahead_pos(rac);
2700 const u64 end = start + readahead_length(rac) - 1;
2701 struct extent_state *cached_state = NULL;
2702 struct extent_map *em_cached = NULL;
2703
2704 lock_extents_for_read(inode, start, end, &cached_state);
2705
2706 while ((folio = readahead_folio(rac)) != NULL)
2707 btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
2708
2709 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2710
2711 if (em_cached)
2712 btrfs_free_extent_map(em_cached);
2713 submit_one_bio(&bio_ctrl);
2714 }
2715
2716 /*
2717 * basic invalidate_folio code, this waits on any locked or writeback
2718 * ranges corresponding to the folio, and then deletes any extent state
2719 * records from the tree
2720 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2721 int extent_invalidate_folio(struct extent_io_tree *tree,
2722 struct folio *folio, size_t offset)
2723 {
2724 struct extent_state *cached_state = NULL;
2725 u64 start = folio_pos(folio);
2726 u64 end = start + folio_size(folio) - 1;
2727 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2728
2729 /* This function is only called for the btree inode */
2730 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2731
2732 start += ALIGN(offset, blocksize);
2733 if (start > end)
2734 return 0;
2735
2736 btrfs_lock_extent(tree, start, end, &cached_state);
2737 folio_wait_writeback(folio);
2738
2739 /*
2740 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2741 * so here we only need to unlock the extent range to free any
2742 * existing extent state.
2743 */
2744 btrfs_unlock_extent(tree, start, end, &cached_state);
2745 return 0;
2746 }
2747
2748 /*
2749 * A helper for struct address_space_operations::release_folio, this tests for
2750 * areas of the folio that are locked or under IO and drops the related state
2751 * bits if it is safe to drop the folio.
2752 */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio)2753 static bool try_release_extent_state(struct extent_io_tree *tree,
2754 struct folio *folio)
2755 {
2756 struct extent_state *cached_state = NULL;
2757 u64 start = folio_pos(folio);
2758 u64 end = start + folio_size(folio) - 1;
2759 u32 range_bits;
2760 u32 clear_bits;
2761 bool ret = false;
2762 int ret2;
2763
2764 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state);
2765
2766 /*
2767 * We can release the folio if it's locked only for ordered extent
2768 * completion, since that doesn't require using the folio.
2769 */
2770 if ((range_bits & EXTENT_LOCKED) &&
2771 !(range_bits & EXTENT_FINISHING_ORDERED))
2772 goto out;
2773
2774 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW |
2775 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED |
2776 EXTENT_FINISHING_ORDERED);
2777 /*
2778 * At this point we can safely clear everything except the locked,
2779 * nodatasum, delalloc new and finishing ordered bits. The delalloc new
2780 * bit will be cleared by ordered extent completion.
2781 */
2782 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state);
2783 /*
2784 * If clear_extent_bit failed for enomem reasons, we can't allow the
2785 * release to continue.
2786 */
2787 if (ret2 == 0)
2788 ret = true;
2789 out:
2790 btrfs_free_extent_state(cached_state);
2791
2792 return ret;
2793 }
2794
2795 /*
2796 * a helper for release_folio. As long as there are no locked extents
2797 * in the range corresponding to the page, both state records and extent
2798 * map records are removed
2799 */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2800 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2801 {
2802 u64 start = folio_pos(folio);
2803 u64 end = start + folio_size(folio) - 1;
2804 struct btrfs_inode *inode = folio_to_inode(folio);
2805 struct extent_io_tree *io_tree = &inode->io_tree;
2806
2807 while (start <= end) {
2808 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2809 const u64 len = end - start + 1;
2810 struct extent_map_tree *extent_tree = &inode->extent_tree;
2811 struct extent_map *em;
2812
2813 write_lock(&extent_tree->lock);
2814 em = btrfs_lookup_extent_mapping(extent_tree, start, len);
2815 if (!em) {
2816 write_unlock(&extent_tree->lock);
2817 break;
2818 }
2819 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2820 write_unlock(&extent_tree->lock);
2821 btrfs_free_extent_map(em);
2822 break;
2823 }
2824 if (btrfs_test_range_bit_exists(io_tree, em->start,
2825 btrfs_extent_map_end(em) - 1,
2826 EXTENT_LOCKED))
2827 goto next;
2828 /*
2829 * If it's not in the list of modified extents, used by a fast
2830 * fsync, we can remove it. If it's being logged we can safely
2831 * remove it since fsync took an extra reference on the em.
2832 */
2833 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2834 goto remove_em;
2835 /*
2836 * If it's in the list of modified extents, remove it only if
2837 * its generation is older then the current one, in which case
2838 * we don't need it for a fast fsync. Otherwise don't remove it,
2839 * we could be racing with an ongoing fast fsync that could miss
2840 * the new extent.
2841 */
2842 if (em->generation >= cur_gen)
2843 goto next;
2844 remove_em:
2845 /*
2846 * We only remove extent maps that are not in the list of
2847 * modified extents or that are in the list but with a
2848 * generation lower then the current generation, so there is no
2849 * need to set the full fsync flag on the inode (it hurts the
2850 * fsync performance for workloads with a data size that exceeds
2851 * or is close to the system's memory).
2852 */
2853 btrfs_remove_extent_mapping(inode, em);
2854 /* Once for the inode's extent map tree. */
2855 btrfs_free_extent_map(em);
2856 next:
2857 start = btrfs_extent_map_end(em);
2858 write_unlock(&extent_tree->lock);
2859
2860 /* Once for us, for the lookup_extent_mapping() reference. */
2861 btrfs_free_extent_map(em);
2862
2863 if (need_resched()) {
2864 /*
2865 * If we need to resched but we can't block just exit
2866 * and leave any remaining extent maps.
2867 */
2868 if (!gfpflags_allow_blocking(mask))
2869 break;
2870
2871 cond_resched();
2872 }
2873 }
2874 return try_release_extent_state(io_tree, folio);
2875 }
2876
extent_buffer_under_io(const struct extent_buffer * eb)2877 static int extent_buffer_under_io(const struct extent_buffer *eb)
2878 {
2879 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2880 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2881 }
2882
folio_range_has_eb(struct folio * folio)2883 static bool folio_range_has_eb(struct folio *folio)
2884 {
2885 struct btrfs_folio_state *bfs;
2886
2887 lockdep_assert_held(&folio->mapping->i_private_lock);
2888
2889 if (folio_test_private(folio)) {
2890 bfs = folio_get_private(folio);
2891 if (atomic_read(&bfs->eb_refs))
2892 return true;
2893 }
2894 return false;
2895 }
2896
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2897 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2898 {
2899 struct btrfs_fs_info *fs_info = eb->fs_info;
2900 struct address_space *mapping = folio->mapping;
2901 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2902
2903 /*
2904 * For mapped eb, we're going to change the folio private, which should
2905 * be done under the i_private_lock.
2906 */
2907 if (mapped)
2908 spin_lock(&mapping->i_private_lock);
2909
2910 if (!folio_test_private(folio)) {
2911 if (mapped)
2912 spin_unlock(&mapping->i_private_lock);
2913 return;
2914 }
2915
2916 if (!btrfs_meta_is_subpage(fs_info)) {
2917 /*
2918 * We do this since we'll remove the pages after we've removed
2919 * the eb from the xarray, so we could race and have this page
2920 * now attached to the new eb. So only clear folio if it's
2921 * still connected to this eb.
2922 */
2923 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2924 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2925 BUG_ON(folio_test_dirty(folio));
2926 BUG_ON(folio_test_writeback(folio));
2927 /* We need to make sure we haven't be attached to a new eb. */
2928 folio_detach_private(folio);
2929 }
2930 if (mapped)
2931 spin_unlock(&mapping->i_private_lock);
2932 return;
2933 }
2934
2935 /*
2936 * For subpage, we can have dummy eb with folio private attached. In
2937 * this case, we can directly detach the private as such folio is only
2938 * attached to one dummy eb, no sharing.
2939 */
2940 if (!mapped) {
2941 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2942 return;
2943 }
2944
2945 btrfs_folio_dec_eb_refs(fs_info, folio);
2946
2947 /*
2948 * We can only detach the folio private if there are no other ebs in the
2949 * page range and no unfinished IO.
2950 */
2951 if (!folio_range_has_eb(folio))
2952 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2953
2954 spin_unlock(&mapping->i_private_lock);
2955 }
2956
2957 /* Release all folios attached to the extent buffer */
btrfs_release_extent_buffer_folios(const struct extent_buffer * eb)2958 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2959 {
2960 ASSERT(!extent_buffer_under_io(eb));
2961
2962 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2963 struct folio *folio = eb->folios[i];
2964
2965 if (!folio)
2966 continue;
2967
2968 detach_extent_buffer_folio(eb, folio);
2969 }
2970 }
2971
2972 /*
2973 * Helper for releasing the extent buffer.
2974 */
btrfs_release_extent_buffer(struct extent_buffer * eb)2975 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2976 {
2977 btrfs_release_extent_buffer_folios(eb);
2978 btrfs_leak_debug_del_eb(eb);
2979 kmem_cache_free(extent_buffer_cache, eb);
2980 }
2981
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2982 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2983 u64 start)
2984 {
2985 struct extent_buffer *eb = NULL;
2986
2987 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2988 eb->start = start;
2989 eb->len = fs_info->nodesize;
2990 eb->fs_info = fs_info;
2991 init_rwsem(&eb->lock);
2992
2993 btrfs_leak_debug_add_eb(eb);
2994
2995 spin_lock_init(&eb->refs_lock);
2996 refcount_set(&eb->refs, 1);
2997
2998 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2999
3000 return eb;
3001 }
3002
3003 /*
3004 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer()
3005 * does not call folio_put(), and we need to set the folios to NULL so that
3006 * btrfs_release_extent_buffer() will not detach them a second time.
3007 */
cleanup_extent_buffer_folios(struct extent_buffer * eb)3008 static void cleanup_extent_buffer_folios(struct extent_buffer *eb)
3009 {
3010 const int num_folios = num_extent_folios(eb);
3011
3012 /* We cannot use num_extent_folios() as loop bound as eb->folios changes. */
3013 for (int i = 0; i < num_folios; i++) {
3014 ASSERT(eb->folios[i]);
3015 detach_extent_buffer_folio(eb, eb->folios[i]);
3016 folio_put(eb->folios[i]);
3017 eb->folios[i] = NULL;
3018 }
3019 }
3020
btrfs_clone_extent_buffer(const struct extent_buffer * src)3021 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3022 {
3023 struct extent_buffer *new;
3024 int num_folios;
3025 int ret;
3026
3027 new = __alloc_extent_buffer(src->fs_info, src->start);
3028 if (new == NULL)
3029 return NULL;
3030
3031 /*
3032 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3033 * btrfs_release_extent_buffer() have different behavior for
3034 * UNMAPPED subpage extent buffer.
3035 */
3036 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3037
3038 ret = alloc_eb_folio_array(new, false);
3039 if (ret)
3040 goto release_eb;
3041
3042 ASSERT(num_extent_folios(src) == num_extent_folios(new),
3043 "%d != %d", num_extent_folios(src), num_extent_folios(new));
3044 /* Explicitly use the cached num_extent value from now on. */
3045 num_folios = num_extent_folios(src);
3046 for (int i = 0; i < num_folios; i++) {
3047 struct folio *folio = new->folios[i];
3048
3049 ret = attach_extent_buffer_folio(new, folio, NULL);
3050 if (ret < 0)
3051 goto cleanup_folios;
3052 WARN_ON(folio_test_dirty(folio));
3053 }
3054 for (int i = 0; i < num_folios; i++)
3055 folio_put(new->folios[i]);
3056
3057 copy_extent_buffer_full(new, src);
3058 set_extent_buffer_uptodate(new);
3059
3060 return new;
3061
3062 cleanup_folios:
3063 cleanup_extent_buffer_folios(new);
3064 release_eb:
3065 btrfs_release_extent_buffer(new);
3066 return NULL;
3067 }
3068
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3069 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3070 u64 start)
3071 {
3072 struct extent_buffer *eb;
3073 int ret;
3074
3075 eb = __alloc_extent_buffer(fs_info, start);
3076 if (!eb)
3077 return NULL;
3078
3079 ret = alloc_eb_folio_array(eb, false);
3080 if (ret)
3081 goto release_eb;
3082
3083 for (int i = 0; i < num_extent_folios(eb); i++) {
3084 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3085 if (ret < 0)
3086 goto cleanup_folios;
3087 }
3088 for (int i = 0; i < num_extent_folios(eb); i++)
3089 folio_put(eb->folios[i]);
3090
3091 set_extent_buffer_uptodate(eb);
3092 btrfs_set_header_nritems(eb, 0);
3093 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3094
3095 return eb;
3096
3097 cleanup_folios:
3098 cleanup_extent_buffer_folios(eb);
3099 release_eb:
3100 btrfs_release_extent_buffer(eb);
3101 return NULL;
3102 }
3103
check_buffer_tree_ref(struct extent_buffer * eb)3104 static void check_buffer_tree_ref(struct extent_buffer *eb)
3105 {
3106 int refs;
3107 /*
3108 * The TREE_REF bit is first set when the extent_buffer is added to the
3109 * xarray. It is also reset, if unset, when a new reference is created
3110 * by find_extent_buffer.
3111 *
3112 * It is only cleared in two cases: freeing the last non-tree
3113 * reference to the extent_buffer when its STALE bit is set or
3114 * calling release_folio when the tree reference is the only reference.
3115 *
3116 * In both cases, care is taken to ensure that the extent_buffer's
3117 * pages are not under io. However, release_folio can be concurrently
3118 * called with creating new references, which is prone to race
3119 * conditions between the calls to check_buffer_tree_ref in those
3120 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3121 *
3122 * The actual lifetime of the extent_buffer in the xarray is adequately
3123 * protected by the refcount, but the TREE_REF bit and its corresponding
3124 * reference are not. To protect against this class of races, we call
3125 * check_buffer_tree_ref() from the code paths which trigger io. Note that
3126 * once io is initiated, TREE_REF can no longer be cleared, so that is
3127 * the moment at which any such race is best fixed.
3128 */
3129 refs = refcount_read(&eb->refs);
3130 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3131 return;
3132
3133 spin_lock(&eb->refs_lock);
3134 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3135 refcount_inc(&eb->refs);
3136 spin_unlock(&eb->refs_lock);
3137 }
3138
mark_extent_buffer_accessed(struct extent_buffer * eb)3139 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3140 {
3141 check_buffer_tree_ref(eb);
3142
3143 for (int i = 0; i < num_extent_folios(eb); i++)
3144 folio_mark_accessed(eb->folios[i]);
3145 }
3146
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3147 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3148 u64 start)
3149 {
3150 struct extent_buffer *eb;
3151
3152 eb = find_extent_buffer_nolock(fs_info, start);
3153 if (!eb)
3154 return NULL;
3155 /*
3156 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3157 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3158 * another task running free_extent_buffer() might have seen that flag
3159 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3160 * writeback flags not set) and it's still in the tree (flag
3161 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3162 * decrementing the extent buffer's reference count twice. So here we
3163 * could race and increment the eb's reference count, clear its stale
3164 * flag, mark it as dirty and drop our reference before the other task
3165 * finishes executing free_extent_buffer, which would later result in
3166 * an attempt to free an extent buffer that is dirty.
3167 */
3168 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3169 spin_lock(&eb->refs_lock);
3170 spin_unlock(&eb->refs_lock);
3171 }
3172 mark_extent_buffer_accessed(eb);
3173 return eb;
3174 }
3175
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3176 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3177 u64 start)
3178 {
3179 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3180 struct extent_buffer *eb, *exists = NULL;
3181 int ret;
3182
3183 eb = find_extent_buffer(fs_info, start);
3184 if (eb)
3185 return eb;
3186 eb = alloc_dummy_extent_buffer(fs_info, start);
3187 if (!eb)
3188 return ERR_PTR(-ENOMEM);
3189 eb->fs_info = fs_info;
3190 again:
3191 xa_lock_irq(&fs_info->buffer_tree);
3192 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits,
3193 NULL, eb, GFP_NOFS);
3194 if (xa_is_err(exists)) {
3195 ret = xa_err(exists);
3196 xa_unlock_irq(&fs_info->buffer_tree);
3197 btrfs_release_extent_buffer(eb);
3198 return ERR_PTR(ret);
3199 }
3200 if (exists) {
3201 if (!refcount_inc_not_zero(&exists->refs)) {
3202 /* The extent buffer is being freed, retry. */
3203 xa_unlock_irq(&fs_info->buffer_tree);
3204 goto again;
3205 }
3206 xa_unlock_irq(&fs_info->buffer_tree);
3207 btrfs_release_extent_buffer(eb);
3208 return exists;
3209 }
3210 xa_unlock_irq(&fs_info->buffer_tree);
3211 check_buffer_tree_ref(eb);
3212
3213 return eb;
3214 #else
3215 /* Stub to avoid linker error when compiled with optimizations turned off. */
3216 return NULL;
3217 #endif
3218 }
3219
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct folio * folio)3220 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3221 struct folio *folio)
3222 {
3223 struct extent_buffer *exists;
3224
3225 lockdep_assert_held(&folio->mapping->i_private_lock);
3226
3227 /*
3228 * For subpage case, we completely rely on xarray to ensure we don't try
3229 * to insert two ebs for the same bytenr. So here we always return NULL
3230 * and just continue.
3231 */
3232 if (btrfs_meta_is_subpage(fs_info))
3233 return NULL;
3234
3235 /* Page not yet attached to an extent buffer */
3236 if (!folio_test_private(folio))
3237 return NULL;
3238
3239 /*
3240 * We could have already allocated an eb for this folio and attached one
3241 * so lets see if we can get a ref on the existing eb, and if we can we
3242 * know it's good and we can just return that one, else we know we can
3243 * just overwrite folio private.
3244 */
3245 exists = folio_get_private(folio);
3246 if (refcount_inc_not_zero(&exists->refs))
3247 return exists;
3248
3249 WARN_ON(folio_test_dirty(folio));
3250 folio_detach_private(folio);
3251 return NULL;
3252 }
3253
3254 /*
3255 * Validate alignment constraints of eb at logical address @start.
3256 */
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3257 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3258 {
3259 const u32 nodesize = fs_info->nodesize;
3260
3261 if (unlikely(!IS_ALIGNED(start, fs_info->sectorsize))) {
3262 btrfs_err(fs_info, "bad tree block start %llu", start);
3263 return true;
3264 }
3265
3266 if (unlikely(nodesize < PAGE_SIZE && !IS_ALIGNED(start, nodesize))) {
3267 btrfs_err(fs_info,
3268 "tree block is not nodesize aligned, start %llu nodesize %u",
3269 start, nodesize);
3270 return true;
3271 }
3272 if (unlikely(nodesize >= PAGE_SIZE && !PAGE_ALIGNED(start))) {
3273 btrfs_err(fs_info,
3274 "tree block is not page aligned, start %llu nodesize %u",
3275 start, nodesize);
3276 return true;
3277 }
3278 if (unlikely(!IS_ALIGNED(start, nodesize) &&
3279 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags))) {
3280 btrfs_warn(fs_info,
3281 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3282 start, nodesize);
3283 }
3284 return false;
3285 }
3286
3287 /*
3288 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3289 * Return >0 if there is already another extent buffer for the range,
3290 * and @found_eb_ret would be updated.
3291 * Return -EAGAIN if the filemap has an existing folio but with different size
3292 * than @eb.
3293 * The caller needs to free the existing folios and retry using the same order.
3294 */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_folio_state * prealloc,struct extent_buffer ** found_eb_ret)3295 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3296 struct btrfs_folio_state *prealloc,
3297 struct extent_buffer **found_eb_ret)
3298 {
3299
3300 struct btrfs_fs_info *fs_info = eb->fs_info;
3301 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3302 const pgoff_t index = eb->start >> PAGE_SHIFT;
3303 struct folio *existing_folio;
3304 int ret;
3305
3306 ASSERT(found_eb_ret);
3307
3308 /* Caller should ensure the folio exists. */
3309 ASSERT(eb->folios[i]);
3310
3311 retry:
3312 existing_folio = NULL;
3313 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3314 GFP_NOFS | __GFP_NOFAIL);
3315 if (!ret)
3316 goto finish;
3317
3318 existing_folio = filemap_lock_folio(mapping, index + i);
3319 /* The page cache only exists for a very short time, just retry. */
3320 if (IS_ERR(existing_folio))
3321 goto retry;
3322
3323 /* For now, we should only have single-page folios for btree inode. */
3324 ASSERT(folio_nr_pages(existing_folio) == 1);
3325
3326 if (folio_size(existing_folio) != eb->folio_size) {
3327 folio_unlock(existing_folio);
3328 folio_put(existing_folio);
3329 return -EAGAIN;
3330 }
3331
3332 finish:
3333 spin_lock(&mapping->i_private_lock);
3334 if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3335 /* We're going to reuse the existing page, can drop our folio now. */
3336 __free_page(folio_page(eb->folios[i], 0));
3337 eb->folios[i] = existing_folio;
3338 } else if (existing_folio) {
3339 struct extent_buffer *existing_eb;
3340
3341 existing_eb = grab_extent_buffer(fs_info, existing_folio);
3342 if (existing_eb) {
3343 /* The extent buffer still exists, we can use it directly. */
3344 *found_eb_ret = existing_eb;
3345 spin_unlock(&mapping->i_private_lock);
3346 folio_unlock(existing_folio);
3347 folio_put(existing_folio);
3348 return 1;
3349 }
3350 /* The extent buffer no longer exists, we can reuse the folio. */
3351 __free_page(folio_page(eb->folios[i], 0));
3352 eb->folios[i] = existing_folio;
3353 }
3354 eb->folio_size = folio_size(eb->folios[i]);
3355 eb->folio_shift = folio_shift(eb->folios[i]);
3356 /* Should not fail, as we have preallocated the memory. */
3357 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3358 ASSERT(!ret);
3359 /*
3360 * To inform we have an extra eb under allocation, so that
3361 * detach_extent_buffer_page() won't release the folio private when the
3362 * eb hasn't been inserted into the xarray yet.
3363 *
3364 * The ref will be decreased when the eb releases the page, in
3365 * detach_extent_buffer_page(). Thus needs no special handling in the
3366 * error path.
3367 */
3368 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3369 spin_unlock(&mapping->i_private_lock);
3370 return 0;
3371 }
3372
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3373 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3374 u64 start, u64 owner_root, int level)
3375 {
3376 int attached = 0;
3377 struct extent_buffer *eb;
3378 struct extent_buffer *existing_eb = NULL;
3379 struct btrfs_folio_state *prealloc = NULL;
3380 u64 lockdep_owner = owner_root;
3381 bool page_contig = true;
3382 int uptodate = 1;
3383 int ret;
3384
3385 if (check_eb_alignment(fs_info, start))
3386 return ERR_PTR(-EINVAL);
3387
3388 #if BITS_PER_LONG == 32
3389 if (start >= MAX_LFS_FILESIZE) {
3390 btrfs_err_rl(fs_info,
3391 "extent buffer %llu is beyond 32bit page cache limit", start);
3392 btrfs_err_32bit_limit(fs_info);
3393 return ERR_PTR(-EOVERFLOW);
3394 }
3395 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3396 btrfs_warn_32bit_limit(fs_info);
3397 #endif
3398
3399 eb = find_extent_buffer(fs_info, start);
3400 if (eb)
3401 return eb;
3402
3403 eb = __alloc_extent_buffer(fs_info, start);
3404 if (!eb)
3405 return ERR_PTR(-ENOMEM);
3406
3407 /*
3408 * The reloc trees are just snapshots, so we need them to appear to be
3409 * just like any other fs tree WRT lockdep.
3410 */
3411 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3412 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3413
3414 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3415
3416 /*
3417 * Preallocate folio private for subpage case, so that we won't
3418 * allocate memory with i_private_lock nor page lock hold.
3419 *
3420 * The memory will be freed by attach_extent_buffer_page() or freed
3421 * manually if we exit earlier.
3422 */
3423 if (btrfs_meta_is_subpage(fs_info)) {
3424 prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3425 if (IS_ERR(prealloc)) {
3426 ret = PTR_ERR(prealloc);
3427 goto out;
3428 }
3429 }
3430
3431 reallocate:
3432 /* Allocate all pages first. */
3433 ret = alloc_eb_folio_array(eb, true);
3434 if (ret < 0) {
3435 btrfs_free_folio_state(prealloc);
3436 goto out;
3437 }
3438
3439 /* Attach all pages to the filemap. */
3440 for (int i = 0; i < num_extent_folios(eb); i++) {
3441 struct folio *folio;
3442
3443 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3444 if (ret > 0) {
3445 ASSERT(existing_eb);
3446 goto out;
3447 }
3448
3449 /*
3450 * TODO: Special handling for a corner case where the order of
3451 * folios mismatch between the new eb and filemap.
3452 *
3453 * This happens when:
3454 *
3455 * - the new eb is using higher order folio
3456 *
3457 * - the filemap is still using 0-order folios for the range
3458 * This can happen at the previous eb allocation, and we don't
3459 * have higher order folio for the call.
3460 *
3461 * - the existing eb has already been freed
3462 *
3463 * In this case, we have to free the existing folios first, and
3464 * re-allocate using the same order.
3465 * Thankfully this is not going to happen yet, as we're still
3466 * using 0-order folios.
3467 */
3468 if (unlikely(ret == -EAGAIN)) {
3469 DEBUG_WARN("folio order mismatch between new eb and filemap");
3470 goto reallocate;
3471 }
3472 attached++;
3473
3474 /*
3475 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3476 * reliable, as we may choose to reuse the existing page cache
3477 * and free the allocated page.
3478 */
3479 folio = eb->folios[i];
3480 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3481
3482 /*
3483 * Check if the current page is physically contiguous with previous eb
3484 * page.
3485 * At this stage, either we allocated a large folio, thus @i
3486 * would only be 0, or we fall back to per-page allocation.
3487 */
3488 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3489 page_contig = false;
3490
3491 if (!btrfs_meta_folio_test_uptodate(folio, eb))
3492 uptodate = 0;
3493
3494 /*
3495 * We can't unlock the pages just yet since the extent buffer
3496 * hasn't been properly inserted into the xarray, this opens a
3497 * race with btree_release_folio() which can free a page while we
3498 * are still filling in all pages for the buffer and we could crash.
3499 */
3500 }
3501 if (uptodate)
3502 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3503 /* All pages are physically contiguous, can skip cross page handling. */
3504 if (page_contig)
3505 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3506 again:
3507 xa_lock_irq(&fs_info->buffer_tree);
3508 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
3509 start >> fs_info->nodesize_bits, NULL, eb,
3510 GFP_NOFS);
3511 if (xa_is_err(existing_eb)) {
3512 ret = xa_err(existing_eb);
3513 xa_unlock_irq(&fs_info->buffer_tree);
3514 goto out;
3515 }
3516 if (existing_eb) {
3517 if (!refcount_inc_not_zero(&existing_eb->refs)) {
3518 xa_unlock_irq(&fs_info->buffer_tree);
3519 goto again;
3520 }
3521 xa_unlock_irq(&fs_info->buffer_tree);
3522 goto out;
3523 }
3524 xa_unlock_irq(&fs_info->buffer_tree);
3525
3526 /* add one reference for the tree */
3527 check_buffer_tree_ref(eb);
3528
3529 /*
3530 * Now it's safe to unlock the pages because any calls to
3531 * btree_release_folio will correctly detect that a page belongs to a
3532 * live buffer and won't free them prematurely.
3533 */
3534 for (int i = 0; i < num_extent_folios(eb); i++) {
3535 folio_unlock(eb->folios[i]);
3536 /*
3537 * A folio that has been added to an address_space mapping
3538 * should not continue holding the refcount from its original
3539 * allocation indefinitely.
3540 */
3541 folio_put(eb->folios[i]);
3542 }
3543 return eb;
3544
3545 out:
3546 WARN_ON(!refcount_dec_and_test(&eb->refs));
3547
3548 /*
3549 * Any attached folios need to be detached before we unlock them. This
3550 * is because when we're inserting our new folios into the mapping, and
3551 * then attaching our eb to that folio. If we fail to insert our folio
3552 * we'll lookup the folio for that index, and grab that EB. We do not
3553 * want that to grab this eb, as we're getting ready to free it. So we
3554 * have to detach it first and then unlock it.
3555 *
3556 * Note: the bounds is num_extent_pages() as we need to go through all slots.
3557 */
3558 for (int i = 0; i < num_extent_pages(eb); i++) {
3559 struct folio *folio = eb->folios[i];
3560
3561 if (i < attached) {
3562 ASSERT(folio);
3563 detach_extent_buffer_folio(eb, folio);
3564 folio_unlock(folio);
3565 } else if (!folio) {
3566 continue;
3567 }
3568
3569 folio_put(folio);
3570 eb->folios[i] = NULL;
3571 }
3572 btrfs_release_extent_buffer(eb);
3573 if (ret < 0)
3574 return ERR_PTR(ret);
3575 ASSERT(existing_eb);
3576 return existing_eb;
3577 }
3578
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3579 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3580 {
3581 struct extent_buffer *eb =
3582 container_of(head, struct extent_buffer, rcu_head);
3583
3584 kmem_cache_free(extent_buffer_cache, eb);
3585 }
3586
release_extent_buffer(struct extent_buffer * eb)3587 static int release_extent_buffer(struct extent_buffer *eb)
3588 __releases(&eb->refs_lock)
3589 {
3590 lockdep_assert_held(&eb->refs_lock);
3591
3592 if (refcount_dec_and_test(&eb->refs)) {
3593 struct btrfs_fs_info *fs_info = eb->fs_info;
3594
3595 spin_unlock(&eb->refs_lock);
3596
3597 /*
3598 * We're erasing, theoretically there will be no allocations, so
3599 * just use GFP_ATOMIC.
3600 *
3601 * We use cmpxchg instead of erase because we do not know if
3602 * this eb is actually in the tree or not, we could be cleaning
3603 * up an eb that we allocated but never inserted into the tree.
3604 * Thus use cmpxchg to remove it from the tree if it is there,
3605 * or leave the other entry if this isn't in the tree.
3606 *
3607 * The documentation says that putting a NULL value is the same
3608 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
3609 * in this case.
3610 */
3611 xa_cmpxchg_irq(&fs_info->buffer_tree,
3612 eb->start >> fs_info->nodesize_bits, eb, NULL,
3613 GFP_ATOMIC);
3614
3615 btrfs_leak_debug_del_eb(eb);
3616 /* Should be safe to release folios at this point. */
3617 btrfs_release_extent_buffer_folios(eb);
3618 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3619 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3620 kmem_cache_free(extent_buffer_cache, eb);
3621 return 1;
3622 }
3623 #endif
3624 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3625 return 1;
3626 }
3627 spin_unlock(&eb->refs_lock);
3628
3629 return 0;
3630 }
3631
free_extent_buffer(struct extent_buffer * eb)3632 void free_extent_buffer(struct extent_buffer *eb)
3633 {
3634 int refs;
3635 if (!eb)
3636 return;
3637
3638 refs = refcount_read(&eb->refs);
3639 while (1) {
3640 if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) {
3641 if (refs == 1)
3642 break;
3643 } else if (refs <= 3) {
3644 break;
3645 }
3646
3647 /* Optimization to avoid locking eb->refs_lock. */
3648 if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1))
3649 return;
3650 }
3651
3652 spin_lock(&eb->refs_lock);
3653 if (refcount_read(&eb->refs) == 2 &&
3654 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3655 !extent_buffer_under_io(eb) &&
3656 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3657 refcount_dec(&eb->refs);
3658
3659 /*
3660 * I know this is terrible, but it's temporary until we stop tracking
3661 * the uptodate bits and such for the extent buffers.
3662 */
3663 release_extent_buffer(eb);
3664 }
3665
free_extent_buffer_stale(struct extent_buffer * eb)3666 void free_extent_buffer_stale(struct extent_buffer *eb)
3667 {
3668 if (!eb)
3669 return;
3670
3671 spin_lock(&eb->refs_lock);
3672 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3673
3674 if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3675 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3676 refcount_dec(&eb->refs);
3677 release_extent_buffer(eb);
3678 }
3679
btree_clear_folio_dirty_tag(struct folio * folio)3680 static void btree_clear_folio_dirty_tag(struct folio *folio)
3681 {
3682 ASSERT(!folio_test_dirty(folio));
3683 ASSERT(folio_test_locked(folio));
3684 xa_lock_irq(&folio->mapping->i_pages);
3685 if (!folio_test_dirty(folio))
3686 __xa_clear_mark(&folio->mapping->i_pages, folio->index,
3687 PAGECACHE_TAG_DIRTY);
3688 xa_unlock_irq(&folio->mapping->i_pages);
3689 }
3690
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3691 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3692 struct extent_buffer *eb)
3693 {
3694 struct btrfs_fs_info *fs_info = eb->fs_info;
3695
3696 btrfs_assert_tree_write_locked(eb);
3697
3698 if (trans && btrfs_header_generation(eb) != trans->transid)
3699 return;
3700
3701 /*
3702 * Instead of clearing the dirty flag off of the buffer, mark it as
3703 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3704 * write-ordering in zoned mode, without the need to later re-dirty
3705 * the extent_buffer.
3706 *
3707 * The actual zeroout of the buffer will happen later in
3708 * btree_csum_one_bio.
3709 */
3710 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3711 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3712 return;
3713 }
3714
3715 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3716 return;
3717
3718 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY);
3719 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3720 fs_info->dirty_metadata_batch);
3721
3722 for (int i = 0; i < num_extent_folios(eb); i++) {
3723 struct folio *folio = eb->folios[i];
3724 bool last;
3725
3726 if (!folio_test_dirty(folio))
3727 continue;
3728 folio_lock(folio);
3729 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3730 if (last)
3731 btree_clear_folio_dirty_tag(folio);
3732 folio_unlock(folio);
3733 }
3734 WARN_ON(refcount_read(&eb->refs) == 0);
3735 }
3736
set_extent_buffer_dirty(struct extent_buffer * eb)3737 void set_extent_buffer_dirty(struct extent_buffer *eb)
3738 {
3739 bool was_dirty;
3740
3741 check_buffer_tree_ref(eb);
3742
3743 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3744
3745 WARN_ON(refcount_read(&eb->refs) == 0);
3746 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3747 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3748
3749 if (!was_dirty) {
3750 bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3751
3752 /*
3753 * For subpage case, we can have other extent buffers in the
3754 * same page, and in clear_extent_buffer_dirty() we
3755 * have to clear page dirty without subpage lock held.
3756 * This can cause race where our page gets dirty cleared after
3757 * we just set it.
3758 *
3759 * Thankfully, clear_extent_buffer_dirty() has locked
3760 * its page for other reasons, we can use page lock to prevent
3761 * the above race.
3762 */
3763 if (subpage)
3764 folio_lock(eb->folios[0]);
3765 for (int i = 0; i < num_extent_folios(eb); i++)
3766 btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3767 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY);
3768 if (subpage)
3769 folio_unlock(eb->folios[0]);
3770 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3771 eb->len,
3772 eb->fs_info->dirty_metadata_batch);
3773 }
3774 #ifdef CONFIG_BTRFS_DEBUG
3775 for (int i = 0; i < num_extent_folios(eb); i++)
3776 ASSERT(folio_test_dirty(eb->folios[i]));
3777 #endif
3778 }
3779
clear_extent_buffer_uptodate(struct extent_buffer * eb)3780 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3781 {
3782
3783 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3784 for (int i = 0; i < num_extent_folios(eb); i++) {
3785 struct folio *folio = eb->folios[i];
3786
3787 if (!folio)
3788 continue;
3789
3790 btrfs_meta_folio_clear_uptodate(folio, eb);
3791 }
3792 }
3793
set_extent_buffer_uptodate(struct extent_buffer * eb)3794 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3795 {
3796
3797 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3798 for (int i = 0; i < num_extent_folios(eb); i++)
3799 btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3800 }
3801
clear_extent_buffer_reading(struct extent_buffer * eb)3802 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3803 {
3804 clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags);
3805 }
3806
end_bbio_meta_read(struct btrfs_bio * bbio)3807 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3808 {
3809 struct extent_buffer *eb = bbio->private;
3810 bool uptodate = !bbio->bio.bi_status;
3811
3812 /*
3813 * If the extent buffer is marked UPTODATE before the read operation
3814 * completes, other calls to read_extent_buffer_pages() will return
3815 * early without waiting for the read to finish, causing data races.
3816 */
3817 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3818
3819 eb->read_mirror = bbio->mirror_num;
3820
3821 if (uptodate &&
3822 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3823 uptodate = false;
3824
3825 if (uptodate)
3826 set_extent_buffer_uptodate(eb);
3827 else
3828 clear_extent_buffer_uptodate(eb);
3829
3830 clear_extent_buffer_reading(eb);
3831 free_extent_buffer(eb);
3832
3833 bio_put(&bbio->bio);
3834 }
3835
read_extent_buffer_pages_nowait(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3836 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3837 const struct btrfs_tree_parent_check *check)
3838 {
3839 struct btrfs_fs_info *fs_info = eb->fs_info;
3840 struct btrfs_bio *bbio;
3841
3842 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3843 return 0;
3844
3845 /*
3846 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3847 * operation, which could potentially still be in flight. In this case
3848 * we simply want to return an error.
3849 */
3850 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3851 return -EIO;
3852
3853 /* Someone else is already reading the buffer, just wait for it. */
3854 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3855 return 0;
3856
3857 /*
3858 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3859 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3860 * started and finished reading the same eb. In this case, UPTODATE
3861 * will now be set, and we shouldn't read it in again.
3862 */
3863 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3864 clear_extent_buffer_reading(eb);
3865 return 0;
3866 }
3867
3868 eb->read_mirror = 0;
3869 check_buffer_tree_ref(eb);
3870 refcount_inc(&eb->refs);
3871
3872 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3873 REQ_OP_READ | REQ_META, BTRFS_I(fs_info->btree_inode),
3874 eb->start, end_bbio_meta_read, eb);
3875 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3876 memcpy(&bbio->parent_check, check, sizeof(*check));
3877 for (int i = 0; i < num_extent_folios(eb); i++) {
3878 struct folio *folio = eb->folios[i];
3879 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3880 u32 range_len = min_t(u64, folio_next_pos(folio),
3881 eb->start + eb->len) - range_start;
3882
3883 bio_add_folio_nofail(&bbio->bio, folio, range_len,
3884 offset_in_folio(folio, range_start));
3885 }
3886 btrfs_submit_bbio(bbio, mirror_num);
3887 return 0;
3888 }
3889
read_extent_buffer_pages(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3890 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3891 const struct btrfs_tree_parent_check *check)
3892 {
3893 int ret;
3894
3895 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3896 if (ret < 0)
3897 return ret;
3898
3899 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3900 if (unlikely(!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)))
3901 return -EIO;
3902 return 0;
3903 }
3904
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3905 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3906 unsigned long len)
3907 {
3908 btrfs_warn(eb->fs_info,
3909 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3910 eb->start, eb->len, start, len);
3911 DEBUG_WARN();
3912
3913 return true;
3914 }
3915
3916 /*
3917 * Check if the [start, start + len) range is valid before reading/writing
3918 * the eb.
3919 * NOTE: @start and @len are offset inside the eb, not logical address.
3920 *
3921 * Caller should not touch the dst/src memory if this function returns error.
3922 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3923 static inline int check_eb_range(const struct extent_buffer *eb,
3924 unsigned long start, unsigned long len)
3925 {
3926 unsigned long offset;
3927
3928 /* start, start + len should not go beyond eb->len nor overflow */
3929 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3930 return report_eb_range(eb, start, len);
3931
3932 return false;
3933 }
3934
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3935 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3936 unsigned long start, unsigned long len)
3937 {
3938 const int unit_size = eb->folio_size;
3939 size_t cur;
3940 size_t offset;
3941 char *dst = (char *)dstv;
3942 unsigned long i = get_eb_folio_index(eb, start);
3943
3944 if (check_eb_range(eb, start, len)) {
3945 /*
3946 * Invalid range hit, reset the memory, so callers won't get
3947 * some random garbage for their uninitialized memory.
3948 */
3949 memset(dstv, 0, len);
3950 return;
3951 }
3952
3953 if (eb->addr) {
3954 memcpy(dstv, eb->addr + start, len);
3955 return;
3956 }
3957
3958 offset = get_eb_offset_in_folio(eb, start);
3959
3960 while (len > 0) {
3961 char *kaddr;
3962
3963 cur = min(len, unit_size - offset);
3964 kaddr = folio_address(eb->folios[i]);
3965 memcpy(dst, kaddr + offset, cur);
3966
3967 dst += cur;
3968 len -= cur;
3969 offset = 0;
3970 i++;
3971 }
3972 }
3973
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)3974 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3975 void __user *dstv,
3976 unsigned long start, unsigned long len)
3977 {
3978 const int unit_size = eb->folio_size;
3979 size_t cur;
3980 size_t offset;
3981 char __user *dst = (char __user *)dstv;
3982 unsigned long i = get_eb_folio_index(eb, start);
3983 int ret = 0;
3984
3985 WARN_ON(start > eb->len);
3986 WARN_ON(start + len > eb->start + eb->len);
3987
3988 if (eb->addr) {
3989 if (copy_to_user_nofault(dstv, eb->addr + start, len))
3990 ret = -EFAULT;
3991 return ret;
3992 }
3993
3994 offset = get_eb_offset_in_folio(eb, start);
3995
3996 while (len > 0) {
3997 char *kaddr;
3998
3999 cur = min(len, unit_size - offset);
4000 kaddr = folio_address(eb->folios[i]);
4001 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4002 ret = -EFAULT;
4003 break;
4004 }
4005
4006 dst += cur;
4007 len -= cur;
4008 offset = 0;
4009 i++;
4010 }
4011
4012 return ret;
4013 }
4014
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)4015 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4016 unsigned long start, unsigned long len)
4017 {
4018 const int unit_size = eb->folio_size;
4019 size_t cur;
4020 size_t offset;
4021 char *kaddr;
4022 char *ptr = (char *)ptrv;
4023 unsigned long i = get_eb_folio_index(eb, start);
4024 int ret = 0;
4025
4026 if (check_eb_range(eb, start, len))
4027 return -EINVAL;
4028
4029 if (eb->addr)
4030 return memcmp(ptrv, eb->addr + start, len);
4031
4032 offset = get_eb_offset_in_folio(eb, start);
4033
4034 while (len > 0) {
4035 cur = min(len, unit_size - offset);
4036 kaddr = folio_address(eb->folios[i]);
4037 ret = memcmp(ptr, kaddr + offset, cur);
4038 if (ret)
4039 break;
4040
4041 ptr += cur;
4042 len -= cur;
4043 offset = 0;
4044 i++;
4045 }
4046 return ret;
4047 }
4048
4049 /*
4050 * Check that the extent buffer is uptodate.
4051 *
4052 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4053 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4054 */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)4055 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4056 {
4057 struct btrfs_fs_info *fs_info = eb->fs_info;
4058 struct folio *folio = eb->folios[i];
4059
4060 ASSERT(folio);
4061
4062 /*
4063 * If we are using the commit root we could potentially clear a page
4064 * Uptodate while we're using the extent buffer that we've previously
4065 * looked up. We don't want to complain in this case, as the page was
4066 * valid before, we just didn't write it out. Instead we want to catch
4067 * the case where we didn't actually read the block properly, which
4068 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4069 */
4070 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4071 return;
4072
4073 if (btrfs_meta_is_subpage(fs_info)) {
4074 folio = eb->folios[0];
4075 ASSERT(i == 0);
4076 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4077 eb->start, eb->len)))
4078 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4079 } else {
4080 WARN_ON(!folio_test_uptodate(folio));
4081 }
4082 }
4083
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)4084 static void __write_extent_buffer(const struct extent_buffer *eb,
4085 const void *srcv, unsigned long start,
4086 unsigned long len, bool use_memmove)
4087 {
4088 const int unit_size = eb->folio_size;
4089 size_t cur;
4090 size_t offset;
4091 char *kaddr;
4092 const char *src = (const char *)srcv;
4093 unsigned long i = get_eb_folio_index(eb, start);
4094 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4095 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4096
4097 if (check_eb_range(eb, start, len))
4098 return;
4099
4100 if (eb->addr) {
4101 if (use_memmove)
4102 memmove(eb->addr + start, srcv, len);
4103 else
4104 memcpy(eb->addr + start, srcv, len);
4105 return;
4106 }
4107
4108 offset = get_eb_offset_in_folio(eb, start);
4109
4110 while (len > 0) {
4111 if (check_uptodate)
4112 assert_eb_folio_uptodate(eb, i);
4113
4114 cur = min(len, unit_size - offset);
4115 kaddr = folio_address(eb->folios[i]);
4116 if (use_memmove)
4117 memmove(kaddr + offset, src, cur);
4118 else
4119 memcpy(kaddr + offset, src, cur);
4120
4121 src += cur;
4122 len -= cur;
4123 offset = 0;
4124 i++;
4125 }
4126 }
4127
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4128 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4129 unsigned long start, unsigned long len)
4130 {
4131 return __write_extent_buffer(eb, srcv, start, len, false);
4132 }
4133
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4134 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4135 unsigned long start, unsigned long len)
4136 {
4137 const int unit_size = eb->folio_size;
4138 unsigned long cur = start;
4139
4140 if (eb->addr) {
4141 memset(eb->addr + start, c, len);
4142 return;
4143 }
4144
4145 while (cur < start + len) {
4146 unsigned long index = get_eb_folio_index(eb, cur);
4147 unsigned int offset = get_eb_offset_in_folio(eb, cur);
4148 unsigned int cur_len = min(start + len - cur, unit_size - offset);
4149
4150 assert_eb_folio_uptodate(eb, index);
4151 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4152
4153 cur += cur_len;
4154 }
4155 }
4156
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4157 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4158 unsigned long len)
4159 {
4160 if (check_eb_range(eb, start, len))
4161 return;
4162 return memset_extent_buffer(eb, 0, start, len);
4163 }
4164
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4165 void copy_extent_buffer_full(const struct extent_buffer *dst,
4166 const struct extent_buffer *src)
4167 {
4168 const int unit_size = src->folio_size;
4169 unsigned long cur = 0;
4170
4171 ASSERT(dst->len == src->len);
4172
4173 while (cur < src->len) {
4174 unsigned long index = get_eb_folio_index(src, cur);
4175 unsigned long offset = get_eb_offset_in_folio(src, cur);
4176 unsigned long cur_len = min(src->len, unit_size - offset);
4177 void *addr = folio_address(src->folios[index]) + offset;
4178
4179 write_extent_buffer(dst, addr, cur, cur_len);
4180
4181 cur += cur_len;
4182 }
4183 }
4184
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4185 void copy_extent_buffer(const struct extent_buffer *dst,
4186 const struct extent_buffer *src,
4187 unsigned long dst_offset, unsigned long src_offset,
4188 unsigned long len)
4189 {
4190 const int unit_size = dst->folio_size;
4191 u64 dst_len = dst->len;
4192 size_t cur;
4193 size_t offset;
4194 char *kaddr;
4195 unsigned long i = get_eb_folio_index(dst, dst_offset);
4196
4197 if (check_eb_range(dst, dst_offset, len) ||
4198 check_eb_range(src, src_offset, len))
4199 return;
4200
4201 WARN_ON(src->len != dst_len);
4202
4203 offset = get_eb_offset_in_folio(dst, dst_offset);
4204
4205 while (len > 0) {
4206 assert_eb_folio_uptodate(dst, i);
4207
4208 cur = min(len, (unsigned long)(unit_size - offset));
4209
4210 kaddr = folio_address(dst->folios[i]);
4211 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4212
4213 src_offset += cur;
4214 len -= cur;
4215 offset = 0;
4216 i++;
4217 }
4218 }
4219
4220 /*
4221 * Calculate the folio and offset of the byte containing the given bit number.
4222 *
4223 * @eb: the extent buffer
4224 * @start: offset of the bitmap item in the extent buffer
4225 * @nr: bit number
4226 * @folio_index: return index of the folio in the extent buffer that contains
4227 * the given bit number
4228 * @folio_offset: return offset into the folio given by folio_index
4229 *
4230 * This helper hides the ugliness of finding the byte in an extent buffer which
4231 * contains a given bit.
4232 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4233 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4234 unsigned long start, unsigned long nr,
4235 unsigned long *folio_index,
4236 size_t *folio_offset)
4237 {
4238 size_t byte_offset = BIT_BYTE(nr);
4239 size_t offset;
4240
4241 /*
4242 * The byte we want is the offset of the extent buffer + the offset of
4243 * the bitmap item in the extent buffer + the offset of the byte in the
4244 * bitmap item.
4245 */
4246 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4247
4248 *folio_index = offset >> eb->folio_shift;
4249 *folio_offset = offset_in_eb_folio(eb, offset);
4250 }
4251
4252 /*
4253 * Determine whether a bit in a bitmap item is set.
4254 *
4255 * @eb: the extent buffer
4256 * @start: offset of the bitmap item in the extent buffer
4257 * @nr: bit number to test
4258 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4259 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4260 unsigned long nr)
4261 {
4262 unsigned long i;
4263 size_t offset;
4264 u8 *kaddr;
4265
4266 eb_bitmap_offset(eb, start, nr, &i, &offset);
4267 assert_eb_folio_uptodate(eb, i);
4268 kaddr = folio_address(eb->folios[i]);
4269 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4270 }
4271
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4272 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4273 {
4274 unsigned long index = get_eb_folio_index(eb, bytenr);
4275
4276 if (check_eb_range(eb, bytenr, 1))
4277 return NULL;
4278 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4279 }
4280
4281 /*
4282 * Set an area of a bitmap to 1.
4283 *
4284 * @eb: the extent buffer
4285 * @start: offset of the bitmap item in the extent buffer
4286 * @pos: bit number of the first bit
4287 * @len: number of bits to set
4288 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4289 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4290 unsigned long pos, unsigned long len)
4291 {
4292 unsigned int first_byte = start + BIT_BYTE(pos);
4293 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4294 const bool same_byte = (first_byte == last_byte);
4295 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4296 u8 *kaddr;
4297
4298 if (same_byte)
4299 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4300
4301 /* Handle the first byte. */
4302 kaddr = extent_buffer_get_byte(eb, first_byte);
4303 *kaddr |= mask;
4304 if (same_byte)
4305 return;
4306
4307 /* Handle the byte aligned part. */
4308 ASSERT(first_byte + 1 <= last_byte);
4309 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4310
4311 /* Handle the last byte. */
4312 kaddr = extent_buffer_get_byte(eb, last_byte);
4313 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4314 }
4315
4316
4317 /*
4318 * Clear an area of a bitmap.
4319 *
4320 * @eb: the extent buffer
4321 * @start: offset of the bitmap item in the extent buffer
4322 * @pos: bit number of the first bit
4323 * @len: number of bits to clear
4324 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4325 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4326 unsigned long start, unsigned long pos,
4327 unsigned long len)
4328 {
4329 unsigned int first_byte = start + BIT_BYTE(pos);
4330 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4331 const bool same_byte = (first_byte == last_byte);
4332 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4333 u8 *kaddr;
4334
4335 if (same_byte)
4336 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4337
4338 /* Handle the first byte. */
4339 kaddr = extent_buffer_get_byte(eb, first_byte);
4340 *kaddr &= ~mask;
4341 if (same_byte)
4342 return;
4343
4344 /* Handle the byte aligned part. */
4345 ASSERT(first_byte + 1 <= last_byte);
4346 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4347
4348 /* Handle the last byte. */
4349 kaddr = extent_buffer_get_byte(eb, last_byte);
4350 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4351 }
4352
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4353 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4354 {
4355 unsigned long distance = (src > dst) ? src - dst : dst - src;
4356 return distance < len;
4357 }
4358
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4359 void memcpy_extent_buffer(const struct extent_buffer *dst,
4360 unsigned long dst_offset, unsigned long src_offset,
4361 unsigned long len)
4362 {
4363 const int unit_size = dst->folio_size;
4364 unsigned long cur_off = 0;
4365
4366 if (check_eb_range(dst, dst_offset, len) ||
4367 check_eb_range(dst, src_offset, len))
4368 return;
4369
4370 if (dst->addr) {
4371 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4372
4373 if (use_memmove)
4374 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4375 else
4376 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4377 return;
4378 }
4379
4380 while (cur_off < len) {
4381 unsigned long cur_src = cur_off + src_offset;
4382 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4383 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4384 unsigned long cur_len = min(src_offset + len - cur_src,
4385 unit_size - folio_off);
4386 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4387 const bool use_memmove = areas_overlap(src_offset + cur_off,
4388 dst_offset + cur_off, cur_len);
4389
4390 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4391 use_memmove);
4392 cur_off += cur_len;
4393 }
4394 }
4395
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4396 void memmove_extent_buffer(const struct extent_buffer *dst,
4397 unsigned long dst_offset, unsigned long src_offset,
4398 unsigned long len)
4399 {
4400 unsigned long dst_end = dst_offset + len - 1;
4401 unsigned long src_end = src_offset + len - 1;
4402
4403 if (check_eb_range(dst, dst_offset, len) ||
4404 check_eb_range(dst, src_offset, len))
4405 return;
4406
4407 if (dst_offset < src_offset) {
4408 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4409 return;
4410 }
4411
4412 if (dst->addr) {
4413 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4414 return;
4415 }
4416
4417 while (len > 0) {
4418 unsigned long src_i;
4419 size_t cur;
4420 size_t dst_off_in_folio;
4421 size_t src_off_in_folio;
4422 void *src_addr;
4423 bool use_memmove;
4424
4425 src_i = get_eb_folio_index(dst, src_end);
4426
4427 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4428 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4429
4430 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4431 cur = min(cur, dst_off_in_folio + 1);
4432
4433 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4434 cur + 1;
4435 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4436 cur);
4437
4438 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4439 use_memmove);
4440
4441 dst_end -= cur;
4442 src_end -= cur;
4443 len -= cur;
4444 }
4445 }
4446
try_release_subpage_extent_buffer(struct folio * folio)4447 static int try_release_subpage_extent_buffer(struct folio *folio)
4448 {
4449 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4450 struct extent_buffer *eb;
4451 unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits);
4452 unsigned long index = start;
4453 unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1;
4454 int ret;
4455
4456 rcu_read_lock();
4457 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
4458 /*
4459 * The same as try_release_extent_buffer(), to ensure the eb
4460 * won't disappear out from under us.
4461 */
4462 spin_lock(&eb->refs_lock);
4463 rcu_read_unlock();
4464
4465 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4466 spin_unlock(&eb->refs_lock);
4467 rcu_read_lock();
4468 continue;
4469 }
4470
4471 /*
4472 * If tree ref isn't set then we know the ref on this eb is a
4473 * real ref, so just return, this eb will likely be freed soon
4474 * anyway.
4475 */
4476 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4477 spin_unlock(&eb->refs_lock);
4478 break;
4479 }
4480
4481 /*
4482 * Here we don't care about the return value, we will always
4483 * check the folio private at the end. And
4484 * release_extent_buffer() will release the refs_lock.
4485 */
4486 release_extent_buffer(eb);
4487 rcu_read_lock();
4488 }
4489 rcu_read_unlock();
4490
4491 /*
4492 * Finally to check if we have cleared folio private, as if we have
4493 * released all ebs in the page, the folio private should be cleared now.
4494 */
4495 spin_lock(&folio->mapping->i_private_lock);
4496 if (!folio_test_private(folio))
4497 ret = 1;
4498 else
4499 ret = 0;
4500 spin_unlock(&folio->mapping->i_private_lock);
4501 return ret;
4502 }
4503
try_release_extent_buffer(struct folio * folio)4504 int try_release_extent_buffer(struct folio *folio)
4505 {
4506 struct extent_buffer *eb;
4507
4508 if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4509 return try_release_subpage_extent_buffer(folio);
4510
4511 /*
4512 * We need to make sure nobody is changing folio private, as we rely on
4513 * folio private as the pointer to extent buffer.
4514 */
4515 spin_lock(&folio->mapping->i_private_lock);
4516 if (!folio_test_private(folio)) {
4517 spin_unlock(&folio->mapping->i_private_lock);
4518 return 1;
4519 }
4520
4521 eb = folio_get_private(folio);
4522 BUG_ON(!eb);
4523
4524 /*
4525 * This is a little awful but should be ok, we need to make sure that
4526 * the eb doesn't disappear out from under us while we're looking at
4527 * this page.
4528 */
4529 spin_lock(&eb->refs_lock);
4530 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4531 spin_unlock(&eb->refs_lock);
4532 spin_unlock(&folio->mapping->i_private_lock);
4533 return 0;
4534 }
4535 spin_unlock(&folio->mapping->i_private_lock);
4536
4537 /*
4538 * If tree ref isn't set then we know the ref on this eb is a real ref,
4539 * so just return, this page will likely be freed soon anyway.
4540 */
4541 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4542 spin_unlock(&eb->refs_lock);
4543 return 0;
4544 }
4545
4546 return release_extent_buffer(eb);
4547 }
4548
4549 /*
4550 * Attempt to readahead a child block.
4551 *
4552 * @fs_info: the fs_info
4553 * @bytenr: bytenr to read
4554 * @owner_root: objectid of the root that owns this eb
4555 * @gen: generation for the uptodate check, can be 0
4556 * @level: level for the eb
4557 *
4558 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4559 * normal uptodate check of the eb, without checking the generation. If we have
4560 * to read the block we will not block on anything.
4561 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4562 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4563 u64 bytenr, u64 owner_root, u64 gen, int level)
4564 {
4565 struct btrfs_tree_parent_check check = {
4566 .level = level,
4567 .transid = gen
4568 };
4569 struct extent_buffer *eb;
4570 int ret;
4571
4572 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4573 if (IS_ERR(eb))
4574 return;
4575
4576 if (btrfs_buffer_uptodate(eb, gen, true)) {
4577 free_extent_buffer(eb);
4578 return;
4579 }
4580
4581 ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4582 if (ret < 0)
4583 free_extent_buffer_stale(eb);
4584 else
4585 free_extent_buffer(eb);
4586 }
4587
4588 /*
4589 * Readahead a node's child block.
4590 *
4591 * @node: parent node we're reading from
4592 * @slot: slot in the parent node for the child we want to read
4593 *
4594 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4595 * the slot in the node provided.
4596 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4597 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4598 {
4599 btrfs_readahead_tree_block(node->fs_info,
4600 btrfs_node_blockptr(node, slot),
4601 btrfs_header_owner(node),
4602 btrfs_node_ptr_generation(node, slot),
4603 btrfs_header_level(node) - 1);
4604 }
4605