1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 * Copyright (C) 2022 Christoph Hellwig.
5 */
6
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "zoned.h"
15 #include "file-item.h"
16 #include "raid-stripe-tree.h"
17
18 static struct bio_set btrfs_bioset;
19 static struct bio_set btrfs_clone_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22
23 struct btrfs_failed_bio {
24 struct btrfs_bio *bbio;
25 int num_copies;
26 atomic_t repair_count;
27 };
28
29 /* Is this a data path I/O that needs storage layer checksum and repair? */
is_data_bbio(const struct btrfs_bio * bbio)30 static inline bool is_data_bbio(const struct btrfs_bio *bbio)
31 {
32 return bbio->inode && is_data_inode(bbio->inode);
33 }
34
bbio_has_ordered_extent(const struct btrfs_bio * bbio)35 static bool bbio_has_ordered_extent(const struct btrfs_bio *bbio)
36 {
37 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38 }
39
40 /*
41 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it
42 * is already initialized by the block layer.
43 */
btrfs_bio_init(struct btrfs_bio * bbio,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)44 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45 btrfs_bio_end_io_t end_io, void *private)
46 {
47 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48 bbio->fs_info = fs_info;
49 bbio->end_io = end_io;
50 bbio->private = private;
51 atomic_set(&bbio->pending_ios, 1);
52 WRITE_ONCE(bbio->status, BLK_STS_OK);
53 }
54
55 /*
56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
57 * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58 *
59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60 * a mempool.
61 */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 struct btrfs_fs_info *fs_info,
64 btrfs_bio_end_io_t end_io, void *private)
65 {
66 struct btrfs_bio *bbio;
67 struct bio *bio;
68
69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 bbio = btrfs_bio(bio);
71 btrfs_bio_init(bbio, fs_info, end_io, private);
72 return bbio;
73 }
74
btrfs_split_bio(struct btrfs_fs_info * fs_info,struct btrfs_bio * orig_bbio,u64 map_length)75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 struct btrfs_bio *orig_bbio,
77 u64 map_length)
78 {
79 struct btrfs_bio *bbio;
80 struct bio *bio;
81
82 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83 &btrfs_clone_bioset);
84 if (IS_ERR(bio))
85 return ERR_CAST(bio);
86
87 bbio = btrfs_bio(bio);
88 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
89 bbio->inode = orig_bbio->inode;
90 bbio->file_offset = orig_bbio->file_offset;
91 orig_bbio->file_offset += map_length;
92 if (bbio_has_ordered_extent(bbio)) {
93 refcount_inc(&orig_bbio->ordered->refs);
94 bbio->ordered = orig_bbio->ordered;
95 }
96 bbio->csum_search_commit_root = orig_bbio->csum_search_commit_root;
97 atomic_inc(&orig_bbio->pending_ios);
98 return bbio;
99 }
100
btrfs_bio_end_io(struct btrfs_bio * bbio,blk_status_t status)101 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
102 {
103 bbio->bio.bi_status = status;
104 if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
105 struct btrfs_bio *orig_bbio = bbio->private;
106
107 /* Free bio that was never submitted to the underlying device. */
108 if (bbio_has_ordered_extent(bbio))
109 btrfs_put_ordered_extent(bbio->ordered);
110 bio_put(&bbio->bio);
111
112 bbio = orig_bbio;
113 }
114
115 /*
116 * At this point, bbio always points to the original btrfs_bio. Save
117 * the first error in it.
118 */
119 if (status != BLK_STS_OK)
120 cmpxchg(&bbio->status, BLK_STS_OK, status);
121
122 if (atomic_dec_and_test(&bbio->pending_ios)) {
123 /* Load split bio's error which might be set above. */
124 if (status == BLK_STS_OK)
125 bbio->bio.bi_status = READ_ONCE(bbio->status);
126
127 if (bbio_has_ordered_extent(bbio)) {
128 struct btrfs_ordered_extent *ordered = bbio->ordered;
129
130 bbio->end_io(bbio);
131 btrfs_put_ordered_extent(ordered);
132 } else {
133 bbio->end_io(bbio);
134 }
135 }
136 }
137
next_repair_mirror(const struct btrfs_failed_bio * fbio,int cur_mirror)138 static int next_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
139 {
140 if (cur_mirror == fbio->num_copies)
141 return cur_mirror + 1 - fbio->num_copies;
142 return cur_mirror + 1;
143 }
144
prev_repair_mirror(const struct btrfs_failed_bio * fbio,int cur_mirror)145 static int prev_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
146 {
147 if (cur_mirror == 1)
148 return fbio->num_copies;
149 return cur_mirror - 1;
150 }
151
btrfs_repair_done(struct btrfs_failed_bio * fbio)152 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
153 {
154 if (atomic_dec_and_test(&fbio->repair_count)) {
155 btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
156 mempool_free(fbio, &btrfs_failed_bio_pool);
157 }
158 }
159
btrfs_end_repair_bio(struct btrfs_bio * repair_bbio,struct btrfs_device * dev)160 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
161 struct btrfs_device *dev)
162 {
163 struct btrfs_failed_bio *fbio = repair_bbio->private;
164 struct btrfs_inode *inode = repair_bbio->inode;
165 struct btrfs_fs_info *fs_info = inode->root->fs_info;
166 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
167 int mirror = repair_bbio->mirror_num;
168
169 if (repair_bbio->bio.bi_status ||
170 !btrfs_data_csum_ok(repair_bbio, dev, 0, bvec_phys(bv))) {
171 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
172 repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
173
174 mirror = next_repair_mirror(fbio, mirror);
175 if (mirror == fbio->bbio->mirror_num) {
176 btrfs_debug(fs_info, "no mirror left");
177 fbio->bbio->bio.bi_status = BLK_STS_IOERR;
178 goto done;
179 }
180
181 btrfs_submit_bbio(repair_bbio, mirror);
182 return;
183 }
184
185 do {
186 mirror = prev_repair_mirror(fbio, mirror);
187 btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
188 repair_bbio->file_offset, fs_info->sectorsize,
189 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
190 bvec_phys(bv), mirror);
191 } while (mirror != fbio->bbio->mirror_num);
192
193 done:
194 btrfs_repair_done(fbio);
195 bio_put(&repair_bbio->bio);
196 }
197
198 /*
199 * Try to kick off a repair read to the next available mirror for a bad sector.
200 *
201 * This primarily tries to recover good data to serve the actual read request,
202 * but also tries to write the good data back to the bad mirror(s) when a
203 * read succeeded to restore the redundancy.
204 */
repair_one_sector(struct btrfs_bio * failed_bbio,u32 bio_offset,phys_addr_t paddr,struct btrfs_failed_bio * fbio)205 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
206 u32 bio_offset,
207 phys_addr_t paddr,
208 struct btrfs_failed_bio *fbio)
209 {
210 struct btrfs_inode *inode = failed_bbio->inode;
211 struct btrfs_fs_info *fs_info = inode->root->fs_info;
212 struct folio *folio = page_folio(phys_to_page(paddr));
213 const u32 sectorsize = fs_info->sectorsize;
214 const u32 foff = offset_in_folio(folio, paddr);
215 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
216 struct btrfs_bio *repair_bbio;
217 struct bio *repair_bio;
218 int num_copies;
219 int mirror;
220
221 ASSERT(foff + sectorsize <= folio_size(folio));
222 btrfs_debug(fs_info, "repair read error: read error at %llu",
223 failed_bbio->file_offset + bio_offset);
224
225 num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
226 if (num_copies == 1) {
227 btrfs_debug(fs_info, "no copy to repair from");
228 failed_bbio->bio.bi_status = BLK_STS_IOERR;
229 return fbio;
230 }
231
232 if (!fbio) {
233 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
234 fbio->bbio = failed_bbio;
235 fbio->num_copies = num_copies;
236 atomic_set(&fbio->repair_count, 1);
237 }
238
239 atomic_inc(&fbio->repair_count);
240
241 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
242 &btrfs_repair_bioset);
243 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
244 bio_add_folio_nofail(repair_bio, folio, sectorsize, foff);
245
246 repair_bbio = btrfs_bio(repair_bio);
247 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
248 repair_bbio->inode = failed_bbio->inode;
249 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
250
251 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
252 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
253 btrfs_submit_bbio(repair_bbio, mirror);
254 return fbio;
255 }
256
btrfs_check_read_bio(struct btrfs_bio * bbio,struct btrfs_device * dev)257 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
258 {
259 struct btrfs_inode *inode = bbio->inode;
260 struct btrfs_fs_info *fs_info = inode->root->fs_info;
261 u32 sectorsize = fs_info->sectorsize;
262 struct bvec_iter *iter = &bbio->saved_iter;
263 blk_status_t status = bbio->bio.bi_status;
264 struct btrfs_failed_bio *fbio = NULL;
265 phys_addr_t paddr;
266 u32 offset = 0;
267
268 /* Read-repair requires the inode field to be set by the submitter. */
269 ASSERT(inode);
270
271 /*
272 * Hand off repair bios to the repair code as there is no upper level
273 * submitter for them.
274 */
275 if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
276 btrfs_end_repair_bio(bbio, dev);
277 return;
278 }
279
280 /* Clear the I/O error. A failed repair will reset it. */
281 bbio->bio.bi_status = BLK_STS_OK;
282
283 btrfs_bio_for_each_block(paddr, &bbio->bio, iter, fs_info->sectorsize) {
284 if (status || !btrfs_data_csum_ok(bbio, dev, offset, paddr))
285 fbio = repair_one_sector(bbio, offset, paddr, fbio);
286 offset += sectorsize;
287 }
288 if (bbio->csum != bbio->csum_inline)
289 kfree(bbio->csum);
290
291 if (fbio)
292 btrfs_repair_done(fbio);
293 else
294 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
295 }
296
btrfs_log_dev_io_error(const struct bio * bio,struct btrfs_device * dev)297 static void btrfs_log_dev_io_error(const struct bio *bio, struct btrfs_device *dev)
298 {
299 if (!dev || !dev->bdev)
300 return;
301 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
302 return;
303
304 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
305 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
306 else if (!(bio->bi_opf & REQ_RAHEAD))
307 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
308 if (bio->bi_opf & REQ_PREFLUSH)
309 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
310 }
311
btrfs_end_io_wq(const struct btrfs_fs_info * fs_info,const struct bio * bio)312 static struct workqueue_struct *btrfs_end_io_wq(const struct btrfs_fs_info *fs_info,
313 const struct bio *bio)
314 {
315 if (bio->bi_opf & REQ_META)
316 return fs_info->endio_meta_workers;
317 return fs_info->endio_workers;
318 }
319
btrfs_end_bio_work(struct work_struct * work)320 static void btrfs_end_bio_work(struct work_struct *work)
321 {
322 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
323
324 /* Metadata reads are checked and repaired by the submitter. */
325 if (is_data_bbio(bbio))
326 btrfs_check_read_bio(bbio, bbio->bio.bi_private);
327 else
328 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
329 }
330
btrfs_simple_end_io(struct bio * bio)331 static void btrfs_simple_end_io(struct bio *bio)
332 {
333 struct btrfs_bio *bbio = btrfs_bio(bio);
334 struct btrfs_device *dev = bio->bi_private;
335 struct btrfs_fs_info *fs_info = bbio->fs_info;
336
337 btrfs_bio_counter_dec(fs_info);
338
339 if (bio->bi_status)
340 btrfs_log_dev_io_error(bio, dev);
341
342 if (bio_op(bio) == REQ_OP_READ) {
343 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
344 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
345 } else {
346 if (bio_is_zone_append(bio) && !bio->bi_status)
347 btrfs_record_physical_zoned(bbio);
348 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
349 }
350 }
351
btrfs_raid56_end_io(struct bio * bio)352 static void btrfs_raid56_end_io(struct bio *bio)
353 {
354 struct btrfs_io_context *bioc = bio->bi_private;
355 struct btrfs_bio *bbio = btrfs_bio(bio);
356
357 btrfs_bio_counter_dec(bioc->fs_info);
358 bbio->mirror_num = bioc->mirror_num;
359 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
360 btrfs_check_read_bio(bbio, NULL);
361 else
362 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
363
364 btrfs_put_bioc(bioc);
365 }
366
btrfs_orig_write_end_io(struct bio * bio)367 static void btrfs_orig_write_end_io(struct bio *bio)
368 {
369 struct btrfs_io_stripe *stripe = bio->bi_private;
370 struct btrfs_io_context *bioc = stripe->bioc;
371 struct btrfs_bio *bbio = btrfs_bio(bio);
372
373 btrfs_bio_counter_dec(bioc->fs_info);
374
375 if (bio->bi_status) {
376 atomic_inc(&bioc->error);
377 btrfs_log_dev_io_error(bio, stripe->dev);
378 }
379
380 /*
381 * Only send an error to the higher layers if it is beyond the tolerance
382 * threshold.
383 */
384 if (atomic_read(&bioc->error) > bioc->max_errors)
385 bio->bi_status = BLK_STS_IOERR;
386 else
387 bio->bi_status = BLK_STS_OK;
388
389 if (bio_is_zone_append(bio) && !bio->bi_status)
390 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
391
392 btrfs_bio_end_io(bbio, bbio->bio.bi_status);
393 btrfs_put_bioc(bioc);
394 }
395
btrfs_clone_write_end_io(struct bio * bio)396 static void btrfs_clone_write_end_io(struct bio *bio)
397 {
398 struct btrfs_io_stripe *stripe = bio->bi_private;
399
400 if (bio->bi_status) {
401 atomic_inc(&stripe->bioc->error);
402 btrfs_log_dev_io_error(bio, stripe->dev);
403 } else if (bio_is_zone_append(bio)) {
404 stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
405 }
406
407 /* Pass on control to the original bio this one was cloned from */
408 bio_endio(stripe->bioc->orig_bio);
409 bio_put(bio);
410 }
411
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)412 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
413 {
414 if (!dev || !dev->bdev ||
415 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
416 (btrfs_op(bio) == BTRFS_MAP_WRITE &&
417 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
418 bio_io_error(bio);
419 return;
420 }
421
422 bio_set_dev(bio, dev->bdev);
423
424 /*
425 * For zone append writing, bi_sector must point the beginning of the
426 * zone
427 */
428 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
429 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
430 u64 zone_start = round_down(physical, dev->fs_info->zone_size);
431
432 ASSERT(btrfs_dev_is_sequential(dev, physical));
433 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
434 }
435 btrfs_debug(dev->fs_info,
436 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
437 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
438 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
439 dev->devid, bio->bi_iter.bi_size);
440
441 /*
442 * Track reads if tracking is enabled; ignore I/O operations before the
443 * filesystem is fully initialized.
444 */
445 if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info)
446 percpu_counter_add(&dev->fs_info->stats_read_blocks,
447 bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits);
448
449 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
450 blkcg_punt_bio_submit(bio);
451 else
452 submit_bio(bio);
453 }
454
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)455 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
456 {
457 struct bio *orig_bio = bioc->orig_bio, *bio;
458
459 ASSERT(bio_op(orig_bio) != REQ_OP_READ);
460
461 /* Reuse the bio embedded into the btrfs_bio for the last mirror */
462 if (dev_nr == bioc->num_stripes - 1) {
463 bio = orig_bio;
464 bio->bi_end_io = btrfs_orig_write_end_io;
465 } else {
466 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
467 bio_inc_remaining(orig_bio);
468 bio->bi_end_io = btrfs_clone_write_end_io;
469 }
470
471 bio->bi_private = &bioc->stripes[dev_nr];
472 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
473 bioc->stripes[dev_nr].bioc = bioc;
474 bioc->size = bio->bi_iter.bi_size;
475 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
476 }
477
btrfs_submit_bio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)478 static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
479 struct btrfs_io_stripe *smap, int mirror_num)
480 {
481 if (!bioc) {
482 /* Single mirror read/write fast path. */
483 btrfs_bio(bio)->mirror_num = mirror_num;
484 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
485 if (bio_op(bio) != REQ_OP_READ)
486 btrfs_bio(bio)->orig_physical = smap->physical;
487 bio->bi_private = smap->dev;
488 bio->bi_end_io = btrfs_simple_end_io;
489 btrfs_submit_dev_bio(smap->dev, bio);
490 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
491 /* Parity RAID write or read recovery. */
492 bio->bi_private = bioc;
493 bio->bi_end_io = btrfs_raid56_end_io;
494 if (bio_op(bio) == REQ_OP_READ)
495 raid56_parity_recover(bio, bioc, mirror_num);
496 else
497 raid56_parity_write(bio, bioc);
498 } else {
499 /* Write to multiple mirrors. */
500 int total_devs = bioc->num_stripes;
501
502 bioc->orig_bio = bio;
503 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
504 btrfs_submit_mirrored_bio(bioc, dev_nr);
505 }
506 }
507
btrfs_bio_csum(struct btrfs_bio * bbio)508 static int btrfs_bio_csum(struct btrfs_bio *bbio)
509 {
510 if (bbio->bio.bi_opf & REQ_META)
511 return btree_csum_one_bio(bbio);
512 return btrfs_csum_one_bio(bbio);
513 }
514
515 /*
516 * Async submit bios are used to offload expensive checksumming onto the worker
517 * threads.
518 */
519 struct async_submit_bio {
520 struct btrfs_bio *bbio;
521 struct btrfs_io_context *bioc;
522 struct btrfs_io_stripe smap;
523 int mirror_num;
524 struct btrfs_work work;
525 };
526
527 /*
528 * In order to insert checksums into the metadata in large chunks, we wait
529 * until bio submission time. All the pages in the bio are checksummed and
530 * sums are attached onto the ordered extent record.
531 *
532 * At IO completion time the csums attached on the ordered extent record are
533 * inserted into the btree.
534 */
run_one_async_start(struct btrfs_work * work)535 static void run_one_async_start(struct btrfs_work *work)
536 {
537 struct async_submit_bio *async =
538 container_of(work, struct async_submit_bio, work);
539 int ret;
540
541 ret = btrfs_bio_csum(async->bbio);
542 if (ret)
543 async->bbio->bio.bi_status = errno_to_blk_status(ret);
544 }
545
546 /*
547 * In order to insert checksums into the metadata in large chunks, we wait
548 * until bio submission time. All the pages in the bio are checksummed and
549 * sums are attached onto the ordered extent record.
550 *
551 * At IO completion time the csums attached on the ordered extent record are
552 * inserted into the tree.
553 *
554 * If called with @do_free == true, then it will free the work struct.
555 */
run_one_async_done(struct btrfs_work * work,bool do_free)556 static void run_one_async_done(struct btrfs_work *work, bool do_free)
557 {
558 struct async_submit_bio *async =
559 container_of(work, struct async_submit_bio, work);
560 struct bio *bio = &async->bbio->bio;
561
562 if (do_free) {
563 kfree(container_of(work, struct async_submit_bio, work));
564 return;
565 }
566
567 /* If an error occurred we just want to clean up the bio and move on. */
568 if (bio->bi_status) {
569 btrfs_bio_end_io(async->bbio, bio->bi_status);
570 return;
571 }
572
573 /*
574 * All of the bios that pass through here are from async helpers.
575 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
576 * context. This changes nothing when cgroups aren't in use.
577 */
578 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
579 btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
580 }
581
should_async_write(struct btrfs_bio * bbio)582 static bool should_async_write(struct btrfs_bio *bbio)
583 {
584 bool auto_csum_mode = true;
585
586 #ifdef CONFIG_BTRFS_EXPERIMENTAL
587 struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
588 enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
589
590 if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
591 return false;
592
593 auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
594 #endif
595
596 /* Submit synchronously if the checksum implementation is fast. */
597 if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
598 return false;
599
600 /*
601 * Try to defer the submission to a workqueue to parallelize the
602 * checksum calculation unless the I/O is issued synchronously.
603 */
604 if (op_is_sync(bbio->bio.bi_opf))
605 return false;
606
607 /* Zoned devices require I/O to be submitted in order. */
608 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
609 return false;
610
611 return true;
612 }
613
614 /*
615 * Submit bio to an async queue.
616 *
617 * Return true if the work has been successfully submitted, else false.
618 */
btrfs_wq_submit_bio(struct btrfs_bio * bbio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)619 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
620 struct btrfs_io_context *bioc,
621 struct btrfs_io_stripe *smap, int mirror_num)
622 {
623 struct btrfs_fs_info *fs_info = bbio->fs_info;
624 struct async_submit_bio *async;
625
626 async = kmalloc(sizeof(*async), GFP_NOFS);
627 if (!async)
628 return false;
629
630 async->bbio = bbio;
631 async->bioc = bioc;
632 async->smap = *smap;
633 async->mirror_num = mirror_num;
634
635 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
636 btrfs_queue_work(fs_info->workers, &async->work);
637 return true;
638 }
639
btrfs_append_map_length(struct btrfs_bio * bbio,u64 map_length)640 static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
641 {
642 unsigned int nr_segs;
643 int sector_offset;
644
645 map_length = min(map_length, bbio->fs_info->max_zone_append_size);
646 sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
647 &nr_segs, map_length);
648 if (sector_offset) {
649 /*
650 * bio_split_rw_at() could split at a size smaller than our
651 * sectorsize and thus cause unaligned I/Os. Fix that by
652 * always rounding down to the nearest boundary.
653 */
654 return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize);
655 }
656 return map_length;
657 }
658
btrfs_submit_chunk(struct btrfs_bio * bbio,int mirror_num)659 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
660 {
661 struct btrfs_inode *inode = bbio->inode;
662 struct btrfs_fs_info *fs_info = bbio->fs_info;
663 struct bio *bio = &bbio->bio;
664 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
665 u64 length = bio->bi_iter.bi_size;
666 u64 map_length = length;
667 bool use_append = btrfs_use_zone_append(bbio);
668 struct btrfs_io_context *bioc = NULL;
669 struct btrfs_io_stripe smap;
670 blk_status_t status;
671 int ret;
672
673 if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
674 smap.rst_search_commit_root = true;
675 else
676 smap.rst_search_commit_root = false;
677
678 btrfs_bio_counter_inc_blocked(fs_info);
679 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
680 &bioc, &smap, &mirror_num);
681 if (ret) {
682 status = errno_to_blk_status(ret);
683 btrfs_bio_counter_dec(fs_info);
684 goto end_bbio;
685 }
686
687 map_length = min(map_length, length);
688 if (use_append)
689 map_length = btrfs_append_map_length(bbio, map_length);
690
691 if (map_length < length) {
692 struct btrfs_bio *split;
693
694 split = btrfs_split_bio(fs_info, bbio, map_length);
695 if (IS_ERR(split)) {
696 status = errno_to_blk_status(PTR_ERR(split));
697 btrfs_bio_counter_dec(fs_info);
698 goto end_bbio;
699 }
700 bbio = split;
701 bio = &bbio->bio;
702 }
703
704 /*
705 * Save the iter for the end_io handler and preload the checksums for
706 * data reads.
707 */
708 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
709 bbio->saved_iter = bio->bi_iter;
710 ret = btrfs_lookup_bio_sums(bbio);
711 status = errno_to_blk_status(ret);
712 if (status)
713 goto fail;
714 }
715
716 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
717 if (use_append) {
718 bio->bi_opf &= ~REQ_OP_WRITE;
719 bio->bi_opf |= REQ_OP_ZONE_APPEND;
720 }
721
722 if (is_data_bbio(bbio) && bioc && bioc->use_rst) {
723 /*
724 * No locking for the list update, as we only add to
725 * the list in the I/O submission path, and list
726 * iteration only happens in the completion path, which
727 * can't happen until after the last submission.
728 */
729 btrfs_get_bioc(bioc);
730 list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
731 }
732
733 /*
734 * Csum items for reloc roots have already been cloned at this
735 * point, so they are handled as part of the no-checksum case.
736 */
737 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
738 !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
739 !btrfs_is_data_reloc_root(inode->root)) {
740 if (should_async_write(bbio) &&
741 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
742 goto done;
743
744 ret = btrfs_bio_csum(bbio);
745 status = errno_to_blk_status(ret);
746 if (status)
747 goto fail;
748 } else if (use_append ||
749 (btrfs_is_zoned(fs_info) && inode &&
750 inode->flags & BTRFS_INODE_NODATASUM)) {
751 ret = btrfs_alloc_dummy_sum(bbio);
752 status = errno_to_blk_status(ret);
753 if (status)
754 goto fail;
755 }
756 }
757
758 btrfs_submit_bio(bio, bioc, &smap, mirror_num);
759 done:
760 return map_length == length;
761
762 fail:
763 btrfs_bio_counter_dec(fs_info);
764 /*
765 * We have split the original bbio, now we have to end both the current
766 * @bbio and remaining one, as the remaining one will never be submitted.
767 */
768 if (map_length < length) {
769 struct btrfs_bio *remaining = bbio->private;
770
771 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
772 ASSERT(remaining);
773
774 btrfs_bio_end_io(remaining, status);
775 }
776 end_bbio:
777 btrfs_bio_end_io(bbio, status);
778 /* Do not submit another chunk */
779 return true;
780 }
781
assert_bbio_alignment(struct btrfs_bio * bbio)782 static void assert_bbio_alignment(struct btrfs_bio *bbio)
783 {
784 #ifdef CONFIG_BTRFS_ASSERT
785 struct btrfs_fs_info *fs_info = bbio->fs_info;
786 struct bio_vec bvec;
787 struct bvec_iter iter;
788 const u32 blocksize = fs_info->sectorsize;
789
790 /* Metadata has no extra bs > ps alignment requirement. */
791 if (!is_data_bbio(bbio))
792 return;
793
794 bio_for_each_bvec(bvec, &bbio->bio, iter)
795 ASSERT(IS_ALIGNED(bvec.bv_offset, blocksize) &&
796 IS_ALIGNED(bvec.bv_len, blocksize),
797 "root=%llu inode=%llu logical=%llu length=%u index=%u bv_offset=%u bv_len=%u",
798 btrfs_root_id(bbio->inode->root),
799 btrfs_ino(bbio->inode),
800 bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT,
801 bbio->bio.bi_iter.bi_size, iter.bi_idx,
802 bvec.bv_offset,
803 bvec.bv_len);
804 #endif
805 }
806
btrfs_submit_bbio(struct btrfs_bio * bbio,int mirror_num)807 void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
808 {
809 /* If bbio->inode is not populated, its file_offset must be 0. */
810 ASSERT(bbio->inode || bbio->file_offset == 0);
811
812 assert_bbio_alignment(bbio);
813
814 while (!btrfs_submit_chunk(bbio, mirror_num))
815 ;
816 }
817
818 /*
819 * Submit a repair write.
820 *
821 * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
822 * RAID setup. Here we only want to write the one bad copy, so we do the
823 * mapping ourselves and submit the bio directly.
824 *
825 * The I/O is issued synchronously to block the repair read completion from
826 * freeing the bio.
827 */
btrfs_repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,phys_addr_t paddr,int mirror_num)828 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
829 u64 length, u64 logical, phys_addr_t paddr, int mirror_num)
830 {
831 struct btrfs_io_stripe smap = { 0 };
832 struct bio_vec bvec;
833 struct bio bio;
834 int ret = 0;
835
836 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
837 BUG_ON(!mirror_num);
838
839 if (btrfs_repair_one_zone(fs_info, logical))
840 return 0;
841
842 /*
843 * Avoid races with device replace and make sure our bioc has devices
844 * associated to its stripes that don't go away while we are doing the
845 * read repair operation.
846 */
847 btrfs_bio_counter_inc_blocked(fs_info);
848 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
849 if (ret < 0)
850 goto out_counter_dec;
851
852 if (unlikely(!smap.dev->bdev ||
853 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state))) {
854 ret = -EIO;
855 goto out_counter_dec;
856 }
857
858 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
859 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
860 __bio_add_page(&bio, phys_to_page(paddr), length, offset_in_page(paddr));
861 ret = submit_bio_wait(&bio);
862 if (ret) {
863 /* try to remap that extent elsewhere? */
864 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
865 goto out_bio_uninit;
866 }
867
868 btrfs_info_rl(fs_info,
869 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
870 ino, start, btrfs_dev_name(smap.dev),
871 smap.physical >> SECTOR_SHIFT);
872 ret = 0;
873
874 out_bio_uninit:
875 bio_uninit(&bio);
876 out_counter_dec:
877 btrfs_bio_counter_dec(fs_info);
878 return ret;
879 }
880
881 /*
882 * Submit a btrfs_bio based repair write.
883 *
884 * If @dev_replace is true, the write would be submitted to dev-replace target.
885 */
btrfs_submit_repair_write(struct btrfs_bio * bbio,int mirror_num,bool dev_replace)886 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
887 {
888 struct btrfs_fs_info *fs_info = bbio->fs_info;
889 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
890 u64 length = bbio->bio.bi_iter.bi_size;
891 struct btrfs_io_stripe smap = { 0 };
892 int ret;
893
894 ASSERT(fs_info);
895 ASSERT(mirror_num > 0);
896 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
897 ASSERT(!bbio->inode);
898
899 btrfs_bio_counter_inc_blocked(fs_info);
900 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
901 if (ret < 0)
902 goto fail;
903
904 if (dev_replace) {
905 ASSERT(smap.dev == fs_info->dev_replace.srcdev);
906 smap.dev = fs_info->dev_replace.tgtdev;
907 }
908 btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
909 return;
910
911 fail:
912 btrfs_bio_counter_dec(fs_info);
913 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
914 }
915
btrfs_bioset_init(void)916 int __init btrfs_bioset_init(void)
917 {
918 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
919 offsetof(struct btrfs_bio, bio),
920 BIOSET_NEED_BVECS))
921 return -ENOMEM;
922 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
923 offsetof(struct btrfs_bio, bio), 0))
924 goto out;
925 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
926 offsetof(struct btrfs_bio, bio),
927 BIOSET_NEED_BVECS))
928 goto out;
929 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
930 sizeof(struct btrfs_failed_bio)))
931 goto out;
932 return 0;
933
934 out:
935 btrfs_bioset_exit();
936 return -ENOMEM;
937 }
938
btrfs_bioset_exit(void)939 void __cold btrfs_bioset_exit(void)
940 {
941 mempool_exit(&btrfs_failed_bio_pool);
942 bioset_exit(&btrfs_repair_bioset);
943 bioset_exit(&btrfs_clone_bioset);
944 bioset_exit(&btrfs_bioset);
945 }
946