xref: /linux/fs/btrfs/ctree.c (revision 7696286034ac72cf9b46499be1715ac62fd302c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, bool extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, bool empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 /*
41  * The leaf data grows from end-to-front in the node.  this returns the address
42  * of the start of the last item, which is the stop of the leaf data stack.
43  */
44 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
45 {
46 	u32 nr = btrfs_header_nritems(leaf);
47 
48 	if (nr == 0)
49 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
50 	return btrfs_item_offset(leaf, nr - 1);
51 }
52 
53 /*
54  * Move data in a @leaf (using memmove, safe for overlapping ranges).
55  *
56  * @leaf:	leaf that we're doing a memmove on
57  * @dst_offset:	item data offset we're moving to
58  * @src_offset:	item data offset were' moving from
59  * @len:	length of the data we're moving
60  *
61  * Wrapper around memmove_extent_buffer() that takes into account the header on
62  * the leaf.  The btrfs_item offset's start directly after the header, so we
63  * have to adjust any offsets to account for the header in the leaf.  This
64  * handles that math to simplify the callers.
65  */
66 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
67 				     unsigned long dst_offset,
68 				     unsigned long src_offset,
69 				     unsigned long len)
70 {
71 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
72 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
73 }
74 
75 /*
76  * Copy item data from @src into @dst at the given @offset.
77  *
78  * @dst:	destination leaf that we're copying into
79  * @src:	source leaf that we're copying from
80  * @dst_offset:	item data offset we're copying to
81  * @src_offset:	item data offset were' copying from
82  * @len:	length of the data we're copying
83  *
84  * Wrapper around copy_extent_buffer() that takes into account the header on
85  * the leaf.  The btrfs_item offset's start directly after the header, so we
86  * have to adjust any offsets to account for the header in the leaf.  This
87  * handles that math to simplify the callers.
88  */
89 static inline void copy_leaf_data(const struct extent_buffer *dst,
90 				  const struct extent_buffer *src,
91 				  unsigned long dst_offset,
92 				  unsigned long src_offset, unsigned long len)
93 {
94 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
95 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
96 }
97 
98 /*
99  * Move items in a @leaf (using memmove).
100  *
101  * @dst:	destination leaf for the items
102  * @dst_item:	the item nr we're copying into
103  * @src_item:	the item nr we're copying from
104  * @nr_items:	the number of items to copy
105  *
106  * Wrapper around memmove_extent_buffer() that does the math to get the
107  * appropriate offsets into the leaf from the item numbers.
108  */
109 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
110 				      int dst_item, int src_item, int nr_items)
111 {
112 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
113 			      btrfs_item_nr_offset(leaf, src_item),
114 			      nr_items * sizeof(struct btrfs_item));
115 }
116 
117 /*
118  * Copy items from @src into @dst at the given @offset.
119  *
120  * @dst:	destination leaf for the items
121  * @src:	source leaf for the items
122  * @dst_item:	the item nr we're copying into
123  * @src_item:	the item nr we're copying from
124  * @nr_items:	the number of items to copy
125  *
126  * Wrapper around copy_extent_buffer() that does the math to get the
127  * appropriate offsets into the leaf from the item numbers.
128  */
129 static inline void copy_leaf_items(const struct extent_buffer *dst,
130 				   const struct extent_buffer *src,
131 				   int dst_item, int src_item, int nr_items)
132 {
133 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
134 			      btrfs_item_nr_offset(src, src_item),
135 			      nr_items * sizeof(struct btrfs_item));
136 }
137 
138 struct btrfs_path *btrfs_alloc_path(void)
139 {
140 	might_sleep();
141 
142 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
143 }
144 
145 /* this also releases the path */
146 void btrfs_free_path(struct btrfs_path *p)
147 {
148 	if (!p)
149 		return;
150 	btrfs_release_path(p);
151 	kmem_cache_free(btrfs_path_cachep, p);
152 }
153 
154 /*
155  * path release drops references on the extent buffers in the path
156  * and it drops any locks held by this path
157  *
158  * It is safe to call this on paths that no locks or extent buffers held.
159  */
160 noinline void btrfs_release_path(struct btrfs_path *p)
161 {
162 	int i;
163 
164 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
165 		p->slots[i] = 0;
166 		if (!p->nodes[i])
167 			continue;
168 		if (p->locks[i]) {
169 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
170 			p->locks[i] = 0;
171 		}
172 		free_extent_buffer(p->nodes[i]);
173 		p->nodes[i] = NULL;
174 	}
175 }
176 
177 /*
178  * safely gets a reference on the root node of a tree.  A lock
179  * is not taken, so a concurrent writer may put a different node
180  * at the root of the tree.  See btrfs_lock_root_node for the
181  * looping required.
182  *
183  * The extent buffer returned by this has a reference taken, so
184  * it won't disappear.  It may stop being the root of the tree
185  * at any time because there are no locks held.
186  */
187 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
188 {
189 	struct extent_buffer *eb;
190 
191 	while (1) {
192 		rcu_read_lock();
193 		eb = rcu_dereference(root->node);
194 
195 		/*
196 		 * RCU really hurts here, we could free up the root node because
197 		 * it was COWed but we may not get the new root node yet so do
198 		 * the inc_not_zero dance and if it doesn't work then
199 		 * synchronize_rcu and try again.
200 		 */
201 		if (refcount_inc_not_zero(&eb->refs)) {
202 			rcu_read_unlock();
203 			break;
204 		}
205 		rcu_read_unlock();
206 		synchronize_rcu();
207 	}
208 	return eb;
209 }
210 
211 /*
212  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
213  * just get put onto a simple dirty list.  Transaction walks this list to make
214  * sure they get properly updated on disk.
215  */
216 static void add_root_to_dirty_list(struct btrfs_root *root)
217 {
218 	struct btrfs_fs_info *fs_info = root->fs_info;
219 
220 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
221 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
222 		return;
223 
224 	spin_lock(&fs_info->trans_lock);
225 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
226 		/* Want the extent tree to be the last on the list */
227 		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
228 			list_move_tail(&root->dirty_list,
229 				       &fs_info->dirty_cowonly_roots);
230 		else
231 			list_move(&root->dirty_list,
232 				  &fs_info->dirty_cowonly_roots);
233 	}
234 	spin_unlock(&fs_info->trans_lock);
235 }
236 
237 /*
238  * used by snapshot creation to make a copy of a root for a tree with
239  * a given objectid.  The buffer with the new root node is returned in
240  * cow_ret, and this func returns zero on success or a negative error code.
241  */
242 int btrfs_copy_root(struct btrfs_trans_handle *trans,
243 		      struct btrfs_root *root,
244 		      struct extent_buffer *buf,
245 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
246 {
247 	struct btrfs_fs_info *fs_info = root->fs_info;
248 	struct extent_buffer *cow;
249 	int ret = 0;
250 	int level;
251 	struct btrfs_disk_key disk_key;
252 	u64 reloc_src_root = 0;
253 
254 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
255 		trans->transid != fs_info->running_transaction->transid);
256 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
257 		trans->transid != btrfs_get_root_last_trans(root));
258 
259 	level = btrfs_header_level(buf);
260 	if (level == 0)
261 		btrfs_item_key(buf, &disk_key, 0);
262 	else
263 		btrfs_node_key(buf, &disk_key, 0);
264 
265 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
266 		reloc_src_root = btrfs_header_owner(buf);
267 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
268 				     &disk_key, level, buf->start, 0,
269 				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
270 	if (IS_ERR(cow))
271 		return PTR_ERR(cow);
272 
273 	copy_extent_buffer_full(cow, buf);
274 	btrfs_set_header_bytenr(cow, cow->start);
275 	btrfs_set_header_generation(cow, trans->transid);
276 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
277 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
278 				     BTRFS_HEADER_FLAG_RELOC);
279 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
281 	else
282 		btrfs_set_header_owner(cow, new_root_objectid);
283 
284 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
285 
286 	if (unlikely(btrfs_header_generation(buf) > trans->transid)) {
287 		btrfs_tree_unlock(cow);
288 		free_extent_buffer(cow);
289 		ret = -EUCLEAN;
290 		btrfs_abort_transaction(trans, ret);
291 		return ret;
292 	}
293 
294 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
295 		ret = btrfs_inc_ref(trans, root, cow, 1);
296 		if (unlikely(ret))
297 			btrfs_abort_transaction(trans, ret);
298 	} else {
299 		ret = btrfs_inc_ref(trans, root, cow, 0);
300 		if (unlikely(ret))
301 			btrfs_abort_transaction(trans, ret);
302 	}
303 	if (ret) {
304 		btrfs_tree_unlock(cow);
305 		free_extent_buffer(cow);
306 		return ret;
307 	}
308 
309 	btrfs_mark_buffer_dirty(trans, cow);
310 	*cow_ret = cow;
311 	return 0;
312 }
313 
314 /*
315  * check if the tree block can be shared by multiple trees
316  */
317 bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans,
318 			       const struct btrfs_root *root,
319 			       const struct extent_buffer *buf)
320 {
321 	const u64 buf_gen = btrfs_header_generation(buf);
322 
323 	/*
324 	 * Tree blocks not in shareable trees and tree roots are never shared.
325 	 * If a block was allocated after the last snapshot and the block was
326 	 * not allocated by tree relocation, we know the block is not shared.
327 	 */
328 
329 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
330 		return false;
331 
332 	if (buf == root->node)
333 		return false;
334 
335 	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
336 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
337 		return false;
338 
339 	if (buf != root->commit_root)
340 		return true;
341 
342 	/*
343 	 * An extent buffer that used to be the commit root may still be shared
344 	 * because the tree height may have increased and it became a child of a
345 	 * higher level root. This can happen when snapshotting a subvolume
346 	 * created in the current transaction.
347 	 */
348 	if (buf_gen == trans->transid)
349 		return true;
350 
351 	return false;
352 }
353 
354 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
355 				       struct btrfs_root *root,
356 				       struct extent_buffer *buf,
357 				       struct extent_buffer *cow,
358 				       int *last_ref)
359 {
360 	struct btrfs_fs_info *fs_info = root->fs_info;
361 	u64 refs;
362 	u64 owner;
363 	u64 flags;
364 	int ret;
365 
366 	/*
367 	 * Backrefs update rules:
368 	 *
369 	 * Always use full backrefs for extent pointers in tree block
370 	 * allocated by tree relocation.
371 	 *
372 	 * If a shared tree block is no longer referenced by its owner
373 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
374 	 * use full backrefs for extent pointers in tree block.
375 	 *
376 	 * If a tree block is been relocating
377 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
378 	 * use full backrefs for extent pointers in tree block.
379 	 * The reason for this is some operations (such as drop tree)
380 	 * are only allowed for blocks use full backrefs.
381 	 */
382 
383 	if (btrfs_block_can_be_shared(trans, root, buf)) {
384 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
385 					       btrfs_header_level(buf), 1,
386 					       &refs, &flags, NULL);
387 		if (ret)
388 			return ret;
389 		if (unlikely(refs == 0)) {
390 			btrfs_crit(fs_info,
391 		"found 0 references for tree block at bytenr %llu level %d root %llu",
392 				   buf->start, btrfs_header_level(buf),
393 				   btrfs_root_id(root));
394 			ret = -EUCLEAN;
395 			btrfs_abort_transaction(trans, ret);
396 			return ret;
397 		}
398 	} else {
399 		refs = 1;
400 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
401 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
402 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
403 		else
404 			flags = 0;
405 	}
406 
407 	owner = btrfs_header_owner(buf);
408 	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
409 		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
410 		btrfs_crit(fs_info,
411 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
412 			   buf->start, btrfs_header_level(buf),
413 			   btrfs_root_id(root), refs, flags);
414 		ret = -EUCLEAN;
415 		btrfs_abort_transaction(trans, ret);
416 		return ret;
417 	}
418 
419 	if (refs > 1) {
420 		if ((owner == btrfs_root_id(root) ||
421 		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
422 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
423 			ret = btrfs_inc_ref(trans, root, buf, 1);
424 			if (ret)
425 				return ret;
426 
427 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
428 				ret = btrfs_dec_ref(trans, root, buf, 0);
429 				if (ret)
430 					return ret;
431 				ret = btrfs_inc_ref(trans, root, cow, 1);
432 				if (ret)
433 					return ret;
434 			}
435 			ret = btrfs_set_disk_extent_flags(trans, buf,
436 						  BTRFS_BLOCK_FLAG_FULL_BACKREF);
437 			if (ret)
438 				return ret;
439 		} else {
440 
441 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
442 				ret = btrfs_inc_ref(trans, root, cow, 1);
443 			else
444 				ret = btrfs_inc_ref(trans, root, cow, 0);
445 			if (ret)
446 				return ret;
447 		}
448 	} else {
449 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
450 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
451 				ret = btrfs_inc_ref(trans, root, cow, 1);
452 			else
453 				ret = btrfs_inc_ref(trans, root, cow, 0);
454 			if (ret)
455 				return ret;
456 			ret = btrfs_dec_ref(trans, root, buf, 1);
457 			if (ret)
458 				return ret;
459 		}
460 		btrfs_clear_buffer_dirty(trans, buf);
461 		*last_ref = 1;
462 	}
463 	return 0;
464 }
465 
466 /*
467  * does the dirty work in cow of a single block.  The parent block (if
468  * supplied) is updated to point to the new cow copy.  The new buffer is marked
469  * dirty and returned locked.  If you modify the block it needs to be marked
470  * dirty again.
471  *
472  * search_start -- an allocation hint for the new block
473  *
474  * empty_size -- a hint that you plan on doing more cow.  This is the size in
475  * bytes the allocator should try to find free next to the block it returns.
476  * This is just a hint and may be ignored by the allocator.
477  */
478 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
479 			  struct btrfs_root *root,
480 			  struct extent_buffer *buf,
481 			  struct extent_buffer *parent, int parent_slot,
482 			  struct extent_buffer **cow_ret,
483 			  u64 search_start, u64 empty_size,
484 			  enum btrfs_lock_nesting nest)
485 {
486 	struct btrfs_fs_info *fs_info = root->fs_info;
487 	struct btrfs_disk_key disk_key;
488 	struct extent_buffer *cow;
489 	int level, ret;
490 	int last_ref = 0;
491 	int unlock_orig = 0;
492 	u64 parent_start = 0;
493 	u64 reloc_src_root = 0;
494 
495 	if (*cow_ret == buf)
496 		unlock_orig = 1;
497 
498 	btrfs_assert_tree_write_locked(buf);
499 
500 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
501 		trans->transid != fs_info->running_transaction->transid);
502 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
503 		trans->transid != btrfs_get_root_last_trans(root));
504 
505 	level = btrfs_header_level(buf);
506 
507 	if (level == 0)
508 		btrfs_item_key(buf, &disk_key, 0);
509 	else
510 		btrfs_node_key(buf, &disk_key, 0);
511 
512 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
513 		if (parent)
514 			parent_start = parent->start;
515 		reloc_src_root = btrfs_header_owner(buf);
516 	}
517 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
518 				     btrfs_root_id(root), &disk_key, level,
519 				     search_start, empty_size, reloc_src_root, nest);
520 	if (IS_ERR(cow))
521 		return PTR_ERR(cow);
522 
523 	/* cow is set to blocking by btrfs_init_new_buffer */
524 
525 	copy_extent_buffer_full(cow, buf);
526 	btrfs_set_header_bytenr(cow, cow->start);
527 	btrfs_set_header_generation(cow, trans->transid);
528 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
529 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
530 				     BTRFS_HEADER_FLAG_RELOC);
531 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
532 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
533 	else
534 		btrfs_set_header_owner(cow, btrfs_root_id(root));
535 
536 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
537 
538 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
539 	if (unlikely(ret)) {
540 		btrfs_abort_transaction(trans, ret);
541 		goto error_unlock_cow;
542 	}
543 
544 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
545 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
546 		if (unlikely(ret)) {
547 			btrfs_abort_transaction(trans, ret);
548 			goto error_unlock_cow;
549 		}
550 	}
551 
552 	if (buf == root->node) {
553 		WARN_ON(parent && parent != buf);
554 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
555 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
556 			parent_start = buf->start;
557 
558 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
559 		if (unlikely(ret < 0)) {
560 			btrfs_abort_transaction(trans, ret);
561 			goto error_unlock_cow;
562 		}
563 		refcount_inc(&cow->refs);
564 		rcu_assign_pointer(root->node, cow);
565 
566 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
567 					    parent_start, last_ref);
568 		free_extent_buffer(buf);
569 		add_root_to_dirty_list(root);
570 		if (unlikely(ret < 0)) {
571 			btrfs_abort_transaction(trans, ret);
572 			goto error_unlock_cow;
573 		}
574 	} else {
575 		WARN_ON(trans->transid != btrfs_header_generation(parent));
576 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
577 						    BTRFS_MOD_LOG_KEY_REPLACE);
578 		if (unlikely(ret)) {
579 			btrfs_abort_transaction(trans, ret);
580 			goto error_unlock_cow;
581 		}
582 		btrfs_set_node_blockptr(parent, parent_slot,
583 					cow->start);
584 		btrfs_set_node_ptr_generation(parent, parent_slot,
585 					      trans->transid);
586 		btrfs_mark_buffer_dirty(trans, parent);
587 		if (last_ref) {
588 			ret = btrfs_tree_mod_log_free_eb(buf);
589 			if (unlikely(ret)) {
590 				btrfs_abort_transaction(trans, ret);
591 				goto error_unlock_cow;
592 			}
593 		}
594 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
595 					    parent_start, last_ref);
596 		if (unlikely(ret < 0)) {
597 			btrfs_abort_transaction(trans, ret);
598 			goto error_unlock_cow;
599 		}
600 	}
601 
602 	trace_btrfs_cow_block(root, buf, cow);
603 	if (unlock_orig)
604 		btrfs_tree_unlock(buf);
605 	free_extent_buffer_stale(buf);
606 	btrfs_mark_buffer_dirty(trans, cow);
607 	*cow_ret = cow;
608 	return 0;
609 
610 error_unlock_cow:
611 	btrfs_tree_unlock(cow);
612 	free_extent_buffer(cow);
613 	return ret;
614 }
615 
616 static inline bool should_cow_block(const struct btrfs_trans_handle *trans,
617 				    const struct btrfs_root *root,
618 				    const struct extent_buffer *buf)
619 {
620 	if (btrfs_is_testing(root->fs_info))
621 		return false;
622 
623 	/*
624 	 * We do not need to cow a block if
625 	 * 1) this block is not created or changed in this transaction;
626 	 * 2) this block does not belong to TREE_RELOC tree;
627 	 * 3) the root is not forced COW.
628 	 *
629 	 * What is forced COW:
630 	 *    when we create snapshot during committing the transaction,
631 	 *    after we've finished copying src root, we must COW the shared
632 	 *    block to ensure the metadata consistency.
633 	 */
634 
635 	if (btrfs_header_generation(buf) != trans->transid)
636 		return true;
637 
638 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN))
639 		return true;
640 
641 	/* Ensure we can see the FORCE_COW bit. */
642 	smp_mb__before_atomic();
643 	if (test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
644 		return true;
645 
646 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
647 		return false;
648 
649 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
650 		return true;
651 
652 	return false;
653 }
654 
655 /*
656  * COWs a single block, see btrfs_force_cow_block() for the real work.
657  * This version of it has extra checks so that a block isn't COWed more than
658  * once per transaction, as long as it hasn't been written yet
659  */
660 int btrfs_cow_block(struct btrfs_trans_handle *trans,
661 		    struct btrfs_root *root, struct extent_buffer *buf,
662 		    struct extent_buffer *parent, int parent_slot,
663 		    struct extent_buffer **cow_ret,
664 		    enum btrfs_lock_nesting nest)
665 {
666 	struct btrfs_fs_info *fs_info = root->fs_info;
667 	u64 search_start;
668 
669 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
670 		btrfs_abort_transaction(trans, -EUCLEAN);
671 		btrfs_crit(fs_info,
672 		   "attempt to COW block %llu on root %llu that is being deleted",
673 			   buf->start, btrfs_root_id(root));
674 		return -EUCLEAN;
675 	}
676 
677 	/*
678 	 * COWing must happen through a running transaction, which always
679 	 * matches the current fs generation (it's a transaction with a state
680 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
681 	 * into error state to prevent the commit of any transaction.
682 	 */
683 	if (unlikely(trans->transaction != fs_info->running_transaction ||
684 		     trans->transid != fs_info->generation)) {
685 		btrfs_abort_transaction(trans, -EUCLEAN);
686 		btrfs_crit(fs_info,
687 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
688 			   buf->start, btrfs_root_id(root), trans->transid,
689 			   fs_info->running_transaction->transid,
690 			   fs_info->generation);
691 		return -EUCLEAN;
692 	}
693 
694 	if (!should_cow_block(trans, root, buf)) {
695 		*cow_ret = buf;
696 		return 0;
697 	}
698 
699 	search_start = round_down(buf->start, SZ_1G);
700 
701 	/*
702 	 * Before CoWing this block for later modification, check if it's
703 	 * the subtree root and do the delayed subtree trace if needed.
704 	 *
705 	 * Also We don't care about the error, as it's handled internally.
706 	 */
707 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
708 	return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
709 				     cow_ret, search_start, 0, nest);
710 }
711 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
712 
713 /*
714  * same as comp_keys only with two btrfs_key's
715  */
716 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
717 {
718 	if (k1->objectid > k2->objectid)
719 		return 1;
720 	if (k1->objectid < k2->objectid)
721 		return -1;
722 	if (k1->type > k2->type)
723 		return 1;
724 	if (k1->type < k2->type)
725 		return -1;
726 	if (k1->offset > k2->offset)
727 		return 1;
728 	if (k1->offset < k2->offset)
729 		return -1;
730 	return 0;
731 }
732 
733 /*
734  * Search for a key in the given extent_buffer.
735  *
736  * The lower boundary for the search is specified by the slot number @first_slot.
737  * Use a value of 0 to search over the whole extent buffer. Works for both
738  * leaves and nodes.
739  *
740  * The slot in the extent buffer is returned via @slot. If the key exists in the
741  * extent buffer, then @slot will point to the slot where the key is, otherwise
742  * it points to the slot where you would insert the key.
743  *
744  * Slot may point to the total number of items (i.e. one position beyond the last
745  * key) if the key is bigger than the last key in the extent buffer.
746  */
747 int btrfs_bin_search(const struct extent_buffer *eb, int first_slot,
748 		     const struct btrfs_key *key, int *slot)
749 {
750 	unsigned long p;
751 	int item_size;
752 	/*
753 	 * Use unsigned types for the low and high slots, so that we get a more
754 	 * efficient division in the search loop below.
755 	 */
756 	u32 low = first_slot;
757 	u32 high = btrfs_header_nritems(eb);
758 	int ret;
759 	const int key_size = sizeof(struct btrfs_disk_key);
760 
761 	if (unlikely(low > high)) {
762 		btrfs_err(eb->fs_info,
763 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
764 			  __func__, low, high, eb->start,
765 			  btrfs_header_owner(eb), btrfs_header_level(eb));
766 		return -EINVAL;
767 	}
768 
769 	if (btrfs_header_level(eb) == 0) {
770 		p = offsetof(struct btrfs_leaf, items);
771 		item_size = sizeof(struct btrfs_item);
772 	} else {
773 		p = offsetof(struct btrfs_node, ptrs);
774 		item_size = sizeof(struct btrfs_key_ptr);
775 	}
776 
777 	while (low < high) {
778 		const int unit_size = eb->folio_size;
779 		unsigned long oil;
780 		unsigned long offset;
781 		struct btrfs_disk_key *tmp;
782 		struct btrfs_disk_key unaligned;
783 		int mid;
784 
785 		mid = (low + high) / 2;
786 		offset = p + mid * item_size;
787 		oil = get_eb_offset_in_folio(eb, offset);
788 
789 		if (oil + key_size <= unit_size) {
790 			const unsigned long idx = get_eb_folio_index(eb, offset);
791 			char *kaddr = folio_address(eb->folios[idx]);
792 
793 			oil = get_eb_offset_in_folio(eb, offset);
794 			tmp = (struct btrfs_disk_key *)(kaddr + oil);
795 		} else {
796 			read_extent_buffer(eb, &unaligned, offset, key_size);
797 			tmp = &unaligned;
798 		}
799 
800 		ret = btrfs_comp_keys(tmp, key);
801 
802 		if (ret < 0)
803 			low = mid + 1;
804 		else if (ret > 0)
805 			high = mid;
806 		else {
807 			*slot = mid;
808 			return 0;
809 		}
810 	}
811 	*slot = low;
812 	return 1;
813 }
814 
815 static void root_add_used_bytes(struct btrfs_root *root)
816 {
817 	spin_lock(&root->accounting_lock);
818 	btrfs_set_root_used(&root->root_item,
819 		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
820 	spin_unlock(&root->accounting_lock);
821 }
822 
823 static void root_sub_used_bytes(struct btrfs_root *root)
824 {
825 	spin_lock(&root->accounting_lock);
826 	btrfs_set_root_used(&root->root_item,
827 		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
828 	spin_unlock(&root->accounting_lock);
829 }
830 
831 /* given a node and slot number, this reads the blocks it points to.  The
832  * extent buffer is returned with a reference taken (but unlocked).
833  */
834 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
835 					   int slot)
836 {
837 	int level = btrfs_header_level(parent);
838 	struct btrfs_tree_parent_check check = { 0 };
839 	struct extent_buffer *eb;
840 
841 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
842 		return ERR_PTR(-ENOENT);
843 
844 	ASSERT(level);
845 
846 	check.level = level - 1;
847 	check.transid = btrfs_node_ptr_generation(parent, slot);
848 	check.owner_root = btrfs_header_owner(parent);
849 	check.has_first_key = true;
850 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
851 
852 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
853 			     &check);
854 	if (IS_ERR(eb))
855 		return eb;
856 	if (unlikely(!extent_buffer_uptodate(eb))) {
857 		free_extent_buffer(eb);
858 		return ERR_PTR(-EIO);
859 	}
860 
861 	return eb;
862 }
863 
864 /*
865  * Promote a child node to become the new tree root.
866  *
867  * @trans:   Transaction handle
868  * @root:    Tree root structure to update
869  * @path:    Path holding nodes and locks
870  * @level:   Level of the parent (old root)
871  * @parent:  The parent (old root) with exactly one item
872  *
873  * This helper is called during rebalancing when the root node contains only
874  * a single item (nritems == 1).  We can reduce the tree height by promoting
875  * that child to become the new root and freeing the old root node.  The path
876  * locks and references are updated accordingly.
877  *
878  * Return: 0 on success, negative errno on failure.  The transaction is aborted
879  * on critical errors.
880  */
881 static int promote_child_to_root(struct btrfs_trans_handle *trans,
882 				 struct btrfs_root *root, struct btrfs_path *path,
883 				 int level, struct extent_buffer *parent)
884 {
885 	struct extent_buffer *child;
886 	int ret;
887 
888 	ASSERT(btrfs_header_nritems(parent) == 1);
889 
890 	child = btrfs_read_node_slot(parent, 0);
891 	if (IS_ERR(child))
892 		return PTR_ERR(child);
893 
894 	btrfs_tree_lock(child);
895 	ret = btrfs_cow_block(trans, root, child, parent, 0, &child, BTRFS_NESTING_COW);
896 	if (ret) {
897 		btrfs_tree_unlock(child);
898 		free_extent_buffer(child);
899 		return ret;
900 	}
901 
902 	ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
903 	if (unlikely(ret < 0)) {
904 		btrfs_tree_unlock(child);
905 		free_extent_buffer(child);
906 		btrfs_abort_transaction(trans, ret);
907 		return ret;
908 	}
909 	rcu_assign_pointer(root->node, child);
910 
911 	add_root_to_dirty_list(root);
912 	btrfs_tree_unlock(child);
913 
914 	path->locks[level] = 0;
915 	path->nodes[level] = NULL;
916 	btrfs_clear_buffer_dirty(trans, parent);
917 	btrfs_tree_unlock(parent);
918 	/* Once for the path. */
919 	free_extent_buffer(parent);
920 
921 	root_sub_used_bytes(root);
922 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), parent, 0, 1);
923 	/* Once for the root ptr. */
924 	free_extent_buffer_stale(parent);
925 	if (unlikely(ret < 0)) {
926 		btrfs_abort_transaction(trans, ret);
927 		return ret;
928 	}
929 
930 	return 0;
931 }
932 
933 /*
934  * node level balancing, used to make sure nodes are in proper order for
935  * item deletion.  We balance from the top down, so we have to make sure
936  * that a deletion won't leave an node completely empty later on.
937  */
938 static noinline int balance_level(struct btrfs_trans_handle *trans,
939 			 struct btrfs_root *root,
940 			 struct btrfs_path *path, int level)
941 {
942 	struct btrfs_fs_info *fs_info = root->fs_info;
943 	struct extent_buffer *right = NULL;
944 	struct extent_buffer *mid;
945 	struct extent_buffer *left = NULL;
946 	struct extent_buffer *parent = NULL;
947 	int ret = 0;
948 	int wret;
949 	int pslot;
950 	int orig_slot = path->slots[level];
951 	u64 orig_ptr;
952 
953 	ASSERT(level > 0);
954 
955 	mid = path->nodes[level];
956 
957 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
958 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
959 
960 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
961 
962 	if (level < BTRFS_MAX_LEVEL - 1) {
963 		parent = path->nodes[level + 1];
964 		pslot = path->slots[level + 1];
965 	}
966 
967 	/*
968 	 * deal with the case where there is only one pointer in the root
969 	 * by promoting the node below to a root
970 	 */
971 	if (!parent) {
972 		if (btrfs_header_nritems(mid) != 1)
973 			return 0;
974 
975 		return promote_child_to_root(trans, root, path, level, mid);
976 	}
977 	if (btrfs_header_nritems(mid) >
978 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
979 		return 0;
980 
981 	if (pslot) {
982 		left = btrfs_read_node_slot(parent, pslot - 1);
983 		if (IS_ERR(left)) {
984 			ret = PTR_ERR(left);
985 			left = NULL;
986 			goto out;
987 		}
988 
989 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
990 		wret = btrfs_cow_block(trans, root, left,
991 				       parent, pslot - 1, &left,
992 				       BTRFS_NESTING_LEFT_COW);
993 		if (wret) {
994 			ret = wret;
995 			goto out;
996 		}
997 	}
998 
999 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1000 		right = btrfs_read_node_slot(parent, pslot + 1);
1001 		if (IS_ERR(right)) {
1002 			ret = PTR_ERR(right);
1003 			right = NULL;
1004 			goto out;
1005 		}
1006 
1007 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1008 		wret = btrfs_cow_block(trans, root, right,
1009 				       parent, pslot + 1, &right,
1010 				       BTRFS_NESTING_RIGHT_COW);
1011 		if (wret) {
1012 			ret = wret;
1013 			goto out;
1014 		}
1015 	}
1016 
1017 	/* first, try to make some room in the middle buffer */
1018 	if (left) {
1019 		orig_slot += btrfs_header_nritems(left);
1020 		wret = push_node_left(trans, left, mid, 1);
1021 		if (wret < 0)
1022 			ret = wret;
1023 	}
1024 
1025 	/*
1026 	 * then try to empty the right most buffer into the middle
1027 	 */
1028 	if (right) {
1029 		wret = push_node_left(trans, mid, right, 1);
1030 		if (wret < 0 && wret != -ENOSPC)
1031 			ret = wret;
1032 		if (btrfs_header_nritems(right) == 0) {
1033 			btrfs_clear_buffer_dirty(trans, right);
1034 			btrfs_tree_unlock(right);
1035 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1036 			if (ret < 0) {
1037 				free_extent_buffer_stale(right);
1038 				right = NULL;
1039 				goto out;
1040 			}
1041 			root_sub_used_bytes(root);
1042 			ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1043 						    right, 0, 1);
1044 			free_extent_buffer_stale(right);
1045 			right = NULL;
1046 			if (unlikely(ret < 0)) {
1047 				btrfs_abort_transaction(trans, ret);
1048 				goto out;
1049 			}
1050 		} else {
1051 			struct btrfs_disk_key right_key;
1052 			btrfs_node_key(right, &right_key, 0);
1053 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1054 					BTRFS_MOD_LOG_KEY_REPLACE);
1055 			if (unlikely(ret < 0)) {
1056 				btrfs_abort_transaction(trans, ret);
1057 				goto out;
1058 			}
1059 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1060 			btrfs_mark_buffer_dirty(trans, parent);
1061 		}
1062 	}
1063 	if (btrfs_header_nritems(mid) == 1) {
1064 		/*
1065 		 * we're not allowed to leave a node with one item in the
1066 		 * tree during a delete.  A deletion from lower in the tree
1067 		 * could try to delete the only pointer in this node.
1068 		 * So, pull some keys from the left.
1069 		 * There has to be a left pointer at this point because
1070 		 * otherwise we would have pulled some pointers from the
1071 		 * right
1072 		 */
1073 		if (unlikely(!left)) {
1074 			btrfs_crit(fs_info,
1075 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1076 				   parent->start, btrfs_header_level(parent),
1077 				   mid->start, btrfs_root_id(root));
1078 			ret = -EUCLEAN;
1079 			btrfs_abort_transaction(trans, ret);
1080 			goto out;
1081 		}
1082 		wret = balance_node_right(trans, mid, left);
1083 		if (wret < 0) {
1084 			ret = wret;
1085 			goto out;
1086 		}
1087 		if (wret == 1) {
1088 			wret = push_node_left(trans, left, mid, 1);
1089 			if (wret < 0)
1090 				ret = wret;
1091 		}
1092 		BUG_ON(wret == 1);
1093 	}
1094 	if (btrfs_header_nritems(mid) == 0) {
1095 		btrfs_clear_buffer_dirty(trans, mid);
1096 		btrfs_tree_unlock(mid);
1097 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1098 		if (ret < 0) {
1099 			free_extent_buffer_stale(mid);
1100 			mid = NULL;
1101 			goto out;
1102 		}
1103 		root_sub_used_bytes(root);
1104 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1105 		free_extent_buffer_stale(mid);
1106 		mid = NULL;
1107 		if (unlikely(ret < 0)) {
1108 			btrfs_abort_transaction(trans, ret);
1109 			goto out;
1110 		}
1111 	} else {
1112 		/* update the parent key to reflect our changes */
1113 		struct btrfs_disk_key mid_key;
1114 		btrfs_node_key(mid, &mid_key, 0);
1115 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1116 						    BTRFS_MOD_LOG_KEY_REPLACE);
1117 		if (unlikely(ret < 0)) {
1118 			btrfs_abort_transaction(trans, ret);
1119 			goto out;
1120 		}
1121 		btrfs_set_node_key(parent, &mid_key, pslot);
1122 		btrfs_mark_buffer_dirty(trans, parent);
1123 	}
1124 
1125 	/* update the path */
1126 	if (left) {
1127 		if (btrfs_header_nritems(left) > orig_slot) {
1128 			/* left was locked after cow */
1129 			path->nodes[level] = left;
1130 			path->slots[level + 1] -= 1;
1131 			path->slots[level] = orig_slot;
1132 			/* Left is now owned by path. */
1133 			left = NULL;
1134 			if (mid) {
1135 				btrfs_tree_unlock(mid);
1136 				free_extent_buffer(mid);
1137 			}
1138 		} else {
1139 			orig_slot -= btrfs_header_nritems(left);
1140 			path->slots[level] = orig_slot;
1141 		}
1142 	}
1143 	/* double check we haven't messed things up */
1144 	if (orig_ptr !=
1145 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1146 		BUG();
1147 out:
1148 	if (right) {
1149 		btrfs_tree_unlock(right);
1150 		free_extent_buffer(right);
1151 	}
1152 	if (left) {
1153 		btrfs_tree_unlock(left);
1154 		free_extent_buffer(left);
1155 	}
1156 	return ret;
1157 }
1158 
1159 /* Node balancing for insertion.  Here we only split or push nodes around
1160  * when they are completely full.  This is also done top down, so we
1161  * have to be pessimistic.
1162  */
1163 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1164 					  struct btrfs_root *root,
1165 					  struct btrfs_path *path, int level)
1166 {
1167 	struct btrfs_fs_info *fs_info = root->fs_info;
1168 	struct extent_buffer *right = NULL;
1169 	struct extent_buffer *mid;
1170 	struct extent_buffer *left = NULL;
1171 	struct extent_buffer *parent = NULL;
1172 	int ret = 0;
1173 	int wret;
1174 	int pslot;
1175 	int orig_slot = path->slots[level];
1176 
1177 	if (level == 0)
1178 		return 1;
1179 
1180 	mid = path->nodes[level];
1181 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1182 
1183 	if (level < BTRFS_MAX_LEVEL - 1) {
1184 		parent = path->nodes[level + 1];
1185 		pslot = path->slots[level + 1];
1186 	}
1187 
1188 	if (!parent)
1189 		return 1;
1190 
1191 	/* first, try to make some room in the middle buffer */
1192 	if (pslot) {
1193 		u32 left_nr;
1194 
1195 		left = btrfs_read_node_slot(parent, pslot - 1);
1196 		if (IS_ERR(left))
1197 			return PTR_ERR(left);
1198 
1199 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1200 
1201 		left_nr = btrfs_header_nritems(left);
1202 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1203 			wret = 1;
1204 		} else {
1205 			ret = btrfs_cow_block(trans, root, left, parent,
1206 					      pslot - 1, &left,
1207 					      BTRFS_NESTING_LEFT_COW);
1208 			if (ret)
1209 				wret = 1;
1210 			else {
1211 				wret = push_node_left(trans, left, mid, 0);
1212 			}
1213 		}
1214 		if (wret < 0)
1215 			ret = wret;
1216 		if (wret == 0) {
1217 			struct btrfs_disk_key disk_key;
1218 			orig_slot += left_nr;
1219 			btrfs_node_key(mid, &disk_key, 0);
1220 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1221 					BTRFS_MOD_LOG_KEY_REPLACE);
1222 			if (unlikely(ret < 0)) {
1223 				btrfs_tree_unlock(left);
1224 				free_extent_buffer(left);
1225 				btrfs_abort_transaction(trans, ret);
1226 				return ret;
1227 			}
1228 			btrfs_set_node_key(parent, &disk_key, pslot);
1229 			btrfs_mark_buffer_dirty(trans, parent);
1230 			if (btrfs_header_nritems(left) > orig_slot) {
1231 				path->nodes[level] = left;
1232 				path->slots[level + 1] -= 1;
1233 				path->slots[level] = orig_slot;
1234 				btrfs_tree_unlock(mid);
1235 				free_extent_buffer(mid);
1236 			} else {
1237 				orig_slot -=
1238 					btrfs_header_nritems(left);
1239 				path->slots[level] = orig_slot;
1240 				btrfs_tree_unlock(left);
1241 				free_extent_buffer(left);
1242 			}
1243 			return 0;
1244 		}
1245 		btrfs_tree_unlock(left);
1246 		free_extent_buffer(left);
1247 	}
1248 
1249 	/*
1250 	 * then try to empty the right most buffer into the middle
1251 	 */
1252 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1253 		u32 right_nr;
1254 
1255 		right = btrfs_read_node_slot(parent, pslot + 1);
1256 		if (IS_ERR(right))
1257 			return PTR_ERR(right);
1258 
1259 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1260 
1261 		right_nr = btrfs_header_nritems(right);
1262 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1263 			wret = 1;
1264 		} else {
1265 			ret = btrfs_cow_block(trans, root, right,
1266 					      parent, pslot + 1,
1267 					      &right, BTRFS_NESTING_RIGHT_COW);
1268 			if (ret)
1269 				wret = 1;
1270 			else {
1271 				wret = balance_node_right(trans, right, mid);
1272 			}
1273 		}
1274 		if (wret < 0)
1275 			ret = wret;
1276 		if (wret == 0) {
1277 			struct btrfs_disk_key disk_key;
1278 
1279 			btrfs_node_key(right, &disk_key, 0);
1280 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1281 					BTRFS_MOD_LOG_KEY_REPLACE);
1282 			if (unlikely(ret < 0)) {
1283 				btrfs_tree_unlock(right);
1284 				free_extent_buffer(right);
1285 				btrfs_abort_transaction(trans, ret);
1286 				return ret;
1287 			}
1288 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1289 			btrfs_mark_buffer_dirty(trans, parent);
1290 
1291 			if (btrfs_header_nritems(mid) <= orig_slot) {
1292 				path->nodes[level] = right;
1293 				path->slots[level + 1] += 1;
1294 				path->slots[level] = orig_slot -
1295 					btrfs_header_nritems(mid);
1296 				btrfs_tree_unlock(mid);
1297 				free_extent_buffer(mid);
1298 			} else {
1299 				btrfs_tree_unlock(right);
1300 				free_extent_buffer(right);
1301 			}
1302 			return 0;
1303 		}
1304 		btrfs_tree_unlock(right);
1305 		free_extent_buffer(right);
1306 	}
1307 	return 1;
1308 }
1309 
1310 /*
1311  * readahead one full node of leaves, finding things that are close
1312  * to the block in 'slot', and triggering ra on them.
1313  */
1314 static void reada_for_search(struct btrfs_fs_info *fs_info,
1315 			     const struct btrfs_path *path,
1316 			     int level, int slot, u64 objectid)
1317 {
1318 	struct extent_buffer *node;
1319 	struct btrfs_disk_key disk_key;
1320 	u32 nritems;
1321 	u64 search;
1322 	u64 target;
1323 	u64 nread = 0;
1324 	u64 nread_max;
1325 	u32 nr;
1326 	u32 blocksize;
1327 	u32 nscan = 0;
1328 
1329 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1330 		return;
1331 
1332 	if (!path->nodes[level])
1333 		return;
1334 
1335 	node = path->nodes[level];
1336 
1337 	/*
1338 	 * Since the time between visiting leaves is much shorter than the time
1339 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1340 	 * much IO at once (possibly random).
1341 	 */
1342 	if (path->reada == READA_FORWARD_ALWAYS) {
1343 		if (level > 1)
1344 			nread_max = node->fs_info->nodesize;
1345 		else
1346 			nread_max = SZ_128K;
1347 	} else {
1348 		nread_max = SZ_64K;
1349 	}
1350 
1351 	search = btrfs_node_blockptr(node, slot);
1352 	blocksize = fs_info->nodesize;
1353 	if (path->reada != READA_FORWARD_ALWAYS) {
1354 		struct extent_buffer *eb;
1355 
1356 		eb = find_extent_buffer(fs_info, search);
1357 		if (eb) {
1358 			free_extent_buffer(eb);
1359 			return;
1360 		}
1361 	}
1362 
1363 	target = search;
1364 
1365 	nritems = btrfs_header_nritems(node);
1366 	nr = slot;
1367 
1368 	while (1) {
1369 		if (path->reada == READA_BACK) {
1370 			if (nr == 0)
1371 				break;
1372 			nr--;
1373 		} else if (path->reada == READA_FORWARD ||
1374 			   path->reada == READA_FORWARD_ALWAYS) {
1375 			nr++;
1376 			if (nr >= nritems)
1377 				break;
1378 		}
1379 		if (path->reada == READA_BACK && objectid) {
1380 			btrfs_node_key(node, &disk_key, nr);
1381 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1382 				break;
1383 		}
1384 		search = btrfs_node_blockptr(node, nr);
1385 		if (path->reada == READA_FORWARD_ALWAYS ||
1386 		    (search <= target && target - search <= 65536) ||
1387 		    (search > target && search - target <= 65536)) {
1388 			btrfs_readahead_node_child(node, nr);
1389 			nread += blocksize;
1390 		}
1391 		nscan++;
1392 		if (nread > nread_max || nscan > 32)
1393 			break;
1394 	}
1395 }
1396 
1397 static noinline void reada_for_balance(const struct btrfs_path *path, int level)
1398 {
1399 	struct extent_buffer *parent;
1400 	int slot;
1401 	int nritems;
1402 
1403 	parent = path->nodes[level + 1];
1404 	if (!parent)
1405 		return;
1406 
1407 	nritems = btrfs_header_nritems(parent);
1408 	slot = path->slots[level + 1];
1409 
1410 	if (slot > 0)
1411 		btrfs_readahead_node_child(parent, slot - 1);
1412 	if (slot + 1 < nritems)
1413 		btrfs_readahead_node_child(parent, slot + 1);
1414 }
1415 
1416 
1417 /*
1418  * when we walk down the tree, it is usually safe to unlock the higher layers
1419  * in the tree.  The exceptions are when our path goes through slot 0, because
1420  * operations on the tree might require changing key pointers higher up in the
1421  * tree.
1422  *
1423  * callers might also have set path->keep_locks, which tells this code to keep
1424  * the lock if the path points to the last slot in the block.  This is part of
1425  * walking through the tree, and selecting the next slot in the higher block.
1426  *
1427  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1428  * if lowest_unlock is 1, level 0 won't be unlocked
1429  */
1430 static noinline void unlock_up(struct btrfs_path *path, int level,
1431 			       int lowest_unlock, int min_write_lock_level,
1432 			       int *write_lock_level)
1433 {
1434 	int i;
1435 	int skip_level = level;
1436 	bool check_skip = true;
1437 
1438 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1439 		if (!path->nodes[i])
1440 			break;
1441 		if (!path->locks[i])
1442 			break;
1443 
1444 		if (check_skip) {
1445 			if (path->slots[i] == 0) {
1446 				skip_level = i + 1;
1447 				continue;
1448 			}
1449 
1450 			if (path->keep_locks) {
1451 				u32 nritems;
1452 
1453 				nritems = btrfs_header_nritems(path->nodes[i]);
1454 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1455 					skip_level = i + 1;
1456 					continue;
1457 				}
1458 			}
1459 		}
1460 
1461 		if (i >= lowest_unlock && i > skip_level) {
1462 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1463 			check_skip = false;
1464 			path->locks[i] = 0;
1465 			if (write_lock_level &&
1466 			    i > min_write_lock_level &&
1467 			    i <= *write_lock_level) {
1468 				*write_lock_level = i - 1;
1469 			}
1470 		}
1471 	}
1472 }
1473 
1474 /*
1475  * Helper function for btrfs_search_slot() and other functions that do a search
1476  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1477  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1478  * its pages from disk.
1479  *
1480  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1481  * whole btree search, starting again from the current root node.
1482  */
1483 static int
1484 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1485 		      struct extent_buffer **eb_ret, int slot,
1486 		      const struct btrfs_key *key)
1487 {
1488 	struct btrfs_fs_info *fs_info = root->fs_info;
1489 	struct btrfs_tree_parent_check check = { 0 };
1490 	u64 blocknr;
1491 	struct extent_buffer *tmp = NULL;
1492 	int ret = 0;
1493 	int ret2;
1494 	int parent_level;
1495 	bool read_tmp = false;
1496 	bool tmp_locked = false;
1497 	bool path_released = false;
1498 
1499 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1500 	parent_level = btrfs_header_level(*eb_ret);
1501 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1502 	check.has_first_key = true;
1503 	check.level = parent_level - 1;
1504 	check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1505 	check.owner_root = btrfs_root_id(root);
1506 
1507 	/*
1508 	 * If we need to read an extent buffer from disk and we are holding locks
1509 	 * on upper level nodes, we unlock all the upper nodes before reading the
1510 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1511 	 * restart the search. We don't release the lock on the current level
1512 	 * because we need to walk this node to figure out which blocks to read.
1513 	 */
1514 	tmp = find_extent_buffer(fs_info, blocknr);
1515 	if (tmp) {
1516 		if (p->reada == READA_FORWARD_ALWAYS)
1517 			reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1518 
1519 		/* first we do an atomic uptodate check */
1520 		if (btrfs_buffer_uptodate(tmp, check.transid, true) > 0) {
1521 			/*
1522 			 * Do extra check for first_key, eb can be stale due to
1523 			 * being cached, read from scrub, or have multiple
1524 			 * parents (shared tree blocks).
1525 			 */
1526 			if (unlikely(btrfs_verify_level_key(tmp, &check))) {
1527 				ret = -EUCLEAN;
1528 				goto out;
1529 			}
1530 			*eb_ret = tmp;
1531 			tmp = NULL;
1532 			ret = 0;
1533 			goto out;
1534 		}
1535 
1536 		if (p->nowait) {
1537 			ret = -EAGAIN;
1538 			goto out;
1539 		}
1540 
1541 		if (!p->skip_locking) {
1542 			btrfs_unlock_up_safe(p, parent_level + 1);
1543 			btrfs_maybe_reset_lockdep_class(root, tmp);
1544 			tmp_locked = true;
1545 			btrfs_tree_read_lock(tmp);
1546 			btrfs_release_path(p);
1547 			ret = -EAGAIN;
1548 			path_released = true;
1549 		}
1550 
1551 		/* Now we're allowed to do a blocking uptodate check. */
1552 		ret2 = btrfs_read_extent_buffer(tmp, &check);
1553 		if (ret2) {
1554 			ret = ret2;
1555 			goto out;
1556 		}
1557 
1558 		if (ret == 0) {
1559 			ASSERT(!tmp_locked);
1560 			*eb_ret = tmp;
1561 			tmp = NULL;
1562 		}
1563 		goto out;
1564 	} else if (p->nowait) {
1565 		ret = -EAGAIN;
1566 		goto out;
1567 	}
1568 
1569 	if (!p->skip_locking) {
1570 		btrfs_unlock_up_safe(p, parent_level + 1);
1571 		ret = -EAGAIN;
1572 	}
1573 
1574 	if (p->reada != READA_NONE)
1575 		reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1576 
1577 	tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1578 	if (IS_ERR(tmp)) {
1579 		ret = PTR_ERR(tmp);
1580 		tmp = NULL;
1581 		goto out;
1582 	}
1583 	read_tmp = true;
1584 
1585 	if (!p->skip_locking) {
1586 		ASSERT(ret == -EAGAIN);
1587 		btrfs_maybe_reset_lockdep_class(root, tmp);
1588 		tmp_locked = true;
1589 		btrfs_tree_read_lock(tmp);
1590 		btrfs_release_path(p);
1591 		path_released = true;
1592 	}
1593 
1594 	/* Now we're allowed to do a blocking uptodate check. */
1595 	ret2 = btrfs_read_extent_buffer(tmp, &check);
1596 	if (ret2) {
1597 		ret = ret2;
1598 		goto out;
1599 	}
1600 
1601 	/*
1602 	 * If the read above didn't mark this buffer up to date,
1603 	 * it will never end up being up to date.  Set ret to EIO now
1604 	 * and give up so that our caller doesn't loop forever
1605 	 * on our EAGAINs.
1606 	 */
1607 	if (unlikely(!extent_buffer_uptodate(tmp))) {
1608 		ret = -EIO;
1609 		goto out;
1610 	}
1611 
1612 	if (ret == 0) {
1613 		ASSERT(!tmp_locked);
1614 		*eb_ret = tmp;
1615 		tmp = NULL;
1616 	}
1617 out:
1618 	if (tmp) {
1619 		if (tmp_locked)
1620 			btrfs_tree_read_unlock(tmp);
1621 		if (read_tmp && ret && ret != -EAGAIN)
1622 			free_extent_buffer_stale(tmp);
1623 		else
1624 			free_extent_buffer(tmp);
1625 	}
1626 	if (ret && !path_released)
1627 		btrfs_release_path(p);
1628 
1629 	return ret;
1630 }
1631 
1632 /*
1633  * helper function for btrfs_search_slot.  This does all of the checks
1634  * for node-level blocks and does any balancing required based on
1635  * the ins_len.
1636  *
1637  * If no extra work was required, zero is returned.  If we had to
1638  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1639  * start over
1640  */
1641 static int
1642 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1643 		       struct btrfs_root *root, struct btrfs_path *p,
1644 		       struct extent_buffer *b, int level, int ins_len,
1645 		       int *write_lock_level)
1646 {
1647 	struct btrfs_fs_info *fs_info = root->fs_info;
1648 	int ret = 0;
1649 
1650 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1651 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1652 
1653 		if (*write_lock_level < level + 1) {
1654 			*write_lock_level = level + 1;
1655 			btrfs_release_path(p);
1656 			return -EAGAIN;
1657 		}
1658 
1659 		reada_for_balance(p, level);
1660 		ret = split_node(trans, root, p, level);
1661 
1662 		b = p->nodes[level];
1663 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1664 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1665 
1666 		if (*write_lock_level < level + 1) {
1667 			*write_lock_level = level + 1;
1668 			btrfs_release_path(p);
1669 			return -EAGAIN;
1670 		}
1671 
1672 		reada_for_balance(p, level);
1673 		ret = balance_level(trans, root, p, level);
1674 		if (ret)
1675 			return ret;
1676 
1677 		b = p->nodes[level];
1678 		if (!b) {
1679 			btrfs_release_path(p);
1680 			return -EAGAIN;
1681 		}
1682 		BUG_ON(btrfs_header_nritems(b) == 1);
1683 	}
1684 	return ret;
1685 }
1686 
1687 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1688 		u64 iobjectid, u64 ioff, u8 key_type,
1689 		struct btrfs_key *found_key)
1690 {
1691 	int ret;
1692 	struct btrfs_key key;
1693 	struct extent_buffer *eb;
1694 
1695 	ASSERT(path);
1696 	ASSERT(found_key);
1697 
1698 	key.type = key_type;
1699 	key.objectid = iobjectid;
1700 	key.offset = ioff;
1701 
1702 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1703 	if (ret < 0)
1704 		return ret;
1705 
1706 	eb = path->nodes[0];
1707 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1708 		ret = btrfs_next_leaf(fs_root, path);
1709 		if (ret)
1710 			return ret;
1711 		eb = path->nodes[0];
1712 	}
1713 
1714 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1715 	if (found_key->type != key.type ||
1716 			found_key->objectid != key.objectid)
1717 		return 1;
1718 
1719 	return 0;
1720 }
1721 
1722 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1723 							struct btrfs_path *p,
1724 							int write_lock_level)
1725 {
1726 	struct extent_buffer *b;
1727 	int root_lock = 0;
1728 	int level = 0;
1729 
1730 	if (p->search_commit_root) {
1731 		b = root->commit_root;
1732 		refcount_inc(&b->refs);
1733 		level = btrfs_header_level(b);
1734 		/*
1735 		 * Ensure that all callers have set skip_locking when
1736 		 * p->search_commit_root is true.
1737 		 */
1738 		ASSERT(p->skip_locking);
1739 
1740 		goto out;
1741 	}
1742 
1743 	if (p->skip_locking) {
1744 		b = btrfs_root_node(root);
1745 		level = btrfs_header_level(b);
1746 		goto out;
1747 	}
1748 
1749 	/* We try very hard to do read locks on the root */
1750 	root_lock = BTRFS_READ_LOCK;
1751 
1752 	/*
1753 	 * If the level is set to maximum, we can skip trying to get the read
1754 	 * lock.
1755 	 */
1756 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1757 		/*
1758 		 * We don't know the level of the root node until we actually
1759 		 * have it read locked
1760 		 */
1761 		if (p->nowait) {
1762 			b = btrfs_try_read_lock_root_node(root);
1763 			if (IS_ERR(b))
1764 				return b;
1765 		} else {
1766 			b = btrfs_read_lock_root_node(root);
1767 		}
1768 		level = btrfs_header_level(b);
1769 		if (level > write_lock_level)
1770 			goto out;
1771 
1772 		/* Whoops, must trade for write lock */
1773 		btrfs_tree_read_unlock(b);
1774 		free_extent_buffer(b);
1775 	}
1776 
1777 	b = btrfs_lock_root_node(root);
1778 	root_lock = BTRFS_WRITE_LOCK;
1779 
1780 	/* The level might have changed, check again */
1781 	level = btrfs_header_level(b);
1782 
1783 out:
1784 	/*
1785 	 * The root may have failed to write out at some point, and thus is no
1786 	 * longer valid, return an error in this case.
1787 	 */
1788 	if (unlikely(!extent_buffer_uptodate(b))) {
1789 		if (root_lock)
1790 			btrfs_tree_unlock_rw(b, root_lock);
1791 		free_extent_buffer(b);
1792 		return ERR_PTR(-EIO);
1793 	}
1794 
1795 	p->nodes[level] = b;
1796 	if (!p->skip_locking)
1797 		p->locks[level] = root_lock;
1798 	/*
1799 	 * Callers are responsible for dropping b's references.
1800 	 */
1801 	return b;
1802 }
1803 
1804 /*
1805  * Replace the extent buffer at the lowest level of the path with a cloned
1806  * version. The purpose is to be able to use it safely, after releasing the
1807  * commit root semaphore, even if relocation is happening in parallel, the
1808  * transaction used for relocation is committed and the extent buffer is
1809  * reallocated in the next transaction.
1810  *
1811  * This is used in a context where the caller does not prevent transaction
1812  * commits from happening, either by holding a transaction handle or holding
1813  * some lock, while it's doing searches through a commit root.
1814  * At the moment it's only used for send operations.
1815  */
1816 static int finish_need_commit_sem_search(struct btrfs_path *path)
1817 {
1818 	const int i = path->lowest_level;
1819 	const int slot = path->slots[i];
1820 	struct extent_buffer *lowest = path->nodes[i];
1821 	struct extent_buffer *clone;
1822 
1823 	ASSERT(path->need_commit_sem);
1824 
1825 	if (!lowest)
1826 		return 0;
1827 
1828 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1829 
1830 	clone = btrfs_clone_extent_buffer(lowest);
1831 	if (!clone)
1832 		return -ENOMEM;
1833 
1834 	btrfs_release_path(path);
1835 	path->nodes[i] = clone;
1836 	path->slots[i] = slot;
1837 
1838 	return 0;
1839 }
1840 
1841 static inline int search_for_key_slot(const struct extent_buffer *eb,
1842 				      int search_low_slot,
1843 				      const struct btrfs_key *key,
1844 				      int prev_cmp,
1845 				      int *slot)
1846 {
1847 	/*
1848 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1849 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1850 	 * always be at slot 0 on lower levels, since each key pointer
1851 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1852 	 * subtree it points to. Thus we can skip searching lower levels.
1853 	 */
1854 	if (prev_cmp == 0) {
1855 		*slot = 0;
1856 		return 0;
1857 	}
1858 
1859 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1860 }
1861 
1862 static int search_leaf(struct btrfs_trans_handle *trans,
1863 		       struct btrfs_root *root,
1864 		       const struct btrfs_key *key,
1865 		       struct btrfs_path *path,
1866 		       int ins_len,
1867 		       int prev_cmp)
1868 {
1869 	struct extent_buffer *leaf = path->nodes[0];
1870 	int leaf_free_space = -1;
1871 	int search_low_slot = 0;
1872 	int ret;
1873 	bool do_bin_search = true;
1874 
1875 	/*
1876 	 * If we are doing an insertion, the leaf has enough free space and the
1877 	 * destination slot for the key is not slot 0, then we can unlock our
1878 	 * write lock on the parent, and any other upper nodes, before doing the
1879 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1880 	 * tasks to lock the parent and any other upper nodes.
1881 	 */
1882 	if (ins_len > 0) {
1883 		/*
1884 		 * Cache the leaf free space, since we will need it later and it
1885 		 * will not change until then.
1886 		 */
1887 		leaf_free_space = btrfs_leaf_free_space(leaf);
1888 
1889 		/*
1890 		 * !path->locks[1] means we have a single node tree, the leaf is
1891 		 * the root of the tree.
1892 		 */
1893 		if (path->locks[1] && leaf_free_space >= ins_len) {
1894 			struct btrfs_disk_key first_key;
1895 
1896 			ASSERT(btrfs_header_nritems(leaf) > 0);
1897 			btrfs_item_key(leaf, &first_key, 0);
1898 
1899 			/*
1900 			 * Doing the extra comparison with the first key is cheap,
1901 			 * taking into account that the first key is very likely
1902 			 * already in a cache line because it immediately follows
1903 			 * the extent buffer's header and we have recently accessed
1904 			 * the header's level field.
1905 			 */
1906 			ret = btrfs_comp_keys(&first_key, key);
1907 			if (ret < 0) {
1908 				/*
1909 				 * The first key is smaller than the key we want
1910 				 * to insert, so we are safe to unlock all upper
1911 				 * nodes and we have to do the binary search.
1912 				 *
1913 				 * We do use btrfs_unlock_up_safe() and not
1914 				 * unlock_up() because the later does not unlock
1915 				 * nodes with a slot of 0 - we can safely unlock
1916 				 * any node even if its slot is 0 since in this
1917 				 * case the key does not end up at slot 0 of the
1918 				 * leaf and there's no need to split the leaf.
1919 				 */
1920 				btrfs_unlock_up_safe(path, 1);
1921 				search_low_slot = 1;
1922 			} else {
1923 				/*
1924 				 * The first key is >= then the key we want to
1925 				 * insert, so we can skip the binary search as
1926 				 * the target key will be at slot 0.
1927 				 *
1928 				 * We can not unlock upper nodes when the key is
1929 				 * less than the first key, because we will need
1930 				 * to update the key at slot 0 of the parent node
1931 				 * and possibly of other upper nodes too.
1932 				 * If the key matches the first key, then we can
1933 				 * unlock all the upper nodes, using
1934 				 * btrfs_unlock_up_safe() instead of unlock_up()
1935 				 * as stated above.
1936 				 */
1937 				if (ret == 0)
1938 					btrfs_unlock_up_safe(path, 1);
1939 				/*
1940 				 * ret is already 0 or 1, matching the result of
1941 				 * a btrfs_bin_search() call, so there is no need
1942 				 * to adjust it.
1943 				 */
1944 				do_bin_search = false;
1945 				path->slots[0] = 0;
1946 			}
1947 		}
1948 	}
1949 
1950 	if (do_bin_search) {
1951 		ret = search_for_key_slot(leaf, search_low_slot, key,
1952 					  prev_cmp, &path->slots[0]);
1953 		if (ret < 0)
1954 			return ret;
1955 	}
1956 
1957 	if (ins_len > 0) {
1958 		/*
1959 		 * Item key already exists. In this case, if we are allowed to
1960 		 * insert the item (for example, in dir_item case, item key
1961 		 * collision is allowed), it will be merged with the original
1962 		 * item. Only the item size grows, no new btrfs item will be
1963 		 * added. If search_for_extension is not set, ins_len already
1964 		 * accounts the size btrfs_item, deduct it here so leaf space
1965 		 * check will be correct.
1966 		 */
1967 		if (ret == 0 && !path->search_for_extension) {
1968 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1969 			ins_len -= sizeof(struct btrfs_item);
1970 		}
1971 
1972 		ASSERT(leaf_free_space >= 0);
1973 
1974 		if (leaf_free_space < ins_len) {
1975 			int ret2;
1976 
1977 			ret2 = split_leaf(trans, root, key, path, ins_len, (ret == 0));
1978 			ASSERT(ret2 <= 0);
1979 			if (WARN_ON(ret2 > 0))
1980 				ret2 = -EUCLEAN;
1981 			if (ret2)
1982 				ret = ret2;
1983 		}
1984 	}
1985 
1986 	return ret;
1987 }
1988 
1989 /*
1990  * Look for a key in a tree and perform necessary modifications to preserve
1991  * tree invariants.
1992  *
1993  * @trans:	Handle of transaction, used when modifying the tree
1994  * @p:		Holds all btree nodes along the search path
1995  * @root:	The root node of the tree
1996  * @key:	The key we are looking for
1997  * @ins_len:	Indicates purpose of search:
1998  *              >0  for inserts it's size of item inserted (*)
1999  *              <0  for deletions
2000  *               0  for plain searches, not modifying the tree
2001  *
2002  *              (*) If size of item inserted doesn't include
2003  *              sizeof(struct btrfs_item), then p->search_for_extension must
2004  *              be set.
2005  * @cow:	boolean should CoW operations be performed. Must always be 1
2006  *		when modifying the tree.
2007  *
2008  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2009  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2010  *
2011  * If @key is found, 0 is returned and you can find the item in the leaf level
2012  * of the path (level 0)
2013  *
2014  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2015  * points to the slot where it should be inserted
2016  *
2017  * If an error is encountered while searching the tree a negative error number
2018  * is returned
2019  */
2020 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2021 		      const struct btrfs_key *key, struct btrfs_path *p,
2022 		      int ins_len, int cow)
2023 {
2024 	struct btrfs_fs_info *fs_info;
2025 	struct extent_buffer *b;
2026 	int slot;
2027 	int ret;
2028 	int level;
2029 	int lowest_unlock = 1;
2030 	/* everything at write_lock_level or lower must be write locked */
2031 	int write_lock_level = 0;
2032 	u8 lowest_level = 0;
2033 	int min_write_lock_level;
2034 	int prev_cmp;
2035 
2036 	if (!root)
2037 		return -EINVAL;
2038 
2039 	fs_info = root->fs_info;
2040 	might_sleep();
2041 
2042 	lowest_level = p->lowest_level;
2043 	WARN_ON(lowest_level && ins_len > 0);
2044 	WARN_ON(p->nodes[0] != NULL);
2045 	BUG_ON(!cow && ins_len);
2046 
2047 	/*
2048 	 * For now only allow nowait for read only operations.  There's no
2049 	 * strict reason why we can't, we just only need it for reads so it's
2050 	 * only implemented for reads.
2051 	 */
2052 	ASSERT(!p->nowait || !cow);
2053 
2054 	if (ins_len < 0) {
2055 		lowest_unlock = 2;
2056 
2057 		/* when we are removing items, we might have to go up to level
2058 		 * two as we update tree pointers  Make sure we keep write
2059 		 * for those levels as well
2060 		 */
2061 		write_lock_level = 2;
2062 	} else if (ins_len > 0) {
2063 		/*
2064 		 * for inserting items, make sure we have a write lock on
2065 		 * level 1 so we can update keys
2066 		 */
2067 		write_lock_level = 1;
2068 	}
2069 
2070 	if (!cow)
2071 		write_lock_level = -1;
2072 
2073 	if (cow && (p->keep_locks || p->lowest_level))
2074 		write_lock_level = BTRFS_MAX_LEVEL;
2075 
2076 	min_write_lock_level = write_lock_level;
2077 
2078 	if (p->need_commit_sem) {
2079 		ASSERT(p->search_commit_root);
2080 		if (p->nowait) {
2081 			if (!down_read_trylock(&fs_info->commit_root_sem))
2082 				return -EAGAIN;
2083 		} else {
2084 			down_read(&fs_info->commit_root_sem);
2085 		}
2086 	}
2087 
2088 again:
2089 	prev_cmp = -1;
2090 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2091 	if (IS_ERR(b)) {
2092 		ret = PTR_ERR(b);
2093 		goto done;
2094 	}
2095 
2096 	while (b) {
2097 		int dec = 0;
2098 		int ret2;
2099 
2100 		level = btrfs_header_level(b);
2101 
2102 		if (cow) {
2103 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2104 
2105 			/*
2106 			 * if we don't really need to cow this block
2107 			 * then we don't want to set the path blocking,
2108 			 * so we test it here
2109 			 */
2110 			if (!should_cow_block(trans, root, b))
2111 				goto cow_done;
2112 
2113 			/*
2114 			 * must have write locks on this node and the
2115 			 * parent
2116 			 */
2117 			if (level > write_lock_level ||
2118 			    (level + 1 > write_lock_level &&
2119 			    level + 1 < BTRFS_MAX_LEVEL &&
2120 			    p->nodes[level + 1])) {
2121 				write_lock_level = level + 1;
2122 				btrfs_release_path(p);
2123 				goto again;
2124 			}
2125 
2126 			if (last_level)
2127 				ret2 = btrfs_cow_block(trans, root, b, NULL, 0,
2128 						       &b, BTRFS_NESTING_COW);
2129 			else
2130 				ret2 = btrfs_cow_block(trans, root, b,
2131 						       p->nodes[level + 1],
2132 						       p->slots[level + 1], &b,
2133 						       BTRFS_NESTING_COW);
2134 			if (ret2) {
2135 				ret = ret2;
2136 				goto done;
2137 			}
2138 		}
2139 cow_done:
2140 		p->nodes[level] = b;
2141 
2142 		/*
2143 		 * we have a lock on b and as long as we aren't changing
2144 		 * the tree, there is no way to for the items in b to change.
2145 		 * It is safe to drop the lock on our parent before we
2146 		 * go through the expensive btree search on b.
2147 		 *
2148 		 * If we're inserting or deleting (ins_len != 0), then we might
2149 		 * be changing slot zero, which may require changing the parent.
2150 		 * So, we can't drop the lock until after we know which slot
2151 		 * we're operating on.
2152 		 */
2153 		if (!ins_len && !p->keep_locks) {
2154 			int u = level + 1;
2155 
2156 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2157 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2158 				p->locks[u] = 0;
2159 			}
2160 		}
2161 
2162 		if (level == 0) {
2163 			if (ins_len > 0)
2164 				ASSERT(write_lock_level >= 1);
2165 
2166 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2167 			if (!p->search_for_split)
2168 				unlock_up(p, level, lowest_unlock,
2169 					  min_write_lock_level, NULL);
2170 			goto done;
2171 		}
2172 
2173 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2174 		if (ret < 0)
2175 			goto done;
2176 		prev_cmp = ret;
2177 
2178 		if (ret && slot > 0) {
2179 			dec = 1;
2180 			slot--;
2181 		}
2182 		p->slots[level] = slot;
2183 		ret2 = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2184 					      &write_lock_level);
2185 		if (ret2 == -EAGAIN)
2186 			goto again;
2187 		if (ret2) {
2188 			ret = ret2;
2189 			goto done;
2190 		}
2191 		b = p->nodes[level];
2192 		slot = p->slots[level];
2193 
2194 		/*
2195 		 * Slot 0 is special, if we change the key we have to update
2196 		 * the parent pointer which means we must have a write lock on
2197 		 * the parent
2198 		 */
2199 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2200 			write_lock_level = level + 1;
2201 			btrfs_release_path(p);
2202 			goto again;
2203 		}
2204 
2205 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2206 			  &write_lock_level);
2207 
2208 		if (level == lowest_level) {
2209 			if (dec)
2210 				p->slots[level]++;
2211 			goto done;
2212 		}
2213 
2214 		ret2 = read_block_for_search(root, p, &b, slot, key);
2215 		if (ret2 == -EAGAIN && !p->nowait)
2216 			goto again;
2217 		if (ret2) {
2218 			ret = ret2;
2219 			goto done;
2220 		}
2221 
2222 		if (!p->skip_locking) {
2223 			level = btrfs_header_level(b);
2224 
2225 			btrfs_maybe_reset_lockdep_class(root, b);
2226 
2227 			if (level <= write_lock_level) {
2228 				btrfs_tree_lock(b);
2229 				p->locks[level] = BTRFS_WRITE_LOCK;
2230 			} else {
2231 				if (p->nowait) {
2232 					if (!btrfs_try_tree_read_lock(b)) {
2233 						free_extent_buffer(b);
2234 						ret = -EAGAIN;
2235 						goto done;
2236 					}
2237 				} else {
2238 					btrfs_tree_read_lock(b);
2239 				}
2240 				p->locks[level] = BTRFS_READ_LOCK;
2241 			}
2242 			p->nodes[level] = b;
2243 		}
2244 	}
2245 	ret = 1;
2246 done:
2247 	if (ret < 0 && !p->skip_release_on_error)
2248 		btrfs_release_path(p);
2249 
2250 	if (p->need_commit_sem) {
2251 		int ret2;
2252 
2253 		ret2 = finish_need_commit_sem_search(p);
2254 		up_read(&fs_info->commit_root_sem);
2255 		if (ret2)
2256 			ret = ret2;
2257 	}
2258 
2259 	return ret;
2260 }
2261 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2262 
2263 /*
2264  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2265  * current state of the tree together with the operations recorded in the tree
2266  * modification log to search for the key in a previous version of this tree, as
2267  * denoted by the time_seq parameter.
2268  *
2269  * Naturally, there is no support for insert, delete or cow operations.
2270  *
2271  * The resulting path and return value will be set up as if we called
2272  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2273  */
2274 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2275 			  struct btrfs_path *p, u64 time_seq)
2276 {
2277 	struct btrfs_fs_info *fs_info = root->fs_info;
2278 	struct extent_buffer *b;
2279 	int slot;
2280 	int ret;
2281 	int level;
2282 	int lowest_unlock = 1;
2283 	u8 lowest_level = 0;
2284 
2285 	lowest_level = p->lowest_level;
2286 	WARN_ON(p->nodes[0] != NULL);
2287 	ASSERT(!p->nowait);
2288 
2289 	if (p->search_commit_root) {
2290 		BUG_ON(time_seq);
2291 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2292 	}
2293 
2294 again:
2295 	b = btrfs_get_old_root(root, time_seq);
2296 	if (unlikely(!b)) {
2297 		ret = -EIO;
2298 		goto done;
2299 	}
2300 	level = btrfs_header_level(b);
2301 	p->locks[level] = BTRFS_READ_LOCK;
2302 
2303 	while (b) {
2304 		int dec = 0;
2305 		int ret2;
2306 
2307 		level = btrfs_header_level(b);
2308 		p->nodes[level] = b;
2309 
2310 		/*
2311 		 * we have a lock on b and as long as we aren't changing
2312 		 * the tree, there is no way to for the items in b to change.
2313 		 * It is safe to drop the lock on our parent before we
2314 		 * go through the expensive btree search on b.
2315 		 */
2316 		btrfs_unlock_up_safe(p, level + 1);
2317 
2318 		ret = btrfs_bin_search(b, 0, key, &slot);
2319 		if (ret < 0)
2320 			goto done;
2321 
2322 		if (level == 0) {
2323 			p->slots[level] = slot;
2324 			unlock_up(p, level, lowest_unlock, 0, NULL);
2325 			goto done;
2326 		}
2327 
2328 		if (ret && slot > 0) {
2329 			dec = 1;
2330 			slot--;
2331 		}
2332 		p->slots[level] = slot;
2333 		unlock_up(p, level, lowest_unlock, 0, NULL);
2334 
2335 		if (level == lowest_level) {
2336 			if (dec)
2337 				p->slots[level]++;
2338 			goto done;
2339 		}
2340 
2341 		ret2 = read_block_for_search(root, p, &b, slot, key);
2342 		if (ret2 == -EAGAIN && !p->nowait)
2343 			goto again;
2344 		if (ret2) {
2345 			ret = ret2;
2346 			goto done;
2347 		}
2348 
2349 		level = btrfs_header_level(b);
2350 		btrfs_tree_read_lock(b);
2351 		b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2352 		if (!b) {
2353 			ret = -ENOMEM;
2354 			goto done;
2355 		}
2356 		p->locks[level] = BTRFS_READ_LOCK;
2357 		p->nodes[level] = b;
2358 	}
2359 	ret = 1;
2360 done:
2361 	if (ret < 0)
2362 		btrfs_release_path(p);
2363 
2364 	return ret;
2365 }
2366 
2367 /*
2368  * Search the tree again to find a leaf with smaller keys.
2369  * Returns 0 if it found something.
2370  * Returns 1 if there are no smaller keys.
2371  * Returns < 0 on error.
2372  *
2373  * This may release the path, and so you may lose any locks held at the
2374  * time you call it.
2375  */
2376 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2377 {
2378 	struct btrfs_key key;
2379 	struct btrfs_key orig_key;
2380 	struct btrfs_disk_key found_key;
2381 	int ret;
2382 
2383 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2384 	orig_key = key;
2385 
2386 	if (key.offset > 0) {
2387 		key.offset--;
2388 	} else if (key.type > 0) {
2389 		key.type--;
2390 		key.offset = (u64)-1;
2391 	} else if (key.objectid > 0) {
2392 		key.objectid--;
2393 		key.type = (u8)-1;
2394 		key.offset = (u64)-1;
2395 	} else {
2396 		return 1;
2397 	}
2398 
2399 	btrfs_release_path(path);
2400 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2401 	if (ret <= 0)
2402 		return ret;
2403 
2404 	/*
2405 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2406 	 * before releasing the path and calling btrfs_search_slot(), we now may
2407 	 * be in a slot pointing to the same original key - this can happen if
2408 	 * after we released the path, one of more items were moved from a
2409 	 * sibling leaf into the front of the leaf we had due to an insertion
2410 	 * (see push_leaf_right()).
2411 	 * If we hit this case and our slot is > 0 and just decrement the slot
2412 	 * so that the caller does not process the same key again, which may or
2413 	 * may not break the caller, depending on its logic.
2414 	 */
2415 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2416 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2417 		ret = btrfs_comp_keys(&found_key, &orig_key);
2418 		if (ret == 0) {
2419 			if (path->slots[0] > 0) {
2420 				path->slots[0]--;
2421 				return 0;
2422 			}
2423 			/*
2424 			 * At slot 0, same key as before, it means orig_key is
2425 			 * the lowest, leftmost, key in the tree. We're done.
2426 			 */
2427 			return 1;
2428 		}
2429 	}
2430 
2431 	btrfs_item_key(path->nodes[0], &found_key, 0);
2432 	ret = btrfs_comp_keys(&found_key, &key);
2433 	/*
2434 	 * We might have had an item with the previous key in the tree right
2435 	 * before we released our path. And after we released our path, that
2436 	 * item might have been pushed to the first slot (0) of the leaf we
2437 	 * were holding due to a tree balance. Alternatively, an item with the
2438 	 * previous key can exist as the only element of a leaf (big fat item).
2439 	 * Therefore account for these 2 cases, so that our callers (like
2440 	 * btrfs_previous_item) don't miss an existing item with a key matching
2441 	 * the previous key we computed above.
2442 	 */
2443 	if (ret <= 0)
2444 		return 0;
2445 	return 1;
2446 }
2447 
2448 /*
2449  * helper to use instead of search slot if no exact match is needed but
2450  * instead the next or previous item should be returned.
2451  * When find_higher is true, the next higher item is returned, the next lower
2452  * otherwise.
2453  * When return_any and find_higher are both true, and no higher item is found,
2454  * return the next lower instead.
2455  * When return_any is true and find_higher is false, and no lower item is found,
2456  * return the next higher instead.
2457  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2458  * < 0 on error
2459  */
2460 int btrfs_search_slot_for_read(struct btrfs_root *root,
2461 			       const struct btrfs_key *key,
2462 			       struct btrfs_path *p, int find_higher,
2463 			       int return_any)
2464 {
2465 	int ret;
2466 	struct extent_buffer *leaf;
2467 
2468 again:
2469 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2470 	if (ret <= 0)
2471 		return ret;
2472 	/*
2473 	 * a return value of 1 means the path is at the position where the
2474 	 * item should be inserted. Normally this is the next bigger item,
2475 	 * but in case the previous item is the last in a leaf, path points
2476 	 * to the first free slot in the previous leaf, i.e. at an invalid
2477 	 * item.
2478 	 */
2479 	leaf = p->nodes[0];
2480 
2481 	if (find_higher) {
2482 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2483 			ret = btrfs_next_leaf(root, p);
2484 			if (ret <= 0)
2485 				return ret;
2486 			if (!return_any)
2487 				return 1;
2488 			/*
2489 			 * no higher item found, return the next
2490 			 * lower instead
2491 			 */
2492 			return_any = 0;
2493 			find_higher = 0;
2494 			btrfs_release_path(p);
2495 			goto again;
2496 		}
2497 	} else {
2498 		if (p->slots[0] == 0) {
2499 			ret = btrfs_prev_leaf(root, p);
2500 			if (ret < 0)
2501 				return ret;
2502 			if (!ret) {
2503 				leaf = p->nodes[0];
2504 				if (p->slots[0] == btrfs_header_nritems(leaf))
2505 					p->slots[0]--;
2506 				return 0;
2507 			}
2508 			if (!return_any)
2509 				return 1;
2510 			/*
2511 			 * no lower item found, return the next
2512 			 * higher instead
2513 			 */
2514 			return_any = 0;
2515 			find_higher = 1;
2516 			btrfs_release_path(p);
2517 			goto again;
2518 		} else {
2519 			--p->slots[0];
2520 		}
2521 	}
2522 	return 0;
2523 }
2524 
2525 /*
2526  * Execute search and call btrfs_previous_item to traverse backwards if the item
2527  * was not found.
2528  *
2529  * Return 0 if found, 1 if not found and < 0 if error.
2530  */
2531 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2532 			   struct btrfs_path *path)
2533 {
2534 	int ret;
2535 
2536 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2537 	if (ret > 0)
2538 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2539 
2540 	if (ret == 0)
2541 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2542 
2543 	return ret;
2544 }
2545 
2546 /*
2547  * Search for a valid slot for the given path.
2548  *
2549  * @root:	The root node of the tree.
2550  * @key:	Will contain a valid item if found.
2551  * @path:	The starting point to validate the slot.
2552  *
2553  * Return: 0  if the item is valid
2554  *         1  if not found
2555  *         <0 if error.
2556  */
2557 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2558 			      struct btrfs_path *path)
2559 {
2560 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2561 		int ret;
2562 
2563 		ret = btrfs_next_leaf(root, path);
2564 		if (ret)
2565 			return ret;
2566 	}
2567 
2568 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2569 	return 0;
2570 }
2571 
2572 /*
2573  * adjust the pointers going up the tree, starting at level
2574  * making sure the right key of each node is points to 'key'.
2575  * This is used after shifting pointers to the left, so it stops
2576  * fixing up pointers when a given leaf/node is not in slot 0 of the
2577  * higher levels
2578  *
2579  */
2580 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2581 			   const struct btrfs_path *path,
2582 			   const struct btrfs_disk_key *key, int level)
2583 {
2584 	int i;
2585 	struct extent_buffer *t;
2586 	int ret;
2587 
2588 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2589 		int tslot = path->slots[i];
2590 
2591 		if (!path->nodes[i])
2592 			break;
2593 		t = path->nodes[i];
2594 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2595 						    BTRFS_MOD_LOG_KEY_REPLACE);
2596 		BUG_ON(ret < 0);
2597 		btrfs_set_node_key(t, key, tslot);
2598 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2599 		if (tslot != 0)
2600 			break;
2601 	}
2602 }
2603 
2604 /*
2605  * update item key.
2606  *
2607  * This function isn't completely safe. It's the caller's responsibility
2608  * that the new key won't break the order
2609  */
2610 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2611 			     const struct btrfs_path *path,
2612 			     const struct btrfs_key *new_key)
2613 {
2614 	struct btrfs_fs_info *fs_info = trans->fs_info;
2615 	struct btrfs_disk_key disk_key;
2616 	struct extent_buffer *eb;
2617 	int slot;
2618 
2619 	eb = path->nodes[0];
2620 	slot = path->slots[0];
2621 	if (slot > 0) {
2622 		btrfs_item_key(eb, &disk_key, slot - 1);
2623 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2624 			btrfs_print_leaf(eb);
2625 			btrfs_crit(fs_info,
2626 		"slot %u key " BTRFS_KEY_FMT " new key " BTRFS_KEY_FMT,
2627 				   slot, btrfs_disk_key_objectid(&disk_key),
2628 				   btrfs_disk_key_type(&disk_key),
2629 				   btrfs_disk_key_offset(&disk_key),
2630 				   BTRFS_KEY_FMT_VALUE(new_key));
2631 			BUG();
2632 		}
2633 	}
2634 	if (slot < btrfs_header_nritems(eb) - 1) {
2635 		btrfs_item_key(eb, &disk_key, slot + 1);
2636 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2637 			btrfs_print_leaf(eb);
2638 			btrfs_crit(fs_info,
2639 		"slot %u key " BTRFS_KEY_FMT " new key " BTRFS_KEY_FMT,
2640 				   slot, btrfs_disk_key_objectid(&disk_key),
2641 				   btrfs_disk_key_type(&disk_key),
2642 				   btrfs_disk_key_offset(&disk_key),
2643 				   BTRFS_KEY_FMT_VALUE(new_key));
2644 			BUG();
2645 		}
2646 	}
2647 
2648 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2649 	btrfs_set_item_key(eb, &disk_key, slot);
2650 	btrfs_mark_buffer_dirty(trans, eb);
2651 	if (slot == 0)
2652 		fixup_low_keys(trans, path, &disk_key, 1);
2653 }
2654 
2655 /*
2656  * Check key order of two sibling extent buffers.
2657  *
2658  * Return true if something is wrong.
2659  * Return false if everything is fine.
2660  *
2661  * Tree-checker only works inside one tree block, thus the following
2662  * corruption can not be detected by tree-checker:
2663  *
2664  * Leaf @left			| Leaf @right
2665  * --------------------------------------------------------------
2666  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2667  *
2668  * Key f6 in leaf @left itself is valid, but not valid when the next
2669  * key in leaf @right is 7.
2670  * This can only be checked at tree block merge time.
2671  * And since tree checker has ensured all key order in each tree block
2672  * is correct, we only need to bother the last key of @left and the first
2673  * key of @right.
2674  */
2675 static bool check_sibling_keys(const struct extent_buffer *left,
2676 			       const struct extent_buffer *right)
2677 {
2678 	struct btrfs_key left_last;
2679 	struct btrfs_key right_first;
2680 	int level = btrfs_header_level(left);
2681 	int nr_left = btrfs_header_nritems(left);
2682 	int nr_right = btrfs_header_nritems(right);
2683 
2684 	/* No key to check in one of the tree blocks */
2685 	if (!nr_left || !nr_right)
2686 		return false;
2687 
2688 	if (level) {
2689 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2690 		btrfs_node_key_to_cpu(right, &right_first, 0);
2691 	} else {
2692 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2693 		btrfs_item_key_to_cpu(right, &right_first, 0);
2694 	}
2695 
2696 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2697 		btrfs_crit(left->fs_info, "left extent buffer:");
2698 		btrfs_print_tree(left, false);
2699 		btrfs_crit(left->fs_info, "right extent buffer:");
2700 		btrfs_print_tree(right, false);
2701 		btrfs_crit(left->fs_info,
2702 "bad key order, sibling blocks, left last " BTRFS_KEY_FMT " right first " BTRFS_KEY_FMT,
2703 			   BTRFS_KEY_FMT_VALUE(&left_last),
2704 			   BTRFS_KEY_FMT_VALUE(&right_first));
2705 		return true;
2706 	}
2707 	return false;
2708 }
2709 
2710 /*
2711  * try to push data from one node into the next node left in the
2712  * tree.
2713  *
2714  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2715  * error, and > 0 if there was no room in the left hand block.
2716  */
2717 static int push_node_left(struct btrfs_trans_handle *trans,
2718 			  struct extent_buffer *dst,
2719 			  struct extent_buffer *src, bool empty)
2720 {
2721 	struct btrfs_fs_info *fs_info = trans->fs_info;
2722 	int push_items = 0;
2723 	int src_nritems;
2724 	int dst_nritems;
2725 	int ret = 0;
2726 
2727 	src_nritems = btrfs_header_nritems(src);
2728 	dst_nritems = btrfs_header_nritems(dst);
2729 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2730 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2731 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2732 
2733 	if (!empty && src_nritems <= 8)
2734 		return 1;
2735 
2736 	if (push_items <= 0)
2737 		return 1;
2738 
2739 	if (empty) {
2740 		push_items = min(src_nritems, push_items);
2741 		if (push_items < src_nritems) {
2742 			/* leave at least 8 pointers in the node if
2743 			 * we aren't going to empty it
2744 			 */
2745 			if (src_nritems - push_items < 8) {
2746 				if (push_items <= 8)
2747 					return 1;
2748 				push_items -= 8;
2749 			}
2750 		}
2751 	} else
2752 		push_items = min(src_nritems - 8, push_items);
2753 
2754 	/* dst is the left eb, src is the middle eb */
2755 	if (unlikely(check_sibling_keys(dst, src))) {
2756 		ret = -EUCLEAN;
2757 		btrfs_abort_transaction(trans, ret);
2758 		return ret;
2759 	}
2760 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2761 	if (unlikely(ret)) {
2762 		btrfs_abort_transaction(trans, ret);
2763 		return ret;
2764 	}
2765 	copy_extent_buffer(dst, src,
2766 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2767 			   btrfs_node_key_ptr_offset(src, 0),
2768 			   push_items * sizeof(struct btrfs_key_ptr));
2769 
2770 	if (push_items < src_nritems) {
2771 		/*
2772 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2773 		 * don't need to do an explicit tree mod log operation for it.
2774 		 */
2775 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2776 				      btrfs_node_key_ptr_offset(src, push_items),
2777 				      (src_nritems - push_items) *
2778 				      sizeof(struct btrfs_key_ptr));
2779 	}
2780 	btrfs_set_header_nritems(src, src_nritems - push_items);
2781 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2782 	btrfs_mark_buffer_dirty(trans, src);
2783 	btrfs_mark_buffer_dirty(trans, dst);
2784 
2785 	return ret;
2786 }
2787 
2788 /*
2789  * try to push data from one node into the next node right in the
2790  * tree.
2791  *
2792  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2793  * error, and > 0 if there was no room in the right hand block.
2794  *
2795  * this will  only push up to 1/2 the contents of the left node over
2796  */
2797 static int balance_node_right(struct btrfs_trans_handle *trans,
2798 			      struct extent_buffer *dst,
2799 			      struct extent_buffer *src)
2800 {
2801 	struct btrfs_fs_info *fs_info = trans->fs_info;
2802 	int push_items = 0;
2803 	int max_push;
2804 	int src_nritems;
2805 	int dst_nritems;
2806 	int ret = 0;
2807 
2808 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2809 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2810 
2811 	src_nritems = btrfs_header_nritems(src);
2812 	dst_nritems = btrfs_header_nritems(dst);
2813 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2814 	if (push_items <= 0)
2815 		return 1;
2816 
2817 	if (src_nritems < 4)
2818 		return 1;
2819 
2820 	max_push = src_nritems / 2 + 1;
2821 	/* don't try to empty the node */
2822 	if (max_push >= src_nritems)
2823 		return 1;
2824 
2825 	if (max_push < push_items)
2826 		push_items = max_push;
2827 
2828 	/* dst is the right eb, src is the middle eb */
2829 	if (unlikely(check_sibling_keys(src, dst))) {
2830 		ret = -EUCLEAN;
2831 		btrfs_abort_transaction(trans, ret);
2832 		return ret;
2833 	}
2834 
2835 	/*
2836 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2837 	 * need to do an explicit tree mod log operation for it.
2838 	 */
2839 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2840 				      btrfs_node_key_ptr_offset(dst, 0),
2841 				      (dst_nritems) *
2842 				      sizeof(struct btrfs_key_ptr));
2843 
2844 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2845 					 push_items);
2846 	if (unlikely(ret)) {
2847 		btrfs_abort_transaction(trans, ret);
2848 		return ret;
2849 	}
2850 	copy_extent_buffer(dst, src,
2851 			   btrfs_node_key_ptr_offset(dst, 0),
2852 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2853 			   push_items * sizeof(struct btrfs_key_ptr));
2854 
2855 	btrfs_set_header_nritems(src, src_nritems - push_items);
2856 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2857 
2858 	btrfs_mark_buffer_dirty(trans, src);
2859 	btrfs_mark_buffer_dirty(trans, dst);
2860 
2861 	return ret;
2862 }
2863 
2864 /*
2865  * helper function to insert a new root level in the tree.
2866  * A new node is allocated, and a single item is inserted to
2867  * point to the existing root
2868  *
2869  * returns zero on success or < 0 on failure.
2870  */
2871 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2872 			   struct btrfs_root *root,
2873 			   struct btrfs_path *path, int level)
2874 {
2875 	u64 lower_gen;
2876 	struct extent_buffer *lower;
2877 	struct extent_buffer *c;
2878 	struct extent_buffer *old;
2879 	struct btrfs_disk_key lower_key;
2880 	int ret;
2881 
2882 	BUG_ON(path->nodes[level]);
2883 	BUG_ON(path->nodes[level-1] != root->node);
2884 
2885 	lower = path->nodes[level-1];
2886 	if (level == 1)
2887 		btrfs_item_key(lower, &lower_key, 0);
2888 	else
2889 		btrfs_node_key(lower, &lower_key, 0);
2890 
2891 	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2892 				   &lower_key, level, root->node->start, 0,
2893 				   0, BTRFS_NESTING_NEW_ROOT);
2894 	if (IS_ERR(c))
2895 		return PTR_ERR(c);
2896 
2897 	root_add_used_bytes(root);
2898 
2899 	btrfs_set_header_nritems(c, 1);
2900 	btrfs_set_node_key(c, &lower_key, 0);
2901 	btrfs_set_node_blockptr(c, 0, lower->start);
2902 	lower_gen = btrfs_header_generation(lower);
2903 	WARN_ON(lower_gen != trans->transid);
2904 
2905 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2906 
2907 	btrfs_mark_buffer_dirty(trans, c);
2908 
2909 	old = root->node;
2910 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2911 	if (ret < 0) {
2912 		int ret2;
2913 
2914 		btrfs_clear_buffer_dirty(trans, c);
2915 		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2916 		if (unlikely(ret2 < 0))
2917 			btrfs_abort_transaction(trans, ret2);
2918 		btrfs_tree_unlock(c);
2919 		free_extent_buffer(c);
2920 		return ret;
2921 	}
2922 	rcu_assign_pointer(root->node, c);
2923 
2924 	/* the super has an extra ref to root->node */
2925 	free_extent_buffer(old);
2926 
2927 	add_root_to_dirty_list(root);
2928 	refcount_inc(&c->refs);
2929 	path->nodes[level] = c;
2930 	path->locks[level] = BTRFS_WRITE_LOCK;
2931 	path->slots[level] = 0;
2932 	return 0;
2933 }
2934 
2935 /*
2936  * worker function to insert a single pointer in a node.
2937  * the node should have enough room for the pointer already
2938  *
2939  * slot and level indicate where you want the key to go, and
2940  * blocknr is the block the key points to.
2941  */
2942 static int insert_ptr(struct btrfs_trans_handle *trans,
2943 		      const struct btrfs_path *path,
2944 		      const struct btrfs_disk_key *key, u64 bytenr,
2945 		      int slot, int level)
2946 {
2947 	struct extent_buffer *lower;
2948 	int nritems;
2949 	int ret;
2950 
2951 	BUG_ON(!path->nodes[level]);
2952 	btrfs_assert_tree_write_locked(path->nodes[level]);
2953 	lower = path->nodes[level];
2954 	nritems = btrfs_header_nritems(lower);
2955 	BUG_ON(slot > nritems);
2956 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2957 	if (slot != nritems) {
2958 		if (level) {
2959 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2960 					slot, nritems - slot);
2961 			if (unlikely(ret < 0)) {
2962 				btrfs_abort_transaction(trans, ret);
2963 				return ret;
2964 			}
2965 		}
2966 		memmove_extent_buffer(lower,
2967 			      btrfs_node_key_ptr_offset(lower, slot + 1),
2968 			      btrfs_node_key_ptr_offset(lower, slot),
2969 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2970 	}
2971 	if (level) {
2972 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2973 						    BTRFS_MOD_LOG_KEY_ADD);
2974 		if (unlikely(ret < 0)) {
2975 			btrfs_abort_transaction(trans, ret);
2976 			return ret;
2977 		}
2978 	}
2979 	btrfs_set_node_key(lower, key, slot);
2980 	btrfs_set_node_blockptr(lower, slot, bytenr);
2981 	WARN_ON(trans->transid == 0);
2982 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2983 	btrfs_set_header_nritems(lower, nritems + 1);
2984 	btrfs_mark_buffer_dirty(trans, lower);
2985 
2986 	return 0;
2987 }
2988 
2989 /*
2990  * split the node at the specified level in path in two.
2991  * The path is corrected to point to the appropriate node after the split
2992  *
2993  * Before splitting this tries to make some room in the node by pushing
2994  * left and right, if either one works, it returns right away.
2995  *
2996  * returns 0 on success and < 0 on failure
2997  */
2998 static noinline int split_node(struct btrfs_trans_handle *trans,
2999 			       struct btrfs_root *root,
3000 			       struct btrfs_path *path, int level)
3001 {
3002 	struct btrfs_fs_info *fs_info = root->fs_info;
3003 	struct extent_buffer *c;
3004 	struct extent_buffer *split;
3005 	struct btrfs_disk_key disk_key;
3006 	int mid;
3007 	int ret;
3008 	u32 c_nritems;
3009 
3010 	c = path->nodes[level];
3011 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3012 	if (c == root->node) {
3013 		/*
3014 		 * trying to split the root, lets make a new one
3015 		 *
3016 		 * tree mod log: We don't log_removal old root in
3017 		 * insert_new_root, because that root buffer will be kept as a
3018 		 * normal node. We are going to log removal of half of the
3019 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3020 		 * holding a tree lock on the buffer, which is why we cannot
3021 		 * race with other tree_mod_log users.
3022 		 */
3023 		ret = insert_new_root(trans, root, path, level + 1);
3024 		if (ret)
3025 			return ret;
3026 	} else {
3027 		ret = push_nodes_for_insert(trans, root, path, level);
3028 		c = path->nodes[level];
3029 		if (!ret && btrfs_header_nritems(c) <
3030 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3031 			return 0;
3032 		if (ret < 0)
3033 			return ret;
3034 	}
3035 
3036 	c_nritems = btrfs_header_nritems(c);
3037 	mid = (c_nritems + 1) / 2;
3038 	btrfs_node_key(c, &disk_key, mid);
3039 
3040 	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3041 				       &disk_key, level, c->start, 0,
3042 				       0, BTRFS_NESTING_SPLIT);
3043 	if (IS_ERR(split))
3044 		return PTR_ERR(split);
3045 
3046 	root_add_used_bytes(root);
3047 	ASSERT(btrfs_header_level(c) == level);
3048 
3049 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3050 	if (unlikely(ret)) {
3051 		btrfs_tree_unlock(split);
3052 		free_extent_buffer(split);
3053 		btrfs_abort_transaction(trans, ret);
3054 		return ret;
3055 	}
3056 	copy_extent_buffer(split, c,
3057 			   btrfs_node_key_ptr_offset(split, 0),
3058 			   btrfs_node_key_ptr_offset(c, mid),
3059 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3060 	btrfs_set_header_nritems(split, c_nritems - mid);
3061 	btrfs_set_header_nritems(c, mid);
3062 
3063 	btrfs_mark_buffer_dirty(trans, c);
3064 	btrfs_mark_buffer_dirty(trans, split);
3065 
3066 	ret = insert_ptr(trans, path, &disk_key, split->start,
3067 			 path->slots[level + 1] + 1, level + 1);
3068 	if (ret < 0) {
3069 		btrfs_tree_unlock(split);
3070 		free_extent_buffer(split);
3071 		return ret;
3072 	}
3073 
3074 	if (path->slots[level] >= mid) {
3075 		path->slots[level] -= mid;
3076 		btrfs_tree_unlock(c);
3077 		free_extent_buffer(c);
3078 		path->nodes[level] = split;
3079 		path->slots[level + 1] += 1;
3080 	} else {
3081 		btrfs_tree_unlock(split);
3082 		free_extent_buffer(split);
3083 	}
3084 	return 0;
3085 }
3086 
3087 /*
3088  * how many bytes are required to store the items in a leaf.  start
3089  * and nr indicate which items in the leaf to check.  This totals up the
3090  * space used both by the item structs and the item data
3091  */
3092 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3093 {
3094 	int data_len;
3095 	int nritems = btrfs_header_nritems(l);
3096 	int end = min(nritems, start + nr) - 1;
3097 
3098 	if (!nr)
3099 		return 0;
3100 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3101 	data_len = data_len - btrfs_item_offset(l, end);
3102 	data_len += sizeof(struct btrfs_item) * nr;
3103 	WARN_ON(data_len < 0);
3104 	return data_len;
3105 }
3106 
3107 /*
3108  * The space between the end of the leaf items and
3109  * the start of the leaf data.  IOW, how much room
3110  * the leaf has left for both items and data
3111  */
3112 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3113 {
3114 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3115 	int nritems = btrfs_header_nritems(leaf);
3116 	int ret;
3117 
3118 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3119 	if (unlikely(ret < 0)) {
3120 		btrfs_crit(fs_info,
3121 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3122 			   ret,
3123 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3124 			   leaf_space_used(leaf, 0, nritems), nritems);
3125 	}
3126 	return ret;
3127 }
3128 
3129 /*
3130  * min slot controls the lowest index we're willing to push to the
3131  * right.  We'll push up to and including min_slot, but no lower
3132  */
3133 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3134 				      struct btrfs_path *path,
3135 				      int data_size, bool empty,
3136 				      struct extent_buffer *right,
3137 				      int free_space, u32 left_nritems,
3138 				      u32 min_slot)
3139 {
3140 	struct btrfs_fs_info *fs_info = right->fs_info;
3141 	struct extent_buffer *left = path->nodes[0];
3142 	struct extent_buffer *upper = path->nodes[1];
3143 	struct btrfs_disk_key disk_key;
3144 	int slot;
3145 	u32 i;
3146 	int push_space = 0;
3147 	int push_items = 0;
3148 	u32 nr;
3149 	u32 right_nritems;
3150 	u32 data_end;
3151 	u32 this_item_size;
3152 
3153 	if (empty)
3154 		nr = 0;
3155 	else
3156 		nr = max_t(u32, 1, min_slot);
3157 
3158 	if (path->slots[0] >= left_nritems)
3159 		push_space += data_size;
3160 
3161 	slot = path->slots[1];
3162 	i = left_nritems - 1;
3163 	while (i >= nr) {
3164 		if (!empty && push_items > 0) {
3165 			if (path->slots[0] > i)
3166 				break;
3167 			if (path->slots[0] == i) {
3168 				int space = btrfs_leaf_free_space(left);
3169 
3170 				if (space + push_space * 2 > free_space)
3171 					break;
3172 			}
3173 		}
3174 
3175 		if (path->slots[0] == i)
3176 			push_space += data_size;
3177 
3178 		this_item_size = btrfs_item_size(left, i);
3179 		if (this_item_size + sizeof(struct btrfs_item) +
3180 		    push_space > free_space)
3181 			break;
3182 
3183 		push_items++;
3184 		push_space += this_item_size + sizeof(struct btrfs_item);
3185 		if (i == 0)
3186 			break;
3187 		i--;
3188 	}
3189 
3190 	if (push_items == 0)
3191 		goto out_unlock;
3192 
3193 	WARN_ON(!empty && push_items == left_nritems);
3194 
3195 	/* push left to right */
3196 	right_nritems = btrfs_header_nritems(right);
3197 
3198 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3199 	push_space -= leaf_data_end(left);
3200 
3201 	/* make room in the right data area */
3202 	data_end = leaf_data_end(right);
3203 	memmove_leaf_data(right, data_end - push_space, data_end,
3204 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3205 
3206 	/* copy from the left data area */
3207 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3208 		       leaf_data_end(left), push_space);
3209 
3210 	memmove_leaf_items(right, push_items, 0, right_nritems);
3211 
3212 	/* copy the items from left to right */
3213 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3214 
3215 	/* update the item pointers */
3216 	right_nritems += push_items;
3217 	btrfs_set_header_nritems(right, right_nritems);
3218 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3219 	for (i = 0; i < right_nritems; i++) {
3220 		push_space -= btrfs_item_size(right, i);
3221 		btrfs_set_item_offset(right, i, push_space);
3222 	}
3223 
3224 	left_nritems -= push_items;
3225 	btrfs_set_header_nritems(left, left_nritems);
3226 
3227 	if (left_nritems)
3228 		btrfs_mark_buffer_dirty(trans, left);
3229 	else
3230 		btrfs_clear_buffer_dirty(trans, left);
3231 
3232 	btrfs_mark_buffer_dirty(trans, right);
3233 
3234 	btrfs_item_key(right, &disk_key, 0);
3235 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3236 	btrfs_mark_buffer_dirty(trans, upper);
3237 
3238 	/* then fixup the leaf pointer in the path */
3239 	if (path->slots[0] >= left_nritems) {
3240 		path->slots[0] -= left_nritems;
3241 		btrfs_tree_unlock(left);
3242 		free_extent_buffer(left);
3243 		path->nodes[0] = right;
3244 		path->slots[1] += 1;
3245 	} else {
3246 		btrfs_tree_unlock(right);
3247 		free_extent_buffer(right);
3248 	}
3249 	return 0;
3250 
3251 out_unlock:
3252 	btrfs_tree_unlock(right);
3253 	free_extent_buffer(right);
3254 	return 1;
3255 }
3256 
3257 /*
3258  * push some data in the path leaf to the right, trying to free up at
3259  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3260  *
3261  * returns 1 if the push failed because the other node didn't have enough
3262  * room, 0 if everything worked out and < 0 if there were major errors.
3263  *
3264  * this will push starting from min_slot to the end of the leaf.  It won't
3265  * push any slot lower than min_slot
3266  */
3267 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3268 			   *root, struct btrfs_path *path,
3269 			   int min_data_size, int data_size,
3270 			   bool empty, u32 min_slot)
3271 {
3272 	struct extent_buffer *left = path->nodes[0];
3273 	struct extent_buffer *right;
3274 	struct extent_buffer *upper;
3275 	int slot;
3276 	int free_space;
3277 	u32 left_nritems;
3278 	int ret;
3279 
3280 	if (!path->nodes[1])
3281 		return 1;
3282 
3283 	slot = path->slots[1];
3284 	upper = path->nodes[1];
3285 	if (slot >= btrfs_header_nritems(upper) - 1)
3286 		return 1;
3287 
3288 	btrfs_assert_tree_write_locked(path->nodes[1]);
3289 
3290 	right = btrfs_read_node_slot(upper, slot + 1);
3291 	if (IS_ERR(right))
3292 		return PTR_ERR(right);
3293 
3294 	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3295 
3296 	free_space = btrfs_leaf_free_space(right);
3297 	if (free_space < data_size)
3298 		goto out_unlock;
3299 
3300 	ret = btrfs_cow_block(trans, root, right, upper,
3301 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3302 	if (ret)
3303 		goto out_unlock;
3304 
3305 	left_nritems = btrfs_header_nritems(left);
3306 	if (left_nritems == 0)
3307 		goto out_unlock;
3308 
3309 	if (unlikely(check_sibling_keys(left, right))) {
3310 		ret = -EUCLEAN;
3311 		btrfs_abort_transaction(trans, ret);
3312 		btrfs_tree_unlock(right);
3313 		free_extent_buffer(right);
3314 		return ret;
3315 	}
3316 	if (path->slots[0] == left_nritems && !empty) {
3317 		/* Key greater than all keys in the leaf, right neighbor has
3318 		 * enough room for it and we're not emptying our leaf to delete
3319 		 * it, therefore use right neighbor to insert the new item and
3320 		 * no need to touch/dirty our left leaf. */
3321 		btrfs_tree_unlock(left);
3322 		free_extent_buffer(left);
3323 		path->nodes[0] = right;
3324 		path->slots[0] = 0;
3325 		path->slots[1]++;
3326 		return 0;
3327 	}
3328 
3329 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3330 				 free_space, left_nritems, min_slot);
3331 out_unlock:
3332 	btrfs_tree_unlock(right);
3333 	free_extent_buffer(right);
3334 	return 1;
3335 }
3336 
3337 /*
3338  * push some data in the path leaf to the left, trying to free up at
3339  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3340  *
3341  * max_slot can put a limit on how far into the leaf we'll push items.  The
3342  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3343  * items
3344  */
3345 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3346 				     struct btrfs_path *path, int data_size,
3347 				     bool empty, struct extent_buffer *left,
3348 				     int free_space, u32 right_nritems,
3349 				     u32 max_slot)
3350 {
3351 	struct btrfs_fs_info *fs_info = left->fs_info;
3352 	struct btrfs_disk_key disk_key;
3353 	struct extent_buffer *right = path->nodes[0];
3354 	int i;
3355 	int push_space = 0;
3356 	int push_items = 0;
3357 	u32 old_left_nritems;
3358 	u32 nr;
3359 	int ret = 0;
3360 	u32 this_item_size;
3361 	u32 old_left_item_size;
3362 
3363 	if (empty)
3364 		nr = min(right_nritems, max_slot);
3365 	else
3366 		nr = min(right_nritems - 1, max_slot);
3367 
3368 	for (i = 0; i < nr; i++) {
3369 		if (!empty && push_items > 0) {
3370 			if (path->slots[0] < i)
3371 				break;
3372 			if (path->slots[0] == i) {
3373 				int space = btrfs_leaf_free_space(right);
3374 
3375 				if (space + push_space * 2 > free_space)
3376 					break;
3377 			}
3378 		}
3379 
3380 		if (path->slots[0] == i)
3381 			push_space += data_size;
3382 
3383 		this_item_size = btrfs_item_size(right, i);
3384 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3385 		    free_space)
3386 			break;
3387 
3388 		push_items++;
3389 		push_space += this_item_size + sizeof(struct btrfs_item);
3390 	}
3391 
3392 	if (push_items == 0) {
3393 		ret = 1;
3394 		goto out;
3395 	}
3396 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3397 
3398 	/* push data from right to left */
3399 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3400 
3401 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3402 		     btrfs_item_offset(right, push_items - 1);
3403 
3404 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3405 		       btrfs_item_offset(right, push_items - 1), push_space);
3406 	old_left_nritems = btrfs_header_nritems(left);
3407 	BUG_ON(old_left_nritems <= 0);
3408 
3409 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3410 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3411 		u32 ioff;
3412 
3413 		ioff = btrfs_item_offset(left, i);
3414 		btrfs_set_item_offset(left, i,
3415 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3416 	}
3417 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3418 
3419 	/* fixup right node */
3420 	if (unlikely(push_items > right_nritems)) {
3421 		ret = -EUCLEAN;
3422 		btrfs_abort_transaction(trans, ret);
3423 		btrfs_crit(fs_info, "push items (%d) > right leaf items (%u)",
3424 			   push_items, right_nritems);
3425 		goto out;
3426 	}
3427 
3428 	if (push_items < right_nritems) {
3429 		push_space = btrfs_item_offset(right, push_items - 1) -
3430 						  leaf_data_end(right);
3431 		memmove_leaf_data(right,
3432 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3433 				  leaf_data_end(right), push_space);
3434 
3435 		memmove_leaf_items(right, 0, push_items,
3436 				   btrfs_header_nritems(right) - push_items);
3437 	}
3438 
3439 	right_nritems -= push_items;
3440 	btrfs_set_header_nritems(right, right_nritems);
3441 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3442 	for (i = 0; i < right_nritems; i++) {
3443 		push_space = push_space - btrfs_item_size(right, i);
3444 		btrfs_set_item_offset(right, i, push_space);
3445 	}
3446 
3447 	btrfs_mark_buffer_dirty(trans, left);
3448 	if (right_nritems)
3449 		btrfs_mark_buffer_dirty(trans, right);
3450 	else
3451 		btrfs_clear_buffer_dirty(trans, right);
3452 
3453 	btrfs_item_key(right, &disk_key, 0);
3454 	fixup_low_keys(trans, path, &disk_key, 1);
3455 
3456 	/* then fixup the leaf pointer in the path */
3457 	if (path->slots[0] < push_items) {
3458 		path->slots[0] += old_left_nritems;
3459 		btrfs_tree_unlock(right);
3460 		free_extent_buffer(right);
3461 		path->nodes[0] = left;
3462 		path->slots[1] -= 1;
3463 	} else {
3464 		btrfs_tree_unlock(left);
3465 		free_extent_buffer(left);
3466 		path->slots[0] -= push_items;
3467 	}
3468 	BUG_ON(path->slots[0] < 0);
3469 	return ret;
3470 out:
3471 	btrfs_tree_unlock(left);
3472 	free_extent_buffer(left);
3473 	return ret;
3474 }
3475 
3476 /*
3477  * push some data in the path leaf to the left, trying to free up at
3478  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3479  *
3480  * max_slot can put a limit on how far into the leaf we'll push items.  The
3481  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3482  * items
3483  */
3484 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3485 			  *root, struct btrfs_path *path, int min_data_size,
3486 			  int data_size, int empty, u32 max_slot)
3487 {
3488 	struct extent_buffer *right = path->nodes[0];
3489 	struct extent_buffer *left;
3490 	int slot;
3491 	int free_space;
3492 	u32 right_nritems;
3493 	int ret = 0;
3494 
3495 	slot = path->slots[1];
3496 	if (slot == 0)
3497 		return 1;
3498 	if (!path->nodes[1])
3499 		return 1;
3500 
3501 	right_nritems = btrfs_header_nritems(right);
3502 	if (right_nritems == 0)
3503 		return 1;
3504 
3505 	btrfs_assert_tree_write_locked(path->nodes[1]);
3506 
3507 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3508 	if (IS_ERR(left))
3509 		return PTR_ERR(left);
3510 
3511 	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3512 
3513 	free_space = btrfs_leaf_free_space(left);
3514 	if (free_space < data_size) {
3515 		ret = 1;
3516 		goto out;
3517 	}
3518 
3519 	ret = btrfs_cow_block(trans, root, left,
3520 			      path->nodes[1], slot - 1, &left,
3521 			      BTRFS_NESTING_LEFT_COW);
3522 	if (ret) {
3523 		/* we hit -ENOSPC, but it isn't fatal here */
3524 		if (ret == -ENOSPC)
3525 			ret = 1;
3526 		goto out;
3527 	}
3528 
3529 	if (unlikely(check_sibling_keys(left, right))) {
3530 		ret = -EUCLEAN;
3531 		btrfs_abort_transaction(trans, ret);
3532 		goto out;
3533 	}
3534 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3535 				free_space, right_nritems, max_slot);
3536 out:
3537 	btrfs_tree_unlock(left);
3538 	free_extent_buffer(left);
3539 	return ret;
3540 }
3541 
3542 /*
3543  * split the path's leaf in two, making sure there is at least data_size
3544  * available for the resulting leaf level of the path.
3545  */
3546 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3547 				   struct btrfs_path *path,
3548 				   struct extent_buffer *l,
3549 				   struct extent_buffer *right,
3550 				   int slot, int mid, int nritems)
3551 {
3552 	struct btrfs_fs_info *fs_info = trans->fs_info;
3553 	int data_copy_size;
3554 	int rt_data_off;
3555 	int i;
3556 	int ret;
3557 	struct btrfs_disk_key disk_key;
3558 
3559 	nritems = nritems - mid;
3560 	btrfs_set_header_nritems(right, nritems);
3561 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3562 
3563 	copy_leaf_items(right, l, 0, mid, nritems);
3564 
3565 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3566 		       leaf_data_end(l), data_copy_size);
3567 
3568 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3569 
3570 	for (i = 0; i < nritems; i++) {
3571 		u32 ioff;
3572 
3573 		ioff = btrfs_item_offset(right, i);
3574 		btrfs_set_item_offset(right, i, ioff + rt_data_off);
3575 	}
3576 
3577 	btrfs_set_header_nritems(l, mid);
3578 	btrfs_item_key(right, &disk_key, 0);
3579 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3580 	if (ret < 0)
3581 		return ret;
3582 
3583 	btrfs_mark_buffer_dirty(trans, right);
3584 	btrfs_mark_buffer_dirty(trans, l);
3585 	BUG_ON(path->slots[0] != slot);
3586 
3587 	if (mid <= slot) {
3588 		btrfs_tree_unlock(path->nodes[0]);
3589 		free_extent_buffer(path->nodes[0]);
3590 		path->nodes[0] = right;
3591 		path->slots[0] -= mid;
3592 		path->slots[1] += 1;
3593 	} else {
3594 		btrfs_tree_unlock(right);
3595 		free_extent_buffer(right);
3596 	}
3597 
3598 	BUG_ON(path->slots[0] < 0);
3599 
3600 	return 0;
3601 }
3602 
3603 /*
3604  * double splits happen when we need to insert a big item in the middle
3605  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3606  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3607  *          A                 B                 C
3608  *
3609  * We avoid this by trying to push the items on either side of our target
3610  * into the adjacent leaves.  If all goes well we can avoid the double split
3611  * completely.
3612  */
3613 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3614 					  struct btrfs_root *root,
3615 					  struct btrfs_path *path,
3616 					  int data_size)
3617 {
3618 	int ret;
3619 	int progress = 0;
3620 	int slot;
3621 	u32 nritems;
3622 	int space_needed = data_size;
3623 
3624 	slot = path->slots[0];
3625 	if (slot < btrfs_header_nritems(path->nodes[0]))
3626 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3627 
3628 	/*
3629 	 * try to push all the items after our slot into the
3630 	 * right leaf
3631 	 */
3632 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3633 	if (ret < 0)
3634 		return ret;
3635 
3636 	if (ret == 0)
3637 		progress++;
3638 
3639 	nritems = btrfs_header_nritems(path->nodes[0]);
3640 	/*
3641 	 * our goal is to get our slot at the start or end of a leaf.  If
3642 	 * we've done so we're done
3643 	 */
3644 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3645 		return 0;
3646 
3647 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3648 		return 0;
3649 
3650 	/* try to push all the items before our slot into the next leaf */
3651 	slot = path->slots[0];
3652 	space_needed = data_size;
3653 	if (slot > 0)
3654 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3655 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3656 	if (ret < 0)
3657 		return ret;
3658 
3659 	if (ret == 0)
3660 		progress++;
3661 
3662 	if (progress)
3663 		return 0;
3664 	return 1;
3665 }
3666 
3667 /*
3668  * split the path's leaf in two, making sure there is at least data_size
3669  * available for the resulting leaf level of the path.
3670  *
3671  * returns 0 if all went well and < 0 on failure.
3672  */
3673 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3674 			       struct btrfs_root *root,
3675 			       const struct btrfs_key *ins_key,
3676 			       struct btrfs_path *path, int data_size,
3677 			       bool extend)
3678 {
3679 	struct btrfs_disk_key disk_key;
3680 	struct extent_buffer *l;
3681 	u32 nritems;
3682 	int mid;
3683 	int slot;
3684 	struct extent_buffer *right;
3685 	struct btrfs_fs_info *fs_info = root->fs_info;
3686 	int ret = 0;
3687 	int wret;
3688 	int split;
3689 	int num_doubles = 0;
3690 	int tried_avoid_double = 0;
3691 
3692 	l = path->nodes[0];
3693 	slot = path->slots[0];
3694 	if (extend && data_size + btrfs_item_size(l, slot) +
3695 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3696 		return -EOVERFLOW;
3697 
3698 	/* first try to make some room by pushing left and right */
3699 	if (data_size && path->nodes[1]) {
3700 		int space_needed = data_size;
3701 
3702 		if (slot < btrfs_header_nritems(l))
3703 			space_needed -= btrfs_leaf_free_space(l);
3704 
3705 		wret = push_leaf_right(trans, root, path, space_needed,
3706 				       space_needed, 0, 0);
3707 		if (wret < 0)
3708 			return wret;
3709 		if (wret) {
3710 			space_needed = data_size;
3711 			if (slot > 0)
3712 				space_needed -= btrfs_leaf_free_space(l);
3713 			wret = push_leaf_left(trans, root, path, space_needed,
3714 					      space_needed, 0, (u32)-1);
3715 			if (wret < 0)
3716 				return wret;
3717 		}
3718 		l = path->nodes[0];
3719 
3720 		/* did the pushes work? */
3721 		if (btrfs_leaf_free_space(l) >= data_size)
3722 			return 0;
3723 	}
3724 
3725 	if (!path->nodes[1]) {
3726 		ret = insert_new_root(trans, root, path, 1);
3727 		if (ret)
3728 			return ret;
3729 	}
3730 again:
3731 	split = 1;
3732 	l = path->nodes[0];
3733 	slot = path->slots[0];
3734 	nritems = btrfs_header_nritems(l);
3735 	mid = (nritems + 1) / 2;
3736 
3737 	if (mid <= slot) {
3738 		if (nritems == 1 ||
3739 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3740 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3741 			if (slot >= nritems) {
3742 				split = 0;
3743 			} else {
3744 				mid = slot;
3745 				if (mid != nritems &&
3746 				    leaf_space_used(l, mid, nritems - mid) +
3747 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3748 					if (data_size && !tried_avoid_double)
3749 						goto push_for_double;
3750 					split = 2;
3751 				}
3752 			}
3753 		}
3754 	} else {
3755 		if (leaf_space_used(l, 0, mid) + data_size >
3756 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3757 			if (!extend && data_size && slot == 0) {
3758 				split = 0;
3759 			} else if ((extend || !data_size) && slot == 0) {
3760 				mid = 1;
3761 			} else {
3762 				mid = slot;
3763 				if (mid != nritems &&
3764 				    leaf_space_used(l, mid, nritems - mid) +
3765 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3766 					if (data_size && !tried_avoid_double)
3767 						goto push_for_double;
3768 					split = 2;
3769 				}
3770 			}
3771 		}
3772 	}
3773 
3774 	if (split == 0)
3775 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3776 	else
3777 		btrfs_item_key(l, &disk_key, mid);
3778 
3779 	/*
3780 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3781 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3782 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3783 	 * out.  In the future we could add a
3784 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3785 	 * use BTRFS_NESTING_NEW_ROOT.
3786 	 */
3787 	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3788 				       &disk_key, 0, l->start, 0, 0,
3789 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3790 				       BTRFS_NESTING_SPLIT);
3791 	if (IS_ERR(right))
3792 		return PTR_ERR(right);
3793 
3794 	root_add_used_bytes(root);
3795 
3796 	if (split == 0) {
3797 		if (mid <= slot) {
3798 			btrfs_set_header_nritems(right, 0);
3799 			ret = insert_ptr(trans, path, &disk_key,
3800 					 right->start, path->slots[1] + 1, 1);
3801 			if (ret < 0) {
3802 				btrfs_tree_unlock(right);
3803 				free_extent_buffer(right);
3804 				return ret;
3805 			}
3806 			btrfs_tree_unlock(path->nodes[0]);
3807 			free_extent_buffer(path->nodes[0]);
3808 			path->nodes[0] = right;
3809 			path->slots[0] = 0;
3810 			path->slots[1] += 1;
3811 		} else {
3812 			btrfs_set_header_nritems(right, 0);
3813 			ret = insert_ptr(trans, path, &disk_key,
3814 					 right->start, path->slots[1], 1);
3815 			if (ret < 0) {
3816 				btrfs_tree_unlock(right);
3817 				free_extent_buffer(right);
3818 				return ret;
3819 			}
3820 			btrfs_tree_unlock(path->nodes[0]);
3821 			free_extent_buffer(path->nodes[0]);
3822 			path->nodes[0] = right;
3823 			path->slots[0] = 0;
3824 			if (path->slots[1] == 0)
3825 				fixup_low_keys(trans, path, &disk_key, 1);
3826 		}
3827 		/*
3828 		 * We create a new leaf 'right' for the required ins_len and
3829 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3830 		 * the content of ins_len to 'right'.
3831 		 */
3832 		return ret;
3833 	}
3834 
3835 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3836 	if (ret < 0) {
3837 		btrfs_tree_unlock(right);
3838 		free_extent_buffer(right);
3839 		return ret;
3840 	}
3841 
3842 	if (split == 2) {
3843 		BUG_ON(num_doubles != 0);
3844 		num_doubles++;
3845 		goto again;
3846 	}
3847 
3848 	return 0;
3849 
3850 push_for_double:
3851 	push_for_double_split(trans, root, path, data_size);
3852 	tried_avoid_double = 1;
3853 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3854 		return 0;
3855 	goto again;
3856 }
3857 
3858 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3859 					 struct btrfs_root *root,
3860 					 struct btrfs_path *path, int ins_len)
3861 {
3862 	struct btrfs_key key;
3863 	struct extent_buffer *leaf;
3864 	struct btrfs_file_extent_item *fi;
3865 	u64 extent_len = 0;
3866 	u32 item_size;
3867 	int ret;
3868 
3869 	leaf = path->nodes[0];
3870 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3871 
3872 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3873 	       key.type != BTRFS_RAID_STRIPE_KEY &&
3874 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3875 
3876 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3877 		return 0;
3878 
3879 	item_size = btrfs_item_size(leaf, path->slots[0]);
3880 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3881 		fi = btrfs_item_ptr(leaf, path->slots[0],
3882 				    struct btrfs_file_extent_item);
3883 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3884 	}
3885 	btrfs_release_path(path);
3886 
3887 	path->keep_locks = true;
3888 	path->search_for_split = true;
3889 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3890 	path->search_for_split = false;
3891 	if (ret > 0)
3892 		ret = -EAGAIN;
3893 	if (ret < 0)
3894 		goto err;
3895 
3896 	ret = -EAGAIN;
3897 	leaf = path->nodes[0];
3898 	/* if our item isn't there, return now */
3899 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3900 		goto err;
3901 
3902 	/* the leaf has  changed, it now has room.  return now */
3903 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3904 		goto err;
3905 
3906 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3907 		fi = btrfs_item_ptr(leaf, path->slots[0],
3908 				    struct btrfs_file_extent_item);
3909 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3910 			goto err;
3911 	}
3912 
3913 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3914 	if (ret)
3915 		goto err;
3916 
3917 	path->keep_locks = false;
3918 	btrfs_unlock_up_safe(path, 1);
3919 	return 0;
3920 err:
3921 	path->keep_locks = false;
3922 	return ret;
3923 }
3924 
3925 static noinline int split_item(struct btrfs_trans_handle *trans,
3926 			       struct btrfs_path *path,
3927 			       const struct btrfs_key *new_key,
3928 			       unsigned long split_offset)
3929 {
3930 	struct extent_buffer *leaf;
3931 	int orig_slot, slot;
3932 	char *buf;
3933 	u32 nritems;
3934 	u32 item_size;
3935 	u32 orig_offset;
3936 	struct btrfs_disk_key disk_key;
3937 
3938 	leaf = path->nodes[0];
3939 	/*
3940 	 * Shouldn't happen because the caller must have previously called
3941 	 * setup_leaf_for_split() to make room for the new item in the leaf.
3942 	 */
3943 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3944 		return -ENOSPC;
3945 
3946 	orig_slot = path->slots[0];
3947 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3948 	item_size = btrfs_item_size(leaf, path->slots[0]);
3949 
3950 	buf = kmalloc(item_size, GFP_NOFS);
3951 	if (!buf)
3952 		return -ENOMEM;
3953 
3954 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3955 			    path->slots[0]), item_size);
3956 
3957 	slot = path->slots[0] + 1;
3958 	nritems = btrfs_header_nritems(leaf);
3959 	if (slot != nritems) {
3960 		/* shift the items */
3961 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3962 	}
3963 
3964 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3965 	btrfs_set_item_key(leaf, &disk_key, slot);
3966 
3967 	btrfs_set_item_offset(leaf, slot, orig_offset);
3968 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3969 
3970 	btrfs_set_item_offset(leaf, orig_slot,
3971 				 orig_offset + item_size - split_offset);
3972 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3973 
3974 	btrfs_set_header_nritems(leaf, nritems + 1);
3975 
3976 	/* write the data for the start of the original item */
3977 	write_extent_buffer(leaf, buf,
3978 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3979 			    split_offset);
3980 
3981 	/* write the data for the new item */
3982 	write_extent_buffer(leaf, buf + split_offset,
3983 			    btrfs_item_ptr_offset(leaf, slot),
3984 			    item_size - split_offset);
3985 	btrfs_mark_buffer_dirty(trans, leaf);
3986 
3987 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3988 	kfree(buf);
3989 	return 0;
3990 }
3991 
3992 /*
3993  * This function splits a single item into two items,
3994  * giving 'new_key' to the new item and splitting the
3995  * old one at split_offset (from the start of the item).
3996  *
3997  * The path may be released by this operation.  After
3998  * the split, the path is pointing to the old item.  The
3999  * new item is going to be in the same node as the old one.
4000  *
4001  * Note, the item being split must be smaller enough to live alone on
4002  * a tree block with room for one extra struct btrfs_item
4003  *
4004  * This allows us to split the item in place, keeping a lock on the
4005  * leaf the entire time.
4006  */
4007 int btrfs_split_item(struct btrfs_trans_handle *trans,
4008 		     struct btrfs_root *root,
4009 		     struct btrfs_path *path,
4010 		     const struct btrfs_key *new_key,
4011 		     unsigned long split_offset)
4012 {
4013 	int ret;
4014 	ret = setup_leaf_for_split(trans, root, path,
4015 				   sizeof(struct btrfs_item));
4016 	if (ret)
4017 		return ret;
4018 
4019 	ret = split_item(trans, path, new_key, split_offset);
4020 	return ret;
4021 }
4022 
4023 /*
4024  * make the item pointed to by the path smaller.  new_size indicates
4025  * how small to make it, and from_end tells us if we just chop bytes
4026  * off the end of the item or if we shift the item to chop bytes off
4027  * the front.
4028  */
4029 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4030 			 const struct btrfs_path *path, u32 new_size, int from_end)
4031 {
4032 	int slot;
4033 	struct extent_buffer *leaf;
4034 	u32 nritems;
4035 	unsigned int data_end;
4036 	unsigned int old_data_start;
4037 	unsigned int old_size;
4038 	unsigned int size_diff;
4039 	int i;
4040 
4041 	leaf = path->nodes[0];
4042 	slot = path->slots[0];
4043 
4044 	old_size = btrfs_item_size(leaf, slot);
4045 	if (old_size == new_size)
4046 		return;
4047 
4048 	nritems = btrfs_header_nritems(leaf);
4049 	data_end = leaf_data_end(leaf);
4050 
4051 	old_data_start = btrfs_item_offset(leaf, slot);
4052 
4053 	size_diff = old_size - new_size;
4054 
4055 	BUG_ON(slot < 0);
4056 	BUG_ON(slot >= nritems);
4057 
4058 	/*
4059 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4060 	 */
4061 	/* first correct the data pointers */
4062 	for (i = slot; i < nritems; i++) {
4063 		u32 ioff;
4064 
4065 		ioff = btrfs_item_offset(leaf, i);
4066 		btrfs_set_item_offset(leaf, i, ioff + size_diff);
4067 	}
4068 
4069 	/* shift the data */
4070 	if (from_end) {
4071 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4072 				  old_data_start + new_size - data_end);
4073 	} else {
4074 		struct btrfs_disk_key disk_key;
4075 		u64 offset;
4076 
4077 		btrfs_item_key(leaf, &disk_key, slot);
4078 
4079 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4080 			unsigned long ptr;
4081 			struct btrfs_file_extent_item *fi;
4082 
4083 			fi = btrfs_item_ptr(leaf, slot,
4084 					    struct btrfs_file_extent_item);
4085 			fi = (struct btrfs_file_extent_item *)(
4086 			     (unsigned long)fi - size_diff);
4087 
4088 			if (btrfs_file_extent_type(leaf, fi) ==
4089 			    BTRFS_FILE_EXTENT_INLINE) {
4090 				ptr = btrfs_item_ptr_offset(leaf, slot);
4091 				memmove_extent_buffer(leaf, ptr,
4092 				      (unsigned long)fi,
4093 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4094 			}
4095 		}
4096 
4097 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4098 				  old_data_start - data_end);
4099 
4100 		offset = btrfs_disk_key_offset(&disk_key);
4101 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4102 		btrfs_set_item_key(leaf, &disk_key, slot);
4103 		if (slot == 0)
4104 			fixup_low_keys(trans, path, &disk_key, 1);
4105 	}
4106 
4107 	btrfs_set_item_size(leaf, slot, new_size);
4108 	btrfs_mark_buffer_dirty(trans, leaf);
4109 
4110 	if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4111 		btrfs_print_leaf(leaf);
4112 		BUG();
4113 	}
4114 }
4115 
4116 /*
4117  * make the item pointed to by the path bigger, data_size is the added size.
4118  */
4119 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4120 		       const struct btrfs_path *path, u32 data_size)
4121 {
4122 	int slot;
4123 	struct extent_buffer *leaf;
4124 	u32 nritems;
4125 	unsigned int data_end;
4126 	unsigned int old_data;
4127 	unsigned int old_size;
4128 	int i;
4129 
4130 	leaf = path->nodes[0];
4131 
4132 	nritems = btrfs_header_nritems(leaf);
4133 	data_end = leaf_data_end(leaf);
4134 
4135 	if (unlikely(btrfs_leaf_free_space(leaf) < data_size)) {
4136 		btrfs_print_leaf(leaf);
4137 		BUG();
4138 	}
4139 	slot = path->slots[0];
4140 	old_data = btrfs_item_data_end(leaf, slot);
4141 
4142 	BUG_ON(slot < 0);
4143 	if (unlikely(slot >= nritems)) {
4144 		btrfs_print_leaf(leaf);
4145 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4146 			   slot, nritems);
4147 		BUG();
4148 	}
4149 
4150 	/*
4151 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4152 	 */
4153 	/* first correct the data pointers */
4154 	for (i = slot; i < nritems; i++) {
4155 		u32 ioff;
4156 
4157 		ioff = btrfs_item_offset(leaf, i);
4158 		btrfs_set_item_offset(leaf, i, ioff - data_size);
4159 	}
4160 
4161 	/* shift the data */
4162 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4163 			  old_data - data_end);
4164 
4165 	old_size = btrfs_item_size(leaf, slot);
4166 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4167 	btrfs_mark_buffer_dirty(trans, leaf);
4168 
4169 	if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4170 		btrfs_print_leaf(leaf);
4171 		BUG();
4172 	}
4173 }
4174 
4175 /*
4176  * Make space in the node before inserting one or more items.
4177  *
4178  * @trans:	transaction handle
4179  * @root:	root we are inserting items to
4180  * @path:	points to the leaf/slot where we are going to insert new items
4181  * @batch:      information about the batch of items to insert
4182  *
4183  * Main purpose is to save stack depth by doing the bulk of the work in a
4184  * function that doesn't call btrfs_search_slot
4185  */
4186 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4187 				   struct btrfs_root *root, struct btrfs_path *path,
4188 				   const struct btrfs_item_batch *batch)
4189 {
4190 	struct btrfs_fs_info *fs_info = root->fs_info;
4191 	int i;
4192 	u32 nritems;
4193 	unsigned int data_end;
4194 	struct btrfs_disk_key disk_key;
4195 	struct extent_buffer *leaf;
4196 	int slot;
4197 	u32 total_size;
4198 
4199 	/*
4200 	 * Before anything else, update keys in the parent and other ancestors
4201 	 * if needed, then release the write locks on them, so that other tasks
4202 	 * can use them while we modify the leaf.
4203 	 */
4204 	if (path->slots[0] == 0) {
4205 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4206 		fixup_low_keys(trans, path, &disk_key, 1);
4207 	}
4208 	btrfs_unlock_up_safe(path, 1);
4209 
4210 	leaf = path->nodes[0];
4211 	slot = path->slots[0];
4212 
4213 	nritems = btrfs_header_nritems(leaf);
4214 	data_end = leaf_data_end(leaf);
4215 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4216 
4217 	if (unlikely(btrfs_leaf_free_space(leaf) < total_size)) {
4218 		btrfs_print_leaf(leaf);
4219 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4220 			   total_size, btrfs_leaf_free_space(leaf));
4221 		BUG();
4222 	}
4223 
4224 	if (slot != nritems) {
4225 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4226 
4227 		if (unlikely(old_data < data_end)) {
4228 			btrfs_print_leaf(leaf);
4229 			btrfs_crit(fs_info,
4230 		"item at slot %d with data offset %u beyond data end of leaf %u",
4231 				   slot, old_data, data_end);
4232 			BUG();
4233 		}
4234 		/*
4235 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4236 		 */
4237 		/* first correct the data pointers */
4238 		for (i = slot; i < nritems; i++) {
4239 			u32 ioff;
4240 
4241 			ioff = btrfs_item_offset(leaf, i);
4242 			btrfs_set_item_offset(leaf, i,
4243 						       ioff - batch->total_data_size);
4244 		}
4245 		/* shift the items */
4246 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4247 
4248 		/* shift the data */
4249 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4250 				  data_end, old_data - data_end);
4251 		data_end = old_data;
4252 	}
4253 
4254 	/* setup the item for the new data */
4255 	for (i = 0; i < batch->nr; i++) {
4256 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4257 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4258 		data_end -= batch->data_sizes[i];
4259 		btrfs_set_item_offset(leaf, slot + i, data_end);
4260 		btrfs_set_item_size(leaf, slot + i, batch->data_sizes[i]);
4261 	}
4262 
4263 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4264 	btrfs_mark_buffer_dirty(trans, leaf);
4265 
4266 	if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4267 		btrfs_print_leaf(leaf);
4268 		BUG();
4269 	}
4270 }
4271 
4272 /*
4273  * Insert a new item into a leaf.
4274  *
4275  * @trans:     Transaction handle.
4276  * @root:      The root of the btree.
4277  * @path:      A path pointing to the target leaf and slot.
4278  * @key:       The key of the new item.
4279  * @data_size: The size of the data associated with the new key.
4280  */
4281 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4282 				 struct btrfs_root *root,
4283 				 struct btrfs_path *path,
4284 				 const struct btrfs_key *key,
4285 				 u32 data_size)
4286 {
4287 	struct btrfs_item_batch batch;
4288 
4289 	batch.keys = key;
4290 	batch.data_sizes = &data_size;
4291 	batch.total_data_size = data_size;
4292 	batch.nr = 1;
4293 
4294 	setup_items_for_insert(trans, root, path, &batch);
4295 }
4296 
4297 /*
4298  * Given a key and some data, insert items into the tree.
4299  * This does all the path init required, making room in the tree if needed.
4300  *
4301  * Returns: 0        on success
4302  *          -EEXIST  if the first key already exists
4303  *          < 0      on other errors
4304  */
4305 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4306 			    struct btrfs_root *root,
4307 			    struct btrfs_path *path,
4308 			    const struct btrfs_item_batch *batch)
4309 {
4310 	int ret = 0;
4311 	int slot;
4312 	u32 total_size;
4313 
4314 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4315 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4316 	if (ret == 0)
4317 		return -EEXIST;
4318 	if (ret < 0)
4319 		return ret;
4320 
4321 	slot = path->slots[0];
4322 	BUG_ON(slot < 0);
4323 
4324 	setup_items_for_insert(trans, root, path, batch);
4325 	return 0;
4326 }
4327 
4328 /*
4329  * Given a key and some data, insert an item into the tree.
4330  * This does all the path init required, making room in the tree if needed.
4331  */
4332 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4333 		      const struct btrfs_key *cpu_key, void *data,
4334 		      u32 data_size)
4335 {
4336 	int ret = 0;
4337 	BTRFS_PATH_AUTO_FREE(path);
4338 	struct extent_buffer *leaf;
4339 	unsigned long ptr;
4340 
4341 	path = btrfs_alloc_path();
4342 	if (!path)
4343 		return -ENOMEM;
4344 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4345 	if (!ret) {
4346 		leaf = path->nodes[0];
4347 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4348 		write_extent_buffer(leaf, data, ptr, data_size);
4349 		btrfs_mark_buffer_dirty(trans, leaf);
4350 	}
4351 	return ret;
4352 }
4353 
4354 /*
4355  * This function duplicates an item, giving 'new_key' to the new item.
4356  * It guarantees both items live in the same tree leaf and the new item is
4357  * contiguous with the original item.
4358  *
4359  * This allows us to split a file extent in place, keeping a lock on the leaf
4360  * the entire time.
4361  */
4362 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4363 			 struct btrfs_root *root,
4364 			 struct btrfs_path *path,
4365 			 const struct btrfs_key *new_key)
4366 {
4367 	struct extent_buffer *leaf;
4368 	int ret;
4369 	u32 item_size;
4370 
4371 	leaf = path->nodes[0];
4372 	item_size = btrfs_item_size(leaf, path->slots[0]);
4373 	ret = setup_leaf_for_split(trans, root, path,
4374 				   item_size + sizeof(struct btrfs_item));
4375 	if (ret)
4376 		return ret;
4377 
4378 	path->slots[0]++;
4379 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4380 	leaf = path->nodes[0];
4381 	memcpy_extent_buffer(leaf,
4382 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4383 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4384 			     item_size);
4385 	return 0;
4386 }
4387 
4388 /*
4389  * delete the pointer from a given node.
4390  *
4391  * the tree should have been previously balanced so the deletion does not
4392  * empty a node.
4393  *
4394  * This is exported for use inside btrfs-progs, don't un-export it.
4395  */
4396 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4397 		  struct btrfs_path *path, int level, int slot)
4398 {
4399 	struct extent_buffer *parent = path->nodes[level];
4400 	u32 nritems;
4401 	int ret;
4402 
4403 	nritems = btrfs_header_nritems(parent);
4404 	if (slot != nritems - 1) {
4405 		if (level) {
4406 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4407 					slot + 1, nritems - slot - 1);
4408 			if (unlikely(ret < 0)) {
4409 				btrfs_abort_transaction(trans, ret);
4410 				return ret;
4411 			}
4412 		}
4413 		memmove_extent_buffer(parent,
4414 			      btrfs_node_key_ptr_offset(parent, slot),
4415 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4416 			      sizeof(struct btrfs_key_ptr) *
4417 			      (nritems - slot - 1));
4418 	} else if (level) {
4419 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4420 						    BTRFS_MOD_LOG_KEY_REMOVE);
4421 		if (unlikely(ret < 0)) {
4422 			btrfs_abort_transaction(trans, ret);
4423 			return ret;
4424 		}
4425 	}
4426 
4427 	nritems--;
4428 	btrfs_set_header_nritems(parent, nritems);
4429 	if (nritems == 0 && parent == root->node) {
4430 		BUG_ON(btrfs_header_level(root->node) != 1);
4431 		/* just turn the root into a leaf and break */
4432 		btrfs_set_header_level(root->node, 0);
4433 	} else if (slot == 0) {
4434 		struct btrfs_disk_key disk_key;
4435 
4436 		btrfs_node_key(parent, &disk_key, 0);
4437 		fixup_low_keys(trans, path, &disk_key, level + 1);
4438 	}
4439 	btrfs_mark_buffer_dirty(trans, parent);
4440 	return 0;
4441 }
4442 
4443 /*
4444  * a helper function to delete the leaf pointed to by path->slots[1] and
4445  * path->nodes[1].
4446  *
4447  * This deletes the pointer in path->nodes[1] and frees the leaf
4448  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4449  *
4450  * The path must have already been setup for deleting the leaf, including
4451  * all the proper balancing.  path->nodes[1] must be locked.
4452  */
4453 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4454 				   struct btrfs_root *root,
4455 				   struct btrfs_path *path,
4456 				   struct extent_buffer *leaf)
4457 {
4458 	int ret;
4459 
4460 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4461 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4462 	if (ret < 0)
4463 		return ret;
4464 
4465 	/*
4466 	 * btrfs_free_extent is expensive, we want to make sure we
4467 	 * aren't holding any locks when we call it
4468 	 */
4469 	btrfs_unlock_up_safe(path, 0);
4470 
4471 	root_sub_used_bytes(root);
4472 
4473 	refcount_inc(&leaf->refs);
4474 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4475 	free_extent_buffer_stale(leaf);
4476 	if (ret < 0)
4477 		btrfs_abort_transaction(trans, ret);
4478 
4479 	return ret;
4480 }
4481 /*
4482  * delete the item at the leaf level in path.  If that empties
4483  * the leaf, remove it from the tree
4484  */
4485 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4486 		    struct btrfs_path *path, int slot, int nr)
4487 {
4488 	struct btrfs_fs_info *fs_info = root->fs_info;
4489 	struct extent_buffer *leaf;
4490 	int ret = 0;
4491 	int wret;
4492 	u32 nritems;
4493 
4494 	leaf = path->nodes[0];
4495 	nritems = btrfs_header_nritems(leaf);
4496 
4497 	if (slot + nr != nritems) {
4498 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4499 		const int data_end = leaf_data_end(leaf);
4500 		u32 dsize = 0;
4501 		int i;
4502 
4503 		for (i = 0; i < nr; i++)
4504 			dsize += btrfs_item_size(leaf, slot + i);
4505 
4506 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4507 				  last_off - data_end);
4508 
4509 		for (i = slot + nr; i < nritems; i++) {
4510 			u32 ioff;
4511 
4512 			ioff = btrfs_item_offset(leaf, i);
4513 			btrfs_set_item_offset(leaf, i, ioff + dsize);
4514 		}
4515 
4516 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4517 	}
4518 	btrfs_set_header_nritems(leaf, nritems - nr);
4519 	nritems -= nr;
4520 
4521 	/* delete the leaf if we've emptied it */
4522 	if (nritems == 0) {
4523 		if (leaf != root->node) {
4524 			btrfs_clear_buffer_dirty(trans, leaf);
4525 			ret = btrfs_del_leaf(trans, root, path, leaf);
4526 			if (ret < 0)
4527 				return ret;
4528 		}
4529 	} else {
4530 		int used = leaf_space_used(leaf, 0, nritems);
4531 		if (slot == 0) {
4532 			struct btrfs_disk_key disk_key;
4533 
4534 			btrfs_item_key(leaf, &disk_key, 0);
4535 			fixup_low_keys(trans, path, &disk_key, 1);
4536 		}
4537 
4538 		/*
4539 		 * Try to delete the leaf if it is mostly empty. We do this by
4540 		 * trying to move all its items into its left and right neighbours.
4541 		 * If we can't move all the items, then we don't delete it - it's
4542 		 * not ideal, but future insertions might fill the leaf with more
4543 		 * items, or items from other leaves might be moved later into our
4544 		 * leaf due to deletions on those leaves.
4545 		 */
4546 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4547 			u32 min_push_space;
4548 
4549 			/* push_leaf_left fixes the path.
4550 			 * make sure the path still points to our leaf
4551 			 * for possible call to btrfs_del_ptr below
4552 			 */
4553 			slot = path->slots[1];
4554 			refcount_inc(&leaf->refs);
4555 			/*
4556 			 * We want to be able to at least push one item to the
4557 			 * left neighbour leaf, and that's the first item.
4558 			 */
4559 			min_push_space = sizeof(struct btrfs_item) +
4560 				btrfs_item_size(leaf, 0);
4561 			wret = push_leaf_left(trans, root, path, 0,
4562 					      min_push_space, 1, (u32)-1);
4563 			if (wret < 0 && wret != -ENOSPC)
4564 				ret = wret;
4565 
4566 			if (path->nodes[0] == leaf &&
4567 			    btrfs_header_nritems(leaf)) {
4568 				/*
4569 				 * If we were not able to push all items from our
4570 				 * leaf to its left neighbour, then attempt to
4571 				 * either push all the remaining items to the
4572 				 * right neighbour or none. There's no advantage
4573 				 * in pushing only some items, instead of all, as
4574 				 * it's pointless to end up with a leaf having
4575 				 * too few items while the neighbours can be full
4576 				 * or nearly full.
4577 				 */
4578 				nritems = btrfs_header_nritems(leaf);
4579 				min_push_space = leaf_space_used(leaf, 0, nritems);
4580 				wret = push_leaf_right(trans, root, path, 0,
4581 						       min_push_space, 1, 0);
4582 				if (wret < 0 && wret != -ENOSPC)
4583 					ret = wret;
4584 			}
4585 
4586 			if (btrfs_header_nritems(leaf) == 0) {
4587 				path->slots[1] = slot;
4588 				ret = btrfs_del_leaf(trans, root, path, leaf);
4589 				free_extent_buffer(leaf);
4590 				if (ret < 0)
4591 					return ret;
4592 			} else {
4593 				/* if we're still in the path, make sure
4594 				 * we're dirty.  Otherwise, one of the
4595 				 * push_leaf functions must have already
4596 				 * dirtied this buffer
4597 				 */
4598 				if (path->nodes[0] == leaf)
4599 					btrfs_mark_buffer_dirty(trans, leaf);
4600 				free_extent_buffer(leaf);
4601 			}
4602 		} else {
4603 			btrfs_mark_buffer_dirty(trans, leaf);
4604 		}
4605 	}
4606 	return ret;
4607 }
4608 
4609 /*
4610  * A helper function to walk down the tree starting at min_key, and looking
4611  * for leaves that have a minimum transaction id.
4612  * This is used by the btree defrag code, and tree logging
4613  *
4614  * This does not cow, but it does stuff the starting key it finds back
4615  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4616  * key and get a writable path.
4617  *
4618  * min_trans indicates the oldest transaction that you are interested
4619  * in walking through.  Any nodes or leaves older than min_trans are
4620  * skipped over (without reading them).
4621  *
4622  * returns zero if something useful was found, < 0 on error and 1 if there
4623  * was nothing in the tree that matched the search criteria.
4624  */
4625 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4626 			 struct btrfs_path *path,
4627 			 u64 min_trans)
4628 {
4629 	struct extent_buffer *cur;
4630 	int slot;
4631 	int sret;
4632 	u32 nritems;
4633 	int level;
4634 	int ret = 1;
4635 	const bool keep_locks = path->keep_locks;
4636 
4637 	ASSERT(!path->nowait);
4638 	ASSERT(path->lowest_level == 0);
4639 	path->keep_locks = true;
4640 again:
4641 	cur = btrfs_read_lock_root_node(root);
4642 	level = btrfs_header_level(cur);
4643 	WARN_ON(path->nodes[level]);
4644 	path->nodes[level] = cur;
4645 	path->locks[level] = BTRFS_READ_LOCK;
4646 
4647 	if (btrfs_header_generation(cur) < min_trans) {
4648 		ret = 1;
4649 		goto out;
4650 	}
4651 	while (1) {
4652 		nritems = btrfs_header_nritems(cur);
4653 		level = btrfs_header_level(cur);
4654 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4655 		if (sret < 0) {
4656 			ret = sret;
4657 			goto out;
4658 		}
4659 
4660 		/* At level 0 we're done, setup the path and exit. */
4661 		if (level == 0) {
4662 			if (slot >= nritems)
4663 				goto find_next_key;
4664 			ret = 0;
4665 			path->slots[level] = slot;
4666 			/* Save our key for returning back. */
4667 			btrfs_item_key_to_cpu(cur, min_key, slot);
4668 			goto out;
4669 		}
4670 		if (sret && slot > 0)
4671 			slot--;
4672 		/*
4673 		 * check this node pointer against the min_trans parameters.
4674 		 * If it is too old, skip to the next one.
4675 		 */
4676 		while (slot < nritems) {
4677 			u64 gen;
4678 
4679 			gen = btrfs_node_ptr_generation(cur, slot);
4680 			if (gen < min_trans) {
4681 				slot++;
4682 				continue;
4683 			}
4684 			break;
4685 		}
4686 find_next_key:
4687 		/*
4688 		 * we didn't find a candidate key in this node, walk forward
4689 		 * and find another one
4690 		 */
4691 		path->slots[level] = slot;
4692 		if (slot >= nritems) {
4693 			sret = btrfs_find_next_key(root, path, min_key, level,
4694 						  min_trans);
4695 			if (sret == 0) {
4696 				btrfs_release_path(path);
4697 				goto again;
4698 			} else {
4699 				goto out;
4700 			}
4701 		}
4702 		cur = btrfs_read_node_slot(cur, slot);
4703 		if (IS_ERR(cur)) {
4704 			ret = PTR_ERR(cur);
4705 			goto out;
4706 		}
4707 
4708 		btrfs_tree_read_lock(cur);
4709 
4710 		path->locks[level - 1] = BTRFS_READ_LOCK;
4711 		path->nodes[level - 1] = cur;
4712 		unlock_up(path, level, 1, 0, NULL);
4713 	}
4714 out:
4715 	path->keep_locks = keep_locks;
4716 	if (ret == 0)
4717 		btrfs_unlock_up_safe(path, 1);
4718 	return ret;
4719 }
4720 
4721 /*
4722  * this is similar to btrfs_next_leaf, but does not try to preserve
4723  * and fixup the path.  It looks for and returns the next key in the
4724  * tree based on the current path and the min_trans parameters.
4725  *
4726  * 0 is returned if another key is found, < 0 if there are any errors
4727  * and 1 is returned if there are no higher keys in the tree
4728  *
4729  * path->keep_locks should be set to true on the search made before
4730  * calling this function.
4731  */
4732 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4733 			struct btrfs_key *key, int level, u64 min_trans)
4734 {
4735 	int slot;
4736 	struct extent_buffer *c;
4737 
4738 	WARN_ON(!path->keep_locks && !path->skip_locking);
4739 	while (level < BTRFS_MAX_LEVEL) {
4740 		if (!path->nodes[level])
4741 			return 1;
4742 
4743 		slot = path->slots[level] + 1;
4744 		c = path->nodes[level];
4745 next:
4746 		if (slot >= btrfs_header_nritems(c)) {
4747 			int ret;
4748 			int orig_lowest;
4749 			struct btrfs_key cur_key;
4750 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4751 			    !path->nodes[level + 1])
4752 				return 1;
4753 
4754 			if (path->locks[level + 1] || path->skip_locking) {
4755 				level++;
4756 				continue;
4757 			}
4758 
4759 			slot = btrfs_header_nritems(c) - 1;
4760 			if (level == 0)
4761 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4762 			else
4763 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4764 
4765 			orig_lowest = path->lowest_level;
4766 			btrfs_release_path(path);
4767 			path->lowest_level = level;
4768 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4769 						0, 0);
4770 			path->lowest_level = orig_lowest;
4771 			if (ret < 0)
4772 				return ret;
4773 
4774 			c = path->nodes[level];
4775 			slot = path->slots[level];
4776 			if (ret == 0)
4777 				slot++;
4778 			goto next;
4779 		}
4780 
4781 		if (level == 0)
4782 			btrfs_item_key_to_cpu(c, key, slot);
4783 		else {
4784 			u64 gen = btrfs_node_ptr_generation(c, slot);
4785 
4786 			if (gen < min_trans) {
4787 				slot++;
4788 				goto next;
4789 			}
4790 			btrfs_node_key_to_cpu(c, key, slot);
4791 		}
4792 		return 0;
4793 	}
4794 	return 1;
4795 }
4796 
4797 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4798 			u64 time_seq)
4799 {
4800 	int slot;
4801 	int level;
4802 	struct extent_buffer *c;
4803 	struct extent_buffer *next;
4804 	struct btrfs_fs_info *fs_info = root->fs_info;
4805 	struct btrfs_key key;
4806 	bool need_commit_sem = false;
4807 	u32 nritems;
4808 	int ret;
4809 	int i;
4810 
4811 	/*
4812 	 * The nowait semantics are used only for write paths, where we don't
4813 	 * use the tree mod log and sequence numbers.
4814 	 */
4815 	if (time_seq)
4816 		ASSERT(!path->nowait);
4817 
4818 	nritems = btrfs_header_nritems(path->nodes[0]);
4819 	if (nritems == 0)
4820 		return 1;
4821 
4822 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4823 again:
4824 	level = 1;
4825 	next = NULL;
4826 	btrfs_release_path(path);
4827 
4828 	path->keep_locks = true;
4829 
4830 	if (time_seq) {
4831 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4832 	} else {
4833 		if (path->need_commit_sem) {
4834 			path->need_commit_sem = false;
4835 			need_commit_sem = true;
4836 			if (path->nowait) {
4837 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4838 					ret = -EAGAIN;
4839 					goto done;
4840 				}
4841 			} else {
4842 				down_read(&fs_info->commit_root_sem);
4843 			}
4844 		}
4845 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4846 	}
4847 	path->keep_locks = false;
4848 
4849 	if (ret < 0)
4850 		goto done;
4851 
4852 	nritems = btrfs_header_nritems(path->nodes[0]);
4853 	/*
4854 	 * By releasing the path above we dropped all our locks.  A balance
4855 	 * could have happened and
4856 	 *
4857 	 * 1. added more items after the previous last item
4858 	 * 2. deleted the previous last item
4859 	 *
4860 	 * So, check again here and advance the path if there are now more
4861 	 * items available.
4862 	 */
4863 	if (nritems > 0 && path->slots[0] <= nritems - 1) {
4864 		if (ret == 0 && path->slots[0] != nritems - 1) {
4865 			path->slots[0]++;
4866 			goto done;
4867 		} else if (ret > 0) {
4868 			ret = 0;
4869 			goto done;
4870 		}
4871 	}
4872 
4873 	while (level < BTRFS_MAX_LEVEL) {
4874 		if (!path->nodes[level]) {
4875 			ret = 1;
4876 			goto done;
4877 		}
4878 
4879 		slot = path->slots[level] + 1;
4880 		c = path->nodes[level];
4881 		if (slot >= btrfs_header_nritems(c)) {
4882 			level++;
4883 			if (level == BTRFS_MAX_LEVEL) {
4884 				ret = 1;
4885 				goto done;
4886 			}
4887 			continue;
4888 		}
4889 
4890 
4891 		/*
4892 		 * Our current level is where we're going to start from, and to
4893 		 * make sure lockdep doesn't complain we need to drop our locks
4894 		 * and nodes from 0 to our current level.
4895 		 */
4896 		for (i = 0; i < level; i++) {
4897 			if (path->locks[level]) {
4898 				btrfs_tree_read_unlock(path->nodes[i]);
4899 				path->locks[i] = 0;
4900 			}
4901 			free_extent_buffer(path->nodes[i]);
4902 			path->nodes[i] = NULL;
4903 		}
4904 
4905 		next = c;
4906 		ret = read_block_for_search(root, path, &next, slot, &key);
4907 		if (ret == -EAGAIN && !path->nowait)
4908 			goto again;
4909 
4910 		if (ret < 0) {
4911 			btrfs_release_path(path);
4912 			goto done;
4913 		}
4914 
4915 		if (!path->skip_locking) {
4916 			ret = btrfs_try_tree_read_lock(next);
4917 			if (!ret && path->nowait) {
4918 				ret = -EAGAIN;
4919 				goto done;
4920 			}
4921 			if (!ret && time_seq) {
4922 				/*
4923 				 * If we don't get the lock, we may be racing
4924 				 * with push_leaf_left, holding that lock while
4925 				 * itself waiting for the leaf we've currently
4926 				 * locked. To solve this situation, we give up
4927 				 * on our lock and cycle.
4928 				 */
4929 				free_extent_buffer(next);
4930 				btrfs_release_path(path);
4931 				cond_resched();
4932 				goto again;
4933 			}
4934 			if (!ret)
4935 				btrfs_tree_read_lock(next);
4936 		}
4937 		break;
4938 	}
4939 	path->slots[level] = slot;
4940 	while (1) {
4941 		level--;
4942 		path->nodes[level] = next;
4943 		path->slots[level] = 0;
4944 		if (!path->skip_locking)
4945 			path->locks[level] = BTRFS_READ_LOCK;
4946 		if (!level)
4947 			break;
4948 
4949 		ret = read_block_for_search(root, path, &next, 0, &key);
4950 		if (ret == -EAGAIN && !path->nowait)
4951 			goto again;
4952 
4953 		if (ret < 0) {
4954 			btrfs_release_path(path);
4955 			goto done;
4956 		}
4957 
4958 		if (!path->skip_locking) {
4959 			if (path->nowait) {
4960 				if (!btrfs_try_tree_read_lock(next)) {
4961 					ret = -EAGAIN;
4962 					goto done;
4963 				}
4964 			} else {
4965 				btrfs_tree_read_lock(next);
4966 			}
4967 		}
4968 	}
4969 	ret = 0;
4970 done:
4971 	unlock_up(path, 0, 1, 0, NULL);
4972 	if (need_commit_sem) {
4973 		int ret2;
4974 
4975 		path->need_commit_sem = true;
4976 		ret2 = finish_need_commit_sem_search(path);
4977 		up_read(&fs_info->commit_root_sem);
4978 		if (ret2)
4979 			ret = ret2;
4980 	}
4981 
4982 	return ret;
4983 }
4984 
4985 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4986 {
4987 	path->slots[0]++;
4988 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4989 		return btrfs_next_old_leaf(root, path, time_seq);
4990 	return 0;
4991 }
4992 
4993 /*
4994  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4995  * searching until it gets past min_objectid or finds an item of 'type'
4996  *
4997  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4998  */
4999 int btrfs_previous_item(struct btrfs_root *root,
5000 			struct btrfs_path *path, u64 min_objectid,
5001 			int type)
5002 {
5003 	struct btrfs_key found_key;
5004 	struct extent_buffer *leaf;
5005 	u32 nritems;
5006 	int ret;
5007 
5008 	while (1) {
5009 		if (path->slots[0] == 0) {
5010 			ret = btrfs_prev_leaf(root, path);
5011 			if (ret != 0)
5012 				return ret;
5013 		} else {
5014 			path->slots[0]--;
5015 		}
5016 		leaf = path->nodes[0];
5017 		nritems = btrfs_header_nritems(leaf);
5018 		if (nritems == 0)
5019 			return 1;
5020 		if (path->slots[0] == nritems)
5021 			path->slots[0]--;
5022 
5023 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5024 		if (found_key.objectid < min_objectid)
5025 			break;
5026 		if (found_key.type == type)
5027 			return 0;
5028 		if (found_key.objectid == min_objectid &&
5029 		    found_key.type < type)
5030 			break;
5031 	}
5032 	return 1;
5033 }
5034 
5035 /*
5036  * search in extent tree to find a previous Metadata/Data extent item with
5037  * min objecitd.
5038  *
5039  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5040  */
5041 int btrfs_previous_extent_item(struct btrfs_root *root,
5042 			struct btrfs_path *path, u64 min_objectid)
5043 {
5044 	struct btrfs_key found_key;
5045 	struct extent_buffer *leaf;
5046 	u32 nritems;
5047 	int ret;
5048 
5049 	while (1) {
5050 		if (path->slots[0] == 0) {
5051 			ret = btrfs_prev_leaf(root, path);
5052 			if (ret != 0)
5053 				return ret;
5054 		} else {
5055 			path->slots[0]--;
5056 		}
5057 		leaf = path->nodes[0];
5058 		nritems = btrfs_header_nritems(leaf);
5059 		if (nritems == 0)
5060 			return 1;
5061 		if (path->slots[0] == nritems)
5062 			path->slots[0]--;
5063 
5064 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5065 		if (found_key.objectid < min_objectid)
5066 			break;
5067 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5068 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5069 			return 0;
5070 		if (found_key.objectid == min_objectid &&
5071 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5072 			break;
5073 	}
5074 	return 1;
5075 }
5076 
5077 int __init btrfs_ctree_init(void)
5078 {
5079 	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5080 	if (!btrfs_path_cachep)
5081 		return -ENOMEM;
5082 	return 0;
5083 }
5084 
5085 void __cold btrfs_ctree_exit(void)
5086 {
5087 	kmem_cache_destroy(btrfs_path_cachep);
5088 }
5089