1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40
41 static const struct btrfs_csums {
42 u16 size;
43 const char name[10];
44 const char driver[12];
45 } btrfs_csums[] = {
46 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 .driver = "blake2b-256" },
51 };
52
53 /*
54 * The leaf data grows from end-to-front in the node. this returns the address
55 * of the start of the last item, which is the stop of the leaf data stack.
56 */
leaf_data_end(const struct extent_buffer * leaf)57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 u32 nr = btrfs_header_nritems(leaf);
60
61 if (nr == 0)
62 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 return btrfs_item_offset(leaf, nr - 1);
64 }
65
66 /*
67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
68 *
69 * @leaf: leaf that we're doing a memmove on
70 * @dst_offset: item data offset we're moving to
71 * @src_offset: item data offset were' moving from
72 * @len: length of the data we're moving
73 *
74 * Wrapper around memmove_extent_buffer() that takes into account the header on
75 * the leaf. The btrfs_item offset's start directly after the header, so we
76 * have to adjust any offsets to account for the header in the leaf. This
77 * handles that math to simplify the callers.
78 */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 unsigned long dst_offset,
81 unsigned long src_offset,
82 unsigned long len)
83 {
84 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87
88 /*
89 * Copy item data from @src into @dst at the given @offset.
90 *
91 * @dst: destination leaf that we're copying into
92 * @src: source leaf that we're copying from
93 * @dst_offset: item data offset we're copying to
94 * @src_offset: item data offset were' copying from
95 * @len: length of the data we're copying
96 *
97 * Wrapper around copy_extent_buffer() that takes into account the header on
98 * the leaf. The btrfs_item offset's start directly after the header, so we
99 * have to adjust any offsets to account for the header in the leaf. This
100 * handles that math to simplify the callers.
101 */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 const struct extent_buffer *src,
104 unsigned long dst_offset,
105 unsigned long src_offset, unsigned long len)
106 {
107 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110
111 /*
112 * Move items in a @leaf (using memmove).
113 *
114 * @dst: destination leaf for the items
115 * @dst_item: the item nr we're copying into
116 * @src_item: the item nr we're copying from
117 * @nr_items: the number of items to copy
118 *
119 * Wrapper around memmove_extent_buffer() that does the math to get the
120 * appropriate offsets into the leaf from the item numbers.
121 */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 int dst_item, int src_item, int nr_items)
124 {
125 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 btrfs_item_nr_offset(leaf, src_item),
127 nr_items * sizeof(struct btrfs_item));
128 }
129
130 /*
131 * Copy items from @src into @dst at the given @offset.
132 *
133 * @dst: destination leaf for the items
134 * @src: source leaf for the items
135 * @dst_item: the item nr we're copying into
136 * @src_item: the item nr we're copying from
137 * @nr_items: the number of items to copy
138 *
139 * Wrapper around copy_extent_buffer() that does the math to get the
140 * appropriate offsets into the leaf from the item numbers.
141 */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 const struct extent_buffer *src,
144 int dst_item, int src_item, int nr_items)
145 {
146 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 btrfs_item_nr_offset(src, src_item),
148 nr_items * sizeof(struct btrfs_item));
149 }
150
151 /* This exists for btrfs-progs usages. */
btrfs_csum_type_size(u16 type)152 u16 btrfs_csum_type_size(u16 type)
153 {
154 return btrfs_csums[type].size;
155 }
156
btrfs_super_csum_size(const struct btrfs_super_block * s)157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 u16 t = btrfs_super_csum_type(s);
160 /*
161 * csum type is validated at mount time
162 */
163 return btrfs_csum_type_size(t);
164 }
165
btrfs_super_csum_name(u16 csum_type)166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 /* csum type is validated at mount time */
169 return btrfs_csums[csum_type].name;
170 }
171
172 /*
173 * Return driver name if defined, otherwise the name that's also a valid driver
174 * name
175 */
btrfs_super_csum_driver(u16 csum_type)176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 /* csum type is validated at mount time */
179 return btrfs_csums[csum_type].driver[0] ?
180 btrfs_csums[csum_type].driver :
181 btrfs_csums[csum_type].name;
182 }
183
btrfs_get_num_csums(void)184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 return ARRAY_SIZE(btrfs_csums);
187 }
188
btrfs_alloc_path(void)189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 might_sleep();
192
193 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195
196 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 if (!p)
200 return;
201 btrfs_release_path(p);
202 kmem_cache_free(btrfs_path_cachep, p);
203 }
204
205 /*
206 * path release drops references on the extent buffers in the path
207 * and it drops any locks held by this path
208 *
209 * It is safe to call this on paths that no locks or extent buffers held.
210 */
btrfs_release_path(struct btrfs_path * p)211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 int i;
214
215 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 p->slots[i] = 0;
217 if (!p->nodes[i])
218 continue;
219 if (p->locks[i]) {
220 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 p->locks[i] = 0;
222 }
223 free_extent_buffer(p->nodes[i]);
224 p->nodes[i] = NULL;
225 }
226 }
227
228 /*
229 * We want the transaction abort to print stack trace only for errors where the
230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231 * caused by external factors.
232 */
abort_should_print_stack(int error)233 bool __cold abort_should_print_stack(int error)
234 {
235 switch (error) {
236 case -EIO:
237 case -EROFS:
238 case -ENOMEM:
239 return false;
240 }
241 return true;
242 }
243
244 /*
245 * safely gets a reference on the root node of a tree. A lock
246 * is not taken, so a concurrent writer may put a different node
247 * at the root of the tree. See btrfs_lock_root_node for the
248 * looping required.
249 *
250 * The extent buffer returned by this has a reference taken, so
251 * it won't disappear. It may stop being the root of the tree
252 * at any time because there are no locks held.
253 */
btrfs_root_node(struct btrfs_root * root)254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 struct extent_buffer *eb;
257
258 while (1) {
259 rcu_read_lock();
260 eb = rcu_dereference(root->node);
261
262 /*
263 * RCU really hurts here, we could free up the root node because
264 * it was COWed but we may not get the new root node yet so do
265 * the inc_not_zero dance and if it doesn't work then
266 * synchronize_rcu and try again.
267 */
268 if (atomic_inc_not_zero(&eb->refs)) {
269 rcu_read_unlock();
270 break;
271 }
272 rcu_read_unlock();
273 synchronize_rcu();
274 }
275 return eb;
276 }
277
278 /*
279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280 * just get put onto a simple dirty list. Transaction walks this list to make
281 * sure they get properly updated on disk.
282 */
add_root_to_dirty_list(struct btrfs_root * root)283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 struct btrfs_fs_info *fs_info = root->fs_info;
286
287 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 return;
290
291 spin_lock(&fs_info->trans_lock);
292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 /* Want the extent tree to be the last on the list */
294 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295 list_move_tail(&root->dirty_list,
296 &fs_info->dirty_cowonly_roots);
297 else
298 list_move(&root->dirty_list,
299 &fs_info->dirty_cowonly_roots);
300 }
301 spin_unlock(&fs_info->trans_lock);
302 }
303
304 /*
305 * used by snapshot creation to make a copy of a root for a tree with
306 * a given objectid. The buffer with the new root node is returned in
307 * cow_ret, and this func returns zero on success or a negative error code.
308 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 struct btrfs_root *root,
311 struct extent_buffer *buf,
312 struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 struct btrfs_fs_info *fs_info = root->fs_info;
315 struct extent_buffer *cow;
316 int ret = 0;
317 int level;
318 struct btrfs_disk_key disk_key;
319 u64 reloc_src_root = 0;
320
321 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322 trans->transid != fs_info->running_transaction->transid);
323 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324 trans->transid != btrfs_get_root_last_trans(root));
325
326 level = btrfs_header_level(buf);
327 if (level == 0)
328 btrfs_item_key(buf, &disk_key, 0);
329 else
330 btrfs_node_key(buf, &disk_key, 0);
331
332 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333 reloc_src_root = btrfs_header_owner(buf);
334 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335 &disk_key, level, buf->start, 0,
336 reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337 if (IS_ERR(cow))
338 return PTR_ERR(cow);
339
340 copy_extent_buffer_full(cow, buf);
341 btrfs_set_header_bytenr(cow, cow->start);
342 btrfs_set_header_generation(cow, trans->transid);
343 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345 BTRFS_HEADER_FLAG_RELOC);
346 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348 else
349 btrfs_set_header_owner(cow, new_root_objectid);
350
351 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352
353 WARN_ON(btrfs_header_generation(buf) > trans->transid);
354 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355 ret = btrfs_inc_ref(trans, root, cow, 1);
356 else
357 ret = btrfs_inc_ref(trans, root, cow, 0);
358 if (ret) {
359 btrfs_tree_unlock(cow);
360 free_extent_buffer(cow);
361 btrfs_abort_transaction(trans, ret);
362 return ret;
363 }
364
365 btrfs_mark_buffer_dirty(trans, cow);
366 *cow_ret = cow;
367 return 0;
368 }
369
370 /*
371 * check if the tree block can be shared by multiple trees
372 */
btrfs_block_can_be_shared(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root,
375 struct extent_buffer *buf)
376 {
377 const u64 buf_gen = btrfs_header_generation(buf);
378
379 /*
380 * Tree blocks not in shareable trees and tree roots are never shared.
381 * If a block was allocated after the last snapshot and the block was
382 * not allocated by tree relocation, we know the block is not shared.
383 */
384
385 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386 return false;
387
388 if (buf == root->node)
389 return false;
390
391 if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393 return false;
394
395 if (buf != root->commit_root)
396 return true;
397
398 /*
399 * An extent buffer that used to be the commit root may still be shared
400 * because the tree height may have increased and it became a child of a
401 * higher level root. This can happen when snapshotting a subvolume
402 * created in the current transaction.
403 */
404 if (buf_gen == trans->transid)
405 return true;
406
407 return false;
408 }
409
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411 struct btrfs_root *root,
412 struct extent_buffer *buf,
413 struct extent_buffer *cow,
414 int *last_ref)
415 {
416 struct btrfs_fs_info *fs_info = root->fs_info;
417 u64 refs;
418 u64 owner;
419 u64 flags;
420 int ret;
421
422 /*
423 * Backrefs update rules:
424 *
425 * Always use full backrefs for extent pointers in tree block
426 * allocated by tree relocation.
427 *
428 * If a shared tree block is no longer referenced by its owner
429 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
430 * use full backrefs for extent pointers in tree block.
431 *
432 * If a tree block is been relocating
433 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
434 * use full backrefs for extent pointers in tree block.
435 * The reason for this is some operations (such as drop tree)
436 * are only allowed for blocks use full backrefs.
437 */
438
439 if (btrfs_block_can_be_shared(trans, root, buf)) {
440 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
441 btrfs_header_level(buf), 1,
442 &refs, &flags, NULL);
443 if (ret)
444 return ret;
445 if (unlikely(refs == 0)) {
446 btrfs_crit(fs_info,
447 "found 0 references for tree block at bytenr %llu level %d root %llu",
448 buf->start, btrfs_header_level(buf),
449 btrfs_root_id(root));
450 ret = -EUCLEAN;
451 btrfs_abort_transaction(trans, ret);
452 return ret;
453 }
454 } else {
455 refs = 1;
456 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
457 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
459 else
460 flags = 0;
461 }
462
463 owner = btrfs_header_owner(buf);
464 if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
465 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
466 btrfs_crit(fs_info,
467 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
468 buf->start, btrfs_header_level(buf),
469 btrfs_root_id(root), refs, flags);
470 ret = -EUCLEAN;
471 btrfs_abort_transaction(trans, ret);
472 return ret;
473 }
474
475 if (refs > 1) {
476 if ((owner == btrfs_root_id(root) ||
477 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
478 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
479 ret = btrfs_inc_ref(trans, root, buf, 1);
480 if (ret)
481 return ret;
482
483 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
484 ret = btrfs_dec_ref(trans, root, buf, 0);
485 if (ret)
486 return ret;
487 ret = btrfs_inc_ref(trans, root, cow, 1);
488 if (ret)
489 return ret;
490 }
491 ret = btrfs_set_disk_extent_flags(trans, buf,
492 BTRFS_BLOCK_FLAG_FULL_BACKREF);
493 if (ret)
494 return ret;
495 } else {
496
497 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
498 ret = btrfs_inc_ref(trans, root, cow, 1);
499 else
500 ret = btrfs_inc_ref(trans, root, cow, 0);
501 if (ret)
502 return ret;
503 }
504 } else {
505 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
506 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
507 ret = btrfs_inc_ref(trans, root, cow, 1);
508 else
509 ret = btrfs_inc_ref(trans, root, cow, 0);
510 if (ret)
511 return ret;
512 ret = btrfs_dec_ref(trans, root, buf, 1);
513 if (ret)
514 return ret;
515 }
516 btrfs_clear_buffer_dirty(trans, buf);
517 *last_ref = 1;
518 }
519 return 0;
520 }
521
522 /*
523 * does the dirty work in cow of a single block. The parent block (if
524 * supplied) is updated to point to the new cow copy. The new buffer is marked
525 * dirty and returned locked. If you modify the block it needs to be marked
526 * dirty again.
527 *
528 * search_start -- an allocation hint for the new block
529 *
530 * empty_size -- a hint that you plan on doing more cow. This is the size in
531 * bytes the allocator should try to find free next to the block it returns.
532 * This is just a hint and may be ignored by the allocator.
533 */
btrfs_force_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)534 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
535 struct btrfs_root *root,
536 struct extent_buffer *buf,
537 struct extent_buffer *parent, int parent_slot,
538 struct extent_buffer **cow_ret,
539 u64 search_start, u64 empty_size,
540 enum btrfs_lock_nesting nest)
541 {
542 struct btrfs_fs_info *fs_info = root->fs_info;
543 struct btrfs_disk_key disk_key;
544 struct extent_buffer *cow;
545 int level, ret;
546 int last_ref = 0;
547 int unlock_orig = 0;
548 u64 parent_start = 0;
549 u64 reloc_src_root = 0;
550
551 if (*cow_ret == buf)
552 unlock_orig = 1;
553
554 btrfs_assert_tree_write_locked(buf);
555
556 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
557 trans->transid != fs_info->running_transaction->transid);
558 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
559 trans->transid != btrfs_get_root_last_trans(root));
560
561 level = btrfs_header_level(buf);
562
563 if (level == 0)
564 btrfs_item_key(buf, &disk_key, 0);
565 else
566 btrfs_node_key(buf, &disk_key, 0);
567
568 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
569 if (parent)
570 parent_start = parent->start;
571 reloc_src_root = btrfs_header_owner(buf);
572 }
573 cow = btrfs_alloc_tree_block(trans, root, parent_start,
574 btrfs_root_id(root), &disk_key, level,
575 search_start, empty_size, reloc_src_root, nest);
576 if (IS_ERR(cow))
577 return PTR_ERR(cow);
578
579 /* cow is set to blocking by btrfs_init_new_buffer */
580
581 copy_extent_buffer_full(cow, buf);
582 btrfs_set_header_bytenr(cow, cow->start);
583 btrfs_set_header_generation(cow, trans->transid);
584 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
585 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
586 BTRFS_HEADER_FLAG_RELOC);
587 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
588 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
589 else
590 btrfs_set_header_owner(cow, btrfs_root_id(root));
591
592 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
593
594 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
595 if (ret) {
596 btrfs_abort_transaction(trans, ret);
597 goto error_unlock_cow;
598 }
599
600 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
601 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
602 if (ret) {
603 btrfs_abort_transaction(trans, ret);
604 goto error_unlock_cow;
605 }
606 }
607
608 if (buf == root->node) {
609 WARN_ON(parent && parent != buf);
610 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
611 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
612 parent_start = buf->start;
613
614 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
615 if (ret < 0) {
616 btrfs_abort_transaction(trans, ret);
617 goto error_unlock_cow;
618 }
619 atomic_inc(&cow->refs);
620 rcu_assign_pointer(root->node, cow);
621
622 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
623 parent_start, last_ref);
624 free_extent_buffer(buf);
625 add_root_to_dirty_list(root);
626 if (ret < 0) {
627 btrfs_abort_transaction(trans, ret);
628 goto error_unlock_cow;
629 }
630 } else {
631 WARN_ON(trans->transid != btrfs_header_generation(parent));
632 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633 BTRFS_MOD_LOG_KEY_REPLACE);
634 if (ret) {
635 btrfs_abort_transaction(trans, ret);
636 goto error_unlock_cow;
637 }
638 btrfs_set_node_blockptr(parent, parent_slot,
639 cow->start);
640 btrfs_set_node_ptr_generation(parent, parent_slot,
641 trans->transid);
642 btrfs_mark_buffer_dirty(trans, parent);
643 if (last_ref) {
644 ret = btrfs_tree_mod_log_free_eb(buf);
645 if (ret) {
646 btrfs_abort_transaction(trans, ret);
647 goto error_unlock_cow;
648 }
649 }
650 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
651 parent_start, last_ref);
652 if (ret < 0) {
653 btrfs_abort_transaction(trans, ret);
654 goto error_unlock_cow;
655 }
656 }
657
658 trace_btrfs_cow_block(root, buf, cow);
659 if (unlock_orig)
660 btrfs_tree_unlock(buf);
661 free_extent_buffer_stale(buf);
662 btrfs_mark_buffer_dirty(trans, cow);
663 *cow_ret = cow;
664 return 0;
665
666 error_unlock_cow:
667 btrfs_tree_unlock(cow);
668 free_extent_buffer(cow);
669 return ret;
670 }
671
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)672 static inline int should_cow_block(struct btrfs_trans_handle *trans,
673 struct btrfs_root *root,
674 struct extent_buffer *buf)
675 {
676 if (btrfs_is_testing(root->fs_info))
677 return 0;
678
679 /* Ensure we can see the FORCE_COW bit */
680 smp_mb__before_atomic();
681
682 /*
683 * We do not need to cow a block if
684 * 1) this block is not created or changed in this transaction;
685 * 2) this block does not belong to TREE_RELOC tree;
686 * 3) the root is not forced COW.
687 *
688 * What is forced COW:
689 * when we create snapshot during committing the transaction,
690 * after we've finished copying src root, we must COW the shared
691 * block to ensure the metadata consistency.
692 */
693 if (btrfs_header_generation(buf) == trans->transid &&
694 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
695 !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
696 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
697 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
698 return 0;
699 return 1;
700 }
701
702 /*
703 * COWs a single block, see btrfs_force_cow_block() for the real work.
704 * This version of it has extra checks so that a block isn't COWed more than
705 * once per transaction, as long as it hasn't been written yet
706 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)707 int btrfs_cow_block(struct btrfs_trans_handle *trans,
708 struct btrfs_root *root, struct extent_buffer *buf,
709 struct extent_buffer *parent, int parent_slot,
710 struct extent_buffer **cow_ret,
711 enum btrfs_lock_nesting nest)
712 {
713 struct btrfs_fs_info *fs_info = root->fs_info;
714 u64 search_start;
715
716 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
717 btrfs_abort_transaction(trans, -EUCLEAN);
718 btrfs_crit(fs_info,
719 "attempt to COW block %llu on root %llu that is being deleted",
720 buf->start, btrfs_root_id(root));
721 return -EUCLEAN;
722 }
723
724 /*
725 * COWing must happen through a running transaction, which always
726 * matches the current fs generation (it's a transaction with a state
727 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
728 * into error state to prevent the commit of any transaction.
729 */
730 if (unlikely(trans->transaction != fs_info->running_transaction ||
731 trans->transid != fs_info->generation)) {
732 btrfs_abort_transaction(trans, -EUCLEAN);
733 btrfs_crit(fs_info,
734 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
735 buf->start, btrfs_root_id(root), trans->transid,
736 fs_info->running_transaction->transid,
737 fs_info->generation);
738 return -EUCLEAN;
739 }
740
741 if (!should_cow_block(trans, root, buf)) {
742 *cow_ret = buf;
743 return 0;
744 }
745
746 search_start = round_down(buf->start, SZ_1G);
747
748 /*
749 * Before CoWing this block for later modification, check if it's
750 * the subtree root and do the delayed subtree trace if needed.
751 *
752 * Also We don't care about the error, as it's handled internally.
753 */
754 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
755 return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
756 cow_ret, search_start, 0, nest);
757 }
758 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
759
760 /*
761 * same as comp_keys only with two btrfs_key's
762 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)763 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
764 {
765 if (k1->objectid > k2->objectid)
766 return 1;
767 if (k1->objectid < k2->objectid)
768 return -1;
769 if (k1->type > k2->type)
770 return 1;
771 if (k1->type < k2->type)
772 return -1;
773 if (k1->offset > k2->offset)
774 return 1;
775 if (k1->offset < k2->offset)
776 return -1;
777 return 0;
778 }
779
780 /*
781 * Search for a key in the given extent_buffer.
782 *
783 * The lower boundary for the search is specified by the slot number @first_slot.
784 * Use a value of 0 to search over the whole extent buffer. Works for both
785 * leaves and nodes.
786 *
787 * The slot in the extent buffer is returned via @slot. If the key exists in the
788 * extent buffer, then @slot will point to the slot where the key is, otherwise
789 * it points to the slot where you would insert the key.
790 *
791 * Slot may point to the total number of items (i.e. one position beyond the last
792 * key) if the key is bigger than the last key in the extent buffer.
793 */
btrfs_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)794 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
795 const struct btrfs_key *key, int *slot)
796 {
797 unsigned long p;
798 int item_size;
799 /*
800 * Use unsigned types for the low and high slots, so that we get a more
801 * efficient division in the search loop below.
802 */
803 u32 low = first_slot;
804 u32 high = btrfs_header_nritems(eb);
805 int ret;
806 const int key_size = sizeof(struct btrfs_disk_key);
807
808 if (unlikely(low > high)) {
809 btrfs_err(eb->fs_info,
810 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
811 __func__, low, high, eb->start,
812 btrfs_header_owner(eb), btrfs_header_level(eb));
813 return -EINVAL;
814 }
815
816 if (btrfs_header_level(eb) == 0) {
817 p = offsetof(struct btrfs_leaf, items);
818 item_size = sizeof(struct btrfs_item);
819 } else {
820 p = offsetof(struct btrfs_node, ptrs);
821 item_size = sizeof(struct btrfs_key_ptr);
822 }
823
824 while (low < high) {
825 const int unit_size = eb->folio_size;
826 unsigned long oil;
827 unsigned long offset;
828 struct btrfs_disk_key *tmp;
829 struct btrfs_disk_key unaligned;
830 int mid;
831
832 mid = (low + high) / 2;
833 offset = p + mid * item_size;
834 oil = get_eb_offset_in_folio(eb, offset);
835
836 if (oil + key_size <= unit_size) {
837 const unsigned long idx = get_eb_folio_index(eb, offset);
838 char *kaddr = folio_address(eb->folios[idx]);
839
840 oil = get_eb_offset_in_folio(eb, offset);
841 tmp = (struct btrfs_disk_key *)(kaddr + oil);
842 } else {
843 read_extent_buffer(eb, &unaligned, offset, key_size);
844 tmp = &unaligned;
845 }
846
847 ret = btrfs_comp_keys(tmp, key);
848
849 if (ret < 0)
850 low = mid + 1;
851 else if (ret > 0)
852 high = mid;
853 else {
854 *slot = mid;
855 return 0;
856 }
857 }
858 *slot = low;
859 return 1;
860 }
861
root_add_used_bytes(struct btrfs_root * root)862 static void root_add_used_bytes(struct btrfs_root *root)
863 {
864 spin_lock(&root->accounting_lock);
865 btrfs_set_root_used(&root->root_item,
866 btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
867 spin_unlock(&root->accounting_lock);
868 }
869
root_sub_used_bytes(struct btrfs_root * root)870 static void root_sub_used_bytes(struct btrfs_root *root)
871 {
872 spin_lock(&root->accounting_lock);
873 btrfs_set_root_used(&root->root_item,
874 btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
875 spin_unlock(&root->accounting_lock);
876 }
877
878 /* given a node and slot number, this reads the blocks it points to. The
879 * extent buffer is returned with a reference taken (but unlocked).
880 */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)881 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
882 int slot)
883 {
884 int level = btrfs_header_level(parent);
885 struct btrfs_tree_parent_check check = { 0 };
886 struct extent_buffer *eb;
887
888 if (slot < 0 || slot >= btrfs_header_nritems(parent))
889 return ERR_PTR(-ENOENT);
890
891 ASSERT(level);
892
893 check.level = level - 1;
894 check.transid = btrfs_node_ptr_generation(parent, slot);
895 check.owner_root = btrfs_header_owner(parent);
896 check.has_first_key = true;
897 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
898
899 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
900 &check);
901 if (IS_ERR(eb))
902 return eb;
903 if (!extent_buffer_uptodate(eb)) {
904 free_extent_buffer(eb);
905 return ERR_PTR(-EIO);
906 }
907
908 return eb;
909 }
910
911 /*
912 * node level balancing, used to make sure nodes are in proper order for
913 * item deletion. We balance from the top down, so we have to make sure
914 * that a deletion won't leave an node completely empty later on.
915 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)916 static noinline int balance_level(struct btrfs_trans_handle *trans,
917 struct btrfs_root *root,
918 struct btrfs_path *path, int level)
919 {
920 struct btrfs_fs_info *fs_info = root->fs_info;
921 struct extent_buffer *right = NULL;
922 struct extent_buffer *mid;
923 struct extent_buffer *left = NULL;
924 struct extent_buffer *parent = NULL;
925 int ret = 0;
926 int wret;
927 int pslot;
928 int orig_slot = path->slots[level];
929 u64 orig_ptr;
930
931 ASSERT(level > 0);
932
933 mid = path->nodes[level];
934
935 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
936 WARN_ON(btrfs_header_generation(mid) != trans->transid);
937
938 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
939
940 if (level < BTRFS_MAX_LEVEL - 1) {
941 parent = path->nodes[level + 1];
942 pslot = path->slots[level + 1];
943 }
944
945 /*
946 * deal with the case where there is only one pointer in the root
947 * by promoting the node below to a root
948 */
949 if (!parent) {
950 struct extent_buffer *child;
951
952 if (btrfs_header_nritems(mid) != 1)
953 return 0;
954
955 /* promote the child to a root */
956 child = btrfs_read_node_slot(mid, 0);
957 if (IS_ERR(child)) {
958 ret = PTR_ERR(child);
959 goto out;
960 }
961
962 btrfs_tree_lock(child);
963 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
964 BTRFS_NESTING_COW);
965 if (ret) {
966 btrfs_tree_unlock(child);
967 free_extent_buffer(child);
968 goto out;
969 }
970
971 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
972 if (ret < 0) {
973 btrfs_tree_unlock(child);
974 free_extent_buffer(child);
975 btrfs_abort_transaction(trans, ret);
976 goto out;
977 }
978 rcu_assign_pointer(root->node, child);
979
980 add_root_to_dirty_list(root);
981 btrfs_tree_unlock(child);
982
983 path->locks[level] = 0;
984 path->nodes[level] = NULL;
985 btrfs_clear_buffer_dirty(trans, mid);
986 btrfs_tree_unlock(mid);
987 /* once for the path */
988 free_extent_buffer(mid);
989
990 root_sub_used_bytes(root);
991 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
992 /* once for the root ptr */
993 free_extent_buffer_stale(mid);
994 if (ret < 0) {
995 btrfs_abort_transaction(trans, ret);
996 goto out;
997 }
998 return 0;
999 }
1000 if (btrfs_header_nritems(mid) >
1001 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1002 return 0;
1003
1004 if (pslot) {
1005 left = btrfs_read_node_slot(parent, pslot - 1);
1006 if (IS_ERR(left)) {
1007 ret = PTR_ERR(left);
1008 left = NULL;
1009 goto out;
1010 }
1011
1012 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1013 wret = btrfs_cow_block(trans, root, left,
1014 parent, pslot - 1, &left,
1015 BTRFS_NESTING_LEFT_COW);
1016 if (wret) {
1017 ret = wret;
1018 goto out;
1019 }
1020 }
1021
1022 if (pslot + 1 < btrfs_header_nritems(parent)) {
1023 right = btrfs_read_node_slot(parent, pslot + 1);
1024 if (IS_ERR(right)) {
1025 ret = PTR_ERR(right);
1026 right = NULL;
1027 goto out;
1028 }
1029
1030 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1031 wret = btrfs_cow_block(trans, root, right,
1032 parent, pslot + 1, &right,
1033 BTRFS_NESTING_RIGHT_COW);
1034 if (wret) {
1035 ret = wret;
1036 goto out;
1037 }
1038 }
1039
1040 /* first, try to make some room in the middle buffer */
1041 if (left) {
1042 orig_slot += btrfs_header_nritems(left);
1043 wret = push_node_left(trans, left, mid, 1);
1044 if (wret < 0)
1045 ret = wret;
1046 }
1047
1048 /*
1049 * then try to empty the right most buffer into the middle
1050 */
1051 if (right) {
1052 wret = push_node_left(trans, mid, right, 1);
1053 if (wret < 0 && wret != -ENOSPC)
1054 ret = wret;
1055 if (btrfs_header_nritems(right) == 0) {
1056 btrfs_clear_buffer_dirty(trans, right);
1057 btrfs_tree_unlock(right);
1058 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1059 if (ret < 0) {
1060 free_extent_buffer_stale(right);
1061 right = NULL;
1062 goto out;
1063 }
1064 root_sub_used_bytes(root);
1065 ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1066 right, 0, 1);
1067 free_extent_buffer_stale(right);
1068 right = NULL;
1069 if (ret < 0) {
1070 btrfs_abort_transaction(trans, ret);
1071 goto out;
1072 }
1073 } else {
1074 struct btrfs_disk_key right_key;
1075 btrfs_node_key(right, &right_key, 0);
1076 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1077 BTRFS_MOD_LOG_KEY_REPLACE);
1078 if (ret < 0) {
1079 btrfs_abort_transaction(trans, ret);
1080 goto out;
1081 }
1082 btrfs_set_node_key(parent, &right_key, pslot + 1);
1083 btrfs_mark_buffer_dirty(trans, parent);
1084 }
1085 }
1086 if (btrfs_header_nritems(mid) == 1) {
1087 /*
1088 * we're not allowed to leave a node with one item in the
1089 * tree during a delete. A deletion from lower in the tree
1090 * could try to delete the only pointer in this node.
1091 * So, pull some keys from the left.
1092 * There has to be a left pointer at this point because
1093 * otherwise we would have pulled some pointers from the
1094 * right
1095 */
1096 if (unlikely(!left)) {
1097 btrfs_crit(fs_info,
1098 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1099 parent->start, btrfs_header_level(parent),
1100 mid->start, btrfs_root_id(root));
1101 ret = -EUCLEAN;
1102 btrfs_abort_transaction(trans, ret);
1103 goto out;
1104 }
1105 wret = balance_node_right(trans, mid, left);
1106 if (wret < 0) {
1107 ret = wret;
1108 goto out;
1109 }
1110 if (wret == 1) {
1111 wret = push_node_left(trans, left, mid, 1);
1112 if (wret < 0)
1113 ret = wret;
1114 }
1115 BUG_ON(wret == 1);
1116 }
1117 if (btrfs_header_nritems(mid) == 0) {
1118 btrfs_clear_buffer_dirty(trans, mid);
1119 btrfs_tree_unlock(mid);
1120 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1121 if (ret < 0) {
1122 free_extent_buffer_stale(mid);
1123 mid = NULL;
1124 goto out;
1125 }
1126 root_sub_used_bytes(root);
1127 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1128 free_extent_buffer_stale(mid);
1129 mid = NULL;
1130 if (ret < 0) {
1131 btrfs_abort_transaction(trans, ret);
1132 goto out;
1133 }
1134 } else {
1135 /* update the parent key to reflect our changes */
1136 struct btrfs_disk_key mid_key;
1137 btrfs_node_key(mid, &mid_key, 0);
1138 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1139 BTRFS_MOD_LOG_KEY_REPLACE);
1140 if (ret < 0) {
1141 btrfs_abort_transaction(trans, ret);
1142 goto out;
1143 }
1144 btrfs_set_node_key(parent, &mid_key, pslot);
1145 btrfs_mark_buffer_dirty(trans, parent);
1146 }
1147
1148 /* update the path */
1149 if (left) {
1150 if (btrfs_header_nritems(left) > orig_slot) {
1151 atomic_inc(&left->refs);
1152 /* left was locked after cow */
1153 path->nodes[level] = left;
1154 path->slots[level + 1] -= 1;
1155 path->slots[level] = orig_slot;
1156 if (mid) {
1157 btrfs_tree_unlock(mid);
1158 free_extent_buffer(mid);
1159 }
1160 } else {
1161 orig_slot -= btrfs_header_nritems(left);
1162 path->slots[level] = orig_slot;
1163 }
1164 }
1165 /* double check we haven't messed things up */
1166 if (orig_ptr !=
1167 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1168 BUG();
1169 out:
1170 if (right) {
1171 btrfs_tree_unlock(right);
1172 free_extent_buffer(right);
1173 }
1174 if (left) {
1175 if (path->nodes[level] != left)
1176 btrfs_tree_unlock(left);
1177 free_extent_buffer(left);
1178 }
1179 return ret;
1180 }
1181
1182 /* Node balancing for insertion. Here we only split or push nodes around
1183 * when they are completely full. This is also done top down, so we
1184 * have to be pessimistic.
1185 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1186 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1187 struct btrfs_root *root,
1188 struct btrfs_path *path, int level)
1189 {
1190 struct btrfs_fs_info *fs_info = root->fs_info;
1191 struct extent_buffer *right = NULL;
1192 struct extent_buffer *mid;
1193 struct extent_buffer *left = NULL;
1194 struct extent_buffer *parent = NULL;
1195 int ret = 0;
1196 int wret;
1197 int pslot;
1198 int orig_slot = path->slots[level];
1199
1200 if (level == 0)
1201 return 1;
1202
1203 mid = path->nodes[level];
1204 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1205
1206 if (level < BTRFS_MAX_LEVEL - 1) {
1207 parent = path->nodes[level + 1];
1208 pslot = path->slots[level + 1];
1209 }
1210
1211 if (!parent)
1212 return 1;
1213
1214 /* first, try to make some room in the middle buffer */
1215 if (pslot) {
1216 u32 left_nr;
1217
1218 left = btrfs_read_node_slot(parent, pslot - 1);
1219 if (IS_ERR(left))
1220 return PTR_ERR(left);
1221
1222 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1223
1224 left_nr = btrfs_header_nritems(left);
1225 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1226 wret = 1;
1227 } else {
1228 ret = btrfs_cow_block(trans, root, left, parent,
1229 pslot - 1, &left,
1230 BTRFS_NESTING_LEFT_COW);
1231 if (ret)
1232 wret = 1;
1233 else {
1234 wret = push_node_left(trans, left, mid, 0);
1235 }
1236 }
1237 if (wret < 0)
1238 ret = wret;
1239 if (wret == 0) {
1240 struct btrfs_disk_key disk_key;
1241 orig_slot += left_nr;
1242 btrfs_node_key(mid, &disk_key, 0);
1243 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1244 BTRFS_MOD_LOG_KEY_REPLACE);
1245 if (ret < 0) {
1246 btrfs_tree_unlock(left);
1247 free_extent_buffer(left);
1248 btrfs_abort_transaction(trans, ret);
1249 return ret;
1250 }
1251 btrfs_set_node_key(parent, &disk_key, pslot);
1252 btrfs_mark_buffer_dirty(trans, parent);
1253 if (btrfs_header_nritems(left) > orig_slot) {
1254 path->nodes[level] = left;
1255 path->slots[level + 1] -= 1;
1256 path->slots[level] = orig_slot;
1257 btrfs_tree_unlock(mid);
1258 free_extent_buffer(mid);
1259 } else {
1260 orig_slot -=
1261 btrfs_header_nritems(left);
1262 path->slots[level] = orig_slot;
1263 btrfs_tree_unlock(left);
1264 free_extent_buffer(left);
1265 }
1266 return 0;
1267 }
1268 btrfs_tree_unlock(left);
1269 free_extent_buffer(left);
1270 }
1271
1272 /*
1273 * then try to empty the right most buffer into the middle
1274 */
1275 if (pslot + 1 < btrfs_header_nritems(parent)) {
1276 u32 right_nr;
1277
1278 right = btrfs_read_node_slot(parent, pslot + 1);
1279 if (IS_ERR(right))
1280 return PTR_ERR(right);
1281
1282 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1283
1284 right_nr = btrfs_header_nritems(right);
1285 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1286 wret = 1;
1287 } else {
1288 ret = btrfs_cow_block(trans, root, right,
1289 parent, pslot + 1,
1290 &right, BTRFS_NESTING_RIGHT_COW);
1291 if (ret)
1292 wret = 1;
1293 else {
1294 wret = balance_node_right(trans, right, mid);
1295 }
1296 }
1297 if (wret < 0)
1298 ret = wret;
1299 if (wret == 0) {
1300 struct btrfs_disk_key disk_key;
1301
1302 btrfs_node_key(right, &disk_key, 0);
1303 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1304 BTRFS_MOD_LOG_KEY_REPLACE);
1305 if (ret < 0) {
1306 btrfs_tree_unlock(right);
1307 free_extent_buffer(right);
1308 btrfs_abort_transaction(trans, ret);
1309 return ret;
1310 }
1311 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1312 btrfs_mark_buffer_dirty(trans, parent);
1313
1314 if (btrfs_header_nritems(mid) <= orig_slot) {
1315 path->nodes[level] = right;
1316 path->slots[level + 1] += 1;
1317 path->slots[level] = orig_slot -
1318 btrfs_header_nritems(mid);
1319 btrfs_tree_unlock(mid);
1320 free_extent_buffer(mid);
1321 } else {
1322 btrfs_tree_unlock(right);
1323 free_extent_buffer(right);
1324 }
1325 return 0;
1326 }
1327 btrfs_tree_unlock(right);
1328 free_extent_buffer(right);
1329 }
1330 return 1;
1331 }
1332
1333 /*
1334 * readahead one full node of leaves, finding things that are close
1335 * to the block in 'slot', and triggering ra on them.
1336 */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1337 static void reada_for_search(struct btrfs_fs_info *fs_info,
1338 struct btrfs_path *path,
1339 int level, int slot, u64 objectid)
1340 {
1341 struct extent_buffer *node;
1342 struct btrfs_disk_key disk_key;
1343 u32 nritems;
1344 u64 search;
1345 u64 target;
1346 u64 nread = 0;
1347 u64 nread_max;
1348 u32 nr;
1349 u32 blocksize;
1350 u32 nscan = 0;
1351
1352 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1353 return;
1354
1355 if (!path->nodes[level])
1356 return;
1357
1358 node = path->nodes[level];
1359
1360 /*
1361 * Since the time between visiting leaves is much shorter than the time
1362 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1363 * much IO at once (possibly random).
1364 */
1365 if (path->reada == READA_FORWARD_ALWAYS) {
1366 if (level > 1)
1367 nread_max = node->fs_info->nodesize;
1368 else
1369 nread_max = SZ_128K;
1370 } else {
1371 nread_max = SZ_64K;
1372 }
1373
1374 search = btrfs_node_blockptr(node, slot);
1375 blocksize = fs_info->nodesize;
1376 if (path->reada != READA_FORWARD_ALWAYS) {
1377 struct extent_buffer *eb;
1378
1379 eb = find_extent_buffer(fs_info, search);
1380 if (eb) {
1381 free_extent_buffer(eb);
1382 return;
1383 }
1384 }
1385
1386 target = search;
1387
1388 nritems = btrfs_header_nritems(node);
1389 nr = slot;
1390
1391 while (1) {
1392 if (path->reada == READA_BACK) {
1393 if (nr == 0)
1394 break;
1395 nr--;
1396 } else if (path->reada == READA_FORWARD ||
1397 path->reada == READA_FORWARD_ALWAYS) {
1398 nr++;
1399 if (nr >= nritems)
1400 break;
1401 }
1402 if (path->reada == READA_BACK && objectid) {
1403 btrfs_node_key(node, &disk_key, nr);
1404 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1405 break;
1406 }
1407 search = btrfs_node_blockptr(node, nr);
1408 if (path->reada == READA_FORWARD_ALWAYS ||
1409 (search <= target && target - search <= 65536) ||
1410 (search > target && search - target <= 65536)) {
1411 btrfs_readahead_node_child(node, nr);
1412 nread += blocksize;
1413 }
1414 nscan++;
1415 if (nread > nread_max || nscan > 32)
1416 break;
1417 }
1418 }
1419
reada_for_balance(struct btrfs_path * path,int level)1420 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1421 {
1422 struct extent_buffer *parent;
1423 int slot;
1424 int nritems;
1425
1426 parent = path->nodes[level + 1];
1427 if (!parent)
1428 return;
1429
1430 nritems = btrfs_header_nritems(parent);
1431 slot = path->slots[level + 1];
1432
1433 if (slot > 0)
1434 btrfs_readahead_node_child(parent, slot - 1);
1435 if (slot + 1 < nritems)
1436 btrfs_readahead_node_child(parent, slot + 1);
1437 }
1438
1439
1440 /*
1441 * when we walk down the tree, it is usually safe to unlock the higher layers
1442 * in the tree. The exceptions are when our path goes through slot 0, because
1443 * operations on the tree might require changing key pointers higher up in the
1444 * tree.
1445 *
1446 * callers might also have set path->keep_locks, which tells this code to keep
1447 * the lock if the path points to the last slot in the block. This is part of
1448 * walking through the tree, and selecting the next slot in the higher block.
1449 *
1450 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1451 * if lowest_unlock is 1, level 0 won't be unlocked
1452 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1453 static noinline void unlock_up(struct btrfs_path *path, int level,
1454 int lowest_unlock, int min_write_lock_level,
1455 int *write_lock_level)
1456 {
1457 int i;
1458 int skip_level = level;
1459 bool check_skip = true;
1460
1461 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1462 if (!path->nodes[i])
1463 break;
1464 if (!path->locks[i])
1465 break;
1466
1467 if (check_skip) {
1468 if (path->slots[i] == 0) {
1469 skip_level = i + 1;
1470 continue;
1471 }
1472
1473 if (path->keep_locks) {
1474 u32 nritems;
1475
1476 nritems = btrfs_header_nritems(path->nodes[i]);
1477 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1478 skip_level = i + 1;
1479 continue;
1480 }
1481 }
1482 }
1483
1484 if (i >= lowest_unlock && i > skip_level) {
1485 check_skip = false;
1486 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1487 path->locks[i] = 0;
1488 if (write_lock_level &&
1489 i > min_write_lock_level &&
1490 i <= *write_lock_level) {
1491 *write_lock_level = i - 1;
1492 }
1493 }
1494 }
1495 }
1496
1497 /*
1498 * Helper function for btrfs_search_slot() and other functions that do a search
1499 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1500 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1501 * its pages from disk.
1502 *
1503 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1504 * whole btree search, starting again from the current root node.
1505 */
1506 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int slot,const struct btrfs_key * key)1507 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1508 struct extent_buffer **eb_ret, int slot,
1509 const struct btrfs_key *key)
1510 {
1511 struct btrfs_fs_info *fs_info = root->fs_info;
1512 struct btrfs_tree_parent_check check = { 0 };
1513 u64 blocknr;
1514 struct extent_buffer *tmp = NULL;
1515 int ret = 0;
1516 int parent_level;
1517 int err;
1518 bool read_tmp = false;
1519 bool tmp_locked = false;
1520 bool path_released = false;
1521
1522 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1523 parent_level = btrfs_header_level(*eb_ret);
1524 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1525 check.has_first_key = true;
1526 check.level = parent_level - 1;
1527 check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1528 check.owner_root = btrfs_root_id(root);
1529
1530 /*
1531 * If we need to read an extent buffer from disk and we are holding locks
1532 * on upper level nodes, we unlock all the upper nodes before reading the
1533 * extent buffer, and then return -EAGAIN to the caller as it needs to
1534 * restart the search. We don't release the lock on the current level
1535 * because we need to walk this node to figure out which blocks to read.
1536 */
1537 tmp = find_extent_buffer(fs_info, blocknr);
1538 if (tmp) {
1539 if (p->reada == READA_FORWARD_ALWAYS)
1540 reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1541
1542 /* first we do an atomic uptodate check */
1543 if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
1544 /*
1545 * Do extra check for first_key, eb can be stale due to
1546 * being cached, read from scrub, or have multiple
1547 * parents (shared tree blocks).
1548 */
1549 if (btrfs_verify_level_key(tmp, &check)) {
1550 ret = -EUCLEAN;
1551 goto out;
1552 }
1553 *eb_ret = tmp;
1554 tmp = NULL;
1555 ret = 0;
1556 goto out;
1557 }
1558
1559 if (p->nowait) {
1560 ret = -EAGAIN;
1561 goto out;
1562 }
1563
1564 if (!p->skip_locking) {
1565 btrfs_unlock_up_safe(p, parent_level + 1);
1566 tmp_locked = true;
1567 btrfs_tree_read_lock(tmp);
1568 btrfs_release_path(p);
1569 ret = -EAGAIN;
1570 path_released = true;
1571 }
1572
1573 /* Now we're allowed to do a blocking uptodate check. */
1574 err = btrfs_read_extent_buffer(tmp, &check);
1575 if (err) {
1576 ret = err;
1577 goto out;
1578 }
1579
1580 if (ret == 0) {
1581 ASSERT(!tmp_locked);
1582 *eb_ret = tmp;
1583 tmp = NULL;
1584 }
1585 goto out;
1586 } else if (p->nowait) {
1587 ret = -EAGAIN;
1588 goto out;
1589 }
1590
1591 if (!p->skip_locking) {
1592 btrfs_unlock_up_safe(p, parent_level + 1);
1593 ret = -EAGAIN;
1594 }
1595
1596 if (p->reada != READA_NONE)
1597 reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1598
1599 tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1600 if (IS_ERR(tmp)) {
1601 ret = PTR_ERR(tmp);
1602 tmp = NULL;
1603 goto out;
1604 }
1605 read_tmp = true;
1606
1607 if (!p->skip_locking) {
1608 ASSERT(ret == -EAGAIN);
1609 tmp_locked = true;
1610 btrfs_tree_read_lock(tmp);
1611 btrfs_release_path(p);
1612 path_released = true;
1613 }
1614
1615 /* Now we're allowed to do a blocking uptodate check. */
1616 err = btrfs_read_extent_buffer(tmp, &check);
1617 if (err) {
1618 ret = err;
1619 goto out;
1620 }
1621
1622 /*
1623 * If the read above didn't mark this buffer up to date,
1624 * it will never end up being up to date. Set ret to EIO now
1625 * and give up so that our caller doesn't loop forever
1626 * on our EAGAINs.
1627 */
1628 if (!extent_buffer_uptodate(tmp)) {
1629 ret = -EIO;
1630 goto out;
1631 }
1632
1633 if (ret == 0) {
1634 ASSERT(!tmp_locked);
1635 *eb_ret = tmp;
1636 tmp = NULL;
1637 }
1638 out:
1639 if (tmp) {
1640 if (tmp_locked)
1641 btrfs_tree_read_unlock(tmp);
1642 if (read_tmp && ret && ret != -EAGAIN)
1643 free_extent_buffer_stale(tmp);
1644 else
1645 free_extent_buffer(tmp);
1646 }
1647 if (ret && !path_released)
1648 btrfs_release_path(p);
1649
1650 return ret;
1651 }
1652
1653 /*
1654 * helper function for btrfs_search_slot. This does all of the checks
1655 * for node-level blocks and does any balancing required based on
1656 * the ins_len.
1657 *
1658 * If no extra work was required, zero is returned. If we had to
1659 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1660 * start over
1661 */
1662 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1663 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1664 struct btrfs_root *root, struct btrfs_path *p,
1665 struct extent_buffer *b, int level, int ins_len,
1666 int *write_lock_level)
1667 {
1668 struct btrfs_fs_info *fs_info = root->fs_info;
1669 int ret = 0;
1670
1671 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1672 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1673
1674 if (*write_lock_level < level + 1) {
1675 *write_lock_level = level + 1;
1676 btrfs_release_path(p);
1677 return -EAGAIN;
1678 }
1679
1680 reada_for_balance(p, level);
1681 ret = split_node(trans, root, p, level);
1682
1683 b = p->nodes[level];
1684 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1685 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1686
1687 if (*write_lock_level < level + 1) {
1688 *write_lock_level = level + 1;
1689 btrfs_release_path(p);
1690 return -EAGAIN;
1691 }
1692
1693 reada_for_balance(p, level);
1694 ret = balance_level(trans, root, p, level);
1695 if (ret)
1696 return ret;
1697
1698 b = p->nodes[level];
1699 if (!b) {
1700 btrfs_release_path(p);
1701 return -EAGAIN;
1702 }
1703 BUG_ON(btrfs_header_nritems(b) == 1);
1704 }
1705 return ret;
1706 }
1707
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1708 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1709 u64 iobjectid, u64 ioff, u8 key_type,
1710 struct btrfs_key *found_key)
1711 {
1712 int ret;
1713 struct btrfs_key key;
1714 struct extent_buffer *eb;
1715
1716 ASSERT(path);
1717 ASSERT(found_key);
1718
1719 key.type = key_type;
1720 key.objectid = iobjectid;
1721 key.offset = ioff;
1722
1723 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1724 if (ret < 0)
1725 return ret;
1726
1727 eb = path->nodes[0];
1728 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1729 ret = btrfs_next_leaf(fs_root, path);
1730 if (ret)
1731 return ret;
1732 eb = path->nodes[0];
1733 }
1734
1735 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1736 if (found_key->type != key.type ||
1737 found_key->objectid != key.objectid)
1738 return 1;
1739
1740 return 0;
1741 }
1742
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1743 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1744 struct btrfs_path *p,
1745 int write_lock_level)
1746 {
1747 struct extent_buffer *b;
1748 int root_lock = 0;
1749 int level = 0;
1750
1751 if (p->search_commit_root) {
1752 b = root->commit_root;
1753 atomic_inc(&b->refs);
1754 level = btrfs_header_level(b);
1755 /*
1756 * Ensure that all callers have set skip_locking when
1757 * p->search_commit_root = 1.
1758 */
1759 ASSERT(p->skip_locking == 1);
1760
1761 goto out;
1762 }
1763
1764 if (p->skip_locking) {
1765 b = btrfs_root_node(root);
1766 level = btrfs_header_level(b);
1767 goto out;
1768 }
1769
1770 /* We try very hard to do read locks on the root */
1771 root_lock = BTRFS_READ_LOCK;
1772
1773 /*
1774 * If the level is set to maximum, we can skip trying to get the read
1775 * lock.
1776 */
1777 if (write_lock_level < BTRFS_MAX_LEVEL) {
1778 /*
1779 * We don't know the level of the root node until we actually
1780 * have it read locked
1781 */
1782 if (p->nowait) {
1783 b = btrfs_try_read_lock_root_node(root);
1784 if (IS_ERR(b))
1785 return b;
1786 } else {
1787 b = btrfs_read_lock_root_node(root);
1788 }
1789 level = btrfs_header_level(b);
1790 if (level > write_lock_level)
1791 goto out;
1792
1793 /* Whoops, must trade for write lock */
1794 btrfs_tree_read_unlock(b);
1795 free_extent_buffer(b);
1796 }
1797
1798 b = btrfs_lock_root_node(root);
1799 root_lock = BTRFS_WRITE_LOCK;
1800
1801 /* The level might have changed, check again */
1802 level = btrfs_header_level(b);
1803
1804 out:
1805 /*
1806 * The root may have failed to write out at some point, and thus is no
1807 * longer valid, return an error in this case.
1808 */
1809 if (!extent_buffer_uptodate(b)) {
1810 if (root_lock)
1811 btrfs_tree_unlock_rw(b, root_lock);
1812 free_extent_buffer(b);
1813 return ERR_PTR(-EIO);
1814 }
1815
1816 p->nodes[level] = b;
1817 if (!p->skip_locking)
1818 p->locks[level] = root_lock;
1819 /*
1820 * Callers are responsible for dropping b's references.
1821 */
1822 return b;
1823 }
1824
1825 /*
1826 * Replace the extent buffer at the lowest level of the path with a cloned
1827 * version. The purpose is to be able to use it safely, after releasing the
1828 * commit root semaphore, even if relocation is happening in parallel, the
1829 * transaction used for relocation is committed and the extent buffer is
1830 * reallocated in the next transaction.
1831 *
1832 * This is used in a context where the caller does not prevent transaction
1833 * commits from happening, either by holding a transaction handle or holding
1834 * some lock, while it's doing searches through a commit root.
1835 * At the moment it's only used for send operations.
1836 */
finish_need_commit_sem_search(struct btrfs_path * path)1837 static int finish_need_commit_sem_search(struct btrfs_path *path)
1838 {
1839 const int i = path->lowest_level;
1840 const int slot = path->slots[i];
1841 struct extent_buffer *lowest = path->nodes[i];
1842 struct extent_buffer *clone;
1843
1844 ASSERT(path->need_commit_sem);
1845
1846 if (!lowest)
1847 return 0;
1848
1849 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1850
1851 clone = btrfs_clone_extent_buffer(lowest);
1852 if (!clone)
1853 return -ENOMEM;
1854
1855 btrfs_release_path(path);
1856 path->nodes[i] = clone;
1857 path->slots[i] = slot;
1858
1859 return 0;
1860 }
1861
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1862 static inline int search_for_key_slot(struct extent_buffer *eb,
1863 int search_low_slot,
1864 const struct btrfs_key *key,
1865 int prev_cmp,
1866 int *slot)
1867 {
1868 /*
1869 * If a previous call to btrfs_bin_search() on a parent node returned an
1870 * exact match (prev_cmp == 0), we can safely assume the target key will
1871 * always be at slot 0 on lower levels, since each key pointer
1872 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1873 * subtree it points to. Thus we can skip searching lower levels.
1874 */
1875 if (prev_cmp == 0) {
1876 *slot = 0;
1877 return 0;
1878 }
1879
1880 return btrfs_bin_search(eb, search_low_slot, key, slot);
1881 }
1882
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1883 static int search_leaf(struct btrfs_trans_handle *trans,
1884 struct btrfs_root *root,
1885 const struct btrfs_key *key,
1886 struct btrfs_path *path,
1887 int ins_len,
1888 int prev_cmp)
1889 {
1890 struct extent_buffer *leaf = path->nodes[0];
1891 int leaf_free_space = -1;
1892 int search_low_slot = 0;
1893 int ret;
1894 bool do_bin_search = true;
1895
1896 /*
1897 * If we are doing an insertion, the leaf has enough free space and the
1898 * destination slot for the key is not slot 0, then we can unlock our
1899 * write lock on the parent, and any other upper nodes, before doing the
1900 * binary search on the leaf (with search_for_key_slot()), allowing other
1901 * tasks to lock the parent and any other upper nodes.
1902 */
1903 if (ins_len > 0) {
1904 /*
1905 * Cache the leaf free space, since we will need it later and it
1906 * will not change until then.
1907 */
1908 leaf_free_space = btrfs_leaf_free_space(leaf);
1909
1910 /*
1911 * !path->locks[1] means we have a single node tree, the leaf is
1912 * the root of the tree.
1913 */
1914 if (path->locks[1] && leaf_free_space >= ins_len) {
1915 struct btrfs_disk_key first_key;
1916
1917 ASSERT(btrfs_header_nritems(leaf) > 0);
1918 btrfs_item_key(leaf, &first_key, 0);
1919
1920 /*
1921 * Doing the extra comparison with the first key is cheap,
1922 * taking into account that the first key is very likely
1923 * already in a cache line because it immediately follows
1924 * the extent buffer's header and we have recently accessed
1925 * the header's level field.
1926 */
1927 ret = btrfs_comp_keys(&first_key, key);
1928 if (ret < 0) {
1929 /*
1930 * The first key is smaller than the key we want
1931 * to insert, so we are safe to unlock all upper
1932 * nodes and we have to do the binary search.
1933 *
1934 * We do use btrfs_unlock_up_safe() and not
1935 * unlock_up() because the later does not unlock
1936 * nodes with a slot of 0 - we can safely unlock
1937 * any node even if its slot is 0 since in this
1938 * case the key does not end up at slot 0 of the
1939 * leaf and there's no need to split the leaf.
1940 */
1941 btrfs_unlock_up_safe(path, 1);
1942 search_low_slot = 1;
1943 } else {
1944 /*
1945 * The first key is >= then the key we want to
1946 * insert, so we can skip the binary search as
1947 * the target key will be at slot 0.
1948 *
1949 * We can not unlock upper nodes when the key is
1950 * less than the first key, because we will need
1951 * to update the key at slot 0 of the parent node
1952 * and possibly of other upper nodes too.
1953 * If the key matches the first key, then we can
1954 * unlock all the upper nodes, using
1955 * btrfs_unlock_up_safe() instead of unlock_up()
1956 * as stated above.
1957 */
1958 if (ret == 0)
1959 btrfs_unlock_up_safe(path, 1);
1960 /*
1961 * ret is already 0 or 1, matching the result of
1962 * a btrfs_bin_search() call, so there is no need
1963 * to adjust it.
1964 */
1965 do_bin_search = false;
1966 path->slots[0] = 0;
1967 }
1968 }
1969 }
1970
1971 if (do_bin_search) {
1972 ret = search_for_key_slot(leaf, search_low_slot, key,
1973 prev_cmp, &path->slots[0]);
1974 if (ret < 0)
1975 return ret;
1976 }
1977
1978 if (ins_len > 0) {
1979 /*
1980 * Item key already exists. In this case, if we are allowed to
1981 * insert the item (for example, in dir_item case, item key
1982 * collision is allowed), it will be merged with the original
1983 * item. Only the item size grows, no new btrfs item will be
1984 * added. If search_for_extension is not set, ins_len already
1985 * accounts the size btrfs_item, deduct it here so leaf space
1986 * check will be correct.
1987 */
1988 if (ret == 0 && !path->search_for_extension) {
1989 ASSERT(ins_len >= sizeof(struct btrfs_item));
1990 ins_len -= sizeof(struct btrfs_item);
1991 }
1992
1993 ASSERT(leaf_free_space >= 0);
1994
1995 if (leaf_free_space < ins_len) {
1996 int err;
1997
1998 err = split_leaf(trans, root, key, path, ins_len,
1999 (ret == 0));
2000 ASSERT(err <= 0);
2001 if (WARN_ON(err > 0))
2002 err = -EUCLEAN;
2003 if (err)
2004 ret = err;
2005 }
2006 }
2007
2008 return ret;
2009 }
2010
2011 /*
2012 * Look for a key in a tree and perform necessary modifications to preserve
2013 * tree invariants.
2014 *
2015 * @trans: Handle of transaction, used when modifying the tree
2016 * @p: Holds all btree nodes along the search path
2017 * @root: The root node of the tree
2018 * @key: The key we are looking for
2019 * @ins_len: Indicates purpose of search:
2020 * >0 for inserts it's size of item inserted (*)
2021 * <0 for deletions
2022 * 0 for plain searches, not modifying the tree
2023 *
2024 * (*) If size of item inserted doesn't include
2025 * sizeof(struct btrfs_item), then p->search_for_extension must
2026 * be set.
2027 * @cow: boolean should CoW operations be performed. Must always be 1
2028 * when modifying the tree.
2029 *
2030 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2031 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2032 *
2033 * If @key is found, 0 is returned and you can find the item in the leaf level
2034 * of the path (level 0)
2035 *
2036 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2037 * points to the slot where it should be inserted
2038 *
2039 * If an error is encountered while searching the tree a negative error number
2040 * is returned
2041 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2042 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2043 const struct btrfs_key *key, struct btrfs_path *p,
2044 int ins_len, int cow)
2045 {
2046 struct btrfs_fs_info *fs_info;
2047 struct extent_buffer *b;
2048 int slot;
2049 int ret;
2050 int err;
2051 int level;
2052 int lowest_unlock = 1;
2053 /* everything at write_lock_level or lower must be write locked */
2054 int write_lock_level = 0;
2055 u8 lowest_level = 0;
2056 int min_write_lock_level;
2057 int prev_cmp;
2058
2059 if (!root)
2060 return -EINVAL;
2061
2062 fs_info = root->fs_info;
2063 might_sleep();
2064
2065 lowest_level = p->lowest_level;
2066 WARN_ON(lowest_level && ins_len > 0);
2067 WARN_ON(p->nodes[0] != NULL);
2068 BUG_ON(!cow && ins_len);
2069
2070 /*
2071 * For now only allow nowait for read only operations. There's no
2072 * strict reason why we can't, we just only need it for reads so it's
2073 * only implemented for reads.
2074 */
2075 ASSERT(!p->nowait || !cow);
2076
2077 if (ins_len < 0) {
2078 lowest_unlock = 2;
2079
2080 /* when we are removing items, we might have to go up to level
2081 * two as we update tree pointers Make sure we keep write
2082 * for those levels as well
2083 */
2084 write_lock_level = 2;
2085 } else if (ins_len > 0) {
2086 /*
2087 * for inserting items, make sure we have a write lock on
2088 * level 1 so we can update keys
2089 */
2090 write_lock_level = 1;
2091 }
2092
2093 if (!cow)
2094 write_lock_level = -1;
2095
2096 if (cow && (p->keep_locks || p->lowest_level))
2097 write_lock_level = BTRFS_MAX_LEVEL;
2098
2099 min_write_lock_level = write_lock_level;
2100
2101 if (p->need_commit_sem) {
2102 ASSERT(p->search_commit_root);
2103 if (p->nowait) {
2104 if (!down_read_trylock(&fs_info->commit_root_sem))
2105 return -EAGAIN;
2106 } else {
2107 down_read(&fs_info->commit_root_sem);
2108 }
2109 }
2110
2111 again:
2112 prev_cmp = -1;
2113 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2114 if (IS_ERR(b)) {
2115 ret = PTR_ERR(b);
2116 goto done;
2117 }
2118
2119 while (b) {
2120 int dec = 0;
2121
2122 level = btrfs_header_level(b);
2123
2124 if (cow) {
2125 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2126
2127 /*
2128 * if we don't really need to cow this block
2129 * then we don't want to set the path blocking,
2130 * so we test it here
2131 */
2132 if (!should_cow_block(trans, root, b))
2133 goto cow_done;
2134
2135 /*
2136 * must have write locks on this node and the
2137 * parent
2138 */
2139 if (level > write_lock_level ||
2140 (level + 1 > write_lock_level &&
2141 level + 1 < BTRFS_MAX_LEVEL &&
2142 p->nodes[level + 1])) {
2143 write_lock_level = level + 1;
2144 btrfs_release_path(p);
2145 goto again;
2146 }
2147
2148 if (last_level)
2149 err = btrfs_cow_block(trans, root, b, NULL, 0,
2150 &b,
2151 BTRFS_NESTING_COW);
2152 else
2153 err = btrfs_cow_block(trans, root, b,
2154 p->nodes[level + 1],
2155 p->slots[level + 1], &b,
2156 BTRFS_NESTING_COW);
2157 if (err) {
2158 ret = err;
2159 goto done;
2160 }
2161 }
2162 cow_done:
2163 p->nodes[level] = b;
2164
2165 /*
2166 * we have a lock on b and as long as we aren't changing
2167 * the tree, there is no way to for the items in b to change.
2168 * It is safe to drop the lock on our parent before we
2169 * go through the expensive btree search on b.
2170 *
2171 * If we're inserting or deleting (ins_len != 0), then we might
2172 * be changing slot zero, which may require changing the parent.
2173 * So, we can't drop the lock until after we know which slot
2174 * we're operating on.
2175 */
2176 if (!ins_len && !p->keep_locks) {
2177 int u = level + 1;
2178
2179 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2180 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2181 p->locks[u] = 0;
2182 }
2183 }
2184
2185 if (level == 0) {
2186 if (ins_len > 0)
2187 ASSERT(write_lock_level >= 1);
2188
2189 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2190 if (!p->search_for_split)
2191 unlock_up(p, level, lowest_unlock,
2192 min_write_lock_level, NULL);
2193 goto done;
2194 }
2195
2196 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2197 if (ret < 0)
2198 goto done;
2199 prev_cmp = ret;
2200
2201 if (ret && slot > 0) {
2202 dec = 1;
2203 slot--;
2204 }
2205 p->slots[level] = slot;
2206 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2207 &write_lock_level);
2208 if (err == -EAGAIN)
2209 goto again;
2210 if (err) {
2211 ret = err;
2212 goto done;
2213 }
2214 b = p->nodes[level];
2215 slot = p->slots[level];
2216
2217 /*
2218 * Slot 0 is special, if we change the key we have to update
2219 * the parent pointer which means we must have a write lock on
2220 * the parent
2221 */
2222 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2223 write_lock_level = level + 1;
2224 btrfs_release_path(p);
2225 goto again;
2226 }
2227
2228 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2229 &write_lock_level);
2230
2231 if (level == lowest_level) {
2232 if (dec)
2233 p->slots[level]++;
2234 goto done;
2235 }
2236
2237 err = read_block_for_search(root, p, &b, slot, key);
2238 if (err == -EAGAIN && !p->nowait)
2239 goto again;
2240 if (err) {
2241 ret = err;
2242 goto done;
2243 }
2244
2245 if (!p->skip_locking) {
2246 level = btrfs_header_level(b);
2247
2248 btrfs_maybe_reset_lockdep_class(root, b);
2249
2250 if (level <= write_lock_level) {
2251 btrfs_tree_lock(b);
2252 p->locks[level] = BTRFS_WRITE_LOCK;
2253 } else {
2254 if (p->nowait) {
2255 if (!btrfs_try_tree_read_lock(b)) {
2256 free_extent_buffer(b);
2257 ret = -EAGAIN;
2258 goto done;
2259 }
2260 } else {
2261 btrfs_tree_read_lock(b);
2262 }
2263 p->locks[level] = BTRFS_READ_LOCK;
2264 }
2265 p->nodes[level] = b;
2266 }
2267 }
2268 ret = 1;
2269 done:
2270 if (ret < 0 && !p->skip_release_on_error)
2271 btrfs_release_path(p);
2272
2273 if (p->need_commit_sem) {
2274 int ret2;
2275
2276 ret2 = finish_need_commit_sem_search(p);
2277 up_read(&fs_info->commit_root_sem);
2278 if (ret2)
2279 ret = ret2;
2280 }
2281
2282 return ret;
2283 }
2284 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2285
2286 /*
2287 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2288 * current state of the tree together with the operations recorded in the tree
2289 * modification log to search for the key in a previous version of this tree, as
2290 * denoted by the time_seq parameter.
2291 *
2292 * Naturally, there is no support for insert, delete or cow operations.
2293 *
2294 * The resulting path and return value will be set up as if we called
2295 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2296 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2297 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2298 struct btrfs_path *p, u64 time_seq)
2299 {
2300 struct btrfs_fs_info *fs_info = root->fs_info;
2301 struct extent_buffer *b;
2302 int slot;
2303 int ret;
2304 int err;
2305 int level;
2306 int lowest_unlock = 1;
2307 u8 lowest_level = 0;
2308
2309 lowest_level = p->lowest_level;
2310 WARN_ON(p->nodes[0] != NULL);
2311 ASSERT(!p->nowait);
2312
2313 if (p->search_commit_root) {
2314 BUG_ON(time_seq);
2315 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2316 }
2317
2318 again:
2319 b = btrfs_get_old_root(root, time_seq);
2320 if (!b) {
2321 ret = -EIO;
2322 goto done;
2323 }
2324 level = btrfs_header_level(b);
2325 p->locks[level] = BTRFS_READ_LOCK;
2326
2327 while (b) {
2328 int dec = 0;
2329
2330 level = btrfs_header_level(b);
2331 p->nodes[level] = b;
2332
2333 /*
2334 * we have a lock on b and as long as we aren't changing
2335 * the tree, there is no way to for the items in b to change.
2336 * It is safe to drop the lock on our parent before we
2337 * go through the expensive btree search on b.
2338 */
2339 btrfs_unlock_up_safe(p, level + 1);
2340
2341 ret = btrfs_bin_search(b, 0, key, &slot);
2342 if (ret < 0)
2343 goto done;
2344
2345 if (level == 0) {
2346 p->slots[level] = slot;
2347 unlock_up(p, level, lowest_unlock, 0, NULL);
2348 goto done;
2349 }
2350
2351 if (ret && slot > 0) {
2352 dec = 1;
2353 slot--;
2354 }
2355 p->slots[level] = slot;
2356 unlock_up(p, level, lowest_unlock, 0, NULL);
2357
2358 if (level == lowest_level) {
2359 if (dec)
2360 p->slots[level]++;
2361 goto done;
2362 }
2363
2364 err = read_block_for_search(root, p, &b, slot, key);
2365 if (err == -EAGAIN && !p->nowait)
2366 goto again;
2367 if (err) {
2368 ret = err;
2369 goto done;
2370 }
2371
2372 level = btrfs_header_level(b);
2373 btrfs_tree_read_lock(b);
2374 b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2375 if (!b) {
2376 ret = -ENOMEM;
2377 goto done;
2378 }
2379 p->locks[level] = BTRFS_READ_LOCK;
2380 p->nodes[level] = b;
2381 }
2382 ret = 1;
2383 done:
2384 if (ret < 0)
2385 btrfs_release_path(p);
2386
2387 return ret;
2388 }
2389
2390 /*
2391 * Search the tree again to find a leaf with smaller keys.
2392 * Returns 0 if it found something.
2393 * Returns 1 if there are no smaller keys.
2394 * Returns < 0 on error.
2395 *
2396 * This may release the path, and so you may lose any locks held at the
2397 * time you call it.
2398 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2399 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2400 {
2401 struct btrfs_key key;
2402 struct btrfs_key orig_key;
2403 struct btrfs_disk_key found_key;
2404 int ret;
2405
2406 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2407 orig_key = key;
2408
2409 if (key.offset > 0) {
2410 key.offset--;
2411 } else if (key.type > 0) {
2412 key.type--;
2413 key.offset = (u64)-1;
2414 } else if (key.objectid > 0) {
2415 key.objectid--;
2416 key.type = (u8)-1;
2417 key.offset = (u64)-1;
2418 } else {
2419 return 1;
2420 }
2421
2422 btrfs_release_path(path);
2423 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2424 if (ret <= 0)
2425 return ret;
2426
2427 /*
2428 * Previous key not found. Even if we were at slot 0 of the leaf we had
2429 * before releasing the path and calling btrfs_search_slot(), we now may
2430 * be in a slot pointing to the same original key - this can happen if
2431 * after we released the path, one of more items were moved from a
2432 * sibling leaf into the front of the leaf we had due to an insertion
2433 * (see push_leaf_right()).
2434 * If we hit this case and our slot is > 0 and just decrement the slot
2435 * so that the caller does not process the same key again, which may or
2436 * may not break the caller, depending on its logic.
2437 */
2438 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2439 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2440 ret = btrfs_comp_keys(&found_key, &orig_key);
2441 if (ret == 0) {
2442 if (path->slots[0] > 0) {
2443 path->slots[0]--;
2444 return 0;
2445 }
2446 /*
2447 * At slot 0, same key as before, it means orig_key is
2448 * the lowest, leftmost, key in the tree. We're done.
2449 */
2450 return 1;
2451 }
2452 }
2453
2454 btrfs_item_key(path->nodes[0], &found_key, 0);
2455 ret = btrfs_comp_keys(&found_key, &key);
2456 /*
2457 * We might have had an item with the previous key in the tree right
2458 * before we released our path. And after we released our path, that
2459 * item might have been pushed to the first slot (0) of the leaf we
2460 * were holding due to a tree balance. Alternatively, an item with the
2461 * previous key can exist as the only element of a leaf (big fat item).
2462 * Therefore account for these 2 cases, so that our callers (like
2463 * btrfs_previous_item) don't miss an existing item with a key matching
2464 * the previous key we computed above.
2465 */
2466 if (ret <= 0)
2467 return 0;
2468 return 1;
2469 }
2470
2471 /*
2472 * helper to use instead of search slot if no exact match is needed but
2473 * instead the next or previous item should be returned.
2474 * When find_higher is true, the next higher item is returned, the next lower
2475 * otherwise.
2476 * When return_any and find_higher are both true, and no higher item is found,
2477 * return the next lower instead.
2478 * When return_any is true and find_higher is false, and no lower item is found,
2479 * return the next higher instead.
2480 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2481 * < 0 on error
2482 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2483 int btrfs_search_slot_for_read(struct btrfs_root *root,
2484 const struct btrfs_key *key,
2485 struct btrfs_path *p, int find_higher,
2486 int return_any)
2487 {
2488 int ret;
2489 struct extent_buffer *leaf;
2490
2491 again:
2492 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2493 if (ret <= 0)
2494 return ret;
2495 /*
2496 * a return value of 1 means the path is at the position where the
2497 * item should be inserted. Normally this is the next bigger item,
2498 * but in case the previous item is the last in a leaf, path points
2499 * to the first free slot in the previous leaf, i.e. at an invalid
2500 * item.
2501 */
2502 leaf = p->nodes[0];
2503
2504 if (find_higher) {
2505 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2506 ret = btrfs_next_leaf(root, p);
2507 if (ret <= 0)
2508 return ret;
2509 if (!return_any)
2510 return 1;
2511 /*
2512 * no higher item found, return the next
2513 * lower instead
2514 */
2515 return_any = 0;
2516 find_higher = 0;
2517 btrfs_release_path(p);
2518 goto again;
2519 }
2520 } else {
2521 if (p->slots[0] == 0) {
2522 ret = btrfs_prev_leaf(root, p);
2523 if (ret < 0)
2524 return ret;
2525 if (!ret) {
2526 leaf = p->nodes[0];
2527 if (p->slots[0] == btrfs_header_nritems(leaf))
2528 p->slots[0]--;
2529 return 0;
2530 }
2531 if (!return_any)
2532 return 1;
2533 /*
2534 * no lower item found, return the next
2535 * higher instead
2536 */
2537 return_any = 0;
2538 find_higher = 1;
2539 btrfs_release_path(p);
2540 goto again;
2541 } else {
2542 --p->slots[0];
2543 }
2544 }
2545 return 0;
2546 }
2547
2548 /*
2549 * Execute search and call btrfs_previous_item to traverse backwards if the item
2550 * was not found.
2551 *
2552 * Return 0 if found, 1 if not found and < 0 if error.
2553 */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2554 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2555 struct btrfs_path *path)
2556 {
2557 int ret;
2558
2559 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2560 if (ret > 0)
2561 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2562
2563 if (ret == 0)
2564 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2565
2566 return ret;
2567 }
2568
2569 /*
2570 * Search for a valid slot for the given path.
2571 *
2572 * @root: The root node of the tree.
2573 * @key: Will contain a valid item if found.
2574 * @path: The starting point to validate the slot.
2575 *
2576 * Return: 0 if the item is valid
2577 * 1 if not found
2578 * <0 if error.
2579 */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2580 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2581 struct btrfs_path *path)
2582 {
2583 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2584 int ret;
2585
2586 ret = btrfs_next_leaf(root, path);
2587 if (ret)
2588 return ret;
2589 }
2590
2591 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2592 return 0;
2593 }
2594
2595 /*
2596 * adjust the pointers going up the tree, starting at level
2597 * making sure the right key of each node is points to 'key'.
2598 * This is used after shifting pointers to the left, so it stops
2599 * fixing up pointers when a given leaf/node is not in slot 0 of the
2600 * higher levels
2601 *
2602 */
fixup_low_keys(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_disk_key * key,int level)2603 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2604 const struct btrfs_path *path,
2605 const struct btrfs_disk_key *key, int level)
2606 {
2607 int i;
2608 struct extent_buffer *t;
2609 int ret;
2610
2611 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2612 int tslot = path->slots[i];
2613
2614 if (!path->nodes[i])
2615 break;
2616 t = path->nodes[i];
2617 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2618 BTRFS_MOD_LOG_KEY_REPLACE);
2619 BUG_ON(ret < 0);
2620 btrfs_set_node_key(t, key, tslot);
2621 btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2622 if (tslot != 0)
2623 break;
2624 }
2625 }
2626
2627 /*
2628 * update item key.
2629 *
2630 * This function isn't completely safe. It's the caller's responsibility
2631 * that the new key won't break the order
2632 */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_key * new_key)2633 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2634 const struct btrfs_path *path,
2635 const struct btrfs_key *new_key)
2636 {
2637 struct btrfs_fs_info *fs_info = trans->fs_info;
2638 struct btrfs_disk_key disk_key;
2639 struct extent_buffer *eb;
2640 int slot;
2641
2642 eb = path->nodes[0];
2643 slot = path->slots[0];
2644 if (slot > 0) {
2645 btrfs_item_key(eb, &disk_key, slot - 1);
2646 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2647 btrfs_print_leaf(eb);
2648 btrfs_crit(fs_info,
2649 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2650 slot, btrfs_disk_key_objectid(&disk_key),
2651 btrfs_disk_key_type(&disk_key),
2652 btrfs_disk_key_offset(&disk_key),
2653 new_key->objectid, new_key->type,
2654 new_key->offset);
2655 BUG();
2656 }
2657 }
2658 if (slot < btrfs_header_nritems(eb) - 1) {
2659 btrfs_item_key(eb, &disk_key, slot + 1);
2660 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2661 btrfs_print_leaf(eb);
2662 btrfs_crit(fs_info,
2663 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2664 slot, btrfs_disk_key_objectid(&disk_key),
2665 btrfs_disk_key_type(&disk_key),
2666 btrfs_disk_key_offset(&disk_key),
2667 new_key->objectid, new_key->type,
2668 new_key->offset);
2669 BUG();
2670 }
2671 }
2672
2673 btrfs_cpu_key_to_disk(&disk_key, new_key);
2674 btrfs_set_item_key(eb, &disk_key, slot);
2675 btrfs_mark_buffer_dirty(trans, eb);
2676 if (slot == 0)
2677 fixup_low_keys(trans, path, &disk_key, 1);
2678 }
2679
2680 /*
2681 * Check key order of two sibling extent buffers.
2682 *
2683 * Return true if something is wrong.
2684 * Return false if everything is fine.
2685 *
2686 * Tree-checker only works inside one tree block, thus the following
2687 * corruption can not be detected by tree-checker:
2688 *
2689 * Leaf @left | Leaf @right
2690 * --------------------------------------------------------------
2691 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2692 *
2693 * Key f6 in leaf @left itself is valid, but not valid when the next
2694 * key in leaf @right is 7.
2695 * This can only be checked at tree block merge time.
2696 * And since tree checker has ensured all key order in each tree block
2697 * is correct, we only need to bother the last key of @left and the first
2698 * key of @right.
2699 */
check_sibling_keys(const struct extent_buffer * left,const struct extent_buffer * right)2700 static bool check_sibling_keys(const struct extent_buffer *left,
2701 const struct extent_buffer *right)
2702 {
2703 struct btrfs_key left_last;
2704 struct btrfs_key right_first;
2705 int level = btrfs_header_level(left);
2706 int nr_left = btrfs_header_nritems(left);
2707 int nr_right = btrfs_header_nritems(right);
2708
2709 /* No key to check in one of the tree blocks */
2710 if (!nr_left || !nr_right)
2711 return false;
2712
2713 if (level) {
2714 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2715 btrfs_node_key_to_cpu(right, &right_first, 0);
2716 } else {
2717 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2718 btrfs_item_key_to_cpu(right, &right_first, 0);
2719 }
2720
2721 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2722 btrfs_crit(left->fs_info, "left extent buffer:");
2723 btrfs_print_tree(left, false);
2724 btrfs_crit(left->fs_info, "right extent buffer:");
2725 btrfs_print_tree(right, false);
2726 btrfs_crit(left->fs_info,
2727 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2728 left_last.objectid, left_last.type,
2729 left_last.offset, right_first.objectid,
2730 right_first.type, right_first.offset);
2731 return true;
2732 }
2733 return false;
2734 }
2735
2736 /*
2737 * try to push data from one node into the next node left in the
2738 * tree.
2739 *
2740 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2741 * error, and > 0 if there was no room in the left hand block.
2742 */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2743 static int push_node_left(struct btrfs_trans_handle *trans,
2744 struct extent_buffer *dst,
2745 struct extent_buffer *src, int empty)
2746 {
2747 struct btrfs_fs_info *fs_info = trans->fs_info;
2748 int push_items = 0;
2749 int src_nritems;
2750 int dst_nritems;
2751 int ret = 0;
2752
2753 src_nritems = btrfs_header_nritems(src);
2754 dst_nritems = btrfs_header_nritems(dst);
2755 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2756 WARN_ON(btrfs_header_generation(src) != trans->transid);
2757 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2758
2759 if (!empty && src_nritems <= 8)
2760 return 1;
2761
2762 if (push_items <= 0)
2763 return 1;
2764
2765 if (empty) {
2766 push_items = min(src_nritems, push_items);
2767 if (push_items < src_nritems) {
2768 /* leave at least 8 pointers in the node if
2769 * we aren't going to empty it
2770 */
2771 if (src_nritems - push_items < 8) {
2772 if (push_items <= 8)
2773 return 1;
2774 push_items -= 8;
2775 }
2776 }
2777 } else
2778 push_items = min(src_nritems - 8, push_items);
2779
2780 /* dst is the left eb, src is the middle eb */
2781 if (check_sibling_keys(dst, src)) {
2782 ret = -EUCLEAN;
2783 btrfs_abort_transaction(trans, ret);
2784 return ret;
2785 }
2786 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2787 if (ret) {
2788 btrfs_abort_transaction(trans, ret);
2789 return ret;
2790 }
2791 copy_extent_buffer(dst, src,
2792 btrfs_node_key_ptr_offset(dst, dst_nritems),
2793 btrfs_node_key_ptr_offset(src, 0),
2794 push_items * sizeof(struct btrfs_key_ptr));
2795
2796 if (push_items < src_nritems) {
2797 /*
2798 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2799 * don't need to do an explicit tree mod log operation for it.
2800 */
2801 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2802 btrfs_node_key_ptr_offset(src, push_items),
2803 (src_nritems - push_items) *
2804 sizeof(struct btrfs_key_ptr));
2805 }
2806 btrfs_set_header_nritems(src, src_nritems - push_items);
2807 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2808 btrfs_mark_buffer_dirty(trans, src);
2809 btrfs_mark_buffer_dirty(trans, dst);
2810
2811 return ret;
2812 }
2813
2814 /*
2815 * try to push data from one node into the next node right in the
2816 * tree.
2817 *
2818 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2819 * error, and > 0 if there was no room in the right hand block.
2820 *
2821 * this will only push up to 1/2 the contents of the left node over
2822 */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2823 static int balance_node_right(struct btrfs_trans_handle *trans,
2824 struct extent_buffer *dst,
2825 struct extent_buffer *src)
2826 {
2827 struct btrfs_fs_info *fs_info = trans->fs_info;
2828 int push_items = 0;
2829 int max_push;
2830 int src_nritems;
2831 int dst_nritems;
2832 int ret = 0;
2833
2834 WARN_ON(btrfs_header_generation(src) != trans->transid);
2835 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2836
2837 src_nritems = btrfs_header_nritems(src);
2838 dst_nritems = btrfs_header_nritems(dst);
2839 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2840 if (push_items <= 0)
2841 return 1;
2842
2843 if (src_nritems < 4)
2844 return 1;
2845
2846 max_push = src_nritems / 2 + 1;
2847 /* don't try to empty the node */
2848 if (max_push >= src_nritems)
2849 return 1;
2850
2851 if (max_push < push_items)
2852 push_items = max_push;
2853
2854 /* dst is the right eb, src is the middle eb */
2855 if (check_sibling_keys(src, dst)) {
2856 ret = -EUCLEAN;
2857 btrfs_abort_transaction(trans, ret);
2858 return ret;
2859 }
2860
2861 /*
2862 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2863 * need to do an explicit tree mod log operation for it.
2864 */
2865 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2866 btrfs_node_key_ptr_offset(dst, 0),
2867 (dst_nritems) *
2868 sizeof(struct btrfs_key_ptr));
2869
2870 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2871 push_items);
2872 if (ret) {
2873 btrfs_abort_transaction(trans, ret);
2874 return ret;
2875 }
2876 copy_extent_buffer(dst, src,
2877 btrfs_node_key_ptr_offset(dst, 0),
2878 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2879 push_items * sizeof(struct btrfs_key_ptr));
2880
2881 btrfs_set_header_nritems(src, src_nritems - push_items);
2882 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2883
2884 btrfs_mark_buffer_dirty(trans, src);
2885 btrfs_mark_buffer_dirty(trans, dst);
2886
2887 return ret;
2888 }
2889
2890 /*
2891 * helper function to insert a new root level in the tree.
2892 * A new node is allocated, and a single item is inserted to
2893 * point to the existing root
2894 *
2895 * returns zero on success or < 0 on failure.
2896 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2897 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2898 struct btrfs_root *root,
2899 struct btrfs_path *path, int level)
2900 {
2901 u64 lower_gen;
2902 struct extent_buffer *lower;
2903 struct extent_buffer *c;
2904 struct extent_buffer *old;
2905 struct btrfs_disk_key lower_key;
2906 int ret;
2907
2908 BUG_ON(path->nodes[level]);
2909 BUG_ON(path->nodes[level-1] != root->node);
2910
2911 lower = path->nodes[level-1];
2912 if (level == 1)
2913 btrfs_item_key(lower, &lower_key, 0);
2914 else
2915 btrfs_node_key(lower, &lower_key, 0);
2916
2917 c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2918 &lower_key, level, root->node->start, 0,
2919 0, BTRFS_NESTING_NEW_ROOT);
2920 if (IS_ERR(c))
2921 return PTR_ERR(c);
2922
2923 root_add_used_bytes(root);
2924
2925 btrfs_set_header_nritems(c, 1);
2926 btrfs_set_node_key(c, &lower_key, 0);
2927 btrfs_set_node_blockptr(c, 0, lower->start);
2928 lower_gen = btrfs_header_generation(lower);
2929 WARN_ON(lower_gen != trans->transid);
2930
2931 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2932
2933 btrfs_mark_buffer_dirty(trans, c);
2934
2935 old = root->node;
2936 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2937 if (ret < 0) {
2938 int ret2;
2939
2940 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2941 if (ret2 < 0)
2942 btrfs_abort_transaction(trans, ret2);
2943 btrfs_tree_unlock(c);
2944 free_extent_buffer(c);
2945 return ret;
2946 }
2947 rcu_assign_pointer(root->node, c);
2948
2949 /* the super has an extra ref to root->node */
2950 free_extent_buffer(old);
2951
2952 add_root_to_dirty_list(root);
2953 atomic_inc(&c->refs);
2954 path->nodes[level] = c;
2955 path->locks[level] = BTRFS_WRITE_LOCK;
2956 path->slots[level] = 0;
2957 return 0;
2958 }
2959
2960 /*
2961 * worker function to insert a single pointer in a node.
2962 * the node should have enough room for the pointer already
2963 *
2964 * slot and level indicate where you want the key to go, and
2965 * blocknr is the block the key points to.
2966 */
insert_ptr(struct btrfs_trans_handle * trans,const struct btrfs_path * path,const struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2967 static int insert_ptr(struct btrfs_trans_handle *trans,
2968 const struct btrfs_path *path,
2969 const struct btrfs_disk_key *key, u64 bytenr,
2970 int slot, int level)
2971 {
2972 struct extent_buffer *lower;
2973 int nritems;
2974 int ret;
2975
2976 BUG_ON(!path->nodes[level]);
2977 btrfs_assert_tree_write_locked(path->nodes[level]);
2978 lower = path->nodes[level];
2979 nritems = btrfs_header_nritems(lower);
2980 BUG_ON(slot > nritems);
2981 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2982 if (slot != nritems) {
2983 if (level) {
2984 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2985 slot, nritems - slot);
2986 if (ret < 0) {
2987 btrfs_abort_transaction(trans, ret);
2988 return ret;
2989 }
2990 }
2991 memmove_extent_buffer(lower,
2992 btrfs_node_key_ptr_offset(lower, slot + 1),
2993 btrfs_node_key_ptr_offset(lower, slot),
2994 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2995 }
2996 if (level) {
2997 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2998 BTRFS_MOD_LOG_KEY_ADD);
2999 if (ret < 0) {
3000 btrfs_abort_transaction(trans, ret);
3001 return ret;
3002 }
3003 }
3004 btrfs_set_node_key(lower, key, slot);
3005 btrfs_set_node_blockptr(lower, slot, bytenr);
3006 WARN_ON(trans->transid == 0);
3007 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3008 btrfs_set_header_nritems(lower, nritems + 1);
3009 btrfs_mark_buffer_dirty(trans, lower);
3010
3011 return 0;
3012 }
3013
3014 /*
3015 * split the node at the specified level in path in two.
3016 * The path is corrected to point to the appropriate node after the split
3017 *
3018 * Before splitting this tries to make some room in the node by pushing
3019 * left and right, if either one works, it returns right away.
3020 *
3021 * returns 0 on success and < 0 on failure
3022 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3023 static noinline int split_node(struct btrfs_trans_handle *trans,
3024 struct btrfs_root *root,
3025 struct btrfs_path *path, int level)
3026 {
3027 struct btrfs_fs_info *fs_info = root->fs_info;
3028 struct extent_buffer *c;
3029 struct extent_buffer *split;
3030 struct btrfs_disk_key disk_key;
3031 int mid;
3032 int ret;
3033 u32 c_nritems;
3034
3035 c = path->nodes[level];
3036 WARN_ON(btrfs_header_generation(c) != trans->transid);
3037 if (c == root->node) {
3038 /*
3039 * trying to split the root, lets make a new one
3040 *
3041 * tree mod log: We don't log_removal old root in
3042 * insert_new_root, because that root buffer will be kept as a
3043 * normal node. We are going to log removal of half of the
3044 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3045 * holding a tree lock on the buffer, which is why we cannot
3046 * race with other tree_mod_log users.
3047 */
3048 ret = insert_new_root(trans, root, path, level + 1);
3049 if (ret)
3050 return ret;
3051 } else {
3052 ret = push_nodes_for_insert(trans, root, path, level);
3053 c = path->nodes[level];
3054 if (!ret && btrfs_header_nritems(c) <
3055 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3056 return 0;
3057 if (ret < 0)
3058 return ret;
3059 }
3060
3061 c_nritems = btrfs_header_nritems(c);
3062 mid = (c_nritems + 1) / 2;
3063 btrfs_node_key(c, &disk_key, mid);
3064
3065 split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3066 &disk_key, level, c->start, 0,
3067 0, BTRFS_NESTING_SPLIT);
3068 if (IS_ERR(split))
3069 return PTR_ERR(split);
3070
3071 root_add_used_bytes(root);
3072 ASSERT(btrfs_header_level(c) == level);
3073
3074 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3075 if (ret) {
3076 btrfs_tree_unlock(split);
3077 free_extent_buffer(split);
3078 btrfs_abort_transaction(trans, ret);
3079 return ret;
3080 }
3081 copy_extent_buffer(split, c,
3082 btrfs_node_key_ptr_offset(split, 0),
3083 btrfs_node_key_ptr_offset(c, mid),
3084 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3085 btrfs_set_header_nritems(split, c_nritems - mid);
3086 btrfs_set_header_nritems(c, mid);
3087
3088 btrfs_mark_buffer_dirty(trans, c);
3089 btrfs_mark_buffer_dirty(trans, split);
3090
3091 ret = insert_ptr(trans, path, &disk_key, split->start,
3092 path->slots[level + 1] + 1, level + 1);
3093 if (ret < 0) {
3094 btrfs_tree_unlock(split);
3095 free_extent_buffer(split);
3096 return ret;
3097 }
3098
3099 if (path->slots[level] >= mid) {
3100 path->slots[level] -= mid;
3101 btrfs_tree_unlock(c);
3102 free_extent_buffer(c);
3103 path->nodes[level] = split;
3104 path->slots[level + 1] += 1;
3105 } else {
3106 btrfs_tree_unlock(split);
3107 free_extent_buffer(split);
3108 }
3109 return 0;
3110 }
3111
3112 /*
3113 * how many bytes are required to store the items in a leaf. start
3114 * and nr indicate which items in the leaf to check. This totals up the
3115 * space used both by the item structs and the item data
3116 */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3117 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3118 {
3119 int data_len;
3120 int nritems = btrfs_header_nritems(l);
3121 int end = min(nritems, start + nr) - 1;
3122
3123 if (!nr)
3124 return 0;
3125 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3126 data_len = data_len - btrfs_item_offset(l, end);
3127 data_len += sizeof(struct btrfs_item) * nr;
3128 WARN_ON(data_len < 0);
3129 return data_len;
3130 }
3131
3132 /*
3133 * The space between the end of the leaf items and
3134 * the start of the leaf data. IOW, how much room
3135 * the leaf has left for both items and data
3136 */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3137 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3138 {
3139 struct btrfs_fs_info *fs_info = leaf->fs_info;
3140 int nritems = btrfs_header_nritems(leaf);
3141 int ret;
3142
3143 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3144 if (ret < 0) {
3145 btrfs_crit(fs_info,
3146 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3147 ret,
3148 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3149 leaf_space_used(leaf, 0, nritems), nritems);
3150 }
3151 return ret;
3152 }
3153
3154 /*
3155 * min slot controls the lowest index we're willing to push to the
3156 * right. We'll push up to and including min_slot, but no lower
3157 */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3158 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3159 struct btrfs_path *path,
3160 int data_size, int empty,
3161 struct extent_buffer *right,
3162 int free_space, u32 left_nritems,
3163 u32 min_slot)
3164 {
3165 struct btrfs_fs_info *fs_info = right->fs_info;
3166 struct extent_buffer *left = path->nodes[0];
3167 struct extent_buffer *upper = path->nodes[1];
3168 struct btrfs_map_token token;
3169 struct btrfs_disk_key disk_key;
3170 int slot;
3171 u32 i;
3172 int push_space = 0;
3173 int push_items = 0;
3174 u32 nr;
3175 u32 right_nritems;
3176 u32 data_end;
3177 u32 this_item_size;
3178
3179 if (empty)
3180 nr = 0;
3181 else
3182 nr = max_t(u32, 1, min_slot);
3183
3184 if (path->slots[0] >= left_nritems)
3185 push_space += data_size;
3186
3187 slot = path->slots[1];
3188 i = left_nritems - 1;
3189 while (i >= nr) {
3190 if (!empty && push_items > 0) {
3191 if (path->slots[0] > i)
3192 break;
3193 if (path->slots[0] == i) {
3194 int space = btrfs_leaf_free_space(left);
3195
3196 if (space + push_space * 2 > free_space)
3197 break;
3198 }
3199 }
3200
3201 if (path->slots[0] == i)
3202 push_space += data_size;
3203
3204 this_item_size = btrfs_item_size(left, i);
3205 if (this_item_size + sizeof(struct btrfs_item) +
3206 push_space > free_space)
3207 break;
3208
3209 push_items++;
3210 push_space += this_item_size + sizeof(struct btrfs_item);
3211 if (i == 0)
3212 break;
3213 i--;
3214 }
3215
3216 if (push_items == 0)
3217 goto out_unlock;
3218
3219 WARN_ON(!empty && push_items == left_nritems);
3220
3221 /* push left to right */
3222 right_nritems = btrfs_header_nritems(right);
3223
3224 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3225 push_space -= leaf_data_end(left);
3226
3227 /* make room in the right data area */
3228 data_end = leaf_data_end(right);
3229 memmove_leaf_data(right, data_end - push_space, data_end,
3230 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3231
3232 /* copy from the left data area */
3233 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3234 leaf_data_end(left), push_space);
3235
3236 memmove_leaf_items(right, push_items, 0, right_nritems);
3237
3238 /* copy the items from left to right */
3239 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3240
3241 /* update the item pointers */
3242 btrfs_init_map_token(&token, right);
3243 right_nritems += push_items;
3244 btrfs_set_header_nritems(right, right_nritems);
3245 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3246 for (i = 0; i < right_nritems; i++) {
3247 push_space -= btrfs_token_item_size(&token, i);
3248 btrfs_set_token_item_offset(&token, i, push_space);
3249 }
3250
3251 left_nritems -= push_items;
3252 btrfs_set_header_nritems(left, left_nritems);
3253
3254 if (left_nritems)
3255 btrfs_mark_buffer_dirty(trans, left);
3256 else
3257 btrfs_clear_buffer_dirty(trans, left);
3258
3259 btrfs_mark_buffer_dirty(trans, right);
3260
3261 btrfs_item_key(right, &disk_key, 0);
3262 btrfs_set_node_key(upper, &disk_key, slot + 1);
3263 btrfs_mark_buffer_dirty(trans, upper);
3264
3265 /* then fixup the leaf pointer in the path */
3266 if (path->slots[0] >= left_nritems) {
3267 path->slots[0] -= left_nritems;
3268 if (btrfs_header_nritems(path->nodes[0]) == 0)
3269 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3270 btrfs_tree_unlock(path->nodes[0]);
3271 free_extent_buffer(path->nodes[0]);
3272 path->nodes[0] = right;
3273 path->slots[1] += 1;
3274 } else {
3275 btrfs_tree_unlock(right);
3276 free_extent_buffer(right);
3277 }
3278 return 0;
3279
3280 out_unlock:
3281 btrfs_tree_unlock(right);
3282 free_extent_buffer(right);
3283 return 1;
3284 }
3285
3286 /*
3287 * push some data in the path leaf to the right, trying to free up at
3288 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3289 *
3290 * returns 1 if the push failed because the other node didn't have enough
3291 * room, 0 if everything worked out and < 0 if there were major errors.
3292 *
3293 * this will push starting from min_slot to the end of the leaf. It won't
3294 * push any slot lower than min_slot
3295 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3296 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3297 *root, struct btrfs_path *path,
3298 int min_data_size, int data_size,
3299 int empty, u32 min_slot)
3300 {
3301 struct extent_buffer *left = path->nodes[0];
3302 struct extent_buffer *right;
3303 struct extent_buffer *upper;
3304 int slot;
3305 int free_space;
3306 u32 left_nritems;
3307 int ret;
3308
3309 if (!path->nodes[1])
3310 return 1;
3311
3312 slot = path->slots[1];
3313 upper = path->nodes[1];
3314 if (slot >= btrfs_header_nritems(upper) - 1)
3315 return 1;
3316
3317 btrfs_assert_tree_write_locked(path->nodes[1]);
3318
3319 right = btrfs_read_node_slot(upper, slot + 1);
3320 if (IS_ERR(right))
3321 return PTR_ERR(right);
3322
3323 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3324
3325 free_space = btrfs_leaf_free_space(right);
3326 if (free_space < data_size)
3327 goto out_unlock;
3328
3329 ret = btrfs_cow_block(trans, root, right, upper,
3330 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3331 if (ret)
3332 goto out_unlock;
3333
3334 left_nritems = btrfs_header_nritems(left);
3335 if (left_nritems == 0)
3336 goto out_unlock;
3337
3338 if (check_sibling_keys(left, right)) {
3339 ret = -EUCLEAN;
3340 btrfs_abort_transaction(trans, ret);
3341 btrfs_tree_unlock(right);
3342 free_extent_buffer(right);
3343 return ret;
3344 }
3345 if (path->slots[0] == left_nritems && !empty) {
3346 /* Key greater than all keys in the leaf, right neighbor has
3347 * enough room for it and we're not emptying our leaf to delete
3348 * it, therefore use right neighbor to insert the new item and
3349 * no need to touch/dirty our left leaf. */
3350 btrfs_tree_unlock(left);
3351 free_extent_buffer(left);
3352 path->nodes[0] = right;
3353 path->slots[0] = 0;
3354 path->slots[1]++;
3355 return 0;
3356 }
3357
3358 return __push_leaf_right(trans, path, min_data_size, empty, right,
3359 free_space, left_nritems, min_slot);
3360 out_unlock:
3361 btrfs_tree_unlock(right);
3362 free_extent_buffer(right);
3363 return 1;
3364 }
3365
3366 /*
3367 * push some data in the path leaf to the left, trying to free up at
3368 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3369 *
3370 * max_slot can put a limit on how far into the leaf we'll push items. The
3371 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3372 * items
3373 */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3374 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3375 struct btrfs_path *path, int data_size,
3376 int empty, struct extent_buffer *left,
3377 int free_space, u32 right_nritems,
3378 u32 max_slot)
3379 {
3380 struct btrfs_fs_info *fs_info = left->fs_info;
3381 struct btrfs_disk_key disk_key;
3382 struct extent_buffer *right = path->nodes[0];
3383 int i;
3384 int push_space = 0;
3385 int push_items = 0;
3386 u32 old_left_nritems;
3387 u32 nr;
3388 int ret = 0;
3389 u32 this_item_size;
3390 u32 old_left_item_size;
3391 struct btrfs_map_token token;
3392
3393 if (empty)
3394 nr = min(right_nritems, max_slot);
3395 else
3396 nr = min(right_nritems - 1, max_slot);
3397
3398 for (i = 0; i < nr; i++) {
3399 if (!empty && push_items > 0) {
3400 if (path->slots[0] < i)
3401 break;
3402 if (path->slots[0] == i) {
3403 int space = btrfs_leaf_free_space(right);
3404
3405 if (space + push_space * 2 > free_space)
3406 break;
3407 }
3408 }
3409
3410 if (path->slots[0] == i)
3411 push_space += data_size;
3412
3413 this_item_size = btrfs_item_size(right, i);
3414 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3415 free_space)
3416 break;
3417
3418 push_items++;
3419 push_space += this_item_size + sizeof(struct btrfs_item);
3420 }
3421
3422 if (push_items == 0) {
3423 ret = 1;
3424 goto out;
3425 }
3426 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3427
3428 /* push data from right to left */
3429 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3430
3431 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3432 btrfs_item_offset(right, push_items - 1);
3433
3434 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3435 btrfs_item_offset(right, push_items - 1), push_space);
3436 old_left_nritems = btrfs_header_nritems(left);
3437 BUG_ON(old_left_nritems <= 0);
3438
3439 btrfs_init_map_token(&token, left);
3440 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3441 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3442 u32 ioff;
3443
3444 ioff = btrfs_token_item_offset(&token, i);
3445 btrfs_set_token_item_offset(&token, i,
3446 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3447 }
3448 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3449
3450 /* fixup right node */
3451 if (push_items > right_nritems)
3452 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3453 right_nritems);
3454
3455 if (push_items < right_nritems) {
3456 push_space = btrfs_item_offset(right, push_items - 1) -
3457 leaf_data_end(right);
3458 memmove_leaf_data(right,
3459 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3460 leaf_data_end(right), push_space);
3461
3462 memmove_leaf_items(right, 0, push_items,
3463 btrfs_header_nritems(right) - push_items);
3464 }
3465
3466 btrfs_init_map_token(&token, right);
3467 right_nritems -= push_items;
3468 btrfs_set_header_nritems(right, right_nritems);
3469 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3470 for (i = 0; i < right_nritems; i++) {
3471 push_space = push_space - btrfs_token_item_size(&token, i);
3472 btrfs_set_token_item_offset(&token, i, push_space);
3473 }
3474
3475 btrfs_mark_buffer_dirty(trans, left);
3476 if (right_nritems)
3477 btrfs_mark_buffer_dirty(trans, right);
3478 else
3479 btrfs_clear_buffer_dirty(trans, right);
3480
3481 btrfs_item_key(right, &disk_key, 0);
3482 fixup_low_keys(trans, path, &disk_key, 1);
3483
3484 /* then fixup the leaf pointer in the path */
3485 if (path->slots[0] < push_items) {
3486 path->slots[0] += old_left_nritems;
3487 btrfs_tree_unlock(path->nodes[0]);
3488 free_extent_buffer(path->nodes[0]);
3489 path->nodes[0] = left;
3490 path->slots[1] -= 1;
3491 } else {
3492 btrfs_tree_unlock(left);
3493 free_extent_buffer(left);
3494 path->slots[0] -= push_items;
3495 }
3496 BUG_ON(path->slots[0] < 0);
3497 return ret;
3498 out:
3499 btrfs_tree_unlock(left);
3500 free_extent_buffer(left);
3501 return ret;
3502 }
3503
3504 /*
3505 * push some data in the path leaf to the left, trying to free up at
3506 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3507 *
3508 * max_slot can put a limit on how far into the leaf we'll push items. The
3509 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3510 * items
3511 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3512 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3513 *root, struct btrfs_path *path, int min_data_size,
3514 int data_size, int empty, u32 max_slot)
3515 {
3516 struct extent_buffer *right = path->nodes[0];
3517 struct extent_buffer *left;
3518 int slot;
3519 int free_space;
3520 u32 right_nritems;
3521 int ret = 0;
3522
3523 slot = path->slots[1];
3524 if (slot == 0)
3525 return 1;
3526 if (!path->nodes[1])
3527 return 1;
3528
3529 right_nritems = btrfs_header_nritems(right);
3530 if (right_nritems == 0)
3531 return 1;
3532
3533 btrfs_assert_tree_write_locked(path->nodes[1]);
3534
3535 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3536 if (IS_ERR(left))
3537 return PTR_ERR(left);
3538
3539 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3540
3541 free_space = btrfs_leaf_free_space(left);
3542 if (free_space < data_size) {
3543 ret = 1;
3544 goto out;
3545 }
3546
3547 ret = btrfs_cow_block(trans, root, left,
3548 path->nodes[1], slot - 1, &left,
3549 BTRFS_NESTING_LEFT_COW);
3550 if (ret) {
3551 /* we hit -ENOSPC, but it isn't fatal here */
3552 if (ret == -ENOSPC)
3553 ret = 1;
3554 goto out;
3555 }
3556
3557 if (check_sibling_keys(left, right)) {
3558 ret = -EUCLEAN;
3559 btrfs_abort_transaction(trans, ret);
3560 goto out;
3561 }
3562 return __push_leaf_left(trans, path, min_data_size, empty, left,
3563 free_space, right_nritems, max_slot);
3564 out:
3565 btrfs_tree_unlock(left);
3566 free_extent_buffer(left);
3567 return ret;
3568 }
3569
3570 /*
3571 * split the path's leaf in two, making sure there is at least data_size
3572 * available for the resulting leaf level of the path.
3573 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3574 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3575 struct btrfs_path *path,
3576 struct extent_buffer *l,
3577 struct extent_buffer *right,
3578 int slot, int mid, int nritems)
3579 {
3580 struct btrfs_fs_info *fs_info = trans->fs_info;
3581 int data_copy_size;
3582 int rt_data_off;
3583 int i;
3584 int ret;
3585 struct btrfs_disk_key disk_key;
3586 struct btrfs_map_token token;
3587
3588 nritems = nritems - mid;
3589 btrfs_set_header_nritems(right, nritems);
3590 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3591
3592 copy_leaf_items(right, l, 0, mid, nritems);
3593
3594 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3595 leaf_data_end(l), data_copy_size);
3596
3597 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3598
3599 btrfs_init_map_token(&token, right);
3600 for (i = 0; i < nritems; i++) {
3601 u32 ioff;
3602
3603 ioff = btrfs_token_item_offset(&token, i);
3604 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3605 }
3606
3607 btrfs_set_header_nritems(l, mid);
3608 btrfs_item_key(right, &disk_key, 0);
3609 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3610 if (ret < 0)
3611 return ret;
3612
3613 btrfs_mark_buffer_dirty(trans, right);
3614 btrfs_mark_buffer_dirty(trans, l);
3615 BUG_ON(path->slots[0] != slot);
3616
3617 if (mid <= slot) {
3618 btrfs_tree_unlock(path->nodes[0]);
3619 free_extent_buffer(path->nodes[0]);
3620 path->nodes[0] = right;
3621 path->slots[0] -= mid;
3622 path->slots[1] += 1;
3623 } else {
3624 btrfs_tree_unlock(right);
3625 free_extent_buffer(right);
3626 }
3627
3628 BUG_ON(path->slots[0] < 0);
3629
3630 return 0;
3631 }
3632
3633 /*
3634 * double splits happen when we need to insert a big item in the middle
3635 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3636 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3637 * A B C
3638 *
3639 * We avoid this by trying to push the items on either side of our target
3640 * into the adjacent leaves. If all goes well we can avoid the double split
3641 * completely.
3642 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3643 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *root,
3645 struct btrfs_path *path,
3646 int data_size)
3647 {
3648 int ret;
3649 int progress = 0;
3650 int slot;
3651 u32 nritems;
3652 int space_needed = data_size;
3653
3654 slot = path->slots[0];
3655 if (slot < btrfs_header_nritems(path->nodes[0]))
3656 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3657
3658 /*
3659 * try to push all the items after our slot into the
3660 * right leaf
3661 */
3662 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3663 if (ret < 0)
3664 return ret;
3665
3666 if (ret == 0)
3667 progress++;
3668
3669 nritems = btrfs_header_nritems(path->nodes[0]);
3670 /*
3671 * our goal is to get our slot at the start or end of a leaf. If
3672 * we've done so we're done
3673 */
3674 if (path->slots[0] == 0 || path->slots[0] == nritems)
3675 return 0;
3676
3677 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3678 return 0;
3679
3680 /* try to push all the items before our slot into the next leaf */
3681 slot = path->slots[0];
3682 space_needed = data_size;
3683 if (slot > 0)
3684 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3685 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3686 if (ret < 0)
3687 return ret;
3688
3689 if (ret == 0)
3690 progress++;
3691
3692 if (progress)
3693 return 0;
3694 return 1;
3695 }
3696
3697 /*
3698 * split the path's leaf in two, making sure there is at least data_size
3699 * available for the resulting leaf level of the path.
3700 *
3701 * returns 0 if all went well and < 0 on failure.
3702 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3703 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3704 struct btrfs_root *root,
3705 const struct btrfs_key *ins_key,
3706 struct btrfs_path *path, int data_size,
3707 int extend)
3708 {
3709 struct btrfs_disk_key disk_key;
3710 struct extent_buffer *l;
3711 u32 nritems;
3712 int mid;
3713 int slot;
3714 struct extent_buffer *right;
3715 struct btrfs_fs_info *fs_info = root->fs_info;
3716 int ret = 0;
3717 int wret;
3718 int split;
3719 int num_doubles = 0;
3720 int tried_avoid_double = 0;
3721
3722 l = path->nodes[0];
3723 slot = path->slots[0];
3724 if (extend && data_size + btrfs_item_size(l, slot) +
3725 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3726 return -EOVERFLOW;
3727
3728 /* first try to make some room by pushing left and right */
3729 if (data_size && path->nodes[1]) {
3730 int space_needed = data_size;
3731
3732 if (slot < btrfs_header_nritems(l))
3733 space_needed -= btrfs_leaf_free_space(l);
3734
3735 wret = push_leaf_right(trans, root, path, space_needed,
3736 space_needed, 0, 0);
3737 if (wret < 0)
3738 return wret;
3739 if (wret) {
3740 space_needed = data_size;
3741 if (slot > 0)
3742 space_needed -= btrfs_leaf_free_space(l);
3743 wret = push_leaf_left(trans, root, path, space_needed,
3744 space_needed, 0, (u32)-1);
3745 if (wret < 0)
3746 return wret;
3747 }
3748 l = path->nodes[0];
3749
3750 /* did the pushes work? */
3751 if (btrfs_leaf_free_space(l) >= data_size)
3752 return 0;
3753 }
3754
3755 if (!path->nodes[1]) {
3756 ret = insert_new_root(trans, root, path, 1);
3757 if (ret)
3758 return ret;
3759 }
3760 again:
3761 split = 1;
3762 l = path->nodes[0];
3763 slot = path->slots[0];
3764 nritems = btrfs_header_nritems(l);
3765 mid = (nritems + 1) / 2;
3766
3767 if (mid <= slot) {
3768 if (nritems == 1 ||
3769 leaf_space_used(l, mid, nritems - mid) + data_size >
3770 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3771 if (slot >= nritems) {
3772 split = 0;
3773 } else {
3774 mid = slot;
3775 if (mid != nritems &&
3776 leaf_space_used(l, mid, nritems - mid) +
3777 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3778 if (data_size && !tried_avoid_double)
3779 goto push_for_double;
3780 split = 2;
3781 }
3782 }
3783 }
3784 } else {
3785 if (leaf_space_used(l, 0, mid) + data_size >
3786 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3787 if (!extend && data_size && slot == 0) {
3788 split = 0;
3789 } else if ((extend || !data_size) && slot == 0) {
3790 mid = 1;
3791 } else {
3792 mid = slot;
3793 if (mid != nritems &&
3794 leaf_space_used(l, mid, nritems - mid) +
3795 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3796 if (data_size && !tried_avoid_double)
3797 goto push_for_double;
3798 split = 2;
3799 }
3800 }
3801 }
3802 }
3803
3804 if (split == 0)
3805 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3806 else
3807 btrfs_item_key(l, &disk_key, mid);
3808
3809 /*
3810 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3811 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3812 * subclasses, which is 8 at the time of this patch, and we've maxed it
3813 * out. In the future we could add a
3814 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3815 * use BTRFS_NESTING_NEW_ROOT.
3816 */
3817 right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3818 &disk_key, 0, l->start, 0, 0,
3819 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3820 BTRFS_NESTING_SPLIT);
3821 if (IS_ERR(right))
3822 return PTR_ERR(right);
3823
3824 root_add_used_bytes(root);
3825
3826 if (split == 0) {
3827 if (mid <= slot) {
3828 btrfs_set_header_nritems(right, 0);
3829 ret = insert_ptr(trans, path, &disk_key,
3830 right->start, path->slots[1] + 1, 1);
3831 if (ret < 0) {
3832 btrfs_tree_unlock(right);
3833 free_extent_buffer(right);
3834 return ret;
3835 }
3836 btrfs_tree_unlock(path->nodes[0]);
3837 free_extent_buffer(path->nodes[0]);
3838 path->nodes[0] = right;
3839 path->slots[0] = 0;
3840 path->slots[1] += 1;
3841 } else {
3842 btrfs_set_header_nritems(right, 0);
3843 ret = insert_ptr(trans, path, &disk_key,
3844 right->start, path->slots[1], 1);
3845 if (ret < 0) {
3846 btrfs_tree_unlock(right);
3847 free_extent_buffer(right);
3848 return ret;
3849 }
3850 btrfs_tree_unlock(path->nodes[0]);
3851 free_extent_buffer(path->nodes[0]);
3852 path->nodes[0] = right;
3853 path->slots[0] = 0;
3854 if (path->slots[1] == 0)
3855 fixup_low_keys(trans, path, &disk_key, 1);
3856 }
3857 /*
3858 * We create a new leaf 'right' for the required ins_len and
3859 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3860 * the content of ins_len to 'right'.
3861 */
3862 return ret;
3863 }
3864
3865 ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3866 if (ret < 0) {
3867 btrfs_tree_unlock(right);
3868 free_extent_buffer(right);
3869 return ret;
3870 }
3871
3872 if (split == 2) {
3873 BUG_ON(num_doubles != 0);
3874 num_doubles++;
3875 goto again;
3876 }
3877
3878 return 0;
3879
3880 push_for_double:
3881 push_for_double_split(trans, root, path, data_size);
3882 tried_avoid_double = 1;
3883 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3884 return 0;
3885 goto again;
3886 }
3887
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3888 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3889 struct btrfs_root *root,
3890 struct btrfs_path *path, int ins_len)
3891 {
3892 struct btrfs_key key;
3893 struct extent_buffer *leaf;
3894 struct btrfs_file_extent_item *fi;
3895 u64 extent_len = 0;
3896 u32 item_size;
3897 int ret;
3898
3899 leaf = path->nodes[0];
3900 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3901
3902 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3903 key.type != BTRFS_EXTENT_CSUM_KEY);
3904
3905 if (btrfs_leaf_free_space(leaf) >= ins_len)
3906 return 0;
3907
3908 item_size = btrfs_item_size(leaf, path->slots[0]);
3909 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3910 fi = btrfs_item_ptr(leaf, path->slots[0],
3911 struct btrfs_file_extent_item);
3912 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3913 }
3914 btrfs_release_path(path);
3915
3916 path->keep_locks = 1;
3917 path->search_for_split = 1;
3918 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3919 path->search_for_split = 0;
3920 if (ret > 0)
3921 ret = -EAGAIN;
3922 if (ret < 0)
3923 goto err;
3924
3925 ret = -EAGAIN;
3926 leaf = path->nodes[0];
3927 /* if our item isn't there, return now */
3928 if (item_size != btrfs_item_size(leaf, path->slots[0]))
3929 goto err;
3930
3931 /* the leaf has changed, it now has room. return now */
3932 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3933 goto err;
3934
3935 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3936 fi = btrfs_item_ptr(leaf, path->slots[0],
3937 struct btrfs_file_extent_item);
3938 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3939 goto err;
3940 }
3941
3942 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3943 if (ret)
3944 goto err;
3945
3946 path->keep_locks = 0;
3947 btrfs_unlock_up_safe(path, 1);
3948 return 0;
3949 err:
3950 path->keep_locks = 0;
3951 return ret;
3952 }
3953
split_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3954 static noinline int split_item(struct btrfs_trans_handle *trans,
3955 struct btrfs_path *path,
3956 const struct btrfs_key *new_key,
3957 unsigned long split_offset)
3958 {
3959 struct extent_buffer *leaf;
3960 int orig_slot, slot;
3961 char *buf;
3962 u32 nritems;
3963 u32 item_size;
3964 u32 orig_offset;
3965 struct btrfs_disk_key disk_key;
3966
3967 leaf = path->nodes[0];
3968 /*
3969 * Shouldn't happen because the caller must have previously called
3970 * setup_leaf_for_split() to make room for the new item in the leaf.
3971 */
3972 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3973 return -ENOSPC;
3974
3975 orig_slot = path->slots[0];
3976 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3977 item_size = btrfs_item_size(leaf, path->slots[0]);
3978
3979 buf = kmalloc(item_size, GFP_NOFS);
3980 if (!buf)
3981 return -ENOMEM;
3982
3983 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3984 path->slots[0]), item_size);
3985
3986 slot = path->slots[0] + 1;
3987 nritems = btrfs_header_nritems(leaf);
3988 if (slot != nritems) {
3989 /* shift the items */
3990 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3991 }
3992
3993 btrfs_cpu_key_to_disk(&disk_key, new_key);
3994 btrfs_set_item_key(leaf, &disk_key, slot);
3995
3996 btrfs_set_item_offset(leaf, slot, orig_offset);
3997 btrfs_set_item_size(leaf, slot, item_size - split_offset);
3998
3999 btrfs_set_item_offset(leaf, orig_slot,
4000 orig_offset + item_size - split_offset);
4001 btrfs_set_item_size(leaf, orig_slot, split_offset);
4002
4003 btrfs_set_header_nritems(leaf, nritems + 1);
4004
4005 /* write the data for the start of the original item */
4006 write_extent_buffer(leaf, buf,
4007 btrfs_item_ptr_offset(leaf, path->slots[0]),
4008 split_offset);
4009
4010 /* write the data for the new item */
4011 write_extent_buffer(leaf, buf + split_offset,
4012 btrfs_item_ptr_offset(leaf, slot),
4013 item_size - split_offset);
4014 btrfs_mark_buffer_dirty(trans, leaf);
4015
4016 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4017 kfree(buf);
4018 return 0;
4019 }
4020
4021 /*
4022 * This function splits a single item into two items,
4023 * giving 'new_key' to the new item and splitting the
4024 * old one at split_offset (from the start of the item).
4025 *
4026 * The path may be released by this operation. After
4027 * the split, the path is pointing to the old item. The
4028 * new item is going to be in the same node as the old one.
4029 *
4030 * Note, the item being split must be smaller enough to live alone on
4031 * a tree block with room for one extra struct btrfs_item
4032 *
4033 * This allows us to split the item in place, keeping a lock on the
4034 * leaf the entire time.
4035 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4036 int btrfs_split_item(struct btrfs_trans_handle *trans,
4037 struct btrfs_root *root,
4038 struct btrfs_path *path,
4039 const struct btrfs_key *new_key,
4040 unsigned long split_offset)
4041 {
4042 int ret;
4043 ret = setup_leaf_for_split(trans, root, path,
4044 sizeof(struct btrfs_item));
4045 if (ret)
4046 return ret;
4047
4048 ret = split_item(trans, path, new_key, split_offset);
4049 return ret;
4050 }
4051
4052 /*
4053 * make the item pointed to by the path smaller. new_size indicates
4054 * how small to make it, and from_end tells us if we just chop bytes
4055 * off the end of the item or if we shift the item to chop bytes off
4056 * the front.
4057 */
btrfs_truncate_item(struct btrfs_trans_handle * trans,const struct btrfs_path * path,u32 new_size,int from_end)4058 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4059 const struct btrfs_path *path, u32 new_size, int from_end)
4060 {
4061 int slot;
4062 struct extent_buffer *leaf;
4063 u32 nritems;
4064 unsigned int data_end;
4065 unsigned int old_data_start;
4066 unsigned int old_size;
4067 unsigned int size_diff;
4068 int i;
4069 struct btrfs_map_token token;
4070
4071 leaf = path->nodes[0];
4072 slot = path->slots[0];
4073
4074 old_size = btrfs_item_size(leaf, slot);
4075 if (old_size == new_size)
4076 return;
4077
4078 nritems = btrfs_header_nritems(leaf);
4079 data_end = leaf_data_end(leaf);
4080
4081 old_data_start = btrfs_item_offset(leaf, slot);
4082
4083 size_diff = old_size - new_size;
4084
4085 BUG_ON(slot < 0);
4086 BUG_ON(slot >= nritems);
4087
4088 /*
4089 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4090 */
4091 /* first correct the data pointers */
4092 btrfs_init_map_token(&token, leaf);
4093 for (i = slot; i < nritems; i++) {
4094 u32 ioff;
4095
4096 ioff = btrfs_token_item_offset(&token, i);
4097 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4098 }
4099
4100 /* shift the data */
4101 if (from_end) {
4102 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4103 old_data_start + new_size - data_end);
4104 } else {
4105 struct btrfs_disk_key disk_key;
4106 u64 offset;
4107
4108 btrfs_item_key(leaf, &disk_key, slot);
4109
4110 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4111 unsigned long ptr;
4112 struct btrfs_file_extent_item *fi;
4113
4114 fi = btrfs_item_ptr(leaf, slot,
4115 struct btrfs_file_extent_item);
4116 fi = (struct btrfs_file_extent_item *)(
4117 (unsigned long)fi - size_diff);
4118
4119 if (btrfs_file_extent_type(leaf, fi) ==
4120 BTRFS_FILE_EXTENT_INLINE) {
4121 ptr = btrfs_item_ptr_offset(leaf, slot);
4122 memmove_extent_buffer(leaf, ptr,
4123 (unsigned long)fi,
4124 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4125 }
4126 }
4127
4128 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4129 old_data_start - data_end);
4130
4131 offset = btrfs_disk_key_offset(&disk_key);
4132 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4133 btrfs_set_item_key(leaf, &disk_key, slot);
4134 if (slot == 0)
4135 fixup_low_keys(trans, path, &disk_key, 1);
4136 }
4137
4138 btrfs_set_item_size(leaf, slot, new_size);
4139 btrfs_mark_buffer_dirty(trans, leaf);
4140
4141 if (btrfs_leaf_free_space(leaf) < 0) {
4142 btrfs_print_leaf(leaf);
4143 BUG();
4144 }
4145 }
4146
4147 /*
4148 * make the item pointed to by the path bigger, data_size is the added size.
4149 */
btrfs_extend_item(struct btrfs_trans_handle * trans,const struct btrfs_path * path,u32 data_size)4150 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4151 const struct btrfs_path *path, u32 data_size)
4152 {
4153 int slot;
4154 struct extent_buffer *leaf;
4155 u32 nritems;
4156 unsigned int data_end;
4157 unsigned int old_data;
4158 unsigned int old_size;
4159 int i;
4160 struct btrfs_map_token token;
4161
4162 leaf = path->nodes[0];
4163
4164 nritems = btrfs_header_nritems(leaf);
4165 data_end = leaf_data_end(leaf);
4166
4167 if (btrfs_leaf_free_space(leaf) < data_size) {
4168 btrfs_print_leaf(leaf);
4169 BUG();
4170 }
4171 slot = path->slots[0];
4172 old_data = btrfs_item_data_end(leaf, slot);
4173
4174 BUG_ON(slot < 0);
4175 if (slot >= nritems) {
4176 btrfs_print_leaf(leaf);
4177 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4178 slot, nritems);
4179 BUG();
4180 }
4181
4182 /*
4183 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4184 */
4185 /* first correct the data pointers */
4186 btrfs_init_map_token(&token, leaf);
4187 for (i = slot; i < nritems; i++) {
4188 u32 ioff;
4189
4190 ioff = btrfs_token_item_offset(&token, i);
4191 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4192 }
4193
4194 /* shift the data */
4195 memmove_leaf_data(leaf, data_end - data_size, data_end,
4196 old_data - data_end);
4197
4198 data_end = old_data;
4199 old_size = btrfs_item_size(leaf, slot);
4200 btrfs_set_item_size(leaf, slot, old_size + data_size);
4201 btrfs_mark_buffer_dirty(trans, leaf);
4202
4203 if (btrfs_leaf_free_space(leaf) < 0) {
4204 btrfs_print_leaf(leaf);
4205 BUG();
4206 }
4207 }
4208
4209 /*
4210 * Make space in the node before inserting one or more items.
4211 *
4212 * @trans: transaction handle
4213 * @root: root we are inserting items to
4214 * @path: points to the leaf/slot where we are going to insert new items
4215 * @batch: information about the batch of items to insert
4216 *
4217 * Main purpose is to save stack depth by doing the bulk of the work in a
4218 * function that doesn't call btrfs_search_slot
4219 */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4220 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4221 struct btrfs_root *root, struct btrfs_path *path,
4222 const struct btrfs_item_batch *batch)
4223 {
4224 struct btrfs_fs_info *fs_info = root->fs_info;
4225 int i;
4226 u32 nritems;
4227 unsigned int data_end;
4228 struct btrfs_disk_key disk_key;
4229 struct extent_buffer *leaf;
4230 int slot;
4231 struct btrfs_map_token token;
4232 u32 total_size;
4233
4234 /*
4235 * Before anything else, update keys in the parent and other ancestors
4236 * if needed, then release the write locks on them, so that other tasks
4237 * can use them while we modify the leaf.
4238 */
4239 if (path->slots[0] == 0) {
4240 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4241 fixup_low_keys(trans, path, &disk_key, 1);
4242 }
4243 btrfs_unlock_up_safe(path, 1);
4244
4245 leaf = path->nodes[0];
4246 slot = path->slots[0];
4247
4248 nritems = btrfs_header_nritems(leaf);
4249 data_end = leaf_data_end(leaf);
4250 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4251
4252 if (btrfs_leaf_free_space(leaf) < total_size) {
4253 btrfs_print_leaf(leaf);
4254 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4255 total_size, btrfs_leaf_free_space(leaf));
4256 BUG();
4257 }
4258
4259 btrfs_init_map_token(&token, leaf);
4260 if (slot != nritems) {
4261 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4262
4263 if (old_data < data_end) {
4264 btrfs_print_leaf(leaf);
4265 btrfs_crit(fs_info,
4266 "item at slot %d with data offset %u beyond data end of leaf %u",
4267 slot, old_data, data_end);
4268 BUG();
4269 }
4270 /*
4271 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4272 */
4273 /* first correct the data pointers */
4274 for (i = slot; i < nritems; i++) {
4275 u32 ioff;
4276
4277 ioff = btrfs_token_item_offset(&token, i);
4278 btrfs_set_token_item_offset(&token, i,
4279 ioff - batch->total_data_size);
4280 }
4281 /* shift the items */
4282 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4283
4284 /* shift the data */
4285 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4286 data_end, old_data - data_end);
4287 data_end = old_data;
4288 }
4289
4290 /* setup the item for the new data */
4291 for (i = 0; i < batch->nr; i++) {
4292 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4293 btrfs_set_item_key(leaf, &disk_key, slot + i);
4294 data_end -= batch->data_sizes[i];
4295 btrfs_set_token_item_offset(&token, slot + i, data_end);
4296 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4297 }
4298
4299 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4300 btrfs_mark_buffer_dirty(trans, leaf);
4301
4302 if (btrfs_leaf_free_space(leaf) < 0) {
4303 btrfs_print_leaf(leaf);
4304 BUG();
4305 }
4306 }
4307
4308 /*
4309 * Insert a new item into a leaf.
4310 *
4311 * @trans: Transaction handle.
4312 * @root: The root of the btree.
4313 * @path: A path pointing to the target leaf and slot.
4314 * @key: The key of the new item.
4315 * @data_size: The size of the data associated with the new key.
4316 */
btrfs_setup_item_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4317 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4318 struct btrfs_root *root,
4319 struct btrfs_path *path,
4320 const struct btrfs_key *key,
4321 u32 data_size)
4322 {
4323 struct btrfs_item_batch batch;
4324
4325 batch.keys = key;
4326 batch.data_sizes = &data_size;
4327 batch.total_data_size = data_size;
4328 batch.nr = 1;
4329
4330 setup_items_for_insert(trans, root, path, &batch);
4331 }
4332
4333 /*
4334 * Given a key and some data, insert items into the tree.
4335 * This does all the path init required, making room in the tree if needed.
4336 *
4337 * Returns: 0 on success
4338 * -EEXIST if the first key already exists
4339 * < 0 on other errors
4340 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4341 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root,
4343 struct btrfs_path *path,
4344 const struct btrfs_item_batch *batch)
4345 {
4346 int ret = 0;
4347 int slot;
4348 u32 total_size;
4349
4350 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4351 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4352 if (ret == 0)
4353 return -EEXIST;
4354 if (ret < 0)
4355 return ret;
4356
4357 slot = path->slots[0];
4358 BUG_ON(slot < 0);
4359
4360 setup_items_for_insert(trans, root, path, batch);
4361 return 0;
4362 }
4363
4364 /*
4365 * Given a key and some data, insert an item into the tree.
4366 * This does all the path init required, making room in the tree if needed.
4367 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4368 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4369 const struct btrfs_key *cpu_key, void *data,
4370 u32 data_size)
4371 {
4372 int ret = 0;
4373 struct btrfs_path *path;
4374 struct extent_buffer *leaf;
4375 unsigned long ptr;
4376
4377 path = btrfs_alloc_path();
4378 if (!path)
4379 return -ENOMEM;
4380 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4381 if (!ret) {
4382 leaf = path->nodes[0];
4383 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4384 write_extent_buffer(leaf, data, ptr, data_size);
4385 btrfs_mark_buffer_dirty(trans, leaf);
4386 }
4387 btrfs_free_path(path);
4388 return ret;
4389 }
4390
4391 /*
4392 * This function duplicates an item, giving 'new_key' to the new item.
4393 * It guarantees both items live in the same tree leaf and the new item is
4394 * contiguous with the original item.
4395 *
4396 * This allows us to split a file extent in place, keeping a lock on the leaf
4397 * the entire time.
4398 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4399 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4400 struct btrfs_root *root,
4401 struct btrfs_path *path,
4402 const struct btrfs_key *new_key)
4403 {
4404 struct extent_buffer *leaf;
4405 int ret;
4406 u32 item_size;
4407
4408 leaf = path->nodes[0];
4409 item_size = btrfs_item_size(leaf, path->slots[0]);
4410 ret = setup_leaf_for_split(trans, root, path,
4411 item_size + sizeof(struct btrfs_item));
4412 if (ret)
4413 return ret;
4414
4415 path->slots[0]++;
4416 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4417 leaf = path->nodes[0];
4418 memcpy_extent_buffer(leaf,
4419 btrfs_item_ptr_offset(leaf, path->slots[0]),
4420 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4421 item_size);
4422 return 0;
4423 }
4424
4425 /*
4426 * delete the pointer from a given node.
4427 *
4428 * the tree should have been previously balanced so the deletion does not
4429 * empty a node.
4430 *
4431 * This is exported for use inside btrfs-progs, don't un-export it.
4432 */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4433 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4434 struct btrfs_path *path, int level, int slot)
4435 {
4436 struct extent_buffer *parent = path->nodes[level];
4437 u32 nritems;
4438 int ret;
4439
4440 nritems = btrfs_header_nritems(parent);
4441 if (slot != nritems - 1) {
4442 if (level) {
4443 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4444 slot + 1, nritems - slot - 1);
4445 if (ret < 0) {
4446 btrfs_abort_transaction(trans, ret);
4447 return ret;
4448 }
4449 }
4450 memmove_extent_buffer(parent,
4451 btrfs_node_key_ptr_offset(parent, slot),
4452 btrfs_node_key_ptr_offset(parent, slot + 1),
4453 sizeof(struct btrfs_key_ptr) *
4454 (nritems - slot - 1));
4455 } else if (level) {
4456 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4457 BTRFS_MOD_LOG_KEY_REMOVE);
4458 if (ret < 0) {
4459 btrfs_abort_transaction(trans, ret);
4460 return ret;
4461 }
4462 }
4463
4464 nritems--;
4465 btrfs_set_header_nritems(parent, nritems);
4466 if (nritems == 0 && parent == root->node) {
4467 BUG_ON(btrfs_header_level(root->node) != 1);
4468 /* just turn the root into a leaf and break */
4469 btrfs_set_header_level(root->node, 0);
4470 } else if (slot == 0) {
4471 struct btrfs_disk_key disk_key;
4472
4473 btrfs_node_key(parent, &disk_key, 0);
4474 fixup_low_keys(trans, path, &disk_key, level + 1);
4475 }
4476 btrfs_mark_buffer_dirty(trans, parent);
4477 return 0;
4478 }
4479
4480 /*
4481 * a helper function to delete the leaf pointed to by path->slots[1] and
4482 * path->nodes[1].
4483 *
4484 * This deletes the pointer in path->nodes[1] and frees the leaf
4485 * block extent. zero is returned if it all worked out, < 0 otherwise.
4486 *
4487 * The path must have already been setup for deleting the leaf, including
4488 * all the proper balancing. path->nodes[1] must be locked.
4489 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4490 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4491 struct btrfs_root *root,
4492 struct btrfs_path *path,
4493 struct extent_buffer *leaf)
4494 {
4495 int ret;
4496
4497 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4498 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4499 if (ret < 0)
4500 return ret;
4501
4502 /*
4503 * btrfs_free_extent is expensive, we want to make sure we
4504 * aren't holding any locks when we call it
4505 */
4506 btrfs_unlock_up_safe(path, 0);
4507
4508 root_sub_used_bytes(root);
4509
4510 atomic_inc(&leaf->refs);
4511 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4512 free_extent_buffer_stale(leaf);
4513 if (ret < 0)
4514 btrfs_abort_transaction(trans, ret);
4515
4516 return ret;
4517 }
4518 /*
4519 * delete the item at the leaf level in path. If that empties
4520 * the leaf, remove it from the tree
4521 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4522 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4523 struct btrfs_path *path, int slot, int nr)
4524 {
4525 struct btrfs_fs_info *fs_info = root->fs_info;
4526 struct extent_buffer *leaf;
4527 int ret = 0;
4528 int wret;
4529 u32 nritems;
4530
4531 leaf = path->nodes[0];
4532 nritems = btrfs_header_nritems(leaf);
4533
4534 if (slot + nr != nritems) {
4535 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4536 const int data_end = leaf_data_end(leaf);
4537 struct btrfs_map_token token;
4538 u32 dsize = 0;
4539 int i;
4540
4541 for (i = 0; i < nr; i++)
4542 dsize += btrfs_item_size(leaf, slot + i);
4543
4544 memmove_leaf_data(leaf, data_end + dsize, data_end,
4545 last_off - data_end);
4546
4547 btrfs_init_map_token(&token, leaf);
4548 for (i = slot + nr; i < nritems; i++) {
4549 u32 ioff;
4550
4551 ioff = btrfs_token_item_offset(&token, i);
4552 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4553 }
4554
4555 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4556 }
4557 btrfs_set_header_nritems(leaf, nritems - nr);
4558 nritems -= nr;
4559
4560 /* delete the leaf if we've emptied it */
4561 if (nritems == 0) {
4562 if (leaf == root->node) {
4563 btrfs_set_header_level(leaf, 0);
4564 } else {
4565 btrfs_clear_buffer_dirty(trans, leaf);
4566 ret = btrfs_del_leaf(trans, root, path, leaf);
4567 if (ret < 0)
4568 return ret;
4569 }
4570 } else {
4571 int used = leaf_space_used(leaf, 0, nritems);
4572 if (slot == 0) {
4573 struct btrfs_disk_key disk_key;
4574
4575 btrfs_item_key(leaf, &disk_key, 0);
4576 fixup_low_keys(trans, path, &disk_key, 1);
4577 }
4578
4579 /*
4580 * Try to delete the leaf if it is mostly empty. We do this by
4581 * trying to move all its items into its left and right neighbours.
4582 * If we can't move all the items, then we don't delete it - it's
4583 * not ideal, but future insertions might fill the leaf with more
4584 * items, or items from other leaves might be moved later into our
4585 * leaf due to deletions on those leaves.
4586 */
4587 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4588 u32 min_push_space;
4589
4590 /* push_leaf_left fixes the path.
4591 * make sure the path still points to our leaf
4592 * for possible call to btrfs_del_ptr below
4593 */
4594 slot = path->slots[1];
4595 atomic_inc(&leaf->refs);
4596 /*
4597 * We want to be able to at least push one item to the
4598 * left neighbour leaf, and that's the first item.
4599 */
4600 min_push_space = sizeof(struct btrfs_item) +
4601 btrfs_item_size(leaf, 0);
4602 wret = push_leaf_left(trans, root, path, 0,
4603 min_push_space, 1, (u32)-1);
4604 if (wret < 0 && wret != -ENOSPC)
4605 ret = wret;
4606
4607 if (path->nodes[0] == leaf &&
4608 btrfs_header_nritems(leaf)) {
4609 /*
4610 * If we were not able to push all items from our
4611 * leaf to its left neighbour, then attempt to
4612 * either push all the remaining items to the
4613 * right neighbour or none. There's no advantage
4614 * in pushing only some items, instead of all, as
4615 * it's pointless to end up with a leaf having
4616 * too few items while the neighbours can be full
4617 * or nearly full.
4618 */
4619 nritems = btrfs_header_nritems(leaf);
4620 min_push_space = leaf_space_used(leaf, 0, nritems);
4621 wret = push_leaf_right(trans, root, path, 0,
4622 min_push_space, 1, 0);
4623 if (wret < 0 && wret != -ENOSPC)
4624 ret = wret;
4625 }
4626
4627 if (btrfs_header_nritems(leaf) == 0) {
4628 path->slots[1] = slot;
4629 ret = btrfs_del_leaf(trans, root, path, leaf);
4630 if (ret < 0)
4631 return ret;
4632 free_extent_buffer(leaf);
4633 ret = 0;
4634 } else {
4635 /* if we're still in the path, make sure
4636 * we're dirty. Otherwise, one of the
4637 * push_leaf functions must have already
4638 * dirtied this buffer
4639 */
4640 if (path->nodes[0] == leaf)
4641 btrfs_mark_buffer_dirty(trans, leaf);
4642 free_extent_buffer(leaf);
4643 }
4644 } else {
4645 btrfs_mark_buffer_dirty(trans, leaf);
4646 }
4647 }
4648 return ret;
4649 }
4650
4651 /*
4652 * A helper function to walk down the tree starting at min_key, and looking
4653 * for nodes or leaves that are have a minimum transaction id.
4654 * This is used by the btree defrag code, and tree logging
4655 *
4656 * This does not cow, but it does stuff the starting key it finds back
4657 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4658 * key and get a writable path.
4659 *
4660 * This honors path->lowest_level to prevent descent past a given level
4661 * of the tree.
4662 *
4663 * min_trans indicates the oldest transaction that you are interested
4664 * in walking through. Any nodes or leaves older than min_trans are
4665 * skipped over (without reading them).
4666 *
4667 * returns zero if something useful was found, < 0 on error and 1 if there
4668 * was nothing in the tree that matched the search criteria.
4669 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4670 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4671 struct btrfs_path *path,
4672 u64 min_trans)
4673 {
4674 struct extent_buffer *cur;
4675 struct btrfs_key found_key;
4676 int slot;
4677 int sret;
4678 u32 nritems;
4679 int level;
4680 int ret = 1;
4681 int keep_locks = path->keep_locks;
4682
4683 ASSERT(!path->nowait);
4684 path->keep_locks = 1;
4685 again:
4686 cur = btrfs_read_lock_root_node(root);
4687 level = btrfs_header_level(cur);
4688 WARN_ON(path->nodes[level]);
4689 path->nodes[level] = cur;
4690 path->locks[level] = BTRFS_READ_LOCK;
4691
4692 if (btrfs_header_generation(cur) < min_trans) {
4693 ret = 1;
4694 goto out;
4695 }
4696 while (1) {
4697 nritems = btrfs_header_nritems(cur);
4698 level = btrfs_header_level(cur);
4699 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4700 if (sret < 0) {
4701 ret = sret;
4702 goto out;
4703 }
4704
4705 /* at the lowest level, we're done, setup the path and exit */
4706 if (level == path->lowest_level) {
4707 if (slot >= nritems)
4708 goto find_next_key;
4709 ret = 0;
4710 path->slots[level] = slot;
4711 btrfs_item_key_to_cpu(cur, &found_key, slot);
4712 goto out;
4713 }
4714 if (sret && slot > 0)
4715 slot--;
4716 /*
4717 * check this node pointer against the min_trans parameters.
4718 * If it is too old, skip to the next one.
4719 */
4720 while (slot < nritems) {
4721 u64 gen;
4722
4723 gen = btrfs_node_ptr_generation(cur, slot);
4724 if (gen < min_trans) {
4725 slot++;
4726 continue;
4727 }
4728 break;
4729 }
4730 find_next_key:
4731 /*
4732 * we didn't find a candidate key in this node, walk forward
4733 * and find another one
4734 */
4735 if (slot >= nritems) {
4736 path->slots[level] = slot;
4737 sret = btrfs_find_next_key(root, path, min_key, level,
4738 min_trans);
4739 if (sret == 0) {
4740 btrfs_release_path(path);
4741 goto again;
4742 } else {
4743 goto out;
4744 }
4745 }
4746 /* save our key for returning back */
4747 btrfs_node_key_to_cpu(cur, &found_key, slot);
4748 path->slots[level] = slot;
4749 if (level == path->lowest_level) {
4750 ret = 0;
4751 goto out;
4752 }
4753 cur = btrfs_read_node_slot(cur, slot);
4754 if (IS_ERR(cur)) {
4755 ret = PTR_ERR(cur);
4756 goto out;
4757 }
4758
4759 btrfs_tree_read_lock(cur);
4760
4761 path->locks[level - 1] = BTRFS_READ_LOCK;
4762 path->nodes[level - 1] = cur;
4763 unlock_up(path, level, 1, 0, NULL);
4764 }
4765 out:
4766 path->keep_locks = keep_locks;
4767 if (ret == 0) {
4768 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4769 memcpy(min_key, &found_key, sizeof(found_key));
4770 }
4771 return ret;
4772 }
4773
4774 /*
4775 * this is similar to btrfs_next_leaf, but does not try to preserve
4776 * and fixup the path. It looks for and returns the next key in the
4777 * tree based on the current path and the min_trans parameters.
4778 *
4779 * 0 is returned if another key is found, < 0 if there are any errors
4780 * and 1 is returned if there are no higher keys in the tree
4781 *
4782 * path->keep_locks should be set to 1 on the search made before
4783 * calling this function.
4784 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4785 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4786 struct btrfs_key *key, int level, u64 min_trans)
4787 {
4788 int slot;
4789 struct extent_buffer *c;
4790
4791 WARN_ON(!path->keep_locks && !path->skip_locking);
4792 while (level < BTRFS_MAX_LEVEL) {
4793 if (!path->nodes[level])
4794 return 1;
4795
4796 slot = path->slots[level] + 1;
4797 c = path->nodes[level];
4798 next:
4799 if (slot >= btrfs_header_nritems(c)) {
4800 int ret;
4801 int orig_lowest;
4802 struct btrfs_key cur_key;
4803 if (level + 1 >= BTRFS_MAX_LEVEL ||
4804 !path->nodes[level + 1])
4805 return 1;
4806
4807 if (path->locks[level + 1] || path->skip_locking) {
4808 level++;
4809 continue;
4810 }
4811
4812 slot = btrfs_header_nritems(c) - 1;
4813 if (level == 0)
4814 btrfs_item_key_to_cpu(c, &cur_key, slot);
4815 else
4816 btrfs_node_key_to_cpu(c, &cur_key, slot);
4817
4818 orig_lowest = path->lowest_level;
4819 btrfs_release_path(path);
4820 path->lowest_level = level;
4821 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4822 0, 0);
4823 path->lowest_level = orig_lowest;
4824 if (ret < 0)
4825 return ret;
4826
4827 c = path->nodes[level];
4828 slot = path->slots[level];
4829 if (ret == 0)
4830 slot++;
4831 goto next;
4832 }
4833
4834 if (level == 0)
4835 btrfs_item_key_to_cpu(c, key, slot);
4836 else {
4837 u64 gen = btrfs_node_ptr_generation(c, slot);
4838
4839 if (gen < min_trans) {
4840 slot++;
4841 goto next;
4842 }
4843 btrfs_node_key_to_cpu(c, key, slot);
4844 }
4845 return 0;
4846 }
4847 return 1;
4848 }
4849
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4850 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4851 u64 time_seq)
4852 {
4853 int slot;
4854 int level;
4855 struct extent_buffer *c;
4856 struct extent_buffer *next;
4857 struct btrfs_fs_info *fs_info = root->fs_info;
4858 struct btrfs_key key;
4859 bool need_commit_sem = false;
4860 u32 nritems;
4861 int ret;
4862 int i;
4863
4864 /*
4865 * The nowait semantics are used only for write paths, where we don't
4866 * use the tree mod log and sequence numbers.
4867 */
4868 if (time_seq)
4869 ASSERT(!path->nowait);
4870
4871 nritems = btrfs_header_nritems(path->nodes[0]);
4872 if (nritems == 0)
4873 return 1;
4874
4875 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4876 again:
4877 level = 1;
4878 next = NULL;
4879 btrfs_release_path(path);
4880
4881 path->keep_locks = 1;
4882
4883 if (time_seq) {
4884 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4885 } else {
4886 if (path->need_commit_sem) {
4887 path->need_commit_sem = 0;
4888 need_commit_sem = true;
4889 if (path->nowait) {
4890 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4891 ret = -EAGAIN;
4892 goto done;
4893 }
4894 } else {
4895 down_read(&fs_info->commit_root_sem);
4896 }
4897 }
4898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4899 }
4900 path->keep_locks = 0;
4901
4902 if (ret < 0)
4903 goto done;
4904
4905 nritems = btrfs_header_nritems(path->nodes[0]);
4906 /*
4907 * by releasing the path above we dropped all our locks. A balance
4908 * could have added more items next to the key that used to be
4909 * at the very end of the block. So, check again here and
4910 * advance the path if there are now more items available.
4911 */
4912 if (nritems > 0 && path->slots[0] < nritems - 1) {
4913 if (ret == 0)
4914 path->slots[0]++;
4915 ret = 0;
4916 goto done;
4917 }
4918 /*
4919 * So the above check misses one case:
4920 * - after releasing the path above, someone has removed the item that
4921 * used to be at the very end of the block, and balance between leafs
4922 * gets another one with bigger key.offset to replace it.
4923 *
4924 * This one should be returned as well, or we can get leaf corruption
4925 * later(esp. in __btrfs_drop_extents()).
4926 *
4927 * And a bit more explanation about this check,
4928 * with ret > 0, the key isn't found, the path points to the slot
4929 * where it should be inserted, so the path->slots[0] item must be the
4930 * bigger one.
4931 */
4932 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4933 ret = 0;
4934 goto done;
4935 }
4936
4937 while (level < BTRFS_MAX_LEVEL) {
4938 if (!path->nodes[level]) {
4939 ret = 1;
4940 goto done;
4941 }
4942
4943 slot = path->slots[level] + 1;
4944 c = path->nodes[level];
4945 if (slot >= btrfs_header_nritems(c)) {
4946 level++;
4947 if (level == BTRFS_MAX_LEVEL) {
4948 ret = 1;
4949 goto done;
4950 }
4951 continue;
4952 }
4953
4954
4955 /*
4956 * Our current level is where we're going to start from, and to
4957 * make sure lockdep doesn't complain we need to drop our locks
4958 * and nodes from 0 to our current level.
4959 */
4960 for (i = 0; i < level; i++) {
4961 if (path->locks[level]) {
4962 btrfs_tree_read_unlock(path->nodes[i]);
4963 path->locks[i] = 0;
4964 }
4965 free_extent_buffer(path->nodes[i]);
4966 path->nodes[i] = NULL;
4967 }
4968
4969 next = c;
4970 ret = read_block_for_search(root, path, &next, slot, &key);
4971 if (ret == -EAGAIN && !path->nowait)
4972 goto again;
4973
4974 if (ret < 0) {
4975 btrfs_release_path(path);
4976 goto done;
4977 }
4978
4979 if (!path->skip_locking) {
4980 ret = btrfs_try_tree_read_lock(next);
4981 if (!ret && path->nowait) {
4982 ret = -EAGAIN;
4983 goto done;
4984 }
4985 if (!ret && time_seq) {
4986 /*
4987 * If we don't get the lock, we may be racing
4988 * with push_leaf_left, holding that lock while
4989 * itself waiting for the leaf we've currently
4990 * locked. To solve this situation, we give up
4991 * on our lock and cycle.
4992 */
4993 free_extent_buffer(next);
4994 btrfs_release_path(path);
4995 cond_resched();
4996 goto again;
4997 }
4998 if (!ret)
4999 btrfs_tree_read_lock(next);
5000 }
5001 break;
5002 }
5003 path->slots[level] = slot;
5004 while (1) {
5005 level--;
5006 path->nodes[level] = next;
5007 path->slots[level] = 0;
5008 if (!path->skip_locking)
5009 path->locks[level] = BTRFS_READ_LOCK;
5010 if (!level)
5011 break;
5012
5013 ret = read_block_for_search(root, path, &next, 0, &key);
5014 if (ret == -EAGAIN && !path->nowait)
5015 goto again;
5016
5017 if (ret < 0) {
5018 btrfs_release_path(path);
5019 goto done;
5020 }
5021
5022 if (!path->skip_locking) {
5023 if (path->nowait) {
5024 if (!btrfs_try_tree_read_lock(next)) {
5025 ret = -EAGAIN;
5026 goto done;
5027 }
5028 } else {
5029 btrfs_tree_read_lock(next);
5030 }
5031 }
5032 }
5033 ret = 0;
5034 done:
5035 unlock_up(path, 0, 1, 0, NULL);
5036 if (need_commit_sem) {
5037 int ret2;
5038
5039 path->need_commit_sem = 1;
5040 ret2 = finish_need_commit_sem_search(path);
5041 up_read(&fs_info->commit_root_sem);
5042 if (ret2)
5043 ret = ret2;
5044 }
5045
5046 return ret;
5047 }
5048
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5049 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5050 {
5051 path->slots[0]++;
5052 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5053 return btrfs_next_old_leaf(root, path, time_seq);
5054 return 0;
5055 }
5056
5057 /*
5058 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5059 * searching until it gets past min_objectid or finds an item of 'type'
5060 *
5061 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5062 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5063 int btrfs_previous_item(struct btrfs_root *root,
5064 struct btrfs_path *path, u64 min_objectid,
5065 int type)
5066 {
5067 struct btrfs_key found_key;
5068 struct extent_buffer *leaf;
5069 u32 nritems;
5070 int ret;
5071
5072 while (1) {
5073 if (path->slots[0] == 0) {
5074 ret = btrfs_prev_leaf(root, path);
5075 if (ret != 0)
5076 return ret;
5077 } else {
5078 path->slots[0]--;
5079 }
5080 leaf = path->nodes[0];
5081 nritems = btrfs_header_nritems(leaf);
5082 if (nritems == 0)
5083 return 1;
5084 if (path->slots[0] == nritems)
5085 path->slots[0]--;
5086
5087 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5088 if (found_key.objectid < min_objectid)
5089 break;
5090 if (found_key.type == type)
5091 return 0;
5092 if (found_key.objectid == min_objectid &&
5093 found_key.type < type)
5094 break;
5095 }
5096 return 1;
5097 }
5098
5099 /*
5100 * search in extent tree to find a previous Metadata/Data extent item with
5101 * min objecitd.
5102 *
5103 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5104 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5105 int btrfs_previous_extent_item(struct btrfs_root *root,
5106 struct btrfs_path *path, u64 min_objectid)
5107 {
5108 struct btrfs_key found_key;
5109 struct extent_buffer *leaf;
5110 u32 nritems;
5111 int ret;
5112
5113 while (1) {
5114 if (path->slots[0] == 0) {
5115 ret = btrfs_prev_leaf(root, path);
5116 if (ret != 0)
5117 return ret;
5118 } else {
5119 path->slots[0]--;
5120 }
5121 leaf = path->nodes[0];
5122 nritems = btrfs_header_nritems(leaf);
5123 if (nritems == 0)
5124 return 1;
5125 if (path->slots[0] == nritems)
5126 path->slots[0]--;
5127
5128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5129 if (found_key.objectid < min_objectid)
5130 break;
5131 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5132 found_key.type == BTRFS_METADATA_ITEM_KEY)
5133 return 0;
5134 if (found_key.objectid == min_objectid &&
5135 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5136 break;
5137 }
5138 return 1;
5139 }
5140
btrfs_ctree_init(void)5141 int __init btrfs_ctree_init(void)
5142 {
5143 btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5144 if (!btrfs_path_cachep)
5145 return -ENOMEM;
5146 return 0;
5147 }
5148
btrfs_ctree_exit(void)5149 void __cold btrfs_ctree_exit(void)
5150 {
5151 kmem_cache_destroy(btrfs_path_cachep);
5152 }
5153