1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <linux/shrinker.h>
24 #include <crypto/hash.h>
25 #include "misc.h"
26 #include "ctree.h"
27 #include "fs.h"
28 #include "btrfs_inode.h"
29 #include "bio.h"
30 #include "ordered-data.h"
31 #include "compression.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "subpage.h"
35 #include "messages.h"
36 #include "super.h"
37
38 static struct bio_set btrfs_compressed_bioset;
39
40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
41
btrfs_compress_type2str(enum btrfs_compression_type type)42 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
43 {
44 switch (type) {
45 case BTRFS_COMPRESS_ZLIB:
46 case BTRFS_COMPRESS_LZO:
47 case BTRFS_COMPRESS_ZSTD:
48 case BTRFS_COMPRESS_NONE:
49 return btrfs_compress_types[type];
50 default:
51 break;
52 }
53
54 return NULL;
55 }
56
to_compressed_bio(struct btrfs_bio * bbio)57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
58 {
59 return container_of(bbio, struct compressed_bio, bbio);
60 }
61
alloc_compressed_bio(struct btrfs_inode * inode,u64 start,blk_opf_t op,btrfs_bio_end_io_t end_io)62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
63 u64 start, blk_opf_t op,
64 btrfs_bio_end_io_t end_io)
65 {
66 struct btrfs_bio *bbio;
67
68 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
69 GFP_NOFS, &btrfs_compressed_bioset));
70 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
71 bbio->inode = inode;
72 bbio->file_offset = start;
73 return to_compressed_bio(bbio);
74 }
75
btrfs_compress_is_valid_type(const char * str,size_t len)76 bool btrfs_compress_is_valid_type(const char *str, size_t len)
77 {
78 int i;
79
80 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
81 size_t comp_len = strlen(btrfs_compress_types[i]);
82
83 if (len < comp_len)
84 continue;
85
86 if (!strncmp(btrfs_compress_types[i], str, comp_len))
87 return true;
88 }
89 return false;
90 }
91
compression_compress_pages(int type,struct list_head * ws,struct btrfs_inode * inode,u64 start,struct folio ** folios,unsigned long * out_folios,unsigned long * total_in,unsigned long * total_out)92 static int compression_compress_pages(int type, struct list_head *ws,
93 struct btrfs_inode *inode, u64 start,
94 struct folio **folios, unsigned long *out_folios,
95 unsigned long *total_in, unsigned long *total_out)
96 {
97 switch (type) {
98 case BTRFS_COMPRESS_ZLIB:
99 return zlib_compress_folios(ws, inode, start, folios,
100 out_folios, total_in, total_out);
101 case BTRFS_COMPRESS_LZO:
102 return lzo_compress_folios(ws, inode, start, folios,
103 out_folios, total_in, total_out);
104 case BTRFS_COMPRESS_ZSTD:
105 return zstd_compress_folios(ws, inode, start, folios,
106 out_folios, total_in, total_out);
107 case BTRFS_COMPRESS_NONE:
108 default:
109 /*
110 * This can happen when compression races with remount setting
111 * it to 'no compress', while caller doesn't call
112 * inode_need_compress() to check if we really need to
113 * compress.
114 *
115 * Not a big deal, just need to inform caller that we
116 * haven't allocated any pages yet.
117 */
118 *out_folios = 0;
119 return -E2BIG;
120 }
121 }
122
compression_decompress_bio(struct list_head * ws,struct compressed_bio * cb)123 static int compression_decompress_bio(struct list_head *ws,
124 struct compressed_bio *cb)
125 {
126 switch (cb->compress_type) {
127 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
128 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
129 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
130 case BTRFS_COMPRESS_NONE:
131 default:
132 /*
133 * This can't happen, the type is validated several times
134 * before we get here.
135 */
136 BUG();
137 }
138 }
139
compression_decompress(int type,struct list_head * ws,const u8 * data_in,struct folio * dest_folio,unsigned long dest_pgoff,size_t srclen,size_t destlen)140 static int compression_decompress(int type, struct list_head *ws,
141 const u8 *data_in, struct folio *dest_folio,
142 unsigned long dest_pgoff, size_t srclen, size_t destlen)
143 {
144 switch (type) {
145 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio,
146 dest_pgoff, srclen, destlen);
147 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_folio,
148 dest_pgoff, srclen, destlen);
149 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio,
150 dest_pgoff, srclen, destlen);
151 case BTRFS_COMPRESS_NONE:
152 default:
153 /*
154 * This can't happen, the type is validated several times
155 * before we get here.
156 */
157 BUG();
158 }
159 }
160
btrfs_free_compressed_folios(struct compressed_bio * cb)161 static void btrfs_free_compressed_folios(struct compressed_bio *cb)
162 {
163 for (unsigned int i = 0; i < cb->nr_folios; i++)
164 btrfs_free_compr_folio(cb->compressed_folios[i]);
165 kfree(cb->compressed_folios);
166 }
167
168 static int btrfs_decompress_bio(struct compressed_bio *cb);
169
170 /*
171 * Global cache of last unused pages for compression/decompression.
172 */
173 static struct btrfs_compr_pool {
174 struct shrinker *shrinker;
175 spinlock_t lock;
176 struct list_head list;
177 int count;
178 int thresh;
179 } compr_pool;
180
btrfs_compr_pool_count(struct shrinker * sh,struct shrink_control * sc)181 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
182 {
183 int ret;
184
185 /*
186 * We must not read the values more than once if 'ret' gets expanded in
187 * the return statement so we don't accidentally return a negative
188 * number, even if the first condition finds it positive.
189 */
190 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
191
192 return ret > 0 ? ret : 0;
193 }
194
btrfs_compr_pool_scan(struct shrinker * sh,struct shrink_control * sc)195 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
196 {
197 struct list_head remove;
198 struct list_head *tmp, *next;
199 int freed;
200
201 if (compr_pool.count == 0)
202 return SHRINK_STOP;
203
204 INIT_LIST_HEAD(&remove);
205
206 /* For now, just simply drain the whole list. */
207 spin_lock(&compr_pool.lock);
208 list_splice_init(&compr_pool.list, &remove);
209 freed = compr_pool.count;
210 compr_pool.count = 0;
211 spin_unlock(&compr_pool.lock);
212
213 list_for_each_safe(tmp, next, &remove) {
214 struct page *page = list_entry(tmp, struct page, lru);
215
216 ASSERT(page_ref_count(page) == 1);
217 put_page(page);
218 }
219
220 return freed;
221 }
222
223 /*
224 * Common wrappers for page allocation from compression wrappers
225 */
btrfs_alloc_compr_folio(struct btrfs_fs_info * fs_info)226 struct folio *btrfs_alloc_compr_folio(struct btrfs_fs_info *fs_info)
227 {
228 struct folio *folio = NULL;
229
230 /* For bs > ps cases, no cached folio pool for now. */
231 if (fs_info->block_min_order)
232 goto alloc;
233
234 spin_lock(&compr_pool.lock);
235 if (compr_pool.count > 0) {
236 folio = list_first_entry(&compr_pool.list, struct folio, lru);
237 list_del_init(&folio->lru);
238 compr_pool.count--;
239 }
240 spin_unlock(&compr_pool.lock);
241
242 if (folio)
243 return folio;
244
245 alloc:
246 return folio_alloc(GFP_NOFS, fs_info->block_min_order);
247 }
248
btrfs_free_compr_folio(struct folio * folio)249 void btrfs_free_compr_folio(struct folio *folio)
250 {
251 bool do_free = false;
252
253 /* The folio is from bs > ps fs, no cached pool for now. */
254 if (folio_order(folio))
255 goto free;
256
257 spin_lock(&compr_pool.lock);
258 if (compr_pool.count > compr_pool.thresh) {
259 do_free = true;
260 } else {
261 list_add(&folio->lru, &compr_pool.list);
262 compr_pool.count++;
263 }
264 spin_unlock(&compr_pool.lock);
265
266 if (!do_free)
267 return;
268
269 free:
270 ASSERT(folio_ref_count(folio) == 1);
271 folio_put(folio);
272 }
273
end_bbio_compressed_read(struct btrfs_bio * bbio)274 static void end_bbio_compressed_read(struct btrfs_bio *bbio)
275 {
276 struct compressed_bio *cb = to_compressed_bio(bbio);
277 blk_status_t status = bbio->bio.bi_status;
278
279 if (!status)
280 status = errno_to_blk_status(btrfs_decompress_bio(cb));
281
282 btrfs_free_compressed_folios(cb);
283 btrfs_bio_end_io(cb->orig_bbio, status);
284 bio_put(&bbio->bio);
285 }
286
287 /*
288 * Clear the writeback bits on all of the file
289 * pages for a compressed write
290 */
end_compressed_writeback(const struct compressed_bio * cb)291 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
292 {
293 struct inode *inode = &cb->bbio.inode->vfs_inode;
294 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
295 pgoff_t index = cb->start >> PAGE_SHIFT;
296 const pgoff_t end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
297 struct folio_batch fbatch;
298 int i;
299 int ret;
300
301 ret = blk_status_to_errno(cb->bbio.bio.bi_status);
302 if (ret)
303 mapping_set_error(inode->i_mapping, ret);
304
305 folio_batch_init(&fbatch);
306 while (index <= end_index) {
307 ret = filemap_get_folios(inode->i_mapping, &index, end_index,
308 &fbatch);
309
310 if (ret == 0)
311 return;
312
313 for (i = 0; i < ret; i++) {
314 struct folio *folio = fbatch.folios[i];
315
316 btrfs_folio_clamp_clear_writeback(fs_info, folio,
317 cb->start, cb->len);
318 }
319 folio_batch_release(&fbatch);
320 }
321 /* the inode may be gone now */
322 }
323
btrfs_finish_compressed_write_work(struct work_struct * work)324 static void btrfs_finish_compressed_write_work(struct work_struct *work)
325 {
326 struct compressed_bio *cb =
327 container_of(work, struct compressed_bio, write_end_work);
328
329 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
330 cb->bbio.bio.bi_status == BLK_STS_OK);
331
332 if (cb->writeback)
333 end_compressed_writeback(cb);
334 /* Note, our inode could be gone now */
335
336 btrfs_free_compressed_folios(cb);
337 bio_put(&cb->bbio.bio);
338 }
339
340 /*
341 * Do the cleanup once all the compressed pages hit the disk. This will clear
342 * writeback on the file pages and free the compressed pages.
343 *
344 * This also calls the writeback end hooks for the file pages so that metadata
345 * and checksums can be updated in the file.
346 */
end_bbio_compressed_write(struct btrfs_bio * bbio)347 static void end_bbio_compressed_write(struct btrfs_bio *bbio)
348 {
349 struct compressed_bio *cb = to_compressed_bio(bbio);
350 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
351
352 queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
353 }
354
btrfs_add_compressed_bio_folios(struct compressed_bio * cb)355 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb)
356 {
357 struct btrfs_fs_info *fs_info = cb->bbio.fs_info;
358 struct bio *bio = &cb->bbio.bio;
359 u32 offset = 0;
360
361 while (offset < cb->compressed_len) {
362 struct folio *folio;
363 int ret;
364 u32 len = min_t(u32, cb->compressed_len - offset,
365 btrfs_min_folio_size(fs_info));
366
367 folio = cb->compressed_folios[offset >> (PAGE_SHIFT + fs_info->block_min_order)];
368 /* Maximum compressed extent is smaller than bio size limit. */
369 ret = bio_add_folio(bio, folio, len, 0);
370 ASSERT(ret);
371 offset += len;
372 }
373 }
374
375 /*
376 * worker function to build and submit bios for previously compressed pages.
377 * The corresponding pages in the inode should be marked for writeback
378 * and the compressed pages should have a reference on them for dropping
379 * when the IO is complete.
380 *
381 * This also checksums the file bytes and gets things ready for
382 * the end io hooks.
383 */
btrfs_submit_compressed_write(struct btrfs_ordered_extent * ordered,struct folio ** compressed_folios,unsigned int nr_folios,blk_opf_t write_flags,bool writeback)384 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
385 struct folio **compressed_folios,
386 unsigned int nr_folios,
387 blk_opf_t write_flags,
388 bool writeback)
389 {
390 struct btrfs_inode *inode = ordered->inode;
391 struct btrfs_fs_info *fs_info = inode->root->fs_info;
392 struct compressed_bio *cb;
393
394 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
395 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
396
397 cb = alloc_compressed_bio(inode, ordered->file_offset,
398 REQ_OP_WRITE | write_flags,
399 end_bbio_compressed_write);
400 cb->start = ordered->file_offset;
401 cb->len = ordered->num_bytes;
402 cb->compressed_folios = compressed_folios;
403 cb->compressed_len = ordered->disk_num_bytes;
404 cb->writeback = writeback;
405 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
406 cb->nr_folios = nr_folios;
407 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
408 cb->bbio.ordered = ordered;
409 btrfs_add_compressed_bio_folios(cb);
410
411 btrfs_submit_bbio(&cb->bbio, 0);
412 }
413
414 /*
415 * Add extra pages in the same compressed file extent so that we don't need to
416 * re-read the same extent again and again.
417 *
418 * NOTE: this won't work well for subpage, as for subpage read, we lock the
419 * full page then submit bio for each compressed/regular extents.
420 *
421 * This means, if we have several sectors in the same page points to the same
422 * on-disk compressed data, we will re-read the same extent many times and
423 * this function can only help for the next page.
424 */
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb,int * memstall,unsigned long * pflags)425 static noinline int add_ra_bio_pages(struct inode *inode,
426 u64 compressed_end,
427 struct compressed_bio *cb,
428 int *memstall, unsigned long *pflags)
429 {
430 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
431 pgoff_t end_index;
432 struct bio *orig_bio = &cb->orig_bbio->bio;
433 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
434 u64 isize = i_size_read(inode);
435 int ret;
436 struct folio *folio;
437 struct extent_map *em;
438 struct address_space *mapping = inode->i_mapping;
439 struct extent_map_tree *em_tree;
440 struct extent_io_tree *tree;
441 int sectors_missed = 0;
442
443 em_tree = &BTRFS_I(inode)->extent_tree;
444 tree = &BTRFS_I(inode)->io_tree;
445
446 if (isize == 0)
447 return 0;
448
449 /*
450 * For current subpage support, we only support 64K page size,
451 * which means maximum compressed extent size (128K) is just 2x page
452 * size.
453 * This makes readahead less effective, so here disable readahead for
454 * subpage for now, until full compressed write is supported.
455 */
456 if (fs_info->sectorsize < PAGE_SIZE)
457 return 0;
458
459 /* For bs > ps cases, we don't support readahead for compressed folios for now. */
460 if (fs_info->block_min_order)
461 return 0;
462
463 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
464
465 while (cur < compressed_end) {
466 pgoff_t page_end;
467 pgoff_t pg_index = cur >> PAGE_SHIFT;
468 u32 add_size;
469
470 if (pg_index > end_index)
471 break;
472
473 folio = filemap_get_folio(mapping, pg_index);
474 if (!IS_ERR(folio)) {
475 u64 folio_sz = folio_size(folio);
476 u64 offset = offset_in_folio(folio, cur);
477
478 folio_put(folio);
479 sectors_missed += (folio_sz - offset) >>
480 fs_info->sectorsize_bits;
481
482 /* Beyond threshold, no need to continue */
483 if (sectors_missed > 4)
484 break;
485
486 /*
487 * Jump to next page start as we already have page for
488 * current offset.
489 */
490 cur += (folio_sz - offset);
491 continue;
492 }
493
494 folio = filemap_alloc_folio(mapping_gfp_constraint(mapping,
495 ~__GFP_FS), 0);
496 if (!folio)
497 break;
498
499 if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) {
500 /* There is already a page, skip to page end */
501 cur += folio_size(folio);
502 folio_put(folio);
503 continue;
504 }
505
506 if (!*memstall && folio_test_workingset(folio)) {
507 psi_memstall_enter(pflags);
508 *memstall = 1;
509 }
510
511 ret = set_folio_extent_mapped(folio);
512 if (ret < 0) {
513 folio_unlock(folio);
514 folio_put(folio);
515 break;
516 }
517
518 page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1;
519 btrfs_lock_extent(tree, cur, page_end, NULL);
520 read_lock(&em_tree->lock);
521 em = btrfs_lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
522 read_unlock(&em_tree->lock);
523
524 /*
525 * At this point, we have a locked page in the page cache for
526 * these bytes in the file. But, we have to make sure they map
527 * to this compressed extent on disk.
528 */
529 if (!em || cur < em->start ||
530 (cur + fs_info->sectorsize > btrfs_extent_map_end(em)) ||
531 (btrfs_extent_map_block_start(em) >> SECTOR_SHIFT) !=
532 orig_bio->bi_iter.bi_sector) {
533 btrfs_free_extent_map(em);
534 btrfs_unlock_extent(tree, cur, page_end, NULL);
535 folio_unlock(folio);
536 folio_put(folio);
537 break;
538 }
539 add_size = min(em->start + em->len, page_end + 1) - cur;
540 btrfs_free_extent_map(em);
541 btrfs_unlock_extent(tree, cur, page_end, NULL);
542
543 if (folio_contains(folio, end_index)) {
544 size_t zero_offset = offset_in_folio(folio, isize);
545
546 if (zero_offset) {
547 int zeros;
548 zeros = folio_size(folio) - zero_offset;
549 folio_zero_range(folio, zero_offset, zeros);
550 }
551 }
552
553 if (!bio_add_folio(orig_bio, folio, add_size,
554 offset_in_folio(folio, cur))) {
555 folio_unlock(folio);
556 folio_put(folio);
557 break;
558 }
559 /*
560 * If it's subpage, we also need to increase its
561 * subpage::readers number, as at endio we will decrease
562 * subpage::readers and to unlock the page.
563 */
564 if (fs_info->sectorsize < PAGE_SIZE)
565 btrfs_folio_set_lock(fs_info, folio, cur, add_size);
566 folio_put(folio);
567 cur += add_size;
568 }
569 return 0;
570 }
571
572 /*
573 * for a compressed read, the bio we get passed has all the inode pages
574 * in it. We don't actually do IO on those pages but allocate new ones
575 * to hold the compressed pages on disk.
576 *
577 * bio->bi_iter.bi_sector points to the compressed extent on disk
578 * bio->bi_io_vec points to all of the inode pages
579 *
580 * After the compressed pages are read, we copy the bytes into the
581 * bio we were passed and then call the bio end_io calls
582 */
btrfs_submit_compressed_read(struct btrfs_bio * bbio)583 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
584 {
585 struct btrfs_inode *inode = bbio->inode;
586 struct btrfs_fs_info *fs_info = inode->root->fs_info;
587 struct extent_map_tree *em_tree = &inode->extent_tree;
588 struct compressed_bio *cb;
589 unsigned int compressed_len;
590 u64 file_offset = bbio->file_offset;
591 u64 em_len;
592 u64 em_start;
593 struct extent_map *em;
594 unsigned long pflags;
595 int memstall = 0;
596 blk_status_t status;
597 int ret;
598
599 /* we need the actual starting offset of this extent in the file */
600 read_lock(&em_tree->lock);
601 em = btrfs_lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
602 read_unlock(&em_tree->lock);
603 if (!em) {
604 status = BLK_STS_IOERR;
605 goto out;
606 }
607
608 ASSERT(btrfs_extent_map_is_compressed(em));
609 compressed_len = em->disk_num_bytes;
610
611 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
612 end_bbio_compressed_read);
613
614 cb->start = em->start - em->offset;
615 em_len = em->len;
616 em_start = em->start;
617
618 cb->len = bbio->bio.bi_iter.bi_size;
619 cb->compressed_len = compressed_len;
620 cb->compress_type = btrfs_extent_map_compression(em);
621 cb->orig_bbio = bbio;
622 cb->bbio.csum_search_commit_root = bbio->csum_search_commit_root;
623
624 btrfs_free_extent_map(em);
625
626 cb->nr_folios = DIV_ROUND_UP(compressed_len, btrfs_min_folio_size(fs_info));
627 cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct folio *), GFP_NOFS);
628 if (!cb->compressed_folios) {
629 status = BLK_STS_RESOURCE;
630 goto out_free_bio;
631 }
632
633 ret = btrfs_alloc_folio_array(cb->nr_folios, fs_info->block_min_order,
634 cb->compressed_folios);
635 if (ret) {
636 status = BLK_STS_RESOURCE;
637 goto out_free_compressed_pages;
638 }
639
640 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
641 &pflags);
642
643 /* include any pages we added in add_ra-bio_pages */
644 cb->len = bbio->bio.bi_iter.bi_size;
645 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
646 btrfs_add_compressed_bio_folios(cb);
647
648 if (memstall)
649 psi_memstall_leave(&pflags);
650
651 btrfs_submit_bbio(&cb->bbio, 0);
652 return;
653
654 out_free_compressed_pages:
655 kfree(cb->compressed_folios);
656 out_free_bio:
657 bio_put(&cb->bbio.bio);
658 out:
659 btrfs_bio_end_io(bbio, status);
660 }
661
662 /*
663 * Heuristic uses systematic sampling to collect data from the input data
664 * range, the logic can be tuned by the following constants:
665 *
666 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
667 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
668 */
669 #define SAMPLING_READ_SIZE (16)
670 #define SAMPLING_INTERVAL (256)
671
672 /*
673 * For statistical analysis of the input data we consider bytes that form a
674 * Galois Field of 256 objects. Each object has an attribute count, ie. how
675 * many times the object appeared in the sample.
676 */
677 #define BUCKET_SIZE (256)
678
679 /*
680 * The size of the sample is based on a statistical sampling rule of thumb.
681 * The common way is to perform sampling tests as long as the number of
682 * elements in each cell is at least 5.
683 *
684 * Instead of 5, we choose 32 to obtain more accurate results.
685 * If the data contain the maximum number of symbols, which is 256, we obtain a
686 * sample size bound by 8192.
687 *
688 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
689 * from up to 512 locations.
690 */
691 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
692 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
693
694 struct bucket_item {
695 u32 count;
696 };
697
698 struct heuristic_ws {
699 /* Partial copy of input data */
700 u8 *sample;
701 u32 sample_size;
702 /* Buckets store counters for each byte value */
703 struct bucket_item *bucket;
704 /* Sorting buffer */
705 struct bucket_item *bucket_b;
706 struct list_head list;
707 };
708
free_heuristic_ws(struct list_head * ws)709 static void free_heuristic_ws(struct list_head *ws)
710 {
711 struct heuristic_ws *workspace;
712
713 workspace = list_entry(ws, struct heuristic_ws, list);
714
715 kvfree(workspace->sample);
716 kfree(workspace->bucket);
717 kfree(workspace->bucket_b);
718 kfree(workspace);
719 }
720
alloc_heuristic_ws(struct btrfs_fs_info * fs_info)721 static struct list_head *alloc_heuristic_ws(struct btrfs_fs_info *fs_info)
722 {
723 struct heuristic_ws *ws;
724
725 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
726 if (!ws)
727 return ERR_PTR(-ENOMEM);
728
729 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
730 if (!ws->sample)
731 goto fail;
732
733 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
734 if (!ws->bucket)
735 goto fail;
736
737 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
738 if (!ws->bucket_b)
739 goto fail;
740
741 INIT_LIST_HEAD(&ws->list);
742 return &ws->list;
743 fail:
744 free_heuristic_ws(&ws->list);
745 return ERR_PTR(-ENOMEM);
746 }
747
748 const struct btrfs_compress_levels btrfs_heuristic_compress = { 0 };
749
750 static const struct btrfs_compress_levels * const btrfs_compress_levels[] = {
751 /* The heuristic is represented as compression type 0 */
752 &btrfs_heuristic_compress,
753 &btrfs_zlib_compress,
754 &btrfs_lzo_compress,
755 &btrfs_zstd_compress,
756 };
757
alloc_workspace(struct btrfs_fs_info * fs_info,int type,int level)758 static struct list_head *alloc_workspace(struct btrfs_fs_info *fs_info, int type, int level)
759 {
760 switch (type) {
761 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(fs_info);
762 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(fs_info, level);
763 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(fs_info);
764 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(fs_info, level);
765 default:
766 /*
767 * This can't happen, the type is validated several times
768 * before we get here.
769 */
770 BUG();
771 }
772 }
773
free_workspace(int type,struct list_head * ws)774 static void free_workspace(int type, struct list_head *ws)
775 {
776 switch (type) {
777 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
778 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
779 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
780 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
781 default:
782 /*
783 * This can't happen, the type is validated several times
784 * before we get here.
785 */
786 BUG();
787 }
788 }
789
alloc_workspace_manager(struct btrfs_fs_info * fs_info,enum btrfs_compression_type type)790 static int alloc_workspace_manager(struct btrfs_fs_info *fs_info,
791 enum btrfs_compression_type type)
792 {
793 struct workspace_manager *gwsm;
794 struct list_head *workspace;
795
796 ASSERT(fs_info->compr_wsm[type] == NULL);
797 gwsm = kzalloc(sizeof(*gwsm), GFP_KERNEL);
798 if (!gwsm)
799 return -ENOMEM;
800
801 INIT_LIST_HEAD(&gwsm->idle_ws);
802 spin_lock_init(&gwsm->ws_lock);
803 atomic_set(&gwsm->total_ws, 0);
804 init_waitqueue_head(&gwsm->ws_wait);
805 fs_info->compr_wsm[type] = gwsm;
806
807 /*
808 * Preallocate one workspace for each compression type so we can
809 * guarantee forward progress in the worst case
810 */
811 workspace = alloc_workspace(fs_info, type, 0);
812 if (IS_ERR(workspace)) {
813 btrfs_warn(fs_info,
814 "cannot preallocate compression workspace for %s, will try later",
815 btrfs_compress_type2str(type));
816 } else {
817 atomic_set(&gwsm->total_ws, 1);
818 gwsm->free_ws = 1;
819 list_add(workspace, &gwsm->idle_ws);
820 }
821 return 0;
822 }
823
free_workspace_manager(struct btrfs_fs_info * fs_info,enum btrfs_compression_type type)824 static void free_workspace_manager(struct btrfs_fs_info *fs_info,
825 enum btrfs_compression_type type)
826 {
827 struct list_head *ws;
828 struct workspace_manager *gwsm = fs_info->compr_wsm[type];
829
830 /* ZSTD uses its own workspace manager, should enter here. */
831 ASSERT(type != BTRFS_COMPRESS_ZSTD && type < BTRFS_NR_COMPRESS_TYPES);
832 if (!gwsm)
833 return;
834 fs_info->compr_wsm[type] = NULL;
835 while (!list_empty(&gwsm->idle_ws)) {
836 ws = gwsm->idle_ws.next;
837 list_del(ws);
838 free_workspace(type, ws);
839 atomic_dec(&gwsm->total_ws);
840 }
841 kfree(gwsm);
842 }
843
844 /*
845 * This finds an available workspace or allocates a new one.
846 * If it's not possible to allocate a new one, waits until there's one.
847 * Preallocation makes a forward progress guarantees and we do not return
848 * errors.
849 */
btrfs_get_workspace(struct btrfs_fs_info * fs_info,int type,int level)850 struct list_head *btrfs_get_workspace(struct btrfs_fs_info *fs_info, int type, int level)
851 {
852 struct workspace_manager *wsm = fs_info->compr_wsm[type];
853 struct list_head *workspace;
854 int cpus = num_online_cpus();
855 unsigned nofs_flag;
856 struct list_head *idle_ws;
857 spinlock_t *ws_lock;
858 atomic_t *total_ws;
859 wait_queue_head_t *ws_wait;
860 int *free_ws;
861
862 ASSERT(wsm);
863 idle_ws = &wsm->idle_ws;
864 ws_lock = &wsm->ws_lock;
865 total_ws = &wsm->total_ws;
866 ws_wait = &wsm->ws_wait;
867 free_ws = &wsm->free_ws;
868
869 again:
870 spin_lock(ws_lock);
871 if (!list_empty(idle_ws)) {
872 workspace = idle_ws->next;
873 list_del(workspace);
874 (*free_ws)--;
875 spin_unlock(ws_lock);
876 return workspace;
877
878 }
879 if (atomic_read(total_ws) > cpus) {
880 DEFINE_WAIT(wait);
881
882 spin_unlock(ws_lock);
883 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
884 if (atomic_read(total_ws) > cpus && !*free_ws)
885 schedule();
886 finish_wait(ws_wait, &wait);
887 goto again;
888 }
889 atomic_inc(total_ws);
890 spin_unlock(ws_lock);
891
892 /*
893 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
894 * to turn it off here because we might get called from the restricted
895 * context of btrfs_compress_bio/btrfs_compress_pages
896 */
897 nofs_flag = memalloc_nofs_save();
898 workspace = alloc_workspace(fs_info, type, level);
899 memalloc_nofs_restore(nofs_flag);
900
901 if (IS_ERR(workspace)) {
902 atomic_dec(total_ws);
903 wake_up(ws_wait);
904
905 /*
906 * Do not return the error but go back to waiting. There's a
907 * workspace preallocated for each type and the compression
908 * time is bounded so we get to a workspace eventually. This
909 * makes our caller's life easier.
910 *
911 * To prevent silent and low-probability deadlocks (when the
912 * initial preallocation fails), check if there are any
913 * workspaces at all.
914 */
915 if (atomic_read(total_ws) == 0) {
916 static DEFINE_RATELIMIT_STATE(_rs,
917 /* once per minute */ 60 * HZ,
918 /* no burst */ 1);
919
920 if (__ratelimit(&_rs))
921 btrfs_warn(fs_info,
922 "no compression workspaces, low memory, retrying");
923 }
924 goto again;
925 }
926 return workspace;
927 }
928
get_workspace(struct btrfs_fs_info * fs_info,int type,int level)929 static struct list_head *get_workspace(struct btrfs_fs_info *fs_info, int type, int level)
930 {
931 switch (type) {
932 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(fs_info, type, level);
933 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(fs_info, level);
934 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(fs_info, type, level);
935 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(fs_info, level);
936 default:
937 /*
938 * This can't happen, the type is validated several times
939 * before we get here.
940 */
941 BUG();
942 }
943 }
944
945 /*
946 * put a workspace struct back on the list or free it if we have enough
947 * idle ones sitting around
948 */
btrfs_put_workspace(struct btrfs_fs_info * fs_info,int type,struct list_head * ws)949 void btrfs_put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws)
950 {
951 struct workspace_manager *gwsm = fs_info->compr_wsm[type];
952 struct list_head *idle_ws;
953 spinlock_t *ws_lock;
954 atomic_t *total_ws;
955 wait_queue_head_t *ws_wait;
956 int *free_ws;
957
958 ASSERT(gwsm);
959 idle_ws = &gwsm->idle_ws;
960 ws_lock = &gwsm->ws_lock;
961 total_ws = &gwsm->total_ws;
962 ws_wait = &gwsm->ws_wait;
963 free_ws = &gwsm->free_ws;
964
965 spin_lock(ws_lock);
966 if (*free_ws <= num_online_cpus()) {
967 list_add(ws, idle_ws);
968 (*free_ws)++;
969 spin_unlock(ws_lock);
970 goto wake;
971 }
972 spin_unlock(ws_lock);
973
974 free_workspace(type, ws);
975 atomic_dec(total_ws);
976 wake:
977 cond_wake_up(ws_wait);
978 }
979
put_workspace(struct btrfs_fs_info * fs_info,int type,struct list_head * ws)980 static void put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws)
981 {
982 switch (type) {
983 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(fs_info, type, ws);
984 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(fs_info, type, ws);
985 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(fs_info, type, ws);
986 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(fs_info, ws);
987 default:
988 /*
989 * This can't happen, the type is validated several times
990 * before we get here.
991 */
992 BUG();
993 }
994 }
995
996 /*
997 * Adjust @level according to the limits of the compression algorithm or
998 * fallback to default
999 */
btrfs_compress_set_level(unsigned int type,int level)1000 static int btrfs_compress_set_level(unsigned int type, int level)
1001 {
1002 const struct btrfs_compress_levels *levels = btrfs_compress_levels[type];
1003
1004 if (level == 0)
1005 level = levels->default_level;
1006 else
1007 level = clamp(level, levels->min_level, levels->max_level);
1008
1009 return level;
1010 }
1011
1012 /*
1013 * Check whether the @level is within the valid range for the given type.
1014 */
btrfs_compress_level_valid(unsigned int type,int level)1015 bool btrfs_compress_level_valid(unsigned int type, int level)
1016 {
1017 const struct btrfs_compress_levels *levels = btrfs_compress_levels[type];
1018
1019 return levels->min_level <= level && level <= levels->max_level;
1020 }
1021
1022 /* Wrapper around find_get_page(), with extra error message. */
btrfs_compress_filemap_get_folio(struct address_space * mapping,u64 start,struct folio ** in_folio_ret)1023 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
1024 struct folio **in_folio_ret)
1025 {
1026 struct folio *in_folio;
1027
1028 /*
1029 * The compressed write path should have the folio locked already, thus
1030 * we only need to grab one reference.
1031 */
1032 in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
1033 if (IS_ERR(in_folio)) {
1034 struct btrfs_inode *inode = BTRFS_I(mapping->host);
1035
1036 btrfs_crit(inode->root->fs_info,
1037 "failed to get page cache, root %lld ino %llu file offset %llu",
1038 btrfs_root_id(inode->root), btrfs_ino(inode), start);
1039 return -ENOENT;
1040 }
1041 *in_folio_ret = in_folio;
1042 return 0;
1043 }
1044
1045 /*
1046 * Given an address space and start and length, compress the bytes into @pages
1047 * that are allocated on demand.
1048 *
1049 * @type_level is encoded algorithm and level, where level 0 means whatever
1050 * default the algorithm chooses and is opaque here;
1051 * - compression algo are 0-3
1052 * - the level are bits 4-7
1053 *
1054 * @out_folios is an in/out parameter, holds maximum number of folios to allocate
1055 * and returns number of actually allocated folios
1056 *
1057 * @total_in is used to return the number of bytes actually read. It
1058 * may be smaller than the input length if we had to exit early because we
1059 * ran out of room in the folios array or because we cross the
1060 * max_out threshold.
1061 *
1062 * @total_out is an in/out parameter, must be set to the input length and will
1063 * be also used to return the total number of compressed bytes
1064 */
btrfs_compress_folios(unsigned int type,int level,struct btrfs_inode * inode,u64 start,struct folio ** folios,unsigned long * out_folios,unsigned long * total_in,unsigned long * total_out)1065 int btrfs_compress_folios(unsigned int type, int level, struct btrfs_inode *inode,
1066 u64 start, struct folio **folios, unsigned long *out_folios,
1067 unsigned long *total_in, unsigned long *total_out)
1068 {
1069 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1070 const unsigned long orig_len = *total_out;
1071 struct list_head *workspace;
1072 int ret;
1073
1074 level = btrfs_compress_set_level(type, level);
1075 workspace = get_workspace(fs_info, type, level);
1076 ret = compression_compress_pages(type, workspace, inode, start, folios,
1077 out_folios, total_in, total_out);
1078 /* The total read-in bytes should be no larger than the input. */
1079 ASSERT(*total_in <= orig_len);
1080 put_workspace(fs_info, type, workspace);
1081 return ret;
1082 }
1083
btrfs_decompress_bio(struct compressed_bio * cb)1084 static int btrfs_decompress_bio(struct compressed_bio *cb)
1085 {
1086 struct btrfs_fs_info *fs_info = cb_to_fs_info(cb);
1087 struct list_head *workspace;
1088 int ret;
1089 int type = cb->compress_type;
1090
1091 workspace = get_workspace(fs_info, type, 0);
1092 ret = compression_decompress_bio(workspace, cb);
1093 put_workspace(fs_info, type, workspace);
1094
1095 if (!ret)
1096 zero_fill_bio(&cb->orig_bbio->bio);
1097 return ret;
1098 }
1099
1100 /*
1101 * a less complex decompression routine. Our compressed data fits in a
1102 * single page, and we want to read a single page out of it.
1103 * start_byte tells us the offset into the compressed data we're interested in
1104 */
btrfs_decompress(int type,const u8 * data_in,struct folio * dest_folio,unsigned long dest_pgoff,size_t srclen,size_t destlen)1105 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio,
1106 unsigned long dest_pgoff, size_t srclen, size_t destlen)
1107 {
1108 struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio);
1109 struct list_head *workspace;
1110 const u32 sectorsize = fs_info->sectorsize;
1111 int ret;
1112
1113 /*
1114 * The full destination folio range should not exceed the folio size.
1115 * And the @destlen should not exceed sectorsize, as this is only called for
1116 * inline file extents, which should not exceed sectorsize.
1117 */
1118 ASSERT(dest_pgoff + destlen <= folio_size(dest_folio) && destlen <= sectorsize);
1119
1120 workspace = get_workspace(fs_info, type, 0);
1121 ret = compression_decompress(type, workspace, data_in, dest_folio,
1122 dest_pgoff, srclen, destlen);
1123 put_workspace(fs_info, type, workspace);
1124
1125 return ret;
1126 }
1127
btrfs_alloc_compress_wsm(struct btrfs_fs_info * fs_info)1128 int btrfs_alloc_compress_wsm(struct btrfs_fs_info *fs_info)
1129 {
1130 int ret;
1131
1132 ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_NONE);
1133 if (ret < 0)
1134 goto error;
1135 ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB);
1136 if (ret < 0)
1137 goto error;
1138 ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_LZO);
1139 if (ret < 0)
1140 goto error;
1141 ret = zstd_alloc_workspace_manager(fs_info);
1142 if (ret < 0)
1143 goto error;
1144 return 0;
1145 error:
1146 btrfs_free_compress_wsm(fs_info);
1147 return ret;
1148 }
1149
btrfs_free_compress_wsm(struct btrfs_fs_info * fs_info)1150 void btrfs_free_compress_wsm(struct btrfs_fs_info *fs_info)
1151 {
1152 free_workspace_manager(fs_info, BTRFS_COMPRESS_NONE);
1153 free_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB);
1154 free_workspace_manager(fs_info, BTRFS_COMPRESS_LZO);
1155 zstd_free_workspace_manager(fs_info);
1156 }
1157
btrfs_init_compress(void)1158 int __init btrfs_init_compress(void)
1159 {
1160 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1161 offsetof(struct compressed_bio, bbio.bio),
1162 BIOSET_NEED_BVECS))
1163 return -ENOMEM;
1164
1165 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1166 if (!compr_pool.shrinker)
1167 return -ENOMEM;
1168
1169 spin_lock_init(&compr_pool.lock);
1170 INIT_LIST_HEAD(&compr_pool.list);
1171 compr_pool.count = 0;
1172 /* 128K / 4K = 32, for 8 threads is 256 pages. */
1173 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1174 compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1175 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1176 compr_pool.shrinker->batch = 32;
1177 compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1178 shrinker_register(compr_pool.shrinker);
1179
1180 return 0;
1181 }
1182
btrfs_exit_compress(void)1183 void __cold btrfs_exit_compress(void)
1184 {
1185 /* For now scan drains all pages and does not touch the parameters. */
1186 btrfs_compr_pool_scan(NULL, NULL);
1187 shrinker_free(compr_pool.shrinker);
1188
1189 bioset_exit(&btrfs_compressed_bioset);
1190 }
1191
1192 /*
1193 * The bvec is a single page bvec from a bio that contains folios from a filemap.
1194 *
1195 * Since the folio may be a large one, and if the bv_page is not a head page of
1196 * a large folio, then page->index is unreliable.
1197 *
1198 * Thus we need this helper to grab the proper file offset.
1199 */
file_offset_from_bvec(const struct bio_vec * bvec)1200 static u64 file_offset_from_bvec(const struct bio_vec *bvec)
1201 {
1202 const struct page *page = bvec->bv_page;
1203 const struct folio *folio = page_folio(page);
1204
1205 return (page_pgoff(folio, page) << PAGE_SHIFT) + bvec->bv_offset;
1206 }
1207
1208 /*
1209 * Copy decompressed data from working buffer to pages.
1210 *
1211 * @buf: The decompressed data buffer
1212 * @buf_len: The decompressed data length
1213 * @decompressed: Number of bytes that are already decompressed inside the
1214 * compressed extent
1215 * @cb: The compressed extent descriptor
1216 * @orig_bio: The original bio that the caller wants to read for
1217 *
1218 * An easier to understand graph is like below:
1219 *
1220 * |<- orig_bio ->| |<- orig_bio->|
1221 * |<------- full decompressed extent ----->|
1222 * |<----------- @cb range ---->|
1223 * | |<-- @buf_len -->|
1224 * |<--- @decompressed --->|
1225 *
1226 * Note that, @cb can be a subpage of the full decompressed extent, but
1227 * @cb->start always has the same as the orig_file_offset value of the full
1228 * decompressed extent.
1229 *
1230 * When reading compressed extent, we have to read the full compressed extent,
1231 * while @orig_bio may only want part of the range.
1232 * Thus this function will ensure only data covered by @orig_bio will be copied
1233 * to.
1234 *
1235 * Return 0 if we have copied all needed contents for @orig_bio.
1236 * Return >0 if we need continue decompress.
1237 */
btrfs_decompress_buf2page(const char * buf,u32 buf_len,struct compressed_bio * cb,u32 decompressed)1238 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1239 struct compressed_bio *cb, u32 decompressed)
1240 {
1241 struct bio *orig_bio = &cb->orig_bbio->bio;
1242 /* Offset inside the full decompressed extent */
1243 u32 cur_offset;
1244
1245 cur_offset = decompressed;
1246 /* The main loop to do the copy */
1247 while (cur_offset < decompressed + buf_len) {
1248 struct bio_vec bvec;
1249 size_t copy_len;
1250 u32 copy_start;
1251 /* Offset inside the full decompressed extent */
1252 u32 bvec_offset;
1253 void *kaddr;
1254
1255 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1256 /*
1257 * cb->start may underflow, but subtracting that value can still
1258 * give us correct offset inside the full decompressed extent.
1259 */
1260 bvec_offset = file_offset_from_bvec(&bvec) - cb->start;
1261
1262 /* Haven't reached the bvec range, exit */
1263 if (decompressed + buf_len <= bvec_offset)
1264 return 1;
1265
1266 copy_start = max(cur_offset, bvec_offset);
1267 copy_len = min(bvec_offset + bvec.bv_len,
1268 decompressed + buf_len) - copy_start;
1269 ASSERT(copy_len);
1270
1271 /*
1272 * Extra range check to ensure we didn't go beyond
1273 * @buf + @buf_len.
1274 */
1275 ASSERT(copy_start - decompressed < buf_len);
1276
1277 kaddr = bvec_kmap_local(&bvec);
1278 memcpy(kaddr, buf + copy_start - decompressed, copy_len);
1279 kunmap_local(kaddr);
1280
1281 cur_offset += copy_len;
1282 bio_advance(orig_bio, copy_len);
1283 /* Finished the bio */
1284 if (!orig_bio->bi_iter.bi_size)
1285 return 0;
1286 }
1287 return 1;
1288 }
1289
1290 /*
1291 * Shannon Entropy calculation
1292 *
1293 * Pure byte distribution analysis fails to determine compressibility of data.
1294 * Try calculating entropy to estimate the average minimum number of bits
1295 * needed to encode the sampled data.
1296 *
1297 * For convenience, return the percentage of needed bits, instead of amount of
1298 * bits directly.
1299 *
1300 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1301 * and can be compressible with high probability
1302 *
1303 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1304 *
1305 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1306 */
1307 #define ENTROPY_LVL_ACEPTABLE (65)
1308 #define ENTROPY_LVL_HIGH (80)
1309
1310 /*
1311 * For increased precision in shannon_entropy calculation,
1312 * let's do pow(n, M) to save more digits after comma:
1313 *
1314 * - maximum int bit length is 64
1315 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1316 * - 13 * 4 = 52 < 64 -> M = 4
1317 *
1318 * So use pow(n, 4).
1319 */
ilog2_w(u64 n)1320 static inline u32 ilog2_w(u64 n)
1321 {
1322 return ilog2(n * n * n * n);
1323 }
1324
shannon_entropy(struct heuristic_ws * ws)1325 static u32 shannon_entropy(struct heuristic_ws *ws)
1326 {
1327 const u32 entropy_max = 8 * ilog2_w(2);
1328 u32 entropy_sum = 0;
1329 u32 p, p_base, sz_base;
1330 u32 i;
1331
1332 sz_base = ilog2_w(ws->sample_size);
1333 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1334 p = ws->bucket[i].count;
1335 p_base = ilog2_w(p);
1336 entropy_sum += p * (sz_base - p_base);
1337 }
1338
1339 entropy_sum /= ws->sample_size;
1340 return entropy_sum * 100 / entropy_max;
1341 }
1342
1343 #define RADIX_BASE 4U
1344 #define COUNTERS_SIZE (1U << RADIX_BASE)
1345
get4bits(u64 num,int shift)1346 static u8 get4bits(u64 num, int shift) {
1347 u8 low4bits;
1348
1349 num >>= shift;
1350 /* Reverse order */
1351 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1352 return low4bits;
1353 }
1354
1355 /*
1356 * Use 4 bits as radix base
1357 * Use 16 u32 counters for calculating new position in buf array
1358 *
1359 * @array - array that will be sorted
1360 * @array_buf - buffer array to store sorting results
1361 * must be equal in size to @array
1362 * @num - array size
1363 */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1364 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1365 int num)
1366 {
1367 u64 max_num;
1368 u64 buf_num;
1369 u32 counters[COUNTERS_SIZE];
1370 u32 new_addr;
1371 u32 addr;
1372 int bitlen;
1373 int shift;
1374 int i;
1375
1376 /*
1377 * Try avoid useless loop iterations for small numbers stored in big
1378 * counters. Example: 48 33 4 ... in 64bit array
1379 */
1380 max_num = array[0].count;
1381 for (i = 1; i < num; i++) {
1382 buf_num = array[i].count;
1383 if (buf_num > max_num)
1384 max_num = buf_num;
1385 }
1386
1387 buf_num = ilog2(max_num);
1388 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1389
1390 shift = 0;
1391 while (shift < bitlen) {
1392 memset(counters, 0, sizeof(counters));
1393
1394 for (i = 0; i < num; i++) {
1395 buf_num = array[i].count;
1396 addr = get4bits(buf_num, shift);
1397 counters[addr]++;
1398 }
1399
1400 for (i = 1; i < COUNTERS_SIZE; i++)
1401 counters[i] += counters[i - 1];
1402
1403 for (i = num - 1; i >= 0; i--) {
1404 buf_num = array[i].count;
1405 addr = get4bits(buf_num, shift);
1406 counters[addr]--;
1407 new_addr = counters[addr];
1408 array_buf[new_addr] = array[i];
1409 }
1410
1411 shift += RADIX_BASE;
1412
1413 /*
1414 * Normal radix expects to move data from a temporary array, to
1415 * the main one. But that requires some CPU time. Avoid that
1416 * by doing another sort iteration to original array instead of
1417 * memcpy()
1418 */
1419 memset(counters, 0, sizeof(counters));
1420
1421 for (i = 0; i < num; i ++) {
1422 buf_num = array_buf[i].count;
1423 addr = get4bits(buf_num, shift);
1424 counters[addr]++;
1425 }
1426
1427 for (i = 1; i < COUNTERS_SIZE; i++)
1428 counters[i] += counters[i - 1];
1429
1430 for (i = num - 1; i >= 0; i--) {
1431 buf_num = array_buf[i].count;
1432 addr = get4bits(buf_num, shift);
1433 counters[addr]--;
1434 new_addr = counters[addr];
1435 array[new_addr] = array_buf[i];
1436 }
1437
1438 shift += RADIX_BASE;
1439 }
1440 }
1441
1442 /*
1443 * Size of the core byte set - how many bytes cover 90% of the sample
1444 *
1445 * There are several types of structured binary data that use nearly all byte
1446 * values. The distribution can be uniform and counts in all buckets will be
1447 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1448 *
1449 * Other possibility is normal (Gaussian) distribution, where the data could
1450 * be potentially compressible, but we have to take a few more steps to decide
1451 * how much.
1452 *
1453 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1454 * compression algo can easy fix that
1455 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1456 * probability is not compressible
1457 */
1458 #define BYTE_CORE_SET_LOW (64)
1459 #define BYTE_CORE_SET_HIGH (200)
1460
byte_core_set_size(struct heuristic_ws * ws)1461 static int byte_core_set_size(struct heuristic_ws *ws)
1462 {
1463 u32 i;
1464 u32 coreset_sum = 0;
1465 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1466 struct bucket_item *bucket = ws->bucket;
1467
1468 /* Sort in reverse order */
1469 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1470
1471 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1472 coreset_sum += bucket[i].count;
1473
1474 if (coreset_sum > core_set_threshold)
1475 return i;
1476
1477 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1478 coreset_sum += bucket[i].count;
1479 if (coreset_sum > core_set_threshold)
1480 break;
1481 }
1482
1483 return i;
1484 }
1485
1486 /*
1487 * Count byte values in buckets.
1488 * This heuristic can detect textual data (configs, xml, json, html, etc).
1489 * Because in most text-like data byte set is restricted to limited number of
1490 * possible characters, and that restriction in most cases makes data easy to
1491 * compress.
1492 *
1493 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1494 * less - compressible
1495 * more - need additional analysis
1496 */
1497 #define BYTE_SET_THRESHOLD (64)
1498
byte_set_size(const struct heuristic_ws * ws)1499 static u32 byte_set_size(const struct heuristic_ws *ws)
1500 {
1501 u32 i;
1502 u32 byte_set_size = 0;
1503
1504 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1505 if (ws->bucket[i].count > 0)
1506 byte_set_size++;
1507 }
1508
1509 /*
1510 * Continue collecting count of byte values in buckets. If the byte
1511 * set size is bigger then the threshold, it's pointless to continue,
1512 * the detection technique would fail for this type of data.
1513 */
1514 for (; i < BUCKET_SIZE; i++) {
1515 if (ws->bucket[i].count > 0) {
1516 byte_set_size++;
1517 if (byte_set_size > BYTE_SET_THRESHOLD)
1518 return byte_set_size;
1519 }
1520 }
1521
1522 return byte_set_size;
1523 }
1524
sample_repeated_patterns(struct heuristic_ws * ws)1525 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1526 {
1527 const u32 half_of_sample = ws->sample_size / 2;
1528 const u8 *data = ws->sample;
1529
1530 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1531 }
1532
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1533 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1534 struct heuristic_ws *ws)
1535 {
1536 struct page *page;
1537 pgoff_t index, index_end;
1538 u32 i, curr_sample_pos;
1539 u8 *in_data;
1540
1541 /*
1542 * Compression handles the input data by chunks of 128KiB
1543 * (defined by BTRFS_MAX_UNCOMPRESSED)
1544 *
1545 * We do the same for the heuristic and loop over the whole range.
1546 *
1547 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1548 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1549 */
1550 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1551 end = start + BTRFS_MAX_UNCOMPRESSED;
1552
1553 index = start >> PAGE_SHIFT;
1554 index_end = end >> PAGE_SHIFT;
1555
1556 /* Don't miss unaligned end */
1557 if (!PAGE_ALIGNED(end))
1558 index_end++;
1559
1560 curr_sample_pos = 0;
1561 while (index < index_end) {
1562 page = find_get_page(inode->i_mapping, index);
1563 in_data = kmap_local_page(page);
1564 /* Handle case where the start is not aligned to PAGE_SIZE */
1565 i = start % PAGE_SIZE;
1566 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1567 /* Don't sample any garbage from the last page */
1568 if (start > end - SAMPLING_READ_SIZE)
1569 break;
1570 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1571 SAMPLING_READ_SIZE);
1572 i += SAMPLING_INTERVAL;
1573 start += SAMPLING_INTERVAL;
1574 curr_sample_pos += SAMPLING_READ_SIZE;
1575 }
1576 kunmap_local(in_data);
1577 put_page(page);
1578
1579 index++;
1580 }
1581
1582 ws->sample_size = curr_sample_pos;
1583 }
1584
1585 /*
1586 * Compression heuristic.
1587 *
1588 * The following types of analysis can be performed:
1589 * - detect mostly zero data
1590 * - detect data with low "byte set" size (text, etc)
1591 * - detect data with low/high "core byte" set
1592 *
1593 * Return non-zero if the compression should be done, 0 otherwise.
1594 */
btrfs_compress_heuristic(struct btrfs_inode * inode,u64 start,u64 end)1595 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end)
1596 {
1597 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1598 struct list_head *ws_list = get_workspace(fs_info, 0, 0);
1599 struct heuristic_ws *ws;
1600 u32 i;
1601 u8 byte;
1602 int ret = 0;
1603
1604 ws = list_entry(ws_list, struct heuristic_ws, list);
1605
1606 heuristic_collect_sample(&inode->vfs_inode, start, end, ws);
1607
1608 if (sample_repeated_patterns(ws)) {
1609 ret = 1;
1610 goto out;
1611 }
1612
1613 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1614
1615 for (i = 0; i < ws->sample_size; i++) {
1616 byte = ws->sample[i];
1617 ws->bucket[byte].count++;
1618 }
1619
1620 i = byte_set_size(ws);
1621 if (i < BYTE_SET_THRESHOLD) {
1622 ret = 2;
1623 goto out;
1624 }
1625
1626 i = byte_core_set_size(ws);
1627 if (i <= BYTE_CORE_SET_LOW) {
1628 ret = 3;
1629 goto out;
1630 }
1631
1632 if (i >= BYTE_CORE_SET_HIGH) {
1633 ret = 0;
1634 goto out;
1635 }
1636
1637 i = shannon_entropy(ws);
1638 if (i <= ENTROPY_LVL_ACEPTABLE) {
1639 ret = 4;
1640 goto out;
1641 }
1642
1643 /*
1644 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1645 * needed to give green light to compression.
1646 *
1647 * For now just assume that compression at that level is not worth the
1648 * resources because:
1649 *
1650 * 1. it is possible to defrag the data later
1651 *
1652 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1653 * values, every bucket has counter at level ~54. The heuristic would
1654 * be confused. This can happen when data have some internal repeated
1655 * patterns like "abbacbbc...". This can be detected by analyzing
1656 * pairs of bytes, which is too costly.
1657 */
1658 if (i < ENTROPY_LVL_HIGH) {
1659 ret = 5;
1660 goto out;
1661 } else {
1662 ret = 0;
1663 goto out;
1664 }
1665
1666 out:
1667 put_workspace(fs_info, 0, ws_list);
1668 return ret;
1669 }
1670
1671 /*
1672 * Convert the compression suffix (eg. after "zlib" starting with ":") to level.
1673 *
1674 * If the resulting level exceeds the algo's supported levels, it will be clamped.
1675 *
1676 * Return <0 if no valid string can be found.
1677 * Return 0 if everything is fine.
1678 */
btrfs_compress_str2level(unsigned int type,const char * str,int * level_ret)1679 int btrfs_compress_str2level(unsigned int type, const char *str, int *level_ret)
1680 {
1681 int level = 0;
1682 int ret;
1683
1684 if (!type) {
1685 *level_ret = btrfs_compress_set_level(type, level);
1686 return 0;
1687 }
1688
1689 if (str[0] == ':') {
1690 ret = kstrtoint(str + 1, 10, &level);
1691 if (ret)
1692 return ret;
1693 }
1694
1695 *level_ret = btrfs_compress_set_level(type, level);
1696 return 0;
1697 }
1698