1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_buf.h"
6 #include "bkey_methods.h"
7 #include "btree_cache.h"
8 #include "btree_gc.h"
9 #include "btree_journal_iter.h"
10 #include "btree_update.h"
11 #include "btree_update_interior.h"
12 #include "btree_io.h"
13 #include "btree_iter.h"
14 #include "btree_locking.h"
15 #include "buckets.h"
16 #include "clock.h"
17 #include "enumerated_ref.h"
18 #include "error.h"
19 #include "extents.h"
20 #include "io_write.h"
21 #include "journal.h"
22 #include "journal_reclaim.h"
23 #include "keylist.h"
24 #include "recovery_passes.h"
25 #include "replicas.h"
26 #include "sb-members.h"
27 #include "super-io.h"
28 #include "trace.h"
29
30 #include <linux/random.h>
31
32 static const char * const bch2_btree_update_modes[] = {
33 #define x(t) #t,
34 BTREE_UPDATE_MODES()
35 #undef x
36 NULL
37 };
38
39 static void bch2_btree_update_to_text(struct printbuf *, struct btree_update *);
40
41 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
42 btree_path_idx_t, struct btree *, struct keylist *);
43 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
44
45 /*
46 * Verify that child nodes correctly span parent node's range:
47 */
bch2_btree_node_check_topology(struct btree_trans * trans,struct btree * b)48 int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b)
49 {
50 struct bch_fs *c = trans->c;
51 struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2
52 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key
53 : b->data->min_key;
54 struct btree_and_journal_iter iter;
55 struct bkey_s_c k;
56 struct printbuf buf = PRINTBUF;
57 struct bkey_buf prev;
58 int ret = 0;
59
60 BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
61 !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key,
62 b->data->min_key));
63
64 bch2_bkey_buf_init(&prev);
65 bkey_init(&prev.k->k);
66 bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b);
67
68 if (b == btree_node_root(c, b)) {
69 if (!bpos_eq(b->data->min_key, POS_MIN)) {
70 bch2_log_msg_start(c, &buf);
71 prt_printf(&buf, "btree root with incorrect min_key: ");
72 bch2_bpos_to_text(&buf, b->data->min_key);
73 prt_newline(&buf);
74
75 bch2_count_fsck_err(c, btree_root_bad_min_key, &buf);
76 goto err;
77 }
78
79 if (!bpos_eq(b->data->max_key, SPOS_MAX)) {
80 bch2_log_msg_start(c, &buf);
81 prt_printf(&buf, "btree root with incorrect max_key: ");
82 bch2_bpos_to_text(&buf, b->data->max_key);
83 prt_newline(&buf);
84
85 bch2_count_fsck_err(c, btree_root_bad_max_key, &buf);
86 goto err;
87 }
88 }
89
90 if (!b->c.level)
91 goto out;
92
93 while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
94 if (k.k->type != KEY_TYPE_btree_ptr_v2)
95 goto out;
96
97 struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k);
98
99 struct bpos expected_min = bkey_deleted(&prev.k->k)
100 ? node_min
101 : bpos_successor(prev.k->k.p);
102
103 if (!bpos_eq(expected_min, bp.v->min_key)) {
104 prt_str(&buf, "end of prev node doesn't match start of next node");
105 prt_str(&buf, "\nprev ");
106 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
107 prt_str(&buf, "\nnext ");
108 bch2_bkey_val_to_text(&buf, c, k);
109 prt_newline(&buf);
110
111 bch2_count_fsck_err(c, btree_node_topology_bad_min_key, &buf);
112 goto err;
113 }
114
115 bch2_bkey_buf_reassemble(&prev, c, k);
116 bch2_btree_and_journal_iter_advance(&iter);
117 }
118
119 if (bkey_deleted(&prev.k->k)) {
120 prt_printf(&buf, "empty interior node\n");
121 bch2_count_fsck_err(c, btree_node_topology_empty_interior_node, &buf);
122 goto err;
123 }
124
125 if (!bpos_eq(prev.k->k.p, b->key.k.p)) {
126 prt_str(&buf, "last child node doesn't end at end of parent node\nchild: ");
127 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k));
128 prt_newline(&buf);
129
130 bch2_count_fsck_err(c, btree_node_topology_bad_max_key, &buf);
131 goto err;
132 }
133 out:
134 bch2_btree_and_journal_iter_exit(&iter);
135 bch2_bkey_buf_exit(&prev, c);
136 printbuf_exit(&buf);
137 return ret;
138 err:
139 bch2_btree_id_level_to_text(&buf, b->c.btree_id, b->c.level);
140 prt_char(&buf, ' ');
141 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
142 prt_newline(&buf);
143
144 ret = __bch2_topology_error(c, &buf);
145 bch2_print_str(c, KERN_ERR, buf.buf);
146 BUG_ON(!ret);
147 goto out;
148 }
149
150 /* Calculate ideal packed bkey format for new btree nodes: */
151
__bch2_btree_calc_format(struct bkey_format_state * s,struct btree * b)152 static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
153 {
154 struct bkey_packed *k;
155 struct bkey uk;
156
157 for_each_bset(b, t)
158 bset_tree_for_each_key(b, t, k)
159 if (!bkey_deleted(k)) {
160 uk = bkey_unpack_key(b, k);
161 bch2_bkey_format_add_key(s, &uk);
162 }
163 }
164
bch2_btree_calc_format(struct btree * b)165 static struct bkey_format bch2_btree_calc_format(struct btree *b)
166 {
167 struct bkey_format_state s;
168
169 bch2_bkey_format_init(&s);
170 bch2_bkey_format_add_pos(&s, b->data->min_key);
171 bch2_bkey_format_add_pos(&s, b->data->max_key);
172 __bch2_btree_calc_format(&s, b);
173
174 return bch2_bkey_format_done(&s);
175 }
176
btree_node_u64s_with_format(struct btree_nr_keys nr,struct bkey_format * old_f,struct bkey_format * new_f)177 static size_t btree_node_u64s_with_format(struct btree_nr_keys nr,
178 struct bkey_format *old_f,
179 struct bkey_format *new_f)
180 {
181 /* stupid integer promotion rules */
182 ssize_t delta =
183 (((int) new_f->key_u64s - old_f->key_u64s) *
184 (int) nr.packed_keys) +
185 (((int) new_f->key_u64s - BKEY_U64s) *
186 (int) nr.unpacked_keys);
187
188 BUG_ON(delta + nr.live_u64s < 0);
189
190 return nr.live_u64s + delta;
191 }
192
193 /**
194 * bch2_btree_node_format_fits - check if we could rewrite node with a new format
195 *
196 * @c: filesystem handle
197 * @b: btree node to rewrite
198 * @nr: number of keys for new node (i.e. b->nr)
199 * @new_f: bkey format to translate keys to
200 *
201 * Returns: true if all re-packed keys will be able to fit in a new node.
202 *
203 * Assumes all keys will successfully pack with the new format.
204 */
bch2_btree_node_format_fits(struct bch_fs * c,struct btree * b,struct btree_nr_keys nr,struct bkey_format * new_f)205 static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
206 struct btree_nr_keys nr,
207 struct bkey_format *new_f)
208 {
209 size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f);
210
211 return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b);
212 }
213
214 /* Btree node freeing/allocation: */
215
__btree_node_free(struct btree_trans * trans,struct btree * b)216 static void __btree_node_free(struct btree_trans *trans, struct btree *b)
217 {
218 struct bch_fs *c = trans->c;
219
220 trace_and_count(c, btree_node_free, trans, b);
221
222 BUG_ON(btree_node_write_blocked(b));
223 BUG_ON(btree_node_dirty(b));
224 BUG_ON(btree_node_need_write(b));
225 BUG_ON(b == btree_node_root(c, b));
226 BUG_ON(b->ob.nr);
227 BUG_ON(!list_empty(&b->write_blocked));
228 BUG_ON(b->will_make_reachable);
229
230 clear_btree_node_noevict(b);
231 }
232
bch2_btree_node_free_inmem(struct btree_trans * trans,struct btree_path * path,struct btree * b)233 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
234 struct btree_path *path,
235 struct btree *b)
236 {
237 struct bch_fs *c = trans->c;
238
239 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
240
241 __btree_node_free(trans, b);
242
243 mutex_lock(&c->btree_cache.lock);
244 bch2_btree_node_hash_remove(&c->btree_cache, b);
245 mutex_unlock(&c->btree_cache.lock);
246
247 six_unlock_write(&b->c.lock);
248 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
249
250 bch2_trans_node_drop(trans, b);
251 }
252
bch2_btree_node_free_never_used(struct btree_update * as,struct btree_trans * trans,struct btree * b)253 static void bch2_btree_node_free_never_used(struct btree_update *as,
254 struct btree_trans *trans,
255 struct btree *b)
256 {
257 struct bch_fs *c = as->c;
258 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
259
260 BUG_ON(!list_empty(&b->write_blocked));
261 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
262
263 b->will_make_reachable = 0;
264 closure_put(&as->cl);
265
266 clear_btree_node_will_make_reachable(b);
267 clear_btree_node_accessed(b);
268 clear_btree_node_dirty_acct(c, b);
269 clear_btree_node_need_write(b);
270
271 mutex_lock(&c->btree_cache.lock);
272 __bch2_btree_node_hash_remove(&c->btree_cache, b);
273 mutex_unlock(&c->btree_cache.lock);
274
275 BUG_ON(p->nr >= ARRAY_SIZE(p->b));
276 p->b[p->nr++] = b;
277
278 six_unlock_intent(&b->c.lock);
279
280 bch2_trans_node_drop(trans, b);
281 }
282
__bch2_btree_node_alloc(struct btree_trans * trans,struct disk_reservation * res,struct closure * cl,bool interior_node,unsigned target,unsigned flags)283 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
284 struct disk_reservation *res,
285 struct closure *cl,
286 bool interior_node,
287 unsigned target,
288 unsigned flags)
289 {
290 struct bch_fs *c = trans->c;
291 struct write_point *wp;
292 struct btree *b;
293 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
294 struct open_buckets obs = { .nr = 0 };
295 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
296 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
297 unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim
298 ? BTREE_NODE_RESERVE
299 : 0;
300 int ret;
301
302 b = bch2_btree_node_mem_alloc(trans, interior_node);
303 if (IS_ERR(b))
304 return b;
305
306 BUG_ON(b->ob.nr);
307
308 mutex_lock(&c->btree_reserve_cache_lock);
309 if (c->btree_reserve_cache_nr > nr_reserve) {
310 struct btree_alloc *a =
311 &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
312
313 obs = a->ob;
314 bkey_copy(&tmp.k, &a->k);
315 mutex_unlock(&c->btree_reserve_cache_lock);
316 goto out;
317 }
318 mutex_unlock(&c->btree_reserve_cache_lock);
319 retry:
320 ret = bch2_alloc_sectors_start_trans(trans,
321 target ?:
322 c->opts.metadata_target ?:
323 c->opts.foreground_target,
324 0,
325 writepoint_ptr(&c->btree_write_point),
326 &devs_have,
327 res->nr_replicas,
328 min(res->nr_replicas,
329 c->opts.metadata_replicas_required),
330 watermark,
331 target ? BCH_WRITE_only_specified_devs : 0,
332 cl, &wp);
333 if (unlikely(ret))
334 goto err;
335
336 if (wp->sectors_free < btree_sectors(c)) {
337 struct open_bucket *ob;
338 unsigned i;
339
340 open_bucket_for_each(c, &wp->ptrs, ob, i)
341 if (ob->sectors_free < btree_sectors(c))
342 ob->sectors_free = 0;
343
344 bch2_alloc_sectors_done(c, wp);
345 goto retry;
346 }
347
348 bkey_btree_ptr_v2_init(&tmp.k);
349 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
350
351 bch2_open_bucket_get(c, wp, &obs);
352 bch2_alloc_sectors_done(c, wp);
353 out:
354 bkey_copy(&b->key, &tmp.k);
355 b->ob = obs;
356 six_unlock_write(&b->c.lock);
357 six_unlock_intent(&b->c.lock);
358
359 return b;
360 err:
361 bch2_btree_node_to_freelist(c, b);
362 return ERR_PTR(ret);
363 }
364
bch2_btree_node_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)365 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
366 struct btree_trans *trans,
367 unsigned level)
368 {
369 struct bch_fs *c = as->c;
370 struct btree *b;
371 struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
372 int ret;
373
374 BUG_ON(level >= BTREE_MAX_DEPTH);
375 BUG_ON(!p->nr);
376
377 b = p->b[--p->nr];
378
379 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
380 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
381
382 set_btree_node_accessed(b);
383 set_btree_node_dirty_acct(c, b);
384 set_btree_node_need_write(b);
385
386 bch2_bset_init_first(b, &b->data->keys);
387 b->c.level = level;
388 b->c.btree_id = as->btree_id;
389 b->version_ondisk = c->sb.version;
390
391 memset(&b->nr, 0, sizeof(b->nr));
392 b->data->magic = cpu_to_le64(bset_magic(c));
393 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
394 b->data->flags = 0;
395 SET_BTREE_NODE_ID(b->data, as->btree_id);
396 SET_BTREE_NODE_LEVEL(b->data, level);
397
398 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
399 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
400
401 bp->v.mem_ptr = 0;
402 bp->v.seq = b->data->keys.seq;
403 bp->v.sectors_written = 0;
404 }
405
406 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
407
408 bch2_btree_build_aux_trees(b);
409
410 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
411 BUG_ON(ret);
412
413 trace_and_count(c, btree_node_alloc, trans, b);
414 bch2_increment_clock(c, btree_sectors(c), WRITE);
415 return b;
416 }
417
btree_set_min(struct btree * b,struct bpos pos)418 static void btree_set_min(struct btree *b, struct bpos pos)
419 {
420 if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
421 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
422 b->data->min_key = pos;
423 }
424
btree_set_max(struct btree * b,struct bpos pos)425 static void btree_set_max(struct btree *b, struct bpos pos)
426 {
427 b->key.k.p = pos;
428 b->data->max_key = pos;
429 }
430
bch2_btree_node_alloc_replacement(struct btree_update * as,struct btree_trans * trans,struct btree * b)431 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
432 struct btree_trans *trans,
433 struct btree *b)
434 {
435 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
436 struct bkey_format format = bch2_btree_calc_format(b);
437
438 /*
439 * The keys might expand with the new format - if they wouldn't fit in
440 * the btree node anymore, use the old format for now:
441 */
442 if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format))
443 format = b->format;
444
445 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
446
447 btree_set_min(n, b->data->min_key);
448 btree_set_max(n, b->data->max_key);
449
450 n->data->format = format;
451 btree_node_set_format(n, format);
452
453 bch2_btree_sort_into(as->c, n, b);
454
455 btree_node_reset_sib_u64s(n);
456 return n;
457 }
458
__btree_root_alloc(struct btree_update * as,struct btree_trans * trans,unsigned level)459 static struct btree *__btree_root_alloc(struct btree_update *as,
460 struct btree_trans *trans, unsigned level)
461 {
462 struct btree *b = bch2_btree_node_alloc(as, trans, level);
463
464 btree_set_min(b, POS_MIN);
465 btree_set_max(b, SPOS_MAX);
466 b->data->format = bch2_btree_calc_format(b);
467
468 btree_node_set_format(b, b->data->format);
469 bch2_btree_build_aux_trees(b);
470
471 return b;
472 }
473
bch2_btree_reserve_put(struct btree_update * as,struct btree_trans * trans)474 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
475 {
476 struct bch_fs *c = as->c;
477 struct prealloc_nodes *p;
478
479 for (p = as->prealloc_nodes;
480 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
481 p++) {
482 while (p->nr) {
483 struct btree *b = p->b[--p->nr];
484
485 mutex_lock(&c->btree_reserve_cache_lock);
486
487 if (c->btree_reserve_cache_nr <
488 ARRAY_SIZE(c->btree_reserve_cache)) {
489 struct btree_alloc *a =
490 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
491
492 a->ob = b->ob;
493 b->ob.nr = 0;
494 bkey_copy(&a->k, &b->key);
495 } else {
496 bch2_open_buckets_put(c, &b->ob);
497 }
498
499 mutex_unlock(&c->btree_reserve_cache_lock);
500
501 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
502 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
503 __btree_node_free(trans, b);
504 bch2_btree_node_to_freelist(c, b);
505 }
506 }
507 }
508
bch2_btree_reserve_get(struct btree_trans * trans,struct btree_update * as,unsigned nr_nodes[2],unsigned target,unsigned flags,struct closure * cl)509 static int bch2_btree_reserve_get(struct btree_trans *trans,
510 struct btree_update *as,
511 unsigned nr_nodes[2],
512 unsigned target,
513 unsigned flags,
514 struct closure *cl)
515 {
516 struct btree *b;
517 unsigned interior;
518 int ret = 0;
519
520 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
521
522 /*
523 * Protects reaping from the btree node cache and using the btree node
524 * open bucket reserve:
525 */
526 ret = bch2_btree_cache_cannibalize_lock(trans, cl);
527 if (ret)
528 return ret;
529
530 for (interior = 0; interior < 2; interior++) {
531 struct prealloc_nodes *p = as->prealloc_nodes + interior;
532
533 while (p->nr < nr_nodes[interior]) {
534 b = __bch2_btree_node_alloc(trans, &as->disk_res, cl,
535 interior, target, flags);
536 if (IS_ERR(b)) {
537 ret = PTR_ERR(b);
538 goto err;
539 }
540
541 p->b[p->nr++] = b;
542 }
543 }
544 err:
545 bch2_btree_cache_cannibalize_unlock(trans);
546 return ret;
547 }
548
549 /* Asynchronous interior node update machinery */
550
bch2_btree_update_free(struct btree_update * as,struct btree_trans * trans)551 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
552 {
553 struct bch_fs *c = as->c;
554
555 if (as->took_gc_lock)
556 up_read(&c->gc_lock);
557 as->took_gc_lock = false;
558
559 bch2_journal_pin_drop(&c->journal, &as->journal);
560 bch2_journal_pin_flush(&c->journal, &as->journal);
561 bch2_disk_reservation_put(c, &as->disk_res);
562 bch2_btree_reserve_put(as, trans);
563
564 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
565 as->start_time);
566
567 mutex_lock(&c->btree_interior_update_lock);
568 list_del(&as->unwritten_list);
569 list_del(&as->list);
570
571 closure_debug_destroy(&as->cl);
572 mempool_free(as, &c->btree_interior_update_pool);
573
574 /*
575 * Have to do the wakeup with btree_interior_update_lock still held,
576 * since being on btree_interior_update_list is our ref on @c:
577 */
578 closure_wake_up(&c->btree_interior_update_wait);
579
580 mutex_unlock(&c->btree_interior_update_lock);
581 }
582
btree_update_add_key(struct btree_update * as,struct keylist * keys,struct btree * b)583 static void btree_update_add_key(struct btree_update *as,
584 struct keylist *keys, struct btree *b)
585 {
586 struct bkey_i *k = &b->key;
587
588 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
589 ARRAY_SIZE(as->_old_keys));
590
591 bkey_copy(keys->top, k);
592 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
593
594 bch2_keylist_push(keys);
595 }
596
btree_update_new_nodes_marked_sb(struct btree_update * as)597 static bool btree_update_new_nodes_marked_sb(struct btree_update *as)
598 {
599 for_each_keylist_key(&as->new_keys, k)
600 if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k)))
601 return false;
602 return true;
603 }
604
btree_update_new_nodes_mark_sb(struct btree_update * as)605 static void btree_update_new_nodes_mark_sb(struct btree_update *as)
606 {
607 struct bch_fs *c = as->c;
608
609 mutex_lock(&c->sb_lock);
610 for_each_keylist_key(&as->new_keys, k)
611 bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k));
612
613 bch2_write_super(c);
614 mutex_unlock(&c->sb_lock);
615 }
616
617 /*
618 * The transactional part of an interior btree node update, where we journal the
619 * update we did to the interior node and update alloc info:
620 */
btree_update_nodes_written_trans(struct btree_trans * trans,struct btree_update * as)621 static int btree_update_nodes_written_trans(struct btree_trans *trans,
622 struct btree_update *as)
623 {
624 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s);
625 int ret = PTR_ERR_OR_ZERO(e);
626 if (ret)
627 return ret;
628
629 memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64));
630
631 trans->journal_pin = &as->journal;
632
633 for_each_keylist_key(&as->old_keys, k) {
634 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
635
636 ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k),
637 BTREE_TRIGGER_transactional);
638 if (ret)
639 return ret;
640 }
641
642 for_each_keylist_key(&as->new_keys, k) {
643 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
644
645 ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k),
646 BTREE_TRIGGER_transactional);
647 if (ret)
648 return ret;
649 }
650
651 return 0;
652 }
653
654 /* If the node has been reused, we might be reading uninitialized memory - that's fine: */
btree_node_seq_matches(struct btree * b,__le64 seq)655 static noinline __no_kmsan_checks bool btree_node_seq_matches(struct btree *b, __le64 seq)
656 {
657 struct btree_node *b_data = READ_ONCE(b->data);
658
659 return (b_data ? b_data->keys.seq : 0) == seq;
660 }
661
btree_update_nodes_written(struct btree_update * as)662 static void btree_update_nodes_written(struct btree_update *as)
663 {
664 struct bch_fs *c = as->c;
665 struct btree *b;
666 struct btree_trans *trans = bch2_trans_get(c);
667 u64 journal_seq = 0;
668 unsigned i;
669 int ret;
670
671 /*
672 * If we're already in an error state, it might be because a btree node
673 * was never written, and we might be trying to free that same btree
674 * node here, but it won't have been marked as allocated and we'll see
675 * spurious disk usage inconsistencies in the transactional part below
676 * if we don't skip it:
677 */
678 ret = bch2_journal_error(&c->journal);
679 if (ret)
680 goto err;
681
682 if (!btree_update_new_nodes_marked_sb(as))
683 btree_update_new_nodes_mark_sb(as);
684
685 /*
686 * Wait for any in flight writes to finish before we free the old nodes
687 * on disk. But we haven't pinned those old nodes in the btree cache,
688 * they might have already been evicted.
689 *
690 * The update we're completing deleted references to those nodes from the
691 * btree, so we know if they've been evicted they can't be pulled back in.
692 * We just have to check if the nodes we have pointers to are still those
693 * old nodes, and haven't been reused.
694 *
695 * This can't be done locklessly because the data buffer might have been
696 * vmalloc allocated, and they're not RCU freed. We also need the
697 * __no_kmsan_checks annotation because even with the btree node read
698 * lock, nothing tells us that the data buffer has been initialized (if
699 * the btree node has been reused for a different node, and the data
700 * buffer swapped for a new data buffer).
701 */
702 for (i = 0; i < as->nr_old_nodes; i++) {
703 b = as->old_nodes[i];
704
705 bch2_trans_begin(trans);
706 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
707 bool seq_matches = btree_node_seq_matches(b, as->old_nodes_seq[i]);
708 six_unlock_read(&b->c.lock);
709 bch2_trans_unlock_long(trans);
710
711 if (seq_matches)
712 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
713 TASK_UNINTERRUPTIBLE);
714 }
715
716 /*
717 * We did an update to a parent node where the pointers we added pointed
718 * to child nodes that weren't written yet: now, the child nodes have
719 * been written so we can write out the update to the interior node.
720 */
721
722 /*
723 * We can't call into journal reclaim here: we'd block on the journal
724 * reclaim lock, but we may need to release the open buckets we have
725 * pinned in order for other btree updates to make forward progress, and
726 * journal reclaim does btree updates when flushing bkey_cached entries,
727 * which may require allocations as well.
728 */
729 ret = commit_do(trans, &as->disk_res, &journal_seq,
730 BCH_WATERMARK_interior_updates|
731 BCH_TRANS_COMMIT_no_enospc|
732 BCH_TRANS_COMMIT_no_check_rw|
733 BCH_TRANS_COMMIT_journal_reclaim,
734 btree_update_nodes_written_trans(trans, as));
735 bch2_trans_unlock(trans);
736
737 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
738 "%s", bch2_err_str(ret));
739 err:
740 /*
741 * Ensure transaction is unlocked before using btree_node_lock_nopath()
742 * (the use of which is always suspect, we need to work on removing this
743 * in the future)
744 *
745 * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get()
746 * calls bch2_path_upgrade(), before we call path_make_mut(), so we may
747 * rarely end up with a locked path besides the one we have here:
748 */
749 bch2_trans_unlock(trans);
750 bch2_trans_begin(trans);
751
752 /*
753 * We have to be careful because another thread might be getting ready
754 * to free as->b and calling btree_update_reparent() on us - we'll
755 * recheck under btree_update_lock below:
756 */
757 b = READ_ONCE(as->b);
758 if (b) {
759 /*
760 * @b is the node we did the final insert into:
761 *
762 * On failure to get a journal reservation, we still have to
763 * unblock the write and allow most of the write path to happen
764 * so that shutdown works, but the i->journal_seq mechanism
765 * won't work to prevent the btree write from being visible (we
766 * didn't get a journal sequence number) - instead
767 * __bch2_btree_node_write() doesn't do the actual write if
768 * we're in journal error state:
769 */
770
771 btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans,
772 as->btree_id, b->c.level, b->key.k.p);
773 struct btree_path *path = trans->paths + path_idx;
774 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
775 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
776 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
777 path->l[b->c.level].b = b;
778
779 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
780
781 mutex_lock(&c->btree_interior_update_lock);
782
783 list_del(&as->write_blocked_list);
784 if (list_empty(&b->write_blocked))
785 clear_btree_node_write_blocked(b);
786
787 /*
788 * Node might have been freed, recheck under
789 * btree_interior_update_lock:
790 */
791 if (as->b == b) {
792 BUG_ON(!b->c.level);
793 BUG_ON(!btree_node_dirty(b));
794
795 if (!ret) {
796 struct bset *last = btree_bset_last(b);
797
798 last->journal_seq = cpu_to_le64(
799 max(journal_seq,
800 le64_to_cpu(last->journal_seq)));
801
802 bch2_btree_add_journal_pin(c, b, journal_seq);
803 } else {
804 /*
805 * If we didn't get a journal sequence number we
806 * can't write this btree node, because recovery
807 * won't know to ignore this write:
808 */
809 set_btree_node_never_write(b);
810 }
811 }
812
813 mutex_unlock(&c->btree_interior_update_lock);
814
815 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
816 six_unlock_write(&b->c.lock);
817
818 btree_node_write_if_need(trans, b, SIX_LOCK_intent);
819 btree_node_unlock(trans, path, b->c.level);
820 bch2_path_put(trans, path_idx, true);
821 }
822
823 bch2_journal_pin_drop(&c->journal, &as->journal);
824
825 mutex_lock(&c->btree_interior_update_lock);
826 for (i = 0; i < as->nr_new_nodes; i++) {
827 b = as->new_nodes[i];
828
829 BUG_ON(b->will_make_reachable != (unsigned long) as);
830 b->will_make_reachable = 0;
831 clear_btree_node_will_make_reachable(b);
832 }
833 mutex_unlock(&c->btree_interior_update_lock);
834
835 for (i = 0; i < as->nr_new_nodes; i++) {
836 b = as->new_nodes[i];
837
838 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
839 btree_node_write_if_need(trans, b, SIX_LOCK_read);
840 six_unlock_read(&b->c.lock);
841 }
842
843 for (i = 0; i < as->nr_open_buckets; i++)
844 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
845
846 bch2_btree_update_free(as, trans);
847 bch2_trans_put(trans);
848 }
849
btree_interior_update_work(struct work_struct * work)850 static void btree_interior_update_work(struct work_struct *work)
851 {
852 struct bch_fs *c =
853 container_of(work, struct bch_fs, btree_interior_update_work);
854 struct btree_update *as;
855
856 while (1) {
857 mutex_lock(&c->btree_interior_update_lock);
858 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
859 struct btree_update, unwritten_list);
860 if (as && !as->nodes_written)
861 as = NULL;
862 mutex_unlock(&c->btree_interior_update_lock);
863
864 if (!as)
865 break;
866
867 btree_update_nodes_written(as);
868 }
869 }
870
CLOSURE_CALLBACK(btree_update_set_nodes_written)871 static CLOSURE_CALLBACK(btree_update_set_nodes_written)
872 {
873 closure_type(as, struct btree_update, cl);
874 struct bch_fs *c = as->c;
875
876 mutex_lock(&c->btree_interior_update_lock);
877 as->nodes_written = true;
878 mutex_unlock(&c->btree_interior_update_lock);
879
880 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
881 }
882
883 /*
884 * We're updating @b with pointers to nodes that haven't finished writing yet:
885 * block @b from being written until @as completes
886 */
btree_update_updated_node(struct btree_update * as,struct btree * b)887 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
888 {
889 struct bch_fs *c = as->c;
890
891 BUG_ON(as->mode != BTREE_UPDATE_none);
892 BUG_ON(as->update_level_end < b->c.level);
893 BUG_ON(!btree_node_dirty(b));
894 BUG_ON(!b->c.level);
895
896 mutex_lock(&c->btree_interior_update_lock);
897 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
898
899 as->mode = BTREE_UPDATE_node;
900 as->b = b;
901 as->update_level_end = b->c.level;
902
903 set_btree_node_write_blocked(b);
904 list_add(&as->write_blocked_list, &b->write_blocked);
905
906 mutex_unlock(&c->btree_interior_update_lock);
907 }
908
bch2_update_reparent_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)909 static int bch2_update_reparent_journal_pin_flush(struct journal *j,
910 struct journal_entry_pin *_pin, u64 seq)
911 {
912 return 0;
913 }
914
btree_update_reparent(struct btree_update * as,struct btree_update * child)915 static void btree_update_reparent(struct btree_update *as,
916 struct btree_update *child)
917 {
918 struct bch_fs *c = as->c;
919
920 lockdep_assert_held(&c->btree_interior_update_lock);
921
922 child->b = NULL;
923 child->mode = BTREE_UPDATE_update;
924
925 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal,
926 bch2_update_reparent_journal_pin_flush);
927 }
928
btree_update_updated_root(struct btree_update * as,struct btree * b)929 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
930 {
931 struct bkey_i *insert = &b->key;
932 struct bch_fs *c = as->c;
933
934 BUG_ON(as->mode != BTREE_UPDATE_none);
935
936 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
937 ARRAY_SIZE(as->journal_entries));
938
939 as->journal_u64s +=
940 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
941 BCH_JSET_ENTRY_btree_root,
942 b->c.btree_id, b->c.level,
943 insert, insert->k.u64s);
944
945 mutex_lock(&c->btree_interior_update_lock);
946 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
947
948 as->mode = BTREE_UPDATE_root;
949 mutex_unlock(&c->btree_interior_update_lock);
950 }
951
952 /*
953 * bch2_btree_update_add_new_node:
954 *
955 * This causes @as to wait on @b to be written, before it gets to
956 * bch2_btree_update_nodes_written
957 *
958 * Additionally, it sets b->will_make_reachable to prevent any additional writes
959 * to @b from happening besides the first until @b is reachable on disk
960 *
961 * And it adds @b to the list of @as's new nodes, so that we can update sector
962 * counts in bch2_btree_update_nodes_written:
963 */
bch2_btree_update_add_new_node(struct btree_update * as,struct btree * b)964 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
965 {
966 struct bch_fs *c = as->c;
967
968 closure_get(&as->cl);
969
970 mutex_lock(&c->btree_interior_update_lock);
971 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
972 BUG_ON(b->will_make_reachable);
973
974 as->new_nodes[as->nr_new_nodes++] = b;
975 b->will_make_reachable = 1UL|(unsigned long) as;
976 set_btree_node_will_make_reachable(b);
977
978 mutex_unlock(&c->btree_interior_update_lock);
979
980 btree_update_add_key(as, &as->new_keys, b);
981
982 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
983 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
984 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
985
986 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
987 cpu_to_le16(sectors);
988 }
989 }
990
991 /*
992 * returns true if @b was a new node
993 */
btree_update_drop_new_node(struct bch_fs * c,struct btree * b)994 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
995 {
996 struct btree_update *as;
997 unsigned long v;
998 unsigned i;
999
1000 mutex_lock(&c->btree_interior_update_lock);
1001 /*
1002 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
1003 * dropped when it gets written by bch2_btree_complete_write - the
1004 * xchg() is for synchronization with bch2_btree_complete_write:
1005 */
1006 v = xchg(&b->will_make_reachable, 0);
1007 clear_btree_node_will_make_reachable(b);
1008 as = (struct btree_update *) (v & ~1UL);
1009
1010 if (!as) {
1011 mutex_unlock(&c->btree_interior_update_lock);
1012 return;
1013 }
1014
1015 for (i = 0; i < as->nr_new_nodes; i++)
1016 if (as->new_nodes[i] == b)
1017 goto found;
1018
1019 BUG();
1020 found:
1021 array_remove_item(as->new_nodes, as->nr_new_nodes, i);
1022 mutex_unlock(&c->btree_interior_update_lock);
1023
1024 if (v & 1)
1025 closure_put(&as->cl);
1026 }
1027
bch2_btree_update_get_open_buckets(struct btree_update * as,struct btree * b)1028 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
1029 {
1030 while (b->ob.nr)
1031 as->open_buckets[as->nr_open_buckets++] =
1032 b->ob.v[--b->ob.nr];
1033 }
1034
bch2_btree_update_will_free_node_journal_pin_flush(struct journal * j,struct journal_entry_pin * _pin,u64 seq)1035 static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j,
1036 struct journal_entry_pin *_pin, u64 seq)
1037 {
1038 return 0;
1039 }
1040
1041 /*
1042 * @b is being split/rewritten: it may have pointers to not-yet-written btree
1043 * nodes and thus outstanding btree_updates - redirect @b's
1044 * btree_updates to point to this btree_update:
1045 */
bch2_btree_interior_update_will_free_node(struct btree_update * as,struct btree * b)1046 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
1047 struct btree *b)
1048 {
1049 struct bch_fs *c = as->c;
1050 struct btree_update *p, *n;
1051 struct btree_write *w;
1052
1053 set_btree_node_dying(b);
1054
1055 if (btree_node_fake(b))
1056 return;
1057
1058 mutex_lock(&c->btree_interior_update_lock);
1059
1060 /*
1061 * Does this node have any btree_update operations preventing
1062 * it from being written?
1063 *
1064 * If so, redirect them to point to this btree_update: we can
1065 * write out our new nodes, but we won't make them visible until those
1066 * operations complete
1067 */
1068 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
1069 list_del_init(&p->write_blocked_list);
1070 btree_update_reparent(as, p);
1071
1072 /*
1073 * for flush_held_btree_writes() waiting on updates to flush or
1074 * nodes to be writeable:
1075 */
1076 closure_wake_up(&c->btree_interior_update_wait);
1077 }
1078
1079 clear_btree_node_dirty_acct(c, b);
1080 clear_btree_node_need_write(b);
1081 clear_btree_node_write_blocked(b);
1082
1083 /*
1084 * Does this node have unwritten data that has a pin on the journal?
1085 *
1086 * If so, transfer that pin to the btree_update operation -
1087 * note that if we're freeing multiple nodes, we only need to keep the
1088 * oldest pin of any of the nodes we're freeing. We'll release the pin
1089 * when the new nodes are persistent and reachable on disk:
1090 */
1091 w = btree_current_write(b);
1092 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1093 bch2_btree_update_will_free_node_journal_pin_flush);
1094 bch2_journal_pin_drop(&c->journal, &w->journal);
1095
1096 w = btree_prev_write(b);
1097 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal,
1098 bch2_btree_update_will_free_node_journal_pin_flush);
1099 bch2_journal_pin_drop(&c->journal, &w->journal);
1100
1101 mutex_unlock(&c->btree_interior_update_lock);
1102
1103 /*
1104 * Is this a node that isn't reachable on disk yet?
1105 *
1106 * Nodes that aren't reachable yet have writes blocked until they're
1107 * reachable - now that we've cancelled any pending writes and moved
1108 * things waiting on that write to wait on this update, we can drop this
1109 * node from the list of nodes that the other update is making
1110 * reachable, prior to freeing it:
1111 */
1112 btree_update_drop_new_node(c, b);
1113
1114 btree_update_add_key(as, &as->old_keys, b);
1115
1116 as->old_nodes[as->nr_old_nodes] = b;
1117 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1118 as->nr_old_nodes++;
1119 }
1120
bch2_btree_update_done(struct btree_update * as,struct btree_trans * trans)1121 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1122 {
1123 struct bch_fs *c = as->c;
1124 u64 start_time = as->start_time;
1125
1126 BUG_ON(as->mode == BTREE_UPDATE_none);
1127
1128 if (as->took_gc_lock)
1129 up_read(&as->c->gc_lock);
1130 as->took_gc_lock = false;
1131
1132 bch2_btree_reserve_put(as, trans);
1133
1134 continue_at(&as->cl, btree_update_set_nodes_written,
1135 as->c->btree_interior_update_worker);
1136
1137 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1138 start_time);
1139 }
1140
1141 static const char * const btree_node_reawrite_reason_strs[] = {
1142 #define x(n) #n,
1143 BTREE_NODE_REWRITE_REASON()
1144 #undef x
1145 NULL,
1146 };
1147
1148 static struct btree_update *
bch2_btree_update_start(struct btree_trans * trans,struct btree_path * path,unsigned level_start,bool split,unsigned target,unsigned flags)1149 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1150 unsigned level_start, bool split,
1151 unsigned target, unsigned flags)
1152 {
1153 struct bch_fs *c = trans->c;
1154 struct btree_update *as;
1155 u64 start_time = local_clock();
1156 int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc)
1157 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1158 unsigned nr_nodes[2] = { 0, 0 };
1159 unsigned level_end = level_start;
1160 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1161 int ret = 0;
1162 u32 restart_count = trans->restart_count;
1163
1164 BUG_ON(!path->should_be_locked);
1165
1166 if (watermark == BCH_WATERMARK_copygc)
1167 watermark = BCH_WATERMARK_btree_copygc;
1168 if (watermark < BCH_WATERMARK_btree)
1169 watermark = BCH_WATERMARK_btree;
1170
1171 flags &= ~BCH_WATERMARK_MASK;
1172 flags |= watermark;
1173
1174 if (watermark < BCH_WATERMARK_reclaim &&
1175 test_bit(JOURNAL_space_low, &c->journal.flags)) {
1176 if (flags & BCH_TRANS_COMMIT_journal_reclaim)
1177 return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock);
1178
1179 ret = drop_locks_do(trans,
1180 ({ wait_event(c->journal.wait, !test_bit(JOURNAL_space_low, &c->journal.flags)); 0; }));
1181 if (ret)
1182 return ERR_PTR(ret);
1183 }
1184
1185 while (1) {
1186 nr_nodes[!!level_end] += 1 + split;
1187 level_end++;
1188
1189 ret = bch2_btree_path_upgrade(trans, path, level_end + 1);
1190 if (ret)
1191 return ERR_PTR(ret);
1192
1193 if (!btree_path_node(path, level_end)) {
1194 /* Allocating new root? */
1195 nr_nodes[1] += split;
1196 level_end = BTREE_MAX_DEPTH;
1197 break;
1198 }
1199
1200 /*
1201 * Always check for space for two keys, even if we won't have to
1202 * split at prior level - it might have been a merge instead:
1203 */
1204 if (bch2_btree_node_insert_fits(path->l[level_end].b,
1205 BKEY_BTREE_PTR_U64s_MAX * 2))
1206 break;
1207
1208 split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1209 }
1210
1211 if (!down_read_trylock(&c->gc_lock)) {
1212 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1213 if (ret) {
1214 up_read(&c->gc_lock);
1215 return ERR_PTR(ret);
1216 }
1217 }
1218
1219 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1220 memset(as, 0, sizeof(*as));
1221 closure_init(&as->cl, NULL);
1222 as->c = c;
1223 as->start_time = start_time;
1224 as->ip_started = _RET_IP_;
1225 as->mode = BTREE_UPDATE_none;
1226 as->flags = flags;
1227 as->took_gc_lock = true;
1228 as->btree_id = path->btree_id;
1229 as->update_level_start = level_start;
1230 as->update_level_end = level_end;
1231 INIT_LIST_HEAD(&as->list);
1232 INIT_LIST_HEAD(&as->unwritten_list);
1233 INIT_LIST_HEAD(&as->write_blocked_list);
1234 bch2_keylist_init(&as->old_keys, as->_old_keys);
1235 bch2_keylist_init(&as->new_keys, as->_new_keys);
1236 bch2_keylist_init(&as->parent_keys, as->inline_keys);
1237
1238 mutex_lock(&c->btree_interior_update_lock);
1239 list_add_tail(&as->list, &c->btree_interior_update_list);
1240 mutex_unlock(&c->btree_interior_update_lock);
1241
1242 struct btree *b = btree_path_node(path, path->level);
1243 as->node_start = b->data->min_key;
1244 as->node_end = b->data->max_key;
1245 as->node_needed_rewrite = btree_node_rewrite_reason(b);
1246 as->node_written = b->written;
1247 as->node_sectors = btree_buf_bytes(b) >> 9;
1248 as->node_remaining = __bch2_btree_u64s_remaining(b,
1249 btree_bkey_last(b, bset_tree_last(b)));
1250
1251 /*
1252 * We don't want to allocate if we're in an error state, that can cause
1253 * deadlock on emergency shutdown due to open buckets getting stuck in
1254 * the btree_reserve_cache after allocator shutdown has cleared it out.
1255 * This check needs to come after adding us to the btree_interior_update
1256 * list but before calling bch2_btree_reserve_get, to synchronize with
1257 * __bch2_fs_read_only().
1258 */
1259 ret = bch2_journal_error(&c->journal);
1260 if (ret)
1261 goto err;
1262
1263 ret = bch2_disk_reservation_get(c, &as->disk_res,
1264 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1265 READ_ONCE(c->opts.metadata_replicas),
1266 disk_res_flags);
1267 if (ret)
1268 goto err;
1269
1270 ret = bch2_btree_reserve_get(trans, as, nr_nodes, target, flags, NULL);
1271 if (bch2_err_matches(ret, ENOSPC) ||
1272 bch2_err_matches(ret, ENOMEM)) {
1273 struct closure cl;
1274
1275 /*
1276 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1277 * flag
1278 */
1279 if (bch2_err_matches(ret, ENOSPC) &&
1280 (flags & BCH_TRANS_COMMIT_journal_reclaim) &&
1281 watermark < BCH_WATERMARK_reclaim) {
1282 ret = bch_err_throw(c, journal_reclaim_would_deadlock);
1283 goto err;
1284 }
1285
1286 closure_init_stack(&cl);
1287
1288 do {
1289 ret = bch2_btree_reserve_get(trans, as, nr_nodes, target, flags, &cl);
1290 if (!bch2_err_matches(ret, BCH_ERR_operation_blocked))
1291 break;
1292 bch2_trans_unlock(trans);
1293 bch2_wait_on_allocator(c, &cl);
1294 } while (1);
1295 }
1296
1297 if (ret) {
1298 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1299 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1300 goto err;
1301 }
1302
1303 ret = bch2_trans_relock(trans);
1304 if (ret)
1305 goto err;
1306
1307 bch2_trans_verify_not_restarted(trans, restart_count);
1308 return as;
1309 err:
1310 bch2_btree_update_free(as, trans);
1311 if (!bch2_err_matches(ret, ENOSPC) &&
1312 !bch2_err_matches(ret, EROFS) &&
1313 ret != -BCH_ERR_journal_reclaim_would_deadlock &&
1314 ret != -BCH_ERR_journal_shutdown)
1315 bch_err_fn_ratelimited(c, ret);
1316 return ERR_PTR(ret);
1317 }
1318
1319 /* Btree root updates: */
1320
bch2_btree_set_root_inmem(struct bch_fs * c,struct btree * b)1321 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1322 {
1323 /* Root nodes cannot be reaped */
1324 mutex_lock(&c->btree_cache.lock);
1325 list_del_init(&b->list);
1326 mutex_unlock(&c->btree_cache.lock);
1327
1328 mutex_lock(&c->btree_root_lock);
1329 bch2_btree_id_root(c, b->c.btree_id)->b = b;
1330 mutex_unlock(&c->btree_root_lock);
1331
1332 bch2_recalc_btree_reserve(c);
1333 }
1334
bch2_btree_set_root(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,bool nofail)1335 static int bch2_btree_set_root(struct btree_update *as,
1336 struct btree_trans *trans,
1337 struct btree_path *path,
1338 struct btree *b,
1339 bool nofail)
1340 {
1341 struct bch_fs *c = as->c;
1342
1343 trace_and_count(c, btree_node_set_root, trans, b);
1344
1345 struct btree *old = btree_node_root(c, b);
1346
1347 /*
1348 * Ensure no one is using the old root while we switch to the
1349 * new root:
1350 */
1351 if (nofail) {
1352 bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1353 } else {
1354 int ret = bch2_btree_node_lock_write(trans, path, &old->c);
1355 if (ret)
1356 return ret;
1357 }
1358
1359 bch2_btree_set_root_inmem(c, b);
1360
1361 btree_update_updated_root(as, b);
1362
1363 /*
1364 * Unlock old root after new root is visible:
1365 *
1366 * The new root isn't persistent, but that's ok: we still have
1367 * an intent lock on the new root, and any updates that would
1368 * depend on the new root would have to update the new root.
1369 */
1370 bch2_btree_node_unlock_write(trans, path, old);
1371 return 0;
1372 }
1373
1374 /* Interior node updates: */
1375
bch2_insert_fixup_btree_ptr(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter * node_iter,struct bkey_i * insert)1376 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1377 struct btree_trans *trans,
1378 struct btree_path *path,
1379 struct btree *b,
1380 struct btree_node_iter *node_iter,
1381 struct bkey_i *insert)
1382 {
1383 struct bch_fs *c = as->c;
1384 struct bkey_packed *k;
1385 struct printbuf buf = PRINTBUF;
1386 unsigned long old, new;
1387
1388 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1389 !btree_ptr_sectors_written(bkey_i_to_s_c(insert)));
1390
1391 if (unlikely(!test_bit(JOURNAL_replay_done, &c->journal.flags)))
1392 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1393
1394 struct bkey_validate_context from = (struct bkey_validate_context) {
1395 .from = BKEY_VALIDATE_btree_node,
1396 .level = b->c.level,
1397 .btree = b->c.btree_id,
1398 .flags = BCH_VALIDATE_commit,
1399 };
1400 if (bch2_bkey_validate(c, bkey_i_to_s_c(insert), from) ?:
1401 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), from)) {
1402 bch2_fs_inconsistent(c, "%s: inserting invalid bkey", __func__);
1403 dump_stack();
1404 }
1405
1406 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1407 ARRAY_SIZE(as->journal_entries));
1408
1409 as->journal_u64s +=
1410 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1411 BCH_JSET_ENTRY_btree_keys,
1412 b->c.btree_id, b->c.level,
1413 insert, insert->k.u64s);
1414
1415 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1416 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1417 bch2_btree_node_iter_advance(node_iter, b);
1418
1419 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1420 set_btree_node_dirty_acct(c, b);
1421
1422 old = READ_ONCE(b->flags);
1423 do {
1424 new = old;
1425
1426 new &= ~BTREE_WRITE_TYPE_MASK;
1427 new |= BTREE_WRITE_interior;
1428 new |= 1 << BTREE_NODE_need_write;
1429 } while (!try_cmpxchg(&b->flags, &old, new));
1430
1431 printbuf_exit(&buf);
1432 }
1433
1434 static int
bch2_btree_insert_keys_interior(struct btree_update * as,struct btree_trans * trans,struct btree_path * path,struct btree * b,struct btree_node_iter node_iter,struct keylist * keys)1435 bch2_btree_insert_keys_interior(struct btree_update *as,
1436 struct btree_trans *trans,
1437 struct btree_path *path,
1438 struct btree *b,
1439 struct btree_node_iter node_iter,
1440 struct keylist *keys)
1441 {
1442 struct bkey_i *insert = bch2_keylist_front(keys);
1443 struct bkey_packed *k;
1444
1445 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1446
1447 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1448 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1449 ;
1450
1451 for (;
1452 insert != keys->top && bpos_le(insert->k.p, b->key.k.p);
1453 insert = bkey_next(insert))
1454 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1455
1456 int ret = bch2_btree_node_check_topology(trans, b);
1457 if (ret) {
1458 struct printbuf buf = PRINTBUF;
1459
1460 for (struct bkey_i *k = keys->keys;
1461 k != insert;
1462 k = bkey_next(k)) {
1463 bch2_bkey_val_to_text(&buf, trans->c, bkey_i_to_s_c(k));
1464 prt_newline(&buf);
1465 }
1466
1467 bch2_fs_fatal_error(as->c, "%ps -> %s(): check_topology error %s: inserted keys\n%s",
1468 (void *) _RET_IP_, __func__, bch2_err_str(ret), buf.buf);
1469 dump_stack();
1470 return ret;
1471 }
1472
1473 memmove_u64s_down(keys->keys, insert, keys->top_p - insert->_data);
1474 keys->top_p -= insert->_data - keys->keys_p;
1475 return 0;
1476 }
1477
key_deleted_in_insert(struct keylist * insert_keys,struct bpos pos)1478 static bool key_deleted_in_insert(struct keylist *insert_keys, struct bpos pos)
1479 {
1480 if (insert_keys)
1481 for_each_keylist_key(insert_keys, k)
1482 if (bkey_deleted(&k->k) && bpos_eq(k->k.p, pos))
1483 return true;
1484 return false;
1485 }
1486
1487 /*
1488 * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1489 * node)
1490 */
__btree_split_node(struct btree_update * as,struct btree_trans * trans,struct btree * b,struct btree * n[2],struct keylist * insert_keys)1491 static void __btree_split_node(struct btree_update *as,
1492 struct btree_trans *trans,
1493 struct btree *b,
1494 struct btree *n[2],
1495 struct keylist *insert_keys)
1496 {
1497 struct bkey_packed *k;
1498 struct bpos n1_pos = POS_MIN;
1499 struct btree_node_iter iter;
1500 struct bset *bsets[2];
1501 struct bkey_format_state format[2];
1502 struct bkey_packed *out[2];
1503 struct bkey uk;
1504 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1505 struct { unsigned nr_keys, val_u64s; } nr_keys[2];
1506 int i;
1507
1508 memset(&nr_keys, 0, sizeof(nr_keys));
1509
1510 for (i = 0; i < 2; i++) {
1511 BUG_ON(n[i]->nsets != 1);
1512
1513 bsets[i] = btree_bset_first(n[i]);
1514 out[i] = bsets[i]->start;
1515
1516 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1517 bch2_bkey_format_init(&format[i]);
1518 }
1519
1520 u64s = 0;
1521 for_each_btree_node_key(b, k, &iter) {
1522 if (bkey_deleted(k))
1523 continue;
1524
1525 uk = bkey_unpack_key(b, k);
1526
1527 if (b->c.level &&
1528 u64s < n1_u64s &&
1529 u64s + k->u64s >= n1_u64s &&
1530 (bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p) ||
1531 key_deleted_in_insert(insert_keys, uk.p)))
1532 n1_u64s += k->u64s;
1533
1534 i = u64s >= n1_u64s;
1535 u64s += k->u64s;
1536 if (!i)
1537 n1_pos = uk.p;
1538 bch2_bkey_format_add_key(&format[i], &uk);
1539
1540 nr_keys[i].nr_keys++;
1541 nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k);
1542 }
1543
1544 btree_set_min(n[0], b->data->min_key);
1545 btree_set_max(n[0], n1_pos);
1546 btree_set_min(n[1], bpos_successor(n1_pos));
1547 btree_set_max(n[1], b->data->max_key);
1548
1549 for (i = 0; i < 2; i++) {
1550 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1551 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1552
1553 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1554
1555 unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s +
1556 nr_keys[i].val_u64s;
1557 if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b))
1558 n[i]->data->format = b->format;
1559
1560 btree_node_set_format(n[i], n[i]->data->format);
1561 }
1562
1563 u64s = 0;
1564 for_each_btree_node_key(b, k, &iter) {
1565 if (bkey_deleted(k))
1566 continue;
1567
1568 i = u64s >= n1_u64s;
1569 u64s += k->u64s;
1570
1571 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1572 ? &b->format: &bch2_bkey_format_current, k))
1573 out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1574 else
1575 bch2_bkey_unpack(b, (void *) out[i], k);
1576
1577 out[i]->needs_whiteout = false;
1578
1579 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1580 out[i] = bkey_p_next(out[i]);
1581 }
1582
1583 for (i = 0; i < 2; i++) {
1584 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1585
1586 BUG_ON(!bsets[i]->u64s);
1587
1588 set_btree_bset_end(n[i], n[i]->set);
1589
1590 btree_node_reset_sib_u64s(n[i]);
1591
1592 bch2_verify_btree_nr_keys(n[i]);
1593
1594 BUG_ON(bch2_btree_node_check_topology(trans, n[i]));
1595 }
1596 }
1597
1598 /*
1599 * For updates to interior nodes, we've got to do the insert before we split
1600 * because the stuff we're inserting has to be inserted atomically. Post split,
1601 * the keys might have to go in different nodes and the split would no longer be
1602 * atomic.
1603 *
1604 * Worse, if the insert is from btree node coalescing, if we do the insert after
1605 * we do the split (and pick the pivot) - the pivot we pick might be between
1606 * nodes that were coalesced, and thus in the middle of a child node post
1607 * coalescing:
1608 */
btree_split_insert_keys(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1609 static int btree_split_insert_keys(struct btree_update *as,
1610 struct btree_trans *trans,
1611 btree_path_idx_t path_idx,
1612 struct btree *b,
1613 struct keylist *keys)
1614 {
1615 struct btree_path *path = trans->paths + path_idx;
1616
1617 if (!bch2_keylist_empty(keys) &&
1618 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1619 struct btree_node_iter node_iter;
1620
1621 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1622
1623 int ret = bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1624 if (ret)
1625 return ret;
1626 }
1627
1628 return 0;
1629 }
1630
btree_split(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path,struct btree * b,struct keylist * keys)1631 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1632 btree_path_idx_t path, struct btree *b,
1633 struct keylist *keys)
1634 {
1635 struct bch_fs *c = as->c;
1636 struct btree *parent = btree_node_parent(trans->paths + path, b);
1637 struct btree *n1, *n2 = NULL, *n3 = NULL;
1638 btree_path_idx_t path1 = 0, path2 = 0;
1639 u64 start_time = local_clock();
1640 int ret = 0;
1641
1642 bch2_verify_btree_nr_keys(b);
1643 BUG_ON(!parent && (b != btree_node_root(c, b)));
1644 BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1));
1645
1646 ret = bch2_btree_node_check_topology(trans, b);
1647 if (ret)
1648 return ret;
1649
1650 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1651 struct btree *n[2];
1652
1653 trace_and_count(c, btree_node_split, trans, b);
1654
1655 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1656 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1657
1658 __btree_split_node(as, trans, b, n, keys);
1659
1660 if (keys) {
1661 ret = btree_split_insert_keys(as, trans, path, n1, keys) ?:
1662 btree_split_insert_keys(as, trans, path, n2, keys);
1663 if (ret)
1664 goto err;
1665 BUG_ON(!bch2_keylist_empty(keys));
1666 }
1667
1668 bch2_btree_build_aux_trees(n2);
1669 bch2_btree_build_aux_trees(n1);
1670
1671 bch2_btree_update_add_new_node(as, n1);
1672 bch2_btree_update_add_new_node(as, n2);
1673 six_unlock_write(&n2->c.lock);
1674 six_unlock_write(&n1->c.lock);
1675
1676 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1677 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1678 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1679 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1680
1681 path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p);
1682 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1683 mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1684 bch2_btree_path_level_init(trans, trans->paths + path2, n2);
1685
1686 /*
1687 * Note that on recursive parent_keys == keys, so we
1688 * can't start adding new keys to parent_keys before emptying it
1689 * out (which we did with btree_split_insert_keys() above)
1690 */
1691 bch2_keylist_add(&as->parent_keys, &n1->key);
1692 bch2_keylist_add(&as->parent_keys, &n2->key);
1693
1694 if (!parent) {
1695 /* Depth increases, make a new root */
1696 n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1697
1698 bch2_btree_update_add_new_node(as, n3);
1699 six_unlock_write(&n3->c.lock);
1700
1701 trans->paths[path2].locks_want++;
1702 BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level));
1703 six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1704 mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1705 bch2_btree_path_level_init(trans, trans->paths + path2, n3);
1706
1707 n3->sib_u64s[0] = U16_MAX;
1708 n3->sib_u64s[1] = U16_MAX;
1709
1710 ret = btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1711 if (ret)
1712 goto err;
1713 }
1714 } else {
1715 trace_and_count(c, btree_node_compact, trans, b);
1716
1717 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1718
1719 if (keys) {
1720 ret = btree_split_insert_keys(as, trans, path, n1, keys);
1721 if (ret)
1722 goto err;
1723 BUG_ON(!bch2_keylist_empty(keys));
1724 }
1725
1726 bch2_btree_build_aux_trees(n1);
1727 bch2_btree_update_add_new_node(as, n1);
1728 six_unlock_write(&n1->c.lock);
1729
1730 path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p);
1731 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1732 mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1733 bch2_btree_path_level_init(trans, trans->paths + path1, n1);
1734
1735 if (parent)
1736 bch2_keylist_add(&as->parent_keys, &n1->key);
1737 }
1738
1739 /* New nodes all written, now make them visible: */
1740
1741 if (parent) {
1742 /* Split a non root node */
1743 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
1744 } else if (n3) {
1745 ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false);
1746 } else {
1747 /* Root filled up but didn't need to be split */
1748 ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false);
1749 }
1750
1751 if (ret)
1752 goto err;
1753
1754 bch2_btree_interior_update_will_free_node(as, b);
1755
1756 if (n3) {
1757 bch2_btree_update_get_open_buckets(as, n3);
1758 bch2_btree_node_write_trans(trans, n3, SIX_LOCK_intent, 0);
1759 }
1760 if (n2) {
1761 bch2_btree_update_get_open_buckets(as, n2);
1762 bch2_btree_node_write_trans(trans, n2, SIX_LOCK_intent, 0);
1763 }
1764 bch2_btree_update_get_open_buckets(as, n1);
1765 bch2_btree_node_write_trans(trans, n1, SIX_LOCK_intent, 0);
1766
1767 /*
1768 * The old node must be freed (in memory) _before_ unlocking the new
1769 * nodes - else another thread could re-acquire a read lock on the old
1770 * node after another thread has locked and updated the new node, thus
1771 * seeing stale data:
1772 */
1773 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
1774
1775 if (n3)
1776 bch2_trans_node_add(trans, trans->paths + path, n3);
1777 if (n2)
1778 bch2_trans_node_add(trans, trans->paths + path2, n2);
1779 bch2_trans_node_add(trans, trans->paths + path1, n1);
1780
1781 if (n3)
1782 six_unlock_intent(&n3->c.lock);
1783 if (n2)
1784 six_unlock_intent(&n2->c.lock);
1785 six_unlock_intent(&n1->c.lock);
1786 out:
1787 if (path2) {
1788 __bch2_btree_path_unlock(trans, trans->paths + path2);
1789 bch2_path_put(trans, path2, true);
1790 }
1791 if (path1) {
1792 __bch2_btree_path_unlock(trans, trans->paths + path1);
1793 bch2_path_put(trans, path1, true);
1794 }
1795
1796 bch2_trans_verify_locks(trans);
1797
1798 bch2_time_stats_update(&c->times[n2
1799 ? BCH_TIME_btree_node_split
1800 : BCH_TIME_btree_node_compact],
1801 start_time);
1802 return ret;
1803 err:
1804 if (n3)
1805 bch2_btree_node_free_never_used(as, trans, n3);
1806 if (n2)
1807 bch2_btree_node_free_never_used(as, trans, n2);
1808 bch2_btree_node_free_never_used(as, trans, n1);
1809 goto out;
1810 }
1811
1812 /**
1813 * bch2_btree_insert_node - insert bkeys into a given btree node
1814 *
1815 * @as: btree_update object
1816 * @trans: btree_trans object
1817 * @path_idx: path that points to current node
1818 * @b: node to insert keys into
1819 * @keys: list of keys to insert
1820 *
1821 * Returns: 0 on success, typically transaction restart error on failure
1822 *
1823 * Inserts as many keys as it can into a given btree node, splitting it if full.
1824 * If a split occurred, this function will return early. This can only happen
1825 * for leaf nodes -- inserts into interior nodes have to be atomic.
1826 */
bch2_btree_insert_node(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx,struct btree * b,struct keylist * keys)1827 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1828 btree_path_idx_t path_idx, struct btree *b,
1829 struct keylist *keys)
1830 {
1831 struct bch_fs *c = as->c;
1832 struct btree_path *path = trans->paths + path_idx, *linked;
1833 unsigned i;
1834 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1835 int old_live_u64s = b->nr.live_u64s;
1836 int live_u64s_added, u64s_added;
1837 int ret;
1838
1839 lockdep_assert_held(&c->gc_lock);
1840 BUG_ON(!b->c.level);
1841 BUG_ON(!as || as->b);
1842 bch2_verify_keylist_sorted(keys);
1843
1844 if (!btree_node_intent_locked(path, b->c.level)) {
1845 struct printbuf buf = PRINTBUF;
1846 bch2_log_msg_start(c, &buf);
1847 prt_printf(&buf, "%s(): node not locked at level %u\n",
1848 __func__, b->c.level);
1849 bch2_btree_update_to_text(&buf, as);
1850 bch2_btree_path_to_text(&buf, trans, path_idx);
1851 bch2_fs_emergency_read_only2(c, &buf);
1852
1853 bch2_print_str(c, KERN_ERR, buf.buf);
1854 printbuf_exit(&buf);
1855 return -EIO;
1856 }
1857
1858 ret = bch2_btree_node_lock_write(trans, path, &b->c);
1859 if (ret)
1860 return ret;
1861
1862 bch2_btree_node_prep_for_write(trans, path, b);
1863
1864 if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) {
1865 bch2_btree_node_unlock_write(trans, path, b);
1866 goto split;
1867 }
1868
1869
1870 ret = bch2_btree_node_check_topology(trans, b) ?:
1871 bch2_btree_insert_keys_interior(as, trans, path, b,
1872 path->l[b->c.level].iter, keys);
1873 if (ret) {
1874 bch2_btree_node_unlock_write(trans, path, b);
1875 return ret;
1876 }
1877
1878 trans_for_each_path_with_node(trans, b, linked, i)
1879 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1880
1881 bch2_trans_verify_paths(trans);
1882
1883 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1884 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1885
1886 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1887 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1888 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1889 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1890
1891 if (u64s_added > live_u64s_added &&
1892 bch2_maybe_compact_whiteouts(c, b))
1893 bch2_trans_node_reinit_iter(trans, b);
1894
1895 btree_update_updated_node(as, b);
1896 bch2_btree_node_unlock_write(trans, path, b);
1897 return 0;
1898 split:
1899 /*
1900 * We could attempt to avoid the transaction restart, by calling
1901 * bch2_btree_path_upgrade() and allocating more nodes:
1902 */
1903 if (b->c.level >= as->update_level_end) {
1904 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1905 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1906 }
1907
1908 return btree_split(as, trans, path_idx, b, keys);
1909 }
1910
bch2_btree_split_leaf(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1911 int bch2_btree_split_leaf(struct btree_trans *trans,
1912 btree_path_idx_t path,
1913 unsigned flags)
1914 {
1915 /* btree_split & merge may both cause paths array to be reallocated */
1916 struct btree *b = path_l(trans->paths + path)->b;
1917 struct btree_update *as;
1918 unsigned l;
1919 int ret = 0;
1920
1921 as = bch2_btree_update_start(trans, trans->paths + path,
1922 trans->paths[path].level,
1923 true, 0, flags);
1924 if (IS_ERR(as))
1925 return PTR_ERR(as);
1926
1927 ret = btree_split(as, trans, path, b, NULL);
1928 if (ret) {
1929 bch2_btree_update_free(as, trans);
1930 return ret;
1931 }
1932
1933 bch2_btree_update_done(as, trans);
1934
1935 for (l = trans->paths[path].level + 1;
1936 btree_node_intent_locked(&trans->paths[path], l) && !ret;
1937 l++)
1938 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1939
1940 return ret;
1941 }
1942
__btree_increase_depth(struct btree_update * as,struct btree_trans * trans,btree_path_idx_t path_idx)1943 static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans,
1944 btree_path_idx_t path_idx)
1945 {
1946 struct bch_fs *c = as->c;
1947 struct btree_path *path = trans->paths + path_idx;
1948 struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b;
1949
1950 BUG_ON(!btree_node_locked(path, b->c.level));
1951
1952 n = __btree_root_alloc(as, trans, b->c.level + 1);
1953
1954 bch2_btree_update_add_new_node(as, n);
1955 six_unlock_write(&n->c.lock);
1956
1957 path->locks_want++;
1958 BUG_ON(btree_node_locked(path, n->c.level));
1959 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1960 mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1961 bch2_btree_path_level_init(trans, path, n);
1962
1963 n->sib_u64s[0] = U16_MAX;
1964 n->sib_u64s[1] = U16_MAX;
1965
1966 bch2_keylist_add(&as->parent_keys, &b->key);
1967 btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys);
1968
1969 int ret = bch2_btree_set_root(as, trans, path, n, true);
1970 BUG_ON(ret);
1971
1972 bch2_btree_update_get_open_buckets(as, n);
1973 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
1974 bch2_trans_node_add(trans, path, n);
1975 six_unlock_intent(&n->c.lock);
1976
1977 mutex_lock(&c->btree_cache.lock);
1978 list_add_tail(&b->list, &c->btree_cache.live[btree_node_pinned(b)].list);
1979 mutex_unlock(&c->btree_cache.lock);
1980
1981 bch2_trans_verify_locks(trans);
1982 }
1983
bch2_btree_increase_depth(struct btree_trans * trans,btree_path_idx_t path,unsigned flags)1984 int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags)
1985 {
1986 struct bch_fs *c = trans->c;
1987 struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b;
1988
1989 if (btree_node_fake(b))
1990 return bch2_btree_split_leaf(trans, path, flags);
1991
1992 struct btree_update *as =
1993 bch2_btree_update_start(trans, trans->paths + path, b->c.level,
1994 true, 0, flags);
1995 if (IS_ERR(as))
1996 return PTR_ERR(as);
1997
1998 __btree_increase_depth(as, trans, path);
1999 bch2_btree_update_done(as, trans);
2000 return 0;
2001 }
2002
__bch2_foreground_maybe_merge(struct btree_trans * trans,btree_path_idx_t path,unsigned level,unsigned flags,enum btree_node_sibling sib)2003 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
2004 btree_path_idx_t path,
2005 unsigned level,
2006 unsigned flags,
2007 enum btree_node_sibling sib)
2008 {
2009 struct bch_fs *c = trans->c;
2010 struct btree_update *as;
2011 struct bkey_format_state new_s;
2012 struct bkey_format new_f;
2013 struct bkey_i delete;
2014 struct btree *b, *m, *n, *prev, *next, *parent;
2015 struct bpos sib_pos;
2016 size_t sib_u64s;
2017 enum btree_id btree = trans->paths[path].btree_id;
2018 btree_path_idx_t sib_path = 0, new_path = 0;
2019 u64 start_time = local_clock();
2020 int ret = 0;
2021
2022 bch2_trans_verify_not_unlocked_or_in_restart(trans);
2023 BUG_ON(!trans->paths[path].should_be_locked);
2024 BUG_ON(!btree_node_locked(&trans->paths[path], level));
2025
2026 /*
2027 * Work around a deadlock caused by the btree write buffer not doing
2028 * merges and leaving tons of merges for us to do - we really don't need
2029 * to be doing merges at all from the interior update path, and if the
2030 * interior update path is generating too many new interior updates we
2031 * deadlock:
2032 */
2033 if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates)
2034 return 0;
2035
2036 if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) {
2037 flags &= ~BCH_WATERMARK_MASK;
2038 flags |= BCH_WATERMARK_btree;
2039 flags |= BCH_TRANS_COMMIT_journal_reclaim;
2040 }
2041
2042 b = trans->paths[path].l[level].b;
2043
2044 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
2045 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
2046 b->sib_u64s[sib] = U16_MAX;
2047 return 0;
2048 }
2049
2050 sib_pos = sib == btree_prev_sib
2051 ? bpos_predecessor(b->data->min_key)
2052 : bpos_successor(b->data->max_key);
2053
2054 sib_path = bch2_path_get(trans, btree, sib_pos,
2055 U8_MAX, level, BTREE_ITER_intent, _THIS_IP_);
2056 ret = bch2_btree_path_traverse(trans, sib_path, false);
2057 if (ret)
2058 goto err;
2059
2060 btree_path_set_should_be_locked(trans, trans->paths + sib_path);
2061
2062 m = trans->paths[sib_path].l[level].b;
2063
2064 if (btree_node_parent(trans->paths + path, b) !=
2065 btree_node_parent(trans->paths + sib_path, m)) {
2066 b->sib_u64s[sib] = U16_MAX;
2067 goto out;
2068 }
2069
2070 if (sib == btree_prev_sib) {
2071 prev = m;
2072 next = b;
2073 } else {
2074 prev = b;
2075 next = m;
2076 }
2077
2078 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
2079 struct printbuf buf = PRINTBUF;
2080
2081 printbuf_indent_add_nextline(&buf, 2);
2082 prt_printf(&buf, "%s(): ", __func__);
2083 ret = __bch2_topology_error(c, &buf);
2084 prt_newline(&buf);
2085
2086 prt_printf(&buf, "prev ends at ");
2087 bch2_bpos_to_text(&buf, prev->data->max_key);
2088 prt_newline(&buf);
2089
2090 prt_printf(&buf, "next starts at ");
2091 bch2_bpos_to_text(&buf, next->data->min_key);
2092
2093 bch_err(c, "%s", buf.buf);
2094 printbuf_exit(&buf);
2095 goto err;
2096 }
2097
2098 bch2_bkey_format_init(&new_s);
2099 bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
2100 __bch2_btree_calc_format(&new_s, prev);
2101 __bch2_btree_calc_format(&new_s, next);
2102 bch2_bkey_format_add_pos(&new_s, next->data->max_key);
2103 new_f = bch2_bkey_format_done(&new_s);
2104
2105 sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) +
2106 btree_node_u64s_with_format(m->nr, &m->format, &new_f);
2107
2108 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
2109 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2110 sib_u64s /= 2;
2111 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
2112 }
2113
2114 sib_u64s = min(sib_u64s, btree_max_u64s(c));
2115 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
2116 b->sib_u64s[sib] = sib_u64s;
2117
2118 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
2119 goto out;
2120
2121 parent = btree_node_parent(trans->paths + path, b);
2122 as = bch2_btree_update_start(trans, trans->paths + path, level, false,
2123 0, BCH_TRANS_COMMIT_no_enospc|flags);
2124 ret = PTR_ERR_OR_ZERO(as);
2125 if (ret)
2126 goto err;
2127
2128 as->node_start = prev->data->min_key;
2129 as->node_end = next->data->max_key;
2130
2131 trace_and_count(c, btree_node_merge, trans, b);
2132
2133 n = bch2_btree_node_alloc(as, trans, b->c.level);
2134
2135 SET_BTREE_NODE_SEQ(n->data,
2136 max(BTREE_NODE_SEQ(b->data),
2137 BTREE_NODE_SEQ(m->data)) + 1);
2138
2139 btree_set_min(n, prev->data->min_key);
2140 btree_set_max(n, next->data->max_key);
2141
2142 n->data->format = new_f;
2143 btree_node_set_format(n, new_f);
2144
2145 bch2_btree_sort_into(c, n, prev);
2146 bch2_btree_sort_into(c, n, next);
2147
2148 bch2_btree_build_aux_trees(n);
2149 bch2_btree_update_add_new_node(as, n);
2150 six_unlock_write(&n->c.lock);
2151
2152 new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p);
2153 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2154 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2155 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2156
2157 bkey_init(&delete.k);
2158 delete.k.p = prev->key.k.p;
2159 bch2_keylist_add(&as->parent_keys, &delete);
2160 bch2_keylist_add(&as->parent_keys, &n->key);
2161
2162 bch2_trans_verify_paths(trans);
2163
2164 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys);
2165 if (ret)
2166 goto err_free_update;
2167
2168 bch2_btree_interior_update_will_free_node(as, b);
2169 bch2_btree_interior_update_will_free_node(as, m);
2170
2171 bch2_trans_verify_paths(trans);
2172
2173 bch2_btree_update_get_open_buckets(as, n);
2174 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2175
2176 bch2_btree_node_free_inmem(trans, trans->paths + path, b);
2177 bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m);
2178
2179 bch2_trans_node_add(trans, trans->paths + path, n);
2180
2181 bch2_trans_verify_paths(trans);
2182
2183 six_unlock_intent(&n->c.lock);
2184
2185 bch2_btree_update_done(as, trans);
2186
2187 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
2188 out:
2189 err:
2190 if (new_path)
2191 bch2_path_put(trans, new_path, true);
2192 bch2_path_put(trans, sib_path, true);
2193 bch2_trans_verify_locks(trans);
2194 if (ret == -BCH_ERR_journal_reclaim_would_deadlock)
2195 ret = 0;
2196 if (!ret)
2197 ret = bch2_trans_relock(trans);
2198 return ret;
2199 err_free_update:
2200 bch2_btree_node_free_never_used(as, trans, n);
2201 bch2_btree_update_free(as, trans);
2202 goto out;
2203 }
2204
get_iter_to_node(struct btree_trans * trans,struct btree_iter * iter,struct btree * b)2205 static int get_iter_to_node(struct btree_trans *trans, struct btree_iter *iter,
2206 struct btree *b)
2207 {
2208 bch2_trans_node_iter_init(trans, iter, b->c.btree_id, b->key.k.p,
2209 BTREE_MAX_DEPTH, b->c.level,
2210 BTREE_ITER_intent);
2211 int ret = bch2_btree_iter_traverse(trans, iter);
2212 if (ret)
2213 goto err;
2214
2215 /* has node been freed? */
2216 if (btree_iter_path(trans, iter)->l[b->c.level].b != b) {
2217 /* node has been freed: */
2218 BUG_ON(!btree_node_dying(b));
2219 ret = bch_err_throw(trans->c, btree_node_dying);
2220 goto err;
2221 }
2222
2223 BUG_ON(!btree_node_hashed(b));
2224 return 0;
2225 err:
2226 bch2_trans_iter_exit(trans, iter);
2227 return ret;
2228 }
2229
bch2_btree_node_rewrite(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,unsigned target,unsigned flags)2230 int bch2_btree_node_rewrite(struct btree_trans *trans,
2231 struct btree_iter *iter,
2232 struct btree *b,
2233 unsigned target,
2234 unsigned flags)
2235 {
2236 struct bch_fs *c = trans->c;
2237 struct btree *n, *parent;
2238 struct btree_update *as;
2239 btree_path_idx_t new_path = 0;
2240 int ret;
2241
2242 flags |= BCH_TRANS_COMMIT_no_enospc;
2243
2244 struct btree_path *path = btree_iter_path(trans, iter);
2245 parent = btree_node_parent(path, b);
2246 as = bch2_btree_update_start(trans, path, b->c.level,
2247 false, target, flags);
2248 ret = PTR_ERR_OR_ZERO(as);
2249 if (ret)
2250 goto out;
2251
2252 n = bch2_btree_node_alloc_replacement(as, trans, b);
2253
2254 bch2_btree_build_aux_trees(n);
2255 bch2_btree_update_add_new_node(as, n);
2256 six_unlock_write(&n->c.lock);
2257
2258 new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p);
2259 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
2260 mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
2261 bch2_btree_path_level_init(trans, trans->paths + new_path, n);
2262
2263 trace_and_count(c, btree_node_rewrite, trans, b);
2264
2265 if (parent) {
2266 bch2_keylist_add(&as->parent_keys, &n->key);
2267 ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys);
2268 } else {
2269 ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false);
2270 }
2271
2272 if (ret)
2273 goto err;
2274
2275 bch2_btree_interior_update_will_free_node(as, b);
2276
2277 bch2_btree_update_get_open_buckets(as, n);
2278 bch2_btree_node_write_trans(trans, n, SIX_LOCK_intent, 0);
2279
2280 bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b);
2281
2282 bch2_trans_node_add(trans, trans->paths + iter->path, n);
2283 six_unlock_intent(&n->c.lock);
2284
2285 bch2_btree_update_done(as, trans);
2286 out:
2287 if (new_path)
2288 bch2_path_put(trans, new_path, true);
2289 bch2_trans_downgrade(trans);
2290 return ret;
2291 err:
2292 bch2_btree_node_free_never_used(as, trans, n);
2293 bch2_btree_update_free(as, trans);
2294 goto out;
2295 }
2296
bch2_btree_node_rewrite_key(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bkey_i * k,unsigned flags)2297 int bch2_btree_node_rewrite_key(struct btree_trans *trans,
2298 enum btree_id btree, unsigned level,
2299 struct bkey_i *k, unsigned flags)
2300 {
2301 struct btree_iter iter;
2302 bch2_trans_node_iter_init(trans, &iter,
2303 btree, k->k.p,
2304 BTREE_MAX_DEPTH, level, 0);
2305 struct btree *b = bch2_btree_iter_peek_node(trans, &iter);
2306 int ret = PTR_ERR_OR_ZERO(b);
2307 if (ret)
2308 goto out;
2309
2310 bool found = b && btree_ptr_hash_val(&b->key) == btree_ptr_hash_val(k);
2311 ret = found
2312 ? bch2_btree_node_rewrite(trans, &iter, b, 0, flags)
2313 : -ENOENT;
2314 out:
2315 bch2_trans_iter_exit(trans, &iter);
2316 return ret;
2317 }
2318
bch2_btree_node_rewrite_pos(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bpos pos,unsigned target,unsigned flags)2319 int bch2_btree_node_rewrite_pos(struct btree_trans *trans,
2320 enum btree_id btree, unsigned level,
2321 struct bpos pos,
2322 unsigned target,
2323 unsigned flags)
2324 {
2325 BUG_ON(!level);
2326
2327 /* Traverse one depth lower to get a pointer to the node itself: */
2328 struct btree_iter iter;
2329 bch2_trans_node_iter_init(trans, &iter, btree, pos, 0, level - 1, 0);
2330 struct btree *b = bch2_btree_iter_peek_node(trans, &iter);
2331 int ret = PTR_ERR_OR_ZERO(b);
2332 if (ret)
2333 goto err;
2334
2335 ret = bch2_btree_node_rewrite(trans, &iter, b, target, flags);
2336 err:
2337 bch2_trans_iter_exit(trans, &iter);
2338 return ret;
2339 }
2340
bch2_btree_node_rewrite_key_get_iter(struct btree_trans * trans,struct btree * b,unsigned flags)2341 int bch2_btree_node_rewrite_key_get_iter(struct btree_trans *trans,
2342 struct btree *b, unsigned flags)
2343 {
2344 struct btree_iter iter;
2345 int ret = get_iter_to_node(trans, &iter, b);
2346 if (ret)
2347 return ret == -BCH_ERR_btree_node_dying ? 0 : ret;
2348
2349 ret = bch2_btree_node_rewrite(trans, &iter, b, 0, flags);
2350 bch2_trans_iter_exit(trans, &iter);
2351 return ret;
2352 }
2353
2354 struct async_btree_rewrite {
2355 struct bch_fs *c;
2356 struct work_struct work;
2357 struct list_head list;
2358 enum btree_id btree_id;
2359 unsigned level;
2360 struct bkey_buf key;
2361 };
2362
async_btree_node_rewrite_work(struct work_struct * work)2363 static void async_btree_node_rewrite_work(struct work_struct *work)
2364 {
2365 struct async_btree_rewrite *a =
2366 container_of(work, struct async_btree_rewrite, work);
2367 struct bch_fs *c = a->c;
2368
2369 int ret = bch2_trans_do(c, bch2_btree_node_rewrite_key(trans,
2370 a->btree_id, a->level, a->key.k, 0));
2371 if (!bch2_err_matches(ret, ENOENT) &&
2372 !bch2_err_matches(ret, EROFS))
2373 bch_err_fn_ratelimited(c, ret);
2374
2375 spin_lock(&c->btree_node_rewrites_lock);
2376 list_del(&a->list);
2377 spin_unlock(&c->btree_node_rewrites_lock);
2378
2379 closure_wake_up(&c->btree_node_rewrites_wait);
2380
2381 bch2_bkey_buf_exit(&a->key, c);
2382 enumerated_ref_put(&c->writes, BCH_WRITE_REF_node_rewrite);
2383 kfree(a);
2384 }
2385
bch2_btree_node_rewrite_async(struct bch_fs * c,struct btree * b)2386 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2387 {
2388 struct async_btree_rewrite *a = kmalloc(sizeof(*a), GFP_NOFS);
2389 if (!a)
2390 return;
2391
2392 a->c = c;
2393 a->btree_id = b->c.btree_id;
2394 a->level = b->c.level;
2395 INIT_WORK(&a->work, async_btree_node_rewrite_work);
2396
2397 bch2_bkey_buf_init(&a->key);
2398 bch2_bkey_buf_copy(&a->key, c, &b->key);
2399
2400 bool now = false, pending = false;
2401
2402 spin_lock(&c->btree_node_rewrites_lock);
2403 if (c->recovery.passes_complete & BIT_ULL(BCH_RECOVERY_PASS_journal_replay) &&
2404 enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_node_rewrite)) {
2405 list_add(&a->list, &c->btree_node_rewrites);
2406 now = true;
2407 } else if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
2408 list_add(&a->list, &c->btree_node_rewrites_pending);
2409 pending = true;
2410 }
2411 spin_unlock(&c->btree_node_rewrites_lock);
2412
2413 if (now) {
2414 queue_work(c->btree_node_rewrite_worker, &a->work);
2415 } else if (pending) {
2416 /* bch2_do_pending_node_rewrites will execute */
2417 } else {
2418 bch2_bkey_buf_exit(&a->key, c);
2419 kfree(a);
2420 }
2421 }
2422
bch2_async_btree_node_rewrites_flush(struct bch_fs * c)2423 void bch2_async_btree_node_rewrites_flush(struct bch_fs *c)
2424 {
2425 closure_wait_event(&c->btree_node_rewrites_wait,
2426 list_empty(&c->btree_node_rewrites));
2427 }
2428
bch2_do_pending_node_rewrites(struct bch_fs * c)2429 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2430 {
2431 while (1) {
2432 spin_lock(&c->btree_node_rewrites_lock);
2433 struct async_btree_rewrite *a =
2434 list_pop_entry(&c->btree_node_rewrites_pending,
2435 struct async_btree_rewrite, list);
2436 if (a)
2437 list_add(&a->list, &c->btree_node_rewrites);
2438 spin_unlock(&c->btree_node_rewrites_lock);
2439
2440 if (!a)
2441 break;
2442
2443 enumerated_ref_get(&c->writes, BCH_WRITE_REF_node_rewrite);
2444 queue_work(c->btree_node_rewrite_worker, &a->work);
2445 }
2446 }
2447
bch2_free_pending_node_rewrites(struct bch_fs * c)2448 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2449 {
2450 while (1) {
2451 spin_lock(&c->btree_node_rewrites_lock);
2452 struct async_btree_rewrite *a =
2453 list_pop_entry(&c->btree_node_rewrites_pending,
2454 struct async_btree_rewrite, list);
2455 spin_unlock(&c->btree_node_rewrites_lock);
2456
2457 if (!a)
2458 break;
2459
2460 bch2_bkey_buf_exit(&a->key, c);
2461 kfree(a);
2462 }
2463 }
2464
__bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct btree * new_hash,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2465 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2466 struct btree_iter *iter,
2467 struct btree *b, struct btree *new_hash,
2468 struct bkey_i *new_key,
2469 unsigned commit_flags,
2470 bool skip_triggers)
2471 {
2472 struct bch_fs *c = trans->c;
2473 struct btree_iter iter2 = {};
2474 struct btree *parent;
2475 int ret;
2476
2477 if (!skip_triggers) {
2478 ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1,
2479 bkey_i_to_s_c(&b->key),
2480 BTREE_TRIGGER_transactional) ?:
2481 bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1,
2482 bkey_i_to_s(new_key),
2483 BTREE_TRIGGER_transactional);
2484 if (ret)
2485 return ret;
2486 }
2487
2488 if (new_hash) {
2489 bkey_copy(&new_hash->key, new_key);
2490 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2491 new_hash, b->c.level, b->c.btree_id);
2492 BUG_ON(ret);
2493 }
2494
2495 parent = btree_node_parent(btree_iter_path(trans, iter), b);
2496 if (parent) {
2497 bch2_trans_copy_iter(trans, &iter2, iter);
2498
2499 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2500 iter2.flags & BTREE_ITER_intent,
2501 _THIS_IP_);
2502
2503 struct btree_path *path2 = btree_iter_path(trans, &iter2);
2504 BUG_ON(path2->level != b->c.level);
2505 BUG_ON(!bpos_eq(path2->pos, new_key->k.p));
2506
2507 btree_path_set_level_up(trans, path2);
2508
2509 trans->paths_sorted = false;
2510
2511 ret = bch2_btree_iter_traverse(trans, &iter2) ?:
2512 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun);
2513 if (ret)
2514 goto err;
2515 } else {
2516 BUG_ON(btree_node_root(c, b) != b);
2517
2518 struct jset_entry *e = bch2_trans_jset_entry_alloc(trans,
2519 jset_u64s(new_key->k.u64s));
2520 ret = PTR_ERR_OR_ZERO(e);
2521 if (ret)
2522 return ret;
2523
2524 journal_entry_set(e,
2525 BCH_JSET_ENTRY_btree_root,
2526 b->c.btree_id, b->c.level,
2527 new_key, new_key->k.u64s);
2528 }
2529
2530 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2531 if (ret)
2532 goto err;
2533
2534 bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c);
2535
2536 if (new_hash) {
2537 mutex_lock(&c->btree_cache.lock);
2538 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2539
2540 __bch2_btree_node_hash_remove(&c->btree_cache, b);
2541
2542 bkey_copy(&b->key, new_key);
2543 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2544 BUG_ON(ret);
2545 mutex_unlock(&c->btree_cache.lock);
2546 } else {
2547 bkey_copy(&b->key, new_key);
2548 }
2549
2550 bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b);
2551 out:
2552 bch2_trans_iter_exit(trans, &iter2);
2553 return ret;
2554 err:
2555 if (new_hash) {
2556 mutex_lock(&c->btree_cache.lock);
2557 bch2_btree_node_hash_remove(&c->btree_cache, b);
2558 mutex_unlock(&c->btree_cache.lock);
2559 }
2560 goto out;
2561 }
2562
bch2_btree_node_update_key(struct btree_trans * trans,struct btree_iter * iter,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2563 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2564 struct btree *b, struct bkey_i *new_key,
2565 unsigned commit_flags, bool skip_triggers)
2566 {
2567 struct bch_fs *c = trans->c;
2568 struct btree *new_hash = NULL;
2569 struct btree_path *path = btree_iter_path(trans, iter);
2570 struct closure cl;
2571 int ret = 0;
2572
2573 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2574 if (ret)
2575 return ret;
2576
2577 closure_init_stack(&cl);
2578
2579 /*
2580 * check btree_ptr_hash_val() after @b is locked by
2581 * btree_iter_traverse():
2582 */
2583 if (btree_ptr_hash_val(new_key) != b->hash_val) {
2584 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2585 if (ret) {
2586 ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2587 if (ret)
2588 return ret;
2589 }
2590
2591 new_hash = bch2_btree_node_mem_alloc(trans, false);
2592 ret = PTR_ERR_OR_ZERO(new_hash);
2593 if (ret)
2594 goto err;
2595 }
2596
2597 path->intent_ref++;
2598 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2599 commit_flags, skip_triggers);
2600 --path->intent_ref;
2601
2602 if (new_hash)
2603 bch2_btree_node_to_freelist(c, new_hash);
2604 err:
2605 closure_sync(&cl);
2606 bch2_btree_cache_cannibalize_unlock(trans);
2607 return ret;
2608 }
2609
bch2_btree_node_update_key_get_iter(struct btree_trans * trans,struct btree * b,struct bkey_i * new_key,unsigned commit_flags,bool skip_triggers)2610 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2611 struct btree *b, struct bkey_i *new_key,
2612 unsigned commit_flags, bool skip_triggers)
2613 {
2614 struct btree_iter iter;
2615 int ret = get_iter_to_node(trans, &iter, b);
2616 if (ret)
2617 return ret == -BCH_ERR_btree_node_dying ? 0 : ret;
2618
2619 bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr,
2620 !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev));
2621
2622 ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2623 commit_flags, skip_triggers);
2624 bch2_trans_iter_exit(trans, &iter);
2625 return ret;
2626 }
2627
2628 /* Init code: */
2629
2630 /*
2631 * Only for filesystem bringup, when first reading the btree roots or allocating
2632 * btree roots when initializing a new filesystem:
2633 */
bch2_btree_set_root_for_read(struct bch_fs * c,struct btree * b)2634 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2635 {
2636 BUG_ON(btree_node_root(c, b));
2637
2638 bch2_btree_set_root_inmem(c, b);
2639 }
2640
bch2_btree_root_alloc_fake_trans(struct btree_trans * trans,enum btree_id id,unsigned level)2641 int bch2_btree_root_alloc_fake_trans(struct btree_trans *trans, enum btree_id id, unsigned level)
2642 {
2643 struct bch_fs *c = trans->c;
2644 struct closure cl;
2645 struct btree *b;
2646 int ret;
2647
2648 closure_init_stack(&cl);
2649
2650 do {
2651 ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
2652 closure_sync(&cl);
2653 } while (ret);
2654
2655 b = bch2_btree_node_mem_alloc(trans, false);
2656 bch2_btree_cache_cannibalize_unlock(trans);
2657
2658 ret = PTR_ERR_OR_ZERO(b);
2659 if (ret)
2660 return ret;
2661
2662 set_btree_node_fake(b);
2663 set_btree_node_need_rewrite(b);
2664 b->c.level = level;
2665 b->c.btree_id = id;
2666
2667 bkey_btree_ptr_init(&b->key);
2668 b->key.k.p = SPOS_MAX;
2669 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2670
2671 bch2_bset_init_first(b, &b->data->keys);
2672 bch2_btree_build_aux_trees(b);
2673
2674 b->data->flags = 0;
2675 btree_set_min(b, POS_MIN);
2676 btree_set_max(b, SPOS_MAX);
2677 b->data->format = bch2_btree_calc_format(b);
2678 btree_node_set_format(b, b->data->format);
2679
2680 ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2681 b->c.level, b->c.btree_id);
2682 BUG_ON(ret);
2683
2684 bch2_btree_set_root_inmem(c, b);
2685
2686 six_unlock_write(&b->c.lock);
2687 six_unlock_intent(&b->c.lock);
2688 return 0;
2689 }
2690
bch2_btree_root_alloc_fake(struct bch_fs * c,enum btree_id id,unsigned level)2691 void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level)
2692 {
2693 bch2_trans_run(c, lockrestart_do(trans, bch2_btree_root_alloc_fake_trans(trans, id, level)));
2694 }
2695
bch2_btree_update_to_text(struct printbuf * out,struct btree_update * as)2696 static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as)
2697 {
2698 prt_printf(out, "%ps: ", (void *) as->ip_started);
2699 bch2_trans_commit_flags_to_text(out, as->flags);
2700
2701 prt_str(out, " ");
2702 bch2_btree_id_to_text(out, as->btree_id);
2703 prt_printf(out, " l=%u-%u ",
2704 as->update_level_start,
2705 as->update_level_end);
2706 bch2_bpos_to_text(out, as->node_start);
2707 prt_char(out, ' ');
2708 bch2_bpos_to_text(out, as->node_end);
2709 prt_printf(out, "\nwritten %u/%u u64s_remaining %u need_rewrite %s",
2710 as->node_written,
2711 as->node_sectors,
2712 as->node_remaining,
2713 btree_node_reawrite_reason_strs[as->node_needed_rewrite]);
2714
2715 prt_printf(out, "\nmode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n",
2716 bch2_btree_update_modes[as->mode],
2717 as->nodes_written,
2718 closure_nr_remaining(&as->cl),
2719 as->journal.seq);
2720 }
2721
bch2_btree_updates_to_text(struct printbuf * out,struct bch_fs * c)2722 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2723 {
2724 struct btree_update *as;
2725
2726 mutex_lock(&c->btree_interior_update_lock);
2727 list_for_each_entry(as, &c->btree_interior_update_list, list)
2728 bch2_btree_update_to_text(out, as);
2729 mutex_unlock(&c->btree_interior_update_lock);
2730 }
2731
bch2_btree_interior_updates_pending(struct bch_fs * c)2732 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2733 {
2734 bool ret;
2735
2736 mutex_lock(&c->btree_interior_update_lock);
2737 ret = !list_empty(&c->btree_interior_update_list);
2738 mutex_unlock(&c->btree_interior_update_lock);
2739
2740 return ret;
2741 }
2742
bch2_btree_interior_updates_flush(struct bch_fs * c)2743 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2744 {
2745 bool ret = bch2_btree_interior_updates_pending(c);
2746
2747 if (ret)
2748 closure_wait_event(&c->btree_interior_update_wait,
2749 !bch2_btree_interior_updates_pending(c));
2750 return ret;
2751 }
2752
bch2_journal_entry_to_btree_root(struct bch_fs * c,struct jset_entry * entry)2753 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2754 {
2755 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2756
2757 mutex_lock(&c->btree_root_lock);
2758
2759 r->level = entry->level;
2760 r->alive = true;
2761 bkey_copy(&r->key, (struct bkey_i *) entry->start);
2762
2763 mutex_unlock(&c->btree_root_lock);
2764 }
2765
2766 struct jset_entry *
bch2_btree_roots_to_journal_entries(struct bch_fs * c,struct jset_entry * end,unsigned long skip)2767 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2768 struct jset_entry *end,
2769 unsigned long skip)
2770 {
2771 unsigned i;
2772
2773 mutex_lock(&c->btree_root_lock);
2774
2775 for (i = 0; i < btree_id_nr_alive(c); i++) {
2776 struct btree_root *r = bch2_btree_id_root(c, i);
2777
2778 if (r->alive && !test_bit(i, &skip)) {
2779 journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2780 i, r->level, &r->key, r->key.k.u64s);
2781 end = vstruct_next(end);
2782 }
2783 }
2784
2785 mutex_unlock(&c->btree_root_lock);
2786
2787 return end;
2788 }
2789
bch2_btree_alloc_to_text(struct printbuf * out,struct bch_fs * c,struct btree_alloc * a)2790 static void bch2_btree_alloc_to_text(struct printbuf *out,
2791 struct bch_fs *c,
2792 struct btree_alloc *a)
2793 {
2794 printbuf_indent_add(out, 2);
2795 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&a->k));
2796 prt_newline(out);
2797
2798 struct open_bucket *ob;
2799 unsigned i;
2800 open_bucket_for_each(c, &a->ob, ob, i)
2801 bch2_open_bucket_to_text(out, c, ob);
2802
2803 printbuf_indent_sub(out, 2);
2804 }
2805
bch2_btree_reserve_cache_to_text(struct printbuf * out,struct bch_fs * c)2806 void bch2_btree_reserve_cache_to_text(struct printbuf *out, struct bch_fs *c)
2807 {
2808 for (unsigned i = 0; i < c->btree_reserve_cache_nr; i++)
2809 bch2_btree_alloc_to_text(out, c, &c->btree_reserve_cache[i]);
2810 }
2811
bch2_fs_btree_interior_update_exit(struct bch_fs * c)2812 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2813 {
2814 WARN_ON(!list_empty(&c->btree_node_rewrites));
2815 WARN_ON(!list_empty(&c->btree_node_rewrites_pending));
2816
2817 if (c->btree_node_rewrite_worker)
2818 destroy_workqueue(c->btree_node_rewrite_worker);
2819 if (c->btree_interior_update_worker)
2820 destroy_workqueue(c->btree_interior_update_worker);
2821 mempool_exit(&c->btree_interior_update_pool);
2822 }
2823
bch2_fs_btree_interior_update_init_early(struct bch_fs * c)2824 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2825 {
2826 mutex_init(&c->btree_reserve_cache_lock);
2827 INIT_LIST_HEAD(&c->btree_interior_update_list);
2828 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2829 mutex_init(&c->btree_interior_update_lock);
2830 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2831
2832 INIT_LIST_HEAD(&c->btree_node_rewrites);
2833 INIT_LIST_HEAD(&c->btree_node_rewrites_pending);
2834 spin_lock_init(&c->btree_node_rewrites_lock);
2835 }
2836
bch2_fs_btree_interior_update_init(struct bch_fs * c)2837 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2838 {
2839 c->btree_interior_update_worker =
2840 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8);
2841 if (!c->btree_interior_update_worker)
2842 return bch_err_throw(c, ENOMEM_btree_interior_update_worker_init);
2843
2844 c->btree_node_rewrite_worker =
2845 alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND);
2846 if (!c->btree_node_rewrite_worker)
2847 return bch_err_throw(c, ENOMEM_btree_interior_update_worker_init);
2848
2849 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2850 sizeof(struct btree_update)))
2851 return bch_err_throw(c, ENOMEM_btree_interior_update_pool_init);
2852
2853 return 0;
2854 }
2855