1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <linux/sort.h>
40 #include <trace/events/bcache.h>
41
42 /*
43 * Todo:
44 * register_bcache: Return errors out to userspace correctly
45 *
46 * Writeback: don't undirty key until after a cache flush
47 *
48 * Create an iterator for key pointers
49 *
50 * On btree write error, mark bucket such that it won't be freed from the cache
51 *
52 * Journalling:
53 * Check for bad keys in replay
54 * Propagate barriers
55 * Refcount journal entries in journal_replay
56 *
57 * Garbage collection:
58 * Finish incremental gc
59 * Gc should free old UUIDs, data for invalid UUIDs
60 *
61 * Provide a way to list backing device UUIDs we have data cached for, and
62 * probably how long it's been since we've seen them, and a way to invalidate
63 * dirty data for devices that will never be attached again
64 *
65 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
66 * that based on that and how much dirty data we have we can keep writeback
67 * from being starved
68 *
69 * Add a tracepoint or somesuch to watch for writeback starvation
70 *
71 * When btree depth > 1 and splitting an interior node, we have to make sure
72 * alloc_bucket() cannot fail. This should be true but is not completely
73 * obvious.
74 *
75 * Plugging?
76 *
77 * If data write is less than hard sector size of ssd, round up offset in open
78 * bucket to the next whole sector
79 *
80 * Superblock needs to be fleshed out for multiple cache devices
81 *
82 * Add a sysfs tunable for the number of writeback IOs in flight
83 *
84 * Add a sysfs tunable for the number of open data buckets
85 *
86 * IO tracking: Can we track when one process is doing io on behalf of another?
87 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 *
89 * Test module load/unload
90 */
91
92 #define MAX_GC_TIMES 100
93 #define MIN_GC_NODES 100
94 #define GC_SLEEP_MS 100
95
96 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
97
98 #define PTR_HASH(c, k) \
99 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
100
101 static struct workqueue_struct *btree_io_wq;
102
103 #define insert_lock(s, b) ((b)->level <= (s)->lock)
104
105
write_block(struct btree * b)106 static inline struct bset *write_block(struct btree *b)
107 {
108 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
109 }
110
bch_btree_init_next(struct btree * b)111 static void bch_btree_init_next(struct btree *b)
112 {
113 /* If not a leaf node, always sort */
114 if (b->level && b->keys.nsets)
115 bch_btree_sort(&b->keys, &b->c->sort);
116 else
117 bch_btree_sort_lazy(&b->keys, &b->c->sort);
118
119 if (b->written < btree_blocks(b))
120 bch_bset_init_next(&b->keys, write_block(b),
121 bset_magic(&b->c->cache->sb));
122
123 }
124
125 /* Btree key manipulation */
126
bkey_put(struct cache_set * c,struct bkey * k)127 void bkey_put(struct cache_set *c, struct bkey *k)
128 {
129 unsigned int i;
130
131 for (i = 0; i < KEY_PTRS(k); i++)
132 if (ptr_available(c, k, i))
133 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
134 }
135
136 /* Btree IO */
137
btree_csum_set(struct btree * b,struct bset * i)138 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
139 {
140 uint64_t crc = b->key.ptr[0];
141 void *data = (void *) i + 8, *end = bset_bkey_last(i);
142
143 crc = crc64_be(crc, data, end - data);
144 return crc ^ 0xffffffffffffffffULL;
145 }
146
bch_btree_node_read_done(struct btree * b)147 void bch_btree_node_read_done(struct btree *b)
148 {
149 const char *err = "bad btree header";
150 struct bset *i = btree_bset_first(b);
151 struct btree_iter *iter;
152
153 /*
154 * c->fill_iter can allocate an iterator with more memory space
155 * than static MAX_BSETS.
156 * See the comment arount cache_set->fill_iter.
157 */
158 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
159 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
160 iter->used = 0;
161
162 #ifdef CONFIG_BCACHE_DEBUG
163 iter->b = &b->keys;
164 #endif
165
166 if (!i->seq)
167 goto err;
168
169 for (;
170 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
171 i = write_block(b)) {
172 err = "unsupported bset version";
173 if (i->version > BCACHE_BSET_VERSION)
174 goto err;
175
176 err = "bad btree header";
177 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
178 btree_blocks(b))
179 goto err;
180
181 err = "bad magic";
182 if (i->magic != bset_magic(&b->c->cache->sb))
183 goto err;
184
185 err = "bad checksum";
186 switch (i->version) {
187 case 0:
188 if (i->csum != csum_set(i))
189 goto err;
190 break;
191 case BCACHE_BSET_VERSION:
192 if (i->csum != btree_csum_set(b, i))
193 goto err;
194 break;
195 }
196
197 err = "empty set";
198 if (i != b->keys.set[0].data && !i->keys)
199 goto err;
200
201 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
202
203 b->written += set_blocks(i, block_bytes(b->c->cache));
204 }
205
206 err = "corrupted btree";
207 for (i = write_block(b);
208 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
209 i = ((void *) i) + block_bytes(b->c->cache))
210 if (i->seq == b->keys.set[0].data->seq)
211 goto err;
212
213 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
214
215 i = b->keys.set[0].data;
216 err = "short btree key";
217 if (b->keys.set[0].size &&
218 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
219 goto err;
220
221 if (b->written < btree_blocks(b))
222 bch_bset_init_next(&b->keys, write_block(b),
223 bset_magic(&b->c->cache->sb));
224 out:
225 mempool_free(iter, &b->c->fill_iter);
226 return;
227 err:
228 set_btree_node_io_error(b);
229 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
230 err, PTR_BUCKET_NR(b->c, &b->key, 0),
231 bset_block_offset(b, i), i->keys);
232 goto out;
233 }
234
btree_node_read_endio(struct bio * bio)235 static void btree_node_read_endio(struct bio *bio)
236 {
237 struct closure *cl = bio->bi_private;
238
239 closure_put(cl);
240 }
241
bch_btree_node_read(struct btree * b)242 static void bch_btree_node_read(struct btree *b)
243 {
244 uint64_t start_time = local_clock();
245 struct closure cl;
246 struct bio *bio;
247
248 trace_bcache_btree_read(b);
249
250 closure_init_stack(&cl);
251
252 bio = bch_bbio_alloc(b->c);
253 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
254 bio->bi_end_io = btree_node_read_endio;
255 bio->bi_private = &cl;
256 bio->bi_opf = REQ_OP_READ | REQ_META;
257
258 bch_bio_map(bio, b->keys.set[0].data);
259
260 bch_submit_bbio(bio, b->c, &b->key, 0);
261 closure_sync(&cl);
262
263 if (bio->bi_status)
264 set_btree_node_io_error(b);
265
266 bch_bbio_free(bio, b->c);
267
268 if (btree_node_io_error(b))
269 goto err;
270
271 bch_btree_node_read_done(b);
272 bch_time_stats_update(&b->c->btree_read_time, start_time);
273
274 return;
275 err:
276 bch_cache_set_error(b->c, "io error reading bucket %zu",
277 PTR_BUCKET_NR(b->c, &b->key, 0));
278 }
279
btree_complete_write(struct btree * b,struct btree_write * w)280 static void btree_complete_write(struct btree *b, struct btree_write *w)
281 {
282 if (w->prio_blocked &&
283 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
284 wake_up_allocators(b->c);
285
286 if (w->journal) {
287 atomic_dec_bug(w->journal);
288 __closure_wake_up(&b->c->journal.wait);
289 }
290
291 w->prio_blocked = 0;
292 w->journal = NULL;
293 }
294
CLOSURE_CALLBACK(btree_node_write_unlock)295 static CLOSURE_CALLBACK(btree_node_write_unlock)
296 {
297 closure_type(b, struct btree, io);
298
299 up(&b->io_mutex);
300 }
301
CLOSURE_CALLBACK(__btree_node_write_done)302 static CLOSURE_CALLBACK(__btree_node_write_done)
303 {
304 closure_type(b, struct btree, io);
305 struct btree_write *w = btree_prev_write(b);
306
307 bch_bbio_free(b->bio, b->c);
308 b->bio = NULL;
309 btree_complete_write(b, w);
310
311 if (btree_node_dirty(b))
312 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
313
314 closure_return_with_destructor(cl, btree_node_write_unlock);
315 }
316
CLOSURE_CALLBACK(btree_node_write_done)317 static CLOSURE_CALLBACK(btree_node_write_done)
318 {
319 closure_type(b, struct btree, io);
320
321 bio_free_pages(b->bio);
322 __btree_node_write_done(&cl->work);
323 }
324
btree_node_write_endio(struct bio * bio)325 static void btree_node_write_endio(struct bio *bio)
326 {
327 struct closure *cl = bio->bi_private;
328 struct btree *b = container_of(cl, struct btree, io);
329
330 if (bio->bi_status)
331 set_btree_node_io_error(b);
332
333 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
334 closure_put(cl);
335 }
336
do_btree_node_write(struct btree * b)337 static void do_btree_node_write(struct btree *b)
338 {
339 struct closure *cl = &b->io;
340 struct bset *i = btree_bset_last(b);
341 BKEY_PADDED(key) k;
342
343 i->version = BCACHE_BSET_VERSION;
344 i->csum = btree_csum_set(b, i);
345
346 BUG_ON(b->bio);
347 b->bio = bch_bbio_alloc(b->c);
348
349 b->bio->bi_end_io = btree_node_write_endio;
350 b->bio->bi_private = cl;
351 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
352 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
353 bch_bio_map(b->bio, i);
354
355 /*
356 * If we're appending to a leaf node, we don't technically need FUA -
357 * this write just needs to be persisted before the next journal write,
358 * which will be marked FLUSH|FUA.
359 *
360 * Similarly if we're writing a new btree root - the pointer is going to
361 * be in the next journal entry.
362 *
363 * But if we're writing a new btree node (that isn't a root) or
364 * appending to a non leaf btree node, we need either FUA or a flush
365 * when we write the parent with the new pointer. FUA is cheaper than a
366 * flush, and writes appending to leaf nodes aren't blocking anything so
367 * just make all btree node writes FUA to keep things sane.
368 */
369
370 bkey_copy(&k.key, &b->key);
371 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
372 bset_sector_offset(&b->keys, i));
373
374 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
375 struct bio_vec *bv;
376 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
377 struct bvec_iter_all iter_all;
378
379 bio_for_each_segment_all(bv, b->bio, iter_all) {
380 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
381 addr += PAGE_SIZE;
382 }
383
384 bch_submit_bbio(b->bio, b->c, &k.key, 0);
385
386 continue_at(cl, btree_node_write_done, NULL);
387 } else {
388 /*
389 * No problem for multipage bvec since the bio is
390 * just allocated
391 */
392 b->bio->bi_vcnt = 0;
393 bch_bio_map(b->bio, i);
394
395 bch_submit_bbio(b->bio, b->c, &k.key, 0);
396
397 closure_sync(cl);
398 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
399 }
400 }
401
__bch_btree_node_write(struct btree * b,struct closure * parent)402 void __bch_btree_node_write(struct btree *b, struct closure *parent)
403 {
404 struct bset *i = btree_bset_last(b);
405
406 lockdep_assert_held(&b->write_lock);
407
408 trace_bcache_btree_write(b);
409
410 BUG_ON(current->bio_list);
411 BUG_ON(b->written >= btree_blocks(b));
412 BUG_ON(b->written && !i->keys);
413 BUG_ON(btree_bset_first(b)->seq != i->seq);
414 bch_check_keys(&b->keys, "writing");
415
416 cancel_delayed_work(&b->work);
417
418 /* If caller isn't waiting for write, parent refcount is cache set */
419 down(&b->io_mutex);
420 closure_init(&b->io, parent ?: &b->c->cl);
421
422 clear_bit(BTREE_NODE_dirty, &b->flags);
423 change_bit(BTREE_NODE_write_idx, &b->flags);
424
425 do_btree_node_write(b);
426
427 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
428 &b->c->cache->btree_sectors_written);
429
430 b->written += set_blocks(i, block_bytes(b->c->cache));
431 }
432
bch_btree_node_write(struct btree * b,struct closure * parent)433 void bch_btree_node_write(struct btree *b, struct closure *parent)
434 {
435 unsigned int nsets = b->keys.nsets;
436
437 lockdep_assert_held(&b->lock);
438
439 __bch_btree_node_write(b, parent);
440
441 /*
442 * do verify if there was more than one set initially (i.e. we did a
443 * sort) and we sorted down to a single set:
444 */
445 if (nsets && !b->keys.nsets)
446 bch_btree_verify(b);
447
448 bch_btree_init_next(b);
449 }
450
bch_btree_node_write_sync(struct btree * b)451 static void bch_btree_node_write_sync(struct btree *b)
452 {
453 struct closure cl;
454
455 closure_init_stack(&cl);
456
457 mutex_lock(&b->write_lock);
458 bch_btree_node_write(b, &cl);
459 mutex_unlock(&b->write_lock);
460
461 closure_sync(&cl);
462 }
463
btree_node_write_work(struct work_struct * w)464 static void btree_node_write_work(struct work_struct *w)
465 {
466 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
467
468 mutex_lock(&b->write_lock);
469 if (btree_node_dirty(b))
470 __bch_btree_node_write(b, NULL);
471 mutex_unlock(&b->write_lock);
472 }
473
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)474 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
475 {
476 struct bset *i = btree_bset_last(b);
477 struct btree_write *w = btree_current_write(b);
478
479 lockdep_assert_held(&b->write_lock);
480
481 BUG_ON(!b->written);
482 BUG_ON(!i->keys);
483
484 if (!btree_node_dirty(b))
485 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
486
487 set_btree_node_dirty(b);
488
489 /*
490 * w->journal is always the oldest journal pin of all bkeys
491 * in the leaf node, to make sure the oldest jset seq won't
492 * be increased before this btree node is flushed.
493 */
494 if (journal_ref) {
495 if (w->journal &&
496 journal_pin_cmp(b->c, w->journal, journal_ref)) {
497 atomic_dec_bug(w->journal);
498 w->journal = NULL;
499 }
500
501 if (!w->journal) {
502 w->journal = journal_ref;
503 atomic_inc(w->journal);
504 }
505 }
506
507 /* Force write if set is too big */
508 if (set_bytes(i) > PAGE_SIZE - 48 &&
509 !current->bio_list)
510 bch_btree_node_write(b, NULL);
511 }
512
513 /*
514 * Btree in memory cache - allocation/freeing
515 * mca -> memory cache
516 */
517
518 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
519 ? c->root->level : 1) * 8 + 16)
520 #define mca_can_free(c) \
521 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
522
mca_data_free(struct btree * b)523 static void mca_data_free(struct btree *b)
524 {
525 BUG_ON(b->io_mutex.count != 1);
526
527 bch_btree_keys_free(&b->keys);
528
529 b->c->btree_cache_used--;
530 list_move(&b->list, &b->c->btree_cache_freed);
531 }
532
mca_bucket_free(struct btree * b)533 static void mca_bucket_free(struct btree *b)
534 {
535 BUG_ON(btree_node_dirty(b));
536
537 b->key.ptr[0] = 0;
538 hlist_del_init_rcu(&b->hash);
539 list_move(&b->list, &b->c->btree_cache_freeable);
540 }
541
btree_order(struct bkey * k)542 static unsigned int btree_order(struct bkey *k)
543 {
544 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
545 }
546
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)547 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
548 {
549 if (!bch_btree_keys_alloc(&b->keys,
550 max_t(unsigned int,
551 ilog2(b->c->btree_pages),
552 btree_order(k)),
553 gfp)) {
554 b->c->btree_cache_used++;
555 list_move(&b->list, &b->c->btree_cache);
556 } else {
557 list_move(&b->list, &b->c->btree_cache_freed);
558 }
559 }
560
561 #ifdef CONFIG_PROVE_LOCKING
btree_lock_cmp_fn(const struct lockdep_map * _a,const struct lockdep_map * _b)562 static int btree_lock_cmp_fn(const struct lockdep_map *_a,
563 const struct lockdep_map *_b)
564 {
565 const struct btree *a = container_of(_a, struct btree, lock.dep_map);
566 const struct btree *b = container_of(_b, struct btree, lock.dep_map);
567
568 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key);
569 }
570
btree_lock_print_fn(const struct lockdep_map * map)571 static void btree_lock_print_fn(const struct lockdep_map *map)
572 {
573 const struct btree *b = container_of(map, struct btree, lock.dep_map);
574
575 printk(KERN_CONT " l=%u %llu:%llu", b->level,
576 KEY_INODE(&b->key), KEY_OFFSET(&b->key));
577 }
578 #endif
579
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)580 static struct btree *mca_bucket_alloc(struct cache_set *c,
581 struct bkey *k, gfp_t gfp)
582 {
583 /*
584 * kzalloc() is necessary here for initialization,
585 * see code comments in bch_btree_keys_init().
586 */
587 struct btree *b = kzalloc(sizeof(struct btree), gfp);
588
589 if (!b)
590 return NULL;
591
592 init_rwsem(&b->lock);
593 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn);
594 mutex_init(&b->write_lock);
595 lockdep_set_novalidate_class(&b->write_lock);
596 INIT_LIST_HEAD(&b->list);
597 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
598 b->c = c;
599 sema_init(&b->io_mutex, 1);
600
601 mca_data_alloc(b, k, gfp);
602 return b;
603 }
604
mca_reap(struct btree * b,unsigned int min_order,bool flush)605 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
606 {
607 struct closure cl;
608
609 closure_init_stack(&cl);
610 lockdep_assert_held(&b->c->bucket_lock);
611
612 if (!down_write_trylock(&b->lock))
613 return -ENOMEM;
614
615 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
616
617 if (b->keys.page_order < min_order)
618 goto out_unlock;
619
620 if (!flush) {
621 if (btree_node_dirty(b))
622 goto out_unlock;
623
624 if (down_trylock(&b->io_mutex))
625 goto out_unlock;
626 up(&b->io_mutex);
627 }
628
629 retry:
630 /*
631 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
632 * __bch_btree_node_write(). To avoid an extra flush, acquire
633 * b->write_lock before checking BTREE_NODE_dirty bit.
634 */
635 mutex_lock(&b->write_lock);
636 /*
637 * If this btree node is selected in btree_flush_write() by journal
638 * code, delay and retry until the node is flushed by journal code
639 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
640 */
641 if (btree_node_journal_flush(b)) {
642 pr_debug("bnode %p is flushing by journal, retry\n", b);
643 mutex_unlock(&b->write_lock);
644 udelay(1);
645 goto retry;
646 }
647
648 if (btree_node_dirty(b))
649 __bch_btree_node_write(b, &cl);
650 mutex_unlock(&b->write_lock);
651
652 closure_sync(&cl);
653
654 /* wait for any in flight btree write */
655 down(&b->io_mutex);
656 up(&b->io_mutex);
657
658 return 0;
659 out_unlock:
660 rw_unlock(true, b);
661 return -ENOMEM;
662 }
663
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)664 static unsigned long bch_mca_scan(struct shrinker *shrink,
665 struct shrink_control *sc)
666 {
667 struct cache_set *c = shrink->private_data;
668 struct btree *b, *t;
669 unsigned long i, nr = sc->nr_to_scan;
670 unsigned long freed = 0;
671 unsigned int btree_cache_used;
672
673 if (c->shrinker_disabled)
674 return SHRINK_STOP;
675
676 if (c->btree_cache_alloc_lock)
677 return SHRINK_STOP;
678
679 /* Return -1 if we can't do anything right now */
680 if (sc->gfp_mask & __GFP_IO)
681 mutex_lock(&c->bucket_lock);
682 else if (!mutex_trylock(&c->bucket_lock))
683 return -1;
684
685 /*
686 * It's _really_ critical that we don't free too many btree nodes - we
687 * have to always leave ourselves a reserve. The reserve is how we
688 * guarantee that allocating memory for a new btree node can always
689 * succeed, so that inserting keys into the btree can always succeed and
690 * IO can always make forward progress:
691 */
692 nr /= c->btree_pages;
693 if (nr == 0)
694 nr = 1;
695 nr = min_t(unsigned long, nr, mca_can_free(c));
696
697 i = 0;
698 btree_cache_used = c->btree_cache_used;
699 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
700 if (nr <= 0)
701 goto out;
702
703 if (!mca_reap(b, 0, false)) {
704 mca_data_free(b);
705 rw_unlock(true, b);
706 freed++;
707 }
708 nr--;
709 i++;
710 }
711
712 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
713 if (nr <= 0 || i >= btree_cache_used)
714 goto out;
715
716 if (!mca_reap(b, 0, false)) {
717 mca_bucket_free(b);
718 mca_data_free(b);
719 rw_unlock(true, b);
720 freed++;
721 }
722
723 nr--;
724 i++;
725 }
726 out:
727 mutex_unlock(&c->bucket_lock);
728 return freed * c->btree_pages;
729 }
730
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)731 static unsigned long bch_mca_count(struct shrinker *shrink,
732 struct shrink_control *sc)
733 {
734 struct cache_set *c = shrink->private_data;
735
736 if (c->shrinker_disabled)
737 return 0;
738
739 if (c->btree_cache_alloc_lock)
740 return 0;
741
742 return mca_can_free(c) * c->btree_pages;
743 }
744
bch_btree_cache_free(struct cache_set * c)745 void bch_btree_cache_free(struct cache_set *c)
746 {
747 struct btree *b;
748 struct closure cl;
749
750 closure_init_stack(&cl);
751
752 if (c->shrink)
753 shrinker_free(c->shrink);
754
755 mutex_lock(&c->bucket_lock);
756
757 #ifdef CONFIG_BCACHE_DEBUG
758 if (c->verify_data)
759 list_move(&c->verify_data->list, &c->btree_cache);
760
761 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
762 #endif
763
764 list_splice(&c->btree_cache_freeable,
765 &c->btree_cache);
766
767 while (!list_empty(&c->btree_cache)) {
768 b = list_first_entry(&c->btree_cache, struct btree, list);
769
770 /*
771 * This function is called by cache_set_free(), no I/O
772 * request on cache now, it is unnecessary to acquire
773 * b->write_lock before clearing BTREE_NODE_dirty anymore.
774 */
775 if (btree_node_dirty(b)) {
776 btree_complete_write(b, btree_current_write(b));
777 clear_bit(BTREE_NODE_dirty, &b->flags);
778 }
779 mca_data_free(b);
780 }
781
782 while (!list_empty(&c->btree_cache_freed)) {
783 b = list_first_entry(&c->btree_cache_freed,
784 struct btree, list);
785 list_del(&b->list);
786 cancel_delayed_work_sync(&b->work);
787 kfree(b);
788 }
789
790 mutex_unlock(&c->bucket_lock);
791 }
792
bch_btree_cache_alloc(struct cache_set * c)793 int bch_btree_cache_alloc(struct cache_set *c)
794 {
795 unsigned int i;
796
797 for (i = 0; i < mca_reserve(c); i++)
798 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
799 return -ENOMEM;
800
801 list_splice_init(&c->btree_cache,
802 &c->btree_cache_freeable);
803
804 #ifdef CONFIG_BCACHE_DEBUG
805 mutex_init(&c->verify_lock);
806
807 c->verify_ondisk = (void *)
808 __get_free_pages(GFP_KERNEL|__GFP_COMP,
809 ilog2(meta_bucket_pages(&c->cache->sb)));
810 if (!c->verify_ondisk) {
811 /*
812 * Don't worry about the mca_rereserve buckets
813 * allocated in previous for-loop, they will be
814 * handled properly in bch_cache_set_unregister().
815 */
816 return -ENOMEM;
817 }
818
819 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
820
821 if (c->verify_data &&
822 c->verify_data->keys.set->data)
823 list_del_init(&c->verify_data->list);
824 else
825 c->verify_data = NULL;
826 #endif
827
828 c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid);
829 if (!c->shrink) {
830 pr_warn("bcache: %s: could not allocate shrinker\n", __func__);
831 return 0;
832 }
833
834 c->shrink->count_objects = bch_mca_count;
835 c->shrink->scan_objects = bch_mca_scan;
836 c->shrink->seeks = 4;
837 c->shrink->batch = c->btree_pages * 2;
838 c->shrink->private_data = c;
839
840 shrinker_register(c->shrink);
841
842 return 0;
843 }
844
845 /* Btree in memory cache - hash table */
846
mca_hash(struct cache_set * c,struct bkey * k)847 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
848 {
849 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
850 }
851
mca_find(struct cache_set * c,struct bkey * k)852 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
853 {
854 struct btree *b;
855
856 rcu_read_lock();
857 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
858 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
859 goto out;
860 b = NULL;
861 out:
862 rcu_read_unlock();
863 return b;
864 }
865
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)866 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
867 {
868 spin_lock(&c->btree_cannibalize_lock);
869 if (likely(c->btree_cache_alloc_lock == NULL)) {
870 c->btree_cache_alloc_lock = current;
871 } else if (c->btree_cache_alloc_lock != current) {
872 if (op)
873 prepare_to_wait(&c->btree_cache_wait, &op->wait,
874 TASK_UNINTERRUPTIBLE);
875 spin_unlock(&c->btree_cannibalize_lock);
876 return -EINTR;
877 }
878 spin_unlock(&c->btree_cannibalize_lock);
879
880 return 0;
881 }
882
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)883 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
884 struct bkey *k)
885 {
886 struct btree *b;
887
888 trace_bcache_btree_cache_cannibalize(c);
889
890 if (mca_cannibalize_lock(c, op))
891 return ERR_PTR(-EINTR);
892
893 list_for_each_entry_reverse(b, &c->btree_cache, list)
894 if (!mca_reap(b, btree_order(k), false))
895 return b;
896
897 list_for_each_entry_reverse(b, &c->btree_cache, list)
898 if (!mca_reap(b, btree_order(k), true))
899 return b;
900
901 WARN(1, "btree cache cannibalize failed\n");
902 return ERR_PTR(-ENOMEM);
903 }
904
905 /*
906 * We can only have one thread cannibalizing other cached btree nodes at a time,
907 * or we'll deadlock. We use an open coded mutex to ensure that, which a
908 * cannibalize_bucket() will take. This means every time we unlock the root of
909 * the btree, we need to release this lock if we have it held.
910 */
bch_cannibalize_unlock(struct cache_set * c)911 void bch_cannibalize_unlock(struct cache_set *c)
912 {
913 spin_lock(&c->btree_cannibalize_lock);
914 if (c->btree_cache_alloc_lock == current) {
915 c->btree_cache_alloc_lock = NULL;
916 wake_up(&c->btree_cache_wait);
917 }
918 spin_unlock(&c->btree_cannibalize_lock);
919 }
920
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)921 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
922 struct bkey *k, int level)
923 {
924 struct btree *b;
925
926 BUG_ON(current->bio_list);
927
928 lockdep_assert_held(&c->bucket_lock);
929
930 if (mca_find(c, k))
931 return NULL;
932
933 /* btree_free() doesn't free memory; it sticks the node on the end of
934 * the list. Check if there's any freed nodes there:
935 */
936 list_for_each_entry(b, &c->btree_cache_freeable, list)
937 if (!mca_reap(b, btree_order(k), false))
938 goto out;
939
940 /* We never free struct btree itself, just the memory that holds the on
941 * disk node. Check the freed list before allocating a new one:
942 */
943 list_for_each_entry(b, &c->btree_cache_freed, list)
944 if (!mca_reap(b, 0, false)) {
945 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
946 if (!b->keys.set[0].data)
947 goto err;
948 else
949 goto out;
950 }
951
952 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
953 if (!b)
954 goto err;
955
956 BUG_ON(!down_write_trylock(&b->lock));
957 if (!b->keys.set->data)
958 goto err;
959 out:
960 BUG_ON(b->io_mutex.count != 1);
961
962 bkey_copy(&b->key, k);
963 list_move(&b->list, &c->btree_cache);
964 hlist_del_init_rcu(&b->hash);
965 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
966
967 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
968 b->parent = (void *) ~0UL;
969 b->flags = 0;
970 b->written = 0;
971 b->level = level;
972
973 if (!b->level)
974 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
975 &b->c->expensive_debug_checks);
976 else
977 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
978 &b->c->expensive_debug_checks);
979
980 return b;
981 err:
982 if (b)
983 rw_unlock(true, b);
984
985 b = mca_cannibalize(c, op, k);
986 if (!IS_ERR(b))
987 goto out;
988
989 return b;
990 }
991
992 /*
993 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
994 * in from disk if necessary.
995 *
996 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
997 *
998 * The btree node will have either a read or a write lock held, depending on
999 * level and op->lock.
1000 *
1001 * Note: Only error code or btree pointer will be returned, it is unncessary
1002 * for callers to check NULL pointer.
1003 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)1004 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1005 struct bkey *k, int level, bool write,
1006 struct btree *parent)
1007 {
1008 int i = 0;
1009 struct btree *b;
1010
1011 BUG_ON(level < 0);
1012 retry:
1013 b = mca_find(c, k);
1014
1015 if (!b) {
1016 if (current->bio_list)
1017 return ERR_PTR(-EAGAIN);
1018
1019 mutex_lock(&c->bucket_lock);
1020 b = mca_alloc(c, op, k, level);
1021 mutex_unlock(&c->bucket_lock);
1022
1023 if (!b)
1024 goto retry;
1025 if (IS_ERR(b))
1026 return b;
1027
1028 bch_btree_node_read(b);
1029
1030 if (!write)
1031 downgrade_write(&b->lock);
1032 } else {
1033 rw_lock(write, b, level);
1034 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1035 rw_unlock(write, b);
1036 goto retry;
1037 }
1038 BUG_ON(b->level != level);
1039 }
1040
1041 if (btree_node_io_error(b)) {
1042 rw_unlock(write, b);
1043 return ERR_PTR(-EIO);
1044 }
1045
1046 BUG_ON(!b->written);
1047
1048 b->parent = parent;
1049
1050 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1051 prefetch(b->keys.set[i].tree);
1052 prefetch(b->keys.set[i].data);
1053 }
1054
1055 for (; i <= b->keys.nsets; i++)
1056 prefetch(b->keys.set[i].data);
1057
1058 return b;
1059 }
1060
btree_node_prefetch(struct btree * parent,struct bkey * k)1061 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1062 {
1063 struct btree *b;
1064
1065 mutex_lock(&parent->c->bucket_lock);
1066 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1067 mutex_unlock(&parent->c->bucket_lock);
1068
1069 if (!IS_ERR_OR_NULL(b)) {
1070 b->parent = parent;
1071 bch_btree_node_read(b);
1072 rw_unlock(true, b);
1073 }
1074 }
1075
1076 /* Btree alloc */
1077
btree_node_free(struct btree * b)1078 static void btree_node_free(struct btree *b)
1079 {
1080 trace_bcache_btree_node_free(b);
1081
1082 BUG_ON(b == b->c->root);
1083
1084 retry:
1085 mutex_lock(&b->write_lock);
1086 /*
1087 * If the btree node is selected and flushing in btree_flush_write(),
1088 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1089 * then it is safe to free the btree node here. Otherwise this btree
1090 * node will be in race condition.
1091 */
1092 if (btree_node_journal_flush(b)) {
1093 mutex_unlock(&b->write_lock);
1094 pr_debug("bnode %p journal_flush set, retry\n", b);
1095 udelay(1);
1096 goto retry;
1097 }
1098
1099 if (btree_node_dirty(b)) {
1100 btree_complete_write(b, btree_current_write(b));
1101 clear_bit(BTREE_NODE_dirty, &b->flags);
1102 }
1103
1104 mutex_unlock(&b->write_lock);
1105
1106 cancel_delayed_work(&b->work);
1107
1108 mutex_lock(&b->c->bucket_lock);
1109 bch_bucket_free(b->c, &b->key);
1110 mca_bucket_free(b);
1111 mutex_unlock(&b->c->bucket_lock);
1112 }
1113
1114 /*
1115 * Only error code or btree pointer will be returned, it is unncessary for
1116 * callers to check NULL pointer.
1117 */
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1118 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1119 int level, bool wait,
1120 struct btree *parent)
1121 {
1122 BKEY_PADDED(key) k;
1123 struct btree *b;
1124
1125 mutex_lock(&c->bucket_lock);
1126 retry:
1127 /* return ERR_PTR(-EAGAIN) when it fails */
1128 b = ERR_PTR(-EAGAIN);
1129 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1130 goto err;
1131
1132 bkey_put(c, &k.key);
1133 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1134
1135 b = mca_alloc(c, op, &k.key, level);
1136 if (IS_ERR(b))
1137 goto err_free;
1138
1139 if (!b) {
1140 cache_bug(c,
1141 "Tried to allocate bucket that was in btree cache");
1142 goto retry;
1143 }
1144
1145 b->parent = parent;
1146 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1147
1148 mutex_unlock(&c->bucket_lock);
1149
1150 trace_bcache_btree_node_alloc(b);
1151 return b;
1152 err_free:
1153 bch_bucket_free(c, &k.key);
1154 err:
1155 mutex_unlock(&c->bucket_lock);
1156
1157 trace_bcache_btree_node_alloc_fail(c);
1158 return b;
1159 }
1160
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1161 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1162 struct btree_op *op, int level,
1163 struct btree *parent)
1164 {
1165 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1166 }
1167
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1168 static struct btree *btree_node_alloc_replacement(struct btree *b,
1169 struct btree_op *op)
1170 {
1171 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1172
1173 if (!IS_ERR(n)) {
1174 mutex_lock(&n->write_lock);
1175 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1176 bkey_copy_key(&n->key, &b->key);
1177 mutex_unlock(&n->write_lock);
1178 }
1179
1180 return n;
1181 }
1182
make_btree_freeing_key(struct btree * b,struct bkey * k)1183 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1184 {
1185 unsigned int i;
1186
1187 mutex_lock(&b->c->bucket_lock);
1188
1189 atomic_inc(&b->c->prio_blocked);
1190
1191 bkey_copy(k, &b->key);
1192 bkey_copy_key(k, &ZERO_KEY);
1193
1194 for (i = 0; i < KEY_PTRS(k); i++)
1195 SET_PTR_GEN(k, i,
1196 bch_inc_gen(b->c->cache,
1197 PTR_BUCKET(b->c, &b->key, i)));
1198
1199 mutex_unlock(&b->c->bucket_lock);
1200 }
1201
btree_check_reserve(struct btree * b,struct btree_op * op)1202 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1203 {
1204 struct cache_set *c = b->c;
1205 struct cache *ca = c->cache;
1206 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1207
1208 mutex_lock(&c->bucket_lock);
1209
1210 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1211 if (op)
1212 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1213 TASK_UNINTERRUPTIBLE);
1214 mutex_unlock(&c->bucket_lock);
1215 return -EINTR;
1216 }
1217
1218 mutex_unlock(&c->bucket_lock);
1219
1220 return mca_cannibalize_lock(b->c, op);
1221 }
1222
1223 /* Garbage collection */
1224
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1225 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1226 struct bkey *k)
1227 {
1228 uint8_t stale = 0;
1229 unsigned int i;
1230 struct bucket *g;
1231
1232 /*
1233 * ptr_invalid() can't return true for the keys that mark btree nodes as
1234 * freed, but since ptr_bad() returns true we'll never actually use them
1235 * for anything and thus we don't want mark their pointers here
1236 */
1237 if (!bkey_cmp(k, &ZERO_KEY))
1238 return stale;
1239
1240 for (i = 0; i < KEY_PTRS(k); i++) {
1241 if (!ptr_available(c, k, i))
1242 continue;
1243
1244 g = PTR_BUCKET(c, k, i);
1245
1246 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1247 g->last_gc = PTR_GEN(k, i);
1248
1249 if (ptr_stale(c, k, i)) {
1250 stale = max(stale, ptr_stale(c, k, i));
1251 continue;
1252 }
1253
1254 cache_bug_on(GC_MARK(g) &&
1255 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1256 c, "inconsistent ptrs: mark = %llu, level = %i",
1257 GC_MARK(g), level);
1258
1259 if (level)
1260 SET_GC_MARK(g, GC_MARK_METADATA);
1261 else if (KEY_DIRTY(k))
1262 SET_GC_MARK(g, GC_MARK_DIRTY);
1263 else if (!GC_MARK(g))
1264 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1265
1266 /* guard against overflow */
1267 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1268 GC_SECTORS_USED(g) + KEY_SIZE(k),
1269 MAX_GC_SECTORS_USED));
1270
1271 BUG_ON(!GC_SECTORS_USED(g));
1272 }
1273
1274 return stale;
1275 }
1276
1277 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1278
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1279 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1280 {
1281 unsigned int i;
1282
1283 for (i = 0; i < KEY_PTRS(k); i++)
1284 if (ptr_available(c, k, i) &&
1285 !ptr_stale(c, k, i)) {
1286 struct bucket *b = PTR_BUCKET(c, k, i);
1287
1288 b->gen = PTR_GEN(k, i);
1289
1290 if (level && bkey_cmp(k, &ZERO_KEY))
1291 b->prio = BTREE_PRIO;
1292 else if (!level && b->prio == BTREE_PRIO)
1293 b->prio = INITIAL_PRIO;
1294 }
1295
1296 __bch_btree_mark_key(c, level, k);
1297 }
1298
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1299 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1300 {
1301 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1302 }
1303
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1304 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1305 {
1306 uint8_t stale = 0;
1307 unsigned int keys = 0, good_keys = 0;
1308 struct bkey *k;
1309 struct btree_iter_stack iter;
1310 struct bset_tree *t;
1311
1312 gc->nodes++;
1313
1314 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1315 stale = max(stale, btree_mark_key(b, k));
1316 keys++;
1317
1318 if (bch_ptr_bad(&b->keys, k))
1319 continue;
1320
1321 gc->key_bytes += bkey_u64s(k);
1322 gc->nkeys++;
1323 good_keys++;
1324
1325 gc->data += KEY_SIZE(k);
1326 }
1327
1328 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1329 btree_bug_on(t->size &&
1330 bset_written(&b->keys, t) &&
1331 bkey_cmp(&b->key, &t->end) < 0,
1332 b, "found short btree key in gc");
1333
1334 if (b->c->gc_always_rewrite)
1335 return true;
1336
1337 if (stale > 10)
1338 return true;
1339
1340 if ((keys - good_keys) * 2 > keys)
1341 return true;
1342
1343 return false;
1344 }
1345
1346 #define GC_MERGE_NODES 4U
1347
1348 struct gc_merge_info {
1349 struct btree *b;
1350 unsigned int keys;
1351 };
1352
1353 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1354 struct keylist *insert_keys,
1355 atomic_t *journal_ref,
1356 struct bkey *replace_key);
1357
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1358 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1359 struct gc_stat *gc, struct gc_merge_info *r)
1360 {
1361 unsigned int i, nodes = 0, keys = 0, blocks;
1362 struct btree *new_nodes[GC_MERGE_NODES];
1363 struct keylist keylist;
1364 struct closure cl;
1365 struct bkey *k;
1366
1367 bch_keylist_init(&keylist);
1368
1369 if (btree_check_reserve(b, NULL))
1370 return 0;
1371
1372 memset(new_nodes, 0, sizeof(new_nodes));
1373 closure_init_stack(&cl);
1374
1375 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1376 keys += r[nodes++].keys;
1377
1378 blocks = btree_default_blocks(b->c) * 2 / 3;
1379
1380 if (nodes < 2 ||
1381 __set_blocks(b->keys.set[0].data, keys,
1382 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1383 return 0;
1384
1385 for (i = 0; i < nodes; i++) {
1386 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1387 if (IS_ERR(new_nodes[i]))
1388 goto out_nocoalesce;
1389 }
1390
1391 /*
1392 * We have to check the reserve here, after we've allocated our new
1393 * nodes, to make sure the insert below will succeed - we also check
1394 * before as an optimization to potentially avoid a bunch of expensive
1395 * allocs/sorts
1396 */
1397 if (btree_check_reserve(b, NULL))
1398 goto out_nocoalesce;
1399
1400 for (i = 0; i < nodes; i++)
1401 mutex_lock(&new_nodes[i]->write_lock);
1402
1403 for (i = nodes - 1; i > 0; --i) {
1404 struct bset *n1 = btree_bset_first(new_nodes[i]);
1405 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1406 struct bkey *k, *last = NULL;
1407
1408 keys = 0;
1409
1410 if (i > 1) {
1411 for (k = n2->start;
1412 k < bset_bkey_last(n2);
1413 k = bkey_next(k)) {
1414 if (__set_blocks(n1, n1->keys + keys +
1415 bkey_u64s(k),
1416 block_bytes(b->c->cache)) > blocks)
1417 break;
1418
1419 last = k;
1420 keys += bkey_u64s(k);
1421 }
1422 } else {
1423 /*
1424 * Last node we're not getting rid of - we're getting
1425 * rid of the node at r[0]. Have to try and fit all of
1426 * the remaining keys into this node; we can't ensure
1427 * they will always fit due to rounding and variable
1428 * length keys (shouldn't be possible in practice,
1429 * though)
1430 */
1431 if (__set_blocks(n1, n1->keys + n2->keys,
1432 block_bytes(b->c->cache)) >
1433 btree_blocks(new_nodes[i]))
1434 goto out_unlock_nocoalesce;
1435
1436 keys = n2->keys;
1437 /* Take the key of the node we're getting rid of */
1438 last = &r->b->key;
1439 }
1440
1441 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1442 btree_blocks(new_nodes[i]));
1443
1444 if (last)
1445 bkey_copy_key(&new_nodes[i]->key, last);
1446
1447 memcpy(bset_bkey_last(n1),
1448 n2->start,
1449 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1450
1451 n1->keys += keys;
1452 r[i].keys = n1->keys;
1453
1454 memmove(n2->start,
1455 bset_bkey_idx(n2, keys),
1456 (void *) bset_bkey_last(n2) -
1457 (void *) bset_bkey_idx(n2, keys));
1458
1459 n2->keys -= keys;
1460
1461 if (__bch_keylist_realloc(&keylist,
1462 bkey_u64s(&new_nodes[i]->key)))
1463 goto out_unlock_nocoalesce;
1464
1465 bch_btree_node_write(new_nodes[i], &cl);
1466 bch_keylist_add(&keylist, &new_nodes[i]->key);
1467 }
1468
1469 for (i = 0; i < nodes; i++)
1470 mutex_unlock(&new_nodes[i]->write_lock);
1471
1472 closure_sync(&cl);
1473
1474 /* We emptied out this node */
1475 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1476 btree_node_free(new_nodes[0]);
1477 rw_unlock(true, new_nodes[0]);
1478 new_nodes[0] = NULL;
1479
1480 for (i = 0; i < nodes; i++) {
1481 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1482 goto out_nocoalesce;
1483
1484 make_btree_freeing_key(r[i].b, keylist.top);
1485 bch_keylist_push(&keylist);
1486 }
1487
1488 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1489 BUG_ON(!bch_keylist_empty(&keylist));
1490
1491 for (i = 0; i < nodes; i++) {
1492 btree_node_free(r[i].b);
1493 rw_unlock(true, r[i].b);
1494
1495 r[i].b = new_nodes[i];
1496 }
1497
1498 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1499 r[nodes - 1].b = ERR_PTR(-EINTR);
1500
1501 trace_bcache_btree_gc_coalesce(nodes);
1502 gc->nodes--;
1503
1504 bch_keylist_free(&keylist);
1505
1506 /* Invalidated our iterator */
1507 return -EINTR;
1508
1509 out_unlock_nocoalesce:
1510 for (i = 0; i < nodes; i++)
1511 mutex_unlock(&new_nodes[i]->write_lock);
1512
1513 out_nocoalesce:
1514 closure_sync(&cl);
1515
1516 while ((k = bch_keylist_pop(&keylist)))
1517 if (!bkey_cmp(k, &ZERO_KEY))
1518 atomic_dec(&b->c->prio_blocked);
1519 bch_keylist_free(&keylist);
1520
1521 for (i = 0; i < nodes; i++)
1522 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1523 btree_node_free(new_nodes[i]);
1524 rw_unlock(true, new_nodes[i]);
1525 }
1526 return 0;
1527 }
1528
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1529 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1530 struct btree *replace)
1531 {
1532 struct keylist keys;
1533 struct btree *n;
1534
1535 if (btree_check_reserve(b, NULL))
1536 return 0;
1537
1538 n = btree_node_alloc_replacement(replace, NULL);
1539 if (IS_ERR(n))
1540 return 0;
1541
1542 /* recheck reserve after allocating replacement node */
1543 if (btree_check_reserve(b, NULL)) {
1544 btree_node_free(n);
1545 rw_unlock(true, n);
1546 return 0;
1547 }
1548
1549 bch_btree_node_write_sync(n);
1550
1551 bch_keylist_init(&keys);
1552 bch_keylist_add(&keys, &n->key);
1553
1554 make_btree_freeing_key(replace, keys.top);
1555 bch_keylist_push(&keys);
1556
1557 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1558 BUG_ON(!bch_keylist_empty(&keys));
1559
1560 btree_node_free(replace);
1561 rw_unlock(true, n);
1562
1563 /* Invalidated our iterator */
1564 return -EINTR;
1565 }
1566
btree_gc_count_keys(struct btree * b)1567 static unsigned int btree_gc_count_keys(struct btree *b)
1568 {
1569 struct bkey *k;
1570 struct btree_iter_stack iter;
1571 unsigned int ret = 0;
1572
1573 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1574 ret += bkey_u64s(k);
1575
1576 return ret;
1577 }
1578
btree_gc_min_nodes(struct cache_set * c)1579 static size_t btree_gc_min_nodes(struct cache_set *c)
1580 {
1581 size_t min_nodes;
1582
1583 /*
1584 * Since incremental GC would stop 100ms when front
1585 * side I/O comes, so when there are many btree nodes,
1586 * if GC only processes constant (100) nodes each time,
1587 * GC would last a long time, and the front side I/Os
1588 * would run out of the buckets (since no new bucket
1589 * can be allocated during GC), and be blocked again.
1590 * So GC should not process constant nodes, but varied
1591 * nodes according to the number of btree nodes, which
1592 * realized by dividing GC into constant(100) times,
1593 * so when there are many btree nodes, GC can process
1594 * more nodes each time, otherwise, GC will process less
1595 * nodes each time (but no less than MIN_GC_NODES)
1596 */
1597 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1598 if (min_nodes < MIN_GC_NODES)
1599 min_nodes = MIN_GC_NODES;
1600
1601 return min_nodes;
1602 }
1603
1604
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1605 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1606 struct closure *writes, struct gc_stat *gc)
1607 {
1608 int ret = 0;
1609 bool should_rewrite;
1610 struct bkey *k;
1611 struct btree_iter_stack iter;
1612 struct gc_merge_info r[GC_MERGE_NODES];
1613 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1614
1615 bch_btree_iter_stack_init(&b->keys, &iter, &b->c->gc_done);
1616
1617 for (i = r; i < r + ARRAY_SIZE(r); i++)
1618 i->b = ERR_PTR(-EINTR);
1619
1620 while (1) {
1621 k = bch_btree_iter_next_filter(&iter.iter, &b->keys,
1622 bch_ptr_bad);
1623 if (k) {
1624 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1625 true, b);
1626 if (IS_ERR(r->b)) {
1627 ret = PTR_ERR(r->b);
1628 break;
1629 }
1630
1631 r->keys = btree_gc_count_keys(r->b);
1632
1633 ret = btree_gc_coalesce(b, op, gc, r);
1634 if (ret)
1635 break;
1636 }
1637
1638 if (!last->b)
1639 break;
1640
1641 if (!IS_ERR(last->b)) {
1642 should_rewrite = btree_gc_mark_node(last->b, gc);
1643 if (should_rewrite) {
1644 ret = btree_gc_rewrite_node(b, op, last->b);
1645 if (ret)
1646 break;
1647 }
1648
1649 if (last->b->level) {
1650 ret = btree_gc_recurse(last->b, op, writes, gc);
1651 if (ret)
1652 break;
1653 }
1654
1655 bkey_copy_key(&b->c->gc_done, &last->b->key);
1656
1657 /*
1658 * Must flush leaf nodes before gc ends, since replace
1659 * operations aren't journalled
1660 */
1661 mutex_lock(&last->b->write_lock);
1662 if (btree_node_dirty(last->b))
1663 bch_btree_node_write(last->b, writes);
1664 mutex_unlock(&last->b->write_lock);
1665 rw_unlock(true, last->b);
1666 }
1667
1668 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1669 r->b = NULL;
1670
1671 if (atomic_read(&b->c->search_inflight) &&
1672 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1673 gc->nodes_pre = gc->nodes;
1674 ret = -EAGAIN;
1675 break;
1676 }
1677
1678 if (need_resched()) {
1679 ret = -EAGAIN;
1680 break;
1681 }
1682 }
1683
1684 for (i = r; i < r + ARRAY_SIZE(r); i++)
1685 if (!IS_ERR_OR_NULL(i->b)) {
1686 mutex_lock(&i->b->write_lock);
1687 if (btree_node_dirty(i->b))
1688 bch_btree_node_write(i->b, writes);
1689 mutex_unlock(&i->b->write_lock);
1690 rw_unlock(true, i->b);
1691 }
1692
1693 return ret;
1694 }
1695
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1696 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1697 struct closure *writes, struct gc_stat *gc)
1698 {
1699 struct btree *n = NULL;
1700 int ret = 0;
1701 bool should_rewrite;
1702
1703 should_rewrite = btree_gc_mark_node(b, gc);
1704 if (should_rewrite) {
1705 n = btree_node_alloc_replacement(b, NULL);
1706
1707 if (!IS_ERR(n)) {
1708 bch_btree_node_write_sync(n);
1709
1710 bch_btree_set_root(n);
1711 btree_node_free(b);
1712 rw_unlock(true, n);
1713
1714 return -EINTR;
1715 }
1716 }
1717
1718 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1719
1720 if (b->level) {
1721 ret = btree_gc_recurse(b, op, writes, gc);
1722 if (ret)
1723 return ret;
1724 }
1725
1726 bkey_copy_key(&b->c->gc_done, &b->key);
1727
1728 return ret;
1729 }
1730
btree_gc_start(struct cache_set * c)1731 static void btree_gc_start(struct cache_set *c)
1732 {
1733 struct cache *ca;
1734 struct bucket *b;
1735
1736 if (!c->gc_mark_valid)
1737 return;
1738
1739 mutex_lock(&c->bucket_lock);
1740
1741 c->gc_done = ZERO_KEY;
1742
1743 ca = c->cache;
1744 for_each_bucket(b, ca) {
1745 b->last_gc = b->gen;
1746 if (bch_can_invalidate_bucket(ca, b))
1747 b->reclaimable_in_gc = 1;
1748 if (!atomic_read(&b->pin)) {
1749 SET_GC_MARK(b, 0);
1750 SET_GC_SECTORS_USED(b, 0);
1751 }
1752 }
1753
1754 c->gc_mark_valid = 0;
1755 mutex_unlock(&c->bucket_lock);
1756 }
1757
bch_btree_gc_finish(struct cache_set * c)1758 static void bch_btree_gc_finish(struct cache_set *c)
1759 {
1760 struct bucket *b;
1761 struct cache *ca;
1762 unsigned int i, j;
1763 uint64_t *k;
1764
1765 mutex_lock(&c->bucket_lock);
1766
1767 set_gc_sectors(c);
1768 c->gc_mark_valid = 1;
1769 c->need_gc = 0;
1770
1771 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1772 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1773 GC_MARK_METADATA);
1774
1775 /* don't reclaim buckets to which writeback keys point */
1776 rcu_read_lock();
1777 for (i = 0; i < c->devices_max_used; i++) {
1778 struct bcache_device *d = c->devices[i];
1779 struct cached_dev *dc;
1780 struct keybuf_key *w, *n;
1781
1782 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1783 continue;
1784 dc = container_of(d, struct cached_dev, disk);
1785
1786 spin_lock(&dc->writeback_keys.lock);
1787 rbtree_postorder_for_each_entry_safe(w, n,
1788 &dc->writeback_keys.keys, node)
1789 for (j = 0; j < KEY_PTRS(&w->key); j++)
1790 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1791 GC_MARK_DIRTY);
1792 spin_unlock(&dc->writeback_keys.lock);
1793 }
1794 rcu_read_unlock();
1795
1796 c->avail_nbuckets = 0;
1797
1798 ca = c->cache;
1799 ca->invalidate_needs_gc = 0;
1800
1801 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1802 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1803
1804 for (k = ca->prio_buckets;
1805 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1806 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1807
1808 for_each_bucket(b, ca) {
1809 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1810
1811 if (b->reclaimable_in_gc)
1812 b->reclaimable_in_gc = 0;
1813
1814 if (atomic_read(&b->pin))
1815 continue;
1816
1817 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1818
1819 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1820 c->avail_nbuckets++;
1821 }
1822
1823 mutex_unlock(&c->bucket_lock);
1824 }
1825
bch_btree_gc(struct cache_set * c)1826 static void bch_btree_gc(struct cache_set *c)
1827 {
1828 int ret;
1829 struct gc_stat stats;
1830 struct closure writes;
1831 struct btree_op op;
1832 uint64_t start_time = local_clock();
1833
1834 trace_bcache_gc_start(c);
1835
1836 memset(&stats, 0, sizeof(struct gc_stat));
1837 closure_init_stack(&writes);
1838 bch_btree_op_init(&op, SHRT_MAX);
1839
1840 btree_gc_start(c);
1841
1842 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1843 do {
1844 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1845 closure_sync(&writes);
1846 cond_resched();
1847
1848 if (ret == -EAGAIN)
1849 schedule_timeout_interruptible(msecs_to_jiffies
1850 (GC_SLEEP_MS));
1851 else if (ret)
1852 pr_warn("gc failed!\n");
1853 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1854
1855 bch_btree_gc_finish(c);
1856 wake_up_allocators(c);
1857
1858 bch_time_stats_update(&c->btree_gc_time, start_time);
1859
1860 stats.key_bytes *= sizeof(uint64_t);
1861 stats.data <<= 9;
1862 bch_update_bucket_in_use(c, &stats);
1863 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1864
1865 trace_bcache_gc_end(c);
1866
1867 bch_moving_gc(c);
1868 }
1869
gc_should_run(struct cache_set * c)1870 static bool gc_should_run(struct cache_set *c)
1871 {
1872 struct cache *ca = c->cache;
1873
1874 if (ca->invalidate_needs_gc)
1875 return true;
1876
1877 if (atomic_read(&c->sectors_to_gc) < 0)
1878 return true;
1879
1880 return false;
1881 }
1882
bch_gc_thread(void * arg)1883 static int bch_gc_thread(void *arg)
1884 {
1885 struct cache_set *c = arg;
1886
1887 while (1) {
1888 wait_event_interruptible(c->gc_wait,
1889 kthread_should_stop() ||
1890 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1891 gc_should_run(c));
1892
1893 if (kthread_should_stop() ||
1894 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1895 break;
1896
1897 set_gc_sectors(c);
1898 bch_btree_gc(c);
1899 }
1900
1901 wait_for_kthread_stop();
1902 return 0;
1903 }
1904
bch_gc_thread_start(struct cache_set * c)1905 int bch_gc_thread_start(struct cache_set *c)
1906 {
1907 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1908 return PTR_ERR_OR_ZERO(c->gc_thread);
1909 }
1910
1911 /* Initial partial gc */
1912
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1913 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1914 {
1915 int ret = 0;
1916 struct bkey *k, *p = NULL;
1917 struct btree_iter_stack iter;
1918
1919 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1920 bch_initial_mark_key(b->c, b->level, k);
1921
1922 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1923
1924 if (b->level) {
1925 bch_btree_iter_stack_init(&b->keys, &iter, NULL);
1926
1927 do {
1928 k = bch_btree_iter_next_filter(&iter.iter, &b->keys,
1929 bch_ptr_bad);
1930 if (k) {
1931 btree_node_prefetch(b, k);
1932 /*
1933 * initiallize c->gc_stats.nodes
1934 * for incremental GC
1935 */
1936 b->c->gc_stats.nodes++;
1937 }
1938
1939 if (p)
1940 ret = bcache_btree(check_recurse, p, b, op);
1941
1942 p = k;
1943 } while (p && !ret);
1944 }
1945
1946 return ret;
1947 }
1948
1949
bch_btree_check_thread(void * arg)1950 static int bch_btree_check_thread(void *arg)
1951 {
1952 int ret;
1953 struct btree_check_info *info = arg;
1954 struct btree_check_state *check_state = info->state;
1955 struct cache_set *c = check_state->c;
1956 struct btree_iter_stack iter;
1957 struct bkey *k, *p;
1958 int cur_idx, prev_idx, skip_nr;
1959
1960 k = p = NULL;
1961 cur_idx = prev_idx = 0;
1962 ret = 0;
1963
1964 /* root node keys are checked before thread created */
1965 bch_btree_iter_stack_init(&c->root->keys, &iter, NULL);
1966 k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad);
1967 BUG_ON(!k);
1968
1969 p = k;
1970 while (k) {
1971 /*
1972 * Fetch a root node key index, skip the keys which
1973 * should be fetched by other threads, then check the
1974 * sub-tree indexed by the fetched key.
1975 */
1976 spin_lock(&check_state->idx_lock);
1977 cur_idx = check_state->key_idx;
1978 check_state->key_idx++;
1979 spin_unlock(&check_state->idx_lock);
1980
1981 skip_nr = cur_idx - prev_idx;
1982
1983 while (skip_nr) {
1984 k = bch_btree_iter_next_filter(&iter.iter,
1985 &c->root->keys,
1986 bch_ptr_bad);
1987 if (k)
1988 p = k;
1989 else {
1990 /*
1991 * No more keys to check in root node,
1992 * current checking threads are enough,
1993 * stop creating more.
1994 */
1995 atomic_set(&check_state->enough, 1);
1996 /* Update check_state->enough earlier */
1997 smp_mb__after_atomic();
1998 goto out;
1999 }
2000 skip_nr--;
2001 cond_resched();
2002 }
2003
2004 if (p) {
2005 struct btree_op op;
2006
2007 btree_node_prefetch(c->root, p);
2008 c->gc_stats.nodes++;
2009 bch_btree_op_init(&op, 0);
2010 ret = bcache_btree(check_recurse, p, c->root, &op);
2011 /*
2012 * The op may be added to cache_set's btree_cache_wait
2013 * in mca_cannibalize(), must ensure it is removed from
2014 * the list and release btree_cache_alloc_lock before
2015 * free op memory.
2016 * Otherwise, the btree_cache_wait will be damaged.
2017 */
2018 bch_cannibalize_unlock(c);
2019 finish_wait(&c->btree_cache_wait, &(&op)->wait);
2020 if (ret)
2021 goto out;
2022 }
2023 p = NULL;
2024 prev_idx = cur_idx;
2025 cond_resched();
2026 }
2027
2028 out:
2029 info->result = ret;
2030 /* update check_state->started among all CPUs */
2031 smp_mb__before_atomic();
2032 if (atomic_dec_and_test(&check_state->started))
2033 wake_up(&check_state->wait);
2034
2035 return ret;
2036 }
2037
2038
2039
bch_btree_chkthread_nr(void)2040 static int bch_btree_chkthread_nr(void)
2041 {
2042 int n = num_online_cpus()/2;
2043
2044 if (n == 0)
2045 n = 1;
2046 else if (n > BCH_BTR_CHKTHREAD_MAX)
2047 n = BCH_BTR_CHKTHREAD_MAX;
2048
2049 return n;
2050 }
2051
bch_btree_check(struct cache_set * c)2052 int bch_btree_check(struct cache_set *c)
2053 {
2054 int ret = 0;
2055 int i;
2056 struct bkey *k = NULL;
2057 struct btree_iter_stack iter;
2058 struct btree_check_state check_state;
2059
2060 /* check and mark root node keys */
2061 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2062 bch_initial_mark_key(c, c->root->level, k);
2063
2064 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2065
2066 if (c->root->level == 0)
2067 return 0;
2068
2069 memset(&check_state, 0, sizeof(struct btree_check_state));
2070 check_state.c = c;
2071 check_state.total_threads = bch_btree_chkthread_nr();
2072 check_state.key_idx = 0;
2073 spin_lock_init(&check_state.idx_lock);
2074 atomic_set(&check_state.started, 0);
2075 atomic_set(&check_state.enough, 0);
2076 init_waitqueue_head(&check_state.wait);
2077
2078 rw_lock(0, c->root, c->root->level);
2079 /*
2080 * Run multiple threads to check btree nodes in parallel,
2081 * if check_state.enough is non-zero, it means current
2082 * running check threads are enough, unncessary to create
2083 * more.
2084 */
2085 for (i = 0; i < check_state.total_threads; i++) {
2086 /* fetch latest check_state.enough earlier */
2087 smp_mb__before_atomic();
2088 if (atomic_read(&check_state.enough))
2089 break;
2090
2091 check_state.infos[i].result = 0;
2092 check_state.infos[i].state = &check_state;
2093
2094 check_state.infos[i].thread =
2095 kthread_run(bch_btree_check_thread,
2096 &check_state.infos[i],
2097 "bch_btrchk[%d]", i);
2098 if (IS_ERR(check_state.infos[i].thread)) {
2099 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2100 for (--i; i >= 0; i--)
2101 kthread_stop(check_state.infos[i].thread);
2102 ret = -ENOMEM;
2103 goto out;
2104 }
2105 atomic_inc(&check_state.started);
2106 }
2107
2108 /*
2109 * Must wait for all threads to stop.
2110 */
2111 wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2112
2113 for (i = 0; i < check_state.total_threads; i++) {
2114 if (check_state.infos[i].result) {
2115 ret = check_state.infos[i].result;
2116 goto out;
2117 }
2118 }
2119
2120 out:
2121 rw_unlock(0, c->root);
2122 return ret;
2123 }
2124
bch_initial_gc_finish(struct cache_set * c)2125 void bch_initial_gc_finish(struct cache_set *c)
2126 {
2127 struct cache *ca = c->cache;
2128 struct bucket *b;
2129
2130 bch_btree_gc_finish(c);
2131
2132 mutex_lock(&c->bucket_lock);
2133
2134 /*
2135 * We need to put some unused buckets directly on the prio freelist in
2136 * order to get the allocator thread started - it needs freed buckets in
2137 * order to rewrite the prios and gens, and it needs to rewrite prios
2138 * and gens in order to free buckets.
2139 *
2140 * This is only safe for buckets that have no live data in them, which
2141 * there should always be some of.
2142 */
2143 for_each_bucket(b, ca) {
2144 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2145 fifo_full(&ca->free[RESERVE_BTREE]))
2146 break;
2147
2148 if (bch_can_invalidate_bucket(ca, b) &&
2149 !GC_MARK(b)) {
2150 __bch_invalidate_one_bucket(ca, b);
2151 if (!fifo_push(&ca->free[RESERVE_PRIO],
2152 b - ca->buckets))
2153 fifo_push(&ca->free[RESERVE_BTREE],
2154 b - ca->buckets);
2155 }
2156 }
2157
2158 mutex_unlock(&c->bucket_lock);
2159 }
2160
2161 /* Btree insertion */
2162
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)2163 static bool btree_insert_key(struct btree *b, struct bkey *k,
2164 struct bkey *replace_key)
2165 {
2166 unsigned int status;
2167
2168 BUG_ON(bkey_cmp(k, &b->key) > 0);
2169
2170 status = bch_btree_insert_key(&b->keys, k, replace_key);
2171 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2172 bch_check_keys(&b->keys, "%u for %s", status,
2173 replace_key ? "replace" : "insert");
2174
2175 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2176 status);
2177 return true;
2178 } else
2179 return false;
2180 }
2181
insert_u64s_remaining(struct btree * b)2182 static size_t insert_u64s_remaining(struct btree *b)
2183 {
2184 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2185
2186 /*
2187 * Might land in the middle of an existing extent and have to split it
2188 */
2189 if (b->keys.ops->is_extents)
2190 ret -= KEY_MAX_U64S;
2191
2192 return max(ret, 0L);
2193 }
2194
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2195 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2196 struct keylist *insert_keys,
2197 struct bkey *replace_key)
2198 {
2199 bool ret = false;
2200 int oldsize = bch_count_data(&b->keys);
2201
2202 while (!bch_keylist_empty(insert_keys)) {
2203 struct bkey *k = insert_keys->keys;
2204
2205 if (bkey_u64s(k) > insert_u64s_remaining(b))
2206 break;
2207
2208 if (bkey_cmp(k, &b->key) <= 0) {
2209 if (!b->level)
2210 bkey_put(b->c, k);
2211
2212 ret |= btree_insert_key(b, k, replace_key);
2213 bch_keylist_pop_front(insert_keys);
2214 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2215 BKEY_PADDED(key) temp;
2216 bkey_copy(&temp.key, insert_keys->keys);
2217
2218 bch_cut_back(&b->key, &temp.key);
2219 bch_cut_front(&b->key, insert_keys->keys);
2220
2221 ret |= btree_insert_key(b, &temp.key, replace_key);
2222 break;
2223 } else {
2224 break;
2225 }
2226 }
2227
2228 if (!ret)
2229 op->insert_collision = true;
2230
2231 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2232
2233 BUG_ON(bch_count_data(&b->keys) < oldsize);
2234 return ret;
2235 }
2236
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2237 static int btree_split(struct btree *b, struct btree_op *op,
2238 struct keylist *insert_keys,
2239 struct bkey *replace_key)
2240 {
2241 bool split;
2242 struct btree *n1, *n2 = NULL, *n3 = NULL;
2243 uint64_t start_time = local_clock();
2244 struct closure cl;
2245 struct keylist parent_keys;
2246
2247 closure_init_stack(&cl);
2248 bch_keylist_init(&parent_keys);
2249
2250 if (btree_check_reserve(b, op)) {
2251 if (!b->level)
2252 return -EINTR;
2253 else
2254 WARN(1, "insufficient reserve for split\n");
2255 }
2256
2257 n1 = btree_node_alloc_replacement(b, op);
2258 if (IS_ERR(n1))
2259 goto err;
2260
2261 split = set_blocks(btree_bset_first(n1),
2262 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2263
2264 if (split) {
2265 unsigned int keys = 0;
2266
2267 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2268
2269 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2270 if (IS_ERR(n2))
2271 goto err_free1;
2272
2273 if (!b->parent) {
2274 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2275 if (IS_ERR(n3))
2276 goto err_free2;
2277 }
2278
2279 mutex_lock(&n1->write_lock);
2280 mutex_lock(&n2->write_lock);
2281
2282 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2283
2284 /*
2285 * Has to be a linear search because we don't have an auxiliary
2286 * search tree yet
2287 */
2288
2289 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2290 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2291 keys));
2292
2293 bkey_copy_key(&n1->key,
2294 bset_bkey_idx(btree_bset_first(n1), keys));
2295 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2296
2297 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2298 btree_bset_first(n1)->keys = keys;
2299
2300 memcpy(btree_bset_first(n2)->start,
2301 bset_bkey_last(btree_bset_first(n1)),
2302 btree_bset_first(n2)->keys * sizeof(uint64_t));
2303
2304 bkey_copy_key(&n2->key, &b->key);
2305
2306 bch_keylist_add(&parent_keys, &n2->key);
2307 bch_btree_node_write(n2, &cl);
2308 mutex_unlock(&n2->write_lock);
2309 rw_unlock(true, n2);
2310 } else {
2311 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2312
2313 mutex_lock(&n1->write_lock);
2314 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2315 }
2316
2317 bch_keylist_add(&parent_keys, &n1->key);
2318 bch_btree_node_write(n1, &cl);
2319 mutex_unlock(&n1->write_lock);
2320
2321 if (n3) {
2322 /* Depth increases, make a new root */
2323 mutex_lock(&n3->write_lock);
2324 bkey_copy_key(&n3->key, &MAX_KEY);
2325 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2326 bch_btree_node_write(n3, &cl);
2327 mutex_unlock(&n3->write_lock);
2328
2329 closure_sync(&cl);
2330 bch_btree_set_root(n3);
2331 rw_unlock(true, n3);
2332 } else if (!b->parent) {
2333 /* Root filled up but didn't need to be split */
2334 closure_sync(&cl);
2335 bch_btree_set_root(n1);
2336 } else {
2337 /* Split a non root node */
2338 closure_sync(&cl);
2339 make_btree_freeing_key(b, parent_keys.top);
2340 bch_keylist_push(&parent_keys);
2341
2342 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2343 BUG_ON(!bch_keylist_empty(&parent_keys));
2344 }
2345
2346 btree_node_free(b);
2347 rw_unlock(true, n1);
2348
2349 bch_time_stats_update(&b->c->btree_split_time, start_time);
2350
2351 return 0;
2352 err_free2:
2353 bkey_put(b->c, &n2->key);
2354 btree_node_free(n2);
2355 rw_unlock(true, n2);
2356 err_free1:
2357 bkey_put(b->c, &n1->key);
2358 btree_node_free(n1);
2359 rw_unlock(true, n1);
2360 err:
2361 WARN(1, "bcache: btree split failed (level %u)", b->level);
2362
2363 if (n3 == ERR_PTR(-EAGAIN) ||
2364 n2 == ERR_PTR(-EAGAIN) ||
2365 n1 == ERR_PTR(-EAGAIN))
2366 return -EAGAIN;
2367
2368 return -ENOMEM;
2369 }
2370
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2371 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2372 struct keylist *insert_keys,
2373 atomic_t *journal_ref,
2374 struct bkey *replace_key)
2375 {
2376 struct closure cl;
2377
2378 BUG_ON(b->level && replace_key);
2379
2380 closure_init_stack(&cl);
2381
2382 mutex_lock(&b->write_lock);
2383
2384 if (write_block(b) != btree_bset_last(b) &&
2385 b->keys.last_set_unwritten)
2386 bch_btree_init_next(b); /* just wrote a set */
2387
2388 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2389 mutex_unlock(&b->write_lock);
2390 goto split;
2391 }
2392
2393 BUG_ON(write_block(b) != btree_bset_last(b));
2394
2395 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2396 if (!b->level)
2397 bch_btree_leaf_dirty(b, journal_ref);
2398 else
2399 bch_btree_node_write(b, &cl);
2400 }
2401
2402 mutex_unlock(&b->write_lock);
2403
2404 /* wait for btree node write if necessary, after unlock */
2405 closure_sync(&cl);
2406
2407 return 0;
2408 split:
2409 if (current->bio_list) {
2410 op->lock = b->c->root->level + 1;
2411 return -EAGAIN;
2412 } else if (op->lock <= b->c->root->level) {
2413 op->lock = b->c->root->level + 1;
2414 return -EINTR;
2415 } else {
2416 /* Invalidated all iterators */
2417 int ret = btree_split(b, op, insert_keys, replace_key);
2418
2419 if (bch_keylist_empty(insert_keys))
2420 return 0;
2421 else if (!ret)
2422 return -EINTR;
2423 return ret;
2424 }
2425 }
2426
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2427 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2428 struct bkey *check_key)
2429 {
2430 int ret = -EINTR;
2431 uint64_t btree_ptr = b->key.ptr[0];
2432 unsigned long seq = b->seq;
2433 struct keylist insert;
2434 bool upgrade = op->lock == -1;
2435
2436 bch_keylist_init(&insert);
2437
2438 if (upgrade) {
2439 rw_unlock(false, b);
2440 rw_lock(true, b, b->level);
2441
2442 if (b->key.ptr[0] != btree_ptr ||
2443 b->seq != seq + 1) {
2444 op->lock = b->level;
2445 goto out;
2446 }
2447 }
2448
2449 SET_KEY_PTRS(check_key, 1);
2450 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2451
2452 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2453
2454 bch_keylist_add(&insert, check_key);
2455
2456 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2457
2458 BUG_ON(!ret && !bch_keylist_empty(&insert));
2459 out:
2460 if (upgrade)
2461 downgrade_write(&b->lock);
2462 return ret;
2463 }
2464
2465 struct btree_insert_op {
2466 struct btree_op op;
2467 struct keylist *keys;
2468 atomic_t *journal_ref;
2469 struct bkey *replace_key;
2470 };
2471
btree_insert_fn(struct btree_op * b_op,struct btree * b)2472 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2473 {
2474 struct btree_insert_op *op = container_of(b_op,
2475 struct btree_insert_op, op);
2476
2477 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2478 op->journal_ref, op->replace_key);
2479 if (ret && !bch_keylist_empty(op->keys))
2480 return ret;
2481 else
2482 return MAP_DONE;
2483 }
2484
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2485 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2486 atomic_t *journal_ref, struct bkey *replace_key)
2487 {
2488 struct btree_insert_op op;
2489 int ret = 0;
2490
2491 BUG_ON(current->bio_list);
2492 BUG_ON(bch_keylist_empty(keys));
2493
2494 bch_btree_op_init(&op.op, 0);
2495 op.keys = keys;
2496 op.journal_ref = journal_ref;
2497 op.replace_key = replace_key;
2498
2499 while (!ret && !bch_keylist_empty(keys)) {
2500 op.op.lock = 0;
2501 ret = bch_btree_map_leaf_nodes(&op.op, c,
2502 &START_KEY(keys->keys),
2503 btree_insert_fn);
2504 }
2505
2506 if (ret) {
2507 struct bkey *k;
2508
2509 pr_err("error %i\n", ret);
2510
2511 while ((k = bch_keylist_pop(keys)))
2512 bkey_put(c, k);
2513 } else if (op.op.insert_collision)
2514 ret = -ESRCH;
2515
2516 return ret;
2517 }
2518
bch_btree_set_root(struct btree * b)2519 void bch_btree_set_root(struct btree *b)
2520 {
2521 unsigned int i;
2522 struct closure cl;
2523
2524 closure_init_stack(&cl);
2525
2526 trace_bcache_btree_set_root(b);
2527
2528 BUG_ON(!b->written);
2529
2530 for (i = 0; i < KEY_PTRS(&b->key); i++)
2531 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2532
2533 mutex_lock(&b->c->bucket_lock);
2534 list_del_init(&b->list);
2535 mutex_unlock(&b->c->bucket_lock);
2536
2537 b->c->root = b;
2538
2539 bch_journal_meta(b->c, &cl);
2540 closure_sync(&cl);
2541 }
2542
2543 /* Map across nodes or keys */
2544
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2545 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2546 struct bkey *from,
2547 btree_map_nodes_fn *fn, int flags)
2548 {
2549 int ret = MAP_CONTINUE;
2550
2551 if (b->level) {
2552 struct bkey *k;
2553 struct btree_iter_stack iter;
2554
2555 bch_btree_iter_stack_init(&b->keys, &iter, from);
2556
2557 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys,
2558 bch_ptr_bad))) {
2559 ret = bcache_btree(map_nodes_recurse, k, b,
2560 op, from, fn, flags);
2561 from = NULL;
2562
2563 if (ret != MAP_CONTINUE)
2564 return ret;
2565 }
2566 }
2567
2568 if (!b->level || flags == MAP_ALL_NODES)
2569 ret = fn(op, b);
2570
2571 return ret;
2572 }
2573
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2574 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2575 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2576 {
2577 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2578 }
2579
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2580 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2581 struct bkey *from, btree_map_keys_fn *fn,
2582 int flags)
2583 {
2584 int ret = MAP_CONTINUE;
2585 struct bkey *k;
2586 struct btree_iter_stack iter;
2587
2588 bch_btree_iter_stack_init(&b->keys, &iter, from);
2589
2590 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys,
2591 bch_ptr_bad))) {
2592 ret = !b->level
2593 ? fn(op, b, k)
2594 : bcache_btree(map_keys_recurse, k,
2595 b, op, from, fn, flags);
2596 from = NULL;
2597
2598 if (ret != MAP_CONTINUE)
2599 return ret;
2600 }
2601
2602 if (!b->level && (flags & MAP_END_KEY))
2603 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2604 KEY_OFFSET(&b->key), 0));
2605
2606 return ret;
2607 }
2608
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2609 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2610 struct bkey *from, btree_map_keys_fn *fn, int flags)
2611 {
2612 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2613 }
2614
2615 /* Keybuf code */
2616
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2617 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2618 {
2619 /* Overlapping keys compare equal */
2620 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2621 return -1;
2622 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2623 return 1;
2624 return 0;
2625 }
2626
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2627 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2628 struct keybuf_key *r)
2629 {
2630 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2631 }
2632
2633 struct refill {
2634 struct btree_op op;
2635 unsigned int nr_found;
2636 struct keybuf *buf;
2637 struct bkey *end;
2638 keybuf_pred_fn *pred;
2639 };
2640
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2641 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2642 struct bkey *k)
2643 {
2644 struct refill *refill = container_of(op, struct refill, op);
2645 struct keybuf *buf = refill->buf;
2646 int ret = MAP_CONTINUE;
2647
2648 if (bkey_cmp(k, refill->end) > 0) {
2649 ret = MAP_DONE;
2650 goto out;
2651 }
2652
2653 if (!KEY_SIZE(k)) /* end key */
2654 goto out;
2655
2656 if (refill->pred(buf, k)) {
2657 struct keybuf_key *w;
2658
2659 spin_lock(&buf->lock);
2660
2661 w = array_alloc(&buf->freelist);
2662 if (!w) {
2663 spin_unlock(&buf->lock);
2664 return MAP_DONE;
2665 }
2666
2667 w->private = NULL;
2668 bkey_copy(&w->key, k);
2669
2670 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2671 array_free(&buf->freelist, w);
2672 else
2673 refill->nr_found++;
2674
2675 if (array_freelist_empty(&buf->freelist))
2676 ret = MAP_DONE;
2677
2678 spin_unlock(&buf->lock);
2679 }
2680 out:
2681 buf->last_scanned = *k;
2682 return ret;
2683 }
2684
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2685 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2686 struct bkey *end, keybuf_pred_fn *pred)
2687 {
2688 struct bkey start = buf->last_scanned;
2689 struct refill refill;
2690
2691 cond_resched();
2692
2693 bch_btree_op_init(&refill.op, -1);
2694 refill.nr_found = 0;
2695 refill.buf = buf;
2696 refill.end = end;
2697 refill.pred = pred;
2698
2699 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2700 refill_keybuf_fn, MAP_END_KEY);
2701
2702 trace_bcache_keyscan(refill.nr_found,
2703 KEY_INODE(&start), KEY_OFFSET(&start),
2704 KEY_INODE(&buf->last_scanned),
2705 KEY_OFFSET(&buf->last_scanned));
2706
2707 spin_lock(&buf->lock);
2708
2709 if (!RB_EMPTY_ROOT(&buf->keys)) {
2710 struct keybuf_key *w;
2711
2712 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2713 buf->start = START_KEY(&w->key);
2714
2715 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2716 buf->end = w->key;
2717 } else {
2718 buf->start = MAX_KEY;
2719 buf->end = MAX_KEY;
2720 }
2721
2722 spin_unlock(&buf->lock);
2723 }
2724
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2725 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2726 {
2727 rb_erase(&w->node, &buf->keys);
2728 array_free(&buf->freelist, w);
2729 }
2730
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2731 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2732 {
2733 spin_lock(&buf->lock);
2734 __bch_keybuf_del(buf, w);
2735 spin_unlock(&buf->lock);
2736 }
2737
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2738 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2739 struct bkey *end)
2740 {
2741 bool ret = false;
2742 struct keybuf_key *p, *w, s;
2743
2744 s.key = *start;
2745
2746 if (bkey_cmp(end, &buf->start) <= 0 ||
2747 bkey_cmp(start, &buf->end) >= 0)
2748 return false;
2749
2750 spin_lock(&buf->lock);
2751 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2752
2753 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2754 p = w;
2755 w = RB_NEXT(w, node);
2756
2757 if (p->private)
2758 ret = true;
2759 else
2760 __bch_keybuf_del(buf, p);
2761 }
2762
2763 spin_unlock(&buf->lock);
2764 return ret;
2765 }
2766
bch_keybuf_next(struct keybuf * buf)2767 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2768 {
2769 struct keybuf_key *w;
2770
2771 spin_lock(&buf->lock);
2772
2773 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2774
2775 while (w && w->private)
2776 w = RB_NEXT(w, node);
2777
2778 if (w)
2779 w->private = ERR_PTR(-EINTR);
2780
2781 spin_unlock(&buf->lock);
2782 return w;
2783 }
2784
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2785 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2786 struct keybuf *buf,
2787 struct bkey *end,
2788 keybuf_pred_fn *pred)
2789 {
2790 struct keybuf_key *ret;
2791
2792 while (1) {
2793 ret = bch_keybuf_next(buf);
2794 if (ret)
2795 break;
2796
2797 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2798 pr_debug("scan finished\n");
2799 break;
2800 }
2801
2802 bch_refill_keybuf(c, buf, end, pred);
2803 }
2804
2805 return ret;
2806 }
2807
bch_keybuf_init(struct keybuf * buf)2808 void bch_keybuf_init(struct keybuf *buf)
2809 {
2810 buf->last_scanned = MAX_KEY;
2811 buf->keys = RB_ROOT;
2812
2813 spin_lock_init(&buf->lock);
2814 array_allocator_init(&buf->freelist);
2815 }
2816
bch_btree_exit(void)2817 void bch_btree_exit(void)
2818 {
2819 if (btree_io_wq)
2820 destroy_workqueue(btree_io_wq);
2821 }
2822
bch_btree_init(void)2823 int __init bch_btree_init(void)
2824 {
2825 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2826 if (!btree_io_wq)
2827 return -ENOMEM;
2828
2829 return 0;
2830 }
2831