1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * BTF-to-C type converter.
5 *
6 * Copyright (c) 2019 Facebook
7 */
8
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <endian.h>
15 #include <errno.h>
16 #include <limits.h>
17 #include <linux/err.h>
18 #include <linux/btf.h>
19 #include <linux/kernel.h>
20 #include "btf.h"
21 #include "hashmap.h"
22 #include "libbpf.h"
23 #include "libbpf_internal.h"
24 #include "str_error.h"
25
26 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
27 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
28
pfx(int lvl)29 static const char *pfx(int lvl)
30 {
31 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
32 }
33
34 enum btf_dump_type_order_state {
35 NOT_ORDERED,
36 ORDERING,
37 ORDERED,
38 };
39
40 enum btf_dump_type_emit_state {
41 NOT_EMITTED,
42 EMITTING,
43 EMITTED,
44 };
45
46 /* per-type auxiliary state */
47 struct btf_dump_type_aux_state {
48 /* topological sorting state */
49 enum btf_dump_type_order_state order_state: 2;
50 /* emitting state used to determine the need for forward declaration */
51 enum btf_dump_type_emit_state emit_state: 2;
52 /* whether forward declaration was already emitted */
53 __u8 fwd_emitted: 1;
54 /* whether unique non-duplicate name was already assigned */
55 __u8 name_resolved: 1;
56 /* whether type is referenced from any other type */
57 __u8 referenced: 1;
58 };
59
60 /* indent string length; one indent string is added for each indent level */
61 #define BTF_DATA_INDENT_STR_LEN 32
62
63 /*
64 * Common internal data for BTF type data dump operations.
65 */
66 struct btf_dump_data {
67 const void *data_end; /* end of valid data to show */
68 bool compact;
69 bool skip_names;
70 bool emit_zeroes;
71 bool emit_strings;
72 __u8 indent_lvl; /* base indent level */
73 char indent_str[BTF_DATA_INDENT_STR_LEN];
74 /* below are used during iteration */
75 int depth;
76 bool is_array_member;
77 bool is_array_terminated;
78 bool is_array_char;
79 };
80
81 struct btf_dump {
82 const struct btf *btf;
83 btf_dump_printf_fn_t printf_fn;
84 void *cb_ctx;
85 int ptr_sz;
86 bool strip_mods;
87 bool skip_anon_defs;
88 int last_id;
89
90 /* per-type auxiliary state */
91 struct btf_dump_type_aux_state *type_states;
92 size_t type_states_cap;
93 /* per-type optional cached unique name, must be freed, if present */
94 const char **cached_names;
95 size_t cached_names_cap;
96
97 /* topo-sorted list of dependent type definitions */
98 __u32 *emit_queue;
99 int emit_queue_cap;
100 int emit_queue_cnt;
101
102 /*
103 * stack of type declarations (e.g., chain of modifiers, arrays,
104 * funcs, etc)
105 */
106 __u32 *decl_stack;
107 int decl_stack_cap;
108 int decl_stack_cnt;
109
110 /* maps struct/union/enum name to a number of name occurrences */
111 struct hashmap *type_names;
112 /*
113 * maps typedef identifiers and enum value names to a number of such
114 * name occurrences
115 */
116 struct hashmap *ident_names;
117 /*
118 * data for typed display; allocated if needed.
119 */
120 struct btf_dump_data *typed_dump;
121 };
122
str_hash_fn(long key,void * ctx)123 static size_t str_hash_fn(long key, void *ctx)
124 {
125 return str_hash((void *)key);
126 }
127
str_equal_fn(long a,long b,void * ctx)128 static bool str_equal_fn(long a, long b, void *ctx)
129 {
130 return strcmp((void *)a, (void *)b) == 0;
131 }
132
btf_name_of(const struct btf_dump * d,__u32 name_off)133 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
134 {
135 return btf__name_by_offset(d->btf, name_off);
136 }
137
btf_dump_printf(const struct btf_dump * d,const char * fmt,...)138 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
139 {
140 va_list args;
141
142 va_start(args, fmt);
143 d->printf_fn(d->cb_ctx, fmt, args);
144 va_end(args);
145 }
146
147 static int btf_dump_mark_referenced(struct btf_dump *d);
148 static int btf_dump_resize(struct btf_dump *d);
149
btf_dump__new(const struct btf * btf,btf_dump_printf_fn_t printf_fn,void * ctx,const struct btf_dump_opts * opts)150 struct btf_dump *btf_dump__new(const struct btf *btf,
151 btf_dump_printf_fn_t printf_fn,
152 void *ctx,
153 const struct btf_dump_opts *opts)
154 {
155 struct btf_dump *d;
156 int err;
157
158 if (!OPTS_VALID(opts, btf_dump_opts))
159 return libbpf_err_ptr(-EINVAL);
160
161 if (!printf_fn)
162 return libbpf_err_ptr(-EINVAL);
163
164 d = calloc(1, sizeof(struct btf_dump));
165 if (!d)
166 return libbpf_err_ptr(-ENOMEM);
167
168 d->btf = btf;
169 d->printf_fn = printf_fn;
170 d->cb_ctx = ctx;
171 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
172
173 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
174 if (IS_ERR(d->type_names)) {
175 err = PTR_ERR(d->type_names);
176 d->type_names = NULL;
177 goto err;
178 }
179 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
180 if (IS_ERR(d->ident_names)) {
181 err = PTR_ERR(d->ident_names);
182 d->ident_names = NULL;
183 goto err;
184 }
185
186 err = btf_dump_resize(d);
187 if (err)
188 goto err;
189
190 return d;
191 err:
192 btf_dump__free(d);
193 return libbpf_err_ptr(err);
194 }
195
btf_dump_resize(struct btf_dump * d)196 static int btf_dump_resize(struct btf_dump *d)
197 {
198 int err, last_id = btf__type_cnt(d->btf) - 1;
199
200 if (last_id <= d->last_id)
201 return 0;
202
203 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
204 sizeof(*d->type_states), last_id + 1))
205 return -ENOMEM;
206 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
207 sizeof(*d->cached_names), last_id + 1))
208 return -ENOMEM;
209
210 if (d->last_id == 0) {
211 /* VOID is special */
212 d->type_states[0].order_state = ORDERED;
213 d->type_states[0].emit_state = EMITTED;
214 }
215
216 /* eagerly determine referenced types for anon enums */
217 err = btf_dump_mark_referenced(d);
218 if (err)
219 return err;
220
221 d->last_id = last_id;
222 return 0;
223 }
224
btf_dump_free_names(struct hashmap * map)225 static void btf_dump_free_names(struct hashmap *map)
226 {
227 size_t bkt;
228 struct hashmap_entry *cur;
229
230 if (!map)
231 return;
232
233 hashmap__for_each_entry(map, cur, bkt)
234 free((void *)cur->pkey);
235
236 hashmap__free(map);
237 }
238
btf_dump__free(struct btf_dump * d)239 void btf_dump__free(struct btf_dump *d)
240 {
241 int i;
242
243 if (IS_ERR_OR_NULL(d))
244 return;
245
246 free(d->type_states);
247 if (d->cached_names) {
248 /* any set cached name is owned by us and should be freed */
249 for (i = 0; i <= d->last_id; i++) {
250 if (d->cached_names[i])
251 free((void *)d->cached_names[i]);
252 }
253 }
254 free(d->cached_names);
255 free(d->emit_queue);
256 free(d->decl_stack);
257 btf_dump_free_names(d->type_names);
258 btf_dump_free_names(d->ident_names);
259
260 free(d);
261 }
262
263 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
264 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
265
266 /*
267 * Dump BTF type in a compilable C syntax, including all the necessary
268 * dependent types, necessary for compilation. If some of the dependent types
269 * were already emitted as part of previous btf_dump__dump_type() invocation
270 * for another type, they won't be emitted again. This API allows callers to
271 * filter out BTF types according to user-defined criterias and emitted only
272 * minimal subset of types, necessary to compile everything. Full struct/union
273 * definitions will still be emitted, even if the only usage is through
274 * pointer and could be satisfied with just a forward declaration.
275 *
276 * Dumping is done in two high-level passes:
277 * 1. Topologically sort type definitions to satisfy C rules of compilation.
278 * 2. Emit type definitions in C syntax.
279 *
280 * Returns 0 on success; <0, otherwise.
281 */
btf_dump__dump_type(struct btf_dump * d,__u32 id)282 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
283 {
284 int err, i;
285
286 if (id >= btf__type_cnt(d->btf))
287 return libbpf_err(-EINVAL);
288
289 err = btf_dump_resize(d);
290 if (err)
291 return libbpf_err(err);
292
293 d->emit_queue_cnt = 0;
294 err = btf_dump_order_type(d, id, false);
295 if (err < 0)
296 return libbpf_err(err);
297
298 for (i = 0; i < d->emit_queue_cnt; i++)
299 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
300
301 return 0;
302 }
303
304 /*
305 * Mark all types that are referenced from any other type. This is used to
306 * determine top-level anonymous enums that need to be emitted as an
307 * independent type declarations.
308 * Anonymous enums come in two flavors: either embedded in a struct's field
309 * definition, in which case they have to be declared inline as part of field
310 * type declaration; or as a top-level anonymous enum, typically used for
311 * declaring global constants. It's impossible to distinguish between two
312 * without knowing whether given enum type was referenced from other type:
313 * top-level anonymous enum won't be referenced by anything, while embedded
314 * one will.
315 */
btf_dump_mark_referenced(struct btf_dump * d)316 static int btf_dump_mark_referenced(struct btf_dump *d)
317 {
318 int i, j, n = btf__type_cnt(d->btf);
319 const struct btf_type *t;
320 __u16 vlen;
321
322 for (i = d->last_id + 1; i < n; i++) {
323 t = btf__type_by_id(d->btf, i);
324 vlen = btf_vlen(t);
325
326 switch (btf_kind(t)) {
327 case BTF_KIND_INT:
328 case BTF_KIND_ENUM:
329 case BTF_KIND_ENUM64:
330 case BTF_KIND_FWD:
331 case BTF_KIND_FLOAT:
332 break;
333
334 case BTF_KIND_VOLATILE:
335 case BTF_KIND_CONST:
336 case BTF_KIND_RESTRICT:
337 case BTF_KIND_PTR:
338 case BTF_KIND_TYPEDEF:
339 case BTF_KIND_FUNC:
340 case BTF_KIND_VAR:
341 case BTF_KIND_DECL_TAG:
342 case BTF_KIND_TYPE_TAG:
343 d->type_states[t->type].referenced = 1;
344 break;
345
346 case BTF_KIND_ARRAY: {
347 const struct btf_array *a = btf_array(t);
348
349 d->type_states[a->index_type].referenced = 1;
350 d->type_states[a->type].referenced = 1;
351 break;
352 }
353 case BTF_KIND_STRUCT:
354 case BTF_KIND_UNION: {
355 const struct btf_member *m = btf_members(t);
356
357 for (j = 0; j < vlen; j++, m++)
358 d->type_states[m->type].referenced = 1;
359 break;
360 }
361 case BTF_KIND_FUNC_PROTO: {
362 const struct btf_param *p = btf_params(t);
363
364 for (j = 0; j < vlen; j++, p++)
365 d->type_states[p->type].referenced = 1;
366 break;
367 }
368 case BTF_KIND_DATASEC: {
369 const struct btf_var_secinfo *v = btf_var_secinfos(t);
370
371 for (j = 0; j < vlen; j++, v++)
372 d->type_states[v->type].referenced = 1;
373 break;
374 }
375 default:
376 return -EINVAL;
377 }
378 }
379 return 0;
380 }
381
btf_dump_add_emit_queue_id(struct btf_dump * d,__u32 id)382 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
383 {
384 __u32 *new_queue;
385 size_t new_cap;
386
387 if (d->emit_queue_cnt >= d->emit_queue_cap) {
388 new_cap = max(16, d->emit_queue_cap * 3 / 2);
389 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
390 if (!new_queue)
391 return -ENOMEM;
392 d->emit_queue = new_queue;
393 d->emit_queue_cap = new_cap;
394 }
395
396 d->emit_queue[d->emit_queue_cnt++] = id;
397 return 0;
398 }
399
400 /*
401 * Determine order of emitting dependent types and specified type to satisfy
402 * C compilation rules. This is done through topological sorting with an
403 * additional complication which comes from C rules. The main idea for C is
404 * that if some type is "embedded" into a struct/union, it's size needs to be
405 * known at the time of definition of containing type. E.g., for:
406 *
407 * struct A {};
408 * struct B { struct A x; }
409 *
410 * struct A *HAS* to be defined before struct B, because it's "embedded",
411 * i.e., it is part of struct B layout. But in the following case:
412 *
413 * struct A;
414 * struct B { struct A *x; }
415 * struct A {};
416 *
417 * it's enough to just have a forward declaration of struct A at the time of
418 * struct B definition, as struct B has a pointer to struct A, so the size of
419 * field x is known without knowing struct A size: it's sizeof(void *).
420 *
421 * Unfortunately, there are some trickier cases we need to handle, e.g.:
422 *
423 * struct A {}; // if this was forward-declaration: compilation error
424 * struct B {
425 * struct { // anonymous struct
426 * struct A y;
427 * } *x;
428 * };
429 *
430 * In this case, struct B's field x is a pointer, so it's size is known
431 * regardless of the size of (anonymous) struct it points to. But because this
432 * struct is anonymous and thus defined inline inside struct B, *and* it
433 * embeds struct A, compiler requires full definition of struct A to be known
434 * before struct B can be defined. This creates a transitive dependency
435 * between struct A and struct B. If struct A was forward-declared before
436 * struct B definition and fully defined after struct B definition, that would
437 * trigger compilation error.
438 *
439 * All this means that while we are doing topological sorting on BTF type
440 * graph, we need to determine relationships between different types (graph
441 * nodes):
442 * - weak link (relationship) between X and Y, if Y *CAN* be
443 * forward-declared at the point of X definition;
444 * - strong link, if Y *HAS* to be fully-defined before X can be defined.
445 *
446 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
447 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
448 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
449 * Weak/strong relationship is determined recursively during DFS traversal and
450 * is returned as a result from btf_dump_order_type().
451 *
452 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
453 * but it is not guaranteeing that no extraneous forward declarations will be
454 * emitted.
455 *
456 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
457 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
458 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
459 * entire graph path, so depending where from one came to that BTF type, it
460 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
461 * once they are processed, there is no need to do it again, so they are
462 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
463 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
464 * in any case, once those are processed, no need to do it again, as the
465 * result won't change.
466 *
467 * Returns:
468 * - 1, if type is part of strong link (so there is strong topological
469 * ordering requirements);
470 * - 0, if type is part of weak link (so can be satisfied through forward
471 * declaration);
472 * - <0, on error (e.g., unsatisfiable type loop detected).
473 */
btf_dump_order_type(struct btf_dump * d,__u32 id,bool through_ptr)474 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
475 {
476 /*
477 * Order state is used to detect strong link cycles, but only for BTF
478 * kinds that are or could be an independent definition (i.e.,
479 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
480 * func_protos, modifiers are just means to get to these definitions.
481 * Int/void don't need definitions, they are assumed to be always
482 * properly defined. We also ignore datasec, var, and funcs for now.
483 * So for all non-defining kinds, we never even set ordering state,
484 * for defining kinds we set ORDERING and subsequently ORDERED if it
485 * forms a strong link.
486 */
487 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
488 const struct btf_type *t;
489 __u16 vlen;
490 int err, i;
491
492 /* return true, letting typedefs know that it's ok to be emitted */
493 if (tstate->order_state == ORDERED)
494 return 1;
495
496 t = btf__type_by_id(d->btf, id);
497
498 if (tstate->order_state == ORDERING) {
499 /* type loop, but resolvable through fwd declaration */
500 if (btf_is_composite(t) && through_ptr && t->name_off != 0)
501 return 0;
502 pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
503 return -ELOOP;
504 }
505
506 switch (btf_kind(t)) {
507 case BTF_KIND_INT:
508 case BTF_KIND_FLOAT:
509 tstate->order_state = ORDERED;
510 return 0;
511
512 case BTF_KIND_PTR:
513 err = btf_dump_order_type(d, t->type, true);
514 tstate->order_state = ORDERED;
515 return err;
516
517 case BTF_KIND_ARRAY:
518 return btf_dump_order_type(d, btf_array(t)->type, false);
519
520 case BTF_KIND_STRUCT:
521 case BTF_KIND_UNION: {
522 const struct btf_member *m = btf_members(t);
523 /*
524 * struct/union is part of strong link, only if it's embedded
525 * (so no ptr in a path) or it's anonymous (so has to be
526 * defined inline, even if declared through ptr)
527 */
528 if (through_ptr && t->name_off != 0)
529 return 0;
530
531 tstate->order_state = ORDERING;
532
533 vlen = btf_vlen(t);
534 for (i = 0; i < vlen; i++, m++) {
535 err = btf_dump_order_type(d, m->type, false);
536 if (err < 0)
537 return err;
538 }
539
540 if (t->name_off != 0) {
541 err = btf_dump_add_emit_queue_id(d, id);
542 if (err < 0)
543 return err;
544 }
545
546 tstate->order_state = ORDERED;
547 return 1;
548 }
549 case BTF_KIND_ENUM:
550 case BTF_KIND_ENUM64:
551 case BTF_KIND_FWD:
552 /*
553 * non-anonymous or non-referenced enums are top-level
554 * declarations and should be emitted. Same logic can be
555 * applied to FWDs, it won't hurt anyways.
556 */
557 if (t->name_off != 0 || !tstate->referenced) {
558 err = btf_dump_add_emit_queue_id(d, id);
559 if (err)
560 return err;
561 }
562 tstate->order_state = ORDERED;
563 return 1;
564
565 case BTF_KIND_TYPEDEF: {
566 int is_strong;
567
568 is_strong = btf_dump_order_type(d, t->type, through_ptr);
569 if (is_strong < 0)
570 return is_strong;
571
572 /* typedef is similar to struct/union w.r.t. fwd-decls */
573 if (through_ptr && !is_strong)
574 return 0;
575
576 /* typedef is always a named definition */
577 err = btf_dump_add_emit_queue_id(d, id);
578 if (err)
579 return err;
580
581 d->type_states[id].order_state = ORDERED;
582 return 1;
583 }
584 case BTF_KIND_VOLATILE:
585 case BTF_KIND_CONST:
586 case BTF_KIND_RESTRICT:
587 case BTF_KIND_TYPE_TAG:
588 return btf_dump_order_type(d, t->type, through_ptr);
589
590 case BTF_KIND_FUNC_PROTO: {
591 const struct btf_param *p = btf_params(t);
592 bool is_strong;
593
594 err = btf_dump_order_type(d, t->type, through_ptr);
595 if (err < 0)
596 return err;
597 is_strong = err > 0;
598
599 vlen = btf_vlen(t);
600 for (i = 0; i < vlen; i++, p++) {
601 err = btf_dump_order_type(d, p->type, through_ptr);
602 if (err < 0)
603 return err;
604 if (err > 0)
605 is_strong = true;
606 }
607 return is_strong;
608 }
609 case BTF_KIND_FUNC:
610 case BTF_KIND_VAR:
611 case BTF_KIND_DATASEC:
612 case BTF_KIND_DECL_TAG:
613 d->type_states[id].order_state = ORDERED;
614 return 0;
615
616 default:
617 return -EINVAL;
618 }
619 }
620
621 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
622 const struct btf_type *t);
623
624 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
625 const struct btf_type *t);
626 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
627 const struct btf_type *t, int lvl);
628
629 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
630 const struct btf_type *t);
631 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
632 const struct btf_type *t, int lvl);
633
634 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
635 const struct btf_type *t);
636
637 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
638 const struct btf_type *t, int lvl);
639
640 /* a local view into a shared stack */
641 struct id_stack {
642 const __u32 *ids;
643 int cnt;
644 };
645
646 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
647 const char *fname, int lvl);
648 static void btf_dump_emit_type_chain(struct btf_dump *d,
649 struct id_stack *decl_stack,
650 const char *fname, int lvl);
651
652 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
653 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
654 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
655 const char *orig_name);
656
btf_dump_is_blacklisted(struct btf_dump * d,__u32 id)657 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
658 {
659 const struct btf_type *t = btf__type_by_id(d->btf, id);
660
661 /* __builtin_va_list is a compiler built-in, which causes compilation
662 * errors, when compiling w/ different compiler, then used to compile
663 * original code (e.g., GCC to compile kernel, Clang to use generated
664 * C header from BTF). As it is built-in, it should be already defined
665 * properly internally in compiler.
666 */
667 if (t->name_off == 0)
668 return false;
669 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
670 }
671
672 /*
673 * Emit C-syntax definitions of types from chains of BTF types.
674 *
675 * High-level handling of determining necessary forward declarations are handled
676 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
677 * declarations/definitions in C syntax are handled by a combo of
678 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
679 * corresponding btf_dump_emit_*_{def,fwd}() functions.
680 *
681 * We also keep track of "containing struct/union type ID" to determine when
682 * we reference it from inside and thus can avoid emitting unnecessary forward
683 * declaration.
684 *
685 * This algorithm is designed in such a way, that even if some error occurs
686 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
687 * that doesn't comply to C rules completely), algorithm will try to proceed
688 * and produce as much meaningful output as possible.
689 */
btf_dump_emit_type(struct btf_dump * d,__u32 id,__u32 cont_id)690 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
691 {
692 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
693 bool top_level_def = cont_id == 0;
694 const struct btf_type *t;
695 __u16 kind;
696
697 if (tstate->emit_state == EMITTED)
698 return;
699
700 t = btf__type_by_id(d->btf, id);
701 kind = btf_kind(t);
702
703 if (tstate->emit_state == EMITTING) {
704 if (tstate->fwd_emitted)
705 return;
706
707 switch (kind) {
708 case BTF_KIND_STRUCT:
709 case BTF_KIND_UNION:
710 /*
711 * if we are referencing a struct/union that we are
712 * part of - then no need for fwd declaration
713 */
714 if (id == cont_id)
715 return;
716 if (t->name_off == 0) {
717 pr_warn("anonymous struct/union loop, id:[%u]\n",
718 id);
719 return;
720 }
721 btf_dump_emit_struct_fwd(d, id, t);
722 btf_dump_printf(d, ";\n\n");
723 tstate->fwd_emitted = 1;
724 break;
725 case BTF_KIND_TYPEDEF:
726 /*
727 * for typedef fwd_emitted means typedef definition
728 * was emitted, but it can be used only for "weak"
729 * references through pointer only, not for embedding
730 */
731 if (!btf_dump_is_blacklisted(d, id)) {
732 btf_dump_emit_typedef_def(d, id, t, 0);
733 btf_dump_printf(d, ";\n\n");
734 }
735 tstate->fwd_emitted = 1;
736 break;
737 default:
738 break;
739 }
740
741 return;
742 }
743
744 switch (kind) {
745 case BTF_KIND_INT:
746 /* Emit type alias definitions if necessary */
747 btf_dump_emit_missing_aliases(d, id, t);
748
749 tstate->emit_state = EMITTED;
750 break;
751 case BTF_KIND_ENUM:
752 case BTF_KIND_ENUM64:
753 if (top_level_def) {
754 btf_dump_emit_enum_def(d, id, t, 0);
755 btf_dump_printf(d, ";\n\n");
756 }
757 tstate->emit_state = EMITTED;
758 break;
759 case BTF_KIND_PTR:
760 case BTF_KIND_VOLATILE:
761 case BTF_KIND_CONST:
762 case BTF_KIND_RESTRICT:
763 case BTF_KIND_TYPE_TAG:
764 btf_dump_emit_type(d, t->type, cont_id);
765 break;
766 case BTF_KIND_ARRAY:
767 btf_dump_emit_type(d, btf_array(t)->type, cont_id);
768 break;
769 case BTF_KIND_FWD:
770 btf_dump_emit_fwd_def(d, id, t);
771 btf_dump_printf(d, ";\n\n");
772 tstate->emit_state = EMITTED;
773 break;
774 case BTF_KIND_TYPEDEF:
775 tstate->emit_state = EMITTING;
776 btf_dump_emit_type(d, t->type, id);
777 /*
778 * typedef can server as both definition and forward
779 * declaration; at this stage someone depends on
780 * typedef as a forward declaration (refers to it
781 * through pointer), so unless we already did it,
782 * emit typedef as a forward declaration
783 */
784 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
785 btf_dump_emit_typedef_def(d, id, t, 0);
786 btf_dump_printf(d, ";\n\n");
787 }
788 tstate->emit_state = EMITTED;
789 break;
790 case BTF_KIND_STRUCT:
791 case BTF_KIND_UNION:
792 tstate->emit_state = EMITTING;
793 /* if it's a top-level struct/union definition or struct/union
794 * is anonymous, then in C we'll be emitting all fields and
795 * their types (as opposed to just `struct X`), so we need to
796 * make sure that all types, referenced from struct/union
797 * members have necessary forward-declarations, where
798 * applicable
799 */
800 if (top_level_def || t->name_off == 0) {
801 const struct btf_member *m = btf_members(t);
802 __u16 vlen = btf_vlen(t);
803 int i, new_cont_id;
804
805 new_cont_id = t->name_off == 0 ? cont_id : id;
806 for (i = 0; i < vlen; i++, m++)
807 btf_dump_emit_type(d, m->type, new_cont_id);
808 } else if (!tstate->fwd_emitted && id != cont_id) {
809 btf_dump_emit_struct_fwd(d, id, t);
810 btf_dump_printf(d, ";\n\n");
811 tstate->fwd_emitted = 1;
812 }
813
814 if (top_level_def) {
815 btf_dump_emit_struct_def(d, id, t, 0);
816 btf_dump_printf(d, ";\n\n");
817 tstate->emit_state = EMITTED;
818 } else {
819 tstate->emit_state = NOT_EMITTED;
820 }
821 break;
822 case BTF_KIND_FUNC_PROTO: {
823 const struct btf_param *p = btf_params(t);
824 __u16 n = btf_vlen(t);
825 int i;
826
827 btf_dump_emit_type(d, t->type, cont_id);
828 for (i = 0; i < n; i++, p++)
829 btf_dump_emit_type(d, p->type, cont_id);
830
831 break;
832 }
833 default:
834 break;
835 }
836 }
837
btf_is_struct_packed(const struct btf * btf,__u32 id,const struct btf_type * t)838 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
839 const struct btf_type *t)
840 {
841 const struct btf_member *m;
842 int max_align = 1, align, i, bit_sz;
843 __u16 vlen;
844
845 m = btf_members(t);
846 vlen = btf_vlen(t);
847 /* all non-bitfield fields have to be naturally aligned */
848 for (i = 0; i < vlen; i++, m++) {
849 align = btf__align_of(btf, m->type);
850 bit_sz = btf_member_bitfield_size(t, i);
851 if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
852 return true;
853 max_align = max(align, max_align);
854 }
855 /* size of a non-packed struct has to be a multiple of its alignment */
856 if (t->size % max_align != 0)
857 return true;
858 /*
859 * if original struct was marked as packed, but its layout is
860 * naturally aligned, we'll detect that it's not packed
861 */
862 return false;
863 }
864
btf_dump_emit_bit_padding(const struct btf_dump * d,int cur_off,int next_off,int next_align,bool in_bitfield,int lvl)865 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
866 int cur_off, int next_off, int next_align,
867 bool in_bitfield, int lvl)
868 {
869 const struct {
870 const char *name;
871 int bits;
872 } pads[] = {
873 {"long", d->ptr_sz * 8}, {"int", 32}, {"short", 16}, {"char", 8}
874 };
875 int new_off = 0, pad_bits = 0, bits, i;
876 const char *pad_type = NULL;
877
878 if (cur_off >= next_off)
879 return; /* no gap */
880
881 /* For filling out padding we want to take advantage of
882 * natural alignment rules to minimize unnecessary explicit
883 * padding. First, we find the largest type (among long, int,
884 * short, or char) that can be used to force naturally aligned
885 * boundary. Once determined, we'll use such type to fill in
886 * the remaining padding gap. In some cases we can rely on
887 * compiler filling some gaps, but sometimes we need to force
888 * alignment to close natural alignment with markers like
889 * `long: 0` (this is always the case for bitfields). Note
890 * that even if struct itself has, let's say 4-byte alignment
891 * (i.e., it only uses up to int-aligned types), using `long:
892 * X;` explicit padding doesn't actually change struct's
893 * overall alignment requirements, but compiler does take into
894 * account that type's (long, in this example) natural
895 * alignment requirements when adding implicit padding. We use
896 * this fact heavily and don't worry about ruining correct
897 * struct alignment requirement.
898 */
899 for (i = 0; i < ARRAY_SIZE(pads); i++) {
900 pad_bits = pads[i].bits;
901 pad_type = pads[i].name;
902
903 new_off = roundup(cur_off, pad_bits);
904 if (new_off <= next_off)
905 break;
906 }
907
908 if (new_off > cur_off && new_off <= next_off) {
909 /* We need explicit `<type>: 0` aligning mark if next
910 * field is right on alignment offset and its
911 * alignment requirement is less strict than <type>'s
912 * alignment (so compiler won't naturally align to the
913 * offset we expect), or if subsequent `<type>: X`,
914 * will actually completely fit in the remaining hole,
915 * making compiler basically ignore `<type>: X`
916 * completely.
917 */
918 if (in_bitfield ||
919 (new_off == next_off && roundup(cur_off, next_align * 8) != new_off) ||
920 (new_off != next_off && next_off - new_off <= new_off - cur_off))
921 /* but for bitfields we'll emit explicit bit count */
922 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type,
923 in_bitfield ? new_off - cur_off : 0);
924 cur_off = new_off;
925 }
926
927 /* Now we know we start at naturally aligned offset for a chosen
928 * padding type (long, int, short, or char), and so the rest is just
929 * a straightforward filling of remaining padding gap with full
930 * `<type>: sizeof(<type>);` markers, except for the last one, which
931 * might need smaller than sizeof(<type>) padding.
932 */
933 while (cur_off != next_off) {
934 bits = min(next_off - cur_off, pad_bits);
935 if (bits == pad_bits) {
936 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
937 cur_off += bits;
938 continue;
939 }
940 /* For the remainder padding that doesn't cover entire
941 * pad_type bit length, we pick the smallest necessary type.
942 * This is pure aesthetics, we could have just used `long`,
943 * but having smallest necessary one communicates better the
944 * scale of the padding gap.
945 */
946 for (i = ARRAY_SIZE(pads) - 1; i >= 0; i--) {
947 pad_type = pads[i].name;
948 pad_bits = pads[i].bits;
949 if (pad_bits < bits)
950 continue;
951
952 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, bits);
953 cur_off += bits;
954 break;
955 }
956 }
957 }
958
btf_dump_emit_struct_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)959 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
960 const struct btf_type *t)
961 {
962 btf_dump_printf(d, "%s%s%s",
963 btf_is_struct(t) ? "struct" : "union",
964 t->name_off ? " " : "",
965 btf_dump_type_name(d, id));
966 }
967
btf_dump_emit_struct_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)968 static void btf_dump_emit_struct_def(struct btf_dump *d,
969 __u32 id,
970 const struct btf_type *t,
971 int lvl)
972 {
973 const struct btf_member *m = btf_members(t);
974 bool is_struct = btf_is_struct(t);
975 bool packed, prev_bitfield = false;
976 int align, i, off = 0;
977 __u16 vlen = btf_vlen(t);
978
979 align = btf__align_of(d->btf, id);
980 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
981
982 btf_dump_printf(d, "%s%s%s {",
983 is_struct ? "struct" : "union",
984 t->name_off ? " " : "",
985 btf_dump_type_name(d, id));
986
987 for (i = 0; i < vlen; i++, m++) {
988 const char *fname;
989 int m_off, m_sz, m_align;
990 bool in_bitfield;
991
992 fname = btf_name_of(d, m->name_off);
993 m_sz = btf_member_bitfield_size(t, i);
994 m_off = btf_member_bit_offset(t, i);
995 m_align = packed ? 1 : btf__align_of(d->btf, m->type);
996
997 in_bitfield = prev_bitfield && m_sz != 0;
998
999 btf_dump_emit_bit_padding(d, off, m_off, m_align, in_bitfield, lvl + 1);
1000 btf_dump_printf(d, "\n%s", pfx(lvl + 1));
1001 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
1002
1003 if (m_sz) {
1004 btf_dump_printf(d, ": %d", m_sz);
1005 off = m_off + m_sz;
1006 prev_bitfield = true;
1007 } else {
1008 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
1009 off = m_off + m_sz * 8;
1010 prev_bitfield = false;
1011 }
1012
1013 btf_dump_printf(d, ";");
1014 }
1015
1016 /* pad at the end, if necessary */
1017 if (is_struct)
1018 btf_dump_emit_bit_padding(d, off, t->size * 8, align, false, lvl + 1);
1019
1020 /*
1021 * Keep `struct empty {}` on a single line,
1022 * only print newline when there are regular or padding fields.
1023 */
1024 if (vlen || t->size) {
1025 btf_dump_printf(d, "\n");
1026 btf_dump_printf(d, "%s}", pfx(lvl));
1027 } else {
1028 btf_dump_printf(d, "}");
1029 }
1030 if (packed)
1031 btf_dump_printf(d, " __attribute__((packed))");
1032 }
1033
1034 static const char *missing_base_types[][2] = {
1035 /*
1036 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
1037 * SIMD intrinsics. Alias them to standard base types.
1038 */
1039 { "__Poly8_t", "unsigned char" },
1040 { "__Poly16_t", "unsigned short" },
1041 { "__Poly64_t", "unsigned long long" },
1042 { "__Poly128_t", "unsigned __int128" },
1043 };
1044
btf_dump_emit_missing_aliases(struct btf_dump * d,__u32 id,const struct btf_type * t)1045 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
1046 const struct btf_type *t)
1047 {
1048 const char *name = btf_dump_type_name(d, id);
1049 int i;
1050
1051 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
1052 if (strcmp(name, missing_base_types[i][0]) == 0) {
1053 btf_dump_printf(d, "typedef %s %s;\n\n",
1054 missing_base_types[i][1], name);
1055 break;
1056 }
1057 }
1058 }
1059
btf_dump_emit_enum_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)1060 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
1061 const struct btf_type *t)
1062 {
1063 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
1064 }
1065
btf_dump_emit_enum32_val(struct btf_dump * d,const struct btf_type * t,int lvl,__u16 vlen)1066 static void btf_dump_emit_enum32_val(struct btf_dump *d,
1067 const struct btf_type *t,
1068 int lvl, __u16 vlen)
1069 {
1070 const struct btf_enum *v = btf_enum(t);
1071 bool is_signed = btf_kflag(t);
1072 const char *fmt_str;
1073 const char *name;
1074 size_t dup_cnt;
1075 int i;
1076
1077 for (i = 0; i < vlen; i++, v++) {
1078 name = btf_name_of(d, v->name_off);
1079 /* enumerators share namespace with typedef idents */
1080 dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1081 if (dup_cnt > 1) {
1082 fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
1083 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
1084 } else {
1085 fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
1086 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
1087 }
1088 }
1089 }
1090
btf_dump_emit_enum64_val(struct btf_dump * d,const struct btf_type * t,int lvl,__u16 vlen)1091 static void btf_dump_emit_enum64_val(struct btf_dump *d,
1092 const struct btf_type *t,
1093 int lvl, __u16 vlen)
1094 {
1095 const struct btf_enum64 *v = btf_enum64(t);
1096 bool is_signed = btf_kflag(t);
1097 const char *fmt_str;
1098 const char *name;
1099 size_t dup_cnt;
1100 __u64 val;
1101 int i;
1102
1103 for (i = 0; i < vlen; i++, v++) {
1104 name = btf_name_of(d, v->name_off);
1105 dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1106 val = btf_enum64_value(v);
1107 if (dup_cnt > 1) {
1108 fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
1109 : "\n%s%s___%zd = %lluULL,";
1110 btf_dump_printf(d, fmt_str,
1111 pfx(lvl + 1), name, dup_cnt,
1112 (unsigned long long)val);
1113 } else {
1114 fmt_str = is_signed ? "\n%s%s = %lldLL,"
1115 : "\n%s%s = %lluULL,";
1116 btf_dump_printf(d, fmt_str,
1117 pfx(lvl + 1), name,
1118 (unsigned long long)val);
1119 }
1120 }
1121 }
btf_dump_emit_enum_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)1122 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
1123 const struct btf_type *t,
1124 int lvl)
1125 {
1126 __u16 vlen = btf_vlen(t);
1127
1128 btf_dump_printf(d, "enum%s%s",
1129 t->name_off ? " " : "",
1130 btf_dump_type_name(d, id));
1131
1132 if (!vlen)
1133 return;
1134
1135 btf_dump_printf(d, " {");
1136 if (btf_is_enum(t))
1137 btf_dump_emit_enum32_val(d, t, lvl, vlen);
1138 else
1139 btf_dump_emit_enum64_val(d, t, lvl, vlen);
1140 btf_dump_printf(d, "\n%s}", pfx(lvl));
1141
1142 /* special case enums with special sizes */
1143 if (t->size == 1) {
1144 /* one-byte enums can be forced with mode(byte) attribute */
1145 btf_dump_printf(d, " __attribute__((mode(byte)))");
1146 } else if (t->size == 8 && d->ptr_sz == 8) {
1147 /* enum can be 8-byte sized if one of the enumerator values
1148 * doesn't fit in 32-bit integer, or by adding mode(word)
1149 * attribute (but probably only on 64-bit architectures); do
1150 * our best here to try to satisfy the contract without adding
1151 * unnecessary attributes
1152 */
1153 bool needs_word_mode;
1154
1155 if (btf_is_enum(t)) {
1156 /* enum can't represent 64-bit values, so we need word mode */
1157 needs_word_mode = true;
1158 } else {
1159 /* enum64 needs mode(word) if none of its values has
1160 * non-zero upper 32-bits (which means that all values
1161 * fit in 32-bit integers and won't cause compiler to
1162 * bump enum to be 64-bit naturally
1163 */
1164 int i;
1165
1166 needs_word_mode = true;
1167 for (i = 0; i < vlen; i++) {
1168 if (btf_enum64(t)[i].val_hi32 != 0) {
1169 needs_word_mode = false;
1170 break;
1171 }
1172 }
1173 }
1174 if (needs_word_mode)
1175 btf_dump_printf(d, " __attribute__((mode(word)))");
1176 }
1177
1178 }
1179
btf_dump_emit_fwd_def(struct btf_dump * d,__u32 id,const struct btf_type * t)1180 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1181 const struct btf_type *t)
1182 {
1183 const char *name = btf_dump_type_name(d, id);
1184
1185 if (btf_kflag(t))
1186 btf_dump_printf(d, "union %s", name);
1187 else
1188 btf_dump_printf(d, "struct %s", name);
1189 }
1190
btf_dump_emit_typedef_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)1191 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1192 const struct btf_type *t, int lvl)
1193 {
1194 const char *name = btf_dump_ident_name(d, id);
1195
1196 /*
1197 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1198 * pointing to VOID. This generates warnings from btf_dump() and
1199 * results in uncompilable header file, so we are fixing it up here
1200 * with valid typedef into __builtin_va_list.
1201 */
1202 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1203 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1204 return;
1205 }
1206
1207 btf_dump_printf(d, "typedef ");
1208 btf_dump_emit_type_decl(d, t->type, name, lvl);
1209 }
1210
btf_dump_push_decl_stack_id(struct btf_dump * d,__u32 id)1211 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1212 {
1213 __u32 *new_stack;
1214 size_t new_cap;
1215
1216 if (d->decl_stack_cnt >= d->decl_stack_cap) {
1217 new_cap = max(16, d->decl_stack_cap * 3 / 2);
1218 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1219 if (!new_stack)
1220 return -ENOMEM;
1221 d->decl_stack = new_stack;
1222 d->decl_stack_cap = new_cap;
1223 }
1224
1225 d->decl_stack[d->decl_stack_cnt++] = id;
1226
1227 return 0;
1228 }
1229
1230 /*
1231 * Emit type declaration (e.g., field type declaration in a struct or argument
1232 * declaration in function prototype) in correct C syntax.
1233 *
1234 * For most types it's trivial, but there are few quirky type declaration
1235 * cases worth mentioning:
1236 * - function prototypes (especially nesting of function prototypes);
1237 * - arrays;
1238 * - const/volatile/restrict for pointers vs other types.
1239 *
1240 * For a good discussion of *PARSING* C syntax (as a human), see
1241 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1242 * Ch.3 "Unscrambling Declarations in C".
1243 *
1244 * It won't help with BTF to C conversion much, though, as it's an opposite
1245 * problem. So we came up with this algorithm in reverse to van der Linden's
1246 * parsing algorithm. It goes from structured BTF representation of type
1247 * declaration to a valid compilable C syntax.
1248 *
1249 * For instance, consider this C typedef:
1250 * typedef const int * const * arr[10] arr_t;
1251 * It will be represented in BTF with this chain of BTF types:
1252 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1253 *
1254 * Notice how [const] modifier always goes before type it modifies in BTF type
1255 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1256 * the right of pointers, but to the left of other types. There are also other
1257 * quirks, like function pointers, arrays of them, functions returning other
1258 * functions, etc.
1259 *
1260 * We handle that by pushing all the types to a stack, until we hit "terminal"
1261 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1262 * top of a stack, modifiers are handled differently. Array/function pointers
1263 * have also wildly different syntax and how nesting of them are done. See
1264 * code for authoritative definition.
1265 *
1266 * To avoid allocating new stack for each independent chain of BTF types, we
1267 * share one bigger stack, with each chain working only on its own local view
1268 * of a stack frame. Some care is required to "pop" stack frames after
1269 * processing type declaration chain.
1270 */
btf_dump__emit_type_decl(struct btf_dump * d,__u32 id,const struct btf_dump_emit_type_decl_opts * opts)1271 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1272 const struct btf_dump_emit_type_decl_opts *opts)
1273 {
1274 const char *fname;
1275 int lvl, err;
1276
1277 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1278 return libbpf_err(-EINVAL);
1279
1280 err = btf_dump_resize(d);
1281 if (err)
1282 return libbpf_err(err);
1283
1284 fname = OPTS_GET(opts, field_name, "");
1285 lvl = OPTS_GET(opts, indent_level, 0);
1286 d->strip_mods = OPTS_GET(opts, strip_mods, false);
1287 btf_dump_emit_type_decl(d, id, fname, lvl);
1288 d->strip_mods = false;
1289 return 0;
1290 }
1291
btf_dump_emit_type_decl(struct btf_dump * d,__u32 id,const char * fname,int lvl)1292 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1293 const char *fname, int lvl)
1294 {
1295 struct id_stack decl_stack;
1296 const struct btf_type *t;
1297 int err, stack_start;
1298
1299 stack_start = d->decl_stack_cnt;
1300 for (;;) {
1301 t = btf__type_by_id(d->btf, id);
1302 if (d->strip_mods && btf_is_mod(t))
1303 goto skip_mod;
1304
1305 err = btf_dump_push_decl_stack_id(d, id);
1306 if (err < 0) {
1307 /*
1308 * if we don't have enough memory for entire type decl
1309 * chain, restore stack, emit warning, and try to
1310 * proceed nevertheless
1311 */
1312 pr_warn("not enough memory for decl stack: %s\n", errstr(err));
1313 d->decl_stack_cnt = stack_start;
1314 return;
1315 }
1316 skip_mod:
1317 /* VOID */
1318 if (id == 0)
1319 break;
1320
1321 switch (btf_kind(t)) {
1322 case BTF_KIND_PTR:
1323 case BTF_KIND_VOLATILE:
1324 case BTF_KIND_CONST:
1325 case BTF_KIND_RESTRICT:
1326 case BTF_KIND_FUNC_PROTO:
1327 case BTF_KIND_TYPE_TAG:
1328 id = t->type;
1329 break;
1330 case BTF_KIND_ARRAY:
1331 id = btf_array(t)->type;
1332 break;
1333 case BTF_KIND_INT:
1334 case BTF_KIND_ENUM:
1335 case BTF_KIND_ENUM64:
1336 case BTF_KIND_FWD:
1337 case BTF_KIND_STRUCT:
1338 case BTF_KIND_UNION:
1339 case BTF_KIND_TYPEDEF:
1340 case BTF_KIND_FLOAT:
1341 goto done;
1342 default:
1343 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1344 btf_kind(t), id);
1345 goto done;
1346 }
1347 }
1348 done:
1349 /*
1350 * We might be inside a chain of declarations (e.g., array of function
1351 * pointers returning anonymous (so inlined) structs, having another
1352 * array field). Each of those needs its own "stack frame" to handle
1353 * emitting of declarations. Those stack frames are non-overlapping
1354 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1355 * handle this set of nested stacks, we create a view corresponding to
1356 * our own "stack frame" and work with it as an independent stack.
1357 * We'll need to clean up after emit_type_chain() returns, though.
1358 */
1359 decl_stack.ids = d->decl_stack + stack_start;
1360 decl_stack.cnt = d->decl_stack_cnt - stack_start;
1361 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1362 /*
1363 * emit_type_chain() guarantees that it will pop its entire decl_stack
1364 * frame before returning. But it works with a read-only view into
1365 * decl_stack, so it doesn't actually pop anything from the
1366 * perspective of shared btf_dump->decl_stack, per se. We need to
1367 * reset decl_stack state to how it was before us to avoid it growing
1368 * all the time.
1369 */
1370 d->decl_stack_cnt = stack_start;
1371 }
1372
btf_dump_emit_mods(struct btf_dump * d,struct id_stack * decl_stack)1373 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1374 {
1375 const struct btf_type *t;
1376 __u32 id;
1377
1378 while (decl_stack->cnt) {
1379 id = decl_stack->ids[decl_stack->cnt - 1];
1380 t = btf__type_by_id(d->btf, id);
1381
1382 switch (btf_kind(t)) {
1383 case BTF_KIND_VOLATILE:
1384 btf_dump_printf(d, "volatile ");
1385 break;
1386 case BTF_KIND_CONST:
1387 btf_dump_printf(d, "const ");
1388 break;
1389 case BTF_KIND_RESTRICT:
1390 btf_dump_printf(d, "restrict ");
1391 break;
1392 default:
1393 return;
1394 }
1395 decl_stack->cnt--;
1396 }
1397 }
1398
btf_dump_drop_mods(struct btf_dump * d,struct id_stack * decl_stack)1399 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1400 {
1401 const struct btf_type *t;
1402 __u32 id;
1403
1404 while (decl_stack->cnt) {
1405 id = decl_stack->ids[decl_stack->cnt - 1];
1406 t = btf__type_by_id(d->btf, id);
1407 if (!btf_is_mod(t))
1408 return;
1409 decl_stack->cnt--;
1410 }
1411 }
1412
btf_dump_emit_name(const struct btf_dump * d,const char * name,bool last_was_ptr)1413 static void btf_dump_emit_name(const struct btf_dump *d,
1414 const char *name, bool last_was_ptr)
1415 {
1416 bool separate = name[0] && !last_was_ptr;
1417
1418 btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1419 }
1420
btf_dump_emit_type_chain(struct btf_dump * d,struct id_stack * decls,const char * fname,int lvl)1421 static void btf_dump_emit_type_chain(struct btf_dump *d,
1422 struct id_stack *decls,
1423 const char *fname, int lvl)
1424 {
1425 /*
1426 * last_was_ptr is used to determine if we need to separate pointer
1427 * asterisk (*) from previous part of type signature with space, so
1428 * that we get `int ***`, instead of `int * * *`. We default to true
1429 * for cases where we have single pointer in a chain. E.g., in ptr ->
1430 * func_proto case. func_proto will start a new emit_type_chain call
1431 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1432 * don't want to prepend space for that last pointer.
1433 */
1434 bool last_was_ptr = true;
1435 const struct btf_type *t;
1436 const char *name;
1437 __u16 kind;
1438 __u32 id;
1439
1440 while (decls->cnt) {
1441 id = decls->ids[--decls->cnt];
1442 if (id == 0) {
1443 /* VOID is a special snowflake */
1444 btf_dump_emit_mods(d, decls);
1445 btf_dump_printf(d, "void");
1446 last_was_ptr = false;
1447 continue;
1448 }
1449
1450 t = btf__type_by_id(d->btf, id);
1451 kind = btf_kind(t);
1452
1453 switch (kind) {
1454 case BTF_KIND_INT:
1455 case BTF_KIND_FLOAT:
1456 btf_dump_emit_mods(d, decls);
1457 name = btf_name_of(d, t->name_off);
1458 btf_dump_printf(d, "%s", name);
1459 break;
1460 case BTF_KIND_STRUCT:
1461 case BTF_KIND_UNION:
1462 btf_dump_emit_mods(d, decls);
1463 /* inline anonymous struct/union */
1464 if (t->name_off == 0 && !d->skip_anon_defs)
1465 btf_dump_emit_struct_def(d, id, t, lvl);
1466 else
1467 btf_dump_emit_struct_fwd(d, id, t);
1468 break;
1469 case BTF_KIND_ENUM:
1470 case BTF_KIND_ENUM64:
1471 btf_dump_emit_mods(d, decls);
1472 /* inline anonymous enum */
1473 if (t->name_off == 0 && !d->skip_anon_defs)
1474 btf_dump_emit_enum_def(d, id, t, lvl);
1475 else
1476 btf_dump_emit_enum_fwd(d, id, t);
1477 break;
1478 case BTF_KIND_FWD:
1479 btf_dump_emit_mods(d, decls);
1480 btf_dump_emit_fwd_def(d, id, t);
1481 break;
1482 case BTF_KIND_TYPEDEF:
1483 btf_dump_emit_mods(d, decls);
1484 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1485 break;
1486 case BTF_KIND_PTR:
1487 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1488 break;
1489 case BTF_KIND_VOLATILE:
1490 btf_dump_printf(d, " volatile");
1491 break;
1492 case BTF_KIND_CONST:
1493 btf_dump_printf(d, " const");
1494 break;
1495 case BTF_KIND_RESTRICT:
1496 btf_dump_printf(d, " restrict");
1497 break;
1498 case BTF_KIND_TYPE_TAG:
1499 btf_dump_emit_mods(d, decls);
1500 name = btf_name_of(d, t->name_off);
1501 if (btf_kflag(t))
1502 btf_dump_printf(d, " __attribute__((%s))", name);
1503 else
1504 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
1505 break;
1506 case BTF_KIND_ARRAY: {
1507 const struct btf_array *a = btf_array(t);
1508 const struct btf_type *next_t;
1509 __u32 next_id;
1510 bool multidim;
1511 /*
1512 * GCC has a bug
1513 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1514 * which causes it to emit extra const/volatile
1515 * modifiers for an array, if array's element type has
1516 * const/volatile modifiers. Clang doesn't do that.
1517 * In general, it doesn't seem very meaningful to have
1518 * a const/volatile modifier for array, so we are
1519 * going to silently skip them here.
1520 */
1521 btf_dump_drop_mods(d, decls);
1522
1523 if (decls->cnt == 0) {
1524 btf_dump_emit_name(d, fname, last_was_ptr);
1525 btf_dump_printf(d, "[%u]", a->nelems);
1526 return;
1527 }
1528
1529 next_id = decls->ids[decls->cnt - 1];
1530 next_t = btf__type_by_id(d->btf, next_id);
1531 multidim = btf_is_array(next_t);
1532 /* we need space if we have named non-pointer */
1533 if (fname[0] && !last_was_ptr)
1534 btf_dump_printf(d, " ");
1535 /* no parentheses for multi-dimensional array */
1536 if (!multidim)
1537 btf_dump_printf(d, "(");
1538 btf_dump_emit_type_chain(d, decls, fname, lvl);
1539 if (!multidim)
1540 btf_dump_printf(d, ")");
1541 btf_dump_printf(d, "[%u]", a->nelems);
1542 return;
1543 }
1544 case BTF_KIND_FUNC_PROTO: {
1545 const struct btf_param *p = btf_params(t);
1546 __u16 vlen = btf_vlen(t);
1547 int i;
1548
1549 /*
1550 * GCC emits extra volatile qualifier for
1551 * __attribute__((noreturn)) function pointers. Clang
1552 * doesn't do it. It's a GCC quirk for backwards
1553 * compatibility with code written for GCC <2.5. So,
1554 * similarly to extra qualifiers for array, just drop
1555 * them, instead of handling them.
1556 */
1557 btf_dump_drop_mods(d, decls);
1558 if (decls->cnt) {
1559 btf_dump_printf(d, " (");
1560 btf_dump_emit_type_chain(d, decls, fname, lvl);
1561 btf_dump_printf(d, ")");
1562 } else {
1563 btf_dump_emit_name(d, fname, last_was_ptr);
1564 }
1565 btf_dump_printf(d, "(");
1566 /*
1567 * Clang for BPF target generates func_proto with no
1568 * args as a func_proto with a single void arg (e.g.,
1569 * `int (*f)(void)` vs just `int (*f)()`). We are
1570 * going to emit valid empty args (void) syntax for
1571 * such case. Similarly and conveniently, valid
1572 * no args case can be special-cased here as well.
1573 */
1574 if (vlen == 0 || (vlen == 1 && p->type == 0)) {
1575 btf_dump_printf(d, "void)");
1576 return;
1577 }
1578
1579 for (i = 0; i < vlen; i++, p++) {
1580 if (i > 0)
1581 btf_dump_printf(d, ", ");
1582
1583 /* last arg of type void is vararg */
1584 if (i == vlen - 1 && p->type == 0) {
1585 btf_dump_printf(d, "...");
1586 break;
1587 }
1588
1589 name = btf_name_of(d, p->name_off);
1590 btf_dump_emit_type_decl(d, p->type, name, lvl);
1591 }
1592
1593 btf_dump_printf(d, ")");
1594 return;
1595 }
1596 default:
1597 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1598 kind, id);
1599 return;
1600 }
1601
1602 last_was_ptr = kind == BTF_KIND_PTR;
1603 }
1604
1605 btf_dump_emit_name(d, fname, last_was_ptr);
1606 }
1607
1608 /* show type name as (type_name) */
btf_dump_emit_type_cast(struct btf_dump * d,__u32 id,bool top_level)1609 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1610 bool top_level)
1611 {
1612 const struct btf_type *t;
1613
1614 /* for array members, we don't bother emitting type name for each
1615 * member to avoid the redundancy of
1616 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1617 */
1618 if (d->typed_dump->is_array_member)
1619 return;
1620
1621 /* avoid type name specification for variable/section; it will be done
1622 * for the associated variable value(s).
1623 */
1624 t = btf__type_by_id(d->btf, id);
1625 if (btf_is_var(t) || btf_is_datasec(t))
1626 return;
1627
1628 if (top_level)
1629 btf_dump_printf(d, "(");
1630
1631 d->skip_anon_defs = true;
1632 d->strip_mods = true;
1633 btf_dump_emit_type_decl(d, id, "", 0);
1634 d->strip_mods = false;
1635 d->skip_anon_defs = false;
1636
1637 if (top_level)
1638 btf_dump_printf(d, ")");
1639 }
1640
1641 /* return number of duplicates (occurrences) of a given name */
btf_dump_name_dups(struct btf_dump * d,struct hashmap * name_map,const char * orig_name)1642 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1643 const char *orig_name)
1644 {
1645 char *old_name, *new_name;
1646 size_t dup_cnt = 0;
1647 int err;
1648
1649 new_name = strdup(orig_name);
1650 if (!new_name)
1651 return 1;
1652
1653 (void)hashmap__find(name_map, orig_name, &dup_cnt);
1654 dup_cnt++;
1655
1656 err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL);
1657 if (err)
1658 free(new_name);
1659
1660 free(old_name);
1661
1662 return dup_cnt;
1663 }
1664
btf_dump_resolve_name(struct btf_dump * d,__u32 id,struct hashmap * name_map)1665 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1666 struct hashmap *name_map)
1667 {
1668 struct btf_dump_type_aux_state *s = &d->type_states[id];
1669 const struct btf_type *t = btf__type_by_id(d->btf, id);
1670 const char *orig_name = btf_name_of(d, t->name_off);
1671 const char **cached_name = &d->cached_names[id];
1672 size_t dup_cnt;
1673
1674 if (t->name_off == 0)
1675 return "";
1676
1677 if (s->name_resolved)
1678 return *cached_name ? *cached_name : orig_name;
1679
1680 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
1681 s->name_resolved = 1;
1682 return orig_name;
1683 }
1684
1685 dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1686 if (dup_cnt > 1) {
1687 const size_t max_len = 256;
1688 char new_name[max_len];
1689
1690 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1691 *cached_name = strdup(new_name);
1692 }
1693
1694 s->name_resolved = 1;
1695 return *cached_name ? *cached_name : orig_name;
1696 }
1697
btf_dump_type_name(struct btf_dump * d,__u32 id)1698 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1699 {
1700 return btf_dump_resolve_name(d, id, d->type_names);
1701 }
1702
btf_dump_ident_name(struct btf_dump * d,__u32 id)1703 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1704 {
1705 return btf_dump_resolve_name(d, id, d->ident_names);
1706 }
1707
1708 static int btf_dump_dump_type_data(struct btf_dump *d,
1709 const char *fname,
1710 const struct btf_type *t,
1711 __u32 id,
1712 const void *data,
1713 __u8 bits_offset,
1714 __u8 bit_sz);
1715
btf_dump_data_newline(struct btf_dump * d)1716 static const char *btf_dump_data_newline(struct btf_dump *d)
1717 {
1718 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1719 }
1720
btf_dump_data_delim(struct btf_dump * d)1721 static const char *btf_dump_data_delim(struct btf_dump *d)
1722 {
1723 return d->typed_dump->depth == 0 ? "" : ",";
1724 }
1725
btf_dump_data_pfx(struct btf_dump * d)1726 static void btf_dump_data_pfx(struct btf_dump *d)
1727 {
1728 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1729
1730 if (d->typed_dump->compact)
1731 return;
1732
1733 for (i = 0; i < lvl; i++)
1734 btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1735 }
1736
1737 /* A macro is used here as btf_type_value[s]() appends format specifiers
1738 * to the format specifier passed in; these do the work of appending
1739 * delimiters etc while the caller simply has to specify the type values
1740 * in the format specifier + value(s).
1741 */
1742 #define btf_dump_type_values(d, fmt, ...) \
1743 btf_dump_printf(d, fmt "%s%s", \
1744 ##__VA_ARGS__, \
1745 btf_dump_data_delim(d), \
1746 btf_dump_data_newline(d))
1747
btf_dump_unsupported_data(struct btf_dump * d,const struct btf_type * t,__u32 id)1748 static int btf_dump_unsupported_data(struct btf_dump *d,
1749 const struct btf_type *t,
1750 __u32 id)
1751 {
1752 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1753 return -ENOTSUP;
1754 }
1755
btf_dump_get_bitfield_value(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz,__u64 * value)1756 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1757 const struct btf_type *t,
1758 const void *data,
1759 __u8 bits_offset,
1760 __u8 bit_sz,
1761 __u64 *value)
1762 {
1763 __u16 left_shift_bits, right_shift_bits;
1764 const __u8 *bytes = data;
1765 __u8 nr_copy_bits;
1766 __u64 num = 0;
1767 int i;
1768
1769 /* Maximum supported bitfield size is 64 bits */
1770 if (t->size > 8) {
1771 pr_warn("unexpected bitfield size %d\n", t->size);
1772 return -EINVAL;
1773 }
1774
1775 /* Bitfield value retrieval is done in two steps; first relevant bytes are
1776 * stored in num, then we left/right shift num to eliminate irrelevant bits.
1777 */
1778 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1779 for (i = t->size - 1; i >= 0; i--)
1780 num = num * 256 + bytes[i];
1781 nr_copy_bits = bit_sz + bits_offset;
1782 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1783 for (i = 0; i < t->size; i++)
1784 num = num * 256 + bytes[i];
1785 nr_copy_bits = t->size * 8 - bits_offset;
1786 #else
1787 # error "Unrecognized __BYTE_ORDER__"
1788 #endif
1789 left_shift_bits = 64 - nr_copy_bits;
1790 right_shift_bits = 64 - bit_sz;
1791
1792 *value = (num << left_shift_bits) >> right_shift_bits;
1793
1794 return 0;
1795 }
1796
btf_dump_bitfield_check_zero(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz)1797 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1798 const struct btf_type *t,
1799 const void *data,
1800 __u8 bits_offset,
1801 __u8 bit_sz)
1802 {
1803 __u64 check_num;
1804 int err;
1805
1806 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1807 if (err)
1808 return err;
1809 if (check_num == 0)
1810 return -ENODATA;
1811 return 0;
1812 }
1813
btf_dump_bitfield_data(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz)1814 static int btf_dump_bitfield_data(struct btf_dump *d,
1815 const struct btf_type *t,
1816 const void *data,
1817 __u8 bits_offset,
1818 __u8 bit_sz)
1819 {
1820 __u64 print_num;
1821 int err;
1822
1823 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1824 if (err)
1825 return err;
1826
1827 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1828
1829 return 0;
1830 }
1831
1832 /* ints, floats and ptrs */
btf_dump_base_type_check_zero(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1833 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1834 const struct btf_type *t,
1835 __u32 id,
1836 const void *data)
1837 {
1838 static __u8 bytecmp[16] = {};
1839 int nr_bytes;
1840
1841 /* For pointer types, pointer size is not defined on a per-type basis.
1842 * On dump creation however, we store the pointer size.
1843 */
1844 if (btf_kind(t) == BTF_KIND_PTR)
1845 nr_bytes = d->ptr_sz;
1846 else
1847 nr_bytes = t->size;
1848
1849 if (nr_bytes < 1 || nr_bytes > 16) {
1850 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1851 return -EINVAL;
1852 }
1853
1854 if (memcmp(data, bytecmp, nr_bytes) == 0)
1855 return -ENODATA;
1856 return 0;
1857 }
1858
ptr_is_aligned(const struct btf * btf,__u32 type_id,const void * data)1859 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1860 const void *data)
1861 {
1862 int alignment = btf__align_of(btf, type_id);
1863
1864 if (alignment == 0)
1865 return false;
1866
1867 return ((uintptr_t)data) % alignment == 0;
1868 }
1869
btf_dump_int_data(struct btf_dump * d,const struct btf_type * t,__u32 type_id,const void * data,__u8 bits_offset)1870 static int btf_dump_int_data(struct btf_dump *d,
1871 const struct btf_type *t,
1872 __u32 type_id,
1873 const void *data,
1874 __u8 bits_offset)
1875 {
1876 __u8 encoding = btf_int_encoding(t);
1877 bool sign = encoding & BTF_INT_SIGNED;
1878 char buf[16] __attribute__((aligned(16)));
1879 int sz = t->size;
1880
1881 if (sz == 0 || sz > sizeof(buf)) {
1882 pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1883 return -EINVAL;
1884 }
1885
1886 /* handle packed int data - accesses of integers not aligned on
1887 * int boundaries can cause problems on some platforms.
1888 */
1889 if (!ptr_is_aligned(d->btf, type_id, data)) {
1890 memcpy(buf, data, sz);
1891 data = buf;
1892 }
1893
1894 switch (sz) {
1895 case 16: {
1896 const __u64 *ints = data;
1897 __u64 lsi, msi;
1898
1899 /* avoid use of __int128 as some 32-bit platforms do not
1900 * support it.
1901 */
1902 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1903 lsi = ints[0];
1904 msi = ints[1];
1905 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1906 lsi = ints[1];
1907 msi = ints[0];
1908 #else
1909 # error "Unrecognized __BYTE_ORDER__"
1910 #endif
1911 if (msi == 0)
1912 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1913 else
1914 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1915 (unsigned long long)lsi);
1916 break;
1917 }
1918 case 8:
1919 if (sign)
1920 btf_dump_type_values(d, "%lld", *(long long *)data);
1921 else
1922 btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1923 break;
1924 case 4:
1925 if (sign)
1926 btf_dump_type_values(d, "%d", *(__s32 *)data);
1927 else
1928 btf_dump_type_values(d, "%u", *(__u32 *)data);
1929 break;
1930 case 2:
1931 if (sign)
1932 btf_dump_type_values(d, "%d", *(__s16 *)data);
1933 else
1934 btf_dump_type_values(d, "%u", *(__u16 *)data);
1935 break;
1936 case 1:
1937 if (d->typed_dump->is_array_char) {
1938 /* check for null terminator */
1939 if (d->typed_dump->is_array_terminated)
1940 break;
1941 if (*(char *)data == '\0') {
1942 btf_dump_type_values(d, "'\\0'");
1943 d->typed_dump->is_array_terminated = true;
1944 break;
1945 }
1946 if (isprint(*(char *)data)) {
1947 btf_dump_type_values(d, "'%c'", *(char *)data);
1948 break;
1949 }
1950 }
1951 if (sign)
1952 btf_dump_type_values(d, "%d", *(__s8 *)data);
1953 else
1954 btf_dump_type_values(d, "%u", *(__u8 *)data);
1955 break;
1956 default:
1957 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1958 return -EINVAL;
1959 }
1960 return 0;
1961 }
1962
1963 union float_data {
1964 long double ld;
1965 double d;
1966 float f;
1967 };
1968
btf_dump_float_data(struct btf_dump * d,const struct btf_type * t,__u32 type_id,const void * data)1969 static int btf_dump_float_data(struct btf_dump *d,
1970 const struct btf_type *t,
1971 __u32 type_id,
1972 const void *data)
1973 {
1974 const union float_data *flp = data;
1975 union float_data fl;
1976 int sz = t->size;
1977
1978 /* handle unaligned data; copy to local union */
1979 if (!ptr_is_aligned(d->btf, type_id, data)) {
1980 memcpy(&fl, data, sz);
1981 flp = &fl;
1982 }
1983
1984 switch (sz) {
1985 case 16:
1986 btf_dump_type_values(d, "%Lf", flp->ld);
1987 break;
1988 case 8:
1989 btf_dump_type_values(d, "%lf", flp->d);
1990 break;
1991 case 4:
1992 btf_dump_type_values(d, "%f", flp->f);
1993 break;
1994 default:
1995 pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1996 return -EINVAL;
1997 }
1998 return 0;
1999 }
2000
btf_dump_var_data(struct btf_dump * d,const struct btf_type * v,__u32 id,const void * data)2001 static int btf_dump_var_data(struct btf_dump *d,
2002 const struct btf_type *v,
2003 __u32 id,
2004 const void *data)
2005 {
2006 enum btf_func_linkage linkage = btf_var(v)->linkage;
2007 const struct btf_type *t;
2008 const char *l;
2009 __u32 type_id;
2010
2011 switch (linkage) {
2012 case BTF_FUNC_STATIC:
2013 l = "static ";
2014 break;
2015 case BTF_FUNC_EXTERN:
2016 l = "extern ";
2017 break;
2018 case BTF_FUNC_GLOBAL:
2019 default:
2020 l = "";
2021 break;
2022 }
2023
2024 /* format of output here is [linkage] [type] [varname] = (type)value,
2025 * for example "static int cpu_profile_flip = (int)1"
2026 */
2027 btf_dump_printf(d, "%s", l);
2028 type_id = v->type;
2029 t = btf__type_by_id(d->btf, type_id);
2030 btf_dump_emit_type_cast(d, type_id, false);
2031 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
2032 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
2033 }
2034
btf_dump_string_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2035 static int btf_dump_string_data(struct btf_dump *d,
2036 const struct btf_type *t,
2037 __u32 id,
2038 const void *data)
2039 {
2040 const struct btf_array *array = btf_array(t);
2041 const char *chars = data;
2042 __u32 i;
2043
2044 /* Make sure it is a NUL-terminated string. */
2045 for (i = 0; i < array->nelems; i++) {
2046 if ((void *)(chars + i) >= d->typed_dump->data_end)
2047 return -E2BIG;
2048 if (chars[i] == '\0')
2049 break;
2050 }
2051 if (i == array->nelems) {
2052 /* The caller will print this as a regular array. */
2053 return -EINVAL;
2054 }
2055
2056 btf_dump_data_pfx(d);
2057 btf_dump_printf(d, "\"");
2058
2059 for (i = 0; i < array->nelems; i++) {
2060 char c = chars[i];
2061
2062 if (c == '\0') {
2063 /*
2064 * When printing character arrays as strings, NUL bytes
2065 * are always treated as string terminators; they are
2066 * never printed.
2067 */
2068 break;
2069 }
2070 if (isprint(c))
2071 btf_dump_printf(d, "%c", c);
2072 else
2073 btf_dump_printf(d, "\\x%02x", (__u8)c);
2074 }
2075
2076 btf_dump_printf(d, "\"");
2077
2078 return 0;
2079 }
2080
btf_dump_array_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2081 static int btf_dump_array_data(struct btf_dump *d,
2082 const struct btf_type *t,
2083 __u32 id,
2084 const void *data)
2085 {
2086 const struct btf_array *array = btf_array(t);
2087 const struct btf_type *elem_type;
2088 __u32 i, elem_type_id;
2089 __s64 elem_size;
2090 bool is_array_member;
2091 bool is_array_terminated;
2092
2093 elem_type_id = array->type;
2094 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2095 elem_size = btf__resolve_size(d->btf, elem_type_id);
2096 if (elem_size <= 0) {
2097 pr_warn("unexpected elem size %zd for array type [%u]\n",
2098 (ssize_t)elem_size, id);
2099 return -EINVAL;
2100 }
2101
2102 if (btf_is_int(elem_type)) {
2103 /*
2104 * BTF_INT_CHAR encoding never seems to be set for
2105 * char arrays, so if size is 1 and element is
2106 * printable as a char, we'll do that.
2107 */
2108 if (elem_size == 1) {
2109 if (d->typed_dump->emit_strings &&
2110 btf_dump_string_data(d, t, id, data) == 0) {
2111 return 0;
2112 }
2113 d->typed_dump->is_array_char = true;
2114 }
2115 }
2116
2117 /* note that we increment depth before calling btf_dump_print() below;
2118 * this is intentional. btf_dump_data_newline() will not print a
2119 * newline for depth 0 (since this leaves us with trailing newlines
2120 * at the end of typed display), so depth is incremented first.
2121 * For similar reasons, we decrement depth before showing the closing
2122 * parenthesis.
2123 */
2124 d->typed_dump->depth++;
2125 btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
2126
2127 /* may be a multidimensional array, so store current "is array member"
2128 * status so we can restore it correctly later.
2129 */
2130 is_array_member = d->typed_dump->is_array_member;
2131 d->typed_dump->is_array_member = true;
2132 is_array_terminated = d->typed_dump->is_array_terminated;
2133 d->typed_dump->is_array_terminated = false;
2134 for (i = 0; i < array->nelems; i++, data += elem_size) {
2135 if (d->typed_dump->is_array_terminated)
2136 break;
2137 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
2138 }
2139 d->typed_dump->is_array_member = is_array_member;
2140 d->typed_dump->is_array_terminated = is_array_terminated;
2141 d->typed_dump->depth--;
2142 btf_dump_data_pfx(d);
2143 btf_dump_type_values(d, "]");
2144
2145 return 0;
2146 }
2147
btf_dump_struct_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2148 static int btf_dump_struct_data(struct btf_dump *d,
2149 const struct btf_type *t,
2150 __u32 id,
2151 const void *data)
2152 {
2153 const struct btf_member *m = btf_members(t);
2154 __u16 n = btf_vlen(t);
2155 int i, err = 0;
2156
2157 /* note that we increment depth before calling btf_dump_print() below;
2158 * this is intentional. btf_dump_data_newline() will not print a
2159 * newline for depth 0 (since this leaves us with trailing newlines
2160 * at the end of typed display), so depth is incremented first.
2161 * For similar reasons, we decrement depth before showing the closing
2162 * parenthesis.
2163 */
2164 d->typed_dump->depth++;
2165 btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
2166
2167 for (i = 0; i < n; i++, m++) {
2168 const struct btf_type *mtype;
2169 const char *mname;
2170 __u32 moffset;
2171 __u8 bit_sz;
2172
2173 mtype = btf__type_by_id(d->btf, m->type);
2174 mname = btf_name_of(d, m->name_off);
2175 moffset = btf_member_bit_offset(t, i);
2176
2177 bit_sz = btf_member_bitfield_size(t, i);
2178 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
2179 moffset % 8, bit_sz);
2180 if (err < 0)
2181 return err;
2182 }
2183 d->typed_dump->depth--;
2184 btf_dump_data_pfx(d);
2185 btf_dump_type_values(d, "}");
2186 return err;
2187 }
2188
2189 union ptr_data {
2190 unsigned int p;
2191 unsigned long long lp;
2192 };
2193
btf_dump_ptr_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2194 static int btf_dump_ptr_data(struct btf_dump *d,
2195 const struct btf_type *t,
2196 __u32 id,
2197 const void *data)
2198 {
2199 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
2200 btf_dump_type_values(d, "%p", *(void **)data);
2201 } else {
2202 union ptr_data pt;
2203
2204 memcpy(&pt, data, d->ptr_sz);
2205 if (d->ptr_sz == 4)
2206 btf_dump_type_values(d, "0x%x", pt.p);
2207 else
2208 btf_dump_type_values(d, "0x%llx", pt.lp);
2209 }
2210 return 0;
2211 }
2212
btf_dump_get_enum_value(struct btf_dump * d,const struct btf_type * t,const void * data,__u32 id,__s64 * value)2213 static int btf_dump_get_enum_value(struct btf_dump *d,
2214 const struct btf_type *t,
2215 const void *data,
2216 __u32 id,
2217 __s64 *value)
2218 {
2219 bool is_signed = btf_kflag(t);
2220
2221 if (!ptr_is_aligned(d->btf, id, data)) {
2222 __u64 val;
2223 int err;
2224
2225 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
2226 if (err)
2227 return err;
2228 *value = (__s64)val;
2229 return 0;
2230 }
2231
2232 switch (t->size) {
2233 case 8:
2234 *value = *(__s64 *)data;
2235 return 0;
2236 case 4:
2237 *value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
2238 return 0;
2239 case 2:
2240 *value = is_signed ? *(__s16 *)data : *(__u16 *)data;
2241 return 0;
2242 case 1:
2243 *value = is_signed ? *(__s8 *)data : *(__u8 *)data;
2244 return 0;
2245 default:
2246 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
2247 return -EINVAL;
2248 }
2249 }
2250
btf_dump_enum_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2251 static int btf_dump_enum_data(struct btf_dump *d,
2252 const struct btf_type *t,
2253 __u32 id,
2254 const void *data)
2255 {
2256 bool is_signed;
2257 __s64 value;
2258 int i, err;
2259
2260 err = btf_dump_get_enum_value(d, t, data, id, &value);
2261 if (err)
2262 return err;
2263
2264 is_signed = btf_kflag(t);
2265 if (btf_is_enum(t)) {
2266 const struct btf_enum *e;
2267
2268 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2269 if (value != e->val)
2270 continue;
2271 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2272 return 0;
2273 }
2274
2275 btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
2276 } else {
2277 const struct btf_enum64 *e;
2278
2279 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
2280 if (value != btf_enum64_value(e))
2281 continue;
2282 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2283 return 0;
2284 }
2285
2286 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
2287 (unsigned long long)value);
2288 }
2289 return 0;
2290 }
2291
btf_dump_datasec_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2292 static int btf_dump_datasec_data(struct btf_dump *d,
2293 const struct btf_type *t,
2294 __u32 id,
2295 const void *data)
2296 {
2297 const struct btf_var_secinfo *vsi;
2298 const struct btf_type *var;
2299 __u32 i;
2300 int err;
2301
2302 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2303
2304 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2305 var = btf__type_by_id(d->btf, vsi->type);
2306 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2307 if (err < 0)
2308 return err;
2309 btf_dump_printf(d, ";");
2310 }
2311 return 0;
2312 }
2313
2314 /* return size of type, or if base type overflows, return -E2BIG. */
btf_dump_type_data_check_overflow(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2315 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2316 const struct btf_type *t,
2317 __u32 id,
2318 const void *data,
2319 __u8 bits_offset,
2320 __u8 bit_sz)
2321 {
2322 __s64 size;
2323
2324 if (bit_sz) {
2325 /* bits_offset is at most 7. bit_sz is at most 128. */
2326 __u8 nr_bytes = (bits_offset + bit_sz + 7) / 8;
2327
2328 /* When bit_sz is non zero, it is called from
2329 * btf_dump_struct_data() where it only cares about
2330 * negative error value.
2331 * Return nr_bytes in success case to make it
2332 * consistent as the regular integer case below.
2333 */
2334 return data + nr_bytes > d->typed_dump->data_end ? -E2BIG : nr_bytes;
2335 }
2336
2337 size = btf__resolve_size(d->btf, id);
2338
2339 if (size < 0 || size >= INT_MAX) {
2340 pr_warn("unexpected size [%zu] for id [%u]\n",
2341 (size_t)size, id);
2342 return -EINVAL;
2343 }
2344
2345 /* Only do overflow checking for base types; we do not want to
2346 * avoid showing part of a struct, union or array, even if we
2347 * do not have enough data to show the full object. By
2348 * restricting overflow checking to base types we can ensure
2349 * that partial display succeeds, while avoiding overflowing
2350 * and using bogus data for display.
2351 */
2352 t = skip_mods_and_typedefs(d->btf, id, NULL);
2353 if (!t) {
2354 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2355 id);
2356 return -EINVAL;
2357 }
2358
2359 switch (btf_kind(t)) {
2360 case BTF_KIND_INT:
2361 case BTF_KIND_FLOAT:
2362 case BTF_KIND_PTR:
2363 case BTF_KIND_ENUM:
2364 case BTF_KIND_ENUM64:
2365 if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2366 return -E2BIG;
2367 break;
2368 default:
2369 break;
2370 }
2371 return (int)size;
2372 }
2373
btf_dump_type_data_check_zero(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2374 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2375 const struct btf_type *t,
2376 __u32 id,
2377 const void *data,
2378 __u8 bits_offset,
2379 __u8 bit_sz)
2380 {
2381 __s64 value;
2382 int i, err;
2383
2384 /* toplevel exceptions; we show zero values if
2385 * - we ask for them (emit_zeros)
2386 * - if we are at top-level so we see "struct empty { }"
2387 * - or if we are an array member and the array is non-empty and
2388 * not a char array; we don't want to be in a situation where we
2389 * have an integer array 0, 1, 0, 1 and only show non-zero values.
2390 * If the array contains zeroes only, or is a char array starting
2391 * with a '\0', the array-level check_zero() will prevent showing it;
2392 * we are concerned with determining zero value at the array member
2393 * level here.
2394 */
2395 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2396 (d->typed_dump->is_array_member &&
2397 !d->typed_dump->is_array_char))
2398 return 0;
2399
2400 t = skip_mods_and_typedefs(d->btf, id, NULL);
2401
2402 switch (btf_kind(t)) {
2403 case BTF_KIND_INT:
2404 if (bit_sz)
2405 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2406 return btf_dump_base_type_check_zero(d, t, id, data);
2407 case BTF_KIND_FLOAT:
2408 case BTF_KIND_PTR:
2409 return btf_dump_base_type_check_zero(d, t, id, data);
2410 case BTF_KIND_ARRAY: {
2411 const struct btf_array *array = btf_array(t);
2412 const struct btf_type *elem_type;
2413 __u32 elem_type_id, elem_size;
2414 bool ischar;
2415
2416 elem_type_id = array->type;
2417 elem_size = btf__resolve_size(d->btf, elem_type_id);
2418 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2419
2420 ischar = btf_is_int(elem_type) && elem_size == 1;
2421
2422 /* check all elements; if _any_ element is nonzero, all
2423 * of array is displayed. We make an exception however
2424 * for char arrays where the first element is 0; these
2425 * are considered zeroed also, even if later elements are
2426 * non-zero because the string is terminated.
2427 */
2428 for (i = 0; i < array->nelems; i++) {
2429 if (i == 0 && ischar && *(char *)data == 0)
2430 return -ENODATA;
2431 err = btf_dump_type_data_check_zero(d, elem_type,
2432 elem_type_id,
2433 data +
2434 (i * elem_size),
2435 bits_offset, 0);
2436 if (err != -ENODATA)
2437 return err;
2438 }
2439 return -ENODATA;
2440 }
2441 case BTF_KIND_STRUCT:
2442 case BTF_KIND_UNION: {
2443 const struct btf_member *m = btf_members(t);
2444 __u16 n = btf_vlen(t);
2445
2446 /* if any struct/union member is non-zero, the struct/union
2447 * is considered non-zero and dumped.
2448 */
2449 for (i = 0; i < n; i++, m++) {
2450 const struct btf_type *mtype;
2451 __u32 moffset;
2452
2453 mtype = btf__type_by_id(d->btf, m->type);
2454 moffset = btf_member_bit_offset(t, i);
2455
2456 /* btf_int_bits() does not store member bitfield size;
2457 * bitfield size needs to be stored here so int display
2458 * of member can retrieve it.
2459 */
2460 bit_sz = btf_member_bitfield_size(t, i);
2461 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2462 moffset % 8, bit_sz);
2463 if (err != ENODATA)
2464 return err;
2465 }
2466 return -ENODATA;
2467 }
2468 case BTF_KIND_ENUM:
2469 case BTF_KIND_ENUM64:
2470 err = btf_dump_get_enum_value(d, t, data, id, &value);
2471 if (err)
2472 return err;
2473 if (value == 0)
2474 return -ENODATA;
2475 return 0;
2476 default:
2477 return 0;
2478 }
2479 }
2480
2481 /* returns size of data dumped, or error. */
btf_dump_dump_type_data(struct btf_dump * d,const char * fname,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2482 static int btf_dump_dump_type_data(struct btf_dump *d,
2483 const char *fname,
2484 const struct btf_type *t,
2485 __u32 id,
2486 const void *data,
2487 __u8 bits_offset,
2488 __u8 bit_sz)
2489 {
2490 int size, err = 0;
2491
2492 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset, bit_sz);
2493 if (size < 0)
2494 return size;
2495 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2496 if (err) {
2497 /* zeroed data is expected and not an error, so simply skip
2498 * dumping such data. Record other errors however.
2499 */
2500 if (err == -ENODATA)
2501 return size;
2502 return err;
2503 }
2504 btf_dump_data_pfx(d);
2505
2506 if (!d->typed_dump->skip_names) {
2507 if (fname && strlen(fname) > 0)
2508 btf_dump_printf(d, ".%s = ", fname);
2509 btf_dump_emit_type_cast(d, id, true);
2510 }
2511
2512 t = skip_mods_and_typedefs(d->btf, id, NULL);
2513
2514 switch (btf_kind(t)) {
2515 case BTF_KIND_UNKN:
2516 case BTF_KIND_FWD:
2517 case BTF_KIND_FUNC:
2518 case BTF_KIND_FUNC_PROTO:
2519 case BTF_KIND_DECL_TAG:
2520 err = btf_dump_unsupported_data(d, t, id);
2521 break;
2522 case BTF_KIND_INT:
2523 if (bit_sz)
2524 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2525 else
2526 err = btf_dump_int_data(d, t, id, data, bits_offset);
2527 break;
2528 case BTF_KIND_FLOAT:
2529 err = btf_dump_float_data(d, t, id, data);
2530 break;
2531 case BTF_KIND_PTR:
2532 err = btf_dump_ptr_data(d, t, id, data);
2533 break;
2534 case BTF_KIND_ARRAY:
2535 err = btf_dump_array_data(d, t, id, data);
2536 break;
2537 case BTF_KIND_STRUCT:
2538 case BTF_KIND_UNION:
2539 err = btf_dump_struct_data(d, t, id, data);
2540 break;
2541 case BTF_KIND_ENUM:
2542 case BTF_KIND_ENUM64:
2543 /* handle bitfield and int enum values */
2544 if (bit_sz) {
2545 __u64 print_num;
2546 __s64 enum_val;
2547
2548 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2549 &print_num);
2550 if (err)
2551 break;
2552 enum_val = (__s64)print_num;
2553 err = btf_dump_enum_data(d, t, id, &enum_val);
2554 } else
2555 err = btf_dump_enum_data(d, t, id, data);
2556 break;
2557 case BTF_KIND_VAR:
2558 err = btf_dump_var_data(d, t, id, data);
2559 break;
2560 case BTF_KIND_DATASEC:
2561 err = btf_dump_datasec_data(d, t, id, data);
2562 break;
2563 default:
2564 pr_warn("unexpected kind [%u] for id [%u]\n",
2565 BTF_INFO_KIND(t->info), id);
2566 return -EINVAL;
2567 }
2568 if (err < 0)
2569 return err;
2570 return size;
2571 }
2572
btf_dump__dump_type_data(struct btf_dump * d,__u32 id,const void * data,size_t data_sz,const struct btf_dump_type_data_opts * opts)2573 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2574 const void *data, size_t data_sz,
2575 const struct btf_dump_type_data_opts *opts)
2576 {
2577 struct btf_dump_data typed_dump = {};
2578 const struct btf_type *t;
2579 int ret;
2580
2581 if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2582 return libbpf_err(-EINVAL);
2583
2584 t = btf__type_by_id(d->btf, id);
2585 if (!t)
2586 return libbpf_err(-ENOENT);
2587
2588 d->typed_dump = &typed_dump;
2589 d->typed_dump->data_end = data + data_sz;
2590 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2591
2592 /* default indent string is a tab */
2593 if (!OPTS_GET(opts, indent_str, NULL))
2594 d->typed_dump->indent_str[0] = '\t';
2595 else
2596 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
2597 sizeof(d->typed_dump->indent_str));
2598
2599 d->typed_dump->compact = OPTS_GET(opts, compact, false);
2600 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2601 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2602 d->typed_dump->emit_strings = OPTS_GET(opts, emit_strings, false);
2603
2604 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2605
2606 d->typed_dump = NULL;
2607
2608 return libbpf_err(ret);
2609 }
2610