1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 /* Copyright (c) 2018 Facebook */
3 /*! \file */
4
5 #ifndef __LIBBPF_BTF_H
6 #define __LIBBPF_BTF_H
7
8 #include <stdarg.h>
9 #include <stdbool.h>
10 #include <linux/btf.h>
11 #include <linux/types.h>
12
13 #include "libbpf_common.h"
14
15 #ifdef __cplusplus
16 extern "C" {
17 #endif
18
19 #define BTF_ELF_SEC ".BTF"
20 #define BTF_EXT_ELF_SEC ".BTF.ext"
21 #define BTF_BASE_ELF_SEC ".BTF.base"
22 #define MAPS_ELF_SEC ".maps"
23
24 struct btf;
25 struct btf_ext;
26 struct btf_type;
27
28 struct bpf_object;
29
30 enum btf_endianness {
31 BTF_LITTLE_ENDIAN = 0,
32 BTF_BIG_ENDIAN = 1,
33 };
34
35 /**
36 * @brief **btf__free()** frees all data of a BTF object
37 * @param btf BTF object to free
38 */
39 LIBBPF_API void btf__free(struct btf *btf);
40
41 /**
42 * @brief **btf__new()** creates a new instance of a BTF object from the raw
43 * bytes of an ELF's BTF section
44 * @param data raw bytes
45 * @param size number of bytes passed in `data`
46 * @return new BTF object instance which has to be eventually freed with
47 * **btf__free()**
48 *
49 * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
50 * error code from such a pointer `libbpf_get_error()` should be used. If
51 * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
52 * returned on error instead. In both cases thread-local `errno` variable is
53 * always set to error code as well.
54 */
55 LIBBPF_API struct btf *btf__new(const void *data, __u32 size);
56
57 /**
58 * @brief **btf__new_split()** create a new instance of a BTF object from the
59 * provided raw data bytes. It takes another BTF instance, **base_btf**, which
60 * serves as a base BTF, which is extended by types in a newly created BTF
61 * instance
62 * @param data raw bytes
63 * @param size length of raw bytes
64 * @param base_btf the base BTF object
65 * @return new BTF object instance which has to be eventually freed with
66 * **btf__free()**
67 *
68 * If *base_btf* is NULL, `btf__new_split()` is equivalent to `btf__new()` and
69 * creates non-split BTF.
70 *
71 * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
72 * error code from such a pointer `libbpf_get_error()` should be used. If
73 * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
74 * returned on error instead. In both cases thread-local `errno` variable is
75 * always set to error code as well.
76 */
77 LIBBPF_API struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf);
78
79 /**
80 * @brief **btf__new_empty()** creates an empty BTF object. Use
81 * `btf__add_*()` to populate such BTF object.
82 * @return new BTF object instance which has to be eventually freed with
83 * **btf__free()**
84 *
85 * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
86 * error code from such a pointer `libbpf_get_error()` should be used. If
87 * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
88 * returned on error instead. In both cases thread-local `errno` variable is
89 * always set to error code as well.
90 */
91 LIBBPF_API struct btf *btf__new_empty(void);
92
93 /**
94 * @brief **btf__new_empty_split()** creates an unpopulated BTF object from an
95 * ELF BTF section except with a base BTF on top of which split BTF should be
96 * based
97 * @return new BTF object instance which has to be eventually freed with
98 * **btf__free()**
99 *
100 * If *base_btf* is NULL, `btf__new_empty_split()` is equivalent to
101 * `btf__new_empty()` and creates non-split BTF.
102 *
103 * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
104 * error code from such a pointer `libbpf_get_error()` should be used. If
105 * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
106 * returned on error instead. In both cases thread-local `errno` variable is
107 * always set to error code as well.
108 */
109 LIBBPF_API struct btf *btf__new_empty_split(struct btf *base_btf);
110
111 /**
112 * @brief **btf__distill_base()** creates new versions of the split BTF
113 * *src_btf* and its base BTF. The new base BTF will only contain the types
114 * needed to improve robustness of the split BTF to small changes in base BTF.
115 * When that split BTF is loaded against a (possibly changed) base, this
116 * distilled base BTF will help update references to that (possibly changed)
117 * base BTF.
118 *
119 * Both the new split and its associated new base BTF must be freed by
120 * the caller.
121 *
122 * If successful, 0 is returned and **new_base_btf** and **new_split_btf**
123 * will point at new base/split BTF. Both the new split and its associated
124 * new base BTF must be freed by the caller.
125 *
126 * A negative value is returned on error and the thread-local `errno` variable
127 * is set to the error code as well.
128 */
129 LIBBPF_API int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
130 struct btf **new_split_btf);
131
132 LIBBPF_API struct btf *btf__parse(const char *path, struct btf_ext **btf_ext);
133 LIBBPF_API struct btf *btf__parse_split(const char *path, struct btf *base_btf);
134 LIBBPF_API struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext);
135 LIBBPF_API struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf);
136 LIBBPF_API struct btf *btf__parse_raw(const char *path);
137 LIBBPF_API struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf);
138
139 LIBBPF_API struct btf *btf__load_vmlinux_btf(void);
140 LIBBPF_API struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf);
141
142 LIBBPF_API struct btf *btf__load_from_kernel_by_id(__u32 id);
143 LIBBPF_API struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf);
144
145 LIBBPF_API int btf__load_into_kernel(struct btf *btf);
146 LIBBPF_API __s32 btf__find_by_name(const struct btf *btf,
147 const char *type_name);
148 LIBBPF_API __s32 btf__find_by_name_kind(const struct btf *btf,
149 const char *type_name, __u32 kind);
150 LIBBPF_API __u32 btf__type_cnt(const struct btf *btf);
151 LIBBPF_API const struct btf *btf__base_btf(const struct btf *btf);
152 LIBBPF_API const struct btf_type *btf__type_by_id(const struct btf *btf,
153 __u32 id);
154 LIBBPF_API size_t btf__pointer_size(const struct btf *btf);
155 LIBBPF_API int btf__set_pointer_size(struct btf *btf, size_t ptr_sz);
156 LIBBPF_API enum btf_endianness btf__endianness(const struct btf *btf);
157 LIBBPF_API int btf__set_endianness(struct btf *btf, enum btf_endianness endian);
158 LIBBPF_API __s64 btf__resolve_size(const struct btf *btf, __u32 type_id);
159 LIBBPF_API int btf__resolve_type(const struct btf *btf, __u32 type_id);
160 LIBBPF_API int btf__align_of(const struct btf *btf, __u32 id);
161 LIBBPF_API int btf__fd(const struct btf *btf);
162 LIBBPF_API void btf__set_fd(struct btf *btf, int fd);
163 LIBBPF_API const void *btf__raw_data(const struct btf *btf, __u32 *size);
164 LIBBPF_API const char *btf__name_by_offset(const struct btf *btf, __u32 offset);
165 LIBBPF_API const char *btf__str_by_offset(const struct btf *btf, __u32 offset);
166
167 LIBBPF_API struct btf_ext *btf_ext__new(const __u8 *data, __u32 size);
168 LIBBPF_API void btf_ext__free(struct btf_ext *btf_ext);
169 LIBBPF_API const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size);
170
171 LIBBPF_API int btf__find_str(struct btf *btf, const char *s);
172 LIBBPF_API int btf__add_str(struct btf *btf, const char *s);
173 LIBBPF_API int btf__add_type(struct btf *btf, const struct btf *src_btf,
174 const struct btf_type *src_type);
175 /**
176 * @brief **btf__add_btf()** appends all the BTF types from *src_btf* into *btf*
177 * @param btf BTF object which all the BTF types and strings are added to
178 * @param src_btf BTF object which all BTF types and referenced strings are copied from
179 * @return BTF type ID of the first appended BTF type, or negative error code
180 *
181 * **btf__add_btf()** can be used to simply and efficiently append the entire
182 * contents of one BTF object to another one. All the BTF type data is copied
183 * over, all referenced type IDs are adjusted by adding a necessary ID offset.
184 * Only strings referenced from BTF types are copied over and deduplicated, so
185 * if there were some unused strings in *src_btf*, those won't be copied over,
186 * which is consistent with the general string deduplication semantics of BTF
187 * writing APIs.
188 *
189 * If any error is encountered during this process, the contents of *btf* is
190 * left intact, which means that **btf__add_btf()** follows the transactional
191 * semantics and the operation as a whole is all-or-nothing.
192 *
193 * *src_btf* has to be non-split BTF, as of now copying types from split BTF
194 * is not supported and will result in -ENOTSUP error code returned.
195 */
196 LIBBPF_API int btf__add_btf(struct btf *btf, const struct btf *src_btf);
197
198 LIBBPF_API int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding);
199 LIBBPF_API int btf__add_float(struct btf *btf, const char *name, size_t byte_sz);
200 LIBBPF_API int btf__add_ptr(struct btf *btf, int ref_type_id);
201 LIBBPF_API int btf__add_array(struct btf *btf,
202 int index_type_id, int elem_type_id, __u32 nr_elems);
203 /* struct/union construction APIs */
204 LIBBPF_API int btf__add_struct(struct btf *btf, const char *name, __u32 sz);
205 LIBBPF_API int btf__add_union(struct btf *btf, const char *name, __u32 sz);
206 LIBBPF_API int btf__add_field(struct btf *btf, const char *name, int field_type_id,
207 __u32 bit_offset, __u32 bit_size);
208
209 /* enum construction APIs */
210 LIBBPF_API int btf__add_enum(struct btf *btf, const char *name, __u32 bytes_sz);
211 LIBBPF_API int btf__add_enum_value(struct btf *btf, const char *name, __s64 value);
212 LIBBPF_API int btf__add_enum64(struct btf *btf, const char *name, __u32 bytes_sz, bool is_signed);
213 LIBBPF_API int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value);
214
215 enum btf_fwd_kind {
216 BTF_FWD_STRUCT = 0,
217 BTF_FWD_UNION = 1,
218 BTF_FWD_ENUM = 2,
219 };
220
221 LIBBPF_API int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind);
222 LIBBPF_API int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id);
223 LIBBPF_API int btf__add_volatile(struct btf *btf, int ref_type_id);
224 LIBBPF_API int btf__add_const(struct btf *btf, int ref_type_id);
225 LIBBPF_API int btf__add_restrict(struct btf *btf, int ref_type_id);
226 LIBBPF_API int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id);
227
228 /* func and func_proto construction APIs */
229 LIBBPF_API int btf__add_func(struct btf *btf, const char *name,
230 enum btf_func_linkage linkage, int proto_type_id);
231 LIBBPF_API int btf__add_func_proto(struct btf *btf, int ret_type_id);
232 LIBBPF_API int btf__add_func_param(struct btf *btf, const char *name, int type_id);
233
234 /* var & datasec construction APIs */
235 LIBBPF_API int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id);
236 LIBBPF_API int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz);
237 LIBBPF_API int btf__add_datasec_var_info(struct btf *btf, int var_type_id,
238 __u32 offset, __u32 byte_sz);
239
240 /* tag construction API */
241 LIBBPF_API int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
242 int component_idx);
243
244 struct btf_dedup_opts {
245 size_t sz;
246 /* optional .BTF.ext info to dedup along the main BTF info */
247 struct btf_ext *btf_ext;
248 /* force hash collisions (used for testing) */
249 bool force_collisions;
250 size_t :0;
251 };
252 #define btf_dedup_opts__last_field force_collisions
253
254 LIBBPF_API int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts);
255
256 /**
257 * @brief **btf__relocate()** will check the split BTF *btf* for references
258 * to base BTF kinds, and verify those references are compatible with
259 * *base_btf*; if they are, *btf* is adjusted such that is re-parented to
260 * *base_btf* and type ids and strings are adjusted to accommodate this.
261 *
262 * If successful, 0 is returned and **btf** now has **base_btf** as its
263 * base.
264 *
265 * A negative value is returned on error and the thread-local `errno` variable
266 * is set to the error code as well.
267 */
268 LIBBPF_API int btf__relocate(struct btf *btf, const struct btf *base_btf);
269
270 struct btf_dump;
271
272 struct btf_dump_opts {
273 size_t sz;
274 };
275 #define btf_dump_opts__last_field sz
276
277 typedef void (*btf_dump_printf_fn_t)(void *ctx, const char *fmt, va_list args);
278
279 LIBBPF_API struct btf_dump *btf_dump__new(const struct btf *btf,
280 btf_dump_printf_fn_t printf_fn,
281 void *ctx,
282 const struct btf_dump_opts *opts);
283
284 LIBBPF_API void btf_dump__free(struct btf_dump *d);
285
286 LIBBPF_API int btf_dump__dump_type(struct btf_dump *d, __u32 id);
287
288 struct btf_dump_emit_type_decl_opts {
289 /* size of this struct, for forward/backward compatibility */
290 size_t sz;
291 /* optional field name for type declaration, e.g.:
292 * - struct my_struct <FNAME>
293 * - void (*<FNAME>)(int)
294 * - char (*<FNAME>)[123]
295 */
296 const char *field_name;
297 /* extra indentation level (in number of tabs) to emit for multi-line
298 * type declarations (e.g., anonymous struct); applies for lines
299 * starting from the second one (first line is assumed to have
300 * necessary indentation already
301 */
302 int indent_level;
303 /* strip all the const/volatile/restrict mods */
304 bool strip_mods;
305 size_t :0;
306 };
307 #define btf_dump_emit_type_decl_opts__last_field strip_mods
308
309 LIBBPF_API int
310 btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
311 const struct btf_dump_emit_type_decl_opts *opts);
312
313
314 struct btf_dump_type_data_opts {
315 /* size of this struct, for forward/backward compatibility */
316 size_t sz;
317 const char *indent_str;
318 int indent_level;
319 /* below match "show" flags for bpf_show_snprintf() */
320 bool compact; /* no newlines/indentation */
321 bool skip_names; /* skip member/type names */
322 bool emit_zeroes; /* show 0-valued fields */
323 size_t :0;
324 };
325 #define btf_dump_type_data_opts__last_field emit_zeroes
326
327 LIBBPF_API int
328 btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
329 const void *data, size_t data_sz,
330 const struct btf_dump_type_data_opts *opts);
331
332 /*
333 * A set of helpers for easier BTF types handling.
334 *
335 * The inline functions below rely on constants from the kernel headers which
336 * may not be available for applications including this header file. To avoid
337 * compilation errors, we define all the constants here that were added after
338 * the initial introduction of the BTF_KIND* constants.
339 */
340 #ifndef BTF_KIND_FUNC
341 #define BTF_KIND_FUNC 12 /* Function */
342 #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */
343 #endif
344 #ifndef BTF_KIND_VAR
345 #define BTF_KIND_VAR 14 /* Variable */
346 #define BTF_KIND_DATASEC 15 /* Section */
347 #endif
348 #ifndef BTF_KIND_FLOAT
349 #define BTF_KIND_FLOAT 16 /* Floating point */
350 #endif
351 /* The kernel header switched to enums, so the following were never #defined */
352 #define BTF_KIND_DECL_TAG 17 /* Decl Tag */
353 #define BTF_KIND_TYPE_TAG 18 /* Type Tag */
354 #define BTF_KIND_ENUM64 19 /* Enum for up-to 64bit values */
355
btf_kind(const struct btf_type * t)356 static inline __u16 btf_kind(const struct btf_type *t)
357 {
358 return BTF_INFO_KIND(t->info);
359 }
360
btf_vlen(const struct btf_type * t)361 static inline __u16 btf_vlen(const struct btf_type *t)
362 {
363 return BTF_INFO_VLEN(t->info);
364 }
365
btf_kflag(const struct btf_type * t)366 static inline bool btf_kflag(const struct btf_type *t)
367 {
368 return BTF_INFO_KFLAG(t->info);
369 }
370
btf_is_void(const struct btf_type * t)371 static inline bool btf_is_void(const struct btf_type *t)
372 {
373 return btf_kind(t) == BTF_KIND_UNKN;
374 }
375
btf_is_int(const struct btf_type * t)376 static inline bool btf_is_int(const struct btf_type *t)
377 {
378 return btf_kind(t) == BTF_KIND_INT;
379 }
380
btf_is_ptr(const struct btf_type * t)381 static inline bool btf_is_ptr(const struct btf_type *t)
382 {
383 return btf_kind(t) == BTF_KIND_PTR;
384 }
385
btf_is_array(const struct btf_type * t)386 static inline bool btf_is_array(const struct btf_type *t)
387 {
388 return btf_kind(t) == BTF_KIND_ARRAY;
389 }
390
btf_is_struct(const struct btf_type * t)391 static inline bool btf_is_struct(const struct btf_type *t)
392 {
393 return btf_kind(t) == BTF_KIND_STRUCT;
394 }
395
btf_is_union(const struct btf_type * t)396 static inline bool btf_is_union(const struct btf_type *t)
397 {
398 return btf_kind(t) == BTF_KIND_UNION;
399 }
400
btf_is_composite(const struct btf_type * t)401 static inline bool btf_is_composite(const struct btf_type *t)
402 {
403 __u16 kind = btf_kind(t);
404
405 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
406 }
407
btf_is_enum(const struct btf_type * t)408 static inline bool btf_is_enum(const struct btf_type *t)
409 {
410 return btf_kind(t) == BTF_KIND_ENUM;
411 }
412
btf_is_enum64(const struct btf_type * t)413 static inline bool btf_is_enum64(const struct btf_type *t)
414 {
415 return btf_kind(t) == BTF_KIND_ENUM64;
416 }
417
btf_is_fwd(const struct btf_type * t)418 static inline bool btf_is_fwd(const struct btf_type *t)
419 {
420 return btf_kind(t) == BTF_KIND_FWD;
421 }
422
btf_is_typedef(const struct btf_type * t)423 static inline bool btf_is_typedef(const struct btf_type *t)
424 {
425 return btf_kind(t) == BTF_KIND_TYPEDEF;
426 }
427
btf_is_volatile(const struct btf_type * t)428 static inline bool btf_is_volatile(const struct btf_type *t)
429 {
430 return btf_kind(t) == BTF_KIND_VOLATILE;
431 }
432
btf_is_const(const struct btf_type * t)433 static inline bool btf_is_const(const struct btf_type *t)
434 {
435 return btf_kind(t) == BTF_KIND_CONST;
436 }
437
btf_is_restrict(const struct btf_type * t)438 static inline bool btf_is_restrict(const struct btf_type *t)
439 {
440 return btf_kind(t) == BTF_KIND_RESTRICT;
441 }
442
btf_is_mod(const struct btf_type * t)443 static inline bool btf_is_mod(const struct btf_type *t)
444 {
445 __u16 kind = btf_kind(t);
446
447 return kind == BTF_KIND_VOLATILE ||
448 kind == BTF_KIND_CONST ||
449 kind == BTF_KIND_RESTRICT ||
450 kind == BTF_KIND_TYPE_TAG;
451 }
452
btf_is_func(const struct btf_type * t)453 static inline bool btf_is_func(const struct btf_type *t)
454 {
455 return btf_kind(t) == BTF_KIND_FUNC;
456 }
457
btf_is_func_proto(const struct btf_type * t)458 static inline bool btf_is_func_proto(const struct btf_type *t)
459 {
460 return btf_kind(t) == BTF_KIND_FUNC_PROTO;
461 }
462
btf_is_var(const struct btf_type * t)463 static inline bool btf_is_var(const struct btf_type *t)
464 {
465 return btf_kind(t) == BTF_KIND_VAR;
466 }
467
btf_is_datasec(const struct btf_type * t)468 static inline bool btf_is_datasec(const struct btf_type *t)
469 {
470 return btf_kind(t) == BTF_KIND_DATASEC;
471 }
472
btf_is_float(const struct btf_type * t)473 static inline bool btf_is_float(const struct btf_type *t)
474 {
475 return btf_kind(t) == BTF_KIND_FLOAT;
476 }
477
btf_is_decl_tag(const struct btf_type * t)478 static inline bool btf_is_decl_tag(const struct btf_type *t)
479 {
480 return btf_kind(t) == BTF_KIND_DECL_TAG;
481 }
482
btf_is_type_tag(const struct btf_type * t)483 static inline bool btf_is_type_tag(const struct btf_type *t)
484 {
485 return btf_kind(t) == BTF_KIND_TYPE_TAG;
486 }
487
btf_is_any_enum(const struct btf_type * t)488 static inline bool btf_is_any_enum(const struct btf_type *t)
489 {
490 return btf_is_enum(t) || btf_is_enum64(t);
491 }
492
btf_kind_core_compat(const struct btf_type * t1,const struct btf_type * t2)493 static inline bool btf_kind_core_compat(const struct btf_type *t1,
494 const struct btf_type *t2)
495 {
496 return btf_kind(t1) == btf_kind(t2) ||
497 (btf_is_any_enum(t1) && btf_is_any_enum(t2));
498 }
499
btf_int_encoding(const struct btf_type * t)500 static inline __u8 btf_int_encoding(const struct btf_type *t)
501 {
502 return BTF_INT_ENCODING(*(__u32 *)(t + 1));
503 }
504
btf_int_offset(const struct btf_type * t)505 static inline __u8 btf_int_offset(const struct btf_type *t)
506 {
507 return BTF_INT_OFFSET(*(__u32 *)(t + 1));
508 }
509
btf_int_bits(const struct btf_type * t)510 static inline __u8 btf_int_bits(const struct btf_type *t)
511 {
512 return BTF_INT_BITS(*(__u32 *)(t + 1));
513 }
514
btf_array(const struct btf_type * t)515 static inline struct btf_array *btf_array(const struct btf_type *t)
516 {
517 return (struct btf_array *)(t + 1);
518 }
519
btf_enum(const struct btf_type * t)520 static inline struct btf_enum *btf_enum(const struct btf_type *t)
521 {
522 return (struct btf_enum *)(t + 1);
523 }
524
525 struct btf_enum64;
526
btf_enum64(const struct btf_type * t)527 static inline struct btf_enum64 *btf_enum64(const struct btf_type *t)
528 {
529 return (struct btf_enum64 *)(t + 1);
530 }
531
btf_enum64_value(const struct btf_enum64 * e)532 static inline __u64 btf_enum64_value(const struct btf_enum64 *e)
533 {
534 /* struct btf_enum64 is introduced in Linux 6.0, which is very
535 * bleeding-edge. Here we are avoiding relying on struct btf_enum64
536 * definition coming from kernel UAPI headers to support wider range
537 * of system-wide kernel headers.
538 *
539 * Given this header can be also included from C++ applications, that
540 * further restricts C tricks we can use (like using compatible
541 * anonymous struct). So just treat struct btf_enum64 as
542 * a three-element array of u32 and access second (lo32) and third
543 * (hi32) elements directly.
544 *
545 * For reference, here is a struct btf_enum64 definition:
546 *
547 * const struct btf_enum64 {
548 * __u32 name_off;
549 * __u32 val_lo32;
550 * __u32 val_hi32;
551 * };
552 */
553 const __u32 *e64 = (const __u32 *)e;
554
555 return ((__u64)e64[2] << 32) | e64[1];
556 }
557
btf_members(const struct btf_type * t)558 static inline struct btf_member *btf_members(const struct btf_type *t)
559 {
560 return (struct btf_member *)(t + 1);
561 }
562
563 /* Get bit offset of a member with specified index. */
btf_member_bit_offset(const struct btf_type * t,__u32 member_idx)564 static inline __u32 btf_member_bit_offset(const struct btf_type *t,
565 __u32 member_idx)
566 {
567 const struct btf_member *m = btf_members(t) + member_idx;
568 bool kflag = btf_kflag(t);
569
570 return kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset;
571 }
572 /*
573 * Get bitfield size of a member, assuming t is BTF_KIND_STRUCT or
574 * BTF_KIND_UNION. If member is not a bitfield, zero is returned.
575 */
btf_member_bitfield_size(const struct btf_type * t,__u32 member_idx)576 static inline __u32 btf_member_bitfield_size(const struct btf_type *t,
577 __u32 member_idx)
578 {
579 const struct btf_member *m = btf_members(t) + member_idx;
580 bool kflag = btf_kflag(t);
581
582 return kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
583 }
584
btf_params(const struct btf_type * t)585 static inline struct btf_param *btf_params(const struct btf_type *t)
586 {
587 return (struct btf_param *)(t + 1);
588 }
589
btf_var(const struct btf_type * t)590 static inline struct btf_var *btf_var(const struct btf_type *t)
591 {
592 return (struct btf_var *)(t + 1);
593 }
594
595 static inline struct btf_var_secinfo *
btf_var_secinfos(const struct btf_type * t)596 btf_var_secinfos(const struct btf_type *t)
597 {
598 return (struct btf_var_secinfo *)(t + 1);
599 }
600
601 struct btf_decl_tag;
btf_decl_tag(const struct btf_type * t)602 static inline struct btf_decl_tag *btf_decl_tag(const struct btf_type *t)
603 {
604 return (struct btf_decl_tag *)(t + 1);
605 }
606
607 #ifdef __cplusplus
608 } /* extern "C" */
609 #endif
610
611 #endif /* __LIBBPF_BTF_H */
612