1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/skmsg.h> 25 #include <linux/perf_event.h> 26 #include <linux/bsearch.h> 27 #include <linux/kobject.h> 28 #include <linux/sysfs.h> 29 30 #include <net/netfilter/nf_bpf_link.h> 31 32 #include <net/sock.h> 33 #include <net/xdp.h> 34 #include "../tools/lib/bpf/relo_core.h" 35 36 /* BTF (BPF Type Format) is the meta data format which describes 37 * the data types of BPF program/map. Hence, it basically focus 38 * on the C programming language which the modern BPF is primary 39 * using. 40 * 41 * ELF Section: 42 * ~~~~~~~~~~~ 43 * The BTF data is stored under the ".BTF" ELF section 44 * 45 * struct btf_type: 46 * ~~~~~~~~~~~~~~~ 47 * Each 'struct btf_type' object describes a C data type. 48 * Depending on the type it is describing, a 'struct btf_type' 49 * object may be followed by more data. F.e. 50 * To describe an array, 'struct btf_type' is followed by 51 * 'struct btf_array'. 52 * 53 * 'struct btf_type' and any extra data following it are 54 * 4 bytes aligned. 55 * 56 * Type section: 57 * ~~~~~~~~~~~~~ 58 * The BTF type section contains a list of 'struct btf_type' objects. 59 * Each one describes a C type. Recall from the above section 60 * that a 'struct btf_type' object could be immediately followed by extra 61 * data in order to describe some particular C types. 62 * 63 * type_id: 64 * ~~~~~~~ 65 * Each btf_type object is identified by a type_id. The type_id 66 * is implicitly implied by the location of the btf_type object in 67 * the BTF type section. The first one has type_id 1. The second 68 * one has type_id 2...etc. Hence, an earlier btf_type has 69 * a smaller type_id. 70 * 71 * A btf_type object may refer to another btf_type object by using 72 * type_id (i.e. the "type" in the "struct btf_type"). 73 * 74 * NOTE that we cannot assume any reference-order. 75 * A btf_type object can refer to an earlier btf_type object 76 * but it can also refer to a later btf_type object. 77 * 78 * For example, to describe "const void *". A btf_type 79 * object describing "const" may refer to another btf_type 80 * object describing "void *". This type-reference is done 81 * by specifying type_id: 82 * 83 * [1] CONST (anon) type_id=2 84 * [2] PTR (anon) type_id=0 85 * 86 * The above is the btf_verifier debug log: 87 * - Each line started with "[?]" is a btf_type object 88 * - [?] is the type_id of the btf_type object. 89 * - CONST/PTR is the BTF_KIND_XXX 90 * - "(anon)" is the name of the type. It just 91 * happens that CONST and PTR has no name. 92 * - type_id=XXX is the 'u32 type' in btf_type 93 * 94 * NOTE: "void" has type_id 0 95 * 96 * String section: 97 * ~~~~~~~~~~~~~~ 98 * The BTF string section contains the names used by the type section. 99 * Each string is referred by an "offset" from the beginning of the 100 * string section. 101 * 102 * Each string is '\0' terminated. 103 * 104 * The first character in the string section must be '\0' 105 * which is used to mean 'anonymous'. Some btf_type may not 106 * have a name. 107 */ 108 109 /* BTF verification: 110 * 111 * To verify BTF data, two passes are needed. 112 * 113 * Pass #1 114 * ~~~~~~~ 115 * The first pass is to collect all btf_type objects to 116 * an array: "btf->types". 117 * 118 * Depending on the C type that a btf_type is describing, 119 * a btf_type may be followed by extra data. We don't know 120 * how many btf_type is there, and more importantly we don't 121 * know where each btf_type is located in the type section. 122 * 123 * Without knowing the location of each type_id, most verifications 124 * cannot be done. e.g. an earlier btf_type may refer to a later 125 * btf_type (recall the "const void *" above), so we cannot 126 * check this type-reference in the first pass. 127 * 128 * In the first pass, it still does some verifications (e.g. 129 * checking the name is a valid offset to the string section). 130 * 131 * Pass #2 132 * ~~~~~~~ 133 * The main focus is to resolve a btf_type that is referring 134 * to another type. 135 * 136 * We have to ensure the referring type: 137 * 1) does exist in the BTF (i.e. in btf->types[]) 138 * 2) does not cause a loop: 139 * struct A { 140 * struct B b; 141 * }; 142 * 143 * struct B { 144 * struct A a; 145 * }; 146 * 147 * btf_type_needs_resolve() decides if a btf_type needs 148 * to be resolved. 149 * 150 * The needs_resolve type implements the "resolve()" ops which 151 * essentially does a DFS and detects backedge. 152 * 153 * During resolve (or DFS), different C types have different 154 * "RESOLVED" conditions. 155 * 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 157 * members because a member is always referring to another 158 * type. A struct's member can be treated as "RESOLVED" if 159 * it is referring to a BTF_KIND_PTR. Otherwise, the 160 * following valid C struct would be rejected: 161 * 162 * struct A { 163 * int m; 164 * struct A *a; 165 * }; 166 * 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 168 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 169 * detect a pointer loop, e.g.: 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 171 * ^ | 172 * +-----------------------------------------+ 173 * 174 */ 175 176 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 177 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 178 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 179 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 180 #define BITS_ROUNDUP_BYTES(bits) \ 181 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 182 183 #define BTF_INFO_MASK 0x9f00ffff 184 #define BTF_INT_MASK 0x0fffffff 185 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 186 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 187 188 /* 16MB for 64k structs and each has 16 members and 189 * a few MB spaces for the string section. 190 * The hard limit is S32_MAX. 191 */ 192 #define BTF_MAX_SIZE (16 * 1024 * 1024) 193 194 #define for_each_member_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_member(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 #define for_each_vsi_from(i, from, struct_type, member) \ 200 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 201 i < btf_type_vlen(struct_type); \ 202 i++, member++) 203 204 DEFINE_IDR(btf_idr); 205 DEFINE_SPINLOCK(btf_idr_lock); 206 207 enum btf_kfunc_hook { 208 BTF_KFUNC_HOOK_COMMON, 209 BTF_KFUNC_HOOK_XDP, 210 BTF_KFUNC_HOOK_TC, 211 BTF_KFUNC_HOOK_STRUCT_OPS, 212 BTF_KFUNC_HOOK_TRACING, 213 BTF_KFUNC_HOOK_SYSCALL, 214 BTF_KFUNC_HOOK_FMODRET, 215 BTF_KFUNC_HOOK_CGROUP, 216 BTF_KFUNC_HOOK_SCHED_ACT, 217 BTF_KFUNC_HOOK_SK_SKB, 218 BTF_KFUNC_HOOK_SOCKET_FILTER, 219 BTF_KFUNC_HOOK_LWT, 220 BTF_KFUNC_HOOK_NETFILTER, 221 BTF_KFUNC_HOOK_KPROBE, 222 BTF_KFUNC_HOOK_MAX, 223 }; 224 225 enum { 226 BTF_KFUNC_SET_MAX_CNT = 256, 227 BTF_DTOR_KFUNC_MAX_CNT = 256, 228 BTF_KFUNC_FILTER_MAX_CNT = 16, 229 }; 230 231 struct btf_kfunc_hook_filter { 232 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 233 u32 nr_filters; 234 }; 235 236 struct btf_kfunc_set_tab { 237 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 238 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 239 }; 240 241 struct btf_id_dtor_kfunc_tab { 242 u32 cnt; 243 struct btf_id_dtor_kfunc dtors[]; 244 }; 245 246 struct btf_struct_ops_tab { 247 u32 cnt; 248 u32 capacity; 249 struct bpf_struct_ops_desc ops[]; 250 }; 251 252 struct btf { 253 void *data; 254 struct btf_type **types; 255 u32 *resolved_ids; 256 u32 *resolved_sizes; 257 const char *strings; 258 void *nohdr_data; 259 struct btf_header hdr; 260 u32 nr_types; /* includes VOID for base BTF */ 261 u32 types_size; 262 u32 data_size; 263 refcount_t refcnt; 264 u32 id; 265 struct rcu_head rcu; 266 struct btf_kfunc_set_tab *kfunc_set_tab; 267 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 268 struct btf_struct_metas *struct_meta_tab; 269 struct btf_struct_ops_tab *struct_ops_tab; 270 271 /* split BTF support */ 272 struct btf *base_btf; 273 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 274 u32 start_str_off; /* first string offset (0 for base BTF) */ 275 char name[MODULE_NAME_LEN]; 276 bool kernel_btf; 277 __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ 278 }; 279 280 enum verifier_phase { 281 CHECK_META, 282 CHECK_TYPE, 283 }; 284 285 struct resolve_vertex { 286 const struct btf_type *t; 287 u32 type_id; 288 u16 next_member; 289 }; 290 291 enum visit_state { 292 NOT_VISITED, 293 VISITED, 294 RESOLVED, 295 }; 296 297 enum resolve_mode { 298 RESOLVE_TBD, /* To Be Determined */ 299 RESOLVE_PTR, /* Resolving for Pointer */ 300 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 301 * or array 302 */ 303 }; 304 305 #define MAX_RESOLVE_DEPTH 32 306 307 struct btf_sec_info { 308 u32 off; 309 u32 len; 310 }; 311 312 struct btf_verifier_env { 313 struct btf *btf; 314 u8 *visit_states; 315 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 316 struct bpf_verifier_log log; 317 u32 log_type_id; 318 u32 top_stack; 319 enum verifier_phase phase; 320 enum resolve_mode resolve_mode; 321 }; 322 323 static const char * const btf_kind_str[NR_BTF_KINDS] = { 324 [BTF_KIND_UNKN] = "UNKNOWN", 325 [BTF_KIND_INT] = "INT", 326 [BTF_KIND_PTR] = "PTR", 327 [BTF_KIND_ARRAY] = "ARRAY", 328 [BTF_KIND_STRUCT] = "STRUCT", 329 [BTF_KIND_UNION] = "UNION", 330 [BTF_KIND_ENUM] = "ENUM", 331 [BTF_KIND_FWD] = "FWD", 332 [BTF_KIND_TYPEDEF] = "TYPEDEF", 333 [BTF_KIND_VOLATILE] = "VOLATILE", 334 [BTF_KIND_CONST] = "CONST", 335 [BTF_KIND_RESTRICT] = "RESTRICT", 336 [BTF_KIND_FUNC] = "FUNC", 337 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 338 [BTF_KIND_VAR] = "VAR", 339 [BTF_KIND_DATASEC] = "DATASEC", 340 [BTF_KIND_FLOAT] = "FLOAT", 341 [BTF_KIND_DECL_TAG] = "DECL_TAG", 342 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 343 [BTF_KIND_ENUM64] = "ENUM64", 344 }; 345 346 const char *btf_type_str(const struct btf_type *t) 347 { 348 return btf_kind_str[BTF_INFO_KIND(t->info)]; 349 } 350 351 /* Chunk size we use in safe copy of data to be shown. */ 352 #define BTF_SHOW_OBJ_SAFE_SIZE 32 353 354 /* 355 * This is the maximum size of a base type value (equivalent to a 356 * 128-bit int); if we are at the end of our safe buffer and have 357 * less than 16 bytes space we can't be assured of being able 358 * to copy the next type safely, so in such cases we will initiate 359 * a new copy. 360 */ 361 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 362 363 /* Type name size */ 364 #define BTF_SHOW_NAME_SIZE 80 365 366 /* 367 * The suffix of a type that indicates it cannot alias another type when 368 * comparing BTF IDs for kfunc invocations. 369 */ 370 #define NOCAST_ALIAS_SUFFIX "___init" 371 372 /* 373 * Common data to all BTF show operations. Private show functions can add 374 * their own data to a structure containing a struct btf_show and consult it 375 * in the show callback. See btf_type_show() below. 376 * 377 * One challenge with showing nested data is we want to skip 0-valued 378 * data, but in order to figure out whether a nested object is all zeros 379 * we need to walk through it. As a result, we need to make two passes 380 * when handling structs, unions and arrays; the first path simply looks 381 * for nonzero data, while the second actually does the display. The first 382 * pass is signalled by show->state.depth_check being set, and if we 383 * encounter a non-zero value we set show->state.depth_to_show to 384 * the depth at which we encountered it. When we have completed the 385 * first pass, we will know if anything needs to be displayed if 386 * depth_to_show > depth. See btf_[struct,array]_show() for the 387 * implementation of this. 388 * 389 * Another problem is we want to ensure the data for display is safe to 390 * access. To support this, the anonymous "struct {} obj" tracks the data 391 * object and our safe copy of it. We copy portions of the data needed 392 * to the object "copy" buffer, but because its size is limited to 393 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 394 * traverse larger objects for display. 395 * 396 * The various data type show functions all start with a call to 397 * btf_show_start_type() which returns a pointer to the safe copy 398 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 399 * raw data itself). btf_show_obj_safe() is responsible for 400 * using copy_from_kernel_nofault() to update the safe data if necessary 401 * as we traverse the object's data. skbuff-like semantics are 402 * used: 403 * 404 * - obj.head points to the start of the toplevel object for display 405 * - obj.size is the size of the toplevel object 406 * - obj.data points to the current point in the original data at 407 * which our safe data starts. obj.data will advance as we copy 408 * portions of the data. 409 * 410 * In most cases a single copy will suffice, but larger data structures 411 * such as "struct task_struct" will require many copies. The logic in 412 * btf_show_obj_safe() handles the logic that determines if a new 413 * copy_from_kernel_nofault() is needed. 414 */ 415 struct btf_show { 416 u64 flags; 417 void *target; /* target of show operation (seq file, buffer) */ 418 __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 419 const struct btf *btf; 420 /* below are used during iteration */ 421 struct { 422 u8 depth; 423 u8 depth_to_show; 424 u8 depth_check; 425 u8 array_member:1, 426 array_terminated:1; 427 u16 array_encoding; 428 u32 type_id; 429 int status; /* non-zero for error */ 430 const struct btf_type *type; 431 const struct btf_member *member; 432 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 433 } state; 434 struct { 435 u32 size; 436 void *head; 437 void *data; 438 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 439 } obj; 440 }; 441 442 struct btf_kind_operations { 443 s32 (*check_meta)(struct btf_verifier_env *env, 444 const struct btf_type *t, 445 u32 meta_left); 446 int (*resolve)(struct btf_verifier_env *env, 447 const struct resolve_vertex *v); 448 int (*check_member)(struct btf_verifier_env *env, 449 const struct btf_type *struct_type, 450 const struct btf_member *member, 451 const struct btf_type *member_type); 452 int (*check_kflag_member)(struct btf_verifier_env *env, 453 const struct btf_type *struct_type, 454 const struct btf_member *member, 455 const struct btf_type *member_type); 456 void (*log_details)(struct btf_verifier_env *env, 457 const struct btf_type *t); 458 void (*show)(const struct btf *btf, const struct btf_type *t, 459 u32 type_id, void *data, u8 bits_offsets, 460 struct btf_show *show); 461 }; 462 463 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 464 static struct btf_type btf_void; 465 466 static int btf_resolve(struct btf_verifier_env *env, 467 const struct btf_type *t, u32 type_id); 468 469 static int btf_func_check(struct btf_verifier_env *env, 470 const struct btf_type *t); 471 472 static bool btf_type_is_modifier(const struct btf_type *t) 473 { 474 /* Some of them is not strictly a C modifier 475 * but they are grouped into the same bucket 476 * for BTF concern: 477 * A type (t) that refers to another 478 * type through t->type AND its size cannot 479 * be determined without following the t->type. 480 * 481 * ptr does not fall into this bucket 482 * because its size is always sizeof(void *). 483 */ 484 switch (BTF_INFO_KIND(t->info)) { 485 case BTF_KIND_TYPEDEF: 486 case BTF_KIND_VOLATILE: 487 case BTF_KIND_CONST: 488 case BTF_KIND_RESTRICT: 489 case BTF_KIND_TYPE_TAG: 490 return true; 491 } 492 493 return false; 494 } 495 496 bool btf_type_is_void(const struct btf_type *t) 497 { 498 return t == &btf_void; 499 } 500 501 static bool btf_type_is_datasec(const struct btf_type *t) 502 { 503 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 504 } 505 506 static bool btf_type_is_decl_tag(const struct btf_type *t) 507 { 508 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 509 } 510 511 static bool btf_type_nosize(const struct btf_type *t) 512 { 513 return btf_type_is_void(t) || btf_type_is_fwd(t) || 514 btf_type_is_func(t) || btf_type_is_func_proto(t) || 515 btf_type_is_decl_tag(t); 516 } 517 518 static bool btf_type_nosize_or_null(const struct btf_type *t) 519 { 520 return !t || btf_type_nosize(t); 521 } 522 523 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 524 { 525 return btf_type_is_func(t) || btf_type_is_struct(t) || 526 btf_type_is_var(t) || btf_type_is_typedef(t); 527 } 528 529 bool btf_is_vmlinux(const struct btf *btf) 530 { 531 return btf->kernel_btf && !btf->base_btf; 532 } 533 534 u32 btf_nr_types(const struct btf *btf) 535 { 536 u32 total = 0; 537 538 while (btf) { 539 total += btf->nr_types; 540 btf = btf->base_btf; 541 } 542 543 return total; 544 } 545 546 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 547 { 548 const struct btf_type *t; 549 const char *tname; 550 u32 i, total; 551 552 total = btf_nr_types(btf); 553 for (i = 1; i < total; i++) { 554 t = btf_type_by_id(btf, i); 555 if (BTF_INFO_KIND(t->info) != kind) 556 continue; 557 558 tname = btf_name_by_offset(btf, t->name_off); 559 if (!strcmp(tname, name)) 560 return i; 561 } 562 563 return -ENOENT; 564 } 565 566 s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 567 { 568 struct btf *btf; 569 s32 ret; 570 int id; 571 572 btf = bpf_get_btf_vmlinux(); 573 if (IS_ERR(btf)) 574 return PTR_ERR(btf); 575 if (!btf) 576 return -EINVAL; 577 578 ret = btf_find_by_name_kind(btf, name, kind); 579 /* ret is never zero, since btf_find_by_name_kind returns 580 * positive btf_id or negative error. 581 */ 582 if (ret > 0) { 583 btf_get(btf); 584 *btf_p = btf; 585 return ret; 586 } 587 588 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 589 spin_lock_bh(&btf_idr_lock); 590 idr_for_each_entry(&btf_idr, btf, id) { 591 if (!btf_is_module(btf)) 592 continue; 593 /* linear search could be slow hence unlock/lock 594 * the IDR to avoiding holding it for too long 595 */ 596 btf_get(btf); 597 spin_unlock_bh(&btf_idr_lock); 598 ret = btf_find_by_name_kind(btf, name, kind); 599 if (ret > 0) { 600 *btf_p = btf; 601 return ret; 602 } 603 btf_put(btf); 604 spin_lock_bh(&btf_idr_lock); 605 } 606 spin_unlock_bh(&btf_idr_lock); 607 return ret; 608 } 609 EXPORT_SYMBOL_GPL(bpf_find_btf_id); 610 611 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 612 u32 id, u32 *res_id) 613 { 614 const struct btf_type *t = btf_type_by_id(btf, id); 615 616 while (btf_type_is_modifier(t)) { 617 id = t->type; 618 t = btf_type_by_id(btf, t->type); 619 } 620 621 if (res_id) 622 *res_id = id; 623 624 return t; 625 } 626 627 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 628 u32 id, u32 *res_id) 629 { 630 const struct btf_type *t; 631 632 t = btf_type_skip_modifiers(btf, id, NULL); 633 if (!btf_type_is_ptr(t)) 634 return NULL; 635 636 return btf_type_skip_modifiers(btf, t->type, res_id); 637 } 638 639 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 640 u32 id, u32 *res_id) 641 { 642 const struct btf_type *ptype; 643 644 ptype = btf_type_resolve_ptr(btf, id, res_id); 645 if (ptype && btf_type_is_func_proto(ptype)) 646 return ptype; 647 648 return NULL; 649 } 650 651 /* Types that act only as a source, not sink or intermediate 652 * type when resolving. 653 */ 654 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 655 { 656 return btf_type_is_var(t) || 657 btf_type_is_decl_tag(t) || 658 btf_type_is_datasec(t); 659 } 660 661 /* What types need to be resolved? 662 * 663 * btf_type_is_modifier() is an obvious one. 664 * 665 * btf_type_is_struct() because its member refers to 666 * another type (through member->type). 667 * 668 * btf_type_is_var() because the variable refers to 669 * another type. btf_type_is_datasec() holds multiple 670 * btf_type_is_var() types that need resolving. 671 * 672 * btf_type_is_array() because its element (array->type) 673 * refers to another type. Array can be thought of a 674 * special case of struct while array just has the same 675 * member-type repeated by array->nelems of times. 676 */ 677 static bool btf_type_needs_resolve(const struct btf_type *t) 678 { 679 return btf_type_is_modifier(t) || 680 btf_type_is_ptr(t) || 681 btf_type_is_struct(t) || 682 btf_type_is_array(t) || 683 btf_type_is_var(t) || 684 btf_type_is_func(t) || 685 btf_type_is_decl_tag(t) || 686 btf_type_is_datasec(t); 687 } 688 689 /* t->size can be used */ 690 static bool btf_type_has_size(const struct btf_type *t) 691 { 692 switch (BTF_INFO_KIND(t->info)) { 693 case BTF_KIND_INT: 694 case BTF_KIND_STRUCT: 695 case BTF_KIND_UNION: 696 case BTF_KIND_ENUM: 697 case BTF_KIND_DATASEC: 698 case BTF_KIND_FLOAT: 699 case BTF_KIND_ENUM64: 700 return true; 701 } 702 703 return false; 704 } 705 706 static const char *btf_int_encoding_str(u8 encoding) 707 { 708 if (encoding == 0) 709 return "(none)"; 710 else if (encoding == BTF_INT_SIGNED) 711 return "SIGNED"; 712 else if (encoding == BTF_INT_CHAR) 713 return "CHAR"; 714 else if (encoding == BTF_INT_BOOL) 715 return "BOOL"; 716 else 717 return "UNKN"; 718 } 719 720 static u32 btf_type_int(const struct btf_type *t) 721 { 722 return *(u32 *)(t + 1); 723 } 724 725 static const struct btf_array *btf_type_array(const struct btf_type *t) 726 { 727 return (const struct btf_array *)(t + 1); 728 } 729 730 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 731 { 732 return (const struct btf_enum *)(t + 1); 733 } 734 735 static const struct btf_var *btf_type_var(const struct btf_type *t) 736 { 737 return (const struct btf_var *)(t + 1); 738 } 739 740 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 741 { 742 return (const struct btf_decl_tag *)(t + 1); 743 } 744 745 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 746 { 747 return (const struct btf_enum64 *)(t + 1); 748 } 749 750 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 751 { 752 return kind_ops[BTF_INFO_KIND(t->info)]; 753 } 754 755 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 756 { 757 if (!BTF_STR_OFFSET_VALID(offset)) 758 return false; 759 760 while (offset < btf->start_str_off) 761 btf = btf->base_btf; 762 763 offset -= btf->start_str_off; 764 return offset < btf->hdr.str_len; 765 } 766 767 static bool __btf_name_char_ok(char c, bool first) 768 { 769 if ((first ? !isalpha(c) : 770 !isalnum(c)) && 771 c != '_' && 772 c != '.') 773 return false; 774 return true; 775 } 776 777 const char *btf_str_by_offset(const struct btf *btf, u32 offset) 778 { 779 while (offset < btf->start_str_off) 780 btf = btf->base_btf; 781 782 offset -= btf->start_str_off; 783 if (offset < btf->hdr.str_len) 784 return &btf->strings[offset]; 785 786 return NULL; 787 } 788 789 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 790 { 791 /* offset must be valid */ 792 const char *src = btf_str_by_offset(btf, offset); 793 const char *src_limit; 794 795 if (!__btf_name_char_ok(*src, true)) 796 return false; 797 798 /* set a limit on identifier length */ 799 src_limit = src + KSYM_NAME_LEN; 800 src++; 801 while (*src && src < src_limit) { 802 if (!__btf_name_char_ok(*src, false)) 803 return false; 804 src++; 805 } 806 807 return !*src; 808 } 809 810 /* Allow any printable character in DATASEC names */ 811 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 812 { 813 /* offset must be valid */ 814 const char *src = btf_str_by_offset(btf, offset); 815 const char *src_limit; 816 817 if (!*src) 818 return false; 819 820 /* set a limit on identifier length */ 821 src_limit = src + KSYM_NAME_LEN; 822 while (*src && src < src_limit) { 823 if (!isprint(*src)) 824 return false; 825 src++; 826 } 827 828 return !*src; 829 } 830 831 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 832 { 833 const char *name; 834 835 if (!offset) 836 return "(anon)"; 837 838 name = btf_str_by_offset(btf, offset); 839 return name ?: "(invalid-name-offset)"; 840 } 841 842 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 843 { 844 return btf_str_by_offset(btf, offset); 845 } 846 847 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 848 { 849 while (type_id < btf->start_id) 850 btf = btf->base_btf; 851 852 type_id -= btf->start_id; 853 if (type_id >= btf->nr_types) 854 return NULL; 855 return btf->types[type_id]; 856 } 857 EXPORT_SYMBOL_GPL(btf_type_by_id); 858 859 /* 860 * Regular int is not a bit field and it must be either 861 * u8/u16/u32/u64 or __int128. 862 */ 863 static bool btf_type_int_is_regular(const struct btf_type *t) 864 { 865 u8 nr_bits, nr_bytes; 866 u32 int_data; 867 868 int_data = btf_type_int(t); 869 nr_bits = BTF_INT_BITS(int_data); 870 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 871 if (BITS_PER_BYTE_MASKED(nr_bits) || 872 BTF_INT_OFFSET(int_data) || 873 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 874 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 875 nr_bytes != (2 * sizeof(u64)))) { 876 return false; 877 } 878 879 return true; 880 } 881 882 /* 883 * Check that given struct member is a regular int with expected 884 * offset and size. 885 */ 886 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 887 const struct btf_member *m, 888 u32 expected_offset, u32 expected_size) 889 { 890 const struct btf_type *t; 891 u32 id, int_data; 892 u8 nr_bits; 893 894 id = m->type; 895 t = btf_type_id_size(btf, &id, NULL); 896 if (!t || !btf_type_is_int(t)) 897 return false; 898 899 int_data = btf_type_int(t); 900 nr_bits = BTF_INT_BITS(int_data); 901 if (btf_type_kflag(s)) { 902 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 903 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 904 905 /* if kflag set, int should be a regular int and 906 * bit offset should be at byte boundary. 907 */ 908 return !bitfield_size && 909 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 910 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 911 } 912 913 if (BTF_INT_OFFSET(int_data) || 914 BITS_PER_BYTE_MASKED(m->offset) || 915 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 916 BITS_PER_BYTE_MASKED(nr_bits) || 917 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 918 return false; 919 920 return true; 921 } 922 923 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 924 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 925 u32 id) 926 { 927 const struct btf_type *t = btf_type_by_id(btf, id); 928 929 while (btf_type_is_modifier(t) && 930 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 931 t = btf_type_by_id(btf, t->type); 932 } 933 934 return t; 935 } 936 937 #define BTF_SHOW_MAX_ITER 10 938 939 #define BTF_KIND_BIT(kind) (1ULL << kind) 940 941 /* 942 * Populate show->state.name with type name information. 943 * Format of type name is 944 * 945 * [.member_name = ] (type_name) 946 */ 947 static const char *btf_show_name(struct btf_show *show) 948 { 949 /* BTF_MAX_ITER array suffixes "[]" */ 950 const char *array_suffixes = "[][][][][][][][][][]"; 951 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 952 /* BTF_MAX_ITER pointer suffixes "*" */ 953 const char *ptr_suffixes = "**********"; 954 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 955 const char *name = NULL, *prefix = "", *parens = ""; 956 const struct btf_member *m = show->state.member; 957 const struct btf_type *t; 958 const struct btf_array *array; 959 u32 id = show->state.type_id; 960 const char *member = NULL; 961 bool show_member = false; 962 u64 kinds = 0; 963 int i; 964 965 show->state.name[0] = '\0'; 966 967 /* 968 * Don't show type name if we're showing an array member; 969 * in that case we show the array type so don't need to repeat 970 * ourselves for each member. 971 */ 972 if (show->state.array_member) 973 return ""; 974 975 /* Retrieve member name, if any. */ 976 if (m) { 977 member = btf_name_by_offset(show->btf, m->name_off); 978 show_member = strlen(member) > 0; 979 id = m->type; 980 } 981 982 /* 983 * Start with type_id, as we have resolved the struct btf_type * 984 * via btf_modifier_show() past the parent typedef to the child 985 * struct, int etc it is defined as. In such cases, the type_id 986 * still represents the starting type while the struct btf_type * 987 * in our show->state points at the resolved type of the typedef. 988 */ 989 t = btf_type_by_id(show->btf, id); 990 if (!t) 991 return ""; 992 993 /* 994 * The goal here is to build up the right number of pointer and 995 * array suffixes while ensuring the type name for a typedef 996 * is represented. Along the way we accumulate a list of 997 * BTF kinds we have encountered, since these will inform later 998 * display; for example, pointer types will not require an 999 * opening "{" for struct, we will just display the pointer value. 1000 * 1001 * We also want to accumulate the right number of pointer or array 1002 * indices in the format string while iterating until we get to 1003 * the typedef/pointee/array member target type. 1004 * 1005 * We start by pointing at the end of pointer and array suffix 1006 * strings; as we accumulate pointers and arrays we move the pointer 1007 * or array string backwards so it will show the expected number of 1008 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 1009 * and/or arrays and typedefs are supported as a precaution. 1010 * 1011 * We also want to get typedef name while proceeding to resolve 1012 * type it points to so that we can add parentheses if it is a 1013 * "typedef struct" etc. 1014 */ 1015 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 1016 1017 switch (BTF_INFO_KIND(t->info)) { 1018 case BTF_KIND_TYPEDEF: 1019 if (!name) 1020 name = btf_name_by_offset(show->btf, 1021 t->name_off); 1022 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1023 id = t->type; 1024 break; 1025 case BTF_KIND_ARRAY: 1026 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1027 parens = "["; 1028 if (!t) 1029 return ""; 1030 array = btf_type_array(t); 1031 if (array_suffix > array_suffixes) 1032 array_suffix -= 2; 1033 id = array->type; 1034 break; 1035 case BTF_KIND_PTR: 1036 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1037 if (ptr_suffix > ptr_suffixes) 1038 ptr_suffix -= 1; 1039 id = t->type; 1040 break; 1041 default: 1042 id = 0; 1043 break; 1044 } 1045 if (!id) 1046 break; 1047 t = btf_type_skip_qualifiers(show->btf, id); 1048 } 1049 /* We may not be able to represent this type; bail to be safe */ 1050 if (i == BTF_SHOW_MAX_ITER) 1051 return ""; 1052 1053 if (!name) 1054 name = btf_name_by_offset(show->btf, t->name_off); 1055 1056 switch (BTF_INFO_KIND(t->info)) { 1057 case BTF_KIND_STRUCT: 1058 case BTF_KIND_UNION: 1059 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1060 "struct" : "union"; 1061 /* if it's an array of struct/union, parens is already set */ 1062 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1063 parens = "{"; 1064 break; 1065 case BTF_KIND_ENUM: 1066 case BTF_KIND_ENUM64: 1067 prefix = "enum"; 1068 break; 1069 default: 1070 break; 1071 } 1072 1073 /* pointer does not require parens */ 1074 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1075 parens = ""; 1076 /* typedef does not require struct/union/enum prefix */ 1077 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1078 prefix = ""; 1079 1080 if (!name) 1081 name = ""; 1082 1083 /* Even if we don't want type name info, we want parentheses etc */ 1084 if (show->flags & BTF_SHOW_NONAME) 1085 snprintf(show->state.name, sizeof(show->state.name), "%s", 1086 parens); 1087 else 1088 snprintf(show->state.name, sizeof(show->state.name), 1089 "%s%s%s(%s%s%s%s%s%s)%s", 1090 /* first 3 strings comprise ".member = " */ 1091 show_member ? "." : "", 1092 show_member ? member : "", 1093 show_member ? " = " : "", 1094 /* ...next is our prefix (struct, enum, etc) */ 1095 prefix, 1096 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1097 /* ...this is the type name itself */ 1098 name, 1099 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1100 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1101 array_suffix, parens); 1102 1103 return show->state.name; 1104 } 1105 1106 static const char *__btf_show_indent(struct btf_show *show) 1107 { 1108 const char *indents = " "; 1109 const char *indent = &indents[strlen(indents)]; 1110 1111 if ((indent - show->state.depth) >= indents) 1112 return indent - show->state.depth; 1113 return indents; 1114 } 1115 1116 static const char *btf_show_indent(struct btf_show *show) 1117 { 1118 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1119 } 1120 1121 static const char *btf_show_newline(struct btf_show *show) 1122 { 1123 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1124 } 1125 1126 static const char *btf_show_delim(struct btf_show *show) 1127 { 1128 if (show->state.depth == 0) 1129 return ""; 1130 1131 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1132 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1133 return "|"; 1134 1135 return ","; 1136 } 1137 1138 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1139 { 1140 va_list args; 1141 1142 if (!show->state.depth_check) { 1143 va_start(args, fmt); 1144 show->showfn(show, fmt, args); 1145 va_end(args); 1146 } 1147 } 1148 1149 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1150 * format specifiers to the format specifier passed in; these do the work of 1151 * adding indentation, delimiters etc while the caller simply has to specify 1152 * the type value(s) in the format specifier + value(s). 1153 */ 1154 #define btf_show_type_value(show, fmt, value) \ 1155 do { \ 1156 if ((value) != (__typeof__(value))0 || \ 1157 (show->flags & BTF_SHOW_ZERO) || \ 1158 show->state.depth == 0) { \ 1159 btf_show(show, "%s%s" fmt "%s%s", \ 1160 btf_show_indent(show), \ 1161 btf_show_name(show), \ 1162 value, btf_show_delim(show), \ 1163 btf_show_newline(show)); \ 1164 if (show->state.depth > show->state.depth_to_show) \ 1165 show->state.depth_to_show = show->state.depth; \ 1166 } \ 1167 } while (0) 1168 1169 #define btf_show_type_values(show, fmt, ...) \ 1170 do { \ 1171 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1172 btf_show_name(show), \ 1173 __VA_ARGS__, btf_show_delim(show), \ 1174 btf_show_newline(show)); \ 1175 if (show->state.depth > show->state.depth_to_show) \ 1176 show->state.depth_to_show = show->state.depth; \ 1177 } while (0) 1178 1179 /* How much is left to copy to safe buffer after @data? */ 1180 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1181 { 1182 return show->obj.head + show->obj.size - data; 1183 } 1184 1185 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1186 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1187 { 1188 return data >= show->obj.data && 1189 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1190 } 1191 1192 /* 1193 * If object pointed to by @data of @size falls within our safe buffer, return 1194 * the equivalent pointer to the same safe data. Assumes 1195 * copy_from_kernel_nofault() has already happened and our safe buffer is 1196 * populated. 1197 */ 1198 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1199 { 1200 if (btf_show_obj_is_safe(show, data, size)) 1201 return show->obj.safe + (data - show->obj.data); 1202 return NULL; 1203 } 1204 1205 /* 1206 * Return a safe-to-access version of data pointed to by @data. 1207 * We do this by copying the relevant amount of information 1208 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1209 * 1210 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1211 * safe copy is needed. 1212 * 1213 * Otherwise we need to determine if we have the required amount 1214 * of data (determined by the @data pointer and the size of the 1215 * largest base type we can encounter (represented by 1216 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1217 * that we will be able to print some of the current object, 1218 * and if more is needed a copy will be triggered. 1219 * Some objects such as structs will not fit into the buffer; 1220 * in such cases additional copies when we iterate over their 1221 * members may be needed. 1222 * 1223 * btf_show_obj_safe() is used to return a safe buffer for 1224 * btf_show_start_type(); this ensures that as we recurse into 1225 * nested types we always have safe data for the given type. 1226 * This approach is somewhat wasteful; it's possible for example 1227 * that when iterating over a large union we'll end up copying the 1228 * same data repeatedly, but the goal is safety not performance. 1229 * We use stack data as opposed to per-CPU buffers because the 1230 * iteration over a type can take some time, and preemption handling 1231 * would greatly complicate use of the safe buffer. 1232 */ 1233 static void *btf_show_obj_safe(struct btf_show *show, 1234 const struct btf_type *t, 1235 void *data) 1236 { 1237 const struct btf_type *rt; 1238 int size_left, size; 1239 void *safe = NULL; 1240 1241 if (show->flags & BTF_SHOW_UNSAFE) 1242 return data; 1243 1244 rt = btf_resolve_size(show->btf, t, &size); 1245 if (IS_ERR(rt)) { 1246 show->state.status = PTR_ERR(rt); 1247 return NULL; 1248 } 1249 1250 /* 1251 * Is this toplevel object? If so, set total object size and 1252 * initialize pointers. Otherwise check if we still fall within 1253 * our safe object data. 1254 */ 1255 if (show->state.depth == 0) { 1256 show->obj.size = size; 1257 show->obj.head = data; 1258 } else { 1259 /* 1260 * If the size of the current object is > our remaining 1261 * safe buffer we _may_ need to do a new copy. However 1262 * consider the case of a nested struct; it's size pushes 1263 * us over the safe buffer limit, but showing any individual 1264 * struct members does not. In such cases, we don't need 1265 * to initiate a fresh copy yet; however we definitely need 1266 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1267 * in our buffer, regardless of the current object size. 1268 * The logic here is that as we resolve types we will 1269 * hit a base type at some point, and we need to be sure 1270 * the next chunk of data is safely available to display 1271 * that type info safely. We cannot rely on the size of 1272 * the current object here because it may be much larger 1273 * than our current buffer (e.g. task_struct is 8k). 1274 * All we want to do here is ensure that we can print the 1275 * next basic type, which we can if either 1276 * - the current type size is within the safe buffer; or 1277 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1278 * the safe buffer. 1279 */ 1280 safe = __btf_show_obj_safe(show, data, 1281 min(size, 1282 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1283 } 1284 1285 /* 1286 * We need a new copy to our safe object, either because we haven't 1287 * yet copied and are initializing safe data, or because the data 1288 * we want falls outside the boundaries of the safe object. 1289 */ 1290 if (!safe) { 1291 size_left = btf_show_obj_size_left(show, data); 1292 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1293 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1294 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1295 data, size_left); 1296 if (!show->state.status) { 1297 show->obj.data = data; 1298 safe = show->obj.safe; 1299 } 1300 } 1301 1302 return safe; 1303 } 1304 1305 /* 1306 * Set the type we are starting to show and return a safe data pointer 1307 * to be used for showing the associated data. 1308 */ 1309 static void *btf_show_start_type(struct btf_show *show, 1310 const struct btf_type *t, 1311 u32 type_id, void *data) 1312 { 1313 show->state.type = t; 1314 show->state.type_id = type_id; 1315 show->state.name[0] = '\0'; 1316 1317 return btf_show_obj_safe(show, t, data); 1318 } 1319 1320 static void btf_show_end_type(struct btf_show *show) 1321 { 1322 show->state.type = NULL; 1323 show->state.type_id = 0; 1324 show->state.name[0] = '\0'; 1325 } 1326 1327 static void *btf_show_start_aggr_type(struct btf_show *show, 1328 const struct btf_type *t, 1329 u32 type_id, void *data) 1330 { 1331 void *safe_data = btf_show_start_type(show, t, type_id, data); 1332 1333 if (!safe_data) 1334 return safe_data; 1335 1336 btf_show(show, "%s%s%s", btf_show_indent(show), 1337 btf_show_name(show), 1338 btf_show_newline(show)); 1339 show->state.depth++; 1340 return safe_data; 1341 } 1342 1343 static void btf_show_end_aggr_type(struct btf_show *show, 1344 const char *suffix) 1345 { 1346 show->state.depth--; 1347 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1348 btf_show_delim(show), btf_show_newline(show)); 1349 btf_show_end_type(show); 1350 } 1351 1352 static void btf_show_start_member(struct btf_show *show, 1353 const struct btf_member *m) 1354 { 1355 show->state.member = m; 1356 } 1357 1358 static void btf_show_start_array_member(struct btf_show *show) 1359 { 1360 show->state.array_member = 1; 1361 btf_show_start_member(show, NULL); 1362 } 1363 1364 static void btf_show_end_member(struct btf_show *show) 1365 { 1366 show->state.member = NULL; 1367 } 1368 1369 static void btf_show_end_array_member(struct btf_show *show) 1370 { 1371 show->state.array_member = 0; 1372 btf_show_end_member(show); 1373 } 1374 1375 static void *btf_show_start_array_type(struct btf_show *show, 1376 const struct btf_type *t, 1377 u32 type_id, 1378 u16 array_encoding, 1379 void *data) 1380 { 1381 show->state.array_encoding = array_encoding; 1382 show->state.array_terminated = 0; 1383 return btf_show_start_aggr_type(show, t, type_id, data); 1384 } 1385 1386 static void btf_show_end_array_type(struct btf_show *show) 1387 { 1388 show->state.array_encoding = 0; 1389 show->state.array_terminated = 0; 1390 btf_show_end_aggr_type(show, "]"); 1391 } 1392 1393 static void *btf_show_start_struct_type(struct btf_show *show, 1394 const struct btf_type *t, 1395 u32 type_id, 1396 void *data) 1397 { 1398 return btf_show_start_aggr_type(show, t, type_id, data); 1399 } 1400 1401 static void btf_show_end_struct_type(struct btf_show *show) 1402 { 1403 btf_show_end_aggr_type(show, "}"); 1404 } 1405 1406 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1407 const char *fmt, ...) 1408 { 1409 va_list args; 1410 1411 va_start(args, fmt); 1412 bpf_verifier_vlog(log, fmt, args); 1413 va_end(args); 1414 } 1415 1416 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1417 const char *fmt, ...) 1418 { 1419 struct bpf_verifier_log *log = &env->log; 1420 va_list args; 1421 1422 if (!bpf_verifier_log_needed(log)) 1423 return; 1424 1425 va_start(args, fmt); 1426 bpf_verifier_vlog(log, fmt, args); 1427 va_end(args); 1428 } 1429 1430 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1431 const struct btf_type *t, 1432 bool log_details, 1433 const char *fmt, ...) 1434 { 1435 struct bpf_verifier_log *log = &env->log; 1436 struct btf *btf = env->btf; 1437 va_list args; 1438 1439 if (!bpf_verifier_log_needed(log)) 1440 return; 1441 1442 if (log->level == BPF_LOG_KERNEL) { 1443 /* btf verifier prints all types it is processing via 1444 * btf_verifier_log_type(..., fmt = NULL). 1445 * Skip those prints for in-kernel BTF verification. 1446 */ 1447 if (!fmt) 1448 return; 1449 1450 /* Skip logging when loading module BTF with mismatches permitted */ 1451 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1452 return; 1453 } 1454 1455 __btf_verifier_log(log, "[%u] %s %s%s", 1456 env->log_type_id, 1457 btf_type_str(t), 1458 __btf_name_by_offset(btf, t->name_off), 1459 log_details ? " " : ""); 1460 1461 if (log_details) 1462 btf_type_ops(t)->log_details(env, t); 1463 1464 if (fmt && *fmt) { 1465 __btf_verifier_log(log, " "); 1466 va_start(args, fmt); 1467 bpf_verifier_vlog(log, fmt, args); 1468 va_end(args); 1469 } 1470 1471 __btf_verifier_log(log, "\n"); 1472 } 1473 1474 #define btf_verifier_log_type(env, t, ...) \ 1475 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1476 #define btf_verifier_log_basic(env, t, ...) \ 1477 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1478 1479 __printf(4, 5) 1480 static void btf_verifier_log_member(struct btf_verifier_env *env, 1481 const struct btf_type *struct_type, 1482 const struct btf_member *member, 1483 const char *fmt, ...) 1484 { 1485 struct bpf_verifier_log *log = &env->log; 1486 struct btf *btf = env->btf; 1487 va_list args; 1488 1489 if (!bpf_verifier_log_needed(log)) 1490 return; 1491 1492 if (log->level == BPF_LOG_KERNEL) { 1493 if (!fmt) 1494 return; 1495 1496 /* Skip logging when loading module BTF with mismatches permitted */ 1497 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1498 return; 1499 } 1500 1501 /* The CHECK_META phase already did a btf dump. 1502 * 1503 * If member is logged again, it must hit an error in 1504 * parsing this member. It is useful to print out which 1505 * struct this member belongs to. 1506 */ 1507 if (env->phase != CHECK_META) 1508 btf_verifier_log_type(env, struct_type, NULL); 1509 1510 if (btf_type_kflag(struct_type)) 1511 __btf_verifier_log(log, 1512 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1513 __btf_name_by_offset(btf, member->name_off), 1514 member->type, 1515 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1516 BTF_MEMBER_BIT_OFFSET(member->offset)); 1517 else 1518 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1519 __btf_name_by_offset(btf, member->name_off), 1520 member->type, member->offset); 1521 1522 if (fmt && *fmt) { 1523 __btf_verifier_log(log, " "); 1524 va_start(args, fmt); 1525 bpf_verifier_vlog(log, fmt, args); 1526 va_end(args); 1527 } 1528 1529 __btf_verifier_log(log, "\n"); 1530 } 1531 1532 __printf(4, 5) 1533 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1534 const struct btf_type *datasec_type, 1535 const struct btf_var_secinfo *vsi, 1536 const char *fmt, ...) 1537 { 1538 struct bpf_verifier_log *log = &env->log; 1539 va_list args; 1540 1541 if (!bpf_verifier_log_needed(log)) 1542 return; 1543 if (log->level == BPF_LOG_KERNEL && !fmt) 1544 return; 1545 if (env->phase != CHECK_META) 1546 btf_verifier_log_type(env, datasec_type, NULL); 1547 1548 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1549 vsi->type, vsi->offset, vsi->size); 1550 if (fmt && *fmt) { 1551 __btf_verifier_log(log, " "); 1552 va_start(args, fmt); 1553 bpf_verifier_vlog(log, fmt, args); 1554 va_end(args); 1555 } 1556 1557 __btf_verifier_log(log, "\n"); 1558 } 1559 1560 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1561 u32 btf_data_size) 1562 { 1563 struct bpf_verifier_log *log = &env->log; 1564 const struct btf *btf = env->btf; 1565 const struct btf_header *hdr; 1566 1567 if (!bpf_verifier_log_needed(log)) 1568 return; 1569 1570 if (log->level == BPF_LOG_KERNEL) 1571 return; 1572 hdr = &btf->hdr; 1573 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1574 __btf_verifier_log(log, "version: %u\n", hdr->version); 1575 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1576 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1577 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1578 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1579 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1580 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1581 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1582 } 1583 1584 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1585 { 1586 struct btf *btf = env->btf; 1587 1588 if (btf->types_size == btf->nr_types) { 1589 /* Expand 'types' array */ 1590 1591 struct btf_type **new_types; 1592 u32 expand_by, new_size; 1593 1594 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1595 btf_verifier_log(env, "Exceeded max num of types"); 1596 return -E2BIG; 1597 } 1598 1599 expand_by = max_t(u32, btf->types_size >> 2, 16); 1600 new_size = min_t(u32, BTF_MAX_TYPE, 1601 btf->types_size + expand_by); 1602 1603 new_types = kvcalloc(new_size, sizeof(*new_types), 1604 GFP_KERNEL | __GFP_NOWARN); 1605 if (!new_types) 1606 return -ENOMEM; 1607 1608 if (btf->nr_types == 0) { 1609 if (!btf->base_btf) { 1610 /* lazily init VOID type */ 1611 new_types[0] = &btf_void; 1612 btf->nr_types++; 1613 } 1614 } else { 1615 memcpy(new_types, btf->types, 1616 sizeof(*btf->types) * btf->nr_types); 1617 } 1618 1619 kvfree(btf->types); 1620 btf->types = new_types; 1621 btf->types_size = new_size; 1622 } 1623 1624 btf->types[btf->nr_types++] = t; 1625 1626 return 0; 1627 } 1628 1629 static int btf_alloc_id(struct btf *btf) 1630 { 1631 int id; 1632 1633 idr_preload(GFP_KERNEL); 1634 spin_lock_bh(&btf_idr_lock); 1635 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1636 if (id > 0) 1637 btf->id = id; 1638 spin_unlock_bh(&btf_idr_lock); 1639 idr_preload_end(); 1640 1641 if (WARN_ON_ONCE(!id)) 1642 return -ENOSPC; 1643 1644 return id > 0 ? 0 : id; 1645 } 1646 1647 static void btf_free_id(struct btf *btf) 1648 { 1649 unsigned long flags; 1650 1651 /* 1652 * In map-in-map, calling map_delete_elem() on outer 1653 * map will call bpf_map_put on the inner map. 1654 * It will then eventually call btf_free_id() 1655 * on the inner map. Some of the map_delete_elem() 1656 * implementation may have irq disabled, so 1657 * we need to use the _irqsave() version instead 1658 * of the _bh() version. 1659 */ 1660 spin_lock_irqsave(&btf_idr_lock, flags); 1661 idr_remove(&btf_idr, btf->id); 1662 spin_unlock_irqrestore(&btf_idr_lock, flags); 1663 } 1664 1665 static void btf_free_kfunc_set_tab(struct btf *btf) 1666 { 1667 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1668 int hook; 1669 1670 if (!tab) 1671 return; 1672 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1673 kfree(tab->sets[hook]); 1674 kfree(tab); 1675 btf->kfunc_set_tab = NULL; 1676 } 1677 1678 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1679 { 1680 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1681 1682 if (!tab) 1683 return; 1684 kfree(tab); 1685 btf->dtor_kfunc_tab = NULL; 1686 } 1687 1688 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1689 { 1690 int i; 1691 1692 if (!tab) 1693 return; 1694 for (i = 0; i < tab->cnt; i++) 1695 btf_record_free(tab->types[i].record); 1696 kfree(tab); 1697 } 1698 1699 static void btf_free_struct_meta_tab(struct btf *btf) 1700 { 1701 struct btf_struct_metas *tab = btf->struct_meta_tab; 1702 1703 btf_struct_metas_free(tab); 1704 btf->struct_meta_tab = NULL; 1705 } 1706 1707 static void btf_free_struct_ops_tab(struct btf *btf) 1708 { 1709 struct btf_struct_ops_tab *tab = btf->struct_ops_tab; 1710 u32 i; 1711 1712 if (!tab) 1713 return; 1714 1715 for (i = 0; i < tab->cnt; i++) 1716 bpf_struct_ops_desc_release(&tab->ops[i]); 1717 1718 kfree(tab); 1719 btf->struct_ops_tab = NULL; 1720 } 1721 1722 static void btf_free(struct btf *btf) 1723 { 1724 btf_free_struct_meta_tab(btf); 1725 btf_free_dtor_kfunc_tab(btf); 1726 btf_free_kfunc_set_tab(btf); 1727 btf_free_struct_ops_tab(btf); 1728 kvfree(btf->types); 1729 kvfree(btf->resolved_sizes); 1730 kvfree(btf->resolved_ids); 1731 /* vmlinux does not allocate btf->data, it simply points it at 1732 * __start_BTF. 1733 */ 1734 if (!btf_is_vmlinux(btf)) 1735 kvfree(btf->data); 1736 kvfree(btf->base_id_map); 1737 kfree(btf); 1738 } 1739 1740 static void btf_free_rcu(struct rcu_head *rcu) 1741 { 1742 struct btf *btf = container_of(rcu, struct btf, rcu); 1743 1744 btf_free(btf); 1745 } 1746 1747 const char *btf_get_name(const struct btf *btf) 1748 { 1749 return btf->name; 1750 } 1751 1752 void btf_get(struct btf *btf) 1753 { 1754 refcount_inc(&btf->refcnt); 1755 } 1756 1757 void btf_put(struct btf *btf) 1758 { 1759 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1760 btf_free_id(btf); 1761 call_rcu(&btf->rcu, btf_free_rcu); 1762 } 1763 } 1764 1765 struct btf *btf_base_btf(const struct btf *btf) 1766 { 1767 return btf->base_btf; 1768 } 1769 1770 const struct btf_header *btf_header(const struct btf *btf) 1771 { 1772 return &btf->hdr; 1773 } 1774 1775 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) 1776 { 1777 btf->base_btf = (struct btf *)base_btf; 1778 btf->start_id = btf_nr_types(base_btf); 1779 btf->start_str_off = base_btf->hdr.str_len; 1780 } 1781 1782 static int env_resolve_init(struct btf_verifier_env *env) 1783 { 1784 struct btf *btf = env->btf; 1785 u32 nr_types = btf->nr_types; 1786 u32 *resolved_sizes = NULL; 1787 u32 *resolved_ids = NULL; 1788 u8 *visit_states = NULL; 1789 1790 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1791 GFP_KERNEL | __GFP_NOWARN); 1792 if (!resolved_sizes) 1793 goto nomem; 1794 1795 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1796 GFP_KERNEL | __GFP_NOWARN); 1797 if (!resolved_ids) 1798 goto nomem; 1799 1800 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1801 GFP_KERNEL | __GFP_NOWARN); 1802 if (!visit_states) 1803 goto nomem; 1804 1805 btf->resolved_sizes = resolved_sizes; 1806 btf->resolved_ids = resolved_ids; 1807 env->visit_states = visit_states; 1808 1809 return 0; 1810 1811 nomem: 1812 kvfree(resolved_sizes); 1813 kvfree(resolved_ids); 1814 kvfree(visit_states); 1815 return -ENOMEM; 1816 } 1817 1818 static void btf_verifier_env_free(struct btf_verifier_env *env) 1819 { 1820 kvfree(env->visit_states); 1821 kfree(env); 1822 } 1823 1824 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1825 const struct btf_type *next_type) 1826 { 1827 switch (env->resolve_mode) { 1828 case RESOLVE_TBD: 1829 /* int, enum or void is a sink */ 1830 return !btf_type_needs_resolve(next_type); 1831 case RESOLVE_PTR: 1832 /* int, enum, void, struct, array, func or func_proto is a sink 1833 * for ptr 1834 */ 1835 return !btf_type_is_modifier(next_type) && 1836 !btf_type_is_ptr(next_type); 1837 case RESOLVE_STRUCT_OR_ARRAY: 1838 /* int, enum, void, ptr, func or func_proto is a sink 1839 * for struct and array 1840 */ 1841 return !btf_type_is_modifier(next_type) && 1842 !btf_type_is_array(next_type) && 1843 !btf_type_is_struct(next_type); 1844 default: 1845 BUG(); 1846 } 1847 } 1848 1849 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1850 u32 type_id) 1851 { 1852 /* base BTF types should be resolved by now */ 1853 if (type_id < env->btf->start_id) 1854 return true; 1855 1856 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1857 } 1858 1859 static int env_stack_push(struct btf_verifier_env *env, 1860 const struct btf_type *t, u32 type_id) 1861 { 1862 const struct btf *btf = env->btf; 1863 struct resolve_vertex *v; 1864 1865 if (env->top_stack == MAX_RESOLVE_DEPTH) 1866 return -E2BIG; 1867 1868 if (type_id < btf->start_id 1869 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1870 return -EEXIST; 1871 1872 env->visit_states[type_id - btf->start_id] = VISITED; 1873 1874 v = &env->stack[env->top_stack++]; 1875 v->t = t; 1876 v->type_id = type_id; 1877 v->next_member = 0; 1878 1879 if (env->resolve_mode == RESOLVE_TBD) { 1880 if (btf_type_is_ptr(t)) 1881 env->resolve_mode = RESOLVE_PTR; 1882 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1883 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1884 } 1885 1886 return 0; 1887 } 1888 1889 static void env_stack_set_next_member(struct btf_verifier_env *env, 1890 u16 next_member) 1891 { 1892 env->stack[env->top_stack - 1].next_member = next_member; 1893 } 1894 1895 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1896 u32 resolved_type_id, 1897 u32 resolved_size) 1898 { 1899 u32 type_id = env->stack[--(env->top_stack)].type_id; 1900 struct btf *btf = env->btf; 1901 1902 type_id -= btf->start_id; /* adjust to local type id */ 1903 btf->resolved_sizes[type_id] = resolved_size; 1904 btf->resolved_ids[type_id] = resolved_type_id; 1905 env->visit_states[type_id] = RESOLVED; 1906 } 1907 1908 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1909 { 1910 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1911 } 1912 1913 /* Resolve the size of a passed-in "type" 1914 * 1915 * type: is an array (e.g. u32 array[x][y]) 1916 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1917 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1918 * corresponds to the return type. 1919 * *elem_type: u32 1920 * *elem_id: id of u32 1921 * *total_nelems: (x * y). Hence, individual elem size is 1922 * (*type_size / *total_nelems) 1923 * *type_id: id of type if it's changed within the function, 0 if not 1924 * 1925 * type: is not an array (e.g. const struct X) 1926 * return type: type "struct X" 1927 * *type_size: sizeof(struct X) 1928 * *elem_type: same as return type ("struct X") 1929 * *elem_id: 0 1930 * *total_nelems: 1 1931 * *type_id: id of type if it's changed within the function, 0 if not 1932 */ 1933 static const struct btf_type * 1934 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1935 u32 *type_size, const struct btf_type **elem_type, 1936 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1937 { 1938 const struct btf_type *array_type = NULL; 1939 const struct btf_array *array = NULL; 1940 u32 i, size, nelems = 1, id = 0; 1941 1942 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1943 switch (BTF_INFO_KIND(type->info)) { 1944 /* type->size can be used */ 1945 case BTF_KIND_INT: 1946 case BTF_KIND_STRUCT: 1947 case BTF_KIND_UNION: 1948 case BTF_KIND_ENUM: 1949 case BTF_KIND_FLOAT: 1950 case BTF_KIND_ENUM64: 1951 size = type->size; 1952 goto resolved; 1953 1954 case BTF_KIND_PTR: 1955 size = sizeof(void *); 1956 goto resolved; 1957 1958 /* Modifiers */ 1959 case BTF_KIND_TYPEDEF: 1960 case BTF_KIND_VOLATILE: 1961 case BTF_KIND_CONST: 1962 case BTF_KIND_RESTRICT: 1963 case BTF_KIND_TYPE_TAG: 1964 id = type->type; 1965 type = btf_type_by_id(btf, type->type); 1966 break; 1967 1968 case BTF_KIND_ARRAY: 1969 if (!array_type) 1970 array_type = type; 1971 array = btf_type_array(type); 1972 if (nelems && array->nelems > U32_MAX / nelems) 1973 return ERR_PTR(-EINVAL); 1974 nelems *= array->nelems; 1975 type = btf_type_by_id(btf, array->type); 1976 break; 1977 1978 /* type without size */ 1979 default: 1980 return ERR_PTR(-EINVAL); 1981 } 1982 } 1983 1984 return ERR_PTR(-EINVAL); 1985 1986 resolved: 1987 if (nelems && size > U32_MAX / nelems) 1988 return ERR_PTR(-EINVAL); 1989 1990 *type_size = nelems * size; 1991 if (total_nelems) 1992 *total_nelems = nelems; 1993 if (elem_type) 1994 *elem_type = type; 1995 if (elem_id) 1996 *elem_id = array ? array->type : 0; 1997 if (type_id && id) 1998 *type_id = id; 1999 2000 return array_type ? : type; 2001 } 2002 2003 const struct btf_type * 2004 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 2005 u32 *type_size) 2006 { 2007 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 2008 } 2009 2010 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 2011 { 2012 while (type_id < btf->start_id) 2013 btf = btf->base_btf; 2014 2015 return btf->resolved_ids[type_id - btf->start_id]; 2016 } 2017 2018 /* The input param "type_id" must point to a needs_resolve type */ 2019 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 2020 u32 *type_id) 2021 { 2022 *type_id = btf_resolved_type_id(btf, *type_id); 2023 return btf_type_by_id(btf, *type_id); 2024 } 2025 2026 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 2027 { 2028 while (type_id < btf->start_id) 2029 btf = btf->base_btf; 2030 2031 return btf->resolved_sizes[type_id - btf->start_id]; 2032 } 2033 2034 const struct btf_type *btf_type_id_size(const struct btf *btf, 2035 u32 *type_id, u32 *ret_size) 2036 { 2037 const struct btf_type *size_type; 2038 u32 size_type_id = *type_id; 2039 u32 size = 0; 2040 2041 size_type = btf_type_by_id(btf, size_type_id); 2042 if (btf_type_nosize_or_null(size_type)) 2043 return NULL; 2044 2045 if (btf_type_has_size(size_type)) { 2046 size = size_type->size; 2047 } else if (btf_type_is_array(size_type)) { 2048 size = btf_resolved_type_size(btf, size_type_id); 2049 } else if (btf_type_is_ptr(size_type)) { 2050 size = sizeof(void *); 2051 } else { 2052 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 2053 !btf_type_is_var(size_type))) 2054 return NULL; 2055 2056 size_type_id = btf_resolved_type_id(btf, size_type_id); 2057 size_type = btf_type_by_id(btf, size_type_id); 2058 if (btf_type_nosize_or_null(size_type)) 2059 return NULL; 2060 else if (btf_type_has_size(size_type)) 2061 size = size_type->size; 2062 else if (btf_type_is_array(size_type)) 2063 size = btf_resolved_type_size(btf, size_type_id); 2064 else if (btf_type_is_ptr(size_type)) 2065 size = sizeof(void *); 2066 else 2067 return NULL; 2068 } 2069 2070 *type_id = size_type_id; 2071 if (ret_size) 2072 *ret_size = size; 2073 2074 return size_type; 2075 } 2076 2077 static int btf_df_check_member(struct btf_verifier_env *env, 2078 const struct btf_type *struct_type, 2079 const struct btf_member *member, 2080 const struct btf_type *member_type) 2081 { 2082 btf_verifier_log_basic(env, struct_type, 2083 "Unsupported check_member"); 2084 return -EINVAL; 2085 } 2086 2087 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2088 const struct btf_type *struct_type, 2089 const struct btf_member *member, 2090 const struct btf_type *member_type) 2091 { 2092 btf_verifier_log_basic(env, struct_type, 2093 "Unsupported check_kflag_member"); 2094 return -EINVAL; 2095 } 2096 2097 /* Used for ptr, array struct/union and float type members. 2098 * int, enum and modifier types have their specific callback functions. 2099 */ 2100 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2101 const struct btf_type *struct_type, 2102 const struct btf_member *member, 2103 const struct btf_type *member_type) 2104 { 2105 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2106 btf_verifier_log_member(env, struct_type, member, 2107 "Invalid member bitfield_size"); 2108 return -EINVAL; 2109 } 2110 2111 /* bitfield size is 0, so member->offset represents bit offset only. 2112 * It is safe to call non kflag check_member variants. 2113 */ 2114 return btf_type_ops(member_type)->check_member(env, struct_type, 2115 member, 2116 member_type); 2117 } 2118 2119 static int btf_df_resolve(struct btf_verifier_env *env, 2120 const struct resolve_vertex *v) 2121 { 2122 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2123 return -EINVAL; 2124 } 2125 2126 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2127 u32 type_id, void *data, u8 bits_offsets, 2128 struct btf_show *show) 2129 { 2130 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2131 } 2132 2133 static int btf_int_check_member(struct btf_verifier_env *env, 2134 const struct btf_type *struct_type, 2135 const struct btf_member *member, 2136 const struct btf_type *member_type) 2137 { 2138 u32 int_data = btf_type_int(member_type); 2139 u32 struct_bits_off = member->offset; 2140 u32 struct_size = struct_type->size; 2141 u32 nr_copy_bits; 2142 u32 bytes_offset; 2143 2144 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2145 btf_verifier_log_member(env, struct_type, member, 2146 "bits_offset exceeds U32_MAX"); 2147 return -EINVAL; 2148 } 2149 2150 struct_bits_off += BTF_INT_OFFSET(int_data); 2151 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2152 nr_copy_bits = BTF_INT_BITS(int_data) + 2153 BITS_PER_BYTE_MASKED(struct_bits_off); 2154 2155 if (nr_copy_bits > BITS_PER_U128) { 2156 btf_verifier_log_member(env, struct_type, member, 2157 "nr_copy_bits exceeds 128"); 2158 return -EINVAL; 2159 } 2160 2161 if (struct_size < bytes_offset || 2162 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2163 btf_verifier_log_member(env, struct_type, member, 2164 "Member exceeds struct_size"); 2165 return -EINVAL; 2166 } 2167 2168 return 0; 2169 } 2170 2171 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2172 const struct btf_type *struct_type, 2173 const struct btf_member *member, 2174 const struct btf_type *member_type) 2175 { 2176 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2177 u32 int_data = btf_type_int(member_type); 2178 u32 struct_size = struct_type->size; 2179 u32 nr_copy_bits; 2180 2181 /* a regular int type is required for the kflag int member */ 2182 if (!btf_type_int_is_regular(member_type)) { 2183 btf_verifier_log_member(env, struct_type, member, 2184 "Invalid member base type"); 2185 return -EINVAL; 2186 } 2187 2188 /* check sanity of bitfield size */ 2189 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2190 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2191 nr_int_data_bits = BTF_INT_BITS(int_data); 2192 if (!nr_bits) { 2193 /* Not a bitfield member, member offset must be at byte 2194 * boundary. 2195 */ 2196 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2197 btf_verifier_log_member(env, struct_type, member, 2198 "Invalid member offset"); 2199 return -EINVAL; 2200 } 2201 2202 nr_bits = nr_int_data_bits; 2203 } else if (nr_bits > nr_int_data_bits) { 2204 btf_verifier_log_member(env, struct_type, member, 2205 "Invalid member bitfield_size"); 2206 return -EINVAL; 2207 } 2208 2209 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2210 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2211 if (nr_copy_bits > BITS_PER_U128) { 2212 btf_verifier_log_member(env, struct_type, member, 2213 "nr_copy_bits exceeds 128"); 2214 return -EINVAL; 2215 } 2216 2217 if (struct_size < bytes_offset || 2218 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2219 btf_verifier_log_member(env, struct_type, member, 2220 "Member exceeds struct_size"); 2221 return -EINVAL; 2222 } 2223 2224 return 0; 2225 } 2226 2227 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2228 const struct btf_type *t, 2229 u32 meta_left) 2230 { 2231 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2232 u16 encoding; 2233 2234 if (meta_left < meta_needed) { 2235 btf_verifier_log_basic(env, t, 2236 "meta_left:%u meta_needed:%u", 2237 meta_left, meta_needed); 2238 return -EINVAL; 2239 } 2240 2241 if (btf_type_vlen(t)) { 2242 btf_verifier_log_type(env, t, "vlen != 0"); 2243 return -EINVAL; 2244 } 2245 2246 if (btf_type_kflag(t)) { 2247 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2248 return -EINVAL; 2249 } 2250 2251 int_data = btf_type_int(t); 2252 if (int_data & ~BTF_INT_MASK) { 2253 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2254 int_data); 2255 return -EINVAL; 2256 } 2257 2258 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2259 2260 if (nr_bits > BITS_PER_U128) { 2261 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2262 BITS_PER_U128); 2263 return -EINVAL; 2264 } 2265 2266 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2267 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2268 return -EINVAL; 2269 } 2270 2271 /* 2272 * Only one of the encoding bits is allowed and it 2273 * should be sufficient for the pretty print purpose (i.e. decoding). 2274 * Multiple bits can be allowed later if it is found 2275 * to be insufficient. 2276 */ 2277 encoding = BTF_INT_ENCODING(int_data); 2278 if (encoding && 2279 encoding != BTF_INT_SIGNED && 2280 encoding != BTF_INT_CHAR && 2281 encoding != BTF_INT_BOOL) { 2282 btf_verifier_log_type(env, t, "Unsupported encoding"); 2283 return -ENOTSUPP; 2284 } 2285 2286 btf_verifier_log_type(env, t, NULL); 2287 2288 return meta_needed; 2289 } 2290 2291 static void btf_int_log(struct btf_verifier_env *env, 2292 const struct btf_type *t) 2293 { 2294 int int_data = btf_type_int(t); 2295 2296 btf_verifier_log(env, 2297 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2298 t->size, BTF_INT_OFFSET(int_data), 2299 BTF_INT_BITS(int_data), 2300 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2301 } 2302 2303 static void btf_int128_print(struct btf_show *show, void *data) 2304 { 2305 /* data points to a __int128 number. 2306 * Suppose 2307 * int128_num = *(__int128 *)data; 2308 * The below formulas shows what upper_num and lower_num represents: 2309 * upper_num = int128_num >> 64; 2310 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2311 */ 2312 u64 upper_num, lower_num; 2313 2314 #ifdef __BIG_ENDIAN_BITFIELD 2315 upper_num = *(u64 *)data; 2316 lower_num = *(u64 *)(data + 8); 2317 #else 2318 upper_num = *(u64 *)(data + 8); 2319 lower_num = *(u64 *)data; 2320 #endif 2321 if (upper_num == 0) 2322 btf_show_type_value(show, "0x%llx", lower_num); 2323 else 2324 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2325 lower_num); 2326 } 2327 2328 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2329 u16 right_shift_bits) 2330 { 2331 u64 upper_num, lower_num; 2332 2333 #ifdef __BIG_ENDIAN_BITFIELD 2334 upper_num = print_num[0]; 2335 lower_num = print_num[1]; 2336 #else 2337 upper_num = print_num[1]; 2338 lower_num = print_num[0]; 2339 #endif 2340 2341 /* shake out un-needed bits by shift/or operations */ 2342 if (left_shift_bits >= 64) { 2343 upper_num = lower_num << (left_shift_bits - 64); 2344 lower_num = 0; 2345 } else { 2346 upper_num = (upper_num << left_shift_bits) | 2347 (lower_num >> (64 - left_shift_bits)); 2348 lower_num = lower_num << left_shift_bits; 2349 } 2350 2351 if (right_shift_bits >= 64) { 2352 lower_num = upper_num >> (right_shift_bits - 64); 2353 upper_num = 0; 2354 } else { 2355 lower_num = (lower_num >> right_shift_bits) | 2356 (upper_num << (64 - right_shift_bits)); 2357 upper_num = upper_num >> right_shift_bits; 2358 } 2359 2360 #ifdef __BIG_ENDIAN_BITFIELD 2361 print_num[0] = upper_num; 2362 print_num[1] = lower_num; 2363 #else 2364 print_num[0] = lower_num; 2365 print_num[1] = upper_num; 2366 #endif 2367 } 2368 2369 static void btf_bitfield_show(void *data, u8 bits_offset, 2370 u8 nr_bits, struct btf_show *show) 2371 { 2372 u16 left_shift_bits, right_shift_bits; 2373 u8 nr_copy_bytes; 2374 u8 nr_copy_bits; 2375 u64 print_num[2] = {}; 2376 2377 nr_copy_bits = nr_bits + bits_offset; 2378 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2379 2380 memcpy(print_num, data, nr_copy_bytes); 2381 2382 #ifdef __BIG_ENDIAN_BITFIELD 2383 left_shift_bits = bits_offset; 2384 #else 2385 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2386 #endif 2387 right_shift_bits = BITS_PER_U128 - nr_bits; 2388 2389 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2390 btf_int128_print(show, print_num); 2391 } 2392 2393 2394 static void btf_int_bits_show(const struct btf *btf, 2395 const struct btf_type *t, 2396 void *data, u8 bits_offset, 2397 struct btf_show *show) 2398 { 2399 u32 int_data = btf_type_int(t); 2400 u8 nr_bits = BTF_INT_BITS(int_data); 2401 u8 total_bits_offset; 2402 2403 /* 2404 * bits_offset is at most 7. 2405 * BTF_INT_OFFSET() cannot exceed 128 bits. 2406 */ 2407 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2408 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2409 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2410 btf_bitfield_show(data, bits_offset, nr_bits, show); 2411 } 2412 2413 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2414 u32 type_id, void *data, u8 bits_offset, 2415 struct btf_show *show) 2416 { 2417 u32 int_data = btf_type_int(t); 2418 u8 encoding = BTF_INT_ENCODING(int_data); 2419 bool sign = encoding & BTF_INT_SIGNED; 2420 u8 nr_bits = BTF_INT_BITS(int_data); 2421 void *safe_data; 2422 2423 safe_data = btf_show_start_type(show, t, type_id, data); 2424 if (!safe_data) 2425 return; 2426 2427 if (bits_offset || BTF_INT_OFFSET(int_data) || 2428 BITS_PER_BYTE_MASKED(nr_bits)) { 2429 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2430 goto out; 2431 } 2432 2433 switch (nr_bits) { 2434 case 128: 2435 btf_int128_print(show, safe_data); 2436 break; 2437 case 64: 2438 if (sign) 2439 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2440 else 2441 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2442 break; 2443 case 32: 2444 if (sign) 2445 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2446 else 2447 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2448 break; 2449 case 16: 2450 if (sign) 2451 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2452 else 2453 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2454 break; 2455 case 8: 2456 if (show->state.array_encoding == BTF_INT_CHAR) { 2457 /* check for null terminator */ 2458 if (show->state.array_terminated) 2459 break; 2460 if (*(char *)data == '\0') { 2461 show->state.array_terminated = 1; 2462 break; 2463 } 2464 if (isprint(*(char *)data)) { 2465 btf_show_type_value(show, "'%c'", 2466 *(char *)safe_data); 2467 break; 2468 } 2469 } 2470 if (sign) 2471 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2472 else 2473 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2474 break; 2475 default: 2476 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2477 break; 2478 } 2479 out: 2480 btf_show_end_type(show); 2481 } 2482 2483 static const struct btf_kind_operations int_ops = { 2484 .check_meta = btf_int_check_meta, 2485 .resolve = btf_df_resolve, 2486 .check_member = btf_int_check_member, 2487 .check_kflag_member = btf_int_check_kflag_member, 2488 .log_details = btf_int_log, 2489 .show = btf_int_show, 2490 }; 2491 2492 static int btf_modifier_check_member(struct btf_verifier_env *env, 2493 const struct btf_type *struct_type, 2494 const struct btf_member *member, 2495 const struct btf_type *member_type) 2496 { 2497 const struct btf_type *resolved_type; 2498 u32 resolved_type_id = member->type; 2499 struct btf_member resolved_member; 2500 struct btf *btf = env->btf; 2501 2502 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2503 if (!resolved_type) { 2504 btf_verifier_log_member(env, struct_type, member, 2505 "Invalid member"); 2506 return -EINVAL; 2507 } 2508 2509 resolved_member = *member; 2510 resolved_member.type = resolved_type_id; 2511 2512 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2513 &resolved_member, 2514 resolved_type); 2515 } 2516 2517 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2518 const struct btf_type *struct_type, 2519 const struct btf_member *member, 2520 const struct btf_type *member_type) 2521 { 2522 const struct btf_type *resolved_type; 2523 u32 resolved_type_id = member->type; 2524 struct btf_member resolved_member; 2525 struct btf *btf = env->btf; 2526 2527 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2528 if (!resolved_type) { 2529 btf_verifier_log_member(env, struct_type, member, 2530 "Invalid member"); 2531 return -EINVAL; 2532 } 2533 2534 resolved_member = *member; 2535 resolved_member.type = resolved_type_id; 2536 2537 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2538 &resolved_member, 2539 resolved_type); 2540 } 2541 2542 static int btf_ptr_check_member(struct btf_verifier_env *env, 2543 const struct btf_type *struct_type, 2544 const struct btf_member *member, 2545 const struct btf_type *member_type) 2546 { 2547 u32 struct_size, struct_bits_off, bytes_offset; 2548 2549 struct_size = struct_type->size; 2550 struct_bits_off = member->offset; 2551 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2552 2553 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2554 btf_verifier_log_member(env, struct_type, member, 2555 "Member is not byte aligned"); 2556 return -EINVAL; 2557 } 2558 2559 if (struct_size - bytes_offset < sizeof(void *)) { 2560 btf_verifier_log_member(env, struct_type, member, 2561 "Member exceeds struct_size"); 2562 return -EINVAL; 2563 } 2564 2565 return 0; 2566 } 2567 2568 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2569 const struct btf_type *t, 2570 u32 meta_left) 2571 { 2572 const char *value; 2573 2574 if (btf_type_vlen(t)) { 2575 btf_verifier_log_type(env, t, "vlen != 0"); 2576 return -EINVAL; 2577 } 2578 2579 if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) { 2580 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2581 return -EINVAL; 2582 } 2583 2584 if (!BTF_TYPE_ID_VALID(t->type)) { 2585 btf_verifier_log_type(env, t, "Invalid type_id"); 2586 return -EINVAL; 2587 } 2588 2589 /* typedef/type_tag type must have a valid name, and other ref types, 2590 * volatile, const, restrict, should have a null name. 2591 */ 2592 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2593 if (!t->name_off || 2594 !btf_name_valid_identifier(env->btf, t->name_off)) { 2595 btf_verifier_log_type(env, t, "Invalid name"); 2596 return -EINVAL; 2597 } 2598 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2599 value = btf_name_by_offset(env->btf, t->name_off); 2600 if (!value || !value[0]) { 2601 btf_verifier_log_type(env, t, "Invalid name"); 2602 return -EINVAL; 2603 } 2604 } else { 2605 if (t->name_off) { 2606 btf_verifier_log_type(env, t, "Invalid name"); 2607 return -EINVAL; 2608 } 2609 } 2610 2611 btf_verifier_log_type(env, t, NULL); 2612 2613 return 0; 2614 } 2615 2616 static int btf_modifier_resolve(struct btf_verifier_env *env, 2617 const struct resolve_vertex *v) 2618 { 2619 const struct btf_type *t = v->t; 2620 const struct btf_type *next_type; 2621 u32 next_type_id = t->type; 2622 struct btf *btf = env->btf; 2623 2624 next_type = btf_type_by_id(btf, next_type_id); 2625 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2626 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2627 return -EINVAL; 2628 } 2629 2630 if (!env_type_is_resolve_sink(env, next_type) && 2631 !env_type_is_resolved(env, next_type_id)) 2632 return env_stack_push(env, next_type, next_type_id); 2633 2634 /* Figure out the resolved next_type_id with size. 2635 * They will be stored in the current modifier's 2636 * resolved_ids and resolved_sizes such that it can 2637 * save us a few type-following when we use it later (e.g. in 2638 * pretty print). 2639 */ 2640 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2641 if (env_type_is_resolved(env, next_type_id)) 2642 next_type = btf_type_id_resolve(btf, &next_type_id); 2643 2644 /* "typedef void new_void", "const void"...etc */ 2645 if (!btf_type_is_void(next_type) && 2646 !btf_type_is_fwd(next_type) && 2647 !btf_type_is_func_proto(next_type)) { 2648 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2649 return -EINVAL; 2650 } 2651 } 2652 2653 env_stack_pop_resolved(env, next_type_id, 0); 2654 2655 return 0; 2656 } 2657 2658 static int btf_var_resolve(struct btf_verifier_env *env, 2659 const struct resolve_vertex *v) 2660 { 2661 const struct btf_type *next_type; 2662 const struct btf_type *t = v->t; 2663 u32 next_type_id = t->type; 2664 struct btf *btf = env->btf; 2665 2666 next_type = btf_type_by_id(btf, next_type_id); 2667 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2668 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2669 return -EINVAL; 2670 } 2671 2672 if (!env_type_is_resolve_sink(env, next_type) && 2673 !env_type_is_resolved(env, next_type_id)) 2674 return env_stack_push(env, next_type, next_type_id); 2675 2676 if (btf_type_is_modifier(next_type)) { 2677 const struct btf_type *resolved_type; 2678 u32 resolved_type_id; 2679 2680 resolved_type_id = next_type_id; 2681 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2682 2683 if (btf_type_is_ptr(resolved_type) && 2684 !env_type_is_resolve_sink(env, resolved_type) && 2685 !env_type_is_resolved(env, resolved_type_id)) 2686 return env_stack_push(env, resolved_type, 2687 resolved_type_id); 2688 } 2689 2690 /* We must resolve to something concrete at this point, no 2691 * forward types or similar that would resolve to size of 2692 * zero is allowed. 2693 */ 2694 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2695 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2696 return -EINVAL; 2697 } 2698 2699 env_stack_pop_resolved(env, next_type_id, 0); 2700 2701 return 0; 2702 } 2703 2704 static int btf_ptr_resolve(struct btf_verifier_env *env, 2705 const struct resolve_vertex *v) 2706 { 2707 const struct btf_type *next_type; 2708 const struct btf_type *t = v->t; 2709 u32 next_type_id = t->type; 2710 struct btf *btf = env->btf; 2711 2712 next_type = btf_type_by_id(btf, next_type_id); 2713 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2714 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2715 return -EINVAL; 2716 } 2717 2718 if (!env_type_is_resolve_sink(env, next_type) && 2719 !env_type_is_resolved(env, next_type_id)) 2720 return env_stack_push(env, next_type, next_type_id); 2721 2722 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2723 * the modifier may have stopped resolving when it was resolved 2724 * to a ptr (last-resolved-ptr). 2725 * 2726 * We now need to continue from the last-resolved-ptr to 2727 * ensure the last-resolved-ptr will not referring back to 2728 * the current ptr (t). 2729 */ 2730 if (btf_type_is_modifier(next_type)) { 2731 const struct btf_type *resolved_type; 2732 u32 resolved_type_id; 2733 2734 resolved_type_id = next_type_id; 2735 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2736 2737 if (btf_type_is_ptr(resolved_type) && 2738 !env_type_is_resolve_sink(env, resolved_type) && 2739 !env_type_is_resolved(env, resolved_type_id)) 2740 return env_stack_push(env, resolved_type, 2741 resolved_type_id); 2742 } 2743 2744 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2745 if (env_type_is_resolved(env, next_type_id)) 2746 next_type = btf_type_id_resolve(btf, &next_type_id); 2747 2748 if (!btf_type_is_void(next_type) && 2749 !btf_type_is_fwd(next_type) && 2750 !btf_type_is_func_proto(next_type)) { 2751 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2752 return -EINVAL; 2753 } 2754 } 2755 2756 env_stack_pop_resolved(env, next_type_id, 0); 2757 2758 return 0; 2759 } 2760 2761 static void btf_modifier_show(const struct btf *btf, 2762 const struct btf_type *t, 2763 u32 type_id, void *data, 2764 u8 bits_offset, struct btf_show *show) 2765 { 2766 if (btf->resolved_ids) 2767 t = btf_type_id_resolve(btf, &type_id); 2768 else 2769 t = btf_type_skip_modifiers(btf, type_id, NULL); 2770 2771 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2772 } 2773 2774 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2775 u32 type_id, void *data, u8 bits_offset, 2776 struct btf_show *show) 2777 { 2778 t = btf_type_id_resolve(btf, &type_id); 2779 2780 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2781 } 2782 2783 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2784 u32 type_id, void *data, u8 bits_offset, 2785 struct btf_show *show) 2786 { 2787 void *safe_data; 2788 2789 safe_data = btf_show_start_type(show, t, type_id, data); 2790 if (!safe_data) 2791 return; 2792 2793 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2794 if (show->flags & BTF_SHOW_PTR_RAW) 2795 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2796 else 2797 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2798 btf_show_end_type(show); 2799 } 2800 2801 static void btf_ref_type_log(struct btf_verifier_env *env, 2802 const struct btf_type *t) 2803 { 2804 btf_verifier_log(env, "type_id=%u", t->type); 2805 } 2806 2807 static const struct btf_kind_operations modifier_ops = { 2808 .check_meta = btf_ref_type_check_meta, 2809 .resolve = btf_modifier_resolve, 2810 .check_member = btf_modifier_check_member, 2811 .check_kflag_member = btf_modifier_check_kflag_member, 2812 .log_details = btf_ref_type_log, 2813 .show = btf_modifier_show, 2814 }; 2815 2816 static const struct btf_kind_operations ptr_ops = { 2817 .check_meta = btf_ref_type_check_meta, 2818 .resolve = btf_ptr_resolve, 2819 .check_member = btf_ptr_check_member, 2820 .check_kflag_member = btf_generic_check_kflag_member, 2821 .log_details = btf_ref_type_log, 2822 .show = btf_ptr_show, 2823 }; 2824 2825 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2826 const struct btf_type *t, 2827 u32 meta_left) 2828 { 2829 if (btf_type_vlen(t)) { 2830 btf_verifier_log_type(env, t, "vlen != 0"); 2831 return -EINVAL; 2832 } 2833 2834 if (t->type) { 2835 btf_verifier_log_type(env, t, "type != 0"); 2836 return -EINVAL; 2837 } 2838 2839 /* fwd type must have a valid name */ 2840 if (!t->name_off || 2841 !btf_name_valid_identifier(env->btf, t->name_off)) { 2842 btf_verifier_log_type(env, t, "Invalid name"); 2843 return -EINVAL; 2844 } 2845 2846 btf_verifier_log_type(env, t, NULL); 2847 2848 return 0; 2849 } 2850 2851 static void btf_fwd_type_log(struct btf_verifier_env *env, 2852 const struct btf_type *t) 2853 { 2854 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2855 } 2856 2857 static const struct btf_kind_operations fwd_ops = { 2858 .check_meta = btf_fwd_check_meta, 2859 .resolve = btf_df_resolve, 2860 .check_member = btf_df_check_member, 2861 .check_kflag_member = btf_df_check_kflag_member, 2862 .log_details = btf_fwd_type_log, 2863 .show = btf_df_show, 2864 }; 2865 2866 static int btf_array_check_member(struct btf_verifier_env *env, 2867 const struct btf_type *struct_type, 2868 const struct btf_member *member, 2869 const struct btf_type *member_type) 2870 { 2871 u32 struct_bits_off = member->offset; 2872 u32 struct_size, bytes_offset; 2873 u32 array_type_id, array_size; 2874 struct btf *btf = env->btf; 2875 2876 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2877 btf_verifier_log_member(env, struct_type, member, 2878 "Member is not byte aligned"); 2879 return -EINVAL; 2880 } 2881 2882 array_type_id = member->type; 2883 btf_type_id_size(btf, &array_type_id, &array_size); 2884 struct_size = struct_type->size; 2885 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2886 if (struct_size - bytes_offset < array_size) { 2887 btf_verifier_log_member(env, struct_type, member, 2888 "Member exceeds struct_size"); 2889 return -EINVAL; 2890 } 2891 2892 return 0; 2893 } 2894 2895 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2896 const struct btf_type *t, 2897 u32 meta_left) 2898 { 2899 const struct btf_array *array = btf_type_array(t); 2900 u32 meta_needed = sizeof(*array); 2901 2902 if (meta_left < meta_needed) { 2903 btf_verifier_log_basic(env, t, 2904 "meta_left:%u meta_needed:%u", 2905 meta_left, meta_needed); 2906 return -EINVAL; 2907 } 2908 2909 /* array type should not have a name */ 2910 if (t->name_off) { 2911 btf_verifier_log_type(env, t, "Invalid name"); 2912 return -EINVAL; 2913 } 2914 2915 if (btf_type_vlen(t)) { 2916 btf_verifier_log_type(env, t, "vlen != 0"); 2917 return -EINVAL; 2918 } 2919 2920 if (btf_type_kflag(t)) { 2921 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2922 return -EINVAL; 2923 } 2924 2925 if (t->size) { 2926 btf_verifier_log_type(env, t, "size != 0"); 2927 return -EINVAL; 2928 } 2929 2930 /* Array elem type and index type cannot be in type void, 2931 * so !array->type and !array->index_type are not allowed. 2932 */ 2933 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2934 btf_verifier_log_type(env, t, "Invalid elem"); 2935 return -EINVAL; 2936 } 2937 2938 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2939 btf_verifier_log_type(env, t, "Invalid index"); 2940 return -EINVAL; 2941 } 2942 2943 btf_verifier_log_type(env, t, NULL); 2944 2945 return meta_needed; 2946 } 2947 2948 static int btf_array_resolve(struct btf_verifier_env *env, 2949 const struct resolve_vertex *v) 2950 { 2951 const struct btf_array *array = btf_type_array(v->t); 2952 const struct btf_type *elem_type, *index_type; 2953 u32 elem_type_id, index_type_id; 2954 struct btf *btf = env->btf; 2955 u32 elem_size; 2956 2957 /* Check array->index_type */ 2958 index_type_id = array->index_type; 2959 index_type = btf_type_by_id(btf, index_type_id); 2960 if (btf_type_nosize_or_null(index_type) || 2961 btf_type_is_resolve_source_only(index_type)) { 2962 btf_verifier_log_type(env, v->t, "Invalid index"); 2963 return -EINVAL; 2964 } 2965 2966 if (!env_type_is_resolve_sink(env, index_type) && 2967 !env_type_is_resolved(env, index_type_id)) 2968 return env_stack_push(env, index_type, index_type_id); 2969 2970 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2971 if (!index_type || !btf_type_is_int(index_type) || 2972 !btf_type_int_is_regular(index_type)) { 2973 btf_verifier_log_type(env, v->t, "Invalid index"); 2974 return -EINVAL; 2975 } 2976 2977 /* Check array->type */ 2978 elem_type_id = array->type; 2979 elem_type = btf_type_by_id(btf, elem_type_id); 2980 if (btf_type_nosize_or_null(elem_type) || 2981 btf_type_is_resolve_source_only(elem_type)) { 2982 btf_verifier_log_type(env, v->t, 2983 "Invalid elem"); 2984 return -EINVAL; 2985 } 2986 2987 if (!env_type_is_resolve_sink(env, elem_type) && 2988 !env_type_is_resolved(env, elem_type_id)) 2989 return env_stack_push(env, elem_type, elem_type_id); 2990 2991 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2992 if (!elem_type) { 2993 btf_verifier_log_type(env, v->t, "Invalid elem"); 2994 return -EINVAL; 2995 } 2996 2997 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2998 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2999 return -EINVAL; 3000 } 3001 3002 if (array->nelems && elem_size > U32_MAX / array->nelems) { 3003 btf_verifier_log_type(env, v->t, 3004 "Array size overflows U32_MAX"); 3005 return -EINVAL; 3006 } 3007 3008 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 3009 3010 return 0; 3011 } 3012 3013 static void btf_array_log(struct btf_verifier_env *env, 3014 const struct btf_type *t) 3015 { 3016 const struct btf_array *array = btf_type_array(t); 3017 3018 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 3019 array->type, array->index_type, array->nelems); 3020 } 3021 3022 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 3023 u32 type_id, void *data, u8 bits_offset, 3024 struct btf_show *show) 3025 { 3026 const struct btf_array *array = btf_type_array(t); 3027 const struct btf_kind_operations *elem_ops; 3028 const struct btf_type *elem_type; 3029 u32 i, elem_size = 0, elem_type_id; 3030 u16 encoding = 0; 3031 3032 elem_type_id = array->type; 3033 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 3034 if (elem_type && btf_type_has_size(elem_type)) 3035 elem_size = elem_type->size; 3036 3037 if (elem_type && btf_type_is_int(elem_type)) { 3038 u32 int_type = btf_type_int(elem_type); 3039 3040 encoding = BTF_INT_ENCODING(int_type); 3041 3042 /* 3043 * BTF_INT_CHAR encoding never seems to be set for 3044 * char arrays, so if size is 1 and element is 3045 * printable as a char, we'll do that. 3046 */ 3047 if (elem_size == 1) 3048 encoding = BTF_INT_CHAR; 3049 } 3050 3051 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 3052 return; 3053 3054 if (!elem_type) 3055 goto out; 3056 elem_ops = btf_type_ops(elem_type); 3057 3058 for (i = 0; i < array->nelems; i++) { 3059 3060 btf_show_start_array_member(show); 3061 3062 elem_ops->show(btf, elem_type, elem_type_id, data, 3063 bits_offset, show); 3064 data += elem_size; 3065 3066 btf_show_end_array_member(show); 3067 3068 if (show->state.array_terminated) 3069 break; 3070 } 3071 out: 3072 btf_show_end_array_type(show); 3073 } 3074 3075 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3076 u32 type_id, void *data, u8 bits_offset, 3077 struct btf_show *show) 3078 { 3079 const struct btf_member *m = show->state.member; 3080 3081 /* 3082 * First check if any members would be shown (are non-zero). 3083 * See comments above "struct btf_show" definition for more 3084 * details on how this works at a high-level. 3085 */ 3086 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3087 if (!show->state.depth_check) { 3088 show->state.depth_check = show->state.depth + 1; 3089 show->state.depth_to_show = 0; 3090 } 3091 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3092 show->state.member = m; 3093 3094 if (show->state.depth_check != show->state.depth + 1) 3095 return; 3096 show->state.depth_check = 0; 3097 3098 if (show->state.depth_to_show <= show->state.depth) 3099 return; 3100 /* 3101 * Reaching here indicates we have recursed and found 3102 * non-zero array member(s). 3103 */ 3104 } 3105 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3106 } 3107 3108 static const struct btf_kind_operations array_ops = { 3109 .check_meta = btf_array_check_meta, 3110 .resolve = btf_array_resolve, 3111 .check_member = btf_array_check_member, 3112 .check_kflag_member = btf_generic_check_kflag_member, 3113 .log_details = btf_array_log, 3114 .show = btf_array_show, 3115 }; 3116 3117 static int btf_struct_check_member(struct btf_verifier_env *env, 3118 const struct btf_type *struct_type, 3119 const struct btf_member *member, 3120 const struct btf_type *member_type) 3121 { 3122 u32 struct_bits_off = member->offset; 3123 u32 struct_size, bytes_offset; 3124 3125 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3126 btf_verifier_log_member(env, struct_type, member, 3127 "Member is not byte aligned"); 3128 return -EINVAL; 3129 } 3130 3131 struct_size = struct_type->size; 3132 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3133 if (struct_size - bytes_offset < member_type->size) { 3134 btf_verifier_log_member(env, struct_type, member, 3135 "Member exceeds struct_size"); 3136 return -EINVAL; 3137 } 3138 3139 return 0; 3140 } 3141 3142 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3143 const struct btf_type *t, 3144 u32 meta_left) 3145 { 3146 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3147 const struct btf_member *member; 3148 u32 meta_needed, last_offset; 3149 struct btf *btf = env->btf; 3150 u32 struct_size = t->size; 3151 u32 offset; 3152 u16 i; 3153 3154 meta_needed = btf_type_vlen(t) * sizeof(*member); 3155 if (meta_left < meta_needed) { 3156 btf_verifier_log_basic(env, t, 3157 "meta_left:%u meta_needed:%u", 3158 meta_left, meta_needed); 3159 return -EINVAL; 3160 } 3161 3162 /* struct type either no name or a valid one */ 3163 if (t->name_off && 3164 !btf_name_valid_identifier(env->btf, t->name_off)) { 3165 btf_verifier_log_type(env, t, "Invalid name"); 3166 return -EINVAL; 3167 } 3168 3169 btf_verifier_log_type(env, t, NULL); 3170 3171 last_offset = 0; 3172 for_each_member(i, t, member) { 3173 if (!btf_name_offset_valid(btf, member->name_off)) { 3174 btf_verifier_log_member(env, t, member, 3175 "Invalid member name_offset:%u", 3176 member->name_off); 3177 return -EINVAL; 3178 } 3179 3180 /* struct member either no name or a valid one */ 3181 if (member->name_off && 3182 !btf_name_valid_identifier(btf, member->name_off)) { 3183 btf_verifier_log_member(env, t, member, "Invalid name"); 3184 return -EINVAL; 3185 } 3186 /* A member cannot be in type void */ 3187 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3188 btf_verifier_log_member(env, t, member, 3189 "Invalid type_id"); 3190 return -EINVAL; 3191 } 3192 3193 offset = __btf_member_bit_offset(t, member); 3194 if (is_union && offset) { 3195 btf_verifier_log_member(env, t, member, 3196 "Invalid member bits_offset"); 3197 return -EINVAL; 3198 } 3199 3200 /* 3201 * ">" instead of ">=" because the last member could be 3202 * "char a[0];" 3203 */ 3204 if (last_offset > offset) { 3205 btf_verifier_log_member(env, t, member, 3206 "Invalid member bits_offset"); 3207 return -EINVAL; 3208 } 3209 3210 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3211 btf_verifier_log_member(env, t, member, 3212 "Member bits_offset exceeds its struct size"); 3213 return -EINVAL; 3214 } 3215 3216 btf_verifier_log_member(env, t, member, NULL); 3217 last_offset = offset; 3218 } 3219 3220 return meta_needed; 3221 } 3222 3223 static int btf_struct_resolve(struct btf_verifier_env *env, 3224 const struct resolve_vertex *v) 3225 { 3226 const struct btf_member *member; 3227 int err; 3228 u16 i; 3229 3230 /* Before continue resolving the next_member, 3231 * ensure the last member is indeed resolved to a 3232 * type with size info. 3233 */ 3234 if (v->next_member) { 3235 const struct btf_type *last_member_type; 3236 const struct btf_member *last_member; 3237 u32 last_member_type_id; 3238 3239 last_member = btf_type_member(v->t) + v->next_member - 1; 3240 last_member_type_id = last_member->type; 3241 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3242 last_member_type_id))) 3243 return -EINVAL; 3244 3245 last_member_type = btf_type_by_id(env->btf, 3246 last_member_type_id); 3247 if (btf_type_kflag(v->t)) 3248 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3249 last_member, 3250 last_member_type); 3251 else 3252 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3253 last_member, 3254 last_member_type); 3255 if (err) 3256 return err; 3257 } 3258 3259 for_each_member_from(i, v->next_member, v->t, member) { 3260 u32 member_type_id = member->type; 3261 const struct btf_type *member_type = btf_type_by_id(env->btf, 3262 member_type_id); 3263 3264 if (btf_type_nosize_or_null(member_type) || 3265 btf_type_is_resolve_source_only(member_type)) { 3266 btf_verifier_log_member(env, v->t, member, 3267 "Invalid member"); 3268 return -EINVAL; 3269 } 3270 3271 if (!env_type_is_resolve_sink(env, member_type) && 3272 !env_type_is_resolved(env, member_type_id)) { 3273 env_stack_set_next_member(env, i + 1); 3274 return env_stack_push(env, member_type, member_type_id); 3275 } 3276 3277 if (btf_type_kflag(v->t)) 3278 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3279 member, 3280 member_type); 3281 else 3282 err = btf_type_ops(member_type)->check_member(env, v->t, 3283 member, 3284 member_type); 3285 if (err) 3286 return err; 3287 } 3288 3289 env_stack_pop_resolved(env, 0, 0); 3290 3291 return 0; 3292 } 3293 3294 static void btf_struct_log(struct btf_verifier_env *env, 3295 const struct btf_type *t) 3296 { 3297 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3298 } 3299 3300 enum { 3301 BTF_FIELD_IGNORE = 0, 3302 BTF_FIELD_FOUND = 1, 3303 }; 3304 3305 struct btf_field_info { 3306 enum btf_field_type type; 3307 u32 off; 3308 union { 3309 struct { 3310 u32 type_id; 3311 } kptr; 3312 struct { 3313 const char *node_name; 3314 u32 value_btf_id; 3315 } graph_root; 3316 }; 3317 }; 3318 3319 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3320 u32 off, int sz, enum btf_field_type field_type, 3321 struct btf_field_info *info) 3322 { 3323 if (!__btf_type_is_struct(t)) 3324 return BTF_FIELD_IGNORE; 3325 if (t->size != sz) 3326 return BTF_FIELD_IGNORE; 3327 info->type = field_type; 3328 info->off = off; 3329 return BTF_FIELD_FOUND; 3330 } 3331 3332 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3333 u32 off, int sz, struct btf_field_info *info, u32 field_mask) 3334 { 3335 enum btf_field_type type; 3336 const char *tag_value; 3337 bool is_type_tag; 3338 u32 res_id; 3339 3340 /* Permit modifiers on the pointer itself */ 3341 if (btf_type_is_volatile(t)) 3342 t = btf_type_by_id(btf, t->type); 3343 /* For PTR, sz is always == 8 */ 3344 if (!btf_type_is_ptr(t)) 3345 return BTF_FIELD_IGNORE; 3346 t = btf_type_by_id(btf, t->type); 3347 is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t); 3348 if (!is_type_tag) 3349 return BTF_FIELD_IGNORE; 3350 /* Reject extra tags */ 3351 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3352 return -EINVAL; 3353 tag_value = __btf_name_by_offset(btf, t->name_off); 3354 if (!strcmp("kptr_untrusted", tag_value)) 3355 type = BPF_KPTR_UNREF; 3356 else if (!strcmp("kptr", tag_value)) 3357 type = BPF_KPTR_REF; 3358 else if (!strcmp("percpu_kptr", tag_value)) 3359 type = BPF_KPTR_PERCPU; 3360 else if (!strcmp("uptr", tag_value)) 3361 type = BPF_UPTR; 3362 else 3363 return -EINVAL; 3364 3365 if (!(type & field_mask)) 3366 return BTF_FIELD_IGNORE; 3367 3368 /* Get the base type */ 3369 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3370 /* Only pointer to struct is allowed */ 3371 if (!__btf_type_is_struct(t)) 3372 return -EINVAL; 3373 3374 info->type = type; 3375 info->off = off; 3376 info->kptr.type_id = res_id; 3377 return BTF_FIELD_FOUND; 3378 } 3379 3380 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 3381 int comp_idx, const char *tag_key, int last_id) 3382 { 3383 int len = strlen(tag_key); 3384 int i, n; 3385 3386 for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { 3387 const struct btf_type *t = btf_type_by_id(btf, i); 3388 3389 if (!btf_type_is_decl_tag(t)) 3390 continue; 3391 if (pt != btf_type_by_id(btf, t->type)) 3392 continue; 3393 if (btf_type_decl_tag(t)->component_idx != comp_idx) 3394 continue; 3395 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3396 continue; 3397 return i; 3398 } 3399 return -ENOENT; 3400 } 3401 3402 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 3403 int comp_idx, const char *tag_key) 3404 { 3405 const char *value = NULL; 3406 const struct btf_type *t; 3407 int len, id; 3408 3409 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); 3410 if (id < 0) 3411 return ERR_PTR(id); 3412 3413 t = btf_type_by_id(btf, id); 3414 len = strlen(tag_key); 3415 value = __btf_name_by_offset(btf, t->name_off) + len; 3416 3417 /* Prevent duplicate entries for same type */ 3418 id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); 3419 if (id >= 0) 3420 return ERR_PTR(-EEXIST); 3421 3422 return value; 3423 } 3424 3425 static int 3426 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3427 const struct btf_type *t, int comp_idx, u32 off, 3428 int sz, struct btf_field_info *info, 3429 enum btf_field_type head_type) 3430 { 3431 const char *node_field_name; 3432 const char *value_type; 3433 s32 id; 3434 3435 if (!__btf_type_is_struct(t)) 3436 return BTF_FIELD_IGNORE; 3437 if (t->size != sz) 3438 return BTF_FIELD_IGNORE; 3439 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3440 if (IS_ERR(value_type)) 3441 return -EINVAL; 3442 node_field_name = strstr(value_type, ":"); 3443 if (!node_field_name) 3444 return -EINVAL; 3445 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3446 if (!value_type) 3447 return -ENOMEM; 3448 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3449 kfree(value_type); 3450 if (id < 0) 3451 return id; 3452 node_field_name++; 3453 if (str_is_empty(node_field_name)) 3454 return -EINVAL; 3455 info->type = head_type; 3456 info->off = off; 3457 info->graph_root.value_btf_id = id; 3458 info->graph_root.node_name = node_field_name; 3459 return BTF_FIELD_FOUND; 3460 } 3461 3462 #define field_mask_test_name(field_type, field_type_str) \ 3463 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3464 type = field_type; \ 3465 goto end; \ 3466 } 3467 3468 static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, 3469 u32 field_mask, u32 *seen_mask, 3470 int *align, int *sz) 3471 { 3472 int type = 0; 3473 const char *name = __btf_name_by_offset(btf, var_type->name_off); 3474 3475 if (field_mask & BPF_SPIN_LOCK) { 3476 if (!strcmp(name, "bpf_spin_lock")) { 3477 if (*seen_mask & BPF_SPIN_LOCK) 3478 return -E2BIG; 3479 *seen_mask |= BPF_SPIN_LOCK; 3480 type = BPF_SPIN_LOCK; 3481 goto end; 3482 } 3483 } 3484 if (field_mask & BPF_RES_SPIN_LOCK) { 3485 if (!strcmp(name, "bpf_res_spin_lock")) { 3486 if (*seen_mask & BPF_RES_SPIN_LOCK) 3487 return -E2BIG; 3488 *seen_mask |= BPF_RES_SPIN_LOCK; 3489 type = BPF_RES_SPIN_LOCK; 3490 goto end; 3491 } 3492 } 3493 if (field_mask & BPF_TIMER) { 3494 if (!strcmp(name, "bpf_timer")) { 3495 if (*seen_mask & BPF_TIMER) 3496 return -E2BIG; 3497 *seen_mask |= BPF_TIMER; 3498 type = BPF_TIMER; 3499 goto end; 3500 } 3501 } 3502 if (field_mask & BPF_WORKQUEUE) { 3503 if (!strcmp(name, "bpf_wq")) { 3504 if (*seen_mask & BPF_WORKQUEUE) 3505 return -E2BIG; 3506 *seen_mask |= BPF_WORKQUEUE; 3507 type = BPF_WORKQUEUE; 3508 goto end; 3509 } 3510 } 3511 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3512 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3513 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3514 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3515 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3516 3517 /* Only return BPF_KPTR when all other types with matchable names fail */ 3518 if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) { 3519 type = BPF_KPTR_REF; 3520 goto end; 3521 } 3522 return 0; 3523 end: 3524 *sz = btf_field_type_size(type); 3525 *align = btf_field_type_align(type); 3526 return type; 3527 } 3528 3529 #undef field_mask_test_name 3530 3531 /* Repeat a number of fields for a specified number of times. 3532 * 3533 * Copy the fields starting from the first field and repeat them for 3534 * repeat_cnt times. The fields are repeated by adding the offset of each 3535 * field with 3536 * (i + 1) * elem_size 3537 * where i is the repeat index and elem_size is the size of an element. 3538 */ 3539 static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, 3540 u32 field_cnt, u32 repeat_cnt, u32 elem_size) 3541 { 3542 u32 i, j; 3543 u32 cur; 3544 3545 /* Ensure not repeating fields that should not be repeated. */ 3546 for (i = 0; i < field_cnt; i++) { 3547 switch (info[i].type) { 3548 case BPF_KPTR_UNREF: 3549 case BPF_KPTR_REF: 3550 case BPF_KPTR_PERCPU: 3551 case BPF_UPTR: 3552 case BPF_LIST_HEAD: 3553 case BPF_RB_ROOT: 3554 break; 3555 default: 3556 return -EINVAL; 3557 } 3558 } 3559 3560 /* The type of struct size or variable size is u32, 3561 * so the multiplication will not overflow. 3562 */ 3563 if (field_cnt * (repeat_cnt + 1) > info_cnt) 3564 return -E2BIG; 3565 3566 cur = field_cnt; 3567 for (i = 0; i < repeat_cnt; i++) { 3568 memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); 3569 for (j = 0; j < field_cnt; j++) 3570 info[cur++].off += (i + 1) * elem_size; 3571 } 3572 3573 return 0; 3574 } 3575 3576 static int btf_find_struct_field(const struct btf *btf, 3577 const struct btf_type *t, u32 field_mask, 3578 struct btf_field_info *info, int info_cnt, 3579 u32 level); 3580 3581 /* Find special fields in the struct type of a field. 3582 * 3583 * This function is used to find fields of special types that is not a 3584 * global variable or a direct field of a struct type. It also handles the 3585 * repetition if it is the element type of an array. 3586 */ 3587 static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, 3588 u32 off, u32 nelems, 3589 u32 field_mask, struct btf_field_info *info, 3590 int info_cnt, u32 level) 3591 { 3592 int ret, err, i; 3593 3594 level++; 3595 if (level >= MAX_RESOLVE_DEPTH) 3596 return -E2BIG; 3597 3598 ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); 3599 3600 if (ret <= 0) 3601 return ret; 3602 3603 /* Shift the offsets of the nested struct fields to the offsets 3604 * related to the container. 3605 */ 3606 for (i = 0; i < ret; i++) 3607 info[i].off += off; 3608 3609 if (nelems > 1) { 3610 err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); 3611 if (err == 0) 3612 ret *= nelems; 3613 else 3614 ret = err; 3615 } 3616 3617 return ret; 3618 } 3619 3620 static int btf_find_field_one(const struct btf *btf, 3621 const struct btf_type *var, 3622 const struct btf_type *var_type, 3623 int var_idx, 3624 u32 off, u32 expected_size, 3625 u32 field_mask, u32 *seen_mask, 3626 struct btf_field_info *info, int info_cnt, 3627 u32 level) 3628 { 3629 int ret, align, sz, field_type; 3630 struct btf_field_info tmp; 3631 const struct btf_array *array; 3632 u32 i, nelems = 1; 3633 3634 /* Walk into array types to find the element type and the number of 3635 * elements in the (flattened) array. 3636 */ 3637 for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { 3638 array = btf_array(var_type); 3639 nelems *= array->nelems; 3640 var_type = btf_type_by_id(btf, array->type); 3641 } 3642 if (i == MAX_RESOLVE_DEPTH) 3643 return -E2BIG; 3644 if (nelems == 0) 3645 return 0; 3646 3647 field_type = btf_get_field_type(btf, var_type, 3648 field_mask, seen_mask, &align, &sz); 3649 /* Look into variables of struct types */ 3650 if (!field_type && __btf_type_is_struct(var_type)) { 3651 sz = var_type->size; 3652 if (expected_size && expected_size != sz * nelems) 3653 return 0; 3654 ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, 3655 &info[0], info_cnt, level); 3656 return ret; 3657 } 3658 3659 if (field_type == 0) 3660 return 0; 3661 if (field_type < 0) 3662 return field_type; 3663 3664 if (expected_size && expected_size != sz * nelems) 3665 return 0; 3666 if (off % align) 3667 return 0; 3668 3669 switch (field_type) { 3670 case BPF_SPIN_LOCK: 3671 case BPF_RES_SPIN_LOCK: 3672 case BPF_TIMER: 3673 case BPF_WORKQUEUE: 3674 case BPF_LIST_NODE: 3675 case BPF_RB_NODE: 3676 case BPF_REFCOUNT: 3677 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3678 info_cnt ? &info[0] : &tmp); 3679 if (ret < 0) 3680 return ret; 3681 break; 3682 case BPF_KPTR_UNREF: 3683 case BPF_KPTR_REF: 3684 case BPF_KPTR_PERCPU: 3685 case BPF_UPTR: 3686 ret = btf_find_kptr(btf, var_type, off, sz, 3687 info_cnt ? &info[0] : &tmp, field_mask); 3688 if (ret < 0) 3689 return ret; 3690 break; 3691 case BPF_LIST_HEAD: 3692 case BPF_RB_ROOT: 3693 ret = btf_find_graph_root(btf, var, var_type, 3694 var_idx, off, sz, 3695 info_cnt ? &info[0] : &tmp, 3696 field_type); 3697 if (ret < 0) 3698 return ret; 3699 break; 3700 default: 3701 return -EFAULT; 3702 } 3703 3704 if (ret == BTF_FIELD_IGNORE) 3705 return 0; 3706 if (!info_cnt) 3707 return -E2BIG; 3708 if (nelems > 1) { 3709 ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); 3710 if (ret < 0) 3711 return ret; 3712 } 3713 return nelems; 3714 } 3715 3716 static int btf_find_struct_field(const struct btf *btf, 3717 const struct btf_type *t, u32 field_mask, 3718 struct btf_field_info *info, int info_cnt, 3719 u32 level) 3720 { 3721 int ret, idx = 0; 3722 const struct btf_member *member; 3723 u32 i, off, seen_mask = 0; 3724 3725 for_each_member(i, t, member) { 3726 const struct btf_type *member_type = btf_type_by_id(btf, 3727 member->type); 3728 3729 off = __btf_member_bit_offset(t, member); 3730 if (off % 8) 3731 /* valid C code cannot generate such BTF */ 3732 return -EINVAL; 3733 off /= 8; 3734 3735 ret = btf_find_field_one(btf, t, member_type, i, 3736 off, 0, 3737 field_mask, &seen_mask, 3738 &info[idx], info_cnt - idx, level); 3739 if (ret < 0) 3740 return ret; 3741 idx += ret; 3742 } 3743 return idx; 3744 } 3745 3746 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3747 u32 field_mask, struct btf_field_info *info, 3748 int info_cnt, u32 level) 3749 { 3750 int ret, idx = 0; 3751 const struct btf_var_secinfo *vsi; 3752 u32 i, off, seen_mask = 0; 3753 3754 for_each_vsi(i, t, vsi) { 3755 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3756 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3757 3758 off = vsi->offset; 3759 ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, 3760 field_mask, &seen_mask, 3761 &info[idx], info_cnt - idx, 3762 level); 3763 if (ret < 0) 3764 return ret; 3765 idx += ret; 3766 } 3767 return idx; 3768 } 3769 3770 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3771 u32 field_mask, struct btf_field_info *info, 3772 int info_cnt) 3773 { 3774 if (__btf_type_is_struct(t)) 3775 return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); 3776 else if (btf_type_is_datasec(t)) 3777 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); 3778 return -EINVAL; 3779 } 3780 3781 /* Callers have to ensure the life cycle of btf if it is program BTF */ 3782 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3783 struct btf_field_info *info) 3784 { 3785 struct module *mod = NULL; 3786 const struct btf_type *t; 3787 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3788 * is that BTF, otherwise it's program BTF 3789 */ 3790 struct btf *kptr_btf; 3791 int ret; 3792 s32 id; 3793 3794 /* Find type in map BTF, and use it to look up the matching type 3795 * in vmlinux or module BTFs, by name and kind. 3796 */ 3797 t = btf_type_by_id(btf, info->kptr.type_id); 3798 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3799 &kptr_btf); 3800 if (id == -ENOENT) { 3801 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3802 WARN_ON_ONCE(btf_is_kernel(btf)); 3803 3804 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3805 * kptr allocated via bpf_obj_new 3806 */ 3807 field->kptr.dtor = NULL; 3808 id = info->kptr.type_id; 3809 kptr_btf = (struct btf *)btf; 3810 goto found_dtor; 3811 } 3812 if (id < 0) 3813 return id; 3814 3815 /* Find and stash the function pointer for the destruction function that 3816 * needs to be eventually invoked from the map free path. 3817 */ 3818 if (info->type == BPF_KPTR_REF) { 3819 const struct btf_type *dtor_func; 3820 const char *dtor_func_name; 3821 unsigned long addr; 3822 s32 dtor_btf_id; 3823 3824 /* This call also serves as a whitelist of allowed objects that 3825 * can be used as a referenced pointer and be stored in a map at 3826 * the same time. 3827 */ 3828 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3829 if (dtor_btf_id < 0) { 3830 ret = dtor_btf_id; 3831 goto end_btf; 3832 } 3833 3834 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3835 if (!dtor_func) { 3836 ret = -ENOENT; 3837 goto end_btf; 3838 } 3839 3840 if (btf_is_module(kptr_btf)) { 3841 mod = btf_try_get_module(kptr_btf); 3842 if (!mod) { 3843 ret = -ENXIO; 3844 goto end_btf; 3845 } 3846 } 3847 3848 /* We already verified dtor_func to be btf_type_is_func 3849 * in register_btf_id_dtor_kfuncs. 3850 */ 3851 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3852 addr = kallsyms_lookup_name(dtor_func_name); 3853 if (!addr) { 3854 ret = -EINVAL; 3855 goto end_mod; 3856 } 3857 field->kptr.dtor = (void *)addr; 3858 } 3859 3860 found_dtor: 3861 field->kptr.btf_id = id; 3862 field->kptr.btf = kptr_btf; 3863 field->kptr.module = mod; 3864 return 0; 3865 end_mod: 3866 module_put(mod); 3867 end_btf: 3868 btf_put(kptr_btf); 3869 return ret; 3870 } 3871 3872 static int btf_parse_graph_root(const struct btf *btf, 3873 struct btf_field *field, 3874 struct btf_field_info *info, 3875 const char *node_type_name, 3876 size_t node_type_align) 3877 { 3878 const struct btf_type *t, *n = NULL; 3879 const struct btf_member *member; 3880 u32 offset; 3881 int i; 3882 3883 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3884 /* We've already checked that value_btf_id is a struct type. We 3885 * just need to figure out the offset of the list_node, and 3886 * verify its type. 3887 */ 3888 for_each_member(i, t, member) { 3889 if (strcmp(info->graph_root.node_name, 3890 __btf_name_by_offset(btf, member->name_off))) 3891 continue; 3892 /* Invalid BTF, two members with same name */ 3893 if (n) 3894 return -EINVAL; 3895 n = btf_type_by_id(btf, member->type); 3896 if (!__btf_type_is_struct(n)) 3897 return -EINVAL; 3898 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3899 return -EINVAL; 3900 offset = __btf_member_bit_offset(n, member); 3901 if (offset % 8) 3902 return -EINVAL; 3903 offset /= 8; 3904 if (offset % node_type_align) 3905 return -EINVAL; 3906 3907 field->graph_root.btf = (struct btf *)btf; 3908 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3909 field->graph_root.node_offset = offset; 3910 } 3911 if (!n) 3912 return -ENOENT; 3913 return 0; 3914 } 3915 3916 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3917 struct btf_field_info *info) 3918 { 3919 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3920 __alignof__(struct bpf_list_node)); 3921 } 3922 3923 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3924 struct btf_field_info *info) 3925 { 3926 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3927 __alignof__(struct bpf_rb_node)); 3928 } 3929 3930 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3931 { 3932 const struct btf_field *a = (const struct btf_field *)_a; 3933 const struct btf_field *b = (const struct btf_field *)_b; 3934 3935 if (a->offset < b->offset) 3936 return -1; 3937 else if (a->offset > b->offset) 3938 return 1; 3939 return 0; 3940 } 3941 3942 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3943 u32 field_mask, u32 value_size) 3944 { 3945 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3946 u32 next_off = 0, field_type_size; 3947 struct btf_record *rec; 3948 int ret, i, cnt; 3949 3950 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3951 if (ret < 0) 3952 return ERR_PTR(ret); 3953 if (!ret) 3954 return NULL; 3955 3956 cnt = ret; 3957 /* This needs to be kzalloc to zero out padding and unused fields, see 3958 * comment in btf_record_equal. 3959 */ 3960 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3961 if (!rec) 3962 return ERR_PTR(-ENOMEM); 3963 3964 rec->spin_lock_off = -EINVAL; 3965 rec->res_spin_lock_off = -EINVAL; 3966 rec->timer_off = -EINVAL; 3967 rec->wq_off = -EINVAL; 3968 rec->refcount_off = -EINVAL; 3969 for (i = 0; i < cnt; i++) { 3970 field_type_size = btf_field_type_size(info_arr[i].type); 3971 if (info_arr[i].off + field_type_size > value_size) { 3972 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3973 ret = -EFAULT; 3974 goto end; 3975 } 3976 if (info_arr[i].off < next_off) { 3977 ret = -EEXIST; 3978 goto end; 3979 } 3980 next_off = info_arr[i].off + field_type_size; 3981 3982 rec->field_mask |= info_arr[i].type; 3983 rec->fields[i].offset = info_arr[i].off; 3984 rec->fields[i].type = info_arr[i].type; 3985 rec->fields[i].size = field_type_size; 3986 3987 switch (info_arr[i].type) { 3988 case BPF_SPIN_LOCK: 3989 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3990 /* Cache offset for faster lookup at runtime */ 3991 rec->spin_lock_off = rec->fields[i].offset; 3992 break; 3993 case BPF_RES_SPIN_LOCK: 3994 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3995 /* Cache offset for faster lookup at runtime */ 3996 rec->res_spin_lock_off = rec->fields[i].offset; 3997 break; 3998 case BPF_TIMER: 3999 WARN_ON_ONCE(rec->timer_off >= 0); 4000 /* Cache offset for faster lookup at runtime */ 4001 rec->timer_off = rec->fields[i].offset; 4002 break; 4003 case BPF_WORKQUEUE: 4004 WARN_ON_ONCE(rec->wq_off >= 0); 4005 /* Cache offset for faster lookup at runtime */ 4006 rec->wq_off = rec->fields[i].offset; 4007 break; 4008 case BPF_REFCOUNT: 4009 WARN_ON_ONCE(rec->refcount_off >= 0); 4010 /* Cache offset for faster lookup at runtime */ 4011 rec->refcount_off = rec->fields[i].offset; 4012 break; 4013 case BPF_KPTR_UNREF: 4014 case BPF_KPTR_REF: 4015 case BPF_KPTR_PERCPU: 4016 case BPF_UPTR: 4017 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 4018 if (ret < 0) 4019 goto end; 4020 break; 4021 case BPF_LIST_HEAD: 4022 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 4023 if (ret < 0) 4024 goto end; 4025 break; 4026 case BPF_RB_ROOT: 4027 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 4028 if (ret < 0) 4029 goto end; 4030 break; 4031 case BPF_LIST_NODE: 4032 case BPF_RB_NODE: 4033 break; 4034 default: 4035 ret = -EFAULT; 4036 goto end; 4037 } 4038 rec->cnt++; 4039 } 4040 4041 if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) { 4042 ret = -EINVAL; 4043 goto end; 4044 } 4045 4046 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 4047 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 4048 btf_record_has_field(rec, BPF_RB_ROOT)) && 4049 (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) { 4050 ret = -EINVAL; 4051 goto end; 4052 } 4053 4054 if (rec->refcount_off < 0 && 4055 btf_record_has_field(rec, BPF_LIST_NODE) && 4056 btf_record_has_field(rec, BPF_RB_NODE)) { 4057 ret = -EINVAL; 4058 goto end; 4059 } 4060 4061 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 4062 NULL, rec); 4063 4064 return rec; 4065 end: 4066 btf_record_free(rec); 4067 return ERR_PTR(ret); 4068 } 4069 4070 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 4071 { 4072 int i; 4073 4074 /* There are three types that signify ownership of some other type: 4075 * kptr_ref, bpf_list_head, bpf_rb_root. 4076 * kptr_ref only supports storing kernel types, which can't store 4077 * references to program allocated local types. 4078 * 4079 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 4080 * does not form cycles. 4081 */ 4082 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR))) 4083 return 0; 4084 for (i = 0; i < rec->cnt; i++) { 4085 struct btf_struct_meta *meta; 4086 const struct btf_type *t; 4087 u32 btf_id; 4088 4089 if (rec->fields[i].type == BPF_UPTR) { 4090 /* The uptr only supports pinning one page and cannot 4091 * point to a kernel struct 4092 */ 4093 if (btf_is_kernel(rec->fields[i].kptr.btf)) 4094 return -EINVAL; 4095 t = btf_type_by_id(rec->fields[i].kptr.btf, 4096 rec->fields[i].kptr.btf_id); 4097 if (!t->size) 4098 return -EINVAL; 4099 if (t->size > PAGE_SIZE) 4100 return -E2BIG; 4101 continue; 4102 } 4103 4104 if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) 4105 continue; 4106 btf_id = rec->fields[i].graph_root.value_btf_id; 4107 meta = btf_find_struct_meta(btf, btf_id); 4108 if (!meta) 4109 return -EFAULT; 4110 rec->fields[i].graph_root.value_rec = meta->record; 4111 4112 /* We need to set value_rec for all root types, but no need 4113 * to check ownership cycle for a type unless it's also a 4114 * node type. 4115 */ 4116 if (!(rec->field_mask & BPF_GRAPH_NODE)) 4117 continue; 4118 4119 /* We need to ensure ownership acyclicity among all types. The 4120 * proper way to do it would be to topologically sort all BTF 4121 * IDs based on the ownership edges, since there can be multiple 4122 * bpf_{list_head,rb_node} in a type. Instead, we use the 4123 * following resaoning: 4124 * 4125 * - A type can only be owned by another type in user BTF if it 4126 * has a bpf_{list,rb}_node. Let's call these node types. 4127 * - A type can only _own_ another type in user BTF if it has a 4128 * bpf_{list_head,rb_root}. Let's call these root types. 4129 * 4130 * We ensure that if a type is both a root and node, its 4131 * element types cannot be root types. 4132 * 4133 * To ensure acyclicity: 4134 * 4135 * When A is an root type but not a node, its ownership 4136 * chain can be: 4137 * A -> B -> C 4138 * Where: 4139 * - A is an root, e.g. has bpf_rb_root. 4140 * - B is both a root and node, e.g. has bpf_rb_node and 4141 * bpf_list_head. 4142 * - C is only an root, e.g. has bpf_list_node 4143 * 4144 * When A is both a root and node, some other type already 4145 * owns it in the BTF domain, hence it can not own 4146 * another root type through any of the ownership edges. 4147 * A -> B 4148 * Where: 4149 * - A is both an root and node. 4150 * - B is only an node. 4151 */ 4152 if (meta->record->field_mask & BPF_GRAPH_ROOT) 4153 return -ELOOP; 4154 } 4155 return 0; 4156 } 4157 4158 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 4159 u32 type_id, void *data, u8 bits_offset, 4160 struct btf_show *show) 4161 { 4162 const struct btf_member *member; 4163 void *safe_data; 4164 u32 i; 4165 4166 safe_data = btf_show_start_struct_type(show, t, type_id, data); 4167 if (!safe_data) 4168 return; 4169 4170 for_each_member(i, t, member) { 4171 const struct btf_type *member_type = btf_type_by_id(btf, 4172 member->type); 4173 const struct btf_kind_operations *ops; 4174 u32 member_offset, bitfield_size; 4175 u32 bytes_offset; 4176 u8 bits8_offset; 4177 4178 btf_show_start_member(show, member); 4179 4180 member_offset = __btf_member_bit_offset(t, member); 4181 bitfield_size = __btf_member_bitfield_size(t, member); 4182 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 4183 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 4184 if (bitfield_size) { 4185 safe_data = btf_show_start_type(show, member_type, 4186 member->type, 4187 data + bytes_offset); 4188 if (safe_data) 4189 btf_bitfield_show(safe_data, 4190 bits8_offset, 4191 bitfield_size, show); 4192 btf_show_end_type(show); 4193 } else { 4194 ops = btf_type_ops(member_type); 4195 ops->show(btf, member_type, member->type, 4196 data + bytes_offset, bits8_offset, show); 4197 } 4198 4199 btf_show_end_member(show); 4200 } 4201 4202 btf_show_end_struct_type(show); 4203 } 4204 4205 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 4206 u32 type_id, void *data, u8 bits_offset, 4207 struct btf_show *show) 4208 { 4209 const struct btf_member *m = show->state.member; 4210 4211 /* 4212 * First check if any members would be shown (are non-zero). 4213 * See comments above "struct btf_show" definition for more 4214 * details on how this works at a high-level. 4215 */ 4216 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 4217 if (!show->state.depth_check) { 4218 show->state.depth_check = show->state.depth + 1; 4219 show->state.depth_to_show = 0; 4220 } 4221 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4222 /* Restore saved member data here */ 4223 show->state.member = m; 4224 if (show->state.depth_check != show->state.depth + 1) 4225 return; 4226 show->state.depth_check = 0; 4227 4228 if (show->state.depth_to_show <= show->state.depth) 4229 return; 4230 /* 4231 * Reaching here indicates we have recursed and found 4232 * non-zero child values. 4233 */ 4234 } 4235 4236 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4237 } 4238 4239 static const struct btf_kind_operations struct_ops = { 4240 .check_meta = btf_struct_check_meta, 4241 .resolve = btf_struct_resolve, 4242 .check_member = btf_struct_check_member, 4243 .check_kflag_member = btf_generic_check_kflag_member, 4244 .log_details = btf_struct_log, 4245 .show = btf_struct_show, 4246 }; 4247 4248 static int btf_enum_check_member(struct btf_verifier_env *env, 4249 const struct btf_type *struct_type, 4250 const struct btf_member *member, 4251 const struct btf_type *member_type) 4252 { 4253 u32 struct_bits_off = member->offset; 4254 u32 struct_size, bytes_offset; 4255 4256 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4257 btf_verifier_log_member(env, struct_type, member, 4258 "Member is not byte aligned"); 4259 return -EINVAL; 4260 } 4261 4262 struct_size = struct_type->size; 4263 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4264 if (struct_size - bytes_offset < member_type->size) { 4265 btf_verifier_log_member(env, struct_type, member, 4266 "Member exceeds struct_size"); 4267 return -EINVAL; 4268 } 4269 4270 return 0; 4271 } 4272 4273 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4274 const struct btf_type *struct_type, 4275 const struct btf_member *member, 4276 const struct btf_type *member_type) 4277 { 4278 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4279 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4280 4281 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4282 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4283 if (!nr_bits) { 4284 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4285 btf_verifier_log_member(env, struct_type, member, 4286 "Member is not byte aligned"); 4287 return -EINVAL; 4288 } 4289 4290 nr_bits = int_bitsize; 4291 } else if (nr_bits > int_bitsize) { 4292 btf_verifier_log_member(env, struct_type, member, 4293 "Invalid member bitfield_size"); 4294 return -EINVAL; 4295 } 4296 4297 struct_size = struct_type->size; 4298 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4299 if (struct_size < bytes_end) { 4300 btf_verifier_log_member(env, struct_type, member, 4301 "Member exceeds struct_size"); 4302 return -EINVAL; 4303 } 4304 4305 return 0; 4306 } 4307 4308 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4309 const struct btf_type *t, 4310 u32 meta_left) 4311 { 4312 const struct btf_enum *enums = btf_type_enum(t); 4313 struct btf *btf = env->btf; 4314 const char *fmt_str; 4315 u16 i, nr_enums; 4316 u32 meta_needed; 4317 4318 nr_enums = btf_type_vlen(t); 4319 meta_needed = nr_enums * sizeof(*enums); 4320 4321 if (meta_left < meta_needed) { 4322 btf_verifier_log_basic(env, t, 4323 "meta_left:%u meta_needed:%u", 4324 meta_left, meta_needed); 4325 return -EINVAL; 4326 } 4327 4328 if (t->size > 8 || !is_power_of_2(t->size)) { 4329 btf_verifier_log_type(env, t, "Unexpected size"); 4330 return -EINVAL; 4331 } 4332 4333 /* enum type either no name or a valid one */ 4334 if (t->name_off && 4335 !btf_name_valid_identifier(env->btf, t->name_off)) { 4336 btf_verifier_log_type(env, t, "Invalid name"); 4337 return -EINVAL; 4338 } 4339 4340 btf_verifier_log_type(env, t, NULL); 4341 4342 for (i = 0; i < nr_enums; i++) { 4343 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4344 btf_verifier_log(env, "\tInvalid name_offset:%u", 4345 enums[i].name_off); 4346 return -EINVAL; 4347 } 4348 4349 /* enum member must have a valid name */ 4350 if (!enums[i].name_off || 4351 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4352 btf_verifier_log_type(env, t, "Invalid name"); 4353 return -EINVAL; 4354 } 4355 4356 if (env->log.level == BPF_LOG_KERNEL) 4357 continue; 4358 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4359 btf_verifier_log(env, fmt_str, 4360 __btf_name_by_offset(btf, enums[i].name_off), 4361 enums[i].val); 4362 } 4363 4364 return meta_needed; 4365 } 4366 4367 static void btf_enum_log(struct btf_verifier_env *env, 4368 const struct btf_type *t) 4369 { 4370 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4371 } 4372 4373 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4374 u32 type_id, void *data, u8 bits_offset, 4375 struct btf_show *show) 4376 { 4377 const struct btf_enum *enums = btf_type_enum(t); 4378 u32 i, nr_enums = btf_type_vlen(t); 4379 void *safe_data; 4380 int v; 4381 4382 safe_data = btf_show_start_type(show, t, type_id, data); 4383 if (!safe_data) 4384 return; 4385 4386 v = *(int *)safe_data; 4387 4388 for (i = 0; i < nr_enums; i++) { 4389 if (v != enums[i].val) 4390 continue; 4391 4392 btf_show_type_value(show, "%s", 4393 __btf_name_by_offset(btf, 4394 enums[i].name_off)); 4395 4396 btf_show_end_type(show); 4397 return; 4398 } 4399 4400 if (btf_type_kflag(t)) 4401 btf_show_type_value(show, "%d", v); 4402 else 4403 btf_show_type_value(show, "%u", v); 4404 btf_show_end_type(show); 4405 } 4406 4407 static const struct btf_kind_operations enum_ops = { 4408 .check_meta = btf_enum_check_meta, 4409 .resolve = btf_df_resolve, 4410 .check_member = btf_enum_check_member, 4411 .check_kflag_member = btf_enum_check_kflag_member, 4412 .log_details = btf_enum_log, 4413 .show = btf_enum_show, 4414 }; 4415 4416 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4417 const struct btf_type *t, 4418 u32 meta_left) 4419 { 4420 const struct btf_enum64 *enums = btf_type_enum64(t); 4421 struct btf *btf = env->btf; 4422 const char *fmt_str; 4423 u16 i, nr_enums; 4424 u32 meta_needed; 4425 4426 nr_enums = btf_type_vlen(t); 4427 meta_needed = nr_enums * sizeof(*enums); 4428 4429 if (meta_left < meta_needed) { 4430 btf_verifier_log_basic(env, t, 4431 "meta_left:%u meta_needed:%u", 4432 meta_left, meta_needed); 4433 return -EINVAL; 4434 } 4435 4436 if (t->size > 8 || !is_power_of_2(t->size)) { 4437 btf_verifier_log_type(env, t, "Unexpected size"); 4438 return -EINVAL; 4439 } 4440 4441 /* enum type either no name or a valid one */ 4442 if (t->name_off && 4443 !btf_name_valid_identifier(env->btf, t->name_off)) { 4444 btf_verifier_log_type(env, t, "Invalid name"); 4445 return -EINVAL; 4446 } 4447 4448 btf_verifier_log_type(env, t, NULL); 4449 4450 for (i = 0; i < nr_enums; i++) { 4451 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4452 btf_verifier_log(env, "\tInvalid name_offset:%u", 4453 enums[i].name_off); 4454 return -EINVAL; 4455 } 4456 4457 /* enum member must have a valid name */ 4458 if (!enums[i].name_off || 4459 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4460 btf_verifier_log_type(env, t, "Invalid name"); 4461 return -EINVAL; 4462 } 4463 4464 if (env->log.level == BPF_LOG_KERNEL) 4465 continue; 4466 4467 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4468 btf_verifier_log(env, fmt_str, 4469 __btf_name_by_offset(btf, enums[i].name_off), 4470 btf_enum64_value(enums + i)); 4471 } 4472 4473 return meta_needed; 4474 } 4475 4476 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4477 u32 type_id, void *data, u8 bits_offset, 4478 struct btf_show *show) 4479 { 4480 const struct btf_enum64 *enums = btf_type_enum64(t); 4481 u32 i, nr_enums = btf_type_vlen(t); 4482 void *safe_data; 4483 s64 v; 4484 4485 safe_data = btf_show_start_type(show, t, type_id, data); 4486 if (!safe_data) 4487 return; 4488 4489 v = *(u64 *)safe_data; 4490 4491 for (i = 0; i < nr_enums; i++) { 4492 if (v != btf_enum64_value(enums + i)) 4493 continue; 4494 4495 btf_show_type_value(show, "%s", 4496 __btf_name_by_offset(btf, 4497 enums[i].name_off)); 4498 4499 btf_show_end_type(show); 4500 return; 4501 } 4502 4503 if (btf_type_kflag(t)) 4504 btf_show_type_value(show, "%lld", v); 4505 else 4506 btf_show_type_value(show, "%llu", v); 4507 btf_show_end_type(show); 4508 } 4509 4510 static const struct btf_kind_operations enum64_ops = { 4511 .check_meta = btf_enum64_check_meta, 4512 .resolve = btf_df_resolve, 4513 .check_member = btf_enum_check_member, 4514 .check_kflag_member = btf_enum_check_kflag_member, 4515 .log_details = btf_enum_log, 4516 .show = btf_enum64_show, 4517 }; 4518 4519 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4520 const struct btf_type *t, 4521 u32 meta_left) 4522 { 4523 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4524 4525 if (meta_left < meta_needed) { 4526 btf_verifier_log_basic(env, t, 4527 "meta_left:%u meta_needed:%u", 4528 meta_left, meta_needed); 4529 return -EINVAL; 4530 } 4531 4532 if (t->name_off) { 4533 btf_verifier_log_type(env, t, "Invalid name"); 4534 return -EINVAL; 4535 } 4536 4537 if (btf_type_kflag(t)) { 4538 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4539 return -EINVAL; 4540 } 4541 4542 btf_verifier_log_type(env, t, NULL); 4543 4544 return meta_needed; 4545 } 4546 4547 static void btf_func_proto_log(struct btf_verifier_env *env, 4548 const struct btf_type *t) 4549 { 4550 const struct btf_param *args = (const struct btf_param *)(t + 1); 4551 u16 nr_args = btf_type_vlen(t), i; 4552 4553 btf_verifier_log(env, "return=%u args=(", t->type); 4554 if (!nr_args) { 4555 btf_verifier_log(env, "void"); 4556 goto done; 4557 } 4558 4559 if (nr_args == 1 && !args[0].type) { 4560 /* Only one vararg */ 4561 btf_verifier_log(env, "vararg"); 4562 goto done; 4563 } 4564 4565 btf_verifier_log(env, "%u %s", args[0].type, 4566 __btf_name_by_offset(env->btf, 4567 args[0].name_off)); 4568 for (i = 1; i < nr_args - 1; i++) 4569 btf_verifier_log(env, ", %u %s", args[i].type, 4570 __btf_name_by_offset(env->btf, 4571 args[i].name_off)); 4572 4573 if (nr_args > 1) { 4574 const struct btf_param *last_arg = &args[nr_args - 1]; 4575 4576 if (last_arg->type) 4577 btf_verifier_log(env, ", %u %s", last_arg->type, 4578 __btf_name_by_offset(env->btf, 4579 last_arg->name_off)); 4580 else 4581 btf_verifier_log(env, ", vararg"); 4582 } 4583 4584 done: 4585 btf_verifier_log(env, ")"); 4586 } 4587 4588 static const struct btf_kind_operations func_proto_ops = { 4589 .check_meta = btf_func_proto_check_meta, 4590 .resolve = btf_df_resolve, 4591 /* 4592 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4593 * a struct's member. 4594 * 4595 * It should be a function pointer instead. 4596 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4597 * 4598 * Hence, there is no btf_func_check_member(). 4599 */ 4600 .check_member = btf_df_check_member, 4601 .check_kflag_member = btf_df_check_kflag_member, 4602 .log_details = btf_func_proto_log, 4603 .show = btf_df_show, 4604 }; 4605 4606 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4607 const struct btf_type *t, 4608 u32 meta_left) 4609 { 4610 if (!t->name_off || 4611 !btf_name_valid_identifier(env->btf, t->name_off)) { 4612 btf_verifier_log_type(env, t, "Invalid name"); 4613 return -EINVAL; 4614 } 4615 4616 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4617 btf_verifier_log_type(env, t, "Invalid func linkage"); 4618 return -EINVAL; 4619 } 4620 4621 if (btf_type_kflag(t)) { 4622 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4623 return -EINVAL; 4624 } 4625 4626 btf_verifier_log_type(env, t, NULL); 4627 4628 return 0; 4629 } 4630 4631 static int btf_func_resolve(struct btf_verifier_env *env, 4632 const struct resolve_vertex *v) 4633 { 4634 const struct btf_type *t = v->t; 4635 u32 next_type_id = t->type; 4636 int err; 4637 4638 err = btf_func_check(env, t); 4639 if (err) 4640 return err; 4641 4642 env_stack_pop_resolved(env, next_type_id, 0); 4643 return 0; 4644 } 4645 4646 static const struct btf_kind_operations func_ops = { 4647 .check_meta = btf_func_check_meta, 4648 .resolve = btf_func_resolve, 4649 .check_member = btf_df_check_member, 4650 .check_kflag_member = btf_df_check_kflag_member, 4651 .log_details = btf_ref_type_log, 4652 .show = btf_df_show, 4653 }; 4654 4655 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4656 const struct btf_type *t, 4657 u32 meta_left) 4658 { 4659 const struct btf_var *var; 4660 u32 meta_needed = sizeof(*var); 4661 4662 if (meta_left < meta_needed) { 4663 btf_verifier_log_basic(env, t, 4664 "meta_left:%u meta_needed:%u", 4665 meta_left, meta_needed); 4666 return -EINVAL; 4667 } 4668 4669 if (btf_type_vlen(t)) { 4670 btf_verifier_log_type(env, t, "vlen != 0"); 4671 return -EINVAL; 4672 } 4673 4674 if (btf_type_kflag(t)) { 4675 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4676 return -EINVAL; 4677 } 4678 4679 if (!t->name_off || 4680 !btf_name_valid_identifier(env->btf, t->name_off)) { 4681 btf_verifier_log_type(env, t, "Invalid name"); 4682 return -EINVAL; 4683 } 4684 4685 /* A var cannot be in type void */ 4686 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4687 btf_verifier_log_type(env, t, "Invalid type_id"); 4688 return -EINVAL; 4689 } 4690 4691 var = btf_type_var(t); 4692 if (var->linkage != BTF_VAR_STATIC && 4693 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4694 btf_verifier_log_type(env, t, "Linkage not supported"); 4695 return -EINVAL; 4696 } 4697 4698 btf_verifier_log_type(env, t, NULL); 4699 4700 return meta_needed; 4701 } 4702 4703 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4704 { 4705 const struct btf_var *var = btf_type_var(t); 4706 4707 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4708 } 4709 4710 static const struct btf_kind_operations var_ops = { 4711 .check_meta = btf_var_check_meta, 4712 .resolve = btf_var_resolve, 4713 .check_member = btf_df_check_member, 4714 .check_kflag_member = btf_df_check_kflag_member, 4715 .log_details = btf_var_log, 4716 .show = btf_var_show, 4717 }; 4718 4719 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4720 const struct btf_type *t, 4721 u32 meta_left) 4722 { 4723 const struct btf_var_secinfo *vsi; 4724 u64 last_vsi_end_off = 0, sum = 0; 4725 u32 i, meta_needed; 4726 4727 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4728 if (meta_left < meta_needed) { 4729 btf_verifier_log_basic(env, t, 4730 "meta_left:%u meta_needed:%u", 4731 meta_left, meta_needed); 4732 return -EINVAL; 4733 } 4734 4735 if (!t->size) { 4736 btf_verifier_log_type(env, t, "size == 0"); 4737 return -EINVAL; 4738 } 4739 4740 if (btf_type_kflag(t)) { 4741 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4742 return -EINVAL; 4743 } 4744 4745 if (!t->name_off || 4746 !btf_name_valid_section(env->btf, t->name_off)) { 4747 btf_verifier_log_type(env, t, "Invalid name"); 4748 return -EINVAL; 4749 } 4750 4751 btf_verifier_log_type(env, t, NULL); 4752 4753 for_each_vsi(i, t, vsi) { 4754 /* A var cannot be in type void */ 4755 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4756 btf_verifier_log_vsi(env, t, vsi, 4757 "Invalid type_id"); 4758 return -EINVAL; 4759 } 4760 4761 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4762 btf_verifier_log_vsi(env, t, vsi, 4763 "Invalid offset"); 4764 return -EINVAL; 4765 } 4766 4767 if (!vsi->size || vsi->size > t->size) { 4768 btf_verifier_log_vsi(env, t, vsi, 4769 "Invalid size"); 4770 return -EINVAL; 4771 } 4772 4773 last_vsi_end_off = vsi->offset + vsi->size; 4774 if (last_vsi_end_off > t->size) { 4775 btf_verifier_log_vsi(env, t, vsi, 4776 "Invalid offset+size"); 4777 return -EINVAL; 4778 } 4779 4780 btf_verifier_log_vsi(env, t, vsi, NULL); 4781 sum += vsi->size; 4782 } 4783 4784 if (t->size < sum) { 4785 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4786 return -EINVAL; 4787 } 4788 4789 return meta_needed; 4790 } 4791 4792 static int btf_datasec_resolve(struct btf_verifier_env *env, 4793 const struct resolve_vertex *v) 4794 { 4795 const struct btf_var_secinfo *vsi; 4796 struct btf *btf = env->btf; 4797 u16 i; 4798 4799 env->resolve_mode = RESOLVE_TBD; 4800 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4801 u32 var_type_id = vsi->type, type_id, type_size = 0; 4802 const struct btf_type *var_type = btf_type_by_id(env->btf, 4803 var_type_id); 4804 if (!var_type || !btf_type_is_var(var_type)) { 4805 btf_verifier_log_vsi(env, v->t, vsi, 4806 "Not a VAR kind member"); 4807 return -EINVAL; 4808 } 4809 4810 if (!env_type_is_resolve_sink(env, var_type) && 4811 !env_type_is_resolved(env, var_type_id)) { 4812 env_stack_set_next_member(env, i + 1); 4813 return env_stack_push(env, var_type, var_type_id); 4814 } 4815 4816 type_id = var_type->type; 4817 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4818 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4819 return -EINVAL; 4820 } 4821 4822 if (vsi->size < type_size) { 4823 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4824 return -EINVAL; 4825 } 4826 } 4827 4828 env_stack_pop_resolved(env, 0, 0); 4829 return 0; 4830 } 4831 4832 static void btf_datasec_log(struct btf_verifier_env *env, 4833 const struct btf_type *t) 4834 { 4835 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4836 } 4837 4838 static void btf_datasec_show(const struct btf *btf, 4839 const struct btf_type *t, u32 type_id, 4840 void *data, u8 bits_offset, 4841 struct btf_show *show) 4842 { 4843 const struct btf_var_secinfo *vsi; 4844 const struct btf_type *var; 4845 u32 i; 4846 4847 if (!btf_show_start_type(show, t, type_id, data)) 4848 return; 4849 4850 btf_show_type_value(show, "section (\"%s\") = {", 4851 __btf_name_by_offset(btf, t->name_off)); 4852 for_each_vsi(i, t, vsi) { 4853 var = btf_type_by_id(btf, vsi->type); 4854 if (i) 4855 btf_show(show, ","); 4856 btf_type_ops(var)->show(btf, var, vsi->type, 4857 data + vsi->offset, bits_offset, show); 4858 } 4859 btf_show_end_type(show); 4860 } 4861 4862 static const struct btf_kind_operations datasec_ops = { 4863 .check_meta = btf_datasec_check_meta, 4864 .resolve = btf_datasec_resolve, 4865 .check_member = btf_df_check_member, 4866 .check_kflag_member = btf_df_check_kflag_member, 4867 .log_details = btf_datasec_log, 4868 .show = btf_datasec_show, 4869 }; 4870 4871 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4872 const struct btf_type *t, 4873 u32 meta_left) 4874 { 4875 if (btf_type_vlen(t)) { 4876 btf_verifier_log_type(env, t, "vlen != 0"); 4877 return -EINVAL; 4878 } 4879 4880 if (btf_type_kflag(t)) { 4881 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4882 return -EINVAL; 4883 } 4884 4885 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4886 t->size != 16) { 4887 btf_verifier_log_type(env, t, "Invalid type_size"); 4888 return -EINVAL; 4889 } 4890 4891 btf_verifier_log_type(env, t, NULL); 4892 4893 return 0; 4894 } 4895 4896 static int btf_float_check_member(struct btf_verifier_env *env, 4897 const struct btf_type *struct_type, 4898 const struct btf_member *member, 4899 const struct btf_type *member_type) 4900 { 4901 u64 start_offset_bytes; 4902 u64 end_offset_bytes; 4903 u64 misalign_bits; 4904 u64 align_bytes; 4905 u64 align_bits; 4906 4907 /* Different architectures have different alignment requirements, so 4908 * here we check only for the reasonable minimum. This way we ensure 4909 * that types after CO-RE can pass the kernel BTF verifier. 4910 */ 4911 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4912 align_bits = align_bytes * BITS_PER_BYTE; 4913 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4914 if (misalign_bits) { 4915 btf_verifier_log_member(env, struct_type, member, 4916 "Member is not properly aligned"); 4917 return -EINVAL; 4918 } 4919 4920 start_offset_bytes = member->offset / BITS_PER_BYTE; 4921 end_offset_bytes = start_offset_bytes + member_type->size; 4922 if (end_offset_bytes > struct_type->size) { 4923 btf_verifier_log_member(env, struct_type, member, 4924 "Member exceeds struct_size"); 4925 return -EINVAL; 4926 } 4927 4928 return 0; 4929 } 4930 4931 static void btf_float_log(struct btf_verifier_env *env, 4932 const struct btf_type *t) 4933 { 4934 btf_verifier_log(env, "size=%u", t->size); 4935 } 4936 4937 static const struct btf_kind_operations float_ops = { 4938 .check_meta = btf_float_check_meta, 4939 .resolve = btf_df_resolve, 4940 .check_member = btf_float_check_member, 4941 .check_kflag_member = btf_generic_check_kflag_member, 4942 .log_details = btf_float_log, 4943 .show = btf_df_show, 4944 }; 4945 4946 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4947 const struct btf_type *t, 4948 u32 meta_left) 4949 { 4950 const struct btf_decl_tag *tag; 4951 u32 meta_needed = sizeof(*tag); 4952 s32 component_idx; 4953 const char *value; 4954 4955 if (meta_left < meta_needed) { 4956 btf_verifier_log_basic(env, t, 4957 "meta_left:%u meta_needed:%u", 4958 meta_left, meta_needed); 4959 return -EINVAL; 4960 } 4961 4962 value = btf_name_by_offset(env->btf, t->name_off); 4963 if (!value || !value[0]) { 4964 btf_verifier_log_type(env, t, "Invalid value"); 4965 return -EINVAL; 4966 } 4967 4968 if (btf_type_vlen(t)) { 4969 btf_verifier_log_type(env, t, "vlen != 0"); 4970 return -EINVAL; 4971 } 4972 4973 component_idx = btf_type_decl_tag(t)->component_idx; 4974 if (component_idx < -1) { 4975 btf_verifier_log_type(env, t, "Invalid component_idx"); 4976 return -EINVAL; 4977 } 4978 4979 btf_verifier_log_type(env, t, NULL); 4980 4981 return meta_needed; 4982 } 4983 4984 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4985 const struct resolve_vertex *v) 4986 { 4987 const struct btf_type *next_type; 4988 const struct btf_type *t = v->t; 4989 u32 next_type_id = t->type; 4990 struct btf *btf = env->btf; 4991 s32 component_idx; 4992 u32 vlen; 4993 4994 next_type = btf_type_by_id(btf, next_type_id); 4995 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4996 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4997 return -EINVAL; 4998 } 4999 5000 if (!env_type_is_resolve_sink(env, next_type) && 5001 !env_type_is_resolved(env, next_type_id)) 5002 return env_stack_push(env, next_type, next_type_id); 5003 5004 component_idx = btf_type_decl_tag(t)->component_idx; 5005 if (component_idx != -1) { 5006 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 5007 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5008 return -EINVAL; 5009 } 5010 5011 if (btf_type_is_struct(next_type)) { 5012 vlen = btf_type_vlen(next_type); 5013 } else { 5014 /* next_type should be a function */ 5015 next_type = btf_type_by_id(btf, next_type->type); 5016 vlen = btf_type_vlen(next_type); 5017 } 5018 5019 if ((u32)component_idx >= vlen) { 5020 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 5021 return -EINVAL; 5022 } 5023 } 5024 5025 env_stack_pop_resolved(env, next_type_id, 0); 5026 5027 return 0; 5028 } 5029 5030 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 5031 { 5032 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 5033 btf_type_decl_tag(t)->component_idx); 5034 } 5035 5036 static const struct btf_kind_operations decl_tag_ops = { 5037 .check_meta = btf_decl_tag_check_meta, 5038 .resolve = btf_decl_tag_resolve, 5039 .check_member = btf_df_check_member, 5040 .check_kflag_member = btf_df_check_kflag_member, 5041 .log_details = btf_decl_tag_log, 5042 .show = btf_df_show, 5043 }; 5044 5045 static int btf_func_proto_check(struct btf_verifier_env *env, 5046 const struct btf_type *t) 5047 { 5048 const struct btf_type *ret_type; 5049 const struct btf_param *args; 5050 const struct btf *btf; 5051 u16 nr_args, i; 5052 int err; 5053 5054 btf = env->btf; 5055 args = (const struct btf_param *)(t + 1); 5056 nr_args = btf_type_vlen(t); 5057 5058 /* Check func return type which could be "void" (t->type == 0) */ 5059 if (t->type) { 5060 u32 ret_type_id = t->type; 5061 5062 ret_type = btf_type_by_id(btf, ret_type_id); 5063 if (!ret_type) { 5064 btf_verifier_log_type(env, t, "Invalid return type"); 5065 return -EINVAL; 5066 } 5067 5068 if (btf_type_is_resolve_source_only(ret_type)) { 5069 btf_verifier_log_type(env, t, "Invalid return type"); 5070 return -EINVAL; 5071 } 5072 5073 if (btf_type_needs_resolve(ret_type) && 5074 !env_type_is_resolved(env, ret_type_id)) { 5075 err = btf_resolve(env, ret_type, ret_type_id); 5076 if (err) 5077 return err; 5078 } 5079 5080 /* Ensure the return type is a type that has a size */ 5081 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 5082 btf_verifier_log_type(env, t, "Invalid return type"); 5083 return -EINVAL; 5084 } 5085 } 5086 5087 if (!nr_args) 5088 return 0; 5089 5090 /* Last func arg type_id could be 0 if it is a vararg */ 5091 if (!args[nr_args - 1].type) { 5092 if (args[nr_args - 1].name_off) { 5093 btf_verifier_log_type(env, t, "Invalid arg#%u", 5094 nr_args); 5095 return -EINVAL; 5096 } 5097 nr_args--; 5098 } 5099 5100 for (i = 0; i < nr_args; i++) { 5101 const struct btf_type *arg_type; 5102 u32 arg_type_id; 5103 5104 arg_type_id = args[i].type; 5105 arg_type = btf_type_by_id(btf, arg_type_id); 5106 if (!arg_type) { 5107 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5108 return -EINVAL; 5109 } 5110 5111 if (btf_type_is_resolve_source_only(arg_type)) { 5112 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5113 return -EINVAL; 5114 } 5115 5116 if (args[i].name_off && 5117 (!btf_name_offset_valid(btf, args[i].name_off) || 5118 !btf_name_valid_identifier(btf, args[i].name_off))) { 5119 btf_verifier_log_type(env, t, 5120 "Invalid arg#%u", i + 1); 5121 return -EINVAL; 5122 } 5123 5124 if (btf_type_needs_resolve(arg_type) && 5125 !env_type_is_resolved(env, arg_type_id)) { 5126 err = btf_resolve(env, arg_type, arg_type_id); 5127 if (err) 5128 return err; 5129 } 5130 5131 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 5132 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5133 return -EINVAL; 5134 } 5135 } 5136 5137 return 0; 5138 } 5139 5140 static int btf_func_check(struct btf_verifier_env *env, 5141 const struct btf_type *t) 5142 { 5143 const struct btf_type *proto_type; 5144 const struct btf_param *args; 5145 const struct btf *btf; 5146 u16 nr_args, i; 5147 5148 btf = env->btf; 5149 proto_type = btf_type_by_id(btf, t->type); 5150 5151 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 5152 btf_verifier_log_type(env, t, "Invalid type_id"); 5153 return -EINVAL; 5154 } 5155 5156 args = (const struct btf_param *)(proto_type + 1); 5157 nr_args = btf_type_vlen(proto_type); 5158 for (i = 0; i < nr_args; i++) { 5159 if (!args[i].name_off && args[i].type) { 5160 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 5161 return -EINVAL; 5162 } 5163 } 5164 5165 return 0; 5166 } 5167 5168 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 5169 [BTF_KIND_INT] = &int_ops, 5170 [BTF_KIND_PTR] = &ptr_ops, 5171 [BTF_KIND_ARRAY] = &array_ops, 5172 [BTF_KIND_STRUCT] = &struct_ops, 5173 [BTF_KIND_UNION] = &struct_ops, 5174 [BTF_KIND_ENUM] = &enum_ops, 5175 [BTF_KIND_FWD] = &fwd_ops, 5176 [BTF_KIND_TYPEDEF] = &modifier_ops, 5177 [BTF_KIND_VOLATILE] = &modifier_ops, 5178 [BTF_KIND_CONST] = &modifier_ops, 5179 [BTF_KIND_RESTRICT] = &modifier_ops, 5180 [BTF_KIND_FUNC] = &func_ops, 5181 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 5182 [BTF_KIND_VAR] = &var_ops, 5183 [BTF_KIND_DATASEC] = &datasec_ops, 5184 [BTF_KIND_FLOAT] = &float_ops, 5185 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 5186 [BTF_KIND_TYPE_TAG] = &modifier_ops, 5187 [BTF_KIND_ENUM64] = &enum64_ops, 5188 }; 5189 5190 static s32 btf_check_meta(struct btf_verifier_env *env, 5191 const struct btf_type *t, 5192 u32 meta_left) 5193 { 5194 u32 saved_meta_left = meta_left; 5195 s32 var_meta_size; 5196 5197 if (meta_left < sizeof(*t)) { 5198 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 5199 env->log_type_id, meta_left, sizeof(*t)); 5200 return -EINVAL; 5201 } 5202 meta_left -= sizeof(*t); 5203 5204 if (t->info & ~BTF_INFO_MASK) { 5205 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 5206 env->log_type_id, t->info); 5207 return -EINVAL; 5208 } 5209 5210 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 5211 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 5212 btf_verifier_log(env, "[%u] Invalid kind:%u", 5213 env->log_type_id, BTF_INFO_KIND(t->info)); 5214 return -EINVAL; 5215 } 5216 5217 if (!btf_name_offset_valid(env->btf, t->name_off)) { 5218 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 5219 env->log_type_id, t->name_off); 5220 return -EINVAL; 5221 } 5222 5223 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5224 if (var_meta_size < 0) 5225 return var_meta_size; 5226 5227 meta_left -= var_meta_size; 5228 5229 return saved_meta_left - meta_left; 5230 } 5231 5232 static int btf_check_all_metas(struct btf_verifier_env *env) 5233 { 5234 struct btf *btf = env->btf; 5235 struct btf_header *hdr; 5236 void *cur, *end; 5237 5238 hdr = &btf->hdr; 5239 cur = btf->nohdr_data + hdr->type_off; 5240 end = cur + hdr->type_len; 5241 5242 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5243 while (cur < end) { 5244 struct btf_type *t = cur; 5245 s32 meta_size; 5246 5247 meta_size = btf_check_meta(env, t, end - cur); 5248 if (meta_size < 0) 5249 return meta_size; 5250 5251 btf_add_type(env, t); 5252 cur += meta_size; 5253 env->log_type_id++; 5254 } 5255 5256 return 0; 5257 } 5258 5259 static bool btf_resolve_valid(struct btf_verifier_env *env, 5260 const struct btf_type *t, 5261 u32 type_id) 5262 { 5263 struct btf *btf = env->btf; 5264 5265 if (!env_type_is_resolved(env, type_id)) 5266 return false; 5267 5268 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5269 return !btf_resolved_type_id(btf, type_id) && 5270 !btf_resolved_type_size(btf, type_id); 5271 5272 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5273 return btf_resolved_type_id(btf, type_id) && 5274 !btf_resolved_type_size(btf, type_id); 5275 5276 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5277 btf_type_is_var(t)) { 5278 t = btf_type_id_resolve(btf, &type_id); 5279 return t && 5280 !btf_type_is_modifier(t) && 5281 !btf_type_is_var(t) && 5282 !btf_type_is_datasec(t); 5283 } 5284 5285 if (btf_type_is_array(t)) { 5286 const struct btf_array *array = btf_type_array(t); 5287 const struct btf_type *elem_type; 5288 u32 elem_type_id = array->type; 5289 u32 elem_size; 5290 5291 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5292 return elem_type && !btf_type_is_modifier(elem_type) && 5293 (array->nelems * elem_size == 5294 btf_resolved_type_size(btf, type_id)); 5295 } 5296 5297 return false; 5298 } 5299 5300 static int btf_resolve(struct btf_verifier_env *env, 5301 const struct btf_type *t, u32 type_id) 5302 { 5303 u32 save_log_type_id = env->log_type_id; 5304 const struct resolve_vertex *v; 5305 int err = 0; 5306 5307 env->resolve_mode = RESOLVE_TBD; 5308 env_stack_push(env, t, type_id); 5309 while (!err && (v = env_stack_peak(env))) { 5310 env->log_type_id = v->type_id; 5311 err = btf_type_ops(v->t)->resolve(env, v); 5312 } 5313 5314 env->log_type_id = type_id; 5315 if (err == -E2BIG) { 5316 btf_verifier_log_type(env, t, 5317 "Exceeded max resolving depth:%u", 5318 MAX_RESOLVE_DEPTH); 5319 } else if (err == -EEXIST) { 5320 btf_verifier_log_type(env, t, "Loop detected"); 5321 } 5322 5323 /* Final sanity check */ 5324 if (!err && !btf_resolve_valid(env, t, type_id)) { 5325 btf_verifier_log_type(env, t, "Invalid resolve state"); 5326 err = -EINVAL; 5327 } 5328 5329 env->log_type_id = save_log_type_id; 5330 return err; 5331 } 5332 5333 static int btf_check_all_types(struct btf_verifier_env *env) 5334 { 5335 struct btf *btf = env->btf; 5336 const struct btf_type *t; 5337 u32 type_id, i; 5338 int err; 5339 5340 err = env_resolve_init(env); 5341 if (err) 5342 return err; 5343 5344 env->phase++; 5345 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5346 type_id = btf->start_id + i; 5347 t = btf_type_by_id(btf, type_id); 5348 5349 env->log_type_id = type_id; 5350 if (btf_type_needs_resolve(t) && 5351 !env_type_is_resolved(env, type_id)) { 5352 err = btf_resolve(env, t, type_id); 5353 if (err) 5354 return err; 5355 } 5356 5357 if (btf_type_is_func_proto(t)) { 5358 err = btf_func_proto_check(env, t); 5359 if (err) 5360 return err; 5361 } 5362 } 5363 5364 return 0; 5365 } 5366 5367 static int btf_parse_type_sec(struct btf_verifier_env *env) 5368 { 5369 const struct btf_header *hdr = &env->btf->hdr; 5370 int err; 5371 5372 /* Type section must align to 4 bytes */ 5373 if (hdr->type_off & (sizeof(u32) - 1)) { 5374 btf_verifier_log(env, "Unaligned type_off"); 5375 return -EINVAL; 5376 } 5377 5378 if (!env->btf->base_btf && !hdr->type_len) { 5379 btf_verifier_log(env, "No type found"); 5380 return -EINVAL; 5381 } 5382 5383 err = btf_check_all_metas(env); 5384 if (err) 5385 return err; 5386 5387 return btf_check_all_types(env); 5388 } 5389 5390 static int btf_parse_str_sec(struct btf_verifier_env *env) 5391 { 5392 const struct btf_header *hdr; 5393 struct btf *btf = env->btf; 5394 const char *start, *end; 5395 5396 hdr = &btf->hdr; 5397 start = btf->nohdr_data + hdr->str_off; 5398 end = start + hdr->str_len; 5399 5400 if (end != btf->data + btf->data_size) { 5401 btf_verifier_log(env, "String section is not at the end"); 5402 return -EINVAL; 5403 } 5404 5405 btf->strings = start; 5406 5407 if (btf->base_btf && !hdr->str_len) 5408 return 0; 5409 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5410 btf_verifier_log(env, "Invalid string section"); 5411 return -EINVAL; 5412 } 5413 if (!btf->base_btf && start[0]) { 5414 btf_verifier_log(env, "Invalid string section"); 5415 return -EINVAL; 5416 } 5417 5418 return 0; 5419 } 5420 5421 static const size_t btf_sec_info_offset[] = { 5422 offsetof(struct btf_header, type_off), 5423 offsetof(struct btf_header, str_off), 5424 }; 5425 5426 static int btf_sec_info_cmp(const void *a, const void *b) 5427 { 5428 const struct btf_sec_info *x = a; 5429 const struct btf_sec_info *y = b; 5430 5431 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5432 } 5433 5434 static int btf_check_sec_info(struct btf_verifier_env *env, 5435 u32 btf_data_size) 5436 { 5437 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5438 u32 total, expected_total, i; 5439 const struct btf_header *hdr; 5440 const struct btf *btf; 5441 5442 btf = env->btf; 5443 hdr = &btf->hdr; 5444 5445 /* Populate the secs from hdr */ 5446 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5447 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5448 btf_sec_info_offset[i]); 5449 5450 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5451 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5452 5453 /* Check for gaps and overlap among sections */ 5454 total = 0; 5455 expected_total = btf_data_size - hdr->hdr_len; 5456 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5457 if (expected_total < secs[i].off) { 5458 btf_verifier_log(env, "Invalid section offset"); 5459 return -EINVAL; 5460 } 5461 if (total < secs[i].off) { 5462 /* gap */ 5463 btf_verifier_log(env, "Unsupported section found"); 5464 return -EINVAL; 5465 } 5466 if (total > secs[i].off) { 5467 btf_verifier_log(env, "Section overlap found"); 5468 return -EINVAL; 5469 } 5470 if (expected_total - total < secs[i].len) { 5471 btf_verifier_log(env, 5472 "Total section length too long"); 5473 return -EINVAL; 5474 } 5475 total += secs[i].len; 5476 } 5477 5478 /* There is data other than hdr and known sections */ 5479 if (expected_total != total) { 5480 btf_verifier_log(env, "Unsupported section found"); 5481 return -EINVAL; 5482 } 5483 5484 return 0; 5485 } 5486 5487 static int btf_parse_hdr(struct btf_verifier_env *env) 5488 { 5489 u32 hdr_len, hdr_copy, btf_data_size; 5490 const struct btf_header *hdr; 5491 struct btf *btf; 5492 5493 btf = env->btf; 5494 btf_data_size = btf->data_size; 5495 5496 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5497 btf_verifier_log(env, "hdr_len not found"); 5498 return -EINVAL; 5499 } 5500 5501 hdr = btf->data; 5502 hdr_len = hdr->hdr_len; 5503 if (btf_data_size < hdr_len) { 5504 btf_verifier_log(env, "btf_header not found"); 5505 return -EINVAL; 5506 } 5507 5508 /* Ensure the unsupported header fields are zero */ 5509 if (hdr_len > sizeof(btf->hdr)) { 5510 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5511 u8 *end = btf->data + hdr_len; 5512 5513 for (; expected_zero < end; expected_zero++) { 5514 if (*expected_zero) { 5515 btf_verifier_log(env, "Unsupported btf_header"); 5516 return -E2BIG; 5517 } 5518 } 5519 } 5520 5521 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5522 memcpy(&btf->hdr, btf->data, hdr_copy); 5523 5524 hdr = &btf->hdr; 5525 5526 btf_verifier_log_hdr(env, btf_data_size); 5527 5528 if (hdr->magic != BTF_MAGIC) { 5529 btf_verifier_log(env, "Invalid magic"); 5530 return -EINVAL; 5531 } 5532 5533 if (hdr->version != BTF_VERSION) { 5534 btf_verifier_log(env, "Unsupported version"); 5535 return -ENOTSUPP; 5536 } 5537 5538 if (hdr->flags) { 5539 btf_verifier_log(env, "Unsupported flags"); 5540 return -ENOTSUPP; 5541 } 5542 5543 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5544 btf_verifier_log(env, "No data"); 5545 return -EINVAL; 5546 } 5547 5548 return btf_check_sec_info(env, btf_data_size); 5549 } 5550 5551 static const char *alloc_obj_fields[] = { 5552 "bpf_spin_lock", 5553 "bpf_list_head", 5554 "bpf_list_node", 5555 "bpf_rb_root", 5556 "bpf_rb_node", 5557 "bpf_refcount", 5558 }; 5559 5560 static struct btf_struct_metas * 5561 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5562 { 5563 struct btf_struct_metas *tab = NULL; 5564 struct btf_id_set *aof; 5565 int i, n, id, ret; 5566 5567 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5568 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5569 5570 aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); 5571 if (!aof) 5572 return ERR_PTR(-ENOMEM); 5573 aof->cnt = 0; 5574 5575 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5576 /* Try to find whether this special type exists in user BTF, and 5577 * if so remember its ID so we can easily find it among members 5578 * of structs that we iterate in the next loop. 5579 */ 5580 struct btf_id_set *new_aof; 5581 5582 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5583 if (id < 0) 5584 continue; 5585 5586 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5587 GFP_KERNEL | __GFP_NOWARN); 5588 if (!new_aof) { 5589 ret = -ENOMEM; 5590 goto free_aof; 5591 } 5592 aof = new_aof; 5593 aof->ids[aof->cnt++] = id; 5594 } 5595 5596 n = btf_nr_types(btf); 5597 for (i = 1; i < n; i++) { 5598 /* Try to find if there are kptrs in user BTF and remember their ID */ 5599 struct btf_id_set *new_aof; 5600 struct btf_field_info tmp; 5601 const struct btf_type *t; 5602 5603 t = btf_type_by_id(btf, i); 5604 if (!t) { 5605 ret = -EINVAL; 5606 goto free_aof; 5607 } 5608 5609 ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR); 5610 if (ret != BTF_FIELD_FOUND) 5611 continue; 5612 5613 new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]), 5614 GFP_KERNEL | __GFP_NOWARN); 5615 if (!new_aof) { 5616 ret = -ENOMEM; 5617 goto free_aof; 5618 } 5619 aof = new_aof; 5620 aof->ids[aof->cnt++] = i; 5621 } 5622 5623 if (!aof->cnt) { 5624 kfree(aof); 5625 return NULL; 5626 } 5627 sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); 5628 5629 for (i = 1; i < n; i++) { 5630 struct btf_struct_metas *new_tab; 5631 const struct btf_member *member; 5632 struct btf_struct_meta *type; 5633 struct btf_record *record; 5634 const struct btf_type *t; 5635 int j, tab_cnt; 5636 5637 t = btf_type_by_id(btf, i); 5638 if (!__btf_type_is_struct(t)) 5639 continue; 5640 5641 cond_resched(); 5642 5643 for_each_member(j, t, member) { 5644 if (btf_id_set_contains(aof, member->type)) 5645 goto parse; 5646 } 5647 continue; 5648 parse: 5649 tab_cnt = tab ? tab->cnt : 0; 5650 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5651 GFP_KERNEL | __GFP_NOWARN); 5652 if (!new_tab) { 5653 ret = -ENOMEM; 5654 goto free; 5655 } 5656 if (!tab) 5657 new_tab->cnt = 0; 5658 tab = new_tab; 5659 5660 type = &tab->types[tab->cnt]; 5661 type->btf_id = i; 5662 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5663 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | 5664 BPF_KPTR, t->size); 5665 /* The record cannot be unset, treat it as an error if so */ 5666 if (IS_ERR_OR_NULL(record)) { 5667 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5668 goto free; 5669 } 5670 type->record = record; 5671 tab->cnt++; 5672 } 5673 kfree(aof); 5674 return tab; 5675 free: 5676 btf_struct_metas_free(tab); 5677 free_aof: 5678 kfree(aof); 5679 return ERR_PTR(ret); 5680 } 5681 5682 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5683 { 5684 struct btf_struct_metas *tab; 5685 5686 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5687 tab = btf->struct_meta_tab; 5688 if (!tab) 5689 return NULL; 5690 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5691 } 5692 5693 static int btf_check_type_tags(struct btf_verifier_env *env, 5694 struct btf *btf, int start_id) 5695 { 5696 int i, n, good_id = start_id - 1; 5697 bool in_tags; 5698 5699 n = btf_nr_types(btf); 5700 for (i = start_id; i < n; i++) { 5701 const struct btf_type *t; 5702 int chain_limit = 32; 5703 u32 cur_id = i; 5704 5705 t = btf_type_by_id(btf, i); 5706 if (!t) 5707 return -EINVAL; 5708 if (!btf_type_is_modifier(t)) 5709 continue; 5710 5711 cond_resched(); 5712 5713 in_tags = btf_type_is_type_tag(t); 5714 while (btf_type_is_modifier(t)) { 5715 if (!chain_limit--) { 5716 btf_verifier_log(env, "Max chain length or cycle detected"); 5717 return -ELOOP; 5718 } 5719 if (btf_type_is_type_tag(t)) { 5720 if (!in_tags) { 5721 btf_verifier_log(env, "Type tags don't precede modifiers"); 5722 return -EINVAL; 5723 } 5724 } else if (in_tags) { 5725 in_tags = false; 5726 } 5727 if (cur_id <= good_id) 5728 break; 5729 /* Move to next type */ 5730 cur_id = t->type; 5731 t = btf_type_by_id(btf, cur_id); 5732 if (!t) 5733 return -EINVAL; 5734 } 5735 good_id = i; 5736 } 5737 return 0; 5738 } 5739 5740 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5741 { 5742 u32 log_true_size; 5743 int err; 5744 5745 err = bpf_vlog_finalize(log, &log_true_size); 5746 5747 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5748 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5749 &log_true_size, sizeof(log_true_size))) 5750 err = -EFAULT; 5751 5752 return err; 5753 } 5754 5755 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5756 { 5757 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5758 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5759 struct btf_struct_metas *struct_meta_tab; 5760 struct btf_verifier_env *env = NULL; 5761 struct btf *btf = NULL; 5762 u8 *data; 5763 int err, ret; 5764 5765 if (attr->btf_size > BTF_MAX_SIZE) 5766 return ERR_PTR(-E2BIG); 5767 5768 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5769 if (!env) 5770 return ERR_PTR(-ENOMEM); 5771 5772 /* user could have requested verbose verifier output 5773 * and supplied buffer to store the verification trace 5774 */ 5775 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5776 log_ubuf, attr->btf_log_size); 5777 if (err) 5778 goto errout_free; 5779 5780 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5781 if (!btf) { 5782 err = -ENOMEM; 5783 goto errout; 5784 } 5785 env->btf = btf; 5786 5787 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5788 if (!data) { 5789 err = -ENOMEM; 5790 goto errout; 5791 } 5792 5793 btf->data = data; 5794 btf->data_size = attr->btf_size; 5795 5796 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5797 err = -EFAULT; 5798 goto errout; 5799 } 5800 5801 err = btf_parse_hdr(env); 5802 if (err) 5803 goto errout; 5804 5805 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5806 5807 err = btf_parse_str_sec(env); 5808 if (err) 5809 goto errout; 5810 5811 err = btf_parse_type_sec(env); 5812 if (err) 5813 goto errout; 5814 5815 err = btf_check_type_tags(env, btf, 1); 5816 if (err) 5817 goto errout; 5818 5819 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5820 if (IS_ERR(struct_meta_tab)) { 5821 err = PTR_ERR(struct_meta_tab); 5822 goto errout; 5823 } 5824 btf->struct_meta_tab = struct_meta_tab; 5825 5826 if (struct_meta_tab) { 5827 int i; 5828 5829 for (i = 0; i < struct_meta_tab->cnt; i++) { 5830 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5831 if (err < 0) 5832 goto errout_meta; 5833 } 5834 } 5835 5836 err = finalize_log(&env->log, uattr, uattr_size); 5837 if (err) 5838 goto errout_free; 5839 5840 btf_verifier_env_free(env); 5841 refcount_set(&btf->refcnt, 1); 5842 return btf; 5843 5844 errout_meta: 5845 btf_free_struct_meta_tab(btf); 5846 errout: 5847 /* overwrite err with -ENOSPC or -EFAULT */ 5848 ret = finalize_log(&env->log, uattr, uattr_size); 5849 if (ret) 5850 err = ret; 5851 errout_free: 5852 btf_verifier_env_free(env); 5853 if (btf) 5854 btf_free(btf); 5855 return ERR_PTR(err); 5856 } 5857 5858 extern char __start_BTF[]; 5859 extern char __stop_BTF[]; 5860 extern struct btf *btf_vmlinux; 5861 5862 #define BPF_MAP_TYPE(_id, _ops) 5863 #define BPF_LINK_TYPE(_id, _name) 5864 static union { 5865 struct bpf_ctx_convert { 5866 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5867 prog_ctx_type _id##_prog; \ 5868 kern_ctx_type _id##_kern; 5869 #include <linux/bpf_types.h> 5870 #undef BPF_PROG_TYPE 5871 } *__t; 5872 /* 't' is written once under lock. Read many times. */ 5873 const struct btf_type *t; 5874 } bpf_ctx_convert; 5875 enum { 5876 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5877 __ctx_convert##_id, 5878 #include <linux/bpf_types.h> 5879 #undef BPF_PROG_TYPE 5880 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5881 }; 5882 static u8 bpf_ctx_convert_map[] = { 5883 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5884 [_id] = __ctx_convert##_id, 5885 #include <linux/bpf_types.h> 5886 #undef BPF_PROG_TYPE 5887 0, /* avoid empty array */ 5888 }; 5889 #undef BPF_MAP_TYPE 5890 #undef BPF_LINK_TYPE 5891 5892 static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) 5893 { 5894 const struct btf_type *conv_struct; 5895 const struct btf_member *ctx_type; 5896 5897 conv_struct = bpf_ctx_convert.t; 5898 if (!conv_struct) 5899 return NULL; 5900 /* prog_type is valid bpf program type. No need for bounds check. */ 5901 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5902 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5903 * Like 'struct __sk_buff' 5904 */ 5905 return btf_type_by_id(btf_vmlinux, ctx_type->type); 5906 } 5907 5908 static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) 5909 { 5910 const struct btf_type *conv_struct; 5911 const struct btf_member *ctx_type; 5912 5913 conv_struct = bpf_ctx_convert.t; 5914 if (!conv_struct) 5915 return -EFAULT; 5916 /* prog_type is valid bpf program type. No need for bounds check. */ 5917 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5918 /* ctx_type is a pointer to prog_ctx_type in vmlinux. 5919 * Like 'struct sk_buff' 5920 */ 5921 return ctx_type->type; 5922 } 5923 5924 bool btf_is_projection_of(const char *pname, const char *tname) 5925 { 5926 if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5927 return true; 5928 if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5929 return true; 5930 return false; 5931 } 5932 5933 bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5934 const struct btf_type *t, enum bpf_prog_type prog_type, 5935 int arg) 5936 { 5937 const struct btf_type *ctx_type; 5938 const char *tname, *ctx_tname; 5939 5940 t = btf_type_by_id(btf, t->type); 5941 5942 /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to 5943 * check before we skip all the typedef below. 5944 */ 5945 if (prog_type == BPF_PROG_TYPE_KPROBE) { 5946 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 5947 t = btf_type_by_id(btf, t->type); 5948 5949 if (btf_type_is_typedef(t)) { 5950 tname = btf_name_by_offset(btf, t->name_off); 5951 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 5952 return true; 5953 } 5954 } 5955 5956 while (btf_type_is_modifier(t)) 5957 t = btf_type_by_id(btf, t->type); 5958 if (!btf_type_is_struct(t)) { 5959 /* Only pointer to struct is supported for now. 5960 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5961 * is not supported yet. 5962 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5963 */ 5964 return false; 5965 } 5966 tname = btf_name_by_offset(btf, t->name_off); 5967 if (!tname) { 5968 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5969 return false; 5970 } 5971 5972 ctx_type = find_canonical_prog_ctx_type(prog_type); 5973 if (!ctx_type) { 5974 bpf_log(log, "btf_vmlinux is malformed\n"); 5975 /* should not happen */ 5976 return false; 5977 } 5978 again: 5979 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 5980 if (!ctx_tname) { 5981 /* should not happen */ 5982 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5983 return false; 5984 } 5985 /* program types without named context types work only with arg:ctx tag */ 5986 if (ctx_tname[0] == '\0') 5987 return false; 5988 /* only compare that prog's ctx type name is the same as 5989 * kernel expects. No need to compare field by field. 5990 * It's ok for bpf prog to do: 5991 * struct __sk_buff {}; 5992 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5993 * { // no fields of skb are ever used } 5994 */ 5995 if (btf_is_projection_of(ctx_tname, tname)) 5996 return true; 5997 if (strcmp(ctx_tname, tname)) { 5998 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5999 * underlying struct and check name again 6000 */ 6001 if (!btf_type_is_modifier(ctx_type)) 6002 return false; 6003 while (btf_type_is_modifier(ctx_type)) 6004 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6005 goto again; 6006 } 6007 return true; 6008 } 6009 6010 /* forward declarations for arch-specific underlying types of 6011 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef 6012 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still 6013 * works correctly with __builtin_types_compatible_p() on respective 6014 * architectures 6015 */ 6016 struct user_regs_struct; 6017 struct user_pt_regs; 6018 6019 static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 6020 const struct btf_type *t, int arg, 6021 enum bpf_prog_type prog_type, 6022 enum bpf_attach_type attach_type) 6023 { 6024 const struct btf_type *ctx_type; 6025 const char *tname, *ctx_tname; 6026 6027 if (!btf_is_ptr(t)) { 6028 bpf_log(log, "arg#%d type isn't a pointer\n", arg); 6029 return -EINVAL; 6030 } 6031 t = btf_type_by_id(btf, t->type); 6032 6033 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ 6034 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { 6035 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) 6036 t = btf_type_by_id(btf, t->type); 6037 6038 if (btf_type_is_typedef(t)) { 6039 tname = btf_name_by_offset(btf, t->name_off); 6040 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) 6041 return 0; 6042 } 6043 } 6044 6045 /* all other program types don't use typedefs for context type */ 6046 while (btf_type_is_modifier(t)) 6047 t = btf_type_by_id(btf, t->type); 6048 6049 /* `void *ctx __arg_ctx` is always valid */ 6050 if (btf_type_is_void(t)) 6051 return 0; 6052 6053 tname = btf_name_by_offset(btf, t->name_off); 6054 if (str_is_empty(tname)) { 6055 bpf_log(log, "arg#%d type doesn't have a name\n", arg); 6056 return -EINVAL; 6057 } 6058 6059 /* special cases */ 6060 switch (prog_type) { 6061 case BPF_PROG_TYPE_KPROBE: 6062 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6063 return 0; 6064 break; 6065 case BPF_PROG_TYPE_PERF_EVENT: 6066 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6067 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6068 return 0; 6069 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6070 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6071 return 0; 6072 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6073 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6074 return 0; 6075 break; 6076 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6077 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6078 /* allow u64* as ctx */ 6079 if (btf_is_int(t) && t->size == 8) 6080 return 0; 6081 break; 6082 case BPF_PROG_TYPE_TRACING: 6083 switch (attach_type) { 6084 case BPF_TRACE_RAW_TP: 6085 /* tp_btf program is TRACING, so need special case here */ 6086 if (__btf_type_is_struct(t) && 6087 strcmp(tname, "bpf_raw_tracepoint_args") == 0) 6088 return 0; 6089 /* allow u64* as ctx */ 6090 if (btf_is_int(t) && t->size == 8) 6091 return 0; 6092 break; 6093 case BPF_TRACE_ITER: 6094 /* allow struct bpf_iter__xxx types only */ 6095 if (__btf_type_is_struct(t) && 6096 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) 6097 return 0; 6098 break; 6099 case BPF_TRACE_FENTRY: 6100 case BPF_TRACE_FEXIT: 6101 case BPF_MODIFY_RETURN: 6102 /* allow u64* as ctx */ 6103 if (btf_is_int(t) && t->size == 8) 6104 return 0; 6105 break; 6106 default: 6107 break; 6108 } 6109 break; 6110 case BPF_PROG_TYPE_LSM: 6111 case BPF_PROG_TYPE_STRUCT_OPS: 6112 /* allow u64* as ctx */ 6113 if (btf_is_int(t) && t->size == 8) 6114 return 0; 6115 break; 6116 case BPF_PROG_TYPE_TRACEPOINT: 6117 case BPF_PROG_TYPE_SYSCALL: 6118 case BPF_PROG_TYPE_EXT: 6119 return 0; /* anything goes */ 6120 default: 6121 break; 6122 } 6123 6124 ctx_type = find_canonical_prog_ctx_type(prog_type); 6125 if (!ctx_type) { 6126 /* should not happen */ 6127 bpf_log(log, "btf_vmlinux is malformed\n"); 6128 return -EINVAL; 6129 } 6130 6131 /* resolve typedefs and check that underlying structs are matching as well */ 6132 while (btf_type_is_modifier(ctx_type)) 6133 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); 6134 6135 /* if program type doesn't have distinctly named struct type for 6136 * context, then __arg_ctx argument can only be `void *`, which we 6137 * already checked above 6138 */ 6139 if (!__btf_type_is_struct(ctx_type)) { 6140 bpf_log(log, "arg#%d should be void pointer\n", arg); 6141 return -EINVAL; 6142 } 6143 6144 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); 6145 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { 6146 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); 6147 return -EINVAL; 6148 } 6149 6150 return 0; 6151 } 6152 6153 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 6154 struct btf *btf, 6155 const struct btf_type *t, 6156 enum bpf_prog_type prog_type, 6157 int arg) 6158 { 6159 if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) 6160 return -ENOENT; 6161 return find_kern_ctx_type_id(prog_type); 6162 } 6163 6164 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 6165 { 6166 const struct btf_member *kctx_member; 6167 const struct btf_type *conv_struct; 6168 const struct btf_type *kctx_type; 6169 u32 kctx_type_id; 6170 6171 conv_struct = bpf_ctx_convert.t; 6172 /* get member for kernel ctx type */ 6173 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 6174 kctx_type_id = kctx_member->type; 6175 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 6176 if (!btf_type_is_struct(kctx_type)) { 6177 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 6178 return -EINVAL; 6179 } 6180 6181 return kctx_type_id; 6182 } 6183 6184 BTF_ID_LIST(bpf_ctx_convert_btf_id) 6185 BTF_ID(struct, bpf_ctx_convert) 6186 6187 static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, 6188 void *data, unsigned int data_size) 6189 { 6190 struct btf *btf = NULL; 6191 int err; 6192 6193 if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) 6194 return ERR_PTR(-ENOENT); 6195 6196 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6197 if (!btf) { 6198 err = -ENOMEM; 6199 goto errout; 6200 } 6201 env->btf = btf; 6202 6203 btf->data = data; 6204 btf->data_size = data_size; 6205 btf->kernel_btf = true; 6206 snprintf(btf->name, sizeof(btf->name), "%s", name); 6207 6208 err = btf_parse_hdr(env); 6209 if (err) 6210 goto errout; 6211 6212 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6213 6214 err = btf_parse_str_sec(env); 6215 if (err) 6216 goto errout; 6217 6218 err = btf_check_all_metas(env); 6219 if (err) 6220 goto errout; 6221 6222 err = btf_check_type_tags(env, btf, 1); 6223 if (err) 6224 goto errout; 6225 6226 refcount_set(&btf->refcnt, 1); 6227 6228 return btf; 6229 6230 errout: 6231 if (btf) { 6232 kvfree(btf->types); 6233 kfree(btf); 6234 } 6235 return ERR_PTR(err); 6236 } 6237 6238 struct btf *btf_parse_vmlinux(void) 6239 { 6240 struct btf_verifier_env *env = NULL; 6241 struct bpf_verifier_log *log; 6242 struct btf *btf; 6243 int err; 6244 6245 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6246 if (!env) 6247 return ERR_PTR(-ENOMEM); 6248 6249 log = &env->log; 6250 log->level = BPF_LOG_KERNEL; 6251 btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); 6252 if (IS_ERR(btf)) 6253 goto err_out; 6254 6255 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 6256 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 6257 err = btf_alloc_id(btf); 6258 if (err) { 6259 btf_free(btf); 6260 btf = ERR_PTR(err); 6261 } 6262 err_out: 6263 btf_verifier_env_free(env); 6264 return btf; 6265 } 6266 6267 /* If .BTF_ids section was created with distilled base BTF, both base and 6268 * split BTF ids will need to be mapped to actual base/split ids for 6269 * BTF now that it has been relocated. 6270 */ 6271 static __u32 btf_relocate_id(const struct btf *btf, __u32 id) 6272 { 6273 if (!btf->base_btf || !btf->base_id_map) 6274 return id; 6275 return btf->base_id_map[id]; 6276 } 6277 6278 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6279 6280 static struct btf *btf_parse_module(const char *module_name, const void *data, 6281 unsigned int data_size, void *base_data, 6282 unsigned int base_data_size) 6283 { 6284 struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; 6285 struct btf_verifier_env *env = NULL; 6286 struct bpf_verifier_log *log; 6287 int err = 0; 6288 6289 vmlinux_btf = bpf_get_btf_vmlinux(); 6290 if (IS_ERR(vmlinux_btf)) 6291 return vmlinux_btf; 6292 if (!vmlinux_btf) 6293 return ERR_PTR(-EINVAL); 6294 6295 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 6296 if (!env) 6297 return ERR_PTR(-ENOMEM); 6298 6299 log = &env->log; 6300 log->level = BPF_LOG_KERNEL; 6301 6302 if (base_data) { 6303 base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); 6304 if (IS_ERR(base_btf)) { 6305 err = PTR_ERR(base_btf); 6306 goto errout; 6307 } 6308 } else { 6309 base_btf = vmlinux_btf; 6310 } 6311 6312 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 6313 if (!btf) { 6314 err = -ENOMEM; 6315 goto errout; 6316 } 6317 env->btf = btf; 6318 6319 btf->base_btf = base_btf; 6320 btf->start_id = base_btf->nr_types; 6321 btf->start_str_off = base_btf->hdr.str_len; 6322 btf->kernel_btf = true; 6323 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 6324 6325 btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); 6326 if (!btf->data) { 6327 err = -ENOMEM; 6328 goto errout; 6329 } 6330 btf->data_size = data_size; 6331 6332 err = btf_parse_hdr(env); 6333 if (err) 6334 goto errout; 6335 6336 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 6337 6338 err = btf_parse_str_sec(env); 6339 if (err) 6340 goto errout; 6341 6342 err = btf_check_all_metas(env); 6343 if (err) 6344 goto errout; 6345 6346 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 6347 if (err) 6348 goto errout; 6349 6350 if (base_btf != vmlinux_btf) { 6351 err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); 6352 if (err) 6353 goto errout; 6354 btf_free(base_btf); 6355 base_btf = vmlinux_btf; 6356 } 6357 6358 btf_verifier_env_free(env); 6359 refcount_set(&btf->refcnt, 1); 6360 return btf; 6361 6362 errout: 6363 btf_verifier_env_free(env); 6364 if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) 6365 btf_free(base_btf); 6366 if (btf) { 6367 kvfree(btf->data); 6368 kvfree(btf->types); 6369 kfree(btf); 6370 } 6371 return ERR_PTR(err); 6372 } 6373 6374 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6375 6376 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 6377 { 6378 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6379 6380 if (tgt_prog) 6381 return tgt_prog->aux->btf; 6382 else 6383 return prog->aux->attach_btf; 6384 } 6385 6386 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 6387 { 6388 /* skip modifiers */ 6389 t = btf_type_skip_modifiers(btf, t->type, NULL); 6390 6391 return btf_type_is_int(t); 6392 } 6393 6394 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 6395 int off) 6396 { 6397 const struct btf_param *args; 6398 const struct btf_type *t; 6399 u32 offset = 0, nr_args; 6400 int i; 6401 6402 if (!func_proto) 6403 return off / 8; 6404 6405 nr_args = btf_type_vlen(func_proto); 6406 args = (const struct btf_param *)(func_proto + 1); 6407 for (i = 0; i < nr_args; i++) { 6408 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6409 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6410 if (off < offset) 6411 return i; 6412 } 6413 6414 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 6415 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 6416 if (off < offset) 6417 return nr_args; 6418 6419 return nr_args + 1; 6420 } 6421 6422 static bool prog_args_trusted(const struct bpf_prog *prog) 6423 { 6424 enum bpf_attach_type atype = prog->expected_attach_type; 6425 6426 switch (prog->type) { 6427 case BPF_PROG_TYPE_TRACING: 6428 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 6429 case BPF_PROG_TYPE_LSM: 6430 return bpf_lsm_is_trusted(prog); 6431 case BPF_PROG_TYPE_STRUCT_OPS: 6432 return true; 6433 default: 6434 return false; 6435 } 6436 } 6437 6438 int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, 6439 u32 arg_no) 6440 { 6441 const struct btf_param *args; 6442 const struct btf_type *t; 6443 int off = 0, i; 6444 u32 sz; 6445 6446 args = btf_params(func_proto); 6447 for (i = 0; i < arg_no; i++) { 6448 t = btf_type_by_id(btf, args[i].type); 6449 t = btf_resolve_size(btf, t, &sz); 6450 if (IS_ERR(t)) 6451 return PTR_ERR(t); 6452 off += roundup(sz, 8); 6453 } 6454 6455 return off; 6456 } 6457 6458 struct bpf_raw_tp_null_args { 6459 const char *func; 6460 u64 mask; 6461 }; 6462 6463 static const struct bpf_raw_tp_null_args raw_tp_null_args[] = { 6464 /* sched */ 6465 { "sched_pi_setprio", 0x10 }, 6466 /* ... from sched_numa_pair_template event class */ 6467 { "sched_stick_numa", 0x100 }, 6468 { "sched_swap_numa", 0x100 }, 6469 /* afs */ 6470 { "afs_make_fs_call", 0x10 }, 6471 { "afs_make_fs_calli", 0x10 }, 6472 { "afs_make_fs_call1", 0x10 }, 6473 { "afs_make_fs_call2", 0x10 }, 6474 { "afs_protocol_error", 0x1 }, 6475 { "afs_flock_ev", 0x10 }, 6476 /* cachefiles */ 6477 { "cachefiles_lookup", 0x1 | 0x200 }, 6478 { "cachefiles_unlink", 0x1 }, 6479 { "cachefiles_rename", 0x1 }, 6480 { "cachefiles_prep_read", 0x1 }, 6481 { "cachefiles_mark_active", 0x1 }, 6482 { "cachefiles_mark_failed", 0x1 }, 6483 { "cachefiles_mark_inactive", 0x1 }, 6484 { "cachefiles_vfs_error", 0x1 }, 6485 { "cachefiles_io_error", 0x1 }, 6486 { "cachefiles_ondemand_open", 0x1 }, 6487 { "cachefiles_ondemand_copen", 0x1 }, 6488 { "cachefiles_ondemand_close", 0x1 }, 6489 { "cachefiles_ondemand_read", 0x1 }, 6490 { "cachefiles_ondemand_cread", 0x1 }, 6491 { "cachefiles_ondemand_fd_write", 0x1 }, 6492 { "cachefiles_ondemand_fd_release", 0x1 }, 6493 /* ext4, from ext4__mballoc event class */ 6494 { "ext4_mballoc_discard", 0x10 }, 6495 { "ext4_mballoc_free", 0x10 }, 6496 /* fib */ 6497 { "fib_table_lookup", 0x100 }, 6498 /* filelock */ 6499 /* ... from filelock_lock event class */ 6500 { "posix_lock_inode", 0x10 }, 6501 { "fcntl_setlk", 0x10 }, 6502 { "locks_remove_posix", 0x10 }, 6503 { "flock_lock_inode", 0x10 }, 6504 /* ... from filelock_lease event class */ 6505 { "break_lease_noblock", 0x10 }, 6506 { "break_lease_block", 0x10 }, 6507 { "break_lease_unblock", 0x10 }, 6508 { "generic_delete_lease", 0x10 }, 6509 { "time_out_leases", 0x10 }, 6510 /* host1x */ 6511 { "host1x_cdma_push_gather", 0x10000 }, 6512 /* huge_memory */ 6513 { "mm_khugepaged_scan_pmd", 0x10 }, 6514 { "mm_collapse_huge_page_isolate", 0x1 }, 6515 { "mm_khugepaged_scan_file", 0x10 }, 6516 { "mm_khugepaged_collapse_file", 0x10 }, 6517 /* kmem */ 6518 { "mm_page_alloc", 0x1 }, 6519 { "mm_page_pcpu_drain", 0x1 }, 6520 /* .. from mm_page event class */ 6521 { "mm_page_alloc_zone_locked", 0x1 }, 6522 /* netfs */ 6523 { "netfs_failure", 0x10 }, 6524 /* power */ 6525 { "device_pm_callback_start", 0x10 }, 6526 /* qdisc */ 6527 { "qdisc_dequeue", 0x1000 }, 6528 /* rxrpc */ 6529 { "rxrpc_recvdata", 0x1 }, 6530 { "rxrpc_resend", 0x10 }, 6531 { "rxrpc_tq", 0x10 }, 6532 { "rxrpc_client", 0x1 }, 6533 /* skb */ 6534 {"kfree_skb", 0x1000}, 6535 /* sunrpc */ 6536 { "xs_stream_read_data", 0x1 }, 6537 /* ... from xprt_cong_event event class */ 6538 { "xprt_reserve_cong", 0x10 }, 6539 { "xprt_release_cong", 0x10 }, 6540 { "xprt_get_cong", 0x10 }, 6541 { "xprt_put_cong", 0x10 }, 6542 /* tcp */ 6543 { "tcp_send_reset", 0x11 }, 6544 /* tegra_apb_dma */ 6545 { "tegra_dma_tx_status", 0x100 }, 6546 /* timer_migration */ 6547 { "tmigr_update_events", 0x1 }, 6548 /* writeback, from writeback_folio_template event class */ 6549 { "writeback_dirty_folio", 0x10 }, 6550 { "folio_wait_writeback", 0x10 }, 6551 /* rdma */ 6552 { "mr_integ_alloc", 0x2000 }, 6553 /* bpf_testmod */ 6554 { "bpf_testmod_test_read", 0x0 }, 6555 /* amdgpu */ 6556 { "amdgpu_vm_bo_map", 0x1 }, 6557 { "amdgpu_vm_bo_unmap", 0x1 }, 6558 /* netfs */ 6559 { "netfs_folioq", 0x1 }, 6560 /* xfs from xfs_defer_pending_class */ 6561 { "xfs_defer_create_intent", 0x1 }, 6562 { "xfs_defer_cancel_list", 0x1 }, 6563 { "xfs_defer_pending_finish", 0x1 }, 6564 { "xfs_defer_pending_abort", 0x1 }, 6565 { "xfs_defer_relog_intent", 0x1 }, 6566 { "xfs_defer_isolate_paused", 0x1 }, 6567 { "xfs_defer_item_pause", 0x1 }, 6568 { "xfs_defer_item_unpause", 0x1 }, 6569 /* xfs from xfs_defer_pending_item_class */ 6570 { "xfs_defer_add_item", 0x1 }, 6571 { "xfs_defer_cancel_item", 0x1 }, 6572 { "xfs_defer_finish_item", 0x1 }, 6573 /* xfs from xfs_icwalk_class */ 6574 { "xfs_ioc_free_eofblocks", 0x10 }, 6575 { "xfs_blockgc_free_space", 0x10 }, 6576 /* xfs from xfs_btree_cur_class */ 6577 { "xfs_btree_updkeys", 0x100 }, 6578 { "xfs_btree_overlapped_query_range", 0x100 }, 6579 /* xfs from xfs_imap_class*/ 6580 { "xfs_map_blocks_found", 0x10000 }, 6581 { "xfs_map_blocks_alloc", 0x10000 }, 6582 { "xfs_iomap_alloc", 0x1000 }, 6583 { "xfs_iomap_found", 0x1000 }, 6584 /* xfs from xfs_fs_class */ 6585 { "xfs_inodegc_flush", 0x1 }, 6586 { "xfs_inodegc_push", 0x1 }, 6587 { "xfs_inodegc_start", 0x1 }, 6588 { "xfs_inodegc_stop", 0x1 }, 6589 { "xfs_inodegc_queue", 0x1 }, 6590 { "xfs_inodegc_throttle", 0x1 }, 6591 { "xfs_fs_sync_fs", 0x1 }, 6592 { "xfs_blockgc_start", 0x1 }, 6593 { "xfs_blockgc_stop", 0x1 }, 6594 { "xfs_blockgc_worker", 0x1 }, 6595 { "xfs_blockgc_flush_all", 0x1 }, 6596 /* xfs_scrub */ 6597 { "xchk_nlinks_live_update", 0x10 }, 6598 /* xfs_scrub from xchk_metapath_class */ 6599 { "xchk_metapath_lookup", 0x100 }, 6600 /* nfsd */ 6601 { "nfsd_dirent", 0x1 }, 6602 { "nfsd_file_acquire", 0x1001 }, 6603 { "nfsd_file_insert_err", 0x1 }, 6604 { "nfsd_file_cons_err", 0x1 }, 6605 /* nfs4 */ 6606 { "nfs4_setup_sequence", 0x1 }, 6607 { "pnfs_update_layout", 0x10000 }, 6608 { "nfs4_inode_callback_event", 0x200 }, 6609 { "nfs4_inode_stateid_callback_event", 0x200 }, 6610 /* nfs from pnfs_layout_event */ 6611 { "pnfs_mds_fallback_pg_init_read", 0x10000 }, 6612 { "pnfs_mds_fallback_pg_init_write", 0x10000 }, 6613 { "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 }, 6614 { "pnfs_mds_fallback_read_done", 0x10000 }, 6615 { "pnfs_mds_fallback_write_done", 0x10000 }, 6616 { "pnfs_mds_fallback_read_pagelist", 0x10000 }, 6617 { "pnfs_mds_fallback_write_pagelist", 0x10000 }, 6618 /* coda */ 6619 { "coda_dec_pic_run", 0x10 }, 6620 { "coda_dec_pic_done", 0x10 }, 6621 /* cfg80211 */ 6622 { "cfg80211_scan_done", 0x11 }, 6623 { "rdev_set_coalesce", 0x10 }, 6624 { "cfg80211_report_wowlan_wakeup", 0x100 }, 6625 { "cfg80211_inform_bss_frame", 0x100 }, 6626 { "cfg80211_michael_mic_failure", 0x10000 }, 6627 /* cfg80211 from wiphy_work_event */ 6628 { "wiphy_work_queue", 0x10 }, 6629 { "wiphy_work_run", 0x10 }, 6630 { "wiphy_work_cancel", 0x10 }, 6631 { "wiphy_work_flush", 0x10 }, 6632 /* hugetlbfs */ 6633 { "hugetlbfs_alloc_inode", 0x10 }, 6634 /* spufs */ 6635 { "spufs_context", 0x10 }, 6636 /* kvm_hv */ 6637 { "kvm_page_fault_enter", 0x100 }, 6638 /* dpu */ 6639 { "dpu_crtc_setup_mixer", 0x100 }, 6640 /* binder */ 6641 { "binder_transaction", 0x100 }, 6642 /* bcachefs */ 6643 { "btree_path_free", 0x100 }, 6644 /* hfi1_tx */ 6645 { "hfi1_sdma_progress", 0x1000 }, 6646 /* iptfs */ 6647 { "iptfs_ingress_postq_event", 0x1000 }, 6648 /* neigh */ 6649 { "neigh_update", 0x10 }, 6650 /* snd_firewire_lib */ 6651 { "amdtp_packet", 0x100 }, 6652 }; 6653 6654 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 6655 const struct bpf_prog *prog, 6656 struct bpf_insn_access_aux *info) 6657 { 6658 const struct btf_type *t = prog->aux->attach_func_proto; 6659 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 6660 struct btf *btf = bpf_prog_get_target_btf(prog); 6661 const char *tname = prog->aux->attach_func_name; 6662 struct bpf_verifier_log *log = info->log; 6663 const struct btf_param *args; 6664 bool ptr_err_raw_tp = false; 6665 const char *tag_value; 6666 u32 nr_args, arg; 6667 int i, ret; 6668 6669 if (off % 8) { 6670 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 6671 tname, off); 6672 return false; 6673 } 6674 arg = get_ctx_arg_idx(btf, t, off); 6675 args = (const struct btf_param *)(t + 1); 6676 /* if (t == NULL) Fall back to default BPF prog with 6677 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 6678 */ 6679 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 6680 if (prog->aux->attach_btf_trace) { 6681 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 6682 args++; 6683 nr_args--; 6684 } 6685 6686 if (arg > nr_args) { 6687 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6688 tname, arg + 1); 6689 return false; 6690 } 6691 6692 if (arg == nr_args) { 6693 switch (prog->expected_attach_type) { 6694 case BPF_LSM_MAC: 6695 /* mark we are accessing the return value */ 6696 info->is_retval = true; 6697 fallthrough; 6698 case BPF_LSM_CGROUP: 6699 case BPF_TRACE_FEXIT: 6700 /* When LSM programs are attached to void LSM hooks 6701 * they use FEXIT trampolines and when attached to 6702 * int LSM hooks, they use MODIFY_RETURN trampolines. 6703 * 6704 * While the LSM programs are BPF_MODIFY_RETURN-like 6705 * the check: 6706 * 6707 * if (ret_type != 'int') 6708 * return -EINVAL; 6709 * 6710 * is _not_ done here. This is still safe as LSM hooks 6711 * have only void and int return types. 6712 */ 6713 if (!t) 6714 return true; 6715 t = btf_type_by_id(btf, t->type); 6716 break; 6717 case BPF_MODIFY_RETURN: 6718 /* For now the BPF_MODIFY_RETURN can only be attached to 6719 * functions that return an int. 6720 */ 6721 if (!t) 6722 return false; 6723 6724 t = btf_type_skip_modifiers(btf, t->type, NULL); 6725 if (!btf_type_is_small_int(t)) { 6726 bpf_log(log, 6727 "ret type %s not allowed for fmod_ret\n", 6728 btf_type_str(t)); 6729 return false; 6730 } 6731 break; 6732 default: 6733 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6734 tname, arg + 1); 6735 return false; 6736 } 6737 } else { 6738 if (!t) 6739 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6740 return true; 6741 t = btf_type_by_id(btf, args[arg].type); 6742 } 6743 6744 /* skip modifiers */ 6745 while (btf_type_is_modifier(t)) 6746 t = btf_type_by_id(btf, t->type); 6747 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6748 /* accessing a scalar */ 6749 return true; 6750 if (!btf_type_is_ptr(t)) { 6751 bpf_log(log, 6752 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6753 tname, arg, 6754 __btf_name_by_offset(btf, t->name_off), 6755 btf_type_str(t)); 6756 return false; 6757 } 6758 6759 if (size != sizeof(u64)) { 6760 bpf_log(log, "func '%s' size %d must be 8\n", 6761 tname, size); 6762 return false; 6763 } 6764 6765 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6766 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6767 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6768 u32 type, flag; 6769 6770 type = base_type(ctx_arg_info->reg_type); 6771 flag = type_flag(ctx_arg_info->reg_type); 6772 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6773 (flag & PTR_MAYBE_NULL)) { 6774 info->reg_type = ctx_arg_info->reg_type; 6775 return true; 6776 } 6777 } 6778 6779 if (t->type == 0) 6780 /* This is a pointer to void. 6781 * It is the same as scalar from the verifier safety pov. 6782 * No further pointer walking is allowed. 6783 */ 6784 return true; 6785 6786 if (is_int_ptr(btf, t)) 6787 return true; 6788 6789 /* this is a pointer to another type */ 6790 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6791 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6792 6793 if (ctx_arg_info->offset == off) { 6794 if (!ctx_arg_info->btf_id) { 6795 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6796 return false; 6797 } 6798 6799 info->reg_type = ctx_arg_info->reg_type; 6800 info->btf = ctx_arg_info->btf ? : btf_vmlinux; 6801 info->btf_id = ctx_arg_info->btf_id; 6802 info->ref_obj_id = ctx_arg_info->ref_obj_id; 6803 return true; 6804 } 6805 } 6806 6807 info->reg_type = PTR_TO_BTF_ID; 6808 if (prog_args_trusted(prog)) 6809 info->reg_type |= PTR_TRUSTED; 6810 6811 if (btf_param_match_suffix(btf, &args[arg], "__nullable")) 6812 info->reg_type |= PTR_MAYBE_NULL; 6813 6814 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 6815 struct btf *btf = prog->aux->attach_btf; 6816 const struct btf_type *t; 6817 const char *tname; 6818 6819 /* BTF lookups cannot fail, return false on error */ 6820 t = btf_type_by_id(btf, prog->aux->attach_btf_id); 6821 if (!t) 6822 return false; 6823 tname = btf_name_by_offset(btf, t->name_off); 6824 if (!tname) 6825 return false; 6826 /* Checked by bpf_check_attach_target */ 6827 tname += sizeof("btf_trace_") - 1; 6828 for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) { 6829 /* Is this a func with potential NULL args? */ 6830 if (strcmp(tname, raw_tp_null_args[i].func)) 6831 continue; 6832 if (raw_tp_null_args[i].mask & (0x1 << (arg * 4))) 6833 info->reg_type |= PTR_MAYBE_NULL; 6834 /* Is the current arg IS_ERR? */ 6835 if (raw_tp_null_args[i].mask & (0x2 << (arg * 4))) 6836 ptr_err_raw_tp = true; 6837 break; 6838 } 6839 /* If we don't know NULL-ness specification and the tracepoint 6840 * is coming from a loadable module, be conservative and mark 6841 * argument as PTR_MAYBE_NULL. 6842 */ 6843 if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf)) 6844 info->reg_type |= PTR_MAYBE_NULL; 6845 } 6846 6847 if (tgt_prog) { 6848 enum bpf_prog_type tgt_type; 6849 6850 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6851 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6852 else 6853 tgt_type = tgt_prog->type; 6854 6855 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6856 if (ret > 0) { 6857 info->btf = btf_vmlinux; 6858 info->btf_id = ret; 6859 return true; 6860 } else { 6861 return false; 6862 } 6863 } 6864 6865 info->btf = btf; 6866 info->btf_id = t->type; 6867 t = btf_type_by_id(btf, t->type); 6868 6869 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { 6870 tag_value = __btf_name_by_offset(btf, t->name_off); 6871 if (strcmp(tag_value, "user") == 0) 6872 info->reg_type |= MEM_USER; 6873 if (strcmp(tag_value, "percpu") == 0) 6874 info->reg_type |= MEM_PERCPU; 6875 } 6876 6877 /* skip modifiers */ 6878 while (btf_type_is_modifier(t)) { 6879 info->btf_id = t->type; 6880 t = btf_type_by_id(btf, t->type); 6881 } 6882 if (!btf_type_is_struct(t)) { 6883 bpf_log(log, 6884 "func '%s' arg%d type %s is not a struct\n", 6885 tname, arg, btf_type_str(t)); 6886 return false; 6887 } 6888 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6889 tname, arg, info->btf_id, btf_type_str(t), 6890 __btf_name_by_offset(btf, t->name_off)); 6891 6892 /* Perform all checks on the validity of type for this argument, but if 6893 * we know it can be IS_ERR at runtime, scrub pointer type and mark as 6894 * scalar. 6895 */ 6896 if (ptr_err_raw_tp) { 6897 bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg); 6898 info->reg_type = SCALAR_VALUE; 6899 } 6900 return true; 6901 } 6902 EXPORT_SYMBOL_GPL(btf_ctx_access); 6903 6904 enum bpf_struct_walk_result { 6905 /* < 0 error */ 6906 WALK_SCALAR = 0, 6907 WALK_PTR, 6908 WALK_STRUCT, 6909 }; 6910 6911 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6912 const struct btf_type *t, int off, int size, 6913 u32 *next_btf_id, enum bpf_type_flag *flag, 6914 const char **field_name) 6915 { 6916 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6917 const struct btf_type *mtype, *elem_type = NULL; 6918 const struct btf_member *member; 6919 const char *tname, *mname, *tag_value; 6920 u32 vlen, elem_id, mid; 6921 6922 again: 6923 if (btf_type_is_modifier(t)) 6924 t = btf_type_skip_modifiers(btf, t->type, NULL); 6925 tname = __btf_name_by_offset(btf, t->name_off); 6926 if (!btf_type_is_struct(t)) { 6927 bpf_log(log, "Type '%s' is not a struct\n", tname); 6928 return -EINVAL; 6929 } 6930 6931 vlen = btf_type_vlen(t); 6932 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6933 /* 6934 * walking unions yields untrusted pointers 6935 * with exception of __bpf_md_ptr and other 6936 * unions with a single member 6937 */ 6938 *flag |= PTR_UNTRUSTED; 6939 6940 if (off + size > t->size) { 6941 /* If the last element is a variable size array, we may 6942 * need to relax the rule. 6943 */ 6944 struct btf_array *array_elem; 6945 6946 if (vlen == 0) 6947 goto error; 6948 6949 member = btf_type_member(t) + vlen - 1; 6950 mtype = btf_type_skip_modifiers(btf, member->type, 6951 NULL); 6952 if (!btf_type_is_array(mtype)) 6953 goto error; 6954 6955 array_elem = (struct btf_array *)(mtype + 1); 6956 if (array_elem->nelems != 0) 6957 goto error; 6958 6959 moff = __btf_member_bit_offset(t, member) / 8; 6960 if (off < moff) 6961 goto error; 6962 6963 /* allow structure and integer */ 6964 t = btf_type_skip_modifiers(btf, array_elem->type, 6965 NULL); 6966 6967 if (btf_type_is_int(t)) 6968 return WALK_SCALAR; 6969 6970 if (!btf_type_is_struct(t)) 6971 goto error; 6972 6973 off = (off - moff) % t->size; 6974 goto again; 6975 6976 error: 6977 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6978 tname, off, size); 6979 return -EACCES; 6980 } 6981 6982 for_each_member(i, t, member) { 6983 /* offset of the field in bytes */ 6984 moff = __btf_member_bit_offset(t, member) / 8; 6985 if (off + size <= moff) 6986 /* won't find anything, field is already too far */ 6987 break; 6988 6989 if (__btf_member_bitfield_size(t, member)) { 6990 u32 end_bit = __btf_member_bit_offset(t, member) + 6991 __btf_member_bitfield_size(t, member); 6992 6993 /* off <= moff instead of off == moff because clang 6994 * does not generate a BTF member for anonymous 6995 * bitfield like the ":16" here: 6996 * struct { 6997 * int :16; 6998 * int x:8; 6999 * }; 7000 */ 7001 if (off <= moff && 7002 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 7003 return WALK_SCALAR; 7004 7005 /* off may be accessing a following member 7006 * 7007 * or 7008 * 7009 * Doing partial access at either end of this 7010 * bitfield. Continue on this case also to 7011 * treat it as not accessing this bitfield 7012 * and eventually error out as field not 7013 * found to keep it simple. 7014 * It could be relaxed if there was a legit 7015 * partial access case later. 7016 */ 7017 continue; 7018 } 7019 7020 /* In case of "off" is pointing to holes of a struct */ 7021 if (off < moff) 7022 break; 7023 7024 /* type of the field */ 7025 mid = member->type; 7026 mtype = btf_type_by_id(btf, member->type); 7027 mname = __btf_name_by_offset(btf, member->name_off); 7028 7029 mtype = __btf_resolve_size(btf, mtype, &msize, 7030 &elem_type, &elem_id, &total_nelems, 7031 &mid); 7032 if (IS_ERR(mtype)) { 7033 bpf_log(log, "field %s doesn't have size\n", mname); 7034 return -EFAULT; 7035 } 7036 7037 mtrue_end = moff + msize; 7038 if (off >= mtrue_end) 7039 /* no overlap with member, keep iterating */ 7040 continue; 7041 7042 if (btf_type_is_array(mtype)) { 7043 u32 elem_idx; 7044 7045 /* __btf_resolve_size() above helps to 7046 * linearize a multi-dimensional array. 7047 * 7048 * The logic here is treating an array 7049 * in a struct as the following way: 7050 * 7051 * struct outer { 7052 * struct inner array[2][2]; 7053 * }; 7054 * 7055 * looks like: 7056 * 7057 * struct outer { 7058 * struct inner array_elem0; 7059 * struct inner array_elem1; 7060 * struct inner array_elem2; 7061 * struct inner array_elem3; 7062 * }; 7063 * 7064 * When accessing outer->array[1][0], it moves 7065 * moff to "array_elem2", set mtype to 7066 * "struct inner", and msize also becomes 7067 * sizeof(struct inner). Then most of the 7068 * remaining logic will fall through without 7069 * caring the current member is an array or 7070 * not. 7071 * 7072 * Unlike mtype/msize/moff, mtrue_end does not 7073 * change. The naming difference ("_true") tells 7074 * that it is not always corresponding to 7075 * the current mtype/msize/moff. 7076 * It is the true end of the current 7077 * member (i.e. array in this case). That 7078 * will allow an int array to be accessed like 7079 * a scratch space, 7080 * i.e. allow access beyond the size of 7081 * the array's element as long as it is 7082 * within the mtrue_end boundary. 7083 */ 7084 7085 /* skip empty array */ 7086 if (moff == mtrue_end) 7087 continue; 7088 7089 msize /= total_nelems; 7090 elem_idx = (off - moff) / msize; 7091 moff += elem_idx * msize; 7092 mtype = elem_type; 7093 mid = elem_id; 7094 } 7095 7096 /* the 'off' we're looking for is either equal to start 7097 * of this field or inside of this struct 7098 */ 7099 if (btf_type_is_struct(mtype)) { 7100 /* our field must be inside that union or struct */ 7101 t = mtype; 7102 7103 /* return if the offset matches the member offset */ 7104 if (off == moff) { 7105 *next_btf_id = mid; 7106 return WALK_STRUCT; 7107 } 7108 7109 /* adjust offset we're looking for */ 7110 off -= moff; 7111 goto again; 7112 } 7113 7114 if (btf_type_is_ptr(mtype)) { 7115 const struct btf_type *stype, *t; 7116 enum bpf_type_flag tmp_flag = 0; 7117 u32 id; 7118 7119 if (msize != size || off != moff) { 7120 bpf_log(log, 7121 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 7122 mname, moff, tname, off, size); 7123 return -EACCES; 7124 } 7125 7126 /* check type tag */ 7127 t = btf_type_by_id(btf, mtype->type); 7128 if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { 7129 tag_value = __btf_name_by_offset(btf, t->name_off); 7130 /* check __user tag */ 7131 if (strcmp(tag_value, "user") == 0) 7132 tmp_flag = MEM_USER; 7133 /* check __percpu tag */ 7134 if (strcmp(tag_value, "percpu") == 0) 7135 tmp_flag = MEM_PERCPU; 7136 /* check __rcu tag */ 7137 if (strcmp(tag_value, "rcu") == 0) 7138 tmp_flag = MEM_RCU; 7139 } 7140 7141 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 7142 if (btf_type_is_struct(stype)) { 7143 *next_btf_id = id; 7144 *flag |= tmp_flag; 7145 if (field_name) 7146 *field_name = mname; 7147 return WALK_PTR; 7148 } 7149 } 7150 7151 /* Allow more flexible access within an int as long as 7152 * it is within mtrue_end. 7153 * Since mtrue_end could be the end of an array, 7154 * that also allows using an array of int as a scratch 7155 * space. e.g. skb->cb[]. 7156 */ 7157 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 7158 bpf_log(log, 7159 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 7160 mname, mtrue_end, tname, off, size); 7161 return -EACCES; 7162 } 7163 7164 return WALK_SCALAR; 7165 } 7166 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 7167 return -EINVAL; 7168 } 7169 7170 int btf_struct_access(struct bpf_verifier_log *log, 7171 const struct bpf_reg_state *reg, 7172 int off, int size, enum bpf_access_type atype __maybe_unused, 7173 u32 *next_btf_id, enum bpf_type_flag *flag, 7174 const char **field_name) 7175 { 7176 const struct btf *btf = reg->btf; 7177 enum bpf_type_flag tmp_flag = 0; 7178 const struct btf_type *t; 7179 u32 id = reg->btf_id; 7180 int err; 7181 7182 while (type_is_alloc(reg->type)) { 7183 struct btf_struct_meta *meta; 7184 struct btf_record *rec; 7185 int i; 7186 7187 meta = btf_find_struct_meta(btf, id); 7188 if (!meta) 7189 break; 7190 rec = meta->record; 7191 for (i = 0; i < rec->cnt; i++) { 7192 struct btf_field *field = &rec->fields[i]; 7193 u32 offset = field->offset; 7194 if (off < offset + field->size && offset < off + size) { 7195 bpf_log(log, 7196 "direct access to %s is disallowed\n", 7197 btf_field_type_name(field->type)); 7198 return -EACCES; 7199 } 7200 } 7201 break; 7202 } 7203 7204 t = btf_type_by_id(btf, id); 7205 do { 7206 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 7207 7208 switch (err) { 7209 case WALK_PTR: 7210 /* For local types, the destination register cannot 7211 * become a pointer again. 7212 */ 7213 if (type_is_alloc(reg->type)) 7214 return SCALAR_VALUE; 7215 /* If we found the pointer or scalar on t+off, 7216 * we're done. 7217 */ 7218 *next_btf_id = id; 7219 *flag = tmp_flag; 7220 return PTR_TO_BTF_ID; 7221 case WALK_SCALAR: 7222 return SCALAR_VALUE; 7223 case WALK_STRUCT: 7224 /* We found nested struct, so continue the search 7225 * by diving in it. At this point the offset is 7226 * aligned with the new type, so set it to 0. 7227 */ 7228 t = btf_type_by_id(btf, id); 7229 off = 0; 7230 break; 7231 default: 7232 /* It's either error or unknown return value.. 7233 * scream and leave. 7234 */ 7235 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 7236 return -EINVAL; 7237 return err; 7238 } 7239 } while (t); 7240 7241 return -EINVAL; 7242 } 7243 7244 /* Check that two BTF types, each specified as an BTF object + id, are exactly 7245 * the same. Trivial ID check is not enough due to module BTFs, because we can 7246 * end up with two different module BTFs, but IDs point to the common type in 7247 * vmlinux BTF. 7248 */ 7249 bool btf_types_are_same(const struct btf *btf1, u32 id1, 7250 const struct btf *btf2, u32 id2) 7251 { 7252 if (id1 != id2) 7253 return false; 7254 if (btf1 == btf2) 7255 return true; 7256 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 7257 } 7258 7259 bool btf_struct_ids_match(struct bpf_verifier_log *log, 7260 const struct btf *btf, u32 id, int off, 7261 const struct btf *need_btf, u32 need_type_id, 7262 bool strict) 7263 { 7264 const struct btf_type *type; 7265 enum bpf_type_flag flag = 0; 7266 int err; 7267 7268 /* Are we already done? */ 7269 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 7270 return true; 7271 /* In case of strict type match, we do not walk struct, the top level 7272 * type match must succeed. When strict is true, off should have already 7273 * been 0. 7274 */ 7275 if (strict) 7276 return false; 7277 again: 7278 type = btf_type_by_id(btf, id); 7279 if (!type) 7280 return false; 7281 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 7282 if (err != WALK_STRUCT) 7283 return false; 7284 7285 /* We found nested struct object. If it matches 7286 * the requested ID, we're done. Otherwise let's 7287 * continue the search with offset 0 in the new 7288 * type. 7289 */ 7290 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 7291 off = 0; 7292 goto again; 7293 } 7294 7295 return true; 7296 } 7297 7298 static int __get_type_size(struct btf *btf, u32 btf_id, 7299 const struct btf_type **ret_type) 7300 { 7301 const struct btf_type *t; 7302 7303 *ret_type = btf_type_by_id(btf, 0); 7304 if (!btf_id) 7305 /* void */ 7306 return 0; 7307 t = btf_type_by_id(btf, btf_id); 7308 while (t && btf_type_is_modifier(t)) 7309 t = btf_type_by_id(btf, t->type); 7310 if (!t) 7311 return -EINVAL; 7312 *ret_type = t; 7313 if (btf_type_is_ptr(t)) 7314 /* kernel size of pointer. Not BPF's size of pointer*/ 7315 return sizeof(void *); 7316 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 7317 return t->size; 7318 return -EINVAL; 7319 } 7320 7321 static u8 __get_type_fmodel_flags(const struct btf_type *t) 7322 { 7323 u8 flags = 0; 7324 7325 if (__btf_type_is_struct(t)) 7326 flags |= BTF_FMODEL_STRUCT_ARG; 7327 if (btf_type_is_signed_int(t)) 7328 flags |= BTF_FMODEL_SIGNED_ARG; 7329 7330 return flags; 7331 } 7332 7333 int btf_distill_func_proto(struct bpf_verifier_log *log, 7334 struct btf *btf, 7335 const struct btf_type *func, 7336 const char *tname, 7337 struct btf_func_model *m) 7338 { 7339 const struct btf_param *args; 7340 const struct btf_type *t; 7341 u32 i, nargs; 7342 int ret; 7343 7344 if (!func) { 7345 /* BTF function prototype doesn't match the verifier types. 7346 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 7347 */ 7348 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7349 m->arg_size[i] = 8; 7350 m->arg_flags[i] = 0; 7351 } 7352 m->ret_size = 8; 7353 m->ret_flags = 0; 7354 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 7355 return 0; 7356 } 7357 args = (const struct btf_param *)(func + 1); 7358 nargs = btf_type_vlen(func); 7359 if (nargs > MAX_BPF_FUNC_ARGS) { 7360 bpf_log(log, 7361 "The function %s has %d arguments. Too many.\n", 7362 tname, nargs); 7363 return -EINVAL; 7364 } 7365 ret = __get_type_size(btf, func->type, &t); 7366 if (ret < 0 || __btf_type_is_struct(t)) { 7367 bpf_log(log, 7368 "The function %s return type %s is unsupported.\n", 7369 tname, btf_type_str(t)); 7370 return -EINVAL; 7371 } 7372 m->ret_size = ret; 7373 m->ret_flags = __get_type_fmodel_flags(t); 7374 7375 for (i = 0; i < nargs; i++) { 7376 if (i == nargs - 1 && args[i].type == 0) { 7377 bpf_log(log, 7378 "The function %s with variable args is unsupported.\n", 7379 tname); 7380 return -EINVAL; 7381 } 7382 ret = __get_type_size(btf, args[i].type, &t); 7383 7384 /* No support of struct argument size greater than 16 bytes */ 7385 if (ret < 0 || ret > 16) { 7386 bpf_log(log, 7387 "The function %s arg%d type %s is unsupported.\n", 7388 tname, i, btf_type_str(t)); 7389 return -EINVAL; 7390 } 7391 if (ret == 0) { 7392 bpf_log(log, 7393 "The function %s has malformed void argument.\n", 7394 tname); 7395 return -EINVAL; 7396 } 7397 m->arg_size[i] = ret; 7398 m->arg_flags[i] = __get_type_fmodel_flags(t); 7399 } 7400 m->nr_args = nargs; 7401 return 0; 7402 } 7403 7404 /* Compare BTFs of two functions assuming only scalars and pointers to context. 7405 * t1 points to BTF_KIND_FUNC in btf1 7406 * t2 points to BTF_KIND_FUNC in btf2 7407 * Returns: 7408 * EINVAL - function prototype mismatch 7409 * EFAULT - verifier bug 7410 * 0 - 99% match. The last 1% is validated by the verifier. 7411 */ 7412 static int btf_check_func_type_match(struct bpf_verifier_log *log, 7413 struct btf *btf1, const struct btf_type *t1, 7414 struct btf *btf2, const struct btf_type *t2) 7415 { 7416 const struct btf_param *args1, *args2; 7417 const char *fn1, *fn2, *s1, *s2; 7418 u32 nargs1, nargs2, i; 7419 7420 fn1 = btf_name_by_offset(btf1, t1->name_off); 7421 fn2 = btf_name_by_offset(btf2, t2->name_off); 7422 7423 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 7424 bpf_log(log, "%s() is not a global function\n", fn1); 7425 return -EINVAL; 7426 } 7427 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 7428 bpf_log(log, "%s() is not a global function\n", fn2); 7429 return -EINVAL; 7430 } 7431 7432 t1 = btf_type_by_id(btf1, t1->type); 7433 if (!t1 || !btf_type_is_func_proto(t1)) 7434 return -EFAULT; 7435 t2 = btf_type_by_id(btf2, t2->type); 7436 if (!t2 || !btf_type_is_func_proto(t2)) 7437 return -EFAULT; 7438 7439 args1 = (const struct btf_param *)(t1 + 1); 7440 nargs1 = btf_type_vlen(t1); 7441 args2 = (const struct btf_param *)(t2 + 1); 7442 nargs2 = btf_type_vlen(t2); 7443 7444 if (nargs1 != nargs2) { 7445 bpf_log(log, "%s() has %d args while %s() has %d args\n", 7446 fn1, nargs1, fn2, nargs2); 7447 return -EINVAL; 7448 } 7449 7450 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7451 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7452 if (t1->info != t2->info) { 7453 bpf_log(log, 7454 "Return type %s of %s() doesn't match type %s of %s()\n", 7455 btf_type_str(t1), fn1, 7456 btf_type_str(t2), fn2); 7457 return -EINVAL; 7458 } 7459 7460 for (i = 0; i < nargs1; i++) { 7461 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 7462 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 7463 7464 if (t1->info != t2->info) { 7465 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 7466 i, fn1, btf_type_str(t1), 7467 fn2, btf_type_str(t2)); 7468 return -EINVAL; 7469 } 7470 if (btf_type_has_size(t1) && t1->size != t2->size) { 7471 bpf_log(log, 7472 "arg%d in %s() has size %d while %s() has %d\n", 7473 i, fn1, t1->size, 7474 fn2, t2->size); 7475 return -EINVAL; 7476 } 7477 7478 /* global functions are validated with scalars and pointers 7479 * to context only. And only global functions can be replaced. 7480 * Hence type check only those types. 7481 */ 7482 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 7483 continue; 7484 if (!btf_type_is_ptr(t1)) { 7485 bpf_log(log, 7486 "arg%d in %s() has unrecognized type\n", 7487 i, fn1); 7488 return -EINVAL; 7489 } 7490 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 7491 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 7492 if (!btf_type_is_struct(t1)) { 7493 bpf_log(log, 7494 "arg%d in %s() is not a pointer to context\n", 7495 i, fn1); 7496 return -EINVAL; 7497 } 7498 if (!btf_type_is_struct(t2)) { 7499 bpf_log(log, 7500 "arg%d in %s() is not a pointer to context\n", 7501 i, fn2); 7502 return -EINVAL; 7503 } 7504 /* This is an optional check to make program writing easier. 7505 * Compare names of structs and report an error to the user. 7506 * btf_prepare_func_args() already checked that t2 struct 7507 * is a context type. btf_prepare_func_args() will check 7508 * later that t1 struct is a context type as well. 7509 */ 7510 s1 = btf_name_by_offset(btf1, t1->name_off); 7511 s2 = btf_name_by_offset(btf2, t2->name_off); 7512 if (strcmp(s1, s2)) { 7513 bpf_log(log, 7514 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 7515 i, fn1, s1, fn2, s2); 7516 return -EINVAL; 7517 } 7518 } 7519 return 0; 7520 } 7521 7522 /* Compare BTFs of given program with BTF of target program */ 7523 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 7524 struct btf *btf2, const struct btf_type *t2) 7525 { 7526 struct btf *btf1 = prog->aux->btf; 7527 const struct btf_type *t1; 7528 u32 btf_id = 0; 7529 7530 if (!prog->aux->func_info) { 7531 bpf_log(log, "Program extension requires BTF\n"); 7532 return -EINVAL; 7533 } 7534 7535 btf_id = prog->aux->func_info[0].type_id; 7536 if (!btf_id) 7537 return -EFAULT; 7538 7539 t1 = btf_type_by_id(btf1, btf_id); 7540 if (!t1 || !btf_type_is_func(t1)) 7541 return -EFAULT; 7542 7543 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 7544 } 7545 7546 static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) 7547 { 7548 const char *name; 7549 7550 t = btf_type_by_id(btf, t->type); /* skip PTR */ 7551 7552 while (btf_type_is_modifier(t)) 7553 t = btf_type_by_id(btf, t->type); 7554 7555 /* allow either struct or struct forward declaration */ 7556 if (btf_type_is_struct(t) || 7557 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { 7558 name = btf_str_by_offset(btf, t->name_off); 7559 return name && strcmp(name, "bpf_dynptr") == 0; 7560 } 7561 7562 return false; 7563 } 7564 7565 struct bpf_cand_cache { 7566 const char *name; 7567 u32 name_len; 7568 u16 kind; 7569 u16 cnt; 7570 struct { 7571 const struct btf *btf; 7572 u32 id; 7573 } cands[]; 7574 }; 7575 7576 static DEFINE_MUTEX(cand_cache_mutex); 7577 7578 static struct bpf_cand_cache * 7579 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); 7580 7581 static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, 7582 const struct btf *btf, const struct btf_type *t) 7583 { 7584 struct bpf_cand_cache *cc; 7585 struct bpf_core_ctx ctx = { 7586 .btf = btf, 7587 .log = log, 7588 }; 7589 u32 kern_type_id, type_id; 7590 int err = 0; 7591 7592 /* skip PTR and modifiers */ 7593 type_id = t->type; 7594 t = btf_type_by_id(btf, t->type); 7595 while (btf_type_is_modifier(t)) { 7596 type_id = t->type; 7597 t = btf_type_by_id(btf, t->type); 7598 } 7599 7600 mutex_lock(&cand_cache_mutex); 7601 cc = bpf_core_find_cands(&ctx, type_id); 7602 if (IS_ERR(cc)) { 7603 err = PTR_ERR(cc); 7604 bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", 7605 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7606 err); 7607 goto cand_cache_unlock; 7608 } 7609 if (cc->cnt != 1) { 7610 bpf_log(log, "arg#%d reference type('%s %s') %s\n", 7611 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), 7612 cc->cnt == 0 ? "has no matches" : "is ambiguous"); 7613 err = cc->cnt == 0 ? -ENOENT : -ESRCH; 7614 goto cand_cache_unlock; 7615 } 7616 if (btf_is_module(cc->cands[0].btf)) { 7617 bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", 7618 arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); 7619 err = -EOPNOTSUPP; 7620 goto cand_cache_unlock; 7621 } 7622 kern_type_id = cc->cands[0].id; 7623 7624 cand_cache_unlock: 7625 mutex_unlock(&cand_cache_mutex); 7626 if (err) 7627 return err; 7628 7629 return kern_type_id; 7630 } 7631 7632 enum btf_arg_tag { 7633 ARG_TAG_CTX = BIT_ULL(0), 7634 ARG_TAG_NONNULL = BIT_ULL(1), 7635 ARG_TAG_TRUSTED = BIT_ULL(2), 7636 ARG_TAG_NULLABLE = BIT_ULL(3), 7637 ARG_TAG_ARENA = BIT_ULL(4), 7638 }; 7639 7640 /* Process BTF of a function to produce high-level expectation of function 7641 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information 7642 * is cached in subprog info for reuse. 7643 * Returns: 7644 * EFAULT - there is a verifier bug. Abort verification. 7645 * EINVAL - cannot convert BTF. 7646 * 0 - Successfully processed BTF and constructed argument expectations. 7647 */ 7648 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) 7649 { 7650 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; 7651 struct bpf_subprog_info *sub = subprog_info(env, subprog); 7652 struct bpf_verifier_log *log = &env->log; 7653 struct bpf_prog *prog = env->prog; 7654 enum bpf_prog_type prog_type = prog->type; 7655 struct btf *btf = prog->aux->btf; 7656 const struct btf_param *args; 7657 const struct btf_type *t, *ref_t, *fn_t; 7658 u32 i, nargs, btf_id; 7659 const char *tname; 7660 7661 if (sub->args_cached) 7662 return 0; 7663 7664 if (!prog->aux->func_info) { 7665 bpf_log(log, "Verifier bug\n"); 7666 return -EFAULT; 7667 } 7668 7669 btf_id = prog->aux->func_info[subprog].type_id; 7670 if (!btf_id) { 7671 if (!is_global) /* not fatal for static funcs */ 7672 return -EINVAL; 7673 bpf_log(log, "Global functions need valid BTF\n"); 7674 return -EFAULT; 7675 } 7676 7677 fn_t = btf_type_by_id(btf, btf_id); 7678 if (!fn_t || !btf_type_is_func(fn_t)) { 7679 /* These checks were already done by the verifier while loading 7680 * struct bpf_func_info 7681 */ 7682 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 7683 subprog); 7684 return -EFAULT; 7685 } 7686 tname = btf_name_by_offset(btf, fn_t->name_off); 7687 7688 if (prog->aux->func_info_aux[subprog].unreliable) { 7689 bpf_log(log, "Verifier bug in function %s()\n", tname); 7690 return -EFAULT; 7691 } 7692 if (prog_type == BPF_PROG_TYPE_EXT) 7693 prog_type = prog->aux->dst_prog->type; 7694 7695 t = btf_type_by_id(btf, fn_t->type); 7696 if (!t || !btf_type_is_func_proto(t)) { 7697 bpf_log(log, "Invalid type of function %s()\n", tname); 7698 return -EFAULT; 7699 } 7700 args = (const struct btf_param *)(t + 1); 7701 nargs = btf_type_vlen(t); 7702 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7703 if (!is_global) 7704 return -EINVAL; 7705 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7706 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7707 return -EINVAL; 7708 } 7709 /* check that function returns int, exception cb also requires this */ 7710 t = btf_type_by_id(btf, t->type); 7711 while (btf_type_is_modifier(t)) 7712 t = btf_type_by_id(btf, t->type); 7713 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7714 if (!is_global) 7715 return -EINVAL; 7716 bpf_log(log, 7717 "Global function %s() doesn't return scalar. Only those are supported.\n", 7718 tname); 7719 return -EINVAL; 7720 } 7721 /* Convert BTF function arguments into verifier types. 7722 * Only PTR_TO_CTX and SCALAR are supported atm. 7723 */ 7724 for (i = 0; i < nargs; i++) { 7725 u32 tags = 0; 7726 int id = 0; 7727 7728 /* 'arg:<tag>' decl_tag takes precedence over derivation of 7729 * register type from BTF type itself 7730 */ 7731 while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { 7732 const struct btf_type *tag_t = btf_type_by_id(btf, id); 7733 const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; 7734 7735 /* disallow arg tags in static subprogs */ 7736 if (!is_global) { 7737 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); 7738 return -EOPNOTSUPP; 7739 } 7740 7741 if (strcmp(tag, "ctx") == 0) { 7742 tags |= ARG_TAG_CTX; 7743 } else if (strcmp(tag, "trusted") == 0) { 7744 tags |= ARG_TAG_TRUSTED; 7745 } else if (strcmp(tag, "nonnull") == 0) { 7746 tags |= ARG_TAG_NONNULL; 7747 } else if (strcmp(tag, "nullable") == 0) { 7748 tags |= ARG_TAG_NULLABLE; 7749 } else if (strcmp(tag, "arena") == 0) { 7750 tags |= ARG_TAG_ARENA; 7751 } else { 7752 bpf_log(log, "arg#%d has unsupported set of tags\n", i); 7753 return -EOPNOTSUPP; 7754 } 7755 } 7756 if (id != -ENOENT) { 7757 bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); 7758 return id; 7759 } 7760 7761 t = btf_type_by_id(btf, args[i].type); 7762 while (btf_type_is_modifier(t)) 7763 t = btf_type_by_id(btf, t->type); 7764 if (!btf_type_is_ptr(t)) 7765 goto skip_pointer; 7766 7767 if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { 7768 if (tags & ~ARG_TAG_CTX) { 7769 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7770 return -EINVAL; 7771 } 7772 if ((tags & ARG_TAG_CTX) && 7773 btf_validate_prog_ctx_type(log, btf, t, i, prog_type, 7774 prog->expected_attach_type)) 7775 return -EINVAL; 7776 sub->args[i].arg_type = ARG_PTR_TO_CTX; 7777 continue; 7778 } 7779 if (btf_is_dynptr_ptr(btf, t)) { 7780 if (tags) { 7781 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7782 return -EINVAL; 7783 } 7784 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; 7785 continue; 7786 } 7787 if (tags & ARG_TAG_TRUSTED) { 7788 int kern_type_id; 7789 7790 if (tags & ARG_TAG_NONNULL) { 7791 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7792 return -EINVAL; 7793 } 7794 7795 kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); 7796 if (kern_type_id < 0) 7797 return kern_type_id; 7798 7799 sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; 7800 if (tags & ARG_TAG_NULLABLE) 7801 sub->args[i].arg_type |= PTR_MAYBE_NULL; 7802 sub->args[i].btf_id = kern_type_id; 7803 continue; 7804 } 7805 if (tags & ARG_TAG_ARENA) { 7806 if (tags & ~ARG_TAG_ARENA) { 7807 bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); 7808 return -EINVAL; 7809 } 7810 sub->args[i].arg_type = ARG_PTR_TO_ARENA; 7811 continue; 7812 } 7813 if (is_global) { /* generic user data pointer */ 7814 u32 mem_size; 7815 7816 if (tags & ARG_TAG_NULLABLE) { 7817 bpf_log(log, "arg#%d has invalid combination of tags\n", i); 7818 return -EINVAL; 7819 } 7820 7821 t = btf_type_skip_modifiers(btf, t->type, NULL); 7822 ref_t = btf_resolve_size(btf, t, &mem_size); 7823 if (IS_ERR(ref_t)) { 7824 bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7825 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7826 PTR_ERR(ref_t)); 7827 return -EINVAL; 7828 } 7829 7830 sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; 7831 if (tags & ARG_TAG_NONNULL) 7832 sub->args[i].arg_type &= ~PTR_MAYBE_NULL; 7833 sub->args[i].mem_size = mem_size; 7834 continue; 7835 } 7836 7837 skip_pointer: 7838 if (tags) { 7839 bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); 7840 return -EINVAL; 7841 } 7842 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7843 sub->args[i].arg_type = ARG_ANYTHING; 7844 continue; 7845 } 7846 if (!is_global) 7847 return -EINVAL; 7848 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7849 i, btf_type_str(t), tname); 7850 return -EINVAL; 7851 } 7852 7853 sub->arg_cnt = nargs; 7854 sub->args_cached = true; 7855 7856 return 0; 7857 } 7858 7859 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7860 struct btf_show *show) 7861 { 7862 const struct btf_type *t = btf_type_by_id(btf, type_id); 7863 7864 show->btf = btf; 7865 memset(&show->state, 0, sizeof(show->state)); 7866 memset(&show->obj, 0, sizeof(show->obj)); 7867 7868 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7869 } 7870 7871 __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, 7872 va_list args) 7873 { 7874 seq_vprintf((struct seq_file *)show->target, fmt, args); 7875 } 7876 7877 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7878 void *obj, struct seq_file *m, u64 flags) 7879 { 7880 struct btf_show sseq; 7881 7882 sseq.target = m; 7883 sseq.showfn = btf_seq_show; 7884 sseq.flags = flags; 7885 7886 btf_type_show(btf, type_id, obj, &sseq); 7887 7888 return sseq.state.status; 7889 } 7890 7891 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7892 struct seq_file *m) 7893 { 7894 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7895 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7896 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7897 } 7898 7899 struct btf_show_snprintf { 7900 struct btf_show show; 7901 int len_left; /* space left in string */ 7902 int len; /* length we would have written */ 7903 }; 7904 7905 __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7906 va_list args) 7907 { 7908 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7909 int len; 7910 7911 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7912 7913 if (len < 0) { 7914 ssnprintf->len_left = 0; 7915 ssnprintf->len = len; 7916 } else if (len >= ssnprintf->len_left) { 7917 /* no space, drive on to get length we would have written */ 7918 ssnprintf->len_left = 0; 7919 ssnprintf->len += len; 7920 } else { 7921 ssnprintf->len_left -= len; 7922 ssnprintf->len += len; 7923 show->target += len; 7924 } 7925 } 7926 7927 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7928 char *buf, int len, u64 flags) 7929 { 7930 struct btf_show_snprintf ssnprintf; 7931 7932 ssnprintf.show.target = buf; 7933 ssnprintf.show.flags = flags; 7934 ssnprintf.show.showfn = btf_snprintf_show; 7935 ssnprintf.len_left = len; 7936 ssnprintf.len = 0; 7937 7938 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7939 7940 /* If we encountered an error, return it. */ 7941 if (ssnprintf.show.state.status) 7942 return ssnprintf.show.state.status; 7943 7944 /* Otherwise return length we would have written */ 7945 return ssnprintf.len; 7946 } 7947 7948 #ifdef CONFIG_PROC_FS 7949 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7950 { 7951 const struct btf *btf = filp->private_data; 7952 7953 seq_printf(m, "btf_id:\t%u\n", btf->id); 7954 } 7955 #endif 7956 7957 static int btf_release(struct inode *inode, struct file *filp) 7958 { 7959 btf_put(filp->private_data); 7960 return 0; 7961 } 7962 7963 const struct file_operations btf_fops = { 7964 #ifdef CONFIG_PROC_FS 7965 .show_fdinfo = bpf_btf_show_fdinfo, 7966 #endif 7967 .release = btf_release, 7968 }; 7969 7970 static int __btf_new_fd(struct btf *btf) 7971 { 7972 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7973 } 7974 7975 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7976 { 7977 struct btf *btf; 7978 int ret; 7979 7980 btf = btf_parse(attr, uattr, uattr_size); 7981 if (IS_ERR(btf)) 7982 return PTR_ERR(btf); 7983 7984 ret = btf_alloc_id(btf); 7985 if (ret) { 7986 btf_free(btf); 7987 return ret; 7988 } 7989 7990 /* 7991 * The BTF ID is published to the userspace. 7992 * All BTF free must go through call_rcu() from 7993 * now on (i.e. free by calling btf_put()). 7994 */ 7995 7996 ret = __btf_new_fd(btf); 7997 if (ret < 0) 7998 btf_put(btf); 7999 8000 return ret; 8001 } 8002 8003 struct btf *btf_get_by_fd(int fd) 8004 { 8005 struct btf *btf; 8006 CLASS(fd, f)(fd); 8007 8008 btf = __btf_get_by_fd(f); 8009 if (!IS_ERR(btf)) 8010 refcount_inc(&btf->refcnt); 8011 8012 return btf; 8013 } 8014 8015 int btf_get_info_by_fd(const struct btf *btf, 8016 const union bpf_attr *attr, 8017 union bpf_attr __user *uattr) 8018 { 8019 struct bpf_btf_info __user *uinfo; 8020 struct bpf_btf_info info; 8021 u32 info_copy, btf_copy; 8022 void __user *ubtf; 8023 char __user *uname; 8024 u32 uinfo_len, uname_len, name_len; 8025 int ret = 0; 8026 8027 uinfo = u64_to_user_ptr(attr->info.info); 8028 uinfo_len = attr->info.info_len; 8029 8030 info_copy = min_t(u32, uinfo_len, sizeof(info)); 8031 memset(&info, 0, sizeof(info)); 8032 if (copy_from_user(&info, uinfo, info_copy)) 8033 return -EFAULT; 8034 8035 info.id = btf->id; 8036 ubtf = u64_to_user_ptr(info.btf); 8037 btf_copy = min_t(u32, btf->data_size, info.btf_size); 8038 if (copy_to_user(ubtf, btf->data, btf_copy)) 8039 return -EFAULT; 8040 info.btf_size = btf->data_size; 8041 8042 info.kernel_btf = btf->kernel_btf; 8043 8044 uname = u64_to_user_ptr(info.name); 8045 uname_len = info.name_len; 8046 if (!uname ^ !uname_len) 8047 return -EINVAL; 8048 8049 name_len = strlen(btf->name); 8050 info.name_len = name_len; 8051 8052 if (uname) { 8053 if (uname_len >= name_len + 1) { 8054 if (copy_to_user(uname, btf->name, name_len + 1)) 8055 return -EFAULT; 8056 } else { 8057 char zero = '\0'; 8058 8059 if (copy_to_user(uname, btf->name, uname_len - 1)) 8060 return -EFAULT; 8061 if (put_user(zero, uname + uname_len - 1)) 8062 return -EFAULT; 8063 /* let user-space know about too short buffer */ 8064 ret = -ENOSPC; 8065 } 8066 } 8067 8068 if (copy_to_user(uinfo, &info, info_copy) || 8069 put_user(info_copy, &uattr->info.info_len)) 8070 return -EFAULT; 8071 8072 return ret; 8073 } 8074 8075 int btf_get_fd_by_id(u32 id) 8076 { 8077 struct btf *btf; 8078 int fd; 8079 8080 rcu_read_lock(); 8081 btf = idr_find(&btf_idr, id); 8082 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 8083 btf = ERR_PTR(-ENOENT); 8084 rcu_read_unlock(); 8085 8086 if (IS_ERR(btf)) 8087 return PTR_ERR(btf); 8088 8089 fd = __btf_new_fd(btf); 8090 if (fd < 0) 8091 btf_put(btf); 8092 8093 return fd; 8094 } 8095 8096 u32 btf_obj_id(const struct btf *btf) 8097 { 8098 return btf->id; 8099 } 8100 8101 bool btf_is_kernel(const struct btf *btf) 8102 { 8103 return btf->kernel_btf; 8104 } 8105 8106 bool btf_is_module(const struct btf *btf) 8107 { 8108 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 8109 } 8110 8111 enum { 8112 BTF_MODULE_F_LIVE = (1 << 0), 8113 }; 8114 8115 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8116 struct btf_module { 8117 struct list_head list; 8118 struct module *module; 8119 struct btf *btf; 8120 struct bin_attribute *sysfs_attr; 8121 int flags; 8122 }; 8123 8124 static LIST_HEAD(btf_modules); 8125 static DEFINE_MUTEX(btf_module_mutex); 8126 8127 static void purge_cand_cache(struct btf *btf); 8128 8129 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 8130 void *module) 8131 { 8132 struct btf_module *btf_mod, *tmp; 8133 struct module *mod = module; 8134 struct btf *btf; 8135 int err = 0; 8136 8137 if (mod->btf_data_size == 0 || 8138 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 8139 op != MODULE_STATE_GOING)) 8140 goto out; 8141 8142 switch (op) { 8143 case MODULE_STATE_COMING: 8144 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 8145 if (!btf_mod) { 8146 err = -ENOMEM; 8147 goto out; 8148 } 8149 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, 8150 mod->btf_base_data, mod->btf_base_data_size); 8151 if (IS_ERR(btf)) { 8152 kfree(btf_mod); 8153 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 8154 pr_warn("failed to validate module [%s] BTF: %ld\n", 8155 mod->name, PTR_ERR(btf)); 8156 err = PTR_ERR(btf); 8157 } else { 8158 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 8159 } 8160 goto out; 8161 } 8162 err = btf_alloc_id(btf); 8163 if (err) { 8164 btf_free(btf); 8165 kfree(btf_mod); 8166 goto out; 8167 } 8168 8169 purge_cand_cache(NULL); 8170 mutex_lock(&btf_module_mutex); 8171 btf_mod->module = module; 8172 btf_mod->btf = btf; 8173 list_add(&btf_mod->list, &btf_modules); 8174 mutex_unlock(&btf_module_mutex); 8175 8176 if (IS_ENABLED(CONFIG_SYSFS)) { 8177 struct bin_attribute *attr; 8178 8179 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 8180 if (!attr) 8181 goto out; 8182 8183 sysfs_bin_attr_init(attr); 8184 attr->attr.name = btf->name; 8185 attr->attr.mode = 0444; 8186 attr->size = btf->data_size; 8187 attr->private = btf->data; 8188 attr->read_new = sysfs_bin_attr_simple_read; 8189 8190 err = sysfs_create_bin_file(btf_kobj, attr); 8191 if (err) { 8192 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 8193 mod->name, err); 8194 kfree(attr); 8195 err = 0; 8196 goto out; 8197 } 8198 8199 btf_mod->sysfs_attr = attr; 8200 } 8201 8202 break; 8203 case MODULE_STATE_LIVE: 8204 mutex_lock(&btf_module_mutex); 8205 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8206 if (btf_mod->module != module) 8207 continue; 8208 8209 btf_mod->flags |= BTF_MODULE_F_LIVE; 8210 break; 8211 } 8212 mutex_unlock(&btf_module_mutex); 8213 break; 8214 case MODULE_STATE_GOING: 8215 mutex_lock(&btf_module_mutex); 8216 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8217 if (btf_mod->module != module) 8218 continue; 8219 8220 list_del(&btf_mod->list); 8221 if (btf_mod->sysfs_attr) 8222 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 8223 purge_cand_cache(btf_mod->btf); 8224 btf_put(btf_mod->btf); 8225 kfree(btf_mod->sysfs_attr); 8226 kfree(btf_mod); 8227 break; 8228 } 8229 mutex_unlock(&btf_module_mutex); 8230 break; 8231 } 8232 out: 8233 return notifier_from_errno(err); 8234 } 8235 8236 static struct notifier_block btf_module_nb = { 8237 .notifier_call = btf_module_notify, 8238 }; 8239 8240 static int __init btf_module_init(void) 8241 { 8242 register_module_notifier(&btf_module_nb); 8243 return 0; 8244 } 8245 8246 fs_initcall(btf_module_init); 8247 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 8248 8249 struct module *btf_try_get_module(const struct btf *btf) 8250 { 8251 struct module *res = NULL; 8252 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8253 struct btf_module *btf_mod, *tmp; 8254 8255 mutex_lock(&btf_module_mutex); 8256 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8257 if (btf_mod->btf != btf) 8258 continue; 8259 8260 /* We must only consider module whose __init routine has 8261 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 8262 * which is set from the notifier callback for 8263 * MODULE_STATE_LIVE. 8264 */ 8265 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 8266 res = btf_mod->module; 8267 8268 break; 8269 } 8270 mutex_unlock(&btf_module_mutex); 8271 #endif 8272 8273 return res; 8274 } 8275 8276 /* Returns struct btf corresponding to the struct module. 8277 * This function can return NULL or ERR_PTR. 8278 */ 8279 static struct btf *btf_get_module_btf(const struct module *module) 8280 { 8281 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8282 struct btf_module *btf_mod, *tmp; 8283 #endif 8284 struct btf *btf = NULL; 8285 8286 if (!module) { 8287 btf = bpf_get_btf_vmlinux(); 8288 if (!IS_ERR_OR_NULL(btf)) 8289 btf_get(btf); 8290 return btf; 8291 } 8292 8293 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8294 mutex_lock(&btf_module_mutex); 8295 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 8296 if (btf_mod->module != module) 8297 continue; 8298 8299 btf_get(btf_mod->btf); 8300 btf = btf_mod->btf; 8301 break; 8302 } 8303 mutex_unlock(&btf_module_mutex); 8304 #endif 8305 8306 return btf; 8307 } 8308 8309 static int check_btf_kconfigs(const struct module *module, const char *feature) 8310 { 8311 if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8312 pr_err("missing vmlinux BTF, cannot register %s\n", feature); 8313 return -ENOENT; 8314 } 8315 if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 8316 pr_warn("missing module BTF, cannot register %s\n", feature); 8317 return 0; 8318 } 8319 8320 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 8321 { 8322 struct btf *btf = NULL; 8323 int btf_obj_fd = 0; 8324 long ret; 8325 8326 if (flags) 8327 return -EINVAL; 8328 8329 if (name_sz <= 1 || name[name_sz - 1]) 8330 return -EINVAL; 8331 8332 ret = bpf_find_btf_id(name, kind, &btf); 8333 if (ret > 0 && btf_is_module(btf)) { 8334 btf_obj_fd = __btf_new_fd(btf); 8335 if (btf_obj_fd < 0) { 8336 btf_put(btf); 8337 return btf_obj_fd; 8338 } 8339 return ret | (((u64)btf_obj_fd) << 32); 8340 } 8341 if (ret > 0) 8342 btf_put(btf); 8343 return ret; 8344 } 8345 8346 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 8347 .func = bpf_btf_find_by_name_kind, 8348 .gpl_only = false, 8349 .ret_type = RET_INTEGER, 8350 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 8351 .arg2_type = ARG_CONST_SIZE, 8352 .arg3_type = ARG_ANYTHING, 8353 .arg4_type = ARG_ANYTHING, 8354 }; 8355 8356 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 8357 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 8358 BTF_TRACING_TYPE_xxx 8359 #undef BTF_TRACING_TYPE 8360 8361 /* Validate well-formedness of iter argument type. 8362 * On success, return positive BTF ID of iter state's STRUCT type. 8363 * On error, negative error is returned. 8364 */ 8365 int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) 8366 { 8367 const struct btf_param *arg; 8368 const struct btf_type *t; 8369 const char *name; 8370 int btf_id; 8371 8372 if (btf_type_vlen(func) <= arg_idx) 8373 return -EINVAL; 8374 8375 arg = &btf_params(func)[arg_idx]; 8376 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8377 if (!t || !btf_type_is_ptr(t)) 8378 return -EINVAL; 8379 t = btf_type_skip_modifiers(btf, t->type, &btf_id); 8380 if (!t || !__btf_type_is_struct(t)) 8381 return -EINVAL; 8382 8383 name = btf_name_by_offset(btf, t->name_off); 8384 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 8385 return -EINVAL; 8386 8387 return btf_id; 8388 } 8389 8390 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 8391 const struct btf_type *func, u32 func_flags) 8392 { 8393 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8394 const char *sfx, *iter_name; 8395 const struct btf_type *t; 8396 char exp_name[128]; 8397 u32 nr_args; 8398 int btf_id; 8399 8400 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 8401 if (!flags || (flags & (flags - 1))) 8402 return -EINVAL; 8403 8404 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 8405 nr_args = btf_type_vlen(func); 8406 if (nr_args < 1) 8407 return -EINVAL; 8408 8409 btf_id = btf_check_iter_arg(btf, func, 0); 8410 if (btf_id < 0) 8411 return btf_id; 8412 8413 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 8414 * fit nicely in stack slots 8415 */ 8416 t = btf_type_by_id(btf, btf_id); 8417 if (t->size == 0 || (t->size % 8)) 8418 return -EINVAL; 8419 8420 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 8421 * naming pattern 8422 */ 8423 iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; 8424 if (flags & KF_ITER_NEW) 8425 sfx = "new"; 8426 else if (flags & KF_ITER_NEXT) 8427 sfx = "next"; 8428 else /* (flags & KF_ITER_DESTROY) */ 8429 sfx = "destroy"; 8430 8431 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 8432 if (strcmp(func_name, exp_name)) 8433 return -EINVAL; 8434 8435 /* only iter constructor should have extra arguments */ 8436 if (!(flags & KF_ITER_NEW) && nr_args != 1) 8437 return -EINVAL; 8438 8439 if (flags & KF_ITER_NEXT) { 8440 /* bpf_iter_<type>_next() should return pointer */ 8441 t = btf_type_skip_modifiers(btf, func->type, NULL); 8442 if (!t || !btf_type_is_ptr(t)) 8443 return -EINVAL; 8444 } 8445 8446 if (flags & KF_ITER_DESTROY) { 8447 /* bpf_iter_<type>_destroy() should return void */ 8448 t = btf_type_by_id(btf, func->type); 8449 if (!t || !btf_type_is_void(t)) 8450 return -EINVAL; 8451 } 8452 8453 return 0; 8454 } 8455 8456 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 8457 { 8458 const struct btf_type *func; 8459 const char *func_name; 8460 int err; 8461 8462 /* any kfunc should be FUNC -> FUNC_PROTO */ 8463 func = btf_type_by_id(btf, func_id); 8464 if (!func || !btf_type_is_func(func)) 8465 return -EINVAL; 8466 8467 /* sanity check kfunc name */ 8468 func_name = btf_name_by_offset(btf, func->name_off); 8469 if (!func_name || !func_name[0]) 8470 return -EINVAL; 8471 8472 func = btf_type_by_id(btf, func->type); 8473 if (!func || !btf_type_is_func_proto(func)) 8474 return -EINVAL; 8475 8476 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 8477 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 8478 if (err) 8479 return err; 8480 } 8481 8482 return 0; 8483 } 8484 8485 /* Kernel Function (kfunc) BTF ID set registration API */ 8486 8487 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 8488 const struct btf_kfunc_id_set *kset) 8489 { 8490 struct btf_kfunc_hook_filter *hook_filter; 8491 struct btf_id_set8 *add_set = kset->set; 8492 bool vmlinux_set = !btf_is_module(btf); 8493 bool add_filter = !!kset->filter; 8494 struct btf_kfunc_set_tab *tab; 8495 struct btf_id_set8 *set; 8496 u32 set_cnt, i; 8497 int ret; 8498 8499 if (hook >= BTF_KFUNC_HOOK_MAX) { 8500 ret = -EINVAL; 8501 goto end; 8502 } 8503 8504 if (!add_set->cnt) 8505 return 0; 8506 8507 tab = btf->kfunc_set_tab; 8508 8509 if (tab && add_filter) { 8510 u32 i; 8511 8512 hook_filter = &tab->hook_filters[hook]; 8513 for (i = 0; i < hook_filter->nr_filters; i++) { 8514 if (hook_filter->filters[i] == kset->filter) { 8515 add_filter = false; 8516 break; 8517 } 8518 } 8519 8520 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 8521 ret = -E2BIG; 8522 goto end; 8523 } 8524 } 8525 8526 if (!tab) { 8527 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 8528 if (!tab) 8529 return -ENOMEM; 8530 btf->kfunc_set_tab = tab; 8531 } 8532 8533 set = tab->sets[hook]; 8534 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 8535 * for module sets. 8536 */ 8537 if (WARN_ON_ONCE(set && !vmlinux_set)) { 8538 ret = -EINVAL; 8539 goto end; 8540 } 8541 8542 /* In case of vmlinux sets, there may be more than one set being 8543 * registered per hook. To create a unified set, we allocate a new set 8544 * and concatenate all individual sets being registered. While each set 8545 * is individually sorted, they may become unsorted when concatenated, 8546 * hence re-sorting the final set again is required to make binary 8547 * searching the set using btf_id_set8_contains function work. 8548 * 8549 * For module sets, we need to allocate as we may need to relocate 8550 * BTF ids. 8551 */ 8552 set_cnt = set ? set->cnt : 0; 8553 8554 if (set_cnt > U32_MAX - add_set->cnt) { 8555 ret = -EOVERFLOW; 8556 goto end; 8557 } 8558 8559 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 8560 ret = -E2BIG; 8561 goto end; 8562 } 8563 8564 /* Grow set */ 8565 set = krealloc(tab->sets[hook], 8566 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 8567 GFP_KERNEL | __GFP_NOWARN); 8568 if (!set) { 8569 ret = -ENOMEM; 8570 goto end; 8571 } 8572 8573 /* For newly allocated set, initialize set->cnt to 0 */ 8574 if (!tab->sets[hook]) 8575 set->cnt = 0; 8576 tab->sets[hook] = set; 8577 8578 /* Concatenate the two sets */ 8579 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 8580 /* Now that the set is copied, update with relocated BTF ids */ 8581 for (i = set->cnt; i < set->cnt + add_set->cnt; i++) 8582 set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); 8583 8584 set->cnt += add_set->cnt; 8585 8586 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 8587 8588 if (add_filter) { 8589 hook_filter = &tab->hook_filters[hook]; 8590 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 8591 } 8592 return 0; 8593 end: 8594 btf_free_kfunc_set_tab(btf); 8595 return ret; 8596 } 8597 8598 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 8599 enum btf_kfunc_hook hook, 8600 u32 kfunc_btf_id, 8601 const struct bpf_prog *prog) 8602 { 8603 struct btf_kfunc_hook_filter *hook_filter; 8604 struct btf_id_set8 *set; 8605 u32 *id, i; 8606 8607 if (hook >= BTF_KFUNC_HOOK_MAX) 8608 return NULL; 8609 if (!btf->kfunc_set_tab) 8610 return NULL; 8611 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 8612 for (i = 0; i < hook_filter->nr_filters; i++) { 8613 if (hook_filter->filters[i](prog, kfunc_btf_id)) 8614 return NULL; 8615 } 8616 set = btf->kfunc_set_tab->sets[hook]; 8617 if (!set) 8618 return NULL; 8619 id = btf_id_set8_contains(set, kfunc_btf_id); 8620 if (!id) 8621 return NULL; 8622 /* The flags for BTF ID are located next to it */ 8623 return id + 1; 8624 } 8625 8626 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 8627 { 8628 switch (prog_type) { 8629 case BPF_PROG_TYPE_UNSPEC: 8630 return BTF_KFUNC_HOOK_COMMON; 8631 case BPF_PROG_TYPE_XDP: 8632 return BTF_KFUNC_HOOK_XDP; 8633 case BPF_PROG_TYPE_SCHED_CLS: 8634 return BTF_KFUNC_HOOK_TC; 8635 case BPF_PROG_TYPE_STRUCT_OPS: 8636 return BTF_KFUNC_HOOK_STRUCT_OPS; 8637 case BPF_PROG_TYPE_TRACING: 8638 case BPF_PROG_TYPE_TRACEPOINT: 8639 case BPF_PROG_TYPE_PERF_EVENT: 8640 case BPF_PROG_TYPE_LSM: 8641 return BTF_KFUNC_HOOK_TRACING; 8642 case BPF_PROG_TYPE_SYSCALL: 8643 return BTF_KFUNC_HOOK_SYSCALL; 8644 case BPF_PROG_TYPE_CGROUP_SKB: 8645 case BPF_PROG_TYPE_CGROUP_SOCK: 8646 case BPF_PROG_TYPE_CGROUP_DEVICE: 8647 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 8648 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 8649 case BPF_PROG_TYPE_CGROUP_SYSCTL: 8650 case BPF_PROG_TYPE_SOCK_OPS: 8651 return BTF_KFUNC_HOOK_CGROUP; 8652 case BPF_PROG_TYPE_SCHED_ACT: 8653 return BTF_KFUNC_HOOK_SCHED_ACT; 8654 case BPF_PROG_TYPE_SK_SKB: 8655 return BTF_KFUNC_HOOK_SK_SKB; 8656 case BPF_PROG_TYPE_SOCKET_FILTER: 8657 return BTF_KFUNC_HOOK_SOCKET_FILTER; 8658 case BPF_PROG_TYPE_LWT_OUT: 8659 case BPF_PROG_TYPE_LWT_IN: 8660 case BPF_PROG_TYPE_LWT_XMIT: 8661 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 8662 return BTF_KFUNC_HOOK_LWT; 8663 case BPF_PROG_TYPE_NETFILTER: 8664 return BTF_KFUNC_HOOK_NETFILTER; 8665 case BPF_PROG_TYPE_KPROBE: 8666 return BTF_KFUNC_HOOK_KPROBE; 8667 default: 8668 return BTF_KFUNC_HOOK_MAX; 8669 } 8670 } 8671 8672 /* Caution: 8673 * Reference to the module (obtained using btf_try_get_module) corresponding to 8674 * the struct btf *MUST* be held when calling this function from verifier 8675 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 8676 * keeping the reference for the duration of the call provides the necessary 8677 * protection for looking up a well-formed btf->kfunc_set_tab. 8678 */ 8679 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 8680 u32 kfunc_btf_id, 8681 const struct bpf_prog *prog) 8682 { 8683 enum bpf_prog_type prog_type = resolve_prog_type(prog); 8684 enum btf_kfunc_hook hook; 8685 u32 *kfunc_flags; 8686 8687 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 8688 if (kfunc_flags) 8689 return kfunc_flags; 8690 8691 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8692 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 8693 } 8694 8695 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 8696 const struct bpf_prog *prog) 8697 { 8698 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 8699 } 8700 8701 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 8702 const struct btf_kfunc_id_set *kset) 8703 { 8704 struct btf *btf; 8705 int ret, i; 8706 8707 btf = btf_get_module_btf(kset->owner); 8708 if (!btf) 8709 return check_btf_kconfigs(kset->owner, "kfunc"); 8710 if (IS_ERR(btf)) 8711 return PTR_ERR(btf); 8712 8713 for (i = 0; i < kset->set->cnt; i++) { 8714 ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), 8715 kset->set->pairs[i].flags); 8716 if (ret) 8717 goto err_out; 8718 } 8719 8720 ret = btf_populate_kfunc_set(btf, hook, kset); 8721 8722 err_out: 8723 btf_put(btf); 8724 return ret; 8725 } 8726 8727 /* This function must be invoked only from initcalls/module init functions */ 8728 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 8729 const struct btf_kfunc_id_set *kset) 8730 { 8731 enum btf_kfunc_hook hook; 8732 8733 /* All kfuncs need to be tagged as such in BTF. 8734 * WARN() for initcall registrations that do not check errors. 8735 */ 8736 if (!(kset->set->flags & BTF_SET8_KFUNCS)) { 8737 WARN_ON(!kset->owner); 8738 return -EINVAL; 8739 } 8740 8741 hook = bpf_prog_type_to_kfunc_hook(prog_type); 8742 return __register_btf_kfunc_id_set(hook, kset); 8743 } 8744 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 8745 8746 /* This function must be invoked only from initcalls/module init functions */ 8747 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 8748 { 8749 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 8750 } 8751 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 8752 8753 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 8754 { 8755 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 8756 struct btf_id_dtor_kfunc *dtor; 8757 8758 if (!tab) 8759 return -ENOENT; 8760 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 8761 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 8762 */ 8763 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 8764 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 8765 if (!dtor) 8766 return -ENOENT; 8767 return dtor->kfunc_btf_id; 8768 } 8769 8770 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 8771 { 8772 const struct btf_type *dtor_func, *dtor_func_proto, *t; 8773 const struct btf_param *args; 8774 s32 dtor_btf_id; 8775 u32 nr_args, i; 8776 8777 for (i = 0; i < cnt; i++) { 8778 dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); 8779 8780 dtor_func = btf_type_by_id(btf, dtor_btf_id); 8781 if (!dtor_func || !btf_type_is_func(dtor_func)) 8782 return -EINVAL; 8783 8784 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 8785 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 8786 return -EINVAL; 8787 8788 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 8789 t = btf_type_by_id(btf, dtor_func_proto->type); 8790 if (!t || !btf_type_is_void(t)) 8791 return -EINVAL; 8792 8793 nr_args = btf_type_vlen(dtor_func_proto); 8794 if (nr_args != 1) 8795 return -EINVAL; 8796 args = btf_params(dtor_func_proto); 8797 t = btf_type_by_id(btf, args[0].type); 8798 /* Allow any pointer type, as width on targets Linux supports 8799 * will be same for all pointer types (i.e. sizeof(void *)) 8800 */ 8801 if (!t || !btf_type_is_ptr(t)) 8802 return -EINVAL; 8803 } 8804 return 0; 8805 } 8806 8807 /* This function must be invoked only from initcalls/module init functions */ 8808 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 8809 struct module *owner) 8810 { 8811 struct btf_id_dtor_kfunc_tab *tab; 8812 struct btf *btf; 8813 u32 tab_cnt, i; 8814 int ret; 8815 8816 btf = btf_get_module_btf(owner); 8817 if (!btf) 8818 return check_btf_kconfigs(owner, "dtor kfuncs"); 8819 if (IS_ERR(btf)) 8820 return PTR_ERR(btf); 8821 8822 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8823 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8824 ret = -E2BIG; 8825 goto end; 8826 } 8827 8828 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8829 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8830 if (ret < 0) 8831 goto end; 8832 8833 tab = btf->dtor_kfunc_tab; 8834 /* Only one call allowed for modules */ 8835 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8836 ret = -EINVAL; 8837 goto end; 8838 } 8839 8840 tab_cnt = tab ? tab->cnt : 0; 8841 if (tab_cnt > U32_MAX - add_cnt) { 8842 ret = -EOVERFLOW; 8843 goto end; 8844 } 8845 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8846 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8847 ret = -E2BIG; 8848 goto end; 8849 } 8850 8851 tab = krealloc(btf->dtor_kfunc_tab, 8852 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8853 GFP_KERNEL | __GFP_NOWARN); 8854 if (!tab) { 8855 ret = -ENOMEM; 8856 goto end; 8857 } 8858 8859 if (!btf->dtor_kfunc_tab) 8860 tab->cnt = 0; 8861 btf->dtor_kfunc_tab = tab; 8862 8863 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8864 8865 /* remap BTF ids based on BTF relocation (if any) */ 8866 for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { 8867 tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); 8868 tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); 8869 } 8870 8871 tab->cnt += add_cnt; 8872 8873 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8874 8875 end: 8876 if (ret) 8877 btf_free_dtor_kfunc_tab(btf); 8878 btf_put(btf); 8879 return ret; 8880 } 8881 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8882 8883 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8884 8885 /* Check local and target types for compatibility. This check is used for 8886 * type-based CO-RE relocations and follow slightly different rules than 8887 * field-based relocations. This function assumes that root types were already 8888 * checked for name match. Beyond that initial root-level name check, names 8889 * are completely ignored. Compatibility rules are as follows: 8890 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8891 * kind should match for local and target types (i.e., STRUCT is not 8892 * compatible with UNION); 8893 * - for ENUMs/ENUM64s, the size is ignored; 8894 * - for INT, size and signedness are ignored; 8895 * - for ARRAY, dimensionality is ignored, element types are checked for 8896 * compatibility recursively; 8897 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8898 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8899 * - FUNC_PROTOs are compatible if they have compatible signature: same 8900 * number of input args and compatible return and argument types. 8901 * These rules are not set in stone and probably will be adjusted as we get 8902 * more experience with using BPF CO-RE relocations. 8903 */ 8904 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8905 const struct btf *targ_btf, __u32 targ_id) 8906 { 8907 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8908 MAX_TYPES_ARE_COMPAT_DEPTH); 8909 } 8910 8911 #define MAX_TYPES_MATCH_DEPTH 2 8912 8913 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8914 const struct btf *targ_btf, u32 targ_id) 8915 { 8916 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8917 MAX_TYPES_MATCH_DEPTH); 8918 } 8919 8920 static bool bpf_core_is_flavor_sep(const char *s) 8921 { 8922 /* check X___Y name pattern, where X and Y are not underscores */ 8923 return s[0] != '_' && /* X */ 8924 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8925 s[4] != '_'; /* Y */ 8926 } 8927 8928 size_t bpf_core_essential_name_len(const char *name) 8929 { 8930 size_t n = strlen(name); 8931 int i; 8932 8933 for (i = n - 5; i >= 0; i--) { 8934 if (bpf_core_is_flavor_sep(name + i)) 8935 return i + 1; 8936 } 8937 return n; 8938 } 8939 8940 static void bpf_free_cands(struct bpf_cand_cache *cands) 8941 { 8942 if (!cands->cnt) 8943 /* empty candidate array was allocated on stack */ 8944 return; 8945 kfree(cands); 8946 } 8947 8948 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8949 { 8950 kfree(cands->name); 8951 kfree(cands); 8952 } 8953 8954 #define VMLINUX_CAND_CACHE_SIZE 31 8955 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8956 8957 #define MODULE_CAND_CACHE_SIZE 31 8958 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8959 8960 static void __print_cand_cache(struct bpf_verifier_log *log, 8961 struct bpf_cand_cache **cache, 8962 int cache_size) 8963 { 8964 struct bpf_cand_cache *cc; 8965 int i, j; 8966 8967 for (i = 0; i < cache_size; i++) { 8968 cc = cache[i]; 8969 if (!cc) 8970 continue; 8971 bpf_log(log, "[%d]%s(", i, cc->name); 8972 for (j = 0; j < cc->cnt; j++) { 8973 bpf_log(log, "%d", cc->cands[j].id); 8974 if (j < cc->cnt - 1) 8975 bpf_log(log, " "); 8976 } 8977 bpf_log(log, "), "); 8978 } 8979 } 8980 8981 static void print_cand_cache(struct bpf_verifier_log *log) 8982 { 8983 mutex_lock(&cand_cache_mutex); 8984 bpf_log(log, "vmlinux_cand_cache:"); 8985 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8986 bpf_log(log, "\nmodule_cand_cache:"); 8987 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8988 bpf_log(log, "\n"); 8989 mutex_unlock(&cand_cache_mutex); 8990 } 8991 8992 static u32 hash_cands(struct bpf_cand_cache *cands) 8993 { 8994 return jhash(cands->name, cands->name_len, 0); 8995 } 8996 8997 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8998 struct bpf_cand_cache **cache, 8999 int cache_size) 9000 { 9001 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 9002 9003 if (cc && cc->name_len == cands->name_len && 9004 !strncmp(cc->name, cands->name, cands->name_len)) 9005 return cc; 9006 return NULL; 9007 } 9008 9009 static size_t sizeof_cands(int cnt) 9010 { 9011 return offsetof(struct bpf_cand_cache, cands[cnt]); 9012 } 9013 9014 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 9015 struct bpf_cand_cache **cache, 9016 int cache_size) 9017 { 9018 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 9019 9020 if (*cc) { 9021 bpf_free_cands_from_cache(*cc); 9022 *cc = NULL; 9023 } 9024 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 9025 if (!new_cands) { 9026 bpf_free_cands(cands); 9027 return ERR_PTR(-ENOMEM); 9028 } 9029 /* strdup the name, since it will stay in cache. 9030 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 9031 */ 9032 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 9033 bpf_free_cands(cands); 9034 if (!new_cands->name) { 9035 kfree(new_cands); 9036 return ERR_PTR(-ENOMEM); 9037 } 9038 *cc = new_cands; 9039 return new_cands; 9040 } 9041 9042 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 9043 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 9044 int cache_size) 9045 { 9046 struct bpf_cand_cache *cc; 9047 int i, j; 9048 9049 for (i = 0; i < cache_size; i++) { 9050 cc = cache[i]; 9051 if (!cc) 9052 continue; 9053 if (!btf) { 9054 /* when new module is loaded purge all of module_cand_cache, 9055 * since new module might have candidates with the name 9056 * that matches cached cands. 9057 */ 9058 bpf_free_cands_from_cache(cc); 9059 cache[i] = NULL; 9060 continue; 9061 } 9062 /* when module is unloaded purge cache entries 9063 * that match module's btf 9064 */ 9065 for (j = 0; j < cc->cnt; j++) 9066 if (cc->cands[j].btf == btf) { 9067 bpf_free_cands_from_cache(cc); 9068 cache[i] = NULL; 9069 break; 9070 } 9071 } 9072 9073 } 9074 9075 static void purge_cand_cache(struct btf *btf) 9076 { 9077 mutex_lock(&cand_cache_mutex); 9078 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9079 mutex_unlock(&cand_cache_mutex); 9080 } 9081 #endif 9082 9083 static struct bpf_cand_cache * 9084 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 9085 int targ_start_id) 9086 { 9087 struct bpf_cand_cache *new_cands; 9088 const struct btf_type *t; 9089 const char *targ_name; 9090 size_t targ_essent_len; 9091 int n, i; 9092 9093 n = btf_nr_types(targ_btf); 9094 for (i = targ_start_id; i < n; i++) { 9095 t = btf_type_by_id(targ_btf, i); 9096 if (btf_kind(t) != cands->kind) 9097 continue; 9098 9099 targ_name = btf_name_by_offset(targ_btf, t->name_off); 9100 if (!targ_name) 9101 continue; 9102 9103 /* the resched point is before strncmp to make sure that search 9104 * for non-existing name will have a chance to schedule(). 9105 */ 9106 cond_resched(); 9107 9108 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 9109 continue; 9110 9111 targ_essent_len = bpf_core_essential_name_len(targ_name); 9112 if (targ_essent_len != cands->name_len) 9113 continue; 9114 9115 /* most of the time there is only one candidate for a given kind+name pair */ 9116 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 9117 if (!new_cands) { 9118 bpf_free_cands(cands); 9119 return ERR_PTR(-ENOMEM); 9120 } 9121 9122 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 9123 bpf_free_cands(cands); 9124 cands = new_cands; 9125 cands->cands[cands->cnt].btf = targ_btf; 9126 cands->cands[cands->cnt].id = i; 9127 cands->cnt++; 9128 } 9129 return cands; 9130 } 9131 9132 static struct bpf_cand_cache * 9133 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 9134 { 9135 struct bpf_cand_cache *cands, *cc, local_cand = {}; 9136 const struct btf *local_btf = ctx->btf; 9137 const struct btf_type *local_type; 9138 const struct btf *main_btf; 9139 size_t local_essent_len; 9140 struct btf *mod_btf; 9141 const char *name; 9142 int id; 9143 9144 main_btf = bpf_get_btf_vmlinux(); 9145 if (IS_ERR(main_btf)) 9146 return ERR_CAST(main_btf); 9147 if (!main_btf) 9148 return ERR_PTR(-EINVAL); 9149 9150 local_type = btf_type_by_id(local_btf, local_type_id); 9151 if (!local_type) 9152 return ERR_PTR(-EINVAL); 9153 9154 name = btf_name_by_offset(local_btf, local_type->name_off); 9155 if (str_is_empty(name)) 9156 return ERR_PTR(-EINVAL); 9157 local_essent_len = bpf_core_essential_name_len(name); 9158 9159 cands = &local_cand; 9160 cands->name = name; 9161 cands->kind = btf_kind(local_type); 9162 cands->name_len = local_essent_len; 9163 9164 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9165 /* cands is a pointer to stack here */ 9166 if (cc) { 9167 if (cc->cnt) 9168 return cc; 9169 goto check_modules; 9170 } 9171 9172 /* Attempt to find target candidates in vmlinux BTF first */ 9173 cands = bpf_core_add_cands(cands, main_btf, 1); 9174 if (IS_ERR(cands)) 9175 return ERR_CAST(cands); 9176 9177 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 9178 9179 /* populate cache even when cands->cnt == 0 */ 9180 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 9181 if (IS_ERR(cc)) 9182 return ERR_CAST(cc); 9183 9184 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 9185 if (cc->cnt) 9186 return cc; 9187 9188 check_modules: 9189 /* cands is a pointer to stack here and cands->cnt == 0 */ 9190 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9191 if (cc) 9192 /* if cache has it return it even if cc->cnt == 0 */ 9193 return cc; 9194 9195 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 9196 spin_lock_bh(&btf_idr_lock); 9197 idr_for_each_entry(&btf_idr, mod_btf, id) { 9198 if (!btf_is_module(mod_btf)) 9199 continue; 9200 /* linear search could be slow hence unlock/lock 9201 * the IDR to avoiding holding it for too long 9202 */ 9203 btf_get(mod_btf); 9204 spin_unlock_bh(&btf_idr_lock); 9205 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 9206 btf_put(mod_btf); 9207 if (IS_ERR(cands)) 9208 return ERR_CAST(cands); 9209 spin_lock_bh(&btf_idr_lock); 9210 } 9211 spin_unlock_bh(&btf_idr_lock); 9212 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 9213 * or pointer to stack if cands->cnd == 0. 9214 * Copy it into the cache even when cands->cnt == 0 and 9215 * return the result. 9216 */ 9217 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 9218 } 9219 9220 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 9221 int relo_idx, void *insn) 9222 { 9223 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 9224 struct bpf_core_cand_list cands = {}; 9225 struct bpf_core_relo_res targ_res; 9226 struct bpf_core_spec *specs; 9227 const struct btf_type *type; 9228 int err; 9229 9230 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 9231 * into arrays of btf_ids of struct fields and array indices. 9232 */ 9233 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 9234 if (!specs) 9235 return -ENOMEM; 9236 9237 type = btf_type_by_id(ctx->btf, relo->type_id); 9238 if (!type) { 9239 bpf_log(ctx->log, "relo #%u: bad type id %u\n", 9240 relo_idx, relo->type_id); 9241 kfree(specs); 9242 return -EINVAL; 9243 } 9244 9245 if (need_cands) { 9246 struct bpf_cand_cache *cc; 9247 int i; 9248 9249 mutex_lock(&cand_cache_mutex); 9250 cc = bpf_core_find_cands(ctx, relo->type_id); 9251 if (IS_ERR(cc)) { 9252 bpf_log(ctx->log, "target candidate search failed for %d\n", 9253 relo->type_id); 9254 err = PTR_ERR(cc); 9255 goto out; 9256 } 9257 if (cc->cnt) { 9258 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 9259 if (!cands.cands) { 9260 err = -ENOMEM; 9261 goto out; 9262 } 9263 } 9264 for (i = 0; i < cc->cnt; i++) { 9265 bpf_log(ctx->log, 9266 "CO-RE relocating %s %s: found target candidate [%d]\n", 9267 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 9268 cands.cands[i].btf = cc->cands[i].btf; 9269 cands.cands[i].id = cc->cands[i].id; 9270 } 9271 cands.len = cc->cnt; 9272 /* cand_cache_mutex needs to span the cache lookup and 9273 * copy of btf pointer into bpf_core_cand_list, 9274 * since module can be unloaded while bpf_core_calc_relo_insn 9275 * is working with module's btf. 9276 */ 9277 } 9278 9279 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 9280 &targ_res); 9281 if (err) 9282 goto out; 9283 9284 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 9285 &targ_res); 9286 9287 out: 9288 kfree(specs); 9289 if (need_cands) { 9290 kfree(cands.cands); 9291 mutex_unlock(&cand_cache_mutex); 9292 if (ctx->log->level & BPF_LOG_LEVEL2) 9293 print_cand_cache(ctx->log); 9294 } 9295 return err; 9296 } 9297 9298 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 9299 const struct bpf_reg_state *reg, 9300 const char *field_name, u32 btf_id, const char *suffix) 9301 { 9302 struct btf *btf = reg->btf; 9303 const struct btf_type *walk_type, *safe_type; 9304 const char *tname; 9305 char safe_tname[64]; 9306 long ret, safe_id; 9307 const struct btf_member *member; 9308 u32 i; 9309 9310 walk_type = btf_type_by_id(btf, reg->btf_id); 9311 if (!walk_type) 9312 return false; 9313 9314 tname = btf_name_by_offset(btf, walk_type->name_off); 9315 9316 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 9317 if (ret >= sizeof(safe_tname)) 9318 return false; 9319 9320 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 9321 if (safe_id < 0) 9322 return false; 9323 9324 safe_type = btf_type_by_id(btf, safe_id); 9325 if (!safe_type) 9326 return false; 9327 9328 for_each_member(i, safe_type, member) { 9329 const char *m_name = __btf_name_by_offset(btf, member->name_off); 9330 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 9331 u32 id; 9332 9333 if (!btf_type_is_ptr(mtype)) 9334 continue; 9335 9336 btf_type_skip_modifiers(btf, mtype->type, &id); 9337 /* If we match on both type and name, the field is considered trusted. */ 9338 if (btf_id == id && !strcmp(field_name, m_name)) 9339 return true; 9340 } 9341 9342 return false; 9343 } 9344 9345 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 9346 const struct btf *reg_btf, u32 reg_id, 9347 const struct btf *arg_btf, u32 arg_id) 9348 { 9349 const char *reg_name, *arg_name, *search_needle; 9350 const struct btf_type *reg_type, *arg_type; 9351 int reg_len, arg_len, cmp_len; 9352 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 9353 9354 reg_type = btf_type_by_id(reg_btf, reg_id); 9355 if (!reg_type) 9356 return false; 9357 9358 arg_type = btf_type_by_id(arg_btf, arg_id); 9359 if (!arg_type) 9360 return false; 9361 9362 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 9363 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 9364 9365 reg_len = strlen(reg_name); 9366 arg_len = strlen(arg_name); 9367 9368 /* Exactly one of the two type names may be suffixed with ___init, so 9369 * if the strings are the same size, they can't possibly be no-cast 9370 * aliases of one another. If you have two of the same type names, e.g. 9371 * they're both nf_conn___init, it would be improper to return true 9372 * because they are _not_ no-cast aliases, they are the same type. 9373 */ 9374 if (reg_len == arg_len) 9375 return false; 9376 9377 /* Either of the two names must be the other name, suffixed with ___init. */ 9378 if ((reg_len != arg_len + pattern_len) && 9379 (arg_len != reg_len + pattern_len)) 9380 return false; 9381 9382 if (reg_len < arg_len) { 9383 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 9384 cmp_len = reg_len; 9385 } else { 9386 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 9387 cmp_len = arg_len; 9388 } 9389 9390 if (!search_needle) 9391 return false; 9392 9393 /* ___init suffix must come at the end of the name */ 9394 if (*(search_needle + pattern_len) != '\0') 9395 return false; 9396 9397 return !strncmp(reg_name, arg_name, cmp_len); 9398 } 9399 9400 #ifdef CONFIG_BPF_JIT 9401 static int 9402 btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, 9403 struct bpf_verifier_log *log) 9404 { 9405 struct btf_struct_ops_tab *tab, *new_tab; 9406 int i, err; 9407 9408 tab = btf->struct_ops_tab; 9409 if (!tab) { 9410 tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]), 9411 GFP_KERNEL); 9412 if (!tab) 9413 return -ENOMEM; 9414 tab->capacity = 4; 9415 btf->struct_ops_tab = tab; 9416 } 9417 9418 for (i = 0; i < tab->cnt; i++) 9419 if (tab->ops[i].st_ops == st_ops) 9420 return -EEXIST; 9421 9422 if (tab->cnt == tab->capacity) { 9423 new_tab = krealloc(tab, 9424 offsetof(struct btf_struct_ops_tab, 9425 ops[tab->capacity * 2]), 9426 GFP_KERNEL); 9427 if (!new_tab) 9428 return -ENOMEM; 9429 tab = new_tab; 9430 tab->capacity *= 2; 9431 btf->struct_ops_tab = tab; 9432 } 9433 9434 tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; 9435 9436 err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); 9437 if (err) 9438 return err; 9439 9440 btf->struct_ops_tab->cnt++; 9441 9442 return 0; 9443 } 9444 9445 const struct bpf_struct_ops_desc * 9446 bpf_struct_ops_find_value(struct btf *btf, u32 value_id) 9447 { 9448 const struct bpf_struct_ops_desc *st_ops_list; 9449 unsigned int i; 9450 u32 cnt; 9451 9452 if (!value_id) 9453 return NULL; 9454 if (!btf->struct_ops_tab) 9455 return NULL; 9456 9457 cnt = btf->struct_ops_tab->cnt; 9458 st_ops_list = btf->struct_ops_tab->ops; 9459 for (i = 0; i < cnt; i++) { 9460 if (st_ops_list[i].value_id == value_id) 9461 return &st_ops_list[i]; 9462 } 9463 9464 return NULL; 9465 } 9466 9467 const struct bpf_struct_ops_desc * 9468 bpf_struct_ops_find(struct btf *btf, u32 type_id) 9469 { 9470 const struct bpf_struct_ops_desc *st_ops_list; 9471 unsigned int i; 9472 u32 cnt; 9473 9474 if (!type_id) 9475 return NULL; 9476 if (!btf->struct_ops_tab) 9477 return NULL; 9478 9479 cnt = btf->struct_ops_tab->cnt; 9480 st_ops_list = btf->struct_ops_tab->ops; 9481 for (i = 0; i < cnt; i++) { 9482 if (st_ops_list[i].type_id == type_id) 9483 return &st_ops_list[i]; 9484 } 9485 9486 return NULL; 9487 } 9488 9489 int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) 9490 { 9491 struct bpf_verifier_log *log; 9492 struct btf *btf; 9493 int err = 0; 9494 9495 btf = btf_get_module_btf(st_ops->owner); 9496 if (!btf) 9497 return check_btf_kconfigs(st_ops->owner, "struct_ops"); 9498 if (IS_ERR(btf)) 9499 return PTR_ERR(btf); 9500 9501 log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); 9502 if (!log) { 9503 err = -ENOMEM; 9504 goto errout; 9505 } 9506 9507 log->level = BPF_LOG_KERNEL; 9508 9509 err = btf_add_struct_ops(btf, st_ops, log); 9510 9511 errout: 9512 kfree(log); 9513 btf_put(btf); 9514 9515 return err; 9516 } 9517 EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); 9518 #endif 9519 9520 bool btf_param_match_suffix(const struct btf *btf, 9521 const struct btf_param *arg, 9522 const char *suffix) 9523 { 9524 int suffix_len = strlen(suffix), len; 9525 const char *param_name; 9526 9527 /* In the future, this can be ported to use BTF tagging */ 9528 param_name = btf_name_by_offset(btf, arg->name_off); 9529 if (str_is_empty(param_name)) 9530 return false; 9531 len = strlen(param_name); 9532 if (len <= suffix_len) 9533 return false; 9534 param_name += len - suffix_len; 9535 return !strncmp(param_name, suffix, suffix_len); 9536 } 9537