1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
4 * fairer distribution of tags between multiple submitters when a shared tag map
5 * is used.
6 *
7 * Copyright (C) 2013-2014 Jens Axboe
8 */
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/kmemleak.h>
14
15 #include <linux/delay.h>
16 #include "blk.h"
17 #include "blk-mq.h"
18 #include "blk-mq-sched.h"
19
20 /*
21 * Recalculate wakeup batch when tag is shared by hctx.
22 */
blk_mq_update_wake_batch(struct blk_mq_tags * tags,unsigned int users)23 static void blk_mq_update_wake_batch(struct blk_mq_tags *tags,
24 unsigned int users)
25 {
26 if (!users)
27 return;
28
29 sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags,
30 users);
31 sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags,
32 users);
33 }
34
35 /*
36 * If a previously inactive queue goes active, bump the active user count.
37 * We need to do this before try to allocate driver tag, then even if fail
38 * to get tag when first time, the other shared-tag users could reserve
39 * budget for it.
40 */
__blk_mq_tag_busy(struct blk_mq_hw_ctx * hctx)41 void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int users;
44 unsigned long flags;
45 struct blk_mq_tags *tags = hctx->tags;
46
47 /*
48 * calling test_bit() prior to test_and_set_bit() is intentional,
49 * it avoids dirtying the cacheline if the queue is already active.
50 */
51 if (blk_mq_is_shared_tags(hctx->flags)) {
52 struct request_queue *q = hctx->queue;
53
54 if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) ||
55 test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
56 return;
57 } else {
58 if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) ||
59 test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
60 return;
61 }
62
63 spin_lock_irqsave(&tags->lock, flags);
64 users = tags->active_queues + 1;
65 WRITE_ONCE(tags->active_queues, users);
66 blk_mq_update_wake_batch(tags, users);
67 spin_unlock_irqrestore(&tags->lock, flags);
68 }
69
70 /*
71 * Wakeup all potentially sleeping on tags
72 */
blk_mq_tag_wakeup_all(struct blk_mq_tags * tags,bool include_reserve)73 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
74 {
75 sbitmap_queue_wake_all(&tags->bitmap_tags);
76 if (include_reserve)
77 sbitmap_queue_wake_all(&tags->breserved_tags);
78 }
79
80 /*
81 * If a previously busy queue goes inactive, potential waiters could now
82 * be allowed to queue. Wake them up and check.
83 */
__blk_mq_tag_idle(struct blk_mq_hw_ctx * hctx)84 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
85 {
86 struct blk_mq_tags *tags = hctx->tags;
87 unsigned int users;
88
89 if (blk_mq_is_shared_tags(hctx->flags)) {
90 struct request_queue *q = hctx->queue;
91
92 if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE,
93 &q->queue_flags))
94 return;
95 } else {
96 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
97 return;
98 }
99
100 spin_lock_irq(&tags->lock);
101 users = tags->active_queues - 1;
102 WRITE_ONCE(tags->active_queues, users);
103 blk_mq_update_wake_batch(tags, users);
104 spin_unlock_irq(&tags->lock);
105
106 blk_mq_tag_wakeup_all(tags, false);
107 }
108
__blk_mq_get_tag(struct blk_mq_alloc_data * data,struct sbitmap_queue * bt)109 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
110 struct sbitmap_queue *bt)
111 {
112 if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) &&
113 !hctx_may_queue(data->hctx, bt))
114 return BLK_MQ_NO_TAG;
115
116 if (data->shallow_depth)
117 return sbitmap_queue_get_shallow(bt, data->shallow_depth);
118 else
119 return __sbitmap_queue_get(bt);
120 }
121
blk_mq_get_tags(struct blk_mq_alloc_data * data,int nr_tags,unsigned int * offset)122 unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
123 unsigned int *offset)
124 {
125 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
126 struct sbitmap_queue *bt = &tags->bitmap_tags;
127 unsigned long ret;
128
129 if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED ||
130 data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
131 return 0;
132 ret = __sbitmap_queue_get_batch(bt, nr_tags, offset);
133 *offset += tags->nr_reserved_tags;
134 return ret;
135 }
136
blk_mq_get_tag(struct blk_mq_alloc_data * data)137 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
138 {
139 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
140 struct sbitmap_queue *bt;
141 struct sbq_wait_state *ws;
142 DEFINE_SBQ_WAIT(wait);
143 unsigned int tag_offset;
144 int tag;
145
146 if (data->flags & BLK_MQ_REQ_RESERVED) {
147 if (unlikely(!tags->nr_reserved_tags)) {
148 WARN_ON_ONCE(1);
149 return BLK_MQ_NO_TAG;
150 }
151 bt = &tags->breserved_tags;
152 tag_offset = 0;
153 } else {
154 bt = &tags->bitmap_tags;
155 tag_offset = tags->nr_reserved_tags;
156 }
157
158 tag = __blk_mq_get_tag(data, bt);
159 if (tag != BLK_MQ_NO_TAG)
160 goto found_tag;
161
162 if (data->flags & BLK_MQ_REQ_NOWAIT)
163 return BLK_MQ_NO_TAG;
164
165 ws = bt_wait_ptr(bt, data->hctx);
166 do {
167 struct sbitmap_queue *bt_prev;
168
169 /*
170 * We're out of tags on this hardware queue, kick any
171 * pending IO submits before going to sleep waiting for
172 * some to complete.
173 */
174 blk_mq_run_hw_queue(data->hctx, false);
175
176 /*
177 * Retry tag allocation after running the hardware queue,
178 * as running the queue may also have found completions.
179 */
180 tag = __blk_mq_get_tag(data, bt);
181 if (tag != BLK_MQ_NO_TAG)
182 break;
183
184 sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
185
186 tag = __blk_mq_get_tag(data, bt);
187 if (tag != BLK_MQ_NO_TAG)
188 break;
189
190 bt_prev = bt;
191 io_schedule();
192
193 sbitmap_finish_wait(bt, ws, &wait);
194
195 data->ctx = blk_mq_get_ctx(data->q);
196 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
197 tags = blk_mq_tags_from_data(data);
198 if (data->flags & BLK_MQ_REQ_RESERVED)
199 bt = &tags->breserved_tags;
200 else
201 bt = &tags->bitmap_tags;
202
203 /*
204 * If destination hw queue is changed, fake wake up on
205 * previous queue for compensating the wake up miss, so
206 * other allocations on previous queue won't be starved.
207 */
208 if (bt != bt_prev)
209 sbitmap_queue_wake_up(bt_prev, 1);
210
211 ws = bt_wait_ptr(bt, data->hctx);
212 } while (1);
213
214 sbitmap_finish_wait(bt, ws, &wait);
215
216 found_tag:
217 /*
218 * Give up this allocation if the hctx is inactive. The caller will
219 * retry on an active hctx.
220 */
221 if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
222 blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
223 return BLK_MQ_NO_TAG;
224 }
225 return tag + tag_offset;
226 }
227
blk_mq_put_tag(struct blk_mq_tags * tags,struct blk_mq_ctx * ctx,unsigned int tag)228 void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
229 unsigned int tag)
230 {
231 if (!blk_mq_tag_is_reserved(tags, tag)) {
232 const int real_tag = tag - tags->nr_reserved_tags;
233
234 BUG_ON(real_tag >= tags->nr_tags);
235 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
236 } else {
237 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
238 }
239 }
240
blk_mq_put_tags(struct blk_mq_tags * tags,int * tag_array,int nr_tags)241 void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags)
242 {
243 sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags,
244 tag_array, nr_tags);
245 }
246
247 struct bt_iter_data {
248 struct blk_mq_hw_ctx *hctx;
249 struct request_queue *q;
250 busy_tag_iter_fn *fn;
251 void *data;
252 bool reserved;
253 };
254
blk_mq_find_and_get_req(struct blk_mq_tags * tags,unsigned int bitnr)255 static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags,
256 unsigned int bitnr)
257 {
258 struct request *rq;
259
260 rq = tags->rqs[bitnr];
261 if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq))
262 rq = NULL;
263 return rq;
264 }
265
bt_iter(struct sbitmap * bitmap,unsigned int bitnr,void * data)266 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
267 {
268 struct bt_iter_data *iter_data = data;
269 struct blk_mq_hw_ctx *hctx = iter_data->hctx;
270 struct request_queue *q = iter_data->q;
271 struct blk_mq_tag_set *set = q->tag_set;
272 struct blk_mq_tags *tags;
273 struct request *rq;
274 bool ret = true;
275
276 if (blk_mq_is_shared_tags(set->flags))
277 tags = set->shared_tags;
278 else
279 tags = hctx->tags;
280
281 if (!iter_data->reserved)
282 bitnr += tags->nr_reserved_tags;
283 /*
284 * We can hit rq == NULL here, because the tagging functions
285 * test and set the bit before assigning ->rqs[].
286 */
287 rq = blk_mq_find_and_get_req(tags, bitnr);
288 if (!rq)
289 return true;
290
291 if (rq->q == q && (!hctx || rq->mq_hctx == hctx))
292 ret = iter_data->fn(rq, iter_data->data);
293 blk_mq_put_rq_ref(rq);
294 return ret;
295 }
296
297 /**
298 * bt_for_each - iterate over the requests associated with a hardware queue
299 * @hctx: Hardware queue to examine.
300 * @q: Request queue @hctx is associated with (@hctx->queue).
301 * @bt: sbitmap to examine. This is either the breserved_tags member
302 * or the bitmap_tags member of struct blk_mq_tags.
303 * @fn: Pointer to the function that will be called for each request
304 * associated with @hctx that has been assigned a driver tag.
305 * @fn will be called as follows: @fn(rq, @data) where rq is a
306 * pointer to a request. Return %true to continue iterating tags;
307 * %false to stop.
308 * @data: Will be passed as second argument to @fn.
309 * @reserved: Indicates whether @bt is the breserved_tags member or the
310 * bitmap_tags member of struct blk_mq_tags.
311 */
bt_for_each(struct blk_mq_hw_ctx * hctx,struct request_queue * q,struct sbitmap_queue * bt,busy_tag_iter_fn * fn,void * data,bool reserved)312 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q,
313 struct sbitmap_queue *bt, busy_tag_iter_fn *fn,
314 void *data, bool reserved)
315 {
316 struct bt_iter_data iter_data = {
317 .hctx = hctx,
318 .fn = fn,
319 .data = data,
320 .reserved = reserved,
321 .q = q,
322 };
323
324 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
325 }
326
327 struct bt_tags_iter_data {
328 struct blk_mq_tags *tags;
329 busy_tag_iter_fn *fn;
330 void *data;
331 unsigned int flags;
332 };
333
334 #define BT_TAG_ITER_RESERVED (1 << 0)
335 #define BT_TAG_ITER_STARTED (1 << 1)
336 #define BT_TAG_ITER_STATIC_RQS (1 << 2)
337
bt_tags_iter(struct sbitmap * bitmap,unsigned int bitnr,void * data)338 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
339 {
340 struct bt_tags_iter_data *iter_data = data;
341 struct blk_mq_tags *tags = iter_data->tags;
342 struct request *rq;
343 bool ret = true;
344 bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS);
345
346 if (!(iter_data->flags & BT_TAG_ITER_RESERVED))
347 bitnr += tags->nr_reserved_tags;
348
349 /*
350 * We can hit rq == NULL here, because the tagging functions
351 * test and set the bit before assigning ->rqs[].
352 */
353 if (iter_static_rqs)
354 rq = tags->static_rqs[bitnr];
355 else
356 rq = blk_mq_find_and_get_req(tags, bitnr);
357 if (!rq)
358 return true;
359
360 if (!(iter_data->flags & BT_TAG_ITER_STARTED) ||
361 blk_mq_request_started(rq))
362 ret = iter_data->fn(rq, iter_data->data);
363 if (!iter_static_rqs)
364 blk_mq_put_rq_ref(rq);
365 return ret;
366 }
367
368 /**
369 * bt_tags_for_each - iterate over the requests in a tag map
370 * @tags: Tag map to iterate over.
371 * @bt: sbitmap to examine. This is either the breserved_tags member
372 * or the bitmap_tags member of struct blk_mq_tags.
373 * @fn: Pointer to the function that will be called for each started
374 * request. @fn will be called as follows: @fn(rq, @data) where rq
375 * is a pointer to a request. Return %true to continue iterating
376 * tags; %false to stop.
377 * @data: Will be passed as second argument to @fn.
378 * @flags: BT_TAG_ITER_*
379 */
bt_tags_for_each(struct blk_mq_tags * tags,struct sbitmap_queue * bt,busy_tag_iter_fn * fn,void * data,unsigned int flags)380 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
381 busy_tag_iter_fn *fn, void *data, unsigned int flags)
382 {
383 struct bt_tags_iter_data iter_data = {
384 .tags = tags,
385 .fn = fn,
386 .data = data,
387 .flags = flags,
388 };
389
390 if (tags->rqs)
391 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
392 }
393
__blk_mq_all_tag_iter(struct blk_mq_tags * tags,busy_tag_iter_fn * fn,void * priv,unsigned int flags)394 static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
395 busy_tag_iter_fn *fn, void *priv, unsigned int flags)
396 {
397 WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
398
399 if (tags->nr_reserved_tags)
400 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv,
401 flags | BT_TAG_ITER_RESERVED);
402 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags);
403 }
404
405 /**
406 * blk_mq_all_tag_iter - iterate over all requests in a tag map
407 * @tags: Tag map to iterate over.
408 * @fn: Pointer to the function that will be called for each
409 * request. @fn will be called as follows: @fn(rq, @priv) where rq
410 * is a pointer to a request. Return %true to continue iterating
411 * tags; %false to stop.
412 * @priv: Will be passed as second argument to @fn.
413 *
414 * Caller has to pass the tag map from which requests are allocated.
415 */
blk_mq_all_tag_iter(struct blk_mq_tags * tags,busy_tag_iter_fn * fn,void * priv)416 void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
417 void *priv)
418 {
419 __blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
420 }
421
422 /**
423 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
424 * @tagset: Tag set to iterate over.
425 * @fn: Pointer to the function that will be called for each started
426 * request. @fn will be called as follows: @fn(rq, @priv) where
427 * rq is a pointer to a request. Return true to continue iterating
428 * tags, false to stop.
429 * @priv: Will be passed as second argument to @fn.
430 *
431 * We grab one request reference before calling @fn and release it after
432 * @fn returns.
433 */
blk_mq_tagset_busy_iter(struct blk_mq_tag_set * tagset,busy_tag_iter_fn * fn,void * priv)434 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
435 busy_tag_iter_fn *fn, void *priv)
436 {
437 unsigned int flags = tagset->flags;
438 int i, nr_tags, srcu_idx;
439
440 srcu_idx = srcu_read_lock(&tagset->tags_srcu);
441
442 nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues;
443
444 for (i = 0; i < nr_tags; i++) {
445 if (tagset->tags && tagset->tags[i])
446 __blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
447 BT_TAG_ITER_STARTED);
448 }
449 srcu_read_unlock(&tagset->tags_srcu, srcu_idx);
450 }
451 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
452
blk_mq_tagset_count_completed_rqs(struct request * rq,void * data)453 static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data)
454 {
455 unsigned *count = data;
456
457 if (blk_mq_request_completed(rq))
458 (*count)++;
459 return true;
460 }
461
462 /**
463 * blk_mq_tagset_wait_completed_request - Wait until all scheduled request
464 * completions have finished.
465 * @tagset: Tag set to drain completed request
466 *
467 * Note: This function has to be run after all IO queues are shutdown
468 */
blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set * tagset)469 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
470 {
471 while (true) {
472 unsigned count = 0;
473
474 blk_mq_tagset_busy_iter(tagset,
475 blk_mq_tagset_count_completed_rqs, &count);
476 if (!count)
477 break;
478 msleep(5);
479 }
480 }
481 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
482
483 /**
484 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
485 * @q: Request queue to examine.
486 * @fn: Pointer to the function that will be called for each request
487 * on @q. @fn will be called as follows: @fn(rq, @priv) where rq
488 * is a pointer to a request and hctx points to the hardware queue
489 * associated with the request.
490 * @priv: Will be passed as second argument to @fn.
491 *
492 * Note: if @q->tag_set is shared with other request queues then @fn will be
493 * called for all requests on all queues that share that tag set and not only
494 * for requests associated with @q.
495 */
blk_mq_queue_tag_busy_iter(struct request_queue * q,busy_tag_iter_fn * fn,void * priv)496 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
497 void *priv)
498 {
499 int srcu_idx;
500
501 /*
502 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table
503 * while the queue is frozen. So we can use q_usage_counter to avoid
504 * racing with it.
505 */
506 if (!percpu_ref_tryget(&q->q_usage_counter))
507 return;
508
509 srcu_idx = srcu_read_lock(&q->tag_set->tags_srcu);
510 if (blk_mq_is_shared_tags(q->tag_set->flags)) {
511 struct blk_mq_tags *tags = q->tag_set->shared_tags;
512 struct sbitmap_queue *bresv = &tags->breserved_tags;
513 struct sbitmap_queue *btags = &tags->bitmap_tags;
514
515 if (tags->nr_reserved_tags)
516 bt_for_each(NULL, q, bresv, fn, priv, true);
517 bt_for_each(NULL, q, btags, fn, priv, false);
518 } else {
519 struct blk_mq_hw_ctx *hctx;
520 unsigned long i;
521
522 queue_for_each_hw_ctx(q, hctx, i) {
523 struct blk_mq_tags *tags = hctx->tags;
524 struct sbitmap_queue *bresv = &tags->breserved_tags;
525 struct sbitmap_queue *btags = &tags->bitmap_tags;
526
527 /*
528 * If no software queues are currently mapped to this
529 * hardware queue, there's nothing to check
530 */
531 if (!blk_mq_hw_queue_mapped(hctx))
532 continue;
533
534 if (tags->nr_reserved_tags)
535 bt_for_each(hctx, q, bresv, fn, priv, true);
536 bt_for_each(hctx, q, btags, fn, priv, false);
537 }
538 }
539 srcu_read_unlock(&q->tag_set->tags_srcu, srcu_idx);
540 blk_queue_exit(q);
541 }
542
bt_alloc(struct sbitmap_queue * bt,unsigned int depth,bool round_robin,int node)543 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
544 bool round_robin, int node)
545 {
546 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
547 node);
548 }
549
blk_mq_init_tags(unsigned int total_tags,unsigned int reserved_tags,unsigned int flags,int node)550 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
551 unsigned int reserved_tags, unsigned int flags, int node)
552 {
553 unsigned int depth = total_tags - reserved_tags;
554 bool round_robin = flags & BLK_MQ_F_TAG_RR;
555 struct blk_mq_tags *tags;
556
557 if (total_tags > BLK_MQ_TAG_MAX) {
558 pr_err("blk-mq: tag depth too large\n");
559 return NULL;
560 }
561
562 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
563 if (!tags)
564 return NULL;
565
566 tags->nr_tags = total_tags;
567 tags->nr_reserved_tags = reserved_tags;
568 spin_lock_init(&tags->lock);
569 INIT_LIST_HEAD(&tags->page_list);
570
571 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
572 goto out_free_tags;
573 if (bt_alloc(&tags->breserved_tags, reserved_tags, round_robin, node))
574 goto out_free_bitmap_tags;
575
576 return tags;
577
578 out_free_bitmap_tags:
579 sbitmap_queue_free(&tags->bitmap_tags);
580 out_free_tags:
581 kfree(tags);
582 return NULL;
583 }
584
blk_mq_free_tags_callback(struct rcu_head * head)585 static void blk_mq_free_tags_callback(struct rcu_head *head)
586 {
587 struct blk_mq_tags *tags = container_of(head, struct blk_mq_tags,
588 rcu_head);
589 struct page *page;
590
591 while (!list_empty(&tags->page_list)) {
592 page = list_first_entry(&tags->page_list, struct page, lru);
593 list_del_init(&page->lru);
594 /*
595 * Remove kmemleak object previously allocated in
596 * blk_mq_alloc_rqs().
597 */
598 kmemleak_free(page_address(page));
599 __free_pages(page, page->private);
600 }
601 kfree(tags);
602 }
603
blk_mq_free_tags(struct blk_mq_tag_set * set,struct blk_mq_tags * tags)604 void blk_mq_free_tags(struct blk_mq_tag_set *set, struct blk_mq_tags *tags)
605 {
606 sbitmap_queue_free(&tags->bitmap_tags);
607 sbitmap_queue_free(&tags->breserved_tags);
608
609 /* if tags pages is not allocated yet, free tags directly */
610 if (list_empty(&tags->page_list)) {
611 kfree(tags);
612 return;
613 }
614
615 call_srcu(&set->tags_srcu, &tags->rcu_head, blk_mq_free_tags_callback);
616 }
617
blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set * set,unsigned int size)618 void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size)
619 {
620 struct blk_mq_tags *tags = set->shared_tags;
621
622 sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags);
623 }
624
blk_mq_tag_update_sched_shared_tags(struct request_queue * q,unsigned int nr)625 void blk_mq_tag_update_sched_shared_tags(struct request_queue *q,
626 unsigned int nr)
627 {
628 sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags,
629 nr - q->tag_set->reserved_tags);
630 }
631
632 /**
633 * blk_mq_unique_tag() - return a tag that is unique queue-wide
634 * @rq: request for which to compute a unique tag
635 *
636 * The tag field in struct request is unique per hardware queue but not over
637 * all hardware queues. Hence this function that returns a tag with the
638 * hardware context index in the upper bits and the per hardware queue tag in
639 * the lower bits.
640 *
641 * Note: When called for a request that is queued on a non-multiqueue request
642 * queue, the hardware context index is set to zero.
643 */
blk_mq_unique_tag(struct request * rq)644 u32 blk_mq_unique_tag(struct request *rq)
645 {
646 return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
647 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
648 }
649 EXPORT_SYMBOL(blk_mq_unique_tag);
650