1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9
10 #include <crypto/sha2.h>
11 #include <linux/workqueue.h>
12 #include <linux/file.h>
13 #include <linux/percpu.h>
14 #include <linux/err.h>
15 #include <linux/rbtree_latch.h>
16 #include <linux/numa.h>
17 #include <linux/mm_types.h>
18 #include <linux/wait.h>
19 #include <linux/refcount.h>
20 #include <linux/mutex.h>
21 #include <linux/module.h>
22 #include <linux/kallsyms.h>
23 #include <linux/capability.h>
24 #include <linux/sched/mm.h>
25 #include <linux/slab.h>
26 #include <linux/percpu-refcount.h>
27 #include <linux/stddef.h>
28 #include <linux/bpfptr.h>
29 #include <linux/btf.h>
30 #include <linux/rcupdate_trace.h>
31 #include <linux/static_call.h>
32 #include <linux/memcontrol.h>
33 #include <linux/cfi.h>
34 #include <asm/rqspinlock.h>
35
36 struct bpf_verifier_env;
37 struct bpf_verifier_log;
38 struct perf_event;
39 struct bpf_prog;
40 struct bpf_prog_aux;
41 struct bpf_map;
42 struct bpf_arena;
43 struct sock;
44 struct seq_file;
45 struct btf;
46 struct btf_type;
47 struct exception_table_entry;
48 struct seq_operations;
49 struct bpf_iter_aux_info;
50 struct bpf_local_storage;
51 struct bpf_local_storage_map;
52 struct kobject;
53 struct mem_cgroup;
54 struct module;
55 struct bpf_func_state;
56 struct ftrace_ops;
57 struct cgroup;
58 struct bpf_token;
59 struct user_namespace;
60 struct super_block;
61 struct inode;
62
63 extern struct idr btf_idr;
64 extern spinlock_t btf_idr_lock;
65 extern struct kobject *btf_kobj;
66 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
67 extern bool bpf_global_ma_set;
68
69 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
70 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
71 struct bpf_iter_aux_info *aux);
72 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
73 typedef unsigned int (*bpf_func_t)(const void *,
74 const struct bpf_insn *);
75 struct bpf_iter_seq_info {
76 const struct seq_operations *seq_ops;
77 bpf_iter_init_seq_priv_t init_seq_private;
78 bpf_iter_fini_seq_priv_t fini_seq_private;
79 u32 seq_priv_size;
80 };
81
82 /* map is generic key/value storage optionally accessible by eBPF programs */
83 struct bpf_map_ops {
84 /* funcs callable from userspace (via syscall) */
85 int (*map_alloc_check)(union bpf_attr *attr);
86 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
87 void (*map_release)(struct bpf_map *map, struct file *map_file);
88 void (*map_free)(struct bpf_map *map);
89 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
90 void (*map_release_uref)(struct bpf_map *map);
91 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
92 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
93 union bpf_attr __user *uattr);
94 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
95 void *value, u64 flags);
96 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
97 const union bpf_attr *attr,
98 union bpf_attr __user *uattr);
99 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
100 const union bpf_attr *attr,
101 union bpf_attr __user *uattr);
102 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
103 union bpf_attr __user *uattr);
104
105 /* funcs callable from userspace and from eBPF programs */
106 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
107 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
108 long (*map_delete_elem)(struct bpf_map *map, void *key);
109 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
110 long (*map_pop_elem)(struct bpf_map *map, void *value);
111 long (*map_peek_elem)(struct bpf_map *map, void *value);
112 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
113 int (*map_get_hash)(struct bpf_map *map, u32 hash_buf_size, void *hash_buf);
114
115 /* funcs called by prog_array and perf_event_array map */
116 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
117 int fd);
118 /* If need_defer is true, the implementation should guarantee that
119 * the to-be-put element is still alive before the bpf program, which
120 * may manipulate it, exists.
121 */
122 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
123 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
124 u32 (*map_fd_sys_lookup_elem)(void *ptr);
125 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
126 struct seq_file *m);
127 int (*map_check_btf)(const struct bpf_map *map,
128 const struct btf *btf,
129 const struct btf_type *key_type,
130 const struct btf_type *value_type);
131
132 /* Prog poke tracking helpers. */
133 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
134 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
135 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
136 struct bpf_prog *new);
137
138 /* Direct value access helpers. */
139 int (*map_direct_value_addr)(const struct bpf_map *map,
140 u64 *imm, u32 off);
141 int (*map_direct_value_meta)(const struct bpf_map *map,
142 u64 imm, u32 *off);
143 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
144 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
145 struct poll_table_struct *pts);
146 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
147 unsigned long len, unsigned long pgoff,
148 unsigned long flags);
149
150 /* Functions called by bpf_local_storage maps */
151 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
152 void *owner, u32 size);
153 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
154 void *owner, u32 size);
155 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
156
157 /* Misc helpers.*/
158 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
159
160 /* map_meta_equal must be implemented for maps that can be
161 * used as an inner map. It is a runtime check to ensure
162 * an inner map can be inserted to an outer map.
163 *
164 * Some properties of the inner map has been used during the
165 * verification time. When inserting an inner map at the runtime,
166 * map_meta_equal has to ensure the inserting map has the same
167 * properties that the verifier has used earlier.
168 */
169 bool (*map_meta_equal)(const struct bpf_map *meta0,
170 const struct bpf_map *meta1);
171
172
173 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
174 struct bpf_func_state *caller,
175 struct bpf_func_state *callee);
176 long (*map_for_each_callback)(struct bpf_map *map,
177 bpf_callback_t callback_fn,
178 void *callback_ctx, u64 flags);
179
180 u64 (*map_mem_usage)(const struct bpf_map *map);
181
182 /* BTF id of struct allocated by map_alloc */
183 int *map_btf_id;
184
185 /* bpf_iter info used to open a seq_file */
186 const struct bpf_iter_seq_info *iter_seq_info;
187 };
188
189 enum {
190 /* Support at most 11 fields in a BTF type */
191 BTF_FIELDS_MAX = 11,
192 };
193
194 enum btf_field_type {
195 BPF_SPIN_LOCK = (1 << 0),
196 BPF_TIMER = (1 << 1),
197 BPF_KPTR_UNREF = (1 << 2),
198 BPF_KPTR_REF = (1 << 3),
199 BPF_KPTR_PERCPU = (1 << 4),
200 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
201 BPF_LIST_HEAD = (1 << 5),
202 BPF_LIST_NODE = (1 << 6),
203 BPF_RB_ROOT = (1 << 7),
204 BPF_RB_NODE = (1 << 8),
205 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
206 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
207 BPF_REFCOUNT = (1 << 9),
208 BPF_WORKQUEUE = (1 << 10),
209 BPF_UPTR = (1 << 11),
210 BPF_RES_SPIN_LOCK = (1 << 12),
211 BPF_TASK_WORK = (1 << 13),
212 };
213
214 enum bpf_cgroup_storage_type {
215 BPF_CGROUP_STORAGE_SHARED,
216 BPF_CGROUP_STORAGE_PERCPU,
217 __BPF_CGROUP_STORAGE_MAX
218 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
219 };
220
221 #ifdef CONFIG_CGROUP_BPF
222 # define for_each_cgroup_storage_type(stype) \
223 for (stype = 0; stype < MAX_BPF_CGROUP_STORAGE_TYPE; stype++)
224 #else
225 # define for_each_cgroup_storage_type(stype) for (; false; )
226 #endif /* CONFIG_CGROUP_BPF */
227
228 typedef void (*btf_dtor_kfunc_t)(void *);
229
230 struct btf_field_kptr {
231 struct btf *btf;
232 struct module *module;
233 /* dtor used if btf_is_kernel(btf), otherwise the type is
234 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
235 */
236 btf_dtor_kfunc_t dtor;
237 u32 btf_id;
238 };
239
240 struct btf_field_graph_root {
241 struct btf *btf;
242 u32 value_btf_id;
243 u32 node_offset;
244 struct btf_record *value_rec;
245 };
246
247 struct btf_field {
248 u32 offset;
249 u32 size;
250 enum btf_field_type type;
251 union {
252 struct btf_field_kptr kptr;
253 struct btf_field_graph_root graph_root;
254 };
255 };
256
257 struct btf_record {
258 u32 cnt;
259 u32 field_mask;
260 int spin_lock_off;
261 int res_spin_lock_off;
262 int timer_off;
263 int wq_off;
264 int refcount_off;
265 int task_work_off;
266 struct btf_field fields[];
267 };
268
269 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
270 struct bpf_rb_node_kern {
271 struct rb_node rb_node;
272 void *owner;
273 } __attribute__((aligned(8)));
274
275 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
276 struct bpf_list_node_kern {
277 struct list_head list_head;
278 void *owner;
279 } __attribute__((aligned(8)));
280
281 /* 'Ownership' of program-containing map is claimed by the first program
282 * that is going to use this map or by the first program which FD is
283 * stored in the map to make sure that all callers and callees have the
284 * same prog type, JITed flag and xdp_has_frags flag.
285 */
286 struct bpf_map_owner {
287 enum bpf_prog_type type;
288 bool jited;
289 bool xdp_has_frags;
290 u64 storage_cookie[MAX_BPF_CGROUP_STORAGE_TYPE];
291 const struct btf_type *attach_func_proto;
292 enum bpf_attach_type expected_attach_type;
293 };
294
295 struct bpf_map {
296 u8 sha[SHA256_DIGEST_SIZE];
297 const struct bpf_map_ops *ops;
298 struct bpf_map *inner_map_meta;
299 #ifdef CONFIG_SECURITY
300 void *security;
301 #endif
302 enum bpf_map_type map_type;
303 u32 key_size;
304 u32 value_size;
305 u32 max_entries;
306 u64 map_extra; /* any per-map-type extra fields */
307 u32 map_flags;
308 u32 id;
309 struct btf_record *record;
310 int numa_node;
311 u32 btf_key_type_id;
312 u32 btf_value_type_id;
313 u32 btf_vmlinux_value_type_id;
314 struct btf *btf;
315 #ifdef CONFIG_MEMCG
316 struct obj_cgroup *objcg;
317 #endif
318 char name[BPF_OBJ_NAME_LEN];
319 struct mutex freeze_mutex;
320 atomic64_t refcnt;
321 atomic64_t usercnt;
322 /* rcu is used before freeing and work is only used during freeing */
323 union {
324 struct work_struct work;
325 struct rcu_head rcu;
326 };
327 atomic64_t writecnt;
328 spinlock_t owner_lock;
329 struct bpf_map_owner *owner;
330 bool bypass_spec_v1;
331 bool frozen; /* write-once; write-protected by freeze_mutex */
332 bool free_after_mult_rcu_gp;
333 bool free_after_rcu_gp;
334 atomic64_t sleepable_refcnt;
335 s64 __percpu *elem_count;
336 u64 cookie; /* write-once */
337 char *excl_prog_sha;
338 };
339
btf_field_type_name(enum btf_field_type type)340 static inline const char *btf_field_type_name(enum btf_field_type type)
341 {
342 switch (type) {
343 case BPF_SPIN_LOCK:
344 return "bpf_spin_lock";
345 case BPF_RES_SPIN_LOCK:
346 return "bpf_res_spin_lock";
347 case BPF_TIMER:
348 return "bpf_timer";
349 case BPF_WORKQUEUE:
350 return "bpf_wq";
351 case BPF_KPTR_UNREF:
352 case BPF_KPTR_REF:
353 return "kptr";
354 case BPF_KPTR_PERCPU:
355 return "percpu_kptr";
356 case BPF_UPTR:
357 return "uptr";
358 case BPF_LIST_HEAD:
359 return "bpf_list_head";
360 case BPF_LIST_NODE:
361 return "bpf_list_node";
362 case BPF_RB_ROOT:
363 return "bpf_rb_root";
364 case BPF_RB_NODE:
365 return "bpf_rb_node";
366 case BPF_REFCOUNT:
367 return "bpf_refcount";
368 case BPF_TASK_WORK:
369 return "bpf_task_work";
370 default:
371 WARN_ON_ONCE(1);
372 return "unknown";
373 }
374 }
375
376 #if IS_ENABLED(CONFIG_DEBUG_KERNEL)
377 #define BPF_WARN_ONCE(cond, format...) WARN_ONCE(cond, format)
378 #else
379 #define BPF_WARN_ONCE(cond, format...) BUILD_BUG_ON_INVALID(cond)
380 #endif
381
btf_field_type_size(enum btf_field_type type)382 static inline u32 btf_field_type_size(enum btf_field_type type)
383 {
384 switch (type) {
385 case BPF_SPIN_LOCK:
386 return sizeof(struct bpf_spin_lock);
387 case BPF_RES_SPIN_LOCK:
388 return sizeof(struct bpf_res_spin_lock);
389 case BPF_TIMER:
390 return sizeof(struct bpf_timer);
391 case BPF_WORKQUEUE:
392 return sizeof(struct bpf_wq);
393 case BPF_KPTR_UNREF:
394 case BPF_KPTR_REF:
395 case BPF_KPTR_PERCPU:
396 case BPF_UPTR:
397 return sizeof(u64);
398 case BPF_LIST_HEAD:
399 return sizeof(struct bpf_list_head);
400 case BPF_LIST_NODE:
401 return sizeof(struct bpf_list_node);
402 case BPF_RB_ROOT:
403 return sizeof(struct bpf_rb_root);
404 case BPF_RB_NODE:
405 return sizeof(struct bpf_rb_node);
406 case BPF_REFCOUNT:
407 return sizeof(struct bpf_refcount);
408 case BPF_TASK_WORK:
409 return sizeof(struct bpf_task_work);
410 default:
411 WARN_ON_ONCE(1);
412 return 0;
413 }
414 }
415
btf_field_type_align(enum btf_field_type type)416 static inline u32 btf_field_type_align(enum btf_field_type type)
417 {
418 switch (type) {
419 case BPF_SPIN_LOCK:
420 return __alignof__(struct bpf_spin_lock);
421 case BPF_RES_SPIN_LOCK:
422 return __alignof__(struct bpf_res_spin_lock);
423 case BPF_TIMER:
424 return __alignof__(struct bpf_timer);
425 case BPF_WORKQUEUE:
426 return __alignof__(struct bpf_wq);
427 case BPF_KPTR_UNREF:
428 case BPF_KPTR_REF:
429 case BPF_KPTR_PERCPU:
430 case BPF_UPTR:
431 return __alignof__(u64);
432 case BPF_LIST_HEAD:
433 return __alignof__(struct bpf_list_head);
434 case BPF_LIST_NODE:
435 return __alignof__(struct bpf_list_node);
436 case BPF_RB_ROOT:
437 return __alignof__(struct bpf_rb_root);
438 case BPF_RB_NODE:
439 return __alignof__(struct bpf_rb_node);
440 case BPF_REFCOUNT:
441 return __alignof__(struct bpf_refcount);
442 case BPF_TASK_WORK:
443 return __alignof__(struct bpf_task_work);
444 default:
445 WARN_ON_ONCE(1);
446 return 0;
447 }
448 }
449
bpf_obj_init_field(const struct btf_field * field,void * addr)450 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
451 {
452 memset(addr, 0, field->size);
453
454 switch (field->type) {
455 case BPF_REFCOUNT:
456 refcount_set((refcount_t *)addr, 1);
457 break;
458 case BPF_RB_NODE:
459 RB_CLEAR_NODE((struct rb_node *)addr);
460 break;
461 case BPF_LIST_HEAD:
462 case BPF_LIST_NODE:
463 INIT_LIST_HEAD((struct list_head *)addr);
464 break;
465 case BPF_RB_ROOT:
466 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
467 case BPF_SPIN_LOCK:
468 case BPF_RES_SPIN_LOCK:
469 case BPF_TIMER:
470 case BPF_WORKQUEUE:
471 case BPF_KPTR_UNREF:
472 case BPF_KPTR_REF:
473 case BPF_KPTR_PERCPU:
474 case BPF_UPTR:
475 case BPF_TASK_WORK:
476 break;
477 default:
478 WARN_ON_ONCE(1);
479 return;
480 }
481 }
482
btf_record_has_field(const struct btf_record * rec,enum btf_field_type type)483 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
484 {
485 if (IS_ERR_OR_NULL(rec))
486 return false;
487 return rec->field_mask & type;
488 }
489
bpf_obj_init(const struct btf_record * rec,void * obj)490 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
491 {
492 int i;
493
494 if (IS_ERR_OR_NULL(rec))
495 return;
496 for (i = 0; i < rec->cnt; i++)
497 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
498 }
499
500 /* 'dst' must be a temporary buffer and should not point to memory that is being
501 * used in parallel by a bpf program or bpf syscall, otherwise the access from
502 * the bpf program or bpf syscall may be corrupted by the reinitialization,
503 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
504 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
505 * program or bpf syscall.
506 */
check_and_init_map_value(struct bpf_map * map,void * dst)507 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
508 {
509 bpf_obj_init(map->record, dst);
510 }
511
512 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
513 * forced to use 'long' read/writes to try to atomically copy long counters.
514 * Best-effort only. No barriers here, since it _will_ race with concurrent
515 * updates from BPF programs. Called from bpf syscall and mostly used with
516 * size 8 or 16 bytes, so ask compiler to inline it.
517 */
bpf_long_memcpy(void * dst,const void * src,u32 size)518 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
519 {
520 const long *lsrc = src;
521 long *ldst = dst;
522
523 size /= sizeof(long);
524 while (size--)
525 data_race(*ldst++ = *lsrc++);
526 }
527
528 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
bpf_obj_memcpy(struct btf_record * rec,void * dst,void * src,u32 size,bool long_memcpy)529 static inline void bpf_obj_memcpy(struct btf_record *rec,
530 void *dst, void *src, u32 size,
531 bool long_memcpy)
532 {
533 u32 curr_off = 0;
534 int i;
535
536 if (IS_ERR_OR_NULL(rec)) {
537 if (long_memcpy)
538 bpf_long_memcpy(dst, src, round_up(size, 8));
539 else
540 memcpy(dst, src, size);
541 return;
542 }
543
544 for (i = 0; i < rec->cnt; i++) {
545 u32 next_off = rec->fields[i].offset;
546 u32 sz = next_off - curr_off;
547
548 memcpy(dst + curr_off, src + curr_off, sz);
549 curr_off += rec->fields[i].size + sz;
550 }
551 memcpy(dst + curr_off, src + curr_off, size - curr_off);
552 }
553
copy_map_value(struct bpf_map * map,void * dst,void * src)554 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
555 {
556 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
557 }
558
copy_map_value_long(struct bpf_map * map,void * dst,void * src)559 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
560 {
561 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
562 }
563
bpf_obj_swap_uptrs(const struct btf_record * rec,void * dst,void * src)564 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
565 {
566 unsigned long *src_uptr, *dst_uptr;
567 const struct btf_field *field;
568 int i;
569
570 if (!btf_record_has_field(rec, BPF_UPTR))
571 return;
572
573 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
574 if (field->type != BPF_UPTR)
575 continue;
576
577 src_uptr = src + field->offset;
578 dst_uptr = dst + field->offset;
579 swap(*src_uptr, *dst_uptr);
580 }
581 }
582
bpf_obj_memzero(struct btf_record * rec,void * dst,u32 size)583 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
584 {
585 u32 curr_off = 0;
586 int i;
587
588 if (IS_ERR_OR_NULL(rec)) {
589 memset(dst, 0, size);
590 return;
591 }
592
593 for (i = 0; i < rec->cnt; i++) {
594 u32 next_off = rec->fields[i].offset;
595 u32 sz = next_off - curr_off;
596
597 memset(dst + curr_off, 0, sz);
598 curr_off += rec->fields[i].size + sz;
599 }
600 memset(dst + curr_off, 0, size - curr_off);
601 }
602
zero_map_value(struct bpf_map * map,void * dst)603 static inline void zero_map_value(struct bpf_map *map, void *dst)
604 {
605 bpf_obj_memzero(map->record, dst, map->value_size);
606 }
607
608 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
609 bool lock_src);
610 void bpf_timer_cancel_and_free(void *timer);
611 void bpf_wq_cancel_and_free(void *timer);
612 void bpf_task_work_cancel_and_free(void *timer);
613 void bpf_list_head_free(const struct btf_field *field, void *list_head,
614 struct bpf_spin_lock *spin_lock);
615 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
616 struct bpf_spin_lock *spin_lock);
617 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
618 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
619 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
620
621 struct bpf_offload_dev;
622 struct bpf_offloaded_map;
623
624 struct bpf_map_dev_ops {
625 int (*map_get_next_key)(struct bpf_offloaded_map *map,
626 void *key, void *next_key);
627 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
628 void *key, void *value);
629 int (*map_update_elem)(struct bpf_offloaded_map *map,
630 void *key, void *value, u64 flags);
631 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
632 };
633
634 struct bpf_offloaded_map {
635 struct bpf_map map;
636 struct net_device *netdev;
637 const struct bpf_map_dev_ops *dev_ops;
638 void *dev_priv;
639 struct list_head offloads;
640 };
641
map_to_offmap(struct bpf_map * map)642 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
643 {
644 return container_of(map, struct bpf_offloaded_map, map);
645 }
646
bpf_map_offload_neutral(const struct bpf_map * map)647 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
648 {
649 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
650 }
651
bpf_map_support_seq_show(const struct bpf_map * map)652 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
653 {
654 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
655 map->ops->map_seq_show_elem;
656 }
657
658 int map_check_no_btf(const struct bpf_map *map,
659 const struct btf *btf,
660 const struct btf_type *key_type,
661 const struct btf_type *value_type);
662
663 bool bpf_map_meta_equal(const struct bpf_map *meta0,
664 const struct bpf_map *meta1);
665
bpf_map_has_internal_structs(struct bpf_map * map)666 static inline bool bpf_map_has_internal_structs(struct bpf_map *map)
667 {
668 return btf_record_has_field(map->record, BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK);
669 }
670
671 void bpf_map_free_internal_structs(struct bpf_map *map, void *obj);
672
673 int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags,
674 struct bpf_dynptr *ptr__uninit);
675
676 extern const struct bpf_map_ops bpf_map_offload_ops;
677
678 /* bpf_type_flag contains a set of flags that are applicable to the values of
679 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
680 * or a memory is read-only. We classify types into two categories: base types
681 * and extended types. Extended types are base types combined with a type flag.
682 *
683 * Currently there are no more than 32 base types in arg_type, ret_type and
684 * reg_types.
685 */
686 #define BPF_BASE_TYPE_BITS 8
687
688 enum bpf_type_flag {
689 /* PTR may be NULL. */
690 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
691
692 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
693 * compatible with both mutable and immutable memory.
694 */
695 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
696
697 /* MEM points to BPF ring buffer reservation. */
698 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
699
700 /* MEM is in user address space. */
701 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
702
703 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
704 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
705 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
706 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
707 * to the specified cpu.
708 */
709 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
710
711 /* Indicates that the argument will be released. */
712 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
713
714 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
715 * unreferenced and referenced kptr loaded from map value using a load
716 * instruction, so that they can only be dereferenced but not escape the
717 * BPF program into the kernel (i.e. cannot be passed as arguments to
718 * kfunc or bpf helpers).
719 */
720 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
721
722 /* MEM can be uninitialized. */
723 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
724
725 /* DYNPTR points to memory local to the bpf program. */
726 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
727
728 /* DYNPTR points to a kernel-produced ringbuf record. */
729 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
730
731 /* Size is known at compile time. */
732 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
733
734 /* MEM is of an allocated object of type in program BTF. This is used to
735 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
736 */
737 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
738
739 /* PTR was passed from the kernel in a trusted context, and may be
740 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
741 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
742 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
743 * without invoking bpf_kptr_xchg(). What we really need to know is
744 * whether a pointer is safe to pass to a kfunc or BPF helper function.
745 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
746 * helpers, they do not cover all possible instances of unsafe
747 * pointers. For example, a pointer that was obtained from walking a
748 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
749 * fact that it may be NULL, invalid, etc. This is due to backwards
750 * compatibility requirements, as this was the behavior that was first
751 * introduced when kptrs were added. The behavior is now considered
752 * deprecated, and PTR_UNTRUSTED will eventually be removed.
753 *
754 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
755 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
756 * For example, pointers passed to tracepoint arguments are considered
757 * PTR_TRUSTED, as are pointers that are passed to struct_ops
758 * callbacks. As alluded to above, pointers that are obtained from
759 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
760 * struct task_struct *task is PTR_TRUSTED, then accessing
761 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
762 * in a BPF register. Similarly, pointers passed to certain programs
763 * types such as kretprobes are not guaranteed to be valid, as they may
764 * for example contain an object that was recently freed.
765 */
766 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
767
768 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
769 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
770
771 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
772 * Currently only valid for linked-list and rbtree nodes. If the nodes
773 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
774 */
775 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
776
777 /* DYNPTR points to sk_buff */
778 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
779
780 /* DYNPTR points to xdp_buff */
781 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
782
783 /* Memory must be aligned on some architectures, used in combination with
784 * MEM_FIXED_SIZE.
785 */
786 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
787
788 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence
789 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
790 * MEM_UNINIT means that memory needs to be initialized since it is also
791 * read.
792 */
793 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS),
794
795 /* DYNPTR points to skb_metadata_end()-skb_metadata_len() */
796 DYNPTR_TYPE_SKB_META = BIT(19 + BPF_BASE_TYPE_BITS),
797
798 /* DYNPTR points to file */
799 DYNPTR_TYPE_FILE = BIT(20 + BPF_BASE_TYPE_BITS),
800
801 __BPF_TYPE_FLAG_MAX,
802 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
803 };
804
805 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
806 | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META | DYNPTR_TYPE_FILE)
807
808 /* Max number of base types. */
809 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
810
811 /* Max number of all types. */
812 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
813
814 /* function argument constraints */
815 enum bpf_arg_type {
816 ARG_DONTCARE = 0, /* unused argument in helper function */
817
818 /* the following constraints used to prototype
819 * bpf_map_lookup/update/delete_elem() functions
820 */
821 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
822 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
823 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
824
825 /* Used to prototype bpf_memcmp() and other functions that access data
826 * on eBPF program stack
827 */
828 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
829 ARG_PTR_TO_ARENA,
830
831 ARG_CONST_SIZE, /* number of bytes accessed from memory */
832 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
833
834 ARG_PTR_TO_CTX, /* pointer to context */
835 ARG_ANYTHING, /* any (initialized) argument is ok */
836 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
837 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
838 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
839 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
840 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
841 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
842 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
843 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
844 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
845 ARG_PTR_TO_STACK, /* pointer to stack */
846 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
847 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
848 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */
849 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
850 __BPF_ARG_TYPE_MAX,
851
852 /* Extended arg_types. */
853 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
854 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
855 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
856 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
857 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
858 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
859 /* Pointer to memory does not need to be initialized, since helper function
860 * fills all bytes or clears them in error case.
861 */
862 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
863 /* Pointer to valid memory of size known at compile time. */
864 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
865
866 /* This must be the last entry. Its purpose is to ensure the enum is
867 * wide enough to hold the higher bits reserved for bpf_type_flag.
868 */
869 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
870 };
871 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
872
873 /* type of values returned from helper functions */
874 enum bpf_return_type {
875 RET_INTEGER, /* function returns integer */
876 RET_VOID, /* function doesn't return anything */
877 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
878 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
879 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
880 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
881 RET_PTR_TO_MEM, /* returns a pointer to memory */
882 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
883 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
884 __BPF_RET_TYPE_MAX,
885
886 /* Extended ret_types. */
887 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
888 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
889 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
890 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
891 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
892 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
893 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
894 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
895
896 /* This must be the last entry. Its purpose is to ensure the enum is
897 * wide enough to hold the higher bits reserved for bpf_type_flag.
898 */
899 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
900 };
901 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
902
903 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
904 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
905 * instructions after verifying
906 */
907 struct bpf_func_proto {
908 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
909 bool gpl_only;
910 bool pkt_access;
911 bool might_sleep;
912 /* set to true if helper follows contract for llvm
913 * attribute bpf_fastcall:
914 * - void functions do not scratch r0
915 * - functions taking N arguments scratch only registers r1-rN
916 */
917 bool allow_fastcall;
918 enum bpf_return_type ret_type;
919 union {
920 struct {
921 enum bpf_arg_type arg1_type;
922 enum bpf_arg_type arg2_type;
923 enum bpf_arg_type arg3_type;
924 enum bpf_arg_type arg4_type;
925 enum bpf_arg_type arg5_type;
926 };
927 enum bpf_arg_type arg_type[5];
928 };
929 union {
930 struct {
931 u32 *arg1_btf_id;
932 u32 *arg2_btf_id;
933 u32 *arg3_btf_id;
934 u32 *arg4_btf_id;
935 u32 *arg5_btf_id;
936 };
937 u32 *arg_btf_id[5];
938 struct {
939 size_t arg1_size;
940 size_t arg2_size;
941 size_t arg3_size;
942 size_t arg4_size;
943 size_t arg5_size;
944 };
945 size_t arg_size[5];
946 };
947 int *ret_btf_id; /* return value btf_id */
948 bool (*allowed)(const struct bpf_prog *prog);
949 };
950
951 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
952 * the first argument to eBPF programs.
953 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
954 */
955 struct bpf_context;
956
957 enum bpf_access_type {
958 BPF_READ = 1,
959 BPF_WRITE = 2
960 };
961
962 /* types of values stored in eBPF registers */
963 /* Pointer types represent:
964 * pointer
965 * pointer + imm
966 * pointer + (u16) var
967 * pointer + (u16) var + imm
968 * if (range > 0) then [ptr, ptr + range - off) is safe to access
969 * if (id > 0) means that some 'var' was added
970 * if (off > 0) means that 'imm' was added
971 */
972 enum bpf_reg_type {
973 NOT_INIT = 0, /* nothing was written into register */
974 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
975 PTR_TO_CTX, /* reg points to bpf_context */
976 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
977 PTR_TO_MAP_VALUE, /* reg points to map element value */
978 PTR_TO_MAP_KEY, /* reg points to a map element key */
979 PTR_TO_STACK, /* reg == frame_pointer + offset */
980 PTR_TO_PACKET_META, /* skb->data - meta_len */
981 PTR_TO_PACKET, /* reg points to skb->data */
982 PTR_TO_PACKET_END, /* skb->data + headlen */
983 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
984 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
985 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
986 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
987 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
988 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
989 /* PTR_TO_BTF_ID points to a kernel struct that does not need
990 * to be null checked by the BPF program. This does not imply the
991 * pointer is _not_ null and in practice this can easily be a null
992 * pointer when reading pointer chains. The assumption is program
993 * context will handle null pointer dereference typically via fault
994 * handling. The verifier must keep this in mind and can make no
995 * assumptions about null or non-null when doing branch analysis.
996 * Further, when passed into helpers the helpers can not, without
997 * additional context, assume the value is non-null.
998 */
999 PTR_TO_BTF_ID,
1000 PTR_TO_MEM, /* reg points to valid memory region */
1001 PTR_TO_ARENA,
1002 PTR_TO_BUF, /* reg points to a read/write buffer */
1003 PTR_TO_FUNC, /* reg points to a bpf program function */
1004 PTR_TO_INSN, /* reg points to a bpf program instruction */
1005 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
1006 __BPF_REG_TYPE_MAX,
1007
1008 /* Extended reg_types. */
1009 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
1010 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
1011 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
1012 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
1013 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
1014 * been checked for null. Used primarily to inform the verifier
1015 * an explicit null check is required for this struct.
1016 */
1017 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
1018
1019 /* This must be the last entry. Its purpose is to ensure the enum is
1020 * wide enough to hold the higher bits reserved for bpf_type_flag.
1021 */
1022 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
1023 };
1024 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
1025
1026 /* The information passed from prog-specific *_is_valid_access
1027 * back to the verifier.
1028 */
1029 struct bpf_insn_access_aux {
1030 enum bpf_reg_type reg_type;
1031 bool is_ldsx;
1032 union {
1033 int ctx_field_size;
1034 struct {
1035 struct btf *btf;
1036 u32 btf_id;
1037 u32 ref_obj_id;
1038 };
1039 };
1040 struct bpf_verifier_log *log; /* for verbose logs */
1041 bool is_retval; /* is accessing function return value ? */
1042 };
1043
1044 static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)1045 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
1046 {
1047 aux->ctx_field_size = size;
1048 }
1049
bpf_is_ldimm64(const struct bpf_insn * insn)1050 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
1051 {
1052 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
1053 }
1054
bpf_pseudo_func(const struct bpf_insn * insn)1055 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
1056 {
1057 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
1058 }
1059
1060 /* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an
1061 * atomic load or store, and false if it is a read-modify-write instruction.
1062 */
1063 static inline bool
bpf_atomic_is_load_store(const struct bpf_insn * atomic_insn)1064 bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn)
1065 {
1066 switch (atomic_insn->imm) {
1067 case BPF_LOAD_ACQ:
1068 case BPF_STORE_REL:
1069 return true;
1070 default:
1071 return false;
1072 }
1073 }
1074
1075 struct bpf_prog_ops {
1076 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
1077 union bpf_attr __user *uattr);
1078 };
1079
1080 struct bpf_reg_state;
1081 struct bpf_verifier_ops {
1082 /* return eBPF function prototype for verification */
1083 const struct bpf_func_proto *
1084 (*get_func_proto)(enum bpf_func_id func_id,
1085 const struct bpf_prog *prog);
1086
1087 /* return true if 'size' wide access at offset 'off' within bpf_context
1088 * with 'type' (read or write) is allowed
1089 */
1090 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1091 const struct bpf_prog *prog,
1092 struct bpf_insn_access_aux *info);
1093 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1094 const struct bpf_prog *prog);
1095 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1096 s16 ctx_stack_off);
1097 int (*gen_ld_abs)(const struct bpf_insn *orig,
1098 struct bpf_insn *insn_buf);
1099 u32 (*convert_ctx_access)(enum bpf_access_type type,
1100 const struct bpf_insn *src,
1101 struct bpf_insn *dst,
1102 struct bpf_prog *prog, u32 *target_size);
1103 int (*btf_struct_access)(struct bpf_verifier_log *log,
1104 const struct bpf_reg_state *reg,
1105 int off, int size);
1106 };
1107
1108 struct bpf_prog_offload_ops {
1109 /* verifier basic callbacks */
1110 int (*insn_hook)(struct bpf_verifier_env *env,
1111 int insn_idx, int prev_insn_idx);
1112 int (*finalize)(struct bpf_verifier_env *env);
1113 /* verifier optimization callbacks (called after .finalize) */
1114 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1115 struct bpf_insn *insn);
1116 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1117 /* program management callbacks */
1118 int (*prepare)(struct bpf_prog *prog);
1119 int (*translate)(struct bpf_prog *prog);
1120 void (*destroy)(struct bpf_prog *prog);
1121 };
1122
1123 struct bpf_prog_offload {
1124 struct bpf_prog *prog;
1125 struct net_device *netdev;
1126 struct bpf_offload_dev *offdev;
1127 void *dev_priv;
1128 struct list_head offloads;
1129 bool dev_state;
1130 bool opt_failed;
1131 void *jited_image;
1132 u32 jited_len;
1133 };
1134
1135 /* The longest tracepoint has 12 args.
1136 * See include/trace/bpf_probe.h
1137 */
1138 #define MAX_BPF_FUNC_ARGS 12
1139
1140 /* The maximum number of arguments passed through registers
1141 * a single function may have.
1142 */
1143 #define MAX_BPF_FUNC_REG_ARGS 5
1144
1145 /* The argument is a structure or a union. */
1146 #define BTF_FMODEL_STRUCT_ARG BIT(0)
1147
1148 /* The argument is signed. */
1149 #define BTF_FMODEL_SIGNED_ARG BIT(1)
1150
1151 struct btf_func_model {
1152 u8 ret_size;
1153 u8 ret_flags;
1154 u8 nr_args;
1155 u8 arg_size[MAX_BPF_FUNC_ARGS];
1156 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1157 };
1158
1159 /* Restore arguments before returning from trampoline to let original function
1160 * continue executing. This flag is used for fentry progs when there are no
1161 * fexit progs.
1162 */
1163 #define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1164 /* Call original function after fentry progs, but before fexit progs.
1165 * Makes sense for fentry/fexit, normal calls and indirect calls.
1166 */
1167 #define BPF_TRAMP_F_CALL_ORIG BIT(1)
1168 /* Skip current frame and return to parent. Makes sense for fentry/fexit
1169 * programs only. Should not be used with normal calls and indirect calls.
1170 */
1171 #define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1172 /* Store IP address of the caller on the trampoline stack,
1173 * so it's available for trampoline's programs.
1174 */
1175 #define BPF_TRAMP_F_IP_ARG BIT(3)
1176 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1177 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1178
1179 /* Get original function from stack instead of from provided direct address.
1180 * Makes sense for trampolines with fexit or fmod_ret programs.
1181 */
1182 #define BPF_TRAMP_F_ORIG_STACK BIT(5)
1183
1184 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1185 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1186 */
1187 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1188
1189 /* Indicate that current trampoline is in a tail call context. Then, it has to
1190 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1191 */
1192 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1193
1194 /*
1195 * Indicate the trampoline should be suitable to receive indirect calls;
1196 * without this indirectly calling the generated code can result in #UD/#CP,
1197 * depending on the CFI options.
1198 *
1199 * Used by bpf_struct_ops.
1200 *
1201 * Incompatible with FENTRY usage, overloads @func_addr argument.
1202 */
1203 #define BPF_TRAMP_F_INDIRECT BIT(8)
1204
1205 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1206 * bytes on x86.
1207 */
1208 enum {
1209 #if defined(__s390x__)
1210 BPF_MAX_TRAMP_LINKS = 27,
1211 #else
1212 BPF_MAX_TRAMP_LINKS = 38,
1213 #endif
1214 };
1215
1216 struct bpf_tramp_links {
1217 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1218 int nr_links;
1219 };
1220
1221 struct bpf_tramp_run_ctx;
1222
1223 /* Different use cases for BPF trampoline:
1224 * 1. replace nop at the function entry (kprobe equivalent)
1225 * flags = BPF_TRAMP_F_RESTORE_REGS
1226 * fentry = a set of programs to run before returning from trampoline
1227 *
1228 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1229 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1230 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1231 * fentry = a set of program to run before calling original function
1232 * fexit = a set of program to run after original function
1233 *
1234 * 3. replace direct call instruction anywhere in the function body
1235 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1236 * With flags = 0
1237 * fentry = a set of programs to run before returning from trampoline
1238 * With flags = BPF_TRAMP_F_CALL_ORIG
1239 * orig_call = original callback addr or direct function addr
1240 * fentry = a set of program to run before calling original function
1241 * fexit = a set of program to run after original function
1242 */
1243 struct bpf_tramp_image;
1244 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1245 const struct btf_func_model *m, u32 flags,
1246 struct bpf_tramp_links *tlinks,
1247 void *func_addr);
1248 void *arch_alloc_bpf_trampoline(unsigned int size);
1249 void arch_free_bpf_trampoline(void *image, unsigned int size);
1250 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1251 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1252 struct bpf_tramp_links *tlinks, void *func_addr);
1253
1254 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1255 struct bpf_tramp_run_ctx *run_ctx);
1256 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1257 struct bpf_tramp_run_ctx *run_ctx);
1258 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1259 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1260 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1261 struct bpf_tramp_run_ctx *run_ctx);
1262 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1263 struct bpf_tramp_run_ctx *run_ctx);
1264 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1265 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1266
1267 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_JMP
bpf_trampoline_use_jmp(u64 flags)1268 static inline bool bpf_trampoline_use_jmp(u64 flags)
1269 {
1270 return flags & BPF_TRAMP_F_CALL_ORIG && !(flags & BPF_TRAMP_F_SKIP_FRAME);
1271 }
1272 #else
bpf_trampoline_use_jmp(u64 flags)1273 static inline bool bpf_trampoline_use_jmp(u64 flags)
1274 {
1275 return false;
1276 }
1277 #endif
1278
1279 struct bpf_ksym {
1280 unsigned long start;
1281 unsigned long end;
1282 char name[KSYM_NAME_LEN];
1283 struct list_head lnode;
1284 struct latch_tree_node tnode;
1285 bool prog;
1286 };
1287
1288 enum bpf_tramp_prog_type {
1289 BPF_TRAMP_FENTRY,
1290 BPF_TRAMP_FEXIT,
1291 BPF_TRAMP_MODIFY_RETURN,
1292 BPF_TRAMP_MAX,
1293 BPF_TRAMP_REPLACE, /* more than MAX */
1294 };
1295
1296 struct bpf_tramp_image {
1297 void *image;
1298 int size;
1299 struct bpf_ksym ksym;
1300 struct percpu_ref pcref;
1301 void *ip_after_call;
1302 void *ip_epilogue;
1303 union {
1304 struct rcu_head rcu;
1305 struct work_struct work;
1306 };
1307 };
1308
1309 struct bpf_trampoline {
1310 /* hlist for trampoline_table */
1311 struct hlist_node hlist;
1312 struct ftrace_ops *fops;
1313 /* serializes access to fields of this trampoline */
1314 struct mutex mutex;
1315 refcount_t refcnt;
1316 u32 flags;
1317 u64 key;
1318 struct {
1319 struct btf_func_model model;
1320 void *addr;
1321 bool ftrace_managed;
1322 } func;
1323 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1324 * program by replacing one of its functions. func.addr is the address
1325 * of the function it replaced.
1326 */
1327 struct bpf_prog *extension_prog;
1328 /* list of BPF programs using this trampoline */
1329 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1330 /* Number of attached programs. A counter per kind. */
1331 int progs_cnt[BPF_TRAMP_MAX];
1332 /* Executable image of trampoline */
1333 struct bpf_tramp_image *cur_image;
1334 };
1335
1336 struct bpf_attach_target_info {
1337 struct btf_func_model fmodel;
1338 long tgt_addr;
1339 struct module *tgt_mod;
1340 const char *tgt_name;
1341 const struct btf_type *tgt_type;
1342 };
1343
1344 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1345
1346 struct bpf_dispatcher_prog {
1347 struct bpf_prog *prog;
1348 refcount_t users;
1349 };
1350
1351 struct bpf_dispatcher {
1352 /* dispatcher mutex */
1353 struct mutex mutex;
1354 void *func;
1355 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1356 int num_progs;
1357 void *image;
1358 void *rw_image;
1359 u32 image_off;
1360 struct bpf_ksym ksym;
1361 #ifdef CONFIG_HAVE_STATIC_CALL
1362 struct static_call_key *sc_key;
1363 void *sc_tramp;
1364 #endif
1365 };
1366
1367 #ifndef __bpfcall
1368 #define __bpfcall __nocfi
1369 #endif
1370
bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)1371 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1372 const void *ctx,
1373 const struct bpf_insn *insnsi,
1374 bpf_func_t bpf_func)
1375 {
1376 return bpf_func(ctx, insnsi);
1377 }
1378
1379 /* the implementation of the opaque uapi struct bpf_dynptr */
1380 struct bpf_dynptr_kern {
1381 void *data;
1382 /* Size represents the number of usable bytes of dynptr data.
1383 * If for example the offset is at 4 for a local dynptr whose data is
1384 * of type u64, the number of usable bytes is 4.
1385 *
1386 * The upper 8 bits are reserved. It is as follows:
1387 * Bits 0 - 23 = size
1388 * Bits 24 - 30 = dynptr type
1389 * Bit 31 = whether dynptr is read-only
1390 */
1391 u32 size;
1392 u32 offset;
1393 } __aligned(8);
1394
1395 enum bpf_dynptr_type {
1396 BPF_DYNPTR_TYPE_INVALID,
1397 /* Points to memory that is local to the bpf program */
1398 BPF_DYNPTR_TYPE_LOCAL,
1399 /* Underlying data is a ringbuf record */
1400 BPF_DYNPTR_TYPE_RINGBUF,
1401 /* Underlying data is a sk_buff */
1402 BPF_DYNPTR_TYPE_SKB,
1403 /* Underlying data is a xdp_buff */
1404 BPF_DYNPTR_TYPE_XDP,
1405 /* Points to skb_metadata_end()-skb_metadata_len() */
1406 BPF_DYNPTR_TYPE_SKB_META,
1407 /* Underlying data is a file */
1408 BPF_DYNPTR_TYPE_FILE,
1409 };
1410
1411 int bpf_dynptr_check_size(u64 size);
1412 u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1413 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len);
1414 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len);
1415 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1416 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset,
1417 void *src, u64 len, u64 flags);
1418 void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset,
1419 void *buffer__opt, u64 buffer__szk);
1420
bpf_dynptr_check_off_len(const struct bpf_dynptr_kern * ptr,u64 offset,u64 len)1421 static inline int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u64 offset, u64 len)
1422 {
1423 u64 size = __bpf_dynptr_size(ptr);
1424
1425 if (len > size || offset > size - len)
1426 return -E2BIG;
1427
1428 return 0;
1429 }
1430
1431 #ifdef CONFIG_BPF_JIT
1432 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1433 struct bpf_trampoline *tr,
1434 struct bpf_prog *tgt_prog);
1435 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1436 struct bpf_trampoline *tr,
1437 struct bpf_prog *tgt_prog);
1438 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1439 struct bpf_attach_target_info *tgt_info);
1440 void bpf_trampoline_put(struct bpf_trampoline *tr);
1441 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1442
1443 /*
1444 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1445 * indirection with a direct call to the bpf program. If the architecture does
1446 * not have STATIC_CALL, avoid a double-indirection.
1447 */
1448 #ifdef CONFIG_HAVE_STATIC_CALL
1449
1450 #define __BPF_DISPATCHER_SC_INIT(_name) \
1451 .sc_key = &STATIC_CALL_KEY(_name), \
1452 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1453
1454 #define __BPF_DISPATCHER_SC(name) \
1455 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1456
1457 #define __BPF_DISPATCHER_CALL(name) \
1458 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1459
1460 #define __BPF_DISPATCHER_UPDATE(_d, _new) \
1461 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1462
1463 #else
1464 #define __BPF_DISPATCHER_SC_INIT(name)
1465 #define __BPF_DISPATCHER_SC(name)
1466 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1467 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1468 #endif
1469
1470 #define BPF_DISPATCHER_INIT(_name) { \
1471 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1472 .func = &_name##_func, \
1473 .progs = {}, \
1474 .num_progs = 0, \
1475 .image = NULL, \
1476 .image_off = 0, \
1477 .ksym = { \
1478 .name = #_name, \
1479 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1480 }, \
1481 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1482 }
1483
1484 #define DEFINE_BPF_DISPATCHER(name) \
1485 __BPF_DISPATCHER_SC(name); \
1486 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \
1487 const void *ctx, \
1488 const struct bpf_insn *insnsi, \
1489 bpf_func_t bpf_func) \
1490 { \
1491 return __BPF_DISPATCHER_CALL(name); \
1492 } \
1493 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1494 struct bpf_dispatcher bpf_dispatcher_##name = \
1495 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1496
1497 #define DECLARE_BPF_DISPATCHER(name) \
1498 unsigned int bpf_dispatcher_##name##_func( \
1499 const void *ctx, \
1500 const struct bpf_insn *insnsi, \
1501 bpf_func_t bpf_func); \
1502 extern struct bpf_dispatcher bpf_dispatcher_##name;
1503
1504 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1505 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1506 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1507 struct bpf_prog *to);
1508 /* Called only from JIT-enabled code, so there's no need for stubs. */
1509 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1510 void bpf_image_ksym_add(struct bpf_ksym *ksym);
1511 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1512 void bpf_ksym_add(struct bpf_ksym *ksym);
1513 void bpf_ksym_del(struct bpf_ksym *ksym);
1514 int bpf_jit_charge_modmem(u32 size);
1515 void bpf_jit_uncharge_modmem(u32 size);
1516 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1517 #else
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1518 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1519 struct bpf_trampoline *tr,
1520 struct bpf_prog *tgt_prog)
1521 {
1522 return -ENOTSUPP;
1523 }
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1524 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1525 struct bpf_trampoline *tr,
1526 struct bpf_prog *tgt_prog)
1527 {
1528 return -ENOTSUPP;
1529 }
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1530 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1531 struct bpf_attach_target_info *tgt_info)
1532 {
1533 return NULL;
1534 }
bpf_trampoline_put(struct bpf_trampoline * tr)1535 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1536 #define DEFINE_BPF_DISPATCHER(name)
1537 #define DECLARE_BPF_DISPATCHER(name)
1538 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1539 #define BPF_DISPATCHER_PTR(name) NULL
bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1540 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1541 struct bpf_prog *from,
1542 struct bpf_prog *to) {}
is_bpf_image_address(unsigned long address)1543 static inline bool is_bpf_image_address(unsigned long address)
1544 {
1545 return false;
1546 }
bpf_prog_has_trampoline(const struct bpf_prog * prog)1547 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1548 {
1549 return false;
1550 }
1551 #endif
1552
1553 struct bpf_func_info_aux {
1554 u16 linkage;
1555 bool unreliable;
1556 bool called : 1;
1557 bool verified : 1;
1558 };
1559
1560 enum bpf_jit_poke_reason {
1561 BPF_POKE_REASON_TAIL_CALL,
1562 };
1563
1564 /* Descriptor of pokes pointing /into/ the JITed image. */
1565 struct bpf_jit_poke_descriptor {
1566 void *tailcall_target;
1567 void *tailcall_bypass;
1568 void *bypass_addr;
1569 void *aux;
1570 union {
1571 struct {
1572 struct bpf_map *map;
1573 u32 key;
1574 } tail_call;
1575 };
1576 bool tailcall_target_stable;
1577 u8 adj_off;
1578 u16 reason;
1579 u32 insn_idx;
1580 };
1581
1582 /* reg_type info for ctx arguments */
1583 struct bpf_ctx_arg_aux {
1584 u32 offset;
1585 enum bpf_reg_type reg_type;
1586 struct btf *btf;
1587 u32 btf_id;
1588 u32 ref_obj_id;
1589 bool refcounted;
1590 };
1591
1592 struct btf_mod_pair {
1593 struct btf *btf;
1594 struct module *module;
1595 };
1596
1597 struct bpf_kfunc_desc_tab;
1598
1599 enum bpf_stream_id {
1600 BPF_STDOUT = 1,
1601 BPF_STDERR = 2,
1602 };
1603
1604 struct bpf_stream_elem {
1605 struct llist_node node;
1606 int total_len;
1607 int consumed_len;
1608 char str[];
1609 };
1610
1611 enum {
1612 /* 100k bytes */
1613 BPF_STREAM_MAX_CAPACITY = 100000ULL,
1614 };
1615
1616 struct bpf_stream {
1617 atomic_t capacity;
1618 struct llist_head log; /* list of in-flight stream elements in LIFO order */
1619
1620 struct mutex lock; /* lock protecting backlog_{head,tail} */
1621 struct llist_node *backlog_head; /* list of in-flight stream elements in FIFO order */
1622 struct llist_node *backlog_tail; /* tail of the list above */
1623 };
1624
1625 struct bpf_stream_stage {
1626 struct llist_head log;
1627 int len;
1628 };
1629
1630 struct bpf_prog_aux {
1631 atomic64_t refcnt;
1632 u32 used_map_cnt;
1633 u32 used_btf_cnt;
1634 u32 max_ctx_offset;
1635 u32 max_pkt_offset;
1636 u32 max_tp_access;
1637 u32 stack_depth;
1638 u32 id;
1639 u32 func_cnt; /* used by non-func prog as the number of func progs */
1640 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1641 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1642 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1643 u32 attach_st_ops_member_off;
1644 u32 ctx_arg_info_size;
1645 u32 max_rdonly_access;
1646 u32 max_rdwr_access;
1647 u32 subprog_start;
1648 struct btf *attach_btf;
1649 struct bpf_ctx_arg_aux *ctx_arg_info;
1650 void __percpu *priv_stack_ptr;
1651 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1652 struct bpf_prog *dst_prog;
1653 struct bpf_trampoline *dst_trampoline;
1654 enum bpf_prog_type saved_dst_prog_type;
1655 enum bpf_attach_type saved_dst_attach_type;
1656 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1657 bool dev_bound; /* Program is bound to the netdev. */
1658 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1659 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1660 bool attach_tracing_prog; /* true if tracing another tracing program */
1661 bool func_proto_unreliable;
1662 bool tail_call_reachable;
1663 bool xdp_has_frags;
1664 bool exception_cb;
1665 bool exception_boundary;
1666 bool is_extended; /* true if extended by freplace program */
1667 bool jits_use_priv_stack;
1668 bool priv_stack_requested;
1669 bool changes_pkt_data;
1670 bool might_sleep;
1671 bool kprobe_write_ctx;
1672 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1673 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1674 struct bpf_arena *arena;
1675 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1676 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1677 const struct btf_type *attach_func_proto;
1678 /* function name for valid attach_btf_id */
1679 const char *attach_func_name;
1680 struct bpf_prog **func;
1681 struct bpf_prog_aux *main_prog_aux;
1682 void *jit_data; /* JIT specific data. arch dependent */
1683 struct bpf_jit_poke_descriptor *poke_tab;
1684 struct bpf_kfunc_desc_tab *kfunc_tab;
1685 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1686 u32 size_poke_tab;
1687 #ifdef CONFIG_FINEIBT
1688 struct bpf_ksym ksym_prefix;
1689 #endif
1690 struct bpf_ksym ksym;
1691 const struct bpf_prog_ops *ops;
1692 const struct bpf_struct_ops *st_ops;
1693 struct bpf_map **used_maps;
1694 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1695 struct btf_mod_pair *used_btfs;
1696 struct bpf_prog *prog;
1697 struct user_struct *user;
1698 u64 load_time; /* ns since boottime */
1699 u32 verified_insns;
1700 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1701 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1702 char name[BPF_OBJ_NAME_LEN];
1703 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1704 #ifdef CONFIG_SECURITY
1705 void *security;
1706 #endif
1707 struct bpf_token *token;
1708 struct bpf_prog_offload *offload;
1709 struct btf *btf;
1710 struct bpf_func_info *func_info;
1711 struct bpf_func_info_aux *func_info_aux;
1712 /* bpf_line_info loaded from userspace. linfo->insn_off
1713 * has the xlated insn offset.
1714 * Both the main and sub prog share the same linfo.
1715 * The subprog can access its first linfo by
1716 * using the linfo_idx.
1717 */
1718 struct bpf_line_info *linfo;
1719 /* jited_linfo is the jited addr of the linfo. It has a
1720 * one to one mapping to linfo:
1721 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1722 * Both the main and sub prog share the same jited_linfo.
1723 * The subprog can access its first jited_linfo by
1724 * using the linfo_idx.
1725 */
1726 void **jited_linfo;
1727 u32 func_info_cnt;
1728 u32 nr_linfo;
1729 /* subprog can use linfo_idx to access its first linfo and
1730 * jited_linfo.
1731 * main prog always has linfo_idx == 0
1732 */
1733 u32 linfo_idx;
1734 struct module *mod;
1735 u32 num_exentries;
1736 struct exception_table_entry *extable;
1737 union {
1738 struct work_struct work;
1739 struct rcu_head rcu;
1740 };
1741 struct bpf_stream stream[2];
1742 };
1743
1744 struct bpf_prog {
1745 u16 pages; /* Number of allocated pages */
1746 u16 jited:1, /* Is our filter JIT'ed? */
1747 jit_requested:1,/* archs need to JIT the prog */
1748 gpl_compatible:1, /* Is filter GPL compatible? */
1749 cb_access:1, /* Is control block accessed? */
1750 dst_needed:1, /* Do we need dst entry? */
1751 blinding_requested:1, /* needs constant blinding */
1752 blinded:1, /* Was blinded */
1753 is_func:1, /* program is a bpf function */
1754 kprobe_override:1, /* Do we override a kprobe? */
1755 has_callchain_buf:1, /* callchain buffer allocated? */
1756 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1757 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1758 call_get_func_ip:1, /* Do we call get_func_ip() */
1759 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1760 sleepable:1; /* BPF program is sleepable */
1761 enum bpf_prog_type type; /* Type of BPF program */
1762 enum bpf_attach_type expected_attach_type; /* For some prog types */
1763 u32 len; /* Number of filter blocks */
1764 u32 jited_len; /* Size of jited insns in bytes */
1765 union {
1766 u8 digest[SHA256_DIGEST_SIZE];
1767 u8 tag[BPF_TAG_SIZE];
1768 };
1769 struct bpf_prog_stats __percpu *stats;
1770 int __percpu *active;
1771 unsigned int (*bpf_func)(const void *ctx,
1772 const struct bpf_insn *insn);
1773 struct bpf_prog_aux *aux; /* Auxiliary fields */
1774 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1775 /* Instructions for interpreter */
1776 union {
1777 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1778 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1779 };
1780 };
1781
1782 struct bpf_array_aux {
1783 /* Programs with direct jumps into programs part of this array. */
1784 struct list_head poke_progs;
1785 struct bpf_map *map;
1786 struct mutex poke_mutex;
1787 struct work_struct work;
1788 };
1789
1790 struct bpf_link {
1791 atomic64_t refcnt;
1792 u32 id;
1793 enum bpf_link_type type;
1794 const struct bpf_link_ops *ops;
1795 struct bpf_prog *prog;
1796
1797 u32 flags;
1798 enum bpf_attach_type attach_type;
1799
1800 /* rcu is used before freeing, work can be used to schedule that
1801 * RCU-based freeing before that, so they never overlap
1802 */
1803 union {
1804 struct rcu_head rcu;
1805 struct work_struct work;
1806 };
1807 /* whether BPF link itself has "sleepable" semantics, which can differ
1808 * from underlying BPF program having a "sleepable" semantics, as BPF
1809 * link's semantics is determined by target attach hook
1810 */
1811 bool sleepable;
1812 };
1813
1814 struct bpf_link_ops {
1815 void (*release)(struct bpf_link *link);
1816 /* deallocate link resources callback, called without RCU grace period
1817 * waiting
1818 */
1819 void (*dealloc)(struct bpf_link *link);
1820 /* deallocate link resources callback, called after RCU grace period;
1821 * if either the underlying BPF program is sleepable or BPF link's
1822 * target hook is sleepable, we'll go through tasks trace RCU GP and
1823 * then "classic" RCU GP; this need for chaining tasks trace and
1824 * classic RCU GPs is designated by setting bpf_link->sleepable flag
1825 */
1826 void (*dealloc_deferred)(struct bpf_link *link);
1827 int (*detach)(struct bpf_link *link);
1828 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1829 struct bpf_prog *old_prog);
1830 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1831 int (*fill_link_info)(const struct bpf_link *link,
1832 struct bpf_link_info *info);
1833 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1834 struct bpf_map *old_map);
1835 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1836 };
1837
1838 struct bpf_tramp_link {
1839 struct bpf_link link;
1840 struct hlist_node tramp_hlist;
1841 u64 cookie;
1842 };
1843
1844 struct bpf_shim_tramp_link {
1845 struct bpf_tramp_link link;
1846 struct bpf_trampoline *trampoline;
1847 };
1848
1849 struct bpf_tracing_link {
1850 struct bpf_tramp_link link;
1851 struct bpf_trampoline *trampoline;
1852 struct bpf_prog *tgt_prog;
1853 };
1854
1855 struct bpf_raw_tp_link {
1856 struct bpf_link link;
1857 struct bpf_raw_event_map *btp;
1858 u64 cookie;
1859 };
1860
1861 struct bpf_link_primer {
1862 struct bpf_link *link;
1863 struct file *file;
1864 int fd;
1865 u32 id;
1866 };
1867
1868 struct bpf_mount_opts {
1869 kuid_t uid;
1870 kgid_t gid;
1871 umode_t mode;
1872
1873 /* BPF token-related delegation options */
1874 u64 delegate_cmds;
1875 u64 delegate_maps;
1876 u64 delegate_progs;
1877 u64 delegate_attachs;
1878 };
1879
1880 struct bpf_token {
1881 struct work_struct work;
1882 atomic64_t refcnt;
1883 struct user_namespace *userns;
1884 u64 allowed_cmds;
1885 u64 allowed_maps;
1886 u64 allowed_progs;
1887 u64 allowed_attachs;
1888 #ifdef CONFIG_SECURITY
1889 void *security;
1890 #endif
1891 };
1892
1893 struct bpf_struct_ops_value;
1894 struct btf_member;
1895
1896 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1897 /**
1898 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1899 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1900 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1901 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1902 * when determining whether the struct_ops progs in the
1903 * struct_ops map are valid.
1904 * @init: A callback that is invoked a single time, and before any other
1905 * callback, to initialize the structure. A nonzero return value means
1906 * the subsystem could not be initialized.
1907 * @check_member: When defined, a callback invoked by the verifier to allow
1908 * the subsystem to determine if an entry in the struct_ops map
1909 * is valid. A nonzero return value means that the map is
1910 * invalid and should be rejected by the verifier.
1911 * @init_member: A callback that is invoked for each member of the struct_ops
1912 * map to allow the subsystem to initialize the member. A nonzero
1913 * value means the member could not be initialized. This callback
1914 * is exclusive with the @type, @type_id, @value_type, and
1915 * @value_id fields.
1916 * @reg: A callback that is invoked when the struct_ops map has been
1917 * initialized and is being attached to. Zero means the struct_ops map
1918 * has been successfully registered and is live. A nonzero return value
1919 * means the struct_ops map could not be registered.
1920 * @unreg: A callback that is invoked when the struct_ops map should be
1921 * unregistered.
1922 * @update: A callback that is invoked when the live struct_ops map is being
1923 * updated to contain new values. This callback is only invoked when
1924 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1925 * it is assumed that the struct_ops map cannot be updated.
1926 * @validate: A callback that is invoked after all of the members have been
1927 * initialized. This callback should perform static checks on the
1928 * map, meaning that it should either fail or succeed
1929 * deterministically. A struct_ops map that has been validated may
1930 * not necessarily succeed in being registered if the call to @reg
1931 * fails. For example, a valid struct_ops map may be loaded, but
1932 * then fail to be registered due to there being another active
1933 * struct_ops map on the system in the subsystem already. For this
1934 * reason, if this callback is not defined, the check is skipped as
1935 * the struct_ops map will have final verification performed in
1936 * @reg.
1937 * @cfi_stubs: Pointer to a structure of stub functions for CFI. These stubs
1938 * provide the correct Control Flow Integrity hashes for the
1939 * trampolines generated by BPF struct_ops.
1940 * @owner: The module that owns this struct_ops. Used for module reference
1941 * counting to ensure the module providing the struct_ops cannot be
1942 * unloaded while in use.
1943 * @name: The name of the struct bpf_struct_ops object.
1944 * @func_models: Func models
1945 */
1946 struct bpf_struct_ops {
1947 const struct bpf_verifier_ops *verifier_ops;
1948 int (*init)(struct btf *btf);
1949 int (*check_member)(const struct btf_type *t,
1950 const struct btf_member *member,
1951 const struct bpf_prog *prog);
1952 int (*init_member)(const struct btf_type *t,
1953 const struct btf_member *member,
1954 void *kdata, const void *udata);
1955 int (*reg)(void *kdata, struct bpf_link *link);
1956 void (*unreg)(void *kdata, struct bpf_link *link);
1957 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1958 int (*validate)(void *kdata);
1959 void *cfi_stubs;
1960 struct module *owner;
1961 const char *name;
1962 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1963 };
1964
1965 /* Every member of a struct_ops type has an instance even a member is not
1966 * an operator (function pointer). The "info" field will be assigned to
1967 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1968 * argument information required by the verifier to verify the program.
1969 *
1970 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1971 * corresponding entry for an given argument.
1972 */
1973 struct bpf_struct_ops_arg_info {
1974 struct bpf_ctx_arg_aux *info;
1975 u32 cnt;
1976 };
1977
1978 struct bpf_struct_ops_desc {
1979 struct bpf_struct_ops *st_ops;
1980
1981 const struct btf_type *type;
1982 const struct btf_type *value_type;
1983 u32 type_id;
1984 u32 value_id;
1985
1986 /* Collection of argument information for each member */
1987 struct bpf_struct_ops_arg_info *arg_info;
1988 };
1989
1990 enum bpf_struct_ops_state {
1991 BPF_STRUCT_OPS_STATE_INIT,
1992 BPF_STRUCT_OPS_STATE_INUSE,
1993 BPF_STRUCT_OPS_STATE_TOBEFREE,
1994 BPF_STRUCT_OPS_STATE_READY,
1995 };
1996
1997 struct bpf_struct_ops_common_value {
1998 refcount_t refcnt;
1999 enum bpf_struct_ops_state state;
2000 };
2001
2002 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
2003 /* This macro helps developer to register a struct_ops type and generate
2004 * type information correctly. Developers should use this macro to register
2005 * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
2006 */
2007 #define register_bpf_struct_ops(st_ops, type) \
2008 ({ \
2009 struct bpf_struct_ops_##type { \
2010 struct bpf_struct_ops_common_value common; \
2011 struct type data ____cacheline_aligned_in_smp; \
2012 }; \
2013 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \
2014 __register_bpf_struct_ops(st_ops); \
2015 })
2016 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
2017 bool bpf_struct_ops_get(const void *kdata);
2018 void bpf_struct_ops_put(const void *kdata);
2019 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
2020 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
2021 void *value);
2022 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
2023 struct bpf_tramp_link *link,
2024 const struct btf_func_model *model,
2025 void *stub_func,
2026 void **image, u32 *image_off,
2027 bool allow_alloc);
2028 void bpf_struct_ops_image_free(void *image);
bpf_try_module_get(const void * data,struct module * owner)2029 static inline bool bpf_try_module_get(const void *data, struct module *owner)
2030 {
2031 if (owner == BPF_MODULE_OWNER)
2032 return bpf_struct_ops_get(data);
2033 else
2034 return try_module_get(owner);
2035 }
bpf_module_put(const void * data,struct module * owner)2036 static inline void bpf_module_put(const void *data, struct module *owner)
2037 {
2038 if (owner == BPF_MODULE_OWNER)
2039 bpf_struct_ops_put(data);
2040 else
2041 module_put(owner);
2042 }
2043 int bpf_struct_ops_link_create(union bpf_attr *attr);
2044 u32 bpf_struct_ops_id(const void *kdata);
2045
2046 #ifdef CONFIG_NET
2047 /* Define it here to avoid the use of forward declaration */
2048 struct bpf_dummy_ops_state {
2049 int val;
2050 };
2051
2052 struct bpf_dummy_ops {
2053 int (*test_1)(struct bpf_dummy_ops_state *cb);
2054 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
2055 char a3, unsigned long a4);
2056 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
2057 };
2058
2059 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
2060 union bpf_attr __user *uattr);
2061 #endif
2062 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
2063 struct btf *btf,
2064 struct bpf_verifier_log *log);
2065 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2066 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
2067 #else
2068 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
bpf_try_module_get(const void * data,struct module * owner)2069 static inline bool bpf_try_module_get(const void *data, struct module *owner)
2070 {
2071 return try_module_get(owner);
2072 }
bpf_module_put(const void * data,struct module * owner)2073 static inline void bpf_module_put(const void *data, struct module *owner)
2074 {
2075 module_put(owner);
2076 }
bpf_struct_ops_supported(const struct bpf_struct_ops * st_ops,u32 moff)2077 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
2078 {
2079 return -ENOTSUPP;
2080 }
bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)2081 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
2082 void *key,
2083 void *value)
2084 {
2085 return -EINVAL;
2086 }
bpf_struct_ops_link_create(union bpf_attr * attr)2087 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
2088 {
2089 return -EOPNOTSUPP;
2090 }
bpf_map_struct_ops_info_fill(struct bpf_map_info * info,struct bpf_map * map)2091 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
2092 {
2093 }
2094
bpf_struct_ops_desc_release(struct bpf_struct_ops_desc * st_ops_desc)2095 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
2096 {
2097 }
2098
2099 #endif
2100
2101 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
2102 const struct bpf_ctx_arg_aux *info, u32 cnt);
2103
2104 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
2105 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
2106 int cgroup_atype,
2107 enum bpf_attach_type attach_type);
2108 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
2109 #else
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype,enum bpf_attach_type attach_type)2110 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
2111 int cgroup_atype,
2112 enum bpf_attach_type attach_type)
2113 {
2114 return -EOPNOTSUPP;
2115 }
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)2116 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
2117 {
2118 }
2119 #endif
2120
2121 struct bpf_array {
2122 struct bpf_map map;
2123 u32 elem_size;
2124 u32 index_mask;
2125 struct bpf_array_aux *aux;
2126 union {
2127 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
2128 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
2129 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
2130 };
2131 };
2132
2133 /*
2134 * The bpf_array_get_next_key() function may be used for all array-like
2135 * maps, i.e., maps with u32 keys with range [0 ,..., max_entries)
2136 */
2137 int bpf_array_get_next_key(struct bpf_map *map, void *key, void *next_key);
2138
2139 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
2140 #define MAX_TAIL_CALL_CNT 33
2141
2142 /* Maximum number of loops for bpf_loop and bpf_iter_num.
2143 * It's enum to expose it (and thus make it discoverable) through BTF.
2144 */
2145 enum {
2146 BPF_MAX_LOOPS = 8 * 1024 * 1024,
2147 BPF_MAX_TIMED_LOOPS = 0xffff,
2148 };
2149
2150 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
2151 BPF_F_RDONLY_PROG | \
2152 BPF_F_WRONLY | \
2153 BPF_F_WRONLY_PROG)
2154
2155 #define BPF_MAP_CAN_READ BIT(0)
2156 #define BPF_MAP_CAN_WRITE BIT(1)
2157
2158 /* Maximum number of user-producer ring buffer samples that can be drained in
2159 * a call to bpf_user_ringbuf_drain().
2160 */
2161 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
2162
bpf_map_flags_to_cap(struct bpf_map * map)2163 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
2164 {
2165 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2166
2167 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
2168 * not possible.
2169 */
2170 if (access_flags & BPF_F_RDONLY_PROG)
2171 return BPF_MAP_CAN_READ;
2172 else if (access_flags & BPF_F_WRONLY_PROG)
2173 return BPF_MAP_CAN_WRITE;
2174 else
2175 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2176 }
2177
bpf_map_flags_access_ok(u32 access_flags)2178 static inline bool bpf_map_flags_access_ok(u32 access_flags)
2179 {
2180 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2181 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2182 }
2183
bpf_map_owner_alloc(struct bpf_map * map)2184 static inline struct bpf_map_owner *bpf_map_owner_alloc(struct bpf_map *map)
2185 {
2186 return kzalloc(sizeof(*map->owner), GFP_ATOMIC);
2187 }
2188
bpf_map_owner_free(struct bpf_map * map)2189 static inline void bpf_map_owner_free(struct bpf_map *map)
2190 {
2191 kfree(map->owner);
2192 }
2193
2194 struct bpf_event_entry {
2195 struct perf_event *event;
2196 struct file *perf_file;
2197 struct file *map_file;
2198 struct rcu_head rcu;
2199 };
2200
map_type_contains_progs(struct bpf_map * map)2201 static inline bool map_type_contains_progs(struct bpf_map *map)
2202 {
2203 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2204 map->map_type == BPF_MAP_TYPE_DEVMAP ||
2205 map->map_type == BPF_MAP_TYPE_CPUMAP;
2206 }
2207
2208 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2209 int bpf_prog_calc_tag(struct bpf_prog *fp);
2210
2211 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2212 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2213
2214 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void);
2215
2216 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2217 unsigned long off, unsigned long len);
2218 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2219 const struct bpf_insn *src,
2220 struct bpf_insn *dst,
2221 struct bpf_prog *prog,
2222 u32 *target_size);
2223
2224 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2225 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2226
2227 /* an array of programs to be executed under rcu_lock.
2228 *
2229 * Typical usage:
2230 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2231 *
2232 * the structure returned by bpf_prog_array_alloc() should be populated
2233 * with program pointers and the last pointer must be NULL.
2234 * The user has to keep refcnt on the program and make sure the program
2235 * is removed from the array before bpf_prog_put().
2236 * The 'struct bpf_prog_array *' should only be replaced with xchg()
2237 * since other cpus are walking the array of pointers in parallel.
2238 */
2239 struct bpf_prog_array_item {
2240 struct bpf_prog *prog;
2241 union {
2242 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2243 u64 bpf_cookie;
2244 };
2245 };
2246
2247 struct bpf_prog_array {
2248 struct rcu_head rcu;
2249 struct bpf_prog_array_item items[];
2250 };
2251
2252 struct bpf_empty_prog_array {
2253 struct bpf_prog_array hdr;
2254 struct bpf_prog *null_prog;
2255 };
2256
2257 /* to avoid allocating empty bpf_prog_array for cgroups that
2258 * don't have bpf program attached use one global 'bpf_empty_prog_array'
2259 * It will not be modified the caller of bpf_prog_array_alloc()
2260 * (since caller requested prog_cnt == 0)
2261 * that pointer should be 'freed' by bpf_prog_array_free()
2262 */
2263 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2264
2265 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2266 void bpf_prog_array_free(struct bpf_prog_array *progs);
2267 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2268 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2269 int bpf_prog_array_length(struct bpf_prog_array *progs);
2270 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2271 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2272 __u32 __user *prog_ids, u32 cnt);
2273
2274 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2275 struct bpf_prog *old_prog);
2276 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2277 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2278 struct bpf_prog *prog);
2279 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2280 u32 *prog_ids, u32 request_cnt,
2281 u32 *prog_cnt);
2282 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2283 struct bpf_prog *exclude_prog,
2284 struct bpf_prog *include_prog,
2285 u64 bpf_cookie,
2286 struct bpf_prog_array **new_array);
2287
2288 struct bpf_run_ctx {};
2289
2290 struct bpf_cg_run_ctx {
2291 struct bpf_run_ctx run_ctx;
2292 const struct bpf_prog_array_item *prog_item;
2293 int retval;
2294 };
2295
2296 struct bpf_trace_run_ctx {
2297 struct bpf_run_ctx run_ctx;
2298 u64 bpf_cookie;
2299 bool is_uprobe;
2300 };
2301
2302 struct bpf_tramp_run_ctx {
2303 struct bpf_run_ctx run_ctx;
2304 u64 bpf_cookie;
2305 struct bpf_run_ctx *saved_run_ctx;
2306 };
2307
bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)2308 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2309 {
2310 struct bpf_run_ctx *old_ctx = NULL;
2311
2312 #ifdef CONFIG_BPF_SYSCALL
2313 old_ctx = current->bpf_ctx;
2314 current->bpf_ctx = new_ctx;
2315 #endif
2316 return old_ctx;
2317 }
2318
bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)2319 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2320 {
2321 #ifdef CONFIG_BPF_SYSCALL
2322 current->bpf_ctx = old_ctx;
2323 #endif
2324 }
2325
2326 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2327 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
2328 /* BPF program asks to set CN on the packet. */
2329 #define BPF_RET_SET_CN (1 << 0)
2330
2331 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2332
2333 static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2334 bpf_prog_run_array(const struct bpf_prog_array *array,
2335 const void *ctx, bpf_prog_run_fn run_prog)
2336 {
2337 const struct bpf_prog_array_item *item;
2338 const struct bpf_prog *prog;
2339 struct bpf_run_ctx *old_run_ctx;
2340 struct bpf_trace_run_ctx run_ctx;
2341 u32 ret = 1;
2342
2343 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2344
2345 if (unlikely(!array))
2346 return ret;
2347
2348 run_ctx.is_uprobe = false;
2349
2350 migrate_disable();
2351 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2352 item = &array->items[0];
2353 while ((prog = READ_ONCE(item->prog))) {
2354 run_ctx.bpf_cookie = item->bpf_cookie;
2355 ret &= run_prog(prog, ctx);
2356 item++;
2357 }
2358 bpf_reset_run_ctx(old_run_ctx);
2359 migrate_enable();
2360 return ret;
2361 }
2362
2363 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2364 *
2365 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2366 * overall. As a result, we must use the bpf_prog_array_free_sleepable
2367 * in order to use the tasks_trace rcu grace period.
2368 *
2369 * When a non-sleepable program is inside the array, we take the rcu read
2370 * section and disable preemption for that program alone, so it can access
2371 * rcu-protected dynamically sized maps.
2372 */
2373 static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2374 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2375 const void *ctx, bpf_prog_run_fn run_prog)
2376 {
2377 const struct bpf_prog_array_item *item;
2378 const struct bpf_prog *prog;
2379 struct bpf_run_ctx *old_run_ctx;
2380 struct bpf_trace_run_ctx run_ctx;
2381 u32 ret = 1;
2382
2383 might_fault();
2384 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2385
2386 if (unlikely(!array))
2387 return ret;
2388
2389 migrate_disable();
2390
2391 run_ctx.is_uprobe = true;
2392
2393 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2394 item = &array->items[0];
2395 while ((prog = READ_ONCE(item->prog))) {
2396 if (!prog->sleepable)
2397 rcu_read_lock();
2398
2399 run_ctx.bpf_cookie = item->bpf_cookie;
2400 ret &= run_prog(prog, ctx);
2401 item++;
2402
2403 if (!prog->sleepable)
2404 rcu_read_unlock();
2405 }
2406 bpf_reset_run_ctx(old_run_ctx);
2407 migrate_enable();
2408 return ret;
2409 }
2410
2411 bool bpf_jit_bypass_spec_v1(void);
2412 bool bpf_jit_bypass_spec_v4(void);
2413
2414 #define bpf_rcu_lock_held() \
2415 (rcu_read_lock_held() || rcu_read_lock_trace_held() || rcu_read_lock_bh_held())
2416
2417 #ifdef CONFIG_BPF_SYSCALL
2418 DECLARE_PER_CPU(int, bpf_prog_active);
2419 extern struct mutex bpf_stats_enabled_mutex;
2420
2421 /*
2422 * Block execution of BPF programs attached to instrumentation (perf,
2423 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2424 * these events can happen inside a region which holds a map bucket lock
2425 * and can deadlock on it.
2426 */
bpf_disable_instrumentation(void)2427 static inline void bpf_disable_instrumentation(void)
2428 {
2429 migrate_disable();
2430 this_cpu_inc(bpf_prog_active);
2431 }
2432
bpf_enable_instrumentation(void)2433 static inline void bpf_enable_instrumentation(void)
2434 {
2435 this_cpu_dec(bpf_prog_active);
2436 migrate_enable();
2437 }
2438
2439 extern const struct super_operations bpf_super_ops;
2440 extern const struct file_operations bpf_map_fops;
2441 extern const struct file_operations bpf_prog_fops;
2442 extern const struct file_operations bpf_iter_fops;
2443 extern const struct file_operations bpf_token_fops;
2444
2445 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2446 extern const struct bpf_prog_ops _name ## _prog_ops; \
2447 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2448 #define BPF_MAP_TYPE(_id, _ops) \
2449 extern const struct bpf_map_ops _ops;
2450 #define BPF_LINK_TYPE(_id, _name)
2451 #include <linux/bpf_types.h>
2452 #undef BPF_PROG_TYPE
2453 #undef BPF_MAP_TYPE
2454 #undef BPF_LINK_TYPE
2455
2456 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2457 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2458 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2459
2460 struct bpf_prog *bpf_prog_get(u32 ufd);
2461 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2462 bool attach_drv);
2463 void bpf_prog_add(struct bpf_prog *prog, int i);
2464 void bpf_prog_sub(struct bpf_prog *prog, int i);
2465 void bpf_prog_inc(struct bpf_prog *prog);
2466 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2467 void bpf_prog_put(struct bpf_prog *prog);
2468
2469 void bpf_prog_free_id(struct bpf_prog *prog);
2470 void bpf_map_free_id(struct bpf_map *map);
2471
2472 struct btf_field *btf_record_find(const struct btf_record *rec,
2473 u32 offset, u32 field_mask);
2474 void btf_record_free(struct btf_record *rec);
2475 void bpf_map_free_record(struct bpf_map *map);
2476 struct btf_record *btf_record_dup(const struct btf_record *rec);
2477 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2478 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2479 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2480 void bpf_obj_free_task_work(const struct btf_record *rec, void *obj);
2481 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2482 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2483
2484 struct bpf_map *bpf_map_get(u32 ufd);
2485 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2486
2487 /*
2488 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file
2489 * descriptor and return a corresponding map or btf object.
2490 * Their names are double underscored to emphasize the fact that they
2491 * do not increase refcnt. To also increase refcnt use corresponding
2492 * bpf_map_get() and btf_get_by_fd() functions.
2493 */
2494
__bpf_map_get(struct fd f)2495 static inline struct bpf_map *__bpf_map_get(struct fd f)
2496 {
2497 if (fd_empty(f))
2498 return ERR_PTR(-EBADF);
2499 if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2500 return ERR_PTR(-EINVAL);
2501 return fd_file(f)->private_data;
2502 }
2503
__btf_get_by_fd(struct fd f)2504 static inline struct btf *__btf_get_by_fd(struct fd f)
2505 {
2506 if (fd_empty(f))
2507 return ERR_PTR(-EBADF);
2508 if (unlikely(fd_file(f)->f_op != &btf_fops))
2509 return ERR_PTR(-EINVAL);
2510 return fd_file(f)->private_data;
2511 }
2512
2513 void bpf_map_inc(struct bpf_map *map);
2514 void bpf_map_inc_with_uref(struct bpf_map *map);
2515 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2516 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2517 void bpf_map_put_with_uref(struct bpf_map *map);
2518 void bpf_map_put(struct bpf_map *map);
2519 void *bpf_map_area_alloc(u64 size, int numa_node);
2520 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2521 void bpf_map_area_free(void *base);
2522 bool bpf_map_write_active(const struct bpf_map *map);
2523 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2524 int generic_map_lookup_batch(struct bpf_map *map,
2525 const union bpf_attr *attr,
2526 union bpf_attr __user *uattr);
2527 int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2528 const union bpf_attr *attr,
2529 union bpf_attr __user *uattr);
2530 int generic_map_delete_batch(struct bpf_map *map,
2531 const union bpf_attr *attr,
2532 union bpf_attr __user *uattr);
2533 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2534 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2535
2536
2537 int bpf_map_alloc_pages(const struct bpf_map *map, int nid,
2538 unsigned long nr_pages, struct page **page_array);
2539 #ifdef CONFIG_MEMCG
2540 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2541 int node);
2542 void *bpf_map_kmalloc_nolock(const struct bpf_map *map, size_t size, gfp_t flags,
2543 int node);
2544 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2545 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2546 gfp_t flags);
2547 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2548 size_t align, gfp_t flags);
2549 #else
2550 /*
2551 * These specialized allocators have to be macros for their allocations to be
2552 * accounted separately (to have separate alloc_tag).
2553 */
2554 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \
2555 kmalloc_node(_size, _flags, _node)
2556 #define bpf_map_kmalloc_nolock(_map, _size, _flags, _node) \
2557 kmalloc_nolock(_size, _flags, _node)
2558 #define bpf_map_kzalloc(_map, _size, _flags) \
2559 kzalloc(_size, _flags)
2560 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \
2561 kvcalloc(_n, _size, _flags)
2562 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \
2563 __alloc_percpu_gfp(_size, _align, _flags)
2564 #endif
2565
2566 static inline int
bpf_map_init_elem_count(struct bpf_map * map)2567 bpf_map_init_elem_count(struct bpf_map *map)
2568 {
2569 size_t size = sizeof(*map->elem_count), align = size;
2570 gfp_t flags = GFP_USER | __GFP_NOWARN;
2571
2572 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2573 if (!map->elem_count)
2574 return -ENOMEM;
2575
2576 return 0;
2577 }
2578
2579 static inline void
bpf_map_free_elem_count(struct bpf_map * map)2580 bpf_map_free_elem_count(struct bpf_map *map)
2581 {
2582 free_percpu(map->elem_count);
2583 }
2584
bpf_map_inc_elem_count(struct bpf_map * map)2585 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2586 {
2587 this_cpu_inc(*map->elem_count);
2588 }
2589
bpf_map_dec_elem_count(struct bpf_map * map)2590 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2591 {
2592 this_cpu_dec(*map->elem_count);
2593 }
2594
2595 extern int sysctl_unprivileged_bpf_disabled;
2596
2597 bool bpf_token_capable(const struct bpf_token *token, int cap);
2598
bpf_allow_ptr_leaks(const struct bpf_token * token)2599 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2600 {
2601 return bpf_token_capable(token, CAP_PERFMON);
2602 }
2603
bpf_allow_uninit_stack(const struct bpf_token * token)2604 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2605 {
2606 return bpf_token_capable(token, CAP_PERFMON);
2607 }
2608
bpf_bypass_spec_v1(const struct bpf_token * token)2609 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2610 {
2611 return bpf_jit_bypass_spec_v1() ||
2612 cpu_mitigations_off() ||
2613 bpf_token_capable(token, CAP_PERFMON);
2614 }
2615
bpf_bypass_spec_v4(const struct bpf_token * token)2616 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2617 {
2618 return bpf_jit_bypass_spec_v4() ||
2619 cpu_mitigations_off() ||
2620 bpf_token_capable(token, CAP_PERFMON);
2621 }
2622
2623 int bpf_map_new_fd(struct bpf_map *map, int flags);
2624 int bpf_prog_new_fd(struct bpf_prog *prog);
2625
2626 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2627 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2628 enum bpf_attach_type attach_type);
2629 void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2630 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2631 enum bpf_attach_type attach_type, bool sleepable);
2632 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2633 int bpf_link_settle(struct bpf_link_primer *primer);
2634 void bpf_link_cleanup(struct bpf_link_primer *primer);
2635 void bpf_link_inc(struct bpf_link *link);
2636 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2637 void bpf_link_put(struct bpf_link *link);
2638 int bpf_link_new_fd(struct bpf_link *link);
2639 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2640 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2641
2642 void bpf_token_inc(struct bpf_token *token);
2643 void bpf_token_put(struct bpf_token *token);
2644 int bpf_token_create(union bpf_attr *attr);
2645 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2646 int bpf_token_get_info_by_fd(struct bpf_token *token,
2647 const union bpf_attr *attr,
2648 union bpf_attr __user *uattr);
2649
2650 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2651 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2652 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2653 enum bpf_prog_type prog_type,
2654 enum bpf_attach_type attach_type);
2655
2656 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2657 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2658 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2659 umode_t mode);
2660
2661 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2662 #define DEFINE_BPF_ITER_FUNC(target, args...) \
2663 extern int bpf_iter_ ## target(args); \
2664 int __init bpf_iter_ ## target(args) { return 0; }
2665
2666 /*
2667 * The task type of iterators.
2668 *
2669 * For BPF task iterators, they can be parameterized with various
2670 * parameters to visit only some of tasks.
2671 *
2672 * BPF_TASK_ITER_ALL (default)
2673 * Iterate over resources of every task.
2674 *
2675 * BPF_TASK_ITER_TID
2676 * Iterate over resources of a task/tid.
2677 *
2678 * BPF_TASK_ITER_TGID
2679 * Iterate over resources of every task of a process / task group.
2680 */
2681 enum bpf_iter_task_type {
2682 BPF_TASK_ITER_ALL = 0,
2683 BPF_TASK_ITER_TID,
2684 BPF_TASK_ITER_TGID,
2685 };
2686
2687 struct bpf_iter_aux_info {
2688 /* for map_elem iter */
2689 struct bpf_map *map;
2690
2691 /* for cgroup iter */
2692 struct {
2693 struct cgroup *start; /* starting cgroup */
2694 enum bpf_cgroup_iter_order order;
2695 } cgroup;
2696 struct {
2697 enum bpf_iter_task_type type;
2698 u32 pid;
2699 } task;
2700 };
2701
2702 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2703 union bpf_iter_link_info *linfo,
2704 struct bpf_iter_aux_info *aux);
2705 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2706 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2707 struct seq_file *seq);
2708 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2709 struct bpf_link_info *info);
2710 typedef const struct bpf_func_proto *
2711 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2712 const struct bpf_prog *prog);
2713
2714 enum bpf_iter_feature {
2715 BPF_ITER_RESCHED = BIT(0),
2716 };
2717
2718 #define BPF_ITER_CTX_ARG_MAX 2
2719 struct bpf_iter_reg {
2720 const char *target;
2721 bpf_iter_attach_target_t attach_target;
2722 bpf_iter_detach_target_t detach_target;
2723 bpf_iter_show_fdinfo_t show_fdinfo;
2724 bpf_iter_fill_link_info_t fill_link_info;
2725 bpf_iter_get_func_proto_t get_func_proto;
2726 u32 ctx_arg_info_size;
2727 u32 feature;
2728 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2729 const struct bpf_iter_seq_info *seq_info;
2730 };
2731
2732 struct bpf_iter_meta {
2733 __bpf_md_ptr(struct seq_file *, seq);
2734 u64 session_id;
2735 u64 seq_num;
2736 };
2737
2738 struct bpf_iter__bpf_map_elem {
2739 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2740 __bpf_md_ptr(struct bpf_map *, map);
2741 __bpf_md_ptr(void *, key);
2742 __bpf_md_ptr(void *, value);
2743 };
2744
2745 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2746 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2747 int bpf_iter_prog_supported(struct bpf_prog *prog);
2748 const struct bpf_func_proto *
2749 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2750 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2751 int bpf_iter_new_fd(struct bpf_link *link);
2752 bool bpf_link_is_iter(struct bpf_link *link);
2753 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2754 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2755 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2756 struct seq_file *seq);
2757 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2758 struct bpf_link_info *info);
2759
2760 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2761 struct bpf_func_state *caller,
2762 struct bpf_func_state *callee);
2763
2764 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2765 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2766 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2767 u64 flags);
2768 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2769 u64 flags);
2770
2771 int bpf_stackmap_extract(struct bpf_map *map, void *key, void *value, bool delete);
2772
2773 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2774 void *key, void *value, u64 map_flags);
2775 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2776 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2777 void *key, void *value, u64 map_flags);
2778 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2779
2780 int bpf_get_file_flag(int flags);
2781 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2782 size_t actual_size);
2783
2784 /* verify correctness of eBPF program */
2785 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2786
2787 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2788 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2789 #endif
2790
2791 struct btf *bpf_get_btf_vmlinux(void);
2792
2793 /* Map specifics */
2794 struct xdp_frame;
2795 struct sk_buff;
2796 struct bpf_dtab_netdev;
2797 struct bpf_cpu_map_entry;
2798
2799 void __dev_flush(struct list_head *flush_list);
2800 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2801 struct net_device *dev_rx);
2802 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2803 struct net_device *dev_rx);
2804 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2805 struct bpf_map *map, bool exclude_ingress);
2806 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2807 const struct bpf_prog *xdp_prog);
2808 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2809 const struct bpf_prog *xdp_prog,
2810 struct bpf_map *map, bool exclude_ingress);
2811
2812 void __cpu_map_flush(struct list_head *flush_list);
2813 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2814 struct net_device *dev_rx);
2815 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2816 struct sk_buff *skb);
2817
2818 /* Return map's numa specified by userspace */
bpf_map_attr_numa_node(const union bpf_attr * attr)2819 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2820 {
2821 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2822 attr->numa_node : NUMA_NO_NODE;
2823 }
2824
2825 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2826 int array_map_alloc_check(union bpf_attr *attr);
2827
2828 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2829 union bpf_attr __user *uattr);
2830 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2831 union bpf_attr __user *uattr);
2832 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2833 const union bpf_attr *kattr,
2834 union bpf_attr __user *uattr);
2835 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2836 const union bpf_attr *kattr,
2837 union bpf_attr __user *uattr);
2838 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2839 const union bpf_attr *kattr,
2840 union bpf_attr __user *uattr);
2841 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2842 const union bpf_attr *kattr,
2843 union bpf_attr __user *uattr);
2844 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2845 const union bpf_attr *kattr,
2846 union bpf_attr __user *uattr);
2847 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2848 const struct bpf_prog *prog,
2849 struct bpf_insn_access_aux *info);
2850
bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2851 static inline bool bpf_tracing_ctx_access(int off, int size,
2852 enum bpf_access_type type)
2853 {
2854 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2855 return false;
2856 if (type != BPF_READ)
2857 return false;
2858 if (off % size != 0)
2859 return false;
2860 return true;
2861 }
2862
bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2863 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2864 enum bpf_access_type type,
2865 const struct bpf_prog *prog,
2866 struct bpf_insn_access_aux *info)
2867 {
2868 if (!bpf_tracing_ctx_access(off, size, type))
2869 return false;
2870 return btf_ctx_access(off, size, type, prog, info);
2871 }
2872
2873 int btf_struct_access(struct bpf_verifier_log *log,
2874 const struct bpf_reg_state *reg,
2875 int off, int size, enum bpf_access_type atype,
2876 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2877 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2878 const struct btf *btf, u32 id, int off,
2879 const struct btf *need_btf, u32 need_type_id,
2880 bool strict);
2881
2882 int btf_distill_func_proto(struct bpf_verifier_log *log,
2883 struct btf *btf,
2884 const struct btf_type *func_proto,
2885 const char *func_name,
2886 struct btf_func_model *m);
2887
2888 struct bpf_reg_state;
2889 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2890 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2891 struct btf *btf, const struct btf_type *t);
2892 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2893 int comp_idx, const char *tag_key);
2894 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2895 int comp_idx, const char *tag_key, int last_id);
2896
2897 struct bpf_prog *bpf_prog_by_id(u32 id);
2898 struct bpf_link *bpf_link_by_id(u32 id);
2899
2900 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2901 const struct bpf_prog *prog);
2902 void bpf_task_storage_free(struct task_struct *task);
2903 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2904 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2905 const struct btf_func_model *
2906 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2907 const struct bpf_insn *insn);
2908 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2909 u16 btf_fd_idx, u8 **func_addr);
2910
2911 struct bpf_core_ctx {
2912 struct bpf_verifier_log *log;
2913 const struct btf *btf;
2914 };
2915
2916 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2917 const struct bpf_reg_state *reg,
2918 const char *field_name, u32 btf_id, const char *suffix);
2919
2920 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2921 const struct btf *reg_btf, u32 reg_id,
2922 const struct btf *arg_btf, u32 arg_id);
2923
2924 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2925 int relo_idx, void *insn);
2926
unprivileged_ebpf_enabled(void)2927 static inline bool unprivileged_ebpf_enabled(void)
2928 {
2929 return !sysctl_unprivileged_bpf_disabled;
2930 }
2931
2932 /* Not all bpf prog type has the bpf_ctx.
2933 * For the bpf prog type that has initialized the bpf_ctx,
2934 * this function can be used to decide if a kernel function
2935 * is called by a bpf program.
2936 */
has_current_bpf_ctx(void)2937 static inline bool has_current_bpf_ctx(void)
2938 {
2939 return !!current->bpf_ctx;
2940 }
2941
2942 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2943
2944 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2945 enum bpf_dynptr_type type, u32 offset, u32 size);
2946 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2947 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2948 void bpf_prog_report_arena_violation(bool write, unsigned long addr, unsigned long fault_ip);
2949
2950 #else /* !CONFIG_BPF_SYSCALL */
bpf_prog_get(u32 ufd)2951 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2952 {
2953 return ERR_PTR(-EOPNOTSUPP);
2954 }
2955
bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2956 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2957 enum bpf_prog_type type,
2958 bool attach_drv)
2959 {
2960 return ERR_PTR(-EOPNOTSUPP);
2961 }
2962
bpf_prog_add(struct bpf_prog * prog,int i)2963 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2964 {
2965 }
2966
bpf_prog_sub(struct bpf_prog * prog,int i)2967 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2968 {
2969 }
2970
bpf_prog_put(struct bpf_prog * prog)2971 static inline void bpf_prog_put(struct bpf_prog *prog)
2972 {
2973 }
2974
bpf_prog_inc(struct bpf_prog * prog)2975 static inline void bpf_prog_inc(struct bpf_prog *prog)
2976 {
2977 }
2978
2979 static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog * prog)2980 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2981 {
2982 return ERR_PTR(-EOPNOTSUPP);
2983 }
2984
bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog,enum bpf_attach_type attach_type)2985 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2986 const struct bpf_link_ops *ops,
2987 struct bpf_prog *prog, enum bpf_attach_type attach_type)
2988 {
2989 }
2990
bpf_link_init_sleepable(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog,enum bpf_attach_type attach_type,bool sleepable)2991 static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2992 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2993 enum bpf_attach_type attach_type, bool sleepable)
2994 {
2995 }
2996
bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2997 static inline int bpf_link_prime(struct bpf_link *link,
2998 struct bpf_link_primer *primer)
2999 {
3000 return -EOPNOTSUPP;
3001 }
3002
bpf_link_settle(struct bpf_link_primer * primer)3003 static inline int bpf_link_settle(struct bpf_link_primer *primer)
3004 {
3005 return -EOPNOTSUPP;
3006 }
3007
bpf_link_cleanup(struct bpf_link_primer * primer)3008 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
3009 {
3010 }
3011
bpf_link_inc(struct bpf_link * link)3012 static inline void bpf_link_inc(struct bpf_link *link)
3013 {
3014 }
3015
bpf_link_inc_not_zero(struct bpf_link * link)3016 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
3017 {
3018 return NULL;
3019 }
3020
bpf_link_put(struct bpf_link * link)3021 static inline void bpf_link_put(struct bpf_link *link)
3022 {
3023 }
3024
bpf_obj_get_user(const char __user * pathname,int flags)3025 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
3026 {
3027 return -EOPNOTSUPP;
3028 }
3029
bpf_token_capable(const struct bpf_token * token,int cap)3030 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
3031 {
3032 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
3033 }
3034
bpf_token_inc(struct bpf_token * token)3035 static inline void bpf_token_inc(struct bpf_token *token)
3036 {
3037 }
3038
bpf_token_put(struct bpf_token * token)3039 static inline void bpf_token_put(struct bpf_token *token)
3040 {
3041 }
3042
bpf_token_get_from_fd(u32 ufd)3043 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
3044 {
3045 return ERR_PTR(-EOPNOTSUPP);
3046 }
3047
bpf_token_get_info_by_fd(struct bpf_token * token,const union bpf_attr * attr,union bpf_attr __user * uattr)3048 static inline int bpf_token_get_info_by_fd(struct bpf_token *token,
3049 const union bpf_attr *attr,
3050 union bpf_attr __user *uattr)
3051 {
3052 return -EOPNOTSUPP;
3053 }
3054
__dev_flush(struct list_head * flush_list)3055 static inline void __dev_flush(struct list_head *flush_list)
3056 {
3057 }
3058
3059 struct xdp_frame;
3060 struct bpf_dtab_netdev;
3061 struct bpf_cpu_map_entry;
3062
3063 static inline
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)3064 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
3065 struct net_device *dev_rx)
3066 {
3067 return 0;
3068 }
3069
3070 static inline
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)3071 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
3072 struct net_device *dev_rx)
3073 {
3074 return 0;
3075 }
3076
3077 static inline
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)3078 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
3079 struct bpf_map *map, bool exclude_ingress)
3080 {
3081 return 0;
3082 }
3083
3084 struct sk_buff;
3085
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,const struct bpf_prog * xdp_prog)3086 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
3087 struct sk_buff *skb,
3088 const struct bpf_prog *xdp_prog)
3089 {
3090 return 0;
3091 }
3092
3093 static inline
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,const struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)3094 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
3095 const struct bpf_prog *xdp_prog,
3096 struct bpf_map *map, bool exclude_ingress)
3097 {
3098 return 0;
3099 }
3100
__cpu_map_flush(struct list_head * flush_list)3101 static inline void __cpu_map_flush(struct list_head *flush_list)
3102 {
3103 }
3104
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)3105 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
3106 struct xdp_frame *xdpf,
3107 struct net_device *dev_rx)
3108 {
3109 return 0;
3110 }
3111
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)3112 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
3113 struct sk_buff *skb)
3114 {
3115 return -EOPNOTSUPP;
3116 }
3117
bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)3118 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
3119 enum bpf_prog_type type)
3120 {
3121 return ERR_PTR(-EOPNOTSUPP);
3122 }
3123
bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3124 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
3125 const union bpf_attr *kattr,
3126 union bpf_attr __user *uattr)
3127 {
3128 return -ENOTSUPP;
3129 }
3130
bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3131 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
3132 const union bpf_attr *kattr,
3133 union bpf_attr __user *uattr)
3134 {
3135 return -ENOTSUPP;
3136 }
3137
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3138 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
3139 const union bpf_attr *kattr,
3140 union bpf_attr __user *uattr)
3141 {
3142 return -ENOTSUPP;
3143 }
3144
bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3145 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
3146 const union bpf_attr *kattr,
3147 union bpf_attr __user *uattr)
3148 {
3149 return -ENOTSUPP;
3150 }
3151
bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3152 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
3153 const union bpf_attr *kattr,
3154 union bpf_attr __user *uattr)
3155 {
3156 return -ENOTSUPP;
3157 }
3158
bpf_map_put(struct bpf_map * map)3159 static inline void bpf_map_put(struct bpf_map *map)
3160 {
3161 }
3162
bpf_prog_by_id(u32 id)3163 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
3164 {
3165 return ERR_PTR(-ENOTSUPP);
3166 }
3167
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)3168 static inline int btf_struct_access(struct bpf_verifier_log *log,
3169 const struct bpf_reg_state *reg,
3170 int off, int size, enum bpf_access_type atype,
3171 u32 *next_btf_id, enum bpf_type_flag *flag,
3172 const char **field_name)
3173 {
3174 return -EACCES;
3175 }
3176
3177 static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)3178 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3179 {
3180 return NULL;
3181 }
3182
bpf_task_storage_free(struct task_struct * task)3183 static inline void bpf_task_storage_free(struct task_struct *task)
3184 {
3185 }
3186
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3187 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3188 {
3189 return false;
3190 }
3191
3192 static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3193 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3194 const struct bpf_insn *insn)
3195 {
3196 return NULL;
3197 }
3198
3199 static inline int
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)3200 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3201 u16 btf_fd_idx, u8 **func_addr)
3202 {
3203 return -ENOTSUPP;
3204 }
3205
unprivileged_ebpf_enabled(void)3206 static inline bool unprivileged_ebpf_enabled(void)
3207 {
3208 return false;
3209 }
3210
has_current_bpf_ctx(void)3211 static inline bool has_current_bpf_ctx(void)
3212 {
3213 return false;
3214 }
3215
bpf_prog_inc_misses_counter(struct bpf_prog * prog)3216 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
3217 {
3218 }
3219
bpf_cgrp_storage_free(struct cgroup * cgroup)3220 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
3221 {
3222 }
3223
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)3224 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
3225 enum bpf_dynptr_type type, u32 offset, u32 size)
3226 {
3227 }
3228
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)3229 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
3230 {
3231 }
3232
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)3233 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
3234 {
3235 }
3236
bpf_prog_report_arena_violation(bool write,unsigned long addr,unsigned long fault_ip)3237 static inline void bpf_prog_report_arena_violation(bool write, unsigned long addr,
3238 unsigned long fault_ip)
3239 {
3240 }
3241 #endif /* CONFIG_BPF_SYSCALL */
3242
3243 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)3244 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3245 {
3246 int ret = -EFAULT;
3247
3248 if (IS_ENABLED(CONFIG_BPF_EVENTS))
3249 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3250 if (unlikely(ret < 0))
3251 memset(dst, 0, size);
3252 return ret;
3253 }
3254
3255 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3256
bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)3257 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3258 enum bpf_prog_type type)
3259 {
3260 return bpf_prog_get_type_dev(ufd, type, false);
3261 }
3262
3263 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3264 struct bpf_map **used_maps, u32 len);
3265
3266 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3267
3268 int bpf_prog_offload_compile(struct bpf_prog *prog);
3269 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3270 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3271 struct bpf_prog *prog);
3272
3273 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3274
3275 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3276 int bpf_map_offload_update_elem(struct bpf_map *map,
3277 void *key, void *value, u64 flags);
3278 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3279 int bpf_map_offload_get_next_key(struct bpf_map *map,
3280 void *key, void *next_key);
3281
3282 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3283
3284 struct bpf_offload_dev *
3285 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3286 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3287 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3288 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3289 struct net_device *netdev);
3290 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3291 struct net_device *netdev);
3292 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3293
3294 void unpriv_ebpf_notify(int new_state);
3295
3296 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3297 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3298 struct bpf_prog_aux *prog_aux);
3299 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3300 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3301 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3302 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3303
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3304 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3305 {
3306 return aux->dev_bound;
3307 }
3308
bpf_prog_is_offloaded(const struct bpf_prog_aux * aux)3309 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3310 {
3311 return aux->offload_requested;
3312 }
3313
3314 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3315
bpf_map_is_offloaded(struct bpf_map * map)3316 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3317 {
3318 return unlikely(map->ops == &bpf_map_offload_ops);
3319 }
3320
3321 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3322 void bpf_map_offload_map_free(struct bpf_map *map);
3323 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3324 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3325 const union bpf_attr *kattr,
3326 union bpf_attr __user *uattr);
3327
3328 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3329 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3330 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3331 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3332 union bpf_attr __user *uattr);
3333 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3334
3335 void sock_map_unhash(struct sock *sk);
3336 void sock_map_destroy(struct sock *sk);
3337 void sock_map_close(struct sock *sk, long timeout);
3338 #else
bpf_dev_bound_kfunc_check(struct bpf_verifier_log * log,struct bpf_prog_aux * prog_aux)3339 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3340 struct bpf_prog_aux *prog_aux)
3341 {
3342 return -EOPNOTSUPP;
3343 }
3344
bpf_dev_bound_resolve_kfunc(struct bpf_prog * prog,u32 func_id)3345 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3346 u32 func_id)
3347 {
3348 return NULL;
3349 }
3350
bpf_prog_dev_bound_init(struct bpf_prog * prog,union bpf_attr * attr)3351 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3352 union bpf_attr *attr)
3353 {
3354 return -EOPNOTSUPP;
3355 }
3356
bpf_prog_dev_bound_inherit(struct bpf_prog * new_prog,struct bpf_prog * old_prog)3357 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3358 struct bpf_prog *old_prog)
3359 {
3360 return -EOPNOTSUPP;
3361 }
3362
bpf_dev_bound_netdev_unregister(struct net_device * dev)3363 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3364 {
3365 }
3366
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3367 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3368 {
3369 return false;
3370 }
3371
bpf_prog_is_offloaded(struct bpf_prog_aux * aux)3372 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3373 {
3374 return false;
3375 }
3376
bpf_prog_dev_bound_match(const struct bpf_prog * lhs,const struct bpf_prog * rhs)3377 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3378 {
3379 return false;
3380 }
3381
bpf_map_is_offloaded(struct bpf_map * map)3382 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3383 {
3384 return false;
3385 }
3386
bpf_map_offload_map_alloc(union bpf_attr * attr)3387 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3388 {
3389 return ERR_PTR(-EOPNOTSUPP);
3390 }
3391
bpf_map_offload_map_free(struct bpf_map * map)3392 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3393 {
3394 }
3395
bpf_map_offload_map_mem_usage(const struct bpf_map * map)3396 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3397 {
3398 return 0;
3399 }
3400
bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3401 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3402 const union bpf_attr *kattr,
3403 union bpf_attr __user *uattr)
3404 {
3405 return -ENOTSUPP;
3406 }
3407
3408 #ifdef CONFIG_BPF_SYSCALL
sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)3409 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3410 struct bpf_prog *prog)
3411 {
3412 return -EINVAL;
3413 }
3414
sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)3415 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3416 enum bpf_prog_type ptype)
3417 {
3418 return -EOPNOTSUPP;
3419 }
3420
sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)3421 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3422 u64 flags)
3423 {
3424 return -EOPNOTSUPP;
3425 }
3426
sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)3427 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3428 union bpf_attr __user *uattr)
3429 {
3430 return -EINVAL;
3431 }
3432
sock_map_link_create(const union bpf_attr * attr,struct bpf_prog * prog)3433 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3434 {
3435 return -EOPNOTSUPP;
3436 }
3437 #endif /* CONFIG_BPF_SYSCALL */
3438 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3439
3440 static __always_inline void
bpf_prog_inc_misses_counters(const struct bpf_prog_array * array)3441 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3442 {
3443 const struct bpf_prog_array_item *item;
3444 struct bpf_prog *prog;
3445
3446 if (unlikely(!array))
3447 return;
3448
3449 item = &array->items[0];
3450 while ((prog = READ_ONCE(item->prog))) {
3451 bpf_prog_inc_misses_counter(prog);
3452 item++;
3453 }
3454 }
3455
3456 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3457 void bpf_sk_reuseport_detach(struct sock *sk);
3458 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3459 void *value);
3460 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3461 void *value, u64 map_flags);
3462 #else
bpf_sk_reuseport_detach(struct sock * sk)3463 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3464 {
3465 }
3466
3467 #ifdef CONFIG_BPF_SYSCALL
bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)3468 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3469 void *key, void *value)
3470 {
3471 return -EOPNOTSUPP;
3472 }
3473
bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)3474 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3475 void *key, void *value,
3476 u64 map_flags)
3477 {
3478 return -EOPNOTSUPP;
3479 }
3480 #endif /* CONFIG_BPF_SYSCALL */
3481 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3482
3483 #if defined(CONFIG_KEYS) && defined(CONFIG_BPF_SYSCALL)
3484
3485 struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags);
3486 struct bpf_key *bpf_lookup_system_key(u64 id);
3487 void bpf_key_put(struct bpf_key *bkey);
3488 int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3489 struct bpf_dynptr *sig_p,
3490 struct bpf_key *trusted_keyring);
3491
3492 #else
bpf_lookup_user_key(u32 serial,u64 flags)3493 static inline struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
3494 {
3495 return NULL;
3496 }
3497
bpf_lookup_system_key(u64 id)3498 static inline struct bpf_key *bpf_lookup_system_key(u64 id)
3499 {
3500 return NULL;
3501 }
3502
bpf_key_put(struct bpf_key * bkey)3503 static inline void bpf_key_put(struct bpf_key *bkey)
3504 {
3505 }
3506
bpf_verify_pkcs7_signature(struct bpf_dynptr * data_p,struct bpf_dynptr * sig_p,struct bpf_key * trusted_keyring)3507 static inline int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3508 struct bpf_dynptr *sig_p,
3509 struct bpf_key *trusted_keyring)
3510 {
3511 return -EOPNOTSUPP;
3512 }
3513 #endif /* defined(CONFIG_KEYS) && defined(CONFIG_BPF_SYSCALL) */
3514
3515 /* verifier prototypes for helper functions called from eBPF programs */
3516 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3517 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3518 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3519 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3520 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3521 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3522 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3523
3524 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3525 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3526 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3527 extern const struct bpf_func_proto bpf_tail_call_proto;
3528 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3529 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3530 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3531 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3532 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3533 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3534 extern const struct bpf_func_proto bpf_get_stackid_proto;
3535 extern const struct bpf_func_proto bpf_get_stack_proto;
3536 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3537 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3538 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3539 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3540 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3541 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3542 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3543 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3544 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3545 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3546 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3547 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3548 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3549 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3550 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3551 extern const struct bpf_func_proto bpf_spin_lock_proto;
3552 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3553 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3554 extern const struct bpf_func_proto bpf_strtol_proto;
3555 extern const struct bpf_func_proto bpf_strtoul_proto;
3556 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3557 extern const struct bpf_func_proto bpf_jiffies64_proto;
3558 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3559 extern const struct bpf_func_proto bpf_event_output_data_proto;
3560 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3561 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3562 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3563 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3564 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3565 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3566 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3567 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3568 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3569 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3570 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3571 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3572 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3573 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3574 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3575 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3576 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3577 extern const struct bpf_func_proto bpf_snprintf_proto;
3578 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3579 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3580 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3581 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3582 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3583 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3584 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3585 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3586 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3587 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3588 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3589 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3590 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3591 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3592 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3593 extern const struct bpf_func_proto bpf_find_vma_proto;
3594 extern const struct bpf_func_proto bpf_loop_proto;
3595 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3596 extern const struct bpf_func_proto bpf_set_retval_proto;
3597 extern const struct bpf_func_proto bpf_get_retval_proto;
3598 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3599 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3600 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3601
3602 const struct bpf_func_proto *tracing_prog_func_proto(
3603 enum bpf_func_id func_id, const struct bpf_prog *prog);
3604
3605 /* Shared helpers among cBPF and eBPF. */
3606 void bpf_user_rnd_init_once(void);
3607 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3608 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3609
3610 #if defined(CONFIG_NET)
3611 bool bpf_sock_common_is_valid_access(int off, int size,
3612 enum bpf_access_type type,
3613 struct bpf_insn_access_aux *info);
3614 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3615 struct bpf_insn_access_aux *info);
3616 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3617 const struct bpf_insn *si,
3618 struct bpf_insn *insn_buf,
3619 struct bpf_prog *prog,
3620 u32 *target_size);
3621 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3622 struct bpf_dynptr *ptr);
3623 #else
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3624 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3625 enum bpf_access_type type,
3626 struct bpf_insn_access_aux *info)
3627 {
3628 return false;
3629 }
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3630 static inline bool bpf_sock_is_valid_access(int off, int size,
3631 enum bpf_access_type type,
3632 struct bpf_insn_access_aux *info)
3633 {
3634 return false;
3635 }
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3636 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3637 const struct bpf_insn *si,
3638 struct bpf_insn *insn_buf,
3639 struct bpf_prog *prog,
3640 u32 *target_size)
3641 {
3642 return 0;
3643 }
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr)3644 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3645 struct bpf_dynptr *ptr)
3646 {
3647 return -EOPNOTSUPP;
3648 }
3649 #endif
3650
3651 #ifdef CONFIG_INET
3652 struct sk_reuseport_kern {
3653 struct sk_buff *skb;
3654 struct sock *sk;
3655 struct sock *selected_sk;
3656 struct sock *migrating_sk;
3657 void *data_end;
3658 u32 hash;
3659 u32 reuseport_id;
3660 bool bind_inany;
3661 };
3662 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3663 struct bpf_insn_access_aux *info);
3664
3665 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3666 const struct bpf_insn *si,
3667 struct bpf_insn *insn_buf,
3668 struct bpf_prog *prog,
3669 u32 *target_size);
3670
3671 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3672 struct bpf_insn_access_aux *info);
3673
3674 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3675 const struct bpf_insn *si,
3676 struct bpf_insn *insn_buf,
3677 struct bpf_prog *prog,
3678 u32 *target_size);
3679 #else
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3680 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3681 enum bpf_access_type type,
3682 struct bpf_insn_access_aux *info)
3683 {
3684 return false;
3685 }
3686
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3687 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3688 const struct bpf_insn *si,
3689 struct bpf_insn *insn_buf,
3690 struct bpf_prog *prog,
3691 u32 *target_size)
3692 {
3693 return 0;
3694 }
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3695 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3696 enum bpf_access_type type,
3697 struct bpf_insn_access_aux *info)
3698 {
3699 return false;
3700 }
3701
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3702 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3703 const struct bpf_insn *si,
3704 struct bpf_insn *insn_buf,
3705 struct bpf_prog *prog,
3706 u32 *target_size)
3707 {
3708 return 0;
3709 }
3710 #endif /* CONFIG_INET */
3711
3712 enum bpf_text_poke_type {
3713 BPF_MOD_NOP,
3714 BPF_MOD_CALL,
3715 BPF_MOD_JUMP,
3716 };
3717
3718 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
3719 enum bpf_text_poke_type new_t, void *old_addr,
3720 void *new_addr);
3721
3722 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3723 struct bpf_prog *new, struct bpf_prog *old);
3724
3725 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3726 int bpf_arch_text_invalidate(void *dst, size_t len);
3727
3728 struct btf_id_set;
3729 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3730
3731 #define MAX_BPRINTF_VARARGS 12
3732 #define MAX_BPRINTF_BUF 1024
3733
3734 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
3735 * arguments representation.
3736 */
3737 #define MAX_BPRINTF_BIN_ARGS 512
3738
3739 struct bpf_bprintf_buffers {
3740 char bin_args[MAX_BPRINTF_BIN_ARGS];
3741 char buf[MAX_BPRINTF_BUF];
3742 };
3743
3744 struct bpf_bprintf_data {
3745 u32 *bin_args;
3746 char *buf;
3747 bool get_bin_args;
3748 bool get_buf;
3749 };
3750
3751 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
3752 u32 num_args, struct bpf_bprintf_data *data);
3753 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3754 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs);
3755 void bpf_put_buffers(void);
3756
3757 void bpf_prog_stream_init(struct bpf_prog *prog);
3758 void bpf_prog_stream_free(struct bpf_prog *prog);
3759 int bpf_prog_stream_read(struct bpf_prog *prog, enum bpf_stream_id stream_id, void __user *buf, int len);
3760 void bpf_stream_stage_init(struct bpf_stream_stage *ss);
3761 void bpf_stream_stage_free(struct bpf_stream_stage *ss);
3762 __printf(2, 3)
3763 int bpf_stream_stage_printk(struct bpf_stream_stage *ss, const char *fmt, ...);
3764 int bpf_stream_stage_commit(struct bpf_stream_stage *ss, struct bpf_prog *prog,
3765 enum bpf_stream_id stream_id);
3766 int bpf_stream_stage_dump_stack(struct bpf_stream_stage *ss);
3767
3768 #define bpf_stream_printk(ss, ...) bpf_stream_stage_printk(&ss, __VA_ARGS__)
3769 #define bpf_stream_dump_stack(ss) bpf_stream_stage_dump_stack(&ss)
3770
3771 #define bpf_stream_stage(ss, prog, stream_id, expr) \
3772 ({ \
3773 bpf_stream_stage_init(&ss); \
3774 (expr); \
3775 bpf_stream_stage_commit(&ss, prog, stream_id); \
3776 bpf_stream_stage_free(&ss); \
3777 })
3778
3779 #ifdef CONFIG_BPF_LSM
3780 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3781 void bpf_cgroup_atype_put(int cgroup_atype);
3782 #else
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)3783 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
bpf_cgroup_atype_put(int cgroup_atype)3784 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3785 #endif /* CONFIG_BPF_LSM */
3786
3787 struct key;
3788
3789 #ifdef CONFIG_KEYS
3790 struct bpf_key {
3791 struct key *key;
3792 bool has_ref;
3793 };
3794 #endif /* CONFIG_KEYS */
3795
type_is_alloc(u32 type)3796 static inline bool type_is_alloc(u32 type)
3797 {
3798 return type & MEM_ALLOC;
3799 }
3800
bpf_memcg_flags(gfp_t flags)3801 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3802 {
3803 if (memcg_bpf_enabled())
3804 return flags | __GFP_ACCOUNT;
3805 return flags;
3806 }
3807
bpf_is_subprog(const struct bpf_prog * prog)3808 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3809 {
3810 return prog->aux->func_idx != 0;
3811 }
3812
3813 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3814 const char **linep, int *nump);
3815 struct bpf_prog *bpf_prog_find_from_stack(void);
3816
3817 int bpf_insn_array_init(struct bpf_map *map, const struct bpf_prog *prog);
3818 int bpf_insn_array_ready(struct bpf_map *map);
3819 void bpf_insn_array_release(struct bpf_map *map);
3820 void bpf_insn_array_adjust(struct bpf_map *map, u32 off, u32 len);
3821 void bpf_insn_array_adjust_after_remove(struct bpf_map *map, u32 off, u32 len);
3822
3823 #ifdef CONFIG_BPF_SYSCALL
3824 void bpf_prog_update_insn_ptrs(struct bpf_prog *prog, u32 *offsets, void *image);
3825 #else
3826 static inline void
bpf_prog_update_insn_ptrs(struct bpf_prog * prog,u32 * offsets,void * image)3827 bpf_prog_update_insn_ptrs(struct bpf_prog *prog, u32 *offsets, void *image)
3828 {
3829 }
3830 #endif
3831
bpf_map_check_op_flags(struct bpf_map * map,u64 flags,u64 allowed_flags)3832 static inline int bpf_map_check_op_flags(struct bpf_map *map, u64 flags, u64 allowed_flags)
3833 {
3834 if (flags & ~allowed_flags)
3835 return -EINVAL;
3836
3837 if ((flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))
3838 return -EINVAL;
3839
3840 return 0;
3841 }
3842
3843 #endif /* _LINUX_BPF_H */
3844