1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <linux/atomic.h> 9 #include <linux/bpf.h> 10 #include <linux/refcount.h> 11 #include <linux/compat.h> 12 #include <linux/skbuff.h> 13 #include <linux/linkage.h> 14 #include <linux/printk.h> 15 #include <linux/workqueue.h> 16 #include <linux/sched.h> 17 #include <linux/sched/clock.h> 18 #include <linux/capability.h> 19 #include <linux/set_memory.h> 20 #include <linux/kallsyms.h> 21 #include <linux/if_vlan.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sockptr.h> 24 #include <crypto/sha1.h> 25 #include <linux/u64_stats_sync.h> 26 27 #include <net/sch_generic.h> 28 29 #include <asm/byteorder.h> 30 #include <uapi/linux/filter.h> 31 32 struct sk_buff; 33 struct sock; 34 struct seccomp_data; 35 struct bpf_prog_aux; 36 struct xdp_rxq_info; 37 struct xdp_buff; 38 struct sock_reuseport; 39 struct ctl_table; 40 struct ctl_table_header; 41 42 /* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46 #define BPF_REG_ARG1 BPF_REG_1 47 #define BPF_REG_ARG2 BPF_REG_2 48 #define BPF_REG_ARG3 BPF_REG_3 49 #define BPF_REG_ARG4 BPF_REG_4 50 #define BPF_REG_ARG5 BPF_REG_5 51 #define BPF_REG_CTX BPF_REG_6 52 #define BPF_REG_FP BPF_REG_10 53 54 /* Additional register mappings for converted user programs. */ 55 #define BPF_REG_A BPF_REG_0 56 #define BPF_REG_X BPF_REG_7 57 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61 /* Kernel hidden auxiliary/helper register. */ 62 #define BPF_REG_AX MAX_BPF_REG 63 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66 /* unused opcode to mark special call to bpf_tail_call() helper */ 67 #define BPF_TAIL_CALL 0xf0 68 69 /* unused opcode to mark special load instruction. Same as BPF_ABS */ 70 #define BPF_PROBE_MEM 0x20 71 72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */ 73 #define BPF_PROBE_MEMSX 0x40 74 75 /* unused opcode to mark special load instruction. Same as BPF_MSH */ 76 #define BPF_PROBE_MEM32 0xa0 77 78 /* unused opcode to mark special atomic instruction */ 79 #define BPF_PROBE_ATOMIC 0xe0 80 81 /* unused opcode to mark special ldsx instruction. Same as BPF_NOSPEC */ 82 #define BPF_PROBE_MEM32SX 0xc0 83 84 /* unused opcode to mark call to interpreter with arguments */ 85 #define BPF_CALL_ARGS 0xe0 86 87 /* unused opcode to mark speculation barrier for mitigating 88 * Spectre v1 and v4 89 */ 90 #define BPF_NOSPEC 0xc0 91 92 /* As per nm, we expose JITed images as text (code) section for 93 * kallsyms. That way, tools like perf can find it to match 94 * addresses. 95 */ 96 #define BPF_SYM_ELF_TYPE 't' 97 98 /* BPF program can access up to 512 bytes of stack space. */ 99 #define MAX_BPF_STACK 512 100 101 /* Helper macros for filter block array initializers. */ 102 103 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 104 105 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \ 106 ((struct bpf_insn) { \ 107 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 108 .dst_reg = DST, \ 109 .src_reg = SRC, \ 110 .off = OFF, \ 111 .imm = 0 }) 112 113 #define BPF_ALU64_REG(OP, DST, SRC) \ 114 BPF_ALU64_REG_OFF(OP, DST, SRC, 0) 115 116 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \ 117 ((struct bpf_insn) { \ 118 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 119 .dst_reg = DST, \ 120 .src_reg = SRC, \ 121 .off = OFF, \ 122 .imm = 0 }) 123 124 #define BPF_ALU32_REG(OP, DST, SRC) \ 125 BPF_ALU32_REG_OFF(OP, DST, SRC, 0) 126 127 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 128 129 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \ 130 ((struct bpf_insn) { \ 131 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 132 .dst_reg = DST, \ 133 .src_reg = 0, \ 134 .off = OFF, \ 135 .imm = IMM }) 136 #define BPF_ALU64_IMM(OP, DST, IMM) \ 137 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0) 138 139 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \ 140 ((struct bpf_insn) { \ 141 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 142 .dst_reg = DST, \ 143 .src_reg = 0, \ 144 .off = OFF, \ 145 .imm = IMM }) 146 #define BPF_ALU32_IMM(OP, DST, IMM) \ 147 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0) 148 149 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 150 151 #define BPF_ENDIAN(TYPE, DST, LEN) \ 152 ((struct bpf_insn) { \ 153 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 154 .dst_reg = DST, \ 155 .src_reg = 0, \ 156 .off = 0, \ 157 .imm = LEN }) 158 159 /* Byte Swap, bswap16/32/64 */ 160 161 #define BPF_BSWAP(DST, LEN) \ 162 ((struct bpf_insn) { \ 163 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \ 164 .dst_reg = DST, \ 165 .src_reg = 0, \ 166 .off = 0, \ 167 .imm = LEN }) 168 169 /* Short form of mov, dst_reg = src_reg */ 170 171 #define BPF_MOV64_REG(DST, SRC) \ 172 ((struct bpf_insn) { \ 173 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 174 .dst_reg = DST, \ 175 .src_reg = SRC, \ 176 .off = 0, \ 177 .imm = 0 }) 178 179 #define BPF_MOV32_REG(DST, SRC) \ 180 ((struct bpf_insn) { \ 181 .code = BPF_ALU | BPF_MOV | BPF_X, \ 182 .dst_reg = DST, \ 183 .src_reg = SRC, \ 184 .off = 0, \ 185 .imm = 0 }) 186 187 /* Special (internal-only) form of mov, used to resolve per-CPU addrs: 188 * dst_reg = src_reg + <percpu_base_off> 189 * BPF_ADDR_PERCPU is used as a special insn->off value. 190 */ 191 #define BPF_ADDR_PERCPU (-1) 192 193 #define BPF_MOV64_PERCPU_REG(DST, SRC) \ 194 ((struct bpf_insn) { \ 195 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 196 .dst_reg = DST, \ 197 .src_reg = SRC, \ 198 .off = BPF_ADDR_PERCPU, \ 199 .imm = 0 }) 200 201 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn) 202 { 203 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; 204 } 205 206 /* Short form of mov, dst_reg = imm32 */ 207 208 #define BPF_MOV64_IMM(DST, IMM) \ 209 ((struct bpf_insn) { \ 210 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 211 .dst_reg = DST, \ 212 .src_reg = 0, \ 213 .off = 0, \ 214 .imm = IMM }) 215 216 #define BPF_MOV32_IMM(DST, IMM) \ 217 ((struct bpf_insn) { \ 218 .code = BPF_ALU | BPF_MOV | BPF_K, \ 219 .dst_reg = DST, \ 220 .src_reg = 0, \ 221 .off = 0, \ 222 .imm = IMM }) 223 224 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */ 225 226 #define BPF_MOVSX64_REG(DST, SRC, OFF) \ 227 ((struct bpf_insn) { \ 228 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 229 .dst_reg = DST, \ 230 .src_reg = SRC, \ 231 .off = OFF, \ 232 .imm = 0 }) 233 234 #define BPF_MOVSX32_REG(DST, SRC, OFF) \ 235 ((struct bpf_insn) { \ 236 .code = BPF_ALU | BPF_MOV | BPF_X, \ 237 .dst_reg = DST, \ 238 .src_reg = SRC, \ 239 .off = OFF, \ 240 .imm = 0 }) 241 242 /* Special form of mov32, used for doing explicit zero extension on dst. */ 243 #define BPF_ZEXT_REG(DST) \ 244 ((struct bpf_insn) { \ 245 .code = BPF_ALU | BPF_MOV | BPF_X, \ 246 .dst_reg = DST, \ 247 .src_reg = DST, \ 248 .off = 0, \ 249 .imm = 1 }) 250 251 static inline bool insn_is_zext(const struct bpf_insn *insn) 252 { 253 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 254 } 255 256 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers 257 * to pointers in user vma. 258 */ 259 static inline bool insn_is_cast_user(const struct bpf_insn *insn) 260 { 261 return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && 262 insn->off == BPF_ADDR_SPACE_CAST && 263 insn->imm == 1U << 16; 264 } 265 266 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 267 #define BPF_LD_IMM64(DST, IMM) \ 268 BPF_LD_IMM64_RAW(DST, 0, IMM) 269 270 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 271 ((struct bpf_insn) { \ 272 .code = BPF_LD | BPF_DW | BPF_IMM, \ 273 .dst_reg = DST, \ 274 .src_reg = SRC, \ 275 .off = 0, \ 276 .imm = (__u32) (IMM) }), \ 277 ((struct bpf_insn) { \ 278 .code = 0, /* zero is reserved opcode */ \ 279 .dst_reg = 0, \ 280 .src_reg = 0, \ 281 .off = 0, \ 282 .imm = ((__u64) (IMM)) >> 32 }) 283 284 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 285 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 286 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 287 288 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 289 290 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 291 ((struct bpf_insn) { \ 292 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 293 .dst_reg = DST, \ 294 .src_reg = SRC, \ 295 .off = 0, \ 296 .imm = IMM }) 297 298 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 299 ((struct bpf_insn) { \ 300 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 301 .dst_reg = DST, \ 302 .src_reg = SRC, \ 303 .off = 0, \ 304 .imm = IMM }) 305 306 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 307 308 #define BPF_LD_ABS(SIZE, IMM) \ 309 ((struct bpf_insn) { \ 310 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 311 .dst_reg = 0, \ 312 .src_reg = 0, \ 313 .off = 0, \ 314 .imm = IMM }) 315 316 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 317 318 #define BPF_LD_IND(SIZE, SRC, IMM) \ 319 ((struct bpf_insn) { \ 320 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 321 .dst_reg = 0, \ 322 .src_reg = SRC, \ 323 .off = 0, \ 324 .imm = IMM }) 325 326 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 327 328 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 329 ((struct bpf_insn) { \ 330 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 331 .dst_reg = DST, \ 332 .src_reg = SRC, \ 333 .off = OFF, \ 334 .imm = 0 }) 335 336 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */ 337 338 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \ 339 ((struct bpf_insn) { \ 340 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \ 341 .dst_reg = DST, \ 342 .src_reg = SRC, \ 343 .off = OFF, \ 344 .imm = 0 }) 345 346 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 347 348 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 349 ((struct bpf_insn) { \ 350 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 351 .dst_reg = DST, \ 352 .src_reg = SRC, \ 353 .off = OFF, \ 354 .imm = 0 }) 355 356 357 /* 358 * Atomic operations: 359 * 360 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 361 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 362 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 363 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 364 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 365 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 366 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 367 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 368 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 369 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 370 * BPF_LOAD_ACQ dst_reg = smp_load_acquire(src_reg + off16) 371 * BPF_STORE_REL smp_store_release(dst_reg + off16, src_reg) 372 */ 373 374 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 375 ((struct bpf_insn) { \ 376 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 377 .dst_reg = DST, \ 378 .src_reg = SRC, \ 379 .off = OFF, \ 380 .imm = OP }) 381 382 /* Legacy alias */ 383 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 384 385 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 386 387 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 388 ((struct bpf_insn) { \ 389 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 390 .dst_reg = DST, \ 391 .src_reg = 0, \ 392 .off = OFF, \ 393 .imm = IMM }) 394 395 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 396 397 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 398 ((struct bpf_insn) { \ 399 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 400 .dst_reg = DST, \ 401 .src_reg = SRC, \ 402 .off = OFF, \ 403 .imm = 0 }) 404 405 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 406 407 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 408 ((struct bpf_insn) { \ 409 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 410 .dst_reg = DST, \ 411 .src_reg = 0, \ 412 .off = OFF, \ 413 .imm = IMM }) 414 415 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 416 417 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 418 ((struct bpf_insn) { \ 419 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 420 .dst_reg = DST, \ 421 .src_reg = SRC, \ 422 .off = OFF, \ 423 .imm = 0 }) 424 425 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 426 427 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 428 ((struct bpf_insn) { \ 429 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 430 .dst_reg = DST, \ 431 .src_reg = 0, \ 432 .off = OFF, \ 433 .imm = IMM }) 434 435 /* Unconditional jumps, goto pc + off16 */ 436 437 #define BPF_JMP_A(OFF) \ 438 ((struct bpf_insn) { \ 439 .code = BPF_JMP | BPF_JA, \ 440 .dst_reg = 0, \ 441 .src_reg = 0, \ 442 .off = OFF, \ 443 .imm = 0 }) 444 445 /* Unconditional jumps, gotol pc + imm32 */ 446 447 #define BPF_JMP32_A(IMM) \ 448 ((struct bpf_insn) { \ 449 .code = BPF_JMP32 | BPF_JA, \ 450 .dst_reg = 0, \ 451 .src_reg = 0, \ 452 .off = 0, \ 453 .imm = IMM }) 454 455 /* Relative call */ 456 457 #define BPF_CALL_REL(TGT) \ 458 ((struct bpf_insn) { \ 459 .code = BPF_JMP | BPF_CALL, \ 460 .dst_reg = 0, \ 461 .src_reg = BPF_PSEUDO_CALL, \ 462 .off = 0, \ 463 .imm = TGT }) 464 465 /* Convert function address to BPF immediate */ 466 467 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 468 469 #define BPF_EMIT_CALL(FUNC) \ 470 ((struct bpf_insn) { \ 471 .code = BPF_JMP | BPF_CALL, \ 472 .dst_reg = 0, \ 473 .src_reg = 0, \ 474 .off = 0, \ 475 .imm = BPF_CALL_IMM(FUNC) }) 476 477 /* Kfunc call */ 478 479 #define BPF_CALL_KFUNC(OFF, IMM) \ 480 ((struct bpf_insn) { \ 481 .code = BPF_JMP | BPF_CALL, \ 482 .dst_reg = 0, \ 483 .src_reg = BPF_PSEUDO_KFUNC_CALL, \ 484 .off = OFF, \ 485 .imm = IMM }) 486 487 /* Raw code statement block */ 488 489 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 490 ((struct bpf_insn) { \ 491 .code = CODE, \ 492 .dst_reg = DST, \ 493 .src_reg = SRC, \ 494 .off = OFF, \ 495 .imm = IMM }) 496 497 /* Program exit */ 498 499 #define BPF_EXIT_INSN() \ 500 ((struct bpf_insn) { \ 501 .code = BPF_JMP | BPF_EXIT, \ 502 .dst_reg = 0, \ 503 .src_reg = 0, \ 504 .off = 0, \ 505 .imm = 0 }) 506 507 /* Speculation barrier */ 508 509 #define BPF_ST_NOSPEC() \ 510 ((struct bpf_insn) { \ 511 .code = BPF_ST | BPF_NOSPEC, \ 512 .dst_reg = 0, \ 513 .src_reg = 0, \ 514 .off = 0, \ 515 .imm = 0 }) 516 517 /* Internal classic blocks for direct assignment */ 518 519 #define __BPF_STMT(CODE, K) \ 520 ((struct sock_filter) BPF_STMT(CODE, K)) 521 522 #define __BPF_JUMP(CODE, K, JT, JF) \ 523 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 524 525 #define bytes_to_bpf_size(bytes) \ 526 ({ \ 527 int bpf_size = -EINVAL; \ 528 \ 529 if (bytes == sizeof(u8)) \ 530 bpf_size = BPF_B; \ 531 else if (bytes == sizeof(u16)) \ 532 bpf_size = BPF_H; \ 533 else if (bytes == sizeof(u32)) \ 534 bpf_size = BPF_W; \ 535 else if (bytes == sizeof(u64)) \ 536 bpf_size = BPF_DW; \ 537 \ 538 bpf_size; \ 539 }) 540 541 #define bpf_size_to_bytes(bpf_size) \ 542 ({ \ 543 int bytes = -EINVAL; \ 544 \ 545 if (bpf_size == BPF_B) \ 546 bytes = sizeof(u8); \ 547 else if (bpf_size == BPF_H) \ 548 bytes = sizeof(u16); \ 549 else if (bpf_size == BPF_W) \ 550 bytes = sizeof(u32); \ 551 else if (bpf_size == BPF_DW) \ 552 bytes = sizeof(u64); \ 553 \ 554 bytes; \ 555 }) 556 557 #define BPF_SIZEOF(type) \ 558 ({ \ 559 const int __size = bytes_to_bpf_size(sizeof(type)); \ 560 BUILD_BUG_ON(__size < 0); \ 561 __size; \ 562 }) 563 564 #define BPF_FIELD_SIZEOF(type, field) \ 565 ({ \ 566 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 567 BUILD_BUG_ON(__size < 0); \ 568 __size; \ 569 }) 570 571 #define BPF_LDST_BYTES(insn) \ 572 ({ \ 573 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 574 WARN_ON(__size < 0); \ 575 __size; \ 576 }) 577 578 #define __BPF_MAP_0(m, v, ...) v 579 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 580 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 581 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 582 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 583 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 584 585 #define __BPF_REG_0(...) __BPF_PAD(5) 586 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 587 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 588 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 589 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 590 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 591 592 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 593 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 594 595 #define __BPF_CAST(t, a) \ 596 (__force t) \ 597 (__force \ 598 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 599 (unsigned long)0, (t)0))) a 600 #define __BPF_V void 601 #define __BPF_N 602 603 #define __BPF_DECL_ARGS(t, a) t a 604 #define __BPF_DECL_REGS(t, a) u64 a 605 606 #define __BPF_PAD(n) \ 607 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 608 u64, __ur_3, u64, __ur_4, u64, __ur_5) 609 610 #define BPF_CALL_x(x, attr, name, ...) \ 611 static __always_inline \ 612 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 613 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 614 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 615 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 616 { \ 617 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 618 } \ 619 static __always_inline \ 620 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 621 622 #define __NOATTR 623 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 624 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 625 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 626 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 627 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 628 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 629 630 #define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 631 632 #define bpf_ctx_range(TYPE, MEMBER) \ 633 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 634 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 635 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 636 #if BITS_PER_LONG == 64 637 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 638 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 639 #else 640 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 641 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 642 #endif /* BITS_PER_LONG == 64 */ 643 644 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 645 ({ \ 646 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 647 *(PTR_SIZE) = (SIZE); \ 648 offsetof(TYPE, MEMBER); \ 649 }) 650 651 /* A struct sock_filter is architecture independent. */ 652 struct compat_sock_fprog { 653 u16 len; 654 compat_uptr_t filter; /* struct sock_filter * */ 655 }; 656 657 struct sock_fprog_kern { 658 u16 len; 659 struct sock_filter *filter; 660 }; 661 662 /* Some arches need doubleword alignment for their instructions and/or data */ 663 #define BPF_IMAGE_ALIGNMENT 8 664 665 struct bpf_binary_header { 666 u32 size; 667 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 668 }; 669 670 struct bpf_prog_stats { 671 u64_stats_t cnt; 672 u64_stats_t nsecs; 673 u64_stats_t misses; 674 struct u64_stats_sync syncp; 675 } __aligned(2 * sizeof(u64)); 676 677 struct bpf_timed_may_goto { 678 u64 count; 679 u64 timestamp; 680 }; 681 682 struct sk_filter { 683 refcount_t refcnt; 684 struct rcu_head rcu; 685 struct bpf_prog *prog; 686 }; 687 688 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 689 690 extern struct mutex nf_conn_btf_access_lock; 691 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 692 const struct bpf_reg_state *reg, 693 int off, int size); 694 695 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 696 const struct bpf_insn *insnsi, 697 unsigned int (*bpf_func)(const void *, 698 const struct bpf_insn *)); 699 700 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 701 const void *ctx, 702 bpf_dispatcher_fn dfunc) 703 { 704 u32 ret; 705 706 cant_migrate(); 707 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 708 struct bpf_prog_stats *stats; 709 u64 duration, start = sched_clock(); 710 unsigned long flags; 711 712 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 713 714 duration = sched_clock() - start; 715 if (likely(prog->stats)) { 716 stats = this_cpu_ptr(prog->stats); 717 flags = u64_stats_update_begin_irqsave(&stats->syncp); 718 u64_stats_inc(&stats->cnt); 719 u64_stats_add(&stats->nsecs, duration); 720 u64_stats_update_end_irqrestore(&stats->syncp, flags); 721 } 722 } else { 723 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 724 } 725 return ret; 726 } 727 728 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 729 { 730 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 731 } 732 733 /* 734 * Use in preemptible and therefore migratable context to make sure that 735 * the execution of the BPF program runs on one CPU. 736 * 737 * This uses migrate_disable/enable() explicitly to document that the 738 * invocation of a BPF program does not require reentrancy protection 739 * against a BPF program which is invoked from a preempting task. 740 */ 741 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 742 const void *ctx) 743 { 744 u32 ret; 745 746 migrate_disable(); 747 ret = bpf_prog_run(prog, ctx); 748 migrate_enable(); 749 return ret; 750 } 751 752 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 753 754 struct bpf_skb_data_end { 755 struct qdisc_skb_cb qdisc_cb; 756 void *data_meta; 757 void *data_end; 758 }; 759 760 struct bpf_nh_params { 761 u32 nh_family; 762 union { 763 u32 ipv4_nh; 764 struct in6_addr ipv6_nh; 765 }; 766 }; 767 768 /* flags for bpf_redirect_info kern_flags */ 769 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 770 #define BPF_RI_F_RI_INIT BIT(1) 771 #define BPF_RI_F_CPU_MAP_INIT BIT(2) 772 #define BPF_RI_F_DEV_MAP_INIT BIT(3) 773 #define BPF_RI_F_XSK_MAP_INIT BIT(4) 774 775 struct bpf_redirect_info { 776 u64 tgt_index; 777 void *tgt_value; 778 struct bpf_map *map; 779 u32 flags; 780 u32 map_id; 781 enum bpf_map_type map_type; 782 struct bpf_nh_params nh; 783 u32 kern_flags; 784 }; 785 786 struct bpf_net_context { 787 struct bpf_redirect_info ri; 788 struct list_head cpu_map_flush_list; 789 struct list_head dev_map_flush_list; 790 struct list_head xskmap_map_flush_list; 791 }; 792 793 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx) 794 { 795 struct task_struct *tsk = current; 796 797 if (tsk->bpf_net_context != NULL) 798 return NULL; 799 bpf_net_ctx->ri.kern_flags = 0; 800 801 tsk->bpf_net_context = bpf_net_ctx; 802 return bpf_net_ctx; 803 } 804 805 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx) 806 { 807 if (bpf_net_ctx) 808 current->bpf_net_context = NULL; 809 } 810 811 static inline struct bpf_net_context *bpf_net_ctx_get(void) 812 { 813 return current->bpf_net_context; 814 } 815 816 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void) 817 { 818 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 819 820 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) { 821 memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh)); 822 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT; 823 } 824 825 return &bpf_net_ctx->ri; 826 } 827 828 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void) 829 { 830 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 831 832 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) { 833 INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list); 834 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT; 835 } 836 837 return &bpf_net_ctx->cpu_map_flush_list; 838 } 839 840 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void) 841 { 842 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 843 844 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) { 845 INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list); 846 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT; 847 } 848 849 return &bpf_net_ctx->dev_map_flush_list; 850 } 851 852 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void) 853 { 854 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 855 856 if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) { 857 INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list); 858 bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT; 859 } 860 861 return &bpf_net_ctx->xskmap_map_flush_list; 862 } 863 864 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map, 865 struct list_head **lh_dev, 866 struct list_head **lh_xsk) 867 { 868 struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get(); 869 u32 kern_flags = bpf_net_ctx->ri.kern_flags; 870 struct list_head *lh; 871 872 *lh_map = *lh_dev = *lh_xsk = NULL; 873 874 if (!IS_ENABLED(CONFIG_BPF_SYSCALL)) 875 return; 876 877 lh = &bpf_net_ctx->dev_map_flush_list; 878 if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh)) 879 *lh_dev = lh; 880 881 lh = &bpf_net_ctx->cpu_map_flush_list; 882 if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh)) 883 *lh_map = lh; 884 885 lh = &bpf_net_ctx->xskmap_map_flush_list; 886 if (IS_ENABLED(CONFIG_XDP_SOCKETS) && 887 kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh)) 888 *lh_xsk = lh; 889 } 890 891 /* Compute the linear packet data range [data, data_end) which 892 * will be accessed by various program types (cls_bpf, act_bpf, 893 * lwt, ...). Subsystems allowing direct data access must (!) 894 * ensure that cb[] area can be written to when BPF program is 895 * invoked (otherwise cb[] save/restore is necessary). 896 */ 897 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 898 { 899 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 900 901 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 902 cb->data_meta = skb->data - skb_metadata_len(skb); 903 cb->data_end = skb->data + skb_headlen(skb); 904 } 905 906 static inline int bpf_prog_run_data_pointers( 907 const struct bpf_prog *prog, 908 struct sk_buff *skb) 909 { 910 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 911 void *save_data_meta, *save_data_end; 912 int res; 913 914 save_data_meta = cb->data_meta; 915 save_data_end = cb->data_end; 916 917 bpf_compute_data_pointers(skb); 918 res = bpf_prog_run(prog, skb); 919 920 cb->data_meta = save_data_meta; 921 cb->data_end = save_data_end; 922 923 return res; 924 } 925 926 /* Similar to bpf_compute_data_pointers(), except that save orginal 927 * data in cb->data and cb->meta_data for restore. 928 */ 929 static inline void bpf_compute_and_save_data_end( 930 struct sk_buff *skb, void **saved_data_end) 931 { 932 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 933 934 *saved_data_end = cb->data_end; 935 cb->data_end = skb->data + skb_headlen(skb); 936 } 937 938 /* Restore data saved by bpf_compute_and_save_data_end(). */ 939 static inline void bpf_restore_data_end( 940 struct sk_buff *skb, void *saved_data_end) 941 { 942 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 943 944 cb->data_end = saved_data_end; 945 } 946 947 static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 948 { 949 /* eBPF programs may read/write skb->cb[] area to transfer meta 950 * data between tail calls. Since this also needs to work with 951 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 952 * 953 * In some socket filter cases, the cb unfortunately needs to be 954 * saved/restored so that protocol specific skb->cb[] data won't 955 * be lost. In any case, due to unpriviledged eBPF programs 956 * attached to sockets, we need to clear the bpf_skb_cb() area 957 * to not leak previous contents to user space. 958 */ 959 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 960 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 961 sizeof_field(struct qdisc_skb_cb, data)); 962 963 return qdisc_skb_cb(skb)->data; 964 } 965 966 /* Must be invoked with migration disabled */ 967 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 968 const void *ctx) 969 { 970 const struct sk_buff *skb = ctx; 971 u8 *cb_data = bpf_skb_cb(skb); 972 u8 cb_saved[BPF_SKB_CB_LEN]; 973 u32 res; 974 975 if (unlikely(prog->cb_access)) { 976 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 977 memset(cb_data, 0, sizeof(cb_saved)); 978 } 979 980 res = bpf_prog_run(prog, skb); 981 982 if (unlikely(prog->cb_access)) 983 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 984 985 return res; 986 } 987 988 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 989 struct sk_buff *skb) 990 { 991 u32 res; 992 993 migrate_disable(); 994 res = __bpf_prog_run_save_cb(prog, skb); 995 migrate_enable(); 996 return res; 997 } 998 999 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 1000 struct sk_buff *skb) 1001 { 1002 u8 *cb_data = bpf_skb_cb(skb); 1003 u32 res; 1004 1005 if (unlikely(prog->cb_access)) 1006 memset(cb_data, 0, BPF_SKB_CB_LEN); 1007 1008 res = bpf_prog_run_pin_on_cpu(prog, skb); 1009 return res; 1010 } 1011 1012 DECLARE_BPF_DISPATCHER(xdp) 1013 1014 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 1015 1016 u32 xdp_master_redirect(struct xdp_buff *xdp); 1017 1018 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 1019 1020 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 1021 { 1022 return prog->len * sizeof(struct bpf_insn); 1023 } 1024 1025 static inline unsigned int bpf_prog_size(unsigned int proglen) 1026 { 1027 return max(sizeof(struct bpf_prog), 1028 offsetof(struct bpf_prog, insns[proglen])); 1029 } 1030 1031 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 1032 { 1033 /* When classic BPF programs have been loaded and the arch 1034 * does not have a classic BPF JIT (anymore), they have been 1035 * converted via bpf_migrate_filter() to eBPF and thus always 1036 * have an unspec program type. 1037 */ 1038 return prog->type == BPF_PROG_TYPE_UNSPEC; 1039 } 1040 1041 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 1042 { 1043 const u32 size_machine = sizeof(unsigned long); 1044 1045 if (size > size_machine && size % size_machine == 0) 1046 size = size_machine; 1047 1048 return size; 1049 } 1050 1051 static inline bool 1052 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 1053 { 1054 return size <= size_default && (size & (size - 1)) == 0; 1055 } 1056 1057 static inline u8 1058 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 1059 { 1060 u8 access_off = off & (size_default - 1); 1061 1062 #ifdef __LITTLE_ENDIAN 1063 return access_off; 1064 #else 1065 return size_default - (access_off + size); 1066 #endif 1067 } 1068 1069 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 1070 (size == sizeof(__u64) && \ 1071 off >= offsetof(type, field) && \ 1072 off + sizeof(__u64) <= offsetofend(type, field) && \ 1073 off % sizeof(__u64) == 0) 1074 1075 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 1076 1077 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp) 1078 { 1079 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1080 if (!fp->jited) { 1081 set_vm_flush_reset_perms(fp); 1082 return set_memory_ro((unsigned long)fp, fp->pages); 1083 } 1084 #endif 1085 return 0; 1086 } 1087 1088 static inline int __must_check 1089 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 1090 { 1091 set_vm_flush_reset_perms(hdr); 1092 return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 1093 } 1094 1095 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap, 1096 enum skb_drop_reason *reason); 1097 1098 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 1099 { 1100 enum skb_drop_reason ignore_reason; 1101 1102 return sk_filter_trim_cap(sk, skb, 1, &ignore_reason); 1103 } 1104 1105 static inline int sk_filter_reason(struct sock *sk, struct sk_buff *skb, 1106 enum skb_drop_reason *reason) 1107 { 1108 return sk_filter_trim_cap(sk, skb, 1, reason); 1109 } 1110 1111 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 1112 void bpf_prog_free(struct bpf_prog *fp); 1113 1114 bool bpf_opcode_in_insntable(u8 code); 1115 1116 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 1117 const u32 *insn_to_jit_off); 1118 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 1119 void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 1120 1121 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 1122 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 1123 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 1124 gfp_t gfp_extra_flags); 1125 void __bpf_prog_free(struct bpf_prog *fp); 1126 1127 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 1128 { 1129 __bpf_prog_free(fp); 1130 } 1131 1132 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 1133 unsigned int flen); 1134 1135 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 1136 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 1137 bpf_aux_classic_check_t trans, bool save_orig); 1138 void bpf_prog_destroy(struct bpf_prog *fp); 1139 1140 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1141 int sk_attach_bpf(u32 ufd, struct sock *sk); 1142 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 1143 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 1144 void sk_reuseport_prog_free(struct bpf_prog *prog); 1145 int sk_detach_filter(struct sock *sk); 1146 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 1147 1148 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 1149 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 1150 1151 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 1152 #define __bpf_call_base_args \ 1153 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 1154 (void *)__bpf_call_base) 1155 1156 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 1157 void bpf_jit_compile(struct bpf_prog *prog); 1158 bool bpf_jit_needs_zext(void); 1159 bool bpf_jit_inlines_helper_call(s32 imm); 1160 bool bpf_jit_supports_subprog_tailcalls(void); 1161 bool bpf_jit_supports_percpu_insn(void); 1162 bool bpf_jit_supports_kfunc_call(void); 1163 bool bpf_jit_supports_far_kfunc_call(void); 1164 bool bpf_jit_supports_exceptions(void); 1165 bool bpf_jit_supports_ptr_xchg(void); 1166 bool bpf_jit_supports_arena(void); 1167 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena); 1168 bool bpf_jit_supports_private_stack(void); 1169 bool bpf_jit_supports_timed_may_goto(void); 1170 bool bpf_jit_supports_fsession(void); 1171 u64 bpf_arch_uaddress_limit(void); 1172 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie); 1173 u64 arch_bpf_timed_may_goto(void); 1174 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *); 1175 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id); 1176 1177 static inline bool bpf_dump_raw_ok(const struct cred *cred) 1178 { 1179 /* Reconstruction of call-sites is dependent on kallsyms, 1180 * thus make dump the same restriction. 1181 */ 1182 return kallsyms_show_value(cred); 1183 } 1184 1185 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 1186 const struct bpf_insn *patch, u32 len); 1187 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 1188 1189 static inline bool xdp_return_frame_no_direct(void) 1190 { 1191 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1192 1193 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 1194 } 1195 1196 static inline void xdp_set_return_frame_no_direct(void) 1197 { 1198 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1199 1200 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 1201 } 1202 1203 static inline void xdp_clear_return_frame_no_direct(void) 1204 { 1205 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1206 1207 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 1208 } 1209 1210 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 1211 unsigned int pktlen) 1212 { 1213 unsigned int len; 1214 1215 if (unlikely(!(fwd->flags & IFF_UP))) 1216 return -ENETDOWN; 1217 1218 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1219 if (pktlen > len) 1220 return -EMSGSIZE; 1221 1222 return 0; 1223 } 1224 1225 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1226 * same cpu context. Further for best results no more than a single map 1227 * for the do_redirect/do_flush pair should be used. This limitation is 1228 * because we only track one map and force a flush when the map changes. 1229 * This does not appear to be a real limitation for existing software. 1230 */ 1231 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1232 struct xdp_buff *xdp, const struct bpf_prog *prog); 1233 int xdp_do_redirect(struct net_device *dev, 1234 struct xdp_buff *xdp, 1235 const struct bpf_prog *prog); 1236 int xdp_do_redirect_frame(struct net_device *dev, 1237 struct xdp_buff *xdp, 1238 struct xdp_frame *xdpf, 1239 const struct bpf_prog *prog); 1240 void xdp_do_flush(void); 1241 1242 void bpf_warn_invalid_xdp_action(const struct net_device *dev, 1243 const struct bpf_prog *prog, u32 act); 1244 1245 #ifdef CONFIG_INET 1246 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1247 struct bpf_prog *prog, struct sk_buff *skb, 1248 struct sock *migrating_sk, 1249 u32 hash); 1250 #else 1251 static inline struct sock * 1252 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1253 struct bpf_prog *prog, struct sk_buff *skb, 1254 struct sock *migrating_sk, 1255 u32 hash) 1256 { 1257 return NULL; 1258 } 1259 #endif 1260 1261 #ifdef CONFIG_BPF_JIT 1262 extern int bpf_jit_enable; 1263 extern int bpf_jit_harden; 1264 extern int bpf_jit_kallsyms; 1265 extern long bpf_jit_limit; 1266 extern long bpf_jit_limit_max; 1267 1268 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1269 1270 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1271 1272 struct bpf_binary_header * 1273 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1274 unsigned int alignment, 1275 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1276 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1277 u64 bpf_jit_alloc_exec_limit(void); 1278 void *bpf_jit_alloc_exec(unsigned long size); 1279 void bpf_jit_free_exec(void *addr); 1280 void bpf_jit_free(struct bpf_prog *fp); 1281 struct bpf_binary_header * 1282 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1283 1284 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1285 void bpf_prog_pack_free(void *ptr, u32 size); 1286 1287 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1288 { 1289 return list_empty(&fp->aux->ksym.lnode) || 1290 fp->aux->ksym.lnode.prev == LIST_POISON2; 1291 } 1292 1293 struct bpf_binary_header * 1294 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1295 unsigned int alignment, 1296 struct bpf_binary_header **rw_hdr, 1297 u8 **rw_image, 1298 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1299 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header, 1300 struct bpf_binary_header *rw_header); 1301 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1302 struct bpf_binary_header *rw_header); 1303 1304 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1305 struct bpf_jit_poke_descriptor *poke); 1306 1307 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1308 const struct bpf_insn *insn, bool extra_pass, 1309 u64 *func_addr, bool *func_addr_fixed); 1310 1311 const char *bpf_jit_get_prog_name(struct bpf_prog *prog); 1312 1313 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1314 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1315 1316 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1317 u32 pass, void *image) 1318 { 1319 pr_err("flen=%u proglen=%u pass=%u image=%p from=%s pid=%d\n", flen, 1320 proglen, pass, image, current->comm, task_pid_nr(current)); 1321 1322 if (image) 1323 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1324 16, 1, image, proglen, false); 1325 } 1326 1327 static inline bool bpf_jit_is_ebpf(void) 1328 { 1329 # ifdef CONFIG_HAVE_EBPF_JIT 1330 return true; 1331 # else 1332 return false; 1333 # endif 1334 } 1335 1336 static inline bool ebpf_jit_enabled(void) 1337 { 1338 return bpf_jit_enable && bpf_jit_is_ebpf(); 1339 } 1340 1341 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1342 { 1343 return fp->jited && bpf_jit_is_ebpf(); 1344 } 1345 1346 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1347 { 1348 /* These are the prerequisites, should someone ever have the 1349 * idea to call blinding outside of them, we make sure to 1350 * bail out. 1351 */ 1352 if (!bpf_jit_is_ebpf()) 1353 return false; 1354 if (!prog->jit_requested) 1355 return false; 1356 if (!bpf_jit_harden) 1357 return false; 1358 if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF)) 1359 return false; 1360 1361 return true; 1362 } 1363 1364 static inline bool bpf_jit_kallsyms_enabled(void) 1365 { 1366 /* There are a couple of corner cases where kallsyms should 1367 * not be enabled f.e. on hardening. 1368 */ 1369 if (bpf_jit_harden) 1370 return false; 1371 if (!bpf_jit_kallsyms) 1372 return false; 1373 if (bpf_jit_kallsyms == 1) 1374 return true; 1375 1376 return false; 1377 } 1378 1379 int bpf_address_lookup(unsigned long addr, unsigned long *size, 1380 unsigned long *off, char *sym); 1381 bool is_bpf_text_address(unsigned long addr); 1382 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1383 char *sym); 1384 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr); 1385 1386 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1387 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1388 1389 #else /* CONFIG_BPF_JIT */ 1390 1391 static inline bool ebpf_jit_enabled(void) 1392 { 1393 return false; 1394 } 1395 1396 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1397 { 1398 return false; 1399 } 1400 1401 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1402 { 1403 return false; 1404 } 1405 1406 static inline int 1407 bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1408 struct bpf_jit_poke_descriptor *poke) 1409 { 1410 return -ENOTSUPP; 1411 } 1412 1413 static inline void bpf_jit_free(struct bpf_prog *fp) 1414 { 1415 bpf_prog_unlock_free(fp); 1416 } 1417 1418 static inline bool bpf_jit_kallsyms_enabled(void) 1419 { 1420 return false; 1421 } 1422 1423 static inline int 1424 bpf_address_lookup(unsigned long addr, unsigned long *size, 1425 unsigned long *off, char *sym) 1426 { 1427 return 0; 1428 } 1429 1430 static inline bool is_bpf_text_address(unsigned long addr) 1431 { 1432 return false; 1433 } 1434 1435 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1436 char *type, char *sym) 1437 { 1438 return -ERANGE; 1439 } 1440 1441 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 1442 { 1443 return NULL; 1444 } 1445 1446 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1447 { 1448 } 1449 1450 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1451 { 1452 } 1453 1454 #endif /* CONFIG_BPF_JIT */ 1455 1456 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1457 1458 #define BPF_ANC BIT(15) 1459 1460 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1461 { 1462 switch (first->code) { 1463 case BPF_RET | BPF_K: 1464 case BPF_LD | BPF_W | BPF_LEN: 1465 return false; 1466 1467 case BPF_LD | BPF_W | BPF_ABS: 1468 case BPF_LD | BPF_H | BPF_ABS: 1469 case BPF_LD | BPF_B | BPF_ABS: 1470 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1471 return true; 1472 return false; 1473 1474 default: 1475 return true; 1476 } 1477 } 1478 1479 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1480 { 1481 BUG_ON(ftest->code & BPF_ANC); 1482 1483 switch (ftest->code) { 1484 case BPF_LD | BPF_W | BPF_ABS: 1485 case BPF_LD | BPF_H | BPF_ABS: 1486 case BPF_LD | BPF_B | BPF_ABS: 1487 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1488 return BPF_ANC | SKF_AD_##CODE 1489 switch (ftest->k) { 1490 BPF_ANCILLARY(PROTOCOL); 1491 BPF_ANCILLARY(PKTTYPE); 1492 BPF_ANCILLARY(IFINDEX); 1493 BPF_ANCILLARY(NLATTR); 1494 BPF_ANCILLARY(NLATTR_NEST); 1495 BPF_ANCILLARY(MARK); 1496 BPF_ANCILLARY(QUEUE); 1497 BPF_ANCILLARY(HATYPE); 1498 BPF_ANCILLARY(RXHASH); 1499 BPF_ANCILLARY(CPU); 1500 BPF_ANCILLARY(ALU_XOR_X); 1501 BPF_ANCILLARY(VLAN_TAG); 1502 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1503 BPF_ANCILLARY(PAY_OFFSET); 1504 BPF_ANCILLARY(RANDOM); 1505 BPF_ANCILLARY(VLAN_TPID); 1506 } 1507 fallthrough; 1508 default: 1509 return ftest->code; 1510 } 1511 } 1512 1513 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1514 int k, unsigned int size); 1515 1516 static inline int bpf_tell_extensions(void) 1517 { 1518 return SKF_AD_MAX; 1519 } 1520 1521 struct bpf_sock_addr_kern { 1522 struct sock *sk; 1523 struct sockaddr_unsized *uaddr; 1524 /* Temporary "register" to make indirect stores to nested structures 1525 * defined above. We need three registers to make such a store, but 1526 * only two (src and dst) are available at convert_ctx_access time 1527 */ 1528 u64 tmp_reg; 1529 void *t_ctx; /* Attach type specific context. */ 1530 u32 uaddrlen; 1531 }; 1532 1533 struct bpf_sock_ops_kern { 1534 struct sock *sk; 1535 union { 1536 u32 args[4]; 1537 u32 reply; 1538 u32 replylong[4]; 1539 }; 1540 struct sk_buff *syn_skb; 1541 struct sk_buff *skb; 1542 void *skb_data_end; 1543 u8 op; 1544 u8 is_fullsock; 1545 u8 is_locked_tcp_sock; 1546 u8 remaining_opt_len; 1547 u64 temp; /* temp and everything after is not 1548 * initialized to 0 before calling 1549 * the BPF program. New fields that 1550 * should be initialized to 0 should 1551 * be inserted before temp. 1552 * temp is scratch storage used by 1553 * sock_ops_convert_ctx_access 1554 * as temporary storage of a register. 1555 */ 1556 }; 1557 1558 struct bpf_sysctl_kern { 1559 struct ctl_table_header *head; 1560 const struct ctl_table *table; 1561 void *cur_val; 1562 size_t cur_len; 1563 void *new_val; 1564 size_t new_len; 1565 int new_updated; 1566 int write; 1567 loff_t *ppos; 1568 /* Temporary "register" for indirect stores to ppos. */ 1569 u64 tmp_reg; 1570 }; 1571 1572 #define BPF_SOCKOPT_KERN_BUF_SIZE 32 1573 struct bpf_sockopt_buf { 1574 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1575 }; 1576 1577 struct bpf_sockopt_kern { 1578 struct sock *sk; 1579 u8 *optval; 1580 u8 *optval_end; 1581 s32 level; 1582 s32 optname; 1583 s32 optlen; 1584 /* for retval in struct bpf_cg_run_ctx */ 1585 struct task_struct *current_task; 1586 /* Temporary "register" for indirect stores to ppos. */ 1587 u64 tmp_reg; 1588 }; 1589 1590 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1591 1592 struct bpf_sk_lookup_kern { 1593 u16 family; 1594 u16 protocol; 1595 __be16 sport; 1596 u16 dport; 1597 struct { 1598 __be32 saddr; 1599 __be32 daddr; 1600 } v4; 1601 struct { 1602 const struct in6_addr *saddr; 1603 const struct in6_addr *daddr; 1604 } v6; 1605 struct sock *selected_sk; 1606 u32 ingress_ifindex; 1607 bool no_reuseport; 1608 }; 1609 1610 extern struct static_key_false bpf_sk_lookup_enabled; 1611 1612 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1613 * 1614 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1615 * SK_DROP. Their meaning is as follows: 1616 * 1617 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1618 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1619 * SK_DROP : terminate lookup with -ECONNREFUSED 1620 * 1621 * This macro aggregates return values and selected sockets from 1622 * multiple BPF programs according to following rules in order: 1623 * 1624 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1625 * macro result is SK_PASS and last ctx.selected_sk is used. 1626 * 2. If any program returned SK_DROP return value, 1627 * macro result is SK_DROP. 1628 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1629 * 1630 * Caller must ensure that the prog array is non-NULL, and that the 1631 * array as well as the programs it contains remain valid. 1632 */ 1633 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1634 ({ \ 1635 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1636 struct bpf_prog_array_item *_item; \ 1637 struct sock *_selected_sk = NULL; \ 1638 bool _no_reuseport = false; \ 1639 struct bpf_prog *_prog; \ 1640 bool _all_pass = true; \ 1641 u32 _ret; \ 1642 \ 1643 migrate_disable(); \ 1644 _item = &(array)->items[0]; \ 1645 while ((_prog = READ_ONCE(_item->prog))) { \ 1646 /* restore most recent selection */ \ 1647 _ctx->selected_sk = _selected_sk; \ 1648 _ctx->no_reuseport = _no_reuseport; \ 1649 \ 1650 _ret = func(_prog, _ctx); \ 1651 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1652 /* remember last non-NULL socket */ \ 1653 _selected_sk = _ctx->selected_sk; \ 1654 _no_reuseport = _ctx->no_reuseport; \ 1655 } else if (_ret == SK_DROP && _all_pass) { \ 1656 _all_pass = false; \ 1657 } \ 1658 _item++; \ 1659 } \ 1660 _ctx->selected_sk = _selected_sk; \ 1661 _ctx->no_reuseport = _no_reuseport; \ 1662 migrate_enable(); \ 1663 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1664 }) 1665 1666 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol, 1667 const __be32 saddr, const __be16 sport, 1668 const __be32 daddr, const u16 dport, 1669 const int ifindex, struct sock **psk) 1670 { 1671 struct bpf_prog_array *run_array; 1672 struct sock *selected_sk = NULL; 1673 bool no_reuseport = false; 1674 1675 rcu_read_lock(); 1676 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1677 if (run_array) { 1678 struct bpf_sk_lookup_kern ctx = { 1679 .family = AF_INET, 1680 .protocol = protocol, 1681 .v4.saddr = saddr, 1682 .v4.daddr = daddr, 1683 .sport = sport, 1684 .dport = dport, 1685 .ingress_ifindex = ifindex, 1686 }; 1687 u32 act; 1688 1689 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1690 if (act == SK_PASS) { 1691 selected_sk = ctx.selected_sk; 1692 no_reuseport = ctx.no_reuseport; 1693 } else { 1694 selected_sk = ERR_PTR(-ECONNREFUSED); 1695 } 1696 } 1697 rcu_read_unlock(); 1698 *psk = selected_sk; 1699 return no_reuseport; 1700 } 1701 1702 #if IS_ENABLED(CONFIG_IPV6) 1703 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol, 1704 const struct in6_addr *saddr, 1705 const __be16 sport, 1706 const struct in6_addr *daddr, 1707 const u16 dport, 1708 const int ifindex, struct sock **psk) 1709 { 1710 struct bpf_prog_array *run_array; 1711 struct sock *selected_sk = NULL; 1712 bool no_reuseport = false; 1713 1714 rcu_read_lock(); 1715 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1716 if (run_array) { 1717 struct bpf_sk_lookup_kern ctx = { 1718 .family = AF_INET6, 1719 .protocol = protocol, 1720 .v6.saddr = saddr, 1721 .v6.daddr = daddr, 1722 .sport = sport, 1723 .dport = dport, 1724 .ingress_ifindex = ifindex, 1725 }; 1726 u32 act; 1727 1728 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1729 if (act == SK_PASS) { 1730 selected_sk = ctx.selected_sk; 1731 no_reuseport = ctx.no_reuseport; 1732 } else { 1733 selected_sk = ERR_PTR(-ECONNREFUSED); 1734 } 1735 } 1736 rcu_read_unlock(); 1737 *psk = selected_sk; 1738 return no_reuseport; 1739 } 1740 #endif /* IS_ENABLED(CONFIG_IPV6) */ 1741 1742 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1743 u64 flags, const u64 flag_mask, 1744 void *lookup_elem(struct bpf_map *map, u32 key)) 1745 { 1746 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 1747 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1748 1749 /* Lower bits of the flags are used as return code on lookup failure */ 1750 if (unlikely(flags & ~(action_mask | flag_mask))) 1751 return XDP_ABORTED; 1752 1753 ri->tgt_value = lookup_elem(map, index); 1754 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1755 /* If the lookup fails we want to clear out the state in the 1756 * redirect_info struct completely, so that if an eBPF program 1757 * performs multiple lookups, the last one always takes 1758 * precedence. 1759 */ 1760 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1761 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1762 return flags & action_mask; 1763 } 1764 1765 ri->tgt_index = index; 1766 ri->map_id = map->id; 1767 ri->map_type = map->map_type; 1768 1769 if (flags & BPF_F_BROADCAST) { 1770 WRITE_ONCE(ri->map, map); 1771 ri->flags = flags; 1772 } else { 1773 WRITE_ONCE(ri->map, NULL); 1774 ri->flags = 0; 1775 } 1776 1777 return XDP_REDIRECT; 1778 } 1779 1780 #ifdef CONFIG_NET 1781 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len); 1782 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1783 u32 len, u64 flags); 1784 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1785 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len); 1786 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len); 1787 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 1788 void *buf, unsigned long len, bool flush); 1789 int __bpf_skb_meta_store_bytes(struct sk_buff *skb, u32 offset, 1790 const void *from, u32 len, u64 flags); 1791 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset); 1792 #else /* CONFIG_NET */ 1793 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, 1794 void *to, u32 len) 1795 { 1796 return -EOPNOTSUPP; 1797 } 1798 1799 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, 1800 const void *from, u32 len, u64 flags) 1801 { 1802 return -EOPNOTSUPP; 1803 } 1804 1805 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, 1806 void *buf, u32 len) 1807 { 1808 return -EOPNOTSUPP; 1809 } 1810 1811 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, 1812 void *buf, u32 len) 1813 { 1814 return -EOPNOTSUPP; 1815 } 1816 1817 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 1818 { 1819 return NULL; 1820 } 1821 1822 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, 1823 unsigned long len, bool flush) 1824 { 1825 } 1826 1827 static inline int __bpf_skb_meta_store_bytes(struct sk_buff *skb, u32 offset, 1828 const void *from, u32 len, 1829 u64 flags) 1830 { 1831 return -EOPNOTSUPP; 1832 } 1833 1834 static inline void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset) 1835 { 1836 return ERR_PTR(-EOPNOTSUPP); 1837 } 1838 #endif /* CONFIG_NET */ 1839 1840 #endif /* __LINUX_FILTER_H__ */ 1841