xref: /linux/kernel/bpf/helpers.c (revision 02ffd6f89c50ca0bff0c4578949ff99e70451757)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27 #include <linux/uaccess.h>
28 
29 #include "../../lib/kstrtox.h"
30 
31 /* If kernel subsystem is allowing eBPF programs to call this function,
32  * inside its own verifier_ops->get_func_proto() callback it should return
33  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
34  *
35  * Different map implementations will rely on rcu in map methods
36  * lookup/update/delete, therefore eBPF programs must run under rcu lock
37  * if program is allowed to access maps, so check rcu_read_lock_held() or
38  * rcu_read_lock_trace_held() in all three functions.
39  */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)40 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
41 {
42 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
43 		     !rcu_read_lock_bh_held());
44 	return (unsigned long) map->ops->map_lookup_elem(map, key);
45 }
46 
47 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
48 	.func		= bpf_map_lookup_elem,
49 	.gpl_only	= false,
50 	.pkt_access	= true,
51 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
52 	.arg1_type	= ARG_CONST_MAP_PTR,
53 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
54 };
55 
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)56 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
57 	   void *, value, u64, flags)
58 {
59 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
60 		     !rcu_read_lock_bh_held());
61 	return map->ops->map_update_elem(map, key, value, flags);
62 }
63 
64 const struct bpf_func_proto bpf_map_update_elem_proto = {
65 	.func		= bpf_map_update_elem,
66 	.gpl_only	= false,
67 	.pkt_access	= true,
68 	.ret_type	= RET_INTEGER,
69 	.arg1_type	= ARG_CONST_MAP_PTR,
70 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
71 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
72 	.arg4_type	= ARG_ANYTHING,
73 };
74 
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)75 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
76 {
77 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
78 		     !rcu_read_lock_bh_held());
79 	return map->ops->map_delete_elem(map, key);
80 }
81 
82 const struct bpf_func_proto bpf_map_delete_elem_proto = {
83 	.func		= bpf_map_delete_elem,
84 	.gpl_only	= false,
85 	.pkt_access	= true,
86 	.ret_type	= RET_INTEGER,
87 	.arg1_type	= ARG_CONST_MAP_PTR,
88 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
89 };
90 
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)91 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
92 {
93 	return map->ops->map_push_elem(map, value, flags);
94 }
95 
96 const struct bpf_func_proto bpf_map_push_elem_proto = {
97 	.func		= bpf_map_push_elem,
98 	.gpl_only	= false,
99 	.pkt_access	= true,
100 	.ret_type	= RET_INTEGER,
101 	.arg1_type	= ARG_CONST_MAP_PTR,
102 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
103 	.arg3_type	= ARG_ANYTHING,
104 };
105 
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)106 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
107 {
108 	return map->ops->map_pop_elem(map, value);
109 }
110 
111 const struct bpf_func_proto bpf_map_pop_elem_proto = {
112 	.func		= bpf_map_pop_elem,
113 	.gpl_only	= false,
114 	.ret_type	= RET_INTEGER,
115 	.arg1_type	= ARG_CONST_MAP_PTR,
116 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
117 };
118 
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)119 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
120 {
121 	return map->ops->map_peek_elem(map, value);
122 }
123 
124 const struct bpf_func_proto bpf_map_peek_elem_proto = {
125 	.func		= bpf_map_peek_elem,
126 	.gpl_only	= false,
127 	.ret_type	= RET_INTEGER,
128 	.arg1_type	= ARG_CONST_MAP_PTR,
129 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
130 };
131 
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)132 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
133 {
134 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
135 		     !rcu_read_lock_bh_held());
136 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
137 }
138 
139 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
140 	.func		= bpf_map_lookup_percpu_elem,
141 	.gpl_only	= false,
142 	.pkt_access	= true,
143 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
144 	.arg1_type	= ARG_CONST_MAP_PTR,
145 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
146 	.arg3_type	= ARG_ANYTHING,
147 };
148 
149 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
150 	.func		= bpf_user_rnd_u32,
151 	.gpl_only	= false,
152 	.ret_type	= RET_INTEGER,
153 };
154 
BPF_CALL_0(bpf_get_smp_processor_id)155 BPF_CALL_0(bpf_get_smp_processor_id)
156 {
157 	return smp_processor_id();
158 }
159 
160 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
161 	.func		= bpf_get_smp_processor_id,
162 	.gpl_only	= false,
163 	.ret_type	= RET_INTEGER,
164 	.allow_fastcall	= true,
165 };
166 
BPF_CALL_0(bpf_get_numa_node_id)167 BPF_CALL_0(bpf_get_numa_node_id)
168 {
169 	return numa_node_id();
170 }
171 
172 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
173 	.func		= bpf_get_numa_node_id,
174 	.gpl_only	= false,
175 	.ret_type	= RET_INTEGER,
176 };
177 
BPF_CALL_0(bpf_ktime_get_ns)178 BPF_CALL_0(bpf_ktime_get_ns)
179 {
180 	/* NMI safe access to clock monotonic */
181 	return ktime_get_mono_fast_ns();
182 }
183 
184 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
185 	.func		= bpf_ktime_get_ns,
186 	.gpl_only	= false,
187 	.ret_type	= RET_INTEGER,
188 };
189 
BPF_CALL_0(bpf_ktime_get_boot_ns)190 BPF_CALL_0(bpf_ktime_get_boot_ns)
191 {
192 	/* NMI safe access to clock boottime */
193 	return ktime_get_boot_fast_ns();
194 }
195 
196 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
197 	.func		= bpf_ktime_get_boot_ns,
198 	.gpl_only	= false,
199 	.ret_type	= RET_INTEGER,
200 };
201 
BPF_CALL_0(bpf_ktime_get_coarse_ns)202 BPF_CALL_0(bpf_ktime_get_coarse_ns)
203 {
204 	return ktime_get_coarse_ns();
205 }
206 
207 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
208 	.func		= bpf_ktime_get_coarse_ns,
209 	.gpl_only	= false,
210 	.ret_type	= RET_INTEGER,
211 };
212 
BPF_CALL_0(bpf_ktime_get_tai_ns)213 BPF_CALL_0(bpf_ktime_get_tai_ns)
214 {
215 	/* NMI safe access to clock tai */
216 	return ktime_get_tai_fast_ns();
217 }
218 
219 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
220 	.func		= bpf_ktime_get_tai_ns,
221 	.gpl_only	= false,
222 	.ret_type	= RET_INTEGER,
223 };
224 
BPF_CALL_0(bpf_get_current_pid_tgid)225 BPF_CALL_0(bpf_get_current_pid_tgid)
226 {
227 	struct task_struct *task = current;
228 
229 	if (unlikely(!task))
230 		return -EINVAL;
231 
232 	return (u64) task->tgid << 32 | task->pid;
233 }
234 
235 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
236 	.func		= bpf_get_current_pid_tgid,
237 	.gpl_only	= false,
238 	.ret_type	= RET_INTEGER,
239 };
240 
BPF_CALL_0(bpf_get_current_uid_gid)241 BPF_CALL_0(bpf_get_current_uid_gid)
242 {
243 	struct task_struct *task = current;
244 	kuid_t uid;
245 	kgid_t gid;
246 
247 	if (unlikely(!task))
248 		return -EINVAL;
249 
250 	current_uid_gid(&uid, &gid);
251 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
252 		     from_kuid(&init_user_ns, uid);
253 }
254 
255 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
256 	.func		= bpf_get_current_uid_gid,
257 	.gpl_only	= false,
258 	.ret_type	= RET_INTEGER,
259 };
260 
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)261 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
262 {
263 	struct task_struct *task = current;
264 
265 	if (unlikely(!task))
266 		goto err_clear;
267 
268 	/* Verifier guarantees that size > 0 */
269 	strscpy_pad(buf, task->comm, size);
270 	return 0;
271 err_clear:
272 	memset(buf, 0, size);
273 	return -EINVAL;
274 }
275 
276 const struct bpf_func_proto bpf_get_current_comm_proto = {
277 	.func		= bpf_get_current_comm,
278 	.gpl_only	= false,
279 	.ret_type	= RET_INTEGER,
280 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
281 	.arg2_type	= ARG_CONST_SIZE,
282 };
283 
284 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
285 
__bpf_spin_lock(struct bpf_spin_lock * lock)286 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
287 {
288 	arch_spinlock_t *l = (void *)lock;
289 	union {
290 		__u32 val;
291 		arch_spinlock_t lock;
292 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
293 
294 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
295 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
296 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
297 	preempt_disable();
298 	arch_spin_lock(l);
299 }
300 
__bpf_spin_unlock(struct bpf_spin_lock * lock)301 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
302 {
303 	arch_spinlock_t *l = (void *)lock;
304 
305 	arch_spin_unlock(l);
306 	preempt_enable();
307 }
308 
309 #else
310 
__bpf_spin_lock(struct bpf_spin_lock * lock)311 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
312 {
313 	atomic_t *l = (void *)lock;
314 
315 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
316 	do {
317 		atomic_cond_read_relaxed(l, !VAL);
318 	} while (atomic_xchg(l, 1));
319 }
320 
__bpf_spin_unlock(struct bpf_spin_lock * lock)321 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
322 {
323 	atomic_t *l = (void *)lock;
324 
325 	atomic_set_release(l, 0);
326 }
327 
328 #endif
329 
330 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
331 
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)332 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
333 {
334 	unsigned long flags;
335 
336 	local_irq_save(flags);
337 	__bpf_spin_lock(lock);
338 	__this_cpu_write(irqsave_flags, flags);
339 }
340 
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)341 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
342 {
343 	__bpf_spin_lock_irqsave(lock);
344 	return 0;
345 }
346 
347 const struct bpf_func_proto bpf_spin_lock_proto = {
348 	.func		= bpf_spin_lock,
349 	.gpl_only	= false,
350 	.ret_type	= RET_VOID,
351 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
352 	.arg1_btf_id    = BPF_PTR_POISON,
353 };
354 
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)355 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
356 {
357 	unsigned long flags;
358 
359 	flags = __this_cpu_read(irqsave_flags);
360 	__bpf_spin_unlock(lock);
361 	local_irq_restore(flags);
362 }
363 
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)364 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
365 {
366 	__bpf_spin_unlock_irqrestore(lock);
367 	return 0;
368 }
369 
370 const struct bpf_func_proto bpf_spin_unlock_proto = {
371 	.func		= bpf_spin_unlock,
372 	.gpl_only	= false,
373 	.ret_type	= RET_VOID,
374 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
375 	.arg1_btf_id    = BPF_PTR_POISON,
376 };
377 
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)378 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
379 			   bool lock_src)
380 {
381 	struct bpf_spin_lock *lock;
382 
383 	if (lock_src)
384 		lock = src + map->record->spin_lock_off;
385 	else
386 		lock = dst + map->record->spin_lock_off;
387 	preempt_disable();
388 	__bpf_spin_lock_irqsave(lock);
389 	copy_map_value(map, dst, src);
390 	__bpf_spin_unlock_irqrestore(lock);
391 	preempt_enable();
392 }
393 
BPF_CALL_0(bpf_jiffies64)394 BPF_CALL_0(bpf_jiffies64)
395 {
396 	return get_jiffies_64();
397 }
398 
399 const struct bpf_func_proto bpf_jiffies64_proto = {
400 	.func		= bpf_jiffies64,
401 	.gpl_only	= false,
402 	.ret_type	= RET_INTEGER,
403 };
404 
405 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)406 BPF_CALL_0(bpf_get_current_cgroup_id)
407 {
408 	struct cgroup *cgrp;
409 	u64 cgrp_id;
410 
411 	rcu_read_lock();
412 	cgrp = task_dfl_cgroup(current);
413 	cgrp_id = cgroup_id(cgrp);
414 	rcu_read_unlock();
415 
416 	return cgrp_id;
417 }
418 
419 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
420 	.func		= bpf_get_current_cgroup_id,
421 	.gpl_only	= false,
422 	.ret_type	= RET_INTEGER,
423 };
424 
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)425 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
426 {
427 	struct cgroup *cgrp;
428 	struct cgroup *ancestor;
429 	u64 cgrp_id;
430 
431 	rcu_read_lock();
432 	cgrp = task_dfl_cgroup(current);
433 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
434 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
435 	rcu_read_unlock();
436 
437 	return cgrp_id;
438 }
439 
440 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
441 	.func		= bpf_get_current_ancestor_cgroup_id,
442 	.gpl_only	= false,
443 	.ret_type	= RET_INTEGER,
444 	.arg1_type	= ARG_ANYTHING,
445 };
446 #endif /* CONFIG_CGROUPS */
447 
448 #define BPF_STRTOX_BASE_MASK 0x1F
449 
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)450 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
451 			  unsigned long long *res, bool *is_negative)
452 {
453 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
454 	const char *cur_buf = buf;
455 	size_t cur_len = buf_len;
456 	unsigned int consumed;
457 	size_t val_len;
458 	char str[64];
459 
460 	if (!buf || !buf_len || !res || !is_negative)
461 		return -EINVAL;
462 
463 	if (base != 0 && base != 8 && base != 10 && base != 16)
464 		return -EINVAL;
465 
466 	if (flags & ~BPF_STRTOX_BASE_MASK)
467 		return -EINVAL;
468 
469 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
470 		++cur_buf;
471 
472 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
473 	if (*is_negative)
474 		++cur_buf;
475 
476 	consumed = cur_buf - buf;
477 	cur_len -= consumed;
478 	if (!cur_len)
479 		return -EINVAL;
480 
481 	cur_len = min(cur_len, sizeof(str) - 1);
482 	memcpy(str, cur_buf, cur_len);
483 	str[cur_len] = '\0';
484 	cur_buf = str;
485 
486 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
487 	val_len = _parse_integer(cur_buf, base, res);
488 
489 	if (val_len & KSTRTOX_OVERFLOW)
490 		return -ERANGE;
491 
492 	if (val_len == 0)
493 		return -EINVAL;
494 
495 	cur_buf += val_len;
496 	consumed += cur_buf - str;
497 
498 	return consumed;
499 }
500 
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)501 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
502 			 long long *res)
503 {
504 	unsigned long long _res;
505 	bool is_negative;
506 	int err;
507 
508 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
509 	if (err < 0)
510 		return err;
511 	if (is_negative) {
512 		if ((long long)-_res > 0)
513 			return -ERANGE;
514 		*res = -_res;
515 	} else {
516 		if ((long long)_res < 0)
517 			return -ERANGE;
518 		*res = _res;
519 	}
520 	return err;
521 }
522 
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)523 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
524 	   s64 *, res)
525 {
526 	long long _res;
527 	int err;
528 
529 	*res = 0;
530 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
531 	if (err < 0)
532 		return err;
533 	*res = _res;
534 	return err;
535 }
536 
537 const struct bpf_func_proto bpf_strtol_proto = {
538 	.func		= bpf_strtol,
539 	.gpl_only	= false,
540 	.ret_type	= RET_INTEGER,
541 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
542 	.arg2_type	= ARG_CONST_SIZE,
543 	.arg3_type	= ARG_ANYTHING,
544 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
545 	.arg4_size	= sizeof(s64),
546 };
547 
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)548 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
549 	   u64 *, res)
550 {
551 	unsigned long long _res;
552 	bool is_negative;
553 	int err;
554 
555 	*res = 0;
556 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
557 	if (err < 0)
558 		return err;
559 	if (is_negative)
560 		return -EINVAL;
561 	*res = _res;
562 	return err;
563 }
564 
565 const struct bpf_func_proto bpf_strtoul_proto = {
566 	.func		= bpf_strtoul,
567 	.gpl_only	= false,
568 	.ret_type	= RET_INTEGER,
569 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
570 	.arg2_type	= ARG_CONST_SIZE,
571 	.arg3_type	= ARG_ANYTHING,
572 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
573 	.arg4_size	= sizeof(u64),
574 };
575 
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)576 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
577 {
578 	return strncmp(s1, s2, s1_sz);
579 }
580 
581 static const struct bpf_func_proto bpf_strncmp_proto = {
582 	.func		= bpf_strncmp,
583 	.gpl_only	= false,
584 	.ret_type	= RET_INTEGER,
585 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
586 	.arg2_type	= ARG_CONST_SIZE,
587 	.arg3_type	= ARG_PTR_TO_CONST_STR,
588 };
589 
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)590 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
591 	   struct bpf_pidns_info *, nsdata, u32, size)
592 {
593 	struct task_struct *task = current;
594 	struct pid_namespace *pidns;
595 	int err = -EINVAL;
596 
597 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
598 		goto clear;
599 
600 	if (unlikely((u64)(dev_t)dev != dev))
601 		goto clear;
602 
603 	if (unlikely(!task))
604 		goto clear;
605 
606 	pidns = task_active_pid_ns(task);
607 	if (unlikely(!pidns)) {
608 		err = -ENOENT;
609 		goto clear;
610 	}
611 
612 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
613 		goto clear;
614 
615 	nsdata->pid = task_pid_nr_ns(task, pidns);
616 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
617 	return 0;
618 clear:
619 	memset((void *)nsdata, 0, (size_t) size);
620 	return err;
621 }
622 
623 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
624 	.func		= bpf_get_ns_current_pid_tgid,
625 	.gpl_only	= false,
626 	.ret_type	= RET_INTEGER,
627 	.arg1_type	= ARG_ANYTHING,
628 	.arg2_type	= ARG_ANYTHING,
629 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
630 	.arg4_type      = ARG_CONST_SIZE,
631 };
632 
633 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
634 	.func		= bpf_get_raw_cpu_id,
635 	.gpl_only	= false,
636 	.ret_type	= RET_INTEGER,
637 };
638 
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)639 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
640 	   u64, flags, void *, data, u64, size)
641 {
642 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
643 		return -EINVAL;
644 
645 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
646 }
647 
648 const struct bpf_func_proto bpf_event_output_data_proto =  {
649 	.func		= bpf_event_output_data,
650 	.gpl_only       = true,
651 	.ret_type       = RET_INTEGER,
652 	.arg1_type      = ARG_PTR_TO_CTX,
653 	.arg2_type      = ARG_CONST_MAP_PTR,
654 	.arg3_type      = ARG_ANYTHING,
655 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
656 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
657 };
658 
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)659 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
660 	   const void __user *, user_ptr)
661 {
662 	int ret = copy_from_user(dst, user_ptr, size);
663 
664 	if (unlikely(ret)) {
665 		memset(dst, 0, size);
666 		ret = -EFAULT;
667 	}
668 
669 	return ret;
670 }
671 
672 const struct bpf_func_proto bpf_copy_from_user_proto = {
673 	.func		= bpf_copy_from_user,
674 	.gpl_only	= false,
675 	.might_sleep	= true,
676 	.ret_type	= RET_INTEGER,
677 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
678 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
679 	.arg3_type	= ARG_ANYTHING,
680 };
681 
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)682 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
683 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
684 {
685 	int ret;
686 
687 	/* flags is not used yet */
688 	if (unlikely(flags))
689 		return -EINVAL;
690 
691 	if (unlikely(!size))
692 		return 0;
693 
694 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
695 	if (ret == size)
696 		return 0;
697 
698 	memset(dst, 0, size);
699 	/* Return -EFAULT for partial read */
700 	return ret < 0 ? ret : -EFAULT;
701 }
702 
703 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
704 	.func		= bpf_copy_from_user_task,
705 	.gpl_only	= true,
706 	.might_sleep	= true,
707 	.ret_type	= RET_INTEGER,
708 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
709 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
710 	.arg3_type	= ARG_ANYTHING,
711 	.arg4_type	= ARG_PTR_TO_BTF_ID,
712 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
713 	.arg5_type	= ARG_ANYTHING
714 };
715 
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)716 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
717 {
718 	if (cpu >= nr_cpu_ids)
719 		return (unsigned long)NULL;
720 
721 	return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
722 }
723 
724 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
725 	.func		= bpf_per_cpu_ptr,
726 	.gpl_only	= false,
727 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
728 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
729 	.arg2_type	= ARG_ANYTHING,
730 };
731 
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)732 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
733 {
734 	return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
735 }
736 
737 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
738 	.func		= bpf_this_cpu_ptr,
739 	.gpl_only	= false,
740 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
741 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
742 };
743 
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)744 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
745 		size_t bufsz)
746 {
747 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
748 
749 	buf[0] = 0;
750 
751 	switch (fmt_ptype) {
752 	case 's':
753 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
754 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
755 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
756 		fallthrough;
757 #endif
758 	case 'k':
759 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
760 	case 'u':
761 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
762 	}
763 
764 	return -EINVAL;
765 }
766 
767 /* Support executing three nested bprintf helper calls on a given CPU */
768 #define MAX_BPRINTF_NEST_LEVEL	3
769 
770 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
771 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
772 
bpf_try_get_buffers(struct bpf_bprintf_buffers ** bufs)773 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
774 {
775 	int nest_level;
776 
777 	preempt_disable();
778 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
779 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
780 		this_cpu_dec(bpf_bprintf_nest_level);
781 		preempt_enable();
782 		return -EBUSY;
783 	}
784 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
785 
786 	return 0;
787 }
788 
bpf_put_buffers(void)789 void bpf_put_buffers(void)
790 {
791 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
792 		return;
793 	this_cpu_dec(bpf_bprintf_nest_level);
794 	preempt_enable();
795 }
796 
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 	if (!data->bin_args && !data->buf)
800 		return;
801 	bpf_put_buffers();
802 }
803 
804 /*
805  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806  *
807  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808  *
809  * This can be used in two ways:
810  * - Format string verification only: when data->get_bin_args is false
811  * - Arguments preparation: in addition to the above verification, it writes in
812  *   data->bin_args a binary representation of arguments usable by bstr_printf
813  *   where pointers from BPF have been sanitized.
814  *
815  * In argument preparation mode, if 0 is returned, safe temporary buffers are
816  * allocated and bpf_bprintf_cleanup should be called to free them after use.
817  */
bpf_bprintf_prepare(const char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819 			u32 num_args, struct bpf_bprintf_data *data)
820 {
821 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 	struct bpf_bprintf_buffers *buffers = NULL;
824 	size_t sizeof_cur_arg, sizeof_cur_ip;
825 	int err, i, num_spec = 0;
826 	u64 cur_arg;
827 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828 
829 	fmt_end = strnchr(fmt, fmt_size, 0);
830 	if (!fmt_end)
831 		return -EINVAL;
832 	fmt_size = fmt_end - fmt;
833 
834 	if (get_buffers && bpf_try_get_buffers(&buffers))
835 		return -EBUSY;
836 
837 	if (data->get_bin_args) {
838 		if (num_args)
839 			tmp_buf = buffers->bin_args;
840 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 		data->bin_args = (u32 *)tmp_buf;
842 	}
843 
844 	if (data->get_buf)
845 		data->buf = buffers->buf;
846 
847 	for (i = 0; i < fmt_size; i++) {
848 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 			err = -EINVAL;
850 			goto out;
851 		}
852 
853 		if (fmt[i] != '%')
854 			continue;
855 
856 		if (fmt[i + 1] == '%') {
857 			i++;
858 			continue;
859 		}
860 
861 		if (num_spec >= num_args) {
862 			err = -EINVAL;
863 			goto out;
864 		}
865 
866 		/* The string is zero-terminated so if fmt[i] != 0, we can
867 		 * always access fmt[i + 1], in the worst case it will be a 0
868 		 */
869 		i++;
870 
871 		/* skip optional "[0 +-][num]" width formatting field */
872 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
873 		       fmt[i] == ' ')
874 			i++;
875 		if (fmt[i] >= '1' && fmt[i] <= '9') {
876 			i++;
877 			while (fmt[i] >= '0' && fmt[i] <= '9')
878 				i++;
879 		}
880 
881 		if (fmt[i] == 'p') {
882 			sizeof_cur_arg = sizeof(long);
883 
884 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 			    ispunct(fmt[i + 1])) {
886 				if (tmp_buf)
887 					cur_arg = raw_args[num_spec];
888 				goto nocopy_fmt;
889 			}
890 
891 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892 			    fmt[i + 2] == 's') {
893 				fmt_ptype = fmt[i + 1];
894 				i += 2;
895 				goto fmt_str;
896 			}
897 
898 			if (fmt[i + 1] == 'K' ||
899 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900 			    fmt[i + 1] == 'S') {
901 				if (tmp_buf)
902 					cur_arg = raw_args[num_spec];
903 				i++;
904 				goto nocopy_fmt;
905 			}
906 
907 			if (fmt[i + 1] == 'B') {
908 				if (tmp_buf)  {
909 					err = snprintf(tmp_buf,
910 						       (tmp_buf_end - tmp_buf),
911 						       "%pB",
912 						       (void *)(long)raw_args[num_spec]);
913 					tmp_buf += (err + 1);
914 				}
915 
916 				i++;
917 				num_spec++;
918 				continue;
919 			}
920 
921 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924 				err = -EINVAL;
925 				goto out;
926 			}
927 
928 			i += 2;
929 			if (!tmp_buf)
930 				goto nocopy_fmt;
931 
932 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934 				err = -ENOSPC;
935 				goto out;
936 			}
937 
938 			unsafe_ptr = (char *)(long)raw_args[num_spec];
939 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940 						       sizeof_cur_ip);
941 			if (err < 0)
942 				memset(cur_ip, 0, sizeof_cur_ip);
943 
944 			/* hack: bstr_printf expects IP addresses to be
945 			 * pre-formatted as strings, ironically, the easiest way
946 			 * to do that is to call snprintf.
947 			 */
948 			ip_spec[2] = fmt[i - 1];
949 			ip_spec[3] = fmt[i];
950 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951 				       ip_spec, &cur_ip);
952 
953 			tmp_buf += err + 1;
954 			num_spec++;
955 
956 			continue;
957 		} else if (fmt[i] == 's') {
958 			fmt_ptype = fmt[i];
959 fmt_str:
960 			if (fmt[i + 1] != 0 &&
961 			    !isspace(fmt[i + 1]) &&
962 			    !ispunct(fmt[i + 1])) {
963 				err = -EINVAL;
964 				goto out;
965 			}
966 
967 			if (!tmp_buf)
968 				goto nocopy_fmt;
969 
970 			if (tmp_buf_end == tmp_buf) {
971 				err = -ENOSPC;
972 				goto out;
973 			}
974 
975 			unsafe_ptr = (char *)(long)raw_args[num_spec];
976 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977 						    fmt_ptype,
978 						    tmp_buf_end - tmp_buf);
979 			if (err < 0) {
980 				tmp_buf[0] = '\0';
981 				err = 1;
982 			}
983 
984 			tmp_buf += err;
985 			num_spec++;
986 
987 			continue;
988 		} else if (fmt[i] == 'c') {
989 			if (!tmp_buf)
990 				goto nocopy_fmt;
991 
992 			if (tmp_buf_end == tmp_buf) {
993 				err = -ENOSPC;
994 				goto out;
995 			}
996 
997 			*tmp_buf = raw_args[num_spec];
998 			tmp_buf++;
999 			num_spec++;
1000 
1001 			continue;
1002 		}
1003 
1004 		sizeof_cur_arg = sizeof(int);
1005 
1006 		if (fmt[i] == 'l') {
1007 			sizeof_cur_arg = sizeof(long);
1008 			i++;
1009 		}
1010 		if (fmt[i] == 'l') {
1011 			sizeof_cur_arg = sizeof(long long);
1012 			i++;
1013 		}
1014 
1015 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016 		    fmt[i] != 'x' && fmt[i] != 'X') {
1017 			err = -EINVAL;
1018 			goto out;
1019 		}
1020 
1021 		if (tmp_buf)
1022 			cur_arg = raw_args[num_spec];
1023 nocopy_fmt:
1024 		if (tmp_buf) {
1025 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027 				err = -ENOSPC;
1028 				goto out;
1029 			}
1030 
1031 			if (sizeof_cur_arg == 8) {
1032 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034 			} else {
1035 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1036 			}
1037 			tmp_buf += sizeof_cur_arg;
1038 		}
1039 		num_spec++;
1040 	}
1041 
1042 	err = 0;
1043 out:
1044 	if (err)
1045 		bpf_bprintf_cleanup(data);
1046 	return err;
1047 }
1048 
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050 	   const void *, args, u32, data_len)
1051 {
1052 	struct bpf_bprintf_data data = {
1053 		.get_bin_args	= true,
1054 	};
1055 	int err, num_args;
1056 
1057 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058 	    (data_len && !args))
1059 		return -EINVAL;
1060 	num_args = data_len / 8;
1061 
1062 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063 	 * can safely give an unbounded size.
1064 	 */
1065 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066 	if (err < 0)
1067 		return err;
1068 
1069 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1070 
1071 	bpf_bprintf_cleanup(&data);
1072 
1073 	return err + 1;
1074 }
1075 
1076 const struct bpf_func_proto bpf_snprintf_proto = {
1077 	.func		= bpf_snprintf,
1078 	.gpl_only	= true,
1079 	.ret_type	= RET_INTEGER,
1080 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1081 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1082 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1083 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1085 };
1086 
1087 struct bpf_async_cb {
1088 	struct bpf_map *map;
1089 	struct bpf_prog *prog;
1090 	void __rcu *callback_fn;
1091 	void *value;
1092 	union {
1093 		struct rcu_head rcu;
1094 		struct work_struct delete_work;
1095 	};
1096 	u64 flags;
1097 };
1098 
1099 /* BPF map elements can contain 'struct bpf_timer'.
1100  * Such map owns all of its BPF timers.
1101  * 'struct bpf_timer' is allocated as part of map element allocation
1102  * and it's zero initialized.
1103  * That space is used to keep 'struct bpf_async_kern'.
1104  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1105  * remembers 'struct bpf_map *' pointer it's part of.
1106  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1107  * bpf_timer_start() arms the timer.
1108  * If user space reference to a map goes to zero at this point
1109  * ops->map_release_uref callback is responsible for cancelling the timers,
1110  * freeing their memory, and decrementing prog's refcnts.
1111  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1112  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1113  * freeing the timers when inner map is replaced or deleted by user space.
1114  */
1115 struct bpf_hrtimer {
1116 	struct bpf_async_cb cb;
1117 	struct hrtimer timer;
1118 	atomic_t cancelling;
1119 };
1120 
1121 struct bpf_work {
1122 	struct bpf_async_cb cb;
1123 	struct work_struct work;
1124 	struct work_struct delete_work;
1125 };
1126 
1127 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1128 struct bpf_async_kern {
1129 	union {
1130 		struct bpf_async_cb *cb;
1131 		struct bpf_hrtimer *timer;
1132 		struct bpf_work *work;
1133 	};
1134 	/* bpf_spin_lock is used here instead of spinlock_t to make
1135 	 * sure that it always fits into space reserved by struct bpf_timer
1136 	 * regardless of LOCKDEP and spinlock debug flags.
1137 	 */
1138 	struct bpf_spin_lock lock;
1139 } __attribute__((aligned(8)));
1140 
1141 enum bpf_async_type {
1142 	BPF_ASYNC_TYPE_TIMER = 0,
1143 	BPF_ASYNC_TYPE_WQ,
1144 };
1145 
1146 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1147 
bpf_timer_cb(struct hrtimer * hrtimer)1148 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1149 {
1150 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1151 	struct bpf_map *map = t->cb.map;
1152 	void *value = t->cb.value;
1153 	bpf_callback_t callback_fn;
1154 	void *key;
1155 	u32 idx;
1156 
1157 	BTF_TYPE_EMIT(struct bpf_timer);
1158 	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1159 	if (!callback_fn)
1160 		goto out;
1161 
1162 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1163 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1164 	 * Remember the timer this callback is servicing to prevent
1165 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1166 	 * bpf_map_delete_elem() on the same timer.
1167 	 */
1168 	this_cpu_write(hrtimer_running, t);
1169 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1170 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1171 
1172 		/* compute the key */
1173 		idx = ((char *)value - array->value) / array->elem_size;
1174 		key = &idx;
1175 	} else { /* hash or lru */
1176 		key = value - round_up(map->key_size, 8);
1177 	}
1178 
1179 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1180 	/* The verifier checked that return value is zero. */
1181 
1182 	this_cpu_write(hrtimer_running, NULL);
1183 out:
1184 	return HRTIMER_NORESTART;
1185 }
1186 
bpf_wq_work(struct work_struct * work)1187 static void bpf_wq_work(struct work_struct *work)
1188 {
1189 	struct bpf_work *w = container_of(work, struct bpf_work, work);
1190 	struct bpf_async_cb *cb = &w->cb;
1191 	struct bpf_map *map = cb->map;
1192 	bpf_callback_t callback_fn;
1193 	void *value = cb->value;
1194 	void *key;
1195 	u32 idx;
1196 
1197 	BTF_TYPE_EMIT(struct bpf_wq);
1198 
1199 	callback_fn = READ_ONCE(cb->callback_fn);
1200 	if (!callback_fn)
1201 		return;
1202 
1203 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1204 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1205 
1206 		/* compute the key */
1207 		idx = ((char *)value - array->value) / array->elem_size;
1208 		key = &idx;
1209 	} else { /* hash or lru */
1210 		key = value - round_up(map->key_size, 8);
1211 	}
1212 
1213         rcu_read_lock_trace();
1214         migrate_disable();
1215 
1216 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1217 
1218 	migrate_enable();
1219 	rcu_read_unlock_trace();
1220 }
1221 
bpf_wq_delete_work(struct work_struct * work)1222 static void bpf_wq_delete_work(struct work_struct *work)
1223 {
1224 	struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1225 
1226 	cancel_work_sync(&w->work);
1227 
1228 	kfree_rcu(w, cb.rcu);
1229 }
1230 
bpf_timer_delete_work(struct work_struct * work)1231 static void bpf_timer_delete_work(struct work_struct *work)
1232 {
1233 	struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1234 
1235 	/* Cancel the timer and wait for callback to complete if it was running.
1236 	 * If hrtimer_cancel() can be safely called it's safe to call
1237 	 * kfree_rcu(t) right after for both preallocated and non-preallocated
1238 	 * maps.  The async->cb = NULL was already done and no code path can see
1239 	 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1240 	 * bpf_timer_cancel_and_free will have been cancelled.
1241 	 */
1242 	hrtimer_cancel(&t->timer);
1243 	kfree_rcu(t, cb.rcu);
1244 }
1245 
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1246 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1247 			    enum bpf_async_type type)
1248 {
1249 	struct bpf_async_cb *cb;
1250 	struct bpf_hrtimer *t;
1251 	struct bpf_work *w;
1252 	clockid_t clockid;
1253 	size_t size;
1254 	int ret = 0;
1255 
1256 	if (in_nmi())
1257 		return -EOPNOTSUPP;
1258 
1259 	switch (type) {
1260 	case BPF_ASYNC_TYPE_TIMER:
1261 		size = sizeof(struct bpf_hrtimer);
1262 		break;
1263 	case BPF_ASYNC_TYPE_WQ:
1264 		size = sizeof(struct bpf_work);
1265 		break;
1266 	default:
1267 		return -EINVAL;
1268 	}
1269 
1270 	__bpf_spin_lock_irqsave(&async->lock);
1271 	t = async->timer;
1272 	if (t) {
1273 		ret = -EBUSY;
1274 		goto out;
1275 	}
1276 
1277 	/* Allocate via bpf_map_kmalloc_node() for memcg accounting. Until
1278 	 * kmalloc_nolock() is available, avoid locking issues by using
1279 	 * __GFP_HIGH (GFP_ATOMIC & ~__GFP_RECLAIM).
1280 	 */
1281 	cb = bpf_map_kmalloc_node(map, size, __GFP_HIGH, map->numa_node);
1282 	if (!cb) {
1283 		ret = -ENOMEM;
1284 		goto out;
1285 	}
1286 
1287 	switch (type) {
1288 	case BPF_ASYNC_TYPE_TIMER:
1289 		clockid = flags & (MAX_CLOCKS - 1);
1290 		t = (struct bpf_hrtimer *)cb;
1291 
1292 		atomic_set(&t->cancelling, 0);
1293 		INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1294 		hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1295 		cb->value = (void *)async - map->record->timer_off;
1296 		break;
1297 	case BPF_ASYNC_TYPE_WQ:
1298 		w = (struct bpf_work *)cb;
1299 
1300 		INIT_WORK(&w->work, bpf_wq_work);
1301 		INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1302 		cb->value = (void *)async - map->record->wq_off;
1303 		break;
1304 	}
1305 	cb->map = map;
1306 	cb->prog = NULL;
1307 	cb->flags = flags;
1308 	rcu_assign_pointer(cb->callback_fn, NULL);
1309 
1310 	WRITE_ONCE(async->cb, cb);
1311 	/* Guarantee the order between async->cb and map->usercnt. So
1312 	 * when there are concurrent uref release and bpf timer init, either
1313 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1314 	 * timer or atomic64_read() below returns a zero usercnt.
1315 	 */
1316 	smp_mb();
1317 	if (!atomic64_read(&map->usercnt)) {
1318 		/* maps with timers must be either held by user space
1319 		 * or pinned in bpffs.
1320 		 */
1321 		WRITE_ONCE(async->cb, NULL);
1322 		kfree(cb);
1323 		ret = -EPERM;
1324 	}
1325 out:
1326 	__bpf_spin_unlock_irqrestore(&async->lock);
1327 	return ret;
1328 }
1329 
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1330 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1331 	   u64, flags)
1332 {
1333 	clock_t clockid = flags & (MAX_CLOCKS - 1);
1334 
1335 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1336 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1337 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1338 
1339 	if (flags >= MAX_CLOCKS ||
1340 	    /* similar to timerfd except _ALARM variants are not supported */
1341 	    (clockid != CLOCK_MONOTONIC &&
1342 	     clockid != CLOCK_REALTIME &&
1343 	     clockid != CLOCK_BOOTTIME))
1344 		return -EINVAL;
1345 
1346 	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1347 }
1348 
1349 static const struct bpf_func_proto bpf_timer_init_proto = {
1350 	.func		= bpf_timer_init,
1351 	.gpl_only	= true,
1352 	.ret_type	= RET_INTEGER,
1353 	.arg1_type	= ARG_PTR_TO_TIMER,
1354 	.arg2_type	= ARG_CONST_MAP_PTR,
1355 	.arg3_type	= ARG_ANYTHING,
1356 };
1357 
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1358 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1359 				    struct bpf_prog_aux *aux, unsigned int flags,
1360 				    enum bpf_async_type type)
1361 {
1362 	struct bpf_prog *prev, *prog = aux->prog;
1363 	struct bpf_async_cb *cb;
1364 	int ret = 0;
1365 
1366 	if (in_nmi())
1367 		return -EOPNOTSUPP;
1368 	__bpf_spin_lock_irqsave(&async->lock);
1369 	cb = async->cb;
1370 	if (!cb) {
1371 		ret = -EINVAL;
1372 		goto out;
1373 	}
1374 	if (!atomic64_read(&cb->map->usercnt)) {
1375 		/* maps with timers must be either held by user space
1376 		 * or pinned in bpffs. Otherwise timer might still be
1377 		 * running even when bpf prog is detached and user space
1378 		 * is gone, since map_release_uref won't ever be called.
1379 		 */
1380 		ret = -EPERM;
1381 		goto out;
1382 	}
1383 	prev = cb->prog;
1384 	if (prev != prog) {
1385 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1386 		 * can pick different callback_fn-s within the same prog.
1387 		 */
1388 		prog = bpf_prog_inc_not_zero(prog);
1389 		if (IS_ERR(prog)) {
1390 			ret = PTR_ERR(prog);
1391 			goto out;
1392 		}
1393 		if (prev)
1394 			/* Drop prev prog refcnt when swapping with new prog */
1395 			bpf_prog_put(prev);
1396 		cb->prog = prog;
1397 	}
1398 	rcu_assign_pointer(cb->callback_fn, callback_fn);
1399 out:
1400 	__bpf_spin_unlock_irqrestore(&async->lock);
1401 	return ret;
1402 }
1403 
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1404 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1405 	   struct bpf_prog_aux *, aux)
1406 {
1407 	return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1408 }
1409 
1410 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1411 	.func		= bpf_timer_set_callback,
1412 	.gpl_only	= true,
1413 	.ret_type	= RET_INTEGER,
1414 	.arg1_type	= ARG_PTR_TO_TIMER,
1415 	.arg2_type	= ARG_PTR_TO_FUNC,
1416 };
1417 
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1418 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1419 {
1420 	struct bpf_hrtimer *t;
1421 	int ret = 0;
1422 	enum hrtimer_mode mode;
1423 
1424 	if (in_nmi())
1425 		return -EOPNOTSUPP;
1426 	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1427 		return -EINVAL;
1428 	__bpf_spin_lock_irqsave(&timer->lock);
1429 	t = timer->timer;
1430 	if (!t || !t->cb.prog) {
1431 		ret = -EINVAL;
1432 		goto out;
1433 	}
1434 
1435 	if (flags & BPF_F_TIMER_ABS)
1436 		mode = HRTIMER_MODE_ABS_SOFT;
1437 	else
1438 		mode = HRTIMER_MODE_REL_SOFT;
1439 
1440 	if (flags & BPF_F_TIMER_CPU_PIN)
1441 		mode |= HRTIMER_MODE_PINNED;
1442 
1443 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1444 out:
1445 	__bpf_spin_unlock_irqrestore(&timer->lock);
1446 	return ret;
1447 }
1448 
1449 static const struct bpf_func_proto bpf_timer_start_proto = {
1450 	.func		= bpf_timer_start,
1451 	.gpl_only	= true,
1452 	.ret_type	= RET_INTEGER,
1453 	.arg1_type	= ARG_PTR_TO_TIMER,
1454 	.arg2_type	= ARG_ANYTHING,
1455 	.arg3_type	= ARG_ANYTHING,
1456 };
1457 
drop_prog_refcnt(struct bpf_async_cb * async)1458 static void drop_prog_refcnt(struct bpf_async_cb *async)
1459 {
1460 	struct bpf_prog *prog = async->prog;
1461 
1462 	if (prog) {
1463 		bpf_prog_put(prog);
1464 		async->prog = NULL;
1465 		rcu_assign_pointer(async->callback_fn, NULL);
1466 	}
1467 }
1468 
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1469 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1470 {
1471 	struct bpf_hrtimer *t, *cur_t;
1472 	bool inc = false;
1473 	int ret = 0;
1474 
1475 	if (in_nmi())
1476 		return -EOPNOTSUPP;
1477 	rcu_read_lock();
1478 	__bpf_spin_lock_irqsave(&timer->lock);
1479 	t = timer->timer;
1480 	if (!t) {
1481 		ret = -EINVAL;
1482 		goto out;
1483 	}
1484 
1485 	cur_t = this_cpu_read(hrtimer_running);
1486 	if (cur_t == t) {
1487 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1488 		 * its own timer the hrtimer_cancel() will deadlock
1489 		 * since it waits for callback_fn to finish.
1490 		 */
1491 		ret = -EDEADLK;
1492 		goto out;
1493 	}
1494 
1495 	/* Only account in-flight cancellations when invoked from a timer
1496 	 * callback, since we want to avoid waiting only if other _callbacks_
1497 	 * are waiting on us, to avoid introducing lockups. Non-callback paths
1498 	 * are ok, since nobody would synchronously wait for their completion.
1499 	 */
1500 	if (!cur_t)
1501 		goto drop;
1502 	atomic_inc(&t->cancelling);
1503 	/* Need full barrier after relaxed atomic_inc */
1504 	smp_mb__after_atomic();
1505 	inc = true;
1506 	if (atomic_read(&cur_t->cancelling)) {
1507 		/* We're cancelling timer t, while some other timer callback is
1508 		 * attempting to cancel us. In such a case, it might be possible
1509 		 * that timer t belongs to the other callback, or some other
1510 		 * callback waiting upon it (creating transitive dependencies
1511 		 * upon us), and we will enter a deadlock if we continue
1512 		 * cancelling and waiting for it synchronously, since it might
1513 		 * do the same. Bail!
1514 		 */
1515 		ret = -EDEADLK;
1516 		goto out;
1517 	}
1518 drop:
1519 	drop_prog_refcnt(&t->cb);
1520 out:
1521 	__bpf_spin_unlock_irqrestore(&timer->lock);
1522 	/* Cancel the timer and wait for associated callback to finish
1523 	 * if it was running.
1524 	 */
1525 	ret = ret ?: hrtimer_cancel(&t->timer);
1526 	if (inc)
1527 		atomic_dec(&t->cancelling);
1528 	rcu_read_unlock();
1529 	return ret;
1530 }
1531 
1532 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1533 	.func		= bpf_timer_cancel,
1534 	.gpl_only	= true,
1535 	.ret_type	= RET_INTEGER,
1536 	.arg1_type	= ARG_PTR_TO_TIMER,
1537 };
1538 
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1539 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1540 {
1541 	struct bpf_async_cb *cb;
1542 
1543 	/* Performance optimization: read async->cb without lock first. */
1544 	if (!READ_ONCE(async->cb))
1545 		return NULL;
1546 
1547 	__bpf_spin_lock_irqsave(&async->lock);
1548 	/* re-read it under lock */
1549 	cb = async->cb;
1550 	if (!cb)
1551 		goto out;
1552 	drop_prog_refcnt(cb);
1553 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1554 	 * this timer, since it won't be initialized.
1555 	 */
1556 	WRITE_ONCE(async->cb, NULL);
1557 out:
1558 	__bpf_spin_unlock_irqrestore(&async->lock);
1559 	return cb;
1560 }
1561 
1562 /* This function is called by map_delete/update_elem for individual element and
1563  * by ops->map_release_uref when the user space reference to a map reaches zero.
1564  */
bpf_timer_cancel_and_free(void * val)1565 void bpf_timer_cancel_and_free(void *val)
1566 {
1567 	struct bpf_hrtimer *t;
1568 
1569 	t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1570 
1571 	if (!t)
1572 		return;
1573 	/* We check that bpf_map_delete/update_elem() was called from timer
1574 	 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1575 	 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1576 	 * just return -1). Though callback_fn is still running on this cpu it's
1577 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1578 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1579 	 * since async->cb = NULL was already done. The timer will be
1580 	 * effectively cancelled because bpf_timer_cb() will return
1581 	 * HRTIMER_NORESTART.
1582 	 *
1583 	 * However, it is possible the timer callback_fn calling us armed the
1584 	 * timer _before_ calling us, such that failing to cancel it here will
1585 	 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1586 	 * Therefore, we _need_ to cancel any outstanding timers before we do
1587 	 * kfree_rcu, even though no more timers can be armed.
1588 	 *
1589 	 * Moreover, we need to schedule work even if timer does not belong to
1590 	 * the calling callback_fn, as on two different CPUs, we can end up in a
1591 	 * situation where both sides run in parallel, try to cancel one
1592 	 * another, and we end up waiting on both sides in hrtimer_cancel
1593 	 * without making forward progress, since timer1 depends on time2
1594 	 * callback to finish, and vice versa.
1595 	 *
1596 	 *  CPU 1 (timer1_cb)			CPU 2 (timer2_cb)
1597 	 *  bpf_timer_cancel_and_free(timer2)	bpf_timer_cancel_and_free(timer1)
1598 	 *
1599 	 * To avoid these issues, punt to workqueue context when we are in a
1600 	 * timer callback.
1601 	 */
1602 	if (this_cpu_read(hrtimer_running)) {
1603 		queue_work(system_unbound_wq, &t->cb.delete_work);
1604 		return;
1605 	}
1606 
1607 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1608 		/* If the timer is running on other CPU, also use a kworker to
1609 		 * wait for the completion of the timer instead of trying to
1610 		 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1611 		 * completion.
1612 		 */
1613 		if (hrtimer_try_to_cancel(&t->timer) >= 0)
1614 			kfree_rcu(t, cb.rcu);
1615 		else
1616 			queue_work(system_unbound_wq, &t->cb.delete_work);
1617 	} else {
1618 		bpf_timer_delete_work(&t->cb.delete_work);
1619 	}
1620 }
1621 
1622 /* This function is called by map_delete/update_elem for individual element and
1623  * by ops->map_release_uref when the user space reference to a map reaches zero.
1624  */
bpf_wq_cancel_and_free(void * val)1625 void bpf_wq_cancel_and_free(void *val)
1626 {
1627 	struct bpf_work *work;
1628 
1629 	BTF_TYPE_EMIT(struct bpf_wq);
1630 
1631 	work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1632 	if (!work)
1633 		return;
1634 	/* Trigger cancel of the sleepable work, but *do not* wait for
1635 	 * it to finish if it was running as we might not be in a
1636 	 * sleepable context.
1637 	 * kfree will be called once the work has finished.
1638 	 */
1639 	schedule_work(&work->delete_work);
1640 }
1641 
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1642 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1643 {
1644 	unsigned long *kptr = dst;
1645 
1646 	/* This helper may be inlined by verifier. */
1647 	return xchg(kptr, (unsigned long)ptr);
1648 }
1649 
1650 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1651  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1652  * denote type that verifier will determine.
1653  */
1654 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1655 	.func         = bpf_kptr_xchg,
1656 	.gpl_only     = false,
1657 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1658 	.ret_btf_id   = BPF_PTR_POISON,
1659 	.arg1_type    = ARG_KPTR_XCHG_DEST,
1660 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1661 	.arg2_btf_id  = BPF_PTR_POISON,
1662 };
1663 
1664 /* Since the upper 8 bits of dynptr->size is reserved, the
1665  * maximum supported size is 2^24 - 1.
1666  */
1667 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1668 #define DYNPTR_TYPE_SHIFT	28
1669 #define DYNPTR_SIZE_MASK	0xFFFFFF
1670 #define DYNPTR_RDONLY_BIT	BIT(31)
1671 
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1672 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1673 {
1674 	return ptr->size & DYNPTR_RDONLY_BIT;
1675 }
1676 
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1677 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1678 {
1679 	ptr->size |= DYNPTR_RDONLY_BIT;
1680 }
1681 
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1682 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1683 {
1684 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1685 }
1686 
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1687 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1688 {
1689 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1690 }
1691 
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1692 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1693 {
1694 	return ptr->size & DYNPTR_SIZE_MASK;
1695 }
1696 
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1697 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1698 {
1699 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1700 
1701 	ptr->size = new_size | metadata;
1702 }
1703 
bpf_dynptr_check_size(u32 size)1704 int bpf_dynptr_check_size(u32 size)
1705 {
1706 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1707 }
1708 
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1709 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1710 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1711 {
1712 	ptr->data = data;
1713 	ptr->offset = offset;
1714 	ptr->size = size;
1715 	bpf_dynptr_set_type(ptr, type);
1716 }
1717 
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1718 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1719 {
1720 	memset(ptr, 0, sizeof(*ptr));
1721 }
1722 
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1723 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1724 {
1725 	int err;
1726 
1727 	BTF_TYPE_EMIT(struct bpf_dynptr);
1728 
1729 	err = bpf_dynptr_check_size(size);
1730 	if (err)
1731 		goto error;
1732 
1733 	/* flags is currently unsupported */
1734 	if (flags) {
1735 		err = -EINVAL;
1736 		goto error;
1737 	}
1738 
1739 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1740 
1741 	return 0;
1742 
1743 error:
1744 	bpf_dynptr_set_null(ptr);
1745 	return err;
1746 }
1747 
1748 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1749 	.func		= bpf_dynptr_from_mem,
1750 	.gpl_only	= false,
1751 	.ret_type	= RET_INTEGER,
1752 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1753 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1754 	.arg3_type	= ARG_ANYTHING,
1755 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1756 };
1757 
__bpf_dynptr_read(void * dst,u32 len,const struct bpf_dynptr_kern * src,u32 offset,u64 flags)1758 static int __bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr_kern *src,
1759 			     u32 offset, u64 flags)
1760 {
1761 	enum bpf_dynptr_type type;
1762 	int err;
1763 
1764 	if (!src->data || flags)
1765 		return -EINVAL;
1766 
1767 	err = bpf_dynptr_check_off_len(src, offset, len);
1768 	if (err)
1769 		return err;
1770 
1771 	type = bpf_dynptr_get_type(src);
1772 
1773 	switch (type) {
1774 	case BPF_DYNPTR_TYPE_LOCAL:
1775 	case BPF_DYNPTR_TYPE_RINGBUF:
1776 		/* Source and destination may possibly overlap, hence use memmove to
1777 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1778 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1779 		 */
1780 		memmove(dst, src->data + src->offset + offset, len);
1781 		return 0;
1782 	case BPF_DYNPTR_TYPE_SKB:
1783 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1784 	case BPF_DYNPTR_TYPE_XDP:
1785 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1786 	default:
1787 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1788 		return -EFAULT;
1789 	}
1790 }
1791 
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1792 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1793 	   u32, offset, u64, flags)
1794 {
1795 	return __bpf_dynptr_read(dst, len, src, offset, flags);
1796 }
1797 
1798 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1799 	.func		= bpf_dynptr_read,
1800 	.gpl_only	= false,
1801 	.ret_type	= RET_INTEGER,
1802 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1803 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1804 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1805 	.arg4_type	= ARG_ANYTHING,
1806 	.arg5_type	= ARG_ANYTHING,
1807 };
1808 
__bpf_dynptr_write(const struct bpf_dynptr_kern * dst,u32 offset,void * src,u32 len,u64 flags)1809 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, void *src,
1810 		       u32 len, u64 flags)
1811 {
1812 	enum bpf_dynptr_type type;
1813 	int err;
1814 
1815 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1816 		return -EINVAL;
1817 
1818 	err = bpf_dynptr_check_off_len(dst, offset, len);
1819 	if (err)
1820 		return err;
1821 
1822 	type = bpf_dynptr_get_type(dst);
1823 
1824 	switch (type) {
1825 	case BPF_DYNPTR_TYPE_LOCAL:
1826 	case BPF_DYNPTR_TYPE_RINGBUF:
1827 		if (flags)
1828 			return -EINVAL;
1829 		/* Source and destination may possibly overlap, hence use memmove to
1830 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1831 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1832 		 */
1833 		memmove(dst->data + dst->offset + offset, src, len);
1834 		return 0;
1835 	case BPF_DYNPTR_TYPE_SKB:
1836 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1837 					     flags);
1838 	case BPF_DYNPTR_TYPE_XDP:
1839 		if (flags)
1840 			return -EINVAL;
1841 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1842 	default:
1843 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1844 		return -EFAULT;
1845 	}
1846 }
1847 
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1848 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1849 	   u32, len, u64, flags)
1850 {
1851 	return __bpf_dynptr_write(dst, offset, src, len, flags);
1852 }
1853 
1854 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1855 	.func		= bpf_dynptr_write,
1856 	.gpl_only	= false,
1857 	.ret_type	= RET_INTEGER,
1858 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1859 	.arg2_type	= ARG_ANYTHING,
1860 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1861 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1862 	.arg5_type	= ARG_ANYTHING,
1863 };
1864 
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1865 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1866 {
1867 	enum bpf_dynptr_type type;
1868 	int err;
1869 
1870 	if (!ptr->data)
1871 		return 0;
1872 
1873 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1874 	if (err)
1875 		return 0;
1876 
1877 	if (__bpf_dynptr_is_rdonly(ptr))
1878 		return 0;
1879 
1880 	type = bpf_dynptr_get_type(ptr);
1881 
1882 	switch (type) {
1883 	case BPF_DYNPTR_TYPE_LOCAL:
1884 	case BPF_DYNPTR_TYPE_RINGBUF:
1885 		return (unsigned long)(ptr->data + ptr->offset + offset);
1886 	case BPF_DYNPTR_TYPE_SKB:
1887 	case BPF_DYNPTR_TYPE_XDP:
1888 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1889 		return 0;
1890 	default:
1891 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1892 		return 0;
1893 	}
1894 }
1895 
1896 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1897 	.func		= bpf_dynptr_data,
1898 	.gpl_only	= false,
1899 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1900 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1901 	.arg2_type	= ARG_ANYTHING,
1902 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1903 };
1904 
1905 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1906 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1907 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1908 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1909 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1910 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1911 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1912 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1913 const struct bpf_func_proto bpf_send_signal_proto __weak;
1914 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1915 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1916 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1917 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1918 
1919 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1920 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1921 {
1922 	switch (func_id) {
1923 	case BPF_FUNC_map_lookup_elem:
1924 		return &bpf_map_lookup_elem_proto;
1925 	case BPF_FUNC_map_update_elem:
1926 		return &bpf_map_update_elem_proto;
1927 	case BPF_FUNC_map_delete_elem:
1928 		return &bpf_map_delete_elem_proto;
1929 	case BPF_FUNC_map_push_elem:
1930 		return &bpf_map_push_elem_proto;
1931 	case BPF_FUNC_map_pop_elem:
1932 		return &bpf_map_pop_elem_proto;
1933 	case BPF_FUNC_map_peek_elem:
1934 		return &bpf_map_peek_elem_proto;
1935 	case BPF_FUNC_map_lookup_percpu_elem:
1936 		return &bpf_map_lookup_percpu_elem_proto;
1937 	case BPF_FUNC_get_prandom_u32:
1938 		return &bpf_get_prandom_u32_proto;
1939 	case BPF_FUNC_get_smp_processor_id:
1940 		return &bpf_get_raw_smp_processor_id_proto;
1941 	case BPF_FUNC_get_numa_node_id:
1942 		return &bpf_get_numa_node_id_proto;
1943 	case BPF_FUNC_tail_call:
1944 		return &bpf_tail_call_proto;
1945 	case BPF_FUNC_ktime_get_ns:
1946 		return &bpf_ktime_get_ns_proto;
1947 	case BPF_FUNC_ktime_get_boot_ns:
1948 		return &bpf_ktime_get_boot_ns_proto;
1949 	case BPF_FUNC_ktime_get_tai_ns:
1950 		return &bpf_ktime_get_tai_ns_proto;
1951 	case BPF_FUNC_ringbuf_output:
1952 		return &bpf_ringbuf_output_proto;
1953 	case BPF_FUNC_ringbuf_reserve:
1954 		return &bpf_ringbuf_reserve_proto;
1955 	case BPF_FUNC_ringbuf_submit:
1956 		return &bpf_ringbuf_submit_proto;
1957 	case BPF_FUNC_ringbuf_discard:
1958 		return &bpf_ringbuf_discard_proto;
1959 	case BPF_FUNC_ringbuf_query:
1960 		return &bpf_ringbuf_query_proto;
1961 	case BPF_FUNC_strncmp:
1962 		return &bpf_strncmp_proto;
1963 	case BPF_FUNC_strtol:
1964 		return &bpf_strtol_proto;
1965 	case BPF_FUNC_strtoul:
1966 		return &bpf_strtoul_proto;
1967 	case BPF_FUNC_get_current_pid_tgid:
1968 		return &bpf_get_current_pid_tgid_proto;
1969 	case BPF_FUNC_get_ns_current_pid_tgid:
1970 		return &bpf_get_ns_current_pid_tgid_proto;
1971 	case BPF_FUNC_get_current_uid_gid:
1972 		return &bpf_get_current_uid_gid_proto;
1973 	default:
1974 		break;
1975 	}
1976 
1977 	if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1978 		return NULL;
1979 
1980 	switch (func_id) {
1981 	case BPF_FUNC_spin_lock:
1982 		return &bpf_spin_lock_proto;
1983 	case BPF_FUNC_spin_unlock:
1984 		return &bpf_spin_unlock_proto;
1985 	case BPF_FUNC_jiffies64:
1986 		return &bpf_jiffies64_proto;
1987 	case BPF_FUNC_per_cpu_ptr:
1988 		return &bpf_per_cpu_ptr_proto;
1989 	case BPF_FUNC_this_cpu_ptr:
1990 		return &bpf_this_cpu_ptr_proto;
1991 	case BPF_FUNC_timer_init:
1992 		return &bpf_timer_init_proto;
1993 	case BPF_FUNC_timer_set_callback:
1994 		return &bpf_timer_set_callback_proto;
1995 	case BPF_FUNC_timer_start:
1996 		return &bpf_timer_start_proto;
1997 	case BPF_FUNC_timer_cancel:
1998 		return &bpf_timer_cancel_proto;
1999 	case BPF_FUNC_kptr_xchg:
2000 		return &bpf_kptr_xchg_proto;
2001 	case BPF_FUNC_for_each_map_elem:
2002 		return &bpf_for_each_map_elem_proto;
2003 	case BPF_FUNC_loop:
2004 		return &bpf_loop_proto;
2005 	case BPF_FUNC_user_ringbuf_drain:
2006 		return &bpf_user_ringbuf_drain_proto;
2007 	case BPF_FUNC_ringbuf_reserve_dynptr:
2008 		return &bpf_ringbuf_reserve_dynptr_proto;
2009 	case BPF_FUNC_ringbuf_submit_dynptr:
2010 		return &bpf_ringbuf_submit_dynptr_proto;
2011 	case BPF_FUNC_ringbuf_discard_dynptr:
2012 		return &bpf_ringbuf_discard_dynptr_proto;
2013 	case BPF_FUNC_dynptr_from_mem:
2014 		return &bpf_dynptr_from_mem_proto;
2015 	case BPF_FUNC_dynptr_read:
2016 		return &bpf_dynptr_read_proto;
2017 	case BPF_FUNC_dynptr_write:
2018 		return &bpf_dynptr_write_proto;
2019 	case BPF_FUNC_dynptr_data:
2020 		return &bpf_dynptr_data_proto;
2021 #ifdef CONFIG_CGROUPS
2022 	case BPF_FUNC_cgrp_storage_get:
2023 		return &bpf_cgrp_storage_get_proto;
2024 	case BPF_FUNC_cgrp_storage_delete:
2025 		return &bpf_cgrp_storage_delete_proto;
2026 	case BPF_FUNC_get_current_cgroup_id:
2027 		return &bpf_get_current_cgroup_id_proto;
2028 	case BPF_FUNC_get_current_ancestor_cgroup_id:
2029 		return &bpf_get_current_ancestor_cgroup_id_proto;
2030 	case BPF_FUNC_current_task_under_cgroup:
2031 		return &bpf_current_task_under_cgroup_proto;
2032 #endif
2033 #ifdef CONFIG_CGROUP_NET_CLASSID
2034 	case BPF_FUNC_get_cgroup_classid:
2035 		return &bpf_get_cgroup_classid_curr_proto;
2036 #endif
2037 	case BPF_FUNC_task_storage_get:
2038 		if (bpf_prog_check_recur(prog))
2039 			return &bpf_task_storage_get_recur_proto;
2040 		return &bpf_task_storage_get_proto;
2041 	case BPF_FUNC_task_storage_delete:
2042 		if (bpf_prog_check_recur(prog))
2043 			return &bpf_task_storage_delete_recur_proto;
2044 		return &bpf_task_storage_delete_proto;
2045 	default:
2046 		break;
2047 	}
2048 
2049 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2050 		return NULL;
2051 
2052 	switch (func_id) {
2053 	case BPF_FUNC_trace_printk:
2054 		return bpf_get_trace_printk_proto();
2055 	case BPF_FUNC_get_current_task:
2056 		return &bpf_get_current_task_proto;
2057 	case BPF_FUNC_get_current_task_btf:
2058 		return &bpf_get_current_task_btf_proto;
2059 	case BPF_FUNC_get_current_comm:
2060 		return &bpf_get_current_comm_proto;
2061 	case BPF_FUNC_probe_read_user:
2062 		return &bpf_probe_read_user_proto;
2063 	case BPF_FUNC_probe_read_kernel:
2064 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2065 		       NULL : &bpf_probe_read_kernel_proto;
2066 	case BPF_FUNC_probe_read_user_str:
2067 		return &bpf_probe_read_user_str_proto;
2068 	case BPF_FUNC_probe_read_kernel_str:
2069 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2070 		       NULL : &bpf_probe_read_kernel_str_proto;
2071 	case BPF_FUNC_copy_from_user:
2072 		return &bpf_copy_from_user_proto;
2073 	case BPF_FUNC_copy_from_user_task:
2074 		return &bpf_copy_from_user_task_proto;
2075 	case BPF_FUNC_snprintf_btf:
2076 		return &bpf_snprintf_btf_proto;
2077 	case BPF_FUNC_snprintf:
2078 		return &bpf_snprintf_proto;
2079 	case BPF_FUNC_task_pt_regs:
2080 		return &bpf_task_pt_regs_proto;
2081 	case BPF_FUNC_trace_vprintk:
2082 		return bpf_get_trace_vprintk_proto();
2083 	case BPF_FUNC_perf_event_read_value:
2084 		return bpf_get_perf_event_read_value_proto();
2085 	case BPF_FUNC_perf_event_read:
2086 		return &bpf_perf_event_read_proto;
2087 	case BPF_FUNC_send_signal:
2088 		return &bpf_send_signal_proto;
2089 	case BPF_FUNC_send_signal_thread:
2090 		return &bpf_send_signal_thread_proto;
2091 	case BPF_FUNC_get_task_stack:
2092 		return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2093 				       : &bpf_get_task_stack_proto;
2094 	case BPF_FUNC_get_branch_snapshot:
2095 		return &bpf_get_branch_snapshot_proto;
2096 	case BPF_FUNC_find_vma:
2097 		return &bpf_find_vma_proto;
2098 	default:
2099 		return NULL;
2100 	}
2101 }
2102 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2103 
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2104 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2105 			struct bpf_spin_lock *spin_lock)
2106 {
2107 	struct list_head *head = list_head, *orig_head = list_head;
2108 
2109 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2110 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2111 
2112 	/* Do the actual list draining outside the lock to not hold the lock for
2113 	 * too long, and also prevent deadlocks if tracing programs end up
2114 	 * executing on entry/exit of functions called inside the critical
2115 	 * section, and end up doing map ops that call bpf_list_head_free for
2116 	 * the same map value again.
2117 	 */
2118 	__bpf_spin_lock_irqsave(spin_lock);
2119 	if (!head->next || list_empty(head))
2120 		goto unlock;
2121 	head = head->next;
2122 unlock:
2123 	INIT_LIST_HEAD(orig_head);
2124 	__bpf_spin_unlock_irqrestore(spin_lock);
2125 
2126 	while (head != orig_head) {
2127 		void *obj = head;
2128 
2129 		obj -= field->graph_root.node_offset;
2130 		head = head->next;
2131 		/* The contained type can also have resources, including a
2132 		 * bpf_list_head which needs to be freed.
2133 		 */
2134 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2135 	}
2136 }
2137 
2138 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2139  * 'rb_node *', so field name of rb_node within containing struct is not
2140  * needed.
2141  *
2142  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2143  * graph_root.node_offset, it's not necessary to know field name
2144  * or type of node struct
2145  */
2146 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2147 	for (pos = rb_first_postorder(root); \
2148 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
2149 	    pos = n)
2150 
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2151 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2152 		      struct bpf_spin_lock *spin_lock)
2153 {
2154 	struct rb_root_cached orig_root, *root = rb_root;
2155 	struct rb_node *pos, *n;
2156 	void *obj;
2157 
2158 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2159 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2160 
2161 	__bpf_spin_lock_irqsave(spin_lock);
2162 	orig_root = *root;
2163 	*root = RB_ROOT_CACHED;
2164 	__bpf_spin_unlock_irqrestore(spin_lock);
2165 
2166 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2167 		obj = pos;
2168 		obj -= field->graph_root.node_offset;
2169 
2170 
2171 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2172 	}
2173 }
2174 
2175 __bpf_kfunc_start_defs();
2176 
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2177 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2178 {
2179 	struct btf_struct_meta *meta = meta__ign;
2180 	u64 size = local_type_id__k;
2181 	void *p;
2182 
2183 	p = bpf_mem_alloc(&bpf_global_ma, size);
2184 	if (!p)
2185 		return NULL;
2186 	if (meta)
2187 		bpf_obj_init(meta->record, p);
2188 	return p;
2189 }
2190 
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2191 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2192 {
2193 	u64 size = local_type_id__k;
2194 
2195 	/* The verifier has ensured that meta__ign must be NULL */
2196 	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2197 }
2198 
2199 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2200 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2201 {
2202 	struct bpf_mem_alloc *ma;
2203 
2204 	if (rec && rec->refcount_off >= 0 &&
2205 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2206 		/* Object is refcounted and refcount_dec didn't result in 0
2207 		 * refcount. Return without freeing the object
2208 		 */
2209 		return;
2210 	}
2211 
2212 	if (rec)
2213 		bpf_obj_free_fields(rec, p);
2214 
2215 	if (percpu)
2216 		ma = &bpf_global_percpu_ma;
2217 	else
2218 		ma = &bpf_global_ma;
2219 	bpf_mem_free_rcu(ma, p);
2220 }
2221 
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2222 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2223 {
2224 	struct btf_struct_meta *meta = meta__ign;
2225 	void *p = p__alloc;
2226 
2227 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2228 }
2229 
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2230 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2231 {
2232 	/* The verifier has ensured that meta__ign must be NULL */
2233 	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2234 }
2235 
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2236 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2237 {
2238 	struct btf_struct_meta *meta = meta__ign;
2239 	struct bpf_refcount *ref;
2240 
2241 	/* Could just cast directly to refcount_t *, but need some code using
2242 	 * bpf_refcount type so that it is emitted in vmlinux BTF
2243 	 */
2244 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2245 	if (!refcount_inc_not_zero((refcount_t *)ref))
2246 		return NULL;
2247 
2248 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2249 	 * in verifier.c
2250 	 */
2251 	return (void *)p__refcounted_kptr;
2252 }
2253 
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2254 static int __bpf_list_add(struct bpf_list_node_kern *node,
2255 			  struct bpf_list_head *head,
2256 			  bool tail, struct btf_record *rec, u64 off)
2257 {
2258 	struct list_head *n = &node->list_head, *h = (void *)head;
2259 
2260 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2261 	 * called on its fields, so init here
2262 	 */
2263 	if (unlikely(!h->next))
2264 		INIT_LIST_HEAD(h);
2265 
2266 	/* node->owner != NULL implies !list_empty(n), no need to separately
2267 	 * check the latter
2268 	 */
2269 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2270 		/* Only called from BPF prog, no need to migrate_disable */
2271 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2272 		return -EINVAL;
2273 	}
2274 
2275 	tail ? list_add_tail(n, h) : list_add(n, h);
2276 	WRITE_ONCE(node->owner, head);
2277 
2278 	return 0;
2279 }
2280 
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2281 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2282 					 struct bpf_list_node *node,
2283 					 void *meta__ign, u64 off)
2284 {
2285 	struct bpf_list_node_kern *n = (void *)node;
2286 	struct btf_struct_meta *meta = meta__ign;
2287 
2288 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2289 }
2290 
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2291 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2292 					struct bpf_list_node *node,
2293 					void *meta__ign, u64 off)
2294 {
2295 	struct bpf_list_node_kern *n = (void *)node;
2296 	struct btf_struct_meta *meta = meta__ign;
2297 
2298 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2299 }
2300 
__bpf_list_del(struct bpf_list_head * head,bool tail)2301 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2302 {
2303 	struct list_head *n, *h = (void *)head;
2304 	struct bpf_list_node_kern *node;
2305 
2306 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2307 	 * called on its fields, so init here
2308 	 */
2309 	if (unlikely(!h->next))
2310 		INIT_LIST_HEAD(h);
2311 	if (list_empty(h))
2312 		return NULL;
2313 
2314 	n = tail ? h->prev : h->next;
2315 	node = container_of(n, struct bpf_list_node_kern, list_head);
2316 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2317 		return NULL;
2318 
2319 	list_del_init(n);
2320 	WRITE_ONCE(node->owner, NULL);
2321 	return (struct bpf_list_node *)n;
2322 }
2323 
bpf_list_pop_front(struct bpf_list_head * head)2324 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2325 {
2326 	return __bpf_list_del(head, false);
2327 }
2328 
bpf_list_pop_back(struct bpf_list_head * head)2329 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2330 {
2331 	return __bpf_list_del(head, true);
2332 }
2333 
bpf_list_front(struct bpf_list_head * head)2334 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2335 {
2336 	struct list_head *h = (struct list_head *)head;
2337 
2338 	if (list_empty(h) || unlikely(!h->next))
2339 		return NULL;
2340 
2341 	return (struct bpf_list_node *)h->next;
2342 }
2343 
bpf_list_back(struct bpf_list_head * head)2344 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2345 {
2346 	struct list_head *h = (struct list_head *)head;
2347 
2348 	if (list_empty(h) || unlikely(!h->next))
2349 		return NULL;
2350 
2351 	return (struct bpf_list_node *)h->prev;
2352 }
2353 
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2354 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2355 						  struct bpf_rb_node *node)
2356 {
2357 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2358 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2359 	struct rb_node *n = &node_internal->rb_node;
2360 
2361 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2362 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2363 	 */
2364 	if (READ_ONCE(node_internal->owner) != root)
2365 		return NULL;
2366 
2367 	rb_erase_cached(n, r);
2368 	RB_CLEAR_NODE(n);
2369 	WRITE_ONCE(node_internal->owner, NULL);
2370 	return (struct bpf_rb_node *)n;
2371 }
2372 
2373 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2374  * program
2375  */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2376 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2377 			    struct bpf_rb_node_kern *node,
2378 			    void *less, struct btf_record *rec, u64 off)
2379 {
2380 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2381 	struct rb_node *parent = NULL, *n = &node->rb_node;
2382 	bpf_callback_t cb = (bpf_callback_t)less;
2383 	bool leftmost = true;
2384 
2385 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2386 	 * check the latter
2387 	 */
2388 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2389 		/* Only called from BPF prog, no need to migrate_disable */
2390 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2391 		return -EINVAL;
2392 	}
2393 
2394 	while (*link) {
2395 		parent = *link;
2396 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2397 			link = &parent->rb_left;
2398 		} else {
2399 			link = &parent->rb_right;
2400 			leftmost = false;
2401 		}
2402 	}
2403 
2404 	rb_link_node(n, parent, link);
2405 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2406 	WRITE_ONCE(node->owner, root);
2407 	return 0;
2408 }
2409 
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2410 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2411 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2412 				    void *meta__ign, u64 off)
2413 {
2414 	struct btf_struct_meta *meta = meta__ign;
2415 	struct bpf_rb_node_kern *n = (void *)node;
2416 
2417 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2418 }
2419 
bpf_rbtree_first(struct bpf_rb_root * root)2420 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2421 {
2422 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2423 
2424 	return (struct bpf_rb_node *)rb_first_cached(r);
2425 }
2426 
bpf_rbtree_root(struct bpf_rb_root * root)2427 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2428 {
2429 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2430 
2431 	return (struct bpf_rb_node *)r->rb_root.rb_node;
2432 }
2433 
bpf_rbtree_left(struct bpf_rb_root * root,struct bpf_rb_node * node)2434 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2435 {
2436 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2437 
2438 	if (READ_ONCE(node_internal->owner) != root)
2439 		return NULL;
2440 
2441 	return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2442 }
2443 
bpf_rbtree_right(struct bpf_rb_root * root,struct bpf_rb_node * node)2444 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2445 {
2446 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2447 
2448 	if (READ_ONCE(node_internal->owner) != root)
2449 		return NULL;
2450 
2451 	return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2452 }
2453 
2454 /**
2455  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2456  * kfunc which is not stored in a map as a kptr, must be released by calling
2457  * bpf_task_release().
2458  * @p: The task on which a reference is being acquired.
2459  */
bpf_task_acquire(struct task_struct * p)2460 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2461 {
2462 	if (refcount_inc_not_zero(&p->rcu_users))
2463 		return p;
2464 	return NULL;
2465 }
2466 
2467 /**
2468  * bpf_task_release - Release the reference acquired on a task.
2469  * @p: The task on which a reference is being released.
2470  */
bpf_task_release(struct task_struct * p)2471 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2472 {
2473 	put_task_struct_rcu_user(p);
2474 }
2475 
bpf_task_release_dtor(void * p)2476 __bpf_kfunc void bpf_task_release_dtor(void *p)
2477 {
2478 	put_task_struct_rcu_user(p);
2479 }
2480 CFI_NOSEAL(bpf_task_release_dtor);
2481 
2482 #ifdef CONFIG_CGROUPS
2483 /**
2484  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2485  * this kfunc which is not stored in a map as a kptr, must be released by
2486  * calling bpf_cgroup_release().
2487  * @cgrp: The cgroup on which a reference is being acquired.
2488  */
bpf_cgroup_acquire(struct cgroup * cgrp)2489 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2490 {
2491 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2492 }
2493 
2494 /**
2495  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2496  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2497  * not be freed until the current grace period has ended, even if its refcount
2498  * drops to 0.
2499  * @cgrp: The cgroup on which a reference is being released.
2500  */
bpf_cgroup_release(struct cgroup * cgrp)2501 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2502 {
2503 	cgroup_put(cgrp);
2504 }
2505 
bpf_cgroup_release_dtor(void * cgrp)2506 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2507 {
2508 	cgroup_put(cgrp);
2509 }
2510 CFI_NOSEAL(bpf_cgroup_release_dtor);
2511 
2512 /**
2513  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2514  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2515  * map, must be released by calling bpf_cgroup_release().
2516  * @cgrp: The cgroup for which we're performing a lookup.
2517  * @level: The level of ancestor to look up.
2518  */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2519 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2520 {
2521 	struct cgroup *ancestor;
2522 
2523 	if (level > cgrp->level || level < 0)
2524 		return NULL;
2525 
2526 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2527 	ancestor = cgrp->ancestors[level];
2528 	if (!cgroup_tryget(ancestor))
2529 		return NULL;
2530 	return ancestor;
2531 }
2532 
2533 /**
2534  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2535  * kfunc which is not subsequently stored in a map, must be released by calling
2536  * bpf_cgroup_release().
2537  * @cgid: cgroup id.
2538  */
bpf_cgroup_from_id(u64 cgid)2539 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2540 {
2541 	struct cgroup *cgrp;
2542 
2543 	cgrp = cgroup_get_from_id(cgid);
2544 	if (IS_ERR(cgrp))
2545 		return NULL;
2546 	return cgrp;
2547 }
2548 
2549 /**
2550  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2551  * task's membership of cgroup ancestry.
2552  * @task: the task to be tested
2553  * @ancestor: possible ancestor of @task's cgroup
2554  *
2555  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2556  * It follows all the same rules as cgroup_is_descendant, and only applies
2557  * to the default hierarchy.
2558  */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2559 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2560 				       struct cgroup *ancestor)
2561 {
2562 	long ret;
2563 
2564 	rcu_read_lock();
2565 	ret = task_under_cgroup_hierarchy(task, ancestor);
2566 	rcu_read_unlock();
2567 	return ret;
2568 }
2569 
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2570 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2571 {
2572 	struct bpf_array *array = container_of(map, struct bpf_array, map);
2573 	struct cgroup *cgrp;
2574 
2575 	if (unlikely(idx >= array->map.max_entries))
2576 		return -E2BIG;
2577 
2578 	cgrp = READ_ONCE(array->ptrs[idx]);
2579 	if (unlikely(!cgrp))
2580 		return -EAGAIN;
2581 
2582 	return task_under_cgroup_hierarchy(current, cgrp);
2583 }
2584 
2585 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2586 	.func           = bpf_current_task_under_cgroup,
2587 	.gpl_only       = false,
2588 	.ret_type       = RET_INTEGER,
2589 	.arg1_type      = ARG_CONST_MAP_PTR,
2590 	.arg2_type      = ARG_ANYTHING,
2591 };
2592 
2593 /**
2594  * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2595  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2596  * hierarchy ID.
2597  * @task: The target task
2598  * @hierarchy_id: The ID of a cgroup1 hierarchy
2599  *
2600  * On success, the cgroup is returen. On failure, NULL is returned.
2601  */
2602 __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2603 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2604 {
2605 	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2606 
2607 	if (IS_ERR(cgrp))
2608 		return NULL;
2609 	return cgrp;
2610 }
2611 #endif /* CONFIG_CGROUPS */
2612 
2613 /**
2614  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2615  * in the root pid namespace idr. If a task is returned, it must either be
2616  * stored in a map, or released with bpf_task_release().
2617  * @pid: The pid of the task being looked up.
2618  */
bpf_task_from_pid(s32 pid)2619 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2620 {
2621 	struct task_struct *p;
2622 
2623 	rcu_read_lock();
2624 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2625 	if (p)
2626 		p = bpf_task_acquire(p);
2627 	rcu_read_unlock();
2628 
2629 	return p;
2630 }
2631 
2632 /**
2633  * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2634  * in the pid namespace of the current task. If a task is returned, it must
2635  * either be stored in a map, or released with bpf_task_release().
2636  * @vpid: The vpid of the task being looked up.
2637  */
bpf_task_from_vpid(s32 vpid)2638 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2639 {
2640 	struct task_struct *p;
2641 
2642 	rcu_read_lock();
2643 	p = find_task_by_vpid(vpid);
2644 	if (p)
2645 		p = bpf_task_acquire(p);
2646 	rcu_read_unlock();
2647 
2648 	return p;
2649 }
2650 
2651 /**
2652  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2653  * @p: The dynptr whose data slice to retrieve
2654  * @offset: Offset into the dynptr
2655  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2656  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2657  *               length of the requested slice. This must be a constant.
2658  *
2659  * For non-skb and non-xdp type dynptrs, there is no difference between
2660  * bpf_dynptr_slice and bpf_dynptr_data.
2661  *
2662  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2663  *
2664  * If the intention is to write to the data slice, please use
2665  * bpf_dynptr_slice_rdwr.
2666  *
2667  * The user must check that the returned pointer is not null before using it.
2668  *
2669  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2670  * does not change the underlying packet data pointers, so a call to
2671  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2672  * the bpf program.
2673  *
2674  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2675  * data slice (can be either direct pointer to the data or a pointer to the user
2676  * provided buffer, with its contents containing the data, if unable to obtain
2677  * direct pointer)
2678  */
bpf_dynptr_slice(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2679 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2680 				   void *buffer__opt, u32 buffer__szk)
2681 {
2682 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2683 	enum bpf_dynptr_type type;
2684 	u32 len = buffer__szk;
2685 	int err;
2686 
2687 	if (!ptr->data)
2688 		return NULL;
2689 
2690 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2691 	if (err)
2692 		return NULL;
2693 
2694 	type = bpf_dynptr_get_type(ptr);
2695 
2696 	switch (type) {
2697 	case BPF_DYNPTR_TYPE_LOCAL:
2698 	case BPF_DYNPTR_TYPE_RINGBUF:
2699 		return ptr->data + ptr->offset + offset;
2700 	case BPF_DYNPTR_TYPE_SKB:
2701 		if (buffer__opt)
2702 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2703 		else
2704 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2705 	case BPF_DYNPTR_TYPE_XDP:
2706 	{
2707 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2708 		if (!IS_ERR_OR_NULL(xdp_ptr))
2709 			return xdp_ptr;
2710 
2711 		if (!buffer__opt)
2712 			return NULL;
2713 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2714 		return buffer__opt;
2715 	}
2716 	default:
2717 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2718 		return NULL;
2719 	}
2720 }
2721 
2722 /**
2723  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2724  * @p: The dynptr whose data slice to retrieve
2725  * @offset: Offset into the dynptr
2726  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2727  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2728  *               length of the requested slice. This must be a constant.
2729  *
2730  * For non-skb and non-xdp type dynptrs, there is no difference between
2731  * bpf_dynptr_slice and bpf_dynptr_data.
2732  *
2733  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2734  *
2735  * The returned pointer is writable and may point to either directly the dynptr
2736  * data at the requested offset or to the buffer if unable to obtain a direct
2737  * data pointer to (example: the requested slice is to the paged area of an skb
2738  * packet). In the case where the returned pointer is to the buffer, the user
2739  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2740  * usually looks something like this pattern:
2741  *
2742  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2743  * if (!eth)
2744  *	return TC_ACT_SHOT;
2745  *
2746  * // mutate eth header //
2747  *
2748  * if (eth == buffer)
2749  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2750  *
2751  * Please note that, as in the example above, the user must check that the
2752  * returned pointer is not null before using it.
2753  *
2754  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2755  * does not change the underlying packet data pointers, so a call to
2756  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2757  * the bpf program.
2758  *
2759  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2760  * data slice (can be either direct pointer to the data or a pointer to the user
2761  * provided buffer, with its contents containing the data, if unable to obtain
2762  * direct pointer)
2763  */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2764 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2765 					void *buffer__opt, u32 buffer__szk)
2766 {
2767 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2768 
2769 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2770 		return NULL;
2771 
2772 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2773 	 *
2774 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2775 	 * if the bpf program allows skb data writes. There are two possibilities
2776 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2777 	 *
2778 	 * 1) The requested slice is in the head of the skb. In this case, the
2779 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2780 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2781 	 * The pointer can be directly written into.
2782 	 *
2783 	 * 2) Some portion of the requested slice is in the paged buffer area.
2784 	 * In this case, the requested data will be copied out into the buffer
2785 	 * and the returned pointer will be a pointer to the buffer. The skb
2786 	 * will not be pulled. To persist the write, the user will need to call
2787 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2788 	 *
2789 	 * Similarly for xdp programs, if the requested slice is not across xdp
2790 	 * fragments, then a direct pointer will be returned, otherwise the data
2791 	 * will be copied out into the buffer and the user will need to call
2792 	 * bpf_dynptr_write() to commit changes.
2793 	 */
2794 	return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2795 }
2796 
bpf_dynptr_adjust(const struct bpf_dynptr * p,u32 start,u32 end)2797 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2798 {
2799 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2800 	u32 size;
2801 
2802 	if (!ptr->data || start > end)
2803 		return -EINVAL;
2804 
2805 	size = __bpf_dynptr_size(ptr);
2806 
2807 	if (start > size || end > size)
2808 		return -ERANGE;
2809 
2810 	ptr->offset += start;
2811 	bpf_dynptr_set_size(ptr, end - start);
2812 
2813 	return 0;
2814 }
2815 
bpf_dynptr_is_null(const struct bpf_dynptr * p)2816 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2817 {
2818 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2819 
2820 	return !ptr->data;
2821 }
2822 
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2823 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2824 {
2825 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2826 
2827 	if (!ptr->data)
2828 		return false;
2829 
2830 	return __bpf_dynptr_is_rdonly(ptr);
2831 }
2832 
bpf_dynptr_size(const struct bpf_dynptr * p)2833 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2834 {
2835 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2836 
2837 	if (!ptr->data)
2838 		return -EINVAL;
2839 
2840 	return __bpf_dynptr_size(ptr);
2841 }
2842 
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2843 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2844 				 struct bpf_dynptr *clone__uninit)
2845 {
2846 	struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2847 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2848 
2849 	if (!ptr->data) {
2850 		bpf_dynptr_set_null(clone);
2851 		return -EINVAL;
2852 	}
2853 
2854 	*clone = *ptr;
2855 
2856 	return 0;
2857 }
2858 
2859 /**
2860  * bpf_dynptr_copy() - Copy data from one dynptr to another.
2861  * @dst_ptr: Destination dynptr - where data should be copied to
2862  * @dst_off: Offset into the destination dynptr
2863  * @src_ptr: Source dynptr - where data should be copied from
2864  * @src_off: Offset into the source dynptr
2865  * @size: Length of the data to copy from source to destination
2866  *
2867  * Copies data from source dynptr to destination dynptr.
2868  * Returns 0 on success; negative error, otherwise.
2869  */
bpf_dynptr_copy(struct bpf_dynptr * dst_ptr,u32 dst_off,struct bpf_dynptr * src_ptr,u32 src_off,u32 size)2870 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u32 dst_off,
2871 				struct bpf_dynptr *src_ptr, u32 src_off, u32 size)
2872 {
2873 	struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2874 	struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2875 	void *src_slice, *dst_slice;
2876 	char buf[256];
2877 	u32 off;
2878 
2879 	src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2880 	dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2881 
2882 	if (src_slice && dst_slice) {
2883 		memmove(dst_slice, src_slice, size);
2884 		return 0;
2885 	}
2886 
2887 	if (src_slice)
2888 		return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2889 
2890 	if (dst_slice)
2891 		return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2892 
2893 	if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2894 	    bpf_dynptr_check_off_len(src, src_off, size))
2895 		return -E2BIG;
2896 
2897 	off = 0;
2898 	while (off < size) {
2899 		u32 chunk_sz = min_t(u32, sizeof(buf), size - off);
2900 		int err;
2901 
2902 		err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2903 		if (err)
2904 			return err;
2905 		err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2906 		if (err)
2907 			return err;
2908 
2909 		off += chunk_sz;
2910 	}
2911 	return 0;
2912 }
2913 
2914 /**
2915  * bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2916  * @p: Destination dynptr - where data will be filled
2917  * @offset: Offset into the dynptr to start filling from
2918  * @size: Number of bytes to fill
2919  * @val: Constant byte to fill the memory with
2920  *
2921  * Fills the @size bytes of the memory area pointed to by @p
2922  * at @offset with the constant byte @val.
2923  * Returns 0 on success; negative error, otherwise.
2924  */
bpf_dynptr_memset(struct bpf_dynptr * p,u32 offset,u32 size,u8 val)2925  __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u32 offset, u32 size, u8 val)
2926  {
2927 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2928 	u32 chunk_sz, write_off;
2929 	char buf[256];
2930 	void* slice;
2931 	int err;
2932 
2933 	slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2934 	if (likely(slice)) {
2935 		memset(slice, val, size);
2936 		return 0;
2937 	}
2938 
2939 	if (__bpf_dynptr_is_rdonly(ptr))
2940 		return -EINVAL;
2941 
2942 	err = bpf_dynptr_check_off_len(ptr, offset, size);
2943 	if (err)
2944 		return err;
2945 
2946 	/* Non-linear data under the dynptr, write from a local buffer */
2947 	chunk_sz = min_t(u32, sizeof(buf), size);
2948 	memset(buf, val, chunk_sz);
2949 
2950 	for (write_off = 0; write_off < size; write_off += chunk_sz) {
2951 		chunk_sz = min_t(u32, sizeof(buf), size - write_off);
2952 		err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
2953 		if (err)
2954 			return err;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
bpf_cast_to_kern_ctx(void * obj)2960 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2961 {
2962 	return obj;
2963 }
2964 
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)2965 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2966 {
2967 	return (void *)obj__ign;
2968 }
2969 
bpf_rcu_read_lock(void)2970 __bpf_kfunc void bpf_rcu_read_lock(void)
2971 {
2972 	rcu_read_lock();
2973 }
2974 
bpf_rcu_read_unlock(void)2975 __bpf_kfunc void bpf_rcu_read_unlock(void)
2976 {
2977 	rcu_read_unlock();
2978 }
2979 
2980 struct bpf_throw_ctx {
2981 	struct bpf_prog_aux *aux;
2982 	u64 sp;
2983 	u64 bp;
2984 	int cnt;
2985 };
2986 
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)2987 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2988 {
2989 	struct bpf_throw_ctx *ctx = cookie;
2990 	struct bpf_prog *prog;
2991 
2992 	/*
2993 	 * The RCU read lock is held to safely traverse the latch tree, but we
2994 	 * don't need its protection when accessing the prog, since it has an
2995 	 * active stack frame on the current stack trace, and won't disappear.
2996 	 */
2997 	rcu_read_lock();
2998 	prog = bpf_prog_ksym_find(ip);
2999 	rcu_read_unlock();
3000 	if (!prog)
3001 		return !ctx->cnt;
3002 	ctx->cnt++;
3003 	if (bpf_is_subprog(prog))
3004 		return true;
3005 	ctx->aux = prog->aux;
3006 	ctx->sp = sp;
3007 	ctx->bp = bp;
3008 	return false;
3009 }
3010 
bpf_throw(u64 cookie)3011 __bpf_kfunc void bpf_throw(u64 cookie)
3012 {
3013 	struct bpf_throw_ctx ctx = {};
3014 
3015 	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3016 	WARN_ON_ONCE(!ctx.aux);
3017 	if (ctx.aux)
3018 		WARN_ON_ONCE(!ctx.aux->exception_boundary);
3019 	WARN_ON_ONCE(!ctx.bp);
3020 	WARN_ON_ONCE(!ctx.cnt);
3021 	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3022 	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
3023 	 * which skips compiler generated instrumentation to do the same.
3024 	 */
3025 	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3026 	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3027 	WARN(1, "A call to BPF exception callback should never return\n");
3028 }
3029 
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)3030 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3031 {
3032 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3033 	struct bpf_map *map = p__map;
3034 
3035 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3036 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3037 
3038 	if (flags)
3039 		return -EINVAL;
3040 
3041 	return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3042 }
3043 
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)3044 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3045 {
3046 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3047 	struct bpf_work *w;
3048 
3049 	if (in_nmi())
3050 		return -EOPNOTSUPP;
3051 	if (flags)
3052 		return -EINVAL;
3053 	w = READ_ONCE(async->work);
3054 	if (!w || !READ_ONCE(w->cb.prog))
3055 		return -EINVAL;
3056 
3057 	schedule_work(&w->work);
3058 	return 0;
3059 }
3060 
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__prog)3061 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3062 					 int (callback_fn)(void *map, int *key, void *value),
3063 					 unsigned int flags,
3064 					 void *aux__prog)
3065 {
3066 	struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3067 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3068 
3069 	if (flags)
3070 		return -EINVAL;
3071 
3072 	return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3073 }
3074 
bpf_preempt_disable(void)3075 __bpf_kfunc void bpf_preempt_disable(void)
3076 {
3077 	preempt_disable();
3078 }
3079 
bpf_preempt_enable(void)3080 __bpf_kfunc void bpf_preempt_enable(void)
3081 {
3082 	preempt_enable();
3083 }
3084 
3085 struct bpf_iter_bits {
3086 	__u64 __opaque[2];
3087 } __aligned(8);
3088 
3089 #define BITS_ITER_NR_WORDS_MAX 511
3090 
3091 struct bpf_iter_bits_kern {
3092 	union {
3093 		__u64 *bits;
3094 		__u64 bits_copy;
3095 	};
3096 	int nr_bits;
3097 	int bit;
3098 } __aligned(8);
3099 
3100 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3101  * a u64 pointer and an unsigned long pointer to find_next_bit() will
3102  * return the same result, as both point to the same 8-byte area.
3103  *
3104  * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3105  * pointer also makes no difference. This is because the first iterated
3106  * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3107  * long is composed of bits 32-63 of the u64.
3108  *
3109  * However, for 32-bit big-endian hosts, this is not the case. The first
3110  * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3111  * ulong values within the u64.
3112  */
swap_ulong_in_u64(u64 * bits,unsigned int nr)3113 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3114 {
3115 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3116 	unsigned int i;
3117 
3118 	for (i = 0; i < nr; i++)
3119 		bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3120 #endif
3121 }
3122 
3123 /**
3124  * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3125  * @it: The new bpf_iter_bits to be created
3126  * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3127  * @nr_words: The size of the specified memory area, measured in 8-byte units.
3128  * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3129  * further reduced by the BPF memory allocator implementation.
3130  *
3131  * This function initializes a new bpf_iter_bits structure for iterating over
3132  * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3133  * copies the data of the memory area to the newly created bpf_iter_bits @it for
3134  * subsequent iteration operations.
3135  *
3136  * On success, 0 is returned. On failure, ERR is returned.
3137  */
3138 __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)3139 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3140 {
3141 	struct bpf_iter_bits_kern *kit = (void *)it;
3142 	u32 nr_bytes = nr_words * sizeof(u64);
3143 	u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3144 	int err;
3145 
3146 	BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3147 	BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3148 		     __alignof__(struct bpf_iter_bits));
3149 
3150 	kit->nr_bits = 0;
3151 	kit->bits_copy = 0;
3152 	kit->bit = -1;
3153 
3154 	if (!unsafe_ptr__ign || !nr_words)
3155 		return -EINVAL;
3156 	if (nr_words > BITS_ITER_NR_WORDS_MAX)
3157 		return -E2BIG;
3158 
3159 	/* Optimization for u64 mask */
3160 	if (nr_bits == 64) {
3161 		err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3162 		if (err)
3163 			return -EFAULT;
3164 
3165 		swap_ulong_in_u64(&kit->bits_copy, nr_words);
3166 
3167 		kit->nr_bits = nr_bits;
3168 		return 0;
3169 	}
3170 
3171 	if (bpf_mem_alloc_check_size(false, nr_bytes))
3172 		return -E2BIG;
3173 
3174 	/* Fallback to memalloc */
3175 	kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3176 	if (!kit->bits)
3177 		return -ENOMEM;
3178 
3179 	err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3180 	if (err) {
3181 		bpf_mem_free(&bpf_global_ma, kit->bits);
3182 		return err;
3183 	}
3184 
3185 	swap_ulong_in_u64(kit->bits, nr_words);
3186 
3187 	kit->nr_bits = nr_bits;
3188 	return 0;
3189 }
3190 
3191 /**
3192  * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3193  * @it: The bpf_iter_bits to be checked
3194  *
3195  * This function returns a pointer to a number representing the value of the
3196  * next bit in the bits.
3197  *
3198  * If there are no further bits available, it returns NULL.
3199  */
bpf_iter_bits_next(struct bpf_iter_bits * it)3200 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3201 {
3202 	struct bpf_iter_bits_kern *kit = (void *)it;
3203 	int bit = kit->bit, nr_bits = kit->nr_bits;
3204 	const void *bits;
3205 
3206 	if (!nr_bits || bit >= nr_bits)
3207 		return NULL;
3208 
3209 	bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3210 	bit = find_next_bit(bits, nr_bits, bit + 1);
3211 	if (bit >= nr_bits) {
3212 		kit->bit = bit;
3213 		return NULL;
3214 	}
3215 
3216 	kit->bit = bit;
3217 	return &kit->bit;
3218 }
3219 
3220 /**
3221  * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3222  * @it: The bpf_iter_bits to be destroyed
3223  *
3224  * Destroy the resource associated with the bpf_iter_bits.
3225  */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)3226 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3227 {
3228 	struct bpf_iter_bits_kern *kit = (void *)it;
3229 
3230 	if (kit->nr_bits <= 64)
3231 		return;
3232 	bpf_mem_free(&bpf_global_ma, kit->bits);
3233 }
3234 
3235 /**
3236  * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3237  * @dst:             Destination address, in kernel space.  This buffer must be
3238  *                   at least @dst__sz bytes long.
3239  * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3240  * @unsafe_ptr__ign: Source address, in user space.
3241  * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3242  *
3243  * Copies a NUL-terminated string from userspace to BPF space. If user string is
3244  * too long this will still ensure zero termination in the dst buffer unless
3245  * buffer size is 0.
3246  *
3247  * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3248  * memset all of @dst on failure.
3249  */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3250 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3251 {
3252 	int ret;
3253 
3254 	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3255 		return -EINVAL;
3256 
3257 	if (unlikely(!dst__sz))
3258 		return 0;
3259 
3260 	ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3261 	if (ret < 0) {
3262 		if (flags & BPF_F_PAD_ZEROS)
3263 			memset((char *)dst, 0, dst__sz);
3264 
3265 		return ret;
3266 	}
3267 
3268 	if (flags & BPF_F_PAD_ZEROS)
3269 		memset((char *)dst + ret, 0, dst__sz - ret);
3270 	else
3271 		((char *)dst)[ret] = '\0';
3272 
3273 	return ret + 1;
3274 }
3275 
3276 /**
3277  * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3278  * @dst:             Destination address, in kernel space.  This buffer must be
3279  *                   at least @dst__sz bytes long.
3280  * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3281  * @unsafe_ptr__ign: Source address in the task's address space.
3282  * @tsk:             The task whose address space will be used
3283  * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3284  *
3285  * Copies a NUL terminated string from a task's address space to @dst__sz
3286  * buffer. If user string is too long this will still ensure zero termination
3287  * in the @dst__sz buffer unless buffer size is 0.
3288  *
3289  * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3290  * and memset all of @dst__sz on failure.
3291  *
3292  * Return: The number of copied bytes on success including the NUL terminator.
3293  * A negative error code on failure.
3294  */
bpf_copy_from_user_task_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,struct task_struct * tsk,u64 flags)3295 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3296 					    const void __user *unsafe_ptr__ign,
3297 					    struct task_struct *tsk, u64 flags)
3298 {
3299 	int ret;
3300 
3301 	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3302 		return -EINVAL;
3303 
3304 	if (unlikely(dst__sz == 0))
3305 		return 0;
3306 
3307 	ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3308 	if (ret < 0) {
3309 		if (flags & BPF_F_PAD_ZEROS)
3310 			memset(dst, 0, dst__sz);
3311 		return ret;
3312 	}
3313 
3314 	if (flags & BPF_F_PAD_ZEROS)
3315 		memset(dst + ret, 0, dst__sz - ret);
3316 
3317 	return ret + 1;
3318 }
3319 
3320 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3321  * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3322  * unsigned long always points to 8-byte region on stack, the kernel may only
3323  * read and write the 4-bytes on 32-bit.
3324  */
bpf_local_irq_save(unsigned long * flags__irq_flag)3325 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3326 {
3327 	local_irq_save(*flags__irq_flag);
3328 }
3329 
bpf_local_irq_restore(unsigned long * flags__irq_flag)3330 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3331 {
3332 	local_irq_restore(*flags__irq_flag);
3333 }
3334 
__bpf_trap(void)3335 __bpf_kfunc void __bpf_trap(void)
3336 {
3337 }
3338 
3339 /*
3340  * Kfuncs for string operations.
3341  *
3342  * Since strings are not necessarily %NUL-terminated, we cannot directly call
3343  * in-kernel implementations. Instead, we open-code the implementations using
3344  * __get_kernel_nofault instead of plain dereference to make them safe.
3345  */
3346 
3347 /**
3348  * bpf_strcmp - Compare two strings
3349  * @s1__ign: One string
3350  * @s2__ign: Another string
3351  *
3352  * Return:
3353  * * %0       - Strings are equal
3354  * * %-1      - @s1__ign is smaller
3355  * * %1       - @s2__ign is smaller
3356  * * %-EFAULT - Cannot read one of the strings
3357  * * %-E2BIG  - One of strings is too large
3358  * * %-ERANGE - One of strings is outside of kernel address space
3359  */
bpf_strcmp(const char * s1__ign,const char * s2__ign)3360 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3361 {
3362 	char c1, c2;
3363 	int i;
3364 
3365 	if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3366 	    !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3367 		return -ERANGE;
3368 	}
3369 
3370 	guard(pagefault)();
3371 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3372 		__get_kernel_nofault(&c1, s1__ign, char, err_out);
3373 		__get_kernel_nofault(&c2, s2__ign, char, err_out);
3374 		if (c1 != c2)
3375 			return c1 < c2 ? -1 : 1;
3376 		if (c1 == '\0')
3377 			return 0;
3378 		s1__ign++;
3379 		s2__ign++;
3380 	}
3381 	return -E2BIG;
3382 err_out:
3383 	return -EFAULT;
3384 }
3385 
3386 /**
3387  * bpf_strnchr - Find a character in a length limited string
3388  * @s__ign: The string to be searched
3389  * @count: The number of characters to be searched
3390  * @c: The character to search for
3391  *
3392  * Note that the %NUL-terminator is considered part of the string, and can
3393  * be searched for.
3394  *
3395  * Return:
3396  * * >=0      - Index of the first occurrence of @c within @s__ign
3397  * * %-ENOENT - @c not found in the first @count characters of @s__ign
3398  * * %-EFAULT - Cannot read @s__ign
3399  * * %-E2BIG  - @s__ign is too large
3400  * * %-ERANGE - @s__ign is outside of kernel address space
3401  */
bpf_strnchr(const char * s__ign,size_t count,char c)3402 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3403 {
3404 	char sc;
3405 	int i;
3406 
3407 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3408 		return -ERANGE;
3409 
3410 	guard(pagefault)();
3411 	for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3412 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3413 		if (sc == c)
3414 			return i;
3415 		if (sc == '\0')
3416 			return -ENOENT;
3417 		s__ign++;
3418 	}
3419 	return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3420 err_out:
3421 	return -EFAULT;
3422 }
3423 
3424 /**
3425  * bpf_strchr - Find the first occurrence of a character in a string
3426  * @s__ign: The string to be searched
3427  * @c: The character to search for
3428  *
3429  * Note that the %NUL-terminator is considered part of the string, and can
3430  * be searched for.
3431  *
3432  * Return:
3433  * * >=0      - The index of the first occurrence of @c within @s__ign
3434  * * %-ENOENT - @c not found in @s__ign
3435  * * %-EFAULT - Cannot read @s__ign
3436  * * %-E2BIG  - @s__ign is too large
3437  * * %-ERANGE - @s__ign is outside of kernel address space
3438  */
bpf_strchr(const char * s__ign,char c)3439 __bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3440 {
3441 	return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3442 }
3443 
3444 /**
3445  * bpf_strchrnul - Find and return a character in a string, or end of string
3446  * @s__ign: The string to be searched
3447  * @c: The character to search for
3448  *
3449  * Return:
3450  * * >=0      - Index of the first occurrence of @c within @s__ign or index of
3451  *              the null byte at the end of @s__ign when @c is not found
3452  * * %-EFAULT - Cannot read @s__ign
3453  * * %-E2BIG  - @s__ign is too large
3454  * * %-ERANGE - @s__ign is outside of kernel address space
3455  */
bpf_strchrnul(const char * s__ign,char c)3456 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3457 {
3458 	char sc;
3459 	int i;
3460 
3461 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3462 		return -ERANGE;
3463 
3464 	guard(pagefault)();
3465 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3466 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3467 		if (sc == '\0' || sc == c)
3468 			return i;
3469 		s__ign++;
3470 	}
3471 	return -E2BIG;
3472 err_out:
3473 	return -EFAULT;
3474 }
3475 
3476 /**
3477  * bpf_strrchr - Find the last occurrence of a character in a string
3478  * @s__ign: The string to be searched
3479  * @c: The character to search for
3480  *
3481  * Return:
3482  * * >=0      - Index of the last occurrence of @c within @s__ign
3483  * * %-ENOENT - @c not found in @s__ign
3484  * * %-EFAULT - Cannot read @s__ign
3485  * * %-E2BIG  - @s__ign is too large
3486  * * %-ERANGE - @s__ign is outside of kernel address space
3487  */
bpf_strrchr(const char * s__ign,int c)3488 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3489 {
3490 	char sc;
3491 	int i, last = -ENOENT;
3492 
3493 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3494 		return -ERANGE;
3495 
3496 	guard(pagefault)();
3497 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3498 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3499 		if (sc == c)
3500 			last = i;
3501 		if (sc == '\0')
3502 			return last;
3503 		s__ign++;
3504 	}
3505 	return -E2BIG;
3506 err_out:
3507 	return -EFAULT;
3508 }
3509 
3510 /**
3511  * bpf_strnlen - Calculate the length of a length-limited string
3512  * @s__ign: The string
3513  * @count: The maximum number of characters to count
3514  *
3515  * Return:
3516  * * >=0      - The length of @s__ign
3517  * * %-EFAULT - Cannot read @s__ign
3518  * * %-E2BIG  - @s__ign is too large
3519  * * %-ERANGE - @s__ign is outside of kernel address space
3520  */
bpf_strnlen(const char * s__ign,size_t count)3521 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3522 {
3523 	char c;
3524 	int i;
3525 
3526 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3527 		return -ERANGE;
3528 
3529 	guard(pagefault)();
3530 	for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3531 		__get_kernel_nofault(&c, s__ign, char, err_out);
3532 		if (c == '\0')
3533 			return i;
3534 		s__ign++;
3535 	}
3536 	return i == XATTR_SIZE_MAX ? -E2BIG : i;
3537 err_out:
3538 	return -EFAULT;
3539 }
3540 
3541 /**
3542  * bpf_strlen - Calculate the length of a string
3543  * @s__ign: The string
3544  *
3545  * Return:
3546  * * >=0      - The length of @s__ign
3547  * * %-EFAULT - Cannot read @s__ign
3548  * * %-E2BIG  - @s__ign is too large
3549  * * %-ERANGE - @s__ign is outside of kernel address space
3550  */
bpf_strlen(const char * s__ign)3551 __bpf_kfunc int bpf_strlen(const char *s__ign)
3552 {
3553 	return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3554 }
3555 
3556 /**
3557  * bpf_strspn - Calculate the length of the initial substring of @s__ign which
3558  *              only contains letters in @accept__ign
3559  * @s__ign: The string to be searched
3560  * @accept__ign: The string to search for
3561  *
3562  * Return:
3563  * * >=0      - The length of the initial substring of @s__ign which only
3564  *              contains letters from @accept__ign
3565  * * %-EFAULT - Cannot read one of the strings
3566  * * %-E2BIG  - One of the strings is too large
3567  * * %-ERANGE - One of the strings is outside of kernel address space
3568  */
bpf_strspn(const char * s__ign,const char * accept__ign)3569 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3570 {
3571 	char cs, ca;
3572 	int i, j;
3573 
3574 	if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3575 	    !copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3576 		return -ERANGE;
3577 	}
3578 
3579 	guard(pagefault)();
3580 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3581 		__get_kernel_nofault(&cs, s__ign, char, err_out);
3582 		if (cs == '\0')
3583 			return i;
3584 		for (j = 0; j < XATTR_SIZE_MAX; j++) {
3585 			__get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3586 			if (cs == ca || ca == '\0')
3587 				break;
3588 		}
3589 		if (j == XATTR_SIZE_MAX)
3590 			return -E2BIG;
3591 		if (ca == '\0')
3592 			return i;
3593 		s__ign++;
3594 	}
3595 	return -E2BIG;
3596 err_out:
3597 	return -EFAULT;
3598 }
3599 
3600 /**
3601  * bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3602  *               does not contain letters in @reject__ign
3603  * @s__ign: The string to be searched
3604  * @reject__ign: The string to search for
3605  *
3606  * Return:
3607  * * >=0      - The length of the initial substring of @s__ign which does not
3608  *              contain letters from @reject__ign
3609  * * %-EFAULT - Cannot read one of the strings
3610  * * %-E2BIG  - One of the strings is too large
3611  * * %-ERANGE - One of the strings is outside of kernel address space
3612  */
bpf_strcspn(const char * s__ign,const char * reject__ign)3613 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3614 {
3615 	char cs, cr;
3616 	int i, j;
3617 
3618 	if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3619 	    !copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3620 		return -ERANGE;
3621 	}
3622 
3623 	guard(pagefault)();
3624 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3625 		__get_kernel_nofault(&cs, s__ign, char, err_out);
3626 		if (cs == '\0')
3627 			return i;
3628 		for (j = 0; j < XATTR_SIZE_MAX; j++) {
3629 			__get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3630 			if (cs == cr || cr == '\0')
3631 				break;
3632 		}
3633 		if (j == XATTR_SIZE_MAX)
3634 			return -E2BIG;
3635 		if (cr != '\0')
3636 			return i;
3637 		s__ign++;
3638 	}
3639 	return -E2BIG;
3640 err_out:
3641 	return -EFAULT;
3642 }
3643 
3644 /**
3645  * bpf_strnstr - Find the first substring in a length-limited string
3646  * @s1__ign: The string to be searched
3647  * @s2__ign: The string to search for
3648  * @len: the maximum number of characters to search
3649  *
3650  * Return:
3651  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3652  *              within the first @len characters of @s1__ign
3653  * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3654  * * %-EFAULT - Cannot read one of the strings
3655  * * %-E2BIG  - One of the strings is too large
3656  * * %-ERANGE - One of the strings is outside of kernel address space
3657  */
bpf_strnstr(const char * s1__ign,const char * s2__ign,size_t len)3658 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, size_t len)
3659 {
3660 	char c1, c2;
3661 	int i, j;
3662 
3663 	if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3664 	    !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3665 		return -ERANGE;
3666 	}
3667 
3668 	guard(pagefault)();
3669 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3670 		for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) {
3671 			__get_kernel_nofault(&c2, s2__ign + j, char, err_out);
3672 			if (c2 == '\0')
3673 				return i;
3674 			/*
3675 			 * We allow reading an extra byte from s2 (note the
3676 			 * `i + j <= len` above) to cover the case when s2 is
3677 			 * a suffix of the first len chars of s1.
3678 			 */
3679 			if (i + j == len)
3680 				break;
3681 			__get_kernel_nofault(&c1, s1__ign + j, char, err_out);
3682 			if (c1 == '\0')
3683 				return -ENOENT;
3684 			if (c1 != c2)
3685 				break;
3686 		}
3687 		if (j == XATTR_SIZE_MAX)
3688 			return -E2BIG;
3689 		if (i + j == len)
3690 			return -ENOENT;
3691 		s1__ign++;
3692 	}
3693 	return -E2BIG;
3694 err_out:
3695 	return -EFAULT;
3696 }
3697 
3698 /**
3699  * bpf_strstr - Find the first substring in a string
3700  * @s1__ign: The string to be searched
3701  * @s2__ign: The string to search for
3702  *
3703  * Return:
3704  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3705  *              within @s1__ign
3706  * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3707  * * %-EFAULT - Cannot read one of the strings
3708  * * %-E2BIG  - One of the strings is too large
3709  * * %-ERANGE - One of the strings is outside of kernel address space
3710  */
bpf_strstr(const char * s1__ign,const char * s2__ign)3711 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3712 {
3713 	return bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX);
3714 }
3715 
3716 __bpf_kfunc_end_defs();
3717 
3718 BTF_KFUNCS_START(generic_btf_ids)
3719 #ifdef CONFIG_CRASH_DUMP
3720 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
3721 #endif
3722 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3723 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3724 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
3725 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
3726 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
3727 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
3728 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
3729 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
3730 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
3731 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
3732 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
3733 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3734 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
3735 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
3736 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
3737 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
3738 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
3739 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
3740 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
3741 
3742 #ifdef CONFIG_CGROUPS
3743 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3744 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
3745 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3746 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
3747 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
3748 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3749 #endif
3750 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
3751 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
3752 BTF_ID_FLAGS(func, bpf_throw)
3753 #ifdef CONFIG_BPF_EVENTS
3754 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
3755 #endif
3756 BTF_KFUNCS_END(generic_btf_ids)
3757 
3758 static const struct btf_kfunc_id_set generic_kfunc_set = {
3759 	.owner = THIS_MODULE,
3760 	.set   = &generic_btf_ids,
3761 };
3762 
3763 
3764 BTF_ID_LIST(generic_dtor_ids)
3765 BTF_ID(struct, task_struct)
3766 BTF_ID(func, bpf_task_release_dtor)
3767 #ifdef CONFIG_CGROUPS
3768 BTF_ID(struct, cgroup)
3769 BTF_ID(func, bpf_cgroup_release_dtor)
3770 #endif
3771 
3772 BTF_KFUNCS_START(common_btf_ids)
3773 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
3774 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
3775 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
3776 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
3777 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
3778 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
3779 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
3780 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
3781 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
3782 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
3783 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
3784 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
3785 #ifdef CONFIG_CGROUPS
3786 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
3787 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
3788 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
3789 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3790 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
3791 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
3792 #endif
3793 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3794 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
3795 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
3796 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
3797 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
3798 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
3799 BTF_ID_FLAGS(func, bpf_dynptr_size)
3800 BTF_ID_FLAGS(func, bpf_dynptr_clone)
3801 BTF_ID_FLAGS(func, bpf_dynptr_copy)
3802 BTF_ID_FLAGS(func, bpf_dynptr_memset)
3803 #ifdef CONFIG_NET
3804 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
3805 #endif
3806 BTF_ID_FLAGS(func, bpf_wq_init)
3807 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
3808 BTF_ID_FLAGS(func, bpf_wq_start)
3809 BTF_ID_FLAGS(func, bpf_preempt_disable)
3810 BTF_ID_FLAGS(func, bpf_preempt_enable)
3811 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
3812 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
3813 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
3814 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
3815 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
3816 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
3817 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
3818 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3819 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3820 BTF_ID_FLAGS(func, bpf_local_irq_save)
3821 BTF_ID_FLAGS(func, bpf_local_irq_restore)
3822 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
3823 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
3824 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
3825 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
3826 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
3827 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
3828 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3829 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3830 #ifdef CONFIG_DMA_SHARED_BUFFER
3831 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
3832 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3833 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3834 #endif
3835 BTF_ID_FLAGS(func, __bpf_trap)
3836 BTF_ID_FLAGS(func, bpf_strcmp);
3837 BTF_ID_FLAGS(func, bpf_strchr);
3838 BTF_ID_FLAGS(func, bpf_strchrnul);
3839 BTF_ID_FLAGS(func, bpf_strnchr);
3840 BTF_ID_FLAGS(func, bpf_strrchr);
3841 BTF_ID_FLAGS(func, bpf_strlen);
3842 BTF_ID_FLAGS(func, bpf_strnlen);
3843 BTF_ID_FLAGS(func, bpf_strspn);
3844 BTF_ID_FLAGS(func, bpf_strcspn);
3845 BTF_ID_FLAGS(func, bpf_strstr);
3846 BTF_ID_FLAGS(func, bpf_strnstr);
3847 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
3848 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
3849 #endif
3850 BTF_ID_FLAGS(func, bpf_stream_vprintk, KF_TRUSTED_ARGS)
3851 BTF_KFUNCS_END(common_btf_ids)
3852 
3853 static const struct btf_kfunc_id_set common_kfunc_set = {
3854 	.owner = THIS_MODULE,
3855 	.set   = &common_btf_ids,
3856 };
3857 
kfunc_init(void)3858 static int __init kfunc_init(void)
3859 {
3860 	int ret;
3861 	const struct btf_id_dtor_kfunc generic_dtors[] = {
3862 		{
3863 			.btf_id       = generic_dtor_ids[0],
3864 			.kfunc_btf_id = generic_dtor_ids[1]
3865 		},
3866 #ifdef CONFIG_CGROUPS
3867 		{
3868 			.btf_id       = generic_dtor_ids[2],
3869 			.kfunc_btf_id = generic_dtor_ids[3]
3870 		},
3871 #endif
3872 	};
3873 
3874 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
3875 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
3876 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
3877 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
3878 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
3879 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
3880 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
3881 						  ARRAY_SIZE(generic_dtors),
3882 						  THIS_MODULE);
3883 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
3884 }
3885 
3886 late_initcall(kfunc_init);
3887 
3888 /* Get a pointer to dynptr data up to len bytes for read only access. If
3889  * the dynptr doesn't have continuous data up to len bytes, return NULL.
3890  */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u32 len)3891 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
3892 {
3893 	const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
3894 
3895 	return bpf_dynptr_slice(p, 0, NULL, len);
3896 }
3897 
3898 /* Get a pointer to dynptr data up to len bytes for read write access. If
3899  * the dynptr doesn't have continuous data up to len bytes, or the dynptr
3900  * is read only, return NULL.
3901  */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u32 len)3902 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
3903 {
3904 	if (__bpf_dynptr_is_rdonly(ptr))
3905 		return NULL;
3906 	return (void *)__bpf_dynptr_data(ptr, len);
3907 }
3908