1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27 #include <linux/uaccess.h>
28
29 #include "../../lib/kstrtox.h"
30
31 /* If kernel subsystem is allowing eBPF programs to call this function,
32 * inside its own verifier_ops->get_func_proto() callback it should return
33 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
34 *
35 * Different map implementations will rely on rcu in map methods
36 * lookup/update/delete, therefore eBPF programs must run under rcu lock
37 * if program is allowed to access maps, so check rcu_read_lock_held() or
38 * rcu_read_lock_trace_held() in all three functions.
39 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)40 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
41 {
42 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
43 !rcu_read_lock_bh_held());
44 return (unsigned long) map->ops->map_lookup_elem(map, key);
45 }
46
47 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
48 .func = bpf_map_lookup_elem,
49 .gpl_only = false,
50 .pkt_access = true,
51 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
52 .arg1_type = ARG_CONST_MAP_PTR,
53 .arg2_type = ARG_PTR_TO_MAP_KEY,
54 };
55
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)56 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
57 void *, value, u64, flags)
58 {
59 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
60 !rcu_read_lock_bh_held());
61 return map->ops->map_update_elem(map, key, value, flags);
62 }
63
64 const struct bpf_func_proto bpf_map_update_elem_proto = {
65 .func = bpf_map_update_elem,
66 .gpl_only = false,
67 .pkt_access = true,
68 .ret_type = RET_INTEGER,
69 .arg1_type = ARG_CONST_MAP_PTR,
70 .arg2_type = ARG_PTR_TO_MAP_KEY,
71 .arg3_type = ARG_PTR_TO_MAP_VALUE,
72 .arg4_type = ARG_ANYTHING,
73 };
74
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)75 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
76 {
77 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
78 !rcu_read_lock_bh_held());
79 return map->ops->map_delete_elem(map, key);
80 }
81
82 const struct bpf_func_proto bpf_map_delete_elem_proto = {
83 .func = bpf_map_delete_elem,
84 .gpl_only = false,
85 .pkt_access = true,
86 .ret_type = RET_INTEGER,
87 .arg1_type = ARG_CONST_MAP_PTR,
88 .arg2_type = ARG_PTR_TO_MAP_KEY,
89 };
90
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)91 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
92 {
93 return map->ops->map_push_elem(map, value, flags);
94 }
95
96 const struct bpf_func_proto bpf_map_push_elem_proto = {
97 .func = bpf_map_push_elem,
98 .gpl_only = false,
99 .pkt_access = true,
100 .ret_type = RET_INTEGER,
101 .arg1_type = ARG_CONST_MAP_PTR,
102 .arg2_type = ARG_PTR_TO_MAP_VALUE,
103 .arg3_type = ARG_ANYTHING,
104 };
105
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)106 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
107 {
108 return map->ops->map_pop_elem(map, value);
109 }
110
111 const struct bpf_func_proto bpf_map_pop_elem_proto = {
112 .func = bpf_map_pop_elem,
113 .gpl_only = false,
114 .ret_type = RET_INTEGER,
115 .arg1_type = ARG_CONST_MAP_PTR,
116 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
117 };
118
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)119 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
120 {
121 return map->ops->map_peek_elem(map, value);
122 }
123
124 const struct bpf_func_proto bpf_map_peek_elem_proto = {
125 .func = bpf_map_peek_elem,
126 .gpl_only = false,
127 .ret_type = RET_INTEGER,
128 .arg1_type = ARG_CONST_MAP_PTR,
129 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
130 };
131
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)132 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
133 {
134 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
135 !rcu_read_lock_bh_held());
136 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
137 }
138
139 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
140 .func = bpf_map_lookup_percpu_elem,
141 .gpl_only = false,
142 .pkt_access = true,
143 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
144 .arg1_type = ARG_CONST_MAP_PTR,
145 .arg2_type = ARG_PTR_TO_MAP_KEY,
146 .arg3_type = ARG_ANYTHING,
147 };
148
149 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
150 .func = bpf_user_rnd_u32,
151 .gpl_only = false,
152 .ret_type = RET_INTEGER,
153 };
154
BPF_CALL_0(bpf_get_smp_processor_id)155 BPF_CALL_0(bpf_get_smp_processor_id)
156 {
157 return smp_processor_id();
158 }
159
160 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
161 .func = bpf_get_smp_processor_id,
162 .gpl_only = false,
163 .ret_type = RET_INTEGER,
164 .allow_fastcall = true,
165 };
166
BPF_CALL_0(bpf_get_numa_node_id)167 BPF_CALL_0(bpf_get_numa_node_id)
168 {
169 return numa_node_id();
170 }
171
172 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
173 .func = bpf_get_numa_node_id,
174 .gpl_only = false,
175 .ret_type = RET_INTEGER,
176 };
177
BPF_CALL_0(bpf_ktime_get_ns)178 BPF_CALL_0(bpf_ktime_get_ns)
179 {
180 /* NMI safe access to clock monotonic */
181 return ktime_get_mono_fast_ns();
182 }
183
184 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
185 .func = bpf_ktime_get_ns,
186 .gpl_only = false,
187 .ret_type = RET_INTEGER,
188 };
189
BPF_CALL_0(bpf_ktime_get_boot_ns)190 BPF_CALL_0(bpf_ktime_get_boot_ns)
191 {
192 /* NMI safe access to clock boottime */
193 return ktime_get_boot_fast_ns();
194 }
195
196 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
197 .func = bpf_ktime_get_boot_ns,
198 .gpl_only = false,
199 .ret_type = RET_INTEGER,
200 };
201
BPF_CALL_0(bpf_ktime_get_coarse_ns)202 BPF_CALL_0(bpf_ktime_get_coarse_ns)
203 {
204 return ktime_get_coarse_ns();
205 }
206
207 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
208 .func = bpf_ktime_get_coarse_ns,
209 .gpl_only = false,
210 .ret_type = RET_INTEGER,
211 };
212
BPF_CALL_0(bpf_ktime_get_tai_ns)213 BPF_CALL_0(bpf_ktime_get_tai_ns)
214 {
215 /* NMI safe access to clock tai */
216 return ktime_get_tai_fast_ns();
217 }
218
219 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
220 .func = bpf_ktime_get_tai_ns,
221 .gpl_only = false,
222 .ret_type = RET_INTEGER,
223 };
224
BPF_CALL_0(bpf_get_current_pid_tgid)225 BPF_CALL_0(bpf_get_current_pid_tgid)
226 {
227 struct task_struct *task = current;
228
229 if (unlikely(!task))
230 return -EINVAL;
231
232 return (u64) task->tgid << 32 | task->pid;
233 }
234
235 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
236 .func = bpf_get_current_pid_tgid,
237 .gpl_only = false,
238 .ret_type = RET_INTEGER,
239 };
240
BPF_CALL_0(bpf_get_current_uid_gid)241 BPF_CALL_0(bpf_get_current_uid_gid)
242 {
243 struct task_struct *task = current;
244 kuid_t uid;
245 kgid_t gid;
246
247 if (unlikely(!task))
248 return -EINVAL;
249
250 current_uid_gid(&uid, &gid);
251 return (u64) from_kgid(&init_user_ns, gid) << 32 |
252 from_kuid(&init_user_ns, uid);
253 }
254
255 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
256 .func = bpf_get_current_uid_gid,
257 .gpl_only = false,
258 .ret_type = RET_INTEGER,
259 };
260
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)261 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
262 {
263 struct task_struct *task = current;
264
265 if (unlikely(!task))
266 goto err_clear;
267
268 /* Verifier guarantees that size > 0 */
269 strscpy_pad(buf, task->comm, size);
270 return 0;
271 err_clear:
272 memset(buf, 0, size);
273 return -EINVAL;
274 }
275
276 const struct bpf_func_proto bpf_get_current_comm_proto = {
277 .func = bpf_get_current_comm,
278 .gpl_only = false,
279 .ret_type = RET_INTEGER,
280 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
281 .arg2_type = ARG_CONST_SIZE,
282 };
283
284 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
285
__bpf_spin_lock(struct bpf_spin_lock * lock)286 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
287 {
288 arch_spinlock_t *l = (void *)lock;
289 union {
290 __u32 val;
291 arch_spinlock_t lock;
292 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
293
294 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
295 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
296 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
297 preempt_disable();
298 arch_spin_lock(l);
299 }
300
__bpf_spin_unlock(struct bpf_spin_lock * lock)301 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
302 {
303 arch_spinlock_t *l = (void *)lock;
304
305 arch_spin_unlock(l);
306 preempt_enable();
307 }
308
309 #else
310
__bpf_spin_lock(struct bpf_spin_lock * lock)311 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
312 {
313 atomic_t *l = (void *)lock;
314
315 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
316 do {
317 atomic_cond_read_relaxed(l, !VAL);
318 } while (atomic_xchg(l, 1));
319 }
320
__bpf_spin_unlock(struct bpf_spin_lock * lock)321 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
322 {
323 atomic_t *l = (void *)lock;
324
325 atomic_set_release(l, 0);
326 }
327
328 #endif
329
330 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
331
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)332 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
333 {
334 unsigned long flags;
335
336 local_irq_save(flags);
337 __bpf_spin_lock(lock);
338 __this_cpu_write(irqsave_flags, flags);
339 }
340
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)341 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
342 {
343 __bpf_spin_lock_irqsave(lock);
344 return 0;
345 }
346
347 const struct bpf_func_proto bpf_spin_lock_proto = {
348 .func = bpf_spin_lock,
349 .gpl_only = false,
350 .ret_type = RET_VOID,
351 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
352 .arg1_btf_id = BPF_PTR_POISON,
353 };
354
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)355 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
356 {
357 unsigned long flags;
358
359 flags = __this_cpu_read(irqsave_flags);
360 __bpf_spin_unlock(lock);
361 local_irq_restore(flags);
362 }
363
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)364 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
365 {
366 __bpf_spin_unlock_irqrestore(lock);
367 return 0;
368 }
369
370 const struct bpf_func_proto bpf_spin_unlock_proto = {
371 .func = bpf_spin_unlock,
372 .gpl_only = false,
373 .ret_type = RET_VOID,
374 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
375 .arg1_btf_id = BPF_PTR_POISON,
376 };
377
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)378 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
379 bool lock_src)
380 {
381 struct bpf_spin_lock *lock;
382
383 if (lock_src)
384 lock = src + map->record->spin_lock_off;
385 else
386 lock = dst + map->record->spin_lock_off;
387 preempt_disable();
388 __bpf_spin_lock_irqsave(lock);
389 copy_map_value(map, dst, src);
390 __bpf_spin_unlock_irqrestore(lock);
391 preempt_enable();
392 }
393
BPF_CALL_0(bpf_jiffies64)394 BPF_CALL_0(bpf_jiffies64)
395 {
396 return get_jiffies_64();
397 }
398
399 const struct bpf_func_proto bpf_jiffies64_proto = {
400 .func = bpf_jiffies64,
401 .gpl_only = false,
402 .ret_type = RET_INTEGER,
403 };
404
405 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)406 BPF_CALL_0(bpf_get_current_cgroup_id)
407 {
408 struct cgroup *cgrp;
409 u64 cgrp_id;
410
411 rcu_read_lock();
412 cgrp = task_dfl_cgroup(current);
413 cgrp_id = cgroup_id(cgrp);
414 rcu_read_unlock();
415
416 return cgrp_id;
417 }
418
419 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
420 .func = bpf_get_current_cgroup_id,
421 .gpl_only = false,
422 .ret_type = RET_INTEGER,
423 };
424
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)425 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
426 {
427 struct cgroup *cgrp;
428 struct cgroup *ancestor;
429 u64 cgrp_id;
430
431 rcu_read_lock();
432 cgrp = task_dfl_cgroup(current);
433 ancestor = cgroup_ancestor(cgrp, ancestor_level);
434 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
435 rcu_read_unlock();
436
437 return cgrp_id;
438 }
439
440 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
441 .func = bpf_get_current_ancestor_cgroup_id,
442 .gpl_only = false,
443 .ret_type = RET_INTEGER,
444 .arg1_type = ARG_ANYTHING,
445 };
446 #endif /* CONFIG_CGROUPS */
447
448 #define BPF_STRTOX_BASE_MASK 0x1F
449
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)450 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
451 unsigned long long *res, bool *is_negative)
452 {
453 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
454 const char *cur_buf = buf;
455 size_t cur_len = buf_len;
456 unsigned int consumed;
457 size_t val_len;
458 char str[64];
459
460 if (!buf || !buf_len || !res || !is_negative)
461 return -EINVAL;
462
463 if (base != 0 && base != 8 && base != 10 && base != 16)
464 return -EINVAL;
465
466 if (flags & ~BPF_STRTOX_BASE_MASK)
467 return -EINVAL;
468
469 while (cur_buf < buf + buf_len && isspace(*cur_buf))
470 ++cur_buf;
471
472 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
473 if (*is_negative)
474 ++cur_buf;
475
476 consumed = cur_buf - buf;
477 cur_len -= consumed;
478 if (!cur_len)
479 return -EINVAL;
480
481 cur_len = min(cur_len, sizeof(str) - 1);
482 memcpy(str, cur_buf, cur_len);
483 str[cur_len] = '\0';
484 cur_buf = str;
485
486 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
487 val_len = _parse_integer(cur_buf, base, res);
488
489 if (val_len & KSTRTOX_OVERFLOW)
490 return -ERANGE;
491
492 if (val_len == 0)
493 return -EINVAL;
494
495 cur_buf += val_len;
496 consumed += cur_buf - str;
497
498 return consumed;
499 }
500
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)501 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
502 long long *res)
503 {
504 unsigned long long _res;
505 bool is_negative;
506 int err;
507
508 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
509 if (err < 0)
510 return err;
511 if (is_negative) {
512 if ((long long)-_res > 0)
513 return -ERANGE;
514 *res = -_res;
515 } else {
516 if ((long long)_res < 0)
517 return -ERANGE;
518 *res = _res;
519 }
520 return err;
521 }
522
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)523 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
524 s64 *, res)
525 {
526 long long _res;
527 int err;
528
529 *res = 0;
530 err = __bpf_strtoll(buf, buf_len, flags, &_res);
531 if (err < 0)
532 return err;
533 *res = _res;
534 return err;
535 }
536
537 const struct bpf_func_proto bpf_strtol_proto = {
538 .func = bpf_strtol,
539 .gpl_only = false,
540 .ret_type = RET_INTEGER,
541 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
542 .arg2_type = ARG_CONST_SIZE,
543 .arg3_type = ARG_ANYTHING,
544 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
545 .arg4_size = sizeof(s64),
546 };
547
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)548 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
549 u64 *, res)
550 {
551 unsigned long long _res;
552 bool is_negative;
553 int err;
554
555 *res = 0;
556 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
557 if (err < 0)
558 return err;
559 if (is_negative)
560 return -EINVAL;
561 *res = _res;
562 return err;
563 }
564
565 const struct bpf_func_proto bpf_strtoul_proto = {
566 .func = bpf_strtoul,
567 .gpl_only = false,
568 .ret_type = RET_INTEGER,
569 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
570 .arg2_type = ARG_CONST_SIZE,
571 .arg3_type = ARG_ANYTHING,
572 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
573 .arg4_size = sizeof(u64),
574 };
575
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)576 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
577 {
578 return strncmp(s1, s2, s1_sz);
579 }
580
581 static const struct bpf_func_proto bpf_strncmp_proto = {
582 .func = bpf_strncmp,
583 .gpl_only = false,
584 .ret_type = RET_INTEGER,
585 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
586 .arg2_type = ARG_CONST_SIZE,
587 .arg3_type = ARG_PTR_TO_CONST_STR,
588 };
589
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)590 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
591 struct bpf_pidns_info *, nsdata, u32, size)
592 {
593 struct task_struct *task = current;
594 struct pid_namespace *pidns;
595 int err = -EINVAL;
596
597 if (unlikely(size != sizeof(struct bpf_pidns_info)))
598 goto clear;
599
600 if (unlikely((u64)(dev_t)dev != dev))
601 goto clear;
602
603 if (unlikely(!task))
604 goto clear;
605
606 pidns = task_active_pid_ns(task);
607 if (unlikely(!pidns)) {
608 err = -ENOENT;
609 goto clear;
610 }
611
612 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
613 goto clear;
614
615 nsdata->pid = task_pid_nr_ns(task, pidns);
616 nsdata->tgid = task_tgid_nr_ns(task, pidns);
617 return 0;
618 clear:
619 memset((void *)nsdata, 0, (size_t) size);
620 return err;
621 }
622
623 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
624 .func = bpf_get_ns_current_pid_tgid,
625 .gpl_only = false,
626 .ret_type = RET_INTEGER,
627 .arg1_type = ARG_ANYTHING,
628 .arg2_type = ARG_ANYTHING,
629 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
630 .arg4_type = ARG_CONST_SIZE,
631 };
632
633 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
634 .func = bpf_get_raw_cpu_id,
635 .gpl_only = false,
636 .ret_type = RET_INTEGER,
637 };
638
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)639 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
640 u64, flags, void *, data, u64, size)
641 {
642 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
643 return -EINVAL;
644
645 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
646 }
647
648 const struct bpf_func_proto bpf_event_output_data_proto = {
649 .func = bpf_event_output_data,
650 .gpl_only = true,
651 .ret_type = RET_INTEGER,
652 .arg1_type = ARG_PTR_TO_CTX,
653 .arg2_type = ARG_CONST_MAP_PTR,
654 .arg3_type = ARG_ANYTHING,
655 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
656 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
657 };
658
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)659 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
660 const void __user *, user_ptr)
661 {
662 int ret = copy_from_user(dst, user_ptr, size);
663
664 if (unlikely(ret)) {
665 memset(dst, 0, size);
666 ret = -EFAULT;
667 }
668
669 return ret;
670 }
671
672 const struct bpf_func_proto bpf_copy_from_user_proto = {
673 .func = bpf_copy_from_user,
674 .gpl_only = false,
675 .might_sleep = true,
676 .ret_type = RET_INTEGER,
677 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
678 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
679 .arg3_type = ARG_ANYTHING,
680 };
681
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)682 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
683 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
684 {
685 int ret;
686
687 /* flags is not used yet */
688 if (unlikely(flags))
689 return -EINVAL;
690
691 if (unlikely(!size))
692 return 0;
693
694 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
695 if (ret == size)
696 return 0;
697
698 memset(dst, 0, size);
699 /* Return -EFAULT for partial read */
700 return ret < 0 ? ret : -EFAULT;
701 }
702
703 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
704 .func = bpf_copy_from_user_task,
705 .gpl_only = true,
706 .might_sleep = true,
707 .ret_type = RET_INTEGER,
708 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
709 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
710 .arg3_type = ARG_ANYTHING,
711 .arg4_type = ARG_PTR_TO_BTF_ID,
712 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
713 .arg5_type = ARG_ANYTHING
714 };
715
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)716 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
717 {
718 if (cpu >= nr_cpu_ids)
719 return (unsigned long)NULL;
720
721 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
722 }
723
724 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
725 .func = bpf_per_cpu_ptr,
726 .gpl_only = false,
727 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
728 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
729 .arg2_type = ARG_ANYTHING,
730 };
731
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)732 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
733 {
734 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
735 }
736
737 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
738 .func = bpf_this_cpu_ptr,
739 .gpl_only = false,
740 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
741 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
742 };
743
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)744 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
745 size_t bufsz)
746 {
747 void __user *user_ptr = (__force void __user *)unsafe_ptr;
748
749 buf[0] = 0;
750
751 switch (fmt_ptype) {
752 case 's':
753 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
754 if ((unsigned long)unsafe_ptr < TASK_SIZE)
755 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
756 fallthrough;
757 #endif
758 case 'k':
759 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
760 case 'u':
761 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
762 }
763
764 return -EINVAL;
765 }
766
767 /* Support executing three nested bprintf helper calls on a given CPU */
768 #define MAX_BPRINTF_NEST_LEVEL 3
769
770 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
771 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
772
bpf_try_get_buffers(struct bpf_bprintf_buffers ** bufs)773 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
774 {
775 int nest_level;
776
777 preempt_disable();
778 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
779 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
780 this_cpu_dec(bpf_bprintf_nest_level);
781 preempt_enable();
782 return -EBUSY;
783 }
784 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
785
786 return 0;
787 }
788
bpf_put_buffers(void)789 void bpf_put_buffers(void)
790 {
791 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
792 return;
793 this_cpu_dec(bpf_bprintf_nest_level);
794 preempt_enable();
795 }
796
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 if (!data->bin_args && !data->buf)
800 return;
801 bpf_put_buffers();
802 }
803
804 /*
805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806 *
807 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808 *
809 * This can be used in two ways:
810 * - Format string verification only: when data->get_bin_args is false
811 * - Arguments preparation: in addition to the above verification, it writes in
812 * data->bin_args a binary representation of arguments usable by bstr_printf
813 * where pointers from BPF have been sanitized.
814 *
815 * In argument preparation mode, if 0 is returned, safe temporary buffers are
816 * allocated and bpf_bprintf_cleanup should be called to free them after use.
817 */
bpf_bprintf_prepare(const char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819 u32 num_args, struct bpf_bprintf_data *data)
820 {
821 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 struct bpf_bprintf_buffers *buffers = NULL;
824 size_t sizeof_cur_arg, sizeof_cur_ip;
825 int err, i, num_spec = 0;
826 u64 cur_arg;
827 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828
829 fmt_end = strnchr(fmt, fmt_size, 0);
830 if (!fmt_end)
831 return -EINVAL;
832 fmt_size = fmt_end - fmt;
833
834 if (get_buffers && bpf_try_get_buffers(&buffers))
835 return -EBUSY;
836
837 if (data->get_bin_args) {
838 if (num_args)
839 tmp_buf = buffers->bin_args;
840 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 data->bin_args = (u32 *)tmp_buf;
842 }
843
844 if (data->get_buf)
845 data->buf = buffers->buf;
846
847 for (i = 0; i < fmt_size; i++) {
848 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 err = -EINVAL;
850 goto out;
851 }
852
853 if (fmt[i] != '%')
854 continue;
855
856 if (fmt[i + 1] == '%') {
857 i++;
858 continue;
859 }
860
861 if (num_spec >= num_args) {
862 err = -EINVAL;
863 goto out;
864 }
865
866 /* The string is zero-terminated so if fmt[i] != 0, we can
867 * always access fmt[i + 1], in the worst case it will be a 0
868 */
869 i++;
870
871 /* skip optional "[0 +-][num]" width formatting field */
872 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
873 fmt[i] == ' ')
874 i++;
875 if (fmt[i] >= '1' && fmt[i] <= '9') {
876 i++;
877 while (fmt[i] >= '0' && fmt[i] <= '9')
878 i++;
879 }
880
881 if (fmt[i] == 'p') {
882 sizeof_cur_arg = sizeof(long);
883
884 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 ispunct(fmt[i + 1])) {
886 if (tmp_buf)
887 cur_arg = raw_args[num_spec];
888 goto nocopy_fmt;
889 }
890
891 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892 fmt[i + 2] == 's') {
893 fmt_ptype = fmt[i + 1];
894 i += 2;
895 goto fmt_str;
896 }
897
898 if (fmt[i + 1] == 'K' ||
899 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900 fmt[i + 1] == 'S') {
901 if (tmp_buf)
902 cur_arg = raw_args[num_spec];
903 i++;
904 goto nocopy_fmt;
905 }
906
907 if (fmt[i + 1] == 'B') {
908 if (tmp_buf) {
909 err = snprintf(tmp_buf,
910 (tmp_buf_end - tmp_buf),
911 "%pB",
912 (void *)(long)raw_args[num_spec]);
913 tmp_buf += (err + 1);
914 }
915
916 i++;
917 num_spec++;
918 continue;
919 }
920
921 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924 err = -EINVAL;
925 goto out;
926 }
927
928 i += 2;
929 if (!tmp_buf)
930 goto nocopy_fmt;
931
932 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934 err = -ENOSPC;
935 goto out;
936 }
937
938 unsafe_ptr = (char *)(long)raw_args[num_spec];
939 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940 sizeof_cur_ip);
941 if (err < 0)
942 memset(cur_ip, 0, sizeof_cur_ip);
943
944 /* hack: bstr_printf expects IP addresses to be
945 * pre-formatted as strings, ironically, the easiest way
946 * to do that is to call snprintf.
947 */
948 ip_spec[2] = fmt[i - 1];
949 ip_spec[3] = fmt[i];
950 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951 ip_spec, &cur_ip);
952
953 tmp_buf += err + 1;
954 num_spec++;
955
956 continue;
957 } else if (fmt[i] == 's') {
958 fmt_ptype = fmt[i];
959 fmt_str:
960 if (fmt[i + 1] != 0 &&
961 !isspace(fmt[i + 1]) &&
962 !ispunct(fmt[i + 1])) {
963 err = -EINVAL;
964 goto out;
965 }
966
967 if (!tmp_buf)
968 goto nocopy_fmt;
969
970 if (tmp_buf_end == tmp_buf) {
971 err = -ENOSPC;
972 goto out;
973 }
974
975 unsafe_ptr = (char *)(long)raw_args[num_spec];
976 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977 fmt_ptype,
978 tmp_buf_end - tmp_buf);
979 if (err < 0) {
980 tmp_buf[0] = '\0';
981 err = 1;
982 }
983
984 tmp_buf += err;
985 num_spec++;
986
987 continue;
988 } else if (fmt[i] == 'c') {
989 if (!tmp_buf)
990 goto nocopy_fmt;
991
992 if (tmp_buf_end == tmp_buf) {
993 err = -ENOSPC;
994 goto out;
995 }
996
997 *tmp_buf = raw_args[num_spec];
998 tmp_buf++;
999 num_spec++;
1000
1001 continue;
1002 }
1003
1004 sizeof_cur_arg = sizeof(int);
1005
1006 if (fmt[i] == 'l') {
1007 sizeof_cur_arg = sizeof(long);
1008 i++;
1009 }
1010 if (fmt[i] == 'l') {
1011 sizeof_cur_arg = sizeof(long long);
1012 i++;
1013 }
1014
1015 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016 fmt[i] != 'x' && fmt[i] != 'X') {
1017 err = -EINVAL;
1018 goto out;
1019 }
1020
1021 if (tmp_buf)
1022 cur_arg = raw_args[num_spec];
1023 nocopy_fmt:
1024 if (tmp_buf) {
1025 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027 err = -ENOSPC;
1028 goto out;
1029 }
1030
1031 if (sizeof_cur_arg == 8) {
1032 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034 } else {
1035 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1036 }
1037 tmp_buf += sizeof_cur_arg;
1038 }
1039 num_spec++;
1040 }
1041
1042 err = 0;
1043 out:
1044 if (err)
1045 bpf_bprintf_cleanup(data);
1046 return err;
1047 }
1048
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050 const void *, args, u32, data_len)
1051 {
1052 struct bpf_bprintf_data data = {
1053 .get_bin_args = true,
1054 };
1055 int err, num_args;
1056
1057 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058 (data_len && !args))
1059 return -EINVAL;
1060 num_args = data_len / 8;
1061
1062 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063 * can safely give an unbounded size.
1064 */
1065 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066 if (err < 0)
1067 return err;
1068
1069 err = bstr_printf(str, str_size, fmt, data.bin_args);
1070
1071 bpf_bprintf_cleanup(&data);
1072
1073 return err + 1;
1074 }
1075
1076 const struct bpf_func_proto bpf_snprintf_proto = {
1077 .func = bpf_snprintf,
1078 .gpl_only = true,
1079 .ret_type = RET_INTEGER,
1080 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1081 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1082 .arg3_type = ARG_PTR_TO_CONST_STR,
1083 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1085 };
1086
1087 struct bpf_async_cb {
1088 struct bpf_map *map;
1089 struct bpf_prog *prog;
1090 void __rcu *callback_fn;
1091 void *value;
1092 union {
1093 struct rcu_head rcu;
1094 struct work_struct delete_work;
1095 };
1096 u64 flags;
1097 };
1098
1099 /* BPF map elements can contain 'struct bpf_timer'.
1100 * Such map owns all of its BPF timers.
1101 * 'struct bpf_timer' is allocated as part of map element allocation
1102 * and it's zero initialized.
1103 * That space is used to keep 'struct bpf_async_kern'.
1104 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1105 * remembers 'struct bpf_map *' pointer it's part of.
1106 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1107 * bpf_timer_start() arms the timer.
1108 * If user space reference to a map goes to zero at this point
1109 * ops->map_release_uref callback is responsible for cancelling the timers,
1110 * freeing their memory, and decrementing prog's refcnts.
1111 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1112 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1113 * freeing the timers when inner map is replaced or deleted by user space.
1114 */
1115 struct bpf_hrtimer {
1116 struct bpf_async_cb cb;
1117 struct hrtimer timer;
1118 atomic_t cancelling;
1119 };
1120
1121 struct bpf_work {
1122 struct bpf_async_cb cb;
1123 struct work_struct work;
1124 struct work_struct delete_work;
1125 };
1126
1127 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1128 struct bpf_async_kern {
1129 union {
1130 struct bpf_async_cb *cb;
1131 struct bpf_hrtimer *timer;
1132 struct bpf_work *work;
1133 };
1134 /* bpf_spin_lock is used here instead of spinlock_t to make
1135 * sure that it always fits into space reserved by struct bpf_timer
1136 * regardless of LOCKDEP and spinlock debug flags.
1137 */
1138 struct bpf_spin_lock lock;
1139 } __attribute__((aligned(8)));
1140
1141 enum bpf_async_type {
1142 BPF_ASYNC_TYPE_TIMER = 0,
1143 BPF_ASYNC_TYPE_WQ,
1144 };
1145
1146 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1147
bpf_timer_cb(struct hrtimer * hrtimer)1148 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1149 {
1150 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1151 struct bpf_map *map = t->cb.map;
1152 void *value = t->cb.value;
1153 bpf_callback_t callback_fn;
1154 void *key;
1155 u32 idx;
1156
1157 BTF_TYPE_EMIT(struct bpf_timer);
1158 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1159 if (!callback_fn)
1160 goto out;
1161
1162 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1163 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1164 * Remember the timer this callback is servicing to prevent
1165 * deadlock if callback_fn() calls bpf_timer_cancel() or
1166 * bpf_map_delete_elem() on the same timer.
1167 */
1168 this_cpu_write(hrtimer_running, t);
1169 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1170 struct bpf_array *array = container_of(map, struct bpf_array, map);
1171
1172 /* compute the key */
1173 idx = ((char *)value - array->value) / array->elem_size;
1174 key = &idx;
1175 } else { /* hash or lru */
1176 key = value - round_up(map->key_size, 8);
1177 }
1178
1179 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1180 /* The verifier checked that return value is zero. */
1181
1182 this_cpu_write(hrtimer_running, NULL);
1183 out:
1184 return HRTIMER_NORESTART;
1185 }
1186
bpf_wq_work(struct work_struct * work)1187 static void bpf_wq_work(struct work_struct *work)
1188 {
1189 struct bpf_work *w = container_of(work, struct bpf_work, work);
1190 struct bpf_async_cb *cb = &w->cb;
1191 struct bpf_map *map = cb->map;
1192 bpf_callback_t callback_fn;
1193 void *value = cb->value;
1194 void *key;
1195 u32 idx;
1196
1197 BTF_TYPE_EMIT(struct bpf_wq);
1198
1199 callback_fn = READ_ONCE(cb->callback_fn);
1200 if (!callback_fn)
1201 return;
1202
1203 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1204 struct bpf_array *array = container_of(map, struct bpf_array, map);
1205
1206 /* compute the key */
1207 idx = ((char *)value - array->value) / array->elem_size;
1208 key = &idx;
1209 } else { /* hash or lru */
1210 key = value - round_up(map->key_size, 8);
1211 }
1212
1213 rcu_read_lock_trace();
1214 migrate_disable();
1215
1216 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1217
1218 migrate_enable();
1219 rcu_read_unlock_trace();
1220 }
1221
bpf_wq_delete_work(struct work_struct * work)1222 static void bpf_wq_delete_work(struct work_struct *work)
1223 {
1224 struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1225
1226 cancel_work_sync(&w->work);
1227
1228 kfree_rcu(w, cb.rcu);
1229 }
1230
bpf_timer_delete_work(struct work_struct * work)1231 static void bpf_timer_delete_work(struct work_struct *work)
1232 {
1233 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1234
1235 /* Cancel the timer and wait for callback to complete if it was running.
1236 * If hrtimer_cancel() can be safely called it's safe to call
1237 * kfree_rcu(t) right after for both preallocated and non-preallocated
1238 * maps. The async->cb = NULL was already done and no code path can see
1239 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1240 * bpf_timer_cancel_and_free will have been cancelled.
1241 */
1242 hrtimer_cancel(&t->timer);
1243 kfree_rcu(t, cb.rcu);
1244 }
1245
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1246 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1247 enum bpf_async_type type)
1248 {
1249 struct bpf_async_cb *cb;
1250 struct bpf_hrtimer *t;
1251 struct bpf_work *w;
1252 clockid_t clockid;
1253 size_t size;
1254 int ret = 0;
1255
1256 if (in_nmi())
1257 return -EOPNOTSUPP;
1258
1259 switch (type) {
1260 case BPF_ASYNC_TYPE_TIMER:
1261 size = sizeof(struct bpf_hrtimer);
1262 break;
1263 case BPF_ASYNC_TYPE_WQ:
1264 size = sizeof(struct bpf_work);
1265 break;
1266 default:
1267 return -EINVAL;
1268 }
1269
1270 __bpf_spin_lock_irqsave(&async->lock);
1271 t = async->timer;
1272 if (t) {
1273 ret = -EBUSY;
1274 goto out;
1275 }
1276
1277 /* Allocate via bpf_map_kmalloc_node() for memcg accounting. Until
1278 * kmalloc_nolock() is available, avoid locking issues by using
1279 * __GFP_HIGH (GFP_ATOMIC & ~__GFP_RECLAIM).
1280 */
1281 cb = bpf_map_kmalloc_node(map, size, __GFP_HIGH, map->numa_node);
1282 if (!cb) {
1283 ret = -ENOMEM;
1284 goto out;
1285 }
1286
1287 switch (type) {
1288 case BPF_ASYNC_TYPE_TIMER:
1289 clockid = flags & (MAX_CLOCKS - 1);
1290 t = (struct bpf_hrtimer *)cb;
1291
1292 atomic_set(&t->cancelling, 0);
1293 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1294 hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1295 cb->value = (void *)async - map->record->timer_off;
1296 break;
1297 case BPF_ASYNC_TYPE_WQ:
1298 w = (struct bpf_work *)cb;
1299
1300 INIT_WORK(&w->work, bpf_wq_work);
1301 INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1302 cb->value = (void *)async - map->record->wq_off;
1303 break;
1304 }
1305 cb->map = map;
1306 cb->prog = NULL;
1307 cb->flags = flags;
1308 rcu_assign_pointer(cb->callback_fn, NULL);
1309
1310 WRITE_ONCE(async->cb, cb);
1311 /* Guarantee the order between async->cb and map->usercnt. So
1312 * when there are concurrent uref release and bpf timer init, either
1313 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1314 * timer or atomic64_read() below returns a zero usercnt.
1315 */
1316 smp_mb();
1317 if (!atomic64_read(&map->usercnt)) {
1318 /* maps with timers must be either held by user space
1319 * or pinned in bpffs.
1320 */
1321 WRITE_ONCE(async->cb, NULL);
1322 kfree(cb);
1323 ret = -EPERM;
1324 }
1325 out:
1326 __bpf_spin_unlock_irqrestore(&async->lock);
1327 return ret;
1328 }
1329
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1330 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1331 u64, flags)
1332 {
1333 clock_t clockid = flags & (MAX_CLOCKS - 1);
1334
1335 BUILD_BUG_ON(MAX_CLOCKS != 16);
1336 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1337 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1338
1339 if (flags >= MAX_CLOCKS ||
1340 /* similar to timerfd except _ALARM variants are not supported */
1341 (clockid != CLOCK_MONOTONIC &&
1342 clockid != CLOCK_REALTIME &&
1343 clockid != CLOCK_BOOTTIME))
1344 return -EINVAL;
1345
1346 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1347 }
1348
1349 static const struct bpf_func_proto bpf_timer_init_proto = {
1350 .func = bpf_timer_init,
1351 .gpl_only = true,
1352 .ret_type = RET_INTEGER,
1353 .arg1_type = ARG_PTR_TO_TIMER,
1354 .arg2_type = ARG_CONST_MAP_PTR,
1355 .arg3_type = ARG_ANYTHING,
1356 };
1357
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1358 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1359 struct bpf_prog_aux *aux, unsigned int flags,
1360 enum bpf_async_type type)
1361 {
1362 struct bpf_prog *prev, *prog = aux->prog;
1363 struct bpf_async_cb *cb;
1364 int ret = 0;
1365
1366 if (in_nmi())
1367 return -EOPNOTSUPP;
1368 __bpf_spin_lock_irqsave(&async->lock);
1369 cb = async->cb;
1370 if (!cb) {
1371 ret = -EINVAL;
1372 goto out;
1373 }
1374 if (!atomic64_read(&cb->map->usercnt)) {
1375 /* maps with timers must be either held by user space
1376 * or pinned in bpffs. Otherwise timer might still be
1377 * running even when bpf prog is detached and user space
1378 * is gone, since map_release_uref won't ever be called.
1379 */
1380 ret = -EPERM;
1381 goto out;
1382 }
1383 prev = cb->prog;
1384 if (prev != prog) {
1385 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1386 * can pick different callback_fn-s within the same prog.
1387 */
1388 prog = bpf_prog_inc_not_zero(prog);
1389 if (IS_ERR(prog)) {
1390 ret = PTR_ERR(prog);
1391 goto out;
1392 }
1393 if (prev)
1394 /* Drop prev prog refcnt when swapping with new prog */
1395 bpf_prog_put(prev);
1396 cb->prog = prog;
1397 }
1398 rcu_assign_pointer(cb->callback_fn, callback_fn);
1399 out:
1400 __bpf_spin_unlock_irqrestore(&async->lock);
1401 return ret;
1402 }
1403
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1404 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1405 struct bpf_prog_aux *, aux)
1406 {
1407 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1408 }
1409
1410 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1411 .func = bpf_timer_set_callback,
1412 .gpl_only = true,
1413 .ret_type = RET_INTEGER,
1414 .arg1_type = ARG_PTR_TO_TIMER,
1415 .arg2_type = ARG_PTR_TO_FUNC,
1416 };
1417
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1418 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1419 {
1420 struct bpf_hrtimer *t;
1421 int ret = 0;
1422 enum hrtimer_mode mode;
1423
1424 if (in_nmi())
1425 return -EOPNOTSUPP;
1426 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1427 return -EINVAL;
1428 __bpf_spin_lock_irqsave(&timer->lock);
1429 t = timer->timer;
1430 if (!t || !t->cb.prog) {
1431 ret = -EINVAL;
1432 goto out;
1433 }
1434
1435 if (flags & BPF_F_TIMER_ABS)
1436 mode = HRTIMER_MODE_ABS_SOFT;
1437 else
1438 mode = HRTIMER_MODE_REL_SOFT;
1439
1440 if (flags & BPF_F_TIMER_CPU_PIN)
1441 mode |= HRTIMER_MODE_PINNED;
1442
1443 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1444 out:
1445 __bpf_spin_unlock_irqrestore(&timer->lock);
1446 return ret;
1447 }
1448
1449 static const struct bpf_func_proto bpf_timer_start_proto = {
1450 .func = bpf_timer_start,
1451 .gpl_only = true,
1452 .ret_type = RET_INTEGER,
1453 .arg1_type = ARG_PTR_TO_TIMER,
1454 .arg2_type = ARG_ANYTHING,
1455 .arg3_type = ARG_ANYTHING,
1456 };
1457
drop_prog_refcnt(struct bpf_async_cb * async)1458 static void drop_prog_refcnt(struct bpf_async_cb *async)
1459 {
1460 struct bpf_prog *prog = async->prog;
1461
1462 if (prog) {
1463 bpf_prog_put(prog);
1464 async->prog = NULL;
1465 rcu_assign_pointer(async->callback_fn, NULL);
1466 }
1467 }
1468
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1469 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1470 {
1471 struct bpf_hrtimer *t, *cur_t;
1472 bool inc = false;
1473 int ret = 0;
1474
1475 if (in_nmi())
1476 return -EOPNOTSUPP;
1477 rcu_read_lock();
1478 __bpf_spin_lock_irqsave(&timer->lock);
1479 t = timer->timer;
1480 if (!t) {
1481 ret = -EINVAL;
1482 goto out;
1483 }
1484
1485 cur_t = this_cpu_read(hrtimer_running);
1486 if (cur_t == t) {
1487 /* If bpf callback_fn is trying to bpf_timer_cancel()
1488 * its own timer the hrtimer_cancel() will deadlock
1489 * since it waits for callback_fn to finish.
1490 */
1491 ret = -EDEADLK;
1492 goto out;
1493 }
1494
1495 /* Only account in-flight cancellations when invoked from a timer
1496 * callback, since we want to avoid waiting only if other _callbacks_
1497 * are waiting on us, to avoid introducing lockups. Non-callback paths
1498 * are ok, since nobody would synchronously wait for their completion.
1499 */
1500 if (!cur_t)
1501 goto drop;
1502 atomic_inc(&t->cancelling);
1503 /* Need full barrier after relaxed atomic_inc */
1504 smp_mb__after_atomic();
1505 inc = true;
1506 if (atomic_read(&cur_t->cancelling)) {
1507 /* We're cancelling timer t, while some other timer callback is
1508 * attempting to cancel us. In such a case, it might be possible
1509 * that timer t belongs to the other callback, or some other
1510 * callback waiting upon it (creating transitive dependencies
1511 * upon us), and we will enter a deadlock if we continue
1512 * cancelling and waiting for it synchronously, since it might
1513 * do the same. Bail!
1514 */
1515 ret = -EDEADLK;
1516 goto out;
1517 }
1518 drop:
1519 drop_prog_refcnt(&t->cb);
1520 out:
1521 __bpf_spin_unlock_irqrestore(&timer->lock);
1522 /* Cancel the timer and wait for associated callback to finish
1523 * if it was running.
1524 */
1525 ret = ret ?: hrtimer_cancel(&t->timer);
1526 if (inc)
1527 atomic_dec(&t->cancelling);
1528 rcu_read_unlock();
1529 return ret;
1530 }
1531
1532 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1533 .func = bpf_timer_cancel,
1534 .gpl_only = true,
1535 .ret_type = RET_INTEGER,
1536 .arg1_type = ARG_PTR_TO_TIMER,
1537 };
1538
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1539 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1540 {
1541 struct bpf_async_cb *cb;
1542
1543 /* Performance optimization: read async->cb without lock first. */
1544 if (!READ_ONCE(async->cb))
1545 return NULL;
1546
1547 __bpf_spin_lock_irqsave(&async->lock);
1548 /* re-read it under lock */
1549 cb = async->cb;
1550 if (!cb)
1551 goto out;
1552 drop_prog_refcnt(cb);
1553 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1554 * this timer, since it won't be initialized.
1555 */
1556 WRITE_ONCE(async->cb, NULL);
1557 out:
1558 __bpf_spin_unlock_irqrestore(&async->lock);
1559 return cb;
1560 }
1561
1562 /* This function is called by map_delete/update_elem for individual element and
1563 * by ops->map_release_uref when the user space reference to a map reaches zero.
1564 */
bpf_timer_cancel_and_free(void * val)1565 void bpf_timer_cancel_and_free(void *val)
1566 {
1567 struct bpf_hrtimer *t;
1568
1569 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1570
1571 if (!t)
1572 return;
1573 /* We check that bpf_map_delete/update_elem() was called from timer
1574 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1575 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1576 * just return -1). Though callback_fn is still running on this cpu it's
1577 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1578 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1579 * since async->cb = NULL was already done. The timer will be
1580 * effectively cancelled because bpf_timer_cb() will return
1581 * HRTIMER_NORESTART.
1582 *
1583 * However, it is possible the timer callback_fn calling us armed the
1584 * timer _before_ calling us, such that failing to cancel it here will
1585 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1586 * Therefore, we _need_ to cancel any outstanding timers before we do
1587 * kfree_rcu, even though no more timers can be armed.
1588 *
1589 * Moreover, we need to schedule work even if timer does not belong to
1590 * the calling callback_fn, as on two different CPUs, we can end up in a
1591 * situation where both sides run in parallel, try to cancel one
1592 * another, and we end up waiting on both sides in hrtimer_cancel
1593 * without making forward progress, since timer1 depends on time2
1594 * callback to finish, and vice versa.
1595 *
1596 * CPU 1 (timer1_cb) CPU 2 (timer2_cb)
1597 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1)
1598 *
1599 * To avoid these issues, punt to workqueue context when we are in a
1600 * timer callback.
1601 */
1602 if (this_cpu_read(hrtimer_running)) {
1603 queue_work(system_unbound_wq, &t->cb.delete_work);
1604 return;
1605 }
1606
1607 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1608 /* If the timer is running on other CPU, also use a kworker to
1609 * wait for the completion of the timer instead of trying to
1610 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1611 * completion.
1612 */
1613 if (hrtimer_try_to_cancel(&t->timer) >= 0)
1614 kfree_rcu(t, cb.rcu);
1615 else
1616 queue_work(system_unbound_wq, &t->cb.delete_work);
1617 } else {
1618 bpf_timer_delete_work(&t->cb.delete_work);
1619 }
1620 }
1621
1622 /* This function is called by map_delete/update_elem for individual element and
1623 * by ops->map_release_uref when the user space reference to a map reaches zero.
1624 */
bpf_wq_cancel_and_free(void * val)1625 void bpf_wq_cancel_and_free(void *val)
1626 {
1627 struct bpf_work *work;
1628
1629 BTF_TYPE_EMIT(struct bpf_wq);
1630
1631 work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1632 if (!work)
1633 return;
1634 /* Trigger cancel of the sleepable work, but *do not* wait for
1635 * it to finish if it was running as we might not be in a
1636 * sleepable context.
1637 * kfree will be called once the work has finished.
1638 */
1639 schedule_work(&work->delete_work);
1640 }
1641
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1642 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1643 {
1644 unsigned long *kptr = dst;
1645
1646 /* This helper may be inlined by verifier. */
1647 return xchg(kptr, (unsigned long)ptr);
1648 }
1649
1650 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1651 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1652 * denote type that verifier will determine.
1653 */
1654 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1655 .func = bpf_kptr_xchg,
1656 .gpl_only = false,
1657 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1658 .ret_btf_id = BPF_PTR_POISON,
1659 .arg1_type = ARG_KPTR_XCHG_DEST,
1660 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1661 .arg2_btf_id = BPF_PTR_POISON,
1662 };
1663
1664 /* Since the upper 8 bits of dynptr->size is reserved, the
1665 * maximum supported size is 2^24 - 1.
1666 */
1667 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1668 #define DYNPTR_TYPE_SHIFT 28
1669 #define DYNPTR_SIZE_MASK 0xFFFFFF
1670 #define DYNPTR_RDONLY_BIT BIT(31)
1671
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1672 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1673 {
1674 return ptr->size & DYNPTR_RDONLY_BIT;
1675 }
1676
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1677 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1678 {
1679 ptr->size |= DYNPTR_RDONLY_BIT;
1680 }
1681
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1682 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1683 {
1684 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1685 }
1686
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1687 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1688 {
1689 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1690 }
1691
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1692 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1693 {
1694 return ptr->size & DYNPTR_SIZE_MASK;
1695 }
1696
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1697 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1698 {
1699 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1700
1701 ptr->size = new_size | metadata;
1702 }
1703
bpf_dynptr_check_size(u32 size)1704 int bpf_dynptr_check_size(u32 size)
1705 {
1706 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1707 }
1708
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1709 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1710 enum bpf_dynptr_type type, u32 offset, u32 size)
1711 {
1712 ptr->data = data;
1713 ptr->offset = offset;
1714 ptr->size = size;
1715 bpf_dynptr_set_type(ptr, type);
1716 }
1717
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1718 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1719 {
1720 memset(ptr, 0, sizeof(*ptr));
1721 }
1722
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1723 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1724 {
1725 int err;
1726
1727 BTF_TYPE_EMIT(struct bpf_dynptr);
1728
1729 err = bpf_dynptr_check_size(size);
1730 if (err)
1731 goto error;
1732
1733 /* flags is currently unsupported */
1734 if (flags) {
1735 err = -EINVAL;
1736 goto error;
1737 }
1738
1739 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1740
1741 return 0;
1742
1743 error:
1744 bpf_dynptr_set_null(ptr);
1745 return err;
1746 }
1747
1748 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1749 .func = bpf_dynptr_from_mem,
1750 .gpl_only = false,
1751 .ret_type = RET_INTEGER,
1752 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1753 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1754 .arg3_type = ARG_ANYTHING,
1755 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1756 };
1757
__bpf_dynptr_read(void * dst,u32 len,const struct bpf_dynptr_kern * src,u32 offset,u64 flags)1758 static int __bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr_kern *src,
1759 u32 offset, u64 flags)
1760 {
1761 enum bpf_dynptr_type type;
1762 int err;
1763
1764 if (!src->data || flags)
1765 return -EINVAL;
1766
1767 err = bpf_dynptr_check_off_len(src, offset, len);
1768 if (err)
1769 return err;
1770
1771 type = bpf_dynptr_get_type(src);
1772
1773 switch (type) {
1774 case BPF_DYNPTR_TYPE_LOCAL:
1775 case BPF_DYNPTR_TYPE_RINGBUF:
1776 /* Source and destination may possibly overlap, hence use memmove to
1777 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1778 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1779 */
1780 memmove(dst, src->data + src->offset + offset, len);
1781 return 0;
1782 case BPF_DYNPTR_TYPE_SKB:
1783 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1784 case BPF_DYNPTR_TYPE_XDP:
1785 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1786 default:
1787 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1788 return -EFAULT;
1789 }
1790 }
1791
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1792 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1793 u32, offset, u64, flags)
1794 {
1795 return __bpf_dynptr_read(dst, len, src, offset, flags);
1796 }
1797
1798 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1799 .func = bpf_dynptr_read,
1800 .gpl_only = false,
1801 .ret_type = RET_INTEGER,
1802 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1803 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1804 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1805 .arg4_type = ARG_ANYTHING,
1806 .arg5_type = ARG_ANYTHING,
1807 };
1808
__bpf_dynptr_write(const struct bpf_dynptr_kern * dst,u32 offset,void * src,u32 len,u64 flags)1809 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, void *src,
1810 u32 len, u64 flags)
1811 {
1812 enum bpf_dynptr_type type;
1813 int err;
1814
1815 if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1816 return -EINVAL;
1817
1818 err = bpf_dynptr_check_off_len(dst, offset, len);
1819 if (err)
1820 return err;
1821
1822 type = bpf_dynptr_get_type(dst);
1823
1824 switch (type) {
1825 case BPF_DYNPTR_TYPE_LOCAL:
1826 case BPF_DYNPTR_TYPE_RINGBUF:
1827 if (flags)
1828 return -EINVAL;
1829 /* Source and destination may possibly overlap, hence use memmove to
1830 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1831 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1832 */
1833 memmove(dst->data + dst->offset + offset, src, len);
1834 return 0;
1835 case BPF_DYNPTR_TYPE_SKB:
1836 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1837 flags);
1838 case BPF_DYNPTR_TYPE_XDP:
1839 if (flags)
1840 return -EINVAL;
1841 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1842 default:
1843 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1844 return -EFAULT;
1845 }
1846 }
1847
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1848 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1849 u32, len, u64, flags)
1850 {
1851 return __bpf_dynptr_write(dst, offset, src, len, flags);
1852 }
1853
1854 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1855 .func = bpf_dynptr_write,
1856 .gpl_only = false,
1857 .ret_type = RET_INTEGER,
1858 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1859 .arg2_type = ARG_ANYTHING,
1860 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1861 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1862 .arg5_type = ARG_ANYTHING,
1863 };
1864
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1865 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1866 {
1867 enum bpf_dynptr_type type;
1868 int err;
1869
1870 if (!ptr->data)
1871 return 0;
1872
1873 err = bpf_dynptr_check_off_len(ptr, offset, len);
1874 if (err)
1875 return 0;
1876
1877 if (__bpf_dynptr_is_rdonly(ptr))
1878 return 0;
1879
1880 type = bpf_dynptr_get_type(ptr);
1881
1882 switch (type) {
1883 case BPF_DYNPTR_TYPE_LOCAL:
1884 case BPF_DYNPTR_TYPE_RINGBUF:
1885 return (unsigned long)(ptr->data + ptr->offset + offset);
1886 case BPF_DYNPTR_TYPE_SKB:
1887 case BPF_DYNPTR_TYPE_XDP:
1888 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1889 return 0;
1890 default:
1891 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1892 return 0;
1893 }
1894 }
1895
1896 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1897 .func = bpf_dynptr_data,
1898 .gpl_only = false,
1899 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1900 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1901 .arg2_type = ARG_ANYTHING,
1902 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1903 };
1904
1905 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1906 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1907 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1908 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1909 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1910 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1911 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1912 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1913 const struct bpf_func_proto bpf_send_signal_proto __weak;
1914 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1915 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1916 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1917 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1918
1919 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1920 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1921 {
1922 switch (func_id) {
1923 case BPF_FUNC_map_lookup_elem:
1924 return &bpf_map_lookup_elem_proto;
1925 case BPF_FUNC_map_update_elem:
1926 return &bpf_map_update_elem_proto;
1927 case BPF_FUNC_map_delete_elem:
1928 return &bpf_map_delete_elem_proto;
1929 case BPF_FUNC_map_push_elem:
1930 return &bpf_map_push_elem_proto;
1931 case BPF_FUNC_map_pop_elem:
1932 return &bpf_map_pop_elem_proto;
1933 case BPF_FUNC_map_peek_elem:
1934 return &bpf_map_peek_elem_proto;
1935 case BPF_FUNC_map_lookup_percpu_elem:
1936 return &bpf_map_lookup_percpu_elem_proto;
1937 case BPF_FUNC_get_prandom_u32:
1938 return &bpf_get_prandom_u32_proto;
1939 case BPF_FUNC_get_smp_processor_id:
1940 return &bpf_get_raw_smp_processor_id_proto;
1941 case BPF_FUNC_get_numa_node_id:
1942 return &bpf_get_numa_node_id_proto;
1943 case BPF_FUNC_tail_call:
1944 return &bpf_tail_call_proto;
1945 case BPF_FUNC_ktime_get_ns:
1946 return &bpf_ktime_get_ns_proto;
1947 case BPF_FUNC_ktime_get_boot_ns:
1948 return &bpf_ktime_get_boot_ns_proto;
1949 case BPF_FUNC_ktime_get_tai_ns:
1950 return &bpf_ktime_get_tai_ns_proto;
1951 case BPF_FUNC_ringbuf_output:
1952 return &bpf_ringbuf_output_proto;
1953 case BPF_FUNC_ringbuf_reserve:
1954 return &bpf_ringbuf_reserve_proto;
1955 case BPF_FUNC_ringbuf_submit:
1956 return &bpf_ringbuf_submit_proto;
1957 case BPF_FUNC_ringbuf_discard:
1958 return &bpf_ringbuf_discard_proto;
1959 case BPF_FUNC_ringbuf_query:
1960 return &bpf_ringbuf_query_proto;
1961 case BPF_FUNC_strncmp:
1962 return &bpf_strncmp_proto;
1963 case BPF_FUNC_strtol:
1964 return &bpf_strtol_proto;
1965 case BPF_FUNC_strtoul:
1966 return &bpf_strtoul_proto;
1967 case BPF_FUNC_get_current_pid_tgid:
1968 return &bpf_get_current_pid_tgid_proto;
1969 case BPF_FUNC_get_ns_current_pid_tgid:
1970 return &bpf_get_ns_current_pid_tgid_proto;
1971 case BPF_FUNC_get_current_uid_gid:
1972 return &bpf_get_current_uid_gid_proto;
1973 default:
1974 break;
1975 }
1976
1977 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1978 return NULL;
1979
1980 switch (func_id) {
1981 case BPF_FUNC_spin_lock:
1982 return &bpf_spin_lock_proto;
1983 case BPF_FUNC_spin_unlock:
1984 return &bpf_spin_unlock_proto;
1985 case BPF_FUNC_jiffies64:
1986 return &bpf_jiffies64_proto;
1987 case BPF_FUNC_per_cpu_ptr:
1988 return &bpf_per_cpu_ptr_proto;
1989 case BPF_FUNC_this_cpu_ptr:
1990 return &bpf_this_cpu_ptr_proto;
1991 case BPF_FUNC_timer_init:
1992 return &bpf_timer_init_proto;
1993 case BPF_FUNC_timer_set_callback:
1994 return &bpf_timer_set_callback_proto;
1995 case BPF_FUNC_timer_start:
1996 return &bpf_timer_start_proto;
1997 case BPF_FUNC_timer_cancel:
1998 return &bpf_timer_cancel_proto;
1999 case BPF_FUNC_kptr_xchg:
2000 return &bpf_kptr_xchg_proto;
2001 case BPF_FUNC_for_each_map_elem:
2002 return &bpf_for_each_map_elem_proto;
2003 case BPF_FUNC_loop:
2004 return &bpf_loop_proto;
2005 case BPF_FUNC_user_ringbuf_drain:
2006 return &bpf_user_ringbuf_drain_proto;
2007 case BPF_FUNC_ringbuf_reserve_dynptr:
2008 return &bpf_ringbuf_reserve_dynptr_proto;
2009 case BPF_FUNC_ringbuf_submit_dynptr:
2010 return &bpf_ringbuf_submit_dynptr_proto;
2011 case BPF_FUNC_ringbuf_discard_dynptr:
2012 return &bpf_ringbuf_discard_dynptr_proto;
2013 case BPF_FUNC_dynptr_from_mem:
2014 return &bpf_dynptr_from_mem_proto;
2015 case BPF_FUNC_dynptr_read:
2016 return &bpf_dynptr_read_proto;
2017 case BPF_FUNC_dynptr_write:
2018 return &bpf_dynptr_write_proto;
2019 case BPF_FUNC_dynptr_data:
2020 return &bpf_dynptr_data_proto;
2021 #ifdef CONFIG_CGROUPS
2022 case BPF_FUNC_cgrp_storage_get:
2023 return &bpf_cgrp_storage_get_proto;
2024 case BPF_FUNC_cgrp_storage_delete:
2025 return &bpf_cgrp_storage_delete_proto;
2026 case BPF_FUNC_get_current_cgroup_id:
2027 return &bpf_get_current_cgroup_id_proto;
2028 case BPF_FUNC_get_current_ancestor_cgroup_id:
2029 return &bpf_get_current_ancestor_cgroup_id_proto;
2030 case BPF_FUNC_current_task_under_cgroup:
2031 return &bpf_current_task_under_cgroup_proto;
2032 #endif
2033 #ifdef CONFIG_CGROUP_NET_CLASSID
2034 case BPF_FUNC_get_cgroup_classid:
2035 return &bpf_get_cgroup_classid_curr_proto;
2036 #endif
2037 case BPF_FUNC_task_storage_get:
2038 if (bpf_prog_check_recur(prog))
2039 return &bpf_task_storage_get_recur_proto;
2040 return &bpf_task_storage_get_proto;
2041 case BPF_FUNC_task_storage_delete:
2042 if (bpf_prog_check_recur(prog))
2043 return &bpf_task_storage_delete_recur_proto;
2044 return &bpf_task_storage_delete_proto;
2045 default:
2046 break;
2047 }
2048
2049 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2050 return NULL;
2051
2052 switch (func_id) {
2053 case BPF_FUNC_trace_printk:
2054 return bpf_get_trace_printk_proto();
2055 case BPF_FUNC_get_current_task:
2056 return &bpf_get_current_task_proto;
2057 case BPF_FUNC_get_current_task_btf:
2058 return &bpf_get_current_task_btf_proto;
2059 case BPF_FUNC_get_current_comm:
2060 return &bpf_get_current_comm_proto;
2061 case BPF_FUNC_probe_read_user:
2062 return &bpf_probe_read_user_proto;
2063 case BPF_FUNC_probe_read_kernel:
2064 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2065 NULL : &bpf_probe_read_kernel_proto;
2066 case BPF_FUNC_probe_read_user_str:
2067 return &bpf_probe_read_user_str_proto;
2068 case BPF_FUNC_probe_read_kernel_str:
2069 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2070 NULL : &bpf_probe_read_kernel_str_proto;
2071 case BPF_FUNC_copy_from_user:
2072 return &bpf_copy_from_user_proto;
2073 case BPF_FUNC_copy_from_user_task:
2074 return &bpf_copy_from_user_task_proto;
2075 case BPF_FUNC_snprintf_btf:
2076 return &bpf_snprintf_btf_proto;
2077 case BPF_FUNC_snprintf:
2078 return &bpf_snprintf_proto;
2079 case BPF_FUNC_task_pt_regs:
2080 return &bpf_task_pt_regs_proto;
2081 case BPF_FUNC_trace_vprintk:
2082 return bpf_get_trace_vprintk_proto();
2083 case BPF_FUNC_perf_event_read_value:
2084 return bpf_get_perf_event_read_value_proto();
2085 case BPF_FUNC_perf_event_read:
2086 return &bpf_perf_event_read_proto;
2087 case BPF_FUNC_send_signal:
2088 return &bpf_send_signal_proto;
2089 case BPF_FUNC_send_signal_thread:
2090 return &bpf_send_signal_thread_proto;
2091 case BPF_FUNC_get_task_stack:
2092 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2093 : &bpf_get_task_stack_proto;
2094 case BPF_FUNC_get_branch_snapshot:
2095 return &bpf_get_branch_snapshot_proto;
2096 case BPF_FUNC_find_vma:
2097 return &bpf_find_vma_proto;
2098 default:
2099 return NULL;
2100 }
2101 }
2102 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2103
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2104 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2105 struct bpf_spin_lock *spin_lock)
2106 {
2107 struct list_head *head = list_head, *orig_head = list_head;
2108
2109 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2110 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2111
2112 /* Do the actual list draining outside the lock to not hold the lock for
2113 * too long, and also prevent deadlocks if tracing programs end up
2114 * executing on entry/exit of functions called inside the critical
2115 * section, and end up doing map ops that call bpf_list_head_free for
2116 * the same map value again.
2117 */
2118 __bpf_spin_lock_irqsave(spin_lock);
2119 if (!head->next || list_empty(head))
2120 goto unlock;
2121 head = head->next;
2122 unlock:
2123 INIT_LIST_HEAD(orig_head);
2124 __bpf_spin_unlock_irqrestore(spin_lock);
2125
2126 while (head != orig_head) {
2127 void *obj = head;
2128
2129 obj -= field->graph_root.node_offset;
2130 head = head->next;
2131 /* The contained type can also have resources, including a
2132 * bpf_list_head which needs to be freed.
2133 */
2134 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2135 }
2136 }
2137
2138 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2139 * 'rb_node *', so field name of rb_node within containing struct is not
2140 * needed.
2141 *
2142 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2143 * graph_root.node_offset, it's not necessary to know field name
2144 * or type of node struct
2145 */
2146 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2147 for (pos = rb_first_postorder(root); \
2148 pos && ({ n = rb_next_postorder(pos); 1; }); \
2149 pos = n)
2150
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2151 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2152 struct bpf_spin_lock *spin_lock)
2153 {
2154 struct rb_root_cached orig_root, *root = rb_root;
2155 struct rb_node *pos, *n;
2156 void *obj;
2157
2158 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2159 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2160
2161 __bpf_spin_lock_irqsave(spin_lock);
2162 orig_root = *root;
2163 *root = RB_ROOT_CACHED;
2164 __bpf_spin_unlock_irqrestore(spin_lock);
2165
2166 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2167 obj = pos;
2168 obj -= field->graph_root.node_offset;
2169
2170
2171 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2172 }
2173 }
2174
2175 __bpf_kfunc_start_defs();
2176
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2177 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2178 {
2179 struct btf_struct_meta *meta = meta__ign;
2180 u64 size = local_type_id__k;
2181 void *p;
2182
2183 p = bpf_mem_alloc(&bpf_global_ma, size);
2184 if (!p)
2185 return NULL;
2186 if (meta)
2187 bpf_obj_init(meta->record, p);
2188 return p;
2189 }
2190
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2191 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2192 {
2193 u64 size = local_type_id__k;
2194
2195 /* The verifier has ensured that meta__ign must be NULL */
2196 return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2197 }
2198
2199 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2200 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2201 {
2202 struct bpf_mem_alloc *ma;
2203
2204 if (rec && rec->refcount_off >= 0 &&
2205 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2206 /* Object is refcounted and refcount_dec didn't result in 0
2207 * refcount. Return without freeing the object
2208 */
2209 return;
2210 }
2211
2212 if (rec)
2213 bpf_obj_free_fields(rec, p);
2214
2215 if (percpu)
2216 ma = &bpf_global_percpu_ma;
2217 else
2218 ma = &bpf_global_ma;
2219 bpf_mem_free_rcu(ma, p);
2220 }
2221
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2222 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2223 {
2224 struct btf_struct_meta *meta = meta__ign;
2225 void *p = p__alloc;
2226
2227 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2228 }
2229
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2230 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2231 {
2232 /* The verifier has ensured that meta__ign must be NULL */
2233 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2234 }
2235
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2236 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2237 {
2238 struct btf_struct_meta *meta = meta__ign;
2239 struct bpf_refcount *ref;
2240
2241 /* Could just cast directly to refcount_t *, but need some code using
2242 * bpf_refcount type so that it is emitted in vmlinux BTF
2243 */
2244 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2245 if (!refcount_inc_not_zero((refcount_t *)ref))
2246 return NULL;
2247
2248 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2249 * in verifier.c
2250 */
2251 return (void *)p__refcounted_kptr;
2252 }
2253
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2254 static int __bpf_list_add(struct bpf_list_node_kern *node,
2255 struct bpf_list_head *head,
2256 bool tail, struct btf_record *rec, u64 off)
2257 {
2258 struct list_head *n = &node->list_head, *h = (void *)head;
2259
2260 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2261 * called on its fields, so init here
2262 */
2263 if (unlikely(!h->next))
2264 INIT_LIST_HEAD(h);
2265
2266 /* node->owner != NULL implies !list_empty(n), no need to separately
2267 * check the latter
2268 */
2269 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2270 /* Only called from BPF prog, no need to migrate_disable */
2271 __bpf_obj_drop_impl((void *)n - off, rec, false);
2272 return -EINVAL;
2273 }
2274
2275 tail ? list_add_tail(n, h) : list_add(n, h);
2276 WRITE_ONCE(node->owner, head);
2277
2278 return 0;
2279 }
2280
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2281 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2282 struct bpf_list_node *node,
2283 void *meta__ign, u64 off)
2284 {
2285 struct bpf_list_node_kern *n = (void *)node;
2286 struct btf_struct_meta *meta = meta__ign;
2287
2288 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2289 }
2290
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2291 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2292 struct bpf_list_node *node,
2293 void *meta__ign, u64 off)
2294 {
2295 struct bpf_list_node_kern *n = (void *)node;
2296 struct btf_struct_meta *meta = meta__ign;
2297
2298 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2299 }
2300
__bpf_list_del(struct bpf_list_head * head,bool tail)2301 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2302 {
2303 struct list_head *n, *h = (void *)head;
2304 struct bpf_list_node_kern *node;
2305
2306 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2307 * called on its fields, so init here
2308 */
2309 if (unlikely(!h->next))
2310 INIT_LIST_HEAD(h);
2311 if (list_empty(h))
2312 return NULL;
2313
2314 n = tail ? h->prev : h->next;
2315 node = container_of(n, struct bpf_list_node_kern, list_head);
2316 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2317 return NULL;
2318
2319 list_del_init(n);
2320 WRITE_ONCE(node->owner, NULL);
2321 return (struct bpf_list_node *)n;
2322 }
2323
bpf_list_pop_front(struct bpf_list_head * head)2324 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2325 {
2326 return __bpf_list_del(head, false);
2327 }
2328
bpf_list_pop_back(struct bpf_list_head * head)2329 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2330 {
2331 return __bpf_list_del(head, true);
2332 }
2333
bpf_list_front(struct bpf_list_head * head)2334 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2335 {
2336 struct list_head *h = (struct list_head *)head;
2337
2338 if (list_empty(h) || unlikely(!h->next))
2339 return NULL;
2340
2341 return (struct bpf_list_node *)h->next;
2342 }
2343
bpf_list_back(struct bpf_list_head * head)2344 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2345 {
2346 struct list_head *h = (struct list_head *)head;
2347
2348 if (list_empty(h) || unlikely(!h->next))
2349 return NULL;
2350
2351 return (struct bpf_list_node *)h->prev;
2352 }
2353
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2354 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2355 struct bpf_rb_node *node)
2356 {
2357 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2358 struct rb_root_cached *r = (struct rb_root_cached *)root;
2359 struct rb_node *n = &node_internal->rb_node;
2360
2361 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2362 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2363 */
2364 if (READ_ONCE(node_internal->owner) != root)
2365 return NULL;
2366
2367 rb_erase_cached(n, r);
2368 RB_CLEAR_NODE(n);
2369 WRITE_ONCE(node_internal->owner, NULL);
2370 return (struct bpf_rb_node *)n;
2371 }
2372
2373 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2374 * program
2375 */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2376 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2377 struct bpf_rb_node_kern *node,
2378 void *less, struct btf_record *rec, u64 off)
2379 {
2380 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2381 struct rb_node *parent = NULL, *n = &node->rb_node;
2382 bpf_callback_t cb = (bpf_callback_t)less;
2383 bool leftmost = true;
2384
2385 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2386 * check the latter
2387 */
2388 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2389 /* Only called from BPF prog, no need to migrate_disable */
2390 __bpf_obj_drop_impl((void *)n - off, rec, false);
2391 return -EINVAL;
2392 }
2393
2394 while (*link) {
2395 parent = *link;
2396 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2397 link = &parent->rb_left;
2398 } else {
2399 link = &parent->rb_right;
2400 leftmost = false;
2401 }
2402 }
2403
2404 rb_link_node(n, parent, link);
2405 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2406 WRITE_ONCE(node->owner, root);
2407 return 0;
2408 }
2409
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2410 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2411 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2412 void *meta__ign, u64 off)
2413 {
2414 struct btf_struct_meta *meta = meta__ign;
2415 struct bpf_rb_node_kern *n = (void *)node;
2416
2417 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2418 }
2419
bpf_rbtree_first(struct bpf_rb_root * root)2420 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2421 {
2422 struct rb_root_cached *r = (struct rb_root_cached *)root;
2423
2424 return (struct bpf_rb_node *)rb_first_cached(r);
2425 }
2426
bpf_rbtree_root(struct bpf_rb_root * root)2427 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2428 {
2429 struct rb_root_cached *r = (struct rb_root_cached *)root;
2430
2431 return (struct bpf_rb_node *)r->rb_root.rb_node;
2432 }
2433
bpf_rbtree_left(struct bpf_rb_root * root,struct bpf_rb_node * node)2434 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2435 {
2436 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2437
2438 if (READ_ONCE(node_internal->owner) != root)
2439 return NULL;
2440
2441 return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2442 }
2443
bpf_rbtree_right(struct bpf_rb_root * root,struct bpf_rb_node * node)2444 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2445 {
2446 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2447
2448 if (READ_ONCE(node_internal->owner) != root)
2449 return NULL;
2450
2451 return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2452 }
2453
2454 /**
2455 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2456 * kfunc which is not stored in a map as a kptr, must be released by calling
2457 * bpf_task_release().
2458 * @p: The task on which a reference is being acquired.
2459 */
bpf_task_acquire(struct task_struct * p)2460 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2461 {
2462 if (refcount_inc_not_zero(&p->rcu_users))
2463 return p;
2464 return NULL;
2465 }
2466
2467 /**
2468 * bpf_task_release - Release the reference acquired on a task.
2469 * @p: The task on which a reference is being released.
2470 */
bpf_task_release(struct task_struct * p)2471 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2472 {
2473 put_task_struct_rcu_user(p);
2474 }
2475
bpf_task_release_dtor(void * p)2476 __bpf_kfunc void bpf_task_release_dtor(void *p)
2477 {
2478 put_task_struct_rcu_user(p);
2479 }
2480 CFI_NOSEAL(bpf_task_release_dtor);
2481
2482 #ifdef CONFIG_CGROUPS
2483 /**
2484 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2485 * this kfunc which is not stored in a map as a kptr, must be released by
2486 * calling bpf_cgroup_release().
2487 * @cgrp: The cgroup on which a reference is being acquired.
2488 */
bpf_cgroup_acquire(struct cgroup * cgrp)2489 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2490 {
2491 return cgroup_tryget(cgrp) ? cgrp : NULL;
2492 }
2493
2494 /**
2495 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2496 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2497 * not be freed until the current grace period has ended, even if its refcount
2498 * drops to 0.
2499 * @cgrp: The cgroup on which a reference is being released.
2500 */
bpf_cgroup_release(struct cgroup * cgrp)2501 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2502 {
2503 cgroup_put(cgrp);
2504 }
2505
bpf_cgroup_release_dtor(void * cgrp)2506 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2507 {
2508 cgroup_put(cgrp);
2509 }
2510 CFI_NOSEAL(bpf_cgroup_release_dtor);
2511
2512 /**
2513 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2514 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2515 * map, must be released by calling bpf_cgroup_release().
2516 * @cgrp: The cgroup for which we're performing a lookup.
2517 * @level: The level of ancestor to look up.
2518 */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2519 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2520 {
2521 struct cgroup *ancestor;
2522
2523 if (level > cgrp->level || level < 0)
2524 return NULL;
2525
2526 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2527 ancestor = cgrp->ancestors[level];
2528 if (!cgroup_tryget(ancestor))
2529 return NULL;
2530 return ancestor;
2531 }
2532
2533 /**
2534 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2535 * kfunc which is not subsequently stored in a map, must be released by calling
2536 * bpf_cgroup_release().
2537 * @cgid: cgroup id.
2538 */
bpf_cgroup_from_id(u64 cgid)2539 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2540 {
2541 struct cgroup *cgrp;
2542
2543 cgrp = cgroup_get_from_id(cgid);
2544 if (IS_ERR(cgrp))
2545 return NULL;
2546 return cgrp;
2547 }
2548
2549 /**
2550 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2551 * task's membership of cgroup ancestry.
2552 * @task: the task to be tested
2553 * @ancestor: possible ancestor of @task's cgroup
2554 *
2555 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2556 * It follows all the same rules as cgroup_is_descendant, and only applies
2557 * to the default hierarchy.
2558 */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2559 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2560 struct cgroup *ancestor)
2561 {
2562 long ret;
2563
2564 rcu_read_lock();
2565 ret = task_under_cgroup_hierarchy(task, ancestor);
2566 rcu_read_unlock();
2567 return ret;
2568 }
2569
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2570 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2571 {
2572 struct bpf_array *array = container_of(map, struct bpf_array, map);
2573 struct cgroup *cgrp;
2574
2575 if (unlikely(idx >= array->map.max_entries))
2576 return -E2BIG;
2577
2578 cgrp = READ_ONCE(array->ptrs[idx]);
2579 if (unlikely(!cgrp))
2580 return -EAGAIN;
2581
2582 return task_under_cgroup_hierarchy(current, cgrp);
2583 }
2584
2585 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2586 .func = bpf_current_task_under_cgroup,
2587 .gpl_only = false,
2588 .ret_type = RET_INTEGER,
2589 .arg1_type = ARG_CONST_MAP_PTR,
2590 .arg2_type = ARG_ANYTHING,
2591 };
2592
2593 /**
2594 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2595 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2596 * hierarchy ID.
2597 * @task: The target task
2598 * @hierarchy_id: The ID of a cgroup1 hierarchy
2599 *
2600 * On success, the cgroup is returen. On failure, NULL is returned.
2601 */
2602 __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2603 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2604 {
2605 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2606
2607 if (IS_ERR(cgrp))
2608 return NULL;
2609 return cgrp;
2610 }
2611 #endif /* CONFIG_CGROUPS */
2612
2613 /**
2614 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2615 * in the root pid namespace idr. If a task is returned, it must either be
2616 * stored in a map, or released with bpf_task_release().
2617 * @pid: The pid of the task being looked up.
2618 */
bpf_task_from_pid(s32 pid)2619 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2620 {
2621 struct task_struct *p;
2622
2623 rcu_read_lock();
2624 p = find_task_by_pid_ns(pid, &init_pid_ns);
2625 if (p)
2626 p = bpf_task_acquire(p);
2627 rcu_read_unlock();
2628
2629 return p;
2630 }
2631
2632 /**
2633 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2634 * in the pid namespace of the current task. If a task is returned, it must
2635 * either be stored in a map, or released with bpf_task_release().
2636 * @vpid: The vpid of the task being looked up.
2637 */
bpf_task_from_vpid(s32 vpid)2638 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2639 {
2640 struct task_struct *p;
2641
2642 rcu_read_lock();
2643 p = find_task_by_vpid(vpid);
2644 if (p)
2645 p = bpf_task_acquire(p);
2646 rcu_read_unlock();
2647
2648 return p;
2649 }
2650
2651 /**
2652 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2653 * @p: The dynptr whose data slice to retrieve
2654 * @offset: Offset into the dynptr
2655 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2656 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2657 * length of the requested slice. This must be a constant.
2658 *
2659 * For non-skb and non-xdp type dynptrs, there is no difference between
2660 * bpf_dynptr_slice and bpf_dynptr_data.
2661 *
2662 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2663 *
2664 * If the intention is to write to the data slice, please use
2665 * bpf_dynptr_slice_rdwr.
2666 *
2667 * The user must check that the returned pointer is not null before using it.
2668 *
2669 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2670 * does not change the underlying packet data pointers, so a call to
2671 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2672 * the bpf program.
2673 *
2674 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2675 * data slice (can be either direct pointer to the data or a pointer to the user
2676 * provided buffer, with its contents containing the data, if unable to obtain
2677 * direct pointer)
2678 */
bpf_dynptr_slice(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2679 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2680 void *buffer__opt, u32 buffer__szk)
2681 {
2682 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2683 enum bpf_dynptr_type type;
2684 u32 len = buffer__szk;
2685 int err;
2686
2687 if (!ptr->data)
2688 return NULL;
2689
2690 err = bpf_dynptr_check_off_len(ptr, offset, len);
2691 if (err)
2692 return NULL;
2693
2694 type = bpf_dynptr_get_type(ptr);
2695
2696 switch (type) {
2697 case BPF_DYNPTR_TYPE_LOCAL:
2698 case BPF_DYNPTR_TYPE_RINGBUF:
2699 return ptr->data + ptr->offset + offset;
2700 case BPF_DYNPTR_TYPE_SKB:
2701 if (buffer__opt)
2702 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2703 else
2704 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2705 case BPF_DYNPTR_TYPE_XDP:
2706 {
2707 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2708 if (!IS_ERR_OR_NULL(xdp_ptr))
2709 return xdp_ptr;
2710
2711 if (!buffer__opt)
2712 return NULL;
2713 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2714 return buffer__opt;
2715 }
2716 default:
2717 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2718 return NULL;
2719 }
2720 }
2721
2722 /**
2723 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2724 * @p: The dynptr whose data slice to retrieve
2725 * @offset: Offset into the dynptr
2726 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2727 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2728 * length of the requested slice. This must be a constant.
2729 *
2730 * For non-skb and non-xdp type dynptrs, there is no difference between
2731 * bpf_dynptr_slice and bpf_dynptr_data.
2732 *
2733 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2734 *
2735 * The returned pointer is writable and may point to either directly the dynptr
2736 * data at the requested offset or to the buffer if unable to obtain a direct
2737 * data pointer to (example: the requested slice is to the paged area of an skb
2738 * packet). In the case where the returned pointer is to the buffer, the user
2739 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2740 * usually looks something like this pattern:
2741 *
2742 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2743 * if (!eth)
2744 * return TC_ACT_SHOT;
2745 *
2746 * // mutate eth header //
2747 *
2748 * if (eth == buffer)
2749 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2750 *
2751 * Please note that, as in the example above, the user must check that the
2752 * returned pointer is not null before using it.
2753 *
2754 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2755 * does not change the underlying packet data pointers, so a call to
2756 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2757 * the bpf program.
2758 *
2759 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2760 * data slice (can be either direct pointer to the data or a pointer to the user
2761 * provided buffer, with its contents containing the data, if unable to obtain
2762 * direct pointer)
2763 */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2764 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2765 void *buffer__opt, u32 buffer__szk)
2766 {
2767 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2768
2769 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2770 return NULL;
2771
2772 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2773 *
2774 * For skb-type dynptrs, it is safe to write into the returned pointer
2775 * if the bpf program allows skb data writes. There are two possibilities
2776 * that may occur when calling bpf_dynptr_slice_rdwr:
2777 *
2778 * 1) The requested slice is in the head of the skb. In this case, the
2779 * returned pointer is directly to skb data, and if the skb is cloned, the
2780 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2781 * The pointer can be directly written into.
2782 *
2783 * 2) Some portion of the requested slice is in the paged buffer area.
2784 * In this case, the requested data will be copied out into the buffer
2785 * and the returned pointer will be a pointer to the buffer. The skb
2786 * will not be pulled. To persist the write, the user will need to call
2787 * bpf_dynptr_write(), which will pull the skb and commit the write.
2788 *
2789 * Similarly for xdp programs, if the requested slice is not across xdp
2790 * fragments, then a direct pointer will be returned, otherwise the data
2791 * will be copied out into the buffer and the user will need to call
2792 * bpf_dynptr_write() to commit changes.
2793 */
2794 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2795 }
2796
bpf_dynptr_adjust(const struct bpf_dynptr * p,u32 start,u32 end)2797 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2798 {
2799 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2800 u32 size;
2801
2802 if (!ptr->data || start > end)
2803 return -EINVAL;
2804
2805 size = __bpf_dynptr_size(ptr);
2806
2807 if (start > size || end > size)
2808 return -ERANGE;
2809
2810 ptr->offset += start;
2811 bpf_dynptr_set_size(ptr, end - start);
2812
2813 return 0;
2814 }
2815
bpf_dynptr_is_null(const struct bpf_dynptr * p)2816 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2817 {
2818 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2819
2820 return !ptr->data;
2821 }
2822
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2823 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2824 {
2825 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2826
2827 if (!ptr->data)
2828 return false;
2829
2830 return __bpf_dynptr_is_rdonly(ptr);
2831 }
2832
bpf_dynptr_size(const struct bpf_dynptr * p)2833 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2834 {
2835 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2836
2837 if (!ptr->data)
2838 return -EINVAL;
2839
2840 return __bpf_dynptr_size(ptr);
2841 }
2842
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2843 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2844 struct bpf_dynptr *clone__uninit)
2845 {
2846 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2847 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2848
2849 if (!ptr->data) {
2850 bpf_dynptr_set_null(clone);
2851 return -EINVAL;
2852 }
2853
2854 *clone = *ptr;
2855
2856 return 0;
2857 }
2858
2859 /**
2860 * bpf_dynptr_copy() - Copy data from one dynptr to another.
2861 * @dst_ptr: Destination dynptr - where data should be copied to
2862 * @dst_off: Offset into the destination dynptr
2863 * @src_ptr: Source dynptr - where data should be copied from
2864 * @src_off: Offset into the source dynptr
2865 * @size: Length of the data to copy from source to destination
2866 *
2867 * Copies data from source dynptr to destination dynptr.
2868 * Returns 0 on success; negative error, otherwise.
2869 */
bpf_dynptr_copy(struct bpf_dynptr * dst_ptr,u32 dst_off,struct bpf_dynptr * src_ptr,u32 src_off,u32 size)2870 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u32 dst_off,
2871 struct bpf_dynptr *src_ptr, u32 src_off, u32 size)
2872 {
2873 struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2874 struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2875 void *src_slice, *dst_slice;
2876 char buf[256];
2877 u32 off;
2878
2879 src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2880 dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2881
2882 if (src_slice && dst_slice) {
2883 memmove(dst_slice, src_slice, size);
2884 return 0;
2885 }
2886
2887 if (src_slice)
2888 return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2889
2890 if (dst_slice)
2891 return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2892
2893 if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2894 bpf_dynptr_check_off_len(src, src_off, size))
2895 return -E2BIG;
2896
2897 off = 0;
2898 while (off < size) {
2899 u32 chunk_sz = min_t(u32, sizeof(buf), size - off);
2900 int err;
2901
2902 err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2903 if (err)
2904 return err;
2905 err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2906 if (err)
2907 return err;
2908
2909 off += chunk_sz;
2910 }
2911 return 0;
2912 }
2913
2914 /**
2915 * bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2916 * @p: Destination dynptr - where data will be filled
2917 * @offset: Offset into the dynptr to start filling from
2918 * @size: Number of bytes to fill
2919 * @val: Constant byte to fill the memory with
2920 *
2921 * Fills the @size bytes of the memory area pointed to by @p
2922 * at @offset with the constant byte @val.
2923 * Returns 0 on success; negative error, otherwise.
2924 */
bpf_dynptr_memset(struct bpf_dynptr * p,u32 offset,u32 size,u8 val)2925 __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u32 offset, u32 size, u8 val)
2926 {
2927 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2928 u32 chunk_sz, write_off;
2929 char buf[256];
2930 void* slice;
2931 int err;
2932
2933 slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2934 if (likely(slice)) {
2935 memset(slice, val, size);
2936 return 0;
2937 }
2938
2939 if (__bpf_dynptr_is_rdonly(ptr))
2940 return -EINVAL;
2941
2942 err = bpf_dynptr_check_off_len(ptr, offset, size);
2943 if (err)
2944 return err;
2945
2946 /* Non-linear data under the dynptr, write from a local buffer */
2947 chunk_sz = min_t(u32, sizeof(buf), size);
2948 memset(buf, val, chunk_sz);
2949
2950 for (write_off = 0; write_off < size; write_off += chunk_sz) {
2951 chunk_sz = min_t(u32, sizeof(buf), size - write_off);
2952 err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
2953 if (err)
2954 return err;
2955 }
2956
2957 return 0;
2958 }
2959
bpf_cast_to_kern_ctx(void * obj)2960 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2961 {
2962 return obj;
2963 }
2964
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)2965 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2966 {
2967 return (void *)obj__ign;
2968 }
2969
bpf_rcu_read_lock(void)2970 __bpf_kfunc void bpf_rcu_read_lock(void)
2971 {
2972 rcu_read_lock();
2973 }
2974
bpf_rcu_read_unlock(void)2975 __bpf_kfunc void bpf_rcu_read_unlock(void)
2976 {
2977 rcu_read_unlock();
2978 }
2979
2980 struct bpf_throw_ctx {
2981 struct bpf_prog_aux *aux;
2982 u64 sp;
2983 u64 bp;
2984 int cnt;
2985 };
2986
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)2987 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2988 {
2989 struct bpf_throw_ctx *ctx = cookie;
2990 struct bpf_prog *prog;
2991
2992 /*
2993 * The RCU read lock is held to safely traverse the latch tree, but we
2994 * don't need its protection when accessing the prog, since it has an
2995 * active stack frame on the current stack trace, and won't disappear.
2996 */
2997 rcu_read_lock();
2998 prog = bpf_prog_ksym_find(ip);
2999 rcu_read_unlock();
3000 if (!prog)
3001 return !ctx->cnt;
3002 ctx->cnt++;
3003 if (bpf_is_subprog(prog))
3004 return true;
3005 ctx->aux = prog->aux;
3006 ctx->sp = sp;
3007 ctx->bp = bp;
3008 return false;
3009 }
3010
bpf_throw(u64 cookie)3011 __bpf_kfunc void bpf_throw(u64 cookie)
3012 {
3013 struct bpf_throw_ctx ctx = {};
3014
3015 arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3016 WARN_ON_ONCE(!ctx.aux);
3017 if (ctx.aux)
3018 WARN_ON_ONCE(!ctx.aux->exception_boundary);
3019 WARN_ON_ONCE(!ctx.bp);
3020 WARN_ON_ONCE(!ctx.cnt);
3021 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3022 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
3023 * which skips compiler generated instrumentation to do the same.
3024 */
3025 kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3026 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3027 WARN(1, "A call to BPF exception callback should never return\n");
3028 }
3029
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)3030 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3031 {
3032 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3033 struct bpf_map *map = p__map;
3034
3035 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3036 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3037
3038 if (flags)
3039 return -EINVAL;
3040
3041 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3042 }
3043
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)3044 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3045 {
3046 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3047 struct bpf_work *w;
3048
3049 if (in_nmi())
3050 return -EOPNOTSUPP;
3051 if (flags)
3052 return -EINVAL;
3053 w = READ_ONCE(async->work);
3054 if (!w || !READ_ONCE(w->cb.prog))
3055 return -EINVAL;
3056
3057 schedule_work(&w->work);
3058 return 0;
3059 }
3060
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__prog)3061 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3062 int (callback_fn)(void *map, int *key, void *value),
3063 unsigned int flags,
3064 void *aux__prog)
3065 {
3066 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3067 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3068
3069 if (flags)
3070 return -EINVAL;
3071
3072 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3073 }
3074
bpf_preempt_disable(void)3075 __bpf_kfunc void bpf_preempt_disable(void)
3076 {
3077 preempt_disable();
3078 }
3079
bpf_preempt_enable(void)3080 __bpf_kfunc void bpf_preempt_enable(void)
3081 {
3082 preempt_enable();
3083 }
3084
3085 struct bpf_iter_bits {
3086 __u64 __opaque[2];
3087 } __aligned(8);
3088
3089 #define BITS_ITER_NR_WORDS_MAX 511
3090
3091 struct bpf_iter_bits_kern {
3092 union {
3093 __u64 *bits;
3094 __u64 bits_copy;
3095 };
3096 int nr_bits;
3097 int bit;
3098 } __aligned(8);
3099
3100 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3101 * a u64 pointer and an unsigned long pointer to find_next_bit() will
3102 * return the same result, as both point to the same 8-byte area.
3103 *
3104 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3105 * pointer also makes no difference. This is because the first iterated
3106 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3107 * long is composed of bits 32-63 of the u64.
3108 *
3109 * However, for 32-bit big-endian hosts, this is not the case. The first
3110 * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3111 * ulong values within the u64.
3112 */
swap_ulong_in_u64(u64 * bits,unsigned int nr)3113 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3114 {
3115 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3116 unsigned int i;
3117
3118 for (i = 0; i < nr; i++)
3119 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3120 #endif
3121 }
3122
3123 /**
3124 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3125 * @it: The new bpf_iter_bits to be created
3126 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3127 * @nr_words: The size of the specified memory area, measured in 8-byte units.
3128 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3129 * further reduced by the BPF memory allocator implementation.
3130 *
3131 * This function initializes a new bpf_iter_bits structure for iterating over
3132 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3133 * copies the data of the memory area to the newly created bpf_iter_bits @it for
3134 * subsequent iteration operations.
3135 *
3136 * On success, 0 is returned. On failure, ERR is returned.
3137 */
3138 __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)3139 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3140 {
3141 struct bpf_iter_bits_kern *kit = (void *)it;
3142 u32 nr_bytes = nr_words * sizeof(u64);
3143 u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3144 int err;
3145
3146 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3147 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3148 __alignof__(struct bpf_iter_bits));
3149
3150 kit->nr_bits = 0;
3151 kit->bits_copy = 0;
3152 kit->bit = -1;
3153
3154 if (!unsafe_ptr__ign || !nr_words)
3155 return -EINVAL;
3156 if (nr_words > BITS_ITER_NR_WORDS_MAX)
3157 return -E2BIG;
3158
3159 /* Optimization for u64 mask */
3160 if (nr_bits == 64) {
3161 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3162 if (err)
3163 return -EFAULT;
3164
3165 swap_ulong_in_u64(&kit->bits_copy, nr_words);
3166
3167 kit->nr_bits = nr_bits;
3168 return 0;
3169 }
3170
3171 if (bpf_mem_alloc_check_size(false, nr_bytes))
3172 return -E2BIG;
3173
3174 /* Fallback to memalloc */
3175 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3176 if (!kit->bits)
3177 return -ENOMEM;
3178
3179 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3180 if (err) {
3181 bpf_mem_free(&bpf_global_ma, kit->bits);
3182 return err;
3183 }
3184
3185 swap_ulong_in_u64(kit->bits, nr_words);
3186
3187 kit->nr_bits = nr_bits;
3188 return 0;
3189 }
3190
3191 /**
3192 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3193 * @it: The bpf_iter_bits to be checked
3194 *
3195 * This function returns a pointer to a number representing the value of the
3196 * next bit in the bits.
3197 *
3198 * If there are no further bits available, it returns NULL.
3199 */
bpf_iter_bits_next(struct bpf_iter_bits * it)3200 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3201 {
3202 struct bpf_iter_bits_kern *kit = (void *)it;
3203 int bit = kit->bit, nr_bits = kit->nr_bits;
3204 const void *bits;
3205
3206 if (!nr_bits || bit >= nr_bits)
3207 return NULL;
3208
3209 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3210 bit = find_next_bit(bits, nr_bits, bit + 1);
3211 if (bit >= nr_bits) {
3212 kit->bit = bit;
3213 return NULL;
3214 }
3215
3216 kit->bit = bit;
3217 return &kit->bit;
3218 }
3219
3220 /**
3221 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3222 * @it: The bpf_iter_bits to be destroyed
3223 *
3224 * Destroy the resource associated with the bpf_iter_bits.
3225 */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)3226 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3227 {
3228 struct bpf_iter_bits_kern *kit = (void *)it;
3229
3230 if (kit->nr_bits <= 64)
3231 return;
3232 bpf_mem_free(&bpf_global_ma, kit->bits);
3233 }
3234
3235 /**
3236 * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3237 * @dst: Destination address, in kernel space. This buffer must be
3238 * at least @dst__sz bytes long.
3239 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3240 * @unsafe_ptr__ign: Source address, in user space.
3241 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3242 *
3243 * Copies a NUL-terminated string from userspace to BPF space. If user string is
3244 * too long this will still ensure zero termination in the dst buffer unless
3245 * buffer size is 0.
3246 *
3247 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3248 * memset all of @dst on failure.
3249 */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3250 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3251 {
3252 int ret;
3253
3254 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3255 return -EINVAL;
3256
3257 if (unlikely(!dst__sz))
3258 return 0;
3259
3260 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3261 if (ret < 0) {
3262 if (flags & BPF_F_PAD_ZEROS)
3263 memset((char *)dst, 0, dst__sz);
3264
3265 return ret;
3266 }
3267
3268 if (flags & BPF_F_PAD_ZEROS)
3269 memset((char *)dst + ret, 0, dst__sz - ret);
3270 else
3271 ((char *)dst)[ret] = '\0';
3272
3273 return ret + 1;
3274 }
3275
3276 /**
3277 * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3278 * @dst: Destination address, in kernel space. This buffer must be
3279 * at least @dst__sz bytes long.
3280 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3281 * @unsafe_ptr__ign: Source address in the task's address space.
3282 * @tsk: The task whose address space will be used
3283 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3284 *
3285 * Copies a NUL terminated string from a task's address space to @dst__sz
3286 * buffer. If user string is too long this will still ensure zero termination
3287 * in the @dst__sz buffer unless buffer size is 0.
3288 *
3289 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3290 * and memset all of @dst__sz on failure.
3291 *
3292 * Return: The number of copied bytes on success including the NUL terminator.
3293 * A negative error code on failure.
3294 */
bpf_copy_from_user_task_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,struct task_struct * tsk,u64 flags)3295 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3296 const void __user *unsafe_ptr__ign,
3297 struct task_struct *tsk, u64 flags)
3298 {
3299 int ret;
3300
3301 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3302 return -EINVAL;
3303
3304 if (unlikely(dst__sz == 0))
3305 return 0;
3306
3307 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3308 if (ret < 0) {
3309 if (flags & BPF_F_PAD_ZEROS)
3310 memset(dst, 0, dst__sz);
3311 return ret;
3312 }
3313
3314 if (flags & BPF_F_PAD_ZEROS)
3315 memset(dst + ret, 0, dst__sz - ret);
3316
3317 return ret + 1;
3318 }
3319
3320 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3321 * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3322 * unsigned long always points to 8-byte region on stack, the kernel may only
3323 * read and write the 4-bytes on 32-bit.
3324 */
bpf_local_irq_save(unsigned long * flags__irq_flag)3325 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3326 {
3327 local_irq_save(*flags__irq_flag);
3328 }
3329
bpf_local_irq_restore(unsigned long * flags__irq_flag)3330 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3331 {
3332 local_irq_restore(*flags__irq_flag);
3333 }
3334
__bpf_trap(void)3335 __bpf_kfunc void __bpf_trap(void)
3336 {
3337 }
3338
3339 /*
3340 * Kfuncs for string operations.
3341 *
3342 * Since strings are not necessarily %NUL-terminated, we cannot directly call
3343 * in-kernel implementations. Instead, we open-code the implementations using
3344 * __get_kernel_nofault instead of plain dereference to make them safe.
3345 */
3346
3347 /**
3348 * bpf_strcmp - Compare two strings
3349 * @s1__ign: One string
3350 * @s2__ign: Another string
3351 *
3352 * Return:
3353 * * %0 - Strings are equal
3354 * * %-1 - @s1__ign is smaller
3355 * * %1 - @s2__ign is smaller
3356 * * %-EFAULT - Cannot read one of the strings
3357 * * %-E2BIG - One of strings is too large
3358 * * %-ERANGE - One of strings is outside of kernel address space
3359 */
bpf_strcmp(const char * s1__ign,const char * s2__ign)3360 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3361 {
3362 char c1, c2;
3363 int i;
3364
3365 if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3366 !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3367 return -ERANGE;
3368 }
3369
3370 guard(pagefault)();
3371 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3372 __get_kernel_nofault(&c1, s1__ign, char, err_out);
3373 __get_kernel_nofault(&c2, s2__ign, char, err_out);
3374 if (c1 != c2)
3375 return c1 < c2 ? -1 : 1;
3376 if (c1 == '\0')
3377 return 0;
3378 s1__ign++;
3379 s2__ign++;
3380 }
3381 return -E2BIG;
3382 err_out:
3383 return -EFAULT;
3384 }
3385
3386 /**
3387 * bpf_strnchr - Find a character in a length limited string
3388 * @s__ign: The string to be searched
3389 * @count: The number of characters to be searched
3390 * @c: The character to search for
3391 *
3392 * Note that the %NUL-terminator is considered part of the string, and can
3393 * be searched for.
3394 *
3395 * Return:
3396 * * >=0 - Index of the first occurrence of @c within @s__ign
3397 * * %-ENOENT - @c not found in the first @count characters of @s__ign
3398 * * %-EFAULT - Cannot read @s__ign
3399 * * %-E2BIG - @s__ign is too large
3400 * * %-ERANGE - @s__ign is outside of kernel address space
3401 */
bpf_strnchr(const char * s__ign,size_t count,char c)3402 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3403 {
3404 char sc;
3405 int i;
3406
3407 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3408 return -ERANGE;
3409
3410 guard(pagefault)();
3411 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3412 __get_kernel_nofault(&sc, s__ign, char, err_out);
3413 if (sc == c)
3414 return i;
3415 if (sc == '\0')
3416 return -ENOENT;
3417 s__ign++;
3418 }
3419 return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3420 err_out:
3421 return -EFAULT;
3422 }
3423
3424 /**
3425 * bpf_strchr - Find the first occurrence of a character in a string
3426 * @s__ign: The string to be searched
3427 * @c: The character to search for
3428 *
3429 * Note that the %NUL-terminator is considered part of the string, and can
3430 * be searched for.
3431 *
3432 * Return:
3433 * * >=0 - The index of the first occurrence of @c within @s__ign
3434 * * %-ENOENT - @c not found in @s__ign
3435 * * %-EFAULT - Cannot read @s__ign
3436 * * %-E2BIG - @s__ign is too large
3437 * * %-ERANGE - @s__ign is outside of kernel address space
3438 */
bpf_strchr(const char * s__ign,char c)3439 __bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3440 {
3441 return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3442 }
3443
3444 /**
3445 * bpf_strchrnul - Find and return a character in a string, or end of string
3446 * @s__ign: The string to be searched
3447 * @c: The character to search for
3448 *
3449 * Return:
3450 * * >=0 - Index of the first occurrence of @c within @s__ign or index of
3451 * the null byte at the end of @s__ign when @c is not found
3452 * * %-EFAULT - Cannot read @s__ign
3453 * * %-E2BIG - @s__ign is too large
3454 * * %-ERANGE - @s__ign is outside of kernel address space
3455 */
bpf_strchrnul(const char * s__ign,char c)3456 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3457 {
3458 char sc;
3459 int i;
3460
3461 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3462 return -ERANGE;
3463
3464 guard(pagefault)();
3465 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3466 __get_kernel_nofault(&sc, s__ign, char, err_out);
3467 if (sc == '\0' || sc == c)
3468 return i;
3469 s__ign++;
3470 }
3471 return -E2BIG;
3472 err_out:
3473 return -EFAULT;
3474 }
3475
3476 /**
3477 * bpf_strrchr - Find the last occurrence of a character in a string
3478 * @s__ign: The string to be searched
3479 * @c: The character to search for
3480 *
3481 * Return:
3482 * * >=0 - Index of the last occurrence of @c within @s__ign
3483 * * %-ENOENT - @c not found in @s__ign
3484 * * %-EFAULT - Cannot read @s__ign
3485 * * %-E2BIG - @s__ign is too large
3486 * * %-ERANGE - @s__ign is outside of kernel address space
3487 */
bpf_strrchr(const char * s__ign,int c)3488 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3489 {
3490 char sc;
3491 int i, last = -ENOENT;
3492
3493 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3494 return -ERANGE;
3495
3496 guard(pagefault)();
3497 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3498 __get_kernel_nofault(&sc, s__ign, char, err_out);
3499 if (sc == c)
3500 last = i;
3501 if (sc == '\0')
3502 return last;
3503 s__ign++;
3504 }
3505 return -E2BIG;
3506 err_out:
3507 return -EFAULT;
3508 }
3509
3510 /**
3511 * bpf_strnlen - Calculate the length of a length-limited string
3512 * @s__ign: The string
3513 * @count: The maximum number of characters to count
3514 *
3515 * Return:
3516 * * >=0 - The length of @s__ign
3517 * * %-EFAULT - Cannot read @s__ign
3518 * * %-E2BIG - @s__ign is too large
3519 * * %-ERANGE - @s__ign is outside of kernel address space
3520 */
bpf_strnlen(const char * s__ign,size_t count)3521 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3522 {
3523 char c;
3524 int i;
3525
3526 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3527 return -ERANGE;
3528
3529 guard(pagefault)();
3530 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3531 __get_kernel_nofault(&c, s__ign, char, err_out);
3532 if (c == '\0')
3533 return i;
3534 s__ign++;
3535 }
3536 return i == XATTR_SIZE_MAX ? -E2BIG : i;
3537 err_out:
3538 return -EFAULT;
3539 }
3540
3541 /**
3542 * bpf_strlen - Calculate the length of a string
3543 * @s__ign: The string
3544 *
3545 * Return:
3546 * * >=0 - The length of @s__ign
3547 * * %-EFAULT - Cannot read @s__ign
3548 * * %-E2BIG - @s__ign is too large
3549 * * %-ERANGE - @s__ign is outside of kernel address space
3550 */
bpf_strlen(const char * s__ign)3551 __bpf_kfunc int bpf_strlen(const char *s__ign)
3552 {
3553 return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3554 }
3555
3556 /**
3557 * bpf_strspn - Calculate the length of the initial substring of @s__ign which
3558 * only contains letters in @accept__ign
3559 * @s__ign: The string to be searched
3560 * @accept__ign: The string to search for
3561 *
3562 * Return:
3563 * * >=0 - The length of the initial substring of @s__ign which only
3564 * contains letters from @accept__ign
3565 * * %-EFAULT - Cannot read one of the strings
3566 * * %-E2BIG - One of the strings is too large
3567 * * %-ERANGE - One of the strings is outside of kernel address space
3568 */
bpf_strspn(const char * s__ign,const char * accept__ign)3569 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3570 {
3571 char cs, ca;
3572 int i, j;
3573
3574 if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3575 !copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3576 return -ERANGE;
3577 }
3578
3579 guard(pagefault)();
3580 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3581 __get_kernel_nofault(&cs, s__ign, char, err_out);
3582 if (cs == '\0')
3583 return i;
3584 for (j = 0; j < XATTR_SIZE_MAX; j++) {
3585 __get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3586 if (cs == ca || ca == '\0')
3587 break;
3588 }
3589 if (j == XATTR_SIZE_MAX)
3590 return -E2BIG;
3591 if (ca == '\0')
3592 return i;
3593 s__ign++;
3594 }
3595 return -E2BIG;
3596 err_out:
3597 return -EFAULT;
3598 }
3599
3600 /**
3601 * bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3602 * does not contain letters in @reject__ign
3603 * @s__ign: The string to be searched
3604 * @reject__ign: The string to search for
3605 *
3606 * Return:
3607 * * >=0 - The length of the initial substring of @s__ign which does not
3608 * contain letters from @reject__ign
3609 * * %-EFAULT - Cannot read one of the strings
3610 * * %-E2BIG - One of the strings is too large
3611 * * %-ERANGE - One of the strings is outside of kernel address space
3612 */
bpf_strcspn(const char * s__ign,const char * reject__ign)3613 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3614 {
3615 char cs, cr;
3616 int i, j;
3617
3618 if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3619 !copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3620 return -ERANGE;
3621 }
3622
3623 guard(pagefault)();
3624 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3625 __get_kernel_nofault(&cs, s__ign, char, err_out);
3626 if (cs == '\0')
3627 return i;
3628 for (j = 0; j < XATTR_SIZE_MAX; j++) {
3629 __get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3630 if (cs == cr || cr == '\0')
3631 break;
3632 }
3633 if (j == XATTR_SIZE_MAX)
3634 return -E2BIG;
3635 if (cr != '\0')
3636 return i;
3637 s__ign++;
3638 }
3639 return -E2BIG;
3640 err_out:
3641 return -EFAULT;
3642 }
3643
3644 /**
3645 * bpf_strnstr - Find the first substring in a length-limited string
3646 * @s1__ign: The string to be searched
3647 * @s2__ign: The string to search for
3648 * @len: the maximum number of characters to search
3649 *
3650 * Return:
3651 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3652 * within the first @len characters of @s1__ign
3653 * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3654 * * %-EFAULT - Cannot read one of the strings
3655 * * %-E2BIG - One of the strings is too large
3656 * * %-ERANGE - One of the strings is outside of kernel address space
3657 */
bpf_strnstr(const char * s1__ign,const char * s2__ign,size_t len)3658 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, size_t len)
3659 {
3660 char c1, c2;
3661 int i, j;
3662
3663 if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3664 !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3665 return -ERANGE;
3666 }
3667
3668 guard(pagefault)();
3669 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3670 for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) {
3671 __get_kernel_nofault(&c2, s2__ign + j, char, err_out);
3672 if (c2 == '\0')
3673 return i;
3674 /*
3675 * We allow reading an extra byte from s2 (note the
3676 * `i + j <= len` above) to cover the case when s2 is
3677 * a suffix of the first len chars of s1.
3678 */
3679 if (i + j == len)
3680 break;
3681 __get_kernel_nofault(&c1, s1__ign + j, char, err_out);
3682 if (c1 == '\0')
3683 return -ENOENT;
3684 if (c1 != c2)
3685 break;
3686 }
3687 if (j == XATTR_SIZE_MAX)
3688 return -E2BIG;
3689 if (i + j == len)
3690 return -ENOENT;
3691 s1__ign++;
3692 }
3693 return -E2BIG;
3694 err_out:
3695 return -EFAULT;
3696 }
3697
3698 /**
3699 * bpf_strstr - Find the first substring in a string
3700 * @s1__ign: The string to be searched
3701 * @s2__ign: The string to search for
3702 *
3703 * Return:
3704 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3705 * within @s1__ign
3706 * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3707 * * %-EFAULT - Cannot read one of the strings
3708 * * %-E2BIG - One of the strings is too large
3709 * * %-ERANGE - One of the strings is outside of kernel address space
3710 */
bpf_strstr(const char * s1__ign,const char * s2__ign)3711 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3712 {
3713 return bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX);
3714 }
3715
3716 __bpf_kfunc_end_defs();
3717
3718 BTF_KFUNCS_START(generic_btf_ids)
3719 #ifdef CONFIG_CRASH_DUMP
3720 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
3721 #endif
3722 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3723 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3724 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
3725 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
3726 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
3727 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
3728 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
3729 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
3730 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
3731 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
3732 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
3733 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3734 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
3735 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
3736 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
3737 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
3738 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
3739 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
3740 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
3741
3742 #ifdef CONFIG_CGROUPS
3743 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3744 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
3745 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3746 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
3747 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
3748 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3749 #endif
3750 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
3751 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
3752 BTF_ID_FLAGS(func, bpf_throw)
3753 #ifdef CONFIG_BPF_EVENTS
3754 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
3755 #endif
3756 BTF_KFUNCS_END(generic_btf_ids)
3757
3758 static const struct btf_kfunc_id_set generic_kfunc_set = {
3759 .owner = THIS_MODULE,
3760 .set = &generic_btf_ids,
3761 };
3762
3763
3764 BTF_ID_LIST(generic_dtor_ids)
3765 BTF_ID(struct, task_struct)
3766 BTF_ID(func, bpf_task_release_dtor)
3767 #ifdef CONFIG_CGROUPS
3768 BTF_ID(struct, cgroup)
3769 BTF_ID(func, bpf_cgroup_release_dtor)
3770 #endif
3771
3772 BTF_KFUNCS_START(common_btf_ids)
3773 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
3774 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
3775 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
3776 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
3777 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
3778 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
3779 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
3780 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
3781 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
3782 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
3783 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
3784 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
3785 #ifdef CONFIG_CGROUPS
3786 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
3787 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
3788 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
3789 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3790 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
3791 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
3792 #endif
3793 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3794 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
3795 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
3796 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
3797 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
3798 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
3799 BTF_ID_FLAGS(func, bpf_dynptr_size)
3800 BTF_ID_FLAGS(func, bpf_dynptr_clone)
3801 BTF_ID_FLAGS(func, bpf_dynptr_copy)
3802 BTF_ID_FLAGS(func, bpf_dynptr_memset)
3803 #ifdef CONFIG_NET
3804 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
3805 #endif
3806 BTF_ID_FLAGS(func, bpf_wq_init)
3807 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
3808 BTF_ID_FLAGS(func, bpf_wq_start)
3809 BTF_ID_FLAGS(func, bpf_preempt_disable)
3810 BTF_ID_FLAGS(func, bpf_preempt_enable)
3811 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
3812 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
3813 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
3814 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
3815 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
3816 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
3817 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
3818 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3819 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3820 BTF_ID_FLAGS(func, bpf_local_irq_save)
3821 BTF_ID_FLAGS(func, bpf_local_irq_restore)
3822 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
3823 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
3824 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
3825 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
3826 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
3827 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
3828 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3829 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3830 #ifdef CONFIG_DMA_SHARED_BUFFER
3831 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
3832 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3833 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3834 #endif
3835 BTF_ID_FLAGS(func, __bpf_trap)
3836 BTF_ID_FLAGS(func, bpf_strcmp);
3837 BTF_ID_FLAGS(func, bpf_strchr);
3838 BTF_ID_FLAGS(func, bpf_strchrnul);
3839 BTF_ID_FLAGS(func, bpf_strnchr);
3840 BTF_ID_FLAGS(func, bpf_strrchr);
3841 BTF_ID_FLAGS(func, bpf_strlen);
3842 BTF_ID_FLAGS(func, bpf_strnlen);
3843 BTF_ID_FLAGS(func, bpf_strspn);
3844 BTF_ID_FLAGS(func, bpf_strcspn);
3845 BTF_ID_FLAGS(func, bpf_strstr);
3846 BTF_ID_FLAGS(func, bpf_strnstr);
3847 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
3848 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
3849 #endif
3850 BTF_ID_FLAGS(func, bpf_stream_vprintk, KF_TRUSTED_ARGS)
3851 BTF_KFUNCS_END(common_btf_ids)
3852
3853 static const struct btf_kfunc_id_set common_kfunc_set = {
3854 .owner = THIS_MODULE,
3855 .set = &common_btf_ids,
3856 };
3857
kfunc_init(void)3858 static int __init kfunc_init(void)
3859 {
3860 int ret;
3861 const struct btf_id_dtor_kfunc generic_dtors[] = {
3862 {
3863 .btf_id = generic_dtor_ids[0],
3864 .kfunc_btf_id = generic_dtor_ids[1]
3865 },
3866 #ifdef CONFIG_CGROUPS
3867 {
3868 .btf_id = generic_dtor_ids[2],
3869 .kfunc_btf_id = generic_dtor_ids[3]
3870 },
3871 #endif
3872 };
3873
3874 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
3875 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
3876 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
3877 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
3878 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
3879 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
3880 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
3881 ARRAY_SIZE(generic_dtors),
3882 THIS_MODULE);
3883 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
3884 }
3885
3886 late_initcall(kfunc_init);
3887
3888 /* Get a pointer to dynptr data up to len bytes for read only access. If
3889 * the dynptr doesn't have continuous data up to len bytes, return NULL.
3890 */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u32 len)3891 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
3892 {
3893 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
3894
3895 return bpf_dynptr_slice(p, 0, NULL, len);
3896 }
3897
3898 /* Get a pointer to dynptr data up to len bytes for read write access. If
3899 * the dynptr doesn't have continuous data up to len bytes, or the dynptr
3900 * is read only, return NULL.
3901 */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u32 len)3902 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
3903 {
3904 if (__bpf_dynptr_is_rdonly(ptr))
3905 return NULL;
3906 return (void *)__bpf_dynptr_data(ptr, len);
3907 }
3908