xref: /linux/net/core/filter.c (revision fbde105f132f30aff25f3acb1c287e95d5452c9c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88 
89 #include "dev.h"
90 
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93 
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 	if (in_compat_syscall()) {
100 		struct compat_sock_fprog f32;
101 
102 		if (len != sizeof(f32))
103 			return -EINVAL;
104 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 			return -EFAULT;
106 		memset(dst, 0, sizeof(*dst));
107 		dst->len = f32.len;
108 		dst->filter = compat_ptr(f32.filter);
109 	} else {
110 		if (len != sizeof(*dst))
111 			return -EINVAL;
112 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 			return -EFAULT;
114 	}
115 
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119 
120 /**
121  *	sk_filter_trim_cap - run a packet through a socket filter
122  *	@sk: sock associated with &sk_buff
123  *	@skb: buffer to filter
124  *	@cap: limit on how short the eBPF program may trim the packet
125  *	@reason: record drop reason on errors (negative return value)
126  *
127  * Run the eBPF program and then cut skb->data to correct size returned by
128  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
129  * than pkt_len we keep whole skb->data. This is the socket level
130  * wrapper to bpf_prog_run. It returns 0 if the packet should
131  * be accepted or -EPERM if the packet should be tossed.
132  *
133  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap,enum skb_drop_reason * reason)134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb,
135 		       unsigned int cap, enum skb_drop_reason *reason)
136 {
137 	int err;
138 	struct sk_filter *filter;
139 
140 	/*
141 	 * If the skb was allocated from pfmemalloc reserves, only
142 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
143 	 * helping free memory
144 	 */
145 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
146 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
147 		*reason = SKB_DROP_REASON_PFMEMALLOC;
148 		return -ENOMEM;
149 	}
150 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
151 	if (err) {
152 		*reason = SKB_DROP_REASON_SOCKET_FILTER;
153 		return err;
154 	}
155 
156 	err = security_sock_rcv_skb(sk, skb);
157 	if (err) {
158 		*reason = SKB_DROP_REASON_SECURITY_HOOK;
159 		return err;
160 	}
161 
162 	rcu_read_lock();
163 	filter = rcu_dereference(sk->sk_filter);
164 	if (filter) {
165 		struct sock *save_sk = skb->sk;
166 		unsigned int pkt_len;
167 
168 		skb->sk = sk;
169 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
170 		skb->sk = save_sk;
171 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
172 		if (err)
173 			*reason = SKB_DROP_REASON_SOCKET_FILTER;
174 	}
175 	rcu_read_unlock();
176 
177 	return err;
178 }
179 EXPORT_SYMBOL(sk_filter_trim_cap);
180 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
182 {
183 	return skb_get_poff(skb);
184 }
185 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
200 	if (nla)
201 		return (void *) nla - (void *) skb->data;
202 
203 	return 0;
204 }
205 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
207 {
208 	struct nlattr *nla;
209 
210 	if (skb_is_nonlinear(skb))
211 		return 0;
212 
213 	if (skb->len < sizeof(struct nlattr))
214 		return 0;
215 
216 	if (a > skb->len - sizeof(struct nlattr))
217 		return 0;
218 
219 	nla = (struct nlattr *) &skb->data[a];
220 	if (!nla_ok(nla, skb->len - a))
221 		return 0;
222 
223 	nla = nla_find_nested(nla, x);
224 	if (nla)
225 		return (void *) nla - (void *) skb->data;
226 
227 	return 0;
228 }
229 
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
231 {
232 	if (likely(offset >= 0))
233 		return offset;
234 
235 	if (offset >= SKF_NET_OFF)
236 		return offset - SKF_NET_OFF + skb_network_offset(skb);
237 
238 	if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
239 		return offset - SKF_LL_OFF + skb_mac_offset(skb);
240 
241 	return INT_MIN;
242 }
243 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
245 	   data, int, headlen, int, offset)
246 {
247 	u8 tmp;
248 	const int len = sizeof(tmp);
249 
250 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
251 	if (offset == INT_MIN)
252 		return -EFAULT;
253 
254 	if (headlen - offset >= len)
255 		return *(u8 *)(data + offset);
256 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
257 		return tmp;
258 	else
259 		return -EFAULT;
260 }
261 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
263 	   int, offset)
264 {
265 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
266 					 offset);
267 }
268 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
270 	   data, int, headlen, int, offset)
271 {
272 	__be16 tmp;
273 	const int len = sizeof(tmp);
274 
275 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
276 	if (offset == INT_MIN)
277 		return -EFAULT;
278 
279 	if (headlen - offset >= len)
280 		return get_unaligned_be16(data + offset);
281 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
282 		return be16_to_cpu(tmp);
283 	else
284 		return -EFAULT;
285 }
286 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
288 	   int, offset)
289 {
290 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
291 					  offset);
292 }
293 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
295 	   data, int, headlen, int, offset)
296 {
297 	__be32 tmp;
298 	const int len = sizeof(tmp);
299 
300 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
301 	if (offset == INT_MIN)
302 		return -EFAULT;
303 
304 	if (headlen - offset >= len)
305 		return get_unaligned_be32(data + offset);
306 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
307 		return be32_to_cpu(tmp);
308 	else
309 		return -EFAULT;
310 }
311 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
313 	   int, offset)
314 {
315 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
316 					  offset);
317 }
318 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
320 			      struct bpf_insn *insn_buf)
321 {
322 	struct bpf_insn *insn = insn_buf;
323 
324 	switch (skb_field) {
325 	case SKF_AD_MARK:
326 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
327 
328 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
329 				      offsetof(struct sk_buff, mark));
330 		break;
331 
332 	case SKF_AD_PKTTYPE:
333 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
334 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
335 #ifdef __BIG_ENDIAN_BITFIELD
336 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
337 #endif
338 		break;
339 
340 	case SKF_AD_QUEUE:
341 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
342 
343 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
344 				      offsetof(struct sk_buff, queue_mapping));
345 		break;
346 
347 	case SKF_AD_VLAN_TAG:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
349 
350 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
352 				      offsetof(struct sk_buff, vlan_tci));
353 		break;
354 	case SKF_AD_VLAN_TAG_PRESENT:
355 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
356 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
357 				      offsetof(struct sk_buff, vlan_all));
358 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
359 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
360 		break;
361 	}
362 
363 	return insn - insn_buf;
364 }
365 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)366 static bool convert_bpf_extensions(struct sock_filter *fp,
367 				   struct bpf_insn **insnp)
368 {
369 	struct bpf_insn *insn = *insnp;
370 	u32 cnt;
371 
372 	switch (fp->k) {
373 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
374 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
375 
376 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
377 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
378 				      offsetof(struct sk_buff, protocol));
379 		/* A = ntohs(A) [emitting a nop or swap16] */
380 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
384 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_IFINDEX:
389 	case SKF_AD_OFF + SKF_AD_HATYPE:
390 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
391 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
392 
393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
394 				      BPF_REG_TMP, BPF_REG_CTX,
395 				      offsetof(struct sk_buff, dev));
396 		/* if (tmp != 0) goto pc + 1 */
397 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
398 		*insn++ = BPF_EXIT_INSN();
399 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
400 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
401 					    offsetof(struct net_device, ifindex));
402 		else
403 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
404 					    offsetof(struct net_device, type));
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_MARK:
408 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_RXHASH:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
414 
415 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
416 				    offsetof(struct sk_buff, hash));
417 		break;
418 
419 	case SKF_AD_OFF + SKF_AD_QUEUE:
420 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
421 		insn += cnt - 1;
422 		break;
423 
424 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
425 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
426 					 BPF_REG_A, BPF_REG_CTX, insn);
427 		insn += cnt - 1;
428 		break;
429 
430 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
431 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
432 					 BPF_REG_A, BPF_REG_CTX, insn);
433 		insn += cnt - 1;
434 		break;
435 
436 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
437 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
438 
439 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
440 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
441 				      offsetof(struct sk_buff, vlan_proto));
442 		/* A = ntohs(A) [emitting a nop or swap16] */
443 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
444 		break;
445 
446 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
447 	case SKF_AD_OFF + SKF_AD_NLATTR:
448 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 	case SKF_AD_OFF + SKF_AD_CPU:
450 	case SKF_AD_OFF + SKF_AD_RANDOM:
451 		/* arg1 = CTX */
452 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
453 		/* arg2 = A */
454 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
455 		/* arg3 = X */
456 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
457 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
458 		switch (fp->k) {
459 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
460 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
461 			break;
462 		case SKF_AD_OFF + SKF_AD_NLATTR:
463 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
464 			break;
465 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
466 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
467 			break;
468 		case SKF_AD_OFF + SKF_AD_CPU:
469 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
470 			break;
471 		case SKF_AD_OFF + SKF_AD_RANDOM:
472 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
473 			bpf_user_rnd_init_once();
474 			break;
475 		}
476 		break;
477 
478 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
479 		/* A ^= X */
480 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
481 		break;
482 
483 	default:
484 		/* This is just a dummy call to avoid letting the compiler
485 		 * evict __bpf_call_base() as an optimization. Placed here
486 		 * where no-one bothers.
487 		 */
488 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
489 		return false;
490 	}
491 
492 	*insnp = insn;
493 	return true;
494 }
495 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
497 {
498 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
499 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
500 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
501 		      BPF_SIZE(fp->code) == BPF_W;
502 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
503 	const int ip_align = NET_IP_ALIGN;
504 	struct bpf_insn *insn = *insnp;
505 	int offset = fp->k;
506 
507 	if (!indirect &&
508 	    ((unaligned_ok && offset >= 0) ||
509 	     (!unaligned_ok && offset >= 0 &&
510 	      offset + ip_align >= 0 &&
511 	      offset + ip_align % size == 0))) {
512 		bool ldx_off_ok = offset <= S16_MAX;
513 
514 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
515 		if (offset)
516 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
517 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
518 				      size, 2 + endian + (!ldx_off_ok * 2));
519 		if (ldx_off_ok) {
520 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
521 					      BPF_REG_D, offset);
522 		} else {
523 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
524 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
525 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
526 					      BPF_REG_TMP, 0);
527 		}
528 		if (endian)
529 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
530 		*insn++ = BPF_JMP_A(8);
531 	}
532 
533 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
534 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
535 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
536 	if (!indirect) {
537 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
538 	} else {
539 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
540 		if (fp->k)
541 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
542 	}
543 
544 	switch (BPF_SIZE(fp->code)) {
545 	case BPF_B:
546 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
547 		break;
548 	case BPF_H:
549 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
550 		break;
551 	case BPF_W:
552 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
553 		break;
554 	default:
555 		return false;
556 	}
557 
558 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
559 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
560 	*insn   = BPF_EXIT_INSN();
561 
562 	*insnp = insn;
563 	return true;
564 }
565 
566 /**
567  *	bpf_convert_filter - convert filter program
568  *	@prog: the user passed filter program
569  *	@len: the length of the user passed filter program
570  *	@new_prog: allocated 'struct bpf_prog' or NULL
571  *	@new_len: pointer to store length of converted program
572  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
573  *
574  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
575  * style extended BPF (eBPF).
576  * Conversion workflow:
577  *
578  * 1) First pass for calculating the new program length:
579  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
580  *
581  * 2) 2nd pass to remap in two passes: 1st pass finds new
582  *    jump offsets, 2nd pass remapping:
583  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
584  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)585 static int bpf_convert_filter(struct sock_filter *prog, int len,
586 			      struct bpf_prog *new_prog, int *new_len,
587 			      bool *seen_ld_abs)
588 {
589 	int new_flen = 0, pass = 0, target, i, stack_off;
590 	struct bpf_insn *new_insn, *first_insn = NULL;
591 	struct sock_filter *fp;
592 	int *addrs = NULL;
593 	u8 bpf_src;
594 
595 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
596 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
597 
598 	if (len <= 0 || len > BPF_MAXINSNS)
599 		return -EINVAL;
600 
601 	if (new_prog) {
602 		first_insn = new_prog->insnsi;
603 		addrs = kcalloc(len, sizeof(*addrs),
604 				GFP_KERNEL | __GFP_NOWARN);
605 		if (!addrs)
606 			return -ENOMEM;
607 	}
608 
609 do_pass:
610 	new_insn = first_insn;
611 	fp = prog;
612 
613 	/* Classic BPF related prologue emission. */
614 	if (new_prog) {
615 		/* Classic BPF expects A and X to be reset first. These need
616 		 * to be guaranteed to be the first two instructions.
617 		 */
618 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
619 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
620 
621 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
622 		 * In eBPF case it's done by the compiler, here we need to
623 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
624 		 */
625 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
626 		if (*seen_ld_abs) {
627 			/* For packet access in classic BPF, cache skb->data
628 			 * in callee-saved BPF R8 and skb->len - skb->data_len
629 			 * (headlen) in BPF R9. Since classic BPF is read-only
630 			 * on CTX, we only need to cache it once.
631 			 */
632 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
633 						  BPF_REG_D, BPF_REG_CTX,
634 						  offsetof(struct sk_buff, data));
635 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
636 						  offsetof(struct sk_buff, len));
637 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
638 						  offsetof(struct sk_buff, data_len));
639 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
640 		}
641 	} else {
642 		new_insn += 3;
643 	}
644 
645 	for (i = 0; i < len; fp++, i++) {
646 		struct bpf_insn tmp_insns[32] = { };
647 		struct bpf_insn *insn = tmp_insns;
648 
649 		if (addrs)
650 			addrs[i] = new_insn - first_insn;
651 
652 		switch (fp->code) {
653 		/* All arithmetic insns and skb loads map as-is. */
654 		case BPF_ALU | BPF_ADD | BPF_X:
655 		case BPF_ALU | BPF_ADD | BPF_K:
656 		case BPF_ALU | BPF_SUB | BPF_X:
657 		case BPF_ALU | BPF_SUB | BPF_K:
658 		case BPF_ALU | BPF_AND | BPF_X:
659 		case BPF_ALU | BPF_AND | BPF_K:
660 		case BPF_ALU | BPF_OR | BPF_X:
661 		case BPF_ALU | BPF_OR | BPF_K:
662 		case BPF_ALU | BPF_LSH | BPF_X:
663 		case BPF_ALU | BPF_LSH | BPF_K:
664 		case BPF_ALU | BPF_RSH | BPF_X:
665 		case BPF_ALU | BPF_RSH | BPF_K:
666 		case BPF_ALU | BPF_XOR | BPF_X:
667 		case BPF_ALU | BPF_XOR | BPF_K:
668 		case BPF_ALU | BPF_MUL | BPF_X:
669 		case BPF_ALU | BPF_MUL | BPF_K:
670 		case BPF_ALU | BPF_DIV | BPF_X:
671 		case BPF_ALU | BPF_DIV | BPF_K:
672 		case BPF_ALU | BPF_MOD | BPF_X:
673 		case BPF_ALU | BPF_MOD | BPF_K:
674 		case BPF_ALU | BPF_NEG:
675 		case BPF_LD | BPF_ABS | BPF_W:
676 		case BPF_LD | BPF_ABS | BPF_H:
677 		case BPF_LD | BPF_ABS | BPF_B:
678 		case BPF_LD | BPF_IND | BPF_W:
679 		case BPF_LD | BPF_IND | BPF_H:
680 		case BPF_LD | BPF_IND | BPF_B:
681 			/* Check for overloaded BPF extension and
682 			 * directly convert it if found, otherwise
683 			 * just move on with mapping.
684 			 */
685 			if (BPF_CLASS(fp->code) == BPF_LD &&
686 			    BPF_MODE(fp->code) == BPF_ABS &&
687 			    convert_bpf_extensions(fp, &insn))
688 				break;
689 			if (BPF_CLASS(fp->code) == BPF_LD &&
690 			    convert_bpf_ld_abs(fp, &insn)) {
691 				*seen_ld_abs = true;
692 				break;
693 			}
694 
695 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
696 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
697 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
698 				/* Error with exception code on div/mod by 0.
699 				 * For cBPF programs, this was always return 0.
700 				 */
701 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
702 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
703 				*insn++ = BPF_EXIT_INSN();
704 			}
705 
706 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
707 			break;
708 
709 		/* Jump transformation cannot use BPF block macros
710 		 * everywhere as offset calculation and target updates
711 		 * require a bit more work than the rest, i.e. jump
712 		 * opcodes map as-is, but offsets need adjustment.
713 		 */
714 
715 #define BPF_EMIT_JMP							\
716 	do {								\
717 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
718 		s32 off;						\
719 									\
720 		if (target >= len || target < 0)			\
721 			goto err;					\
722 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
723 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
724 		off -= insn - tmp_insns;				\
725 		/* Reject anything not fitting into insn->off. */	\
726 		if (off < off_min || off > off_max)			\
727 			goto err;					\
728 		insn->off = off;					\
729 	} while (0)
730 
731 		case BPF_JMP | BPF_JA:
732 			target = i + fp->k + 1;
733 			insn->code = fp->code;
734 			BPF_EMIT_JMP;
735 			break;
736 
737 		case BPF_JMP | BPF_JEQ | BPF_K:
738 		case BPF_JMP | BPF_JEQ | BPF_X:
739 		case BPF_JMP | BPF_JSET | BPF_K:
740 		case BPF_JMP | BPF_JSET | BPF_X:
741 		case BPF_JMP | BPF_JGT | BPF_K:
742 		case BPF_JMP | BPF_JGT | BPF_X:
743 		case BPF_JMP | BPF_JGE | BPF_K:
744 		case BPF_JMP | BPF_JGE | BPF_X:
745 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
746 				/* BPF immediates are signed, zero extend
747 				 * immediate into tmp register and use it
748 				 * in compare insn.
749 				 */
750 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
751 
752 				insn->dst_reg = BPF_REG_A;
753 				insn->src_reg = BPF_REG_TMP;
754 				bpf_src = BPF_X;
755 			} else {
756 				insn->dst_reg = BPF_REG_A;
757 				insn->imm = fp->k;
758 				bpf_src = BPF_SRC(fp->code);
759 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
760 			}
761 
762 			/* Common case where 'jump_false' is next insn. */
763 			if (fp->jf == 0) {
764 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 				target = i + fp->jt + 1;
766 				BPF_EMIT_JMP;
767 				break;
768 			}
769 
770 			/* Convert some jumps when 'jump_true' is next insn. */
771 			if (fp->jt == 0) {
772 				switch (BPF_OP(fp->code)) {
773 				case BPF_JEQ:
774 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
775 					break;
776 				case BPF_JGT:
777 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
778 					break;
779 				case BPF_JGE:
780 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
781 					break;
782 				default:
783 					goto jmp_rest;
784 				}
785 
786 				target = i + fp->jf + 1;
787 				BPF_EMIT_JMP;
788 				break;
789 			}
790 jmp_rest:
791 			/* Other jumps are mapped into two insns: Jxx and JA. */
792 			target = i + fp->jt + 1;
793 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
794 			BPF_EMIT_JMP;
795 			insn++;
796 
797 			insn->code = BPF_JMP | BPF_JA;
798 			target = i + fp->jf + 1;
799 			BPF_EMIT_JMP;
800 			break;
801 
802 		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
803 		case BPF_LDX | BPF_MSH | BPF_B: {
804 			struct sock_filter tmp = {
805 				.code	= BPF_LD | BPF_ABS | BPF_B,
806 				.k	= fp->k,
807 			};
808 
809 			*seen_ld_abs = true;
810 
811 			/* X = A */
812 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
813 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
814 			convert_bpf_ld_abs(&tmp, &insn);
815 			insn++;
816 			/* A &= 0xf */
817 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
818 			/* A <<= 2 */
819 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
820 			/* tmp = X */
821 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
822 			/* X = A */
823 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			/* A = tmp */
825 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
826 			break;
827 		}
828 		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
829 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
830 		 */
831 		case BPF_RET | BPF_A:
832 		case BPF_RET | BPF_K:
833 			if (BPF_RVAL(fp->code) == BPF_K)
834 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
835 							0, fp->k);
836 			*insn = BPF_EXIT_INSN();
837 			break;
838 
839 		/* Store to stack. */
840 		case BPF_ST:
841 		case BPF_STX:
842 			stack_off = fp->k * 4  + 4;
843 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
844 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
845 					    -stack_off);
846 			/* check_load_and_stores() verifies that classic BPF can
847 			 * load from stack only after write, so tracking
848 			 * stack_depth for ST|STX insns is enough
849 			 */
850 			if (new_prog && new_prog->aux->stack_depth < stack_off)
851 				new_prog->aux->stack_depth = stack_off;
852 			break;
853 
854 		/* Load from stack. */
855 		case BPF_LD | BPF_MEM:
856 		case BPF_LDX | BPF_MEM:
857 			stack_off = fp->k * 4  + 4;
858 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
859 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
860 					    -stack_off);
861 			break;
862 
863 		/* A = K or X = K */
864 		case BPF_LD | BPF_IMM:
865 		case BPF_LDX | BPF_IMM:
866 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
867 					      BPF_REG_A : BPF_REG_X, fp->k);
868 			break;
869 
870 		/* X = A */
871 		case BPF_MISC | BPF_TAX:
872 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
873 			break;
874 
875 		/* A = X */
876 		case BPF_MISC | BPF_TXA:
877 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
878 			break;
879 
880 		/* A = skb->len or X = skb->len */
881 		case BPF_LD | BPF_W | BPF_LEN:
882 		case BPF_LDX | BPF_W | BPF_LEN:
883 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
884 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
885 					    offsetof(struct sk_buff, len));
886 			break;
887 
888 		/* Access seccomp_data fields. */
889 		case BPF_LDX | BPF_ABS | BPF_W:
890 			/* A = *(u32 *) (ctx + K) */
891 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
892 			break;
893 
894 		/* Unknown instruction. */
895 		default:
896 			goto err;
897 		}
898 
899 		insn++;
900 		if (new_prog)
901 			memcpy(new_insn, tmp_insns,
902 			       sizeof(*insn) * (insn - tmp_insns));
903 		new_insn += insn - tmp_insns;
904 	}
905 
906 	if (!new_prog) {
907 		/* Only calculating new length. */
908 		*new_len = new_insn - first_insn;
909 		if (*seen_ld_abs)
910 			*new_len += 4; /* Prologue bits. */
911 		return 0;
912 	}
913 
914 	pass++;
915 	if (new_flen != new_insn - first_insn) {
916 		new_flen = new_insn - first_insn;
917 		if (pass > 2)
918 			goto err;
919 		goto do_pass;
920 	}
921 
922 	kfree(addrs);
923 	BUG_ON(*new_len != new_flen);
924 	return 0;
925 err:
926 	kfree(addrs);
927 	return -EINVAL;
928 }
929 
930 /* Security:
931  *
932  * As we dont want to clear mem[] array for each packet going through
933  * __bpf_prog_run(), we check that filter loaded by user never try to read
934  * a cell if not previously written, and we check all branches to be sure
935  * a malicious user doesn't try to abuse us.
936  */
check_load_and_stores(const struct sock_filter * filter,int flen)937 static int check_load_and_stores(const struct sock_filter *filter, int flen)
938 {
939 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
940 	int pc, ret = 0;
941 
942 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
943 
944 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
945 	if (!masks)
946 		return -ENOMEM;
947 
948 	memset(masks, 0xff, flen * sizeof(*masks));
949 
950 	for (pc = 0; pc < flen; pc++) {
951 		memvalid &= masks[pc];
952 
953 		switch (filter[pc].code) {
954 		case BPF_ST:
955 		case BPF_STX:
956 			memvalid |= (1 << filter[pc].k);
957 			break;
958 		case BPF_LD | BPF_MEM:
959 		case BPF_LDX | BPF_MEM:
960 			if (!(memvalid & (1 << filter[pc].k))) {
961 				ret = -EINVAL;
962 				goto error;
963 			}
964 			break;
965 		case BPF_JMP | BPF_JA:
966 			/* A jump must set masks on target */
967 			masks[pc + 1 + filter[pc].k] &= memvalid;
968 			memvalid = ~0;
969 			break;
970 		case BPF_JMP | BPF_JEQ | BPF_K:
971 		case BPF_JMP | BPF_JEQ | BPF_X:
972 		case BPF_JMP | BPF_JGE | BPF_K:
973 		case BPF_JMP | BPF_JGE | BPF_X:
974 		case BPF_JMP | BPF_JGT | BPF_K:
975 		case BPF_JMP | BPF_JGT | BPF_X:
976 		case BPF_JMP | BPF_JSET | BPF_K:
977 		case BPF_JMP | BPF_JSET | BPF_X:
978 			/* A jump must set masks on targets */
979 			masks[pc + 1 + filter[pc].jt] &= memvalid;
980 			masks[pc + 1 + filter[pc].jf] &= memvalid;
981 			memvalid = ~0;
982 			break;
983 		}
984 	}
985 error:
986 	kfree(masks);
987 	return ret;
988 }
989 
chk_code_allowed(u16 code_to_probe)990 static bool chk_code_allowed(u16 code_to_probe)
991 {
992 	static const bool codes[] = {
993 		/* 32 bit ALU operations */
994 		[BPF_ALU | BPF_ADD | BPF_K] = true,
995 		[BPF_ALU | BPF_ADD | BPF_X] = true,
996 		[BPF_ALU | BPF_SUB | BPF_K] = true,
997 		[BPF_ALU | BPF_SUB | BPF_X] = true,
998 		[BPF_ALU | BPF_MUL | BPF_K] = true,
999 		[BPF_ALU | BPF_MUL | BPF_X] = true,
1000 		[BPF_ALU | BPF_DIV | BPF_K] = true,
1001 		[BPF_ALU | BPF_DIV | BPF_X] = true,
1002 		[BPF_ALU | BPF_MOD | BPF_K] = true,
1003 		[BPF_ALU | BPF_MOD | BPF_X] = true,
1004 		[BPF_ALU | BPF_AND | BPF_K] = true,
1005 		[BPF_ALU | BPF_AND | BPF_X] = true,
1006 		[BPF_ALU | BPF_OR | BPF_K] = true,
1007 		[BPF_ALU | BPF_OR | BPF_X] = true,
1008 		[BPF_ALU | BPF_XOR | BPF_K] = true,
1009 		[BPF_ALU | BPF_XOR | BPF_X] = true,
1010 		[BPF_ALU | BPF_LSH | BPF_K] = true,
1011 		[BPF_ALU | BPF_LSH | BPF_X] = true,
1012 		[BPF_ALU | BPF_RSH | BPF_K] = true,
1013 		[BPF_ALU | BPF_RSH | BPF_X] = true,
1014 		[BPF_ALU | BPF_NEG] = true,
1015 		/* Load instructions */
1016 		[BPF_LD | BPF_W | BPF_ABS] = true,
1017 		[BPF_LD | BPF_H | BPF_ABS] = true,
1018 		[BPF_LD | BPF_B | BPF_ABS] = true,
1019 		[BPF_LD | BPF_W | BPF_LEN] = true,
1020 		[BPF_LD | BPF_W | BPF_IND] = true,
1021 		[BPF_LD | BPF_H | BPF_IND] = true,
1022 		[BPF_LD | BPF_B | BPF_IND] = true,
1023 		[BPF_LD | BPF_IMM] = true,
1024 		[BPF_LD | BPF_MEM] = true,
1025 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1026 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1027 		[BPF_LDX | BPF_IMM] = true,
1028 		[BPF_LDX | BPF_MEM] = true,
1029 		/* Store instructions */
1030 		[BPF_ST] = true,
1031 		[BPF_STX] = true,
1032 		/* Misc instructions */
1033 		[BPF_MISC | BPF_TAX] = true,
1034 		[BPF_MISC | BPF_TXA] = true,
1035 		/* Return instructions */
1036 		[BPF_RET | BPF_K] = true,
1037 		[BPF_RET | BPF_A] = true,
1038 		/* Jump instructions */
1039 		[BPF_JMP | BPF_JA] = true,
1040 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1041 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1042 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1043 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1044 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1045 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1046 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1047 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1048 	};
1049 
1050 	if (code_to_probe >= ARRAY_SIZE(codes))
1051 		return false;
1052 
1053 	return codes[code_to_probe];
1054 }
1055 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1056 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1057 				unsigned int flen)
1058 {
1059 	if (filter == NULL)
1060 		return false;
1061 	if (flen == 0 || flen > BPF_MAXINSNS)
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 /**
1068  *	bpf_check_classic - verify socket filter code
1069  *	@filter: filter to verify
1070  *	@flen: length of filter
1071  *
1072  * Check the user's filter code. If we let some ugly
1073  * filter code slip through kaboom! The filter must contain
1074  * no references or jumps that are out of range, no illegal
1075  * instructions, and must end with a RET instruction.
1076  *
1077  * All jumps are forward as they are not signed.
1078  *
1079  * Returns 0 if the rule set is legal or -EINVAL if not.
1080  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1081 static int bpf_check_classic(const struct sock_filter *filter,
1082 			     unsigned int flen)
1083 {
1084 	bool anc_found;
1085 	int pc;
1086 
1087 	/* Check the filter code now */
1088 	for (pc = 0; pc < flen; pc++) {
1089 		const struct sock_filter *ftest = &filter[pc];
1090 
1091 		/* May we actually operate on this code? */
1092 		if (!chk_code_allowed(ftest->code))
1093 			return -EINVAL;
1094 
1095 		/* Some instructions need special checks */
1096 		switch (ftest->code) {
1097 		case BPF_ALU | BPF_DIV | BPF_K:
1098 		case BPF_ALU | BPF_MOD | BPF_K:
1099 			/* Check for division by zero */
1100 			if (ftest->k == 0)
1101 				return -EINVAL;
1102 			break;
1103 		case BPF_ALU | BPF_LSH | BPF_K:
1104 		case BPF_ALU | BPF_RSH | BPF_K:
1105 			if (ftest->k >= 32)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_MEM:
1109 		case BPF_LDX | BPF_MEM:
1110 		case BPF_ST:
1111 		case BPF_STX:
1112 			/* Check for invalid memory addresses */
1113 			if (ftest->k >= BPF_MEMWORDS)
1114 				return -EINVAL;
1115 			break;
1116 		case BPF_JMP | BPF_JA:
1117 			/* Note, the large ftest->k might cause loops.
1118 			 * Compare this with conditional jumps below,
1119 			 * where offsets are limited. --ANK (981016)
1120 			 */
1121 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1122 				return -EINVAL;
1123 			break;
1124 		case BPF_JMP | BPF_JEQ | BPF_K:
1125 		case BPF_JMP | BPF_JEQ | BPF_X:
1126 		case BPF_JMP | BPF_JGE | BPF_K:
1127 		case BPF_JMP | BPF_JGE | BPF_X:
1128 		case BPF_JMP | BPF_JGT | BPF_K:
1129 		case BPF_JMP | BPF_JGT | BPF_X:
1130 		case BPF_JMP | BPF_JSET | BPF_K:
1131 		case BPF_JMP | BPF_JSET | BPF_X:
1132 			/* Both conditionals must be safe */
1133 			if (pc + ftest->jt + 1 >= flen ||
1134 			    pc + ftest->jf + 1 >= flen)
1135 				return -EINVAL;
1136 			break;
1137 		case BPF_LD | BPF_W | BPF_ABS:
1138 		case BPF_LD | BPF_H | BPF_ABS:
1139 		case BPF_LD | BPF_B | BPF_ABS:
1140 			anc_found = false;
1141 			if (bpf_anc_helper(ftest) & BPF_ANC)
1142 				anc_found = true;
1143 			/* Ancillary operation unknown or unsupported */
1144 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1145 				return -EINVAL;
1146 		}
1147 	}
1148 
1149 	/* Last instruction must be a RET code */
1150 	switch (filter[flen - 1].code) {
1151 	case BPF_RET | BPF_K:
1152 	case BPF_RET | BPF_A:
1153 		return check_load_and_stores(filter, flen);
1154 	}
1155 
1156 	return -EINVAL;
1157 }
1158 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1160 				      const struct sock_fprog *fprog)
1161 {
1162 	unsigned int fsize = bpf_classic_proglen(fprog);
1163 	struct sock_fprog_kern *fkprog;
1164 
1165 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1166 	if (!fp->orig_prog)
1167 		return -ENOMEM;
1168 
1169 	fkprog = fp->orig_prog;
1170 	fkprog->len = fprog->len;
1171 
1172 	fkprog->filter = kmemdup(fp->insns, fsize,
1173 				 GFP_KERNEL | __GFP_NOWARN);
1174 	if (!fkprog->filter) {
1175 		kfree(fp->orig_prog);
1176 		return -ENOMEM;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
bpf_release_orig_filter(struct bpf_prog * fp)1182 static void bpf_release_orig_filter(struct bpf_prog *fp)
1183 {
1184 	struct sock_fprog_kern *fprog = fp->orig_prog;
1185 
1186 	if (fprog) {
1187 		kfree(fprog->filter);
1188 		kfree(fprog);
1189 	}
1190 }
1191 
__bpf_prog_release(struct bpf_prog * prog)1192 static void __bpf_prog_release(struct bpf_prog *prog)
1193 {
1194 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1195 		bpf_prog_put(prog);
1196 	} else {
1197 		bpf_release_orig_filter(prog);
1198 		bpf_prog_free(prog);
1199 	}
1200 }
1201 
__sk_filter_release(struct sk_filter * fp)1202 static void __sk_filter_release(struct sk_filter *fp)
1203 {
1204 	__bpf_prog_release(fp->prog);
1205 	kfree(fp);
1206 }
1207 
1208 /**
1209  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1210  *	@rcu: rcu_head that contains the sk_filter to free
1211  */
sk_filter_release_rcu(struct rcu_head * rcu)1212 static void sk_filter_release_rcu(struct rcu_head *rcu)
1213 {
1214 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1215 
1216 	__sk_filter_release(fp);
1217 }
1218 
1219 /**
1220  *	sk_filter_release - release a socket filter
1221  *	@fp: filter to remove
1222  *
1223  *	Remove a filter from a socket and release its resources.
1224  */
sk_filter_release(struct sk_filter * fp)1225 static void sk_filter_release(struct sk_filter *fp)
1226 {
1227 	if (refcount_dec_and_test(&fp->refcnt))
1228 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1229 }
1230 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1232 {
1233 	u32 filter_size = bpf_prog_size(fp->prog->len);
1234 
1235 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1236 	sk_filter_release(fp);
1237 }
1238 
1239 /* try to charge the socket memory if there is space available
1240  * return true on success
1241  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1243 {
1244 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1245 	u32 filter_size = bpf_prog_size(fp->prog->len);
1246 
1247 	/* same check as in sock_kmalloc() */
1248 	if (filter_size <= optmem_max &&
1249 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1250 		atomic_add(filter_size, &sk->sk_omem_alloc);
1251 		return true;
1252 	}
1253 	return false;
1254 }
1255 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1257 {
1258 	if (!refcount_inc_not_zero(&fp->refcnt))
1259 		return false;
1260 
1261 	if (!__sk_filter_charge(sk, fp)) {
1262 		sk_filter_release(fp);
1263 		return false;
1264 	}
1265 	return true;
1266 }
1267 
bpf_migrate_filter(struct bpf_prog * fp)1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1269 {
1270 	struct sock_filter *old_prog;
1271 	struct bpf_prog *old_fp;
1272 	int err, new_len, old_len = fp->len;
1273 	bool seen_ld_abs = false;
1274 
1275 	/* We are free to overwrite insns et al right here as it won't be used at
1276 	 * this point in time anymore internally after the migration to the eBPF
1277 	 * instruction representation.
1278 	 */
1279 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1280 		     sizeof(struct bpf_insn));
1281 
1282 	/* Conversion cannot happen on overlapping memory areas,
1283 	 * so we need to keep the user BPF around until the 2nd
1284 	 * pass. At this time, the user BPF is stored in fp->insns.
1285 	 */
1286 	old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1287 				 GFP_KERNEL | __GFP_NOWARN);
1288 	if (!old_prog) {
1289 		err = -ENOMEM;
1290 		goto out_err;
1291 	}
1292 
1293 	/* 1st pass: calculate the new program length. */
1294 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1295 				 &seen_ld_abs);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	/* Expand fp for appending the new filter representation. */
1300 	old_fp = fp;
1301 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1302 	if (!fp) {
1303 		/* The old_fp is still around in case we couldn't
1304 		 * allocate new memory, so uncharge on that one.
1305 		 */
1306 		fp = old_fp;
1307 		err = -ENOMEM;
1308 		goto out_err_free;
1309 	}
1310 
1311 	fp->len = new_len;
1312 
1313 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1314 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1315 				 &seen_ld_abs);
1316 	if (err)
1317 		/* 2nd bpf_convert_filter() can fail only if it fails
1318 		 * to allocate memory, remapping must succeed. Note,
1319 		 * that at this time old_fp has already been released
1320 		 * by krealloc().
1321 		 */
1322 		goto out_err_free;
1323 
1324 	fp = bpf_prog_select_runtime(fp, &err);
1325 	if (err)
1326 		goto out_err_free;
1327 
1328 	kfree(old_prog);
1329 	return fp;
1330 
1331 out_err_free:
1332 	kfree(old_prog);
1333 out_err:
1334 	__bpf_prog_release(fp);
1335 	return ERR_PTR(err);
1336 }
1337 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1339 					   bpf_aux_classic_check_t trans)
1340 {
1341 	int err;
1342 
1343 	fp->bpf_func = NULL;
1344 	fp->jited = 0;
1345 
1346 	err = bpf_check_classic(fp->insns, fp->len);
1347 	if (err) {
1348 		__bpf_prog_release(fp);
1349 		return ERR_PTR(err);
1350 	}
1351 
1352 	/* There might be additional checks and transformations
1353 	 * needed on classic filters, f.e. in case of seccomp.
1354 	 */
1355 	if (trans) {
1356 		err = trans(fp->insns, fp->len);
1357 		if (err) {
1358 			__bpf_prog_release(fp);
1359 			return ERR_PTR(err);
1360 		}
1361 	}
1362 
1363 	/* Probe if we can JIT compile the filter and if so, do
1364 	 * the compilation of the filter.
1365 	 */
1366 	bpf_jit_compile(fp);
1367 
1368 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1369 	 * for the optimized interpreter.
1370 	 */
1371 	if (!fp->jited)
1372 		fp = bpf_migrate_filter(fp);
1373 
1374 	return fp;
1375 }
1376 
1377 /**
1378  *	bpf_prog_create - create an unattached filter
1379  *	@pfp: the unattached filter that is created
1380  *	@fprog: the filter program
1381  *
1382  * Create a filter independent of any socket. We first run some
1383  * sanity checks on it to make sure it does not explode on us later.
1384  * If an error occurs or there is insufficient memory for the filter
1385  * a negative errno code is returned. On success the return is zero.
1386  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1388 {
1389 	unsigned int fsize = bpf_classic_proglen(fprog);
1390 	struct bpf_prog *fp;
1391 
1392 	/* Make sure new filter is there and in the right amounts. */
1393 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1394 		return -EINVAL;
1395 
1396 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1397 	if (!fp)
1398 		return -ENOMEM;
1399 
1400 	memcpy(fp->insns, fprog->filter, fsize);
1401 
1402 	fp->len = fprog->len;
1403 	/* Since unattached filters are not copied back to user
1404 	 * space through sk_get_filter(), we do not need to hold
1405 	 * a copy here, and can spare us the work.
1406 	 */
1407 	fp->orig_prog = NULL;
1408 
1409 	/* bpf_prepare_filter() already takes care of freeing
1410 	 * memory in case something goes wrong.
1411 	 */
1412 	fp = bpf_prepare_filter(fp, NULL);
1413 	if (IS_ERR(fp))
1414 		return PTR_ERR(fp);
1415 
1416 	*pfp = fp;
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(bpf_prog_create);
1420 
1421 /**
1422  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1423  *	@pfp: the unattached filter that is created
1424  *	@fprog: the filter program
1425  *	@trans: post-classic verifier transformation handler
1426  *	@save_orig: save classic BPF program
1427  *
1428  * This function effectively does the same as bpf_prog_create(), only
1429  * that it builds up its insns buffer from user space provided buffer.
1430  * It also allows for passing a bpf_aux_classic_check_t handler.
1431  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1433 			      bpf_aux_classic_check_t trans, bool save_orig)
1434 {
1435 	unsigned int fsize = bpf_classic_proglen(fprog);
1436 	struct bpf_prog *fp;
1437 	int err;
1438 
1439 	/* Make sure new filter is there and in the right amounts. */
1440 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1441 		return -EINVAL;
1442 
1443 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1444 	if (!fp)
1445 		return -ENOMEM;
1446 
1447 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1448 		__bpf_prog_free(fp);
1449 		return -EFAULT;
1450 	}
1451 
1452 	fp->len = fprog->len;
1453 	fp->orig_prog = NULL;
1454 
1455 	if (save_orig) {
1456 		err = bpf_prog_store_orig_filter(fp, fprog);
1457 		if (err) {
1458 			__bpf_prog_free(fp);
1459 			return -ENOMEM;
1460 		}
1461 	}
1462 
1463 	/* bpf_prepare_filter() already takes care of freeing
1464 	 * memory in case something goes wrong.
1465 	 */
1466 	fp = bpf_prepare_filter(fp, trans);
1467 	if (IS_ERR(fp))
1468 		return PTR_ERR(fp);
1469 
1470 	*pfp = fp;
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1474 
bpf_prog_destroy(struct bpf_prog * fp)1475 void bpf_prog_destroy(struct bpf_prog *fp)
1476 {
1477 	__bpf_prog_release(fp);
1478 }
1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1480 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1482 {
1483 	struct sk_filter *fp, *old_fp;
1484 
1485 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1486 	if (!fp)
1487 		return -ENOMEM;
1488 
1489 	fp->prog = prog;
1490 
1491 	if (!__sk_filter_charge(sk, fp)) {
1492 		kfree(fp);
1493 		return -ENOMEM;
1494 	}
1495 	refcount_set(&fp->refcnt, 1);
1496 
1497 	old_fp = rcu_dereference_protected(sk->sk_filter,
1498 					   lockdep_sock_is_held(sk));
1499 	rcu_assign_pointer(sk->sk_filter, fp);
1500 
1501 	if (old_fp)
1502 		sk_filter_uncharge(sk, old_fp);
1503 
1504 	return 0;
1505 }
1506 
1507 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1509 {
1510 	unsigned int fsize = bpf_classic_proglen(fprog);
1511 	struct bpf_prog *prog;
1512 	int err;
1513 
1514 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1515 		return ERR_PTR(-EPERM);
1516 
1517 	/* Make sure new filter is there and in the right amounts. */
1518 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1519 		return ERR_PTR(-EINVAL);
1520 
1521 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1522 	if (!prog)
1523 		return ERR_PTR(-ENOMEM);
1524 
1525 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1526 		__bpf_prog_free(prog);
1527 		return ERR_PTR(-EFAULT);
1528 	}
1529 
1530 	prog->len = fprog->len;
1531 
1532 	err = bpf_prog_store_orig_filter(prog, fprog);
1533 	if (err) {
1534 		__bpf_prog_free(prog);
1535 		return ERR_PTR(-ENOMEM);
1536 	}
1537 
1538 	/* bpf_prepare_filter() already takes care of freeing
1539 	 * memory in case something goes wrong.
1540 	 */
1541 	return bpf_prepare_filter(prog, NULL);
1542 }
1543 
1544 /**
1545  *	sk_attach_filter - attach a socket filter
1546  *	@fprog: the filter program
1547  *	@sk: the socket to use
1548  *
1549  * Attach the user's filter code. We first run some sanity checks on
1550  * it to make sure it does not explode on us later. If an error
1551  * occurs or there is insufficient memory for the filter a negative
1552  * errno code is returned. On success the return is zero.
1553  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1555 {
1556 	struct bpf_prog *prog = __get_filter(fprog, sk);
1557 	int err;
1558 
1559 	if (IS_ERR(prog))
1560 		return PTR_ERR(prog);
1561 
1562 	err = __sk_attach_prog(prog, sk);
1563 	if (err < 0) {
1564 		__bpf_prog_release(prog);
1565 		return err;
1566 	}
1567 
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(sk_attach_filter);
1571 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1573 {
1574 	struct bpf_prog *prog = __get_filter(fprog, sk);
1575 	int err, optmem_max;
1576 
1577 	if (IS_ERR(prog))
1578 		return PTR_ERR(prog);
1579 
1580 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1581 	if (bpf_prog_size(prog->len) > optmem_max)
1582 		err = -ENOMEM;
1583 	else
1584 		err = reuseport_attach_prog(sk, prog);
1585 
1586 	if (err)
1587 		__bpf_prog_release(prog);
1588 
1589 	return err;
1590 }
1591 
__get_bpf(u32 ufd,struct sock * sk)1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595 		return ERR_PTR(-EPERM);
1596 
1597 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598 }
1599 
sk_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1603 	int err;
1604 
1605 	if (IS_ERR(prog))
1606 		return PTR_ERR(prog);
1607 
1608 	err = __sk_attach_prog(prog, sk);
1609 	if (err < 0) {
1610 		bpf_prog_put(prog);
1611 		return err;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1618 {
1619 	struct bpf_prog *prog;
1620 	int err, optmem_max;
1621 
1622 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1623 		return -EPERM;
1624 
1625 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1626 	if (PTR_ERR(prog) == -EINVAL)
1627 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1628 	if (IS_ERR(prog))
1629 		return PTR_ERR(prog);
1630 
1631 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1632 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1633 		 * bpf prog (e.g. sockmap).  It depends on the
1634 		 * limitation imposed by bpf_prog_load().
1635 		 * Hence, sysctl_optmem_max is not checked.
1636 		 */
1637 		if ((sk->sk_type != SOCK_STREAM &&
1638 		     sk->sk_type != SOCK_DGRAM) ||
1639 		    (sk->sk_protocol != IPPROTO_UDP &&
1640 		     sk->sk_protocol != IPPROTO_TCP) ||
1641 		    (sk->sk_family != AF_INET &&
1642 		     sk->sk_family != AF_INET6)) {
1643 			err = -ENOTSUPP;
1644 			goto err_prog_put;
1645 		}
1646 	} else {
1647 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1648 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1649 		if (bpf_prog_size(prog->len) > optmem_max) {
1650 			err = -ENOMEM;
1651 			goto err_prog_put;
1652 		}
1653 	}
1654 
1655 	err = reuseport_attach_prog(sk, prog);
1656 err_prog_put:
1657 	if (err)
1658 		bpf_prog_put(prog);
1659 
1660 	return err;
1661 }
1662 
sk_reuseport_prog_free(struct bpf_prog * prog)1663 void sk_reuseport_prog_free(struct bpf_prog *prog)
1664 {
1665 	if (!prog)
1666 		return;
1667 
1668 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1669 		bpf_prog_put(prog);
1670 	else
1671 		bpf_prog_destroy(prog);
1672 }
1673 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1674 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1675 					  unsigned int write_len)
1676 {
1677 #ifdef CONFIG_DEBUG_NET
1678 	/* Avoid a splat in pskb_may_pull_reason() */
1679 	if (write_len > INT_MAX)
1680 		return -EINVAL;
1681 #endif
1682 	return skb_ensure_writable(skb, write_len);
1683 }
1684 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1685 static inline int bpf_try_make_writable(struct sk_buff *skb,
1686 					unsigned int write_len)
1687 {
1688 	int err = __bpf_try_make_writable(skb, write_len);
1689 
1690 	bpf_compute_data_pointers(skb);
1691 	return err;
1692 }
1693 
bpf_try_make_head_writable(struct sk_buff * skb)1694 static int bpf_try_make_head_writable(struct sk_buff *skb)
1695 {
1696 	return bpf_try_make_writable(skb, skb_headlen(skb));
1697 }
1698 
bpf_push_mac_rcsum(struct sk_buff * skb)1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1700 {
1701 	if (skb_at_tc_ingress(skb))
1702 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1703 }
1704 
bpf_pull_mac_rcsum(struct sk_buff * skb)1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1706 {
1707 	if (skb_at_tc_ingress(skb))
1708 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1709 }
1710 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1712 	   const void *, from, u32, len, u64, flags)
1713 {
1714 	void *ptr;
1715 
1716 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1717 		return -EINVAL;
1718 	if (unlikely(offset > INT_MAX))
1719 		return -EFAULT;
1720 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1721 		return -EFAULT;
1722 
1723 	ptr = skb->data + offset;
1724 	if (flags & BPF_F_RECOMPUTE_CSUM)
1725 		__skb_postpull_rcsum(skb, ptr, len, offset);
1726 
1727 	memcpy(ptr, from, len);
1728 
1729 	if (flags & BPF_F_RECOMPUTE_CSUM)
1730 		__skb_postpush_rcsum(skb, ptr, len, offset);
1731 	if (flags & BPF_F_INVALIDATE_HASH)
1732 		skb_clear_hash(skb);
1733 
1734 	return 0;
1735 }
1736 
1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1738 	.func		= bpf_skb_store_bytes,
1739 	.gpl_only	= false,
1740 	.ret_type	= RET_INTEGER,
1741 	.arg1_type	= ARG_PTR_TO_CTX,
1742 	.arg2_type	= ARG_ANYTHING,
1743 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1744 	.arg4_type	= ARG_CONST_SIZE,
1745 	.arg5_type	= ARG_ANYTHING,
1746 };
1747 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1749 			  u32 len, u64 flags)
1750 {
1751 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1752 }
1753 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1755 	   void *, to, u32, len)
1756 {
1757 	void *ptr;
1758 
1759 	if (unlikely(offset > INT_MAX))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1775 	.func		= bpf_skb_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1785 {
1786 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1787 }
1788 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1789 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1790 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1791 	   void *, to, u32, len)
1792 {
1793 	void *ptr;
1794 
1795 	if (unlikely(offset > 0xffff))
1796 		goto err_clear;
1797 
1798 	if (unlikely(!ctx->skb))
1799 		goto err_clear;
1800 
1801 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1802 	if (unlikely(!ptr))
1803 		goto err_clear;
1804 	if (ptr != to)
1805 		memcpy(to, ptr, len);
1806 
1807 	return 0;
1808 err_clear:
1809 	memset(to, 0, len);
1810 	return -EFAULT;
1811 }
1812 
1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1814 	.func		= bpf_flow_dissector_load_bytes,
1815 	.gpl_only	= false,
1816 	.ret_type	= RET_INTEGER,
1817 	.arg1_type	= ARG_PTR_TO_CTX,
1818 	.arg2_type	= ARG_ANYTHING,
1819 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1820 	.arg4_type	= ARG_CONST_SIZE,
1821 };
1822 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1824 	   u32, offset, void *, to, u32, len, u32, start_header)
1825 {
1826 	u8 *end = skb_tail_pointer(skb);
1827 	u8 *start, *ptr;
1828 
1829 	if (unlikely(offset > 0xffff))
1830 		goto err_clear;
1831 
1832 	switch (start_header) {
1833 	case BPF_HDR_START_MAC:
1834 		if (unlikely(!skb_mac_header_was_set(skb)))
1835 			goto err_clear;
1836 		start = skb_mac_header(skb);
1837 		break;
1838 	case BPF_HDR_START_NET:
1839 		start = skb_network_header(skb);
1840 		break;
1841 	default:
1842 		goto err_clear;
1843 	}
1844 
1845 	ptr = start + offset;
1846 
1847 	if (likely(ptr + len <= end)) {
1848 		memcpy(to, ptr, len);
1849 		return 0;
1850 	}
1851 
1852 err_clear:
1853 	memset(to, 0, len);
1854 	return -EFAULT;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1858 	.func		= bpf_skb_load_bytes_relative,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_INTEGER,
1861 	.arg1_type	= ARG_PTR_TO_CTX,
1862 	.arg2_type	= ARG_ANYTHING,
1863 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1864 	.arg4_type	= ARG_CONST_SIZE,
1865 	.arg5_type	= ARG_ANYTHING,
1866 };
1867 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870 	/* Idea is the following: should the needed direct read/write
1871 	 * test fail during runtime, we can pull in more data and redo
1872 	 * again, since implicitly, we invalidate previous checks here.
1873 	 *
1874 	 * Or, since we know how much we need to make read/writeable,
1875 	 * this can be done once at the program beginning for direct
1876 	 * access case. By this we overcome limitations of only current
1877 	 * headroom being accessible.
1878 	 */
1879 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881 
1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1883 	.func		= bpf_skb_pull_data,
1884 	.gpl_only	= false,
1885 	.ret_type	= RET_INTEGER,
1886 	.arg1_type	= ARG_PTR_TO_CTX,
1887 	.arg2_type	= ARG_ANYTHING,
1888 };
1889 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1891 {
1892 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1893 }
1894 
1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1896 	.func		= bpf_sk_fullsock,
1897 	.gpl_only	= false,
1898 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1899 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1900 };
1901 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1903 					   unsigned int write_len)
1904 {
1905 	return __bpf_try_make_writable(skb, write_len);
1906 }
1907 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1909 {
1910 	/* Idea is the following: should the needed direct read/write
1911 	 * test fail during runtime, we can pull in more data and redo
1912 	 * again, since implicitly, we invalidate previous checks here.
1913 	 *
1914 	 * Or, since we know how much we need to make read/writeable,
1915 	 * this can be done once at the program beginning for direct
1916 	 * access case. By this we overcome limitations of only current
1917 	 * headroom being accessible.
1918 	 */
1919 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1920 }
1921 
1922 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1923 	.func		= sk_skb_pull_data,
1924 	.gpl_only	= false,
1925 	.ret_type	= RET_INTEGER,
1926 	.arg1_type	= ARG_PTR_TO_CTX,
1927 	.arg2_type	= ARG_ANYTHING,
1928 };
1929 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1931 	   u64, from, u64, to, u64, flags)
1932 {
1933 	__sum16 *ptr;
1934 
1935 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1936 		return -EINVAL;
1937 	if (unlikely(offset > 0xffff || offset & 1))
1938 		return -EFAULT;
1939 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1940 		return -EFAULT;
1941 
1942 	ptr = (__sum16 *)(skb->data + offset);
1943 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1944 	case 0:
1945 		if (unlikely(from != 0))
1946 			return -EINVAL;
1947 
1948 		csum_replace_by_diff(ptr, to);
1949 		break;
1950 	case 2:
1951 		csum_replace2(ptr, from, to);
1952 		break;
1953 	case 4:
1954 		csum_replace4(ptr, from, to);
1955 		break;
1956 	default:
1957 		return -EINVAL;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1964 	.func		= bpf_l3_csum_replace,
1965 	.gpl_only	= false,
1966 	.ret_type	= RET_INTEGER,
1967 	.arg1_type	= ARG_PTR_TO_CTX,
1968 	.arg2_type	= ARG_ANYTHING,
1969 	.arg3_type	= ARG_ANYTHING,
1970 	.arg4_type	= ARG_ANYTHING,
1971 	.arg5_type	= ARG_ANYTHING,
1972 };
1973 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1975 	   u64, from, u64, to, u64, flags)
1976 {
1977 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1978 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1979 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1980 	bool is_ipv6   = flags & BPF_F_IPV6;
1981 	__sum16 *ptr;
1982 
1983 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1984 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1985 		return -EINVAL;
1986 	if (unlikely(offset > 0xffff || offset & 1))
1987 		return -EFAULT;
1988 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1989 		return -EFAULT;
1990 
1991 	ptr = (__sum16 *)(skb->data + offset);
1992 	if (is_mmzero && !do_mforce && !*ptr)
1993 		return 0;
1994 
1995 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1996 	case 0:
1997 		if (unlikely(from != 0))
1998 			return -EINVAL;
1999 
2000 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
2001 		break;
2002 	case 2:
2003 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
2004 		break;
2005 	case 4:
2006 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2007 		break;
2008 	default:
2009 		return -EINVAL;
2010 	}
2011 
2012 	if (is_mmzero && !*ptr)
2013 		*ptr = CSUM_MANGLED_0;
2014 	return 0;
2015 }
2016 
2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2018 	.func		= bpf_l4_csum_replace,
2019 	.gpl_only	= false,
2020 	.ret_type	= RET_INTEGER,
2021 	.arg1_type	= ARG_PTR_TO_CTX,
2022 	.arg2_type	= ARG_ANYTHING,
2023 	.arg3_type	= ARG_ANYTHING,
2024 	.arg4_type	= ARG_ANYTHING,
2025 	.arg5_type	= ARG_ANYTHING,
2026 };
2027 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2029 	   __be32 *, to, u32, to_size, __wsum, seed)
2030 {
2031 	/* This is quite flexible, some examples:
2032 	 *
2033 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2034 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2035 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2036 	 *
2037 	 * Even for diffing, from_size and to_size don't need to be equal.
2038 	 */
2039 
2040 	__wsum ret = seed;
2041 
2042 	if (from_size && to_size)
2043 		ret = csum_sub(csum_partial(to, to_size, ret),
2044 			       csum_partial(from, from_size, 0));
2045 	else if (to_size)
2046 		ret = csum_partial(to, to_size, ret);
2047 
2048 	else if (from_size)
2049 		ret = ~csum_partial(from, from_size, ~ret);
2050 
2051 	return csum_from32to16((__force unsigned int)ret);
2052 }
2053 
2054 static const struct bpf_func_proto bpf_csum_diff_proto = {
2055 	.func		= bpf_csum_diff,
2056 	.gpl_only	= false,
2057 	.pkt_access	= true,
2058 	.ret_type	= RET_INTEGER,
2059 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2060 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2061 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2062 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2063 	.arg5_type	= ARG_ANYTHING,
2064 };
2065 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2067 {
2068 	/* The interface is to be used in combination with bpf_csum_diff()
2069 	 * for direct packet writes. csum rotation for alignment as well
2070 	 * as emulating csum_sub() can be done from the eBPF program.
2071 	 */
2072 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2073 		return (skb->csum = csum_add(skb->csum, csum));
2074 
2075 	return -ENOTSUPP;
2076 }
2077 
2078 static const struct bpf_func_proto bpf_csum_update_proto = {
2079 	.func		= bpf_csum_update,
2080 	.gpl_only	= false,
2081 	.ret_type	= RET_INTEGER,
2082 	.arg1_type	= ARG_PTR_TO_CTX,
2083 	.arg2_type	= ARG_ANYTHING,
2084 };
2085 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2087 {
2088 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2089 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2090 	 * is passed as flags, for example.
2091 	 */
2092 	switch (level) {
2093 	case BPF_CSUM_LEVEL_INC:
2094 		__skb_incr_checksum_unnecessary(skb);
2095 		break;
2096 	case BPF_CSUM_LEVEL_DEC:
2097 		__skb_decr_checksum_unnecessary(skb);
2098 		break;
2099 	case BPF_CSUM_LEVEL_RESET:
2100 		__skb_reset_checksum_unnecessary(skb);
2101 		break;
2102 	case BPF_CSUM_LEVEL_QUERY:
2103 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2104 		       skb->csum_level : -EACCES;
2105 	default:
2106 		return -EINVAL;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static const struct bpf_func_proto bpf_csum_level_proto = {
2113 	.func		= bpf_csum_level,
2114 	.gpl_only	= false,
2115 	.ret_type	= RET_INTEGER,
2116 	.arg1_type	= ARG_PTR_TO_CTX,
2117 	.arg2_type	= ARG_ANYTHING,
2118 };
2119 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 	return dev_forward_skb_nomtu(dev, skb);
2123 }
2124 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2126 				      struct sk_buff *skb)
2127 {
2128 	int ret = ____dev_forward_skb(dev, skb, false);
2129 
2130 	if (likely(!ret)) {
2131 		skb->dev = dev;
2132 		ret = netif_rx(skb);
2133 	}
2134 
2135 	return ret;
2136 }
2137 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2139 {
2140 	int ret;
2141 
2142 	if (dev_xmit_recursion()) {
2143 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2144 		kfree_skb(skb);
2145 		return -ENETDOWN;
2146 	}
2147 
2148 	skb->dev = dev;
2149 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2150 	skb_clear_tstamp(skb);
2151 
2152 	dev_xmit_recursion_inc();
2153 	ret = dev_queue_xmit(skb);
2154 	dev_xmit_recursion_dec();
2155 
2156 	return ret;
2157 }
2158 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2160 				 u32 flags)
2161 {
2162 	unsigned int mlen = skb_network_offset(skb);
2163 
2164 	if (unlikely(skb->len <= mlen)) {
2165 		kfree_skb(skb);
2166 		return -ERANGE;
2167 	}
2168 
2169 	if (mlen) {
2170 		__skb_pull(skb, mlen);
2171 
2172 		/* At ingress, the mac header has already been pulled once.
2173 		 * At egress, skb_pospull_rcsum has to be done in case that
2174 		 * the skb is originated from ingress (i.e. a forwarded skb)
2175 		 * to ensure that rcsum starts at net header.
2176 		 */
2177 		if (!skb_at_tc_ingress(skb))
2178 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2179 	}
2180 	skb_pop_mac_header(skb);
2181 	skb_reset_mac_len(skb);
2182 	return flags & BPF_F_INGRESS ?
2183 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2184 }
2185 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2187 				 u32 flags)
2188 {
2189 	/* Verify that a link layer header is carried */
2190 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2191 		kfree_skb(skb);
2192 		return -ERANGE;
2193 	}
2194 
2195 	bpf_push_mac_rcsum(skb);
2196 	return flags & BPF_F_INGRESS ?
2197 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2198 }
2199 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2201 			  u32 flags)
2202 {
2203 	if (dev_is_mac_header_xmit(dev))
2204 		return __bpf_redirect_common(skb, dev, flags);
2205 	else
2206 		return __bpf_redirect_no_mac(skb, dev, flags);
2207 }
2208 
2209 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2211 			    struct net_device *dev, struct bpf_nh_params *nh)
2212 {
2213 	u32 hh_len = LL_RESERVED_SPACE(dev);
2214 	const struct in6_addr *nexthop;
2215 	struct dst_entry *dst = NULL;
2216 	struct neighbour *neigh;
2217 
2218 	if (dev_xmit_recursion()) {
2219 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2220 		goto out_drop;
2221 	}
2222 
2223 	skb->dev = dev;
2224 	skb_clear_tstamp(skb);
2225 
2226 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2227 		skb = skb_expand_head(skb, hh_len);
2228 		if (!skb)
2229 			return -ENOMEM;
2230 	}
2231 
2232 	rcu_read_lock();
2233 	if (!nh) {
2234 		dst = skb_dst(skb);
2235 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2236 				      &ipv6_hdr(skb)->daddr);
2237 	} else {
2238 		nexthop = &nh->ipv6_nh;
2239 	}
2240 	neigh = ip_neigh_gw6(dev, nexthop);
2241 	if (likely(!IS_ERR(neigh))) {
2242 		int ret;
2243 
2244 		sock_confirm_neigh(skb, neigh);
2245 		local_bh_disable();
2246 		dev_xmit_recursion_inc();
2247 		ret = neigh_output(neigh, skb, false);
2248 		dev_xmit_recursion_dec();
2249 		local_bh_enable();
2250 		rcu_read_unlock();
2251 		return ret;
2252 	}
2253 	rcu_read_unlock();
2254 	if (dst)
2255 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2256 out_drop:
2257 	kfree_skb(skb);
2258 	return -ENETDOWN;
2259 }
2260 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2262 				   struct bpf_nh_params *nh)
2263 {
2264 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2265 	struct net *net = dev_net(dev);
2266 	int err, ret = NET_XMIT_DROP;
2267 
2268 	if (!nh) {
2269 		struct dst_entry *dst;
2270 		struct flowi6 fl6 = {
2271 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2272 			.flowi6_mark  = skb->mark,
2273 			.flowlabel    = ip6_flowinfo(ip6h),
2274 			.flowi6_oif   = dev->ifindex,
2275 			.flowi6_proto = ip6h->nexthdr,
2276 			.daddr	      = ip6h->daddr,
2277 			.saddr	      = ip6h->saddr,
2278 		};
2279 
2280 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2281 		if (IS_ERR(dst))
2282 			goto out_drop;
2283 
2284 		skb_dst_drop(skb);
2285 		skb_dst_set(skb, dst);
2286 	} else if (nh->nh_family != AF_INET6) {
2287 		goto out_drop;
2288 	}
2289 
2290 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2291 	if (unlikely(net_xmit_eval(err)))
2292 		DEV_STATS_INC(dev, tx_errors);
2293 	else
2294 		ret = NET_XMIT_SUCCESS;
2295 	goto out_xmit;
2296 out_drop:
2297 	DEV_STATS_INC(dev, tx_errors);
2298 	kfree_skb(skb);
2299 out_xmit:
2300 	return ret;
2301 }
2302 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2303 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2304 				   struct bpf_nh_params *nh)
2305 {
2306 	kfree_skb(skb);
2307 	return NET_XMIT_DROP;
2308 }
2309 #endif /* CONFIG_IPV6 */
2310 
2311 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2312 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2313 			    struct net_device *dev, struct bpf_nh_params *nh)
2314 {
2315 	u32 hh_len = LL_RESERVED_SPACE(dev);
2316 	struct neighbour *neigh;
2317 	bool is_v6gw = false;
2318 
2319 	if (dev_xmit_recursion()) {
2320 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2321 		goto out_drop;
2322 	}
2323 
2324 	skb->dev = dev;
2325 	skb_clear_tstamp(skb);
2326 
2327 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2328 		skb = skb_expand_head(skb, hh_len);
2329 		if (!skb)
2330 			return -ENOMEM;
2331 	}
2332 
2333 	rcu_read_lock();
2334 	if (!nh) {
2335 		struct rtable *rt = skb_rtable(skb);
2336 
2337 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2338 	} else if (nh->nh_family == AF_INET6) {
2339 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2340 		is_v6gw = true;
2341 	} else if (nh->nh_family == AF_INET) {
2342 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2343 	} else {
2344 		rcu_read_unlock();
2345 		goto out_drop;
2346 	}
2347 
2348 	if (likely(!IS_ERR(neigh))) {
2349 		int ret;
2350 
2351 		sock_confirm_neigh(skb, neigh);
2352 		local_bh_disable();
2353 		dev_xmit_recursion_inc();
2354 		ret = neigh_output(neigh, skb, is_v6gw);
2355 		dev_xmit_recursion_dec();
2356 		local_bh_enable();
2357 		rcu_read_unlock();
2358 		return ret;
2359 	}
2360 	rcu_read_unlock();
2361 out_drop:
2362 	kfree_skb(skb);
2363 	return -ENETDOWN;
2364 }
2365 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2366 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2367 				   struct bpf_nh_params *nh)
2368 {
2369 	const struct iphdr *ip4h = ip_hdr(skb);
2370 	struct net *net = dev_net(dev);
2371 	int err, ret = NET_XMIT_DROP;
2372 
2373 	if (!nh) {
2374 		struct flowi4 fl4 = {
2375 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2376 			.flowi4_mark  = skb->mark,
2377 			.flowi4_dscp  = ip4h_dscp(ip4h),
2378 			.flowi4_oif   = dev->ifindex,
2379 			.flowi4_proto = ip4h->protocol,
2380 			.daddr	      = ip4h->daddr,
2381 			.saddr	      = ip4h->saddr,
2382 		};
2383 		struct rtable *rt;
2384 
2385 		rt = ip_route_output_flow(net, &fl4, NULL);
2386 		if (IS_ERR(rt))
2387 			goto out_drop;
2388 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2389 			ip_rt_put(rt);
2390 			goto out_drop;
2391 		}
2392 
2393 		skb_dst_drop(skb);
2394 		skb_dst_set(skb, &rt->dst);
2395 	}
2396 
2397 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2398 	if (unlikely(net_xmit_eval(err)))
2399 		DEV_STATS_INC(dev, tx_errors);
2400 	else
2401 		ret = NET_XMIT_SUCCESS;
2402 	goto out_xmit;
2403 out_drop:
2404 	DEV_STATS_INC(dev, tx_errors);
2405 	kfree_skb(skb);
2406 out_xmit:
2407 	return ret;
2408 }
2409 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2410 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2411 				   struct bpf_nh_params *nh)
2412 {
2413 	kfree_skb(skb);
2414 	return NET_XMIT_DROP;
2415 }
2416 #endif /* CONFIG_INET */
2417 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2418 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2419 				struct bpf_nh_params *nh)
2420 {
2421 	struct ethhdr *ethh = eth_hdr(skb);
2422 
2423 	if (unlikely(skb->mac_header >= skb->network_header))
2424 		goto out;
2425 	bpf_push_mac_rcsum(skb);
2426 	if (is_multicast_ether_addr(ethh->h_dest))
2427 		goto out;
2428 
2429 	skb_pull(skb, sizeof(*ethh));
2430 	skb_unset_mac_header(skb);
2431 	skb_reset_network_header(skb);
2432 
2433 	if (skb->protocol == htons(ETH_P_IP))
2434 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2435 	else if (skb->protocol == htons(ETH_P_IPV6))
2436 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2437 out:
2438 	kfree_skb(skb);
2439 	return -ENOTSUPP;
2440 }
2441 
2442 /* Internal, non-exposed redirect flags. */
2443 enum {
2444 	BPF_F_NEIGH	= (1ULL << 16),
2445 	BPF_F_PEER	= (1ULL << 17),
2446 	BPF_F_NEXTHOP	= (1ULL << 18),
2447 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2448 };
2449 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2450 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2451 {
2452 	struct net_device *dev;
2453 	struct sk_buff *clone;
2454 	int ret;
2455 
2456 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2457 
2458 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2459 		return -EINVAL;
2460 
2461 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2462 	if (unlikely(!dev))
2463 		return -EINVAL;
2464 
2465 	clone = skb_clone(skb, GFP_ATOMIC);
2466 	if (unlikely(!clone))
2467 		return -ENOMEM;
2468 
2469 	/* For direct write, we need to keep the invariant that the skbs
2470 	 * we're dealing with need to be uncloned. Should uncloning fail
2471 	 * here, we need to free the just generated clone to unclone once
2472 	 * again.
2473 	 */
2474 	ret = bpf_try_make_head_writable(skb);
2475 	if (unlikely(ret)) {
2476 		kfree_skb(clone);
2477 		return -ENOMEM;
2478 	}
2479 
2480 	return __bpf_redirect(clone, dev, flags);
2481 }
2482 
2483 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2484 	.func           = bpf_clone_redirect,
2485 	.gpl_only       = false,
2486 	.ret_type       = RET_INTEGER,
2487 	.arg1_type      = ARG_PTR_TO_CTX,
2488 	.arg2_type      = ARG_ANYTHING,
2489 	.arg3_type      = ARG_ANYTHING,
2490 };
2491 
skb_get_peer_dev(struct net_device * dev)2492 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2493 {
2494 	const struct net_device_ops *ops = dev->netdev_ops;
2495 
2496 	if (likely(ops->ndo_get_peer_dev))
2497 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2498 				       netkit_peer_dev, dev);
2499 	return NULL;
2500 }
2501 
skb_do_redirect(struct sk_buff * skb)2502 int skb_do_redirect(struct sk_buff *skb)
2503 {
2504 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2505 	struct net *net = dev_net(skb->dev);
2506 	struct net_device *dev;
2507 	u32 flags = ri->flags;
2508 
2509 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2510 	ri->tgt_index = 0;
2511 	ri->flags = 0;
2512 	if (unlikely(!dev))
2513 		goto out_drop;
2514 	if (flags & BPF_F_PEER) {
2515 		if (unlikely(!skb_at_tc_ingress(skb)))
2516 			goto out_drop;
2517 		dev = skb_get_peer_dev(dev);
2518 		if (unlikely(!dev ||
2519 			     !(dev->flags & IFF_UP) ||
2520 			     net_eq(net, dev_net(dev))))
2521 			goto out_drop;
2522 		skb->dev = dev;
2523 		dev_sw_netstats_rx_add(dev, skb->len);
2524 		skb_scrub_packet(skb, false);
2525 		return -EAGAIN;
2526 	}
2527 	return flags & BPF_F_NEIGH ?
2528 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2529 				    &ri->nh : NULL) :
2530 	       __bpf_redirect(skb, dev, flags);
2531 out_drop:
2532 	kfree_skb(skb);
2533 	return -EINVAL;
2534 }
2535 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2536 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2537 {
2538 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2539 
2540 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2541 		return TC_ACT_SHOT;
2542 
2543 	ri->flags = flags;
2544 	ri->tgt_index = ifindex;
2545 
2546 	return TC_ACT_REDIRECT;
2547 }
2548 
2549 static const struct bpf_func_proto bpf_redirect_proto = {
2550 	.func           = bpf_redirect,
2551 	.gpl_only       = false,
2552 	.ret_type       = RET_INTEGER,
2553 	.arg1_type      = ARG_ANYTHING,
2554 	.arg2_type      = ARG_ANYTHING,
2555 };
2556 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2557 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2558 {
2559 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2560 
2561 	if (unlikely(flags))
2562 		return TC_ACT_SHOT;
2563 
2564 	ri->flags = BPF_F_PEER;
2565 	ri->tgt_index = ifindex;
2566 
2567 	return TC_ACT_REDIRECT;
2568 }
2569 
2570 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2571 	.func           = bpf_redirect_peer,
2572 	.gpl_only       = false,
2573 	.ret_type       = RET_INTEGER,
2574 	.arg1_type      = ARG_ANYTHING,
2575 	.arg2_type      = ARG_ANYTHING,
2576 };
2577 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2578 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2579 	   int, plen, u64, flags)
2580 {
2581 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2582 
2583 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2584 		return TC_ACT_SHOT;
2585 
2586 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2587 	ri->tgt_index = ifindex;
2588 
2589 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2590 	if (plen)
2591 		memcpy(&ri->nh, params, sizeof(ri->nh));
2592 
2593 	return TC_ACT_REDIRECT;
2594 }
2595 
2596 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2597 	.func		= bpf_redirect_neigh,
2598 	.gpl_only	= false,
2599 	.ret_type	= RET_INTEGER,
2600 	.arg1_type	= ARG_ANYTHING,
2601 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2602 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2603 	.arg4_type	= ARG_ANYTHING,
2604 };
2605 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2606 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2607 {
2608 	msg->apply_bytes = bytes;
2609 	return 0;
2610 }
2611 
2612 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2613 	.func           = bpf_msg_apply_bytes,
2614 	.gpl_only       = false,
2615 	.ret_type       = RET_INTEGER,
2616 	.arg1_type	= ARG_PTR_TO_CTX,
2617 	.arg2_type      = ARG_ANYTHING,
2618 };
2619 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2620 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2621 {
2622 	msg->cork_bytes = bytes;
2623 	return 0;
2624 }
2625 
sk_msg_reset_curr(struct sk_msg * msg)2626 static void sk_msg_reset_curr(struct sk_msg *msg)
2627 {
2628 	if (!msg->sg.size) {
2629 		msg->sg.curr = msg->sg.start;
2630 		msg->sg.copybreak = 0;
2631 	} else {
2632 		u32 i = msg->sg.end;
2633 
2634 		sk_msg_iter_var_prev(i);
2635 		msg->sg.curr = i;
2636 		msg->sg.copybreak = msg->sg.data[i].length;
2637 	}
2638 }
2639 
2640 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2641 	.func           = bpf_msg_cork_bytes,
2642 	.gpl_only       = false,
2643 	.ret_type       = RET_INTEGER,
2644 	.arg1_type	= ARG_PTR_TO_CTX,
2645 	.arg2_type      = ARG_ANYTHING,
2646 };
2647 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2648 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2649 	   u32, end, u64, flags)
2650 {
2651 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2652 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2653 	struct scatterlist *sge;
2654 	u8 *raw, *to, *from;
2655 	struct page *page;
2656 
2657 	if (unlikely(flags || end <= start))
2658 		return -EINVAL;
2659 
2660 	/* First find the starting scatterlist element */
2661 	i = msg->sg.start;
2662 	do {
2663 		offset += len;
2664 		len = sk_msg_elem(msg, i)->length;
2665 		if (start < offset + len)
2666 			break;
2667 		sk_msg_iter_var_next(i);
2668 	} while (i != msg->sg.end);
2669 
2670 	if (unlikely(start >= offset + len))
2671 		return -EINVAL;
2672 
2673 	first_sge = i;
2674 	/* The start may point into the sg element so we need to also
2675 	 * account for the headroom.
2676 	 */
2677 	bytes_sg_total = start - offset + bytes;
2678 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2679 		goto out;
2680 
2681 	/* At this point we need to linearize multiple scatterlist
2682 	 * elements or a single shared page. Either way we need to
2683 	 * copy into a linear buffer exclusively owned by BPF. Then
2684 	 * place the buffer in the scatterlist and fixup the original
2685 	 * entries by removing the entries now in the linear buffer
2686 	 * and shifting the remaining entries. For now we do not try
2687 	 * to copy partial entries to avoid complexity of running out
2688 	 * of sg_entry slots. The downside is reading a single byte
2689 	 * will copy the entire sg entry.
2690 	 */
2691 	do {
2692 		copy += sk_msg_elem(msg, i)->length;
2693 		sk_msg_iter_var_next(i);
2694 		if (bytes_sg_total <= copy)
2695 			break;
2696 	} while (i != msg->sg.end);
2697 	last_sge = i;
2698 
2699 	if (unlikely(bytes_sg_total > copy))
2700 		return -EINVAL;
2701 
2702 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2703 			   get_order(copy));
2704 	if (unlikely(!page))
2705 		return -ENOMEM;
2706 
2707 	raw = page_address(page);
2708 	i = first_sge;
2709 	do {
2710 		sge = sk_msg_elem(msg, i);
2711 		from = sg_virt(sge);
2712 		len = sge->length;
2713 		to = raw + poffset;
2714 
2715 		memcpy(to, from, len);
2716 		poffset += len;
2717 		sge->length = 0;
2718 		put_page(sg_page(sge));
2719 
2720 		sk_msg_iter_var_next(i);
2721 	} while (i != last_sge);
2722 
2723 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2724 
2725 	/* To repair sg ring we need to shift entries. If we only
2726 	 * had a single entry though we can just replace it and
2727 	 * be done. Otherwise walk the ring and shift the entries.
2728 	 */
2729 	WARN_ON_ONCE(last_sge == first_sge);
2730 	shift = last_sge > first_sge ?
2731 		last_sge - first_sge - 1 :
2732 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2733 	if (!shift)
2734 		goto out;
2735 
2736 	i = first_sge;
2737 	sk_msg_iter_var_next(i);
2738 	do {
2739 		u32 move_from;
2740 
2741 		if (i + shift >= NR_MSG_FRAG_IDS)
2742 			move_from = i + shift - NR_MSG_FRAG_IDS;
2743 		else
2744 			move_from = i + shift;
2745 		if (move_from == msg->sg.end)
2746 			break;
2747 
2748 		msg->sg.data[i] = msg->sg.data[move_from];
2749 		msg->sg.data[move_from].length = 0;
2750 		msg->sg.data[move_from].page_link = 0;
2751 		msg->sg.data[move_from].offset = 0;
2752 		sk_msg_iter_var_next(i);
2753 	} while (1);
2754 
2755 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2756 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2757 		      msg->sg.end - shift;
2758 out:
2759 	sk_msg_reset_curr(msg);
2760 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2761 	msg->data_end = msg->data + bytes;
2762 	return 0;
2763 }
2764 
2765 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2766 	.func		= bpf_msg_pull_data,
2767 	.gpl_only	= false,
2768 	.ret_type	= RET_INTEGER,
2769 	.arg1_type	= ARG_PTR_TO_CTX,
2770 	.arg2_type	= ARG_ANYTHING,
2771 	.arg3_type	= ARG_ANYTHING,
2772 	.arg4_type	= ARG_ANYTHING,
2773 };
2774 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2775 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2776 	   u32, len, u64, flags)
2777 {
2778 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2779 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2780 	u8 *raw, *to, *from;
2781 	struct page *page;
2782 
2783 	if (unlikely(flags))
2784 		return -EINVAL;
2785 
2786 	if (unlikely(len == 0))
2787 		return 0;
2788 
2789 	/* First find the starting scatterlist element */
2790 	i = msg->sg.start;
2791 	do {
2792 		offset += l;
2793 		l = sk_msg_elem(msg, i)->length;
2794 
2795 		if (start < offset + l)
2796 			break;
2797 		sk_msg_iter_var_next(i);
2798 	} while (i != msg->sg.end);
2799 
2800 	if (start > offset + l)
2801 		return -EINVAL;
2802 
2803 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2804 
2805 	/* If no space available will fallback to copy, we need at
2806 	 * least one scatterlist elem available to push data into
2807 	 * when start aligns to the beginning of an element or two
2808 	 * when it falls inside an element. We handle the start equals
2809 	 * offset case because its the common case for inserting a
2810 	 * header.
2811 	 */
2812 	if (!space || (space == 1 && start != offset))
2813 		copy = msg->sg.data[i].length;
2814 
2815 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2816 			   get_order(copy + len));
2817 	if (unlikely(!page))
2818 		return -ENOMEM;
2819 
2820 	if (copy) {
2821 		int front, back;
2822 
2823 		raw = page_address(page);
2824 
2825 		if (i == msg->sg.end)
2826 			sk_msg_iter_var_prev(i);
2827 		psge = sk_msg_elem(msg, i);
2828 		front = start - offset;
2829 		back = psge->length - front;
2830 		from = sg_virt(psge);
2831 
2832 		if (front)
2833 			memcpy(raw, from, front);
2834 
2835 		if (back) {
2836 			from += front;
2837 			to = raw + front + len;
2838 
2839 			memcpy(to, from, back);
2840 		}
2841 
2842 		put_page(sg_page(psge));
2843 		new = i;
2844 		goto place_new;
2845 	}
2846 
2847 	if (start - offset) {
2848 		if (i == msg->sg.end)
2849 			sk_msg_iter_var_prev(i);
2850 		psge = sk_msg_elem(msg, i);
2851 		rsge = sk_msg_elem_cpy(msg, i);
2852 
2853 		psge->length = start - offset;
2854 		rsge.length -= psge->length;
2855 		rsge.offset += start;
2856 
2857 		sk_msg_iter_var_next(i);
2858 		sg_unmark_end(psge);
2859 		sg_unmark_end(&rsge);
2860 	}
2861 
2862 	/* Slot(s) to place newly allocated data */
2863 	sk_msg_iter_next(msg, end);
2864 	new = i;
2865 	sk_msg_iter_var_next(i);
2866 
2867 	if (i == msg->sg.end) {
2868 		if (!rsge.length)
2869 			goto place_new;
2870 		sk_msg_iter_next(msg, end);
2871 		goto place_new;
2872 	}
2873 
2874 	/* Shift one or two slots as needed */
2875 	sge = sk_msg_elem_cpy(msg, new);
2876 	sg_unmark_end(&sge);
2877 
2878 	nsge = sk_msg_elem_cpy(msg, i);
2879 	if (rsge.length) {
2880 		sk_msg_iter_var_next(i);
2881 		nnsge = sk_msg_elem_cpy(msg, i);
2882 		sk_msg_iter_next(msg, end);
2883 	}
2884 
2885 	while (i != msg->sg.end) {
2886 		msg->sg.data[i] = sge;
2887 		sge = nsge;
2888 		sk_msg_iter_var_next(i);
2889 		if (rsge.length) {
2890 			nsge = nnsge;
2891 			nnsge = sk_msg_elem_cpy(msg, i);
2892 		} else {
2893 			nsge = sk_msg_elem_cpy(msg, i);
2894 		}
2895 	}
2896 
2897 place_new:
2898 	/* Place newly allocated data buffer */
2899 	sk_mem_charge(msg->sk, len);
2900 	msg->sg.size += len;
2901 	__clear_bit(new, msg->sg.copy);
2902 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2903 	if (rsge.length) {
2904 		get_page(sg_page(&rsge));
2905 		sk_msg_iter_var_next(new);
2906 		msg->sg.data[new] = rsge;
2907 	}
2908 
2909 	sk_msg_reset_curr(msg);
2910 	sk_msg_compute_data_pointers(msg);
2911 	return 0;
2912 }
2913 
2914 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2915 	.func		= bpf_msg_push_data,
2916 	.gpl_only	= false,
2917 	.ret_type	= RET_INTEGER,
2918 	.arg1_type	= ARG_PTR_TO_CTX,
2919 	.arg2_type	= ARG_ANYTHING,
2920 	.arg3_type	= ARG_ANYTHING,
2921 	.arg4_type	= ARG_ANYTHING,
2922 };
2923 
sk_msg_shift_left(struct sk_msg * msg,int i)2924 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2925 {
2926 	struct scatterlist *sge = sk_msg_elem(msg, i);
2927 	int prev;
2928 
2929 	put_page(sg_page(sge));
2930 	do {
2931 		prev = i;
2932 		sk_msg_iter_var_next(i);
2933 		msg->sg.data[prev] = msg->sg.data[i];
2934 	} while (i != msg->sg.end);
2935 
2936 	sk_msg_iter_prev(msg, end);
2937 }
2938 
sk_msg_shift_right(struct sk_msg * msg,int i)2939 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2940 {
2941 	struct scatterlist tmp, sge;
2942 
2943 	sk_msg_iter_next(msg, end);
2944 	sge = sk_msg_elem_cpy(msg, i);
2945 	sk_msg_iter_var_next(i);
2946 	tmp = sk_msg_elem_cpy(msg, i);
2947 
2948 	while (i != msg->sg.end) {
2949 		msg->sg.data[i] = sge;
2950 		sk_msg_iter_var_next(i);
2951 		sge = tmp;
2952 		tmp = sk_msg_elem_cpy(msg, i);
2953 	}
2954 }
2955 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2956 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2957 	   u32, len, u64, flags)
2958 {
2959 	u32 i = 0, l = 0, space, offset = 0;
2960 	u64 last = start + len;
2961 	int pop;
2962 
2963 	if (unlikely(flags))
2964 		return -EINVAL;
2965 
2966 	if (unlikely(len == 0))
2967 		return 0;
2968 
2969 	/* First find the starting scatterlist element */
2970 	i = msg->sg.start;
2971 	do {
2972 		offset += l;
2973 		l = sk_msg_elem(msg, i)->length;
2974 
2975 		if (start < offset + l)
2976 			break;
2977 		sk_msg_iter_var_next(i);
2978 	} while (i != msg->sg.end);
2979 
2980 	/* Bounds checks: start and pop must be inside message */
2981 	if (start >= offset + l || last > msg->sg.size)
2982 		return -EINVAL;
2983 
2984 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2985 
2986 	pop = len;
2987 	/* --------------| offset
2988 	 * -| start      |-------- len -------|
2989 	 *
2990 	 *  |----- a ----|-------- pop -------|----- b ----|
2991 	 *  |______________________________________________| length
2992 	 *
2993 	 *
2994 	 * a:   region at front of scatter element to save
2995 	 * b:   region at back of scatter element to save when length > A + pop
2996 	 * pop: region to pop from element, same as input 'pop' here will be
2997 	 *      decremented below per iteration.
2998 	 *
2999 	 * Two top-level cases to handle when start != offset, first B is non
3000 	 * zero and second B is zero corresponding to when a pop includes more
3001 	 * than one element.
3002 	 *
3003 	 * Then if B is non-zero AND there is no space allocate space and
3004 	 * compact A, B regions into page. If there is space shift ring to
3005 	 * the right free'ing the next element in ring to place B, leaving
3006 	 * A untouched except to reduce length.
3007 	 */
3008 	if (start != offset) {
3009 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
3010 		int a = start - offset;
3011 		int b = sge->length - pop - a;
3012 
3013 		sk_msg_iter_var_next(i);
3014 
3015 		if (b > 0) {
3016 			if (space) {
3017 				sge->length = a;
3018 				sk_msg_shift_right(msg, i);
3019 				nsge = sk_msg_elem(msg, i);
3020 				get_page(sg_page(sge));
3021 				sg_set_page(nsge,
3022 					    sg_page(sge),
3023 					    b, sge->offset + pop + a);
3024 			} else {
3025 				struct page *page, *orig;
3026 				u8 *to, *from;
3027 
3028 				page = alloc_pages(__GFP_NOWARN |
3029 						   __GFP_COMP   | GFP_ATOMIC,
3030 						   get_order(a + b));
3031 				if (unlikely(!page))
3032 					return -ENOMEM;
3033 
3034 				orig = sg_page(sge);
3035 				from = sg_virt(sge);
3036 				to = page_address(page);
3037 				memcpy(to, from, a);
3038 				memcpy(to + a, from + a + pop, b);
3039 				sg_set_page(sge, page, a + b, 0);
3040 				put_page(orig);
3041 			}
3042 			pop = 0;
3043 		} else {
3044 			pop -= (sge->length - a);
3045 			sge->length = a;
3046 		}
3047 	}
3048 
3049 	/* From above the current layout _must_ be as follows,
3050 	 *
3051 	 * -| offset
3052 	 * -| start
3053 	 *
3054 	 *  |---- pop ---|---------------- b ------------|
3055 	 *  |____________________________________________| length
3056 	 *
3057 	 * Offset and start of the current msg elem are equal because in the
3058 	 * previous case we handled offset != start and either consumed the
3059 	 * entire element and advanced to the next element OR pop == 0.
3060 	 *
3061 	 * Two cases to handle here are first pop is less than the length
3062 	 * leaving some remainder b above. Simply adjust the element's layout
3063 	 * in this case. Or pop >= length of the element so that b = 0. In this
3064 	 * case advance to next element decrementing pop.
3065 	 */
3066 	while (pop) {
3067 		struct scatterlist *sge = sk_msg_elem(msg, i);
3068 
3069 		if (pop < sge->length) {
3070 			sge->length -= pop;
3071 			sge->offset += pop;
3072 			pop = 0;
3073 		} else {
3074 			pop -= sge->length;
3075 			sk_msg_shift_left(msg, i);
3076 		}
3077 	}
3078 
3079 	sk_mem_uncharge(msg->sk, len - pop);
3080 	msg->sg.size -= (len - pop);
3081 	sk_msg_reset_curr(msg);
3082 	sk_msg_compute_data_pointers(msg);
3083 	return 0;
3084 }
3085 
3086 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3087 	.func		= bpf_msg_pop_data,
3088 	.gpl_only	= false,
3089 	.ret_type	= RET_INTEGER,
3090 	.arg1_type	= ARG_PTR_TO_CTX,
3091 	.arg2_type	= ARG_ANYTHING,
3092 	.arg3_type	= ARG_ANYTHING,
3093 	.arg4_type	= ARG_ANYTHING,
3094 };
3095 
3096 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3097 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3098 {
3099 	return __task_get_classid(current);
3100 }
3101 
3102 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3103 	.func		= bpf_get_cgroup_classid_curr,
3104 	.gpl_only	= false,
3105 	.ret_type	= RET_INTEGER,
3106 };
3107 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3108 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3109 {
3110 	struct sock *sk = skb_to_full_sk(skb);
3111 
3112 	if (!sk || !sk_fullsock(sk))
3113 		return 0;
3114 
3115 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3116 }
3117 
3118 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3119 	.func		= bpf_skb_cgroup_classid,
3120 	.gpl_only	= false,
3121 	.ret_type	= RET_INTEGER,
3122 	.arg1_type	= ARG_PTR_TO_CTX,
3123 };
3124 #endif
3125 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3126 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3127 {
3128 	return task_get_classid(skb);
3129 }
3130 
3131 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3132 	.func           = bpf_get_cgroup_classid,
3133 	.gpl_only       = false,
3134 	.ret_type       = RET_INTEGER,
3135 	.arg1_type      = ARG_PTR_TO_CTX,
3136 };
3137 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3138 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3139 {
3140 	return dst_tclassid(skb);
3141 }
3142 
3143 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3144 	.func           = bpf_get_route_realm,
3145 	.gpl_only       = false,
3146 	.ret_type       = RET_INTEGER,
3147 	.arg1_type      = ARG_PTR_TO_CTX,
3148 };
3149 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3150 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3151 {
3152 	/* If skb_clear_hash() was called due to mangling, we can
3153 	 * trigger SW recalculation here. Later access to hash
3154 	 * can then use the inline skb->hash via context directly
3155 	 * instead of calling this helper again.
3156 	 */
3157 	return skb_get_hash(skb);
3158 }
3159 
3160 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3161 	.func		= bpf_get_hash_recalc,
3162 	.gpl_only	= false,
3163 	.ret_type	= RET_INTEGER,
3164 	.arg1_type	= ARG_PTR_TO_CTX,
3165 };
3166 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3167 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3168 {
3169 	/* After all direct packet write, this can be used once for
3170 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3171 	 */
3172 	skb_clear_hash(skb);
3173 	return 0;
3174 }
3175 
3176 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3177 	.func		= bpf_set_hash_invalid,
3178 	.gpl_only	= false,
3179 	.ret_type	= RET_INTEGER,
3180 	.arg1_type	= ARG_PTR_TO_CTX,
3181 };
3182 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3183 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3184 {
3185 	/* Set user specified hash as L4(+), so that it gets returned
3186 	 * on skb_get_hash() call unless BPF prog later on triggers a
3187 	 * skb_clear_hash().
3188 	 */
3189 	__skb_set_sw_hash(skb, hash, true);
3190 	return 0;
3191 }
3192 
3193 static const struct bpf_func_proto bpf_set_hash_proto = {
3194 	.func		= bpf_set_hash,
3195 	.gpl_only	= false,
3196 	.ret_type	= RET_INTEGER,
3197 	.arg1_type	= ARG_PTR_TO_CTX,
3198 	.arg2_type	= ARG_ANYTHING,
3199 };
3200 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3201 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3202 	   u16, vlan_tci)
3203 {
3204 	int ret;
3205 
3206 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3207 		     vlan_proto != htons(ETH_P_8021AD)))
3208 		vlan_proto = htons(ETH_P_8021Q);
3209 
3210 	bpf_push_mac_rcsum(skb);
3211 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3212 	bpf_pull_mac_rcsum(skb);
3213 	skb_reset_mac_len(skb);
3214 
3215 	bpf_compute_data_pointers(skb);
3216 	return ret;
3217 }
3218 
3219 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3220 	.func           = bpf_skb_vlan_push,
3221 	.gpl_only       = false,
3222 	.ret_type       = RET_INTEGER,
3223 	.arg1_type      = ARG_PTR_TO_CTX,
3224 	.arg2_type      = ARG_ANYTHING,
3225 	.arg3_type      = ARG_ANYTHING,
3226 };
3227 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3228 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3229 {
3230 	int ret;
3231 
3232 	bpf_push_mac_rcsum(skb);
3233 	ret = skb_vlan_pop(skb);
3234 	bpf_pull_mac_rcsum(skb);
3235 
3236 	bpf_compute_data_pointers(skb);
3237 	return ret;
3238 }
3239 
3240 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3241 	.func           = bpf_skb_vlan_pop,
3242 	.gpl_only       = false,
3243 	.ret_type       = RET_INTEGER,
3244 	.arg1_type      = ARG_PTR_TO_CTX,
3245 };
3246 
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3247 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3248 {
3249 	skb->protocol = htons(proto);
3250 	if (skb_valid_dst(skb))
3251 		skb_dst_drop(skb);
3252 }
3253 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3254 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3255 {
3256 	/* Caller already did skb_cow() with len as headroom,
3257 	 * so no need to do it here.
3258 	 */
3259 	skb_push(skb, len);
3260 	memmove(skb->data, skb->data + len, off);
3261 	memset(skb->data + off, 0, len);
3262 
3263 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3264 	 * needed here as it does not change the skb->csum
3265 	 * result for checksum complete when summing over
3266 	 * zeroed blocks.
3267 	 */
3268 	return 0;
3269 }
3270 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3271 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3272 {
3273 	void *old_data;
3274 
3275 	/* skb_ensure_writable() is not needed here, as we're
3276 	 * already working on an uncloned skb.
3277 	 */
3278 	if (unlikely(!pskb_may_pull(skb, off + len)))
3279 		return -ENOMEM;
3280 
3281 	old_data = skb->data;
3282 	__skb_pull(skb, len);
3283 	skb_postpull_rcsum(skb, old_data + off, len);
3284 	memmove(skb->data, old_data, off);
3285 
3286 	return 0;
3287 }
3288 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3289 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3290 {
3291 	bool trans_same = skb->transport_header == skb->network_header;
3292 	int ret;
3293 
3294 	/* There's no need for __skb_push()/__skb_pull() pair to
3295 	 * get to the start of the mac header as we're guaranteed
3296 	 * to always start from here under eBPF.
3297 	 */
3298 	ret = bpf_skb_generic_push(skb, off, len);
3299 	if (likely(!ret)) {
3300 		skb->mac_header -= len;
3301 		skb->network_header -= len;
3302 		if (trans_same)
3303 			skb->transport_header = skb->network_header;
3304 	}
3305 
3306 	return ret;
3307 }
3308 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3309 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3310 {
3311 	bool trans_same = skb->transport_header == skb->network_header;
3312 	int ret;
3313 
3314 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3315 	ret = bpf_skb_generic_pop(skb, off, len);
3316 	if (likely(!ret)) {
3317 		skb->mac_header += len;
3318 		skb->network_header += len;
3319 		if (trans_same)
3320 			skb->transport_header = skb->network_header;
3321 	}
3322 
3323 	return ret;
3324 }
3325 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3326 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3327 {
3328 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3329 	u32 off = skb_mac_header_len(skb);
3330 	int ret;
3331 
3332 	ret = skb_cow(skb, len_diff);
3333 	if (unlikely(ret < 0))
3334 		return ret;
3335 
3336 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3337 	if (unlikely(ret < 0))
3338 		return ret;
3339 
3340 	if (skb_is_gso(skb)) {
3341 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3342 
3343 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3344 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3345 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3346 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3347 		}
3348 	}
3349 
3350 	bpf_skb_change_protocol(skb, ETH_P_IPV6);
3351 	skb_clear_hash(skb);
3352 
3353 	return 0;
3354 }
3355 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3356 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3357 {
3358 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3359 	u32 off = skb_mac_header_len(skb);
3360 	int ret;
3361 
3362 	ret = skb_unclone(skb, GFP_ATOMIC);
3363 	if (unlikely(ret < 0))
3364 		return ret;
3365 
3366 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3367 	if (unlikely(ret < 0))
3368 		return ret;
3369 
3370 	if (skb_is_gso(skb)) {
3371 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3372 
3373 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3374 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3375 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3376 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3377 		}
3378 	}
3379 
3380 	bpf_skb_change_protocol(skb, ETH_P_IP);
3381 	skb_clear_hash(skb);
3382 
3383 	return 0;
3384 }
3385 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3386 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3387 {
3388 	__be16 from_proto = skb->protocol;
3389 
3390 	if (from_proto == htons(ETH_P_IP) &&
3391 	      to_proto == htons(ETH_P_IPV6))
3392 		return bpf_skb_proto_4_to_6(skb);
3393 
3394 	if (from_proto == htons(ETH_P_IPV6) &&
3395 	      to_proto == htons(ETH_P_IP))
3396 		return bpf_skb_proto_6_to_4(skb);
3397 
3398 	return -ENOTSUPP;
3399 }
3400 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3401 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3402 	   u64, flags)
3403 {
3404 	int ret;
3405 
3406 	if (unlikely(flags))
3407 		return -EINVAL;
3408 
3409 	/* General idea is that this helper does the basic groundwork
3410 	 * needed for changing the protocol, and eBPF program fills the
3411 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3412 	 * and other helpers, rather than passing a raw buffer here.
3413 	 *
3414 	 * The rationale is to keep this minimal and without a need to
3415 	 * deal with raw packet data. F.e. even if we would pass buffers
3416 	 * here, the program still needs to call the bpf_lX_csum_replace()
3417 	 * helpers anyway. Plus, this way we keep also separation of
3418 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3419 	 * care of stores.
3420 	 *
3421 	 * Currently, additional options and extension header space are
3422 	 * not supported, but flags register is reserved so we can adapt
3423 	 * that. For offloads, we mark packet as dodgy, so that headers
3424 	 * need to be verified first.
3425 	 */
3426 	ret = bpf_skb_proto_xlat(skb, proto);
3427 	bpf_compute_data_pointers(skb);
3428 	return ret;
3429 }
3430 
3431 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3432 	.func		= bpf_skb_change_proto,
3433 	.gpl_only	= false,
3434 	.ret_type	= RET_INTEGER,
3435 	.arg1_type	= ARG_PTR_TO_CTX,
3436 	.arg2_type	= ARG_ANYTHING,
3437 	.arg3_type	= ARG_ANYTHING,
3438 };
3439 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3440 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3441 {
3442 	/* We only allow a restricted subset to be changed for now. */
3443 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3444 		     !skb_pkt_type_ok(pkt_type)))
3445 		return -EINVAL;
3446 
3447 	skb->pkt_type = pkt_type;
3448 	return 0;
3449 }
3450 
3451 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3452 	.func		= bpf_skb_change_type,
3453 	.gpl_only	= false,
3454 	.ret_type	= RET_INTEGER,
3455 	.arg1_type	= ARG_PTR_TO_CTX,
3456 	.arg2_type	= ARG_ANYTHING,
3457 };
3458 
bpf_skb_net_base_len(const struct sk_buff * skb)3459 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3460 {
3461 	switch (skb->protocol) {
3462 	case htons(ETH_P_IP):
3463 		return sizeof(struct iphdr);
3464 	case htons(ETH_P_IPV6):
3465 		return sizeof(struct ipv6hdr);
3466 	default:
3467 		return ~0U;
3468 	}
3469 }
3470 
3471 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3472 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3473 
3474 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3475 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3476 
3477 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3478 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3479 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3480 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3481 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3482 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3483 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3484 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3485 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3486 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3487 			    u64 flags)
3488 {
3489 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3490 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3491 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3492 	unsigned int gso_type = SKB_GSO_DODGY;
3493 	int ret;
3494 
3495 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3496 		/* udp gso_size delineates datagrams, only allow if fixed */
3497 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3498 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3499 			return -ENOTSUPP;
3500 	}
3501 
3502 	ret = skb_cow_head(skb, len_diff);
3503 	if (unlikely(ret < 0))
3504 		return ret;
3505 
3506 	if (encap) {
3507 		if (skb->protocol != htons(ETH_P_IP) &&
3508 		    skb->protocol != htons(ETH_P_IPV6))
3509 			return -ENOTSUPP;
3510 
3511 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3512 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3513 			return -EINVAL;
3514 
3515 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3516 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3517 			return -EINVAL;
3518 
3519 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3520 		    inner_mac_len < ETH_HLEN)
3521 			return -EINVAL;
3522 
3523 		if (skb->encapsulation)
3524 			return -EALREADY;
3525 
3526 		mac_len = skb->network_header - skb->mac_header;
3527 		inner_net = skb->network_header;
3528 		if (inner_mac_len > len_diff)
3529 			return -EINVAL;
3530 		inner_trans = skb->transport_header;
3531 	}
3532 
3533 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3534 	if (unlikely(ret < 0))
3535 		return ret;
3536 
3537 	if (encap) {
3538 		skb->inner_mac_header = inner_net - inner_mac_len;
3539 		skb->inner_network_header = inner_net;
3540 		skb->inner_transport_header = inner_trans;
3541 
3542 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3543 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3544 		else
3545 			skb_set_inner_protocol(skb, skb->protocol);
3546 
3547 		skb->encapsulation = 1;
3548 		skb_set_network_header(skb, mac_len);
3549 
3550 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3551 			gso_type |= SKB_GSO_UDP_TUNNEL;
3552 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3553 			gso_type |= SKB_GSO_GRE;
3554 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3555 			gso_type |= SKB_GSO_IPXIP6;
3556 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3557 			gso_type |= SKB_GSO_IPXIP4;
3558 
3559 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3560 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3561 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3562 					sizeof(struct ipv6hdr) :
3563 					sizeof(struct iphdr);
3564 
3565 			skb_set_transport_header(skb, mac_len + nh_len);
3566 		}
3567 
3568 		/* Match skb->protocol to new outer l3 protocol */
3569 		if (skb->protocol == htons(ETH_P_IP) &&
3570 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3571 			bpf_skb_change_protocol(skb, ETH_P_IPV6);
3572 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3573 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3574 			bpf_skb_change_protocol(skb, ETH_P_IP);
3575 	}
3576 
3577 	if (skb_is_gso(skb)) {
3578 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3579 
3580 		/* Header must be checked, and gso_segs recomputed. */
3581 		shinfo->gso_type |= gso_type;
3582 		shinfo->gso_segs = 0;
3583 
3584 		/* Due to header growth, MSS needs to be downgraded.
3585 		 * There is a BUG_ON() when segmenting the frag_list with
3586 		 * head_frag true, so linearize the skb after downgrading
3587 		 * the MSS.
3588 		 */
3589 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3590 			skb_decrease_gso_size(shinfo, len_diff);
3591 			if (shinfo->frag_list)
3592 				return skb_linearize(skb);
3593 		}
3594 	}
3595 
3596 	return 0;
3597 }
3598 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3599 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3600 			      u64 flags)
3601 {
3602 	int ret;
3603 
3604 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3605 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3606 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3607 		return -EINVAL;
3608 
3609 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3610 		/* udp gso_size delineates datagrams, only allow if fixed */
3611 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3612 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3613 			return -ENOTSUPP;
3614 	}
3615 
3616 	ret = skb_unclone(skb, GFP_ATOMIC);
3617 	if (unlikely(ret < 0))
3618 		return ret;
3619 
3620 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3621 	if (unlikely(ret < 0))
3622 		return ret;
3623 
3624 	/* Match skb->protocol to new outer l3 protocol */
3625 	if (skb->protocol == htons(ETH_P_IP) &&
3626 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3627 		bpf_skb_change_protocol(skb, ETH_P_IPV6);
3628 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3629 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3630 		bpf_skb_change_protocol(skb, ETH_P_IP);
3631 
3632 	if (skb_is_gso(skb)) {
3633 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3634 
3635 		/* Due to header shrink, MSS can be upgraded. */
3636 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3637 			skb_increase_gso_size(shinfo, len_diff);
3638 
3639 		/* Header must be checked, and gso_segs recomputed. */
3640 		shinfo->gso_type |= SKB_GSO_DODGY;
3641 		shinfo->gso_segs = 0;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3648 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3649 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3650 	   u32, mode, u64, flags)
3651 {
3652 	u32 len_diff_abs = abs(len_diff);
3653 	bool shrink = len_diff < 0;
3654 	int ret = 0;
3655 
3656 	if (unlikely(flags || mode))
3657 		return -EINVAL;
3658 	if (unlikely(len_diff_abs > 0xfffU))
3659 		return -EFAULT;
3660 
3661 	if (!shrink) {
3662 		ret = skb_cow(skb, len_diff);
3663 		if (unlikely(ret < 0))
3664 			return ret;
3665 		__skb_push(skb, len_diff_abs);
3666 		memset(skb->data, 0, len_diff_abs);
3667 	} else {
3668 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3669 			return -ENOMEM;
3670 		__skb_pull(skb, len_diff_abs);
3671 	}
3672 	if (tls_sw_has_ctx_rx(skb->sk)) {
3673 		struct strp_msg *rxm = strp_msg(skb);
3674 
3675 		rxm->full_len += len_diff;
3676 	}
3677 	return ret;
3678 }
3679 
3680 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3681 	.func		= sk_skb_adjust_room,
3682 	.gpl_only	= false,
3683 	.ret_type	= RET_INTEGER,
3684 	.arg1_type	= ARG_PTR_TO_CTX,
3685 	.arg2_type	= ARG_ANYTHING,
3686 	.arg3_type	= ARG_ANYTHING,
3687 	.arg4_type	= ARG_ANYTHING,
3688 };
3689 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3690 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3691 	   u32, mode, u64, flags)
3692 {
3693 	u32 len_cur, len_diff_abs = abs(len_diff);
3694 	u32 len_min = bpf_skb_net_base_len(skb);
3695 	u32 len_max = BPF_SKB_MAX_LEN;
3696 	__be16 proto = skb->protocol;
3697 	bool shrink = len_diff < 0;
3698 	u32 off;
3699 	int ret;
3700 
3701 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3702 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3703 		return -EINVAL;
3704 	if (unlikely(len_diff_abs > 0xfffU))
3705 		return -EFAULT;
3706 	if (unlikely(proto != htons(ETH_P_IP) &&
3707 		     proto != htons(ETH_P_IPV6)))
3708 		return -ENOTSUPP;
3709 
3710 	off = skb_mac_header_len(skb);
3711 	switch (mode) {
3712 	case BPF_ADJ_ROOM_NET:
3713 		off += bpf_skb_net_base_len(skb);
3714 		break;
3715 	case BPF_ADJ_ROOM_MAC:
3716 		break;
3717 	default:
3718 		return -ENOTSUPP;
3719 	}
3720 
3721 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3722 		if (!shrink)
3723 			return -EINVAL;
3724 
3725 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3726 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3727 			len_min = sizeof(struct iphdr);
3728 			break;
3729 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3730 			len_min = sizeof(struct ipv6hdr);
3731 			break;
3732 		default:
3733 			return -EINVAL;
3734 		}
3735 	}
3736 
3737 	len_cur = skb->len - skb_network_offset(skb);
3738 	if ((shrink && (len_diff_abs >= len_cur ||
3739 			len_cur - len_diff_abs < len_min)) ||
3740 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3741 			 !skb_is_gso(skb))))
3742 		return -ENOTSUPP;
3743 
3744 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3745 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3746 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3747 		__skb_reset_checksum_unnecessary(skb);
3748 
3749 	bpf_compute_data_pointers(skb);
3750 	return ret;
3751 }
3752 
3753 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3754 	.func		= bpf_skb_adjust_room,
3755 	.gpl_only	= false,
3756 	.ret_type	= RET_INTEGER,
3757 	.arg1_type	= ARG_PTR_TO_CTX,
3758 	.arg2_type	= ARG_ANYTHING,
3759 	.arg3_type	= ARG_ANYTHING,
3760 	.arg4_type	= ARG_ANYTHING,
3761 };
3762 
__bpf_skb_min_len(const struct sk_buff * skb)3763 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3764 {
3765 	int offset = skb_network_offset(skb);
3766 	u32 min_len = 0;
3767 
3768 	if (offset > 0)
3769 		min_len = offset;
3770 	if (skb_transport_header_was_set(skb)) {
3771 		offset = skb_transport_offset(skb);
3772 		if (offset > 0)
3773 			min_len = offset;
3774 	}
3775 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3776 		offset = skb_checksum_start_offset(skb) +
3777 			 skb->csum_offset + sizeof(__sum16);
3778 		if (offset > 0)
3779 			min_len = offset;
3780 	}
3781 	return min_len;
3782 }
3783 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3784 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3785 {
3786 	unsigned int old_len = skb->len;
3787 	int ret;
3788 
3789 	ret = __skb_grow_rcsum(skb, new_len);
3790 	if (!ret)
3791 		memset(skb->data + old_len, 0, new_len - old_len);
3792 	return ret;
3793 }
3794 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3795 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3796 {
3797 	return __skb_trim_rcsum(skb, new_len);
3798 }
3799 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3800 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3801 					u64 flags)
3802 {
3803 	u32 max_len = BPF_SKB_MAX_LEN;
3804 	u32 min_len = __bpf_skb_min_len(skb);
3805 	int ret;
3806 
3807 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3808 		return -EINVAL;
3809 	if (skb->encapsulation)
3810 		return -ENOTSUPP;
3811 
3812 	/* The basic idea of this helper is that it's performing the
3813 	 * needed work to either grow or trim an skb, and eBPF program
3814 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3815 	 * bpf_lX_csum_replace() and others rather than passing a raw
3816 	 * buffer here. This one is a slow path helper and intended
3817 	 * for replies with control messages.
3818 	 *
3819 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3820 	 * minimal and without protocol specifics so that we are able
3821 	 * to separate concerns as in bpf_skb_store_bytes() should only
3822 	 * be the one responsible for writing buffers.
3823 	 *
3824 	 * It's really expected to be a slow path operation here for
3825 	 * control message replies, so we're implicitly linearizing,
3826 	 * uncloning and drop offloads from the skb by this.
3827 	 */
3828 	ret = __bpf_try_make_writable(skb, skb->len);
3829 	if (!ret) {
3830 		if (new_len > skb->len)
3831 			ret = bpf_skb_grow_rcsum(skb, new_len);
3832 		else if (new_len < skb->len)
3833 			ret = bpf_skb_trim_rcsum(skb, new_len);
3834 		if (!ret && skb_is_gso(skb))
3835 			skb_gso_reset(skb);
3836 	}
3837 	return ret;
3838 }
3839 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3840 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3841 	   u64, flags)
3842 {
3843 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3844 
3845 	bpf_compute_data_pointers(skb);
3846 	return ret;
3847 }
3848 
3849 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3850 	.func		= bpf_skb_change_tail,
3851 	.gpl_only	= false,
3852 	.ret_type	= RET_INTEGER,
3853 	.arg1_type	= ARG_PTR_TO_CTX,
3854 	.arg2_type	= ARG_ANYTHING,
3855 	.arg3_type	= ARG_ANYTHING,
3856 };
3857 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3858 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3859 	   u64, flags)
3860 {
3861 	return __bpf_skb_change_tail(skb, new_len, flags);
3862 }
3863 
3864 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3865 	.func		= sk_skb_change_tail,
3866 	.gpl_only	= false,
3867 	.ret_type	= RET_INTEGER,
3868 	.arg1_type	= ARG_PTR_TO_CTX,
3869 	.arg2_type	= ARG_ANYTHING,
3870 	.arg3_type	= ARG_ANYTHING,
3871 };
3872 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3873 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3874 					u64 flags)
3875 {
3876 	u32 max_len = BPF_SKB_MAX_LEN;
3877 	u32 new_len = skb->len + head_room;
3878 	int ret;
3879 
3880 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3881 		     new_len < skb->len))
3882 		return -EINVAL;
3883 
3884 	ret = skb_cow(skb, head_room);
3885 	if (likely(!ret)) {
3886 		/* Idea for this helper is that we currently only
3887 		 * allow to expand on mac header. This means that
3888 		 * skb->protocol network header, etc, stay as is.
3889 		 * Compared to bpf_skb_change_tail(), we're more
3890 		 * flexible due to not needing to linearize or
3891 		 * reset GSO. Intention for this helper is to be
3892 		 * used by an L3 skb that needs to push mac header
3893 		 * for redirection into L2 device.
3894 		 */
3895 		__skb_push(skb, head_room);
3896 		memset(skb->data, 0, head_room);
3897 		skb_reset_mac_header(skb);
3898 		skb_reset_mac_len(skb);
3899 	}
3900 
3901 	return ret;
3902 }
3903 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3904 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3905 	   u64, flags)
3906 {
3907 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3908 
3909 	bpf_compute_data_pointers(skb);
3910 	return ret;
3911 }
3912 
3913 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3914 	.func		= bpf_skb_change_head,
3915 	.gpl_only	= false,
3916 	.ret_type	= RET_INTEGER,
3917 	.arg1_type	= ARG_PTR_TO_CTX,
3918 	.arg2_type	= ARG_ANYTHING,
3919 	.arg3_type	= ARG_ANYTHING,
3920 };
3921 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3922 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3923 	   u64, flags)
3924 {
3925 	return __bpf_skb_change_head(skb, head_room, flags);
3926 }
3927 
3928 static const struct bpf_func_proto sk_skb_change_head_proto = {
3929 	.func		= sk_skb_change_head,
3930 	.gpl_only	= false,
3931 	.ret_type	= RET_INTEGER,
3932 	.arg1_type	= ARG_PTR_TO_CTX,
3933 	.arg2_type	= ARG_ANYTHING,
3934 	.arg3_type	= ARG_ANYTHING,
3935 };
3936 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3937 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3938 {
3939 	return xdp_get_buff_len(xdp);
3940 }
3941 
3942 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3943 	.func		= bpf_xdp_get_buff_len,
3944 	.gpl_only	= false,
3945 	.ret_type	= RET_INTEGER,
3946 	.arg1_type	= ARG_PTR_TO_CTX,
3947 };
3948 
3949 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3950 
3951 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3952 	.func		= bpf_xdp_get_buff_len,
3953 	.gpl_only	= false,
3954 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3955 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3956 };
3957 
xdp_get_metalen(const struct xdp_buff * xdp)3958 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3959 {
3960 	return xdp_data_meta_unsupported(xdp) ? 0 :
3961 	       xdp->data - xdp->data_meta;
3962 }
3963 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3964 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3965 {
3966 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3967 	unsigned long metalen = xdp_get_metalen(xdp);
3968 	void *data_start = xdp_frame_end + metalen;
3969 	void *data = xdp->data + offset;
3970 
3971 	if (unlikely(data < data_start ||
3972 		     data > xdp->data_end - ETH_HLEN))
3973 		return -EINVAL;
3974 
3975 	if (metalen)
3976 		memmove(xdp->data_meta + offset,
3977 			xdp->data_meta, metalen);
3978 	xdp->data_meta += offset;
3979 	xdp->data = data;
3980 
3981 	return 0;
3982 }
3983 
3984 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3985 	.func		= bpf_xdp_adjust_head,
3986 	.gpl_only	= false,
3987 	.ret_type	= RET_INTEGER,
3988 	.arg1_type	= ARG_PTR_TO_CTX,
3989 	.arg2_type	= ARG_ANYTHING,
3990 };
3991 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3992 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3993 		      void *buf, unsigned long len, bool flush)
3994 {
3995 	unsigned long ptr_len, ptr_off = 0;
3996 	skb_frag_t *next_frag, *end_frag;
3997 	struct skb_shared_info *sinfo;
3998 	void *src, *dst;
3999 	u8 *ptr_buf;
4000 
4001 	if (likely(xdp->data_end - xdp->data >= off + len)) {
4002 		src = flush ? buf : xdp->data + off;
4003 		dst = flush ? xdp->data + off : buf;
4004 		memcpy(dst, src, len);
4005 		return;
4006 	}
4007 
4008 	sinfo = xdp_get_shared_info_from_buff(xdp);
4009 	end_frag = &sinfo->frags[sinfo->nr_frags];
4010 	next_frag = &sinfo->frags[0];
4011 
4012 	ptr_len = xdp->data_end - xdp->data;
4013 	ptr_buf = xdp->data;
4014 
4015 	while (true) {
4016 		if (off < ptr_off + ptr_len) {
4017 			unsigned long copy_off = off - ptr_off;
4018 			unsigned long copy_len = min(len, ptr_len - copy_off);
4019 
4020 			src = flush ? buf : ptr_buf + copy_off;
4021 			dst = flush ? ptr_buf + copy_off : buf;
4022 			memcpy(dst, src, copy_len);
4023 
4024 			off += copy_len;
4025 			len -= copy_len;
4026 			buf += copy_len;
4027 		}
4028 
4029 		if (!len || next_frag == end_frag)
4030 			break;
4031 
4032 		ptr_off += ptr_len;
4033 		ptr_buf = skb_frag_address(next_frag);
4034 		ptr_len = skb_frag_size(next_frag);
4035 		next_frag++;
4036 	}
4037 }
4038 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4039 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4040 {
4041 	u32 size = xdp->data_end - xdp->data;
4042 	struct skb_shared_info *sinfo;
4043 	void *addr = xdp->data;
4044 	int i;
4045 
4046 	if (unlikely(offset > 0xffff || len > 0xffff))
4047 		return ERR_PTR(-EFAULT);
4048 
4049 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4050 		return ERR_PTR(-EINVAL);
4051 
4052 	if (likely(offset < size)) /* linear area */
4053 		goto out;
4054 
4055 	sinfo = xdp_get_shared_info_from_buff(xdp);
4056 	offset -= size;
4057 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4058 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4059 
4060 		if  (offset < frag_size) {
4061 			addr = skb_frag_address(&sinfo->frags[i]);
4062 			size = frag_size;
4063 			break;
4064 		}
4065 		offset -= frag_size;
4066 	}
4067 out:
4068 	return offset + len <= size ? addr + offset : NULL;
4069 }
4070 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4071 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4072 	   void *, buf, u32, len)
4073 {
4074 	void *ptr;
4075 
4076 	ptr = bpf_xdp_pointer(xdp, offset, len);
4077 	if (IS_ERR(ptr))
4078 		return PTR_ERR(ptr);
4079 
4080 	if (!ptr)
4081 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4082 	else
4083 		memcpy(buf, ptr, len);
4084 
4085 	return 0;
4086 }
4087 
4088 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4089 	.func		= bpf_xdp_load_bytes,
4090 	.gpl_only	= false,
4091 	.ret_type	= RET_INTEGER,
4092 	.arg1_type	= ARG_PTR_TO_CTX,
4093 	.arg2_type	= ARG_ANYTHING,
4094 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4095 	.arg4_type	= ARG_CONST_SIZE,
4096 };
4097 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4098 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4099 {
4100 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4101 }
4102 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4103 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4104 	   void *, buf, u32, len)
4105 {
4106 	void *ptr;
4107 
4108 	ptr = bpf_xdp_pointer(xdp, offset, len);
4109 	if (IS_ERR(ptr))
4110 		return PTR_ERR(ptr);
4111 
4112 	if (!ptr)
4113 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4114 	else
4115 		memcpy(ptr, buf, len);
4116 
4117 	return 0;
4118 }
4119 
4120 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4121 	.func		= bpf_xdp_store_bytes,
4122 	.gpl_only	= false,
4123 	.ret_type	= RET_INTEGER,
4124 	.arg1_type	= ARG_PTR_TO_CTX,
4125 	.arg2_type	= ARG_ANYTHING,
4126 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4127 	.arg4_type	= ARG_CONST_SIZE,
4128 };
4129 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4130 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4131 {
4132 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4133 }
4134 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4135 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4136 {
4137 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4138 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4139 	struct xdp_rxq_info *rxq = xdp->rxq;
4140 	unsigned int tailroom;
4141 
4142 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4143 		return -EOPNOTSUPP;
4144 
4145 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4146 	if (unlikely(offset > tailroom))
4147 		return -EINVAL;
4148 
4149 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4150 	skb_frag_size_add(frag, offset);
4151 	sinfo->xdp_frags_size += offset;
4152 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4153 		xsk_buff_get_tail(xdp)->data_end += offset;
4154 
4155 	return 0;
4156 }
4157 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,bool tail,bool release)4158 static struct xdp_buff *bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4159 					       bool tail, bool release)
4160 {
4161 	struct xdp_buff *zc_frag = tail ? xsk_buff_get_tail(xdp) :
4162 					  xsk_buff_get_head(xdp);
4163 
4164 	if (release) {
4165 		xsk_buff_del_frag(zc_frag);
4166 	} else {
4167 		if (tail)
4168 			zc_frag->data_end -= shrink;
4169 		else
4170 			zc_frag->data += shrink;
4171 	}
4172 
4173 	return zc_frag;
4174 }
4175 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink,bool tail)4176 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4177 				int shrink, bool tail)
4178 {
4179 	enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4180 	bool release = skb_frag_size(frag) == shrink;
4181 	netmem_ref netmem = skb_frag_netmem(frag);
4182 	struct xdp_buff *zc_frag = NULL;
4183 
4184 	if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4185 		netmem = 0;
4186 		zc_frag = bpf_xdp_shrink_data_zc(xdp, shrink, tail, release);
4187 	}
4188 
4189 	if (release) {
4190 		__xdp_return(netmem, mem_type, false, zc_frag);
4191 	} else {
4192 		if (!tail)
4193 			skb_frag_off_add(frag, shrink);
4194 		skb_frag_size_sub(frag, shrink);
4195 	}
4196 
4197 	return release;
4198 }
4199 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4200 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4201 {
4202 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4203 	int i, n_frags_free = 0, len_free = 0;
4204 
4205 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4206 		return -EINVAL;
4207 
4208 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4209 		skb_frag_t *frag = &sinfo->frags[i];
4210 		int shrink = min_t(int, offset, skb_frag_size(frag));
4211 
4212 		len_free += shrink;
4213 		offset -= shrink;
4214 		if (bpf_xdp_shrink_data(xdp, frag, shrink, true))
4215 			n_frags_free++;
4216 	}
4217 	sinfo->nr_frags -= n_frags_free;
4218 	sinfo->xdp_frags_size -= len_free;
4219 
4220 	if (unlikely(!sinfo->nr_frags)) {
4221 		xdp_buff_clear_frags_flag(xdp);
4222 		xdp_buff_clear_frag_pfmemalloc(xdp);
4223 		xdp->data_end -= offset;
4224 	}
4225 
4226 	return 0;
4227 }
4228 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4229 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4230 {
4231 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4232 	void *data_end = xdp->data_end + offset;
4233 
4234 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4235 		if (offset < 0)
4236 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4237 
4238 		return bpf_xdp_frags_increase_tail(xdp, offset);
4239 	}
4240 
4241 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4242 	if (unlikely(data_end > data_hard_end))
4243 		return -EINVAL;
4244 
4245 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4246 		return -EINVAL;
4247 
4248 	/* Clear memory area on grow, can contain uninit kernel memory */
4249 	if (offset > 0)
4250 		memset(xdp->data_end, 0, offset);
4251 
4252 	xdp->data_end = data_end;
4253 
4254 	return 0;
4255 }
4256 
4257 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4258 	.func		= bpf_xdp_adjust_tail,
4259 	.gpl_only	= false,
4260 	.ret_type	= RET_INTEGER,
4261 	.arg1_type	= ARG_PTR_TO_CTX,
4262 	.arg2_type	= ARG_ANYTHING,
4263 };
4264 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4265 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4266 {
4267 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4268 	void *meta = xdp->data_meta + offset;
4269 	unsigned long metalen = xdp->data - meta;
4270 
4271 	if (xdp_data_meta_unsupported(xdp))
4272 		return -ENOTSUPP;
4273 	if (unlikely(meta < xdp_frame_end ||
4274 		     meta > xdp->data))
4275 		return -EINVAL;
4276 	if (unlikely(xdp_metalen_invalid(metalen)))
4277 		return -EACCES;
4278 
4279 	xdp->data_meta = meta;
4280 
4281 	return 0;
4282 }
4283 
4284 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4285 	.func		= bpf_xdp_adjust_meta,
4286 	.gpl_only	= false,
4287 	.ret_type	= RET_INTEGER,
4288 	.arg1_type	= ARG_PTR_TO_CTX,
4289 	.arg2_type	= ARG_ANYTHING,
4290 };
4291 
4292 /**
4293  * DOC: xdp redirect
4294  *
4295  * XDP_REDIRECT works by a three-step process, implemented in the functions
4296  * below:
4297  *
4298  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4299  *    of the redirect and store it (along with some other metadata) in a per-CPU
4300  *    struct bpf_redirect_info.
4301  *
4302  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4303  *    call xdp_do_redirect() which will use the information in struct
4304  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4305  *    bulk queue structure.
4306  *
4307  * 3. Before exiting its NAPI poll loop, the driver will call
4308  *    xdp_do_flush(), which will flush all the different bulk queues,
4309  *    thus completing the redirect. Note that xdp_do_flush() must be
4310  *    called before napi_complete_done() in the driver, as the
4311  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4312  *    through to the xdp_do_flush() call for RCU protection of all
4313  *    in-kernel data structures.
4314  */
4315 /*
4316  * Pointers to the map entries will be kept around for this whole sequence of
4317  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4318  * the core code; instead, the RCU protection relies on everything happening
4319  * inside a single NAPI poll sequence, which means it's between a pair of calls
4320  * to local_bh_disable()/local_bh_enable().
4321  *
4322  * The map entries are marked as __rcu and the map code makes sure to
4323  * dereference those pointers with rcu_dereference_check() in a way that works
4324  * for both sections that to hold an rcu_read_lock() and sections that are
4325  * called from NAPI without a separate rcu_read_lock(). The code below does not
4326  * use RCU annotations, but relies on those in the map code.
4327  */
xdp_do_flush(void)4328 void xdp_do_flush(void)
4329 {
4330 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4331 
4332 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4333 	if (lh_dev)
4334 		__dev_flush(lh_dev);
4335 	if (lh_map)
4336 		__cpu_map_flush(lh_map);
4337 	if (lh_xsk)
4338 		__xsk_map_flush(lh_xsk);
4339 }
4340 EXPORT_SYMBOL_GPL(xdp_do_flush);
4341 
4342 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4343 void xdp_do_check_flushed(struct napi_struct *napi)
4344 {
4345 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4346 	bool missed = false;
4347 
4348 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4349 	if (lh_dev) {
4350 		__dev_flush(lh_dev);
4351 		missed = true;
4352 	}
4353 	if (lh_map) {
4354 		__cpu_map_flush(lh_map);
4355 		missed = true;
4356 	}
4357 	if (lh_xsk) {
4358 		__xsk_map_flush(lh_xsk);
4359 		missed = true;
4360 	}
4361 
4362 	WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4363 		  napi->poll);
4364 }
4365 #endif
4366 
4367 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4368 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4369 
xdp_master_redirect(struct xdp_buff * xdp)4370 u32 xdp_master_redirect(struct xdp_buff *xdp)
4371 {
4372 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4373 	struct net_device *master, *slave;
4374 
4375 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4376 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4377 	if (slave && slave != xdp->rxq->dev) {
4378 		/* The target device is different from the receiving device, so
4379 		 * redirect it to the new device.
4380 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4381 		 * drivers to unmap the packet from their rx ring.
4382 		 */
4383 		ri->tgt_index = slave->ifindex;
4384 		ri->map_id = INT_MAX;
4385 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4386 		return XDP_REDIRECT;
4387 	}
4388 	return XDP_TX;
4389 }
4390 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4391 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4392 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4393 					const struct net_device *dev,
4394 					struct xdp_buff *xdp,
4395 					const struct bpf_prog *xdp_prog)
4396 {
4397 	enum bpf_map_type map_type = ri->map_type;
4398 	void *fwd = ri->tgt_value;
4399 	u32 map_id = ri->map_id;
4400 	int err;
4401 
4402 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4403 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4404 
4405 	err = __xsk_map_redirect(fwd, xdp);
4406 	if (unlikely(err))
4407 		goto err;
4408 
4409 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4410 	return 0;
4411 err:
4412 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4413 	return err;
4414 }
4415 
4416 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4417 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4418 			struct xdp_frame *xdpf,
4419 			const struct bpf_prog *xdp_prog)
4420 {
4421 	enum bpf_map_type map_type = ri->map_type;
4422 	void *fwd = ri->tgt_value;
4423 	u32 map_id = ri->map_id;
4424 	u32 flags = ri->flags;
4425 	struct bpf_map *map;
4426 	int err;
4427 
4428 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4429 	ri->flags = 0;
4430 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4431 
4432 	if (unlikely(!xdpf)) {
4433 		err = -EOVERFLOW;
4434 		goto err;
4435 	}
4436 
4437 	switch (map_type) {
4438 	case BPF_MAP_TYPE_DEVMAP:
4439 		fallthrough;
4440 	case BPF_MAP_TYPE_DEVMAP_HASH:
4441 		if (unlikely(flags & BPF_F_BROADCAST)) {
4442 			map = READ_ONCE(ri->map);
4443 
4444 			/* The map pointer is cleared when the map is being torn
4445 			 * down by dev_map_free()
4446 			 */
4447 			if (unlikely(!map)) {
4448 				err = -ENOENT;
4449 				break;
4450 			}
4451 
4452 			WRITE_ONCE(ri->map, NULL);
4453 			err = dev_map_enqueue_multi(xdpf, dev, map,
4454 						    flags & BPF_F_EXCLUDE_INGRESS);
4455 		} else {
4456 			err = dev_map_enqueue(fwd, xdpf, dev);
4457 		}
4458 		break;
4459 	case BPF_MAP_TYPE_CPUMAP:
4460 		err = cpu_map_enqueue(fwd, xdpf, dev);
4461 		break;
4462 	case BPF_MAP_TYPE_UNSPEC:
4463 		if (map_id == INT_MAX) {
4464 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4465 			if (unlikely(!fwd)) {
4466 				err = -EINVAL;
4467 				break;
4468 			}
4469 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4470 			break;
4471 		}
4472 		fallthrough;
4473 	default:
4474 		err = -EBADRQC;
4475 	}
4476 
4477 	if (unlikely(err))
4478 		goto err;
4479 
4480 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4481 	return 0;
4482 err:
4483 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4484 	return err;
4485 }
4486 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4487 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4488 		    const struct bpf_prog *xdp_prog)
4489 {
4490 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4491 	enum bpf_map_type map_type = ri->map_type;
4492 
4493 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4494 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4495 
4496 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4497 				       xdp_prog);
4498 }
4499 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4500 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4501 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4502 			  struct xdp_frame *xdpf,
4503 			  const struct bpf_prog *xdp_prog)
4504 {
4505 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4506 	enum bpf_map_type map_type = ri->map_type;
4507 
4508 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4509 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4510 
4511 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4512 }
4513 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4514 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4515 static int xdp_do_generic_redirect_map(struct net_device *dev,
4516 				       struct sk_buff *skb,
4517 				       struct xdp_buff *xdp,
4518 				       const struct bpf_prog *xdp_prog,
4519 				       void *fwd, enum bpf_map_type map_type,
4520 				       u32 map_id, u32 flags)
4521 {
4522 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4523 	struct bpf_map *map;
4524 	int err;
4525 
4526 	switch (map_type) {
4527 	case BPF_MAP_TYPE_DEVMAP:
4528 		fallthrough;
4529 	case BPF_MAP_TYPE_DEVMAP_HASH:
4530 		if (unlikely(flags & BPF_F_BROADCAST)) {
4531 			map = READ_ONCE(ri->map);
4532 
4533 			/* The map pointer is cleared when the map is being torn
4534 			 * down by dev_map_free()
4535 			 */
4536 			if (unlikely(!map)) {
4537 				err = -ENOENT;
4538 				break;
4539 			}
4540 
4541 			WRITE_ONCE(ri->map, NULL);
4542 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4543 						     flags & BPF_F_EXCLUDE_INGRESS);
4544 		} else {
4545 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4546 		}
4547 		if (unlikely(err))
4548 			goto err;
4549 		break;
4550 	case BPF_MAP_TYPE_XSKMAP:
4551 		err = xsk_generic_rcv(fwd, xdp);
4552 		if (err)
4553 			goto err;
4554 		consume_skb(skb);
4555 		break;
4556 	case BPF_MAP_TYPE_CPUMAP:
4557 		err = cpu_map_generic_redirect(fwd, skb);
4558 		if (unlikely(err))
4559 			goto err;
4560 		break;
4561 	default:
4562 		err = -EBADRQC;
4563 		goto err;
4564 	}
4565 
4566 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4567 	return 0;
4568 err:
4569 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4570 	return err;
4571 }
4572 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4573 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4574 			    struct xdp_buff *xdp,
4575 			    const struct bpf_prog *xdp_prog)
4576 {
4577 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4578 	enum bpf_map_type map_type = ri->map_type;
4579 	void *fwd = ri->tgt_value;
4580 	u32 map_id = ri->map_id;
4581 	u32 flags = ri->flags;
4582 	int err;
4583 
4584 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4585 	ri->flags = 0;
4586 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4587 
4588 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4589 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4590 		if (unlikely(!fwd)) {
4591 			err = -EINVAL;
4592 			goto err;
4593 		}
4594 
4595 		err = xdp_ok_fwd_dev(fwd, skb->len);
4596 		if (unlikely(err))
4597 			goto err;
4598 
4599 		skb->dev = fwd;
4600 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4601 		generic_xdp_tx(skb, xdp_prog);
4602 		return 0;
4603 	}
4604 
4605 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4606 err:
4607 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4608 	return err;
4609 }
4610 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4611 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4612 {
4613 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4614 
4615 	if (unlikely(flags))
4616 		return XDP_ABORTED;
4617 
4618 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4619 	 * by map_idr) is used for ifindex based XDP redirect.
4620 	 */
4621 	ri->tgt_index = ifindex;
4622 	ri->map_id = INT_MAX;
4623 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4624 
4625 	return XDP_REDIRECT;
4626 }
4627 
4628 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4629 	.func           = bpf_xdp_redirect,
4630 	.gpl_only       = false,
4631 	.ret_type       = RET_INTEGER,
4632 	.arg1_type      = ARG_ANYTHING,
4633 	.arg2_type      = ARG_ANYTHING,
4634 };
4635 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4636 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4637 	   u64, flags)
4638 {
4639 	return map->ops->map_redirect(map, key, flags);
4640 }
4641 
4642 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4643 	.func           = bpf_xdp_redirect_map,
4644 	.gpl_only       = false,
4645 	.ret_type       = RET_INTEGER,
4646 	.arg1_type      = ARG_CONST_MAP_PTR,
4647 	.arg2_type      = ARG_ANYTHING,
4648 	.arg3_type      = ARG_ANYTHING,
4649 };
4650 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4651 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4652 				  unsigned long off, unsigned long len)
4653 {
4654 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4655 
4656 	if (unlikely(!ptr))
4657 		return len;
4658 	if (ptr != dst_buff)
4659 		memcpy(dst_buff, ptr, len);
4660 
4661 	return 0;
4662 }
4663 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4664 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4665 	   u64, flags, void *, meta, u64, meta_size)
4666 {
4667 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4668 
4669 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4670 		return -EINVAL;
4671 	if (unlikely(!skb || skb_size > skb->len))
4672 		return -EFAULT;
4673 
4674 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4675 				bpf_skb_copy);
4676 }
4677 
4678 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4679 	.func		= bpf_skb_event_output,
4680 	.gpl_only	= true,
4681 	.ret_type	= RET_INTEGER,
4682 	.arg1_type	= ARG_PTR_TO_CTX,
4683 	.arg2_type	= ARG_CONST_MAP_PTR,
4684 	.arg3_type	= ARG_ANYTHING,
4685 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4686 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4687 };
4688 
4689 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4690 
4691 const struct bpf_func_proto bpf_skb_output_proto = {
4692 	.func		= bpf_skb_event_output,
4693 	.gpl_only	= true,
4694 	.ret_type	= RET_INTEGER,
4695 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4696 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4697 	.arg2_type	= ARG_CONST_MAP_PTR,
4698 	.arg3_type	= ARG_ANYTHING,
4699 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4700 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4701 };
4702 
bpf_tunnel_key_af(u64 flags)4703 static unsigned short bpf_tunnel_key_af(u64 flags)
4704 {
4705 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4706 }
4707 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4708 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4709 	   u32, size, u64, flags)
4710 {
4711 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4712 	u8 compat[sizeof(struct bpf_tunnel_key)];
4713 	void *to_orig = to;
4714 	int err;
4715 
4716 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4717 					 BPF_F_TUNINFO_FLAGS)))) {
4718 		err = -EINVAL;
4719 		goto err_clear;
4720 	}
4721 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4722 		err = -EPROTO;
4723 		goto err_clear;
4724 	}
4725 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4726 		err = -EINVAL;
4727 		switch (size) {
4728 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4729 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4730 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4731 			goto set_compat;
4732 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4733 			/* Fixup deprecated structure layouts here, so we have
4734 			 * a common path later on.
4735 			 */
4736 			if (ip_tunnel_info_af(info) != AF_INET)
4737 				goto err_clear;
4738 set_compat:
4739 			to = (struct bpf_tunnel_key *)compat;
4740 			break;
4741 		default:
4742 			goto err_clear;
4743 		}
4744 	}
4745 
4746 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4747 	to->tunnel_tos = info->key.tos;
4748 	to->tunnel_ttl = info->key.ttl;
4749 	if (flags & BPF_F_TUNINFO_FLAGS)
4750 		to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4751 	else
4752 		to->tunnel_ext = 0;
4753 
4754 	if (flags & BPF_F_TUNINFO_IPV6) {
4755 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4756 		       sizeof(to->remote_ipv6));
4757 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4758 		       sizeof(to->local_ipv6));
4759 		to->tunnel_label = be32_to_cpu(info->key.label);
4760 	} else {
4761 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4762 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4763 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4764 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4765 		to->tunnel_label = 0;
4766 	}
4767 
4768 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4769 		memcpy(to_orig, to, size);
4770 
4771 	return 0;
4772 err_clear:
4773 	memset(to_orig, 0, size);
4774 	return err;
4775 }
4776 
4777 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4778 	.func		= bpf_skb_get_tunnel_key,
4779 	.gpl_only	= false,
4780 	.ret_type	= RET_INTEGER,
4781 	.arg1_type	= ARG_PTR_TO_CTX,
4782 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4783 	.arg3_type	= ARG_CONST_SIZE,
4784 	.arg4_type	= ARG_ANYTHING,
4785 };
4786 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4787 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4788 {
4789 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4790 	int err;
4791 
4792 	if (unlikely(!info ||
4793 		     !ip_tunnel_is_options_present(info->key.tun_flags))) {
4794 		err = -ENOENT;
4795 		goto err_clear;
4796 	}
4797 	if (unlikely(size < info->options_len)) {
4798 		err = -ENOMEM;
4799 		goto err_clear;
4800 	}
4801 
4802 	ip_tunnel_info_opts_get(to, info);
4803 	if (size > info->options_len)
4804 		memset(to + info->options_len, 0, size - info->options_len);
4805 
4806 	return info->options_len;
4807 err_clear:
4808 	memset(to, 0, size);
4809 	return err;
4810 }
4811 
4812 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4813 	.func		= bpf_skb_get_tunnel_opt,
4814 	.gpl_only	= false,
4815 	.ret_type	= RET_INTEGER,
4816 	.arg1_type	= ARG_PTR_TO_CTX,
4817 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4818 	.arg3_type	= ARG_CONST_SIZE,
4819 };
4820 
4821 static struct metadata_dst __percpu *md_dst;
4822 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4823 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4824 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4825 {
4826 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4827 	u8 compat[sizeof(struct bpf_tunnel_key)];
4828 	struct ip_tunnel_info *info;
4829 
4830 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4831 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4832 			       BPF_F_NO_TUNNEL_KEY)))
4833 		return -EINVAL;
4834 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4835 		switch (size) {
4836 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4837 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4838 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4839 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4840 			/* Fixup deprecated structure layouts here, so we have
4841 			 * a common path later on.
4842 			 */
4843 			memcpy(compat, from, size);
4844 			memset(compat + size, 0, sizeof(compat) - size);
4845 			from = (const struct bpf_tunnel_key *) compat;
4846 			break;
4847 		default:
4848 			return -EINVAL;
4849 		}
4850 	}
4851 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4852 		     from->tunnel_ext))
4853 		return -EINVAL;
4854 
4855 	skb_dst_drop(skb);
4856 	dst_hold((struct dst_entry *) md);
4857 	skb_dst_set(skb, (struct dst_entry *) md);
4858 
4859 	info = &md->u.tun_info;
4860 	memset(info, 0, sizeof(*info));
4861 	info->mode = IP_TUNNEL_INFO_TX;
4862 
4863 	__set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4864 	__assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4865 		     flags & BPF_F_DONT_FRAGMENT);
4866 	__assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4867 		     !(flags & BPF_F_ZERO_CSUM_TX));
4868 	__assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4869 		     flags & BPF_F_SEQ_NUMBER);
4870 	__assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4871 		     !(flags & BPF_F_NO_TUNNEL_KEY));
4872 
4873 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4874 	info->key.tos = from->tunnel_tos;
4875 	info->key.ttl = from->tunnel_ttl;
4876 
4877 	if (flags & BPF_F_TUNINFO_IPV6) {
4878 		info->mode |= IP_TUNNEL_INFO_IPV6;
4879 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4880 		       sizeof(from->remote_ipv6));
4881 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4882 		       sizeof(from->local_ipv6));
4883 		info->key.label = cpu_to_be32(from->tunnel_label) &
4884 				  IPV6_FLOWLABEL_MASK;
4885 	} else {
4886 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4887 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4888 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4889 	}
4890 
4891 	return 0;
4892 }
4893 
4894 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4895 	.func		= bpf_skb_set_tunnel_key,
4896 	.gpl_only	= false,
4897 	.ret_type	= RET_INTEGER,
4898 	.arg1_type	= ARG_PTR_TO_CTX,
4899 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4900 	.arg3_type	= ARG_CONST_SIZE,
4901 	.arg4_type	= ARG_ANYTHING,
4902 };
4903 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4904 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4905 	   const u8 *, from, u32, size)
4906 {
4907 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4908 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4909 	IP_TUNNEL_DECLARE_FLAGS(present) = { };
4910 
4911 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4912 		return -EINVAL;
4913 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4914 		return -ENOMEM;
4915 
4916 	ip_tunnel_set_options_present(present);
4917 	ip_tunnel_info_opts_set(info, from, size, present);
4918 
4919 	return 0;
4920 }
4921 
4922 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4923 	.func		= bpf_skb_set_tunnel_opt,
4924 	.gpl_only	= false,
4925 	.ret_type	= RET_INTEGER,
4926 	.arg1_type	= ARG_PTR_TO_CTX,
4927 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4928 	.arg3_type	= ARG_CONST_SIZE,
4929 };
4930 
4931 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4932 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4933 {
4934 	if (!md_dst) {
4935 		struct metadata_dst __percpu *tmp;
4936 
4937 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4938 						METADATA_IP_TUNNEL,
4939 						GFP_KERNEL);
4940 		if (!tmp)
4941 			return NULL;
4942 		if (cmpxchg(&md_dst, NULL, tmp))
4943 			metadata_dst_free_percpu(tmp);
4944 	}
4945 
4946 	switch (which) {
4947 	case BPF_FUNC_skb_set_tunnel_key:
4948 		return &bpf_skb_set_tunnel_key_proto;
4949 	case BPF_FUNC_skb_set_tunnel_opt:
4950 		return &bpf_skb_set_tunnel_opt_proto;
4951 	default:
4952 		return NULL;
4953 	}
4954 }
4955 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4956 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4957 	   u32, idx)
4958 {
4959 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4960 	struct cgroup *cgrp;
4961 	struct sock *sk;
4962 
4963 	sk = skb_to_full_sk(skb);
4964 	if (!sk || !sk_fullsock(sk))
4965 		return -ENOENT;
4966 	if (unlikely(idx >= array->map.max_entries))
4967 		return -E2BIG;
4968 
4969 	cgrp = READ_ONCE(array->ptrs[idx]);
4970 	if (unlikely(!cgrp))
4971 		return -EAGAIN;
4972 
4973 	return sk_under_cgroup_hierarchy(sk, cgrp);
4974 }
4975 
4976 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4977 	.func		= bpf_skb_under_cgroup,
4978 	.gpl_only	= false,
4979 	.ret_type	= RET_INTEGER,
4980 	.arg1_type	= ARG_PTR_TO_CTX,
4981 	.arg2_type	= ARG_CONST_MAP_PTR,
4982 	.arg3_type	= ARG_ANYTHING,
4983 };
4984 
4985 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4986 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4987 {
4988 	struct cgroup *cgrp;
4989 
4990 	sk = sk_to_full_sk(sk);
4991 	if (!sk || !sk_fullsock(sk))
4992 		return 0;
4993 
4994 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4995 	return cgroup_id(cgrp);
4996 }
4997 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4998 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4999 {
5000 	return __bpf_sk_cgroup_id(skb->sk);
5001 }
5002 
5003 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
5004 	.func           = bpf_skb_cgroup_id,
5005 	.gpl_only       = false,
5006 	.ret_type       = RET_INTEGER,
5007 	.arg1_type      = ARG_PTR_TO_CTX,
5008 };
5009 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)5010 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
5011 					      int ancestor_level)
5012 {
5013 	struct cgroup *ancestor;
5014 	struct cgroup *cgrp;
5015 
5016 	sk = sk_to_full_sk(sk);
5017 	if (!sk || !sk_fullsock(sk))
5018 		return 0;
5019 
5020 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5021 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
5022 	if (!ancestor)
5023 		return 0;
5024 
5025 	return cgroup_id(ancestor);
5026 }
5027 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5028 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5029 	   ancestor_level)
5030 {
5031 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5032 }
5033 
5034 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5035 	.func           = bpf_skb_ancestor_cgroup_id,
5036 	.gpl_only       = false,
5037 	.ret_type       = RET_INTEGER,
5038 	.arg1_type      = ARG_PTR_TO_CTX,
5039 	.arg2_type      = ARG_ANYTHING,
5040 };
5041 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5042 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5043 {
5044 	return __bpf_sk_cgroup_id(sk);
5045 }
5046 
5047 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5048 	.func           = bpf_sk_cgroup_id,
5049 	.gpl_only       = false,
5050 	.ret_type       = RET_INTEGER,
5051 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5052 };
5053 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5054 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5055 {
5056 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5057 }
5058 
5059 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5060 	.func           = bpf_sk_ancestor_cgroup_id,
5061 	.gpl_only       = false,
5062 	.ret_type       = RET_INTEGER,
5063 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5064 	.arg2_type      = ARG_ANYTHING,
5065 };
5066 #endif
5067 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5068 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5069 				  unsigned long off, unsigned long len)
5070 {
5071 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5072 
5073 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5074 	return 0;
5075 }
5076 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5077 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5078 	   u64, flags, void *, meta, u64, meta_size)
5079 {
5080 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5081 
5082 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5083 		return -EINVAL;
5084 
5085 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5086 		return -EFAULT;
5087 
5088 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5089 				xdp_size, bpf_xdp_copy);
5090 }
5091 
5092 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5093 	.func		= bpf_xdp_event_output,
5094 	.gpl_only	= true,
5095 	.ret_type	= RET_INTEGER,
5096 	.arg1_type	= ARG_PTR_TO_CTX,
5097 	.arg2_type	= ARG_CONST_MAP_PTR,
5098 	.arg3_type	= ARG_ANYTHING,
5099 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5100 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5101 };
5102 
5103 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5104 
5105 const struct bpf_func_proto bpf_xdp_output_proto = {
5106 	.func		= bpf_xdp_event_output,
5107 	.gpl_only	= true,
5108 	.ret_type	= RET_INTEGER,
5109 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5110 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5111 	.arg2_type	= ARG_CONST_MAP_PTR,
5112 	.arg3_type	= ARG_ANYTHING,
5113 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5114 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5115 };
5116 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5117 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5118 {
5119 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5120 }
5121 
5122 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5123 	.func           = bpf_get_socket_cookie,
5124 	.gpl_only       = false,
5125 	.ret_type       = RET_INTEGER,
5126 	.arg1_type      = ARG_PTR_TO_CTX,
5127 };
5128 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5129 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5130 {
5131 	return __sock_gen_cookie(ctx->sk);
5132 }
5133 
5134 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5135 	.func		= bpf_get_socket_cookie_sock_addr,
5136 	.gpl_only	= false,
5137 	.ret_type	= RET_INTEGER,
5138 	.arg1_type	= ARG_PTR_TO_CTX,
5139 };
5140 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5141 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5142 {
5143 	return __sock_gen_cookie(ctx);
5144 }
5145 
5146 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5147 	.func		= bpf_get_socket_cookie_sock,
5148 	.gpl_only	= false,
5149 	.ret_type	= RET_INTEGER,
5150 	.arg1_type	= ARG_PTR_TO_CTX,
5151 };
5152 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5153 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5154 {
5155 	return sk ? sock_gen_cookie(sk) : 0;
5156 }
5157 
5158 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5159 	.func		= bpf_get_socket_ptr_cookie,
5160 	.gpl_only	= false,
5161 	.ret_type	= RET_INTEGER,
5162 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5163 };
5164 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5165 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5166 {
5167 	return __sock_gen_cookie(ctx->sk);
5168 }
5169 
5170 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5171 	.func		= bpf_get_socket_cookie_sock_ops,
5172 	.gpl_only	= false,
5173 	.ret_type	= RET_INTEGER,
5174 	.arg1_type	= ARG_PTR_TO_CTX,
5175 };
5176 
__bpf_get_netns_cookie(struct sock * sk)5177 static u64 __bpf_get_netns_cookie(struct sock *sk)
5178 {
5179 	const struct net *net = sk ? sock_net(sk) : &init_net;
5180 
5181 	return net->net_cookie;
5182 }
5183 
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5184 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5185 {
5186 	return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5187 }
5188 
5189 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5190 	.func           = bpf_get_netns_cookie,
5191 	.ret_type       = RET_INTEGER,
5192 	.arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5193 };
5194 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5195 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5196 {
5197 	return __bpf_get_netns_cookie(ctx);
5198 }
5199 
5200 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5201 	.func		= bpf_get_netns_cookie_sock,
5202 	.gpl_only	= false,
5203 	.ret_type	= RET_INTEGER,
5204 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5205 };
5206 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5207 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5208 {
5209 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5210 }
5211 
5212 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5213 	.func		= bpf_get_netns_cookie_sock_addr,
5214 	.gpl_only	= false,
5215 	.ret_type	= RET_INTEGER,
5216 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5217 };
5218 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5219 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5220 {
5221 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5222 }
5223 
5224 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5225 	.func		= bpf_get_netns_cookie_sock_ops,
5226 	.gpl_only	= false,
5227 	.ret_type	= RET_INTEGER,
5228 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5229 };
5230 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5231 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5232 {
5233 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5234 }
5235 
5236 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5237 	.func		= bpf_get_netns_cookie_sk_msg,
5238 	.gpl_only	= false,
5239 	.ret_type	= RET_INTEGER,
5240 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5241 };
5242 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5243 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5244 {
5245 	struct sock *sk = sk_to_full_sk(skb->sk);
5246 	kuid_t kuid;
5247 
5248 	if (!sk || !sk_fullsock(sk))
5249 		return overflowuid;
5250 	kuid = sock_net_uid(sock_net(sk), sk);
5251 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5252 }
5253 
5254 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5255 	.func           = bpf_get_socket_uid,
5256 	.gpl_only       = false,
5257 	.ret_type       = RET_INTEGER,
5258 	.arg1_type      = ARG_PTR_TO_CTX,
5259 };
5260 
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5261 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5262 {
5263 	u32 sk_bpf_cb_flags;
5264 
5265 	if (getopt) {
5266 		*(u32 *)optval = sk->sk_bpf_cb_flags;
5267 		return 0;
5268 	}
5269 
5270 	sk_bpf_cb_flags = *(u32 *)optval;
5271 
5272 	if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5273 		return -EINVAL;
5274 
5275 	sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5276 
5277 	return 0;
5278 }
5279 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5280 static int sol_socket_sockopt(struct sock *sk, int optname,
5281 			      char *optval, int *optlen,
5282 			      bool getopt)
5283 {
5284 	switch (optname) {
5285 	case SO_REUSEADDR:
5286 	case SO_SNDBUF:
5287 	case SO_RCVBUF:
5288 	case SO_KEEPALIVE:
5289 	case SO_PRIORITY:
5290 	case SO_REUSEPORT:
5291 	case SO_RCVLOWAT:
5292 	case SO_MARK:
5293 	case SO_MAX_PACING_RATE:
5294 	case SO_BINDTOIFINDEX:
5295 	case SO_TXREHASH:
5296 	case SK_BPF_CB_FLAGS:
5297 		if (*optlen != sizeof(int))
5298 			return -EINVAL;
5299 		break;
5300 	case SO_BINDTODEVICE:
5301 		break;
5302 	default:
5303 		return -EINVAL;
5304 	}
5305 
5306 	if (optname == SK_BPF_CB_FLAGS)
5307 		return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5308 
5309 	if (getopt) {
5310 		if (optname == SO_BINDTODEVICE)
5311 			return -EINVAL;
5312 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5313 				     KERNEL_SOCKPTR(optval),
5314 				     KERNEL_SOCKPTR(optlen));
5315 	}
5316 
5317 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5318 			     KERNEL_SOCKPTR(optval), *optlen);
5319 }
5320 
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5321 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5322 				  char *optval, int optlen)
5323 {
5324 	if (optlen != sizeof(int))
5325 		return -EINVAL;
5326 
5327 	switch (optname) {
5328 	case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5329 		int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5330 
5331 		memcpy(optval, &cb_flags, optlen);
5332 		break;
5333 	}
5334 	case TCP_BPF_RTO_MIN: {
5335 		int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5336 
5337 		memcpy(optval, &rto_min_us, optlen);
5338 		break;
5339 	}
5340 	case TCP_BPF_DELACK_MAX: {
5341 		int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5342 
5343 		memcpy(optval, &delack_max_us, optlen);
5344 		break;
5345 	}
5346 	default:
5347 		return -EINVAL;
5348 	}
5349 
5350 	return 0;
5351 }
5352 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5353 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5354 				  char *optval, int optlen)
5355 {
5356 	struct tcp_sock *tp = tcp_sk(sk);
5357 	unsigned long timeout;
5358 	int val;
5359 
5360 	if (optlen != sizeof(int))
5361 		return -EINVAL;
5362 
5363 	val = *(int *)optval;
5364 
5365 	/* Only some options are supported */
5366 	switch (optname) {
5367 	case TCP_BPF_IW:
5368 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5369 			return -EINVAL;
5370 		tcp_snd_cwnd_set(tp, val);
5371 		break;
5372 	case TCP_BPF_SNDCWND_CLAMP:
5373 		if (val <= 0)
5374 			return -EINVAL;
5375 		tp->snd_cwnd_clamp = val;
5376 		tp->snd_ssthresh = val;
5377 		break;
5378 	case TCP_BPF_DELACK_MAX:
5379 		timeout = usecs_to_jiffies(val);
5380 		if (timeout > TCP_DELACK_MAX ||
5381 		    timeout < TCP_TIMEOUT_MIN)
5382 			return -EINVAL;
5383 		inet_csk(sk)->icsk_delack_max = timeout;
5384 		break;
5385 	case TCP_BPF_RTO_MIN:
5386 		timeout = usecs_to_jiffies(val);
5387 		if (timeout > TCP_RTO_MIN ||
5388 		    timeout < TCP_TIMEOUT_MIN)
5389 			return -EINVAL;
5390 		inet_csk(sk)->icsk_rto_min = timeout;
5391 		break;
5392 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5393 		if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5394 			return -EINVAL;
5395 		tp->bpf_sock_ops_cb_flags = val;
5396 		break;
5397 	default:
5398 		return -EINVAL;
5399 	}
5400 
5401 	return 0;
5402 }
5403 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5404 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5405 				      int *optlen, bool getopt)
5406 {
5407 	struct tcp_sock *tp;
5408 	int ret;
5409 
5410 	if (*optlen < 2)
5411 		return -EINVAL;
5412 
5413 	if (getopt) {
5414 		if (!inet_csk(sk)->icsk_ca_ops)
5415 			return -EINVAL;
5416 		/* BPF expects NULL-terminated tcp-cc string */
5417 		optval[--(*optlen)] = '\0';
5418 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5419 					 KERNEL_SOCKPTR(optval),
5420 					 KERNEL_SOCKPTR(optlen));
5421 	}
5422 
5423 	/* "cdg" is the only cc that alloc a ptr
5424 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5425 	 * overwrite this ptr after switching to cdg.
5426 	 */
5427 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5428 		return -ENOTSUPP;
5429 
5430 	/* It stops this looping
5431 	 *
5432 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5433 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5434 	 *
5435 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5436 	 * in order to break the loop when both .init
5437 	 * are the same bpf prog.
5438 	 *
5439 	 * This applies even the second bpf_setsockopt(tcp_cc)
5440 	 * does not cause a loop.  This limits only the first
5441 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5442 	 * pick a fallback cc (eg. peer does not support ECN)
5443 	 * and the second '.init' cannot fallback to
5444 	 * another.
5445 	 */
5446 	tp = tcp_sk(sk);
5447 	if (tp->bpf_chg_cc_inprogress)
5448 		return -EBUSY;
5449 
5450 	tp->bpf_chg_cc_inprogress = 1;
5451 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5452 				KERNEL_SOCKPTR(optval), *optlen);
5453 	tp->bpf_chg_cc_inprogress = 0;
5454 	return ret;
5455 }
5456 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5457 static int sol_tcp_sockopt(struct sock *sk, int optname,
5458 			   char *optval, int *optlen,
5459 			   bool getopt)
5460 {
5461 	if (sk->sk_protocol != IPPROTO_TCP)
5462 		return -EINVAL;
5463 
5464 	switch (optname) {
5465 	case TCP_NODELAY:
5466 	case TCP_MAXSEG:
5467 	case TCP_KEEPIDLE:
5468 	case TCP_KEEPINTVL:
5469 	case TCP_KEEPCNT:
5470 	case TCP_SYNCNT:
5471 	case TCP_WINDOW_CLAMP:
5472 	case TCP_THIN_LINEAR_TIMEOUTS:
5473 	case TCP_USER_TIMEOUT:
5474 	case TCP_NOTSENT_LOWAT:
5475 	case TCP_SAVE_SYN:
5476 	case TCP_RTO_MAX_MS:
5477 		if (*optlen != sizeof(int))
5478 			return -EINVAL;
5479 		break;
5480 	case TCP_CONGESTION:
5481 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5482 	case TCP_SAVED_SYN:
5483 		if (*optlen < 1)
5484 			return -EINVAL;
5485 		break;
5486 	default:
5487 		if (getopt)
5488 			return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5489 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5490 	}
5491 
5492 	if (getopt) {
5493 		if (optname == TCP_SAVED_SYN) {
5494 			struct tcp_sock *tp = tcp_sk(sk);
5495 
5496 			if (!tp->saved_syn ||
5497 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5498 				return -EINVAL;
5499 			memcpy(optval, tp->saved_syn->data, *optlen);
5500 			/* It cannot free tp->saved_syn here because it
5501 			 * does not know if the user space still needs it.
5502 			 */
5503 			return 0;
5504 		}
5505 
5506 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5507 					 KERNEL_SOCKPTR(optval),
5508 					 KERNEL_SOCKPTR(optlen));
5509 	}
5510 
5511 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5512 				 KERNEL_SOCKPTR(optval), *optlen);
5513 }
5514 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5515 static int sol_ip_sockopt(struct sock *sk, int optname,
5516 			  char *optval, int *optlen,
5517 			  bool getopt)
5518 {
5519 	if (sk->sk_family != AF_INET)
5520 		return -EINVAL;
5521 
5522 	switch (optname) {
5523 	case IP_TOS:
5524 		if (*optlen != sizeof(int))
5525 			return -EINVAL;
5526 		break;
5527 	default:
5528 		return -EINVAL;
5529 	}
5530 
5531 	if (getopt)
5532 		return do_ip_getsockopt(sk, SOL_IP, optname,
5533 					KERNEL_SOCKPTR(optval),
5534 					KERNEL_SOCKPTR(optlen));
5535 
5536 	return do_ip_setsockopt(sk, SOL_IP, optname,
5537 				KERNEL_SOCKPTR(optval), *optlen);
5538 }
5539 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5540 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5541 			    char *optval, int *optlen,
5542 			    bool getopt)
5543 {
5544 	if (sk->sk_family != AF_INET6)
5545 		return -EINVAL;
5546 
5547 	switch (optname) {
5548 	case IPV6_TCLASS:
5549 	case IPV6_AUTOFLOWLABEL:
5550 		if (*optlen != sizeof(int))
5551 			return -EINVAL;
5552 		break;
5553 	default:
5554 		return -EINVAL;
5555 	}
5556 
5557 	if (getopt)
5558 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5559 						      KERNEL_SOCKPTR(optval),
5560 						      KERNEL_SOCKPTR(optlen));
5561 
5562 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5563 					      KERNEL_SOCKPTR(optval), *optlen);
5564 }
5565 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5566 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5567 			    char *optval, int optlen)
5568 {
5569 	if (!sk_fullsock(sk))
5570 		return -EINVAL;
5571 
5572 	if (level == SOL_SOCKET)
5573 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5574 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5575 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5576 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5577 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5578 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5579 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5580 
5581 	return -EINVAL;
5582 }
5583 
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5584 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5585 {
5586 	return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5587 }
5588 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5589 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5590 			   char *optval, int optlen)
5591 {
5592 	if (sk_fullsock(sk))
5593 		sock_owned_by_me(sk);
5594 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5595 }
5596 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5597 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5598 			    char *optval, int optlen)
5599 {
5600 	int err, saved_optlen = optlen;
5601 
5602 	if (!sk_fullsock(sk)) {
5603 		err = -EINVAL;
5604 		goto done;
5605 	}
5606 
5607 	if (level == SOL_SOCKET)
5608 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5609 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5610 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5611 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5612 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5613 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5614 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5615 	else
5616 		err = -EINVAL;
5617 
5618 done:
5619 	if (err)
5620 		optlen = 0;
5621 	if (optlen < saved_optlen)
5622 		memset(optval + optlen, 0, saved_optlen - optlen);
5623 	return err;
5624 }
5625 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5626 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5627 			   char *optval, int optlen)
5628 {
5629 	if (sk_fullsock(sk))
5630 		sock_owned_by_me(sk);
5631 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5632 }
5633 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5634 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5635 	   int, optname, char *, optval, int, optlen)
5636 {
5637 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5638 }
5639 
5640 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5641 	.func		= bpf_sk_setsockopt,
5642 	.gpl_only	= false,
5643 	.ret_type	= RET_INTEGER,
5644 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5645 	.arg2_type	= ARG_ANYTHING,
5646 	.arg3_type	= ARG_ANYTHING,
5647 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5648 	.arg5_type	= ARG_CONST_SIZE,
5649 };
5650 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5651 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5652 	   int, optname, char *, optval, int, optlen)
5653 {
5654 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5655 }
5656 
5657 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5658 	.func		= bpf_sk_getsockopt,
5659 	.gpl_only	= false,
5660 	.ret_type	= RET_INTEGER,
5661 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5662 	.arg2_type	= ARG_ANYTHING,
5663 	.arg3_type	= ARG_ANYTHING,
5664 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5665 	.arg5_type	= ARG_CONST_SIZE,
5666 };
5667 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5668 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5669 	   int, optname, char *, optval, int, optlen)
5670 {
5671 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5672 }
5673 
5674 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5675 	.func		= bpf_unlocked_sk_setsockopt,
5676 	.gpl_only	= false,
5677 	.ret_type	= RET_INTEGER,
5678 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5679 	.arg2_type	= ARG_ANYTHING,
5680 	.arg3_type	= ARG_ANYTHING,
5681 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5682 	.arg5_type	= ARG_CONST_SIZE,
5683 };
5684 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5685 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5686 	   int, optname, char *, optval, int, optlen)
5687 {
5688 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5689 }
5690 
5691 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5692 	.func		= bpf_unlocked_sk_getsockopt,
5693 	.gpl_only	= false,
5694 	.ret_type	= RET_INTEGER,
5695 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5696 	.arg2_type	= ARG_ANYTHING,
5697 	.arg3_type	= ARG_ANYTHING,
5698 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5699 	.arg5_type	= ARG_CONST_SIZE,
5700 };
5701 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5702 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5703 	   int, level, int, optname, char *, optval, int, optlen)
5704 {
5705 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5706 }
5707 
5708 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5709 	.func		= bpf_sock_addr_setsockopt,
5710 	.gpl_only	= false,
5711 	.ret_type	= RET_INTEGER,
5712 	.arg1_type	= ARG_PTR_TO_CTX,
5713 	.arg2_type	= ARG_ANYTHING,
5714 	.arg3_type	= ARG_ANYTHING,
5715 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5716 	.arg5_type	= ARG_CONST_SIZE,
5717 };
5718 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5719 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5720 	   int, level, int, optname, char *, optval, int, optlen)
5721 {
5722 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5723 }
5724 
5725 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5726 	.func		= bpf_sock_addr_getsockopt,
5727 	.gpl_only	= false,
5728 	.ret_type	= RET_INTEGER,
5729 	.arg1_type	= ARG_PTR_TO_CTX,
5730 	.arg2_type	= ARG_ANYTHING,
5731 	.arg3_type	= ARG_ANYTHING,
5732 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5733 	.arg5_type	= ARG_CONST_SIZE,
5734 };
5735 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5736 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5737 	   int, level, int, optname, char *, optval, int, optlen)
5738 {
5739 	if (!is_locked_tcp_sock_ops(bpf_sock))
5740 		return -EOPNOTSUPP;
5741 
5742 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5743 }
5744 
5745 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5746 	.func		= bpf_sock_ops_setsockopt,
5747 	.gpl_only	= false,
5748 	.ret_type	= RET_INTEGER,
5749 	.arg1_type	= ARG_PTR_TO_CTX,
5750 	.arg2_type	= ARG_ANYTHING,
5751 	.arg3_type	= ARG_ANYTHING,
5752 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5753 	.arg5_type	= ARG_CONST_SIZE,
5754 };
5755 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5756 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5757 				int optname, const u8 **start)
5758 {
5759 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5760 	const u8 *hdr_start;
5761 	int ret;
5762 
5763 	if (syn_skb) {
5764 		/* sk is a request_sock here */
5765 
5766 		if (optname == TCP_BPF_SYN) {
5767 			hdr_start = syn_skb->data;
5768 			ret = tcp_hdrlen(syn_skb);
5769 		} else if (optname == TCP_BPF_SYN_IP) {
5770 			hdr_start = skb_network_header(syn_skb);
5771 			ret = skb_network_header_len(syn_skb) +
5772 				tcp_hdrlen(syn_skb);
5773 		} else {
5774 			/* optname == TCP_BPF_SYN_MAC */
5775 			hdr_start = skb_mac_header(syn_skb);
5776 			ret = skb_mac_header_len(syn_skb) +
5777 				skb_network_header_len(syn_skb) +
5778 				tcp_hdrlen(syn_skb);
5779 		}
5780 	} else {
5781 		struct sock *sk = bpf_sock->sk;
5782 		struct saved_syn *saved_syn;
5783 
5784 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5785 			/* synack retransmit. bpf_sock->syn_skb will
5786 			 * not be available.  It has to resort to
5787 			 * saved_syn (if it is saved).
5788 			 */
5789 			saved_syn = inet_reqsk(sk)->saved_syn;
5790 		else
5791 			saved_syn = tcp_sk(sk)->saved_syn;
5792 
5793 		if (!saved_syn)
5794 			return -ENOENT;
5795 
5796 		if (optname == TCP_BPF_SYN) {
5797 			hdr_start = saved_syn->data +
5798 				saved_syn->mac_hdrlen +
5799 				saved_syn->network_hdrlen;
5800 			ret = saved_syn->tcp_hdrlen;
5801 		} else if (optname == TCP_BPF_SYN_IP) {
5802 			hdr_start = saved_syn->data +
5803 				saved_syn->mac_hdrlen;
5804 			ret = saved_syn->network_hdrlen +
5805 				saved_syn->tcp_hdrlen;
5806 		} else {
5807 			/* optname == TCP_BPF_SYN_MAC */
5808 
5809 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5810 			if (!saved_syn->mac_hdrlen)
5811 				return -ENOENT;
5812 
5813 			hdr_start = saved_syn->data;
5814 			ret = saved_syn->mac_hdrlen +
5815 				saved_syn->network_hdrlen +
5816 				saved_syn->tcp_hdrlen;
5817 		}
5818 	}
5819 
5820 	*start = hdr_start;
5821 	return ret;
5822 }
5823 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5824 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5825 	   int, level, int, optname, char *, optval, int, optlen)
5826 {
5827 	if (!is_locked_tcp_sock_ops(bpf_sock))
5828 		return -EOPNOTSUPP;
5829 
5830 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5831 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5832 		int ret, copy_len = 0;
5833 		const u8 *start;
5834 
5835 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5836 		if (ret > 0) {
5837 			copy_len = ret;
5838 			if (optlen < copy_len) {
5839 				copy_len = optlen;
5840 				ret = -ENOSPC;
5841 			}
5842 
5843 			memcpy(optval, start, copy_len);
5844 		}
5845 
5846 		/* Zero out unused buffer at the end */
5847 		memset(optval + copy_len, 0, optlen - copy_len);
5848 
5849 		return ret;
5850 	}
5851 
5852 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5853 }
5854 
5855 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5856 	.func		= bpf_sock_ops_getsockopt,
5857 	.gpl_only	= false,
5858 	.ret_type	= RET_INTEGER,
5859 	.arg1_type	= ARG_PTR_TO_CTX,
5860 	.arg2_type	= ARG_ANYTHING,
5861 	.arg3_type	= ARG_ANYTHING,
5862 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5863 	.arg5_type	= ARG_CONST_SIZE,
5864 };
5865 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5866 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5867 	   int, argval)
5868 {
5869 	struct sock *sk = bpf_sock->sk;
5870 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5871 
5872 	if (!is_locked_tcp_sock_ops(bpf_sock))
5873 		return -EOPNOTSUPP;
5874 
5875 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5876 		return -EINVAL;
5877 
5878 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5879 
5880 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5881 }
5882 
5883 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5884 	.func		= bpf_sock_ops_cb_flags_set,
5885 	.gpl_only	= false,
5886 	.ret_type	= RET_INTEGER,
5887 	.arg1_type	= ARG_PTR_TO_CTX,
5888 	.arg2_type	= ARG_ANYTHING,
5889 };
5890 
5891 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5892 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5893 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5894 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5895 	   int, addr_len)
5896 {
5897 #ifdef CONFIG_INET
5898 	struct sock *sk = ctx->sk;
5899 	u32 flags = BIND_FROM_BPF;
5900 	int err;
5901 
5902 	err = -EINVAL;
5903 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5904 		return err;
5905 	if (addr->sa_family == AF_INET) {
5906 		if (addr_len < sizeof(struct sockaddr_in))
5907 			return err;
5908 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5909 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5910 		return __inet_bind(sk, addr, addr_len, flags);
5911 #if IS_ENABLED(CONFIG_IPV6)
5912 	} else if (addr->sa_family == AF_INET6) {
5913 		if (addr_len < SIN6_LEN_RFC2133)
5914 			return err;
5915 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5916 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5917 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5918 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5919 		 */
5920 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5921 #endif /* CONFIG_IPV6 */
5922 	}
5923 #endif /* CONFIG_INET */
5924 
5925 	return -EAFNOSUPPORT;
5926 }
5927 
5928 static const struct bpf_func_proto bpf_bind_proto = {
5929 	.func		= bpf_bind,
5930 	.gpl_only	= false,
5931 	.ret_type	= RET_INTEGER,
5932 	.arg1_type	= ARG_PTR_TO_CTX,
5933 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5934 	.arg3_type	= ARG_CONST_SIZE,
5935 };
5936 
5937 #ifdef CONFIG_XFRM
5938 
5939 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5940     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5941 
5942 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5943 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5944 
5945 #endif
5946 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5947 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5948 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5949 {
5950 	const struct sec_path *sp = skb_sec_path(skb);
5951 	const struct xfrm_state *x;
5952 
5953 	if (!sp || unlikely(index >= sp->len || flags))
5954 		goto err_clear;
5955 
5956 	x = sp->xvec[index];
5957 
5958 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5959 		goto err_clear;
5960 
5961 	to->reqid = x->props.reqid;
5962 	to->spi = x->id.spi;
5963 	to->family = x->props.family;
5964 	to->ext = 0;
5965 
5966 	if (to->family == AF_INET6) {
5967 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5968 		       sizeof(to->remote_ipv6));
5969 	} else {
5970 		to->remote_ipv4 = x->props.saddr.a4;
5971 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5972 	}
5973 
5974 	return 0;
5975 err_clear:
5976 	memset(to, 0, size);
5977 	return -EINVAL;
5978 }
5979 
5980 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5981 	.func		= bpf_skb_get_xfrm_state,
5982 	.gpl_only	= false,
5983 	.ret_type	= RET_INTEGER,
5984 	.arg1_type	= ARG_PTR_TO_CTX,
5985 	.arg2_type	= ARG_ANYTHING,
5986 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5987 	.arg4_type	= ARG_CONST_SIZE,
5988 	.arg5_type	= ARG_ANYTHING,
5989 };
5990 #endif
5991 
5992 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5993 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5994 {
5995 	params->h_vlan_TCI = 0;
5996 	params->h_vlan_proto = 0;
5997 	if (mtu)
5998 		params->mtu_result = mtu; /* union with tot_len */
5999 
6000 	return 0;
6001 }
6002 #endif
6003 
6004 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6005 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6006 			       u32 flags, bool check_mtu)
6007 {
6008 	struct fib_nh_common *nhc;
6009 	struct in_device *in_dev;
6010 	struct neighbour *neigh;
6011 	struct net_device *dev;
6012 	struct fib_result res;
6013 	struct flowi4 fl4;
6014 	u32 mtu = 0;
6015 	int err;
6016 
6017 	dev = dev_get_by_index_rcu(net, params->ifindex);
6018 	if (unlikely(!dev))
6019 		return -ENODEV;
6020 
6021 	/* verify forwarding is enabled on this interface */
6022 	in_dev = __in_dev_get_rcu(dev);
6023 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
6024 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6025 
6026 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6027 		fl4.flowi4_iif = 1;
6028 		fl4.flowi4_oif = params->ifindex;
6029 	} else {
6030 		fl4.flowi4_iif = params->ifindex;
6031 		fl4.flowi4_oif = 0;
6032 	}
6033 	fl4.flowi4_dscp = inet_dsfield_to_dscp(params->tos);
6034 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6035 	fl4.flowi4_flags = 0;
6036 
6037 	fl4.flowi4_proto = params->l4_protocol;
6038 	fl4.daddr = params->ipv4_dst;
6039 	fl4.saddr = params->ipv4_src;
6040 	fl4.fl4_sport = params->sport;
6041 	fl4.fl4_dport = params->dport;
6042 	fl4.flowi4_multipath_hash = 0;
6043 
6044 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6045 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6046 		struct fib_table *tb;
6047 
6048 		if (flags & BPF_FIB_LOOKUP_TBID) {
6049 			tbid = params->tbid;
6050 			/* zero out for vlan output */
6051 			params->tbid = 0;
6052 		}
6053 
6054 		tb = fib_get_table(net, tbid);
6055 		if (unlikely(!tb))
6056 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6057 
6058 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6059 	} else {
6060 		if (flags & BPF_FIB_LOOKUP_MARK)
6061 			fl4.flowi4_mark = params->mark;
6062 		else
6063 			fl4.flowi4_mark = 0;
6064 		fl4.flowi4_secid = 0;
6065 		fl4.flowi4_tun_key.tun_id = 0;
6066 		fl4.flowi4_uid = sock_net_uid(net, NULL);
6067 
6068 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6069 	}
6070 
6071 	if (err) {
6072 		/* map fib lookup errors to RTN_ type */
6073 		if (err == -EINVAL)
6074 			return BPF_FIB_LKUP_RET_BLACKHOLE;
6075 		if (err == -EHOSTUNREACH)
6076 			return BPF_FIB_LKUP_RET_UNREACHABLE;
6077 		if (err == -EACCES)
6078 			return BPF_FIB_LKUP_RET_PROHIBIT;
6079 
6080 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6081 	}
6082 
6083 	if (res.type != RTN_UNICAST)
6084 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6085 
6086 	if (fib_info_num_path(res.fi) > 1)
6087 		fib_select_path(net, &res, &fl4, NULL);
6088 
6089 	if (check_mtu) {
6090 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6091 		if (params->tot_len > mtu) {
6092 			params->mtu_result = mtu; /* union with tot_len */
6093 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6094 		}
6095 	}
6096 
6097 	nhc = res.nhc;
6098 
6099 	/* do not handle lwt encaps right now */
6100 	if (nhc->nhc_lwtstate)
6101 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6102 
6103 	dev = nhc->nhc_dev;
6104 
6105 	params->rt_metric = res.fi->fib_priority;
6106 	params->ifindex = dev->ifindex;
6107 
6108 	if (flags & BPF_FIB_LOOKUP_SRC)
6109 		params->ipv4_src = fib_result_prefsrc(net, &res);
6110 
6111 	/* xdp and cls_bpf programs are run in RCU-bh so
6112 	 * rcu_read_lock_bh is not needed here
6113 	 */
6114 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
6115 		if (nhc->nhc_gw_family)
6116 			params->ipv4_dst = nhc->nhc_gw.ipv4;
6117 	} else {
6118 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6119 
6120 		params->family = AF_INET6;
6121 		*dst = nhc->nhc_gw.ipv6;
6122 	}
6123 
6124 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6125 		goto set_fwd_params;
6126 
6127 	if (likely(nhc->nhc_gw_family != AF_INET6))
6128 		neigh = __ipv4_neigh_lookup_noref(dev,
6129 						  (__force u32)params->ipv4_dst);
6130 	else
6131 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6132 
6133 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6134 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6135 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6136 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6137 
6138 set_fwd_params:
6139 	return bpf_fib_set_fwd_params(params, mtu);
6140 }
6141 #endif
6142 
6143 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6144 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6145 			       u32 flags, bool check_mtu)
6146 {
6147 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6148 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6149 	struct fib6_result res = {};
6150 	struct neighbour *neigh;
6151 	struct net_device *dev;
6152 	struct inet6_dev *idev;
6153 	struct flowi6 fl6;
6154 	int strict = 0;
6155 	int oif, err;
6156 	u32 mtu = 0;
6157 
6158 	/* link local addresses are never forwarded */
6159 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6160 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6161 
6162 	dev = dev_get_by_index_rcu(net, params->ifindex);
6163 	if (unlikely(!dev))
6164 		return -ENODEV;
6165 
6166 	idev = __in6_dev_get_safely(dev);
6167 	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6168 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6169 
6170 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6171 		fl6.flowi6_iif = 1;
6172 		oif = fl6.flowi6_oif = params->ifindex;
6173 	} else {
6174 		oif = fl6.flowi6_iif = params->ifindex;
6175 		fl6.flowi6_oif = 0;
6176 		strict = RT6_LOOKUP_F_HAS_SADDR;
6177 	}
6178 	fl6.flowlabel = params->flowinfo;
6179 	fl6.flowi6_scope = 0;
6180 	fl6.flowi6_flags = 0;
6181 	fl6.mp_hash = 0;
6182 
6183 	fl6.flowi6_proto = params->l4_protocol;
6184 	fl6.daddr = *dst;
6185 	fl6.saddr = *src;
6186 	fl6.fl6_sport = params->sport;
6187 	fl6.fl6_dport = params->dport;
6188 
6189 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6190 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6191 		struct fib6_table *tb;
6192 
6193 		if (flags & BPF_FIB_LOOKUP_TBID) {
6194 			tbid = params->tbid;
6195 			/* zero out for vlan output */
6196 			params->tbid = 0;
6197 		}
6198 
6199 		tb = ipv6_stub->fib6_get_table(net, tbid);
6200 		if (unlikely(!tb))
6201 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6202 
6203 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6204 						   strict);
6205 	} else {
6206 		if (flags & BPF_FIB_LOOKUP_MARK)
6207 			fl6.flowi6_mark = params->mark;
6208 		else
6209 			fl6.flowi6_mark = 0;
6210 		fl6.flowi6_secid = 0;
6211 		fl6.flowi6_tun_key.tun_id = 0;
6212 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6213 
6214 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6215 	}
6216 
6217 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6218 		     res.f6i == net->ipv6.fib6_null_entry))
6219 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6220 
6221 	switch (res.fib6_type) {
6222 	/* only unicast is forwarded */
6223 	case RTN_UNICAST:
6224 		break;
6225 	case RTN_BLACKHOLE:
6226 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6227 	case RTN_UNREACHABLE:
6228 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6229 	case RTN_PROHIBIT:
6230 		return BPF_FIB_LKUP_RET_PROHIBIT;
6231 	default:
6232 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6233 	}
6234 
6235 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6236 				    fl6.flowi6_oif != 0, NULL, strict);
6237 
6238 	if (check_mtu) {
6239 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6240 		if (params->tot_len > mtu) {
6241 			params->mtu_result = mtu; /* union with tot_len */
6242 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6243 		}
6244 	}
6245 
6246 	if (res.nh->fib_nh_lws)
6247 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6248 
6249 	if (res.nh->fib_nh_gw_family)
6250 		*dst = res.nh->fib_nh_gw6;
6251 
6252 	dev = res.nh->fib_nh_dev;
6253 	params->rt_metric = res.f6i->fib6_metric;
6254 	params->ifindex = dev->ifindex;
6255 
6256 	if (flags & BPF_FIB_LOOKUP_SRC) {
6257 		if (res.f6i->fib6_prefsrc.plen) {
6258 			*src = res.f6i->fib6_prefsrc.addr;
6259 		} else {
6260 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6261 								&fl6.daddr, 0,
6262 								src);
6263 			if (err)
6264 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6265 		}
6266 	}
6267 
6268 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6269 		goto set_fwd_params;
6270 
6271 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6272 	 * not needed here.
6273 	 */
6274 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6275 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6276 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6277 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6278 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6279 
6280 set_fwd_params:
6281 	return bpf_fib_set_fwd_params(params, mtu);
6282 }
6283 #endif
6284 
6285 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6286 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6287 			     BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6288 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6289 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6290 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6291 {
6292 	if (plen < sizeof(*params))
6293 		return -EINVAL;
6294 
6295 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6296 		return -EINVAL;
6297 
6298 	switch (params->family) {
6299 #if IS_ENABLED(CONFIG_INET)
6300 	case AF_INET:
6301 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6302 					   flags, true);
6303 #endif
6304 #if IS_ENABLED(CONFIG_IPV6)
6305 	case AF_INET6:
6306 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6307 					   flags, true);
6308 #endif
6309 	}
6310 	return -EAFNOSUPPORT;
6311 }
6312 
6313 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6314 	.func		= bpf_xdp_fib_lookup,
6315 	.gpl_only	= true,
6316 	.ret_type	= RET_INTEGER,
6317 	.arg1_type      = ARG_PTR_TO_CTX,
6318 	.arg2_type      = ARG_PTR_TO_MEM,
6319 	.arg3_type      = ARG_CONST_SIZE,
6320 	.arg4_type	= ARG_ANYTHING,
6321 };
6322 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6323 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6324 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6325 {
6326 	struct net *net = dev_net(skb->dev);
6327 	int rc = -EAFNOSUPPORT;
6328 	bool check_mtu = false;
6329 
6330 	if (plen < sizeof(*params))
6331 		return -EINVAL;
6332 
6333 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6334 		return -EINVAL;
6335 
6336 	if (params->tot_len)
6337 		check_mtu = true;
6338 
6339 	switch (params->family) {
6340 #if IS_ENABLED(CONFIG_INET)
6341 	case AF_INET:
6342 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6343 		break;
6344 #endif
6345 #if IS_ENABLED(CONFIG_IPV6)
6346 	case AF_INET6:
6347 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6348 		break;
6349 #endif
6350 	}
6351 
6352 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6353 		struct net_device *dev;
6354 
6355 		/* When tot_len isn't provided by user, check skb
6356 		 * against MTU of FIB lookup resulting net_device
6357 		 */
6358 		dev = dev_get_by_index_rcu(net, params->ifindex);
6359 		if (!is_skb_forwardable(dev, skb))
6360 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6361 
6362 		params->mtu_result = dev->mtu; /* union with tot_len */
6363 	}
6364 
6365 	return rc;
6366 }
6367 
6368 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6369 	.func		= bpf_skb_fib_lookup,
6370 	.gpl_only	= true,
6371 	.ret_type	= RET_INTEGER,
6372 	.arg1_type      = ARG_PTR_TO_CTX,
6373 	.arg2_type      = ARG_PTR_TO_MEM,
6374 	.arg3_type      = ARG_CONST_SIZE,
6375 	.arg4_type	= ARG_ANYTHING,
6376 };
6377 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6378 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6379 					    u32 ifindex)
6380 {
6381 	struct net *netns = dev_net(dev_curr);
6382 
6383 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6384 	if (ifindex == 0)
6385 		return dev_curr;
6386 
6387 	return dev_get_by_index_rcu(netns, ifindex);
6388 }
6389 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6390 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6391 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6392 {
6393 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6394 	struct net_device *dev = skb->dev;
6395 	int mtu, dev_len, skb_len;
6396 
6397 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6398 		return -EINVAL;
6399 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6400 		return -EINVAL;
6401 
6402 	dev = __dev_via_ifindex(dev, ifindex);
6403 	if (unlikely(!dev))
6404 		return -ENODEV;
6405 
6406 	mtu = READ_ONCE(dev->mtu);
6407 	dev_len = mtu + dev->hard_header_len;
6408 
6409 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6410 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6411 
6412 	skb_len += len_diff; /* minus result pass check */
6413 	if (skb_len <= dev_len) {
6414 		ret = BPF_MTU_CHK_RET_SUCCESS;
6415 		goto out;
6416 	}
6417 	/* At this point, skb->len exceed MTU, but as it include length of all
6418 	 * segments, it can still be below MTU.  The SKB can possibly get
6419 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6420 	 * must choose if segs are to be MTU checked.
6421 	 */
6422 	if (skb_is_gso(skb)) {
6423 		ret = BPF_MTU_CHK_RET_SUCCESS;
6424 		if (flags & BPF_MTU_CHK_SEGS &&
6425 		    !skb_gso_validate_network_len(skb, mtu))
6426 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6427 	}
6428 out:
6429 	*mtu_len = mtu;
6430 	return ret;
6431 }
6432 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6433 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6434 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6435 {
6436 	struct net_device *dev = xdp->rxq->dev;
6437 	int xdp_len = xdp->data_end - xdp->data;
6438 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6439 	int mtu, dev_len;
6440 
6441 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6442 	if (unlikely(flags))
6443 		return -EINVAL;
6444 
6445 	dev = __dev_via_ifindex(dev, ifindex);
6446 	if (unlikely(!dev))
6447 		return -ENODEV;
6448 
6449 	mtu = READ_ONCE(dev->mtu);
6450 	dev_len = mtu + dev->hard_header_len;
6451 
6452 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6453 	if (*mtu_len)
6454 		xdp_len = *mtu_len + dev->hard_header_len;
6455 
6456 	xdp_len += len_diff; /* minus result pass check */
6457 	if (xdp_len > dev_len)
6458 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6459 
6460 	*mtu_len = mtu;
6461 	return ret;
6462 }
6463 
6464 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6465 	.func		= bpf_skb_check_mtu,
6466 	.gpl_only	= true,
6467 	.ret_type	= RET_INTEGER,
6468 	.arg1_type      = ARG_PTR_TO_CTX,
6469 	.arg2_type      = ARG_ANYTHING,
6470 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6471 	.arg3_size	= sizeof(u32),
6472 	.arg4_type      = ARG_ANYTHING,
6473 	.arg5_type      = ARG_ANYTHING,
6474 };
6475 
6476 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6477 	.func		= bpf_xdp_check_mtu,
6478 	.gpl_only	= true,
6479 	.ret_type	= RET_INTEGER,
6480 	.arg1_type      = ARG_PTR_TO_CTX,
6481 	.arg2_type      = ARG_ANYTHING,
6482 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6483 	.arg3_size	= sizeof(u32),
6484 	.arg4_type      = ARG_ANYTHING,
6485 	.arg5_type      = ARG_ANYTHING,
6486 };
6487 
6488 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6489 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6490 {
6491 	int err;
6492 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6493 
6494 	if (!seg6_validate_srh(srh, len, false))
6495 		return -EINVAL;
6496 
6497 	switch (type) {
6498 	case BPF_LWT_ENCAP_SEG6_INLINE:
6499 		if (skb->protocol != htons(ETH_P_IPV6))
6500 			return -EBADMSG;
6501 
6502 		err = seg6_do_srh_inline(skb, srh);
6503 		break;
6504 	case BPF_LWT_ENCAP_SEG6:
6505 		skb_reset_inner_headers(skb);
6506 		skb->encapsulation = 1;
6507 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6508 		break;
6509 	default:
6510 		return -EINVAL;
6511 	}
6512 
6513 	bpf_compute_data_pointers(skb);
6514 	if (err)
6515 		return err;
6516 
6517 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6518 
6519 	return seg6_lookup_nexthop(skb, NULL, 0);
6520 }
6521 #endif /* CONFIG_IPV6_SEG6_BPF */
6522 
6523 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6524 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6525 			     bool ingress)
6526 {
6527 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6528 }
6529 #endif
6530 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6531 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6532 	   u32, len)
6533 {
6534 	switch (type) {
6535 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6536 	case BPF_LWT_ENCAP_SEG6:
6537 	case BPF_LWT_ENCAP_SEG6_INLINE:
6538 		return bpf_push_seg6_encap(skb, type, hdr, len);
6539 #endif
6540 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6541 	case BPF_LWT_ENCAP_IP:
6542 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6543 #endif
6544 	default:
6545 		return -EINVAL;
6546 	}
6547 }
6548 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6549 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6550 	   void *, hdr, u32, len)
6551 {
6552 	switch (type) {
6553 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6554 	case BPF_LWT_ENCAP_IP:
6555 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6556 #endif
6557 	default:
6558 		return -EINVAL;
6559 	}
6560 }
6561 
6562 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6563 	.func		= bpf_lwt_in_push_encap,
6564 	.gpl_only	= false,
6565 	.ret_type	= RET_INTEGER,
6566 	.arg1_type	= ARG_PTR_TO_CTX,
6567 	.arg2_type	= ARG_ANYTHING,
6568 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6569 	.arg4_type	= ARG_CONST_SIZE
6570 };
6571 
6572 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6573 	.func		= bpf_lwt_xmit_push_encap,
6574 	.gpl_only	= false,
6575 	.ret_type	= RET_INTEGER,
6576 	.arg1_type	= ARG_PTR_TO_CTX,
6577 	.arg2_type	= ARG_ANYTHING,
6578 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6579 	.arg4_type	= ARG_CONST_SIZE
6580 };
6581 
6582 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6583 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6584 	   const void *, from, u32, len)
6585 {
6586 	struct seg6_bpf_srh_state *srh_state =
6587 		this_cpu_ptr(&seg6_bpf_srh_states);
6588 	struct ipv6_sr_hdr *srh = srh_state->srh;
6589 	void *srh_tlvs, *srh_end, *ptr;
6590 	int srhoff = 0;
6591 
6592 	lockdep_assert_held(&srh_state->bh_lock);
6593 	if (srh == NULL)
6594 		return -EINVAL;
6595 
6596 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6597 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6598 
6599 	ptr = skb->data + offset;
6600 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6601 		srh_state->valid = false;
6602 	else if (ptr < (void *)&srh->flags ||
6603 		 ptr + len > (void *)&srh->segments)
6604 		return -EFAULT;
6605 
6606 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6607 		return -EFAULT;
6608 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6609 		return -EINVAL;
6610 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6611 
6612 	memcpy(skb->data + offset, from, len);
6613 	return 0;
6614 }
6615 
6616 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6617 	.func		= bpf_lwt_seg6_store_bytes,
6618 	.gpl_only	= false,
6619 	.ret_type	= RET_INTEGER,
6620 	.arg1_type	= ARG_PTR_TO_CTX,
6621 	.arg2_type	= ARG_ANYTHING,
6622 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6623 	.arg4_type	= ARG_CONST_SIZE
6624 };
6625 
bpf_update_srh_state(struct sk_buff * skb)6626 static void bpf_update_srh_state(struct sk_buff *skb)
6627 {
6628 	struct seg6_bpf_srh_state *srh_state =
6629 		this_cpu_ptr(&seg6_bpf_srh_states);
6630 	int srhoff = 0;
6631 
6632 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6633 		srh_state->srh = NULL;
6634 	} else {
6635 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6636 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6637 		srh_state->valid = true;
6638 	}
6639 }
6640 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6641 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6642 	   u32, action, void *, param, u32, param_len)
6643 {
6644 	struct seg6_bpf_srh_state *srh_state =
6645 		this_cpu_ptr(&seg6_bpf_srh_states);
6646 	int hdroff = 0;
6647 	int err;
6648 
6649 	lockdep_assert_held(&srh_state->bh_lock);
6650 	switch (action) {
6651 	case SEG6_LOCAL_ACTION_END_X:
6652 		if (!seg6_bpf_has_valid_srh(skb))
6653 			return -EBADMSG;
6654 		if (param_len != sizeof(struct in6_addr))
6655 			return -EINVAL;
6656 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6657 	case SEG6_LOCAL_ACTION_END_T:
6658 		if (!seg6_bpf_has_valid_srh(skb))
6659 			return -EBADMSG;
6660 		if (param_len != sizeof(int))
6661 			return -EINVAL;
6662 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6663 	case SEG6_LOCAL_ACTION_END_DT6:
6664 		if (!seg6_bpf_has_valid_srh(skb))
6665 			return -EBADMSG;
6666 		if (param_len != sizeof(int))
6667 			return -EINVAL;
6668 
6669 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6670 			return -EBADMSG;
6671 		if (!pskb_pull(skb, hdroff))
6672 			return -EBADMSG;
6673 
6674 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6675 		skb_reset_network_header(skb);
6676 		skb_reset_transport_header(skb);
6677 		skb->encapsulation = 0;
6678 
6679 		bpf_compute_data_pointers(skb);
6680 		bpf_update_srh_state(skb);
6681 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6682 	case SEG6_LOCAL_ACTION_END_B6:
6683 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6684 			return -EBADMSG;
6685 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6686 					  param, param_len);
6687 		if (!err)
6688 			bpf_update_srh_state(skb);
6689 
6690 		return err;
6691 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6692 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6693 			return -EBADMSG;
6694 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6695 					  param, param_len);
6696 		if (!err)
6697 			bpf_update_srh_state(skb);
6698 
6699 		return err;
6700 	default:
6701 		return -EINVAL;
6702 	}
6703 }
6704 
6705 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6706 	.func		= bpf_lwt_seg6_action,
6707 	.gpl_only	= false,
6708 	.ret_type	= RET_INTEGER,
6709 	.arg1_type	= ARG_PTR_TO_CTX,
6710 	.arg2_type	= ARG_ANYTHING,
6711 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6712 	.arg4_type	= ARG_CONST_SIZE
6713 };
6714 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6715 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6716 	   s32, len)
6717 {
6718 	struct seg6_bpf_srh_state *srh_state =
6719 		this_cpu_ptr(&seg6_bpf_srh_states);
6720 	struct ipv6_sr_hdr *srh = srh_state->srh;
6721 	void *srh_end, *srh_tlvs, *ptr;
6722 	struct ipv6hdr *hdr;
6723 	int srhoff = 0;
6724 	int ret;
6725 
6726 	lockdep_assert_held(&srh_state->bh_lock);
6727 	if (unlikely(srh == NULL))
6728 		return -EINVAL;
6729 
6730 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6731 			((srh->first_segment + 1) << 4));
6732 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6733 			srh_state->hdrlen);
6734 	ptr = skb->data + offset;
6735 
6736 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6737 		return -EFAULT;
6738 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6739 		return -EFAULT;
6740 
6741 	if (len > 0) {
6742 		ret = skb_cow_head(skb, len);
6743 		if (unlikely(ret < 0))
6744 			return ret;
6745 
6746 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6747 	} else {
6748 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6749 	}
6750 
6751 	bpf_compute_data_pointers(skb);
6752 	if (unlikely(ret < 0))
6753 		return ret;
6754 
6755 	hdr = (struct ipv6hdr *)skb->data;
6756 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6757 
6758 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6759 		return -EINVAL;
6760 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6761 	srh_state->hdrlen += len;
6762 	srh_state->valid = false;
6763 	return 0;
6764 }
6765 
6766 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6767 	.func		= bpf_lwt_seg6_adjust_srh,
6768 	.gpl_only	= false,
6769 	.ret_type	= RET_INTEGER,
6770 	.arg1_type	= ARG_PTR_TO_CTX,
6771 	.arg2_type	= ARG_ANYTHING,
6772 	.arg3_type	= ARG_ANYTHING,
6773 };
6774 #endif /* CONFIG_IPV6_SEG6_BPF */
6775 
6776 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6777 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6778 			      int dif, int sdif, u8 family, u8 proto)
6779 {
6780 	bool refcounted = false;
6781 	struct sock *sk = NULL;
6782 
6783 	if (family == AF_INET) {
6784 		__be32 src4 = tuple->ipv4.saddr;
6785 		__be32 dst4 = tuple->ipv4.daddr;
6786 
6787 		if (proto == IPPROTO_TCP)
6788 			sk = __inet_lookup(net, NULL, 0,
6789 					   src4, tuple->ipv4.sport,
6790 					   dst4, tuple->ipv4.dport,
6791 					   dif, sdif, &refcounted);
6792 		else
6793 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6794 					       dst4, tuple->ipv4.dport,
6795 					       dif, sdif, net->ipv4.udp_table, NULL);
6796 #if IS_ENABLED(CONFIG_IPV6)
6797 	} else {
6798 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6799 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6800 
6801 		if (proto == IPPROTO_TCP)
6802 			sk = __inet6_lookup(net, NULL, 0,
6803 					    src6, tuple->ipv6.sport,
6804 					    dst6, ntohs(tuple->ipv6.dport),
6805 					    dif, sdif, &refcounted);
6806 		else if (likely(ipv6_bpf_stub))
6807 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6808 							    src6, tuple->ipv6.sport,
6809 							    dst6, tuple->ipv6.dport,
6810 							    dif, sdif,
6811 							    net->ipv4.udp_table, NULL);
6812 #endif
6813 	}
6814 
6815 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6816 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6817 		sk = NULL;
6818 	}
6819 	return sk;
6820 }
6821 
6822 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6823  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6824  */
6825 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6826 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6827 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6828 		 u64 flags, int sdif)
6829 {
6830 	struct sock *sk = NULL;
6831 	struct net *net;
6832 	u8 family;
6833 
6834 	if (len == sizeof(tuple->ipv4))
6835 		family = AF_INET;
6836 	else if (len == sizeof(tuple->ipv6))
6837 		family = AF_INET6;
6838 	else
6839 		return NULL;
6840 
6841 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6842 		goto out;
6843 
6844 	if (sdif < 0) {
6845 		if (family == AF_INET)
6846 			sdif = inet_sdif(skb);
6847 		else
6848 			sdif = inet6_sdif(skb);
6849 	}
6850 
6851 	if ((s32)netns_id < 0) {
6852 		net = caller_net;
6853 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6854 	} else {
6855 		net = get_net_ns_by_id(caller_net, netns_id);
6856 		if (unlikely(!net))
6857 			goto out;
6858 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6859 		put_net(net);
6860 	}
6861 
6862 out:
6863 	return sk;
6864 }
6865 
6866 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6867 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6868 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6869 		u64 flags, int sdif)
6870 {
6871 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6872 					   ifindex, proto, netns_id, flags,
6873 					   sdif);
6874 
6875 	if (sk) {
6876 		struct sock *sk2 = sk_to_full_sk(sk);
6877 
6878 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6879 		 * sock refcnt is decremented to prevent a request_sock leak.
6880 		 */
6881 		if (sk2 != sk) {
6882 			sock_gen_put(sk);
6883 			/* Ensure there is no need to bump sk2 refcnt */
6884 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6885 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6886 				return NULL;
6887 			}
6888 			sk = sk2;
6889 		}
6890 	}
6891 
6892 	return sk;
6893 }
6894 
6895 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6896 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6897 	       u8 proto, u64 netns_id, u64 flags)
6898 {
6899 	struct net *caller_net;
6900 	int ifindex;
6901 
6902 	if (skb->dev) {
6903 		caller_net = dev_net(skb->dev);
6904 		ifindex = skb->dev->ifindex;
6905 	} else {
6906 		caller_net = sock_net(skb->sk);
6907 		ifindex = 0;
6908 	}
6909 
6910 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6911 				netns_id, flags, -1);
6912 }
6913 
6914 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6915 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6916 	      u8 proto, u64 netns_id, u64 flags)
6917 {
6918 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6919 					 flags);
6920 
6921 	if (sk) {
6922 		struct sock *sk2 = sk_to_full_sk(sk);
6923 
6924 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6925 		 * sock refcnt is decremented to prevent a request_sock leak.
6926 		 */
6927 		if (sk2 != sk) {
6928 			sock_gen_put(sk);
6929 			/* Ensure there is no need to bump sk2 refcnt */
6930 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6931 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6932 				return NULL;
6933 			}
6934 			sk = sk2;
6935 		}
6936 	}
6937 
6938 	return sk;
6939 }
6940 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6941 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6942 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6943 {
6944 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6945 					     netns_id, flags);
6946 }
6947 
6948 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6949 	.func		= bpf_skc_lookup_tcp,
6950 	.gpl_only	= false,
6951 	.pkt_access	= true,
6952 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6953 	.arg1_type	= ARG_PTR_TO_CTX,
6954 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6955 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6956 	.arg4_type	= ARG_ANYTHING,
6957 	.arg5_type	= ARG_ANYTHING,
6958 };
6959 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6960 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6961 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6962 {
6963 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6964 					    netns_id, flags);
6965 }
6966 
6967 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6968 	.func		= bpf_sk_lookup_tcp,
6969 	.gpl_only	= false,
6970 	.pkt_access	= true,
6971 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6972 	.arg1_type	= ARG_PTR_TO_CTX,
6973 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6974 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6975 	.arg4_type	= ARG_ANYTHING,
6976 	.arg5_type	= ARG_ANYTHING,
6977 };
6978 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6979 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6980 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6981 {
6982 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6983 					    netns_id, flags);
6984 }
6985 
6986 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6987 	.func		= bpf_sk_lookup_udp,
6988 	.gpl_only	= false,
6989 	.pkt_access	= true,
6990 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6991 	.arg1_type	= ARG_PTR_TO_CTX,
6992 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6993 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6994 	.arg4_type	= ARG_ANYTHING,
6995 	.arg5_type	= ARG_ANYTHING,
6996 };
6997 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6998 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6999 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7000 {
7001 	struct net_device *dev = skb->dev;
7002 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7003 	struct net *caller_net = dev_net(dev);
7004 
7005 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
7006 					       ifindex, IPPROTO_TCP, netns_id,
7007 					       flags, sdif);
7008 }
7009 
7010 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
7011 	.func		= bpf_tc_skc_lookup_tcp,
7012 	.gpl_only	= false,
7013 	.pkt_access	= true,
7014 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7015 	.arg1_type	= ARG_PTR_TO_CTX,
7016 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7017 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7018 	.arg4_type	= ARG_ANYTHING,
7019 	.arg5_type	= ARG_ANYTHING,
7020 };
7021 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7022 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
7023 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7024 {
7025 	struct net_device *dev = skb->dev;
7026 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7027 	struct net *caller_net = dev_net(dev);
7028 
7029 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7030 					      ifindex, IPPROTO_TCP, netns_id,
7031 					      flags, sdif);
7032 }
7033 
7034 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7035 	.func		= bpf_tc_sk_lookup_tcp,
7036 	.gpl_only	= false,
7037 	.pkt_access	= true,
7038 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7039 	.arg1_type	= ARG_PTR_TO_CTX,
7040 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7041 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7042 	.arg4_type	= ARG_ANYTHING,
7043 	.arg5_type	= ARG_ANYTHING,
7044 };
7045 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7046 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7047 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7048 {
7049 	struct net_device *dev = skb->dev;
7050 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7051 	struct net *caller_net = dev_net(dev);
7052 
7053 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7054 					      ifindex, IPPROTO_UDP, netns_id,
7055 					      flags, sdif);
7056 }
7057 
7058 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7059 	.func		= bpf_tc_sk_lookup_udp,
7060 	.gpl_only	= false,
7061 	.pkt_access	= true,
7062 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7063 	.arg1_type	= ARG_PTR_TO_CTX,
7064 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7065 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7066 	.arg4_type	= ARG_ANYTHING,
7067 	.arg5_type	= ARG_ANYTHING,
7068 };
7069 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7070 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7071 {
7072 	if (sk && sk_is_refcounted(sk))
7073 		sock_gen_put(sk);
7074 	return 0;
7075 }
7076 
7077 static const struct bpf_func_proto bpf_sk_release_proto = {
7078 	.func		= bpf_sk_release,
7079 	.gpl_only	= false,
7080 	.ret_type	= RET_INTEGER,
7081 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7082 };
7083 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7084 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7085 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7086 {
7087 	struct net_device *dev = ctx->rxq->dev;
7088 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7089 	struct net *caller_net = dev_net(dev);
7090 
7091 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7092 					      ifindex, IPPROTO_UDP, netns_id,
7093 					      flags, sdif);
7094 }
7095 
7096 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7097 	.func           = bpf_xdp_sk_lookup_udp,
7098 	.gpl_only       = false,
7099 	.pkt_access     = true,
7100 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7101 	.arg1_type      = ARG_PTR_TO_CTX,
7102 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7103 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7104 	.arg4_type      = ARG_ANYTHING,
7105 	.arg5_type      = ARG_ANYTHING,
7106 };
7107 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7108 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7109 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7110 {
7111 	struct net_device *dev = ctx->rxq->dev;
7112 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7113 	struct net *caller_net = dev_net(dev);
7114 
7115 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7116 					       ifindex, IPPROTO_TCP, netns_id,
7117 					       flags, sdif);
7118 }
7119 
7120 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7121 	.func           = bpf_xdp_skc_lookup_tcp,
7122 	.gpl_only       = false,
7123 	.pkt_access     = true,
7124 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7125 	.arg1_type      = ARG_PTR_TO_CTX,
7126 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7127 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7128 	.arg4_type      = ARG_ANYTHING,
7129 	.arg5_type      = ARG_ANYTHING,
7130 };
7131 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7132 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7133 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7134 {
7135 	struct net_device *dev = ctx->rxq->dev;
7136 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7137 	struct net *caller_net = dev_net(dev);
7138 
7139 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7140 					      ifindex, IPPROTO_TCP, netns_id,
7141 					      flags, sdif);
7142 }
7143 
7144 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7145 	.func           = bpf_xdp_sk_lookup_tcp,
7146 	.gpl_only       = false,
7147 	.pkt_access     = true,
7148 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7149 	.arg1_type      = ARG_PTR_TO_CTX,
7150 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7151 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7152 	.arg4_type      = ARG_ANYTHING,
7153 	.arg5_type      = ARG_ANYTHING,
7154 };
7155 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7156 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7157 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7158 {
7159 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7160 					       sock_net(ctx->sk), 0,
7161 					       IPPROTO_TCP, netns_id, flags,
7162 					       -1);
7163 }
7164 
7165 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7166 	.func		= bpf_sock_addr_skc_lookup_tcp,
7167 	.gpl_only	= false,
7168 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7169 	.arg1_type	= ARG_PTR_TO_CTX,
7170 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7171 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7172 	.arg4_type	= ARG_ANYTHING,
7173 	.arg5_type	= ARG_ANYTHING,
7174 };
7175 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7176 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7177 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7178 {
7179 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7180 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7181 					      netns_id, flags, -1);
7182 }
7183 
7184 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7185 	.func		= bpf_sock_addr_sk_lookup_tcp,
7186 	.gpl_only	= false,
7187 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7188 	.arg1_type	= ARG_PTR_TO_CTX,
7189 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7190 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7191 	.arg4_type	= ARG_ANYTHING,
7192 	.arg5_type	= ARG_ANYTHING,
7193 };
7194 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7195 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7196 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7197 {
7198 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7199 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7200 					      netns_id, flags, -1);
7201 }
7202 
7203 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7204 	.func		= bpf_sock_addr_sk_lookup_udp,
7205 	.gpl_only	= false,
7206 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7207 	.arg1_type	= ARG_PTR_TO_CTX,
7208 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7209 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7210 	.arg4_type	= ARG_ANYTHING,
7211 	.arg5_type	= ARG_ANYTHING,
7212 };
7213 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7214 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7215 				  struct bpf_insn_access_aux *info)
7216 {
7217 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7218 					  icsk_retransmits))
7219 		return false;
7220 
7221 	if (off % size != 0)
7222 		return false;
7223 
7224 	switch (off) {
7225 	case offsetof(struct bpf_tcp_sock, bytes_received):
7226 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7227 		return size == sizeof(__u64);
7228 	default:
7229 		return size == sizeof(__u32);
7230 	}
7231 }
7232 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7233 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7234 				    const struct bpf_insn *si,
7235 				    struct bpf_insn *insn_buf,
7236 				    struct bpf_prog *prog, u32 *target_size)
7237 {
7238 	struct bpf_insn *insn = insn_buf;
7239 
7240 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7241 	do {								\
7242 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7243 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7244 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7245 				      si->dst_reg, si->src_reg,		\
7246 				      offsetof(struct tcp_sock, FIELD)); \
7247 	} while (0)
7248 
7249 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7250 	do {								\
7251 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7252 					  FIELD) >			\
7253 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7254 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7255 					struct inet_connection_sock,	\
7256 					FIELD),				\
7257 				      si->dst_reg, si->src_reg,		\
7258 				      offsetof(				\
7259 					struct inet_connection_sock,	\
7260 					FIELD));			\
7261 	} while (0)
7262 
7263 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7264 
7265 	switch (si->off) {
7266 	case offsetof(struct bpf_tcp_sock, rtt_min):
7267 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7268 			     sizeof(struct minmax));
7269 		BUILD_BUG_ON(sizeof(struct minmax) <
7270 			     sizeof(struct minmax_sample));
7271 
7272 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7273 				      offsetof(struct tcp_sock, rtt_min) +
7274 				      offsetof(struct minmax_sample, v));
7275 		break;
7276 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7277 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7278 		break;
7279 	case offsetof(struct bpf_tcp_sock, srtt_us):
7280 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7281 		break;
7282 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7283 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7284 		break;
7285 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7286 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7287 		break;
7288 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7289 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7290 		break;
7291 	case offsetof(struct bpf_tcp_sock, snd_una):
7292 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7293 		break;
7294 	case offsetof(struct bpf_tcp_sock, mss_cache):
7295 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7296 		break;
7297 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7298 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7299 		break;
7300 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7301 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7302 		break;
7303 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7304 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7305 		break;
7306 	case offsetof(struct bpf_tcp_sock, packets_out):
7307 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7308 		break;
7309 	case offsetof(struct bpf_tcp_sock, retrans_out):
7310 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7311 		break;
7312 	case offsetof(struct bpf_tcp_sock, total_retrans):
7313 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7314 		break;
7315 	case offsetof(struct bpf_tcp_sock, segs_in):
7316 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7317 		break;
7318 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7319 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7320 		break;
7321 	case offsetof(struct bpf_tcp_sock, segs_out):
7322 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7323 		break;
7324 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7325 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7326 		break;
7327 	case offsetof(struct bpf_tcp_sock, lost_out):
7328 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7329 		break;
7330 	case offsetof(struct bpf_tcp_sock, sacked_out):
7331 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7332 		break;
7333 	case offsetof(struct bpf_tcp_sock, bytes_received):
7334 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7335 		break;
7336 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7337 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7338 		break;
7339 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7340 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7341 		break;
7342 	case offsetof(struct bpf_tcp_sock, delivered):
7343 		BPF_TCP_SOCK_GET_COMMON(delivered);
7344 		break;
7345 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7346 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7347 		break;
7348 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7349 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7350 		break;
7351 	}
7352 
7353 	return insn - insn_buf;
7354 }
7355 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7356 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7357 {
7358 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7359 		return (unsigned long)sk;
7360 
7361 	return (unsigned long)NULL;
7362 }
7363 
7364 const struct bpf_func_proto bpf_tcp_sock_proto = {
7365 	.func		= bpf_tcp_sock,
7366 	.gpl_only	= false,
7367 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7368 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7369 };
7370 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7371 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7372 {
7373 	sk = sk_to_full_sk(sk);
7374 
7375 	if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7376 		return (unsigned long)sk;
7377 
7378 	return (unsigned long)NULL;
7379 }
7380 
7381 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7382 	.func		= bpf_get_listener_sock,
7383 	.gpl_only	= false,
7384 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7385 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7386 };
7387 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7388 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7389 {
7390 	unsigned int iphdr_len;
7391 
7392 	switch (skb_protocol(skb, true)) {
7393 	case cpu_to_be16(ETH_P_IP):
7394 		iphdr_len = sizeof(struct iphdr);
7395 		break;
7396 	case cpu_to_be16(ETH_P_IPV6):
7397 		iphdr_len = sizeof(struct ipv6hdr);
7398 		break;
7399 	default:
7400 		return 0;
7401 	}
7402 
7403 	if (skb_headlen(skb) < iphdr_len)
7404 		return 0;
7405 
7406 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7407 		return 0;
7408 
7409 	return INET_ECN_set_ce(skb);
7410 }
7411 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7412 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7413 				  struct bpf_insn_access_aux *info)
7414 {
7415 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7416 		return false;
7417 
7418 	if (off % size != 0)
7419 		return false;
7420 
7421 	switch (off) {
7422 	default:
7423 		return size == sizeof(__u32);
7424 	}
7425 }
7426 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7427 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7428 				    const struct bpf_insn *si,
7429 				    struct bpf_insn *insn_buf,
7430 				    struct bpf_prog *prog, u32 *target_size)
7431 {
7432 	struct bpf_insn *insn = insn_buf;
7433 
7434 #define BPF_XDP_SOCK_GET(FIELD)						\
7435 	do {								\
7436 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7437 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7438 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7439 				      si->dst_reg, si->src_reg,		\
7440 				      offsetof(struct xdp_sock, FIELD)); \
7441 	} while (0)
7442 
7443 	BTF_TYPE_EMIT(struct bpf_xdp_sock);
7444 
7445 	switch (si->off) {
7446 	case offsetof(struct bpf_xdp_sock, queue_id):
7447 		BPF_XDP_SOCK_GET(queue_id);
7448 		break;
7449 	}
7450 
7451 	return insn - insn_buf;
7452 }
7453 
7454 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7455 	.func           = bpf_skb_ecn_set_ce,
7456 	.gpl_only       = false,
7457 	.ret_type       = RET_INTEGER,
7458 	.arg1_type      = ARG_PTR_TO_CTX,
7459 };
7460 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7461 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7462 	   struct tcphdr *, th, u32, th_len)
7463 {
7464 #ifdef CONFIG_SYN_COOKIES
7465 	int ret;
7466 
7467 	if (unlikely(!sk || th_len < sizeof(*th)))
7468 		return -EINVAL;
7469 
7470 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7471 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7472 		return -EINVAL;
7473 
7474 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7475 		return -EINVAL;
7476 
7477 	if (!th->ack || th->rst || th->syn)
7478 		return -ENOENT;
7479 
7480 	if (unlikely(iph_len < sizeof(struct iphdr)))
7481 		return -EINVAL;
7482 
7483 	if (tcp_synq_no_recent_overflow(sk))
7484 		return -ENOENT;
7485 
7486 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7487 	 * same offset so we can cast to the shorter header (struct iphdr).
7488 	 */
7489 	switch (((struct iphdr *)iph)->version) {
7490 	case 4:
7491 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7492 			return -EINVAL;
7493 
7494 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7495 		break;
7496 
7497 #if IS_BUILTIN(CONFIG_IPV6)
7498 	case 6:
7499 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7500 			return -EINVAL;
7501 
7502 		if (sk->sk_family != AF_INET6)
7503 			return -EINVAL;
7504 
7505 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7506 		break;
7507 #endif /* CONFIG_IPV6 */
7508 
7509 	default:
7510 		return -EPROTONOSUPPORT;
7511 	}
7512 
7513 	if (ret > 0)
7514 		return 0;
7515 
7516 	return -ENOENT;
7517 #else
7518 	return -ENOTSUPP;
7519 #endif
7520 }
7521 
7522 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7523 	.func		= bpf_tcp_check_syncookie,
7524 	.gpl_only	= true,
7525 	.pkt_access	= true,
7526 	.ret_type	= RET_INTEGER,
7527 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7528 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7529 	.arg3_type	= ARG_CONST_SIZE,
7530 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7531 	.arg5_type	= ARG_CONST_SIZE,
7532 };
7533 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7534 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7535 	   struct tcphdr *, th, u32, th_len)
7536 {
7537 #ifdef CONFIG_SYN_COOKIES
7538 	u32 cookie;
7539 	u16 mss;
7540 
7541 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7542 		return -EINVAL;
7543 
7544 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7545 		return -EINVAL;
7546 
7547 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7548 		return -ENOENT;
7549 
7550 	if (!th->syn || th->ack || th->fin || th->rst)
7551 		return -EINVAL;
7552 
7553 	if (unlikely(iph_len < sizeof(struct iphdr)))
7554 		return -EINVAL;
7555 
7556 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7557 	 * same offset so we can cast to the shorter header (struct iphdr).
7558 	 */
7559 	switch (((struct iphdr *)iph)->version) {
7560 	case 4:
7561 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7562 			return -EINVAL;
7563 
7564 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7565 		break;
7566 
7567 #if IS_BUILTIN(CONFIG_IPV6)
7568 	case 6:
7569 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7570 			return -EINVAL;
7571 
7572 		if (sk->sk_family != AF_INET6)
7573 			return -EINVAL;
7574 
7575 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7576 		break;
7577 #endif /* CONFIG_IPV6 */
7578 
7579 	default:
7580 		return -EPROTONOSUPPORT;
7581 	}
7582 	if (mss == 0)
7583 		return -ENOENT;
7584 
7585 	return cookie | ((u64)mss << 32);
7586 #else
7587 	return -EOPNOTSUPP;
7588 #endif /* CONFIG_SYN_COOKIES */
7589 }
7590 
7591 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7592 	.func		= bpf_tcp_gen_syncookie,
7593 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7594 	.pkt_access	= true,
7595 	.ret_type	= RET_INTEGER,
7596 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7597 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7598 	.arg3_type	= ARG_CONST_SIZE,
7599 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7600 	.arg5_type	= ARG_CONST_SIZE,
7601 };
7602 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7603 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7604 {
7605 	if (!sk || flags != 0)
7606 		return -EINVAL;
7607 	if (!skb_at_tc_ingress(skb))
7608 		return -EOPNOTSUPP;
7609 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7610 		return -ENETUNREACH;
7611 	if (sk_unhashed(sk))
7612 		return -EOPNOTSUPP;
7613 	if (sk_is_refcounted(sk) &&
7614 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7615 		return -ENOENT;
7616 
7617 	skb_orphan(skb);
7618 	skb->sk = sk;
7619 	skb->destructor = sock_pfree;
7620 
7621 	return 0;
7622 }
7623 
7624 static const struct bpf_func_proto bpf_sk_assign_proto = {
7625 	.func		= bpf_sk_assign,
7626 	.gpl_only	= false,
7627 	.ret_type	= RET_INTEGER,
7628 	.arg1_type      = ARG_PTR_TO_CTX,
7629 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7630 	.arg3_type	= ARG_ANYTHING,
7631 };
7632 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7633 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7634 				    u8 search_kind, const u8 *magic,
7635 				    u8 magic_len, bool *eol)
7636 {
7637 	u8 kind, kind_len;
7638 
7639 	*eol = false;
7640 
7641 	while (op < opend) {
7642 		kind = op[0];
7643 
7644 		if (kind == TCPOPT_EOL) {
7645 			*eol = true;
7646 			return ERR_PTR(-ENOMSG);
7647 		} else if (kind == TCPOPT_NOP) {
7648 			op++;
7649 			continue;
7650 		}
7651 
7652 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7653 			/* Something is wrong in the received header.
7654 			 * Follow the TCP stack's tcp_parse_options()
7655 			 * and just bail here.
7656 			 */
7657 			return ERR_PTR(-EFAULT);
7658 
7659 		kind_len = op[1];
7660 		if (search_kind == kind) {
7661 			if (!magic_len)
7662 				return op;
7663 
7664 			if (magic_len > kind_len - 2)
7665 				return ERR_PTR(-ENOMSG);
7666 
7667 			if (!memcmp(&op[2], magic, magic_len))
7668 				return op;
7669 		}
7670 
7671 		op += kind_len;
7672 	}
7673 
7674 	return ERR_PTR(-ENOMSG);
7675 }
7676 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7677 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7678 	   void *, search_res, u32, len, u64, flags)
7679 {
7680 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7681 	const u8 *op, *opend, *magic, *search = search_res;
7682 	u8 search_kind, search_len, copy_len, magic_len;
7683 	int ret;
7684 
7685 	if (!is_locked_tcp_sock_ops(bpf_sock))
7686 		return -EOPNOTSUPP;
7687 
7688 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7689 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7690 	 * and this helper disallow loading them also.
7691 	 */
7692 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7693 		return -EINVAL;
7694 
7695 	search_kind = search[0];
7696 	search_len = search[1];
7697 
7698 	if (search_len > len || search_kind == TCPOPT_NOP ||
7699 	    search_kind == TCPOPT_EOL)
7700 		return -EINVAL;
7701 
7702 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7703 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7704 		if (search_len != 4 && search_len != 6)
7705 			return -EINVAL;
7706 		magic = &search[2];
7707 		magic_len = search_len - 2;
7708 	} else {
7709 		if (search_len)
7710 			return -EINVAL;
7711 		magic = NULL;
7712 		magic_len = 0;
7713 	}
7714 
7715 	if (load_syn) {
7716 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7717 		if (ret < 0)
7718 			return ret;
7719 
7720 		opend = op + ret;
7721 		op += sizeof(struct tcphdr);
7722 	} else {
7723 		if (!bpf_sock->skb ||
7724 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7725 			/* This bpf_sock->op cannot call this helper */
7726 			return -EPERM;
7727 
7728 		opend = bpf_sock->skb_data_end;
7729 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7730 	}
7731 
7732 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7733 				&eol);
7734 	if (IS_ERR(op))
7735 		return PTR_ERR(op);
7736 
7737 	copy_len = op[1];
7738 	ret = copy_len;
7739 	if (copy_len > len) {
7740 		ret = -ENOSPC;
7741 		copy_len = len;
7742 	}
7743 
7744 	memcpy(search_res, op, copy_len);
7745 	return ret;
7746 }
7747 
7748 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7749 	.func		= bpf_sock_ops_load_hdr_opt,
7750 	.gpl_only	= false,
7751 	.ret_type	= RET_INTEGER,
7752 	.arg1_type	= ARG_PTR_TO_CTX,
7753 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
7754 	.arg3_type	= ARG_CONST_SIZE,
7755 	.arg4_type	= ARG_ANYTHING,
7756 };
7757 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7758 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7759 	   const void *, from, u32, len, u64, flags)
7760 {
7761 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7762 	const u8 *op, *new_op, *magic = NULL;
7763 	struct sk_buff *skb;
7764 	bool eol;
7765 
7766 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7767 		return -EPERM;
7768 
7769 	if (len < 2 || flags)
7770 		return -EINVAL;
7771 
7772 	new_op = from;
7773 	new_kind = new_op[0];
7774 	new_kind_len = new_op[1];
7775 
7776 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7777 	    new_kind == TCPOPT_EOL)
7778 		return -EINVAL;
7779 
7780 	if (new_kind_len > bpf_sock->remaining_opt_len)
7781 		return -ENOSPC;
7782 
7783 	/* 253 is another experimental kind */
7784 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7785 		if (new_kind_len < 4)
7786 			return -EINVAL;
7787 		/* Match for the 2 byte magic also.
7788 		 * RFC 6994: the magic could be 2 or 4 bytes.
7789 		 * Hence, matching by 2 byte only is on the
7790 		 * conservative side but it is the right
7791 		 * thing to do for the 'search-for-duplication'
7792 		 * purpose.
7793 		 */
7794 		magic = &new_op[2];
7795 		magic_len = 2;
7796 	}
7797 
7798 	/* Check for duplication */
7799 	skb = bpf_sock->skb;
7800 	op = skb->data + sizeof(struct tcphdr);
7801 	opend = bpf_sock->skb_data_end;
7802 
7803 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7804 				&eol);
7805 	if (!IS_ERR(op))
7806 		return -EEXIST;
7807 
7808 	if (PTR_ERR(op) != -ENOMSG)
7809 		return PTR_ERR(op);
7810 
7811 	if (eol)
7812 		/* The option has been ended.  Treat it as no more
7813 		 * header option can be written.
7814 		 */
7815 		return -ENOSPC;
7816 
7817 	/* No duplication found.  Store the header option. */
7818 	memcpy(opend, from, new_kind_len);
7819 
7820 	bpf_sock->remaining_opt_len -= new_kind_len;
7821 	bpf_sock->skb_data_end += new_kind_len;
7822 
7823 	return 0;
7824 }
7825 
7826 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7827 	.func		= bpf_sock_ops_store_hdr_opt,
7828 	.gpl_only	= false,
7829 	.ret_type	= RET_INTEGER,
7830 	.arg1_type	= ARG_PTR_TO_CTX,
7831 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7832 	.arg3_type	= ARG_CONST_SIZE,
7833 	.arg4_type	= ARG_ANYTHING,
7834 };
7835 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7836 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7837 	   u32, len, u64, flags)
7838 {
7839 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7840 		return -EPERM;
7841 
7842 	if (flags || len < 2)
7843 		return -EINVAL;
7844 
7845 	if (len > bpf_sock->remaining_opt_len)
7846 		return -ENOSPC;
7847 
7848 	bpf_sock->remaining_opt_len -= len;
7849 
7850 	return 0;
7851 }
7852 
7853 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7854 	.func		= bpf_sock_ops_reserve_hdr_opt,
7855 	.gpl_only	= false,
7856 	.ret_type	= RET_INTEGER,
7857 	.arg1_type	= ARG_PTR_TO_CTX,
7858 	.arg2_type	= ARG_ANYTHING,
7859 	.arg3_type	= ARG_ANYTHING,
7860 };
7861 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7862 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7863 	   u64, tstamp, u32, tstamp_type)
7864 {
7865 	/* skb_clear_delivery_time() is done for inet protocol */
7866 	if (skb->protocol != htons(ETH_P_IP) &&
7867 	    skb->protocol != htons(ETH_P_IPV6))
7868 		return -EOPNOTSUPP;
7869 
7870 	switch (tstamp_type) {
7871 	case BPF_SKB_CLOCK_REALTIME:
7872 		skb->tstamp = tstamp;
7873 		skb->tstamp_type = SKB_CLOCK_REALTIME;
7874 		break;
7875 	case BPF_SKB_CLOCK_MONOTONIC:
7876 		if (!tstamp)
7877 			return -EINVAL;
7878 		skb->tstamp = tstamp;
7879 		skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7880 		break;
7881 	case BPF_SKB_CLOCK_TAI:
7882 		if (!tstamp)
7883 			return -EINVAL;
7884 		skb->tstamp = tstamp;
7885 		skb->tstamp_type = SKB_CLOCK_TAI;
7886 		break;
7887 	default:
7888 		return -EINVAL;
7889 	}
7890 
7891 	return 0;
7892 }
7893 
7894 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7895 	.func           = bpf_skb_set_tstamp,
7896 	.gpl_only       = false,
7897 	.ret_type       = RET_INTEGER,
7898 	.arg1_type      = ARG_PTR_TO_CTX,
7899 	.arg2_type      = ARG_ANYTHING,
7900 	.arg3_type      = ARG_ANYTHING,
7901 };
7902 
7903 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7904 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7905 	   struct tcphdr *, th, u32, th_len)
7906 {
7907 	u32 cookie;
7908 	u16 mss;
7909 
7910 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7911 		return -EINVAL;
7912 
7913 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7914 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7915 
7916 	return cookie | ((u64)mss << 32);
7917 }
7918 
7919 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7920 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7921 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7922 	.pkt_access	= true,
7923 	.ret_type	= RET_INTEGER,
7924 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7925 	.arg1_size	= sizeof(struct iphdr),
7926 	.arg2_type	= ARG_PTR_TO_MEM,
7927 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7928 };
7929 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7930 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7931 	   struct tcphdr *, th, u32, th_len)
7932 {
7933 #if IS_BUILTIN(CONFIG_IPV6)
7934 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7935 		sizeof(struct ipv6hdr);
7936 	u32 cookie;
7937 	u16 mss;
7938 
7939 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7940 		return -EINVAL;
7941 
7942 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7943 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7944 
7945 	return cookie | ((u64)mss << 32);
7946 #else
7947 	return -EPROTONOSUPPORT;
7948 #endif
7949 }
7950 
7951 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7952 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7953 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7954 	.pkt_access	= true,
7955 	.ret_type	= RET_INTEGER,
7956 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7957 	.arg1_size	= sizeof(struct ipv6hdr),
7958 	.arg2_type	= ARG_PTR_TO_MEM,
7959 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7960 };
7961 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7962 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7963 	   struct tcphdr *, th)
7964 {
7965 	if (__cookie_v4_check(iph, th) > 0)
7966 		return 0;
7967 
7968 	return -EACCES;
7969 }
7970 
7971 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7972 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7973 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7974 	.pkt_access	= true,
7975 	.ret_type	= RET_INTEGER,
7976 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7977 	.arg1_size	= sizeof(struct iphdr),
7978 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7979 	.arg2_size	= sizeof(struct tcphdr),
7980 };
7981 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7982 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7983 	   struct tcphdr *, th)
7984 {
7985 #if IS_BUILTIN(CONFIG_IPV6)
7986 	if (__cookie_v6_check(iph, th) > 0)
7987 		return 0;
7988 
7989 	return -EACCES;
7990 #else
7991 	return -EPROTONOSUPPORT;
7992 #endif
7993 }
7994 
7995 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7996 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7997 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7998 	.pkt_access	= true,
7999 	.ret_type	= RET_INTEGER,
8000 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8001 	.arg1_size	= sizeof(struct ipv6hdr),
8002 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8003 	.arg2_size	= sizeof(struct tcphdr),
8004 };
8005 #endif /* CONFIG_SYN_COOKIES */
8006 
8007 #endif /* CONFIG_INET */
8008 
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)8009 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
8010 {
8011 	switch (func_id) {
8012 	case BPF_FUNC_clone_redirect:
8013 	case BPF_FUNC_l3_csum_replace:
8014 	case BPF_FUNC_l4_csum_replace:
8015 	case BPF_FUNC_lwt_push_encap:
8016 	case BPF_FUNC_lwt_seg6_action:
8017 	case BPF_FUNC_lwt_seg6_adjust_srh:
8018 	case BPF_FUNC_lwt_seg6_store_bytes:
8019 	case BPF_FUNC_msg_pop_data:
8020 	case BPF_FUNC_msg_pull_data:
8021 	case BPF_FUNC_msg_push_data:
8022 	case BPF_FUNC_skb_adjust_room:
8023 	case BPF_FUNC_skb_change_head:
8024 	case BPF_FUNC_skb_change_proto:
8025 	case BPF_FUNC_skb_change_tail:
8026 	case BPF_FUNC_skb_pull_data:
8027 	case BPF_FUNC_skb_store_bytes:
8028 	case BPF_FUNC_skb_vlan_pop:
8029 	case BPF_FUNC_skb_vlan_push:
8030 	case BPF_FUNC_store_hdr_opt:
8031 	case BPF_FUNC_xdp_adjust_head:
8032 	case BPF_FUNC_xdp_adjust_meta:
8033 	case BPF_FUNC_xdp_adjust_tail:
8034 	/* tail-called program could call any of the above */
8035 	case BPF_FUNC_tail_call:
8036 		return true;
8037 	default:
8038 		return false;
8039 	}
8040 }
8041 
8042 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8043 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8044 
8045 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8046 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8047 {
8048 	const struct bpf_func_proto *func_proto;
8049 
8050 	func_proto = cgroup_common_func_proto(func_id, prog);
8051 	if (func_proto)
8052 		return func_proto;
8053 
8054 	switch (func_id) {
8055 	case BPF_FUNC_get_socket_cookie:
8056 		return &bpf_get_socket_cookie_sock_proto;
8057 	case BPF_FUNC_get_netns_cookie:
8058 		return &bpf_get_netns_cookie_sock_proto;
8059 	case BPF_FUNC_perf_event_output:
8060 		return &bpf_event_output_data_proto;
8061 	case BPF_FUNC_sk_storage_get:
8062 		return &bpf_sk_storage_get_cg_sock_proto;
8063 	case BPF_FUNC_ktime_get_coarse_ns:
8064 		return &bpf_ktime_get_coarse_ns_proto;
8065 	default:
8066 		return bpf_base_func_proto(func_id, prog);
8067 	}
8068 }
8069 
8070 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8071 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8072 {
8073 	const struct bpf_func_proto *func_proto;
8074 
8075 	func_proto = cgroup_common_func_proto(func_id, prog);
8076 	if (func_proto)
8077 		return func_proto;
8078 
8079 	switch (func_id) {
8080 	case BPF_FUNC_bind:
8081 		switch (prog->expected_attach_type) {
8082 		case BPF_CGROUP_INET4_CONNECT:
8083 		case BPF_CGROUP_INET6_CONNECT:
8084 			return &bpf_bind_proto;
8085 		default:
8086 			return NULL;
8087 		}
8088 	case BPF_FUNC_get_socket_cookie:
8089 		return &bpf_get_socket_cookie_sock_addr_proto;
8090 	case BPF_FUNC_get_netns_cookie:
8091 		return &bpf_get_netns_cookie_sock_addr_proto;
8092 	case BPF_FUNC_perf_event_output:
8093 		return &bpf_event_output_data_proto;
8094 #ifdef CONFIG_INET
8095 	case BPF_FUNC_sk_lookup_tcp:
8096 		return &bpf_sock_addr_sk_lookup_tcp_proto;
8097 	case BPF_FUNC_sk_lookup_udp:
8098 		return &bpf_sock_addr_sk_lookup_udp_proto;
8099 	case BPF_FUNC_sk_release:
8100 		return &bpf_sk_release_proto;
8101 	case BPF_FUNC_skc_lookup_tcp:
8102 		return &bpf_sock_addr_skc_lookup_tcp_proto;
8103 #endif /* CONFIG_INET */
8104 	case BPF_FUNC_sk_storage_get:
8105 		return &bpf_sk_storage_get_proto;
8106 	case BPF_FUNC_sk_storage_delete:
8107 		return &bpf_sk_storage_delete_proto;
8108 	case BPF_FUNC_setsockopt:
8109 		switch (prog->expected_attach_type) {
8110 		case BPF_CGROUP_INET4_BIND:
8111 		case BPF_CGROUP_INET6_BIND:
8112 		case BPF_CGROUP_INET4_CONNECT:
8113 		case BPF_CGROUP_INET6_CONNECT:
8114 		case BPF_CGROUP_UNIX_CONNECT:
8115 		case BPF_CGROUP_UDP4_RECVMSG:
8116 		case BPF_CGROUP_UDP6_RECVMSG:
8117 		case BPF_CGROUP_UNIX_RECVMSG:
8118 		case BPF_CGROUP_UDP4_SENDMSG:
8119 		case BPF_CGROUP_UDP6_SENDMSG:
8120 		case BPF_CGROUP_UNIX_SENDMSG:
8121 		case BPF_CGROUP_INET4_GETPEERNAME:
8122 		case BPF_CGROUP_INET6_GETPEERNAME:
8123 		case BPF_CGROUP_UNIX_GETPEERNAME:
8124 		case BPF_CGROUP_INET4_GETSOCKNAME:
8125 		case BPF_CGROUP_INET6_GETSOCKNAME:
8126 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8127 			return &bpf_sock_addr_setsockopt_proto;
8128 		default:
8129 			return NULL;
8130 		}
8131 	case BPF_FUNC_getsockopt:
8132 		switch (prog->expected_attach_type) {
8133 		case BPF_CGROUP_INET4_BIND:
8134 		case BPF_CGROUP_INET6_BIND:
8135 		case BPF_CGROUP_INET4_CONNECT:
8136 		case BPF_CGROUP_INET6_CONNECT:
8137 		case BPF_CGROUP_UNIX_CONNECT:
8138 		case BPF_CGROUP_UDP4_RECVMSG:
8139 		case BPF_CGROUP_UDP6_RECVMSG:
8140 		case BPF_CGROUP_UNIX_RECVMSG:
8141 		case BPF_CGROUP_UDP4_SENDMSG:
8142 		case BPF_CGROUP_UDP6_SENDMSG:
8143 		case BPF_CGROUP_UNIX_SENDMSG:
8144 		case BPF_CGROUP_INET4_GETPEERNAME:
8145 		case BPF_CGROUP_INET6_GETPEERNAME:
8146 		case BPF_CGROUP_UNIX_GETPEERNAME:
8147 		case BPF_CGROUP_INET4_GETSOCKNAME:
8148 		case BPF_CGROUP_INET6_GETSOCKNAME:
8149 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8150 			return &bpf_sock_addr_getsockopt_proto;
8151 		default:
8152 			return NULL;
8153 		}
8154 	default:
8155 		return bpf_sk_base_func_proto(func_id, prog);
8156 	}
8157 }
8158 
8159 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8160 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8161 {
8162 	switch (func_id) {
8163 	case BPF_FUNC_skb_load_bytes:
8164 		return &bpf_skb_load_bytes_proto;
8165 	case BPF_FUNC_skb_load_bytes_relative:
8166 		return &bpf_skb_load_bytes_relative_proto;
8167 	case BPF_FUNC_get_socket_cookie:
8168 		return &bpf_get_socket_cookie_proto;
8169 	case BPF_FUNC_get_netns_cookie:
8170 		return &bpf_get_netns_cookie_proto;
8171 	case BPF_FUNC_get_socket_uid:
8172 		return &bpf_get_socket_uid_proto;
8173 	case BPF_FUNC_perf_event_output:
8174 		return &bpf_skb_event_output_proto;
8175 	default:
8176 		return bpf_sk_base_func_proto(func_id, prog);
8177 	}
8178 }
8179 
8180 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8181 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8182 
8183 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8184 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8185 {
8186 	const struct bpf_func_proto *func_proto;
8187 
8188 	func_proto = cgroup_common_func_proto(func_id, prog);
8189 	if (func_proto)
8190 		return func_proto;
8191 
8192 	switch (func_id) {
8193 	case BPF_FUNC_sk_fullsock:
8194 		return &bpf_sk_fullsock_proto;
8195 	case BPF_FUNC_sk_storage_get:
8196 		return &bpf_sk_storage_get_proto;
8197 	case BPF_FUNC_sk_storage_delete:
8198 		return &bpf_sk_storage_delete_proto;
8199 	case BPF_FUNC_perf_event_output:
8200 		return &bpf_skb_event_output_proto;
8201 #ifdef CONFIG_SOCK_CGROUP_DATA
8202 	case BPF_FUNC_skb_cgroup_id:
8203 		return &bpf_skb_cgroup_id_proto;
8204 	case BPF_FUNC_skb_ancestor_cgroup_id:
8205 		return &bpf_skb_ancestor_cgroup_id_proto;
8206 	case BPF_FUNC_sk_cgroup_id:
8207 		return &bpf_sk_cgroup_id_proto;
8208 	case BPF_FUNC_sk_ancestor_cgroup_id:
8209 		return &bpf_sk_ancestor_cgroup_id_proto;
8210 #endif
8211 #ifdef CONFIG_INET
8212 	case BPF_FUNC_sk_lookup_tcp:
8213 		return &bpf_sk_lookup_tcp_proto;
8214 	case BPF_FUNC_sk_lookup_udp:
8215 		return &bpf_sk_lookup_udp_proto;
8216 	case BPF_FUNC_sk_release:
8217 		return &bpf_sk_release_proto;
8218 	case BPF_FUNC_skc_lookup_tcp:
8219 		return &bpf_skc_lookup_tcp_proto;
8220 	case BPF_FUNC_tcp_sock:
8221 		return &bpf_tcp_sock_proto;
8222 	case BPF_FUNC_get_listener_sock:
8223 		return &bpf_get_listener_sock_proto;
8224 	case BPF_FUNC_skb_ecn_set_ce:
8225 		return &bpf_skb_ecn_set_ce_proto;
8226 #endif
8227 	default:
8228 		return sk_filter_func_proto(func_id, prog);
8229 	}
8230 }
8231 
8232 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8233 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8234 {
8235 	switch (func_id) {
8236 	case BPF_FUNC_skb_store_bytes:
8237 		return &bpf_skb_store_bytes_proto;
8238 	case BPF_FUNC_skb_load_bytes:
8239 		return &bpf_skb_load_bytes_proto;
8240 	case BPF_FUNC_skb_load_bytes_relative:
8241 		return &bpf_skb_load_bytes_relative_proto;
8242 	case BPF_FUNC_skb_pull_data:
8243 		return &bpf_skb_pull_data_proto;
8244 	case BPF_FUNC_csum_diff:
8245 		return &bpf_csum_diff_proto;
8246 	case BPF_FUNC_csum_update:
8247 		return &bpf_csum_update_proto;
8248 	case BPF_FUNC_csum_level:
8249 		return &bpf_csum_level_proto;
8250 	case BPF_FUNC_l3_csum_replace:
8251 		return &bpf_l3_csum_replace_proto;
8252 	case BPF_FUNC_l4_csum_replace:
8253 		return &bpf_l4_csum_replace_proto;
8254 	case BPF_FUNC_clone_redirect:
8255 		return &bpf_clone_redirect_proto;
8256 	case BPF_FUNC_get_cgroup_classid:
8257 		return &bpf_get_cgroup_classid_proto;
8258 	case BPF_FUNC_skb_vlan_push:
8259 		return &bpf_skb_vlan_push_proto;
8260 	case BPF_FUNC_skb_vlan_pop:
8261 		return &bpf_skb_vlan_pop_proto;
8262 	case BPF_FUNC_skb_change_proto:
8263 		return &bpf_skb_change_proto_proto;
8264 	case BPF_FUNC_skb_change_type:
8265 		return &bpf_skb_change_type_proto;
8266 	case BPF_FUNC_skb_adjust_room:
8267 		return &bpf_skb_adjust_room_proto;
8268 	case BPF_FUNC_skb_change_tail:
8269 		return &bpf_skb_change_tail_proto;
8270 	case BPF_FUNC_skb_change_head:
8271 		return &bpf_skb_change_head_proto;
8272 	case BPF_FUNC_skb_get_tunnel_key:
8273 		return &bpf_skb_get_tunnel_key_proto;
8274 	case BPF_FUNC_skb_set_tunnel_key:
8275 		return bpf_get_skb_set_tunnel_proto(func_id);
8276 	case BPF_FUNC_skb_get_tunnel_opt:
8277 		return &bpf_skb_get_tunnel_opt_proto;
8278 	case BPF_FUNC_skb_set_tunnel_opt:
8279 		return bpf_get_skb_set_tunnel_proto(func_id);
8280 	case BPF_FUNC_redirect:
8281 		return &bpf_redirect_proto;
8282 	case BPF_FUNC_redirect_neigh:
8283 		return &bpf_redirect_neigh_proto;
8284 	case BPF_FUNC_redirect_peer:
8285 		return &bpf_redirect_peer_proto;
8286 	case BPF_FUNC_get_route_realm:
8287 		return &bpf_get_route_realm_proto;
8288 	case BPF_FUNC_get_hash_recalc:
8289 		return &bpf_get_hash_recalc_proto;
8290 	case BPF_FUNC_set_hash_invalid:
8291 		return &bpf_set_hash_invalid_proto;
8292 	case BPF_FUNC_set_hash:
8293 		return &bpf_set_hash_proto;
8294 	case BPF_FUNC_perf_event_output:
8295 		return &bpf_skb_event_output_proto;
8296 	case BPF_FUNC_get_smp_processor_id:
8297 		return &bpf_get_smp_processor_id_proto;
8298 	case BPF_FUNC_skb_under_cgroup:
8299 		return &bpf_skb_under_cgroup_proto;
8300 	case BPF_FUNC_get_socket_cookie:
8301 		return &bpf_get_socket_cookie_proto;
8302 	case BPF_FUNC_get_netns_cookie:
8303 		return &bpf_get_netns_cookie_proto;
8304 	case BPF_FUNC_get_socket_uid:
8305 		return &bpf_get_socket_uid_proto;
8306 	case BPF_FUNC_fib_lookup:
8307 		return &bpf_skb_fib_lookup_proto;
8308 	case BPF_FUNC_check_mtu:
8309 		return &bpf_skb_check_mtu_proto;
8310 	case BPF_FUNC_sk_fullsock:
8311 		return &bpf_sk_fullsock_proto;
8312 	case BPF_FUNC_sk_storage_get:
8313 		return &bpf_sk_storage_get_proto;
8314 	case BPF_FUNC_sk_storage_delete:
8315 		return &bpf_sk_storage_delete_proto;
8316 #ifdef CONFIG_XFRM
8317 	case BPF_FUNC_skb_get_xfrm_state:
8318 		return &bpf_skb_get_xfrm_state_proto;
8319 #endif
8320 #ifdef CONFIG_CGROUP_NET_CLASSID
8321 	case BPF_FUNC_skb_cgroup_classid:
8322 		return &bpf_skb_cgroup_classid_proto;
8323 #endif
8324 #ifdef CONFIG_SOCK_CGROUP_DATA
8325 	case BPF_FUNC_skb_cgroup_id:
8326 		return &bpf_skb_cgroup_id_proto;
8327 	case BPF_FUNC_skb_ancestor_cgroup_id:
8328 		return &bpf_skb_ancestor_cgroup_id_proto;
8329 #endif
8330 #ifdef CONFIG_INET
8331 	case BPF_FUNC_sk_lookup_tcp:
8332 		return &bpf_tc_sk_lookup_tcp_proto;
8333 	case BPF_FUNC_sk_lookup_udp:
8334 		return &bpf_tc_sk_lookup_udp_proto;
8335 	case BPF_FUNC_sk_release:
8336 		return &bpf_sk_release_proto;
8337 	case BPF_FUNC_tcp_sock:
8338 		return &bpf_tcp_sock_proto;
8339 	case BPF_FUNC_get_listener_sock:
8340 		return &bpf_get_listener_sock_proto;
8341 	case BPF_FUNC_skc_lookup_tcp:
8342 		return &bpf_tc_skc_lookup_tcp_proto;
8343 	case BPF_FUNC_tcp_check_syncookie:
8344 		return &bpf_tcp_check_syncookie_proto;
8345 	case BPF_FUNC_skb_ecn_set_ce:
8346 		return &bpf_skb_ecn_set_ce_proto;
8347 	case BPF_FUNC_tcp_gen_syncookie:
8348 		return &bpf_tcp_gen_syncookie_proto;
8349 	case BPF_FUNC_sk_assign:
8350 		return &bpf_sk_assign_proto;
8351 	case BPF_FUNC_skb_set_tstamp:
8352 		return &bpf_skb_set_tstamp_proto;
8353 #ifdef CONFIG_SYN_COOKIES
8354 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8355 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8356 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8357 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8358 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8359 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8360 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8361 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8362 #endif
8363 #endif
8364 	default:
8365 		return bpf_sk_base_func_proto(func_id, prog);
8366 	}
8367 }
8368 
8369 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8370 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8371 {
8372 	switch (func_id) {
8373 	case BPF_FUNC_perf_event_output:
8374 		return &bpf_xdp_event_output_proto;
8375 	case BPF_FUNC_get_smp_processor_id:
8376 		return &bpf_get_smp_processor_id_proto;
8377 	case BPF_FUNC_csum_diff:
8378 		return &bpf_csum_diff_proto;
8379 	case BPF_FUNC_xdp_adjust_head:
8380 		return &bpf_xdp_adjust_head_proto;
8381 	case BPF_FUNC_xdp_adjust_meta:
8382 		return &bpf_xdp_adjust_meta_proto;
8383 	case BPF_FUNC_redirect:
8384 		return &bpf_xdp_redirect_proto;
8385 	case BPF_FUNC_redirect_map:
8386 		return &bpf_xdp_redirect_map_proto;
8387 	case BPF_FUNC_xdp_adjust_tail:
8388 		return &bpf_xdp_adjust_tail_proto;
8389 	case BPF_FUNC_xdp_get_buff_len:
8390 		return &bpf_xdp_get_buff_len_proto;
8391 	case BPF_FUNC_xdp_load_bytes:
8392 		return &bpf_xdp_load_bytes_proto;
8393 	case BPF_FUNC_xdp_store_bytes:
8394 		return &bpf_xdp_store_bytes_proto;
8395 	case BPF_FUNC_fib_lookup:
8396 		return &bpf_xdp_fib_lookup_proto;
8397 	case BPF_FUNC_check_mtu:
8398 		return &bpf_xdp_check_mtu_proto;
8399 #ifdef CONFIG_INET
8400 	case BPF_FUNC_sk_lookup_udp:
8401 		return &bpf_xdp_sk_lookup_udp_proto;
8402 	case BPF_FUNC_sk_lookup_tcp:
8403 		return &bpf_xdp_sk_lookup_tcp_proto;
8404 	case BPF_FUNC_sk_release:
8405 		return &bpf_sk_release_proto;
8406 	case BPF_FUNC_skc_lookup_tcp:
8407 		return &bpf_xdp_skc_lookup_tcp_proto;
8408 	case BPF_FUNC_tcp_check_syncookie:
8409 		return &bpf_tcp_check_syncookie_proto;
8410 	case BPF_FUNC_tcp_gen_syncookie:
8411 		return &bpf_tcp_gen_syncookie_proto;
8412 #ifdef CONFIG_SYN_COOKIES
8413 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8414 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8415 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8416 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8417 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8418 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8419 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8420 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8421 #endif
8422 #endif
8423 	default:
8424 		return bpf_sk_base_func_proto(func_id, prog);
8425 	}
8426 
8427 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8428 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8429 	 * kfuncs are defined in two different modules, and we want to be able
8430 	 * to use them interchangeably with the same BTF type ID. Because modules
8431 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8432 	 * referenced in the vmlinux BTF or the verifier will get confused about
8433 	 * the different types. So we add this dummy type reference which will
8434 	 * be included in vmlinux BTF, allowing both modules to refer to the
8435 	 * same type ID.
8436 	 */
8437 	BTF_TYPE_EMIT(struct nf_conn___init);
8438 #endif
8439 }
8440 
8441 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8442 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8443 
8444 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8445 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8446 {
8447 	const struct bpf_func_proto *func_proto;
8448 
8449 	func_proto = cgroup_common_func_proto(func_id, prog);
8450 	if (func_proto)
8451 		return func_proto;
8452 
8453 	switch (func_id) {
8454 	case BPF_FUNC_setsockopt:
8455 		return &bpf_sock_ops_setsockopt_proto;
8456 	case BPF_FUNC_getsockopt:
8457 		return &bpf_sock_ops_getsockopt_proto;
8458 	case BPF_FUNC_sock_ops_cb_flags_set:
8459 		return &bpf_sock_ops_cb_flags_set_proto;
8460 	case BPF_FUNC_sock_map_update:
8461 		return &bpf_sock_map_update_proto;
8462 	case BPF_FUNC_sock_hash_update:
8463 		return &bpf_sock_hash_update_proto;
8464 	case BPF_FUNC_get_socket_cookie:
8465 		return &bpf_get_socket_cookie_sock_ops_proto;
8466 	case BPF_FUNC_perf_event_output:
8467 		return &bpf_event_output_data_proto;
8468 	case BPF_FUNC_sk_storage_get:
8469 		return &bpf_sk_storage_get_proto;
8470 	case BPF_FUNC_sk_storage_delete:
8471 		return &bpf_sk_storage_delete_proto;
8472 	case BPF_FUNC_get_netns_cookie:
8473 		return &bpf_get_netns_cookie_sock_ops_proto;
8474 #ifdef CONFIG_INET
8475 	case BPF_FUNC_load_hdr_opt:
8476 		return &bpf_sock_ops_load_hdr_opt_proto;
8477 	case BPF_FUNC_store_hdr_opt:
8478 		return &bpf_sock_ops_store_hdr_opt_proto;
8479 	case BPF_FUNC_reserve_hdr_opt:
8480 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8481 	case BPF_FUNC_tcp_sock:
8482 		return &bpf_tcp_sock_proto;
8483 #endif /* CONFIG_INET */
8484 	default:
8485 		return bpf_sk_base_func_proto(func_id, prog);
8486 	}
8487 }
8488 
8489 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8490 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8491 
8492 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8493 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8494 {
8495 	switch (func_id) {
8496 	case BPF_FUNC_msg_redirect_map:
8497 		return &bpf_msg_redirect_map_proto;
8498 	case BPF_FUNC_msg_redirect_hash:
8499 		return &bpf_msg_redirect_hash_proto;
8500 	case BPF_FUNC_msg_apply_bytes:
8501 		return &bpf_msg_apply_bytes_proto;
8502 	case BPF_FUNC_msg_cork_bytes:
8503 		return &bpf_msg_cork_bytes_proto;
8504 	case BPF_FUNC_msg_pull_data:
8505 		return &bpf_msg_pull_data_proto;
8506 	case BPF_FUNC_msg_push_data:
8507 		return &bpf_msg_push_data_proto;
8508 	case BPF_FUNC_msg_pop_data:
8509 		return &bpf_msg_pop_data_proto;
8510 	case BPF_FUNC_perf_event_output:
8511 		return &bpf_event_output_data_proto;
8512 	case BPF_FUNC_sk_storage_get:
8513 		return &bpf_sk_storage_get_proto;
8514 	case BPF_FUNC_sk_storage_delete:
8515 		return &bpf_sk_storage_delete_proto;
8516 	case BPF_FUNC_get_netns_cookie:
8517 		return &bpf_get_netns_cookie_sk_msg_proto;
8518 	default:
8519 		return bpf_sk_base_func_proto(func_id, prog);
8520 	}
8521 }
8522 
8523 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8524 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8525 
8526 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8527 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8528 {
8529 	switch (func_id) {
8530 	case BPF_FUNC_skb_store_bytes:
8531 		return &bpf_skb_store_bytes_proto;
8532 	case BPF_FUNC_skb_load_bytes:
8533 		return &bpf_skb_load_bytes_proto;
8534 	case BPF_FUNC_skb_pull_data:
8535 		return &sk_skb_pull_data_proto;
8536 	case BPF_FUNC_skb_change_tail:
8537 		return &sk_skb_change_tail_proto;
8538 	case BPF_FUNC_skb_change_head:
8539 		return &sk_skb_change_head_proto;
8540 	case BPF_FUNC_skb_adjust_room:
8541 		return &sk_skb_adjust_room_proto;
8542 	case BPF_FUNC_get_socket_cookie:
8543 		return &bpf_get_socket_cookie_proto;
8544 	case BPF_FUNC_get_socket_uid:
8545 		return &bpf_get_socket_uid_proto;
8546 	case BPF_FUNC_sk_redirect_map:
8547 		return &bpf_sk_redirect_map_proto;
8548 	case BPF_FUNC_sk_redirect_hash:
8549 		return &bpf_sk_redirect_hash_proto;
8550 	case BPF_FUNC_perf_event_output:
8551 		return &bpf_skb_event_output_proto;
8552 #ifdef CONFIG_INET
8553 	case BPF_FUNC_sk_lookup_tcp:
8554 		return &bpf_sk_lookup_tcp_proto;
8555 	case BPF_FUNC_sk_lookup_udp:
8556 		return &bpf_sk_lookup_udp_proto;
8557 	case BPF_FUNC_sk_release:
8558 		return &bpf_sk_release_proto;
8559 	case BPF_FUNC_skc_lookup_tcp:
8560 		return &bpf_skc_lookup_tcp_proto;
8561 #endif
8562 	default:
8563 		return bpf_sk_base_func_proto(func_id, prog);
8564 	}
8565 }
8566 
8567 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8568 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8569 {
8570 	switch (func_id) {
8571 	case BPF_FUNC_skb_load_bytes:
8572 		return &bpf_flow_dissector_load_bytes_proto;
8573 	default:
8574 		return bpf_sk_base_func_proto(func_id, prog);
8575 	}
8576 }
8577 
8578 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8579 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8580 {
8581 	switch (func_id) {
8582 	case BPF_FUNC_skb_load_bytes:
8583 		return &bpf_skb_load_bytes_proto;
8584 	case BPF_FUNC_skb_pull_data:
8585 		return &bpf_skb_pull_data_proto;
8586 	case BPF_FUNC_csum_diff:
8587 		return &bpf_csum_diff_proto;
8588 	case BPF_FUNC_get_cgroup_classid:
8589 		return &bpf_get_cgroup_classid_proto;
8590 	case BPF_FUNC_get_route_realm:
8591 		return &bpf_get_route_realm_proto;
8592 	case BPF_FUNC_get_hash_recalc:
8593 		return &bpf_get_hash_recalc_proto;
8594 	case BPF_FUNC_perf_event_output:
8595 		return &bpf_skb_event_output_proto;
8596 	case BPF_FUNC_get_smp_processor_id:
8597 		return &bpf_get_smp_processor_id_proto;
8598 	case BPF_FUNC_skb_under_cgroup:
8599 		return &bpf_skb_under_cgroup_proto;
8600 	default:
8601 		return bpf_sk_base_func_proto(func_id, prog);
8602 	}
8603 }
8604 
8605 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8606 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8607 {
8608 	switch (func_id) {
8609 	case BPF_FUNC_lwt_push_encap:
8610 		return &bpf_lwt_in_push_encap_proto;
8611 	default:
8612 		return lwt_out_func_proto(func_id, prog);
8613 	}
8614 }
8615 
8616 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8617 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8618 {
8619 	switch (func_id) {
8620 	case BPF_FUNC_skb_get_tunnel_key:
8621 		return &bpf_skb_get_tunnel_key_proto;
8622 	case BPF_FUNC_skb_set_tunnel_key:
8623 		return bpf_get_skb_set_tunnel_proto(func_id);
8624 	case BPF_FUNC_skb_get_tunnel_opt:
8625 		return &bpf_skb_get_tunnel_opt_proto;
8626 	case BPF_FUNC_skb_set_tunnel_opt:
8627 		return bpf_get_skb_set_tunnel_proto(func_id);
8628 	case BPF_FUNC_redirect:
8629 		return &bpf_redirect_proto;
8630 	case BPF_FUNC_clone_redirect:
8631 		return &bpf_clone_redirect_proto;
8632 	case BPF_FUNC_skb_change_tail:
8633 		return &bpf_skb_change_tail_proto;
8634 	case BPF_FUNC_skb_change_head:
8635 		return &bpf_skb_change_head_proto;
8636 	case BPF_FUNC_skb_store_bytes:
8637 		return &bpf_skb_store_bytes_proto;
8638 	case BPF_FUNC_csum_update:
8639 		return &bpf_csum_update_proto;
8640 	case BPF_FUNC_csum_level:
8641 		return &bpf_csum_level_proto;
8642 	case BPF_FUNC_l3_csum_replace:
8643 		return &bpf_l3_csum_replace_proto;
8644 	case BPF_FUNC_l4_csum_replace:
8645 		return &bpf_l4_csum_replace_proto;
8646 	case BPF_FUNC_set_hash_invalid:
8647 		return &bpf_set_hash_invalid_proto;
8648 	case BPF_FUNC_lwt_push_encap:
8649 		return &bpf_lwt_xmit_push_encap_proto;
8650 	default:
8651 		return lwt_out_func_proto(func_id, prog);
8652 	}
8653 }
8654 
8655 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8656 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8657 {
8658 	switch (func_id) {
8659 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8660 	case BPF_FUNC_lwt_seg6_store_bytes:
8661 		return &bpf_lwt_seg6_store_bytes_proto;
8662 	case BPF_FUNC_lwt_seg6_action:
8663 		return &bpf_lwt_seg6_action_proto;
8664 	case BPF_FUNC_lwt_seg6_adjust_srh:
8665 		return &bpf_lwt_seg6_adjust_srh_proto;
8666 #endif
8667 	default:
8668 		return lwt_out_func_proto(func_id, prog);
8669 	}
8670 }
8671 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8672 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8673 				    const struct bpf_prog *prog,
8674 				    struct bpf_insn_access_aux *info)
8675 {
8676 	const int size_default = sizeof(__u32);
8677 
8678 	if (off < 0 || off >= sizeof(struct __sk_buff))
8679 		return false;
8680 
8681 	/* The verifier guarantees that size > 0. */
8682 	if (off % size != 0)
8683 		return false;
8684 
8685 	switch (off) {
8686 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8687 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8688 			return false;
8689 		break;
8690 	case bpf_ctx_range(struct __sk_buff, data):
8691 	case bpf_ctx_range(struct __sk_buff, data_meta):
8692 	case bpf_ctx_range(struct __sk_buff, data_end):
8693 		if (info->is_ldsx || size != size_default)
8694 			return false;
8695 		break;
8696 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8697 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8698 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8699 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8700 		if (size != size_default)
8701 			return false;
8702 		break;
8703 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8704 		return false;
8705 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8706 		if (type == BPF_WRITE || size != sizeof(__u64))
8707 			return false;
8708 		break;
8709 	case bpf_ctx_range(struct __sk_buff, tstamp):
8710 		if (size != sizeof(__u64))
8711 			return false;
8712 		break;
8713 	case bpf_ctx_range_ptr(struct __sk_buff, sk):
8714 		if (type == BPF_WRITE || size != sizeof(__u64))
8715 			return false;
8716 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8717 		break;
8718 	case offsetof(struct __sk_buff, tstamp_type):
8719 		return false;
8720 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8721 		/* Explicitly prohibit access to padding in __sk_buff. */
8722 		return false;
8723 	default:
8724 		/* Only narrow read access allowed for now. */
8725 		if (type == BPF_WRITE) {
8726 			if (size != size_default)
8727 				return false;
8728 		} else {
8729 			bpf_ctx_record_field_size(info, size_default);
8730 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8731 				return false;
8732 		}
8733 	}
8734 
8735 	return true;
8736 }
8737 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8738 static bool sk_filter_is_valid_access(int off, int size,
8739 				      enum bpf_access_type type,
8740 				      const struct bpf_prog *prog,
8741 				      struct bpf_insn_access_aux *info)
8742 {
8743 	switch (off) {
8744 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8745 	case bpf_ctx_range(struct __sk_buff, data):
8746 	case bpf_ctx_range(struct __sk_buff, data_meta):
8747 	case bpf_ctx_range(struct __sk_buff, data_end):
8748 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8749 	case bpf_ctx_range(struct __sk_buff, tstamp):
8750 	case bpf_ctx_range(struct __sk_buff, wire_len):
8751 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8752 		return false;
8753 	}
8754 
8755 	if (type == BPF_WRITE) {
8756 		switch (off) {
8757 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8758 			break;
8759 		default:
8760 			return false;
8761 		}
8762 	}
8763 
8764 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8765 }
8766 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8767 static bool cg_skb_is_valid_access(int off, int size,
8768 				   enum bpf_access_type type,
8769 				   const struct bpf_prog *prog,
8770 				   struct bpf_insn_access_aux *info)
8771 {
8772 	switch (off) {
8773 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8774 	case bpf_ctx_range(struct __sk_buff, data_meta):
8775 	case bpf_ctx_range(struct __sk_buff, wire_len):
8776 		return false;
8777 	case bpf_ctx_range(struct __sk_buff, data):
8778 	case bpf_ctx_range(struct __sk_buff, data_end):
8779 		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8780 			return false;
8781 		break;
8782 	}
8783 
8784 	if (type == BPF_WRITE) {
8785 		switch (off) {
8786 		case bpf_ctx_range(struct __sk_buff, mark):
8787 		case bpf_ctx_range(struct __sk_buff, priority):
8788 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8789 			break;
8790 		case bpf_ctx_range(struct __sk_buff, tstamp):
8791 			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8792 				return false;
8793 			break;
8794 		default:
8795 			return false;
8796 		}
8797 	}
8798 
8799 	switch (off) {
8800 	case bpf_ctx_range(struct __sk_buff, data):
8801 		info->reg_type = PTR_TO_PACKET;
8802 		break;
8803 	case bpf_ctx_range(struct __sk_buff, data_end):
8804 		info->reg_type = PTR_TO_PACKET_END;
8805 		break;
8806 	}
8807 
8808 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8809 }
8810 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8811 static bool lwt_is_valid_access(int off, int size,
8812 				enum bpf_access_type type,
8813 				const struct bpf_prog *prog,
8814 				struct bpf_insn_access_aux *info)
8815 {
8816 	switch (off) {
8817 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8818 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8819 	case bpf_ctx_range(struct __sk_buff, data_meta):
8820 	case bpf_ctx_range(struct __sk_buff, tstamp):
8821 	case bpf_ctx_range(struct __sk_buff, wire_len):
8822 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8823 		return false;
8824 	}
8825 
8826 	if (type == BPF_WRITE) {
8827 		switch (off) {
8828 		case bpf_ctx_range(struct __sk_buff, mark):
8829 		case bpf_ctx_range(struct __sk_buff, priority):
8830 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8831 			break;
8832 		default:
8833 			return false;
8834 		}
8835 	}
8836 
8837 	switch (off) {
8838 	case bpf_ctx_range(struct __sk_buff, data):
8839 		info->reg_type = PTR_TO_PACKET;
8840 		break;
8841 	case bpf_ctx_range(struct __sk_buff, data_end):
8842 		info->reg_type = PTR_TO_PACKET_END;
8843 		break;
8844 	}
8845 
8846 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8847 }
8848 
8849 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8850 static bool __sock_filter_check_attach_type(int off,
8851 					    enum bpf_access_type access_type,
8852 					    enum bpf_attach_type attach_type)
8853 {
8854 	switch (off) {
8855 	case offsetof(struct bpf_sock, bound_dev_if):
8856 	case offsetof(struct bpf_sock, mark):
8857 	case offsetof(struct bpf_sock, priority):
8858 		switch (attach_type) {
8859 		case BPF_CGROUP_INET_SOCK_CREATE:
8860 		case BPF_CGROUP_INET_SOCK_RELEASE:
8861 			goto full_access;
8862 		default:
8863 			return false;
8864 		}
8865 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8866 		switch (attach_type) {
8867 		case BPF_CGROUP_INET4_POST_BIND:
8868 			goto read_only;
8869 		default:
8870 			return false;
8871 		}
8872 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8873 		switch (attach_type) {
8874 		case BPF_CGROUP_INET6_POST_BIND:
8875 			goto read_only;
8876 		default:
8877 			return false;
8878 		}
8879 	case bpf_ctx_range(struct bpf_sock, src_port):
8880 		switch (attach_type) {
8881 		case BPF_CGROUP_INET4_POST_BIND:
8882 		case BPF_CGROUP_INET6_POST_BIND:
8883 			goto read_only;
8884 		default:
8885 			return false;
8886 		}
8887 	}
8888 read_only:
8889 	return access_type == BPF_READ;
8890 full_access:
8891 	return true;
8892 }
8893 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8894 bool bpf_sock_common_is_valid_access(int off, int size,
8895 				     enum bpf_access_type type,
8896 				     struct bpf_insn_access_aux *info)
8897 {
8898 	switch (off) {
8899 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8900 		return false;
8901 	default:
8902 		return bpf_sock_is_valid_access(off, size, type, info);
8903 	}
8904 }
8905 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8906 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8907 			      struct bpf_insn_access_aux *info)
8908 {
8909 	const int size_default = sizeof(__u32);
8910 	int field_size;
8911 
8912 	if (off < 0 || off >= sizeof(struct bpf_sock))
8913 		return false;
8914 	if (off % size != 0)
8915 		return false;
8916 
8917 	switch (off) {
8918 	case offsetof(struct bpf_sock, state):
8919 	case offsetof(struct bpf_sock, family):
8920 	case offsetof(struct bpf_sock, type):
8921 	case offsetof(struct bpf_sock, protocol):
8922 	case offsetof(struct bpf_sock, src_port):
8923 	case offsetof(struct bpf_sock, rx_queue_mapping):
8924 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8925 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8926 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8927 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8928 		bpf_ctx_record_field_size(info, size_default);
8929 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8930 	case bpf_ctx_range(struct bpf_sock, dst_port):
8931 		field_size = size == size_default ?
8932 			size_default : sizeof_field(struct bpf_sock, dst_port);
8933 		bpf_ctx_record_field_size(info, field_size);
8934 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8935 	case offsetofend(struct bpf_sock, dst_port) ...
8936 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8937 		return false;
8938 	}
8939 
8940 	return size == size_default;
8941 }
8942 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8943 static bool sock_filter_is_valid_access(int off, int size,
8944 					enum bpf_access_type type,
8945 					const struct bpf_prog *prog,
8946 					struct bpf_insn_access_aux *info)
8947 {
8948 	if (!bpf_sock_is_valid_access(off, size, type, info))
8949 		return false;
8950 	return __sock_filter_check_attach_type(off, type,
8951 					       prog->expected_attach_type);
8952 }
8953 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8954 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8955 			     const struct bpf_prog *prog)
8956 {
8957 	/* Neither direct read nor direct write requires any preliminary
8958 	 * action.
8959 	 */
8960 	return 0;
8961 }
8962 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8963 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8964 				const struct bpf_prog *prog, int drop_verdict)
8965 {
8966 	struct bpf_insn *insn = insn_buf;
8967 
8968 	if (!direct_write)
8969 		return 0;
8970 
8971 	/* if (!skb->cloned)
8972 	 *       goto start;
8973 	 *
8974 	 * (Fast-path, otherwise approximation that we might be
8975 	 *  a clone, do the rest in helper.)
8976 	 */
8977 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8978 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8979 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8980 
8981 	/* ret = bpf_skb_pull_data(skb, 0); */
8982 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8983 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8984 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8985 			       BPF_FUNC_skb_pull_data);
8986 	/* if (!ret)
8987 	 *      goto restore;
8988 	 * return TC_ACT_SHOT;
8989 	 */
8990 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8991 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8992 	*insn++ = BPF_EXIT_INSN();
8993 
8994 	/* restore: */
8995 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8996 	/* start: */
8997 	*insn++ = prog->insnsi[0];
8998 
8999 	return insn - insn_buf;
9000 }
9001 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)9002 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
9003 			  struct bpf_insn *insn_buf)
9004 {
9005 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
9006 	struct bpf_insn *insn = insn_buf;
9007 
9008 	if (!indirect) {
9009 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
9010 	} else {
9011 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
9012 		if (orig->imm)
9013 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
9014 	}
9015 	/* We're guaranteed here that CTX is in R6. */
9016 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9017 
9018 	switch (BPF_SIZE(orig->code)) {
9019 	case BPF_B:
9020 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9021 		break;
9022 	case BPF_H:
9023 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9024 		break;
9025 	case BPF_W:
9026 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9027 		break;
9028 	}
9029 
9030 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9031 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9032 	*insn++ = BPF_EXIT_INSN();
9033 
9034 	return insn - insn_buf;
9035 }
9036 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9037 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9038 			       const struct bpf_prog *prog)
9039 {
9040 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9041 }
9042 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9043 static bool tc_cls_act_is_valid_access(int off, int size,
9044 				       enum bpf_access_type type,
9045 				       const struct bpf_prog *prog,
9046 				       struct bpf_insn_access_aux *info)
9047 {
9048 	if (type == BPF_WRITE) {
9049 		switch (off) {
9050 		case bpf_ctx_range(struct __sk_buff, mark):
9051 		case bpf_ctx_range(struct __sk_buff, tc_index):
9052 		case bpf_ctx_range(struct __sk_buff, priority):
9053 		case bpf_ctx_range(struct __sk_buff, tc_classid):
9054 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9055 		case bpf_ctx_range(struct __sk_buff, tstamp):
9056 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
9057 			break;
9058 		default:
9059 			return false;
9060 		}
9061 	}
9062 
9063 	switch (off) {
9064 	case bpf_ctx_range(struct __sk_buff, data):
9065 		info->reg_type = PTR_TO_PACKET;
9066 		break;
9067 	case bpf_ctx_range(struct __sk_buff, data_meta):
9068 		info->reg_type = PTR_TO_PACKET_META;
9069 		break;
9070 	case bpf_ctx_range(struct __sk_buff, data_end):
9071 		info->reg_type = PTR_TO_PACKET_END;
9072 		break;
9073 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9074 		return false;
9075 	case offsetof(struct __sk_buff, tstamp_type):
9076 		/* The convert_ctx_access() on reading and writing
9077 		 * __sk_buff->tstamp depends on whether the bpf prog
9078 		 * has used __sk_buff->tstamp_type or not.
9079 		 * Thus, we need to set prog->tstamp_type_access
9080 		 * earlier during is_valid_access() here.
9081 		 */
9082 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
9083 		return size == sizeof(__u8);
9084 	}
9085 
9086 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9087 }
9088 
9089 DEFINE_MUTEX(nf_conn_btf_access_lock);
9090 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9091 
9092 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9093 			      const struct bpf_reg_state *reg,
9094 			      int off, int size);
9095 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9096 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9097 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9098 					const struct bpf_reg_state *reg,
9099 					int off, int size)
9100 {
9101 	int ret = -EACCES;
9102 
9103 	mutex_lock(&nf_conn_btf_access_lock);
9104 	if (nfct_btf_struct_access)
9105 		ret = nfct_btf_struct_access(log, reg, off, size);
9106 	mutex_unlock(&nf_conn_btf_access_lock);
9107 
9108 	return ret;
9109 }
9110 
__is_valid_xdp_access(int off,int size)9111 static bool __is_valid_xdp_access(int off, int size)
9112 {
9113 	if (off < 0 || off >= sizeof(struct xdp_md))
9114 		return false;
9115 	if (off % size != 0)
9116 		return false;
9117 	if (size != sizeof(__u32))
9118 		return false;
9119 
9120 	return true;
9121 }
9122 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9123 static bool xdp_is_valid_access(int off, int size,
9124 				enum bpf_access_type type,
9125 				const struct bpf_prog *prog,
9126 				struct bpf_insn_access_aux *info)
9127 {
9128 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9129 		switch (off) {
9130 		case offsetof(struct xdp_md, egress_ifindex):
9131 			return false;
9132 		}
9133 	}
9134 
9135 	if (type == BPF_WRITE) {
9136 		if (bpf_prog_is_offloaded(prog->aux)) {
9137 			switch (off) {
9138 			case offsetof(struct xdp_md, rx_queue_index):
9139 				return __is_valid_xdp_access(off, size);
9140 			}
9141 		}
9142 		return false;
9143 	} else {
9144 		switch (off) {
9145 		case offsetof(struct xdp_md, data_meta):
9146 		case offsetof(struct xdp_md, data):
9147 		case offsetof(struct xdp_md, data_end):
9148 			if (info->is_ldsx)
9149 				return false;
9150 		}
9151 	}
9152 
9153 	switch (off) {
9154 	case offsetof(struct xdp_md, data):
9155 		info->reg_type = PTR_TO_PACKET;
9156 		break;
9157 	case offsetof(struct xdp_md, data_meta):
9158 		info->reg_type = PTR_TO_PACKET_META;
9159 		break;
9160 	case offsetof(struct xdp_md, data_end):
9161 		info->reg_type = PTR_TO_PACKET_END;
9162 		break;
9163 	}
9164 
9165 	return __is_valid_xdp_access(off, size);
9166 }
9167 
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9168 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9169 				 const struct bpf_prog *prog, u32 act)
9170 {
9171 	const u32 act_max = XDP_REDIRECT;
9172 
9173 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9174 		     act > act_max ? "Illegal" : "Driver unsupported",
9175 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9176 }
9177 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9178 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9179 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9180 				 const struct bpf_reg_state *reg,
9181 				 int off, int size)
9182 {
9183 	int ret = -EACCES;
9184 
9185 	mutex_lock(&nf_conn_btf_access_lock);
9186 	if (nfct_btf_struct_access)
9187 		ret = nfct_btf_struct_access(log, reg, off, size);
9188 	mutex_unlock(&nf_conn_btf_access_lock);
9189 
9190 	return ret;
9191 }
9192 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9193 static bool sock_addr_is_valid_access(int off, int size,
9194 				      enum bpf_access_type type,
9195 				      const struct bpf_prog *prog,
9196 				      struct bpf_insn_access_aux *info)
9197 {
9198 	const int size_default = sizeof(__u32);
9199 
9200 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9201 		return false;
9202 	if (off % size != 0)
9203 		return false;
9204 
9205 	/* Disallow access to fields not belonging to the attach type's address
9206 	 * family.
9207 	 */
9208 	switch (off) {
9209 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9210 		switch (prog->expected_attach_type) {
9211 		case BPF_CGROUP_INET4_BIND:
9212 		case BPF_CGROUP_INET4_CONNECT:
9213 		case BPF_CGROUP_INET4_GETPEERNAME:
9214 		case BPF_CGROUP_INET4_GETSOCKNAME:
9215 		case BPF_CGROUP_UDP4_SENDMSG:
9216 		case BPF_CGROUP_UDP4_RECVMSG:
9217 			break;
9218 		default:
9219 			return false;
9220 		}
9221 		break;
9222 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9223 		switch (prog->expected_attach_type) {
9224 		case BPF_CGROUP_INET6_BIND:
9225 		case BPF_CGROUP_INET6_CONNECT:
9226 		case BPF_CGROUP_INET6_GETPEERNAME:
9227 		case BPF_CGROUP_INET6_GETSOCKNAME:
9228 		case BPF_CGROUP_UDP6_SENDMSG:
9229 		case BPF_CGROUP_UDP6_RECVMSG:
9230 			break;
9231 		default:
9232 			return false;
9233 		}
9234 		break;
9235 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9236 		switch (prog->expected_attach_type) {
9237 		case BPF_CGROUP_UDP4_SENDMSG:
9238 			break;
9239 		default:
9240 			return false;
9241 		}
9242 		break;
9243 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9244 				msg_src_ip6[3]):
9245 		switch (prog->expected_attach_type) {
9246 		case BPF_CGROUP_UDP6_SENDMSG:
9247 			break;
9248 		default:
9249 			return false;
9250 		}
9251 		break;
9252 	}
9253 
9254 	switch (off) {
9255 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9256 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9257 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9258 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9259 				msg_src_ip6[3]):
9260 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9261 		if (type == BPF_READ) {
9262 			bpf_ctx_record_field_size(info, size_default);
9263 
9264 			if (bpf_ctx_wide_access_ok(off, size,
9265 						   struct bpf_sock_addr,
9266 						   user_ip6))
9267 				return true;
9268 
9269 			if (bpf_ctx_wide_access_ok(off, size,
9270 						   struct bpf_sock_addr,
9271 						   msg_src_ip6))
9272 				return true;
9273 
9274 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9275 				return false;
9276 		} else {
9277 			if (bpf_ctx_wide_access_ok(off, size,
9278 						   struct bpf_sock_addr,
9279 						   user_ip6))
9280 				return true;
9281 
9282 			if (bpf_ctx_wide_access_ok(off, size,
9283 						   struct bpf_sock_addr,
9284 						   msg_src_ip6))
9285 				return true;
9286 
9287 			if (size != size_default)
9288 				return false;
9289 		}
9290 		break;
9291 	case bpf_ctx_range_ptr(struct bpf_sock_addr, sk):
9292 		if (type != BPF_READ)
9293 			return false;
9294 		if (size != sizeof(__u64))
9295 			return false;
9296 		info->reg_type = PTR_TO_SOCKET;
9297 		break;
9298 	case bpf_ctx_range(struct bpf_sock_addr, user_family):
9299 	case bpf_ctx_range(struct bpf_sock_addr, family):
9300 	case bpf_ctx_range(struct bpf_sock_addr, type):
9301 	case bpf_ctx_range(struct bpf_sock_addr, protocol):
9302 		if (type != BPF_READ)
9303 			return false;
9304 		if (size != size_default)
9305 			return false;
9306 		break;
9307 	default:
9308 		return false;
9309 	}
9310 
9311 	return true;
9312 }
9313 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9314 static bool sock_ops_is_valid_access(int off, int size,
9315 				     enum bpf_access_type type,
9316 				     const struct bpf_prog *prog,
9317 				     struct bpf_insn_access_aux *info)
9318 {
9319 	const int size_default = sizeof(__u32);
9320 
9321 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9322 		return false;
9323 
9324 	/* The verifier guarantees that size > 0. */
9325 	if (off % size != 0)
9326 		return false;
9327 
9328 	if (type == BPF_WRITE) {
9329 		switch (off) {
9330 		case offsetof(struct bpf_sock_ops, reply):
9331 		case offsetof(struct bpf_sock_ops, sk_txhash):
9332 			if (size != size_default)
9333 				return false;
9334 			break;
9335 		default:
9336 			return false;
9337 		}
9338 	} else {
9339 		switch (off) {
9340 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9341 					bytes_acked):
9342 			if (size != sizeof(__u64))
9343 				return false;
9344 			break;
9345 		case bpf_ctx_range_ptr(struct bpf_sock_ops, sk):
9346 			if (size != sizeof(__u64))
9347 				return false;
9348 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9349 			break;
9350 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data):
9351 			if (size != sizeof(__u64))
9352 				return false;
9353 			info->reg_type = PTR_TO_PACKET;
9354 			break;
9355 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end):
9356 			if (size != sizeof(__u64))
9357 				return false;
9358 			info->reg_type = PTR_TO_PACKET_END;
9359 			break;
9360 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9361 			bpf_ctx_record_field_size(info, size_default);
9362 			return bpf_ctx_narrow_access_ok(off, size,
9363 							size_default);
9364 		case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp):
9365 			if (size != sizeof(__u64))
9366 				return false;
9367 			break;
9368 		default:
9369 			if (size != size_default)
9370 				return false;
9371 			break;
9372 		}
9373 	}
9374 
9375 	return true;
9376 }
9377 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9378 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9379 			   const struct bpf_prog *prog)
9380 {
9381 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9382 }
9383 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9384 static bool sk_skb_is_valid_access(int off, int size,
9385 				   enum bpf_access_type type,
9386 				   const struct bpf_prog *prog,
9387 				   struct bpf_insn_access_aux *info)
9388 {
9389 	switch (off) {
9390 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9391 	case bpf_ctx_range(struct __sk_buff, data_meta):
9392 	case bpf_ctx_range(struct __sk_buff, tstamp):
9393 	case bpf_ctx_range(struct __sk_buff, wire_len):
9394 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9395 		return false;
9396 	}
9397 
9398 	if (type == BPF_WRITE) {
9399 		switch (off) {
9400 		case bpf_ctx_range(struct __sk_buff, tc_index):
9401 		case bpf_ctx_range(struct __sk_buff, priority):
9402 			break;
9403 		default:
9404 			return false;
9405 		}
9406 	}
9407 
9408 	switch (off) {
9409 	case bpf_ctx_range(struct __sk_buff, mark):
9410 		return false;
9411 	case bpf_ctx_range(struct __sk_buff, data):
9412 		info->reg_type = PTR_TO_PACKET;
9413 		break;
9414 	case bpf_ctx_range(struct __sk_buff, data_end):
9415 		info->reg_type = PTR_TO_PACKET_END;
9416 		break;
9417 	}
9418 
9419 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9420 }
9421 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9422 static bool sk_msg_is_valid_access(int off, int size,
9423 				   enum bpf_access_type type,
9424 				   const struct bpf_prog *prog,
9425 				   struct bpf_insn_access_aux *info)
9426 {
9427 	if (type == BPF_WRITE)
9428 		return false;
9429 
9430 	if (off % size != 0)
9431 		return false;
9432 
9433 	switch (off) {
9434 	case bpf_ctx_range_ptr(struct sk_msg_md, data):
9435 		info->reg_type = PTR_TO_PACKET;
9436 		if (size != sizeof(__u64))
9437 			return false;
9438 		break;
9439 	case bpf_ctx_range_ptr(struct sk_msg_md, data_end):
9440 		info->reg_type = PTR_TO_PACKET_END;
9441 		if (size != sizeof(__u64))
9442 			return false;
9443 		break;
9444 	case bpf_ctx_range_ptr(struct sk_msg_md, sk):
9445 		if (size != sizeof(__u64))
9446 			return false;
9447 		info->reg_type = PTR_TO_SOCKET;
9448 		break;
9449 	case bpf_ctx_range(struct sk_msg_md, family):
9450 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9451 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9452 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9453 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9454 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9455 	case bpf_ctx_range(struct sk_msg_md, local_port):
9456 	case bpf_ctx_range(struct sk_msg_md, size):
9457 		if (size != sizeof(__u32))
9458 			return false;
9459 		break;
9460 	default:
9461 		return false;
9462 	}
9463 	return true;
9464 }
9465 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9466 static bool flow_dissector_is_valid_access(int off, int size,
9467 					   enum bpf_access_type type,
9468 					   const struct bpf_prog *prog,
9469 					   struct bpf_insn_access_aux *info)
9470 {
9471 	const int size_default = sizeof(__u32);
9472 
9473 	if (off < 0 || off >= sizeof(struct __sk_buff))
9474 		return false;
9475 
9476 	if (off % size != 0)
9477 		return false;
9478 
9479 	if (type == BPF_WRITE)
9480 		return false;
9481 
9482 	switch (off) {
9483 	case bpf_ctx_range(struct __sk_buff, data):
9484 		if (info->is_ldsx || size != size_default)
9485 			return false;
9486 		info->reg_type = PTR_TO_PACKET;
9487 		return true;
9488 	case bpf_ctx_range(struct __sk_buff, data_end):
9489 		if (info->is_ldsx || size != size_default)
9490 			return false;
9491 		info->reg_type = PTR_TO_PACKET_END;
9492 		return true;
9493 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9494 		if (size != sizeof(__u64))
9495 			return false;
9496 		info->reg_type = PTR_TO_FLOW_KEYS;
9497 		return true;
9498 	default:
9499 		return false;
9500 	}
9501 }
9502 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9503 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9504 					     const struct bpf_insn *si,
9505 					     struct bpf_insn *insn_buf,
9506 					     struct bpf_prog *prog,
9507 					     u32 *target_size)
9508 
9509 {
9510 	struct bpf_insn *insn = insn_buf;
9511 
9512 	switch (si->off) {
9513 	case offsetof(struct __sk_buff, data):
9514 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9515 				      si->dst_reg, si->src_reg,
9516 				      offsetof(struct bpf_flow_dissector, data));
9517 		break;
9518 
9519 	case offsetof(struct __sk_buff, data_end):
9520 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9521 				      si->dst_reg, si->src_reg,
9522 				      offsetof(struct bpf_flow_dissector, data_end));
9523 		break;
9524 
9525 	case offsetof(struct __sk_buff, flow_keys):
9526 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9527 				      si->dst_reg, si->src_reg,
9528 				      offsetof(struct bpf_flow_dissector, flow_keys));
9529 		break;
9530 	}
9531 
9532 	return insn - insn_buf;
9533 }
9534 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9535 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9536 						     struct bpf_insn *insn)
9537 {
9538 	__u8 value_reg = si->dst_reg;
9539 	__u8 skb_reg = si->src_reg;
9540 	BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9541 	BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9542 	BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9543 	BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9544 	*insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9545 	*insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9546 #ifdef __BIG_ENDIAN_BITFIELD
9547 	*insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9548 #else
9549 	BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9550 #endif
9551 
9552 	return insn;
9553 }
9554 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9555 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9556 						  struct bpf_insn *insn)
9557 {
9558 	/* si->dst_reg = skb_shinfo(SKB); */
9559 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9560 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9561 			      BPF_REG_AX, skb_reg,
9562 			      offsetof(struct sk_buff, end));
9563 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9564 			      dst_reg, skb_reg,
9565 			      offsetof(struct sk_buff, head));
9566 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9567 #else
9568 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9569 			      dst_reg, skb_reg,
9570 			      offsetof(struct sk_buff, end));
9571 #endif
9572 
9573 	return insn;
9574 }
9575 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9576 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9577 						const struct bpf_insn *si,
9578 						struct bpf_insn *insn)
9579 {
9580 	__u8 value_reg = si->dst_reg;
9581 	__u8 skb_reg = si->src_reg;
9582 
9583 #ifdef CONFIG_NET_XGRESS
9584 	/* If the tstamp_type is read,
9585 	 * the bpf prog is aware the tstamp could have delivery time.
9586 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9587 	 */
9588 	if (!prog->tstamp_type_access) {
9589 		/* AX is needed because src_reg and dst_reg could be the same */
9590 		__u8 tmp_reg = BPF_REG_AX;
9591 
9592 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9593 		/* check if ingress mask bits is set */
9594 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9595 		*insn++ = BPF_JMP_A(4);
9596 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9597 		*insn++ = BPF_JMP_A(2);
9598 		/* skb->tc_at_ingress && skb->tstamp_type,
9599 		 * read 0 as the (rcv) timestamp.
9600 		 */
9601 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9602 		*insn++ = BPF_JMP_A(1);
9603 	}
9604 #endif
9605 
9606 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9607 			      offsetof(struct sk_buff, tstamp));
9608 	return insn;
9609 }
9610 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9611 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9612 						 const struct bpf_insn *si,
9613 						 struct bpf_insn *insn)
9614 {
9615 	__u8 value_reg = si->src_reg;
9616 	__u8 skb_reg = si->dst_reg;
9617 
9618 #ifdef CONFIG_NET_XGRESS
9619 	/* If the tstamp_type is read,
9620 	 * the bpf prog is aware the tstamp could have delivery time.
9621 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9622 	 * Otherwise, writing at ingress will have to clear the
9623 	 * skb->tstamp_type bit also.
9624 	 */
9625 	if (!prog->tstamp_type_access) {
9626 		__u8 tmp_reg = BPF_REG_AX;
9627 
9628 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9629 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9630 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9631 		/* goto <store> */
9632 		*insn++ = BPF_JMP_A(2);
9633 		/* <clear>: skb->tstamp_type */
9634 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9635 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9636 	}
9637 #endif
9638 
9639 	/* <store>: skb->tstamp = tstamp */
9640 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9641 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9642 	return insn;
9643 }
9644 
9645 #define BPF_EMIT_STORE(size, si, off)					\
9646 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9647 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9648 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9649 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9650 				  const struct bpf_insn *si,
9651 				  struct bpf_insn *insn_buf,
9652 				  struct bpf_prog *prog, u32 *target_size)
9653 {
9654 	struct bpf_insn *insn = insn_buf;
9655 	int off;
9656 
9657 	switch (si->off) {
9658 	case offsetof(struct __sk_buff, len):
9659 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9660 				      bpf_target_off(struct sk_buff, len, 4,
9661 						     target_size));
9662 		break;
9663 
9664 	case offsetof(struct __sk_buff, protocol):
9665 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9666 				      bpf_target_off(struct sk_buff, protocol, 2,
9667 						     target_size));
9668 		break;
9669 
9670 	case offsetof(struct __sk_buff, vlan_proto):
9671 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9672 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9673 						     target_size));
9674 		break;
9675 
9676 	case offsetof(struct __sk_buff, priority):
9677 		if (type == BPF_WRITE)
9678 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9679 						 bpf_target_off(struct sk_buff, priority, 4,
9680 								target_size));
9681 		else
9682 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9683 					      bpf_target_off(struct sk_buff, priority, 4,
9684 							     target_size));
9685 		break;
9686 
9687 	case offsetof(struct __sk_buff, ingress_ifindex):
9688 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9689 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9690 						     target_size));
9691 		break;
9692 
9693 	case offsetof(struct __sk_buff, ifindex):
9694 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9695 				      si->dst_reg, si->src_reg,
9696 				      offsetof(struct sk_buff, dev));
9697 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9698 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9699 				      bpf_target_off(struct net_device, ifindex, 4,
9700 						     target_size));
9701 		break;
9702 
9703 	case offsetof(struct __sk_buff, hash):
9704 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9705 				      bpf_target_off(struct sk_buff, hash, 4,
9706 						     target_size));
9707 		break;
9708 
9709 	case offsetof(struct __sk_buff, mark):
9710 		if (type == BPF_WRITE)
9711 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9712 						 bpf_target_off(struct sk_buff, mark, 4,
9713 								target_size));
9714 		else
9715 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9716 					      bpf_target_off(struct sk_buff, mark, 4,
9717 							     target_size));
9718 		break;
9719 
9720 	case offsetof(struct __sk_buff, pkt_type):
9721 		*target_size = 1;
9722 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9723 				      PKT_TYPE_OFFSET);
9724 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9725 #ifdef __BIG_ENDIAN_BITFIELD
9726 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9727 #endif
9728 		break;
9729 
9730 	case offsetof(struct __sk_buff, queue_mapping):
9731 		if (type == BPF_WRITE) {
9732 			u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9733 
9734 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9735 				*insn++ = BPF_JMP_A(0); /* noop */
9736 				break;
9737 			}
9738 
9739 			if (BPF_CLASS(si->code) == BPF_STX)
9740 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9741 			*insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9742 		} else {
9743 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9744 					      bpf_target_off(struct sk_buff,
9745 							     queue_mapping,
9746 							     2, target_size));
9747 		}
9748 		break;
9749 
9750 	case offsetof(struct __sk_buff, vlan_present):
9751 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9752 				      bpf_target_off(struct sk_buff,
9753 						     vlan_all, 4, target_size));
9754 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9755 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9756 		break;
9757 
9758 	case offsetof(struct __sk_buff, vlan_tci):
9759 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9760 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9761 						     target_size));
9762 		break;
9763 
9764 	case offsetof(struct __sk_buff, cb[0]) ...
9765 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9766 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9767 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9768 			      offsetof(struct qdisc_skb_cb, data)) %
9769 			     sizeof(__u64));
9770 
9771 		prog->cb_access = 1;
9772 		off  = si->off;
9773 		off -= offsetof(struct __sk_buff, cb[0]);
9774 		off += offsetof(struct sk_buff, cb);
9775 		off += offsetof(struct qdisc_skb_cb, data);
9776 		if (type == BPF_WRITE)
9777 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9778 		else
9779 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9780 					      si->src_reg, off);
9781 		break;
9782 
9783 	case offsetof(struct __sk_buff, tc_classid):
9784 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9785 
9786 		off  = si->off;
9787 		off -= offsetof(struct __sk_buff, tc_classid);
9788 		off += offsetof(struct sk_buff, cb);
9789 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9790 		*target_size = 2;
9791 		if (type == BPF_WRITE)
9792 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9793 		else
9794 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9795 					      si->src_reg, off);
9796 		break;
9797 
9798 	case offsetof(struct __sk_buff, data):
9799 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9800 				      si->dst_reg, si->src_reg,
9801 				      offsetof(struct sk_buff, data));
9802 		break;
9803 
9804 	case offsetof(struct __sk_buff, data_meta):
9805 		off  = si->off;
9806 		off -= offsetof(struct __sk_buff, data_meta);
9807 		off += offsetof(struct sk_buff, cb);
9808 		off += offsetof(struct bpf_skb_data_end, data_meta);
9809 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9810 				      si->src_reg, off);
9811 		break;
9812 
9813 	case offsetof(struct __sk_buff, data_end):
9814 		off  = si->off;
9815 		off -= offsetof(struct __sk_buff, data_end);
9816 		off += offsetof(struct sk_buff, cb);
9817 		off += offsetof(struct bpf_skb_data_end, data_end);
9818 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9819 				      si->src_reg, off);
9820 		break;
9821 
9822 	case offsetof(struct __sk_buff, tc_index):
9823 #ifdef CONFIG_NET_SCHED
9824 		if (type == BPF_WRITE)
9825 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9826 						 bpf_target_off(struct sk_buff, tc_index, 2,
9827 								target_size));
9828 		else
9829 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9830 					      bpf_target_off(struct sk_buff, tc_index, 2,
9831 							     target_size));
9832 #else
9833 		*target_size = 2;
9834 		if (type == BPF_WRITE)
9835 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9836 		else
9837 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9838 #endif
9839 		break;
9840 
9841 	case offsetof(struct __sk_buff, napi_id):
9842 #if defined(CONFIG_NET_RX_BUSY_POLL)
9843 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9844 				      bpf_target_off(struct sk_buff, napi_id, 4,
9845 						     target_size));
9846 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9847 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9848 #else
9849 		*target_size = 4;
9850 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9851 #endif
9852 		break;
9853 	case offsetof(struct __sk_buff, family):
9854 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9855 
9856 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9857 				      si->dst_reg, si->src_reg,
9858 				      offsetof(struct sk_buff, sk));
9859 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9860 				      bpf_target_off(struct sock_common,
9861 						     skc_family,
9862 						     2, target_size));
9863 		break;
9864 	case offsetof(struct __sk_buff, remote_ip4):
9865 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9866 
9867 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9868 				      si->dst_reg, si->src_reg,
9869 				      offsetof(struct sk_buff, sk));
9870 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9871 				      bpf_target_off(struct sock_common,
9872 						     skc_daddr,
9873 						     4, target_size));
9874 		break;
9875 	case offsetof(struct __sk_buff, local_ip4):
9876 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9877 					  skc_rcv_saddr) != 4);
9878 
9879 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9880 				      si->dst_reg, si->src_reg,
9881 				      offsetof(struct sk_buff, sk));
9882 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9883 				      bpf_target_off(struct sock_common,
9884 						     skc_rcv_saddr,
9885 						     4, target_size));
9886 		break;
9887 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9888 	     offsetof(struct __sk_buff, remote_ip6[3]):
9889 #if IS_ENABLED(CONFIG_IPV6)
9890 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9891 					  skc_v6_daddr.s6_addr32[0]) != 4);
9892 
9893 		off = si->off;
9894 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9895 
9896 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9897 				      si->dst_reg, si->src_reg,
9898 				      offsetof(struct sk_buff, sk));
9899 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9900 				      offsetof(struct sock_common,
9901 					       skc_v6_daddr.s6_addr32[0]) +
9902 				      off);
9903 #else
9904 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9905 #endif
9906 		break;
9907 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9908 	     offsetof(struct __sk_buff, local_ip6[3]):
9909 #if IS_ENABLED(CONFIG_IPV6)
9910 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9911 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9912 
9913 		off = si->off;
9914 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9915 
9916 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9917 				      si->dst_reg, si->src_reg,
9918 				      offsetof(struct sk_buff, sk));
9919 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9920 				      offsetof(struct sock_common,
9921 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9922 				      off);
9923 #else
9924 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9925 #endif
9926 		break;
9927 
9928 	case offsetof(struct __sk_buff, remote_port):
9929 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9930 
9931 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9932 				      si->dst_reg, si->src_reg,
9933 				      offsetof(struct sk_buff, sk));
9934 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9935 				      bpf_target_off(struct sock_common,
9936 						     skc_dport,
9937 						     2, target_size));
9938 #ifndef __BIG_ENDIAN_BITFIELD
9939 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9940 #endif
9941 		break;
9942 
9943 	case offsetof(struct __sk_buff, local_port):
9944 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9945 
9946 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9947 				      si->dst_reg, si->src_reg,
9948 				      offsetof(struct sk_buff, sk));
9949 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9950 				      bpf_target_off(struct sock_common,
9951 						     skc_num, 2, target_size));
9952 		break;
9953 
9954 	case offsetof(struct __sk_buff, tstamp):
9955 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9956 
9957 		if (type == BPF_WRITE)
9958 			insn = bpf_convert_tstamp_write(prog, si, insn);
9959 		else
9960 			insn = bpf_convert_tstamp_read(prog, si, insn);
9961 		break;
9962 
9963 	case offsetof(struct __sk_buff, tstamp_type):
9964 		insn = bpf_convert_tstamp_type_read(si, insn);
9965 		break;
9966 
9967 	case offsetof(struct __sk_buff, gso_segs):
9968 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9969 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9970 				      si->dst_reg, si->dst_reg,
9971 				      bpf_target_off(struct skb_shared_info,
9972 						     gso_segs, 2,
9973 						     target_size));
9974 		break;
9975 	case offsetof(struct __sk_buff, gso_size):
9976 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9977 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9978 				      si->dst_reg, si->dst_reg,
9979 				      bpf_target_off(struct skb_shared_info,
9980 						     gso_size, 2,
9981 						     target_size));
9982 		break;
9983 	case offsetof(struct __sk_buff, wire_len):
9984 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9985 
9986 		off = si->off;
9987 		off -= offsetof(struct __sk_buff, wire_len);
9988 		off += offsetof(struct sk_buff, cb);
9989 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9990 		*target_size = 4;
9991 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9992 		break;
9993 
9994 	case offsetof(struct __sk_buff, sk):
9995 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9996 				      si->dst_reg, si->src_reg,
9997 				      offsetof(struct sk_buff, sk));
9998 		break;
9999 	case offsetof(struct __sk_buff, hwtstamp):
10000 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
10001 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
10002 
10003 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10004 		*insn++ = BPF_LDX_MEM(BPF_DW,
10005 				      si->dst_reg, si->dst_reg,
10006 				      bpf_target_off(struct skb_shared_info,
10007 						     hwtstamps, 8,
10008 						     target_size));
10009 		break;
10010 	}
10011 
10012 	return insn - insn_buf;
10013 }
10014 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10015 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
10016 				const struct bpf_insn *si,
10017 				struct bpf_insn *insn_buf,
10018 				struct bpf_prog *prog, u32 *target_size)
10019 {
10020 	struct bpf_insn *insn = insn_buf;
10021 	int off;
10022 
10023 	switch (si->off) {
10024 	case offsetof(struct bpf_sock, bound_dev_if):
10025 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10026 
10027 		if (type == BPF_WRITE)
10028 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10029 						 offsetof(struct sock, sk_bound_dev_if));
10030 		else
10031 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10032 				      offsetof(struct sock, sk_bound_dev_if));
10033 		break;
10034 
10035 	case offsetof(struct bpf_sock, mark):
10036 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10037 
10038 		if (type == BPF_WRITE)
10039 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10040 						 offsetof(struct sock, sk_mark));
10041 		else
10042 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10043 				      offsetof(struct sock, sk_mark));
10044 		break;
10045 
10046 	case offsetof(struct bpf_sock, priority):
10047 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10048 
10049 		if (type == BPF_WRITE)
10050 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10051 						 offsetof(struct sock, sk_priority));
10052 		else
10053 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10054 				      offsetof(struct sock, sk_priority));
10055 		break;
10056 
10057 	case offsetof(struct bpf_sock, family):
10058 		*insn++ = BPF_LDX_MEM(
10059 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10060 			si->dst_reg, si->src_reg,
10061 			bpf_target_off(struct sock_common,
10062 				       skc_family,
10063 				       sizeof_field(struct sock_common,
10064 						    skc_family),
10065 				       target_size));
10066 		break;
10067 
10068 	case offsetof(struct bpf_sock, type):
10069 		*insn++ = BPF_LDX_MEM(
10070 			BPF_FIELD_SIZEOF(struct sock, sk_type),
10071 			si->dst_reg, si->src_reg,
10072 			bpf_target_off(struct sock, sk_type,
10073 				       sizeof_field(struct sock, sk_type),
10074 				       target_size));
10075 		break;
10076 
10077 	case offsetof(struct bpf_sock, protocol):
10078 		*insn++ = BPF_LDX_MEM(
10079 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10080 			si->dst_reg, si->src_reg,
10081 			bpf_target_off(struct sock, sk_protocol,
10082 				       sizeof_field(struct sock, sk_protocol),
10083 				       target_size));
10084 		break;
10085 
10086 	case offsetof(struct bpf_sock, src_ip4):
10087 		*insn++ = BPF_LDX_MEM(
10088 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10089 			bpf_target_off(struct sock_common, skc_rcv_saddr,
10090 				       sizeof_field(struct sock_common,
10091 						    skc_rcv_saddr),
10092 				       target_size));
10093 		break;
10094 
10095 	case offsetof(struct bpf_sock, dst_ip4):
10096 		*insn++ = BPF_LDX_MEM(
10097 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10098 			bpf_target_off(struct sock_common, skc_daddr,
10099 				       sizeof_field(struct sock_common,
10100 						    skc_daddr),
10101 				       target_size));
10102 		break;
10103 
10104 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10105 #if IS_ENABLED(CONFIG_IPV6)
10106 		off = si->off;
10107 		off -= offsetof(struct bpf_sock, src_ip6[0]);
10108 		*insn++ = BPF_LDX_MEM(
10109 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10110 			bpf_target_off(
10111 				struct sock_common,
10112 				skc_v6_rcv_saddr.s6_addr32[0],
10113 				sizeof_field(struct sock_common,
10114 					     skc_v6_rcv_saddr.s6_addr32[0]),
10115 				target_size) + off);
10116 #else
10117 		(void)off;
10118 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10119 #endif
10120 		break;
10121 
10122 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10123 #if IS_ENABLED(CONFIG_IPV6)
10124 		off = si->off;
10125 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
10126 		*insn++ = BPF_LDX_MEM(
10127 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10128 			bpf_target_off(struct sock_common,
10129 				       skc_v6_daddr.s6_addr32[0],
10130 				       sizeof_field(struct sock_common,
10131 						    skc_v6_daddr.s6_addr32[0]),
10132 				       target_size) + off);
10133 #else
10134 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10135 		*target_size = 4;
10136 #endif
10137 		break;
10138 
10139 	case offsetof(struct bpf_sock, src_port):
10140 		*insn++ = BPF_LDX_MEM(
10141 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10142 			si->dst_reg, si->src_reg,
10143 			bpf_target_off(struct sock_common, skc_num,
10144 				       sizeof_field(struct sock_common,
10145 						    skc_num),
10146 				       target_size));
10147 		break;
10148 
10149 	case offsetof(struct bpf_sock, dst_port):
10150 		*insn++ = BPF_LDX_MEM(
10151 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10152 			si->dst_reg, si->src_reg,
10153 			bpf_target_off(struct sock_common, skc_dport,
10154 				       sizeof_field(struct sock_common,
10155 						    skc_dport),
10156 				       target_size));
10157 		break;
10158 
10159 	case offsetof(struct bpf_sock, state):
10160 		*insn++ = BPF_LDX_MEM(
10161 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10162 			si->dst_reg, si->src_reg,
10163 			bpf_target_off(struct sock_common, skc_state,
10164 				       sizeof_field(struct sock_common,
10165 						    skc_state),
10166 				       target_size));
10167 		break;
10168 	case offsetof(struct bpf_sock, rx_queue_mapping):
10169 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10170 		*insn++ = BPF_LDX_MEM(
10171 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10172 			si->dst_reg, si->src_reg,
10173 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10174 				       sizeof_field(struct sock,
10175 						    sk_rx_queue_mapping),
10176 				       target_size));
10177 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10178 				      1);
10179 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10180 #else
10181 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10182 		*target_size = 2;
10183 #endif
10184 		break;
10185 	}
10186 
10187 	return insn - insn_buf;
10188 }
10189 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10190 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10191 					 const struct bpf_insn *si,
10192 					 struct bpf_insn *insn_buf,
10193 					 struct bpf_prog *prog, u32 *target_size)
10194 {
10195 	struct bpf_insn *insn = insn_buf;
10196 
10197 	switch (si->off) {
10198 	case offsetof(struct __sk_buff, ifindex):
10199 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10200 				      si->dst_reg, si->src_reg,
10201 				      offsetof(struct sk_buff, dev));
10202 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10203 				      bpf_target_off(struct net_device, ifindex, 4,
10204 						     target_size));
10205 		break;
10206 	default:
10207 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10208 					      target_size);
10209 	}
10210 
10211 	return insn - insn_buf;
10212 }
10213 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10214 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10215 				  const struct bpf_insn *si,
10216 				  struct bpf_insn *insn_buf,
10217 				  struct bpf_prog *prog, u32 *target_size)
10218 {
10219 	struct bpf_insn *insn = insn_buf;
10220 
10221 	switch (si->off) {
10222 	case offsetof(struct xdp_md, data):
10223 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10224 				      si->dst_reg, si->src_reg,
10225 				      offsetof(struct xdp_buff, data));
10226 		break;
10227 	case offsetof(struct xdp_md, data_meta):
10228 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10229 				      si->dst_reg, si->src_reg,
10230 				      offsetof(struct xdp_buff, data_meta));
10231 		break;
10232 	case offsetof(struct xdp_md, data_end):
10233 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10234 				      si->dst_reg, si->src_reg,
10235 				      offsetof(struct xdp_buff, data_end));
10236 		break;
10237 	case offsetof(struct xdp_md, ingress_ifindex):
10238 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10239 				      si->dst_reg, si->src_reg,
10240 				      offsetof(struct xdp_buff, rxq));
10241 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10242 				      si->dst_reg, si->dst_reg,
10243 				      offsetof(struct xdp_rxq_info, dev));
10244 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10245 				      offsetof(struct net_device, ifindex));
10246 		break;
10247 	case offsetof(struct xdp_md, rx_queue_index):
10248 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10249 				      si->dst_reg, si->src_reg,
10250 				      offsetof(struct xdp_buff, rxq));
10251 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10252 				      offsetof(struct xdp_rxq_info,
10253 					       queue_index));
10254 		break;
10255 	case offsetof(struct xdp_md, egress_ifindex):
10256 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10257 				      si->dst_reg, si->src_reg,
10258 				      offsetof(struct xdp_buff, txq));
10259 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10260 				      si->dst_reg, si->dst_reg,
10261 				      offsetof(struct xdp_txq_info, dev));
10262 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10263 				      offsetof(struct net_device, ifindex));
10264 		break;
10265 	}
10266 
10267 	return insn - insn_buf;
10268 }
10269 
10270 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10271  * context Structure, F is Field in context structure that contains a pointer
10272  * to Nested Structure of type NS that has the field NF.
10273  *
10274  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10275  * sure that SIZE is not greater than actual size of S.F.NF.
10276  *
10277  * If offset OFF is provided, the load happens from that offset relative to
10278  * offset of NF.
10279  */
10280 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10281 	do {								       \
10282 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10283 				      si->src_reg, offsetof(S, F));	       \
10284 		*insn++ = BPF_LDX_MEM(					       \
10285 			SIZE, si->dst_reg, si->dst_reg,			       \
10286 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10287 				       target_size)			       \
10288 				+ OFF);					       \
10289 	} while (0)
10290 
10291 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10292 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10293 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10294 
10295 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10296  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10297  *
10298  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10299  * "register" since two registers available in convert_ctx_access are not
10300  * enough: we can't override neither SRC, since it contains value to store, nor
10301  * DST since it contains pointer to context that may be used by later
10302  * instructions. But we need a temporary place to save pointer to nested
10303  * structure whose field we want to store to.
10304  */
10305 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10306 	do {								       \
10307 		int tmp_reg = BPF_REG_9;				       \
10308 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10309 			--tmp_reg;					       \
10310 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10311 			--tmp_reg;					       \
10312 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10313 				      offsetof(S, TF));			       \
10314 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10315 				      si->dst_reg, offsetof(S, F));	       \
10316 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10317 				       tmp_reg, si->src_reg,		       \
10318 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10319 				       target_size)			       \
10320 				       + OFF,				       \
10321 				       si->imm);			       \
10322 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10323 				      offsetof(S, TF));			       \
10324 	} while (0)
10325 
10326 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10327 						      TF)		       \
10328 	do {								       \
10329 		if (type == BPF_WRITE) {				       \
10330 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10331 							 OFF, TF);	       \
10332 		} else {						       \
10333 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10334 				S, NS, F, NF, SIZE, OFF);  \
10335 		}							       \
10336 	} while (0)
10337 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10338 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10339 					const struct bpf_insn *si,
10340 					struct bpf_insn *insn_buf,
10341 					struct bpf_prog *prog, u32 *target_size)
10342 {
10343 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10344 	struct bpf_insn *insn = insn_buf;
10345 
10346 	switch (si->off) {
10347 	case offsetof(struct bpf_sock_addr, user_family):
10348 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10349 					    struct sockaddr, uaddr, sa_family);
10350 		break;
10351 
10352 	case offsetof(struct bpf_sock_addr, user_ip4):
10353 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10354 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10355 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10356 		break;
10357 
10358 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10359 		off = si->off;
10360 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10361 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10362 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10363 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10364 			tmp_reg);
10365 		break;
10366 
10367 	case offsetof(struct bpf_sock_addr, user_port):
10368 		/* To get port we need to know sa_family first and then treat
10369 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10370 		 * Though we can simplify since port field has same offset and
10371 		 * size in both structures.
10372 		 * Here we check this invariant and use just one of the
10373 		 * structures if it's true.
10374 		 */
10375 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10376 			     offsetof(struct sockaddr_in6, sin6_port));
10377 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10378 			     sizeof_field(struct sockaddr_in6, sin6_port));
10379 		/* Account for sin6_port being smaller than user_port. */
10380 		port_size = min(port_size, BPF_LDST_BYTES(si));
10381 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10382 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10383 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10384 		break;
10385 
10386 	case offsetof(struct bpf_sock_addr, family):
10387 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10388 					    struct sock, sk, sk_family);
10389 		break;
10390 
10391 	case offsetof(struct bpf_sock_addr, type):
10392 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10393 					    struct sock, sk, sk_type);
10394 		break;
10395 
10396 	case offsetof(struct bpf_sock_addr, protocol):
10397 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10398 					    struct sock, sk, sk_protocol);
10399 		break;
10400 
10401 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10402 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10403 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10404 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10405 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10406 		break;
10407 
10408 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10409 				msg_src_ip6[3]):
10410 		off = si->off;
10411 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10412 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10413 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10414 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10415 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10416 		break;
10417 	case offsetof(struct bpf_sock_addr, sk):
10418 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10419 				      si->dst_reg, si->src_reg,
10420 				      offsetof(struct bpf_sock_addr_kern, sk));
10421 		break;
10422 	}
10423 
10424 	return insn - insn_buf;
10425 }
10426 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10427 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10428 				       const struct bpf_insn *si,
10429 				       struct bpf_insn *insn_buf,
10430 				       struct bpf_prog *prog,
10431 				       u32 *target_size)
10432 {
10433 	struct bpf_insn *insn = insn_buf;
10434 	int off;
10435 
10436 /* Helper macro for adding read access to tcp_sock or sock fields. */
10437 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10438 	do {								      \
10439 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10440 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10441 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10442 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10443 			reg--;						      \
10444 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10445 			reg--;						      \
10446 		if (si->dst_reg == si->src_reg) {			      \
10447 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10448 					  offsetof(struct bpf_sock_ops_kern,  \
10449 					  temp));			      \
10450 			fullsock_reg = reg;				      \
10451 			jmp += 2;					      \
10452 		}							      \
10453 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10454 						struct bpf_sock_ops_kern,     \
10455 						is_locked_tcp_sock),	      \
10456 				      fullsock_reg, si->src_reg,	      \
10457 				      offsetof(struct bpf_sock_ops_kern,      \
10458 					       is_locked_tcp_sock));	      \
10459 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10460 		if (si->dst_reg == si->src_reg)				      \
10461 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10462 				      offsetof(struct bpf_sock_ops_kern,      \
10463 				      temp));				      \
10464 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10465 						struct bpf_sock_ops_kern, sk),\
10466 				      si->dst_reg, si->src_reg,		      \
10467 				      offsetof(struct bpf_sock_ops_kern, sk));\
10468 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10469 						       OBJ_FIELD),	      \
10470 				      si->dst_reg, si->dst_reg,		      \
10471 				      offsetof(OBJ, OBJ_FIELD));	      \
10472 		if (si->dst_reg == si->src_reg)	{			      \
10473 			*insn++ = BPF_JMP_A(1);				      \
10474 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10475 				      offsetof(struct bpf_sock_ops_kern,      \
10476 				      temp));				      \
10477 		}							      \
10478 	} while (0)
10479 
10480 #define SOCK_OPS_GET_SK()							      \
10481 	do {								      \
10482 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10483 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10484 			reg--;						      \
10485 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10486 			reg--;						      \
10487 		if (si->dst_reg == si->src_reg) {			      \
10488 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10489 					  offsetof(struct bpf_sock_ops_kern,  \
10490 					  temp));			      \
10491 			fullsock_reg = reg;				      \
10492 			jmp += 2;					      \
10493 		}							      \
10494 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10495 						struct bpf_sock_ops_kern,     \
10496 						is_fullsock),		      \
10497 				      fullsock_reg, si->src_reg,	      \
10498 				      offsetof(struct bpf_sock_ops_kern,      \
10499 					       is_fullsock));		      \
10500 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10501 		if (si->dst_reg == si->src_reg)				      \
10502 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10503 				      offsetof(struct bpf_sock_ops_kern,      \
10504 				      temp));				      \
10505 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10506 						struct bpf_sock_ops_kern, sk),\
10507 				      si->dst_reg, si->src_reg,		      \
10508 				      offsetof(struct bpf_sock_ops_kern, sk));\
10509 		if (si->dst_reg == si->src_reg)	{			      \
10510 			*insn++ = BPF_JMP_A(1);				      \
10511 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10512 				      offsetof(struct bpf_sock_ops_kern,      \
10513 				      temp));				      \
10514 		}							      \
10515 	} while (0)
10516 
10517 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10518 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10519 
10520 /* Helper macro for adding write access to tcp_sock or sock fields.
10521  * The macro is called with two registers, dst_reg which contains a pointer
10522  * to ctx (context) and src_reg which contains the value that should be
10523  * stored. However, we need an additional register since we cannot overwrite
10524  * dst_reg because it may be used later in the program.
10525  * Instead we "borrow" one of the other register. We first save its value
10526  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10527  * it at the end of the macro.
10528  */
10529 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10530 	do {								      \
10531 		int reg = BPF_REG_9;					      \
10532 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10533 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10534 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10535 			reg--;						      \
10536 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10537 			reg--;						      \
10538 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10539 				      offsetof(struct bpf_sock_ops_kern,      \
10540 					       temp));			      \
10541 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10542 						struct bpf_sock_ops_kern,     \
10543 						is_locked_tcp_sock),	      \
10544 				      reg, si->dst_reg,			      \
10545 				      offsetof(struct bpf_sock_ops_kern,      \
10546 					       is_locked_tcp_sock));	      \
10547 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10548 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10549 						struct bpf_sock_ops_kern, sk),\
10550 				      reg, si->dst_reg,			      \
10551 				      offsetof(struct bpf_sock_ops_kern, sk));\
10552 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10553 				       BPF_MEM | BPF_CLASS(si->code),	      \
10554 				       reg, si->src_reg,		      \
10555 				       offsetof(OBJ, OBJ_FIELD),	      \
10556 				       si->imm);			      \
10557 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10558 				      offsetof(struct bpf_sock_ops_kern,      \
10559 					       temp));			      \
10560 	} while (0)
10561 
10562 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10563 	do {								      \
10564 		if (TYPE == BPF_WRITE)					      \
10565 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10566 		else							      \
10567 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10568 	} while (0)
10569 
10570 	switch (si->off) {
10571 	case offsetof(struct bpf_sock_ops, op):
10572 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10573 						       op),
10574 				      si->dst_reg, si->src_reg,
10575 				      offsetof(struct bpf_sock_ops_kern, op));
10576 		break;
10577 
10578 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10579 	     offsetof(struct bpf_sock_ops, replylong[3]):
10580 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10581 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10582 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10583 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10584 		off = si->off;
10585 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10586 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10587 		if (type == BPF_WRITE)
10588 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10589 		else
10590 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10591 					      off);
10592 		break;
10593 
10594 	case offsetof(struct bpf_sock_ops, family):
10595 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10596 
10597 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10598 					      struct bpf_sock_ops_kern, sk),
10599 				      si->dst_reg, si->src_reg,
10600 				      offsetof(struct bpf_sock_ops_kern, sk));
10601 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10602 				      offsetof(struct sock_common, skc_family));
10603 		break;
10604 
10605 	case offsetof(struct bpf_sock_ops, remote_ip4):
10606 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10607 
10608 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10609 						struct bpf_sock_ops_kern, sk),
10610 				      si->dst_reg, si->src_reg,
10611 				      offsetof(struct bpf_sock_ops_kern, sk));
10612 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10613 				      offsetof(struct sock_common, skc_daddr));
10614 		break;
10615 
10616 	case offsetof(struct bpf_sock_ops, local_ip4):
10617 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10618 					  skc_rcv_saddr) != 4);
10619 
10620 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10621 					      struct bpf_sock_ops_kern, sk),
10622 				      si->dst_reg, si->src_reg,
10623 				      offsetof(struct bpf_sock_ops_kern, sk));
10624 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10625 				      offsetof(struct sock_common,
10626 					       skc_rcv_saddr));
10627 		break;
10628 
10629 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10630 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10631 #if IS_ENABLED(CONFIG_IPV6)
10632 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10633 					  skc_v6_daddr.s6_addr32[0]) != 4);
10634 
10635 		off = si->off;
10636 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10637 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10638 						struct bpf_sock_ops_kern, sk),
10639 				      si->dst_reg, si->src_reg,
10640 				      offsetof(struct bpf_sock_ops_kern, sk));
10641 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10642 				      offsetof(struct sock_common,
10643 					       skc_v6_daddr.s6_addr32[0]) +
10644 				      off);
10645 #else
10646 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10647 #endif
10648 		break;
10649 
10650 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10651 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10652 #if IS_ENABLED(CONFIG_IPV6)
10653 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10654 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10655 
10656 		off = si->off;
10657 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10658 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10659 						struct bpf_sock_ops_kern, sk),
10660 				      si->dst_reg, si->src_reg,
10661 				      offsetof(struct bpf_sock_ops_kern, sk));
10662 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10663 				      offsetof(struct sock_common,
10664 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10665 				      off);
10666 #else
10667 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10668 #endif
10669 		break;
10670 
10671 	case offsetof(struct bpf_sock_ops, remote_port):
10672 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10673 
10674 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10675 						struct bpf_sock_ops_kern, sk),
10676 				      si->dst_reg, si->src_reg,
10677 				      offsetof(struct bpf_sock_ops_kern, sk));
10678 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10679 				      offsetof(struct sock_common, skc_dport));
10680 #ifndef __BIG_ENDIAN_BITFIELD
10681 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10682 #endif
10683 		break;
10684 
10685 	case offsetof(struct bpf_sock_ops, local_port):
10686 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10687 
10688 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10689 						struct bpf_sock_ops_kern, sk),
10690 				      si->dst_reg, si->src_reg,
10691 				      offsetof(struct bpf_sock_ops_kern, sk));
10692 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10693 				      offsetof(struct sock_common, skc_num));
10694 		break;
10695 
10696 	case offsetof(struct bpf_sock_ops, is_fullsock):
10697 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10698 						struct bpf_sock_ops_kern,
10699 						is_fullsock),
10700 				      si->dst_reg, si->src_reg,
10701 				      offsetof(struct bpf_sock_ops_kern,
10702 					       is_fullsock));
10703 		break;
10704 
10705 	case offsetof(struct bpf_sock_ops, state):
10706 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10707 
10708 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10709 						struct bpf_sock_ops_kern, sk),
10710 				      si->dst_reg, si->src_reg,
10711 				      offsetof(struct bpf_sock_ops_kern, sk));
10712 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10713 				      offsetof(struct sock_common, skc_state));
10714 		break;
10715 
10716 	case offsetof(struct bpf_sock_ops, rtt_min):
10717 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10718 			     sizeof(struct minmax));
10719 		BUILD_BUG_ON(sizeof(struct minmax) <
10720 			     sizeof(struct minmax_sample));
10721 
10722 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10723 						struct bpf_sock_ops_kern, sk),
10724 				      si->dst_reg, si->src_reg,
10725 				      offsetof(struct bpf_sock_ops_kern, sk));
10726 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10727 				      offsetof(struct tcp_sock, rtt_min) +
10728 				      sizeof_field(struct minmax_sample, t));
10729 		break;
10730 
10731 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10732 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10733 				   struct tcp_sock);
10734 		break;
10735 
10736 	case offsetof(struct bpf_sock_ops, sk_txhash):
10737 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10738 					  struct sock, type);
10739 		break;
10740 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10741 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10742 		break;
10743 	case offsetof(struct bpf_sock_ops, srtt_us):
10744 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10745 		break;
10746 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10747 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10748 		break;
10749 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10750 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10751 		break;
10752 	case offsetof(struct bpf_sock_ops, snd_nxt):
10753 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10754 		break;
10755 	case offsetof(struct bpf_sock_ops, snd_una):
10756 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10757 		break;
10758 	case offsetof(struct bpf_sock_ops, mss_cache):
10759 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10760 		break;
10761 	case offsetof(struct bpf_sock_ops, ecn_flags):
10762 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10763 		break;
10764 	case offsetof(struct bpf_sock_ops, rate_delivered):
10765 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10766 		break;
10767 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10768 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10769 		break;
10770 	case offsetof(struct bpf_sock_ops, packets_out):
10771 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10772 		break;
10773 	case offsetof(struct bpf_sock_ops, retrans_out):
10774 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10775 		break;
10776 	case offsetof(struct bpf_sock_ops, total_retrans):
10777 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10778 		break;
10779 	case offsetof(struct bpf_sock_ops, segs_in):
10780 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10781 		break;
10782 	case offsetof(struct bpf_sock_ops, data_segs_in):
10783 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10784 		break;
10785 	case offsetof(struct bpf_sock_ops, segs_out):
10786 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10787 		break;
10788 	case offsetof(struct bpf_sock_ops, data_segs_out):
10789 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10790 		break;
10791 	case offsetof(struct bpf_sock_ops, lost_out):
10792 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10793 		break;
10794 	case offsetof(struct bpf_sock_ops, sacked_out):
10795 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10796 		break;
10797 	case offsetof(struct bpf_sock_ops, bytes_received):
10798 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10799 		break;
10800 	case offsetof(struct bpf_sock_ops, bytes_acked):
10801 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10802 		break;
10803 	case offsetof(struct bpf_sock_ops, sk):
10804 		SOCK_OPS_GET_SK();
10805 		break;
10806 	case offsetof(struct bpf_sock_ops, skb_data_end):
10807 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10808 						       skb_data_end),
10809 				      si->dst_reg, si->src_reg,
10810 				      offsetof(struct bpf_sock_ops_kern,
10811 					       skb_data_end));
10812 		break;
10813 	case offsetof(struct bpf_sock_ops, skb_data):
10814 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10815 						       skb),
10816 				      si->dst_reg, si->src_reg,
10817 				      offsetof(struct bpf_sock_ops_kern,
10818 					       skb));
10819 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10820 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10821 				      si->dst_reg, si->dst_reg,
10822 				      offsetof(struct sk_buff, data));
10823 		break;
10824 	case offsetof(struct bpf_sock_ops, skb_len):
10825 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10826 						       skb),
10827 				      si->dst_reg, si->src_reg,
10828 				      offsetof(struct bpf_sock_ops_kern,
10829 					       skb));
10830 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10831 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10832 				      si->dst_reg, si->dst_reg,
10833 				      offsetof(struct sk_buff, len));
10834 		break;
10835 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10836 		off = offsetof(struct sk_buff, cb);
10837 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10838 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10839 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10840 						       skb),
10841 				      si->dst_reg, si->src_reg,
10842 				      offsetof(struct bpf_sock_ops_kern,
10843 					       skb));
10844 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10845 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10846 						       tcp_flags),
10847 				      si->dst_reg, si->dst_reg, off);
10848 		break;
10849 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10850 		struct bpf_insn *jmp_on_null_skb;
10851 
10852 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10853 						       skb),
10854 				      si->dst_reg, si->src_reg,
10855 				      offsetof(struct bpf_sock_ops_kern,
10856 					       skb));
10857 		/* Reserve one insn to test skb == NULL */
10858 		jmp_on_null_skb = insn++;
10859 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10860 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10861 				      bpf_target_off(struct skb_shared_info,
10862 						     hwtstamps, 8,
10863 						     target_size));
10864 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10865 					       insn - jmp_on_null_skb - 1);
10866 		break;
10867 	}
10868 	}
10869 	return insn - insn_buf;
10870 }
10871 
10872 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10873 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10874 						    struct bpf_insn *insn)
10875 {
10876 	int reg;
10877 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10878 			   offsetof(struct sk_skb_cb, temp_reg);
10879 
10880 	if (si->src_reg == si->dst_reg) {
10881 		/* We need an extra register, choose and save a register. */
10882 		reg = BPF_REG_9;
10883 		if (si->src_reg == reg || si->dst_reg == reg)
10884 			reg--;
10885 		if (si->src_reg == reg || si->dst_reg == reg)
10886 			reg--;
10887 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10888 	} else {
10889 		reg = si->dst_reg;
10890 	}
10891 
10892 	/* reg = skb->data */
10893 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10894 			      reg, si->src_reg,
10895 			      offsetof(struct sk_buff, data));
10896 	/* AX = skb->len */
10897 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10898 			      BPF_REG_AX, si->src_reg,
10899 			      offsetof(struct sk_buff, len));
10900 	/* reg = skb->data + skb->len */
10901 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10902 	/* AX = skb->data_len */
10903 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10904 			      BPF_REG_AX, si->src_reg,
10905 			      offsetof(struct sk_buff, data_len));
10906 
10907 	/* reg = skb->data + skb->len - skb->data_len */
10908 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10909 
10910 	if (si->src_reg == si->dst_reg) {
10911 		/* Restore the saved register */
10912 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10913 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10914 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10915 	}
10916 
10917 	return insn;
10918 }
10919 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10920 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10921 				     const struct bpf_insn *si,
10922 				     struct bpf_insn *insn_buf,
10923 				     struct bpf_prog *prog, u32 *target_size)
10924 {
10925 	struct bpf_insn *insn = insn_buf;
10926 	int off;
10927 
10928 	switch (si->off) {
10929 	case offsetof(struct __sk_buff, data_end):
10930 		insn = bpf_convert_data_end_access(si, insn);
10931 		break;
10932 	case offsetof(struct __sk_buff, cb[0]) ...
10933 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10934 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10935 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10936 			      offsetof(struct sk_skb_cb, data)) %
10937 			     sizeof(__u64));
10938 
10939 		prog->cb_access = 1;
10940 		off  = si->off;
10941 		off -= offsetof(struct __sk_buff, cb[0]);
10942 		off += offsetof(struct sk_buff, cb);
10943 		off += offsetof(struct sk_skb_cb, data);
10944 		if (type == BPF_WRITE)
10945 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10946 		else
10947 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10948 					      si->src_reg, off);
10949 		break;
10950 
10951 
10952 	default:
10953 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10954 					      target_size);
10955 	}
10956 
10957 	return insn - insn_buf;
10958 }
10959 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10960 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10961 				     const struct bpf_insn *si,
10962 				     struct bpf_insn *insn_buf,
10963 				     struct bpf_prog *prog, u32 *target_size)
10964 {
10965 	struct bpf_insn *insn = insn_buf;
10966 #if IS_ENABLED(CONFIG_IPV6)
10967 	int off;
10968 #endif
10969 
10970 	/* convert ctx uses the fact sg element is first in struct */
10971 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10972 
10973 	switch (si->off) {
10974 	case offsetof(struct sk_msg_md, data):
10975 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10976 				      si->dst_reg, si->src_reg,
10977 				      offsetof(struct sk_msg, data));
10978 		break;
10979 	case offsetof(struct sk_msg_md, data_end):
10980 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10981 				      si->dst_reg, si->src_reg,
10982 				      offsetof(struct sk_msg, data_end));
10983 		break;
10984 	case offsetof(struct sk_msg_md, family):
10985 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10986 
10987 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10988 					      struct sk_msg, sk),
10989 				      si->dst_reg, si->src_reg,
10990 				      offsetof(struct sk_msg, sk));
10991 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10992 				      offsetof(struct sock_common, skc_family));
10993 		break;
10994 
10995 	case offsetof(struct sk_msg_md, remote_ip4):
10996 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10997 
10998 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10999 						struct sk_msg, sk),
11000 				      si->dst_reg, si->src_reg,
11001 				      offsetof(struct sk_msg, sk));
11002 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11003 				      offsetof(struct sock_common, skc_daddr));
11004 		break;
11005 
11006 	case offsetof(struct sk_msg_md, local_ip4):
11007 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11008 					  skc_rcv_saddr) != 4);
11009 
11010 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11011 					      struct sk_msg, sk),
11012 				      si->dst_reg, si->src_reg,
11013 				      offsetof(struct sk_msg, sk));
11014 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11015 				      offsetof(struct sock_common,
11016 					       skc_rcv_saddr));
11017 		break;
11018 
11019 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
11020 	     offsetof(struct sk_msg_md, remote_ip6[3]):
11021 #if IS_ENABLED(CONFIG_IPV6)
11022 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11023 					  skc_v6_daddr.s6_addr32[0]) != 4);
11024 
11025 		off = si->off;
11026 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11027 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11028 						struct sk_msg, sk),
11029 				      si->dst_reg, si->src_reg,
11030 				      offsetof(struct sk_msg, sk));
11031 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11032 				      offsetof(struct sock_common,
11033 					       skc_v6_daddr.s6_addr32[0]) +
11034 				      off);
11035 #else
11036 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11037 #endif
11038 		break;
11039 
11040 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
11041 	     offsetof(struct sk_msg_md, local_ip6[3]):
11042 #if IS_ENABLED(CONFIG_IPV6)
11043 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11044 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11045 
11046 		off = si->off;
11047 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
11048 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11049 						struct sk_msg, sk),
11050 				      si->dst_reg, si->src_reg,
11051 				      offsetof(struct sk_msg, sk));
11052 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11053 				      offsetof(struct sock_common,
11054 					       skc_v6_rcv_saddr.s6_addr32[0]) +
11055 				      off);
11056 #else
11057 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11058 #endif
11059 		break;
11060 
11061 	case offsetof(struct sk_msg_md, remote_port):
11062 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11063 
11064 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11065 						struct sk_msg, sk),
11066 				      si->dst_reg, si->src_reg,
11067 				      offsetof(struct sk_msg, sk));
11068 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11069 				      offsetof(struct sock_common, skc_dport));
11070 #ifndef __BIG_ENDIAN_BITFIELD
11071 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11072 #endif
11073 		break;
11074 
11075 	case offsetof(struct sk_msg_md, local_port):
11076 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11077 
11078 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11079 						struct sk_msg, sk),
11080 				      si->dst_reg, si->src_reg,
11081 				      offsetof(struct sk_msg, sk));
11082 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11083 				      offsetof(struct sock_common, skc_num));
11084 		break;
11085 
11086 	case offsetof(struct sk_msg_md, size):
11087 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11088 				      si->dst_reg, si->src_reg,
11089 				      offsetof(struct sk_msg_sg, size));
11090 		break;
11091 
11092 	case offsetof(struct sk_msg_md, sk):
11093 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11094 				      si->dst_reg, si->src_reg,
11095 				      offsetof(struct sk_msg, sk));
11096 		break;
11097 	}
11098 
11099 	return insn - insn_buf;
11100 }
11101 
11102 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11103 	.get_func_proto		= sk_filter_func_proto,
11104 	.is_valid_access	= sk_filter_is_valid_access,
11105 	.convert_ctx_access	= bpf_convert_ctx_access,
11106 	.gen_ld_abs		= bpf_gen_ld_abs,
11107 };
11108 
11109 const struct bpf_prog_ops sk_filter_prog_ops = {
11110 	.test_run		= bpf_prog_test_run_skb,
11111 };
11112 
11113 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11114 	.get_func_proto		= tc_cls_act_func_proto,
11115 	.is_valid_access	= tc_cls_act_is_valid_access,
11116 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
11117 	.gen_prologue		= tc_cls_act_prologue,
11118 	.gen_ld_abs		= bpf_gen_ld_abs,
11119 	.btf_struct_access	= tc_cls_act_btf_struct_access,
11120 };
11121 
11122 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11123 	.test_run		= bpf_prog_test_run_skb,
11124 };
11125 
11126 const struct bpf_verifier_ops xdp_verifier_ops = {
11127 	.get_func_proto		= xdp_func_proto,
11128 	.is_valid_access	= xdp_is_valid_access,
11129 	.convert_ctx_access	= xdp_convert_ctx_access,
11130 	.gen_prologue		= bpf_noop_prologue,
11131 	.btf_struct_access	= xdp_btf_struct_access,
11132 };
11133 
11134 const struct bpf_prog_ops xdp_prog_ops = {
11135 	.test_run		= bpf_prog_test_run_xdp,
11136 };
11137 
11138 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11139 	.get_func_proto		= cg_skb_func_proto,
11140 	.is_valid_access	= cg_skb_is_valid_access,
11141 	.convert_ctx_access	= bpf_convert_ctx_access,
11142 };
11143 
11144 const struct bpf_prog_ops cg_skb_prog_ops = {
11145 	.test_run		= bpf_prog_test_run_skb,
11146 };
11147 
11148 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11149 	.get_func_proto		= lwt_in_func_proto,
11150 	.is_valid_access	= lwt_is_valid_access,
11151 	.convert_ctx_access	= bpf_convert_ctx_access,
11152 };
11153 
11154 const struct bpf_prog_ops lwt_in_prog_ops = {
11155 	.test_run		= bpf_prog_test_run_skb,
11156 };
11157 
11158 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11159 	.get_func_proto		= lwt_out_func_proto,
11160 	.is_valid_access	= lwt_is_valid_access,
11161 	.convert_ctx_access	= bpf_convert_ctx_access,
11162 };
11163 
11164 const struct bpf_prog_ops lwt_out_prog_ops = {
11165 	.test_run		= bpf_prog_test_run_skb,
11166 };
11167 
11168 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11169 	.get_func_proto		= lwt_xmit_func_proto,
11170 	.is_valid_access	= lwt_is_valid_access,
11171 	.convert_ctx_access	= bpf_convert_ctx_access,
11172 	.gen_prologue		= tc_cls_act_prologue,
11173 };
11174 
11175 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11176 	.test_run		= bpf_prog_test_run_skb,
11177 };
11178 
11179 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11180 	.get_func_proto		= lwt_seg6local_func_proto,
11181 	.is_valid_access	= lwt_is_valid_access,
11182 	.convert_ctx_access	= bpf_convert_ctx_access,
11183 };
11184 
11185 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11186 };
11187 
11188 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11189 	.get_func_proto		= sock_filter_func_proto,
11190 	.is_valid_access	= sock_filter_is_valid_access,
11191 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11192 };
11193 
11194 const struct bpf_prog_ops cg_sock_prog_ops = {
11195 };
11196 
11197 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11198 	.get_func_proto		= sock_addr_func_proto,
11199 	.is_valid_access	= sock_addr_is_valid_access,
11200 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11201 };
11202 
11203 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11204 };
11205 
11206 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11207 	.get_func_proto		= sock_ops_func_proto,
11208 	.is_valid_access	= sock_ops_is_valid_access,
11209 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11210 };
11211 
11212 const struct bpf_prog_ops sock_ops_prog_ops = {
11213 };
11214 
11215 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11216 	.get_func_proto		= sk_skb_func_proto,
11217 	.is_valid_access	= sk_skb_is_valid_access,
11218 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11219 	.gen_prologue		= sk_skb_prologue,
11220 };
11221 
11222 const struct bpf_prog_ops sk_skb_prog_ops = {
11223 };
11224 
11225 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11226 	.get_func_proto		= sk_msg_func_proto,
11227 	.is_valid_access	= sk_msg_is_valid_access,
11228 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11229 	.gen_prologue		= bpf_noop_prologue,
11230 };
11231 
11232 const struct bpf_prog_ops sk_msg_prog_ops = {
11233 };
11234 
11235 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11236 	.get_func_proto		= flow_dissector_func_proto,
11237 	.is_valid_access	= flow_dissector_is_valid_access,
11238 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11239 };
11240 
11241 const struct bpf_prog_ops flow_dissector_prog_ops = {
11242 	.test_run		= bpf_prog_test_run_flow_dissector,
11243 };
11244 
sk_detach_filter(struct sock * sk)11245 int sk_detach_filter(struct sock *sk)
11246 {
11247 	int ret = -ENOENT;
11248 	struct sk_filter *filter;
11249 
11250 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11251 		return -EPERM;
11252 
11253 	filter = rcu_dereference_protected(sk->sk_filter,
11254 					   lockdep_sock_is_held(sk));
11255 	if (filter) {
11256 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11257 		sk_filter_uncharge(sk, filter);
11258 		ret = 0;
11259 	}
11260 
11261 	return ret;
11262 }
11263 EXPORT_SYMBOL_GPL(sk_detach_filter);
11264 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11265 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11266 {
11267 	struct sock_fprog_kern *fprog;
11268 	struct sk_filter *filter;
11269 	int ret = 0;
11270 
11271 	sockopt_lock_sock(sk);
11272 	filter = rcu_dereference_protected(sk->sk_filter,
11273 					   lockdep_sock_is_held(sk));
11274 	if (!filter)
11275 		goto out;
11276 
11277 	/* We're copying the filter that has been originally attached,
11278 	 * so no conversion/decode needed anymore. eBPF programs that
11279 	 * have no original program cannot be dumped through this.
11280 	 */
11281 	ret = -EACCES;
11282 	fprog = filter->prog->orig_prog;
11283 	if (!fprog)
11284 		goto out;
11285 
11286 	ret = fprog->len;
11287 	if (!len)
11288 		/* User space only enquires number of filter blocks. */
11289 		goto out;
11290 
11291 	ret = -EINVAL;
11292 	if (len < fprog->len)
11293 		goto out;
11294 
11295 	ret = -EFAULT;
11296 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11297 		goto out;
11298 
11299 	/* Instead of bytes, the API requests to return the number
11300 	 * of filter blocks.
11301 	 */
11302 	ret = fprog->len;
11303 out:
11304 	sockopt_release_sock(sk);
11305 	return ret;
11306 }
11307 
11308 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11309 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11310 				    struct sock_reuseport *reuse,
11311 				    struct sock *sk, struct sk_buff *skb,
11312 				    struct sock *migrating_sk,
11313 				    u32 hash)
11314 {
11315 	reuse_kern->skb = skb;
11316 	reuse_kern->sk = sk;
11317 	reuse_kern->selected_sk = NULL;
11318 	reuse_kern->migrating_sk = migrating_sk;
11319 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11320 	reuse_kern->hash = hash;
11321 	reuse_kern->reuseport_id = reuse->reuseport_id;
11322 	reuse_kern->bind_inany = reuse->bind_inany;
11323 }
11324 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11325 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11326 				  struct bpf_prog *prog, struct sk_buff *skb,
11327 				  struct sock *migrating_sk,
11328 				  u32 hash)
11329 {
11330 	struct sk_reuseport_kern reuse_kern;
11331 	enum sk_action action;
11332 
11333 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11334 	action = bpf_prog_run(prog, &reuse_kern);
11335 
11336 	if (action == SK_PASS)
11337 		return reuse_kern.selected_sk;
11338 	else
11339 		return ERR_PTR(-ECONNREFUSED);
11340 }
11341 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11342 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11343 	   struct bpf_map *, map, void *, key, u32, flags)
11344 {
11345 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11346 	struct sock_reuseport *reuse;
11347 	struct sock *selected_sk;
11348 	int err;
11349 
11350 	selected_sk = map->ops->map_lookup_elem(map, key);
11351 	if (!selected_sk)
11352 		return -ENOENT;
11353 
11354 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11355 	if (!reuse) {
11356 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11357 		 * The only (!reuse) case here is - the sk has already been
11358 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11359 		 *
11360 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11361 		 * the sk may never be in the reuseport group to begin with.
11362 		 */
11363 		err = is_sockarray ? -ENOENT : -EINVAL;
11364 		goto error;
11365 	}
11366 
11367 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11368 		struct sock *sk = reuse_kern->sk;
11369 
11370 		if (sk->sk_protocol != selected_sk->sk_protocol) {
11371 			err = -EPROTOTYPE;
11372 		} else if (sk->sk_family != selected_sk->sk_family) {
11373 			err = -EAFNOSUPPORT;
11374 		} else {
11375 			/* Catch all. Likely bound to a different sockaddr. */
11376 			err = -EBADFD;
11377 		}
11378 		goto error;
11379 	}
11380 
11381 	reuse_kern->selected_sk = selected_sk;
11382 
11383 	return 0;
11384 error:
11385 	/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11386 	if (sk_is_refcounted(selected_sk))
11387 		sock_put(selected_sk);
11388 
11389 	return err;
11390 }
11391 
11392 static const struct bpf_func_proto sk_select_reuseport_proto = {
11393 	.func           = sk_select_reuseport,
11394 	.gpl_only       = false,
11395 	.ret_type       = RET_INTEGER,
11396 	.arg1_type	= ARG_PTR_TO_CTX,
11397 	.arg2_type      = ARG_CONST_MAP_PTR,
11398 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11399 	.arg4_type	= ARG_ANYTHING,
11400 };
11401 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11402 BPF_CALL_4(sk_reuseport_load_bytes,
11403 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11404 	   void *, to, u32, len)
11405 {
11406 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11407 }
11408 
11409 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11410 	.func		= sk_reuseport_load_bytes,
11411 	.gpl_only	= false,
11412 	.ret_type	= RET_INTEGER,
11413 	.arg1_type	= ARG_PTR_TO_CTX,
11414 	.arg2_type	= ARG_ANYTHING,
11415 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11416 	.arg4_type	= ARG_CONST_SIZE,
11417 };
11418 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11419 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11420 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11421 	   void *, to, u32, len, u32, start_header)
11422 {
11423 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11424 					       len, start_header);
11425 }
11426 
11427 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11428 	.func		= sk_reuseport_load_bytes_relative,
11429 	.gpl_only	= false,
11430 	.ret_type	= RET_INTEGER,
11431 	.arg1_type	= ARG_PTR_TO_CTX,
11432 	.arg2_type	= ARG_ANYTHING,
11433 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11434 	.arg4_type	= ARG_CONST_SIZE,
11435 	.arg5_type	= ARG_ANYTHING,
11436 };
11437 
11438 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11439 sk_reuseport_func_proto(enum bpf_func_id func_id,
11440 			const struct bpf_prog *prog)
11441 {
11442 	switch (func_id) {
11443 	case BPF_FUNC_sk_select_reuseport:
11444 		return &sk_select_reuseport_proto;
11445 	case BPF_FUNC_skb_load_bytes:
11446 		return &sk_reuseport_load_bytes_proto;
11447 	case BPF_FUNC_skb_load_bytes_relative:
11448 		return &sk_reuseport_load_bytes_relative_proto;
11449 	case BPF_FUNC_get_socket_cookie:
11450 		return &bpf_get_socket_ptr_cookie_proto;
11451 	case BPF_FUNC_ktime_get_coarse_ns:
11452 		return &bpf_ktime_get_coarse_ns_proto;
11453 	default:
11454 		return bpf_base_func_proto(func_id, prog);
11455 	}
11456 }
11457 
11458 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11459 sk_reuseport_is_valid_access(int off, int size,
11460 			     enum bpf_access_type type,
11461 			     const struct bpf_prog *prog,
11462 			     struct bpf_insn_access_aux *info)
11463 {
11464 	const u32 size_default = sizeof(__u32);
11465 
11466 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11467 	    off % size || type != BPF_READ)
11468 		return false;
11469 
11470 	switch (off) {
11471 	case offsetof(struct sk_reuseport_md, data):
11472 		info->reg_type = PTR_TO_PACKET;
11473 		return size == sizeof(__u64);
11474 
11475 	case offsetof(struct sk_reuseport_md, data_end):
11476 		info->reg_type = PTR_TO_PACKET_END;
11477 		return size == sizeof(__u64);
11478 
11479 	case offsetof(struct sk_reuseport_md, hash):
11480 		return size == size_default;
11481 
11482 	case offsetof(struct sk_reuseport_md, sk):
11483 		info->reg_type = PTR_TO_SOCKET;
11484 		return size == sizeof(__u64);
11485 
11486 	case offsetof(struct sk_reuseport_md, migrating_sk):
11487 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11488 		return size == sizeof(__u64);
11489 
11490 	/* Fields that allow narrowing */
11491 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11492 		if (size < sizeof_field(struct sk_buff, protocol))
11493 			return false;
11494 		fallthrough;
11495 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11496 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11497 	case bpf_ctx_range(struct sk_reuseport_md, len):
11498 		bpf_ctx_record_field_size(info, size_default);
11499 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11500 
11501 	default:
11502 		return false;
11503 	}
11504 }
11505 
11506 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11507 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11508 			      si->dst_reg, si->src_reg,			\
11509 			      bpf_target_off(struct sk_reuseport_kern, F, \
11510 					     sizeof_field(struct sk_reuseport_kern, F), \
11511 					     target_size));		\
11512 	})
11513 
11514 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11515 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11516 				    struct sk_buff,			\
11517 				    skb,				\
11518 				    SKB_FIELD)
11519 
11520 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11521 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11522 				    struct sock,			\
11523 				    sk,					\
11524 				    SK_FIELD)
11525 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11526 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11527 					   const struct bpf_insn *si,
11528 					   struct bpf_insn *insn_buf,
11529 					   struct bpf_prog *prog,
11530 					   u32 *target_size)
11531 {
11532 	struct bpf_insn *insn = insn_buf;
11533 
11534 	switch (si->off) {
11535 	case offsetof(struct sk_reuseport_md, data):
11536 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11537 		break;
11538 
11539 	case offsetof(struct sk_reuseport_md, len):
11540 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11541 		break;
11542 
11543 	case offsetof(struct sk_reuseport_md, eth_protocol):
11544 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11545 		break;
11546 
11547 	case offsetof(struct sk_reuseport_md, ip_protocol):
11548 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11549 		break;
11550 
11551 	case offsetof(struct sk_reuseport_md, data_end):
11552 		SK_REUSEPORT_LOAD_FIELD(data_end);
11553 		break;
11554 
11555 	case offsetof(struct sk_reuseport_md, hash):
11556 		SK_REUSEPORT_LOAD_FIELD(hash);
11557 		break;
11558 
11559 	case offsetof(struct sk_reuseport_md, bind_inany):
11560 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11561 		break;
11562 
11563 	case offsetof(struct sk_reuseport_md, sk):
11564 		SK_REUSEPORT_LOAD_FIELD(sk);
11565 		break;
11566 
11567 	case offsetof(struct sk_reuseport_md, migrating_sk):
11568 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11569 		break;
11570 	}
11571 
11572 	return insn - insn_buf;
11573 }
11574 
11575 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11576 	.get_func_proto		= sk_reuseport_func_proto,
11577 	.is_valid_access	= sk_reuseport_is_valid_access,
11578 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11579 };
11580 
11581 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11582 };
11583 
11584 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11585 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11586 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11587 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11588 	   struct sock *, sk, u64, flags)
11589 {
11590 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11591 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11592 		return -EINVAL;
11593 	if (unlikely(sk && sk_is_refcounted(sk)))
11594 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11595 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11596 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11597 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11598 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11599 
11600 	/* Check if socket is suitable for packet L3/L4 protocol */
11601 	if (sk && sk->sk_protocol != ctx->protocol)
11602 		return -EPROTOTYPE;
11603 	if (sk && sk->sk_family != ctx->family &&
11604 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11605 		return -EAFNOSUPPORT;
11606 
11607 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11608 		return -EEXIST;
11609 
11610 	/* Select socket as lookup result */
11611 	ctx->selected_sk = sk;
11612 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11613 	return 0;
11614 }
11615 
11616 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11617 	.func		= bpf_sk_lookup_assign,
11618 	.gpl_only	= false,
11619 	.ret_type	= RET_INTEGER,
11620 	.arg1_type	= ARG_PTR_TO_CTX,
11621 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11622 	.arg3_type	= ARG_ANYTHING,
11623 };
11624 
11625 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11626 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11627 {
11628 	switch (func_id) {
11629 	case BPF_FUNC_perf_event_output:
11630 		return &bpf_event_output_data_proto;
11631 	case BPF_FUNC_sk_assign:
11632 		return &bpf_sk_lookup_assign_proto;
11633 	case BPF_FUNC_sk_release:
11634 		return &bpf_sk_release_proto;
11635 	default:
11636 		return bpf_sk_base_func_proto(func_id, prog);
11637 	}
11638 }
11639 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11640 static bool sk_lookup_is_valid_access(int off, int size,
11641 				      enum bpf_access_type type,
11642 				      const struct bpf_prog *prog,
11643 				      struct bpf_insn_access_aux *info)
11644 {
11645 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11646 		return false;
11647 	if (off % size != 0)
11648 		return false;
11649 	if (type != BPF_READ)
11650 		return false;
11651 
11652 	switch (off) {
11653 	case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk):
11654 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11655 		return size == sizeof(__u64);
11656 
11657 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11658 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11659 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11660 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11661 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11662 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11663 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11664 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11665 		bpf_ctx_record_field_size(info, sizeof(__u32));
11666 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11667 
11668 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11669 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11670 		if (size == sizeof(__u32))
11671 			return true;
11672 		bpf_ctx_record_field_size(info, sizeof(__be16));
11673 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11674 
11675 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11676 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11677 		/* Allow access to zero padding for backward compatibility */
11678 		bpf_ctx_record_field_size(info, sizeof(__u16));
11679 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11680 
11681 	default:
11682 		return false;
11683 	}
11684 }
11685 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11686 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11687 					const struct bpf_insn *si,
11688 					struct bpf_insn *insn_buf,
11689 					struct bpf_prog *prog,
11690 					u32 *target_size)
11691 {
11692 	struct bpf_insn *insn = insn_buf;
11693 
11694 	switch (si->off) {
11695 	case offsetof(struct bpf_sk_lookup, sk):
11696 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11697 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11698 		break;
11699 
11700 	case offsetof(struct bpf_sk_lookup, family):
11701 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11702 				      bpf_target_off(struct bpf_sk_lookup_kern,
11703 						     family, 2, target_size));
11704 		break;
11705 
11706 	case offsetof(struct bpf_sk_lookup, protocol):
11707 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11708 				      bpf_target_off(struct bpf_sk_lookup_kern,
11709 						     protocol, 2, target_size));
11710 		break;
11711 
11712 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11713 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11714 				      bpf_target_off(struct bpf_sk_lookup_kern,
11715 						     v4.saddr, 4, target_size));
11716 		break;
11717 
11718 	case offsetof(struct bpf_sk_lookup, local_ip4):
11719 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11720 				      bpf_target_off(struct bpf_sk_lookup_kern,
11721 						     v4.daddr, 4, target_size));
11722 		break;
11723 
11724 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11725 				remote_ip6[0], remote_ip6[3]): {
11726 #if IS_ENABLED(CONFIG_IPV6)
11727 		int off = si->off;
11728 
11729 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11730 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11731 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11732 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11733 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11734 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11735 #else
11736 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11737 #endif
11738 		break;
11739 	}
11740 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11741 				local_ip6[0], local_ip6[3]): {
11742 #if IS_ENABLED(CONFIG_IPV6)
11743 		int off = si->off;
11744 
11745 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11746 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11747 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11748 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11749 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11750 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11751 #else
11752 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11753 #endif
11754 		break;
11755 	}
11756 	case offsetof(struct bpf_sk_lookup, remote_port):
11757 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11758 				      bpf_target_off(struct bpf_sk_lookup_kern,
11759 						     sport, 2, target_size));
11760 		break;
11761 
11762 	case offsetofend(struct bpf_sk_lookup, remote_port):
11763 		*target_size = 2;
11764 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11765 		break;
11766 
11767 	case offsetof(struct bpf_sk_lookup, local_port):
11768 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11769 				      bpf_target_off(struct bpf_sk_lookup_kern,
11770 						     dport, 2, target_size));
11771 		break;
11772 
11773 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11774 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11775 				      bpf_target_off(struct bpf_sk_lookup_kern,
11776 						     ingress_ifindex, 4, target_size));
11777 		break;
11778 	}
11779 
11780 	return insn - insn_buf;
11781 }
11782 
11783 const struct bpf_prog_ops sk_lookup_prog_ops = {
11784 	.test_run = bpf_prog_test_run_sk_lookup,
11785 };
11786 
11787 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11788 	.get_func_proto		= sk_lookup_func_proto,
11789 	.is_valid_access	= sk_lookup_is_valid_access,
11790 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11791 };
11792 
11793 #endif /* CONFIG_INET */
11794 
DEFINE_BPF_DISPATCHER(xdp)11795 DEFINE_BPF_DISPATCHER(xdp)
11796 
11797 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11798 {
11799 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11800 }
11801 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11802 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11803 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11804 BTF_SOCK_TYPE_xxx
11805 #undef BTF_SOCK_TYPE
11806 
11807 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11808 {
11809 	/* tcp6_sock type is not generated in dwarf and hence btf,
11810 	 * trigger an explicit type generation here.
11811 	 */
11812 	BTF_TYPE_EMIT(struct tcp6_sock);
11813 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11814 	    sk->sk_family == AF_INET6)
11815 		return (unsigned long)sk;
11816 
11817 	return (unsigned long)NULL;
11818 }
11819 
11820 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11821 	.func			= bpf_skc_to_tcp6_sock,
11822 	.gpl_only		= false,
11823 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11824 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11825 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11826 };
11827 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11828 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11829 {
11830 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11831 		return (unsigned long)sk;
11832 
11833 	return (unsigned long)NULL;
11834 }
11835 
11836 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11837 	.func			= bpf_skc_to_tcp_sock,
11838 	.gpl_only		= false,
11839 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11840 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11841 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11842 };
11843 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11844 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11845 {
11846 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11847 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11848 	 */
11849 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11850 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11851 
11852 #ifdef CONFIG_INET
11853 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11854 		return (unsigned long)sk;
11855 #endif
11856 
11857 #if IS_BUILTIN(CONFIG_IPV6)
11858 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11859 		return (unsigned long)sk;
11860 #endif
11861 
11862 	return (unsigned long)NULL;
11863 }
11864 
11865 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11866 	.func			= bpf_skc_to_tcp_timewait_sock,
11867 	.gpl_only		= false,
11868 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11869 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11870 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11871 };
11872 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11873 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11874 {
11875 #ifdef CONFIG_INET
11876 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11877 		return (unsigned long)sk;
11878 #endif
11879 
11880 #if IS_BUILTIN(CONFIG_IPV6)
11881 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11882 		return (unsigned long)sk;
11883 #endif
11884 
11885 	return (unsigned long)NULL;
11886 }
11887 
11888 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11889 	.func			= bpf_skc_to_tcp_request_sock,
11890 	.gpl_only		= false,
11891 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11892 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11893 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11894 };
11895 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11896 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11897 {
11898 	/* udp6_sock type is not generated in dwarf and hence btf,
11899 	 * trigger an explicit type generation here.
11900 	 */
11901 	BTF_TYPE_EMIT(struct udp6_sock);
11902 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11903 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11904 		return (unsigned long)sk;
11905 
11906 	return (unsigned long)NULL;
11907 }
11908 
11909 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11910 	.func			= bpf_skc_to_udp6_sock,
11911 	.gpl_only		= false,
11912 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11913 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11914 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11915 };
11916 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11917 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11918 {
11919 	/* unix_sock type is not generated in dwarf and hence btf,
11920 	 * trigger an explicit type generation here.
11921 	 */
11922 	BTF_TYPE_EMIT(struct unix_sock);
11923 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11924 		return (unsigned long)sk;
11925 
11926 	return (unsigned long)NULL;
11927 }
11928 
11929 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11930 	.func			= bpf_skc_to_unix_sock,
11931 	.gpl_only		= false,
11932 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11933 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11934 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11935 };
11936 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11937 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11938 {
11939 	BTF_TYPE_EMIT(struct mptcp_sock);
11940 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11941 }
11942 
11943 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11944 	.func		= bpf_skc_to_mptcp_sock,
11945 	.gpl_only	= false,
11946 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11947 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11948 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11949 };
11950 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11951 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11952 {
11953 	return (unsigned long)sock_from_file(file);
11954 }
11955 
11956 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11957 BTF_ID(struct, socket)
11958 BTF_ID(struct, file)
11959 
11960 const struct bpf_func_proto bpf_sock_from_file_proto = {
11961 	.func		= bpf_sock_from_file,
11962 	.gpl_only	= false,
11963 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11964 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11965 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11966 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11967 };
11968 
11969 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11970 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11971 {
11972 	const struct bpf_func_proto *func;
11973 
11974 	switch (func_id) {
11975 	case BPF_FUNC_skc_to_tcp6_sock:
11976 		func = &bpf_skc_to_tcp6_sock_proto;
11977 		break;
11978 	case BPF_FUNC_skc_to_tcp_sock:
11979 		func = &bpf_skc_to_tcp_sock_proto;
11980 		break;
11981 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11982 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11983 		break;
11984 	case BPF_FUNC_skc_to_tcp_request_sock:
11985 		func = &bpf_skc_to_tcp_request_sock_proto;
11986 		break;
11987 	case BPF_FUNC_skc_to_udp6_sock:
11988 		func = &bpf_skc_to_udp6_sock_proto;
11989 		break;
11990 	case BPF_FUNC_skc_to_unix_sock:
11991 		func = &bpf_skc_to_unix_sock_proto;
11992 		break;
11993 	case BPF_FUNC_skc_to_mptcp_sock:
11994 		func = &bpf_skc_to_mptcp_sock_proto;
11995 		break;
11996 	case BPF_FUNC_ktime_get_coarse_ns:
11997 		return &bpf_ktime_get_coarse_ns_proto;
11998 	default:
11999 		return bpf_base_func_proto(func_id, prog);
12000 	}
12001 
12002 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
12003 		return NULL;
12004 
12005 	return func;
12006 }
12007 
12008 /**
12009  * bpf_skb_meta_pointer() - Gets a mutable pointer within the skb metadata area.
12010  * @skb: socket buffer carrying the metadata
12011  * @offset: offset into the metadata area, must be <= skb_metadata_len()
12012  */
bpf_skb_meta_pointer(struct sk_buff * skb,u32 offset)12013 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset)
12014 {
12015 	return skb_metadata_end(skb) - skb_metadata_len(skb) + offset;
12016 }
12017 
12018 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)12019 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
12020 				    struct bpf_dynptr *ptr__uninit)
12021 {
12022 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12023 	struct sk_buff *skb = (struct sk_buff *)s;
12024 
12025 	if (flags) {
12026 		bpf_dynptr_set_null(ptr);
12027 		return -EINVAL;
12028 	}
12029 
12030 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
12031 
12032 	return 0;
12033 }
12034 
12035 /**
12036  * bpf_dynptr_from_skb_meta() - Initialize a dynptr to the skb metadata area.
12037  * @skb_: socket buffer carrying the metadata
12038  * @flags: future use, must be zero
12039  * @ptr__uninit: dynptr to initialize
12040  *
12041  * Set up a dynptr for access to the metadata area earlier allocated from the
12042  * XDP context with bpf_xdp_adjust_meta(). Serves as an alternative to
12043  * &__sk_buff->data_meta.
12044  *
12045  * If passed @skb_ is a clone which shares the data with the original, the
12046  * dynptr will be read-only. This limitation may be lifted in the future.
12047  *
12048  * Return:
12049  * * %0         - dynptr ready to use
12050  * * %-EINVAL   - invalid flags, dynptr set to null
12051  */
bpf_dynptr_from_skb_meta(struct __sk_buff * skb_,u64 flags,struct bpf_dynptr * ptr__uninit)12052 __bpf_kfunc int bpf_dynptr_from_skb_meta(struct __sk_buff *skb_, u64 flags,
12053 					 struct bpf_dynptr *ptr__uninit)
12054 {
12055 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12056 	struct sk_buff *skb = (struct sk_buff *)skb_;
12057 
12058 	if (flags) {
12059 		bpf_dynptr_set_null(ptr);
12060 		return -EINVAL;
12061 	}
12062 
12063 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB_META, 0, skb_metadata_len(skb));
12064 
12065 	if (skb_cloned(skb))
12066 		bpf_dynptr_set_rdonly(ptr);
12067 
12068 	return 0;
12069 }
12070 
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)12071 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12072 				    struct bpf_dynptr *ptr__uninit)
12073 {
12074 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12075 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12076 
12077 	if (flags) {
12078 		bpf_dynptr_set_null(ptr);
12079 		return -EINVAL;
12080 	}
12081 
12082 	bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12083 
12084 	return 0;
12085 }
12086 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12087 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12088 					   const u8 *sun_path, u32 sun_path__sz)
12089 {
12090 	struct sockaddr_un *un;
12091 
12092 	if (sa_kern->sk->sk_family != AF_UNIX)
12093 		return -EINVAL;
12094 
12095 	/* We do not allow changing the address to unnamed or larger than the
12096 	 * maximum allowed address size for a unix sockaddr.
12097 	 */
12098 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12099 		return -EINVAL;
12100 
12101 	un = (struct sockaddr_un *)sa_kern->uaddr;
12102 	memcpy(un->sun_path, sun_path, sun_path__sz);
12103 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12104 
12105 	return 0;
12106 }
12107 
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12108 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12109 					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12110 {
12111 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12112 	struct sk_buff *skb = (struct sk_buff *)s;
12113 	const struct request_sock_ops *ops;
12114 	struct inet_request_sock *ireq;
12115 	struct tcp_request_sock *treq;
12116 	struct request_sock *req;
12117 	struct net *net;
12118 	__u16 min_mss;
12119 	u32 tsoff = 0;
12120 
12121 	if (attrs__sz != sizeof(*attrs) ||
12122 	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12123 		return -EINVAL;
12124 
12125 	if (!skb_at_tc_ingress(skb))
12126 		return -EINVAL;
12127 
12128 	net = dev_net(skb->dev);
12129 	if (net != sock_net(sk))
12130 		return -ENETUNREACH;
12131 
12132 	switch (skb->protocol) {
12133 	case htons(ETH_P_IP):
12134 		ops = &tcp_request_sock_ops;
12135 		min_mss = 536;
12136 		break;
12137 #if IS_BUILTIN(CONFIG_IPV6)
12138 	case htons(ETH_P_IPV6):
12139 		ops = &tcp6_request_sock_ops;
12140 		min_mss = IPV6_MIN_MTU - 60;
12141 		break;
12142 #endif
12143 	default:
12144 		return -EINVAL;
12145 	}
12146 
12147 	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12148 	    sk_is_mptcp(sk))
12149 		return -EINVAL;
12150 
12151 	if (attrs->mss < min_mss)
12152 		return -EINVAL;
12153 
12154 	if (attrs->wscale_ok) {
12155 		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12156 			return -EINVAL;
12157 
12158 		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12159 		    attrs->rcv_wscale > TCP_MAX_WSCALE)
12160 			return -EINVAL;
12161 	}
12162 
12163 	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12164 		return -EINVAL;
12165 
12166 	if (attrs->tstamp_ok) {
12167 		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12168 			return -EINVAL;
12169 
12170 		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12171 	}
12172 
12173 	req = inet_reqsk_alloc(ops, sk, false);
12174 	if (!req)
12175 		return -ENOMEM;
12176 
12177 	ireq = inet_rsk(req);
12178 	treq = tcp_rsk(req);
12179 
12180 	req->rsk_listener = sk;
12181 	req->syncookie = 1;
12182 	req->mss = attrs->mss;
12183 	req->ts_recent = attrs->rcv_tsval;
12184 
12185 	ireq->snd_wscale = attrs->snd_wscale;
12186 	ireq->rcv_wscale = attrs->rcv_wscale;
12187 	ireq->tstamp_ok	= !!attrs->tstamp_ok;
12188 	ireq->sack_ok = !!attrs->sack_ok;
12189 	ireq->wscale_ok = !!attrs->wscale_ok;
12190 	ireq->ecn_ok = !!attrs->ecn_ok;
12191 
12192 	treq->req_usec_ts = !!attrs->usec_ts_ok;
12193 	treq->ts_off = tsoff;
12194 
12195 	skb_orphan(skb);
12196 	skb->sk = req_to_sk(req);
12197 	skb->destructor = sock_pfree;
12198 
12199 	return 0;
12200 #else
12201 	return -EOPNOTSUPP;
12202 #endif
12203 }
12204 
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12205 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12206 					      u64 flags)
12207 {
12208 	struct sk_buff *skb;
12209 
12210 	if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12211 		return -EOPNOTSUPP;
12212 
12213 	if (flags)
12214 		return -EINVAL;
12215 
12216 	skb = skops->skb;
12217 	skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12218 	TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12219 	skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12220 
12221 	return 0;
12222 }
12223 
12224 /**
12225  * bpf_xdp_pull_data() - Pull in non-linear xdp data.
12226  * @x: &xdp_md associated with the XDP buffer
12227  * @len: length of data to be made directly accessible in the linear part
12228  *
12229  * Pull in data in case the XDP buffer associated with @x is non-linear and
12230  * not all @len are in the linear data area.
12231  *
12232  * Direct packet access allows reading and writing linear XDP data through
12233  * packet pointers (i.e., &xdp_md->data + offsets). The amount of data which
12234  * ends up in the linear part of the xdp_buff depends on the NIC and its
12235  * configuration. When a frag-capable XDP program wants to directly access
12236  * headers that may be in the non-linear area, call this kfunc to make sure
12237  * the data is available in the linear area. Alternatively, use dynptr or
12238  * bpf_xdp_{load,store}_bytes() to access data without pulling.
12239  *
12240  * This kfunc can also be used with bpf_xdp_adjust_head() to decapsulate
12241  * headers in the non-linear data area.
12242  *
12243  * A call to this kfunc may reduce headroom. If there is not enough tailroom
12244  * in the linear data area, metadata and data will be shifted down.
12245  *
12246  * A call to this kfunc is susceptible to change the buffer geometry.
12247  * Therefore, at load time, all checks on pointers previously done by the
12248  * verifier are invalidated and must be performed again, if the kfunc is used
12249  * in combination with direct packet access.
12250  *
12251  * Return:
12252  * * %0         - success
12253  * * %-EINVAL   - invalid len
12254  */
bpf_xdp_pull_data(struct xdp_md * x,u32 len)12255 __bpf_kfunc int bpf_xdp_pull_data(struct xdp_md *x, u32 len)
12256 {
12257 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12258 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
12259 	int i, delta, shift, headroom, tailroom, n_frags_free = 0;
12260 	void *data_hard_end = xdp_data_hard_end(xdp);
12261 	int data_len = xdp->data_end - xdp->data;
12262 	void *start;
12263 
12264 	if (len <= data_len)
12265 		return 0;
12266 
12267 	if (unlikely(len > xdp_get_buff_len(xdp)))
12268 		return -EINVAL;
12269 
12270 	start = xdp_data_meta_unsupported(xdp) ? xdp->data : xdp->data_meta;
12271 
12272 	headroom = start - xdp->data_hard_start - sizeof(struct xdp_frame);
12273 	tailroom = data_hard_end - xdp->data_end;
12274 
12275 	delta = len - data_len;
12276 	if (unlikely(delta > tailroom + headroom))
12277 		return -EINVAL;
12278 
12279 	shift = delta - tailroom;
12280 	if (shift > 0) {
12281 		memmove(start - shift, start, xdp->data_end - start);
12282 
12283 		xdp->data_meta -= shift;
12284 		xdp->data -= shift;
12285 		xdp->data_end -= shift;
12286 	}
12287 
12288 	for (i = 0; i < sinfo->nr_frags && delta; i++) {
12289 		skb_frag_t *frag = &sinfo->frags[i];
12290 		u32 shrink = min_t(u32, delta, skb_frag_size(frag));
12291 
12292 		memcpy(xdp->data_end, skb_frag_address(frag), shrink);
12293 
12294 		xdp->data_end += shrink;
12295 		sinfo->xdp_frags_size -= shrink;
12296 		delta -= shrink;
12297 		if (bpf_xdp_shrink_data(xdp, frag, shrink, false))
12298 			n_frags_free++;
12299 	}
12300 
12301 	if (unlikely(n_frags_free)) {
12302 		memmove(sinfo->frags, sinfo->frags + n_frags_free,
12303 			(sinfo->nr_frags - n_frags_free) * sizeof(skb_frag_t));
12304 
12305 		sinfo->nr_frags -= n_frags_free;
12306 
12307 		if (!sinfo->nr_frags) {
12308 			xdp_buff_clear_frags_flag(xdp);
12309 			xdp_buff_clear_frag_pfmemalloc(xdp);
12310 		}
12311 	}
12312 
12313 	return 0;
12314 }
12315 
12316 __bpf_kfunc_end_defs();
12317 
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12318 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12319 			       struct bpf_dynptr *ptr__uninit)
12320 {
12321 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12322 	int err;
12323 
12324 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12325 	if (err)
12326 		return err;
12327 
12328 	bpf_dynptr_set_rdonly(ptr);
12329 
12330 	return 0;
12331 }
12332 
12333 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12334 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12335 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12336 
12337 BTF_KFUNCS_START(bpf_kfunc_check_set_skb_meta)
12338 BTF_ID_FLAGS(func, bpf_dynptr_from_skb_meta, KF_TRUSTED_ARGS)
12339 BTF_KFUNCS_END(bpf_kfunc_check_set_skb_meta)
12340 
12341 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12342 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12343 BTF_ID_FLAGS(func, bpf_xdp_pull_data)
12344 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12345 
12346 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12347 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12348 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12349 
12350 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12351 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12352 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12353 
12354 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12355 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12356 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12357 
12358 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12359 	.owner = THIS_MODULE,
12360 	.set = &bpf_kfunc_check_set_skb,
12361 };
12362 
12363 static const struct btf_kfunc_id_set bpf_kfunc_set_skb_meta = {
12364 	.owner = THIS_MODULE,
12365 	.set = &bpf_kfunc_check_set_skb_meta,
12366 };
12367 
12368 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12369 	.owner = THIS_MODULE,
12370 	.set = &bpf_kfunc_check_set_xdp,
12371 };
12372 
12373 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12374 	.owner = THIS_MODULE,
12375 	.set = &bpf_kfunc_check_set_sock_addr,
12376 };
12377 
12378 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12379 	.owner = THIS_MODULE,
12380 	.set = &bpf_kfunc_check_set_tcp_reqsk,
12381 };
12382 
12383 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12384 	.owner = THIS_MODULE,
12385 	.set = &bpf_kfunc_check_set_sock_ops,
12386 };
12387 
bpf_kfunc_init(void)12388 static int __init bpf_kfunc_init(void)
12389 {
12390 	int ret;
12391 
12392 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12393 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12394 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12395 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12396 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12397 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12398 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12399 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12400 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12401 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12402 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12403 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb_meta);
12404 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb_meta);
12405 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12406 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12407 					       &bpf_kfunc_set_sock_addr);
12408 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12409 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12410 }
12411 late_initcall(bpf_kfunc_init);
12412 
12413 __bpf_kfunc_start_defs();
12414 
12415 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12416  *
12417  * The function expects a non-NULL pointer to a socket, and invokes the
12418  * protocol specific socket destroy handlers.
12419  *
12420  * The helper can only be called from BPF contexts that have acquired the socket
12421  * locks.
12422  *
12423  * Parameters:
12424  * @sock: Pointer to socket to be destroyed
12425  *
12426  * Return:
12427  * On error, may return EPROTONOSUPPORT, EINVAL.
12428  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12429  * 0 otherwise
12430  */
bpf_sock_destroy(struct sock_common * sock)12431 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12432 {
12433 	struct sock *sk = (struct sock *)sock;
12434 
12435 	/* The locking semantics that allow for synchronous execution of the
12436 	 * destroy handlers are only supported for TCP and UDP.
12437 	 * Supporting protocols will need to acquire sock lock in the BPF context
12438 	 * prior to invoking this kfunc.
12439 	 */
12440 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12441 					   sk->sk_protocol != IPPROTO_UDP))
12442 		return -EOPNOTSUPP;
12443 
12444 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12445 }
12446 
12447 __bpf_kfunc_end_defs();
12448 
12449 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12450 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12451 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12452 
12453 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12454 {
12455 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12456 	    prog->expected_attach_type != BPF_TRACE_ITER)
12457 		return -EACCES;
12458 	return 0;
12459 }
12460 
12461 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12462 	.owner = THIS_MODULE,
12463 	.set   = &bpf_sk_iter_kfunc_ids,
12464 	.filter = tracing_iter_filter,
12465 };
12466 
init_subsystem(void)12467 static int init_subsystem(void)
12468 {
12469 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12470 }
12471 late_initcall(init_subsystem);
12472