1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88
89 #include "dev.h"
90
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 if (in_compat_syscall()) {
100 struct compat_sock_fprog f32;
101
102 if (len != sizeof(f32))
103 return -EINVAL;
104 if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 return -EFAULT;
106 memset(dst, 0, sizeof(*dst));
107 dst->len = f32.len;
108 dst->filter = compat_ptr(f32.filter);
109 } else {
110 if (len != sizeof(*dst))
111 return -EINVAL;
112 if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 return -EFAULT;
114 }
115
116 return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119
120 /**
121 * sk_filter_trim_cap - run a packet through a socket filter
122 * @sk: sock associated with &sk_buff
123 * @skb: buffer to filter
124 * @cap: limit on how short the eBPF program may trim the packet
125 * @reason: record drop reason on errors (negative return value)
126 *
127 * Run the eBPF program and then cut skb->data to correct size returned by
128 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
129 * than pkt_len we keep whole skb->data. This is the socket level
130 * wrapper to bpf_prog_run. It returns 0 if the packet should
131 * be accepted or -EPERM if the packet should be tossed.
132 *
133 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap,enum skb_drop_reason * reason)134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb,
135 unsigned int cap, enum skb_drop_reason *reason)
136 {
137 int err;
138 struct sk_filter *filter;
139
140 /*
141 * If the skb was allocated from pfmemalloc reserves, only
142 * allow SOCK_MEMALLOC sockets to use it as this socket is
143 * helping free memory
144 */
145 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
146 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
147 *reason = SKB_DROP_REASON_PFMEMALLOC;
148 return -ENOMEM;
149 }
150 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
151 if (err) {
152 *reason = SKB_DROP_REASON_SOCKET_FILTER;
153 return err;
154 }
155
156 err = security_sock_rcv_skb(sk, skb);
157 if (err) {
158 *reason = SKB_DROP_REASON_SECURITY_HOOK;
159 return err;
160 }
161
162 rcu_read_lock();
163 filter = rcu_dereference(sk->sk_filter);
164 if (filter) {
165 struct sock *save_sk = skb->sk;
166 unsigned int pkt_len;
167
168 skb->sk = sk;
169 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
170 skb->sk = save_sk;
171 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
172 if (err)
173 *reason = SKB_DROP_REASON_SOCKET_FILTER;
174 }
175 rcu_read_unlock();
176
177 return err;
178 }
179 EXPORT_SYMBOL(sk_filter_trim_cap);
180
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
182 {
183 return skb_get_poff(skb);
184 }
185
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 struct nlattr *nla;
189
190 if (skb_is_nonlinear(skb))
191 return 0;
192
193 if (skb->len < sizeof(struct nlattr))
194 return 0;
195
196 if (a > skb->len - sizeof(struct nlattr))
197 return 0;
198
199 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
200 if (nla)
201 return (void *) nla - (void *) skb->data;
202
203 return 0;
204 }
205
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
207 {
208 struct nlattr *nla;
209
210 if (skb_is_nonlinear(skb))
211 return 0;
212
213 if (skb->len < sizeof(struct nlattr))
214 return 0;
215
216 if (a > skb->len - sizeof(struct nlattr))
217 return 0;
218
219 nla = (struct nlattr *) &skb->data[a];
220 if (!nla_ok(nla, skb->len - a))
221 return 0;
222
223 nla = nla_find_nested(nla, x);
224 if (nla)
225 return (void *) nla - (void *) skb->data;
226
227 return 0;
228 }
229
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
231 {
232 if (likely(offset >= 0))
233 return offset;
234
235 if (offset >= SKF_NET_OFF)
236 return offset - SKF_NET_OFF + skb_network_offset(skb);
237
238 if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
239 return offset - SKF_LL_OFF + skb_mac_offset(skb);
240
241 return INT_MIN;
242 }
243
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
245 data, int, headlen, int, offset)
246 {
247 u8 tmp;
248 const int len = sizeof(tmp);
249
250 offset = bpf_skb_load_helper_convert_offset(skb, offset);
251 if (offset == INT_MIN)
252 return -EFAULT;
253
254 if (headlen - offset >= len)
255 return *(u8 *)(data + offset);
256 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
257 return tmp;
258 else
259 return -EFAULT;
260 }
261
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
263 int, offset)
264 {
265 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
266 offset);
267 }
268
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
270 data, int, headlen, int, offset)
271 {
272 __be16 tmp;
273 const int len = sizeof(tmp);
274
275 offset = bpf_skb_load_helper_convert_offset(skb, offset);
276 if (offset == INT_MIN)
277 return -EFAULT;
278
279 if (headlen - offset >= len)
280 return get_unaligned_be16(data + offset);
281 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
282 return be16_to_cpu(tmp);
283 else
284 return -EFAULT;
285 }
286
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
288 int, offset)
289 {
290 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
291 offset);
292 }
293
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
295 data, int, headlen, int, offset)
296 {
297 __be32 tmp;
298 const int len = sizeof(tmp);
299
300 offset = bpf_skb_load_helper_convert_offset(skb, offset);
301 if (offset == INT_MIN)
302 return -EFAULT;
303
304 if (headlen - offset >= len)
305 return get_unaligned_be32(data + offset);
306 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
307 return be32_to_cpu(tmp);
308 else
309 return -EFAULT;
310 }
311
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
313 int, offset)
314 {
315 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
316 offset);
317 }
318
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
320 struct bpf_insn *insn_buf)
321 {
322 struct bpf_insn *insn = insn_buf;
323
324 switch (skb_field) {
325 case SKF_AD_MARK:
326 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
327
328 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
329 offsetof(struct sk_buff, mark));
330 break;
331
332 case SKF_AD_PKTTYPE:
333 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
334 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
335 #ifdef __BIG_ENDIAN_BITFIELD
336 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
337 #endif
338 break;
339
340 case SKF_AD_QUEUE:
341 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
342
343 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
344 offsetof(struct sk_buff, queue_mapping));
345 break;
346
347 case SKF_AD_VLAN_TAG:
348 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
349
350 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
351 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
352 offsetof(struct sk_buff, vlan_tci));
353 break;
354 case SKF_AD_VLAN_TAG_PRESENT:
355 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
356 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
357 offsetof(struct sk_buff, vlan_all));
358 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
359 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
360 break;
361 }
362
363 return insn - insn_buf;
364 }
365
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)366 static bool convert_bpf_extensions(struct sock_filter *fp,
367 struct bpf_insn **insnp)
368 {
369 struct bpf_insn *insn = *insnp;
370 u32 cnt;
371
372 switch (fp->k) {
373 case SKF_AD_OFF + SKF_AD_PROTOCOL:
374 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
375
376 /* A = *(u16 *) (CTX + offsetof(protocol)) */
377 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
378 offsetof(struct sk_buff, protocol));
379 /* A = ntohs(A) [emitting a nop or swap16] */
380 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
381 break;
382
383 case SKF_AD_OFF + SKF_AD_PKTTYPE:
384 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
385 insn += cnt - 1;
386 break;
387
388 case SKF_AD_OFF + SKF_AD_IFINDEX:
389 case SKF_AD_OFF + SKF_AD_HATYPE:
390 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
391 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
392
393 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
394 BPF_REG_TMP, BPF_REG_CTX,
395 offsetof(struct sk_buff, dev));
396 /* if (tmp != 0) goto pc + 1 */
397 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
398 *insn++ = BPF_EXIT_INSN();
399 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
400 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
401 offsetof(struct net_device, ifindex));
402 else
403 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
404 offsetof(struct net_device, type));
405 break;
406
407 case SKF_AD_OFF + SKF_AD_MARK:
408 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
409 insn += cnt - 1;
410 break;
411
412 case SKF_AD_OFF + SKF_AD_RXHASH:
413 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
414
415 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
416 offsetof(struct sk_buff, hash));
417 break;
418
419 case SKF_AD_OFF + SKF_AD_QUEUE:
420 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
421 insn += cnt - 1;
422 break;
423
424 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
425 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
426 BPF_REG_A, BPF_REG_CTX, insn);
427 insn += cnt - 1;
428 break;
429
430 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
431 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
432 BPF_REG_A, BPF_REG_CTX, insn);
433 insn += cnt - 1;
434 break;
435
436 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
437 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
438
439 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
440 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
441 offsetof(struct sk_buff, vlan_proto));
442 /* A = ntohs(A) [emitting a nop or swap16] */
443 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
444 break;
445
446 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
447 case SKF_AD_OFF + SKF_AD_NLATTR:
448 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 case SKF_AD_OFF + SKF_AD_CPU:
450 case SKF_AD_OFF + SKF_AD_RANDOM:
451 /* arg1 = CTX */
452 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
453 /* arg2 = A */
454 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
455 /* arg3 = X */
456 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
457 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
458 switch (fp->k) {
459 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
460 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
461 break;
462 case SKF_AD_OFF + SKF_AD_NLATTR:
463 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
464 break;
465 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
466 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
467 break;
468 case SKF_AD_OFF + SKF_AD_CPU:
469 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
470 break;
471 case SKF_AD_OFF + SKF_AD_RANDOM:
472 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
473 bpf_user_rnd_init_once();
474 break;
475 }
476 break;
477
478 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
479 /* A ^= X */
480 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
481 break;
482
483 default:
484 /* This is just a dummy call to avoid letting the compiler
485 * evict __bpf_call_base() as an optimization. Placed here
486 * where no-one bothers.
487 */
488 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
489 return false;
490 }
491
492 *insnp = insn;
493 return true;
494 }
495
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
497 {
498 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
499 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
500 bool endian = BPF_SIZE(fp->code) == BPF_H ||
501 BPF_SIZE(fp->code) == BPF_W;
502 bool indirect = BPF_MODE(fp->code) == BPF_IND;
503 const int ip_align = NET_IP_ALIGN;
504 struct bpf_insn *insn = *insnp;
505 int offset = fp->k;
506
507 if (!indirect &&
508 ((unaligned_ok && offset >= 0) ||
509 (!unaligned_ok && offset >= 0 &&
510 offset + ip_align >= 0 &&
511 offset + ip_align % size == 0))) {
512 bool ldx_off_ok = offset <= S16_MAX;
513
514 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
515 if (offset)
516 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
517 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
518 size, 2 + endian + (!ldx_off_ok * 2));
519 if (ldx_off_ok) {
520 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
521 BPF_REG_D, offset);
522 } else {
523 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
524 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
525 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
526 BPF_REG_TMP, 0);
527 }
528 if (endian)
529 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
530 *insn++ = BPF_JMP_A(8);
531 }
532
533 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
534 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
535 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
536 if (!indirect) {
537 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
538 } else {
539 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
540 if (fp->k)
541 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
542 }
543
544 switch (BPF_SIZE(fp->code)) {
545 case BPF_B:
546 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
547 break;
548 case BPF_H:
549 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
550 break;
551 case BPF_W:
552 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
553 break;
554 default:
555 return false;
556 }
557
558 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
559 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
560 *insn = BPF_EXIT_INSN();
561
562 *insnp = insn;
563 return true;
564 }
565
566 /**
567 * bpf_convert_filter - convert filter program
568 * @prog: the user passed filter program
569 * @len: the length of the user passed filter program
570 * @new_prog: allocated 'struct bpf_prog' or NULL
571 * @new_len: pointer to store length of converted program
572 * @seen_ld_abs: bool whether we've seen ld_abs/ind
573 *
574 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
575 * style extended BPF (eBPF).
576 * Conversion workflow:
577 *
578 * 1) First pass for calculating the new program length:
579 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
580 *
581 * 2) 2nd pass to remap in two passes: 1st pass finds new
582 * jump offsets, 2nd pass remapping:
583 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
584 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)585 static int bpf_convert_filter(struct sock_filter *prog, int len,
586 struct bpf_prog *new_prog, int *new_len,
587 bool *seen_ld_abs)
588 {
589 int new_flen = 0, pass = 0, target, i, stack_off;
590 struct bpf_insn *new_insn, *first_insn = NULL;
591 struct sock_filter *fp;
592 int *addrs = NULL;
593 u8 bpf_src;
594
595 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
596 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
597
598 if (len <= 0 || len > BPF_MAXINSNS)
599 return -EINVAL;
600
601 if (new_prog) {
602 first_insn = new_prog->insnsi;
603 addrs = kcalloc(len, sizeof(*addrs),
604 GFP_KERNEL | __GFP_NOWARN);
605 if (!addrs)
606 return -ENOMEM;
607 }
608
609 do_pass:
610 new_insn = first_insn;
611 fp = prog;
612
613 /* Classic BPF related prologue emission. */
614 if (new_prog) {
615 /* Classic BPF expects A and X to be reset first. These need
616 * to be guaranteed to be the first two instructions.
617 */
618 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
619 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
620
621 /* All programs must keep CTX in callee saved BPF_REG_CTX.
622 * In eBPF case it's done by the compiler, here we need to
623 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
624 */
625 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
626 if (*seen_ld_abs) {
627 /* For packet access in classic BPF, cache skb->data
628 * in callee-saved BPF R8 and skb->len - skb->data_len
629 * (headlen) in BPF R9. Since classic BPF is read-only
630 * on CTX, we only need to cache it once.
631 */
632 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
633 BPF_REG_D, BPF_REG_CTX,
634 offsetof(struct sk_buff, data));
635 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
636 offsetof(struct sk_buff, len));
637 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
638 offsetof(struct sk_buff, data_len));
639 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
640 }
641 } else {
642 new_insn += 3;
643 }
644
645 for (i = 0; i < len; fp++, i++) {
646 struct bpf_insn tmp_insns[32] = { };
647 struct bpf_insn *insn = tmp_insns;
648
649 if (addrs)
650 addrs[i] = new_insn - first_insn;
651
652 switch (fp->code) {
653 /* All arithmetic insns and skb loads map as-is. */
654 case BPF_ALU | BPF_ADD | BPF_X:
655 case BPF_ALU | BPF_ADD | BPF_K:
656 case BPF_ALU | BPF_SUB | BPF_X:
657 case BPF_ALU | BPF_SUB | BPF_K:
658 case BPF_ALU | BPF_AND | BPF_X:
659 case BPF_ALU | BPF_AND | BPF_K:
660 case BPF_ALU | BPF_OR | BPF_X:
661 case BPF_ALU | BPF_OR | BPF_K:
662 case BPF_ALU | BPF_LSH | BPF_X:
663 case BPF_ALU | BPF_LSH | BPF_K:
664 case BPF_ALU | BPF_RSH | BPF_X:
665 case BPF_ALU | BPF_RSH | BPF_K:
666 case BPF_ALU | BPF_XOR | BPF_X:
667 case BPF_ALU | BPF_XOR | BPF_K:
668 case BPF_ALU | BPF_MUL | BPF_X:
669 case BPF_ALU | BPF_MUL | BPF_K:
670 case BPF_ALU | BPF_DIV | BPF_X:
671 case BPF_ALU | BPF_DIV | BPF_K:
672 case BPF_ALU | BPF_MOD | BPF_X:
673 case BPF_ALU | BPF_MOD | BPF_K:
674 case BPF_ALU | BPF_NEG:
675 case BPF_LD | BPF_ABS | BPF_W:
676 case BPF_LD | BPF_ABS | BPF_H:
677 case BPF_LD | BPF_ABS | BPF_B:
678 case BPF_LD | BPF_IND | BPF_W:
679 case BPF_LD | BPF_IND | BPF_H:
680 case BPF_LD | BPF_IND | BPF_B:
681 /* Check for overloaded BPF extension and
682 * directly convert it if found, otherwise
683 * just move on with mapping.
684 */
685 if (BPF_CLASS(fp->code) == BPF_LD &&
686 BPF_MODE(fp->code) == BPF_ABS &&
687 convert_bpf_extensions(fp, &insn))
688 break;
689 if (BPF_CLASS(fp->code) == BPF_LD &&
690 convert_bpf_ld_abs(fp, &insn)) {
691 *seen_ld_abs = true;
692 break;
693 }
694
695 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
696 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
697 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
698 /* Error with exception code on div/mod by 0.
699 * For cBPF programs, this was always return 0.
700 */
701 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
702 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
703 *insn++ = BPF_EXIT_INSN();
704 }
705
706 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
707 break;
708
709 /* Jump transformation cannot use BPF block macros
710 * everywhere as offset calculation and target updates
711 * require a bit more work than the rest, i.e. jump
712 * opcodes map as-is, but offsets need adjustment.
713 */
714
715 #define BPF_EMIT_JMP \
716 do { \
717 const s32 off_min = S16_MIN, off_max = S16_MAX; \
718 s32 off; \
719 \
720 if (target >= len || target < 0) \
721 goto err; \
722 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
723 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
724 off -= insn - tmp_insns; \
725 /* Reject anything not fitting into insn->off. */ \
726 if (off < off_min || off > off_max) \
727 goto err; \
728 insn->off = off; \
729 } while (0)
730
731 case BPF_JMP | BPF_JA:
732 target = i + fp->k + 1;
733 insn->code = fp->code;
734 BPF_EMIT_JMP;
735 break;
736
737 case BPF_JMP | BPF_JEQ | BPF_K:
738 case BPF_JMP | BPF_JEQ | BPF_X:
739 case BPF_JMP | BPF_JSET | BPF_K:
740 case BPF_JMP | BPF_JSET | BPF_X:
741 case BPF_JMP | BPF_JGT | BPF_K:
742 case BPF_JMP | BPF_JGT | BPF_X:
743 case BPF_JMP | BPF_JGE | BPF_K:
744 case BPF_JMP | BPF_JGE | BPF_X:
745 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
746 /* BPF immediates are signed, zero extend
747 * immediate into tmp register and use it
748 * in compare insn.
749 */
750 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
751
752 insn->dst_reg = BPF_REG_A;
753 insn->src_reg = BPF_REG_TMP;
754 bpf_src = BPF_X;
755 } else {
756 insn->dst_reg = BPF_REG_A;
757 insn->imm = fp->k;
758 bpf_src = BPF_SRC(fp->code);
759 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
760 }
761
762 /* Common case where 'jump_false' is next insn. */
763 if (fp->jf == 0) {
764 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 target = i + fp->jt + 1;
766 BPF_EMIT_JMP;
767 break;
768 }
769
770 /* Convert some jumps when 'jump_true' is next insn. */
771 if (fp->jt == 0) {
772 switch (BPF_OP(fp->code)) {
773 case BPF_JEQ:
774 insn->code = BPF_JMP | BPF_JNE | bpf_src;
775 break;
776 case BPF_JGT:
777 insn->code = BPF_JMP | BPF_JLE | bpf_src;
778 break;
779 case BPF_JGE:
780 insn->code = BPF_JMP | BPF_JLT | bpf_src;
781 break;
782 default:
783 goto jmp_rest;
784 }
785
786 target = i + fp->jf + 1;
787 BPF_EMIT_JMP;
788 break;
789 }
790 jmp_rest:
791 /* Other jumps are mapped into two insns: Jxx and JA. */
792 target = i + fp->jt + 1;
793 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
794 BPF_EMIT_JMP;
795 insn++;
796
797 insn->code = BPF_JMP | BPF_JA;
798 target = i + fp->jf + 1;
799 BPF_EMIT_JMP;
800 break;
801
802 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
803 case BPF_LDX | BPF_MSH | BPF_B: {
804 struct sock_filter tmp = {
805 .code = BPF_LD | BPF_ABS | BPF_B,
806 .k = fp->k,
807 };
808
809 *seen_ld_abs = true;
810
811 /* X = A */
812 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
813 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
814 convert_bpf_ld_abs(&tmp, &insn);
815 insn++;
816 /* A &= 0xf */
817 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
818 /* A <<= 2 */
819 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
820 /* tmp = X */
821 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
822 /* X = A */
823 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 /* A = tmp */
825 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
826 break;
827 }
828 /* RET_K is remapped into 2 insns. RET_A case doesn't need an
829 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
830 */
831 case BPF_RET | BPF_A:
832 case BPF_RET | BPF_K:
833 if (BPF_RVAL(fp->code) == BPF_K)
834 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
835 0, fp->k);
836 *insn = BPF_EXIT_INSN();
837 break;
838
839 /* Store to stack. */
840 case BPF_ST:
841 case BPF_STX:
842 stack_off = fp->k * 4 + 4;
843 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
844 BPF_ST ? BPF_REG_A : BPF_REG_X,
845 -stack_off);
846 /* check_load_and_stores() verifies that classic BPF can
847 * load from stack only after write, so tracking
848 * stack_depth for ST|STX insns is enough
849 */
850 if (new_prog && new_prog->aux->stack_depth < stack_off)
851 new_prog->aux->stack_depth = stack_off;
852 break;
853
854 /* Load from stack. */
855 case BPF_LD | BPF_MEM:
856 case BPF_LDX | BPF_MEM:
857 stack_off = fp->k * 4 + 4;
858 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
859 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
860 -stack_off);
861 break;
862
863 /* A = K or X = K */
864 case BPF_LD | BPF_IMM:
865 case BPF_LDX | BPF_IMM:
866 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
867 BPF_REG_A : BPF_REG_X, fp->k);
868 break;
869
870 /* X = A */
871 case BPF_MISC | BPF_TAX:
872 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
873 break;
874
875 /* A = X */
876 case BPF_MISC | BPF_TXA:
877 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
878 break;
879
880 /* A = skb->len or X = skb->len */
881 case BPF_LD | BPF_W | BPF_LEN:
882 case BPF_LDX | BPF_W | BPF_LEN:
883 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
884 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
885 offsetof(struct sk_buff, len));
886 break;
887
888 /* Access seccomp_data fields. */
889 case BPF_LDX | BPF_ABS | BPF_W:
890 /* A = *(u32 *) (ctx + K) */
891 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
892 break;
893
894 /* Unknown instruction. */
895 default:
896 goto err;
897 }
898
899 insn++;
900 if (new_prog)
901 memcpy(new_insn, tmp_insns,
902 sizeof(*insn) * (insn - tmp_insns));
903 new_insn += insn - tmp_insns;
904 }
905
906 if (!new_prog) {
907 /* Only calculating new length. */
908 *new_len = new_insn - first_insn;
909 if (*seen_ld_abs)
910 *new_len += 4; /* Prologue bits. */
911 return 0;
912 }
913
914 pass++;
915 if (new_flen != new_insn - first_insn) {
916 new_flen = new_insn - first_insn;
917 if (pass > 2)
918 goto err;
919 goto do_pass;
920 }
921
922 kfree(addrs);
923 BUG_ON(*new_len != new_flen);
924 return 0;
925 err:
926 kfree(addrs);
927 return -EINVAL;
928 }
929
930 /* Security:
931 *
932 * As we dont want to clear mem[] array for each packet going through
933 * __bpf_prog_run(), we check that filter loaded by user never try to read
934 * a cell if not previously written, and we check all branches to be sure
935 * a malicious user doesn't try to abuse us.
936 */
check_load_and_stores(const struct sock_filter * filter,int flen)937 static int check_load_and_stores(const struct sock_filter *filter, int flen)
938 {
939 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
940 int pc, ret = 0;
941
942 BUILD_BUG_ON(BPF_MEMWORDS > 16);
943
944 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
945 if (!masks)
946 return -ENOMEM;
947
948 memset(masks, 0xff, flen * sizeof(*masks));
949
950 for (pc = 0; pc < flen; pc++) {
951 memvalid &= masks[pc];
952
953 switch (filter[pc].code) {
954 case BPF_ST:
955 case BPF_STX:
956 memvalid |= (1 << filter[pc].k);
957 break;
958 case BPF_LD | BPF_MEM:
959 case BPF_LDX | BPF_MEM:
960 if (!(memvalid & (1 << filter[pc].k))) {
961 ret = -EINVAL;
962 goto error;
963 }
964 break;
965 case BPF_JMP | BPF_JA:
966 /* A jump must set masks on target */
967 masks[pc + 1 + filter[pc].k] &= memvalid;
968 memvalid = ~0;
969 break;
970 case BPF_JMP | BPF_JEQ | BPF_K:
971 case BPF_JMP | BPF_JEQ | BPF_X:
972 case BPF_JMP | BPF_JGE | BPF_K:
973 case BPF_JMP | BPF_JGE | BPF_X:
974 case BPF_JMP | BPF_JGT | BPF_K:
975 case BPF_JMP | BPF_JGT | BPF_X:
976 case BPF_JMP | BPF_JSET | BPF_K:
977 case BPF_JMP | BPF_JSET | BPF_X:
978 /* A jump must set masks on targets */
979 masks[pc + 1 + filter[pc].jt] &= memvalid;
980 masks[pc + 1 + filter[pc].jf] &= memvalid;
981 memvalid = ~0;
982 break;
983 }
984 }
985 error:
986 kfree(masks);
987 return ret;
988 }
989
chk_code_allowed(u16 code_to_probe)990 static bool chk_code_allowed(u16 code_to_probe)
991 {
992 static const bool codes[] = {
993 /* 32 bit ALU operations */
994 [BPF_ALU | BPF_ADD | BPF_K] = true,
995 [BPF_ALU | BPF_ADD | BPF_X] = true,
996 [BPF_ALU | BPF_SUB | BPF_K] = true,
997 [BPF_ALU | BPF_SUB | BPF_X] = true,
998 [BPF_ALU | BPF_MUL | BPF_K] = true,
999 [BPF_ALU | BPF_MUL | BPF_X] = true,
1000 [BPF_ALU | BPF_DIV | BPF_K] = true,
1001 [BPF_ALU | BPF_DIV | BPF_X] = true,
1002 [BPF_ALU | BPF_MOD | BPF_K] = true,
1003 [BPF_ALU | BPF_MOD | BPF_X] = true,
1004 [BPF_ALU | BPF_AND | BPF_K] = true,
1005 [BPF_ALU | BPF_AND | BPF_X] = true,
1006 [BPF_ALU | BPF_OR | BPF_K] = true,
1007 [BPF_ALU | BPF_OR | BPF_X] = true,
1008 [BPF_ALU | BPF_XOR | BPF_K] = true,
1009 [BPF_ALU | BPF_XOR | BPF_X] = true,
1010 [BPF_ALU | BPF_LSH | BPF_K] = true,
1011 [BPF_ALU | BPF_LSH | BPF_X] = true,
1012 [BPF_ALU | BPF_RSH | BPF_K] = true,
1013 [BPF_ALU | BPF_RSH | BPF_X] = true,
1014 [BPF_ALU | BPF_NEG] = true,
1015 /* Load instructions */
1016 [BPF_LD | BPF_W | BPF_ABS] = true,
1017 [BPF_LD | BPF_H | BPF_ABS] = true,
1018 [BPF_LD | BPF_B | BPF_ABS] = true,
1019 [BPF_LD | BPF_W | BPF_LEN] = true,
1020 [BPF_LD | BPF_W | BPF_IND] = true,
1021 [BPF_LD | BPF_H | BPF_IND] = true,
1022 [BPF_LD | BPF_B | BPF_IND] = true,
1023 [BPF_LD | BPF_IMM] = true,
1024 [BPF_LD | BPF_MEM] = true,
1025 [BPF_LDX | BPF_W | BPF_LEN] = true,
1026 [BPF_LDX | BPF_B | BPF_MSH] = true,
1027 [BPF_LDX | BPF_IMM] = true,
1028 [BPF_LDX | BPF_MEM] = true,
1029 /* Store instructions */
1030 [BPF_ST] = true,
1031 [BPF_STX] = true,
1032 /* Misc instructions */
1033 [BPF_MISC | BPF_TAX] = true,
1034 [BPF_MISC | BPF_TXA] = true,
1035 /* Return instructions */
1036 [BPF_RET | BPF_K] = true,
1037 [BPF_RET | BPF_A] = true,
1038 /* Jump instructions */
1039 [BPF_JMP | BPF_JA] = true,
1040 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1041 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1042 [BPF_JMP | BPF_JGE | BPF_K] = true,
1043 [BPF_JMP | BPF_JGE | BPF_X] = true,
1044 [BPF_JMP | BPF_JGT | BPF_K] = true,
1045 [BPF_JMP | BPF_JGT | BPF_X] = true,
1046 [BPF_JMP | BPF_JSET | BPF_K] = true,
1047 [BPF_JMP | BPF_JSET | BPF_X] = true,
1048 };
1049
1050 if (code_to_probe >= ARRAY_SIZE(codes))
1051 return false;
1052
1053 return codes[code_to_probe];
1054 }
1055
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1056 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1057 unsigned int flen)
1058 {
1059 if (filter == NULL)
1060 return false;
1061 if (flen == 0 || flen > BPF_MAXINSNS)
1062 return false;
1063
1064 return true;
1065 }
1066
1067 /**
1068 * bpf_check_classic - verify socket filter code
1069 * @filter: filter to verify
1070 * @flen: length of filter
1071 *
1072 * Check the user's filter code. If we let some ugly
1073 * filter code slip through kaboom! The filter must contain
1074 * no references or jumps that are out of range, no illegal
1075 * instructions, and must end with a RET instruction.
1076 *
1077 * All jumps are forward as they are not signed.
1078 *
1079 * Returns 0 if the rule set is legal or -EINVAL if not.
1080 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1081 static int bpf_check_classic(const struct sock_filter *filter,
1082 unsigned int flen)
1083 {
1084 bool anc_found;
1085 int pc;
1086
1087 /* Check the filter code now */
1088 for (pc = 0; pc < flen; pc++) {
1089 const struct sock_filter *ftest = &filter[pc];
1090
1091 /* May we actually operate on this code? */
1092 if (!chk_code_allowed(ftest->code))
1093 return -EINVAL;
1094
1095 /* Some instructions need special checks */
1096 switch (ftest->code) {
1097 case BPF_ALU | BPF_DIV | BPF_K:
1098 case BPF_ALU | BPF_MOD | BPF_K:
1099 /* Check for division by zero */
1100 if (ftest->k == 0)
1101 return -EINVAL;
1102 break;
1103 case BPF_ALU | BPF_LSH | BPF_K:
1104 case BPF_ALU | BPF_RSH | BPF_K:
1105 if (ftest->k >= 32)
1106 return -EINVAL;
1107 break;
1108 case BPF_LD | BPF_MEM:
1109 case BPF_LDX | BPF_MEM:
1110 case BPF_ST:
1111 case BPF_STX:
1112 /* Check for invalid memory addresses */
1113 if (ftest->k >= BPF_MEMWORDS)
1114 return -EINVAL;
1115 break;
1116 case BPF_JMP | BPF_JA:
1117 /* Note, the large ftest->k might cause loops.
1118 * Compare this with conditional jumps below,
1119 * where offsets are limited. --ANK (981016)
1120 */
1121 if (ftest->k >= (unsigned int)(flen - pc - 1))
1122 return -EINVAL;
1123 break;
1124 case BPF_JMP | BPF_JEQ | BPF_K:
1125 case BPF_JMP | BPF_JEQ | BPF_X:
1126 case BPF_JMP | BPF_JGE | BPF_K:
1127 case BPF_JMP | BPF_JGE | BPF_X:
1128 case BPF_JMP | BPF_JGT | BPF_K:
1129 case BPF_JMP | BPF_JGT | BPF_X:
1130 case BPF_JMP | BPF_JSET | BPF_K:
1131 case BPF_JMP | BPF_JSET | BPF_X:
1132 /* Both conditionals must be safe */
1133 if (pc + ftest->jt + 1 >= flen ||
1134 pc + ftest->jf + 1 >= flen)
1135 return -EINVAL;
1136 break;
1137 case BPF_LD | BPF_W | BPF_ABS:
1138 case BPF_LD | BPF_H | BPF_ABS:
1139 case BPF_LD | BPF_B | BPF_ABS:
1140 anc_found = false;
1141 if (bpf_anc_helper(ftest) & BPF_ANC)
1142 anc_found = true;
1143 /* Ancillary operation unknown or unsupported */
1144 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1145 return -EINVAL;
1146 }
1147 }
1148
1149 /* Last instruction must be a RET code */
1150 switch (filter[flen - 1].code) {
1151 case BPF_RET | BPF_K:
1152 case BPF_RET | BPF_A:
1153 return check_load_and_stores(filter, flen);
1154 }
1155
1156 return -EINVAL;
1157 }
1158
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1160 const struct sock_fprog *fprog)
1161 {
1162 unsigned int fsize = bpf_classic_proglen(fprog);
1163 struct sock_fprog_kern *fkprog;
1164
1165 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1166 if (!fp->orig_prog)
1167 return -ENOMEM;
1168
1169 fkprog = fp->orig_prog;
1170 fkprog->len = fprog->len;
1171
1172 fkprog->filter = kmemdup(fp->insns, fsize,
1173 GFP_KERNEL | __GFP_NOWARN);
1174 if (!fkprog->filter) {
1175 kfree(fp->orig_prog);
1176 return -ENOMEM;
1177 }
1178
1179 return 0;
1180 }
1181
bpf_release_orig_filter(struct bpf_prog * fp)1182 static void bpf_release_orig_filter(struct bpf_prog *fp)
1183 {
1184 struct sock_fprog_kern *fprog = fp->orig_prog;
1185
1186 if (fprog) {
1187 kfree(fprog->filter);
1188 kfree(fprog);
1189 }
1190 }
1191
__bpf_prog_release(struct bpf_prog * prog)1192 static void __bpf_prog_release(struct bpf_prog *prog)
1193 {
1194 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1195 bpf_prog_put(prog);
1196 } else {
1197 bpf_release_orig_filter(prog);
1198 bpf_prog_free(prog);
1199 }
1200 }
1201
__sk_filter_release(struct sk_filter * fp)1202 static void __sk_filter_release(struct sk_filter *fp)
1203 {
1204 __bpf_prog_release(fp->prog);
1205 kfree(fp);
1206 }
1207
1208 /**
1209 * sk_filter_release_rcu - Release a socket filter by rcu_head
1210 * @rcu: rcu_head that contains the sk_filter to free
1211 */
sk_filter_release_rcu(struct rcu_head * rcu)1212 static void sk_filter_release_rcu(struct rcu_head *rcu)
1213 {
1214 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1215
1216 __sk_filter_release(fp);
1217 }
1218
1219 /**
1220 * sk_filter_release - release a socket filter
1221 * @fp: filter to remove
1222 *
1223 * Remove a filter from a socket and release its resources.
1224 */
sk_filter_release(struct sk_filter * fp)1225 static void sk_filter_release(struct sk_filter *fp)
1226 {
1227 if (refcount_dec_and_test(&fp->refcnt))
1228 call_rcu(&fp->rcu, sk_filter_release_rcu);
1229 }
1230
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1232 {
1233 u32 filter_size = bpf_prog_size(fp->prog->len);
1234
1235 atomic_sub(filter_size, &sk->sk_omem_alloc);
1236 sk_filter_release(fp);
1237 }
1238
1239 /* try to charge the socket memory if there is space available
1240 * return true on success
1241 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1243 {
1244 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1245 u32 filter_size = bpf_prog_size(fp->prog->len);
1246
1247 /* same check as in sock_kmalloc() */
1248 if (filter_size <= optmem_max &&
1249 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1250 atomic_add(filter_size, &sk->sk_omem_alloc);
1251 return true;
1252 }
1253 return false;
1254 }
1255
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1257 {
1258 if (!refcount_inc_not_zero(&fp->refcnt))
1259 return false;
1260
1261 if (!__sk_filter_charge(sk, fp)) {
1262 sk_filter_release(fp);
1263 return false;
1264 }
1265 return true;
1266 }
1267
bpf_migrate_filter(struct bpf_prog * fp)1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1269 {
1270 struct sock_filter *old_prog;
1271 struct bpf_prog *old_fp;
1272 int err, new_len, old_len = fp->len;
1273 bool seen_ld_abs = false;
1274
1275 /* We are free to overwrite insns et al right here as it won't be used at
1276 * this point in time anymore internally after the migration to the eBPF
1277 * instruction representation.
1278 */
1279 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1280 sizeof(struct bpf_insn));
1281
1282 /* Conversion cannot happen on overlapping memory areas,
1283 * so we need to keep the user BPF around until the 2nd
1284 * pass. At this time, the user BPF is stored in fp->insns.
1285 */
1286 old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1287 GFP_KERNEL | __GFP_NOWARN);
1288 if (!old_prog) {
1289 err = -ENOMEM;
1290 goto out_err;
1291 }
1292
1293 /* 1st pass: calculate the new program length. */
1294 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1295 &seen_ld_abs);
1296 if (err)
1297 goto out_err_free;
1298
1299 /* Expand fp for appending the new filter representation. */
1300 old_fp = fp;
1301 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1302 if (!fp) {
1303 /* The old_fp is still around in case we couldn't
1304 * allocate new memory, so uncharge on that one.
1305 */
1306 fp = old_fp;
1307 err = -ENOMEM;
1308 goto out_err_free;
1309 }
1310
1311 fp->len = new_len;
1312
1313 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1314 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1315 &seen_ld_abs);
1316 if (err)
1317 /* 2nd bpf_convert_filter() can fail only if it fails
1318 * to allocate memory, remapping must succeed. Note,
1319 * that at this time old_fp has already been released
1320 * by krealloc().
1321 */
1322 goto out_err_free;
1323
1324 fp = bpf_prog_select_runtime(fp, &err);
1325 if (err)
1326 goto out_err_free;
1327
1328 kfree(old_prog);
1329 return fp;
1330
1331 out_err_free:
1332 kfree(old_prog);
1333 out_err:
1334 __bpf_prog_release(fp);
1335 return ERR_PTR(err);
1336 }
1337
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1339 bpf_aux_classic_check_t trans)
1340 {
1341 int err;
1342
1343 fp->bpf_func = NULL;
1344 fp->jited = 0;
1345
1346 err = bpf_check_classic(fp->insns, fp->len);
1347 if (err) {
1348 __bpf_prog_release(fp);
1349 return ERR_PTR(err);
1350 }
1351
1352 /* There might be additional checks and transformations
1353 * needed on classic filters, f.e. in case of seccomp.
1354 */
1355 if (trans) {
1356 err = trans(fp->insns, fp->len);
1357 if (err) {
1358 __bpf_prog_release(fp);
1359 return ERR_PTR(err);
1360 }
1361 }
1362
1363 /* Probe if we can JIT compile the filter and if so, do
1364 * the compilation of the filter.
1365 */
1366 bpf_jit_compile(fp);
1367
1368 /* JIT compiler couldn't process this filter, so do the eBPF translation
1369 * for the optimized interpreter.
1370 */
1371 if (!fp->jited)
1372 fp = bpf_migrate_filter(fp);
1373
1374 return fp;
1375 }
1376
1377 /**
1378 * bpf_prog_create - create an unattached filter
1379 * @pfp: the unattached filter that is created
1380 * @fprog: the filter program
1381 *
1382 * Create a filter independent of any socket. We first run some
1383 * sanity checks on it to make sure it does not explode on us later.
1384 * If an error occurs or there is insufficient memory for the filter
1385 * a negative errno code is returned. On success the return is zero.
1386 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1388 {
1389 unsigned int fsize = bpf_classic_proglen(fprog);
1390 struct bpf_prog *fp;
1391
1392 /* Make sure new filter is there and in the right amounts. */
1393 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1394 return -EINVAL;
1395
1396 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1397 if (!fp)
1398 return -ENOMEM;
1399
1400 memcpy(fp->insns, fprog->filter, fsize);
1401
1402 fp->len = fprog->len;
1403 /* Since unattached filters are not copied back to user
1404 * space through sk_get_filter(), we do not need to hold
1405 * a copy here, and can spare us the work.
1406 */
1407 fp->orig_prog = NULL;
1408
1409 /* bpf_prepare_filter() already takes care of freeing
1410 * memory in case something goes wrong.
1411 */
1412 fp = bpf_prepare_filter(fp, NULL);
1413 if (IS_ERR(fp))
1414 return PTR_ERR(fp);
1415
1416 *pfp = fp;
1417 return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(bpf_prog_create);
1420
1421 /**
1422 * bpf_prog_create_from_user - create an unattached filter from user buffer
1423 * @pfp: the unattached filter that is created
1424 * @fprog: the filter program
1425 * @trans: post-classic verifier transformation handler
1426 * @save_orig: save classic BPF program
1427 *
1428 * This function effectively does the same as bpf_prog_create(), only
1429 * that it builds up its insns buffer from user space provided buffer.
1430 * It also allows for passing a bpf_aux_classic_check_t handler.
1431 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1433 bpf_aux_classic_check_t trans, bool save_orig)
1434 {
1435 unsigned int fsize = bpf_classic_proglen(fprog);
1436 struct bpf_prog *fp;
1437 int err;
1438
1439 /* Make sure new filter is there and in the right amounts. */
1440 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1441 return -EINVAL;
1442
1443 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1444 if (!fp)
1445 return -ENOMEM;
1446
1447 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1448 __bpf_prog_free(fp);
1449 return -EFAULT;
1450 }
1451
1452 fp->len = fprog->len;
1453 fp->orig_prog = NULL;
1454
1455 if (save_orig) {
1456 err = bpf_prog_store_orig_filter(fp, fprog);
1457 if (err) {
1458 __bpf_prog_free(fp);
1459 return -ENOMEM;
1460 }
1461 }
1462
1463 /* bpf_prepare_filter() already takes care of freeing
1464 * memory in case something goes wrong.
1465 */
1466 fp = bpf_prepare_filter(fp, trans);
1467 if (IS_ERR(fp))
1468 return PTR_ERR(fp);
1469
1470 *pfp = fp;
1471 return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1474
bpf_prog_destroy(struct bpf_prog * fp)1475 void bpf_prog_destroy(struct bpf_prog *fp)
1476 {
1477 __bpf_prog_release(fp);
1478 }
1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1480
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1482 {
1483 struct sk_filter *fp, *old_fp;
1484
1485 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1486 if (!fp)
1487 return -ENOMEM;
1488
1489 fp->prog = prog;
1490
1491 if (!__sk_filter_charge(sk, fp)) {
1492 kfree(fp);
1493 return -ENOMEM;
1494 }
1495 refcount_set(&fp->refcnt, 1);
1496
1497 old_fp = rcu_dereference_protected(sk->sk_filter,
1498 lockdep_sock_is_held(sk));
1499 rcu_assign_pointer(sk->sk_filter, fp);
1500
1501 if (old_fp)
1502 sk_filter_uncharge(sk, old_fp);
1503
1504 return 0;
1505 }
1506
1507 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1509 {
1510 unsigned int fsize = bpf_classic_proglen(fprog);
1511 struct bpf_prog *prog;
1512 int err;
1513
1514 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1515 return ERR_PTR(-EPERM);
1516
1517 /* Make sure new filter is there and in the right amounts. */
1518 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1519 return ERR_PTR(-EINVAL);
1520
1521 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1522 if (!prog)
1523 return ERR_PTR(-ENOMEM);
1524
1525 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1526 __bpf_prog_free(prog);
1527 return ERR_PTR(-EFAULT);
1528 }
1529
1530 prog->len = fprog->len;
1531
1532 err = bpf_prog_store_orig_filter(prog, fprog);
1533 if (err) {
1534 __bpf_prog_free(prog);
1535 return ERR_PTR(-ENOMEM);
1536 }
1537
1538 /* bpf_prepare_filter() already takes care of freeing
1539 * memory in case something goes wrong.
1540 */
1541 return bpf_prepare_filter(prog, NULL);
1542 }
1543
1544 /**
1545 * sk_attach_filter - attach a socket filter
1546 * @fprog: the filter program
1547 * @sk: the socket to use
1548 *
1549 * Attach the user's filter code. We first run some sanity checks on
1550 * it to make sure it does not explode on us later. If an error
1551 * occurs or there is insufficient memory for the filter a negative
1552 * errno code is returned. On success the return is zero.
1553 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1555 {
1556 struct bpf_prog *prog = __get_filter(fprog, sk);
1557 int err;
1558
1559 if (IS_ERR(prog))
1560 return PTR_ERR(prog);
1561
1562 err = __sk_attach_prog(prog, sk);
1563 if (err < 0) {
1564 __bpf_prog_release(prog);
1565 return err;
1566 }
1567
1568 return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(sk_attach_filter);
1571
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1573 {
1574 struct bpf_prog *prog = __get_filter(fprog, sk);
1575 int err, optmem_max;
1576
1577 if (IS_ERR(prog))
1578 return PTR_ERR(prog);
1579
1580 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1581 if (bpf_prog_size(prog->len) > optmem_max)
1582 err = -ENOMEM;
1583 else
1584 err = reuseport_attach_prog(sk, prog);
1585
1586 if (err)
1587 __bpf_prog_release(prog);
1588
1589 return err;
1590 }
1591
__get_bpf(u32 ufd,struct sock * sk)1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1593 {
1594 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595 return ERR_PTR(-EPERM);
1596
1597 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598 }
1599
sk_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 struct bpf_prog *prog = __get_bpf(ufd, sk);
1603 int err;
1604
1605 if (IS_ERR(prog))
1606 return PTR_ERR(prog);
1607
1608 err = __sk_attach_prog(prog, sk);
1609 if (err < 0) {
1610 bpf_prog_put(prog);
1611 return err;
1612 }
1613
1614 return 0;
1615 }
1616
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1618 {
1619 struct bpf_prog *prog;
1620 int err, optmem_max;
1621
1622 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1623 return -EPERM;
1624
1625 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1626 if (PTR_ERR(prog) == -EINVAL)
1627 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1628 if (IS_ERR(prog))
1629 return PTR_ERR(prog);
1630
1631 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1632 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1633 * bpf prog (e.g. sockmap). It depends on the
1634 * limitation imposed by bpf_prog_load().
1635 * Hence, sysctl_optmem_max is not checked.
1636 */
1637 if ((sk->sk_type != SOCK_STREAM &&
1638 sk->sk_type != SOCK_DGRAM) ||
1639 (sk->sk_protocol != IPPROTO_UDP &&
1640 sk->sk_protocol != IPPROTO_TCP) ||
1641 (sk->sk_family != AF_INET &&
1642 sk->sk_family != AF_INET6)) {
1643 err = -ENOTSUPP;
1644 goto err_prog_put;
1645 }
1646 } else {
1647 /* BPF_PROG_TYPE_SOCKET_FILTER */
1648 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1649 if (bpf_prog_size(prog->len) > optmem_max) {
1650 err = -ENOMEM;
1651 goto err_prog_put;
1652 }
1653 }
1654
1655 err = reuseport_attach_prog(sk, prog);
1656 err_prog_put:
1657 if (err)
1658 bpf_prog_put(prog);
1659
1660 return err;
1661 }
1662
sk_reuseport_prog_free(struct bpf_prog * prog)1663 void sk_reuseport_prog_free(struct bpf_prog *prog)
1664 {
1665 if (!prog)
1666 return;
1667
1668 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1669 bpf_prog_put(prog);
1670 else
1671 bpf_prog_destroy(prog);
1672 }
1673
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1674 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1675 unsigned int write_len)
1676 {
1677 #ifdef CONFIG_DEBUG_NET
1678 /* Avoid a splat in pskb_may_pull_reason() */
1679 if (write_len > INT_MAX)
1680 return -EINVAL;
1681 #endif
1682 return skb_ensure_writable(skb, write_len);
1683 }
1684
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1685 static inline int bpf_try_make_writable(struct sk_buff *skb,
1686 unsigned int write_len)
1687 {
1688 int err = __bpf_try_make_writable(skb, write_len);
1689
1690 bpf_compute_data_pointers(skb);
1691 return err;
1692 }
1693
bpf_try_make_head_writable(struct sk_buff * skb)1694 static int bpf_try_make_head_writable(struct sk_buff *skb)
1695 {
1696 return bpf_try_make_writable(skb, skb_headlen(skb));
1697 }
1698
bpf_push_mac_rcsum(struct sk_buff * skb)1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1700 {
1701 if (skb_at_tc_ingress(skb))
1702 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1703 }
1704
bpf_pull_mac_rcsum(struct sk_buff * skb)1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1706 {
1707 if (skb_at_tc_ingress(skb))
1708 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1709 }
1710
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1712 const void *, from, u32, len, u64, flags)
1713 {
1714 void *ptr;
1715
1716 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1717 return -EINVAL;
1718 if (unlikely(offset > INT_MAX))
1719 return -EFAULT;
1720 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1721 return -EFAULT;
1722
1723 ptr = skb->data + offset;
1724 if (flags & BPF_F_RECOMPUTE_CSUM)
1725 __skb_postpull_rcsum(skb, ptr, len, offset);
1726
1727 memcpy(ptr, from, len);
1728
1729 if (flags & BPF_F_RECOMPUTE_CSUM)
1730 __skb_postpush_rcsum(skb, ptr, len, offset);
1731 if (flags & BPF_F_INVALIDATE_HASH)
1732 skb_clear_hash(skb);
1733
1734 return 0;
1735 }
1736
1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1738 .func = bpf_skb_store_bytes,
1739 .gpl_only = false,
1740 .ret_type = RET_INTEGER,
1741 .arg1_type = ARG_PTR_TO_CTX,
1742 .arg2_type = ARG_ANYTHING,
1743 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1744 .arg4_type = ARG_CONST_SIZE,
1745 .arg5_type = ARG_ANYTHING,
1746 };
1747
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1749 u32 len, u64 flags)
1750 {
1751 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1752 }
1753
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1755 void *, to, u32, len)
1756 {
1757 void *ptr;
1758
1759 if (unlikely(offset > INT_MAX))
1760 goto err_clear;
1761
1762 ptr = skb_header_pointer(skb, offset, len, to);
1763 if (unlikely(!ptr))
1764 goto err_clear;
1765 if (ptr != to)
1766 memcpy(to, ptr, len);
1767
1768 return 0;
1769 err_clear:
1770 memset(to, 0, len);
1771 return -EFAULT;
1772 }
1773
1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1775 .func = bpf_skb_load_bytes,
1776 .gpl_only = false,
1777 .ret_type = RET_INTEGER,
1778 .arg1_type = ARG_PTR_TO_CTX,
1779 .arg2_type = ARG_ANYTHING,
1780 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1781 .arg4_type = ARG_CONST_SIZE,
1782 };
1783
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1785 {
1786 return ____bpf_skb_load_bytes(skb, offset, to, len);
1787 }
1788
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1789 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1790 const struct bpf_flow_dissector *, ctx, u32, offset,
1791 void *, to, u32, len)
1792 {
1793 void *ptr;
1794
1795 if (unlikely(offset > 0xffff))
1796 goto err_clear;
1797
1798 if (unlikely(!ctx->skb))
1799 goto err_clear;
1800
1801 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1802 if (unlikely(!ptr))
1803 goto err_clear;
1804 if (ptr != to)
1805 memcpy(to, ptr, len);
1806
1807 return 0;
1808 err_clear:
1809 memset(to, 0, len);
1810 return -EFAULT;
1811 }
1812
1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1814 .func = bpf_flow_dissector_load_bytes,
1815 .gpl_only = false,
1816 .ret_type = RET_INTEGER,
1817 .arg1_type = ARG_PTR_TO_CTX,
1818 .arg2_type = ARG_ANYTHING,
1819 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1820 .arg4_type = ARG_CONST_SIZE,
1821 };
1822
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1824 u32, offset, void *, to, u32, len, u32, start_header)
1825 {
1826 u8 *end = skb_tail_pointer(skb);
1827 u8 *start, *ptr;
1828
1829 if (unlikely(offset > 0xffff))
1830 goto err_clear;
1831
1832 switch (start_header) {
1833 case BPF_HDR_START_MAC:
1834 if (unlikely(!skb_mac_header_was_set(skb)))
1835 goto err_clear;
1836 start = skb_mac_header(skb);
1837 break;
1838 case BPF_HDR_START_NET:
1839 start = skb_network_header(skb);
1840 break;
1841 default:
1842 goto err_clear;
1843 }
1844
1845 ptr = start + offset;
1846
1847 if (likely(ptr + len <= end)) {
1848 memcpy(to, ptr, len);
1849 return 0;
1850 }
1851
1852 err_clear:
1853 memset(to, 0, len);
1854 return -EFAULT;
1855 }
1856
1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1858 .func = bpf_skb_load_bytes_relative,
1859 .gpl_only = false,
1860 .ret_type = RET_INTEGER,
1861 .arg1_type = ARG_PTR_TO_CTX,
1862 .arg2_type = ARG_ANYTHING,
1863 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1864 .arg4_type = ARG_CONST_SIZE,
1865 .arg5_type = ARG_ANYTHING,
1866 };
1867
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870 /* Idea is the following: should the needed direct read/write
1871 * test fail during runtime, we can pull in more data and redo
1872 * again, since implicitly, we invalidate previous checks here.
1873 *
1874 * Or, since we know how much we need to make read/writeable,
1875 * this can be done once at the program beginning for direct
1876 * access case. By this we overcome limitations of only current
1877 * headroom being accessible.
1878 */
1879 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881
1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1883 .func = bpf_skb_pull_data,
1884 .gpl_only = false,
1885 .ret_type = RET_INTEGER,
1886 .arg1_type = ARG_PTR_TO_CTX,
1887 .arg2_type = ARG_ANYTHING,
1888 };
1889
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1891 {
1892 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1893 }
1894
1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1896 .func = bpf_sk_fullsock,
1897 .gpl_only = false,
1898 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1899 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1900 };
1901
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1903 unsigned int write_len)
1904 {
1905 return __bpf_try_make_writable(skb, write_len);
1906 }
1907
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1909 {
1910 /* Idea is the following: should the needed direct read/write
1911 * test fail during runtime, we can pull in more data and redo
1912 * again, since implicitly, we invalidate previous checks here.
1913 *
1914 * Or, since we know how much we need to make read/writeable,
1915 * this can be done once at the program beginning for direct
1916 * access case. By this we overcome limitations of only current
1917 * headroom being accessible.
1918 */
1919 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1920 }
1921
1922 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1923 .func = sk_skb_pull_data,
1924 .gpl_only = false,
1925 .ret_type = RET_INTEGER,
1926 .arg1_type = ARG_PTR_TO_CTX,
1927 .arg2_type = ARG_ANYTHING,
1928 };
1929
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1931 u64, from, u64, to, u64, flags)
1932 {
1933 __sum16 *ptr;
1934
1935 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1936 return -EINVAL;
1937 if (unlikely(offset > 0xffff || offset & 1))
1938 return -EFAULT;
1939 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1940 return -EFAULT;
1941
1942 ptr = (__sum16 *)(skb->data + offset);
1943 switch (flags & BPF_F_HDR_FIELD_MASK) {
1944 case 0:
1945 if (unlikely(from != 0))
1946 return -EINVAL;
1947
1948 csum_replace_by_diff(ptr, to);
1949 break;
1950 case 2:
1951 csum_replace2(ptr, from, to);
1952 break;
1953 case 4:
1954 csum_replace4(ptr, from, to);
1955 break;
1956 default:
1957 return -EINVAL;
1958 }
1959
1960 return 0;
1961 }
1962
1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1964 .func = bpf_l3_csum_replace,
1965 .gpl_only = false,
1966 .ret_type = RET_INTEGER,
1967 .arg1_type = ARG_PTR_TO_CTX,
1968 .arg2_type = ARG_ANYTHING,
1969 .arg3_type = ARG_ANYTHING,
1970 .arg4_type = ARG_ANYTHING,
1971 .arg5_type = ARG_ANYTHING,
1972 };
1973
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1975 u64, from, u64, to, u64, flags)
1976 {
1977 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1978 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1979 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1980 bool is_ipv6 = flags & BPF_F_IPV6;
1981 __sum16 *ptr;
1982
1983 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1984 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1985 return -EINVAL;
1986 if (unlikely(offset > 0xffff || offset & 1))
1987 return -EFAULT;
1988 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1989 return -EFAULT;
1990
1991 ptr = (__sum16 *)(skb->data + offset);
1992 if (is_mmzero && !do_mforce && !*ptr)
1993 return 0;
1994
1995 switch (flags & BPF_F_HDR_FIELD_MASK) {
1996 case 0:
1997 if (unlikely(from != 0))
1998 return -EINVAL;
1999
2000 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
2001 break;
2002 case 2:
2003 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
2004 break;
2005 case 4:
2006 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2007 break;
2008 default:
2009 return -EINVAL;
2010 }
2011
2012 if (is_mmzero && !*ptr)
2013 *ptr = CSUM_MANGLED_0;
2014 return 0;
2015 }
2016
2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2018 .func = bpf_l4_csum_replace,
2019 .gpl_only = false,
2020 .ret_type = RET_INTEGER,
2021 .arg1_type = ARG_PTR_TO_CTX,
2022 .arg2_type = ARG_ANYTHING,
2023 .arg3_type = ARG_ANYTHING,
2024 .arg4_type = ARG_ANYTHING,
2025 .arg5_type = ARG_ANYTHING,
2026 };
2027
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2029 __be32 *, to, u32, to_size, __wsum, seed)
2030 {
2031 /* This is quite flexible, some examples:
2032 *
2033 * from_size == 0, to_size > 0, seed := csum --> pushing data
2034 * from_size > 0, to_size == 0, seed := csum --> pulling data
2035 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2036 *
2037 * Even for diffing, from_size and to_size don't need to be equal.
2038 */
2039
2040 __wsum ret = seed;
2041
2042 if (from_size && to_size)
2043 ret = csum_sub(csum_partial(to, to_size, ret),
2044 csum_partial(from, from_size, 0));
2045 else if (to_size)
2046 ret = csum_partial(to, to_size, ret);
2047
2048 else if (from_size)
2049 ret = ~csum_partial(from, from_size, ~ret);
2050
2051 return csum_from32to16((__force unsigned int)ret);
2052 }
2053
2054 static const struct bpf_func_proto bpf_csum_diff_proto = {
2055 .func = bpf_csum_diff,
2056 .gpl_only = false,
2057 .pkt_access = true,
2058 .ret_type = RET_INTEGER,
2059 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2060 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2061 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2062 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2063 .arg5_type = ARG_ANYTHING,
2064 };
2065
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2067 {
2068 /* The interface is to be used in combination with bpf_csum_diff()
2069 * for direct packet writes. csum rotation for alignment as well
2070 * as emulating csum_sub() can be done from the eBPF program.
2071 */
2072 if (skb->ip_summed == CHECKSUM_COMPLETE)
2073 return (skb->csum = csum_add(skb->csum, csum));
2074
2075 return -ENOTSUPP;
2076 }
2077
2078 static const struct bpf_func_proto bpf_csum_update_proto = {
2079 .func = bpf_csum_update,
2080 .gpl_only = false,
2081 .ret_type = RET_INTEGER,
2082 .arg1_type = ARG_PTR_TO_CTX,
2083 .arg2_type = ARG_ANYTHING,
2084 };
2085
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2087 {
2088 /* The interface is to be used in combination with bpf_skb_adjust_room()
2089 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2090 * is passed as flags, for example.
2091 */
2092 switch (level) {
2093 case BPF_CSUM_LEVEL_INC:
2094 __skb_incr_checksum_unnecessary(skb);
2095 break;
2096 case BPF_CSUM_LEVEL_DEC:
2097 __skb_decr_checksum_unnecessary(skb);
2098 break;
2099 case BPF_CSUM_LEVEL_RESET:
2100 __skb_reset_checksum_unnecessary(skb);
2101 break;
2102 case BPF_CSUM_LEVEL_QUERY:
2103 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2104 skb->csum_level : -EACCES;
2105 default:
2106 return -EINVAL;
2107 }
2108
2109 return 0;
2110 }
2111
2112 static const struct bpf_func_proto bpf_csum_level_proto = {
2113 .func = bpf_csum_level,
2114 .gpl_only = false,
2115 .ret_type = RET_INTEGER,
2116 .arg1_type = ARG_PTR_TO_CTX,
2117 .arg2_type = ARG_ANYTHING,
2118 };
2119
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 return dev_forward_skb_nomtu(dev, skb);
2123 }
2124
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2126 struct sk_buff *skb)
2127 {
2128 int ret = ____dev_forward_skb(dev, skb, false);
2129
2130 if (likely(!ret)) {
2131 skb->dev = dev;
2132 ret = netif_rx(skb);
2133 }
2134
2135 return ret;
2136 }
2137
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2139 {
2140 int ret;
2141
2142 if (dev_xmit_recursion()) {
2143 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2144 kfree_skb(skb);
2145 return -ENETDOWN;
2146 }
2147
2148 skb->dev = dev;
2149 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2150 skb_clear_tstamp(skb);
2151
2152 dev_xmit_recursion_inc();
2153 ret = dev_queue_xmit(skb);
2154 dev_xmit_recursion_dec();
2155
2156 return ret;
2157 }
2158
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2160 u32 flags)
2161 {
2162 unsigned int mlen = skb_network_offset(skb);
2163
2164 if (unlikely(skb->len <= mlen)) {
2165 kfree_skb(skb);
2166 return -ERANGE;
2167 }
2168
2169 if (mlen) {
2170 __skb_pull(skb, mlen);
2171
2172 /* At ingress, the mac header has already been pulled once.
2173 * At egress, skb_pospull_rcsum has to be done in case that
2174 * the skb is originated from ingress (i.e. a forwarded skb)
2175 * to ensure that rcsum starts at net header.
2176 */
2177 if (!skb_at_tc_ingress(skb))
2178 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2179 }
2180 skb_pop_mac_header(skb);
2181 skb_reset_mac_len(skb);
2182 return flags & BPF_F_INGRESS ?
2183 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2184 }
2185
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2187 u32 flags)
2188 {
2189 /* Verify that a link layer header is carried */
2190 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2191 kfree_skb(skb);
2192 return -ERANGE;
2193 }
2194
2195 bpf_push_mac_rcsum(skb);
2196 return flags & BPF_F_INGRESS ?
2197 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2198 }
2199
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2201 u32 flags)
2202 {
2203 if (dev_is_mac_header_xmit(dev))
2204 return __bpf_redirect_common(skb, dev, flags);
2205 else
2206 return __bpf_redirect_no_mac(skb, dev, flags);
2207 }
2208
2209 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2211 struct net_device *dev, struct bpf_nh_params *nh)
2212 {
2213 u32 hh_len = LL_RESERVED_SPACE(dev);
2214 const struct in6_addr *nexthop;
2215 struct dst_entry *dst = NULL;
2216 struct neighbour *neigh;
2217
2218 if (dev_xmit_recursion()) {
2219 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2220 goto out_drop;
2221 }
2222
2223 skb->dev = dev;
2224 skb_clear_tstamp(skb);
2225
2226 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2227 skb = skb_expand_head(skb, hh_len);
2228 if (!skb)
2229 return -ENOMEM;
2230 }
2231
2232 rcu_read_lock();
2233 if (!nh) {
2234 dst = skb_dst(skb);
2235 nexthop = rt6_nexthop(dst_rt6_info(dst),
2236 &ipv6_hdr(skb)->daddr);
2237 } else {
2238 nexthop = &nh->ipv6_nh;
2239 }
2240 neigh = ip_neigh_gw6(dev, nexthop);
2241 if (likely(!IS_ERR(neigh))) {
2242 int ret;
2243
2244 sock_confirm_neigh(skb, neigh);
2245 local_bh_disable();
2246 dev_xmit_recursion_inc();
2247 ret = neigh_output(neigh, skb, false);
2248 dev_xmit_recursion_dec();
2249 local_bh_enable();
2250 rcu_read_unlock();
2251 return ret;
2252 }
2253 rcu_read_unlock();
2254 if (dst)
2255 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2256 out_drop:
2257 kfree_skb(skb);
2258 return -ENETDOWN;
2259 }
2260
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2262 struct bpf_nh_params *nh)
2263 {
2264 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2265 struct net *net = dev_net(dev);
2266 int err, ret = NET_XMIT_DROP;
2267
2268 if (!nh) {
2269 struct dst_entry *dst;
2270 struct flowi6 fl6 = {
2271 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2272 .flowi6_mark = skb->mark,
2273 .flowlabel = ip6_flowinfo(ip6h),
2274 .flowi6_oif = dev->ifindex,
2275 .flowi6_proto = ip6h->nexthdr,
2276 .daddr = ip6h->daddr,
2277 .saddr = ip6h->saddr,
2278 };
2279
2280 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2281 if (IS_ERR(dst))
2282 goto out_drop;
2283
2284 skb_dst_drop(skb);
2285 skb_dst_set(skb, dst);
2286 } else if (nh->nh_family != AF_INET6) {
2287 goto out_drop;
2288 }
2289
2290 err = bpf_out_neigh_v6(net, skb, dev, nh);
2291 if (unlikely(net_xmit_eval(err)))
2292 DEV_STATS_INC(dev, tx_errors);
2293 else
2294 ret = NET_XMIT_SUCCESS;
2295 goto out_xmit;
2296 out_drop:
2297 DEV_STATS_INC(dev, tx_errors);
2298 kfree_skb(skb);
2299 out_xmit:
2300 return ret;
2301 }
2302 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2303 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2304 struct bpf_nh_params *nh)
2305 {
2306 kfree_skb(skb);
2307 return NET_XMIT_DROP;
2308 }
2309 #endif /* CONFIG_IPV6 */
2310
2311 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2312 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2313 struct net_device *dev, struct bpf_nh_params *nh)
2314 {
2315 u32 hh_len = LL_RESERVED_SPACE(dev);
2316 struct neighbour *neigh;
2317 bool is_v6gw = false;
2318
2319 if (dev_xmit_recursion()) {
2320 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2321 goto out_drop;
2322 }
2323
2324 skb->dev = dev;
2325 skb_clear_tstamp(skb);
2326
2327 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2328 skb = skb_expand_head(skb, hh_len);
2329 if (!skb)
2330 return -ENOMEM;
2331 }
2332
2333 rcu_read_lock();
2334 if (!nh) {
2335 struct rtable *rt = skb_rtable(skb);
2336
2337 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2338 } else if (nh->nh_family == AF_INET6) {
2339 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2340 is_v6gw = true;
2341 } else if (nh->nh_family == AF_INET) {
2342 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2343 } else {
2344 rcu_read_unlock();
2345 goto out_drop;
2346 }
2347
2348 if (likely(!IS_ERR(neigh))) {
2349 int ret;
2350
2351 sock_confirm_neigh(skb, neigh);
2352 local_bh_disable();
2353 dev_xmit_recursion_inc();
2354 ret = neigh_output(neigh, skb, is_v6gw);
2355 dev_xmit_recursion_dec();
2356 local_bh_enable();
2357 rcu_read_unlock();
2358 return ret;
2359 }
2360 rcu_read_unlock();
2361 out_drop:
2362 kfree_skb(skb);
2363 return -ENETDOWN;
2364 }
2365
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2366 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2367 struct bpf_nh_params *nh)
2368 {
2369 const struct iphdr *ip4h = ip_hdr(skb);
2370 struct net *net = dev_net(dev);
2371 int err, ret = NET_XMIT_DROP;
2372
2373 if (!nh) {
2374 struct flowi4 fl4 = {
2375 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2376 .flowi4_mark = skb->mark,
2377 .flowi4_dscp = ip4h_dscp(ip4h),
2378 .flowi4_oif = dev->ifindex,
2379 .flowi4_proto = ip4h->protocol,
2380 .daddr = ip4h->daddr,
2381 .saddr = ip4h->saddr,
2382 };
2383 struct rtable *rt;
2384
2385 rt = ip_route_output_flow(net, &fl4, NULL);
2386 if (IS_ERR(rt))
2387 goto out_drop;
2388 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2389 ip_rt_put(rt);
2390 goto out_drop;
2391 }
2392
2393 skb_dst_drop(skb);
2394 skb_dst_set(skb, &rt->dst);
2395 }
2396
2397 err = bpf_out_neigh_v4(net, skb, dev, nh);
2398 if (unlikely(net_xmit_eval(err)))
2399 DEV_STATS_INC(dev, tx_errors);
2400 else
2401 ret = NET_XMIT_SUCCESS;
2402 goto out_xmit;
2403 out_drop:
2404 DEV_STATS_INC(dev, tx_errors);
2405 kfree_skb(skb);
2406 out_xmit:
2407 return ret;
2408 }
2409 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2410 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2411 struct bpf_nh_params *nh)
2412 {
2413 kfree_skb(skb);
2414 return NET_XMIT_DROP;
2415 }
2416 #endif /* CONFIG_INET */
2417
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2418 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2419 struct bpf_nh_params *nh)
2420 {
2421 struct ethhdr *ethh = eth_hdr(skb);
2422
2423 if (unlikely(skb->mac_header >= skb->network_header))
2424 goto out;
2425 bpf_push_mac_rcsum(skb);
2426 if (is_multicast_ether_addr(ethh->h_dest))
2427 goto out;
2428
2429 skb_pull(skb, sizeof(*ethh));
2430 skb_unset_mac_header(skb);
2431 skb_reset_network_header(skb);
2432
2433 if (skb->protocol == htons(ETH_P_IP))
2434 return __bpf_redirect_neigh_v4(skb, dev, nh);
2435 else if (skb->protocol == htons(ETH_P_IPV6))
2436 return __bpf_redirect_neigh_v6(skb, dev, nh);
2437 out:
2438 kfree_skb(skb);
2439 return -ENOTSUPP;
2440 }
2441
2442 /* Internal, non-exposed redirect flags. */
2443 enum {
2444 BPF_F_NEIGH = (1ULL << 16),
2445 BPF_F_PEER = (1ULL << 17),
2446 BPF_F_NEXTHOP = (1ULL << 18),
2447 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2448 };
2449
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2450 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2451 {
2452 struct net_device *dev;
2453 struct sk_buff *clone;
2454 int ret;
2455
2456 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2457
2458 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2459 return -EINVAL;
2460
2461 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2462 if (unlikely(!dev))
2463 return -EINVAL;
2464
2465 clone = skb_clone(skb, GFP_ATOMIC);
2466 if (unlikely(!clone))
2467 return -ENOMEM;
2468
2469 /* For direct write, we need to keep the invariant that the skbs
2470 * we're dealing with need to be uncloned. Should uncloning fail
2471 * here, we need to free the just generated clone to unclone once
2472 * again.
2473 */
2474 ret = bpf_try_make_head_writable(skb);
2475 if (unlikely(ret)) {
2476 kfree_skb(clone);
2477 return -ENOMEM;
2478 }
2479
2480 return __bpf_redirect(clone, dev, flags);
2481 }
2482
2483 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2484 .func = bpf_clone_redirect,
2485 .gpl_only = false,
2486 .ret_type = RET_INTEGER,
2487 .arg1_type = ARG_PTR_TO_CTX,
2488 .arg2_type = ARG_ANYTHING,
2489 .arg3_type = ARG_ANYTHING,
2490 };
2491
skb_get_peer_dev(struct net_device * dev)2492 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2493 {
2494 const struct net_device_ops *ops = dev->netdev_ops;
2495
2496 if (likely(ops->ndo_get_peer_dev))
2497 return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2498 netkit_peer_dev, dev);
2499 return NULL;
2500 }
2501
skb_do_redirect(struct sk_buff * skb)2502 int skb_do_redirect(struct sk_buff *skb)
2503 {
2504 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2505 struct net *net = dev_net(skb->dev);
2506 struct net_device *dev;
2507 u32 flags = ri->flags;
2508
2509 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2510 ri->tgt_index = 0;
2511 ri->flags = 0;
2512 if (unlikely(!dev))
2513 goto out_drop;
2514 if (flags & BPF_F_PEER) {
2515 if (unlikely(!skb_at_tc_ingress(skb)))
2516 goto out_drop;
2517 dev = skb_get_peer_dev(dev);
2518 if (unlikely(!dev ||
2519 !(dev->flags & IFF_UP) ||
2520 net_eq(net, dev_net(dev))))
2521 goto out_drop;
2522 skb->dev = dev;
2523 dev_sw_netstats_rx_add(dev, skb->len);
2524 skb_scrub_packet(skb, false);
2525 return -EAGAIN;
2526 }
2527 return flags & BPF_F_NEIGH ?
2528 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2529 &ri->nh : NULL) :
2530 __bpf_redirect(skb, dev, flags);
2531 out_drop:
2532 kfree_skb(skb);
2533 return -EINVAL;
2534 }
2535
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2536 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2537 {
2538 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2539
2540 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2541 return TC_ACT_SHOT;
2542
2543 ri->flags = flags;
2544 ri->tgt_index = ifindex;
2545
2546 return TC_ACT_REDIRECT;
2547 }
2548
2549 static const struct bpf_func_proto bpf_redirect_proto = {
2550 .func = bpf_redirect,
2551 .gpl_only = false,
2552 .ret_type = RET_INTEGER,
2553 .arg1_type = ARG_ANYTHING,
2554 .arg2_type = ARG_ANYTHING,
2555 };
2556
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2557 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2558 {
2559 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2560
2561 if (unlikely(flags))
2562 return TC_ACT_SHOT;
2563
2564 ri->flags = BPF_F_PEER;
2565 ri->tgt_index = ifindex;
2566
2567 return TC_ACT_REDIRECT;
2568 }
2569
2570 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2571 .func = bpf_redirect_peer,
2572 .gpl_only = false,
2573 .ret_type = RET_INTEGER,
2574 .arg1_type = ARG_ANYTHING,
2575 .arg2_type = ARG_ANYTHING,
2576 };
2577
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2578 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2579 int, plen, u64, flags)
2580 {
2581 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2582
2583 if (unlikely((plen && plen < sizeof(*params)) || flags))
2584 return TC_ACT_SHOT;
2585
2586 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2587 ri->tgt_index = ifindex;
2588
2589 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2590 if (plen)
2591 memcpy(&ri->nh, params, sizeof(ri->nh));
2592
2593 return TC_ACT_REDIRECT;
2594 }
2595
2596 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2597 .func = bpf_redirect_neigh,
2598 .gpl_only = false,
2599 .ret_type = RET_INTEGER,
2600 .arg1_type = ARG_ANYTHING,
2601 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2602 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2603 .arg4_type = ARG_ANYTHING,
2604 };
2605
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2606 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2607 {
2608 msg->apply_bytes = bytes;
2609 return 0;
2610 }
2611
2612 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2613 .func = bpf_msg_apply_bytes,
2614 .gpl_only = false,
2615 .ret_type = RET_INTEGER,
2616 .arg1_type = ARG_PTR_TO_CTX,
2617 .arg2_type = ARG_ANYTHING,
2618 };
2619
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2620 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2621 {
2622 msg->cork_bytes = bytes;
2623 return 0;
2624 }
2625
sk_msg_reset_curr(struct sk_msg * msg)2626 static void sk_msg_reset_curr(struct sk_msg *msg)
2627 {
2628 if (!msg->sg.size) {
2629 msg->sg.curr = msg->sg.start;
2630 msg->sg.copybreak = 0;
2631 } else {
2632 u32 i = msg->sg.end;
2633
2634 sk_msg_iter_var_prev(i);
2635 msg->sg.curr = i;
2636 msg->sg.copybreak = msg->sg.data[i].length;
2637 }
2638 }
2639
2640 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2641 .func = bpf_msg_cork_bytes,
2642 .gpl_only = false,
2643 .ret_type = RET_INTEGER,
2644 .arg1_type = ARG_PTR_TO_CTX,
2645 .arg2_type = ARG_ANYTHING,
2646 };
2647
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2648 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2649 u32, end, u64, flags)
2650 {
2651 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2652 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2653 struct scatterlist *sge;
2654 u8 *raw, *to, *from;
2655 struct page *page;
2656
2657 if (unlikely(flags || end <= start))
2658 return -EINVAL;
2659
2660 /* First find the starting scatterlist element */
2661 i = msg->sg.start;
2662 do {
2663 offset += len;
2664 len = sk_msg_elem(msg, i)->length;
2665 if (start < offset + len)
2666 break;
2667 sk_msg_iter_var_next(i);
2668 } while (i != msg->sg.end);
2669
2670 if (unlikely(start >= offset + len))
2671 return -EINVAL;
2672
2673 first_sge = i;
2674 /* The start may point into the sg element so we need to also
2675 * account for the headroom.
2676 */
2677 bytes_sg_total = start - offset + bytes;
2678 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2679 goto out;
2680
2681 /* At this point we need to linearize multiple scatterlist
2682 * elements or a single shared page. Either way we need to
2683 * copy into a linear buffer exclusively owned by BPF. Then
2684 * place the buffer in the scatterlist and fixup the original
2685 * entries by removing the entries now in the linear buffer
2686 * and shifting the remaining entries. For now we do not try
2687 * to copy partial entries to avoid complexity of running out
2688 * of sg_entry slots. The downside is reading a single byte
2689 * will copy the entire sg entry.
2690 */
2691 do {
2692 copy += sk_msg_elem(msg, i)->length;
2693 sk_msg_iter_var_next(i);
2694 if (bytes_sg_total <= copy)
2695 break;
2696 } while (i != msg->sg.end);
2697 last_sge = i;
2698
2699 if (unlikely(bytes_sg_total > copy))
2700 return -EINVAL;
2701
2702 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2703 get_order(copy));
2704 if (unlikely(!page))
2705 return -ENOMEM;
2706
2707 raw = page_address(page);
2708 i = first_sge;
2709 do {
2710 sge = sk_msg_elem(msg, i);
2711 from = sg_virt(sge);
2712 len = sge->length;
2713 to = raw + poffset;
2714
2715 memcpy(to, from, len);
2716 poffset += len;
2717 sge->length = 0;
2718 put_page(sg_page(sge));
2719
2720 sk_msg_iter_var_next(i);
2721 } while (i != last_sge);
2722
2723 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2724
2725 /* To repair sg ring we need to shift entries. If we only
2726 * had a single entry though we can just replace it and
2727 * be done. Otherwise walk the ring and shift the entries.
2728 */
2729 WARN_ON_ONCE(last_sge == first_sge);
2730 shift = last_sge > first_sge ?
2731 last_sge - first_sge - 1 :
2732 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2733 if (!shift)
2734 goto out;
2735
2736 i = first_sge;
2737 sk_msg_iter_var_next(i);
2738 do {
2739 u32 move_from;
2740
2741 if (i + shift >= NR_MSG_FRAG_IDS)
2742 move_from = i + shift - NR_MSG_FRAG_IDS;
2743 else
2744 move_from = i + shift;
2745 if (move_from == msg->sg.end)
2746 break;
2747
2748 msg->sg.data[i] = msg->sg.data[move_from];
2749 msg->sg.data[move_from].length = 0;
2750 msg->sg.data[move_from].page_link = 0;
2751 msg->sg.data[move_from].offset = 0;
2752 sk_msg_iter_var_next(i);
2753 } while (1);
2754
2755 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2756 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2757 msg->sg.end - shift;
2758 out:
2759 sk_msg_reset_curr(msg);
2760 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2761 msg->data_end = msg->data + bytes;
2762 return 0;
2763 }
2764
2765 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2766 .func = bpf_msg_pull_data,
2767 .gpl_only = false,
2768 .ret_type = RET_INTEGER,
2769 .arg1_type = ARG_PTR_TO_CTX,
2770 .arg2_type = ARG_ANYTHING,
2771 .arg3_type = ARG_ANYTHING,
2772 .arg4_type = ARG_ANYTHING,
2773 };
2774
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2775 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2776 u32, len, u64, flags)
2777 {
2778 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2779 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2780 u8 *raw, *to, *from;
2781 struct page *page;
2782
2783 if (unlikely(flags))
2784 return -EINVAL;
2785
2786 if (unlikely(len == 0))
2787 return 0;
2788
2789 /* First find the starting scatterlist element */
2790 i = msg->sg.start;
2791 do {
2792 offset += l;
2793 l = sk_msg_elem(msg, i)->length;
2794
2795 if (start < offset + l)
2796 break;
2797 sk_msg_iter_var_next(i);
2798 } while (i != msg->sg.end);
2799
2800 if (start > offset + l)
2801 return -EINVAL;
2802
2803 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2804
2805 /* If no space available will fallback to copy, we need at
2806 * least one scatterlist elem available to push data into
2807 * when start aligns to the beginning of an element or two
2808 * when it falls inside an element. We handle the start equals
2809 * offset case because its the common case for inserting a
2810 * header.
2811 */
2812 if (!space || (space == 1 && start != offset))
2813 copy = msg->sg.data[i].length;
2814
2815 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2816 get_order(copy + len));
2817 if (unlikely(!page))
2818 return -ENOMEM;
2819
2820 if (copy) {
2821 int front, back;
2822
2823 raw = page_address(page);
2824
2825 if (i == msg->sg.end)
2826 sk_msg_iter_var_prev(i);
2827 psge = sk_msg_elem(msg, i);
2828 front = start - offset;
2829 back = psge->length - front;
2830 from = sg_virt(psge);
2831
2832 if (front)
2833 memcpy(raw, from, front);
2834
2835 if (back) {
2836 from += front;
2837 to = raw + front + len;
2838
2839 memcpy(to, from, back);
2840 }
2841
2842 put_page(sg_page(psge));
2843 new = i;
2844 goto place_new;
2845 }
2846
2847 if (start - offset) {
2848 if (i == msg->sg.end)
2849 sk_msg_iter_var_prev(i);
2850 psge = sk_msg_elem(msg, i);
2851 rsge = sk_msg_elem_cpy(msg, i);
2852
2853 psge->length = start - offset;
2854 rsge.length -= psge->length;
2855 rsge.offset += start;
2856
2857 sk_msg_iter_var_next(i);
2858 sg_unmark_end(psge);
2859 sg_unmark_end(&rsge);
2860 }
2861
2862 /* Slot(s) to place newly allocated data */
2863 sk_msg_iter_next(msg, end);
2864 new = i;
2865 sk_msg_iter_var_next(i);
2866
2867 if (i == msg->sg.end) {
2868 if (!rsge.length)
2869 goto place_new;
2870 sk_msg_iter_next(msg, end);
2871 goto place_new;
2872 }
2873
2874 /* Shift one or two slots as needed */
2875 sge = sk_msg_elem_cpy(msg, new);
2876 sg_unmark_end(&sge);
2877
2878 nsge = sk_msg_elem_cpy(msg, i);
2879 if (rsge.length) {
2880 sk_msg_iter_var_next(i);
2881 nnsge = sk_msg_elem_cpy(msg, i);
2882 sk_msg_iter_next(msg, end);
2883 }
2884
2885 while (i != msg->sg.end) {
2886 msg->sg.data[i] = sge;
2887 sge = nsge;
2888 sk_msg_iter_var_next(i);
2889 if (rsge.length) {
2890 nsge = nnsge;
2891 nnsge = sk_msg_elem_cpy(msg, i);
2892 } else {
2893 nsge = sk_msg_elem_cpy(msg, i);
2894 }
2895 }
2896
2897 place_new:
2898 /* Place newly allocated data buffer */
2899 sk_mem_charge(msg->sk, len);
2900 msg->sg.size += len;
2901 __clear_bit(new, msg->sg.copy);
2902 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2903 if (rsge.length) {
2904 get_page(sg_page(&rsge));
2905 sk_msg_iter_var_next(new);
2906 msg->sg.data[new] = rsge;
2907 }
2908
2909 sk_msg_reset_curr(msg);
2910 sk_msg_compute_data_pointers(msg);
2911 return 0;
2912 }
2913
2914 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2915 .func = bpf_msg_push_data,
2916 .gpl_only = false,
2917 .ret_type = RET_INTEGER,
2918 .arg1_type = ARG_PTR_TO_CTX,
2919 .arg2_type = ARG_ANYTHING,
2920 .arg3_type = ARG_ANYTHING,
2921 .arg4_type = ARG_ANYTHING,
2922 };
2923
sk_msg_shift_left(struct sk_msg * msg,int i)2924 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2925 {
2926 struct scatterlist *sge = sk_msg_elem(msg, i);
2927 int prev;
2928
2929 put_page(sg_page(sge));
2930 do {
2931 prev = i;
2932 sk_msg_iter_var_next(i);
2933 msg->sg.data[prev] = msg->sg.data[i];
2934 } while (i != msg->sg.end);
2935
2936 sk_msg_iter_prev(msg, end);
2937 }
2938
sk_msg_shift_right(struct sk_msg * msg,int i)2939 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2940 {
2941 struct scatterlist tmp, sge;
2942
2943 sk_msg_iter_next(msg, end);
2944 sge = sk_msg_elem_cpy(msg, i);
2945 sk_msg_iter_var_next(i);
2946 tmp = sk_msg_elem_cpy(msg, i);
2947
2948 while (i != msg->sg.end) {
2949 msg->sg.data[i] = sge;
2950 sk_msg_iter_var_next(i);
2951 sge = tmp;
2952 tmp = sk_msg_elem_cpy(msg, i);
2953 }
2954 }
2955
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2956 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2957 u32, len, u64, flags)
2958 {
2959 u32 i = 0, l = 0, space, offset = 0;
2960 u64 last = start + len;
2961 int pop;
2962
2963 if (unlikely(flags))
2964 return -EINVAL;
2965
2966 if (unlikely(len == 0))
2967 return 0;
2968
2969 /* First find the starting scatterlist element */
2970 i = msg->sg.start;
2971 do {
2972 offset += l;
2973 l = sk_msg_elem(msg, i)->length;
2974
2975 if (start < offset + l)
2976 break;
2977 sk_msg_iter_var_next(i);
2978 } while (i != msg->sg.end);
2979
2980 /* Bounds checks: start and pop must be inside message */
2981 if (start >= offset + l || last > msg->sg.size)
2982 return -EINVAL;
2983
2984 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2985
2986 pop = len;
2987 /* --------------| offset
2988 * -| start |-------- len -------|
2989 *
2990 * |----- a ----|-------- pop -------|----- b ----|
2991 * |______________________________________________| length
2992 *
2993 *
2994 * a: region at front of scatter element to save
2995 * b: region at back of scatter element to save when length > A + pop
2996 * pop: region to pop from element, same as input 'pop' here will be
2997 * decremented below per iteration.
2998 *
2999 * Two top-level cases to handle when start != offset, first B is non
3000 * zero and second B is zero corresponding to when a pop includes more
3001 * than one element.
3002 *
3003 * Then if B is non-zero AND there is no space allocate space and
3004 * compact A, B regions into page. If there is space shift ring to
3005 * the right free'ing the next element in ring to place B, leaving
3006 * A untouched except to reduce length.
3007 */
3008 if (start != offset) {
3009 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
3010 int a = start - offset;
3011 int b = sge->length - pop - a;
3012
3013 sk_msg_iter_var_next(i);
3014
3015 if (b > 0) {
3016 if (space) {
3017 sge->length = a;
3018 sk_msg_shift_right(msg, i);
3019 nsge = sk_msg_elem(msg, i);
3020 get_page(sg_page(sge));
3021 sg_set_page(nsge,
3022 sg_page(sge),
3023 b, sge->offset + pop + a);
3024 } else {
3025 struct page *page, *orig;
3026 u8 *to, *from;
3027
3028 page = alloc_pages(__GFP_NOWARN |
3029 __GFP_COMP | GFP_ATOMIC,
3030 get_order(a + b));
3031 if (unlikely(!page))
3032 return -ENOMEM;
3033
3034 orig = sg_page(sge);
3035 from = sg_virt(sge);
3036 to = page_address(page);
3037 memcpy(to, from, a);
3038 memcpy(to + a, from + a + pop, b);
3039 sg_set_page(sge, page, a + b, 0);
3040 put_page(orig);
3041 }
3042 pop = 0;
3043 } else {
3044 pop -= (sge->length - a);
3045 sge->length = a;
3046 }
3047 }
3048
3049 /* From above the current layout _must_ be as follows,
3050 *
3051 * -| offset
3052 * -| start
3053 *
3054 * |---- pop ---|---------------- b ------------|
3055 * |____________________________________________| length
3056 *
3057 * Offset and start of the current msg elem are equal because in the
3058 * previous case we handled offset != start and either consumed the
3059 * entire element and advanced to the next element OR pop == 0.
3060 *
3061 * Two cases to handle here are first pop is less than the length
3062 * leaving some remainder b above. Simply adjust the element's layout
3063 * in this case. Or pop >= length of the element so that b = 0. In this
3064 * case advance to next element decrementing pop.
3065 */
3066 while (pop) {
3067 struct scatterlist *sge = sk_msg_elem(msg, i);
3068
3069 if (pop < sge->length) {
3070 sge->length -= pop;
3071 sge->offset += pop;
3072 pop = 0;
3073 } else {
3074 pop -= sge->length;
3075 sk_msg_shift_left(msg, i);
3076 }
3077 }
3078
3079 sk_mem_uncharge(msg->sk, len - pop);
3080 msg->sg.size -= (len - pop);
3081 sk_msg_reset_curr(msg);
3082 sk_msg_compute_data_pointers(msg);
3083 return 0;
3084 }
3085
3086 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3087 .func = bpf_msg_pop_data,
3088 .gpl_only = false,
3089 .ret_type = RET_INTEGER,
3090 .arg1_type = ARG_PTR_TO_CTX,
3091 .arg2_type = ARG_ANYTHING,
3092 .arg3_type = ARG_ANYTHING,
3093 .arg4_type = ARG_ANYTHING,
3094 };
3095
3096 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3097 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3098 {
3099 return __task_get_classid(current);
3100 }
3101
3102 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3103 .func = bpf_get_cgroup_classid_curr,
3104 .gpl_only = false,
3105 .ret_type = RET_INTEGER,
3106 };
3107
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3108 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3109 {
3110 struct sock *sk = skb_to_full_sk(skb);
3111
3112 if (!sk || !sk_fullsock(sk))
3113 return 0;
3114
3115 return sock_cgroup_classid(&sk->sk_cgrp_data);
3116 }
3117
3118 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3119 .func = bpf_skb_cgroup_classid,
3120 .gpl_only = false,
3121 .ret_type = RET_INTEGER,
3122 .arg1_type = ARG_PTR_TO_CTX,
3123 };
3124 #endif
3125
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3126 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3127 {
3128 return task_get_classid(skb);
3129 }
3130
3131 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3132 .func = bpf_get_cgroup_classid,
3133 .gpl_only = false,
3134 .ret_type = RET_INTEGER,
3135 .arg1_type = ARG_PTR_TO_CTX,
3136 };
3137
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3138 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3139 {
3140 return dst_tclassid(skb);
3141 }
3142
3143 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3144 .func = bpf_get_route_realm,
3145 .gpl_only = false,
3146 .ret_type = RET_INTEGER,
3147 .arg1_type = ARG_PTR_TO_CTX,
3148 };
3149
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3150 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3151 {
3152 /* If skb_clear_hash() was called due to mangling, we can
3153 * trigger SW recalculation here. Later access to hash
3154 * can then use the inline skb->hash via context directly
3155 * instead of calling this helper again.
3156 */
3157 return skb_get_hash(skb);
3158 }
3159
3160 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3161 .func = bpf_get_hash_recalc,
3162 .gpl_only = false,
3163 .ret_type = RET_INTEGER,
3164 .arg1_type = ARG_PTR_TO_CTX,
3165 };
3166
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3167 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3168 {
3169 /* After all direct packet write, this can be used once for
3170 * triggering a lazy recalc on next skb_get_hash() invocation.
3171 */
3172 skb_clear_hash(skb);
3173 return 0;
3174 }
3175
3176 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3177 .func = bpf_set_hash_invalid,
3178 .gpl_only = false,
3179 .ret_type = RET_INTEGER,
3180 .arg1_type = ARG_PTR_TO_CTX,
3181 };
3182
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3183 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3184 {
3185 /* Set user specified hash as L4(+), so that it gets returned
3186 * on skb_get_hash() call unless BPF prog later on triggers a
3187 * skb_clear_hash().
3188 */
3189 __skb_set_sw_hash(skb, hash, true);
3190 return 0;
3191 }
3192
3193 static const struct bpf_func_proto bpf_set_hash_proto = {
3194 .func = bpf_set_hash,
3195 .gpl_only = false,
3196 .ret_type = RET_INTEGER,
3197 .arg1_type = ARG_PTR_TO_CTX,
3198 .arg2_type = ARG_ANYTHING,
3199 };
3200
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3201 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3202 u16, vlan_tci)
3203 {
3204 int ret;
3205
3206 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3207 vlan_proto != htons(ETH_P_8021AD)))
3208 vlan_proto = htons(ETH_P_8021Q);
3209
3210 bpf_push_mac_rcsum(skb);
3211 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3212 bpf_pull_mac_rcsum(skb);
3213 skb_reset_mac_len(skb);
3214
3215 bpf_compute_data_pointers(skb);
3216 return ret;
3217 }
3218
3219 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3220 .func = bpf_skb_vlan_push,
3221 .gpl_only = false,
3222 .ret_type = RET_INTEGER,
3223 .arg1_type = ARG_PTR_TO_CTX,
3224 .arg2_type = ARG_ANYTHING,
3225 .arg3_type = ARG_ANYTHING,
3226 };
3227
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3228 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3229 {
3230 int ret;
3231
3232 bpf_push_mac_rcsum(skb);
3233 ret = skb_vlan_pop(skb);
3234 bpf_pull_mac_rcsum(skb);
3235
3236 bpf_compute_data_pointers(skb);
3237 return ret;
3238 }
3239
3240 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3241 .func = bpf_skb_vlan_pop,
3242 .gpl_only = false,
3243 .ret_type = RET_INTEGER,
3244 .arg1_type = ARG_PTR_TO_CTX,
3245 };
3246
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3247 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3248 {
3249 skb->protocol = htons(proto);
3250 if (skb_valid_dst(skb))
3251 skb_dst_drop(skb);
3252 }
3253
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3254 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3255 {
3256 /* Caller already did skb_cow() with len as headroom,
3257 * so no need to do it here.
3258 */
3259 skb_push(skb, len);
3260 memmove(skb->data, skb->data + len, off);
3261 memset(skb->data + off, 0, len);
3262
3263 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3264 * needed here as it does not change the skb->csum
3265 * result for checksum complete when summing over
3266 * zeroed blocks.
3267 */
3268 return 0;
3269 }
3270
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3271 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3272 {
3273 void *old_data;
3274
3275 /* skb_ensure_writable() is not needed here, as we're
3276 * already working on an uncloned skb.
3277 */
3278 if (unlikely(!pskb_may_pull(skb, off + len)))
3279 return -ENOMEM;
3280
3281 old_data = skb->data;
3282 __skb_pull(skb, len);
3283 skb_postpull_rcsum(skb, old_data + off, len);
3284 memmove(skb->data, old_data, off);
3285
3286 return 0;
3287 }
3288
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3289 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3290 {
3291 bool trans_same = skb->transport_header == skb->network_header;
3292 int ret;
3293
3294 /* There's no need for __skb_push()/__skb_pull() pair to
3295 * get to the start of the mac header as we're guaranteed
3296 * to always start from here under eBPF.
3297 */
3298 ret = bpf_skb_generic_push(skb, off, len);
3299 if (likely(!ret)) {
3300 skb->mac_header -= len;
3301 skb->network_header -= len;
3302 if (trans_same)
3303 skb->transport_header = skb->network_header;
3304 }
3305
3306 return ret;
3307 }
3308
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3309 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3310 {
3311 bool trans_same = skb->transport_header == skb->network_header;
3312 int ret;
3313
3314 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3315 ret = bpf_skb_generic_pop(skb, off, len);
3316 if (likely(!ret)) {
3317 skb->mac_header += len;
3318 skb->network_header += len;
3319 if (trans_same)
3320 skb->transport_header = skb->network_header;
3321 }
3322
3323 return ret;
3324 }
3325
bpf_skb_proto_4_to_6(struct sk_buff * skb)3326 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3327 {
3328 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3329 u32 off = skb_mac_header_len(skb);
3330 int ret;
3331
3332 ret = skb_cow(skb, len_diff);
3333 if (unlikely(ret < 0))
3334 return ret;
3335
3336 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3337 if (unlikely(ret < 0))
3338 return ret;
3339
3340 if (skb_is_gso(skb)) {
3341 struct skb_shared_info *shinfo = skb_shinfo(skb);
3342
3343 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3344 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3345 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3346 shinfo->gso_type |= SKB_GSO_TCPV6;
3347 }
3348 }
3349
3350 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3351 skb_clear_hash(skb);
3352
3353 return 0;
3354 }
3355
bpf_skb_proto_6_to_4(struct sk_buff * skb)3356 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3357 {
3358 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3359 u32 off = skb_mac_header_len(skb);
3360 int ret;
3361
3362 ret = skb_unclone(skb, GFP_ATOMIC);
3363 if (unlikely(ret < 0))
3364 return ret;
3365
3366 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3367 if (unlikely(ret < 0))
3368 return ret;
3369
3370 if (skb_is_gso(skb)) {
3371 struct skb_shared_info *shinfo = skb_shinfo(skb);
3372
3373 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3374 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3375 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3376 shinfo->gso_type |= SKB_GSO_TCPV4;
3377 }
3378 }
3379
3380 bpf_skb_change_protocol(skb, ETH_P_IP);
3381 skb_clear_hash(skb);
3382
3383 return 0;
3384 }
3385
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3386 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3387 {
3388 __be16 from_proto = skb->protocol;
3389
3390 if (from_proto == htons(ETH_P_IP) &&
3391 to_proto == htons(ETH_P_IPV6))
3392 return bpf_skb_proto_4_to_6(skb);
3393
3394 if (from_proto == htons(ETH_P_IPV6) &&
3395 to_proto == htons(ETH_P_IP))
3396 return bpf_skb_proto_6_to_4(skb);
3397
3398 return -ENOTSUPP;
3399 }
3400
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3401 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3402 u64, flags)
3403 {
3404 int ret;
3405
3406 if (unlikely(flags))
3407 return -EINVAL;
3408
3409 /* General idea is that this helper does the basic groundwork
3410 * needed for changing the protocol, and eBPF program fills the
3411 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3412 * and other helpers, rather than passing a raw buffer here.
3413 *
3414 * The rationale is to keep this minimal and without a need to
3415 * deal with raw packet data. F.e. even if we would pass buffers
3416 * here, the program still needs to call the bpf_lX_csum_replace()
3417 * helpers anyway. Plus, this way we keep also separation of
3418 * concerns, since f.e. bpf_skb_store_bytes() should only take
3419 * care of stores.
3420 *
3421 * Currently, additional options and extension header space are
3422 * not supported, but flags register is reserved so we can adapt
3423 * that. For offloads, we mark packet as dodgy, so that headers
3424 * need to be verified first.
3425 */
3426 ret = bpf_skb_proto_xlat(skb, proto);
3427 bpf_compute_data_pointers(skb);
3428 return ret;
3429 }
3430
3431 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3432 .func = bpf_skb_change_proto,
3433 .gpl_only = false,
3434 .ret_type = RET_INTEGER,
3435 .arg1_type = ARG_PTR_TO_CTX,
3436 .arg2_type = ARG_ANYTHING,
3437 .arg3_type = ARG_ANYTHING,
3438 };
3439
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3440 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3441 {
3442 /* We only allow a restricted subset to be changed for now. */
3443 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3444 !skb_pkt_type_ok(pkt_type)))
3445 return -EINVAL;
3446
3447 skb->pkt_type = pkt_type;
3448 return 0;
3449 }
3450
3451 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3452 .func = bpf_skb_change_type,
3453 .gpl_only = false,
3454 .ret_type = RET_INTEGER,
3455 .arg1_type = ARG_PTR_TO_CTX,
3456 .arg2_type = ARG_ANYTHING,
3457 };
3458
bpf_skb_net_base_len(const struct sk_buff * skb)3459 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3460 {
3461 switch (skb->protocol) {
3462 case htons(ETH_P_IP):
3463 return sizeof(struct iphdr);
3464 case htons(ETH_P_IPV6):
3465 return sizeof(struct ipv6hdr);
3466 default:
3467 return ~0U;
3468 }
3469 }
3470
3471 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3472 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3473
3474 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3475 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3476
3477 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3478 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3479 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3480 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3481 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3482 BPF_F_ADJ_ROOM_ENCAP_L2( \
3483 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3484 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3485
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3486 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3487 u64 flags)
3488 {
3489 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3490 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3491 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3492 unsigned int gso_type = SKB_GSO_DODGY;
3493 int ret;
3494
3495 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3496 /* udp gso_size delineates datagrams, only allow if fixed */
3497 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3498 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3499 return -ENOTSUPP;
3500 }
3501
3502 ret = skb_cow_head(skb, len_diff);
3503 if (unlikely(ret < 0))
3504 return ret;
3505
3506 if (encap) {
3507 if (skb->protocol != htons(ETH_P_IP) &&
3508 skb->protocol != htons(ETH_P_IPV6))
3509 return -ENOTSUPP;
3510
3511 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3512 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3513 return -EINVAL;
3514
3515 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3516 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3517 return -EINVAL;
3518
3519 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3520 inner_mac_len < ETH_HLEN)
3521 return -EINVAL;
3522
3523 if (skb->encapsulation)
3524 return -EALREADY;
3525
3526 mac_len = skb->network_header - skb->mac_header;
3527 inner_net = skb->network_header;
3528 if (inner_mac_len > len_diff)
3529 return -EINVAL;
3530 inner_trans = skb->transport_header;
3531 }
3532
3533 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3534 if (unlikely(ret < 0))
3535 return ret;
3536
3537 if (encap) {
3538 skb->inner_mac_header = inner_net - inner_mac_len;
3539 skb->inner_network_header = inner_net;
3540 skb->inner_transport_header = inner_trans;
3541
3542 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3543 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3544 else
3545 skb_set_inner_protocol(skb, skb->protocol);
3546
3547 skb->encapsulation = 1;
3548 skb_set_network_header(skb, mac_len);
3549
3550 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3551 gso_type |= SKB_GSO_UDP_TUNNEL;
3552 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3553 gso_type |= SKB_GSO_GRE;
3554 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3555 gso_type |= SKB_GSO_IPXIP6;
3556 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3557 gso_type |= SKB_GSO_IPXIP4;
3558
3559 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3560 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3561 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3562 sizeof(struct ipv6hdr) :
3563 sizeof(struct iphdr);
3564
3565 skb_set_transport_header(skb, mac_len + nh_len);
3566 }
3567
3568 /* Match skb->protocol to new outer l3 protocol */
3569 if (skb->protocol == htons(ETH_P_IP) &&
3570 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3571 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3572 else if (skb->protocol == htons(ETH_P_IPV6) &&
3573 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3574 bpf_skb_change_protocol(skb, ETH_P_IP);
3575 }
3576
3577 if (skb_is_gso(skb)) {
3578 struct skb_shared_info *shinfo = skb_shinfo(skb);
3579
3580 /* Header must be checked, and gso_segs recomputed. */
3581 shinfo->gso_type |= gso_type;
3582 shinfo->gso_segs = 0;
3583
3584 /* Due to header growth, MSS needs to be downgraded.
3585 * There is a BUG_ON() when segmenting the frag_list with
3586 * head_frag true, so linearize the skb after downgrading
3587 * the MSS.
3588 */
3589 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3590 skb_decrease_gso_size(shinfo, len_diff);
3591 if (shinfo->frag_list)
3592 return skb_linearize(skb);
3593 }
3594 }
3595
3596 return 0;
3597 }
3598
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3599 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3600 u64 flags)
3601 {
3602 int ret;
3603
3604 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3605 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3606 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3607 return -EINVAL;
3608
3609 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3610 /* udp gso_size delineates datagrams, only allow if fixed */
3611 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3612 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3613 return -ENOTSUPP;
3614 }
3615
3616 ret = skb_unclone(skb, GFP_ATOMIC);
3617 if (unlikely(ret < 0))
3618 return ret;
3619
3620 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3621 if (unlikely(ret < 0))
3622 return ret;
3623
3624 /* Match skb->protocol to new outer l3 protocol */
3625 if (skb->protocol == htons(ETH_P_IP) &&
3626 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3627 bpf_skb_change_protocol(skb, ETH_P_IPV6);
3628 else if (skb->protocol == htons(ETH_P_IPV6) &&
3629 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3630 bpf_skb_change_protocol(skb, ETH_P_IP);
3631
3632 if (skb_is_gso(skb)) {
3633 struct skb_shared_info *shinfo = skb_shinfo(skb);
3634
3635 /* Due to header shrink, MSS can be upgraded. */
3636 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3637 skb_increase_gso_size(shinfo, len_diff);
3638
3639 /* Header must be checked, and gso_segs recomputed. */
3640 shinfo->gso_type |= SKB_GSO_DODGY;
3641 shinfo->gso_segs = 0;
3642 }
3643
3644 return 0;
3645 }
3646
3647 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3648
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3649 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3650 u32, mode, u64, flags)
3651 {
3652 u32 len_diff_abs = abs(len_diff);
3653 bool shrink = len_diff < 0;
3654 int ret = 0;
3655
3656 if (unlikely(flags || mode))
3657 return -EINVAL;
3658 if (unlikely(len_diff_abs > 0xfffU))
3659 return -EFAULT;
3660
3661 if (!shrink) {
3662 ret = skb_cow(skb, len_diff);
3663 if (unlikely(ret < 0))
3664 return ret;
3665 __skb_push(skb, len_diff_abs);
3666 memset(skb->data, 0, len_diff_abs);
3667 } else {
3668 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3669 return -ENOMEM;
3670 __skb_pull(skb, len_diff_abs);
3671 }
3672 if (tls_sw_has_ctx_rx(skb->sk)) {
3673 struct strp_msg *rxm = strp_msg(skb);
3674
3675 rxm->full_len += len_diff;
3676 }
3677 return ret;
3678 }
3679
3680 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3681 .func = sk_skb_adjust_room,
3682 .gpl_only = false,
3683 .ret_type = RET_INTEGER,
3684 .arg1_type = ARG_PTR_TO_CTX,
3685 .arg2_type = ARG_ANYTHING,
3686 .arg3_type = ARG_ANYTHING,
3687 .arg4_type = ARG_ANYTHING,
3688 };
3689
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3690 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3691 u32, mode, u64, flags)
3692 {
3693 u32 len_cur, len_diff_abs = abs(len_diff);
3694 u32 len_min = bpf_skb_net_base_len(skb);
3695 u32 len_max = BPF_SKB_MAX_LEN;
3696 __be16 proto = skb->protocol;
3697 bool shrink = len_diff < 0;
3698 u32 off;
3699 int ret;
3700
3701 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3702 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3703 return -EINVAL;
3704 if (unlikely(len_diff_abs > 0xfffU))
3705 return -EFAULT;
3706 if (unlikely(proto != htons(ETH_P_IP) &&
3707 proto != htons(ETH_P_IPV6)))
3708 return -ENOTSUPP;
3709
3710 off = skb_mac_header_len(skb);
3711 switch (mode) {
3712 case BPF_ADJ_ROOM_NET:
3713 off += bpf_skb_net_base_len(skb);
3714 break;
3715 case BPF_ADJ_ROOM_MAC:
3716 break;
3717 default:
3718 return -ENOTSUPP;
3719 }
3720
3721 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3722 if (!shrink)
3723 return -EINVAL;
3724
3725 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3726 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3727 len_min = sizeof(struct iphdr);
3728 break;
3729 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3730 len_min = sizeof(struct ipv6hdr);
3731 break;
3732 default:
3733 return -EINVAL;
3734 }
3735 }
3736
3737 len_cur = skb->len - skb_network_offset(skb);
3738 if ((shrink && (len_diff_abs >= len_cur ||
3739 len_cur - len_diff_abs < len_min)) ||
3740 (!shrink && (skb->len + len_diff_abs > len_max &&
3741 !skb_is_gso(skb))))
3742 return -ENOTSUPP;
3743
3744 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3745 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3746 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3747 __skb_reset_checksum_unnecessary(skb);
3748
3749 bpf_compute_data_pointers(skb);
3750 return ret;
3751 }
3752
3753 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3754 .func = bpf_skb_adjust_room,
3755 .gpl_only = false,
3756 .ret_type = RET_INTEGER,
3757 .arg1_type = ARG_PTR_TO_CTX,
3758 .arg2_type = ARG_ANYTHING,
3759 .arg3_type = ARG_ANYTHING,
3760 .arg4_type = ARG_ANYTHING,
3761 };
3762
__bpf_skb_min_len(const struct sk_buff * skb)3763 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3764 {
3765 int offset = skb_network_offset(skb);
3766 u32 min_len = 0;
3767
3768 if (offset > 0)
3769 min_len = offset;
3770 if (skb_transport_header_was_set(skb)) {
3771 offset = skb_transport_offset(skb);
3772 if (offset > 0)
3773 min_len = offset;
3774 }
3775 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3776 offset = skb_checksum_start_offset(skb) +
3777 skb->csum_offset + sizeof(__sum16);
3778 if (offset > 0)
3779 min_len = offset;
3780 }
3781 return min_len;
3782 }
3783
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3784 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3785 {
3786 unsigned int old_len = skb->len;
3787 int ret;
3788
3789 ret = __skb_grow_rcsum(skb, new_len);
3790 if (!ret)
3791 memset(skb->data + old_len, 0, new_len - old_len);
3792 return ret;
3793 }
3794
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3795 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3796 {
3797 return __skb_trim_rcsum(skb, new_len);
3798 }
3799
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3800 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3801 u64 flags)
3802 {
3803 u32 max_len = BPF_SKB_MAX_LEN;
3804 u32 min_len = __bpf_skb_min_len(skb);
3805 int ret;
3806
3807 if (unlikely(flags || new_len > max_len || new_len < min_len))
3808 return -EINVAL;
3809 if (skb->encapsulation)
3810 return -ENOTSUPP;
3811
3812 /* The basic idea of this helper is that it's performing the
3813 * needed work to either grow or trim an skb, and eBPF program
3814 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3815 * bpf_lX_csum_replace() and others rather than passing a raw
3816 * buffer here. This one is a slow path helper and intended
3817 * for replies with control messages.
3818 *
3819 * Like in bpf_skb_change_proto(), we want to keep this rather
3820 * minimal and without protocol specifics so that we are able
3821 * to separate concerns as in bpf_skb_store_bytes() should only
3822 * be the one responsible for writing buffers.
3823 *
3824 * It's really expected to be a slow path operation here for
3825 * control message replies, so we're implicitly linearizing,
3826 * uncloning and drop offloads from the skb by this.
3827 */
3828 ret = __bpf_try_make_writable(skb, skb->len);
3829 if (!ret) {
3830 if (new_len > skb->len)
3831 ret = bpf_skb_grow_rcsum(skb, new_len);
3832 else if (new_len < skb->len)
3833 ret = bpf_skb_trim_rcsum(skb, new_len);
3834 if (!ret && skb_is_gso(skb))
3835 skb_gso_reset(skb);
3836 }
3837 return ret;
3838 }
3839
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3840 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3841 u64, flags)
3842 {
3843 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3844
3845 bpf_compute_data_pointers(skb);
3846 return ret;
3847 }
3848
3849 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3850 .func = bpf_skb_change_tail,
3851 .gpl_only = false,
3852 .ret_type = RET_INTEGER,
3853 .arg1_type = ARG_PTR_TO_CTX,
3854 .arg2_type = ARG_ANYTHING,
3855 .arg3_type = ARG_ANYTHING,
3856 };
3857
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3858 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3859 u64, flags)
3860 {
3861 return __bpf_skb_change_tail(skb, new_len, flags);
3862 }
3863
3864 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3865 .func = sk_skb_change_tail,
3866 .gpl_only = false,
3867 .ret_type = RET_INTEGER,
3868 .arg1_type = ARG_PTR_TO_CTX,
3869 .arg2_type = ARG_ANYTHING,
3870 .arg3_type = ARG_ANYTHING,
3871 };
3872
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3873 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3874 u64 flags)
3875 {
3876 u32 max_len = BPF_SKB_MAX_LEN;
3877 u32 new_len = skb->len + head_room;
3878 int ret;
3879
3880 if (unlikely(flags || (int)head_room < 0 ||
3881 (!skb_is_gso(skb) && new_len > max_len) ||
3882 new_len < skb->len))
3883 return -EINVAL;
3884
3885 ret = skb_cow(skb, head_room);
3886 if (likely(!ret)) {
3887 /* Idea for this helper is that we currently only
3888 * allow to expand on mac header. This means that
3889 * skb->protocol network header, etc, stay as is.
3890 * Compared to bpf_skb_change_tail(), we're more
3891 * flexible due to not needing to linearize or
3892 * reset GSO. Intention for this helper is to be
3893 * used by an L3 skb that needs to push mac header
3894 * for redirection into L2 device.
3895 */
3896 __skb_push(skb, head_room);
3897 memset(skb->data, 0, head_room);
3898 skb_reset_mac_header(skb);
3899 skb_reset_mac_len(skb);
3900 }
3901
3902 return ret;
3903 }
3904
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3905 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3906 u64, flags)
3907 {
3908 int ret = __bpf_skb_change_head(skb, head_room, flags);
3909
3910 bpf_compute_data_pointers(skb);
3911 return ret;
3912 }
3913
3914 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3915 .func = bpf_skb_change_head,
3916 .gpl_only = false,
3917 .ret_type = RET_INTEGER,
3918 .arg1_type = ARG_PTR_TO_CTX,
3919 .arg2_type = ARG_ANYTHING,
3920 .arg3_type = ARG_ANYTHING,
3921 };
3922
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3923 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3924 u64, flags)
3925 {
3926 return __bpf_skb_change_head(skb, head_room, flags);
3927 }
3928
3929 static const struct bpf_func_proto sk_skb_change_head_proto = {
3930 .func = sk_skb_change_head,
3931 .gpl_only = false,
3932 .ret_type = RET_INTEGER,
3933 .arg1_type = ARG_PTR_TO_CTX,
3934 .arg2_type = ARG_ANYTHING,
3935 .arg3_type = ARG_ANYTHING,
3936 };
3937
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3938 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3939 {
3940 return xdp_get_buff_len(xdp);
3941 }
3942
3943 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3944 .func = bpf_xdp_get_buff_len,
3945 .gpl_only = false,
3946 .ret_type = RET_INTEGER,
3947 .arg1_type = ARG_PTR_TO_CTX,
3948 };
3949
3950 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3951
3952 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3953 .func = bpf_xdp_get_buff_len,
3954 .gpl_only = false,
3955 .arg1_type = ARG_PTR_TO_BTF_ID,
3956 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3957 };
3958
xdp_get_metalen(const struct xdp_buff * xdp)3959 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3960 {
3961 return xdp_data_meta_unsupported(xdp) ? 0 :
3962 xdp->data - xdp->data_meta;
3963 }
3964
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3965 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3966 {
3967 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3968 unsigned long metalen = xdp_get_metalen(xdp);
3969 void *data_start = xdp_frame_end + metalen;
3970 void *data = xdp->data + offset;
3971
3972 if (unlikely(data < data_start ||
3973 data > xdp->data_end - ETH_HLEN))
3974 return -EINVAL;
3975
3976 if (metalen)
3977 memmove(xdp->data_meta + offset,
3978 xdp->data_meta, metalen);
3979 xdp->data_meta += offset;
3980 xdp->data = data;
3981
3982 return 0;
3983 }
3984
3985 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3986 .func = bpf_xdp_adjust_head,
3987 .gpl_only = false,
3988 .ret_type = RET_INTEGER,
3989 .arg1_type = ARG_PTR_TO_CTX,
3990 .arg2_type = ARG_ANYTHING,
3991 };
3992
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3993 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3994 void *buf, unsigned long len, bool flush)
3995 {
3996 unsigned long ptr_len, ptr_off = 0;
3997 skb_frag_t *next_frag, *end_frag;
3998 struct skb_shared_info *sinfo;
3999 void *src, *dst;
4000 u8 *ptr_buf;
4001
4002 if (likely(xdp->data_end - xdp->data >= off + len)) {
4003 src = flush ? buf : xdp->data + off;
4004 dst = flush ? xdp->data + off : buf;
4005 memcpy(dst, src, len);
4006 return;
4007 }
4008
4009 sinfo = xdp_get_shared_info_from_buff(xdp);
4010 end_frag = &sinfo->frags[sinfo->nr_frags];
4011 next_frag = &sinfo->frags[0];
4012
4013 ptr_len = xdp->data_end - xdp->data;
4014 ptr_buf = xdp->data;
4015
4016 while (true) {
4017 if (off < ptr_off + ptr_len) {
4018 unsigned long copy_off = off - ptr_off;
4019 unsigned long copy_len = min(len, ptr_len - copy_off);
4020
4021 src = flush ? buf : ptr_buf + copy_off;
4022 dst = flush ? ptr_buf + copy_off : buf;
4023 memcpy(dst, src, copy_len);
4024
4025 off += copy_len;
4026 len -= copy_len;
4027 buf += copy_len;
4028 }
4029
4030 if (!len || next_frag == end_frag)
4031 break;
4032
4033 ptr_off += ptr_len;
4034 ptr_buf = skb_frag_address(next_frag);
4035 ptr_len = skb_frag_size(next_frag);
4036 next_frag++;
4037 }
4038 }
4039
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4040 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4041 {
4042 u32 size = xdp->data_end - xdp->data;
4043 struct skb_shared_info *sinfo;
4044 void *addr = xdp->data;
4045 int i;
4046
4047 if (unlikely(offset > 0xffff || len > 0xffff))
4048 return ERR_PTR(-EFAULT);
4049
4050 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4051 return ERR_PTR(-EINVAL);
4052
4053 if (likely(offset < size)) /* linear area */
4054 goto out;
4055
4056 sinfo = xdp_get_shared_info_from_buff(xdp);
4057 offset -= size;
4058 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4059 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4060
4061 if (offset < frag_size) {
4062 addr = skb_frag_address(&sinfo->frags[i]);
4063 size = frag_size;
4064 break;
4065 }
4066 offset -= frag_size;
4067 }
4068 out:
4069 return offset + len <= size ? addr + offset : NULL;
4070 }
4071
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4072 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4073 void *, buf, u32, len)
4074 {
4075 void *ptr;
4076
4077 ptr = bpf_xdp_pointer(xdp, offset, len);
4078 if (IS_ERR(ptr))
4079 return PTR_ERR(ptr);
4080
4081 if (!ptr)
4082 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4083 else
4084 memcpy(buf, ptr, len);
4085
4086 return 0;
4087 }
4088
4089 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4090 .func = bpf_xdp_load_bytes,
4091 .gpl_only = false,
4092 .ret_type = RET_INTEGER,
4093 .arg1_type = ARG_PTR_TO_CTX,
4094 .arg2_type = ARG_ANYTHING,
4095 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4096 .arg4_type = ARG_CONST_SIZE,
4097 };
4098
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4099 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4100 {
4101 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4102 }
4103
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4104 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4105 void *, buf, u32, len)
4106 {
4107 void *ptr;
4108
4109 ptr = bpf_xdp_pointer(xdp, offset, len);
4110 if (IS_ERR(ptr))
4111 return PTR_ERR(ptr);
4112
4113 if (!ptr)
4114 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4115 else
4116 memcpy(ptr, buf, len);
4117
4118 return 0;
4119 }
4120
4121 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4122 .func = bpf_xdp_store_bytes,
4123 .gpl_only = false,
4124 .ret_type = RET_INTEGER,
4125 .arg1_type = ARG_PTR_TO_CTX,
4126 .arg2_type = ARG_ANYTHING,
4127 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4128 .arg4_type = ARG_CONST_SIZE,
4129 };
4130
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4131 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4132 {
4133 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4134 }
4135
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4136 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4137 {
4138 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4139 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4140 struct xdp_rxq_info *rxq = xdp->rxq;
4141 unsigned int tailroom;
4142
4143 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4144 return -EOPNOTSUPP;
4145
4146 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4147 if (unlikely(offset > tailroom))
4148 return -EINVAL;
4149
4150 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4151 skb_frag_size_add(frag, offset);
4152 sinfo->xdp_frags_size += offset;
4153 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4154 xsk_buff_get_tail(xdp)->data_end += offset;
4155
4156 return 0;
4157 }
4158
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,bool tail,bool release)4159 static struct xdp_buff *bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4160 bool tail, bool release)
4161 {
4162 struct xdp_buff *zc_frag = tail ? xsk_buff_get_tail(xdp) :
4163 xsk_buff_get_head(xdp);
4164
4165 if (release) {
4166 xsk_buff_del_frag(zc_frag);
4167 } else {
4168 if (tail)
4169 zc_frag->data_end -= shrink;
4170 else
4171 zc_frag->data += shrink;
4172 }
4173
4174 return zc_frag;
4175 }
4176
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink,bool tail)4177 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4178 int shrink, bool tail)
4179 {
4180 enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4181 bool release = skb_frag_size(frag) == shrink;
4182 netmem_ref netmem = skb_frag_netmem(frag);
4183 struct xdp_buff *zc_frag = NULL;
4184
4185 if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4186 netmem = 0;
4187 zc_frag = bpf_xdp_shrink_data_zc(xdp, shrink, tail, release);
4188 }
4189
4190 if (release) {
4191 __xdp_return(netmem, mem_type, false, zc_frag);
4192 } else {
4193 if (!tail)
4194 skb_frag_off_add(frag, shrink);
4195 skb_frag_size_sub(frag, shrink);
4196 }
4197
4198 return release;
4199 }
4200
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4201 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4202 {
4203 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4204 int i, n_frags_free = 0, len_free = 0;
4205
4206 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4207 return -EINVAL;
4208
4209 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4210 skb_frag_t *frag = &sinfo->frags[i];
4211 int shrink = min_t(int, offset, skb_frag_size(frag));
4212
4213 len_free += shrink;
4214 offset -= shrink;
4215 if (bpf_xdp_shrink_data(xdp, frag, shrink, true))
4216 n_frags_free++;
4217 }
4218 sinfo->nr_frags -= n_frags_free;
4219 sinfo->xdp_frags_size -= len_free;
4220
4221 if (unlikely(!sinfo->nr_frags)) {
4222 xdp_buff_clear_frags_flag(xdp);
4223 xdp_buff_clear_frag_pfmemalloc(xdp);
4224 xdp->data_end -= offset;
4225 }
4226
4227 return 0;
4228 }
4229
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4230 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4231 {
4232 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4233 void *data_end = xdp->data_end + offset;
4234
4235 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4236 if (offset < 0)
4237 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4238
4239 return bpf_xdp_frags_increase_tail(xdp, offset);
4240 }
4241
4242 /* Notice that xdp_data_hard_end have reserved some tailroom */
4243 if (unlikely(data_end > data_hard_end))
4244 return -EINVAL;
4245
4246 if (unlikely(data_end < xdp->data + ETH_HLEN))
4247 return -EINVAL;
4248
4249 /* Clear memory area on grow, can contain uninit kernel memory */
4250 if (offset > 0)
4251 memset(xdp->data_end, 0, offset);
4252
4253 xdp->data_end = data_end;
4254
4255 return 0;
4256 }
4257
4258 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4259 .func = bpf_xdp_adjust_tail,
4260 .gpl_only = false,
4261 .ret_type = RET_INTEGER,
4262 .arg1_type = ARG_PTR_TO_CTX,
4263 .arg2_type = ARG_ANYTHING,
4264 };
4265
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4266 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4267 {
4268 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4269 void *meta = xdp->data_meta + offset;
4270 unsigned long metalen = xdp->data - meta;
4271
4272 if (xdp_data_meta_unsupported(xdp))
4273 return -ENOTSUPP;
4274 if (unlikely(meta < xdp_frame_end ||
4275 meta > xdp->data))
4276 return -EINVAL;
4277 if (unlikely(xdp_metalen_invalid(metalen)))
4278 return -EACCES;
4279
4280 xdp->data_meta = meta;
4281
4282 return 0;
4283 }
4284
4285 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4286 .func = bpf_xdp_adjust_meta,
4287 .gpl_only = false,
4288 .ret_type = RET_INTEGER,
4289 .arg1_type = ARG_PTR_TO_CTX,
4290 .arg2_type = ARG_ANYTHING,
4291 };
4292
4293 /**
4294 * DOC: xdp redirect
4295 *
4296 * XDP_REDIRECT works by a three-step process, implemented in the functions
4297 * below:
4298 *
4299 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4300 * of the redirect and store it (along with some other metadata) in a per-CPU
4301 * struct bpf_redirect_info.
4302 *
4303 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4304 * call xdp_do_redirect() which will use the information in struct
4305 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4306 * bulk queue structure.
4307 *
4308 * 3. Before exiting its NAPI poll loop, the driver will call
4309 * xdp_do_flush(), which will flush all the different bulk queues,
4310 * thus completing the redirect. Note that xdp_do_flush() must be
4311 * called before napi_complete_done() in the driver, as the
4312 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4313 * through to the xdp_do_flush() call for RCU protection of all
4314 * in-kernel data structures.
4315 */
4316 /*
4317 * Pointers to the map entries will be kept around for this whole sequence of
4318 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4319 * the core code; instead, the RCU protection relies on everything happening
4320 * inside a single NAPI poll sequence, which means it's between a pair of calls
4321 * to local_bh_disable()/local_bh_enable().
4322 *
4323 * The map entries are marked as __rcu and the map code makes sure to
4324 * dereference those pointers with rcu_dereference_check() in a way that works
4325 * for both sections that to hold an rcu_read_lock() and sections that are
4326 * called from NAPI without a separate rcu_read_lock(). The code below does not
4327 * use RCU annotations, but relies on those in the map code.
4328 */
xdp_do_flush(void)4329 void xdp_do_flush(void)
4330 {
4331 struct list_head *lh_map, *lh_dev, *lh_xsk;
4332
4333 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4334 if (lh_dev)
4335 __dev_flush(lh_dev);
4336 if (lh_map)
4337 __cpu_map_flush(lh_map);
4338 if (lh_xsk)
4339 __xsk_map_flush(lh_xsk);
4340 }
4341 EXPORT_SYMBOL_GPL(xdp_do_flush);
4342
4343 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4344 void xdp_do_check_flushed(struct napi_struct *napi)
4345 {
4346 struct list_head *lh_map, *lh_dev, *lh_xsk;
4347 bool missed = false;
4348
4349 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4350 if (lh_dev) {
4351 __dev_flush(lh_dev);
4352 missed = true;
4353 }
4354 if (lh_map) {
4355 __cpu_map_flush(lh_map);
4356 missed = true;
4357 }
4358 if (lh_xsk) {
4359 __xsk_map_flush(lh_xsk);
4360 missed = true;
4361 }
4362
4363 WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4364 napi->poll);
4365 }
4366 #endif
4367
4368 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4369 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4370
xdp_master_redirect(struct xdp_buff * xdp)4371 u32 xdp_master_redirect(struct xdp_buff *xdp)
4372 {
4373 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4374 struct net_device *master, *slave;
4375
4376 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4377 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4378 if (slave && slave != xdp->rxq->dev) {
4379 /* The target device is different from the receiving device, so
4380 * redirect it to the new device.
4381 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4382 * drivers to unmap the packet from their rx ring.
4383 */
4384 ri->tgt_index = slave->ifindex;
4385 ri->map_id = INT_MAX;
4386 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4387 return XDP_REDIRECT;
4388 }
4389 return XDP_TX;
4390 }
4391 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4392
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4393 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4394 const struct net_device *dev,
4395 struct xdp_buff *xdp,
4396 const struct bpf_prog *xdp_prog)
4397 {
4398 enum bpf_map_type map_type = ri->map_type;
4399 void *fwd = ri->tgt_value;
4400 u32 map_id = ri->map_id;
4401 int err;
4402
4403 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4404 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4405
4406 err = __xsk_map_redirect(fwd, xdp);
4407 if (unlikely(err))
4408 goto err;
4409
4410 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4411 return 0;
4412 err:
4413 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4414 return err;
4415 }
4416
4417 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4418 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4419 struct xdp_frame *xdpf,
4420 const struct bpf_prog *xdp_prog)
4421 {
4422 enum bpf_map_type map_type = ri->map_type;
4423 void *fwd = ri->tgt_value;
4424 u32 map_id = ri->map_id;
4425 u32 flags = ri->flags;
4426 struct bpf_map *map;
4427 int err;
4428
4429 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4430 ri->flags = 0;
4431 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4432
4433 if (unlikely(!xdpf)) {
4434 err = -EOVERFLOW;
4435 goto err;
4436 }
4437
4438 switch (map_type) {
4439 case BPF_MAP_TYPE_DEVMAP:
4440 fallthrough;
4441 case BPF_MAP_TYPE_DEVMAP_HASH:
4442 if (unlikely(flags & BPF_F_BROADCAST)) {
4443 map = READ_ONCE(ri->map);
4444
4445 /* The map pointer is cleared when the map is being torn
4446 * down by dev_map_free()
4447 */
4448 if (unlikely(!map)) {
4449 err = -ENOENT;
4450 break;
4451 }
4452
4453 WRITE_ONCE(ri->map, NULL);
4454 err = dev_map_enqueue_multi(xdpf, dev, map,
4455 flags & BPF_F_EXCLUDE_INGRESS);
4456 } else {
4457 err = dev_map_enqueue(fwd, xdpf, dev);
4458 }
4459 break;
4460 case BPF_MAP_TYPE_CPUMAP:
4461 err = cpu_map_enqueue(fwd, xdpf, dev);
4462 break;
4463 case BPF_MAP_TYPE_UNSPEC:
4464 if (map_id == INT_MAX) {
4465 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4466 if (unlikely(!fwd)) {
4467 err = -EINVAL;
4468 break;
4469 }
4470 err = dev_xdp_enqueue(fwd, xdpf, dev);
4471 break;
4472 }
4473 fallthrough;
4474 default:
4475 err = -EBADRQC;
4476 }
4477
4478 if (unlikely(err))
4479 goto err;
4480
4481 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4482 return 0;
4483 err:
4484 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4485 return err;
4486 }
4487
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4488 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4489 const struct bpf_prog *xdp_prog)
4490 {
4491 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4492 enum bpf_map_type map_type = ri->map_type;
4493
4494 if (map_type == BPF_MAP_TYPE_XSKMAP)
4495 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4496
4497 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4498 xdp_prog);
4499 }
4500 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4501
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4502 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4503 struct xdp_frame *xdpf,
4504 const struct bpf_prog *xdp_prog)
4505 {
4506 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4507 enum bpf_map_type map_type = ri->map_type;
4508
4509 if (map_type == BPF_MAP_TYPE_XSKMAP)
4510 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4511
4512 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4513 }
4514 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4515
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4516 static int xdp_do_generic_redirect_map(struct net_device *dev,
4517 struct sk_buff *skb,
4518 struct xdp_buff *xdp,
4519 const struct bpf_prog *xdp_prog,
4520 void *fwd, enum bpf_map_type map_type,
4521 u32 map_id, u32 flags)
4522 {
4523 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4524 struct bpf_map *map;
4525 int err;
4526
4527 switch (map_type) {
4528 case BPF_MAP_TYPE_DEVMAP:
4529 fallthrough;
4530 case BPF_MAP_TYPE_DEVMAP_HASH:
4531 if (unlikely(flags & BPF_F_BROADCAST)) {
4532 map = READ_ONCE(ri->map);
4533
4534 /* The map pointer is cleared when the map is being torn
4535 * down by dev_map_free()
4536 */
4537 if (unlikely(!map)) {
4538 err = -ENOENT;
4539 break;
4540 }
4541
4542 WRITE_ONCE(ri->map, NULL);
4543 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4544 flags & BPF_F_EXCLUDE_INGRESS);
4545 } else {
4546 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4547 }
4548 if (unlikely(err))
4549 goto err;
4550 break;
4551 case BPF_MAP_TYPE_XSKMAP:
4552 err = xsk_generic_rcv(fwd, xdp);
4553 if (err)
4554 goto err;
4555 consume_skb(skb);
4556 break;
4557 case BPF_MAP_TYPE_CPUMAP:
4558 err = cpu_map_generic_redirect(fwd, skb);
4559 if (unlikely(err))
4560 goto err;
4561 break;
4562 default:
4563 err = -EBADRQC;
4564 goto err;
4565 }
4566
4567 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4568 return 0;
4569 err:
4570 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4571 return err;
4572 }
4573
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4574 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4575 struct xdp_buff *xdp,
4576 const struct bpf_prog *xdp_prog)
4577 {
4578 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4579 enum bpf_map_type map_type = ri->map_type;
4580 void *fwd = ri->tgt_value;
4581 u32 map_id = ri->map_id;
4582 u32 flags = ri->flags;
4583 int err;
4584
4585 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4586 ri->flags = 0;
4587 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4588
4589 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4590 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4591 if (unlikely(!fwd)) {
4592 err = -EINVAL;
4593 goto err;
4594 }
4595
4596 err = xdp_ok_fwd_dev(fwd, skb->len);
4597 if (unlikely(err))
4598 goto err;
4599
4600 skb->dev = fwd;
4601 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4602 generic_xdp_tx(skb, xdp_prog);
4603 return 0;
4604 }
4605
4606 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4607 err:
4608 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4609 return err;
4610 }
4611
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4612 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4613 {
4614 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4615
4616 if (unlikely(flags))
4617 return XDP_ABORTED;
4618
4619 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4620 * by map_idr) is used for ifindex based XDP redirect.
4621 */
4622 ri->tgt_index = ifindex;
4623 ri->map_id = INT_MAX;
4624 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4625
4626 return XDP_REDIRECT;
4627 }
4628
4629 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4630 .func = bpf_xdp_redirect,
4631 .gpl_only = false,
4632 .ret_type = RET_INTEGER,
4633 .arg1_type = ARG_ANYTHING,
4634 .arg2_type = ARG_ANYTHING,
4635 };
4636
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4637 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4638 u64, flags)
4639 {
4640 return map->ops->map_redirect(map, key, flags);
4641 }
4642
4643 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4644 .func = bpf_xdp_redirect_map,
4645 .gpl_only = false,
4646 .ret_type = RET_INTEGER,
4647 .arg1_type = ARG_CONST_MAP_PTR,
4648 .arg2_type = ARG_ANYTHING,
4649 .arg3_type = ARG_ANYTHING,
4650 };
4651
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4652 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4653 unsigned long off, unsigned long len)
4654 {
4655 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4656
4657 if (unlikely(!ptr))
4658 return len;
4659 if (ptr != dst_buff)
4660 memcpy(dst_buff, ptr, len);
4661
4662 return 0;
4663 }
4664
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4665 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4666 u64, flags, void *, meta, u64, meta_size)
4667 {
4668 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4669
4670 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4671 return -EINVAL;
4672 if (unlikely(!skb || skb_size > skb->len))
4673 return -EFAULT;
4674
4675 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4676 bpf_skb_copy);
4677 }
4678
4679 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4680 .func = bpf_skb_event_output,
4681 .gpl_only = true,
4682 .ret_type = RET_INTEGER,
4683 .arg1_type = ARG_PTR_TO_CTX,
4684 .arg2_type = ARG_CONST_MAP_PTR,
4685 .arg3_type = ARG_ANYTHING,
4686 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4687 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4688 };
4689
4690 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4691
4692 const struct bpf_func_proto bpf_skb_output_proto = {
4693 .func = bpf_skb_event_output,
4694 .gpl_only = true,
4695 .ret_type = RET_INTEGER,
4696 .arg1_type = ARG_PTR_TO_BTF_ID,
4697 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4698 .arg2_type = ARG_CONST_MAP_PTR,
4699 .arg3_type = ARG_ANYTHING,
4700 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4701 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4702 };
4703
bpf_tunnel_key_af(u64 flags)4704 static unsigned short bpf_tunnel_key_af(u64 flags)
4705 {
4706 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4707 }
4708
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4709 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4710 u32, size, u64, flags)
4711 {
4712 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4713 u8 compat[sizeof(struct bpf_tunnel_key)];
4714 void *to_orig = to;
4715 int err;
4716
4717 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4718 BPF_F_TUNINFO_FLAGS)))) {
4719 err = -EINVAL;
4720 goto err_clear;
4721 }
4722 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4723 err = -EPROTO;
4724 goto err_clear;
4725 }
4726 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4727 err = -EINVAL;
4728 switch (size) {
4729 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4730 case offsetof(struct bpf_tunnel_key, tunnel_label):
4731 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4732 goto set_compat;
4733 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4734 /* Fixup deprecated structure layouts here, so we have
4735 * a common path later on.
4736 */
4737 if (ip_tunnel_info_af(info) != AF_INET)
4738 goto err_clear;
4739 set_compat:
4740 to = (struct bpf_tunnel_key *)compat;
4741 break;
4742 default:
4743 goto err_clear;
4744 }
4745 }
4746
4747 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4748 to->tunnel_tos = info->key.tos;
4749 to->tunnel_ttl = info->key.ttl;
4750 if (flags & BPF_F_TUNINFO_FLAGS)
4751 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4752 else
4753 to->tunnel_ext = 0;
4754
4755 if (flags & BPF_F_TUNINFO_IPV6) {
4756 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4757 sizeof(to->remote_ipv6));
4758 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4759 sizeof(to->local_ipv6));
4760 to->tunnel_label = be32_to_cpu(info->key.label);
4761 } else {
4762 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4763 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4764 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4765 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4766 to->tunnel_label = 0;
4767 }
4768
4769 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4770 memcpy(to_orig, to, size);
4771
4772 return 0;
4773 err_clear:
4774 memset(to_orig, 0, size);
4775 return err;
4776 }
4777
4778 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4779 .func = bpf_skb_get_tunnel_key,
4780 .gpl_only = false,
4781 .ret_type = RET_INTEGER,
4782 .arg1_type = ARG_PTR_TO_CTX,
4783 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4784 .arg3_type = ARG_CONST_SIZE,
4785 .arg4_type = ARG_ANYTHING,
4786 };
4787
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4788 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4789 {
4790 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4791 int err;
4792
4793 if (unlikely(!info ||
4794 !ip_tunnel_is_options_present(info->key.tun_flags))) {
4795 err = -ENOENT;
4796 goto err_clear;
4797 }
4798 if (unlikely(size < info->options_len)) {
4799 err = -ENOMEM;
4800 goto err_clear;
4801 }
4802
4803 ip_tunnel_info_opts_get(to, info);
4804 if (size > info->options_len)
4805 memset(to + info->options_len, 0, size - info->options_len);
4806
4807 return info->options_len;
4808 err_clear:
4809 memset(to, 0, size);
4810 return err;
4811 }
4812
4813 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4814 .func = bpf_skb_get_tunnel_opt,
4815 .gpl_only = false,
4816 .ret_type = RET_INTEGER,
4817 .arg1_type = ARG_PTR_TO_CTX,
4818 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4819 .arg3_type = ARG_CONST_SIZE,
4820 };
4821
4822 static struct metadata_dst __percpu *md_dst;
4823
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4824 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4825 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4826 {
4827 struct metadata_dst *md = this_cpu_ptr(md_dst);
4828 u8 compat[sizeof(struct bpf_tunnel_key)];
4829 struct ip_tunnel_info *info;
4830
4831 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4832 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4833 BPF_F_NO_TUNNEL_KEY)))
4834 return -EINVAL;
4835 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4836 switch (size) {
4837 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4838 case offsetof(struct bpf_tunnel_key, tunnel_label):
4839 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4840 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4841 /* Fixup deprecated structure layouts here, so we have
4842 * a common path later on.
4843 */
4844 memcpy(compat, from, size);
4845 memset(compat + size, 0, sizeof(compat) - size);
4846 from = (const struct bpf_tunnel_key *) compat;
4847 break;
4848 default:
4849 return -EINVAL;
4850 }
4851 }
4852 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4853 from->tunnel_ext))
4854 return -EINVAL;
4855
4856 skb_dst_drop(skb);
4857 dst_hold((struct dst_entry *) md);
4858 skb_dst_set(skb, (struct dst_entry *) md);
4859
4860 info = &md->u.tun_info;
4861 memset(info, 0, sizeof(*info));
4862 info->mode = IP_TUNNEL_INFO_TX;
4863
4864 __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4865 __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4866 flags & BPF_F_DONT_FRAGMENT);
4867 __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4868 !(flags & BPF_F_ZERO_CSUM_TX));
4869 __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4870 flags & BPF_F_SEQ_NUMBER);
4871 __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4872 !(flags & BPF_F_NO_TUNNEL_KEY));
4873
4874 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4875 info->key.tos = from->tunnel_tos;
4876 info->key.ttl = from->tunnel_ttl;
4877
4878 if (flags & BPF_F_TUNINFO_IPV6) {
4879 info->mode |= IP_TUNNEL_INFO_IPV6;
4880 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4881 sizeof(from->remote_ipv6));
4882 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4883 sizeof(from->local_ipv6));
4884 info->key.label = cpu_to_be32(from->tunnel_label) &
4885 IPV6_FLOWLABEL_MASK;
4886 } else {
4887 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4888 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4889 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4890 }
4891
4892 return 0;
4893 }
4894
4895 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4896 .func = bpf_skb_set_tunnel_key,
4897 .gpl_only = false,
4898 .ret_type = RET_INTEGER,
4899 .arg1_type = ARG_PTR_TO_CTX,
4900 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4901 .arg3_type = ARG_CONST_SIZE,
4902 .arg4_type = ARG_ANYTHING,
4903 };
4904
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4905 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4906 const u8 *, from, u32, size)
4907 {
4908 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4909 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4910 IP_TUNNEL_DECLARE_FLAGS(present) = { };
4911
4912 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4913 return -EINVAL;
4914 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4915 return -ENOMEM;
4916
4917 ip_tunnel_set_options_present(present);
4918 ip_tunnel_info_opts_set(info, from, size, present);
4919
4920 return 0;
4921 }
4922
4923 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4924 .func = bpf_skb_set_tunnel_opt,
4925 .gpl_only = false,
4926 .ret_type = RET_INTEGER,
4927 .arg1_type = ARG_PTR_TO_CTX,
4928 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4929 .arg3_type = ARG_CONST_SIZE,
4930 };
4931
4932 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4933 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4934 {
4935 if (!md_dst) {
4936 struct metadata_dst __percpu *tmp;
4937
4938 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4939 METADATA_IP_TUNNEL,
4940 GFP_KERNEL);
4941 if (!tmp)
4942 return NULL;
4943 if (cmpxchg(&md_dst, NULL, tmp))
4944 metadata_dst_free_percpu(tmp);
4945 }
4946
4947 switch (which) {
4948 case BPF_FUNC_skb_set_tunnel_key:
4949 return &bpf_skb_set_tunnel_key_proto;
4950 case BPF_FUNC_skb_set_tunnel_opt:
4951 return &bpf_skb_set_tunnel_opt_proto;
4952 default:
4953 return NULL;
4954 }
4955 }
4956
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4957 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4958 u32, idx)
4959 {
4960 struct bpf_array *array = container_of(map, struct bpf_array, map);
4961 struct cgroup *cgrp;
4962 struct sock *sk;
4963
4964 sk = skb_to_full_sk(skb);
4965 if (!sk || !sk_fullsock(sk))
4966 return -ENOENT;
4967 if (unlikely(idx >= array->map.max_entries))
4968 return -E2BIG;
4969
4970 cgrp = READ_ONCE(array->ptrs[idx]);
4971 if (unlikely(!cgrp))
4972 return -EAGAIN;
4973
4974 return sk_under_cgroup_hierarchy(sk, cgrp);
4975 }
4976
4977 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4978 .func = bpf_skb_under_cgroup,
4979 .gpl_only = false,
4980 .ret_type = RET_INTEGER,
4981 .arg1_type = ARG_PTR_TO_CTX,
4982 .arg2_type = ARG_CONST_MAP_PTR,
4983 .arg3_type = ARG_ANYTHING,
4984 };
4985
4986 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4987 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4988 {
4989 struct cgroup *cgrp;
4990
4991 sk = sk_to_full_sk(sk);
4992 if (!sk || !sk_fullsock(sk))
4993 return 0;
4994
4995 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4996 return cgroup_id(cgrp);
4997 }
4998
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4999 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
5000 {
5001 return __bpf_sk_cgroup_id(skb->sk);
5002 }
5003
5004 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
5005 .func = bpf_skb_cgroup_id,
5006 .gpl_only = false,
5007 .ret_type = RET_INTEGER,
5008 .arg1_type = ARG_PTR_TO_CTX,
5009 };
5010
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)5011 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
5012 int ancestor_level)
5013 {
5014 struct cgroup *ancestor;
5015 struct cgroup *cgrp;
5016
5017 sk = sk_to_full_sk(sk);
5018 if (!sk || !sk_fullsock(sk))
5019 return 0;
5020
5021 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5022 ancestor = cgroup_ancestor(cgrp, ancestor_level);
5023 if (!ancestor)
5024 return 0;
5025
5026 return cgroup_id(ancestor);
5027 }
5028
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5029 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5030 ancestor_level)
5031 {
5032 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5033 }
5034
5035 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5036 .func = bpf_skb_ancestor_cgroup_id,
5037 .gpl_only = false,
5038 .ret_type = RET_INTEGER,
5039 .arg1_type = ARG_PTR_TO_CTX,
5040 .arg2_type = ARG_ANYTHING,
5041 };
5042
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5043 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5044 {
5045 return __bpf_sk_cgroup_id(sk);
5046 }
5047
5048 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5049 .func = bpf_sk_cgroup_id,
5050 .gpl_only = false,
5051 .ret_type = RET_INTEGER,
5052 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5053 };
5054
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5055 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5056 {
5057 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5058 }
5059
5060 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5061 .func = bpf_sk_ancestor_cgroup_id,
5062 .gpl_only = false,
5063 .ret_type = RET_INTEGER,
5064 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5065 .arg2_type = ARG_ANYTHING,
5066 };
5067 #endif
5068
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5069 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5070 unsigned long off, unsigned long len)
5071 {
5072 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5073
5074 bpf_xdp_copy_buf(xdp, off, dst, len, false);
5075 return 0;
5076 }
5077
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5078 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5079 u64, flags, void *, meta, u64, meta_size)
5080 {
5081 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5082
5083 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5084 return -EINVAL;
5085
5086 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5087 return -EFAULT;
5088
5089 return bpf_event_output(map, flags, meta, meta_size, xdp,
5090 xdp_size, bpf_xdp_copy);
5091 }
5092
5093 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5094 .func = bpf_xdp_event_output,
5095 .gpl_only = true,
5096 .ret_type = RET_INTEGER,
5097 .arg1_type = ARG_PTR_TO_CTX,
5098 .arg2_type = ARG_CONST_MAP_PTR,
5099 .arg3_type = ARG_ANYTHING,
5100 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5101 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5102 };
5103
5104 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5105
5106 const struct bpf_func_proto bpf_xdp_output_proto = {
5107 .func = bpf_xdp_event_output,
5108 .gpl_only = true,
5109 .ret_type = RET_INTEGER,
5110 .arg1_type = ARG_PTR_TO_BTF_ID,
5111 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
5112 .arg2_type = ARG_CONST_MAP_PTR,
5113 .arg3_type = ARG_ANYTHING,
5114 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5115 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5116 };
5117
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5118 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5119 {
5120 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5121 }
5122
5123 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5124 .func = bpf_get_socket_cookie,
5125 .gpl_only = false,
5126 .ret_type = RET_INTEGER,
5127 .arg1_type = ARG_PTR_TO_CTX,
5128 };
5129
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5130 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5131 {
5132 return __sock_gen_cookie(ctx->sk);
5133 }
5134
5135 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5136 .func = bpf_get_socket_cookie_sock_addr,
5137 .gpl_only = false,
5138 .ret_type = RET_INTEGER,
5139 .arg1_type = ARG_PTR_TO_CTX,
5140 };
5141
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5142 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5143 {
5144 return __sock_gen_cookie(ctx);
5145 }
5146
5147 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5148 .func = bpf_get_socket_cookie_sock,
5149 .gpl_only = false,
5150 .ret_type = RET_INTEGER,
5151 .arg1_type = ARG_PTR_TO_CTX,
5152 };
5153
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5154 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5155 {
5156 return sk ? sock_gen_cookie(sk) : 0;
5157 }
5158
5159 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5160 .func = bpf_get_socket_ptr_cookie,
5161 .gpl_only = false,
5162 .ret_type = RET_INTEGER,
5163 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5164 };
5165
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5166 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5167 {
5168 return __sock_gen_cookie(ctx->sk);
5169 }
5170
5171 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5172 .func = bpf_get_socket_cookie_sock_ops,
5173 .gpl_only = false,
5174 .ret_type = RET_INTEGER,
5175 .arg1_type = ARG_PTR_TO_CTX,
5176 };
5177
__bpf_get_netns_cookie(struct sock * sk)5178 static u64 __bpf_get_netns_cookie(struct sock *sk)
5179 {
5180 const struct net *net = sk ? sock_net(sk) : &init_net;
5181
5182 return net->net_cookie;
5183 }
5184
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5185 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5186 {
5187 return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5188 }
5189
5190 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5191 .func = bpf_get_netns_cookie,
5192 .ret_type = RET_INTEGER,
5193 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5194 };
5195
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5196 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5197 {
5198 return __bpf_get_netns_cookie(ctx);
5199 }
5200
5201 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5202 .func = bpf_get_netns_cookie_sock,
5203 .gpl_only = false,
5204 .ret_type = RET_INTEGER,
5205 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5206 };
5207
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5208 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5209 {
5210 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5211 }
5212
5213 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5214 .func = bpf_get_netns_cookie_sock_addr,
5215 .gpl_only = false,
5216 .ret_type = RET_INTEGER,
5217 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5218 };
5219
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5220 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5221 {
5222 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5223 }
5224
5225 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5226 .func = bpf_get_netns_cookie_sock_ops,
5227 .gpl_only = false,
5228 .ret_type = RET_INTEGER,
5229 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5230 };
5231
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5232 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5233 {
5234 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5235 }
5236
5237 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5238 .func = bpf_get_netns_cookie_sk_msg,
5239 .gpl_only = false,
5240 .ret_type = RET_INTEGER,
5241 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5242 };
5243
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5244 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5245 {
5246 struct sock *sk = sk_to_full_sk(skb->sk);
5247 kuid_t kuid;
5248
5249 if (!sk || !sk_fullsock(sk))
5250 return overflowuid;
5251 kuid = sock_net_uid(sock_net(sk), sk);
5252 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5253 }
5254
5255 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5256 .func = bpf_get_socket_uid,
5257 .gpl_only = false,
5258 .ret_type = RET_INTEGER,
5259 .arg1_type = ARG_PTR_TO_CTX,
5260 };
5261
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5262 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5263 {
5264 u32 sk_bpf_cb_flags;
5265
5266 if (getopt) {
5267 *(u32 *)optval = sk->sk_bpf_cb_flags;
5268 return 0;
5269 }
5270
5271 sk_bpf_cb_flags = *(u32 *)optval;
5272
5273 if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5274 return -EINVAL;
5275
5276 sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5277
5278 return 0;
5279 }
5280
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5281 static int sol_socket_sockopt(struct sock *sk, int optname,
5282 char *optval, int *optlen,
5283 bool getopt)
5284 {
5285 switch (optname) {
5286 case SO_REUSEADDR:
5287 case SO_SNDBUF:
5288 case SO_RCVBUF:
5289 case SO_KEEPALIVE:
5290 case SO_PRIORITY:
5291 case SO_REUSEPORT:
5292 case SO_RCVLOWAT:
5293 case SO_MARK:
5294 case SO_MAX_PACING_RATE:
5295 case SO_BINDTOIFINDEX:
5296 case SO_TXREHASH:
5297 case SK_BPF_CB_FLAGS:
5298 if (*optlen != sizeof(int))
5299 return -EINVAL;
5300 break;
5301 case SO_BINDTODEVICE:
5302 break;
5303 default:
5304 return -EINVAL;
5305 }
5306
5307 if (optname == SK_BPF_CB_FLAGS)
5308 return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5309
5310 if (getopt) {
5311 if (optname == SO_BINDTODEVICE)
5312 return -EINVAL;
5313 return sk_getsockopt(sk, SOL_SOCKET, optname,
5314 KERNEL_SOCKPTR(optval),
5315 KERNEL_SOCKPTR(optlen));
5316 }
5317
5318 return sk_setsockopt(sk, SOL_SOCKET, optname,
5319 KERNEL_SOCKPTR(optval), *optlen);
5320 }
5321
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5322 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5323 char *optval, int optlen)
5324 {
5325 if (optlen != sizeof(int))
5326 return -EINVAL;
5327
5328 switch (optname) {
5329 case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5330 int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5331
5332 memcpy(optval, &cb_flags, optlen);
5333 break;
5334 }
5335 case TCP_BPF_RTO_MIN: {
5336 int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5337
5338 memcpy(optval, &rto_min_us, optlen);
5339 break;
5340 }
5341 case TCP_BPF_DELACK_MAX: {
5342 int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5343
5344 memcpy(optval, &delack_max_us, optlen);
5345 break;
5346 }
5347 default:
5348 return -EINVAL;
5349 }
5350
5351 return 0;
5352 }
5353
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5354 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5355 char *optval, int optlen)
5356 {
5357 struct tcp_sock *tp = tcp_sk(sk);
5358 unsigned long timeout;
5359 int val;
5360
5361 if (optlen != sizeof(int))
5362 return -EINVAL;
5363
5364 val = *(int *)optval;
5365
5366 /* Only some options are supported */
5367 switch (optname) {
5368 case TCP_BPF_IW:
5369 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5370 return -EINVAL;
5371 tcp_snd_cwnd_set(tp, val);
5372 break;
5373 case TCP_BPF_SNDCWND_CLAMP:
5374 if (val <= 0)
5375 return -EINVAL;
5376 tp->snd_cwnd_clamp = val;
5377 tp->snd_ssthresh = val;
5378 break;
5379 case TCP_BPF_DELACK_MAX:
5380 timeout = usecs_to_jiffies(val);
5381 if (timeout > TCP_DELACK_MAX ||
5382 timeout < TCP_TIMEOUT_MIN)
5383 return -EINVAL;
5384 inet_csk(sk)->icsk_delack_max = timeout;
5385 break;
5386 case TCP_BPF_RTO_MIN:
5387 timeout = usecs_to_jiffies(val);
5388 if (timeout > TCP_RTO_MIN ||
5389 timeout < TCP_TIMEOUT_MIN)
5390 return -EINVAL;
5391 inet_csk(sk)->icsk_rto_min = timeout;
5392 break;
5393 case TCP_BPF_SOCK_OPS_CB_FLAGS:
5394 if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5395 return -EINVAL;
5396 tp->bpf_sock_ops_cb_flags = val;
5397 break;
5398 default:
5399 return -EINVAL;
5400 }
5401
5402 return 0;
5403 }
5404
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5405 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5406 int *optlen, bool getopt)
5407 {
5408 struct tcp_sock *tp;
5409 int ret;
5410
5411 if (*optlen < 2)
5412 return -EINVAL;
5413
5414 if (getopt) {
5415 if (!inet_csk(sk)->icsk_ca_ops)
5416 return -EINVAL;
5417 /* BPF expects NULL-terminated tcp-cc string */
5418 optval[--(*optlen)] = '\0';
5419 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5420 KERNEL_SOCKPTR(optval),
5421 KERNEL_SOCKPTR(optlen));
5422 }
5423
5424 /* "cdg" is the only cc that alloc a ptr
5425 * in inet_csk_ca area. The bpf-tcp-cc may
5426 * overwrite this ptr after switching to cdg.
5427 */
5428 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5429 return -ENOTSUPP;
5430
5431 /* It stops this looping
5432 *
5433 * .init => bpf_setsockopt(tcp_cc) => .init =>
5434 * bpf_setsockopt(tcp_cc)" => .init => ....
5435 *
5436 * The second bpf_setsockopt(tcp_cc) is not allowed
5437 * in order to break the loop when both .init
5438 * are the same bpf prog.
5439 *
5440 * This applies even the second bpf_setsockopt(tcp_cc)
5441 * does not cause a loop. This limits only the first
5442 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5443 * pick a fallback cc (eg. peer does not support ECN)
5444 * and the second '.init' cannot fallback to
5445 * another.
5446 */
5447 tp = tcp_sk(sk);
5448 if (tp->bpf_chg_cc_inprogress)
5449 return -EBUSY;
5450
5451 tp->bpf_chg_cc_inprogress = 1;
5452 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5453 KERNEL_SOCKPTR(optval), *optlen);
5454 tp->bpf_chg_cc_inprogress = 0;
5455 return ret;
5456 }
5457
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5458 static int sol_tcp_sockopt(struct sock *sk, int optname,
5459 char *optval, int *optlen,
5460 bool getopt)
5461 {
5462 if (sk->sk_protocol != IPPROTO_TCP)
5463 return -EINVAL;
5464
5465 switch (optname) {
5466 case TCP_NODELAY:
5467 case TCP_MAXSEG:
5468 case TCP_KEEPIDLE:
5469 case TCP_KEEPINTVL:
5470 case TCP_KEEPCNT:
5471 case TCP_SYNCNT:
5472 case TCP_WINDOW_CLAMP:
5473 case TCP_THIN_LINEAR_TIMEOUTS:
5474 case TCP_USER_TIMEOUT:
5475 case TCP_NOTSENT_LOWAT:
5476 case TCP_SAVE_SYN:
5477 case TCP_RTO_MAX_MS:
5478 if (*optlen != sizeof(int))
5479 return -EINVAL;
5480 break;
5481 case TCP_CONGESTION:
5482 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5483 case TCP_SAVED_SYN:
5484 if (*optlen < 1)
5485 return -EINVAL;
5486 break;
5487 default:
5488 if (getopt)
5489 return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5490 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5491 }
5492
5493 if (getopt) {
5494 if (optname == TCP_SAVED_SYN) {
5495 struct tcp_sock *tp = tcp_sk(sk);
5496
5497 if (!tp->saved_syn ||
5498 *optlen > tcp_saved_syn_len(tp->saved_syn))
5499 return -EINVAL;
5500 memcpy(optval, tp->saved_syn->data, *optlen);
5501 /* It cannot free tp->saved_syn here because it
5502 * does not know if the user space still needs it.
5503 */
5504 return 0;
5505 }
5506
5507 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5508 KERNEL_SOCKPTR(optval),
5509 KERNEL_SOCKPTR(optlen));
5510 }
5511
5512 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5513 KERNEL_SOCKPTR(optval), *optlen);
5514 }
5515
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5516 static int sol_ip_sockopt(struct sock *sk, int optname,
5517 char *optval, int *optlen,
5518 bool getopt)
5519 {
5520 if (sk->sk_family != AF_INET)
5521 return -EINVAL;
5522
5523 switch (optname) {
5524 case IP_TOS:
5525 if (*optlen != sizeof(int))
5526 return -EINVAL;
5527 break;
5528 default:
5529 return -EINVAL;
5530 }
5531
5532 if (getopt)
5533 return do_ip_getsockopt(sk, SOL_IP, optname,
5534 KERNEL_SOCKPTR(optval),
5535 KERNEL_SOCKPTR(optlen));
5536
5537 return do_ip_setsockopt(sk, SOL_IP, optname,
5538 KERNEL_SOCKPTR(optval), *optlen);
5539 }
5540
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5541 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5542 char *optval, int *optlen,
5543 bool getopt)
5544 {
5545 if (sk->sk_family != AF_INET6)
5546 return -EINVAL;
5547
5548 switch (optname) {
5549 case IPV6_TCLASS:
5550 case IPV6_AUTOFLOWLABEL:
5551 if (*optlen != sizeof(int))
5552 return -EINVAL;
5553 break;
5554 default:
5555 return -EINVAL;
5556 }
5557
5558 if (getopt)
5559 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5560 KERNEL_SOCKPTR(optval),
5561 KERNEL_SOCKPTR(optlen));
5562
5563 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5564 KERNEL_SOCKPTR(optval), *optlen);
5565 }
5566
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5567 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5568 char *optval, int optlen)
5569 {
5570 if (!sk_fullsock(sk))
5571 return -EINVAL;
5572
5573 if (level == SOL_SOCKET)
5574 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5575 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5576 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5577 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5578 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5579 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5580 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5581
5582 return -EINVAL;
5583 }
5584
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5585 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5586 {
5587 return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5588 }
5589
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5590 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5591 char *optval, int optlen)
5592 {
5593 if (sk_fullsock(sk))
5594 sock_owned_by_me(sk);
5595 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5596 }
5597
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5598 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5599 char *optval, int optlen)
5600 {
5601 int err, saved_optlen = optlen;
5602
5603 if (!sk_fullsock(sk)) {
5604 err = -EINVAL;
5605 goto done;
5606 }
5607
5608 if (level == SOL_SOCKET)
5609 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5610 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5611 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5612 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5613 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5614 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5615 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5616 else
5617 err = -EINVAL;
5618
5619 done:
5620 if (err)
5621 optlen = 0;
5622 if (optlen < saved_optlen)
5623 memset(optval + optlen, 0, saved_optlen - optlen);
5624 return err;
5625 }
5626
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5627 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5628 char *optval, int optlen)
5629 {
5630 if (sk_fullsock(sk))
5631 sock_owned_by_me(sk);
5632 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5633 }
5634
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5635 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5636 int, optname, char *, optval, int, optlen)
5637 {
5638 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5639 }
5640
5641 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5642 .func = bpf_sk_setsockopt,
5643 .gpl_only = false,
5644 .ret_type = RET_INTEGER,
5645 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5646 .arg2_type = ARG_ANYTHING,
5647 .arg3_type = ARG_ANYTHING,
5648 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5649 .arg5_type = ARG_CONST_SIZE,
5650 };
5651
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5652 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5653 int, optname, char *, optval, int, optlen)
5654 {
5655 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5656 }
5657
5658 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5659 .func = bpf_sk_getsockopt,
5660 .gpl_only = false,
5661 .ret_type = RET_INTEGER,
5662 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5663 .arg2_type = ARG_ANYTHING,
5664 .arg3_type = ARG_ANYTHING,
5665 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5666 .arg5_type = ARG_CONST_SIZE,
5667 };
5668
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5669 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5670 int, optname, char *, optval, int, optlen)
5671 {
5672 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5673 }
5674
5675 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5676 .func = bpf_unlocked_sk_setsockopt,
5677 .gpl_only = false,
5678 .ret_type = RET_INTEGER,
5679 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5680 .arg2_type = ARG_ANYTHING,
5681 .arg3_type = ARG_ANYTHING,
5682 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5683 .arg5_type = ARG_CONST_SIZE,
5684 };
5685
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5686 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5687 int, optname, char *, optval, int, optlen)
5688 {
5689 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5690 }
5691
5692 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5693 .func = bpf_unlocked_sk_getsockopt,
5694 .gpl_only = false,
5695 .ret_type = RET_INTEGER,
5696 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5697 .arg2_type = ARG_ANYTHING,
5698 .arg3_type = ARG_ANYTHING,
5699 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5700 .arg5_type = ARG_CONST_SIZE,
5701 };
5702
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5703 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5704 int, level, int, optname, char *, optval, int, optlen)
5705 {
5706 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5707 }
5708
5709 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5710 .func = bpf_sock_addr_setsockopt,
5711 .gpl_only = false,
5712 .ret_type = RET_INTEGER,
5713 .arg1_type = ARG_PTR_TO_CTX,
5714 .arg2_type = ARG_ANYTHING,
5715 .arg3_type = ARG_ANYTHING,
5716 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5717 .arg5_type = ARG_CONST_SIZE,
5718 };
5719
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5720 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5721 int, level, int, optname, char *, optval, int, optlen)
5722 {
5723 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5724 }
5725
5726 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5727 .func = bpf_sock_addr_getsockopt,
5728 .gpl_only = false,
5729 .ret_type = RET_INTEGER,
5730 .arg1_type = ARG_PTR_TO_CTX,
5731 .arg2_type = ARG_ANYTHING,
5732 .arg3_type = ARG_ANYTHING,
5733 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5734 .arg5_type = ARG_CONST_SIZE,
5735 };
5736
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5737 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5738 int, level, int, optname, char *, optval, int, optlen)
5739 {
5740 if (!is_locked_tcp_sock_ops(bpf_sock))
5741 return -EOPNOTSUPP;
5742
5743 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5744 }
5745
5746 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5747 .func = bpf_sock_ops_setsockopt,
5748 .gpl_only = false,
5749 .ret_type = RET_INTEGER,
5750 .arg1_type = ARG_PTR_TO_CTX,
5751 .arg2_type = ARG_ANYTHING,
5752 .arg3_type = ARG_ANYTHING,
5753 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5754 .arg5_type = ARG_CONST_SIZE,
5755 };
5756
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5757 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5758 int optname, const u8 **start)
5759 {
5760 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5761 const u8 *hdr_start;
5762 int ret;
5763
5764 if (syn_skb) {
5765 /* sk is a request_sock here */
5766
5767 if (optname == TCP_BPF_SYN) {
5768 hdr_start = syn_skb->data;
5769 ret = tcp_hdrlen(syn_skb);
5770 } else if (optname == TCP_BPF_SYN_IP) {
5771 hdr_start = skb_network_header(syn_skb);
5772 ret = skb_network_header_len(syn_skb) +
5773 tcp_hdrlen(syn_skb);
5774 } else {
5775 /* optname == TCP_BPF_SYN_MAC */
5776 hdr_start = skb_mac_header(syn_skb);
5777 ret = skb_mac_header_len(syn_skb) +
5778 skb_network_header_len(syn_skb) +
5779 tcp_hdrlen(syn_skb);
5780 }
5781 } else {
5782 struct sock *sk = bpf_sock->sk;
5783 struct saved_syn *saved_syn;
5784
5785 if (sk->sk_state == TCP_NEW_SYN_RECV)
5786 /* synack retransmit. bpf_sock->syn_skb will
5787 * not be available. It has to resort to
5788 * saved_syn (if it is saved).
5789 */
5790 saved_syn = inet_reqsk(sk)->saved_syn;
5791 else
5792 saved_syn = tcp_sk(sk)->saved_syn;
5793
5794 if (!saved_syn)
5795 return -ENOENT;
5796
5797 if (optname == TCP_BPF_SYN) {
5798 hdr_start = saved_syn->data +
5799 saved_syn->mac_hdrlen +
5800 saved_syn->network_hdrlen;
5801 ret = saved_syn->tcp_hdrlen;
5802 } else if (optname == TCP_BPF_SYN_IP) {
5803 hdr_start = saved_syn->data +
5804 saved_syn->mac_hdrlen;
5805 ret = saved_syn->network_hdrlen +
5806 saved_syn->tcp_hdrlen;
5807 } else {
5808 /* optname == TCP_BPF_SYN_MAC */
5809
5810 /* TCP_SAVE_SYN may not have saved the mac hdr */
5811 if (!saved_syn->mac_hdrlen)
5812 return -ENOENT;
5813
5814 hdr_start = saved_syn->data;
5815 ret = saved_syn->mac_hdrlen +
5816 saved_syn->network_hdrlen +
5817 saved_syn->tcp_hdrlen;
5818 }
5819 }
5820
5821 *start = hdr_start;
5822 return ret;
5823 }
5824
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5825 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5826 int, level, int, optname, char *, optval, int, optlen)
5827 {
5828 if (!is_locked_tcp_sock_ops(bpf_sock))
5829 return -EOPNOTSUPP;
5830
5831 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5832 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5833 int ret, copy_len = 0;
5834 const u8 *start;
5835
5836 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5837 if (ret > 0) {
5838 copy_len = ret;
5839 if (optlen < copy_len) {
5840 copy_len = optlen;
5841 ret = -ENOSPC;
5842 }
5843
5844 memcpy(optval, start, copy_len);
5845 }
5846
5847 /* Zero out unused buffer at the end */
5848 memset(optval + copy_len, 0, optlen - copy_len);
5849
5850 return ret;
5851 }
5852
5853 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5854 }
5855
5856 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5857 .func = bpf_sock_ops_getsockopt,
5858 .gpl_only = false,
5859 .ret_type = RET_INTEGER,
5860 .arg1_type = ARG_PTR_TO_CTX,
5861 .arg2_type = ARG_ANYTHING,
5862 .arg3_type = ARG_ANYTHING,
5863 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5864 .arg5_type = ARG_CONST_SIZE,
5865 };
5866
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5867 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5868 int, argval)
5869 {
5870 struct sock *sk = bpf_sock->sk;
5871 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5872
5873 if (!is_locked_tcp_sock_ops(bpf_sock))
5874 return -EOPNOTSUPP;
5875
5876 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5877 return -EINVAL;
5878
5879 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5880
5881 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5882 }
5883
5884 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5885 .func = bpf_sock_ops_cb_flags_set,
5886 .gpl_only = false,
5887 .ret_type = RET_INTEGER,
5888 .arg1_type = ARG_PTR_TO_CTX,
5889 .arg2_type = ARG_ANYTHING,
5890 };
5891
5892 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5893 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5894
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5895 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5896 int, addr_len)
5897 {
5898 #ifdef CONFIG_INET
5899 struct sock *sk = ctx->sk;
5900 u32 flags = BIND_FROM_BPF;
5901 int err;
5902
5903 err = -EINVAL;
5904 if (addr_len < offsetofend(struct sockaddr, sa_family))
5905 return err;
5906 if (addr->sa_family == AF_INET) {
5907 if (addr_len < sizeof(struct sockaddr_in))
5908 return err;
5909 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5910 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5911 return __inet_bind(sk, addr, addr_len, flags);
5912 #if IS_ENABLED(CONFIG_IPV6)
5913 } else if (addr->sa_family == AF_INET6) {
5914 if (addr_len < SIN6_LEN_RFC2133)
5915 return err;
5916 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5917 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5918 /* ipv6_bpf_stub cannot be NULL, since it's called from
5919 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5920 */
5921 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5922 #endif /* CONFIG_IPV6 */
5923 }
5924 #endif /* CONFIG_INET */
5925
5926 return -EAFNOSUPPORT;
5927 }
5928
5929 static const struct bpf_func_proto bpf_bind_proto = {
5930 .func = bpf_bind,
5931 .gpl_only = false,
5932 .ret_type = RET_INTEGER,
5933 .arg1_type = ARG_PTR_TO_CTX,
5934 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5935 .arg3_type = ARG_CONST_SIZE,
5936 };
5937
5938 #ifdef CONFIG_XFRM
5939
5940 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5941 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5942
5943 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5944 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5945
5946 #endif
5947
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5948 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5949 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5950 {
5951 const struct sec_path *sp = skb_sec_path(skb);
5952 const struct xfrm_state *x;
5953
5954 if (!sp || unlikely(index >= sp->len || flags))
5955 goto err_clear;
5956
5957 x = sp->xvec[index];
5958
5959 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5960 goto err_clear;
5961
5962 to->reqid = x->props.reqid;
5963 to->spi = x->id.spi;
5964 to->family = x->props.family;
5965 to->ext = 0;
5966
5967 if (to->family == AF_INET6) {
5968 memcpy(to->remote_ipv6, x->props.saddr.a6,
5969 sizeof(to->remote_ipv6));
5970 } else {
5971 to->remote_ipv4 = x->props.saddr.a4;
5972 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5973 }
5974
5975 return 0;
5976 err_clear:
5977 memset(to, 0, size);
5978 return -EINVAL;
5979 }
5980
5981 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5982 .func = bpf_skb_get_xfrm_state,
5983 .gpl_only = false,
5984 .ret_type = RET_INTEGER,
5985 .arg1_type = ARG_PTR_TO_CTX,
5986 .arg2_type = ARG_ANYTHING,
5987 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5988 .arg4_type = ARG_CONST_SIZE,
5989 .arg5_type = ARG_ANYTHING,
5990 };
5991 #endif
5992
5993 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5994 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5995 {
5996 params->h_vlan_TCI = 0;
5997 params->h_vlan_proto = 0;
5998 if (mtu)
5999 params->mtu_result = mtu; /* union with tot_len */
6000
6001 return 0;
6002 }
6003 #endif
6004
6005 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6006 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6007 u32 flags, bool check_mtu)
6008 {
6009 struct fib_nh_common *nhc;
6010 struct in_device *in_dev;
6011 struct neighbour *neigh;
6012 struct net_device *dev;
6013 struct fib_result res;
6014 struct flowi4 fl4;
6015 u32 mtu = 0;
6016 int err;
6017
6018 dev = dev_get_by_index_rcu(net, params->ifindex);
6019 if (unlikely(!dev))
6020 return -ENODEV;
6021
6022 /* verify forwarding is enabled on this interface */
6023 in_dev = __in_dev_get_rcu(dev);
6024 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
6025 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6026
6027 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6028 fl4.flowi4_iif = 1;
6029 fl4.flowi4_oif = params->ifindex;
6030 } else {
6031 fl4.flowi4_iif = params->ifindex;
6032 fl4.flowi4_oif = 0;
6033 }
6034 fl4.flowi4_dscp = inet_dsfield_to_dscp(params->tos);
6035 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6036 fl4.flowi4_flags = 0;
6037
6038 fl4.flowi4_proto = params->l4_protocol;
6039 fl4.daddr = params->ipv4_dst;
6040 fl4.saddr = params->ipv4_src;
6041 fl4.fl4_sport = params->sport;
6042 fl4.fl4_dport = params->dport;
6043 fl4.flowi4_multipath_hash = 0;
6044
6045 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6046 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6047 struct fib_table *tb;
6048
6049 if (flags & BPF_FIB_LOOKUP_TBID) {
6050 tbid = params->tbid;
6051 /* zero out for vlan output */
6052 params->tbid = 0;
6053 }
6054
6055 tb = fib_get_table(net, tbid);
6056 if (unlikely(!tb))
6057 return BPF_FIB_LKUP_RET_NOT_FWDED;
6058
6059 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6060 } else {
6061 if (flags & BPF_FIB_LOOKUP_MARK)
6062 fl4.flowi4_mark = params->mark;
6063 else
6064 fl4.flowi4_mark = 0;
6065 fl4.flowi4_secid = 0;
6066 fl4.flowi4_tun_key.tun_id = 0;
6067 fl4.flowi4_uid = sock_net_uid(net, NULL);
6068
6069 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6070 }
6071
6072 if (err) {
6073 /* map fib lookup errors to RTN_ type */
6074 if (err == -EINVAL)
6075 return BPF_FIB_LKUP_RET_BLACKHOLE;
6076 if (err == -EHOSTUNREACH)
6077 return BPF_FIB_LKUP_RET_UNREACHABLE;
6078 if (err == -EACCES)
6079 return BPF_FIB_LKUP_RET_PROHIBIT;
6080
6081 return BPF_FIB_LKUP_RET_NOT_FWDED;
6082 }
6083
6084 if (res.type != RTN_UNICAST)
6085 return BPF_FIB_LKUP_RET_NOT_FWDED;
6086
6087 if (fib_info_num_path(res.fi) > 1)
6088 fib_select_path(net, &res, &fl4, NULL);
6089
6090 if (check_mtu) {
6091 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6092 if (params->tot_len > mtu) {
6093 params->mtu_result = mtu; /* union with tot_len */
6094 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6095 }
6096 }
6097
6098 nhc = res.nhc;
6099
6100 /* do not handle lwt encaps right now */
6101 if (nhc->nhc_lwtstate)
6102 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6103
6104 dev = nhc->nhc_dev;
6105
6106 params->rt_metric = res.fi->fib_priority;
6107 params->ifindex = dev->ifindex;
6108
6109 if (flags & BPF_FIB_LOOKUP_SRC)
6110 params->ipv4_src = fib_result_prefsrc(net, &res);
6111
6112 /* xdp and cls_bpf programs are run in RCU-bh so
6113 * rcu_read_lock_bh is not needed here
6114 */
6115 if (likely(nhc->nhc_gw_family != AF_INET6)) {
6116 if (nhc->nhc_gw_family)
6117 params->ipv4_dst = nhc->nhc_gw.ipv4;
6118 } else {
6119 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6120
6121 params->family = AF_INET6;
6122 *dst = nhc->nhc_gw.ipv6;
6123 }
6124
6125 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6126 goto set_fwd_params;
6127
6128 if (likely(nhc->nhc_gw_family != AF_INET6))
6129 neigh = __ipv4_neigh_lookup_noref(dev,
6130 (__force u32)params->ipv4_dst);
6131 else
6132 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6133
6134 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6135 return BPF_FIB_LKUP_RET_NO_NEIGH;
6136 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6137 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6138
6139 set_fwd_params:
6140 return bpf_fib_set_fwd_params(params, mtu);
6141 }
6142 #endif
6143
6144 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6145 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6146 u32 flags, bool check_mtu)
6147 {
6148 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6149 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6150 struct fib6_result res = {};
6151 struct neighbour *neigh;
6152 struct net_device *dev;
6153 struct inet6_dev *idev;
6154 struct flowi6 fl6;
6155 int strict = 0;
6156 int oif, err;
6157 u32 mtu = 0;
6158
6159 /* link local addresses are never forwarded */
6160 if (rt6_need_strict(dst) || rt6_need_strict(src))
6161 return BPF_FIB_LKUP_RET_NOT_FWDED;
6162
6163 dev = dev_get_by_index_rcu(net, params->ifindex);
6164 if (unlikely(!dev))
6165 return -ENODEV;
6166
6167 idev = __in6_dev_get_safely(dev);
6168 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6169 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6170
6171 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6172 fl6.flowi6_iif = 1;
6173 oif = fl6.flowi6_oif = params->ifindex;
6174 } else {
6175 oif = fl6.flowi6_iif = params->ifindex;
6176 fl6.flowi6_oif = 0;
6177 strict = RT6_LOOKUP_F_HAS_SADDR;
6178 }
6179 fl6.flowlabel = params->flowinfo;
6180 fl6.flowi6_scope = 0;
6181 fl6.flowi6_flags = 0;
6182 fl6.mp_hash = 0;
6183
6184 fl6.flowi6_proto = params->l4_protocol;
6185 fl6.daddr = *dst;
6186 fl6.saddr = *src;
6187 fl6.fl6_sport = params->sport;
6188 fl6.fl6_dport = params->dport;
6189
6190 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6191 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6192 struct fib6_table *tb;
6193
6194 if (flags & BPF_FIB_LOOKUP_TBID) {
6195 tbid = params->tbid;
6196 /* zero out for vlan output */
6197 params->tbid = 0;
6198 }
6199
6200 tb = ipv6_stub->fib6_get_table(net, tbid);
6201 if (unlikely(!tb))
6202 return BPF_FIB_LKUP_RET_NOT_FWDED;
6203
6204 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6205 strict);
6206 } else {
6207 if (flags & BPF_FIB_LOOKUP_MARK)
6208 fl6.flowi6_mark = params->mark;
6209 else
6210 fl6.flowi6_mark = 0;
6211 fl6.flowi6_secid = 0;
6212 fl6.flowi6_tun_key.tun_id = 0;
6213 fl6.flowi6_uid = sock_net_uid(net, NULL);
6214
6215 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6216 }
6217
6218 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6219 res.f6i == net->ipv6.fib6_null_entry))
6220 return BPF_FIB_LKUP_RET_NOT_FWDED;
6221
6222 switch (res.fib6_type) {
6223 /* only unicast is forwarded */
6224 case RTN_UNICAST:
6225 break;
6226 case RTN_BLACKHOLE:
6227 return BPF_FIB_LKUP_RET_BLACKHOLE;
6228 case RTN_UNREACHABLE:
6229 return BPF_FIB_LKUP_RET_UNREACHABLE;
6230 case RTN_PROHIBIT:
6231 return BPF_FIB_LKUP_RET_PROHIBIT;
6232 default:
6233 return BPF_FIB_LKUP_RET_NOT_FWDED;
6234 }
6235
6236 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6237 fl6.flowi6_oif != 0, NULL, strict);
6238
6239 if (check_mtu) {
6240 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6241 if (params->tot_len > mtu) {
6242 params->mtu_result = mtu; /* union with tot_len */
6243 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6244 }
6245 }
6246
6247 if (res.nh->fib_nh_lws)
6248 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6249
6250 if (res.nh->fib_nh_gw_family)
6251 *dst = res.nh->fib_nh_gw6;
6252
6253 dev = res.nh->fib_nh_dev;
6254 params->rt_metric = res.f6i->fib6_metric;
6255 params->ifindex = dev->ifindex;
6256
6257 if (flags & BPF_FIB_LOOKUP_SRC) {
6258 if (res.f6i->fib6_prefsrc.plen) {
6259 *src = res.f6i->fib6_prefsrc.addr;
6260 } else {
6261 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6262 &fl6.daddr, 0,
6263 src);
6264 if (err)
6265 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6266 }
6267 }
6268
6269 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6270 goto set_fwd_params;
6271
6272 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6273 * not needed here.
6274 */
6275 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6276 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6277 return BPF_FIB_LKUP_RET_NO_NEIGH;
6278 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6279 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6280
6281 set_fwd_params:
6282 return bpf_fib_set_fwd_params(params, mtu);
6283 }
6284 #endif
6285
6286 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6287 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6288 BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6289
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6290 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6291 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6292 {
6293 if (plen < sizeof(*params))
6294 return -EINVAL;
6295
6296 if (flags & ~BPF_FIB_LOOKUP_MASK)
6297 return -EINVAL;
6298
6299 switch (params->family) {
6300 #if IS_ENABLED(CONFIG_INET)
6301 case AF_INET:
6302 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6303 flags, true);
6304 #endif
6305 #if IS_ENABLED(CONFIG_IPV6)
6306 case AF_INET6:
6307 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6308 flags, true);
6309 #endif
6310 }
6311 return -EAFNOSUPPORT;
6312 }
6313
6314 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6315 .func = bpf_xdp_fib_lookup,
6316 .gpl_only = true,
6317 .ret_type = RET_INTEGER,
6318 .arg1_type = ARG_PTR_TO_CTX,
6319 .arg2_type = ARG_PTR_TO_MEM,
6320 .arg3_type = ARG_CONST_SIZE,
6321 .arg4_type = ARG_ANYTHING,
6322 };
6323
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6324 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6325 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6326 {
6327 struct net *net = dev_net(skb->dev);
6328 int rc = -EAFNOSUPPORT;
6329 bool check_mtu = false;
6330
6331 if (plen < sizeof(*params))
6332 return -EINVAL;
6333
6334 if (flags & ~BPF_FIB_LOOKUP_MASK)
6335 return -EINVAL;
6336
6337 if (params->tot_len)
6338 check_mtu = true;
6339
6340 switch (params->family) {
6341 #if IS_ENABLED(CONFIG_INET)
6342 case AF_INET:
6343 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6344 break;
6345 #endif
6346 #if IS_ENABLED(CONFIG_IPV6)
6347 case AF_INET6:
6348 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6349 break;
6350 #endif
6351 }
6352
6353 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6354 struct net_device *dev;
6355
6356 /* When tot_len isn't provided by user, check skb
6357 * against MTU of FIB lookup resulting net_device
6358 */
6359 dev = dev_get_by_index_rcu(net, params->ifindex);
6360 if (!is_skb_forwardable(dev, skb))
6361 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6362
6363 params->mtu_result = dev->mtu; /* union with tot_len */
6364 }
6365
6366 return rc;
6367 }
6368
6369 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6370 .func = bpf_skb_fib_lookup,
6371 .gpl_only = true,
6372 .ret_type = RET_INTEGER,
6373 .arg1_type = ARG_PTR_TO_CTX,
6374 .arg2_type = ARG_PTR_TO_MEM,
6375 .arg3_type = ARG_CONST_SIZE,
6376 .arg4_type = ARG_ANYTHING,
6377 };
6378
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6379 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6380 u32 ifindex)
6381 {
6382 struct net *netns = dev_net(dev_curr);
6383
6384 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6385 if (ifindex == 0)
6386 return dev_curr;
6387
6388 return dev_get_by_index_rcu(netns, ifindex);
6389 }
6390
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6391 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6392 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6393 {
6394 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6395 struct net_device *dev = skb->dev;
6396 int mtu, dev_len, skb_len;
6397
6398 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6399 return -EINVAL;
6400 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6401 return -EINVAL;
6402
6403 dev = __dev_via_ifindex(dev, ifindex);
6404 if (unlikely(!dev))
6405 return -ENODEV;
6406
6407 mtu = READ_ONCE(dev->mtu);
6408 dev_len = mtu + dev->hard_header_len;
6409
6410 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6411 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6412
6413 skb_len += len_diff; /* minus result pass check */
6414 if (skb_len <= dev_len) {
6415 ret = BPF_MTU_CHK_RET_SUCCESS;
6416 goto out;
6417 }
6418 /* At this point, skb->len exceed MTU, but as it include length of all
6419 * segments, it can still be below MTU. The SKB can possibly get
6420 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6421 * must choose if segs are to be MTU checked.
6422 */
6423 if (skb_is_gso(skb)) {
6424 ret = BPF_MTU_CHK_RET_SUCCESS;
6425 if (flags & BPF_MTU_CHK_SEGS &&
6426 !skb_gso_validate_network_len(skb, mtu))
6427 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6428 }
6429 out:
6430 *mtu_len = mtu;
6431 return ret;
6432 }
6433
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6434 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6435 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6436 {
6437 struct net_device *dev = xdp->rxq->dev;
6438 int xdp_len = xdp->data_end - xdp->data;
6439 int ret = BPF_MTU_CHK_RET_SUCCESS;
6440 int mtu, dev_len;
6441
6442 /* XDP variant doesn't support multi-buffer segment check (yet) */
6443 if (unlikely(flags))
6444 return -EINVAL;
6445
6446 dev = __dev_via_ifindex(dev, ifindex);
6447 if (unlikely(!dev))
6448 return -ENODEV;
6449
6450 mtu = READ_ONCE(dev->mtu);
6451 dev_len = mtu + dev->hard_header_len;
6452
6453 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6454 if (*mtu_len)
6455 xdp_len = *mtu_len + dev->hard_header_len;
6456
6457 xdp_len += len_diff; /* minus result pass check */
6458 if (xdp_len > dev_len)
6459 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6460
6461 *mtu_len = mtu;
6462 return ret;
6463 }
6464
6465 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6466 .func = bpf_skb_check_mtu,
6467 .gpl_only = true,
6468 .ret_type = RET_INTEGER,
6469 .arg1_type = ARG_PTR_TO_CTX,
6470 .arg2_type = ARG_ANYTHING,
6471 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6472 .arg3_size = sizeof(u32),
6473 .arg4_type = ARG_ANYTHING,
6474 .arg5_type = ARG_ANYTHING,
6475 };
6476
6477 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6478 .func = bpf_xdp_check_mtu,
6479 .gpl_only = true,
6480 .ret_type = RET_INTEGER,
6481 .arg1_type = ARG_PTR_TO_CTX,
6482 .arg2_type = ARG_ANYTHING,
6483 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6484 .arg3_size = sizeof(u32),
6485 .arg4_type = ARG_ANYTHING,
6486 .arg5_type = ARG_ANYTHING,
6487 };
6488
6489 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6490 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6491 {
6492 int err;
6493 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6494
6495 if (!seg6_validate_srh(srh, len, false))
6496 return -EINVAL;
6497
6498 switch (type) {
6499 case BPF_LWT_ENCAP_SEG6_INLINE:
6500 if (skb->protocol != htons(ETH_P_IPV6))
6501 return -EBADMSG;
6502
6503 err = seg6_do_srh_inline(skb, srh);
6504 break;
6505 case BPF_LWT_ENCAP_SEG6:
6506 skb_reset_inner_headers(skb);
6507 skb->encapsulation = 1;
6508 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6509 break;
6510 default:
6511 return -EINVAL;
6512 }
6513
6514 bpf_compute_data_pointers(skb);
6515 if (err)
6516 return err;
6517
6518 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6519
6520 return seg6_lookup_nexthop(skb, NULL, 0);
6521 }
6522 #endif /* CONFIG_IPV6_SEG6_BPF */
6523
6524 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6525 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6526 bool ingress)
6527 {
6528 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6529 }
6530 #endif
6531
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6532 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6533 u32, len)
6534 {
6535 switch (type) {
6536 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6537 case BPF_LWT_ENCAP_SEG6:
6538 case BPF_LWT_ENCAP_SEG6_INLINE:
6539 return bpf_push_seg6_encap(skb, type, hdr, len);
6540 #endif
6541 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6542 case BPF_LWT_ENCAP_IP:
6543 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6544 #endif
6545 default:
6546 return -EINVAL;
6547 }
6548 }
6549
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6550 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6551 void *, hdr, u32, len)
6552 {
6553 switch (type) {
6554 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6555 case BPF_LWT_ENCAP_IP:
6556 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6557 #endif
6558 default:
6559 return -EINVAL;
6560 }
6561 }
6562
6563 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6564 .func = bpf_lwt_in_push_encap,
6565 .gpl_only = false,
6566 .ret_type = RET_INTEGER,
6567 .arg1_type = ARG_PTR_TO_CTX,
6568 .arg2_type = ARG_ANYTHING,
6569 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6570 .arg4_type = ARG_CONST_SIZE
6571 };
6572
6573 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6574 .func = bpf_lwt_xmit_push_encap,
6575 .gpl_only = false,
6576 .ret_type = RET_INTEGER,
6577 .arg1_type = ARG_PTR_TO_CTX,
6578 .arg2_type = ARG_ANYTHING,
6579 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6580 .arg4_type = ARG_CONST_SIZE
6581 };
6582
6583 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6584 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6585 const void *, from, u32, len)
6586 {
6587 struct seg6_bpf_srh_state *srh_state =
6588 this_cpu_ptr(&seg6_bpf_srh_states);
6589 struct ipv6_sr_hdr *srh = srh_state->srh;
6590 void *srh_tlvs, *srh_end, *ptr;
6591 int srhoff = 0;
6592
6593 lockdep_assert_held(&srh_state->bh_lock);
6594 if (srh == NULL)
6595 return -EINVAL;
6596
6597 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6598 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6599
6600 ptr = skb->data + offset;
6601 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6602 srh_state->valid = false;
6603 else if (ptr < (void *)&srh->flags ||
6604 ptr + len > (void *)&srh->segments)
6605 return -EFAULT;
6606
6607 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6608 return -EFAULT;
6609 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6610 return -EINVAL;
6611 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6612
6613 memcpy(skb->data + offset, from, len);
6614 return 0;
6615 }
6616
6617 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6618 .func = bpf_lwt_seg6_store_bytes,
6619 .gpl_only = false,
6620 .ret_type = RET_INTEGER,
6621 .arg1_type = ARG_PTR_TO_CTX,
6622 .arg2_type = ARG_ANYTHING,
6623 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6624 .arg4_type = ARG_CONST_SIZE
6625 };
6626
bpf_update_srh_state(struct sk_buff * skb)6627 static void bpf_update_srh_state(struct sk_buff *skb)
6628 {
6629 struct seg6_bpf_srh_state *srh_state =
6630 this_cpu_ptr(&seg6_bpf_srh_states);
6631 int srhoff = 0;
6632
6633 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6634 srh_state->srh = NULL;
6635 } else {
6636 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6637 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6638 srh_state->valid = true;
6639 }
6640 }
6641
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6642 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6643 u32, action, void *, param, u32, param_len)
6644 {
6645 struct seg6_bpf_srh_state *srh_state =
6646 this_cpu_ptr(&seg6_bpf_srh_states);
6647 int hdroff = 0;
6648 int err;
6649
6650 lockdep_assert_held(&srh_state->bh_lock);
6651 switch (action) {
6652 case SEG6_LOCAL_ACTION_END_X:
6653 if (!seg6_bpf_has_valid_srh(skb))
6654 return -EBADMSG;
6655 if (param_len != sizeof(struct in6_addr))
6656 return -EINVAL;
6657 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6658 case SEG6_LOCAL_ACTION_END_T:
6659 if (!seg6_bpf_has_valid_srh(skb))
6660 return -EBADMSG;
6661 if (param_len != sizeof(int))
6662 return -EINVAL;
6663 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6664 case SEG6_LOCAL_ACTION_END_DT6:
6665 if (!seg6_bpf_has_valid_srh(skb))
6666 return -EBADMSG;
6667 if (param_len != sizeof(int))
6668 return -EINVAL;
6669
6670 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6671 return -EBADMSG;
6672 if (!pskb_pull(skb, hdroff))
6673 return -EBADMSG;
6674
6675 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6676 skb_reset_network_header(skb);
6677 skb_reset_transport_header(skb);
6678 skb->encapsulation = 0;
6679
6680 bpf_compute_data_pointers(skb);
6681 bpf_update_srh_state(skb);
6682 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6683 case SEG6_LOCAL_ACTION_END_B6:
6684 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6685 return -EBADMSG;
6686 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6687 param, param_len);
6688 if (!err)
6689 bpf_update_srh_state(skb);
6690
6691 return err;
6692 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6693 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6694 return -EBADMSG;
6695 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6696 param, param_len);
6697 if (!err)
6698 bpf_update_srh_state(skb);
6699
6700 return err;
6701 default:
6702 return -EINVAL;
6703 }
6704 }
6705
6706 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6707 .func = bpf_lwt_seg6_action,
6708 .gpl_only = false,
6709 .ret_type = RET_INTEGER,
6710 .arg1_type = ARG_PTR_TO_CTX,
6711 .arg2_type = ARG_ANYTHING,
6712 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6713 .arg4_type = ARG_CONST_SIZE
6714 };
6715
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6716 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6717 s32, len)
6718 {
6719 struct seg6_bpf_srh_state *srh_state =
6720 this_cpu_ptr(&seg6_bpf_srh_states);
6721 struct ipv6_sr_hdr *srh = srh_state->srh;
6722 void *srh_end, *srh_tlvs, *ptr;
6723 struct ipv6hdr *hdr;
6724 int srhoff = 0;
6725 int ret;
6726
6727 lockdep_assert_held(&srh_state->bh_lock);
6728 if (unlikely(srh == NULL))
6729 return -EINVAL;
6730
6731 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6732 ((srh->first_segment + 1) << 4));
6733 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6734 srh_state->hdrlen);
6735 ptr = skb->data + offset;
6736
6737 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6738 return -EFAULT;
6739 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6740 return -EFAULT;
6741
6742 if (len > 0) {
6743 ret = skb_cow_head(skb, len);
6744 if (unlikely(ret < 0))
6745 return ret;
6746
6747 ret = bpf_skb_net_hdr_push(skb, offset, len);
6748 } else {
6749 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6750 }
6751
6752 bpf_compute_data_pointers(skb);
6753 if (unlikely(ret < 0))
6754 return ret;
6755
6756 hdr = (struct ipv6hdr *)skb->data;
6757 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6758
6759 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6760 return -EINVAL;
6761 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6762 srh_state->hdrlen += len;
6763 srh_state->valid = false;
6764 return 0;
6765 }
6766
6767 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6768 .func = bpf_lwt_seg6_adjust_srh,
6769 .gpl_only = false,
6770 .ret_type = RET_INTEGER,
6771 .arg1_type = ARG_PTR_TO_CTX,
6772 .arg2_type = ARG_ANYTHING,
6773 .arg3_type = ARG_ANYTHING,
6774 };
6775 #endif /* CONFIG_IPV6_SEG6_BPF */
6776
6777 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6778 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6779 int dif, int sdif, u8 family, u8 proto)
6780 {
6781 bool refcounted = false;
6782 struct sock *sk = NULL;
6783
6784 if (family == AF_INET) {
6785 __be32 src4 = tuple->ipv4.saddr;
6786 __be32 dst4 = tuple->ipv4.daddr;
6787
6788 if (proto == IPPROTO_TCP)
6789 sk = __inet_lookup(net, NULL, 0,
6790 src4, tuple->ipv4.sport,
6791 dst4, tuple->ipv4.dport,
6792 dif, sdif, &refcounted);
6793 else
6794 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6795 dst4, tuple->ipv4.dport,
6796 dif, sdif, net->ipv4.udp_table, NULL);
6797 #if IS_ENABLED(CONFIG_IPV6)
6798 } else {
6799 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6800 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6801
6802 if (proto == IPPROTO_TCP)
6803 sk = __inet6_lookup(net, NULL, 0,
6804 src6, tuple->ipv6.sport,
6805 dst6, ntohs(tuple->ipv6.dport),
6806 dif, sdif, &refcounted);
6807 else if (likely(ipv6_bpf_stub))
6808 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6809 src6, tuple->ipv6.sport,
6810 dst6, tuple->ipv6.dport,
6811 dif, sdif,
6812 net->ipv4.udp_table, NULL);
6813 #endif
6814 }
6815
6816 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6817 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6818 sk = NULL;
6819 }
6820 return sk;
6821 }
6822
6823 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6824 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6825 */
6826 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6827 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6828 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6829 u64 flags, int sdif)
6830 {
6831 struct sock *sk = NULL;
6832 struct net *net;
6833 u8 family;
6834
6835 if (len == sizeof(tuple->ipv4))
6836 family = AF_INET;
6837 else if (len == sizeof(tuple->ipv6))
6838 family = AF_INET6;
6839 else
6840 return NULL;
6841
6842 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6843 goto out;
6844
6845 if (sdif < 0) {
6846 if (family == AF_INET)
6847 sdif = inet_sdif(skb);
6848 else
6849 sdif = inet6_sdif(skb);
6850 }
6851
6852 if ((s32)netns_id < 0) {
6853 net = caller_net;
6854 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6855 } else {
6856 net = get_net_ns_by_id(caller_net, netns_id);
6857 if (unlikely(!net))
6858 goto out;
6859 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6860 put_net(net);
6861 }
6862
6863 out:
6864 return sk;
6865 }
6866
6867 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6868 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6869 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6870 u64 flags, int sdif)
6871 {
6872 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6873 ifindex, proto, netns_id, flags,
6874 sdif);
6875
6876 if (sk) {
6877 struct sock *sk2 = sk_to_full_sk(sk);
6878
6879 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6880 * sock refcnt is decremented to prevent a request_sock leak.
6881 */
6882 if (sk2 != sk) {
6883 sock_gen_put(sk);
6884 /* Ensure there is no need to bump sk2 refcnt */
6885 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6886 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6887 return NULL;
6888 }
6889 sk = sk2;
6890 }
6891 }
6892
6893 return sk;
6894 }
6895
6896 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6897 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6898 u8 proto, u64 netns_id, u64 flags)
6899 {
6900 struct net *caller_net;
6901 int ifindex;
6902
6903 if (skb->dev) {
6904 caller_net = dev_net(skb->dev);
6905 ifindex = skb->dev->ifindex;
6906 } else {
6907 caller_net = sock_net(skb->sk);
6908 ifindex = 0;
6909 }
6910
6911 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6912 netns_id, flags, -1);
6913 }
6914
6915 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6916 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6917 u8 proto, u64 netns_id, u64 flags)
6918 {
6919 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6920 flags);
6921
6922 if (sk) {
6923 struct sock *sk2 = sk_to_full_sk(sk);
6924
6925 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6926 * sock refcnt is decremented to prevent a request_sock leak.
6927 */
6928 if (sk2 != sk) {
6929 sock_gen_put(sk);
6930 /* Ensure there is no need to bump sk2 refcnt */
6931 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6932 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6933 return NULL;
6934 }
6935 sk = sk2;
6936 }
6937 }
6938
6939 return sk;
6940 }
6941
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6942 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6943 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6944 {
6945 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6946 netns_id, flags);
6947 }
6948
6949 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6950 .func = bpf_skc_lookup_tcp,
6951 .gpl_only = false,
6952 .pkt_access = true,
6953 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6954 .arg1_type = ARG_PTR_TO_CTX,
6955 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6956 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6957 .arg4_type = ARG_ANYTHING,
6958 .arg5_type = ARG_ANYTHING,
6959 };
6960
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6961 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6962 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6963 {
6964 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6965 netns_id, flags);
6966 }
6967
6968 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6969 .func = bpf_sk_lookup_tcp,
6970 .gpl_only = false,
6971 .pkt_access = true,
6972 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6973 .arg1_type = ARG_PTR_TO_CTX,
6974 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6975 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6976 .arg4_type = ARG_ANYTHING,
6977 .arg5_type = ARG_ANYTHING,
6978 };
6979
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6980 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6981 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6982 {
6983 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6984 netns_id, flags);
6985 }
6986
6987 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6988 .func = bpf_sk_lookup_udp,
6989 .gpl_only = false,
6990 .pkt_access = true,
6991 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6992 .arg1_type = ARG_PTR_TO_CTX,
6993 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6994 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6995 .arg4_type = ARG_ANYTHING,
6996 .arg5_type = ARG_ANYTHING,
6997 };
6998
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6999 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
7000 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7001 {
7002 struct net_device *dev = skb->dev;
7003 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7004 struct net *caller_net = dev_net(dev);
7005
7006 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
7007 ifindex, IPPROTO_TCP, netns_id,
7008 flags, sdif);
7009 }
7010
7011 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
7012 .func = bpf_tc_skc_lookup_tcp,
7013 .gpl_only = false,
7014 .pkt_access = true,
7015 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7016 .arg1_type = ARG_PTR_TO_CTX,
7017 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7018 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7019 .arg4_type = ARG_ANYTHING,
7020 .arg5_type = ARG_ANYTHING,
7021 };
7022
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7023 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
7024 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7025 {
7026 struct net_device *dev = skb->dev;
7027 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7028 struct net *caller_net = dev_net(dev);
7029
7030 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7031 ifindex, IPPROTO_TCP, netns_id,
7032 flags, sdif);
7033 }
7034
7035 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7036 .func = bpf_tc_sk_lookup_tcp,
7037 .gpl_only = false,
7038 .pkt_access = true,
7039 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7040 .arg1_type = ARG_PTR_TO_CTX,
7041 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7042 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7043 .arg4_type = ARG_ANYTHING,
7044 .arg5_type = ARG_ANYTHING,
7045 };
7046
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7047 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7048 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7049 {
7050 struct net_device *dev = skb->dev;
7051 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7052 struct net *caller_net = dev_net(dev);
7053
7054 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7055 ifindex, IPPROTO_UDP, netns_id,
7056 flags, sdif);
7057 }
7058
7059 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7060 .func = bpf_tc_sk_lookup_udp,
7061 .gpl_only = false,
7062 .pkt_access = true,
7063 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7064 .arg1_type = ARG_PTR_TO_CTX,
7065 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7066 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7067 .arg4_type = ARG_ANYTHING,
7068 .arg5_type = ARG_ANYTHING,
7069 };
7070
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7071 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7072 {
7073 if (sk && sk_is_refcounted(sk))
7074 sock_gen_put(sk);
7075 return 0;
7076 }
7077
7078 static const struct bpf_func_proto bpf_sk_release_proto = {
7079 .func = bpf_sk_release,
7080 .gpl_only = false,
7081 .ret_type = RET_INTEGER,
7082 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7083 };
7084
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7085 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7086 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7087 {
7088 struct net_device *dev = ctx->rxq->dev;
7089 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7090 struct net *caller_net = dev_net(dev);
7091
7092 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7093 ifindex, IPPROTO_UDP, netns_id,
7094 flags, sdif);
7095 }
7096
7097 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7098 .func = bpf_xdp_sk_lookup_udp,
7099 .gpl_only = false,
7100 .pkt_access = true,
7101 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7102 .arg1_type = ARG_PTR_TO_CTX,
7103 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7104 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7105 .arg4_type = ARG_ANYTHING,
7106 .arg5_type = ARG_ANYTHING,
7107 };
7108
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7109 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7110 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7111 {
7112 struct net_device *dev = ctx->rxq->dev;
7113 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7114 struct net *caller_net = dev_net(dev);
7115
7116 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7117 ifindex, IPPROTO_TCP, netns_id,
7118 flags, sdif);
7119 }
7120
7121 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7122 .func = bpf_xdp_skc_lookup_tcp,
7123 .gpl_only = false,
7124 .pkt_access = true,
7125 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7126 .arg1_type = ARG_PTR_TO_CTX,
7127 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7128 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7129 .arg4_type = ARG_ANYTHING,
7130 .arg5_type = ARG_ANYTHING,
7131 };
7132
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7133 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7134 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7135 {
7136 struct net_device *dev = ctx->rxq->dev;
7137 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7138 struct net *caller_net = dev_net(dev);
7139
7140 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7141 ifindex, IPPROTO_TCP, netns_id,
7142 flags, sdif);
7143 }
7144
7145 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7146 .func = bpf_xdp_sk_lookup_tcp,
7147 .gpl_only = false,
7148 .pkt_access = true,
7149 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7150 .arg1_type = ARG_PTR_TO_CTX,
7151 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7152 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7153 .arg4_type = ARG_ANYTHING,
7154 .arg5_type = ARG_ANYTHING,
7155 };
7156
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7157 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7158 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7159 {
7160 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7161 sock_net(ctx->sk), 0,
7162 IPPROTO_TCP, netns_id, flags,
7163 -1);
7164 }
7165
7166 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7167 .func = bpf_sock_addr_skc_lookup_tcp,
7168 .gpl_only = false,
7169 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7170 .arg1_type = ARG_PTR_TO_CTX,
7171 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7172 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7173 .arg4_type = ARG_ANYTHING,
7174 .arg5_type = ARG_ANYTHING,
7175 };
7176
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7177 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7178 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7179 {
7180 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7181 sock_net(ctx->sk), 0, IPPROTO_TCP,
7182 netns_id, flags, -1);
7183 }
7184
7185 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7186 .func = bpf_sock_addr_sk_lookup_tcp,
7187 .gpl_only = false,
7188 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7189 .arg1_type = ARG_PTR_TO_CTX,
7190 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7191 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7192 .arg4_type = ARG_ANYTHING,
7193 .arg5_type = ARG_ANYTHING,
7194 };
7195
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7196 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7197 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7198 {
7199 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7200 sock_net(ctx->sk), 0, IPPROTO_UDP,
7201 netns_id, flags, -1);
7202 }
7203
7204 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7205 .func = bpf_sock_addr_sk_lookup_udp,
7206 .gpl_only = false,
7207 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7208 .arg1_type = ARG_PTR_TO_CTX,
7209 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7210 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7211 .arg4_type = ARG_ANYTHING,
7212 .arg5_type = ARG_ANYTHING,
7213 };
7214
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7215 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7216 struct bpf_insn_access_aux *info)
7217 {
7218 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7219 icsk_retransmits))
7220 return false;
7221
7222 if (off % size != 0)
7223 return false;
7224
7225 switch (off) {
7226 case offsetof(struct bpf_tcp_sock, bytes_received):
7227 case offsetof(struct bpf_tcp_sock, bytes_acked):
7228 return size == sizeof(__u64);
7229 default:
7230 return size == sizeof(__u32);
7231 }
7232 }
7233
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7234 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7235 const struct bpf_insn *si,
7236 struct bpf_insn *insn_buf,
7237 struct bpf_prog *prog, u32 *target_size)
7238 {
7239 struct bpf_insn *insn = insn_buf;
7240
7241 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7242 do { \
7243 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7244 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7245 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7246 si->dst_reg, si->src_reg, \
7247 offsetof(struct tcp_sock, FIELD)); \
7248 } while (0)
7249
7250 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
7251 do { \
7252 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7253 FIELD) > \
7254 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7255 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7256 struct inet_connection_sock, \
7257 FIELD), \
7258 si->dst_reg, si->src_reg, \
7259 offsetof( \
7260 struct inet_connection_sock, \
7261 FIELD)); \
7262 } while (0)
7263
7264 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7265
7266 switch (si->off) {
7267 case offsetof(struct bpf_tcp_sock, rtt_min):
7268 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7269 sizeof(struct minmax));
7270 BUILD_BUG_ON(sizeof(struct minmax) <
7271 sizeof(struct minmax_sample));
7272
7273 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7274 offsetof(struct tcp_sock, rtt_min) +
7275 offsetof(struct minmax_sample, v));
7276 break;
7277 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7278 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7279 break;
7280 case offsetof(struct bpf_tcp_sock, srtt_us):
7281 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7282 break;
7283 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7284 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7285 break;
7286 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7287 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7288 break;
7289 case offsetof(struct bpf_tcp_sock, snd_nxt):
7290 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7291 break;
7292 case offsetof(struct bpf_tcp_sock, snd_una):
7293 BPF_TCP_SOCK_GET_COMMON(snd_una);
7294 break;
7295 case offsetof(struct bpf_tcp_sock, mss_cache):
7296 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7297 break;
7298 case offsetof(struct bpf_tcp_sock, ecn_flags):
7299 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7300 break;
7301 case offsetof(struct bpf_tcp_sock, rate_delivered):
7302 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7303 break;
7304 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7305 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7306 break;
7307 case offsetof(struct bpf_tcp_sock, packets_out):
7308 BPF_TCP_SOCK_GET_COMMON(packets_out);
7309 break;
7310 case offsetof(struct bpf_tcp_sock, retrans_out):
7311 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7312 break;
7313 case offsetof(struct bpf_tcp_sock, total_retrans):
7314 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7315 break;
7316 case offsetof(struct bpf_tcp_sock, segs_in):
7317 BPF_TCP_SOCK_GET_COMMON(segs_in);
7318 break;
7319 case offsetof(struct bpf_tcp_sock, data_segs_in):
7320 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7321 break;
7322 case offsetof(struct bpf_tcp_sock, segs_out):
7323 BPF_TCP_SOCK_GET_COMMON(segs_out);
7324 break;
7325 case offsetof(struct bpf_tcp_sock, data_segs_out):
7326 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7327 break;
7328 case offsetof(struct bpf_tcp_sock, lost_out):
7329 BPF_TCP_SOCK_GET_COMMON(lost_out);
7330 break;
7331 case offsetof(struct bpf_tcp_sock, sacked_out):
7332 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7333 break;
7334 case offsetof(struct bpf_tcp_sock, bytes_received):
7335 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7336 break;
7337 case offsetof(struct bpf_tcp_sock, bytes_acked):
7338 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7339 break;
7340 case offsetof(struct bpf_tcp_sock, dsack_dups):
7341 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7342 break;
7343 case offsetof(struct bpf_tcp_sock, delivered):
7344 BPF_TCP_SOCK_GET_COMMON(delivered);
7345 break;
7346 case offsetof(struct bpf_tcp_sock, delivered_ce):
7347 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7348 break;
7349 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7350 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7351 break;
7352 }
7353
7354 return insn - insn_buf;
7355 }
7356
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7357 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7358 {
7359 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7360 return (unsigned long)sk;
7361
7362 return (unsigned long)NULL;
7363 }
7364
7365 const struct bpf_func_proto bpf_tcp_sock_proto = {
7366 .func = bpf_tcp_sock,
7367 .gpl_only = false,
7368 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7369 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7370 };
7371
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7372 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7373 {
7374 sk = sk_to_full_sk(sk);
7375
7376 if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7377 return (unsigned long)sk;
7378
7379 return (unsigned long)NULL;
7380 }
7381
7382 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7383 .func = bpf_get_listener_sock,
7384 .gpl_only = false,
7385 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7386 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7387 };
7388
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7389 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7390 {
7391 unsigned int iphdr_len;
7392
7393 switch (skb_protocol(skb, true)) {
7394 case cpu_to_be16(ETH_P_IP):
7395 iphdr_len = sizeof(struct iphdr);
7396 break;
7397 case cpu_to_be16(ETH_P_IPV6):
7398 iphdr_len = sizeof(struct ipv6hdr);
7399 break;
7400 default:
7401 return 0;
7402 }
7403
7404 if (skb_headlen(skb) < iphdr_len)
7405 return 0;
7406
7407 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7408 return 0;
7409
7410 return INET_ECN_set_ce(skb);
7411 }
7412
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7413 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7414 struct bpf_insn_access_aux *info)
7415 {
7416 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7417 return false;
7418
7419 if (off % size != 0)
7420 return false;
7421
7422 switch (off) {
7423 default:
7424 return size == sizeof(__u32);
7425 }
7426 }
7427
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7428 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7429 const struct bpf_insn *si,
7430 struct bpf_insn *insn_buf,
7431 struct bpf_prog *prog, u32 *target_size)
7432 {
7433 struct bpf_insn *insn = insn_buf;
7434
7435 #define BPF_XDP_SOCK_GET(FIELD) \
7436 do { \
7437 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7438 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7439 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7440 si->dst_reg, si->src_reg, \
7441 offsetof(struct xdp_sock, FIELD)); \
7442 } while (0)
7443
7444 BTF_TYPE_EMIT(struct bpf_xdp_sock);
7445
7446 switch (si->off) {
7447 case offsetof(struct bpf_xdp_sock, queue_id):
7448 BPF_XDP_SOCK_GET(queue_id);
7449 break;
7450 }
7451
7452 return insn - insn_buf;
7453 }
7454
7455 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7456 .func = bpf_skb_ecn_set_ce,
7457 .gpl_only = false,
7458 .ret_type = RET_INTEGER,
7459 .arg1_type = ARG_PTR_TO_CTX,
7460 };
7461
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7462 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7463 struct tcphdr *, th, u32, th_len)
7464 {
7465 #ifdef CONFIG_SYN_COOKIES
7466 int ret;
7467
7468 if (unlikely(!sk || th_len < sizeof(*th)))
7469 return -EINVAL;
7470
7471 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7472 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7473 return -EINVAL;
7474
7475 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7476 return -EINVAL;
7477
7478 if (!th->ack || th->rst || th->syn)
7479 return -ENOENT;
7480
7481 if (unlikely(iph_len < sizeof(struct iphdr)))
7482 return -EINVAL;
7483
7484 if (tcp_synq_no_recent_overflow(sk))
7485 return -ENOENT;
7486
7487 /* Both struct iphdr and struct ipv6hdr have the version field at the
7488 * same offset so we can cast to the shorter header (struct iphdr).
7489 */
7490 switch (((struct iphdr *)iph)->version) {
7491 case 4:
7492 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7493 return -EINVAL;
7494
7495 ret = __cookie_v4_check((struct iphdr *)iph, th);
7496 break;
7497
7498 #if IS_BUILTIN(CONFIG_IPV6)
7499 case 6:
7500 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7501 return -EINVAL;
7502
7503 if (sk->sk_family != AF_INET6)
7504 return -EINVAL;
7505
7506 ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7507 break;
7508 #endif /* CONFIG_IPV6 */
7509
7510 default:
7511 return -EPROTONOSUPPORT;
7512 }
7513
7514 if (ret > 0)
7515 return 0;
7516
7517 return -ENOENT;
7518 #else
7519 return -ENOTSUPP;
7520 #endif
7521 }
7522
7523 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7524 .func = bpf_tcp_check_syncookie,
7525 .gpl_only = true,
7526 .pkt_access = true,
7527 .ret_type = RET_INTEGER,
7528 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7529 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7530 .arg3_type = ARG_CONST_SIZE,
7531 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7532 .arg5_type = ARG_CONST_SIZE,
7533 };
7534
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7535 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7536 struct tcphdr *, th, u32, th_len)
7537 {
7538 #ifdef CONFIG_SYN_COOKIES
7539 u32 cookie;
7540 u16 mss;
7541
7542 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7543 return -EINVAL;
7544
7545 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7546 return -EINVAL;
7547
7548 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7549 return -ENOENT;
7550
7551 if (!th->syn || th->ack || th->fin || th->rst)
7552 return -EINVAL;
7553
7554 if (unlikely(iph_len < sizeof(struct iphdr)))
7555 return -EINVAL;
7556
7557 /* Both struct iphdr and struct ipv6hdr have the version field at the
7558 * same offset so we can cast to the shorter header (struct iphdr).
7559 */
7560 switch (((struct iphdr *)iph)->version) {
7561 case 4:
7562 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7563 return -EINVAL;
7564
7565 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7566 break;
7567
7568 #if IS_BUILTIN(CONFIG_IPV6)
7569 case 6:
7570 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7571 return -EINVAL;
7572
7573 if (sk->sk_family != AF_INET6)
7574 return -EINVAL;
7575
7576 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7577 break;
7578 #endif /* CONFIG_IPV6 */
7579
7580 default:
7581 return -EPROTONOSUPPORT;
7582 }
7583 if (mss == 0)
7584 return -ENOENT;
7585
7586 return cookie | ((u64)mss << 32);
7587 #else
7588 return -EOPNOTSUPP;
7589 #endif /* CONFIG_SYN_COOKIES */
7590 }
7591
7592 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7593 .func = bpf_tcp_gen_syncookie,
7594 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7595 .pkt_access = true,
7596 .ret_type = RET_INTEGER,
7597 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7598 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7599 .arg3_type = ARG_CONST_SIZE,
7600 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7601 .arg5_type = ARG_CONST_SIZE,
7602 };
7603
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7604 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7605 {
7606 if (!sk || flags != 0)
7607 return -EINVAL;
7608 if (!skb_at_tc_ingress(skb))
7609 return -EOPNOTSUPP;
7610 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7611 return -ENETUNREACH;
7612 if (sk_unhashed(sk))
7613 return -EOPNOTSUPP;
7614 if (sk_is_refcounted(sk) &&
7615 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7616 return -ENOENT;
7617
7618 skb_orphan(skb);
7619 skb->sk = sk;
7620 skb->destructor = sock_pfree;
7621
7622 return 0;
7623 }
7624
7625 static const struct bpf_func_proto bpf_sk_assign_proto = {
7626 .func = bpf_sk_assign,
7627 .gpl_only = false,
7628 .ret_type = RET_INTEGER,
7629 .arg1_type = ARG_PTR_TO_CTX,
7630 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7631 .arg3_type = ARG_ANYTHING,
7632 };
7633
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7634 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7635 u8 search_kind, const u8 *magic,
7636 u8 magic_len, bool *eol)
7637 {
7638 u8 kind, kind_len;
7639
7640 *eol = false;
7641
7642 while (op < opend) {
7643 kind = op[0];
7644
7645 if (kind == TCPOPT_EOL) {
7646 *eol = true;
7647 return ERR_PTR(-ENOMSG);
7648 } else if (kind == TCPOPT_NOP) {
7649 op++;
7650 continue;
7651 }
7652
7653 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7654 /* Something is wrong in the received header.
7655 * Follow the TCP stack's tcp_parse_options()
7656 * and just bail here.
7657 */
7658 return ERR_PTR(-EFAULT);
7659
7660 kind_len = op[1];
7661 if (search_kind == kind) {
7662 if (!magic_len)
7663 return op;
7664
7665 if (magic_len > kind_len - 2)
7666 return ERR_PTR(-ENOMSG);
7667
7668 if (!memcmp(&op[2], magic, magic_len))
7669 return op;
7670 }
7671
7672 op += kind_len;
7673 }
7674
7675 return ERR_PTR(-ENOMSG);
7676 }
7677
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7678 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7679 void *, search_res, u32, len, u64, flags)
7680 {
7681 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7682 const u8 *op, *opend, *magic, *search = search_res;
7683 u8 search_kind, search_len, copy_len, magic_len;
7684 int ret;
7685
7686 if (!is_locked_tcp_sock_ops(bpf_sock))
7687 return -EOPNOTSUPP;
7688
7689 /* 2 byte is the minimal option len except TCPOPT_NOP and
7690 * TCPOPT_EOL which are useless for the bpf prog to learn
7691 * and this helper disallow loading them also.
7692 */
7693 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7694 return -EINVAL;
7695
7696 search_kind = search[0];
7697 search_len = search[1];
7698
7699 if (search_len > len || search_kind == TCPOPT_NOP ||
7700 search_kind == TCPOPT_EOL)
7701 return -EINVAL;
7702
7703 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7704 /* 16 or 32 bit magic. +2 for kind and kind length */
7705 if (search_len != 4 && search_len != 6)
7706 return -EINVAL;
7707 magic = &search[2];
7708 magic_len = search_len - 2;
7709 } else {
7710 if (search_len)
7711 return -EINVAL;
7712 magic = NULL;
7713 magic_len = 0;
7714 }
7715
7716 if (load_syn) {
7717 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7718 if (ret < 0)
7719 return ret;
7720
7721 opend = op + ret;
7722 op += sizeof(struct tcphdr);
7723 } else {
7724 if (!bpf_sock->skb ||
7725 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7726 /* This bpf_sock->op cannot call this helper */
7727 return -EPERM;
7728
7729 opend = bpf_sock->skb_data_end;
7730 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7731 }
7732
7733 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7734 &eol);
7735 if (IS_ERR(op))
7736 return PTR_ERR(op);
7737
7738 copy_len = op[1];
7739 ret = copy_len;
7740 if (copy_len > len) {
7741 ret = -ENOSPC;
7742 copy_len = len;
7743 }
7744
7745 memcpy(search_res, op, copy_len);
7746 return ret;
7747 }
7748
7749 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7750 .func = bpf_sock_ops_load_hdr_opt,
7751 .gpl_only = false,
7752 .ret_type = RET_INTEGER,
7753 .arg1_type = ARG_PTR_TO_CTX,
7754 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE,
7755 .arg3_type = ARG_CONST_SIZE,
7756 .arg4_type = ARG_ANYTHING,
7757 };
7758
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7759 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7760 const void *, from, u32, len, u64, flags)
7761 {
7762 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7763 const u8 *op, *new_op, *magic = NULL;
7764 struct sk_buff *skb;
7765 bool eol;
7766
7767 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7768 return -EPERM;
7769
7770 if (len < 2 || flags)
7771 return -EINVAL;
7772
7773 new_op = from;
7774 new_kind = new_op[0];
7775 new_kind_len = new_op[1];
7776
7777 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7778 new_kind == TCPOPT_EOL)
7779 return -EINVAL;
7780
7781 if (new_kind_len > bpf_sock->remaining_opt_len)
7782 return -ENOSPC;
7783
7784 /* 253 is another experimental kind */
7785 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7786 if (new_kind_len < 4)
7787 return -EINVAL;
7788 /* Match for the 2 byte magic also.
7789 * RFC 6994: the magic could be 2 or 4 bytes.
7790 * Hence, matching by 2 byte only is on the
7791 * conservative side but it is the right
7792 * thing to do for the 'search-for-duplication'
7793 * purpose.
7794 */
7795 magic = &new_op[2];
7796 magic_len = 2;
7797 }
7798
7799 /* Check for duplication */
7800 skb = bpf_sock->skb;
7801 op = skb->data + sizeof(struct tcphdr);
7802 opend = bpf_sock->skb_data_end;
7803
7804 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7805 &eol);
7806 if (!IS_ERR(op))
7807 return -EEXIST;
7808
7809 if (PTR_ERR(op) != -ENOMSG)
7810 return PTR_ERR(op);
7811
7812 if (eol)
7813 /* The option has been ended. Treat it as no more
7814 * header option can be written.
7815 */
7816 return -ENOSPC;
7817
7818 /* No duplication found. Store the header option. */
7819 memcpy(opend, from, new_kind_len);
7820
7821 bpf_sock->remaining_opt_len -= new_kind_len;
7822 bpf_sock->skb_data_end += new_kind_len;
7823
7824 return 0;
7825 }
7826
7827 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7828 .func = bpf_sock_ops_store_hdr_opt,
7829 .gpl_only = false,
7830 .ret_type = RET_INTEGER,
7831 .arg1_type = ARG_PTR_TO_CTX,
7832 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7833 .arg3_type = ARG_CONST_SIZE,
7834 .arg4_type = ARG_ANYTHING,
7835 };
7836
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7837 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7838 u32, len, u64, flags)
7839 {
7840 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7841 return -EPERM;
7842
7843 if (flags || len < 2)
7844 return -EINVAL;
7845
7846 if (len > bpf_sock->remaining_opt_len)
7847 return -ENOSPC;
7848
7849 bpf_sock->remaining_opt_len -= len;
7850
7851 return 0;
7852 }
7853
7854 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7855 .func = bpf_sock_ops_reserve_hdr_opt,
7856 .gpl_only = false,
7857 .ret_type = RET_INTEGER,
7858 .arg1_type = ARG_PTR_TO_CTX,
7859 .arg2_type = ARG_ANYTHING,
7860 .arg3_type = ARG_ANYTHING,
7861 };
7862
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7863 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7864 u64, tstamp, u32, tstamp_type)
7865 {
7866 /* skb_clear_delivery_time() is done for inet protocol */
7867 if (skb->protocol != htons(ETH_P_IP) &&
7868 skb->protocol != htons(ETH_P_IPV6))
7869 return -EOPNOTSUPP;
7870
7871 switch (tstamp_type) {
7872 case BPF_SKB_CLOCK_REALTIME:
7873 skb->tstamp = tstamp;
7874 skb->tstamp_type = SKB_CLOCK_REALTIME;
7875 break;
7876 case BPF_SKB_CLOCK_MONOTONIC:
7877 if (!tstamp)
7878 return -EINVAL;
7879 skb->tstamp = tstamp;
7880 skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7881 break;
7882 case BPF_SKB_CLOCK_TAI:
7883 if (!tstamp)
7884 return -EINVAL;
7885 skb->tstamp = tstamp;
7886 skb->tstamp_type = SKB_CLOCK_TAI;
7887 break;
7888 default:
7889 return -EINVAL;
7890 }
7891
7892 return 0;
7893 }
7894
7895 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7896 .func = bpf_skb_set_tstamp,
7897 .gpl_only = false,
7898 .ret_type = RET_INTEGER,
7899 .arg1_type = ARG_PTR_TO_CTX,
7900 .arg2_type = ARG_ANYTHING,
7901 .arg3_type = ARG_ANYTHING,
7902 };
7903
7904 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7905 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7906 struct tcphdr *, th, u32, th_len)
7907 {
7908 u32 cookie;
7909 u16 mss;
7910
7911 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7912 return -EINVAL;
7913
7914 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7915 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7916
7917 return cookie | ((u64)mss << 32);
7918 }
7919
7920 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7921 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7922 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7923 .pkt_access = true,
7924 .ret_type = RET_INTEGER,
7925 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7926 .arg1_size = sizeof(struct iphdr),
7927 .arg2_type = ARG_PTR_TO_MEM,
7928 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7929 };
7930
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7931 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7932 struct tcphdr *, th, u32, th_len)
7933 {
7934 #if IS_BUILTIN(CONFIG_IPV6)
7935 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7936 sizeof(struct ipv6hdr);
7937 u32 cookie;
7938 u16 mss;
7939
7940 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7941 return -EINVAL;
7942
7943 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7944 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7945
7946 return cookie | ((u64)mss << 32);
7947 #else
7948 return -EPROTONOSUPPORT;
7949 #endif
7950 }
7951
7952 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7953 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7954 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7955 .pkt_access = true,
7956 .ret_type = RET_INTEGER,
7957 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7958 .arg1_size = sizeof(struct ipv6hdr),
7959 .arg2_type = ARG_PTR_TO_MEM,
7960 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7961 };
7962
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7963 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7964 struct tcphdr *, th)
7965 {
7966 if (__cookie_v4_check(iph, th) > 0)
7967 return 0;
7968
7969 return -EACCES;
7970 }
7971
7972 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7973 .func = bpf_tcp_raw_check_syncookie_ipv4,
7974 .gpl_only = true, /* __cookie_v4_check is GPL */
7975 .pkt_access = true,
7976 .ret_type = RET_INTEGER,
7977 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7978 .arg1_size = sizeof(struct iphdr),
7979 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7980 .arg2_size = sizeof(struct tcphdr),
7981 };
7982
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7983 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7984 struct tcphdr *, th)
7985 {
7986 #if IS_BUILTIN(CONFIG_IPV6)
7987 if (__cookie_v6_check(iph, th) > 0)
7988 return 0;
7989
7990 return -EACCES;
7991 #else
7992 return -EPROTONOSUPPORT;
7993 #endif
7994 }
7995
7996 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7997 .func = bpf_tcp_raw_check_syncookie_ipv6,
7998 .gpl_only = true, /* __cookie_v6_check is GPL */
7999 .pkt_access = true,
8000 .ret_type = RET_INTEGER,
8001 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
8002 .arg1_size = sizeof(struct ipv6hdr),
8003 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
8004 .arg2_size = sizeof(struct tcphdr),
8005 };
8006 #endif /* CONFIG_SYN_COOKIES */
8007
8008 #endif /* CONFIG_INET */
8009
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)8010 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
8011 {
8012 switch (func_id) {
8013 case BPF_FUNC_clone_redirect:
8014 case BPF_FUNC_l3_csum_replace:
8015 case BPF_FUNC_l4_csum_replace:
8016 case BPF_FUNC_lwt_push_encap:
8017 case BPF_FUNC_lwt_seg6_action:
8018 case BPF_FUNC_lwt_seg6_adjust_srh:
8019 case BPF_FUNC_lwt_seg6_store_bytes:
8020 case BPF_FUNC_msg_pop_data:
8021 case BPF_FUNC_msg_pull_data:
8022 case BPF_FUNC_msg_push_data:
8023 case BPF_FUNC_skb_adjust_room:
8024 case BPF_FUNC_skb_change_head:
8025 case BPF_FUNC_skb_change_proto:
8026 case BPF_FUNC_skb_change_tail:
8027 case BPF_FUNC_skb_pull_data:
8028 case BPF_FUNC_skb_store_bytes:
8029 case BPF_FUNC_skb_vlan_pop:
8030 case BPF_FUNC_skb_vlan_push:
8031 case BPF_FUNC_store_hdr_opt:
8032 case BPF_FUNC_xdp_adjust_head:
8033 case BPF_FUNC_xdp_adjust_meta:
8034 case BPF_FUNC_xdp_adjust_tail:
8035 /* tail-called program could call any of the above */
8036 case BPF_FUNC_tail_call:
8037 return true;
8038 default:
8039 return false;
8040 }
8041 }
8042
8043 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8044 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8045
8046 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8047 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8048 {
8049 const struct bpf_func_proto *func_proto;
8050
8051 func_proto = cgroup_common_func_proto(func_id, prog);
8052 if (func_proto)
8053 return func_proto;
8054
8055 switch (func_id) {
8056 case BPF_FUNC_get_socket_cookie:
8057 return &bpf_get_socket_cookie_sock_proto;
8058 case BPF_FUNC_get_netns_cookie:
8059 return &bpf_get_netns_cookie_sock_proto;
8060 case BPF_FUNC_perf_event_output:
8061 return &bpf_event_output_data_proto;
8062 case BPF_FUNC_sk_storage_get:
8063 return &bpf_sk_storage_get_cg_sock_proto;
8064 case BPF_FUNC_ktime_get_coarse_ns:
8065 return &bpf_ktime_get_coarse_ns_proto;
8066 default:
8067 return bpf_base_func_proto(func_id, prog);
8068 }
8069 }
8070
8071 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8072 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8073 {
8074 const struct bpf_func_proto *func_proto;
8075
8076 func_proto = cgroup_common_func_proto(func_id, prog);
8077 if (func_proto)
8078 return func_proto;
8079
8080 switch (func_id) {
8081 case BPF_FUNC_bind:
8082 switch (prog->expected_attach_type) {
8083 case BPF_CGROUP_INET4_CONNECT:
8084 case BPF_CGROUP_INET6_CONNECT:
8085 return &bpf_bind_proto;
8086 default:
8087 return NULL;
8088 }
8089 case BPF_FUNC_get_socket_cookie:
8090 return &bpf_get_socket_cookie_sock_addr_proto;
8091 case BPF_FUNC_get_netns_cookie:
8092 return &bpf_get_netns_cookie_sock_addr_proto;
8093 case BPF_FUNC_perf_event_output:
8094 return &bpf_event_output_data_proto;
8095 #ifdef CONFIG_INET
8096 case BPF_FUNC_sk_lookup_tcp:
8097 return &bpf_sock_addr_sk_lookup_tcp_proto;
8098 case BPF_FUNC_sk_lookup_udp:
8099 return &bpf_sock_addr_sk_lookup_udp_proto;
8100 case BPF_FUNC_sk_release:
8101 return &bpf_sk_release_proto;
8102 case BPF_FUNC_skc_lookup_tcp:
8103 return &bpf_sock_addr_skc_lookup_tcp_proto;
8104 #endif /* CONFIG_INET */
8105 case BPF_FUNC_sk_storage_get:
8106 return &bpf_sk_storage_get_proto;
8107 case BPF_FUNC_sk_storage_delete:
8108 return &bpf_sk_storage_delete_proto;
8109 case BPF_FUNC_setsockopt:
8110 switch (prog->expected_attach_type) {
8111 case BPF_CGROUP_INET4_BIND:
8112 case BPF_CGROUP_INET6_BIND:
8113 case BPF_CGROUP_INET4_CONNECT:
8114 case BPF_CGROUP_INET6_CONNECT:
8115 case BPF_CGROUP_UNIX_CONNECT:
8116 case BPF_CGROUP_UDP4_RECVMSG:
8117 case BPF_CGROUP_UDP6_RECVMSG:
8118 case BPF_CGROUP_UNIX_RECVMSG:
8119 case BPF_CGROUP_UDP4_SENDMSG:
8120 case BPF_CGROUP_UDP6_SENDMSG:
8121 case BPF_CGROUP_UNIX_SENDMSG:
8122 case BPF_CGROUP_INET4_GETPEERNAME:
8123 case BPF_CGROUP_INET6_GETPEERNAME:
8124 case BPF_CGROUP_UNIX_GETPEERNAME:
8125 case BPF_CGROUP_INET4_GETSOCKNAME:
8126 case BPF_CGROUP_INET6_GETSOCKNAME:
8127 case BPF_CGROUP_UNIX_GETSOCKNAME:
8128 return &bpf_sock_addr_setsockopt_proto;
8129 default:
8130 return NULL;
8131 }
8132 case BPF_FUNC_getsockopt:
8133 switch (prog->expected_attach_type) {
8134 case BPF_CGROUP_INET4_BIND:
8135 case BPF_CGROUP_INET6_BIND:
8136 case BPF_CGROUP_INET4_CONNECT:
8137 case BPF_CGROUP_INET6_CONNECT:
8138 case BPF_CGROUP_UNIX_CONNECT:
8139 case BPF_CGROUP_UDP4_RECVMSG:
8140 case BPF_CGROUP_UDP6_RECVMSG:
8141 case BPF_CGROUP_UNIX_RECVMSG:
8142 case BPF_CGROUP_UDP4_SENDMSG:
8143 case BPF_CGROUP_UDP6_SENDMSG:
8144 case BPF_CGROUP_UNIX_SENDMSG:
8145 case BPF_CGROUP_INET4_GETPEERNAME:
8146 case BPF_CGROUP_INET6_GETPEERNAME:
8147 case BPF_CGROUP_UNIX_GETPEERNAME:
8148 case BPF_CGROUP_INET4_GETSOCKNAME:
8149 case BPF_CGROUP_INET6_GETSOCKNAME:
8150 case BPF_CGROUP_UNIX_GETSOCKNAME:
8151 return &bpf_sock_addr_getsockopt_proto;
8152 default:
8153 return NULL;
8154 }
8155 default:
8156 return bpf_sk_base_func_proto(func_id, prog);
8157 }
8158 }
8159
8160 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8161 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8162 {
8163 switch (func_id) {
8164 case BPF_FUNC_skb_load_bytes:
8165 return &bpf_skb_load_bytes_proto;
8166 case BPF_FUNC_skb_load_bytes_relative:
8167 return &bpf_skb_load_bytes_relative_proto;
8168 case BPF_FUNC_get_socket_cookie:
8169 return &bpf_get_socket_cookie_proto;
8170 case BPF_FUNC_get_netns_cookie:
8171 return &bpf_get_netns_cookie_proto;
8172 case BPF_FUNC_get_socket_uid:
8173 return &bpf_get_socket_uid_proto;
8174 case BPF_FUNC_perf_event_output:
8175 return &bpf_skb_event_output_proto;
8176 default:
8177 return bpf_sk_base_func_proto(func_id, prog);
8178 }
8179 }
8180
8181 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8182 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8183
8184 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8185 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8186 {
8187 const struct bpf_func_proto *func_proto;
8188
8189 func_proto = cgroup_common_func_proto(func_id, prog);
8190 if (func_proto)
8191 return func_proto;
8192
8193 switch (func_id) {
8194 case BPF_FUNC_sk_fullsock:
8195 return &bpf_sk_fullsock_proto;
8196 case BPF_FUNC_sk_storage_get:
8197 return &bpf_sk_storage_get_proto;
8198 case BPF_FUNC_sk_storage_delete:
8199 return &bpf_sk_storage_delete_proto;
8200 case BPF_FUNC_perf_event_output:
8201 return &bpf_skb_event_output_proto;
8202 #ifdef CONFIG_SOCK_CGROUP_DATA
8203 case BPF_FUNC_skb_cgroup_id:
8204 return &bpf_skb_cgroup_id_proto;
8205 case BPF_FUNC_skb_ancestor_cgroup_id:
8206 return &bpf_skb_ancestor_cgroup_id_proto;
8207 case BPF_FUNC_sk_cgroup_id:
8208 return &bpf_sk_cgroup_id_proto;
8209 case BPF_FUNC_sk_ancestor_cgroup_id:
8210 return &bpf_sk_ancestor_cgroup_id_proto;
8211 #endif
8212 #ifdef CONFIG_INET
8213 case BPF_FUNC_sk_lookup_tcp:
8214 return &bpf_sk_lookup_tcp_proto;
8215 case BPF_FUNC_sk_lookup_udp:
8216 return &bpf_sk_lookup_udp_proto;
8217 case BPF_FUNC_sk_release:
8218 return &bpf_sk_release_proto;
8219 case BPF_FUNC_skc_lookup_tcp:
8220 return &bpf_skc_lookup_tcp_proto;
8221 case BPF_FUNC_tcp_sock:
8222 return &bpf_tcp_sock_proto;
8223 case BPF_FUNC_get_listener_sock:
8224 return &bpf_get_listener_sock_proto;
8225 case BPF_FUNC_skb_ecn_set_ce:
8226 return &bpf_skb_ecn_set_ce_proto;
8227 #endif
8228 default:
8229 return sk_filter_func_proto(func_id, prog);
8230 }
8231 }
8232
8233 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8234 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8235 {
8236 switch (func_id) {
8237 case BPF_FUNC_skb_store_bytes:
8238 return &bpf_skb_store_bytes_proto;
8239 case BPF_FUNC_skb_load_bytes:
8240 return &bpf_skb_load_bytes_proto;
8241 case BPF_FUNC_skb_load_bytes_relative:
8242 return &bpf_skb_load_bytes_relative_proto;
8243 case BPF_FUNC_skb_pull_data:
8244 return &bpf_skb_pull_data_proto;
8245 case BPF_FUNC_csum_diff:
8246 return &bpf_csum_diff_proto;
8247 case BPF_FUNC_csum_update:
8248 return &bpf_csum_update_proto;
8249 case BPF_FUNC_csum_level:
8250 return &bpf_csum_level_proto;
8251 case BPF_FUNC_l3_csum_replace:
8252 return &bpf_l3_csum_replace_proto;
8253 case BPF_FUNC_l4_csum_replace:
8254 return &bpf_l4_csum_replace_proto;
8255 case BPF_FUNC_clone_redirect:
8256 return &bpf_clone_redirect_proto;
8257 case BPF_FUNC_get_cgroup_classid:
8258 return &bpf_get_cgroup_classid_proto;
8259 case BPF_FUNC_skb_vlan_push:
8260 return &bpf_skb_vlan_push_proto;
8261 case BPF_FUNC_skb_vlan_pop:
8262 return &bpf_skb_vlan_pop_proto;
8263 case BPF_FUNC_skb_change_proto:
8264 return &bpf_skb_change_proto_proto;
8265 case BPF_FUNC_skb_change_type:
8266 return &bpf_skb_change_type_proto;
8267 case BPF_FUNC_skb_adjust_room:
8268 return &bpf_skb_adjust_room_proto;
8269 case BPF_FUNC_skb_change_tail:
8270 return &bpf_skb_change_tail_proto;
8271 case BPF_FUNC_skb_change_head:
8272 return &bpf_skb_change_head_proto;
8273 case BPF_FUNC_skb_get_tunnel_key:
8274 return &bpf_skb_get_tunnel_key_proto;
8275 case BPF_FUNC_skb_set_tunnel_key:
8276 return bpf_get_skb_set_tunnel_proto(func_id);
8277 case BPF_FUNC_skb_get_tunnel_opt:
8278 return &bpf_skb_get_tunnel_opt_proto;
8279 case BPF_FUNC_skb_set_tunnel_opt:
8280 return bpf_get_skb_set_tunnel_proto(func_id);
8281 case BPF_FUNC_redirect:
8282 return &bpf_redirect_proto;
8283 case BPF_FUNC_redirect_neigh:
8284 return &bpf_redirect_neigh_proto;
8285 case BPF_FUNC_redirect_peer:
8286 return &bpf_redirect_peer_proto;
8287 case BPF_FUNC_get_route_realm:
8288 return &bpf_get_route_realm_proto;
8289 case BPF_FUNC_get_hash_recalc:
8290 return &bpf_get_hash_recalc_proto;
8291 case BPF_FUNC_set_hash_invalid:
8292 return &bpf_set_hash_invalid_proto;
8293 case BPF_FUNC_set_hash:
8294 return &bpf_set_hash_proto;
8295 case BPF_FUNC_perf_event_output:
8296 return &bpf_skb_event_output_proto;
8297 case BPF_FUNC_get_smp_processor_id:
8298 return &bpf_get_smp_processor_id_proto;
8299 case BPF_FUNC_skb_under_cgroup:
8300 return &bpf_skb_under_cgroup_proto;
8301 case BPF_FUNC_get_socket_cookie:
8302 return &bpf_get_socket_cookie_proto;
8303 case BPF_FUNC_get_netns_cookie:
8304 return &bpf_get_netns_cookie_proto;
8305 case BPF_FUNC_get_socket_uid:
8306 return &bpf_get_socket_uid_proto;
8307 case BPF_FUNC_fib_lookup:
8308 return &bpf_skb_fib_lookup_proto;
8309 case BPF_FUNC_check_mtu:
8310 return &bpf_skb_check_mtu_proto;
8311 case BPF_FUNC_sk_fullsock:
8312 return &bpf_sk_fullsock_proto;
8313 case BPF_FUNC_sk_storage_get:
8314 return &bpf_sk_storage_get_proto;
8315 case BPF_FUNC_sk_storage_delete:
8316 return &bpf_sk_storage_delete_proto;
8317 #ifdef CONFIG_XFRM
8318 case BPF_FUNC_skb_get_xfrm_state:
8319 return &bpf_skb_get_xfrm_state_proto;
8320 #endif
8321 #ifdef CONFIG_CGROUP_NET_CLASSID
8322 case BPF_FUNC_skb_cgroup_classid:
8323 return &bpf_skb_cgroup_classid_proto;
8324 #endif
8325 #ifdef CONFIG_SOCK_CGROUP_DATA
8326 case BPF_FUNC_skb_cgroup_id:
8327 return &bpf_skb_cgroup_id_proto;
8328 case BPF_FUNC_skb_ancestor_cgroup_id:
8329 return &bpf_skb_ancestor_cgroup_id_proto;
8330 #endif
8331 #ifdef CONFIG_INET
8332 case BPF_FUNC_sk_lookup_tcp:
8333 return &bpf_tc_sk_lookup_tcp_proto;
8334 case BPF_FUNC_sk_lookup_udp:
8335 return &bpf_tc_sk_lookup_udp_proto;
8336 case BPF_FUNC_sk_release:
8337 return &bpf_sk_release_proto;
8338 case BPF_FUNC_tcp_sock:
8339 return &bpf_tcp_sock_proto;
8340 case BPF_FUNC_get_listener_sock:
8341 return &bpf_get_listener_sock_proto;
8342 case BPF_FUNC_skc_lookup_tcp:
8343 return &bpf_tc_skc_lookup_tcp_proto;
8344 case BPF_FUNC_tcp_check_syncookie:
8345 return &bpf_tcp_check_syncookie_proto;
8346 case BPF_FUNC_skb_ecn_set_ce:
8347 return &bpf_skb_ecn_set_ce_proto;
8348 case BPF_FUNC_tcp_gen_syncookie:
8349 return &bpf_tcp_gen_syncookie_proto;
8350 case BPF_FUNC_sk_assign:
8351 return &bpf_sk_assign_proto;
8352 case BPF_FUNC_skb_set_tstamp:
8353 return &bpf_skb_set_tstamp_proto;
8354 #ifdef CONFIG_SYN_COOKIES
8355 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8356 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8357 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8358 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8359 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8360 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8361 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8362 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8363 #endif
8364 #endif
8365 default:
8366 return bpf_sk_base_func_proto(func_id, prog);
8367 }
8368 }
8369
8370 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8371 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8372 {
8373 switch (func_id) {
8374 case BPF_FUNC_perf_event_output:
8375 return &bpf_xdp_event_output_proto;
8376 case BPF_FUNC_get_smp_processor_id:
8377 return &bpf_get_smp_processor_id_proto;
8378 case BPF_FUNC_csum_diff:
8379 return &bpf_csum_diff_proto;
8380 case BPF_FUNC_xdp_adjust_head:
8381 return &bpf_xdp_adjust_head_proto;
8382 case BPF_FUNC_xdp_adjust_meta:
8383 return &bpf_xdp_adjust_meta_proto;
8384 case BPF_FUNC_redirect:
8385 return &bpf_xdp_redirect_proto;
8386 case BPF_FUNC_redirect_map:
8387 return &bpf_xdp_redirect_map_proto;
8388 case BPF_FUNC_xdp_adjust_tail:
8389 return &bpf_xdp_adjust_tail_proto;
8390 case BPF_FUNC_xdp_get_buff_len:
8391 return &bpf_xdp_get_buff_len_proto;
8392 case BPF_FUNC_xdp_load_bytes:
8393 return &bpf_xdp_load_bytes_proto;
8394 case BPF_FUNC_xdp_store_bytes:
8395 return &bpf_xdp_store_bytes_proto;
8396 case BPF_FUNC_fib_lookup:
8397 return &bpf_xdp_fib_lookup_proto;
8398 case BPF_FUNC_check_mtu:
8399 return &bpf_xdp_check_mtu_proto;
8400 #ifdef CONFIG_INET
8401 case BPF_FUNC_sk_lookup_udp:
8402 return &bpf_xdp_sk_lookup_udp_proto;
8403 case BPF_FUNC_sk_lookup_tcp:
8404 return &bpf_xdp_sk_lookup_tcp_proto;
8405 case BPF_FUNC_sk_release:
8406 return &bpf_sk_release_proto;
8407 case BPF_FUNC_skc_lookup_tcp:
8408 return &bpf_xdp_skc_lookup_tcp_proto;
8409 case BPF_FUNC_tcp_check_syncookie:
8410 return &bpf_tcp_check_syncookie_proto;
8411 case BPF_FUNC_tcp_gen_syncookie:
8412 return &bpf_tcp_gen_syncookie_proto;
8413 #ifdef CONFIG_SYN_COOKIES
8414 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8415 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8416 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8417 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8418 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8419 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8420 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8421 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8422 #endif
8423 #endif
8424 default:
8425 return bpf_sk_base_func_proto(func_id, prog);
8426 }
8427
8428 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8429 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8430 * kfuncs are defined in two different modules, and we want to be able
8431 * to use them interchangeably with the same BTF type ID. Because modules
8432 * can't de-duplicate BTF IDs between each other, we need the type to be
8433 * referenced in the vmlinux BTF or the verifier will get confused about
8434 * the different types. So we add this dummy type reference which will
8435 * be included in vmlinux BTF, allowing both modules to refer to the
8436 * same type ID.
8437 */
8438 BTF_TYPE_EMIT(struct nf_conn___init);
8439 #endif
8440 }
8441
8442 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8443 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8444
8445 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8446 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8447 {
8448 const struct bpf_func_proto *func_proto;
8449
8450 func_proto = cgroup_common_func_proto(func_id, prog);
8451 if (func_proto)
8452 return func_proto;
8453
8454 switch (func_id) {
8455 case BPF_FUNC_setsockopt:
8456 return &bpf_sock_ops_setsockopt_proto;
8457 case BPF_FUNC_getsockopt:
8458 return &bpf_sock_ops_getsockopt_proto;
8459 case BPF_FUNC_sock_ops_cb_flags_set:
8460 return &bpf_sock_ops_cb_flags_set_proto;
8461 case BPF_FUNC_sock_map_update:
8462 return &bpf_sock_map_update_proto;
8463 case BPF_FUNC_sock_hash_update:
8464 return &bpf_sock_hash_update_proto;
8465 case BPF_FUNC_get_socket_cookie:
8466 return &bpf_get_socket_cookie_sock_ops_proto;
8467 case BPF_FUNC_perf_event_output:
8468 return &bpf_event_output_data_proto;
8469 case BPF_FUNC_sk_storage_get:
8470 return &bpf_sk_storage_get_proto;
8471 case BPF_FUNC_sk_storage_delete:
8472 return &bpf_sk_storage_delete_proto;
8473 case BPF_FUNC_get_netns_cookie:
8474 return &bpf_get_netns_cookie_sock_ops_proto;
8475 #ifdef CONFIG_INET
8476 case BPF_FUNC_load_hdr_opt:
8477 return &bpf_sock_ops_load_hdr_opt_proto;
8478 case BPF_FUNC_store_hdr_opt:
8479 return &bpf_sock_ops_store_hdr_opt_proto;
8480 case BPF_FUNC_reserve_hdr_opt:
8481 return &bpf_sock_ops_reserve_hdr_opt_proto;
8482 case BPF_FUNC_tcp_sock:
8483 return &bpf_tcp_sock_proto;
8484 #endif /* CONFIG_INET */
8485 default:
8486 return bpf_sk_base_func_proto(func_id, prog);
8487 }
8488 }
8489
8490 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8491 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8492
8493 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8494 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8495 {
8496 switch (func_id) {
8497 case BPF_FUNC_msg_redirect_map:
8498 return &bpf_msg_redirect_map_proto;
8499 case BPF_FUNC_msg_redirect_hash:
8500 return &bpf_msg_redirect_hash_proto;
8501 case BPF_FUNC_msg_apply_bytes:
8502 return &bpf_msg_apply_bytes_proto;
8503 case BPF_FUNC_msg_cork_bytes:
8504 return &bpf_msg_cork_bytes_proto;
8505 case BPF_FUNC_msg_pull_data:
8506 return &bpf_msg_pull_data_proto;
8507 case BPF_FUNC_msg_push_data:
8508 return &bpf_msg_push_data_proto;
8509 case BPF_FUNC_msg_pop_data:
8510 return &bpf_msg_pop_data_proto;
8511 case BPF_FUNC_perf_event_output:
8512 return &bpf_event_output_data_proto;
8513 case BPF_FUNC_sk_storage_get:
8514 return &bpf_sk_storage_get_proto;
8515 case BPF_FUNC_sk_storage_delete:
8516 return &bpf_sk_storage_delete_proto;
8517 case BPF_FUNC_get_netns_cookie:
8518 return &bpf_get_netns_cookie_sk_msg_proto;
8519 default:
8520 return bpf_sk_base_func_proto(func_id, prog);
8521 }
8522 }
8523
8524 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8525 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8526
8527 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8528 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8529 {
8530 switch (func_id) {
8531 case BPF_FUNC_skb_store_bytes:
8532 return &bpf_skb_store_bytes_proto;
8533 case BPF_FUNC_skb_load_bytes:
8534 return &bpf_skb_load_bytes_proto;
8535 case BPF_FUNC_skb_pull_data:
8536 return &sk_skb_pull_data_proto;
8537 case BPF_FUNC_skb_change_tail:
8538 return &sk_skb_change_tail_proto;
8539 case BPF_FUNC_skb_change_head:
8540 return &sk_skb_change_head_proto;
8541 case BPF_FUNC_skb_adjust_room:
8542 return &sk_skb_adjust_room_proto;
8543 case BPF_FUNC_get_socket_cookie:
8544 return &bpf_get_socket_cookie_proto;
8545 case BPF_FUNC_get_socket_uid:
8546 return &bpf_get_socket_uid_proto;
8547 case BPF_FUNC_sk_redirect_map:
8548 return &bpf_sk_redirect_map_proto;
8549 case BPF_FUNC_sk_redirect_hash:
8550 return &bpf_sk_redirect_hash_proto;
8551 case BPF_FUNC_perf_event_output:
8552 return &bpf_skb_event_output_proto;
8553 #ifdef CONFIG_INET
8554 case BPF_FUNC_sk_lookup_tcp:
8555 return &bpf_sk_lookup_tcp_proto;
8556 case BPF_FUNC_sk_lookup_udp:
8557 return &bpf_sk_lookup_udp_proto;
8558 case BPF_FUNC_sk_release:
8559 return &bpf_sk_release_proto;
8560 case BPF_FUNC_skc_lookup_tcp:
8561 return &bpf_skc_lookup_tcp_proto;
8562 #endif
8563 default:
8564 return bpf_sk_base_func_proto(func_id, prog);
8565 }
8566 }
8567
8568 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8569 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8570 {
8571 switch (func_id) {
8572 case BPF_FUNC_skb_load_bytes:
8573 return &bpf_flow_dissector_load_bytes_proto;
8574 default:
8575 return bpf_sk_base_func_proto(func_id, prog);
8576 }
8577 }
8578
8579 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8580 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8581 {
8582 switch (func_id) {
8583 case BPF_FUNC_skb_load_bytes:
8584 return &bpf_skb_load_bytes_proto;
8585 case BPF_FUNC_skb_pull_data:
8586 return &bpf_skb_pull_data_proto;
8587 case BPF_FUNC_csum_diff:
8588 return &bpf_csum_diff_proto;
8589 case BPF_FUNC_get_cgroup_classid:
8590 return &bpf_get_cgroup_classid_proto;
8591 case BPF_FUNC_get_route_realm:
8592 return &bpf_get_route_realm_proto;
8593 case BPF_FUNC_get_hash_recalc:
8594 return &bpf_get_hash_recalc_proto;
8595 case BPF_FUNC_perf_event_output:
8596 return &bpf_skb_event_output_proto;
8597 case BPF_FUNC_get_smp_processor_id:
8598 return &bpf_get_smp_processor_id_proto;
8599 case BPF_FUNC_skb_under_cgroup:
8600 return &bpf_skb_under_cgroup_proto;
8601 default:
8602 return bpf_sk_base_func_proto(func_id, prog);
8603 }
8604 }
8605
8606 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8607 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8608 {
8609 switch (func_id) {
8610 case BPF_FUNC_lwt_push_encap:
8611 return &bpf_lwt_in_push_encap_proto;
8612 default:
8613 return lwt_out_func_proto(func_id, prog);
8614 }
8615 }
8616
8617 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8618 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8619 {
8620 switch (func_id) {
8621 case BPF_FUNC_skb_get_tunnel_key:
8622 return &bpf_skb_get_tunnel_key_proto;
8623 case BPF_FUNC_skb_set_tunnel_key:
8624 return bpf_get_skb_set_tunnel_proto(func_id);
8625 case BPF_FUNC_skb_get_tunnel_opt:
8626 return &bpf_skb_get_tunnel_opt_proto;
8627 case BPF_FUNC_skb_set_tunnel_opt:
8628 return bpf_get_skb_set_tunnel_proto(func_id);
8629 case BPF_FUNC_redirect:
8630 return &bpf_redirect_proto;
8631 case BPF_FUNC_clone_redirect:
8632 return &bpf_clone_redirect_proto;
8633 case BPF_FUNC_skb_change_tail:
8634 return &bpf_skb_change_tail_proto;
8635 case BPF_FUNC_skb_change_head:
8636 return &bpf_skb_change_head_proto;
8637 case BPF_FUNC_skb_store_bytes:
8638 return &bpf_skb_store_bytes_proto;
8639 case BPF_FUNC_csum_update:
8640 return &bpf_csum_update_proto;
8641 case BPF_FUNC_csum_level:
8642 return &bpf_csum_level_proto;
8643 case BPF_FUNC_l3_csum_replace:
8644 return &bpf_l3_csum_replace_proto;
8645 case BPF_FUNC_l4_csum_replace:
8646 return &bpf_l4_csum_replace_proto;
8647 case BPF_FUNC_set_hash_invalid:
8648 return &bpf_set_hash_invalid_proto;
8649 case BPF_FUNC_lwt_push_encap:
8650 return &bpf_lwt_xmit_push_encap_proto;
8651 default:
8652 return lwt_out_func_proto(func_id, prog);
8653 }
8654 }
8655
8656 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8657 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8658 {
8659 switch (func_id) {
8660 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8661 case BPF_FUNC_lwt_seg6_store_bytes:
8662 return &bpf_lwt_seg6_store_bytes_proto;
8663 case BPF_FUNC_lwt_seg6_action:
8664 return &bpf_lwt_seg6_action_proto;
8665 case BPF_FUNC_lwt_seg6_adjust_srh:
8666 return &bpf_lwt_seg6_adjust_srh_proto;
8667 #endif
8668 default:
8669 return lwt_out_func_proto(func_id, prog);
8670 }
8671 }
8672
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8673 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8674 const struct bpf_prog *prog,
8675 struct bpf_insn_access_aux *info)
8676 {
8677 const int size_default = sizeof(__u32);
8678
8679 if (off < 0 || off >= sizeof(struct __sk_buff))
8680 return false;
8681
8682 /* The verifier guarantees that size > 0. */
8683 if (off % size != 0)
8684 return false;
8685
8686 switch (off) {
8687 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8688 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8689 return false;
8690 break;
8691 case bpf_ctx_range(struct __sk_buff, data):
8692 case bpf_ctx_range(struct __sk_buff, data_meta):
8693 case bpf_ctx_range(struct __sk_buff, data_end):
8694 if (info->is_ldsx || size != size_default)
8695 return false;
8696 break;
8697 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8698 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8699 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8700 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8701 if (size != size_default)
8702 return false;
8703 break;
8704 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8705 return false;
8706 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8707 if (type == BPF_WRITE || size != sizeof(__u64))
8708 return false;
8709 break;
8710 case bpf_ctx_range(struct __sk_buff, tstamp):
8711 if (size != sizeof(__u64))
8712 return false;
8713 break;
8714 case bpf_ctx_range_ptr(struct __sk_buff, sk):
8715 if (type == BPF_WRITE || size != sizeof(__u64))
8716 return false;
8717 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8718 break;
8719 case offsetof(struct __sk_buff, tstamp_type):
8720 return false;
8721 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8722 /* Explicitly prohibit access to padding in __sk_buff. */
8723 return false;
8724 default:
8725 /* Only narrow read access allowed for now. */
8726 if (type == BPF_WRITE) {
8727 if (size != size_default)
8728 return false;
8729 } else {
8730 bpf_ctx_record_field_size(info, size_default);
8731 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8732 return false;
8733 }
8734 }
8735
8736 return true;
8737 }
8738
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8739 static bool sk_filter_is_valid_access(int off, int size,
8740 enum bpf_access_type type,
8741 const struct bpf_prog *prog,
8742 struct bpf_insn_access_aux *info)
8743 {
8744 switch (off) {
8745 case bpf_ctx_range(struct __sk_buff, tc_classid):
8746 case bpf_ctx_range(struct __sk_buff, data):
8747 case bpf_ctx_range(struct __sk_buff, data_meta):
8748 case bpf_ctx_range(struct __sk_buff, data_end):
8749 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8750 case bpf_ctx_range(struct __sk_buff, tstamp):
8751 case bpf_ctx_range(struct __sk_buff, wire_len):
8752 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8753 return false;
8754 }
8755
8756 if (type == BPF_WRITE) {
8757 switch (off) {
8758 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8759 break;
8760 default:
8761 return false;
8762 }
8763 }
8764
8765 return bpf_skb_is_valid_access(off, size, type, prog, info);
8766 }
8767
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8768 static bool cg_skb_is_valid_access(int off, int size,
8769 enum bpf_access_type type,
8770 const struct bpf_prog *prog,
8771 struct bpf_insn_access_aux *info)
8772 {
8773 switch (off) {
8774 case bpf_ctx_range(struct __sk_buff, tc_classid):
8775 case bpf_ctx_range(struct __sk_buff, data_meta):
8776 case bpf_ctx_range(struct __sk_buff, wire_len):
8777 return false;
8778 case bpf_ctx_range(struct __sk_buff, data):
8779 case bpf_ctx_range(struct __sk_buff, data_end):
8780 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8781 return false;
8782 break;
8783 }
8784
8785 if (type == BPF_WRITE) {
8786 switch (off) {
8787 case bpf_ctx_range(struct __sk_buff, mark):
8788 case bpf_ctx_range(struct __sk_buff, priority):
8789 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8790 break;
8791 case bpf_ctx_range(struct __sk_buff, tstamp):
8792 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8793 return false;
8794 break;
8795 default:
8796 return false;
8797 }
8798 }
8799
8800 switch (off) {
8801 case bpf_ctx_range(struct __sk_buff, data):
8802 info->reg_type = PTR_TO_PACKET;
8803 break;
8804 case bpf_ctx_range(struct __sk_buff, data_end):
8805 info->reg_type = PTR_TO_PACKET_END;
8806 break;
8807 }
8808
8809 return bpf_skb_is_valid_access(off, size, type, prog, info);
8810 }
8811
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8812 static bool lwt_is_valid_access(int off, int size,
8813 enum bpf_access_type type,
8814 const struct bpf_prog *prog,
8815 struct bpf_insn_access_aux *info)
8816 {
8817 switch (off) {
8818 case bpf_ctx_range(struct __sk_buff, tc_classid):
8819 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8820 case bpf_ctx_range(struct __sk_buff, data_meta):
8821 case bpf_ctx_range(struct __sk_buff, tstamp):
8822 case bpf_ctx_range(struct __sk_buff, wire_len):
8823 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8824 return false;
8825 }
8826
8827 if (type == BPF_WRITE) {
8828 switch (off) {
8829 case bpf_ctx_range(struct __sk_buff, mark):
8830 case bpf_ctx_range(struct __sk_buff, priority):
8831 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8832 break;
8833 default:
8834 return false;
8835 }
8836 }
8837
8838 switch (off) {
8839 case bpf_ctx_range(struct __sk_buff, data):
8840 info->reg_type = PTR_TO_PACKET;
8841 break;
8842 case bpf_ctx_range(struct __sk_buff, data_end):
8843 info->reg_type = PTR_TO_PACKET_END;
8844 break;
8845 }
8846
8847 return bpf_skb_is_valid_access(off, size, type, prog, info);
8848 }
8849
8850 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8851 static bool __sock_filter_check_attach_type(int off,
8852 enum bpf_access_type access_type,
8853 enum bpf_attach_type attach_type)
8854 {
8855 switch (off) {
8856 case offsetof(struct bpf_sock, bound_dev_if):
8857 case offsetof(struct bpf_sock, mark):
8858 case offsetof(struct bpf_sock, priority):
8859 switch (attach_type) {
8860 case BPF_CGROUP_INET_SOCK_CREATE:
8861 case BPF_CGROUP_INET_SOCK_RELEASE:
8862 goto full_access;
8863 default:
8864 return false;
8865 }
8866 case bpf_ctx_range(struct bpf_sock, src_ip4):
8867 switch (attach_type) {
8868 case BPF_CGROUP_INET4_POST_BIND:
8869 goto read_only;
8870 default:
8871 return false;
8872 }
8873 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8874 switch (attach_type) {
8875 case BPF_CGROUP_INET6_POST_BIND:
8876 goto read_only;
8877 default:
8878 return false;
8879 }
8880 case bpf_ctx_range(struct bpf_sock, src_port):
8881 switch (attach_type) {
8882 case BPF_CGROUP_INET4_POST_BIND:
8883 case BPF_CGROUP_INET6_POST_BIND:
8884 goto read_only;
8885 default:
8886 return false;
8887 }
8888 }
8889 read_only:
8890 return access_type == BPF_READ;
8891 full_access:
8892 return true;
8893 }
8894
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8895 bool bpf_sock_common_is_valid_access(int off, int size,
8896 enum bpf_access_type type,
8897 struct bpf_insn_access_aux *info)
8898 {
8899 switch (off) {
8900 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8901 return false;
8902 default:
8903 return bpf_sock_is_valid_access(off, size, type, info);
8904 }
8905 }
8906
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8907 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8908 struct bpf_insn_access_aux *info)
8909 {
8910 const int size_default = sizeof(__u32);
8911 int field_size;
8912
8913 if (off < 0 || off >= sizeof(struct bpf_sock))
8914 return false;
8915 if (off % size != 0)
8916 return false;
8917
8918 switch (off) {
8919 case offsetof(struct bpf_sock, state):
8920 case offsetof(struct bpf_sock, family):
8921 case offsetof(struct bpf_sock, type):
8922 case offsetof(struct bpf_sock, protocol):
8923 case offsetof(struct bpf_sock, src_port):
8924 case offsetof(struct bpf_sock, rx_queue_mapping):
8925 case bpf_ctx_range(struct bpf_sock, src_ip4):
8926 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8927 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8928 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8929 bpf_ctx_record_field_size(info, size_default);
8930 return bpf_ctx_narrow_access_ok(off, size, size_default);
8931 case bpf_ctx_range(struct bpf_sock, dst_port):
8932 field_size = size == size_default ?
8933 size_default : sizeof_field(struct bpf_sock, dst_port);
8934 bpf_ctx_record_field_size(info, field_size);
8935 return bpf_ctx_narrow_access_ok(off, size, field_size);
8936 case offsetofend(struct bpf_sock, dst_port) ...
8937 offsetof(struct bpf_sock, dst_ip4) - 1:
8938 return false;
8939 }
8940
8941 return size == size_default;
8942 }
8943
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8944 static bool sock_filter_is_valid_access(int off, int size,
8945 enum bpf_access_type type,
8946 const struct bpf_prog *prog,
8947 struct bpf_insn_access_aux *info)
8948 {
8949 if (!bpf_sock_is_valid_access(off, size, type, info))
8950 return false;
8951 return __sock_filter_check_attach_type(off, type,
8952 prog->expected_attach_type);
8953 }
8954
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8955 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8956 const struct bpf_prog *prog)
8957 {
8958 /* Neither direct read nor direct write requires any preliminary
8959 * action.
8960 */
8961 return 0;
8962 }
8963
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8964 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8965 const struct bpf_prog *prog, int drop_verdict)
8966 {
8967 struct bpf_insn *insn = insn_buf;
8968
8969 if (!direct_write)
8970 return 0;
8971
8972 /* if (!skb->cloned)
8973 * goto start;
8974 *
8975 * (Fast-path, otherwise approximation that we might be
8976 * a clone, do the rest in helper.)
8977 */
8978 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8979 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8980 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8981
8982 /* ret = bpf_skb_pull_data(skb, 0); */
8983 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8984 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8985 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8986 BPF_FUNC_skb_pull_data);
8987 /* if (!ret)
8988 * goto restore;
8989 * return TC_ACT_SHOT;
8990 */
8991 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8992 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8993 *insn++ = BPF_EXIT_INSN();
8994
8995 /* restore: */
8996 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8997 /* start: */
8998 *insn++ = prog->insnsi[0];
8999
9000 return insn - insn_buf;
9001 }
9002
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)9003 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
9004 struct bpf_insn *insn_buf)
9005 {
9006 bool indirect = BPF_MODE(orig->code) == BPF_IND;
9007 struct bpf_insn *insn = insn_buf;
9008
9009 if (!indirect) {
9010 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
9011 } else {
9012 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
9013 if (orig->imm)
9014 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
9015 }
9016 /* We're guaranteed here that CTX is in R6. */
9017 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9018
9019 switch (BPF_SIZE(orig->code)) {
9020 case BPF_B:
9021 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9022 break;
9023 case BPF_H:
9024 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9025 break;
9026 case BPF_W:
9027 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9028 break;
9029 }
9030
9031 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9032 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9033 *insn++ = BPF_EXIT_INSN();
9034
9035 return insn - insn_buf;
9036 }
9037
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9038 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9039 const struct bpf_prog *prog)
9040 {
9041 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9042 }
9043
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9044 static bool tc_cls_act_is_valid_access(int off, int size,
9045 enum bpf_access_type type,
9046 const struct bpf_prog *prog,
9047 struct bpf_insn_access_aux *info)
9048 {
9049 if (type == BPF_WRITE) {
9050 switch (off) {
9051 case bpf_ctx_range(struct __sk_buff, mark):
9052 case bpf_ctx_range(struct __sk_buff, tc_index):
9053 case bpf_ctx_range(struct __sk_buff, priority):
9054 case bpf_ctx_range(struct __sk_buff, tc_classid):
9055 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9056 case bpf_ctx_range(struct __sk_buff, tstamp):
9057 case bpf_ctx_range(struct __sk_buff, queue_mapping):
9058 break;
9059 default:
9060 return false;
9061 }
9062 }
9063
9064 switch (off) {
9065 case bpf_ctx_range(struct __sk_buff, data):
9066 info->reg_type = PTR_TO_PACKET;
9067 break;
9068 case bpf_ctx_range(struct __sk_buff, data_meta):
9069 info->reg_type = PTR_TO_PACKET_META;
9070 break;
9071 case bpf_ctx_range(struct __sk_buff, data_end):
9072 info->reg_type = PTR_TO_PACKET_END;
9073 break;
9074 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9075 return false;
9076 case offsetof(struct __sk_buff, tstamp_type):
9077 /* The convert_ctx_access() on reading and writing
9078 * __sk_buff->tstamp depends on whether the bpf prog
9079 * has used __sk_buff->tstamp_type or not.
9080 * Thus, we need to set prog->tstamp_type_access
9081 * earlier during is_valid_access() here.
9082 */
9083 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
9084 return size == sizeof(__u8);
9085 }
9086
9087 return bpf_skb_is_valid_access(off, size, type, prog, info);
9088 }
9089
9090 DEFINE_MUTEX(nf_conn_btf_access_lock);
9091 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9092
9093 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9094 const struct bpf_reg_state *reg,
9095 int off, int size);
9096 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9097
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9098 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9099 const struct bpf_reg_state *reg,
9100 int off, int size)
9101 {
9102 int ret = -EACCES;
9103
9104 mutex_lock(&nf_conn_btf_access_lock);
9105 if (nfct_btf_struct_access)
9106 ret = nfct_btf_struct_access(log, reg, off, size);
9107 mutex_unlock(&nf_conn_btf_access_lock);
9108
9109 return ret;
9110 }
9111
__is_valid_xdp_access(int off,int size)9112 static bool __is_valid_xdp_access(int off, int size)
9113 {
9114 if (off < 0 || off >= sizeof(struct xdp_md))
9115 return false;
9116 if (off % size != 0)
9117 return false;
9118 if (size != sizeof(__u32))
9119 return false;
9120
9121 return true;
9122 }
9123
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9124 static bool xdp_is_valid_access(int off, int size,
9125 enum bpf_access_type type,
9126 const struct bpf_prog *prog,
9127 struct bpf_insn_access_aux *info)
9128 {
9129 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9130 switch (off) {
9131 case offsetof(struct xdp_md, egress_ifindex):
9132 return false;
9133 }
9134 }
9135
9136 if (type == BPF_WRITE) {
9137 if (bpf_prog_is_offloaded(prog->aux)) {
9138 switch (off) {
9139 case offsetof(struct xdp_md, rx_queue_index):
9140 return __is_valid_xdp_access(off, size);
9141 }
9142 }
9143 return false;
9144 } else {
9145 switch (off) {
9146 case offsetof(struct xdp_md, data_meta):
9147 case offsetof(struct xdp_md, data):
9148 case offsetof(struct xdp_md, data_end):
9149 if (info->is_ldsx)
9150 return false;
9151 }
9152 }
9153
9154 switch (off) {
9155 case offsetof(struct xdp_md, data):
9156 info->reg_type = PTR_TO_PACKET;
9157 break;
9158 case offsetof(struct xdp_md, data_meta):
9159 info->reg_type = PTR_TO_PACKET_META;
9160 break;
9161 case offsetof(struct xdp_md, data_end):
9162 info->reg_type = PTR_TO_PACKET_END;
9163 break;
9164 }
9165
9166 return __is_valid_xdp_access(off, size);
9167 }
9168
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9169 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9170 const struct bpf_prog *prog, u32 act)
9171 {
9172 const u32 act_max = XDP_REDIRECT;
9173
9174 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9175 act > act_max ? "Illegal" : "Driver unsupported",
9176 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9177 }
9178 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9179
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9180 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9181 const struct bpf_reg_state *reg,
9182 int off, int size)
9183 {
9184 int ret = -EACCES;
9185
9186 mutex_lock(&nf_conn_btf_access_lock);
9187 if (nfct_btf_struct_access)
9188 ret = nfct_btf_struct_access(log, reg, off, size);
9189 mutex_unlock(&nf_conn_btf_access_lock);
9190
9191 return ret;
9192 }
9193
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9194 static bool sock_addr_is_valid_access(int off, int size,
9195 enum bpf_access_type type,
9196 const struct bpf_prog *prog,
9197 struct bpf_insn_access_aux *info)
9198 {
9199 const int size_default = sizeof(__u32);
9200
9201 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9202 return false;
9203 if (off % size != 0)
9204 return false;
9205
9206 /* Disallow access to fields not belonging to the attach type's address
9207 * family.
9208 */
9209 switch (off) {
9210 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9211 switch (prog->expected_attach_type) {
9212 case BPF_CGROUP_INET4_BIND:
9213 case BPF_CGROUP_INET4_CONNECT:
9214 case BPF_CGROUP_INET4_GETPEERNAME:
9215 case BPF_CGROUP_INET4_GETSOCKNAME:
9216 case BPF_CGROUP_UDP4_SENDMSG:
9217 case BPF_CGROUP_UDP4_RECVMSG:
9218 break;
9219 default:
9220 return false;
9221 }
9222 break;
9223 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9224 switch (prog->expected_attach_type) {
9225 case BPF_CGROUP_INET6_BIND:
9226 case BPF_CGROUP_INET6_CONNECT:
9227 case BPF_CGROUP_INET6_GETPEERNAME:
9228 case BPF_CGROUP_INET6_GETSOCKNAME:
9229 case BPF_CGROUP_UDP6_SENDMSG:
9230 case BPF_CGROUP_UDP6_RECVMSG:
9231 break;
9232 default:
9233 return false;
9234 }
9235 break;
9236 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9237 switch (prog->expected_attach_type) {
9238 case BPF_CGROUP_UDP4_SENDMSG:
9239 break;
9240 default:
9241 return false;
9242 }
9243 break;
9244 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9245 msg_src_ip6[3]):
9246 switch (prog->expected_attach_type) {
9247 case BPF_CGROUP_UDP6_SENDMSG:
9248 break;
9249 default:
9250 return false;
9251 }
9252 break;
9253 }
9254
9255 switch (off) {
9256 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9257 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9258 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9259 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9260 msg_src_ip6[3]):
9261 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9262 if (type == BPF_READ) {
9263 bpf_ctx_record_field_size(info, size_default);
9264
9265 if (bpf_ctx_wide_access_ok(off, size,
9266 struct bpf_sock_addr,
9267 user_ip6))
9268 return true;
9269
9270 if (bpf_ctx_wide_access_ok(off, size,
9271 struct bpf_sock_addr,
9272 msg_src_ip6))
9273 return true;
9274
9275 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9276 return false;
9277 } else {
9278 if (bpf_ctx_wide_access_ok(off, size,
9279 struct bpf_sock_addr,
9280 user_ip6))
9281 return true;
9282
9283 if (bpf_ctx_wide_access_ok(off, size,
9284 struct bpf_sock_addr,
9285 msg_src_ip6))
9286 return true;
9287
9288 if (size != size_default)
9289 return false;
9290 }
9291 break;
9292 case bpf_ctx_range_ptr(struct bpf_sock_addr, sk):
9293 if (type != BPF_READ)
9294 return false;
9295 if (size != sizeof(__u64))
9296 return false;
9297 info->reg_type = PTR_TO_SOCKET;
9298 break;
9299 case bpf_ctx_range(struct bpf_sock_addr, user_family):
9300 case bpf_ctx_range(struct bpf_sock_addr, family):
9301 case bpf_ctx_range(struct bpf_sock_addr, type):
9302 case bpf_ctx_range(struct bpf_sock_addr, protocol):
9303 if (type != BPF_READ)
9304 return false;
9305 if (size != size_default)
9306 return false;
9307 break;
9308 default:
9309 return false;
9310 }
9311
9312 return true;
9313 }
9314
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9315 static bool sock_ops_is_valid_access(int off, int size,
9316 enum bpf_access_type type,
9317 const struct bpf_prog *prog,
9318 struct bpf_insn_access_aux *info)
9319 {
9320 const int size_default = sizeof(__u32);
9321
9322 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9323 return false;
9324
9325 /* The verifier guarantees that size > 0. */
9326 if (off % size != 0)
9327 return false;
9328
9329 if (type == BPF_WRITE) {
9330 switch (off) {
9331 case offsetof(struct bpf_sock_ops, reply):
9332 case offsetof(struct bpf_sock_ops, sk_txhash):
9333 if (size != size_default)
9334 return false;
9335 break;
9336 default:
9337 return false;
9338 }
9339 } else {
9340 switch (off) {
9341 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9342 bytes_acked):
9343 if (size != sizeof(__u64))
9344 return false;
9345 break;
9346 case bpf_ctx_range_ptr(struct bpf_sock_ops, sk):
9347 if (size != sizeof(__u64))
9348 return false;
9349 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9350 break;
9351 case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data):
9352 if (size != sizeof(__u64))
9353 return false;
9354 info->reg_type = PTR_TO_PACKET;
9355 break;
9356 case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end):
9357 if (size != sizeof(__u64))
9358 return false;
9359 info->reg_type = PTR_TO_PACKET_END;
9360 break;
9361 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9362 bpf_ctx_record_field_size(info, size_default);
9363 return bpf_ctx_narrow_access_ok(off, size,
9364 size_default);
9365 case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp):
9366 if (size != sizeof(__u64))
9367 return false;
9368 break;
9369 default:
9370 if (size != size_default)
9371 return false;
9372 break;
9373 }
9374 }
9375
9376 return true;
9377 }
9378
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9379 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9380 const struct bpf_prog *prog)
9381 {
9382 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9383 }
9384
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9385 static bool sk_skb_is_valid_access(int off, int size,
9386 enum bpf_access_type type,
9387 const struct bpf_prog *prog,
9388 struct bpf_insn_access_aux *info)
9389 {
9390 switch (off) {
9391 case bpf_ctx_range(struct __sk_buff, tc_classid):
9392 case bpf_ctx_range(struct __sk_buff, data_meta):
9393 case bpf_ctx_range(struct __sk_buff, tstamp):
9394 case bpf_ctx_range(struct __sk_buff, wire_len):
9395 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9396 return false;
9397 }
9398
9399 if (type == BPF_WRITE) {
9400 switch (off) {
9401 case bpf_ctx_range(struct __sk_buff, tc_index):
9402 case bpf_ctx_range(struct __sk_buff, priority):
9403 break;
9404 default:
9405 return false;
9406 }
9407 }
9408
9409 switch (off) {
9410 case bpf_ctx_range(struct __sk_buff, mark):
9411 return false;
9412 case bpf_ctx_range(struct __sk_buff, data):
9413 info->reg_type = PTR_TO_PACKET;
9414 break;
9415 case bpf_ctx_range(struct __sk_buff, data_end):
9416 info->reg_type = PTR_TO_PACKET_END;
9417 break;
9418 }
9419
9420 return bpf_skb_is_valid_access(off, size, type, prog, info);
9421 }
9422
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9423 static bool sk_msg_is_valid_access(int off, int size,
9424 enum bpf_access_type type,
9425 const struct bpf_prog *prog,
9426 struct bpf_insn_access_aux *info)
9427 {
9428 if (type == BPF_WRITE)
9429 return false;
9430
9431 if (off % size != 0)
9432 return false;
9433
9434 switch (off) {
9435 case bpf_ctx_range_ptr(struct sk_msg_md, data):
9436 info->reg_type = PTR_TO_PACKET;
9437 if (size != sizeof(__u64))
9438 return false;
9439 break;
9440 case bpf_ctx_range_ptr(struct sk_msg_md, data_end):
9441 info->reg_type = PTR_TO_PACKET_END;
9442 if (size != sizeof(__u64))
9443 return false;
9444 break;
9445 case bpf_ctx_range_ptr(struct sk_msg_md, sk):
9446 if (size != sizeof(__u64))
9447 return false;
9448 info->reg_type = PTR_TO_SOCKET;
9449 break;
9450 case bpf_ctx_range(struct sk_msg_md, family):
9451 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9452 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9453 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9454 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9455 case bpf_ctx_range(struct sk_msg_md, remote_port):
9456 case bpf_ctx_range(struct sk_msg_md, local_port):
9457 case bpf_ctx_range(struct sk_msg_md, size):
9458 if (size != sizeof(__u32))
9459 return false;
9460 break;
9461 default:
9462 return false;
9463 }
9464 return true;
9465 }
9466
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9467 static bool flow_dissector_is_valid_access(int off, int size,
9468 enum bpf_access_type type,
9469 const struct bpf_prog *prog,
9470 struct bpf_insn_access_aux *info)
9471 {
9472 const int size_default = sizeof(__u32);
9473
9474 if (off < 0 || off >= sizeof(struct __sk_buff))
9475 return false;
9476
9477 if (off % size != 0)
9478 return false;
9479
9480 if (type == BPF_WRITE)
9481 return false;
9482
9483 switch (off) {
9484 case bpf_ctx_range(struct __sk_buff, data):
9485 if (info->is_ldsx || size != size_default)
9486 return false;
9487 info->reg_type = PTR_TO_PACKET;
9488 return true;
9489 case bpf_ctx_range(struct __sk_buff, data_end):
9490 if (info->is_ldsx || size != size_default)
9491 return false;
9492 info->reg_type = PTR_TO_PACKET_END;
9493 return true;
9494 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9495 if (size != sizeof(__u64))
9496 return false;
9497 info->reg_type = PTR_TO_FLOW_KEYS;
9498 return true;
9499 default:
9500 return false;
9501 }
9502 }
9503
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9504 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9505 const struct bpf_insn *si,
9506 struct bpf_insn *insn_buf,
9507 struct bpf_prog *prog,
9508 u32 *target_size)
9509
9510 {
9511 struct bpf_insn *insn = insn_buf;
9512
9513 switch (si->off) {
9514 case offsetof(struct __sk_buff, data):
9515 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9516 si->dst_reg, si->src_reg,
9517 offsetof(struct bpf_flow_dissector, data));
9518 break;
9519
9520 case offsetof(struct __sk_buff, data_end):
9521 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9522 si->dst_reg, si->src_reg,
9523 offsetof(struct bpf_flow_dissector, data_end));
9524 break;
9525
9526 case offsetof(struct __sk_buff, flow_keys):
9527 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9528 si->dst_reg, si->src_reg,
9529 offsetof(struct bpf_flow_dissector, flow_keys));
9530 break;
9531 }
9532
9533 return insn - insn_buf;
9534 }
9535
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9536 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9537 struct bpf_insn *insn)
9538 {
9539 __u8 value_reg = si->dst_reg;
9540 __u8 skb_reg = si->src_reg;
9541 BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9542 BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9543 BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9544 BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9545 *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9546 *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9547 #ifdef __BIG_ENDIAN_BITFIELD
9548 *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9549 #else
9550 BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9551 #endif
9552
9553 return insn;
9554 }
9555
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9556 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9557 struct bpf_insn *insn)
9558 {
9559 /* si->dst_reg = skb_shinfo(SKB); */
9560 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9561 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9562 BPF_REG_AX, skb_reg,
9563 offsetof(struct sk_buff, end));
9564 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9565 dst_reg, skb_reg,
9566 offsetof(struct sk_buff, head));
9567 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9568 #else
9569 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9570 dst_reg, skb_reg,
9571 offsetof(struct sk_buff, end));
9572 #endif
9573
9574 return insn;
9575 }
9576
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9577 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9578 const struct bpf_insn *si,
9579 struct bpf_insn *insn)
9580 {
9581 __u8 value_reg = si->dst_reg;
9582 __u8 skb_reg = si->src_reg;
9583
9584 #ifdef CONFIG_NET_XGRESS
9585 /* If the tstamp_type is read,
9586 * the bpf prog is aware the tstamp could have delivery time.
9587 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9588 */
9589 if (!prog->tstamp_type_access) {
9590 /* AX is needed because src_reg and dst_reg could be the same */
9591 __u8 tmp_reg = BPF_REG_AX;
9592
9593 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9594 /* check if ingress mask bits is set */
9595 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9596 *insn++ = BPF_JMP_A(4);
9597 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9598 *insn++ = BPF_JMP_A(2);
9599 /* skb->tc_at_ingress && skb->tstamp_type,
9600 * read 0 as the (rcv) timestamp.
9601 */
9602 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9603 *insn++ = BPF_JMP_A(1);
9604 }
9605 #endif
9606
9607 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9608 offsetof(struct sk_buff, tstamp));
9609 return insn;
9610 }
9611
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9612 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9613 const struct bpf_insn *si,
9614 struct bpf_insn *insn)
9615 {
9616 __u8 value_reg = si->src_reg;
9617 __u8 skb_reg = si->dst_reg;
9618
9619 #ifdef CONFIG_NET_XGRESS
9620 /* If the tstamp_type is read,
9621 * the bpf prog is aware the tstamp could have delivery time.
9622 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9623 * Otherwise, writing at ingress will have to clear the
9624 * skb->tstamp_type bit also.
9625 */
9626 if (!prog->tstamp_type_access) {
9627 __u8 tmp_reg = BPF_REG_AX;
9628
9629 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9630 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9631 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9632 /* goto <store> */
9633 *insn++ = BPF_JMP_A(2);
9634 /* <clear>: skb->tstamp_type */
9635 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9636 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9637 }
9638 #endif
9639
9640 /* <store>: skb->tstamp = tstamp */
9641 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9642 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9643 return insn;
9644 }
9645
9646 #define BPF_EMIT_STORE(size, si, off) \
9647 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9648 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9649
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9650 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9651 const struct bpf_insn *si,
9652 struct bpf_insn *insn_buf,
9653 struct bpf_prog *prog, u32 *target_size)
9654 {
9655 struct bpf_insn *insn = insn_buf;
9656 int off;
9657
9658 switch (si->off) {
9659 case offsetof(struct __sk_buff, len):
9660 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9661 bpf_target_off(struct sk_buff, len, 4,
9662 target_size));
9663 break;
9664
9665 case offsetof(struct __sk_buff, protocol):
9666 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9667 bpf_target_off(struct sk_buff, protocol, 2,
9668 target_size));
9669 break;
9670
9671 case offsetof(struct __sk_buff, vlan_proto):
9672 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9673 bpf_target_off(struct sk_buff, vlan_proto, 2,
9674 target_size));
9675 break;
9676
9677 case offsetof(struct __sk_buff, priority):
9678 if (type == BPF_WRITE)
9679 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9680 bpf_target_off(struct sk_buff, priority, 4,
9681 target_size));
9682 else
9683 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9684 bpf_target_off(struct sk_buff, priority, 4,
9685 target_size));
9686 break;
9687
9688 case offsetof(struct __sk_buff, ingress_ifindex):
9689 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9690 bpf_target_off(struct sk_buff, skb_iif, 4,
9691 target_size));
9692 break;
9693
9694 case offsetof(struct __sk_buff, ifindex):
9695 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9696 si->dst_reg, si->src_reg,
9697 offsetof(struct sk_buff, dev));
9698 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9699 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9700 bpf_target_off(struct net_device, ifindex, 4,
9701 target_size));
9702 break;
9703
9704 case offsetof(struct __sk_buff, hash):
9705 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9706 bpf_target_off(struct sk_buff, hash, 4,
9707 target_size));
9708 break;
9709
9710 case offsetof(struct __sk_buff, mark):
9711 if (type == BPF_WRITE)
9712 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9713 bpf_target_off(struct sk_buff, mark, 4,
9714 target_size));
9715 else
9716 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9717 bpf_target_off(struct sk_buff, mark, 4,
9718 target_size));
9719 break;
9720
9721 case offsetof(struct __sk_buff, pkt_type):
9722 *target_size = 1;
9723 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9724 PKT_TYPE_OFFSET);
9725 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9726 #ifdef __BIG_ENDIAN_BITFIELD
9727 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9728 #endif
9729 break;
9730
9731 case offsetof(struct __sk_buff, queue_mapping):
9732 if (type == BPF_WRITE) {
9733 u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9734
9735 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9736 *insn++ = BPF_JMP_A(0); /* noop */
9737 break;
9738 }
9739
9740 if (BPF_CLASS(si->code) == BPF_STX)
9741 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9742 *insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9743 } else {
9744 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9745 bpf_target_off(struct sk_buff,
9746 queue_mapping,
9747 2, target_size));
9748 }
9749 break;
9750
9751 case offsetof(struct __sk_buff, vlan_present):
9752 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9753 bpf_target_off(struct sk_buff,
9754 vlan_all, 4, target_size));
9755 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9756 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9757 break;
9758
9759 case offsetof(struct __sk_buff, vlan_tci):
9760 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9761 bpf_target_off(struct sk_buff, vlan_tci, 2,
9762 target_size));
9763 break;
9764
9765 case offsetof(struct __sk_buff, cb[0]) ...
9766 offsetofend(struct __sk_buff, cb[4]) - 1:
9767 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9768 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9769 offsetof(struct qdisc_skb_cb, data)) %
9770 sizeof(__u64));
9771
9772 prog->cb_access = 1;
9773 off = si->off;
9774 off -= offsetof(struct __sk_buff, cb[0]);
9775 off += offsetof(struct sk_buff, cb);
9776 off += offsetof(struct qdisc_skb_cb, data);
9777 if (type == BPF_WRITE)
9778 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9779 else
9780 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9781 si->src_reg, off);
9782 break;
9783
9784 case offsetof(struct __sk_buff, tc_classid):
9785 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9786
9787 off = si->off;
9788 off -= offsetof(struct __sk_buff, tc_classid);
9789 off += offsetof(struct sk_buff, cb);
9790 off += offsetof(struct qdisc_skb_cb, tc_classid);
9791 *target_size = 2;
9792 if (type == BPF_WRITE)
9793 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9794 else
9795 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9796 si->src_reg, off);
9797 break;
9798
9799 case offsetof(struct __sk_buff, data):
9800 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9801 si->dst_reg, si->src_reg,
9802 offsetof(struct sk_buff, data));
9803 break;
9804
9805 case offsetof(struct __sk_buff, data_meta):
9806 off = si->off;
9807 off -= offsetof(struct __sk_buff, data_meta);
9808 off += offsetof(struct sk_buff, cb);
9809 off += offsetof(struct bpf_skb_data_end, data_meta);
9810 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9811 si->src_reg, off);
9812 break;
9813
9814 case offsetof(struct __sk_buff, data_end):
9815 off = si->off;
9816 off -= offsetof(struct __sk_buff, data_end);
9817 off += offsetof(struct sk_buff, cb);
9818 off += offsetof(struct bpf_skb_data_end, data_end);
9819 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9820 si->src_reg, off);
9821 break;
9822
9823 case offsetof(struct __sk_buff, tc_index):
9824 #ifdef CONFIG_NET_SCHED
9825 if (type == BPF_WRITE)
9826 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9827 bpf_target_off(struct sk_buff, tc_index, 2,
9828 target_size));
9829 else
9830 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9831 bpf_target_off(struct sk_buff, tc_index, 2,
9832 target_size));
9833 #else
9834 *target_size = 2;
9835 if (type == BPF_WRITE)
9836 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9837 else
9838 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9839 #endif
9840 break;
9841
9842 case offsetof(struct __sk_buff, napi_id):
9843 #if defined(CONFIG_NET_RX_BUSY_POLL)
9844 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9845 bpf_target_off(struct sk_buff, napi_id, 4,
9846 target_size));
9847 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9848 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9849 #else
9850 *target_size = 4;
9851 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9852 #endif
9853 break;
9854 case offsetof(struct __sk_buff, family):
9855 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9856
9857 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9858 si->dst_reg, si->src_reg,
9859 offsetof(struct sk_buff, sk));
9860 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9861 bpf_target_off(struct sock_common,
9862 skc_family,
9863 2, target_size));
9864 break;
9865 case offsetof(struct __sk_buff, remote_ip4):
9866 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9867
9868 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9869 si->dst_reg, si->src_reg,
9870 offsetof(struct sk_buff, sk));
9871 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9872 bpf_target_off(struct sock_common,
9873 skc_daddr,
9874 4, target_size));
9875 break;
9876 case offsetof(struct __sk_buff, local_ip4):
9877 BUILD_BUG_ON(sizeof_field(struct sock_common,
9878 skc_rcv_saddr) != 4);
9879
9880 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9881 si->dst_reg, si->src_reg,
9882 offsetof(struct sk_buff, sk));
9883 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9884 bpf_target_off(struct sock_common,
9885 skc_rcv_saddr,
9886 4, target_size));
9887 break;
9888 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9889 offsetof(struct __sk_buff, remote_ip6[3]):
9890 #if IS_ENABLED(CONFIG_IPV6)
9891 BUILD_BUG_ON(sizeof_field(struct sock_common,
9892 skc_v6_daddr.s6_addr32[0]) != 4);
9893
9894 off = si->off;
9895 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9896
9897 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9898 si->dst_reg, si->src_reg,
9899 offsetof(struct sk_buff, sk));
9900 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9901 offsetof(struct sock_common,
9902 skc_v6_daddr.s6_addr32[0]) +
9903 off);
9904 #else
9905 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9906 #endif
9907 break;
9908 case offsetof(struct __sk_buff, local_ip6[0]) ...
9909 offsetof(struct __sk_buff, local_ip6[3]):
9910 #if IS_ENABLED(CONFIG_IPV6)
9911 BUILD_BUG_ON(sizeof_field(struct sock_common,
9912 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9913
9914 off = si->off;
9915 off -= offsetof(struct __sk_buff, local_ip6[0]);
9916
9917 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9918 si->dst_reg, si->src_reg,
9919 offsetof(struct sk_buff, sk));
9920 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9921 offsetof(struct sock_common,
9922 skc_v6_rcv_saddr.s6_addr32[0]) +
9923 off);
9924 #else
9925 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9926 #endif
9927 break;
9928
9929 case offsetof(struct __sk_buff, remote_port):
9930 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9931
9932 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9933 si->dst_reg, si->src_reg,
9934 offsetof(struct sk_buff, sk));
9935 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9936 bpf_target_off(struct sock_common,
9937 skc_dport,
9938 2, target_size));
9939 #ifndef __BIG_ENDIAN_BITFIELD
9940 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9941 #endif
9942 break;
9943
9944 case offsetof(struct __sk_buff, local_port):
9945 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9946
9947 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9948 si->dst_reg, si->src_reg,
9949 offsetof(struct sk_buff, sk));
9950 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9951 bpf_target_off(struct sock_common,
9952 skc_num, 2, target_size));
9953 break;
9954
9955 case offsetof(struct __sk_buff, tstamp):
9956 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9957
9958 if (type == BPF_WRITE)
9959 insn = bpf_convert_tstamp_write(prog, si, insn);
9960 else
9961 insn = bpf_convert_tstamp_read(prog, si, insn);
9962 break;
9963
9964 case offsetof(struct __sk_buff, tstamp_type):
9965 insn = bpf_convert_tstamp_type_read(si, insn);
9966 break;
9967
9968 case offsetof(struct __sk_buff, gso_segs):
9969 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9970 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9971 si->dst_reg, si->dst_reg,
9972 bpf_target_off(struct skb_shared_info,
9973 gso_segs, 2,
9974 target_size));
9975 break;
9976 case offsetof(struct __sk_buff, gso_size):
9977 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9978 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9979 si->dst_reg, si->dst_reg,
9980 bpf_target_off(struct skb_shared_info,
9981 gso_size, 2,
9982 target_size));
9983 break;
9984 case offsetof(struct __sk_buff, wire_len):
9985 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9986
9987 off = si->off;
9988 off -= offsetof(struct __sk_buff, wire_len);
9989 off += offsetof(struct sk_buff, cb);
9990 off += offsetof(struct qdisc_skb_cb, pkt_len);
9991 *target_size = 4;
9992 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9993 break;
9994
9995 case offsetof(struct __sk_buff, sk):
9996 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9997 si->dst_reg, si->src_reg,
9998 offsetof(struct sk_buff, sk));
9999 break;
10000 case offsetof(struct __sk_buff, hwtstamp):
10001 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
10002 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
10003
10004 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10005 *insn++ = BPF_LDX_MEM(BPF_DW,
10006 si->dst_reg, si->dst_reg,
10007 bpf_target_off(struct skb_shared_info,
10008 hwtstamps, 8,
10009 target_size));
10010 break;
10011 }
10012
10013 return insn - insn_buf;
10014 }
10015
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10016 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
10017 const struct bpf_insn *si,
10018 struct bpf_insn *insn_buf,
10019 struct bpf_prog *prog, u32 *target_size)
10020 {
10021 struct bpf_insn *insn = insn_buf;
10022 int off;
10023
10024 switch (si->off) {
10025 case offsetof(struct bpf_sock, bound_dev_if):
10026 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10027
10028 if (type == BPF_WRITE)
10029 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10030 offsetof(struct sock, sk_bound_dev_if));
10031 else
10032 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10033 offsetof(struct sock, sk_bound_dev_if));
10034 break;
10035
10036 case offsetof(struct bpf_sock, mark):
10037 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10038
10039 if (type == BPF_WRITE)
10040 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10041 offsetof(struct sock, sk_mark));
10042 else
10043 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10044 offsetof(struct sock, sk_mark));
10045 break;
10046
10047 case offsetof(struct bpf_sock, priority):
10048 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10049
10050 if (type == BPF_WRITE)
10051 *insn++ = BPF_EMIT_STORE(BPF_W, si,
10052 offsetof(struct sock, sk_priority));
10053 else
10054 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10055 offsetof(struct sock, sk_priority));
10056 break;
10057
10058 case offsetof(struct bpf_sock, family):
10059 *insn++ = BPF_LDX_MEM(
10060 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10061 si->dst_reg, si->src_reg,
10062 bpf_target_off(struct sock_common,
10063 skc_family,
10064 sizeof_field(struct sock_common,
10065 skc_family),
10066 target_size));
10067 break;
10068
10069 case offsetof(struct bpf_sock, type):
10070 *insn++ = BPF_LDX_MEM(
10071 BPF_FIELD_SIZEOF(struct sock, sk_type),
10072 si->dst_reg, si->src_reg,
10073 bpf_target_off(struct sock, sk_type,
10074 sizeof_field(struct sock, sk_type),
10075 target_size));
10076 break;
10077
10078 case offsetof(struct bpf_sock, protocol):
10079 *insn++ = BPF_LDX_MEM(
10080 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10081 si->dst_reg, si->src_reg,
10082 bpf_target_off(struct sock, sk_protocol,
10083 sizeof_field(struct sock, sk_protocol),
10084 target_size));
10085 break;
10086
10087 case offsetof(struct bpf_sock, src_ip4):
10088 *insn++ = BPF_LDX_MEM(
10089 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10090 bpf_target_off(struct sock_common, skc_rcv_saddr,
10091 sizeof_field(struct sock_common,
10092 skc_rcv_saddr),
10093 target_size));
10094 break;
10095
10096 case offsetof(struct bpf_sock, dst_ip4):
10097 *insn++ = BPF_LDX_MEM(
10098 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10099 bpf_target_off(struct sock_common, skc_daddr,
10100 sizeof_field(struct sock_common,
10101 skc_daddr),
10102 target_size));
10103 break;
10104
10105 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10106 #if IS_ENABLED(CONFIG_IPV6)
10107 off = si->off;
10108 off -= offsetof(struct bpf_sock, src_ip6[0]);
10109 *insn++ = BPF_LDX_MEM(
10110 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10111 bpf_target_off(
10112 struct sock_common,
10113 skc_v6_rcv_saddr.s6_addr32[0],
10114 sizeof_field(struct sock_common,
10115 skc_v6_rcv_saddr.s6_addr32[0]),
10116 target_size) + off);
10117 #else
10118 (void)off;
10119 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10120 #endif
10121 break;
10122
10123 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10124 #if IS_ENABLED(CONFIG_IPV6)
10125 off = si->off;
10126 off -= offsetof(struct bpf_sock, dst_ip6[0]);
10127 *insn++ = BPF_LDX_MEM(
10128 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10129 bpf_target_off(struct sock_common,
10130 skc_v6_daddr.s6_addr32[0],
10131 sizeof_field(struct sock_common,
10132 skc_v6_daddr.s6_addr32[0]),
10133 target_size) + off);
10134 #else
10135 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10136 *target_size = 4;
10137 #endif
10138 break;
10139
10140 case offsetof(struct bpf_sock, src_port):
10141 *insn++ = BPF_LDX_MEM(
10142 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10143 si->dst_reg, si->src_reg,
10144 bpf_target_off(struct sock_common, skc_num,
10145 sizeof_field(struct sock_common,
10146 skc_num),
10147 target_size));
10148 break;
10149
10150 case offsetof(struct bpf_sock, dst_port):
10151 *insn++ = BPF_LDX_MEM(
10152 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10153 si->dst_reg, si->src_reg,
10154 bpf_target_off(struct sock_common, skc_dport,
10155 sizeof_field(struct sock_common,
10156 skc_dport),
10157 target_size));
10158 break;
10159
10160 case offsetof(struct bpf_sock, state):
10161 *insn++ = BPF_LDX_MEM(
10162 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10163 si->dst_reg, si->src_reg,
10164 bpf_target_off(struct sock_common, skc_state,
10165 sizeof_field(struct sock_common,
10166 skc_state),
10167 target_size));
10168 break;
10169 case offsetof(struct bpf_sock, rx_queue_mapping):
10170 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10171 *insn++ = BPF_LDX_MEM(
10172 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10173 si->dst_reg, si->src_reg,
10174 bpf_target_off(struct sock, sk_rx_queue_mapping,
10175 sizeof_field(struct sock,
10176 sk_rx_queue_mapping),
10177 target_size));
10178 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10179 1);
10180 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10181 #else
10182 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10183 *target_size = 2;
10184 #endif
10185 break;
10186 }
10187
10188 return insn - insn_buf;
10189 }
10190
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10191 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10192 const struct bpf_insn *si,
10193 struct bpf_insn *insn_buf,
10194 struct bpf_prog *prog, u32 *target_size)
10195 {
10196 struct bpf_insn *insn = insn_buf;
10197
10198 switch (si->off) {
10199 case offsetof(struct __sk_buff, ifindex):
10200 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10201 si->dst_reg, si->src_reg,
10202 offsetof(struct sk_buff, dev));
10203 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10204 bpf_target_off(struct net_device, ifindex, 4,
10205 target_size));
10206 break;
10207 default:
10208 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10209 target_size);
10210 }
10211
10212 return insn - insn_buf;
10213 }
10214
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10215 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10216 const struct bpf_insn *si,
10217 struct bpf_insn *insn_buf,
10218 struct bpf_prog *prog, u32 *target_size)
10219 {
10220 struct bpf_insn *insn = insn_buf;
10221
10222 switch (si->off) {
10223 case offsetof(struct xdp_md, data):
10224 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10225 si->dst_reg, si->src_reg,
10226 offsetof(struct xdp_buff, data));
10227 break;
10228 case offsetof(struct xdp_md, data_meta):
10229 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10230 si->dst_reg, si->src_reg,
10231 offsetof(struct xdp_buff, data_meta));
10232 break;
10233 case offsetof(struct xdp_md, data_end):
10234 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10235 si->dst_reg, si->src_reg,
10236 offsetof(struct xdp_buff, data_end));
10237 break;
10238 case offsetof(struct xdp_md, ingress_ifindex):
10239 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10240 si->dst_reg, si->src_reg,
10241 offsetof(struct xdp_buff, rxq));
10242 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10243 si->dst_reg, si->dst_reg,
10244 offsetof(struct xdp_rxq_info, dev));
10245 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10246 offsetof(struct net_device, ifindex));
10247 break;
10248 case offsetof(struct xdp_md, rx_queue_index):
10249 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10250 si->dst_reg, si->src_reg,
10251 offsetof(struct xdp_buff, rxq));
10252 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10253 offsetof(struct xdp_rxq_info,
10254 queue_index));
10255 break;
10256 case offsetof(struct xdp_md, egress_ifindex):
10257 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10258 si->dst_reg, si->src_reg,
10259 offsetof(struct xdp_buff, txq));
10260 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10261 si->dst_reg, si->dst_reg,
10262 offsetof(struct xdp_txq_info, dev));
10263 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10264 offsetof(struct net_device, ifindex));
10265 break;
10266 }
10267
10268 return insn - insn_buf;
10269 }
10270
10271 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10272 * context Structure, F is Field in context structure that contains a pointer
10273 * to Nested Structure of type NS that has the field NF.
10274 *
10275 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10276 * sure that SIZE is not greater than actual size of S.F.NF.
10277 *
10278 * If offset OFF is provided, the load happens from that offset relative to
10279 * offset of NF.
10280 */
10281 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10282 do { \
10283 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10284 si->src_reg, offsetof(S, F)); \
10285 *insn++ = BPF_LDX_MEM( \
10286 SIZE, si->dst_reg, si->dst_reg, \
10287 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10288 target_size) \
10289 + OFF); \
10290 } while (0)
10291
10292 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10293 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10294 BPF_FIELD_SIZEOF(NS, NF), 0)
10295
10296 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10297 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10298 *
10299 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10300 * "register" since two registers available in convert_ctx_access are not
10301 * enough: we can't override neither SRC, since it contains value to store, nor
10302 * DST since it contains pointer to context that may be used by later
10303 * instructions. But we need a temporary place to save pointer to nested
10304 * structure whose field we want to store to.
10305 */
10306 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10307 do { \
10308 int tmp_reg = BPF_REG_9; \
10309 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10310 --tmp_reg; \
10311 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10312 --tmp_reg; \
10313 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10314 offsetof(S, TF)); \
10315 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10316 si->dst_reg, offsetof(S, F)); \
10317 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10318 tmp_reg, si->src_reg, \
10319 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10320 target_size) \
10321 + OFF, \
10322 si->imm); \
10323 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10324 offsetof(S, TF)); \
10325 } while (0)
10326
10327 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10328 TF) \
10329 do { \
10330 if (type == BPF_WRITE) { \
10331 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10332 OFF, TF); \
10333 } else { \
10334 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10335 S, NS, F, NF, SIZE, OFF); \
10336 } \
10337 } while (0)
10338
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10339 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10340 const struct bpf_insn *si,
10341 struct bpf_insn *insn_buf,
10342 struct bpf_prog *prog, u32 *target_size)
10343 {
10344 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10345 struct bpf_insn *insn = insn_buf;
10346
10347 switch (si->off) {
10348 case offsetof(struct bpf_sock_addr, user_family):
10349 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10350 struct sockaddr, uaddr, sa_family);
10351 break;
10352
10353 case offsetof(struct bpf_sock_addr, user_ip4):
10354 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10355 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10356 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10357 break;
10358
10359 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10360 off = si->off;
10361 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10362 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10363 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10364 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10365 tmp_reg);
10366 break;
10367
10368 case offsetof(struct bpf_sock_addr, user_port):
10369 /* To get port we need to know sa_family first and then treat
10370 * sockaddr as either sockaddr_in or sockaddr_in6.
10371 * Though we can simplify since port field has same offset and
10372 * size in both structures.
10373 * Here we check this invariant and use just one of the
10374 * structures if it's true.
10375 */
10376 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10377 offsetof(struct sockaddr_in6, sin6_port));
10378 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10379 sizeof_field(struct sockaddr_in6, sin6_port));
10380 /* Account for sin6_port being smaller than user_port. */
10381 port_size = min(port_size, BPF_LDST_BYTES(si));
10382 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10383 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10384 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10385 break;
10386
10387 case offsetof(struct bpf_sock_addr, family):
10388 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10389 struct sock, sk, sk_family);
10390 break;
10391
10392 case offsetof(struct bpf_sock_addr, type):
10393 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10394 struct sock, sk, sk_type);
10395 break;
10396
10397 case offsetof(struct bpf_sock_addr, protocol):
10398 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10399 struct sock, sk, sk_protocol);
10400 break;
10401
10402 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10403 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10404 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10405 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10406 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10407 break;
10408
10409 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10410 msg_src_ip6[3]):
10411 off = si->off;
10412 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10413 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10414 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10415 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10416 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10417 break;
10418 case offsetof(struct bpf_sock_addr, sk):
10419 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10420 si->dst_reg, si->src_reg,
10421 offsetof(struct bpf_sock_addr_kern, sk));
10422 break;
10423 }
10424
10425 return insn - insn_buf;
10426 }
10427
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10428 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10429 const struct bpf_insn *si,
10430 struct bpf_insn *insn_buf,
10431 struct bpf_prog *prog,
10432 u32 *target_size)
10433 {
10434 struct bpf_insn *insn = insn_buf;
10435 int off;
10436
10437 /* Helper macro for adding read access to tcp_sock or sock fields. */
10438 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10439 do { \
10440 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10441 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10442 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10443 if (si->dst_reg == reg || si->src_reg == reg) \
10444 reg--; \
10445 if (si->dst_reg == reg || si->src_reg == reg) \
10446 reg--; \
10447 if (si->dst_reg == si->src_reg) { \
10448 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10449 offsetof(struct bpf_sock_ops_kern, \
10450 temp)); \
10451 fullsock_reg = reg; \
10452 jmp += 2; \
10453 } \
10454 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10455 struct bpf_sock_ops_kern, \
10456 is_locked_tcp_sock), \
10457 fullsock_reg, si->src_reg, \
10458 offsetof(struct bpf_sock_ops_kern, \
10459 is_locked_tcp_sock)); \
10460 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10461 if (si->dst_reg == si->src_reg) \
10462 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10463 offsetof(struct bpf_sock_ops_kern, \
10464 temp)); \
10465 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10466 struct bpf_sock_ops_kern, sk),\
10467 si->dst_reg, si->src_reg, \
10468 offsetof(struct bpf_sock_ops_kern, sk));\
10469 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10470 OBJ_FIELD), \
10471 si->dst_reg, si->dst_reg, \
10472 offsetof(OBJ, OBJ_FIELD)); \
10473 if (si->dst_reg == si->src_reg) { \
10474 *insn++ = BPF_JMP_A(1); \
10475 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10476 offsetof(struct bpf_sock_ops_kern, \
10477 temp)); \
10478 } \
10479 } while (0)
10480
10481 #define SOCK_OPS_GET_SK() \
10482 do { \
10483 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10484 if (si->dst_reg == reg || si->src_reg == reg) \
10485 reg--; \
10486 if (si->dst_reg == reg || si->src_reg == reg) \
10487 reg--; \
10488 if (si->dst_reg == si->src_reg) { \
10489 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10490 offsetof(struct bpf_sock_ops_kern, \
10491 temp)); \
10492 fullsock_reg = reg; \
10493 jmp += 2; \
10494 } \
10495 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10496 struct bpf_sock_ops_kern, \
10497 is_fullsock), \
10498 fullsock_reg, si->src_reg, \
10499 offsetof(struct bpf_sock_ops_kern, \
10500 is_fullsock)); \
10501 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10502 if (si->dst_reg == si->src_reg) \
10503 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10504 offsetof(struct bpf_sock_ops_kern, \
10505 temp)); \
10506 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10507 struct bpf_sock_ops_kern, sk),\
10508 si->dst_reg, si->src_reg, \
10509 offsetof(struct bpf_sock_ops_kern, sk));\
10510 if (si->dst_reg == si->src_reg) { \
10511 *insn++ = BPF_JMP_A(1); \
10512 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10513 offsetof(struct bpf_sock_ops_kern, \
10514 temp)); \
10515 } \
10516 } while (0)
10517
10518 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10519 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10520
10521 /* Helper macro for adding write access to tcp_sock or sock fields.
10522 * The macro is called with two registers, dst_reg which contains a pointer
10523 * to ctx (context) and src_reg which contains the value that should be
10524 * stored. However, we need an additional register since we cannot overwrite
10525 * dst_reg because it may be used later in the program.
10526 * Instead we "borrow" one of the other register. We first save its value
10527 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10528 * it at the end of the macro.
10529 */
10530 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10531 do { \
10532 int reg = BPF_REG_9; \
10533 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10534 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10535 if (si->dst_reg == reg || si->src_reg == reg) \
10536 reg--; \
10537 if (si->dst_reg == reg || si->src_reg == reg) \
10538 reg--; \
10539 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10540 offsetof(struct bpf_sock_ops_kern, \
10541 temp)); \
10542 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10543 struct bpf_sock_ops_kern, \
10544 is_locked_tcp_sock), \
10545 reg, si->dst_reg, \
10546 offsetof(struct bpf_sock_ops_kern, \
10547 is_locked_tcp_sock)); \
10548 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10549 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10550 struct bpf_sock_ops_kern, sk),\
10551 reg, si->dst_reg, \
10552 offsetof(struct bpf_sock_ops_kern, sk));\
10553 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10554 BPF_MEM | BPF_CLASS(si->code), \
10555 reg, si->src_reg, \
10556 offsetof(OBJ, OBJ_FIELD), \
10557 si->imm); \
10558 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10559 offsetof(struct bpf_sock_ops_kern, \
10560 temp)); \
10561 } while (0)
10562
10563 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10564 do { \
10565 if (TYPE == BPF_WRITE) \
10566 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10567 else \
10568 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10569 } while (0)
10570
10571 switch (si->off) {
10572 case offsetof(struct bpf_sock_ops, op):
10573 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10574 op),
10575 si->dst_reg, si->src_reg,
10576 offsetof(struct bpf_sock_ops_kern, op));
10577 break;
10578
10579 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10580 offsetof(struct bpf_sock_ops, replylong[3]):
10581 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10582 sizeof_field(struct bpf_sock_ops_kern, reply));
10583 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10584 sizeof_field(struct bpf_sock_ops_kern, replylong));
10585 off = si->off;
10586 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10587 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10588 if (type == BPF_WRITE)
10589 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10590 else
10591 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10592 off);
10593 break;
10594
10595 case offsetof(struct bpf_sock_ops, family):
10596 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10597
10598 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10599 struct bpf_sock_ops_kern, sk),
10600 si->dst_reg, si->src_reg,
10601 offsetof(struct bpf_sock_ops_kern, sk));
10602 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10603 offsetof(struct sock_common, skc_family));
10604 break;
10605
10606 case offsetof(struct bpf_sock_ops, remote_ip4):
10607 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10608
10609 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10610 struct bpf_sock_ops_kern, sk),
10611 si->dst_reg, si->src_reg,
10612 offsetof(struct bpf_sock_ops_kern, sk));
10613 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10614 offsetof(struct sock_common, skc_daddr));
10615 break;
10616
10617 case offsetof(struct bpf_sock_ops, local_ip4):
10618 BUILD_BUG_ON(sizeof_field(struct sock_common,
10619 skc_rcv_saddr) != 4);
10620
10621 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10622 struct bpf_sock_ops_kern, sk),
10623 si->dst_reg, si->src_reg,
10624 offsetof(struct bpf_sock_ops_kern, sk));
10625 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10626 offsetof(struct sock_common,
10627 skc_rcv_saddr));
10628 break;
10629
10630 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10631 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10632 #if IS_ENABLED(CONFIG_IPV6)
10633 BUILD_BUG_ON(sizeof_field(struct sock_common,
10634 skc_v6_daddr.s6_addr32[0]) != 4);
10635
10636 off = si->off;
10637 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10638 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10639 struct bpf_sock_ops_kern, sk),
10640 si->dst_reg, si->src_reg,
10641 offsetof(struct bpf_sock_ops_kern, sk));
10642 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10643 offsetof(struct sock_common,
10644 skc_v6_daddr.s6_addr32[0]) +
10645 off);
10646 #else
10647 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10648 #endif
10649 break;
10650
10651 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10652 offsetof(struct bpf_sock_ops, local_ip6[3]):
10653 #if IS_ENABLED(CONFIG_IPV6)
10654 BUILD_BUG_ON(sizeof_field(struct sock_common,
10655 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10656
10657 off = si->off;
10658 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10659 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10660 struct bpf_sock_ops_kern, sk),
10661 si->dst_reg, si->src_reg,
10662 offsetof(struct bpf_sock_ops_kern, sk));
10663 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10664 offsetof(struct sock_common,
10665 skc_v6_rcv_saddr.s6_addr32[0]) +
10666 off);
10667 #else
10668 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10669 #endif
10670 break;
10671
10672 case offsetof(struct bpf_sock_ops, remote_port):
10673 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10674
10675 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10676 struct bpf_sock_ops_kern, sk),
10677 si->dst_reg, si->src_reg,
10678 offsetof(struct bpf_sock_ops_kern, sk));
10679 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10680 offsetof(struct sock_common, skc_dport));
10681 #ifndef __BIG_ENDIAN_BITFIELD
10682 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10683 #endif
10684 break;
10685
10686 case offsetof(struct bpf_sock_ops, local_port):
10687 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10688
10689 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10690 struct bpf_sock_ops_kern, sk),
10691 si->dst_reg, si->src_reg,
10692 offsetof(struct bpf_sock_ops_kern, sk));
10693 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10694 offsetof(struct sock_common, skc_num));
10695 break;
10696
10697 case offsetof(struct bpf_sock_ops, is_fullsock):
10698 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10699 struct bpf_sock_ops_kern,
10700 is_fullsock),
10701 si->dst_reg, si->src_reg,
10702 offsetof(struct bpf_sock_ops_kern,
10703 is_fullsock));
10704 break;
10705
10706 case offsetof(struct bpf_sock_ops, state):
10707 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10708
10709 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10710 struct bpf_sock_ops_kern, sk),
10711 si->dst_reg, si->src_reg,
10712 offsetof(struct bpf_sock_ops_kern, sk));
10713 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10714 offsetof(struct sock_common, skc_state));
10715 break;
10716
10717 case offsetof(struct bpf_sock_ops, rtt_min):
10718 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10719 sizeof(struct minmax));
10720 BUILD_BUG_ON(sizeof(struct minmax) <
10721 sizeof(struct minmax_sample));
10722
10723 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10724 struct bpf_sock_ops_kern, sk),
10725 si->dst_reg, si->src_reg,
10726 offsetof(struct bpf_sock_ops_kern, sk));
10727 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10728 offsetof(struct tcp_sock, rtt_min) +
10729 sizeof_field(struct minmax_sample, t));
10730 break;
10731
10732 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10733 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10734 struct tcp_sock);
10735 break;
10736
10737 case offsetof(struct bpf_sock_ops, sk_txhash):
10738 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10739 struct sock, type);
10740 break;
10741 case offsetof(struct bpf_sock_ops, snd_cwnd):
10742 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10743 break;
10744 case offsetof(struct bpf_sock_ops, srtt_us):
10745 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10746 break;
10747 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10748 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10749 break;
10750 case offsetof(struct bpf_sock_ops, rcv_nxt):
10751 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10752 break;
10753 case offsetof(struct bpf_sock_ops, snd_nxt):
10754 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10755 break;
10756 case offsetof(struct bpf_sock_ops, snd_una):
10757 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10758 break;
10759 case offsetof(struct bpf_sock_ops, mss_cache):
10760 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10761 break;
10762 case offsetof(struct bpf_sock_ops, ecn_flags):
10763 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10764 break;
10765 case offsetof(struct bpf_sock_ops, rate_delivered):
10766 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10767 break;
10768 case offsetof(struct bpf_sock_ops, rate_interval_us):
10769 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10770 break;
10771 case offsetof(struct bpf_sock_ops, packets_out):
10772 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10773 break;
10774 case offsetof(struct bpf_sock_ops, retrans_out):
10775 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10776 break;
10777 case offsetof(struct bpf_sock_ops, total_retrans):
10778 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10779 break;
10780 case offsetof(struct bpf_sock_ops, segs_in):
10781 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10782 break;
10783 case offsetof(struct bpf_sock_ops, data_segs_in):
10784 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10785 break;
10786 case offsetof(struct bpf_sock_ops, segs_out):
10787 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10788 break;
10789 case offsetof(struct bpf_sock_ops, data_segs_out):
10790 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10791 break;
10792 case offsetof(struct bpf_sock_ops, lost_out):
10793 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10794 break;
10795 case offsetof(struct bpf_sock_ops, sacked_out):
10796 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10797 break;
10798 case offsetof(struct bpf_sock_ops, bytes_received):
10799 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10800 break;
10801 case offsetof(struct bpf_sock_ops, bytes_acked):
10802 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10803 break;
10804 case offsetof(struct bpf_sock_ops, sk):
10805 SOCK_OPS_GET_SK();
10806 break;
10807 case offsetof(struct bpf_sock_ops, skb_data_end):
10808 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10809 skb_data_end),
10810 si->dst_reg, si->src_reg,
10811 offsetof(struct bpf_sock_ops_kern,
10812 skb_data_end));
10813 break;
10814 case offsetof(struct bpf_sock_ops, skb_data):
10815 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10816 skb),
10817 si->dst_reg, si->src_reg,
10818 offsetof(struct bpf_sock_ops_kern,
10819 skb));
10820 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10821 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10822 si->dst_reg, si->dst_reg,
10823 offsetof(struct sk_buff, data));
10824 break;
10825 case offsetof(struct bpf_sock_ops, skb_len):
10826 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10827 skb),
10828 si->dst_reg, si->src_reg,
10829 offsetof(struct bpf_sock_ops_kern,
10830 skb));
10831 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10832 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10833 si->dst_reg, si->dst_reg,
10834 offsetof(struct sk_buff, len));
10835 break;
10836 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10837 off = offsetof(struct sk_buff, cb);
10838 off += offsetof(struct tcp_skb_cb, tcp_flags);
10839 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10840 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10841 skb),
10842 si->dst_reg, si->src_reg,
10843 offsetof(struct bpf_sock_ops_kern,
10844 skb));
10845 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10846 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10847 tcp_flags),
10848 si->dst_reg, si->dst_reg, off);
10849 break;
10850 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10851 struct bpf_insn *jmp_on_null_skb;
10852
10853 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10854 skb),
10855 si->dst_reg, si->src_reg,
10856 offsetof(struct bpf_sock_ops_kern,
10857 skb));
10858 /* Reserve one insn to test skb == NULL */
10859 jmp_on_null_skb = insn++;
10860 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10861 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10862 bpf_target_off(struct skb_shared_info,
10863 hwtstamps, 8,
10864 target_size));
10865 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10866 insn - jmp_on_null_skb - 1);
10867 break;
10868 }
10869 }
10870 return insn - insn_buf;
10871 }
10872
10873 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10874 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10875 struct bpf_insn *insn)
10876 {
10877 int reg;
10878 int temp_reg_off = offsetof(struct sk_buff, cb) +
10879 offsetof(struct sk_skb_cb, temp_reg);
10880
10881 if (si->src_reg == si->dst_reg) {
10882 /* We need an extra register, choose and save a register. */
10883 reg = BPF_REG_9;
10884 if (si->src_reg == reg || si->dst_reg == reg)
10885 reg--;
10886 if (si->src_reg == reg || si->dst_reg == reg)
10887 reg--;
10888 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10889 } else {
10890 reg = si->dst_reg;
10891 }
10892
10893 /* reg = skb->data */
10894 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10895 reg, si->src_reg,
10896 offsetof(struct sk_buff, data));
10897 /* AX = skb->len */
10898 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10899 BPF_REG_AX, si->src_reg,
10900 offsetof(struct sk_buff, len));
10901 /* reg = skb->data + skb->len */
10902 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10903 /* AX = skb->data_len */
10904 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10905 BPF_REG_AX, si->src_reg,
10906 offsetof(struct sk_buff, data_len));
10907
10908 /* reg = skb->data + skb->len - skb->data_len */
10909 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10910
10911 if (si->src_reg == si->dst_reg) {
10912 /* Restore the saved register */
10913 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10914 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10915 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10916 }
10917
10918 return insn;
10919 }
10920
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10921 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10922 const struct bpf_insn *si,
10923 struct bpf_insn *insn_buf,
10924 struct bpf_prog *prog, u32 *target_size)
10925 {
10926 struct bpf_insn *insn = insn_buf;
10927 int off;
10928
10929 switch (si->off) {
10930 case offsetof(struct __sk_buff, data_end):
10931 insn = bpf_convert_data_end_access(si, insn);
10932 break;
10933 case offsetof(struct __sk_buff, cb[0]) ...
10934 offsetofend(struct __sk_buff, cb[4]) - 1:
10935 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10936 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10937 offsetof(struct sk_skb_cb, data)) %
10938 sizeof(__u64));
10939
10940 prog->cb_access = 1;
10941 off = si->off;
10942 off -= offsetof(struct __sk_buff, cb[0]);
10943 off += offsetof(struct sk_buff, cb);
10944 off += offsetof(struct sk_skb_cb, data);
10945 if (type == BPF_WRITE)
10946 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10947 else
10948 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10949 si->src_reg, off);
10950 break;
10951
10952
10953 default:
10954 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10955 target_size);
10956 }
10957
10958 return insn - insn_buf;
10959 }
10960
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10961 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10962 const struct bpf_insn *si,
10963 struct bpf_insn *insn_buf,
10964 struct bpf_prog *prog, u32 *target_size)
10965 {
10966 struct bpf_insn *insn = insn_buf;
10967 #if IS_ENABLED(CONFIG_IPV6)
10968 int off;
10969 #endif
10970
10971 /* convert ctx uses the fact sg element is first in struct */
10972 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10973
10974 switch (si->off) {
10975 case offsetof(struct sk_msg_md, data):
10976 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10977 si->dst_reg, si->src_reg,
10978 offsetof(struct sk_msg, data));
10979 break;
10980 case offsetof(struct sk_msg_md, data_end):
10981 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10982 si->dst_reg, si->src_reg,
10983 offsetof(struct sk_msg, data_end));
10984 break;
10985 case offsetof(struct sk_msg_md, family):
10986 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10987
10988 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10989 struct sk_msg, sk),
10990 si->dst_reg, si->src_reg,
10991 offsetof(struct sk_msg, sk));
10992 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10993 offsetof(struct sock_common, skc_family));
10994 break;
10995
10996 case offsetof(struct sk_msg_md, remote_ip4):
10997 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10998
10999 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11000 struct sk_msg, sk),
11001 si->dst_reg, si->src_reg,
11002 offsetof(struct sk_msg, sk));
11003 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11004 offsetof(struct sock_common, skc_daddr));
11005 break;
11006
11007 case offsetof(struct sk_msg_md, local_ip4):
11008 BUILD_BUG_ON(sizeof_field(struct sock_common,
11009 skc_rcv_saddr) != 4);
11010
11011 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11012 struct sk_msg, sk),
11013 si->dst_reg, si->src_reg,
11014 offsetof(struct sk_msg, sk));
11015 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11016 offsetof(struct sock_common,
11017 skc_rcv_saddr));
11018 break;
11019
11020 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
11021 offsetof(struct sk_msg_md, remote_ip6[3]):
11022 #if IS_ENABLED(CONFIG_IPV6)
11023 BUILD_BUG_ON(sizeof_field(struct sock_common,
11024 skc_v6_daddr.s6_addr32[0]) != 4);
11025
11026 off = si->off;
11027 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11028 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11029 struct sk_msg, sk),
11030 si->dst_reg, si->src_reg,
11031 offsetof(struct sk_msg, sk));
11032 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11033 offsetof(struct sock_common,
11034 skc_v6_daddr.s6_addr32[0]) +
11035 off);
11036 #else
11037 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11038 #endif
11039 break;
11040
11041 case offsetof(struct sk_msg_md, local_ip6[0]) ...
11042 offsetof(struct sk_msg_md, local_ip6[3]):
11043 #if IS_ENABLED(CONFIG_IPV6)
11044 BUILD_BUG_ON(sizeof_field(struct sock_common,
11045 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11046
11047 off = si->off;
11048 off -= offsetof(struct sk_msg_md, local_ip6[0]);
11049 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11050 struct sk_msg, sk),
11051 si->dst_reg, si->src_reg,
11052 offsetof(struct sk_msg, sk));
11053 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11054 offsetof(struct sock_common,
11055 skc_v6_rcv_saddr.s6_addr32[0]) +
11056 off);
11057 #else
11058 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11059 #endif
11060 break;
11061
11062 case offsetof(struct sk_msg_md, remote_port):
11063 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11064
11065 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11066 struct sk_msg, sk),
11067 si->dst_reg, si->src_reg,
11068 offsetof(struct sk_msg, sk));
11069 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11070 offsetof(struct sock_common, skc_dport));
11071 #ifndef __BIG_ENDIAN_BITFIELD
11072 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11073 #endif
11074 break;
11075
11076 case offsetof(struct sk_msg_md, local_port):
11077 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11078
11079 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11080 struct sk_msg, sk),
11081 si->dst_reg, si->src_reg,
11082 offsetof(struct sk_msg, sk));
11083 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11084 offsetof(struct sock_common, skc_num));
11085 break;
11086
11087 case offsetof(struct sk_msg_md, size):
11088 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11089 si->dst_reg, si->src_reg,
11090 offsetof(struct sk_msg_sg, size));
11091 break;
11092
11093 case offsetof(struct sk_msg_md, sk):
11094 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11095 si->dst_reg, si->src_reg,
11096 offsetof(struct sk_msg, sk));
11097 break;
11098 }
11099
11100 return insn - insn_buf;
11101 }
11102
11103 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11104 .get_func_proto = sk_filter_func_proto,
11105 .is_valid_access = sk_filter_is_valid_access,
11106 .convert_ctx_access = bpf_convert_ctx_access,
11107 .gen_ld_abs = bpf_gen_ld_abs,
11108 };
11109
11110 const struct bpf_prog_ops sk_filter_prog_ops = {
11111 .test_run = bpf_prog_test_run_skb,
11112 };
11113
11114 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11115 .get_func_proto = tc_cls_act_func_proto,
11116 .is_valid_access = tc_cls_act_is_valid_access,
11117 .convert_ctx_access = tc_cls_act_convert_ctx_access,
11118 .gen_prologue = tc_cls_act_prologue,
11119 .gen_ld_abs = bpf_gen_ld_abs,
11120 .btf_struct_access = tc_cls_act_btf_struct_access,
11121 };
11122
11123 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11124 .test_run = bpf_prog_test_run_skb,
11125 };
11126
11127 const struct bpf_verifier_ops xdp_verifier_ops = {
11128 .get_func_proto = xdp_func_proto,
11129 .is_valid_access = xdp_is_valid_access,
11130 .convert_ctx_access = xdp_convert_ctx_access,
11131 .gen_prologue = bpf_noop_prologue,
11132 .btf_struct_access = xdp_btf_struct_access,
11133 };
11134
11135 const struct bpf_prog_ops xdp_prog_ops = {
11136 .test_run = bpf_prog_test_run_xdp,
11137 };
11138
11139 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11140 .get_func_proto = cg_skb_func_proto,
11141 .is_valid_access = cg_skb_is_valid_access,
11142 .convert_ctx_access = bpf_convert_ctx_access,
11143 };
11144
11145 const struct bpf_prog_ops cg_skb_prog_ops = {
11146 .test_run = bpf_prog_test_run_skb,
11147 };
11148
11149 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11150 .get_func_proto = lwt_in_func_proto,
11151 .is_valid_access = lwt_is_valid_access,
11152 .convert_ctx_access = bpf_convert_ctx_access,
11153 };
11154
11155 const struct bpf_prog_ops lwt_in_prog_ops = {
11156 .test_run = bpf_prog_test_run_skb,
11157 };
11158
11159 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11160 .get_func_proto = lwt_out_func_proto,
11161 .is_valid_access = lwt_is_valid_access,
11162 .convert_ctx_access = bpf_convert_ctx_access,
11163 };
11164
11165 const struct bpf_prog_ops lwt_out_prog_ops = {
11166 .test_run = bpf_prog_test_run_skb,
11167 };
11168
11169 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11170 .get_func_proto = lwt_xmit_func_proto,
11171 .is_valid_access = lwt_is_valid_access,
11172 .convert_ctx_access = bpf_convert_ctx_access,
11173 .gen_prologue = tc_cls_act_prologue,
11174 };
11175
11176 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11177 .test_run = bpf_prog_test_run_skb,
11178 };
11179
11180 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11181 .get_func_proto = lwt_seg6local_func_proto,
11182 .is_valid_access = lwt_is_valid_access,
11183 .convert_ctx_access = bpf_convert_ctx_access,
11184 };
11185
11186 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11187 };
11188
11189 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11190 .get_func_proto = sock_filter_func_proto,
11191 .is_valid_access = sock_filter_is_valid_access,
11192 .convert_ctx_access = bpf_sock_convert_ctx_access,
11193 };
11194
11195 const struct bpf_prog_ops cg_sock_prog_ops = {
11196 };
11197
11198 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11199 .get_func_proto = sock_addr_func_proto,
11200 .is_valid_access = sock_addr_is_valid_access,
11201 .convert_ctx_access = sock_addr_convert_ctx_access,
11202 };
11203
11204 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11205 };
11206
11207 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11208 .get_func_proto = sock_ops_func_proto,
11209 .is_valid_access = sock_ops_is_valid_access,
11210 .convert_ctx_access = sock_ops_convert_ctx_access,
11211 };
11212
11213 const struct bpf_prog_ops sock_ops_prog_ops = {
11214 };
11215
11216 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11217 .get_func_proto = sk_skb_func_proto,
11218 .is_valid_access = sk_skb_is_valid_access,
11219 .convert_ctx_access = sk_skb_convert_ctx_access,
11220 .gen_prologue = sk_skb_prologue,
11221 };
11222
11223 const struct bpf_prog_ops sk_skb_prog_ops = {
11224 };
11225
11226 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11227 .get_func_proto = sk_msg_func_proto,
11228 .is_valid_access = sk_msg_is_valid_access,
11229 .convert_ctx_access = sk_msg_convert_ctx_access,
11230 .gen_prologue = bpf_noop_prologue,
11231 };
11232
11233 const struct bpf_prog_ops sk_msg_prog_ops = {
11234 };
11235
11236 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11237 .get_func_proto = flow_dissector_func_proto,
11238 .is_valid_access = flow_dissector_is_valid_access,
11239 .convert_ctx_access = flow_dissector_convert_ctx_access,
11240 };
11241
11242 const struct bpf_prog_ops flow_dissector_prog_ops = {
11243 .test_run = bpf_prog_test_run_flow_dissector,
11244 };
11245
sk_detach_filter(struct sock * sk)11246 int sk_detach_filter(struct sock *sk)
11247 {
11248 int ret = -ENOENT;
11249 struct sk_filter *filter;
11250
11251 if (sock_flag(sk, SOCK_FILTER_LOCKED))
11252 return -EPERM;
11253
11254 filter = rcu_dereference_protected(sk->sk_filter,
11255 lockdep_sock_is_held(sk));
11256 if (filter) {
11257 RCU_INIT_POINTER(sk->sk_filter, NULL);
11258 sk_filter_uncharge(sk, filter);
11259 ret = 0;
11260 }
11261
11262 return ret;
11263 }
11264 EXPORT_SYMBOL_GPL(sk_detach_filter);
11265
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11266 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11267 {
11268 struct sock_fprog_kern *fprog;
11269 struct sk_filter *filter;
11270 int ret = 0;
11271
11272 sockopt_lock_sock(sk);
11273 filter = rcu_dereference_protected(sk->sk_filter,
11274 lockdep_sock_is_held(sk));
11275 if (!filter)
11276 goto out;
11277
11278 /* We're copying the filter that has been originally attached,
11279 * so no conversion/decode needed anymore. eBPF programs that
11280 * have no original program cannot be dumped through this.
11281 */
11282 ret = -EACCES;
11283 fprog = filter->prog->orig_prog;
11284 if (!fprog)
11285 goto out;
11286
11287 ret = fprog->len;
11288 if (!len)
11289 /* User space only enquires number of filter blocks. */
11290 goto out;
11291
11292 ret = -EINVAL;
11293 if (len < fprog->len)
11294 goto out;
11295
11296 ret = -EFAULT;
11297 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11298 goto out;
11299
11300 /* Instead of bytes, the API requests to return the number
11301 * of filter blocks.
11302 */
11303 ret = fprog->len;
11304 out:
11305 sockopt_release_sock(sk);
11306 return ret;
11307 }
11308
11309 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11310 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11311 struct sock_reuseport *reuse,
11312 struct sock *sk, struct sk_buff *skb,
11313 struct sock *migrating_sk,
11314 u32 hash)
11315 {
11316 reuse_kern->skb = skb;
11317 reuse_kern->sk = sk;
11318 reuse_kern->selected_sk = NULL;
11319 reuse_kern->migrating_sk = migrating_sk;
11320 reuse_kern->data_end = skb->data + skb_headlen(skb);
11321 reuse_kern->hash = hash;
11322 reuse_kern->reuseport_id = reuse->reuseport_id;
11323 reuse_kern->bind_inany = reuse->bind_inany;
11324 }
11325
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11326 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11327 struct bpf_prog *prog, struct sk_buff *skb,
11328 struct sock *migrating_sk,
11329 u32 hash)
11330 {
11331 struct sk_reuseport_kern reuse_kern;
11332 enum sk_action action;
11333
11334 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11335 action = bpf_prog_run(prog, &reuse_kern);
11336
11337 if (action == SK_PASS)
11338 return reuse_kern.selected_sk;
11339 else
11340 return ERR_PTR(-ECONNREFUSED);
11341 }
11342
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11343 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11344 struct bpf_map *, map, void *, key, u32, flags)
11345 {
11346 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11347 struct sock_reuseport *reuse;
11348 struct sock *selected_sk;
11349 int err;
11350
11351 selected_sk = map->ops->map_lookup_elem(map, key);
11352 if (!selected_sk)
11353 return -ENOENT;
11354
11355 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11356 if (!reuse) {
11357 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11358 * The only (!reuse) case here is - the sk has already been
11359 * unhashed (e.g. by close()), so treat it as -ENOENT.
11360 *
11361 * Other maps (e.g. sock_map) do not provide this guarantee and
11362 * the sk may never be in the reuseport group to begin with.
11363 */
11364 err = is_sockarray ? -ENOENT : -EINVAL;
11365 goto error;
11366 }
11367
11368 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11369 struct sock *sk = reuse_kern->sk;
11370
11371 if (sk->sk_protocol != selected_sk->sk_protocol) {
11372 err = -EPROTOTYPE;
11373 } else if (sk->sk_family != selected_sk->sk_family) {
11374 err = -EAFNOSUPPORT;
11375 } else {
11376 /* Catch all. Likely bound to a different sockaddr. */
11377 err = -EBADFD;
11378 }
11379 goto error;
11380 }
11381
11382 reuse_kern->selected_sk = selected_sk;
11383
11384 return 0;
11385 error:
11386 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11387 if (sk_is_refcounted(selected_sk))
11388 sock_put(selected_sk);
11389
11390 return err;
11391 }
11392
11393 static const struct bpf_func_proto sk_select_reuseport_proto = {
11394 .func = sk_select_reuseport,
11395 .gpl_only = false,
11396 .ret_type = RET_INTEGER,
11397 .arg1_type = ARG_PTR_TO_CTX,
11398 .arg2_type = ARG_CONST_MAP_PTR,
11399 .arg3_type = ARG_PTR_TO_MAP_KEY,
11400 .arg4_type = ARG_ANYTHING,
11401 };
11402
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11403 BPF_CALL_4(sk_reuseport_load_bytes,
11404 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11405 void *, to, u32, len)
11406 {
11407 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11408 }
11409
11410 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11411 .func = sk_reuseport_load_bytes,
11412 .gpl_only = false,
11413 .ret_type = RET_INTEGER,
11414 .arg1_type = ARG_PTR_TO_CTX,
11415 .arg2_type = ARG_ANYTHING,
11416 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11417 .arg4_type = ARG_CONST_SIZE,
11418 };
11419
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11420 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11421 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11422 void *, to, u32, len, u32, start_header)
11423 {
11424 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11425 len, start_header);
11426 }
11427
11428 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11429 .func = sk_reuseport_load_bytes_relative,
11430 .gpl_only = false,
11431 .ret_type = RET_INTEGER,
11432 .arg1_type = ARG_PTR_TO_CTX,
11433 .arg2_type = ARG_ANYTHING,
11434 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11435 .arg4_type = ARG_CONST_SIZE,
11436 .arg5_type = ARG_ANYTHING,
11437 };
11438
11439 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11440 sk_reuseport_func_proto(enum bpf_func_id func_id,
11441 const struct bpf_prog *prog)
11442 {
11443 switch (func_id) {
11444 case BPF_FUNC_sk_select_reuseport:
11445 return &sk_select_reuseport_proto;
11446 case BPF_FUNC_skb_load_bytes:
11447 return &sk_reuseport_load_bytes_proto;
11448 case BPF_FUNC_skb_load_bytes_relative:
11449 return &sk_reuseport_load_bytes_relative_proto;
11450 case BPF_FUNC_get_socket_cookie:
11451 return &bpf_get_socket_ptr_cookie_proto;
11452 case BPF_FUNC_ktime_get_coarse_ns:
11453 return &bpf_ktime_get_coarse_ns_proto;
11454 default:
11455 return bpf_base_func_proto(func_id, prog);
11456 }
11457 }
11458
11459 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11460 sk_reuseport_is_valid_access(int off, int size,
11461 enum bpf_access_type type,
11462 const struct bpf_prog *prog,
11463 struct bpf_insn_access_aux *info)
11464 {
11465 const u32 size_default = sizeof(__u32);
11466
11467 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11468 off % size || type != BPF_READ)
11469 return false;
11470
11471 switch (off) {
11472 case offsetof(struct sk_reuseport_md, data):
11473 info->reg_type = PTR_TO_PACKET;
11474 return size == sizeof(__u64);
11475
11476 case offsetof(struct sk_reuseport_md, data_end):
11477 info->reg_type = PTR_TO_PACKET_END;
11478 return size == sizeof(__u64);
11479
11480 case offsetof(struct sk_reuseport_md, hash):
11481 return size == size_default;
11482
11483 case offsetof(struct sk_reuseport_md, sk):
11484 info->reg_type = PTR_TO_SOCKET;
11485 return size == sizeof(__u64);
11486
11487 case offsetof(struct sk_reuseport_md, migrating_sk):
11488 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11489 return size == sizeof(__u64);
11490
11491 /* Fields that allow narrowing */
11492 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11493 if (size < sizeof_field(struct sk_buff, protocol))
11494 return false;
11495 fallthrough;
11496 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11497 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11498 case bpf_ctx_range(struct sk_reuseport_md, len):
11499 bpf_ctx_record_field_size(info, size_default);
11500 return bpf_ctx_narrow_access_ok(off, size, size_default);
11501
11502 default:
11503 return false;
11504 }
11505 }
11506
11507 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11508 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11509 si->dst_reg, si->src_reg, \
11510 bpf_target_off(struct sk_reuseport_kern, F, \
11511 sizeof_field(struct sk_reuseport_kern, F), \
11512 target_size)); \
11513 })
11514
11515 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11516 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11517 struct sk_buff, \
11518 skb, \
11519 SKB_FIELD)
11520
11521 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11522 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11523 struct sock, \
11524 sk, \
11525 SK_FIELD)
11526
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11527 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11528 const struct bpf_insn *si,
11529 struct bpf_insn *insn_buf,
11530 struct bpf_prog *prog,
11531 u32 *target_size)
11532 {
11533 struct bpf_insn *insn = insn_buf;
11534
11535 switch (si->off) {
11536 case offsetof(struct sk_reuseport_md, data):
11537 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11538 break;
11539
11540 case offsetof(struct sk_reuseport_md, len):
11541 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11542 break;
11543
11544 case offsetof(struct sk_reuseport_md, eth_protocol):
11545 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11546 break;
11547
11548 case offsetof(struct sk_reuseport_md, ip_protocol):
11549 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11550 break;
11551
11552 case offsetof(struct sk_reuseport_md, data_end):
11553 SK_REUSEPORT_LOAD_FIELD(data_end);
11554 break;
11555
11556 case offsetof(struct sk_reuseport_md, hash):
11557 SK_REUSEPORT_LOAD_FIELD(hash);
11558 break;
11559
11560 case offsetof(struct sk_reuseport_md, bind_inany):
11561 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11562 break;
11563
11564 case offsetof(struct sk_reuseport_md, sk):
11565 SK_REUSEPORT_LOAD_FIELD(sk);
11566 break;
11567
11568 case offsetof(struct sk_reuseport_md, migrating_sk):
11569 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11570 break;
11571 }
11572
11573 return insn - insn_buf;
11574 }
11575
11576 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11577 .get_func_proto = sk_reuseport_func_proto,
11578 .is_valid_access = sk_reuseport_is_valid_access,
11579 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11580 };
11581
11582 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11583 };
11584
11585 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11586 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11587
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11588 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11589 struct sock *, sk, u64, flags)
11590 {
11591 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11592 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11593 return -EINVAL;
11594 if (unlikely(sk && sk_is_refcounted(sk)))
11595 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11596 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11597 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11598 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11599 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11600
11601 /* Check if socket is suitable for packet L3/L4 protocol */
11602 if (sk && sk->sk_protocol != ctx->protocol)
11603 return -EPROTOTYPE;
11604 if (sk && sk->sk_family != ctx->family &&
11605 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11606 return -EAFNOSUPPORT;
11607
11608 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11609 return -EEXIST;
11610
11611 /* Select socket as lookup result */
11612 ctx->selected_sk = sk;
11613 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11614 return 0;
11615 }
11616
11617 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11618 .func = bpf_sk_lookup_assign,
11619 .gpl_only = false,
11620 .ret_type = RET_INTEGER,
11621 .arg1_type = ARG_PTR_TO_CTX,
11622 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11623 .arg3_type = ARG_ANYTHING,
11624 };
11625
11626 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11627 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11628 {
11629 switch (func_id) {
11630 case BPF_FUNC_perf_event_output:
11631 return &bpf_event_output_data_proto;
11632 case BPF_FUNC_sk_assign:
11633 return &bpf_sk_lookup_assign_proto;
11634 case BPF_FUNC_sk_release:
11635 return &bpf_sk_release_proto;
11636 default:
11637 return bpf_sk_base_func_proto(func_id, prog);
11638 }
11639 }
11640
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11641 static bool sk_lookup_is_valid_access(int off, int size,
11642 enum bpf_access_type type,
11643 const struct bpf_prog *prog,
11644 struct bpf_insn_access_aux *info)
11645 {
11646 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11647 return false;
11648 if (off % size != 0)
11649 return false;
11650 if (type != BPF_READ)
11651 return false;
11652
11653 switch (off) {
11654 case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk):
11655 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11656 return size == sizeof(__u64);
11657
11658 case bpf_ctx_range(struct bpf_sk_lookup, family):
11659 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11660 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11661 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11662 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11663 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11664 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11665 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11666 bpf_ctx_record_field_size(info, sizeof(__u32));
11667 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11668
11669 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11670 /* Allow 4-byte access to 2-byte field for backward compatibility */
11671 if (size == sizeof(__u32))
11672 return true;
11673 bpf_ctx_record_field_size(info, sizeof(__be16));
11674 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11675
11676 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11677 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11678 /* Allow access to zero padding for backward compatibility */
11679 bpf_ctx_record_field_size(info, sizeof(__u16));
11680 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11681
11682 default:
11683 return false;
11684 }
11685 }
11686
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11687 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11688 const struct bpf_insn *si,
11689 struct bpf_insn *insn_buf,
11690 struct bpf_prog *prog,
11691 u32 *target_size)
11692 {
11693 struct bpf_insn *insn = insn_buf;
11694
11695 switch (si->off) {
11696 case offsetof(struct bpf_sk_lookup, sk):
11697 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11698 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11699 break;
11700
11701 case offsetof(struct bpf_sk_lookup, family):
11702 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11703 bpf_target_off(struct bpf_sk_lookup_kern,
11704 family, 2, target_size));
11705 break;
11706
11707 case offsetof(struct bpf_sk_lookup, protocol):
11708 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11709 bpf_target_off(struct bpf_sk_lookup_kern,
11710 protocol, 2, target_size));
11711 break;
11712
11713 case offsetof(struct bpf_sk_lookup, remote_ip4):
11714 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11715 bpf_target_off(struct bpf_sk_lookup_kern,
11716 v4.saddr, 4, target_size));
11717 break;
11718
11719 case offsetof(struct bpf_sk_lookup, local_ip4):
11720 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11721 bpf_target_off(struct bpf_sk_lookup_kern,
11722 v4.daddr, 4, target_size));
11723 break;
11724
11725 case bpf_ctx_range_till(struct bpf_sk_lookup,
11726 remote_ip6[0], remote_ip6[3]): {
11727 #if IS_ENABLED(CONFIG_IPV6)
11728 int off = si->off;
11729
11730 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11731 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11732 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11733 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11734 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11735 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11736 #else
11737 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11738 #endif
11739 break;
11740 }
11741 case bpf_ctx_range_till(struct bpf_sk_lookup,
11742 local_ip6[0], local_ip6[3]): {
11743 #if IS_ENABLED(CONFIG_IPV6)
11744 int off = si->off;
11745
11746 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11747 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11748 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11749 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11750 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11751 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11752 #else
11753 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11754 #endif
11755 break;
11756 }
11757 case offsetof(struct bpf_sk_lookup, remote_port):
11758 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11759 bpf_target_off(struct bpf_sk_lookup_kern,
11760 sport, 2, target_size));
11761 break;
11762
11763 case offsetofend(struct bpf_sk_lookup, remote_port):
11764 *target_size = 2;
11765 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11766 break;
11767
11768 case offsetof(struct bpf_sk_lookup, local_port):
11769 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11770 bpf_target_off(struct bpf_sk_lookup_kern,
11771 dport, 2, target_size));
11772 break;
11773
11774 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11775 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11776 bpf_target_off(struct bpf_sk_lookup_kern,
11777 ingress_ifindex, 4, target_size));
11778 break;
11779 }
11780
11781 return insn - insn_buf;
11782 }
11783
11784 const struct bpf_prog_ops sk_lookup_prog_ops = {
11785 .test_run = bpf_prog_test_run_sk_lookup,
11786 };
11787
11788 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11789 .get_func_proto = sk_lookup_func_proto,
11790 .is_valid_access = sk_lookup_is_valid_access,
11791 .convert_ctx_access = sk_lookup_convert_ctx_access,
11792 };
11793
11794 #endif /* CONFIG_INET */
11795
DEFINE_BPF_DISPATCHER(xdp)11796 DEFINE_BPF_DISPATCHER(xdp)
11797
11798 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11799 {
11800 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11801 }
11802
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11803 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11804 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11805 BTF_SOCK_TYPE_xxx
11806 #undef BTF_SOCK_TYPE
11807
11808 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11809 {
11810 /* tcp6_sock type is not generated in dwarf and hence btf,
11811 * trigger an explicit type generation here.
11812 */
11813 BTF_TYPE_EMIT(struct tcp6_sock);
11814 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11815 sk->sk_family == AF_INET6)
11816 return (unsigned long)sk;
11817
11818 return (unsigned long)NULL;
11819 }
11820
11821 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11822 .func = bpf_skc_to_tcp6_sock,
11823 .gpl_only = false,
11824 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11825 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11826 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11827 };
11828
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11829 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11830 {
11831 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11832 return (unsigned long)sk;
11833
11834 return (unsigned long)NULL;
11835 }
11836
11837 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11838 .func = bpf_skc_to_tcp_sock,
11839 .gpl_only = false,
11840 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11841 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11842 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11843 };
11844
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11845 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11846 {
11847 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11848 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11849 */
11850 BTF_TYPE_EMIT(struct inet_timewait_sock);
11851 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11852
11853 #ifdef CONFIG_INET
11854 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11855 return (unsigned long)sk;
11856 #endif
11857
11858 #if IS_BUILTIN(CONFIG_IPV6)
11859 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11860 return (unsigned long)sk;
11861 #endif
11862
11863 return (unsigned long)NULL;
11864 }
11865
11866 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11867 .func = bpf_skc_to_tcp_timewait_sock,
11868 .gpl_only = false,
11869 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11870 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11871 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11872 };
11873
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11874 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11875 {
11876 #ifdef CONFIG_INET
11877 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11878 return (unsigned long)sk;
11879 #endif
11880
11881 #if IS_BUILTIN(CONFIG_IPV6)
11882 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11883 return (unsigned long)sk;
11884 #endif
11885
11886 return (unsigned long)NULL;
11887 }
11888
11889 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11890 .func = bpf_skc_to_tcp_request_sock,
11891 .gpl_only = false,
11892 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11893 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11894 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11895 };
11896
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11897 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11898 {
11899 /* udp6_sock type is not generated in dwarf and hence btf,
11900 * trigger an explicit type generation here.
11901 */
11902 BTF_TYPE_EMIT(struct udp6_sock);
11903 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11904 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11905 return (unsigned long)sk;
11906
11907 return (unsigned long)NULL;
11908 }
11909
11910 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11911 .func = bpf_skc_to_udp6_sock,
11912 .gpl_only = false,
11913 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11914 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11915 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11916 };
11917
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11918 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11919 {
11920 /* unix_sock type is not generated in dwarf and hence btf,
11921 * trigger an explicit type generation here.
11922 */
11923 BTF_TYPE_EMIT(struct unix_sock);
11924 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11925 return (unsigned long)sk;
11926
11927 return (unsigned long)NULL;
11928 }
11929
11930 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11931 .func = bpf_skc_to_unix_sock,
11932 .gpl_only = false,
11933 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11934 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11935 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11936 };
11937
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11938 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11939 {
11940 BTF_TYPE_EMIT(struct mptcp_sock);
11941 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11942 }
11943
11944 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11945 .func = bpf_skc_to_mptcp_sock,
11946 .gpl_only = false,
11947 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11948 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11949 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11950 };
11951
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11952 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11953 {
11954 return (unsigned long)sock_from_file(file);
11955 }
11956
11957 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11958 BTF_ID(struct, socket)
11959 BTF_ID(struct, file)
11960
11961 const struct bpf_func_proto bpf_sock_from_file_proto = {
11962 .func = bpf_sock_from_file,
11963 .gpl_only = false,
11964 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11965 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11966 .arg1_type = ARG_PTR_TO_BTF_ID,
11967 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11968 };
11969
11970 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11971 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11972 {
11973 const struct bpf_func_proto *func;
11974
11975 switch (func_id) {
11976 case BPF_FUNC_skc_to_tcp6_sock:
11977 func = &bpf_skc_to_tcp6_sock_proto;
11978 break;
11979 case BPF_FUNC_skc_to_tcp_sock:
11980 func = &bpf_skc_to_tcp_sock_proto;
11981 break;
11982 case BPF_FUNC_skc_to_tcp_timewait_sock:
11983 func = &bpf_skc_to_tcp_timewait_sock_proto;
11984 break;
11985 case BPF_FUNC_skc_to_tcp_request_sock:
11986 func = &bpf_skc_to_tcp_request_sock_proto;
11987 break;
11988 case BPF_FUNC_skc_to_udp6_sock:
11989 func = &bpf_skc_to_udp6_sock_proto;
11990 break;
11991 case BPF_FUNC_skc_to_unix_sock:
11992 func = &bpf_skc_to_unix_sock_proto;
11993 break;
11994 case BPF_FUNC_skc_to_mptcp_sock:
11995 func = &bpf_skc_to_mptcp_sock_proto;
11996 break;
11997 case BPF_FUNC_ktime_get_coarse_ns:
11998 return &bpf_ktime_get_coarse_ns_proto;
11999 default:
12000 return bpf_base_func_proto(func_id, prog);
12001 }
12002
12003 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
12004 return NULL;
12005
12006 return func;
12007 }
12008
12009 /**
12010 * bpf_skb_meta_pointer() - Gets a mutable pointer within the skb metadata area.
12011 * @skb: socket buffer carrying the metadata
12012 * @offset: offset into the metadata area, must be <= skb_metadata_len()
12013 */
bpf_skb_meta_pointer(struct sk_buff * skb,u32 offset)12014 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset)
12015 {
12016 return skb_metadata_end(skb) - skb_metadata_len(skb) + offset;
12017 }
12018
12019 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)12020 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
12021 struct bpf_dynptr *ptr__uninit)
12022 {
12023 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12024 struct sk_buff *skb = (struct sk_buff *)s;
12025
12026 if (flags) {
12027 bpf_dynptr_set_null(ptr);
12028 return -EINVAL;
12029 }
12030
12031 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
12032
12033 return 0;
12034 }
12035
12036 /**
12037 * bpf_dynptr_from_skb_meta() - Initialize a dynptr to the skb metadata area.
12038 * @skb_: socket buffer carrying the metadata
12039 * @flags: future use, must be zero
12040 * @ptr__uninit: dynptr to initialize
12041 *
12042 * Set up a dynptr for access to the metadata area earlier allocated from the
12043 * XDP context with bpf_xdp_adjust_meta(). Serves as an alternative to
12044 * &__sk_buff->data_meta.
12045 *
12046 * If passed @skb_ is a clone which shares the data with the original, the
12047 * dynptr will be read-only. This limitation may be lifted in the future.
12048 *
12049 * Return:
12050 * * %0 - dynptr ready to use
12051 * * %-EINVAL - invalid flags, dynptr set to null
12052 */
bpf_dynptr_from_skb_meta(struct __sk_buff * skb_,u64 flags,struct bpf_dynptr * ptr__uninit)12053 __bpf_kfunc int bpf_dynptr_from_skb_meta(struct __sk_buff *skb_, u64 flags,
12054 struct bpf_dynptr *ptr__uninit)
12055 {
12056 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12057 struct sk_buff *skb = (struct sk_buff *)skb_;
12058
12059 if (flags) {
12060 bpf_dynptr_set_null(ptr);
12061 return -EINVAL;
12062 }
12063
12064 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB_META, 0, skb_metadata_len(skb));
12065
12066 if (skb_cloned(skb))
12067 bpf_dynptr_set_rdonly(ptr);
12068
12069 return 0;
12070 }
12071
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)12072 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12073 struct bpf_dynptr *ptr__uninit)
12074 {
12075 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12076 struct xdp_buff *xdp = (struct xdp_buff *)x;
12077
12078 if (flags) {
12079 bpf_dynptr_set_null(ptr);
12080 return -EINVAL;
12081 }
12082
12083 bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12084
12085 return 0;
12086 }
12087
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12088 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12089 const u8 *sun_path, u32 sun_path__sz)
12090 {
12091 struct sockaddr_un *un;
12092
12093 if (sa_kern->sk->sk_family != AF_UNIX)
12094 return -EINVAL;
12095
12096 /* We do not allow changing the address to unnamed or larger than the
12097 * maximum allowed address size for a unix sockaddr.
12098 */
12099 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12100 return -EINVAL;
12101
12102 un = (struct sockaddr_un *)sa_kern->uaddr;
12103 memcpy(un->sun_path, sun_path, sun_path__sz);
12104 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12105
12106 return 0;
12107 }
12108
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12109 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12110 struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12111 {
12112 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12113 struct sk_buff *skb = (struct sk_buff *)s;
12114 const struct request_sock_ops *ops;
12115 struct inet_request_sock *ireq;
12116 struct tcp_request_sock *treq;
12117 struct request_sock *req;
12118 struct net *net;
12119 __u16 min_mss;
12120 u32 tsoff = 0;
12121
12122 if (attrs__sz != sizeof(*attrs) ||
12123 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12124 return -EINVAL;
12125
12126 if (!skb_at_tc_ingress(skb))
12127 return -EINVAL;
12128
12129 net = dev_net(skb->dev);
12130 if (net != sock_net(sk))
12131 return -ENETUNREACH;
12132
12133 switch (skb->protocol) {
12134 case htons(ETH_P_IP):
12135 ops = &tcp_request_sock_ops;
12136 min_mss = 536;
12137 break;
12138 #if IS_BUILTIN(CONFIG_IPV6)
12139 case htons(ETH_P_IPV6):
12140 ops = &tcp6_request_sock_ops;
12141 min_mss = IPV6_MIN_MTU - 60;
12142 break;
12143 #endif
12144 default:
12145 return -EINVAL;
12146 }
12147
12148 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12149 sk_is_mptcp(sk))
12150 return -EINVAL;
12151
12152 if (attrs->mss < min_mss)
12153 return -EINVAL;
12154
12155 if (attrs->wscale_ok) {
12156 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12157 return -EINVAL;
12158
12159 if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12160 attrs->rcv_wscale > TCP_MAX_WSCALE)
12161 return -EINVAL;
12162 }
12163
12164 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12165 return -EINVAL;
12166
12167 if (attrs->tstamp_ok) {
12168 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12169 return -EINVAL;
12170
12171 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12172 }
12173
12174 req = inet_reqsk_alloc(ops, sk, false);
12175 if (!req)
12176 return -ENOMEM;
12177
12178 ireq = inet_rsk(req);
12179 treq = tcp_rsk(req);
12180
12181 req->rsk_listener = sk;
12182 req->syncookie = 1;
12183 req->mss = attrs->mss;
12184 req->ts_recent = attrs->rcv_tsval;
12185
12186 ireq->snd_wscale = attrs->snd_wscale;
12187 ireq->rcv_wscale = attrs->rcv_wscale;
12188 ireq->tstamp_ok = !!attrs->tstamp_ok;
12189 ireq->sack_ok = !!attrs->sack_ok;
12190 ireq->wscale_ok = !!attrs->wscale_ok;
12191 ireq->ecn_ok = !!attrs->ecn_ok;
12192
12193 treq->req_usec_ts = !!attrs->usec_ts_ok;
12194 treq->ts_off = tsoff;
12195
12196 skb_orphan(skb);
12197 skb->sk = req_to_sk(req);
12198 skb->destructor = sock_pfree;
12199
12200 return 0;
12201 #else
12202 return -EOPNOTSUPP;
12203 #endif
12204 }
12205
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12206 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12207 u64 flags)
12208 {
12209 struct sk_buff *skb;
12210
12211 if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12212 return -EOPNOTSUPP;
12213
12214 if (flags)
12215 return -EINVAL;
12216
12217 skb = skops->skb;
12218 skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12219 TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12220 skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12221
12222 return 0;
12223 }
12224
12225 /**
12226 * bpf_xdp_pull_data() - Pull in non-linear xdp data.
12227 * @x: &xdp_md associated with the XDP buffer
12228 * @len: length of data to be made directly accessible in the linear part
12229 *
12230 * Pull in data in case the XDP buffer associated with @x is non-linear and
12231 * not all @len are in the linear data area.
12232 *
12233 * Direct packet access allows reading and writing linear XDP data through
12234 * packet pointers (i.e., &xdp_md->data + offsets). The amount of data which
12235 * ends up in the linear part of the xdp_buff depends on the NIC and its
12236 * configuration. When a frag-capable XDP program wants to directly access
12237 * headers that may be in the non-linear area, call this kfunc to make sure
12238 * the data is available in the linear area. Alternatively, use dynptr or
12239 * bpf_xdp_{load,store}_bytes() to access data without pulling.
12240 *
12241 * This kfunc can also be used with bpf_xdp_adjust_head() to decapsulate
12242 * headers in the non-linear data area.
12243 *
12244 * A call to this kfunc may reduce headroom. If there is not enough tailroom
12245 * in the linear data area, metadata and data will be shifted down.
12246 *
12247 * A call to this kfunc is susceptible to change the buffer geometry.
12248 * Therefore, at load time, all checks on pointers previously done by the
12249 * verifier are invalidated and must be performed again, if the kfunc is used
12250 * in combination with direct packet access.
12251 *
12252 * Return:
12253 * * %0 - success
12254 * * %-EINVAL - invalid len
12255 */
bpf_xdp_pull_data(struct xdp_md * x,u32 len)12256 __bpf_kfunc int bpf_xdp_pull_data(struct xdp_md *x, u32 len)
12257 {
12258 struct xdp_buff *xdp = (struct xdp_buff *)x;
12259 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
12260 int i, delta, shift, headroom, tailroom, n_frags_free = 0;
12261 void *data_hard_end = xdp_data_hard_end(xdp);
12262 int data_len = xdp->data_end - xdp->data;
12263 void *start;
12264
12265 if (len <= data_len)
12266 return 0;
12267
12268 if (unlikely(len > xdp_get_buff_len(xdp)))
12269 return -EINVAL;
12270
12271 start = xdp_data_meta_unsupported(xdp) ? xdp->data : xdp->data_meta;
12272
12273 headroom = start - xdp->data_hard_start - sizeof(struct xdp_frame);
12274 tailroom = data_hard_end - xdp->data_end;
12275
12276 delta = len - data_len;
12277 if (unlikely(delta > tailroom + headroom))
12278 return -EINVAL;
12279
12280 shift = delta - tailroom;
12281 if (shift > 0) {
12282 memmove(start - shift, start, xdp->data_end - start);
12283
12284 xdp->data_meta -= shift;
12285 xdp->data -= shift;
12286 xdp->data_end -= shift;
12287 }
12288
12289 for (i = 0; i < sinfo->nr_frags && delta; i++) {
12290 skb_frag_t *frag = &sinfo->frags[i];
12291 u32 shrink = min_t(u32, delta, skb_frag_size(frag));
12292
12293 memcpy(xdp->data_end, skb_frag_address(frag), shrink);
12294
12295 xdp->data_end += shrink;
12296 sinfo->xdp_frags_size -= shrink;
12297 delta -= shrink;
12298 if (bpf_xdp_shrink_data(xdp, frag, shrink, false))
12299 n_frags_free++;
12300 }
12301
12302 if (unlikely(n_frags_free)) {
12303 memmove(sinfo->frags, sinfo->frags + n_frags_free,
12304 (sinfo->nr_frags - n_frags_free) * sizeof(skb_frag_t));
12305
12306 sinfo->nr_frags -= n_frags_free;
12307
12308 if (!sinfo->nr_frags) {
12309 xdp_buff_clear_frags_flag(xdp);
12310 xdp_buff_clear_frag_pfmemalloc(xdp);
12311 }
12312 }
12313
12314 return 0;
12315 }
12316
12317 __bpf_kfunc_end_defs();
12318
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12319 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12320 struct bpf_dynptr *ptr__uninit)
12321 {
12322 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12323 int err;
12324
12325 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12326 if (err)
12327 return err;
12328
12329 bpf_dynptr_set_rdonly(ptr);
12330
12331 return 0;
12332 }
12333
12334 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12335 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12336 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12337
12338 BTF_KFUNCS_START(bpf_kfunc_check_set_skb_meta)
12339 BTF_ID_FLAGS(func, bpf_dynptr_from_skb_meta, KF_TRUSTED_ARGS)
12340 BTF_KFUNCS_END(bpf_kfunc_check_set_skb_meta)
12341
12342 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12343 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12344 BTF_ID_FLAGS(func, bpf_xdp_pull_data)
12345 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12346
12347 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12348 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12349 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12350
12351 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12352 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12353 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12354
12355 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12356 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12357 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12358
12359 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12360 .owner = THIS_MODULE,
12361 .set = &bpf_kfunc_check_set_skb,
12362 };
12363
12364 static const struct btf_kfunc_id_set bpf_kfunc_set_skb_meta = {
12365 .owner = THIS_MODULE,
12366 .set = &bpf_kfunc_check_set_skb_meta,
12367 };
12368
12369 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12370 .owner = THIS_MODULE,
12371 .set = &bpf_kfunc_check_set_xdp,
12372 };
12373
12374 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12375 .owner = THIS_MODULE,
12376 .set = &bpf_kfunc_check_set_sock_addr,
12377 };
12378
12379 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12380 .owner = THIS_MODULE,
12381 .set = &bpf_kfunc_check_set_tcp_reqsk,
12382 };
12383
12384 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12385 .owner = THIS_MODULE,
12386 .set = &bpf_kfunc_check_set_sock_ops,
12387 };
12388
bpf_kfunc_init(void)12389 static int __init bpf_kfunc_init(void)
12390 {
12391 int ret;
12392
12393 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12394 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12395 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12396 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12397 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12398 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12399 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12400 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12401 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12402 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12403 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12404 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb_meta);
12405 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb_meta);
12406 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12407 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12408 &bpf_kfunc_set_sock_addr);
12409 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12410 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12411 }
12412 late_initcall(bpf_kfunc_init);
12413
12414 __bpf_kfunc_start_defs();
12415
12416 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12417 *
12418 * The function expects a non-NULL pointer to a socket, and invokes the
12419 * protocol specific socket destroy handlers.
12420 *
12421 * The helper can only be called from BPF contexts that have acquired the socket
12422 * locks.
12423 *
12424 * Parameters:
12425 * @sock: Pointer to socket to be destroyed
12426 *
12427 * Return:
12428 * On error, may return EPROTONOSUPPORT, EINVAL.
12429 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12430 * 0 otherwise
12431 */
bpf_sock_destroy(struct sock_common * sock)12432 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12433 {
12434 struct sock *sk = (struct sock *)sock;
12435
12436 /* The locking semantics that allow for synchronous execution of the
12437 * destroy handlers are only supported for TCP and UDP.
12438 * Supporting protocols will need to acquire sock lock in the BPF context
12439 * prior to invoking this kfunc.
12440 */
12441 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12442 sk->sk_protocol != IPPROTO_UDP))
12443 return -EOPNOTSUPP;
12444
12445 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12446 }
12447
12448 __bpf_kfunc_end_defs();
12449
12450 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12451 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12452 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12453
12454 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12455 {
12456 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12457 prog->expected_attach_type != BPF_TRACE_ITER)
12458 return -EACCES;
12459 return 0;
12460 }
12461
12462 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12463 .owner = THIS_MODULE,
12464 .set = &bpf_sk_iter_kfunc_ids,
12465 .filter = tracing_iter_filter,
12466 };
12467
init_subsystem(void)12468 static int init_subsystem(void)
12469 {
12470 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12471 }
12472 late_initcall(init_subsystem);
12473