1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux Socket Filter - Kernel level socket filtering 4 * 5 * Based on the design of the Berkeley Packet Filter. The new 6 * internal format has been designed by PLUMgrid: 7 * 8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com 9 * 10 * Authors: 11 * 12 * Jay Schulist <jschlst@samba.org> 13 * Alexei Starovoitov <ast@plumgrid.com> 14 * Daniel Borkmann <dborkman@redhat.com> 15 * 16 * Andi Kleen - Fix a few bad bugs and races. 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic() 18 */ 19 20 #include <linux/atomic.h> 21 #include <linux/bpf_verifier.h> 22 #include <linux/module.h> 23 #include <linux/types.h> 24 #include <linux/mm.h> 25 #include <linux/fcntl.h> 26 #include <linux/socket.h> 27 #include <linux/sock_diag.h> 28 #include <linux/in.h> 29 #include <linux/inet.h> 30 #include <linux/netdevice.h> 31 #include <linux/if_packet.h> 32 #include <linux/if_arp.h> 33 #include <linux/gfp.h> 34 #include <net/inet_common.h> 35 #include <net/ip.h> 36 #include <net/protocol.h> 37 #include <net/netlink.h> 38 #include <linux/skbuff.h> 39 #include <linux/skmsg.h> 40 #include <net/sock.h> 41 #include <net/flow_dissector.h> 42 #include <linux/errno.h> 43 #include <linux/timer.h> 44 #include <linux/uaccess.h> 45 #include <linux/unaligned.h> 46 #include <linux/filter.h> 47 #include <linux/ratelimit.h> 48 #include <linux/seccomp.h> 49 #include <linux/if_vlan.h> 50 #include <linux/bpf.h> 51 #include <linux/btf.h> 52 #include <net/sch_generic.h> 53 #include <net/cls_cgroup.h> 54 #include <net/dst_metadata.h> 55 #include <net/dst.h> 56 #include <net/sock_reuseport.h> 57 #include <net/busy_poll.h> 58 #include <net/tcp.h> 59 #include <net/xfrm.h> 60 #include <net/udp.h> 61 #include <linux/bpf_trace.h> 62 #include <net/xdp_sock.h> 63 #include <linux/inetdevice.h> 64 #include <net/inet_hashtables.h> 65 #include <net/inet6_hashtables.h> 66 #include <net/ip_fib.h> 67 #include <net/nexthop.h> 68 #include <net/flow.h> 69 #include <net/arp.h> 70 #include <net/ipv6.h> 71 #include <net/net_namespace.h> 72 #include <linux/seg6_local.h> 73 #include <net/seg6.h> 74 #include <net/seg6_local.h> 75 #include <net/lwtunnel.h> 76 #include <net/ipv6_stubs.h> 77 #include <net/bpf_sk_storage.h> 78 #include <net/transp_v6.h> 79 #include <linux/btf_ids.h> 80 #include <net/tls.h> 81 #include <net/xdp.h> 82 #include <net/mptcp.h> 83 #include <net/netfilter/nf_conntrack_bpf.h> 84 #include <net/netkit.h> 85 #include <linux/un.h> 86 #include <net/xdp_sock_drv.h> 87 #include <net/inet_dscp.h> 88 89 #include "dev.h" 90 91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */ 92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check"); 93 94 static const struct bpf_func_proto * 95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 96 97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len) 98 { 99 if (in_compat_syscall()) { 100 struct compat_sock_fprog f32; 101 102 if (len != sizeof(f32)) 103 return -EINVAL; 104 if (copy_from_sockptr(&f32, src, sizeof(f32))) 105 return -EFAULT; 106 memset(dst, 0, sizeof(*dst)); 107 dst->len = f32.len; 108 dst->filter = compat_ptr(f32.filter); 109 } else { 110 if (len != sizeof(*dst)) 111 return -EINVAL; 112 if (copy_from_sockptr(dst, src, sizeof(*dst))) 113 return -EFAULT; 114 } 115 116 return 0; 117 } 118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user); 119 120 /** 121 * sk_filter_trim_cap - run a packet through a socket filter 122 * @sk: sock associated with &sk_buff 123 * @skb: buffer to filter 124 * @cap: limit on how short the eBPF program may trim the packet 125 * @reason: record drop reason on errors (negative return value) 126 * 127 * Run the eBPF program and then cut skb->data to correct size returned by 128 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller 129 * than pkt_len we keep whole skb->data. This is the socket level 130 * wrapper to bpf_prog_run. It returns 0 if the packet should 131 * be accepted or -EPERM if the packet should be tossed. 132 * 133 */ 134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, 135 unsigned int cap, enum skb_drop_reason *reason) 136 { 137 int err; 138 struct sk_filter *filter; 139 140 /* 141 * If the skb was allocated from pfmemalloc reserves, only 142 * allow SOCK_MEMALLOC sockets to use it as this socket is 143 * helping free memory 144 */ 145 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) { 146 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP); 147 *reason = SKB_DROP_REASON_PFMEMALLOC; 148 return -ENOMEM; 149 } 150 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb); 151 if (err) { 152 *reason = SKB_DROP_REASON_SOCKET_FILTER; 153 return err; 154 } 155 156 err = security_sock_rcv_skb(sk, skb); 157 if (err) { 158 *reason = SKB_DROP_REASON_SECURITY_HOOK; 159 return err; 160 } 161 162 rcu_read_lock(); 163 filter = rcu_dereference(sk->sk_filter); 164 if (filter) { 165 struct sock *save_sk = skb->sk; 166 unsigned int pkt_len; 167 168 skb->sk = sk; 169 pkt_len = bpf_prog_run_save_cb(filter->prog, skb); 170 skb->sk = save_sk; 171 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM; 172 if (err) 173 *reason = SKB_DROP_REASON_SOCKET_FILTER; 174 } 175 rcu_read_unlock(); 176 177 return err; 178 } 179 EXPORT_SYMBOL(sk_filter_trim_cap); 180 181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb) 182 { 183 return skb_get_poff(skb); 184 } 185 186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x) 187 { 188 struct nlattr *nla; 189 190 if (skb_is_nonlinear(skb)) 191 return 0; 192 193 if (skb->len < sizeof(struct nlattr)) 194 return 0; 195 196 if (a > skb->len - sizeof(struct nlattr)) 197 return 0; 198 199 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x); 200 if (nla) 201 return (void *) nla - (void *) skb->data; 202 203 return 0; 204 } 205 206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x) 207 { 208 struct nlattr *nla; 209 210 if (skb_is_nonlinear(skb)) 211 return 0; 212 213 if (skb->len < sizeof(struct nlattr)) 214 return 0; 215 216 if (a > skb->len - sizeof(struct nlattr)) 217 return 0; 218 219 nla = (struct nlattr *) &skb->data[a]; 220 if (!nla_ok(nla, skb->len - a)) 221 return 0; 222 223 nla = nla_find_nested(nla, x); 224 if (nla) 225 return (void *) nla - (void *) skb->data; 226 227 return 0; 228 } 229 230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset) 231 { 232 if (likely(offset >= 0)) 233 return offset; 234 235 if (offset >= SKF_NET_OFF) 236 return offset - SKF_NET_OFF + skb_network_offset(skb); 237 238 if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb)) 239 return offset - SKF_LL_OFF + skb_mac_offset(skb); 240 241 return INT_MIN; 242 } 243 244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *, 245 data, int, headlen, int, offset) 246 { 247 u8 tmp; 248 const int len = sizeof(tmp); 249 250 offset = bpf_skb_load_helper_convert_offset(skb, offset); 251 if (offset == INT_MIN) 252 return -EFAULT; 253 254 if (headlen - offset >= len) 255 return *(u8 *)(data + offset); 256 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) 257 return tmp; 258 else 259 return -EFAULT; 260 } 261 262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb, 263 int, offset) 264 { 265 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len, 266 offset); 267 } 268 269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *, 270 data, int, headlen, int, offset) 271 { 272 __be16 tmp; 273 const int len = sizeof(tmp); 274 275 offset = bpf_skb_load_helper_convert_offset(skb, offset); 276 if (offset == INT_MIN) 277 return -EFAULT; 278 279 if (headlen - offset >= len) 280 return get_unaligned_be16(data + offset); 281 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) 282 return be16_to_cpu(tmp); 283 else 284 return -EFAULT; 285 } 286 287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb, 288 int, offset) 289 { 290 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len, 291 offset); 292 } 293 294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *, 295 data, int, headlen, int, offset) 296 { 297 __be32 tmp; 298 const int len = sizeof(tmp); 299 300 offset = bpf_skb_load_helper_convert_offset(skb, offset); 301 if (offset == INT_MIN) 302 return -EFAULT; 303 304 if (headlen - offset >= len) 305 return get_unaligned_be32(data + offset); 306 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) 307 return be32_to_cpu(tmp); 308 else 309 return -EFAULT; 310 } 311 312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb, 313 int, offset) 314 { 315 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len, 316 offset); 317 } 318 319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg, 320 struct bpf_insn *insn_buf) 321 { 322 struct bpf_insn *insn = insn_buf; 323 324 switch (skb_field) { 325 case SKF_AD_MARK: 326 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4); 327 328 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, 329 offsetof(struct sk_buff, mark)); 330 break; 331 332 case SKF_AD_PKTTYPE: 333 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET); 334 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX); 335 #ifdef __BIG_ENDIAN_BITFIELD 336 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5); 337 #endif 338 break; 339 340 case SKF_AD_QUEUE: 341 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2); 342 343 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, 344 offsetof(struct sk_buff, queue_mapping)); 345 break; 346 347 case SKF_AD_VLAN_TAG: 348 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2); 349 350 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */ 351 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, 352 offsetof(struct sk_buff, vlan_tci)); 353 break; 354 case SKF_AD_VLAN_TAG_PRESENT: 355 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4); 356 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, 357 offsetof(struct sk_buff, vlan_all)); 358 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1); 359 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1); 360 break; 361 } 362 363 return insn - insn_buf; 364 } 365 366 static bool convert_bpf_extensions(struct sock_filter *fp, 367 struct bpf_insn **insnp) 368 { 369 struct bpf_insn *insn = *insnp; 370 u32 cnt; 371 372 switch (fp->k) { 373 case SKF_AD_OFF + SKF_AD_PROTOCOL: 374 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2); 375 376 /* A = *(u16 *) (CTX + offsetof(protocol)) */ 377 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, 378 offsetof(struct sk_buff, protocol)); 379 /* A = ntohs(A) [emitting a nop or swap16] */ 380 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); 381 break; 382 383 case SKF_AD_OFF + SKF_AD_PKTTYPE: 384 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn); 385 insn += cnt - 1; 386 break; 387 388 case SKF_AD_OFF + SKF_AD_IFINDEX: 389 case SKF_AD_OFF + SKF_AD_HATYPE: 390 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4); 391 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2); 392 393 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), 394 BPF_REG_TMP, BPF_REG_CTX, 395 offsetof(struct sk_buff, dev)); 396 /* if (tmp != 0) goto pc + 1 */ 397 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1); 398 *insn++ = BPF_EXIT_INSN(); 399 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX) 400 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP, 401 offsetof(struct net_device, ifindex)); 402 else 403 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP, 404 offsetof(struct net_device, type)); 405 break; 406 407 case SKF_AD_OFF + SKF_AD_MARK: 408 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn); 409 insn += cnt - 1; 410 break; 411 412 case SKF_AD_OFF + SKF_AD_RXHASH: 413 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4); 414 415 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, 416 offsetof(struct sk_buff, hash)); 417 break; 418 419 case SKF_AD_OFF + SKF_AD_QUEUE: 420 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn); 421 insn += cnt - 1; 422 break; 423 424 case SKF_AD_OFF + SKF_AD_VLAN_TAG: 425 cnt = convert_skb_access(SKF_AD_VLAN_TAG, 426 BPF_REG_A, BPF_REG_CTX, insn); 427 insn += cnt - 1; 428 break; 429 430 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT: 431 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT, 432 BPF_REG_A, BPF_REG_CTX, insn); 433 insn += cnt - 1; 434 break; 435 436 case SKF_AD_OFF + SKF_AD_VLAN_TPID: 437 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2); 438 439 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */ 440 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, 441 offsetof(struct sk_buff, vlan_proto)); 442 /* A = ntohs(A) [emitting a nop or swap16] */ 443 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); 444 break; 445 446 case SKF_AD_OFF + SKF_AD_PAY_OFFSET: 447 case SKF_AD_OFF + SKF_AD_NLATTR: 448 case SKF_AD_OFF + SKF_AD_NLATTR_NEST: 449 case SKF_AD_OFF + SKF_AD_CPU: 450 case SKF_AD_OFF + SKF_AD_RANDOM: 451 /* arg1 = CTX */ 452 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); 453 /* arg2 = A */ 454 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A); 455 /* arg3 = X */ 456 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X); 457 /* Emit call(arg1=CTX, arg2=A, arg3=X) */ 458 switch (fp->k) { 459 case SKF_AD_OFF + SKF_AD_PAY_OFFSET: 460 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset); 461 break; 462 case SKF_AD_OFF + SKF_AD_NLATTR: 463 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr); 464 break; 465 case SKF_AD_OFF + SKF_AD_NLATTR_NEST: 466 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest); 467 break; 468 case SKF_AD_OFF + SKF_AD_CPU: 469 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id); 470 break; 471 case SKF_AD_OFF + SKF_AD_RANDOM: 472 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32); 473 bpf_user_rnd_init_once(); 474 break; 475 } 476 break; 477 478 case SKF_AD_OFF + SKF_AD_ALU_XOR_X: 479 /* A ^= X */ 480 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X); 481 break; 482 483 default: 484 /* This is just a dummy call to avoid letting the compiler 485 * evict __bpf_call_base() as an optimization. Placed here 486 * where no-one bothers. 487 */ 488 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0); 489 return false; 490 } 491 492 *insnp = insn; 493 return true; 494 } 495 496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp) 497 { 498 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS); 499 int size = bpf_size_to_bytes(BPF_SIZE(fp->code)); 500 bool endian = BPF_SIZE(fp->code) == BPF_H || 501 BPF_SIZE(fp->code) == BPF_W; 502 bool indirect = BPF_MODE(fp->code) == BPF_IND; 503 const int ip_align = NET_IP_ALIGN; 504 struct bpf_insn *insn = *insnp; 505 int offset = fp->k; 506 507 if (!indirect && 508 ((unaligned_ok && offset >= 0) || 509 (!unaligned_ok && offset >= 0 && 510 offset + ip_align >= 0 && 511 offset + ip_align % size == 0))) { 512 bool ldx_off_ok = offset <= S16_MAX; 513 514 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H); 515 if (offset) 516 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset); 517 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP, 518 size, 2 + endian + (!ldx_off_ok * 2)); 519 if (ldx_off_ok) { 520 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, 521 BPF_REG_D, offset); 522 } else { 523 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D); 524 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset); 525 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, 526 BPF_REG_TMP, 0); 527 } 528 if (endian) 529 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8); 530 *insn++ = BPF_JMP_A(8); 531 } 532 533 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); 534 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D); 535 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H); 536 if (!indirect) { 537 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset); 538 } else { 539 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X); 540 if (fp->k) 541 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset); 542 } 543 544 switch (BPF_SIZE(fp->code)) { 545 case BPF_B: 546 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8); 547 break; 548 case BPF_H: 549 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16); 550 break; 551 case BPF_W: 552 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32); 553 break; 554 default: 555 return false; 556 } 557 558 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2); 559 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); 560 *insn = BPF_EXIT_INSN(); 561 562 *insnp = insn; 563 return true; 564 } 565 566 /** 567 * bpf_convert_filter - convert filter program 568 * @prog: the user passed filter program 569 * @len: the length of the user passed filter program 570 * @new_prog: allocated 'struct bpf_prog' or NULL 571 * @new_len: pointer to store length of converted program 572 * @seen_ld_abs: bool whether we've seen ld_abs/ind 573 * 574 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn' 575 * style extended BPF (eBPF). 576 * Conversion workflow: 577 * 578 * 1) First pass for calculating the new program length: 579 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs) 580 * 581 * 2) 2nd pass to remap in two passes: 1st pass finds new 582 * jump offsets, 2nd pass remapping: 583 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs) 584 */ 585 static int bpf_convert_filter(struct sock_filter *prog, int len, 586 struct bpf_prog *new_prog, int *new_len, 587 bool *seen_ld_abs) 588 { 589 int new_flen = 0, pass = 0, target, i, stack_off; 590 struct bpf_insn *new_insn, *first_insn = NULL; 591 struct sock_filter *fp; 592 int *addrs = NULL; 593 u8 bpf_src; 594 595 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK); 596 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 597 598 if (len <= 0 || len > BPF_MAXINSNS) 599 return -EINVAL; 600 601 if (new_prog) { 602 first_insn = new_prog->insnsi; 603 addrs = kcalloc(len, sizeof(*addrs), 604 GFP_KERNEL | __GFP_NOWARN); 605 if (!addrs) 606 return -ENOMEM; 607 } 608 609 do_pass: 610 new_insn = first_insn; 611 fp = prog; 612 613 /* Classic BPF related prologue emission. */ 614 if (new_prog) { 615 /* Classic BPF expects A and X to be reset first. These need 616 * to be guaranteed to be the first two instructions. 617 */ 618 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); 619 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X); 620 621 /* All programs must keep CTX in callee saved BPF_REG_CTX. 622 * In eBPF case it's done by the compiler, here we need to 623 * do this ourself. Initial CTX is present in BPF_REG_ARG1. 624 */ 625 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1); 626 if (*seen_ld_abs) { 627 /* For packet access in classic BPF, cache skb->data 628 * in callee-saved BPF R8 and skb->len - skb->data_len 629 * (headlen) in BPF R9. Since classic BPF is read-only 630 * on CTX, we only need to cache it once. 631 */ 632 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), 633 BPF_REG_D, BPF_REG_CTX, 634 offsetof(struct sk_buff, data)); 635 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX, 636 offsetof(struct sk_buff, len)); 637 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX, 638 offsetof(struct sk_buff, data_len)); 639 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP); 640 } 641 } else { 642 new_insn += 3; 643 } 644 645 for (i = 0; i < len; fp++, i++) { 646 struct bpf_insn tmp_insns[32] = { }; 647 struct bpf_insn *insn = tmp_insns; 648 649 if (addrs) 650 addrs[i] = new_insn - first_insn; 651 652 switch (fp->code) { 653 /* All arithmetic insns and skb loads map as-is. */ 654 case BPF_ALU | BPF_ADD | BPF_X: 655 case BPF_ALU | BPF_ADD | BPF_K: 656 case BPF_ALU | BPF_SUB | BPF_X: 657 case BPF_ALU | BPF_SUB | BPF_K: 658 case BPF_ALU | BPF_AND | BPF_X: 659 case BPF_ALU | BPF_AND | BPF_K: 660 case BPF_ALU | BPF_OR | BPF_X: 661 case BPF_ALU | BPF_OR | BPF_K: 662 case BPF_ALU | BPF_LSH | BPF_X: 663 case BPF_ALU | BPF_LSH | BPF_K: 664 case BPF_ALU | BPF_RSH | BPF_X: 665 case BPF_ALU | BPF_RSH | BPF_K: 666 case BPF_ALU | BPF_XOR | BPF_X: 667 case BPF_ALU | BPF_XOR | BPF_K: 668 case BPF_ALU | BPF_MUL | BPF_X: 669 case BPF_ALU | BPF_MUL | BPF_K: 670 case BPF_ALU | BPF_DIV | BPF_X: 671 case BPF_ALU | BPF_DIV | BPF_K: 672 case BPF_ALU | BPF_MOD | BPF_X: 673 case BPF_ALU | BPF_MOD | BPF_K: 674 case BPF_ALU | BPF_NEG: 675 case BPF_LD | BPF_ABS | BPF_W: 676 case BPF_LD | BPF_ABS | BPF_H: 677 case BPF_LD | BPF_ABS | BPF_B: 678 case BPF_LD | BPF_IND | BPF_W: 679 case BPF_LD | BPF_IND | BPF_H: 680 case BPF_LD | BPF_IND | BPF_B: 681 /* Check for overloaded BPF extension and 682 * directly convert it if found, otherwise 683 * just move on with mapping. 684 */ 685 if (BPF_CLASS(fp->code) == BPF_LD && 686 BPF_MODE(fp->code) == BPF_ABS && 687 convert_bpf_extensions(fp, &insn)) 688 break; 689 if (BPF_CLASS(fp->code) == BPF_LD && 690 convert_bpf_ld_abs(fp, &insn)) { 691 *seen_ld_abs = true; 692 break; 693 } 694 695 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) || 696 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) { 697 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X); 698 /* Error with exception code on div/mod by 0. 699 * For cBPF programs, this was always return 0. 700 */ 701 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2); 702 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); 703 *insn++ = BPF_EXIT_INSN(); 704 } 705 706 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k); 707 break; 708 709 /* Jump transformation cannot use BPF block macros 710 * everywhere as offset calculation and target updates 711 * require a bit more work than the rest, i.e. jump 712 * opcodes map as-is, but offsets need adjustment. 713 */ 714 715 #define BPF_EMIT_JMP \ 716 do { \ 717 const s32 off_min = S16_MIN, off_max = S16_MAX; \ 718 s32 off; \ 719 \ 720 if (target >= len || target < 0) \ 721 goto err; \ 722 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \ 723 /* Adjust pc relative offset for 2nd or 3rd insn. */ \ 724 off -= insn - tmp_insns; \ 725 /* Reject anything not fitting into insn->off. */ \ 726 if (off < off_min || off > off_max) \ 727 goto err; \ 728 insn->off = off; \ 729 } while (0) 730 731 case BPF_JMP | BPF_JA: 732 target = i + fp->k + 1; 733 insn->code = fp->code; 734 BPF_EMIT_JMP; 735 break; 736 737 case BPF_JMP | BPF_JEQ | BPF_K: 738 case BPF_JMP | BPF_JEQ | BPF_X: 739 case BPF_JMP | BPF_JSET | BPF_K: 740 case BPF_JMP | BPF_JSET | BPF_X: 741 case BPF_JMP | BPF_JGT | BPF_K: 742 case BPF_JMP | BPF_JGT | BPF_X: 743 case BPF_JMP | BPF_JGE | BPF_K: 744 case BPF_JMP | BPF_JGE | BPF_X: 745 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) { 746 /* BPF immediates are signed, zero extend 747 * immediate into tmp register and use it 748 * in compare insn. 749 */ 750 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k); 751 752 insn->dst_reg = BPF_REG_A; 753 insn->src_reg = BPF_REG_TMP; 754 bpf_src = BPF_X; 755 } else { 756 insn->dst_reg = BPF_REG_A; 757 insn->imm = fp->k; 758 bpf_src = BPF_SRC(fp->code); 759 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0; 760 } 761 762 /* Common case where 'jump_false' is next insn. */ 763 if (fp->jf == 0) { 764 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; 765 target = i + fp->jt + 1; 766 BPF_EMIT_JMP; 767 break; 768 } 769 770 /* Convert some jumps when 'jump_true' is next insn. */ 771 if (fp->jt == 0) { 772 switch (BPF_OP(fp->code)) { 773 case BPF_JEQ: 774 insn->code = BPF_JMP | BPF_JNE | bpf_src; 775 break; 776 case BPF_JGT: 777 insn->code = BPF_JMP | BPF_JLE | bpf_src; 778 break; 779 case BPF_JGE: 780 insn->code = BPF_JMP | BPF_JLT | bpf_src; 781 break; 782 default: 783 goto jmp_rest; 784 } 785 786 target = i + fp->jf + 1; 787 BPF_EMIT_JMP; 788 break; 789 } 790 jmp_rest: 791 /* Other jumps are mapped into two insns: Jxx and JA. */ 792 target = i + fp->jt + 1; 793 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; 794 BPF_EMIT_JMP; 795 insn++; 796 797 insn->code = BPF_JMP | BPF_JA; 798 target = i + fp->jf + 1; 799 BPF_EMIT_JMP; 800 break; 801 802 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */ 803 case BPF_LDX | BPF_MSH | BPF_B: { 804 struct sock_filter tmp = { 805 .code = BPF_LD | BPF_ABS | BPF_B, 806 .k = fp->k, 807 }; 808 809 *seen_ld_abs = true; 810 811 /* X = A */ 812 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); 813 /* A = BPF_R0 = *(u8 *) (skb->data + K) */ 814 convert_bpf_ld_abs(&tmp, &insn); 815 insn++; 816 /* A &= 0xf */ 817 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf); 818 /* A <<= 2 */ 819 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2); 820 /* tmp = X */ 821 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X); 822 /* X = A */ 823 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); 824 /* A = tmp */ 825 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP); 826 break; 827 } 828 /* RET_K is remapped into 2 insns. RET_A case doesn't need an 829 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A. 830 */ 831 case BPF_RET | BPF_A: 832 case BPF_RET | BPF_K: 833 if (BPF_RVAL(fp->code) == BPF_K) 834 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0, 835 0, fp->k); 836 *insn = BPF_EXIT_INSN(); 837 break; 838 839 /* Store to stack. */ 840 case BPF_ST: 841 case BPF_STX: 842 stack_off = fp->k * 4 + 4; 843 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) == 844 BPF_ST ? BPF_REG_A : BPF_REG_X, 845 -stack_off); 846 /* check_load_and_stores() verifies that classic BPF can 847 * load from stack only after write, so tracking 848 * stack_depth for ST|STX insns is enough 849 */ 850 if (new_prog && new_prog->aux->stack_depth < stack_off) 851 new_prog->aux->stack_depth = stack_off; 852 break; 853 854 /* Load from stack. */ 855 case BPF_LD | BPF_MEM: 856 case BPF_LDX | BPF_MEM: 857 stack_off = fp->k * 4 + 4; 858 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? 859 BPF_REG_A : BPF_REG_X, BPF_REG_FP, 860 -stack_off); 861 break; 862 863 /* A = K or X = K */ 864 case BPF_LD | BPF_IMM: 865 case BPF_LDX | BPF_IMM: 866 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ? 867 BPF_REG_A : BPF_REG_X, fp->k); 868 break; 869 870 /* X = A */ 871 case BPF_MISC | BPF_TAX: 872 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); 873 break; 874 875 /* A = X */ 876 case BPF_MISC | BPF_TXA: 877 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X); 878 break; 879 880 /* A = skb->len or X = skb->len */ 881 case BPF_LD | BPF_W | BPF_LEN: 882 case BPF_LDX | BPF_W | BPF_LEN: 883 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? 884 BPF_REG_A : BPF_REG_X, BPF_REG_CTX, 885 offsetof(struct sk_buff, len)); 886 break; 887 888 /* Access seccomp_data fields. */ 889 case BPF_LDX | BPF_ABS | BPF_W: 890 /* A = *(u32 *) (ctx + K) */ 891 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k); 892 break; 893 894 /* Unknown instruction. */ 895 default: 896 goto err; 897 } 898 899 insn++; 900 if (new_prog) 901 memcpy(new_insn, tmp_insns, 902 sizeof(*insn) * (insn - tmp_insns)); 903 new_insn += insn - tmp_insns; 904 } 905 906 if (!new_prog) { 907 /* Only calculating new length. */ 908 *new_len = new_insn - first_insn; 909 if (*seen_ld_abs) 910 *new_len += 4; /* Prologue bits. */ 911 return 0; 912 } 913 914 pass++; 915 if (new_flen != new_insn - first_insn) { 916 new_flen = new_insn - first_insn; 917 if (pass > 2) 918 goto err; 919 goto do_pass; 920 } 921 922 kfree(addrs); 923 BUG_ON(*new_len != new_flen); 924 return 0; 925 err: 926 kfree(addrs); 927 return -EINVAL; 928 } 929 930 /* Security: 931 * 932 * As we dont want to clear mem[] array for each packet going through 933 * __bpf_prog_run(), we check that filter loaded by user never try to read 934 * a cell if not previously written, and we check all branches to be sure 935 * a malicious user doesn't try to abuse us. 936 */ 937 static int check_load_and_stores(const struct sock_filter *filter, int flen) 938 { 939 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */ 940 int pc, ret = 0; 941 942 BUILD_BUG_ON(BPF_MEMWORDS > 16); 943 944 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL); 945 if (!masks) 946 return -ENOMEM; 947 948 memset(masks, 0xff, flen * sizeof(*masks)); 949 950 for (pc = 0; pc < flen; pc++) { 951 memvalid &= masks[pc]; 952 953 switch (filter[pc].code) { 954 case BPF_ST: 955 case BPF_STX: 956 memvalid |= (1 << filter[pc].k); 957 break; 958 case BPF_LD | BPF_MEM: 959 case BPF_LDX | BPF_MEM: 960 if (!(memvalid & (1 << filter[pc].k))) { 961 ret = -EINVAL; 962 goto error; 963 } 964 break; 965 case BPF_JMP | BPF_JA: 966 /* A jump must set masks on target */ 967 masks[pc + 1 + filter[pc].k] &= memvalid; 968 memvalid = ~0; 969 break; 970 case BPF_JMP | BPF_JEQ | BPF_K: 971 case BPF_JMP | BPF_JEQ | BPF_X: 972 case BPF_JMP | BPF_JGE | BPF_K: 973 case BPF_JMP | BPF_JGE | BPF_X: 974 case BPF_JMP | BPF_JGT | BPF_K: 975 case BPF_JMP | BPF_JGT | BPF_X: 976 case BPF_JMP | BPF_JSET | BPF_K: 977 case BPF_JMP | BPF_JSET | BPF_X: 978 /* A jump must set masks on targets */ 979 masks[pc + 1 + filter[pc].jt] &= memvalid; 980 masks[pc + 1 + filter[pc].jf] &= memvalid; 981 memvalid = ~0; 982 break; 983 } 984 } 985 error: 986 kfree(masks); 987 return ret; 988 } 989 990 static bool chk_code_allowed(u16 code_to_probe) 991 { 992 static const bool codes[] = { 993 /* 32 bit ALU operations */ 994 [BPF_ALU | BPF_ADD | BPF_K] = true, 995 [BPF_ALU | BPF_ADD | BPF_X] = true, 996 [BPF_ALU | BPF_SUB | BPF_K] = true, 997 [BPF_ALU | BPF_SUB | BPF_X] = true, 998 [BPF_ALU | BPF_MUL | BPF_K] = true, 999 [BPF_ALU | BPF_MUL | BPF_X] = true, 1000 [BPF_ALU | BPF_DIV | BPF_K] = true, 1001 [BPF_ALU | BPF_DIV | BPF_X] = true, 1002 [BPF_ALU | BPF_MOD | BPF_K] = true, 1003 [BPF_ALU | BPF_MOD | BPF_X] = true, 1004 [BPF_ALU | BPF_AND | BPF_K] = true, 1005 [BPF_ALU | BPF_AND | BPF_X] = true, 1006 [BPF_ALU | BPF_OR | BPF_K] = true, 1007 [BPF_ALU | BPF_OR | BPF_X] = true, 1008 [BPF_ALU | BPF_XOR | BPF_K] = true, 1009 [BPF_ALU | BPF_XOR | BPF_X] = true, 1010 [BPF_ALU | BPF_LSH | BPF_K] = true, 1011 [BPF_ALU | BPF_LSH | BPF_X] = true, 1012 [BPF_ALU | BPF_RSH | BPF_K] = true, 1013 [BPF_ALU | BPF_RSH | BPF_X] = true, 1014 [BPF_ALU | BPF_NEG] = true, 1015 /* Load instructions */ 1016 [BPF_LD | BPF_W | BPF_ABS] = true, 1017 [BPF_LD | BPF_H | BPF_ABS] = true, 1018 [BPF_LD | BPF_B | BPF_ABS] = true, 1019 [BPF_LD | BPF_W | BPF_LEN] = true, 1020 [BPF_LD | BPF_W | BPF_IND] = true, 1021 [BPF_LD | BPF_H | BPF_IND] = true, 1022 [BPF_LD | BPF_B | BPF_IND] = true, 1023 [BPF_LD | BPF_IMM] = true, 1024 [BPF_LD | BPF_MEM] = true, 1025 [BPF_LDX | BPF_W | BPF_LEN] = true, 1026 [BPF_LDX | BPF_B | BPF_MSH] = true, 1027 [BPF_LDX | BPF_IMM] = true, 1028 [BPF_LDX | BPF_MEM] = true, 1029 /* Store instructions */ 1030 [BPF_ST] = true, 1031 [BPF_STX] = true, 1032 /* Misc instructions */ 1033 [BPF_MISC | BPF_TAX] = true, 1034 [BPF_MISC | BPF_TXA] = true, 1035 /* Return instructions */ 1036 [BPF_RET | BPF_K] = true, 1037 [BPF_RET | BPF_A] = true, 1038 /* Jump instructions */ 1039 [BPF_JMP | BPF_JA] = true, 1040 [BPF_JMP | BPF_JEQ | BPF_K] = true, 1041 [BPF_JMP | BPF_JEQ | BPF_X] = true, 1042 [BPF_JMP | BPF_JGE | BPF_K] = true, 1043 [BPF_JMP | BPF_JGE | BPF_X] = true, 1044 [BPF_JMP | BPF_JGT | BPF_K] = true, 1045 [BPF_JMP | BPF_JGT | BPF_X] = true, 1046 [BPF_JMP | BPF_JSET | BPF_K] = true, 1047 [BPF_JMP | BPF_JSET | BPF_X] = true, 1048 }; 1049 1050 if (code_to_probe >= ARRAY_SIZE(codes)) 1051 return false; 1052 1053 return codes[code_to_probe]; 1054 } 1055 1056 static bool bpf_check_basics_ok(const struct sock_filter *filter, 1057 unsigned int flen) 1058 { 1059 if (filter == NULL) 1060 return false; 1061 if (flen == 0 || flen > BPF_MAXINSNS) 1062 return false; 1063 1064 return true; 1065 } 1066 1067 /** 1068 * bpf_check_classic - verify socket filter code 1069 * @filter: filter to verify 1070 * @flen: length of filter 1071 * 1072 * Check the user's filter code. If we let some ugly 1073 * filter code slip through kaboom! The filter must contain 1074 * no references or jumps that are out of range, no illegal 1075 * instructions, and must end with a RET instruction. 1076 * 1077 * All jumps are forward as they are not signed. 1078 * 1079 * Returns 0 if the rule set is legal or -EINVAL if not. 1080 */ 1081 static int bpf_check_classic(const struct sock_filter *filter, 1082 unsigned int flen) 1083 { 1084 bool anc_found; 1085 int pc; 1086 1087 /* Check the filter code now */ 1088 for (pc = 0; pc < flen; pc++) { 1089 const struct sock_filter *ftest = &filter[pc]; 1090 1091 /* May we actually operate on this code? */ 1092 if (!chk_code_allowed(ftest->code)) 1093 return -EINVAL; 1094 1095 /* Some instructions need special checks */ 1096 switch (ftest->code) { 1097 case BPF_ALU | BPF_DIV | BPF_K: 1098 case BPF_ALU | BPF_MOD | BPF_K: 1099 /* Check for division by zero */ 1100 if (ftest->k == 0) 1101 return -EINVAL; 1102 break; 1103 case BPF_ALU | BPF_LSH | BPF_K: 1104 case BPF_ALU | BPF_RSH | BPF_K: 1105 if (ftest->k >= 32) 1106 return -EINVAL; 1107 break; 1108 case BPF_LD | BPF_MEM: 1109 case BPF_LDX | BPF_MEM: 1110 case BPF_ST: 1111 case BPF_STX: 1112 /* Check for invalid memory addresses */ 1113 if (ftest->k >= BPF_MEMWORDS) 1114 return -EINVAL; 1115 break; 1116 case BPF_JMP | BPF_JA: 1117 /* Note, the large ftest->k might cause loops. 1118 * Compare this with conditional jumps below, 1119 * where offsets are limited. --ANK (981016) 1120 */ 1121 if (ftest->k >= (unsigned int)(flen - pc - 1)) 1122 return -EINVAL; 1123 break; 1124 case BPF_JMP | BPF_JEQ | BPF_K: 1125 case BPF_JMP | BPF_JEQ | BPF_X: 1126 case BPF_JMP | BPF_JGE | BPF_K: 1127 case BPF_JMP | BPF_JGE | BPF_X: 1128 case BPF_JMP | BPF_JGT | BPF_K: 1129 case BPF_JMP | BPF_JGT | BPF_X: 1130 case BPF_JMP | BPF_JSET | BPF_K: 1131 case BPF_JMP | BPF_JSET | BPF_X: 1132 /* Both conditionals must be safe */ 1133 if (pc + ftest->jt + 1 >= flen || 1134 pc + ftest->jf + 1 >= flen) 1135 return -EINVAL; 1136 break; 1137 case BPF_LD | BPF_W | BPF_ABS: 1138 case BPF_LD | BPF_H | BPF_ABS: 1139 case BPF_LD | BPF_B | BPF_ABS: 1140 anc_found = false; 1141 if (bpf_anc_helper(ftest) & BPF_ANC) 1142 anc_found = true; 1143 /* Ancillary operation unknown or unsupported */ 1144 if (anc_found == false && ftest->k >= SKF_AD_OFF) 1145 return -EINVAL; 1146 } 1147 } 1148 1149 /* Last instruction must be a RET code */ 1150 switch (filter[flen - 1].code) { 1151 case BPF_RET | BPF_K: 1152 case BPF_RET | BPF_A: 1153 return check_load_and_stores(filter, flen); 1154 } 1155 1156 return -EINVAL; 1157 } 1158 1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp, 1160 const struct sock_fprog *fprog) 1161 { 1162 unsigned int fsize = bpf_classic_proglen(fprog); 1163 struct sock_fprog_kern *fkprog; 1164 1165 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL); 1166 if (!fp->orig_prog) 1167 return -ENOMEM; 1168 1169 fkprog = fp->orig_prog; 1170 fkprog->len = fprog->len; 1171 1172 fkprog->filter = kmemdup(fp->insns, fsize, 1173 GFP_KERNEL | __GFP_NOWARN); 1174 if (!fkprog->filter) { 1175 kfree(fp->orig_prog); 1176 return -ENOMEM; 1177 } 1178 1179 return 0; 1180 } 1181 1182 static void bpf_release_orig_filter(struct bpf_prog *fp) 1183 { 1184 struct sock_fprog_kern *fprog = fp->orig_prog; 1185 1186 if (fprog) { 1187 kfree(fprog->filter); 1188 kfree(fprog); 1189 } 1190 } 1191 1192 static void __bpf_prog_release(struct bpf_prog *prog) 1193 { 1194 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) { 1195 bpf_prog_put(prog); 1196 } else { 1197 bpf_release_orig_filter(prog); 1198 bpf_prog_free(prog); 1199 } 1200 } 1201 1202 static void __sk_filter_release(struct sk_filter *fp) 1203 { 1204 __bpf_prog_release(fp->prog); 1205 kfree(fp); 1206 } 1207 1208 /** 1209 * sk_filter_release_rcu - Release a socket filter by rcu_head 1210 * @rcu: rcu_head that contains the sk_filter to free 1211 */ 1212 static void sk_filter_release_rcu(struct rcu_head *rcu) 1213 { 1214 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); 1215 1216 __sk_filter_release(fp); 1217 } 1218 1219 /** 1220 * sk_filter_release - release a socket filter 1221 * @fp: filter to remove 1222 * 1223 * Remove a filter from a socket and release its resources. 1224 */ 1225 static void sk_filter_release(struct sk_filter *fp) 1226 { 1227 if (refcount_dec_and_test(&fp->refcnt)) 1228 call_rcu(&fp->rcu, sk_filter_release_rcu); 1229 } 1230 1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1232 { 1233 u32 filter_size = bpf_prog_size(fp->prog->len); 1234 1235 atomic_sub(filter_size, &sk->sk_omem_alloc); 1236 sk_filter_release(fp); 1237 } 1238 1239 /* try to charge the socket memory if there is space available 1240 * return true on success 1241 */ 1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1243 { 1244 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 1245 u32 filter_size = bpf_prog_size(fp->prog->len); 1246 1247 /* same check as in sock_kmalloc() */ 1248 if (filter_size <= optmem_max && 1249 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) { 1250 atomic_add(filter_size, &sk->sk_omem_alloc); 1251 return true; 1252 } 1253 return false; 1254 } 1255 1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1257 { 1258 if (!refcount_inc_not_zero(&fp->refcnt)) 1259 return false; 1260 1261 if (!__sk_filter_charge(sk, fp)) { 1262 sk_filter_release(fp); 1263 return false; 1264 } 1265 return true; 1266 } 1267 1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp) 1269 { 1270 struct sock_filter *old_prog; 1271 struct bpf_prog *old_fp; 1272 int err, new_len, old_len = fp->len; 1273 bool seen_ld_abs = false; 1274 1275 /* We are free to overwrite insns et al right here as it won't be used at 1276 * this point in time anymore internally after the migration to the eBPF 1277 * instruction representation. 1278 */ 1279 BUILD_BUG_ON(sizeof(struct sock_filter) != 1280 sizeof(struct bpf_insn)); 1281 1282 /* Conversion cannot happen on overlapping memory areas, 1283 * so we need to keep the user BPF around until the 2nd 1284 * pass. At this time, the user BPF is stored in fp->insns. 1285 */ 1286 old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter), 1287 GFP_KERNEL | __GFP_NOWARN); 1288 if (!old_prog) { 1289 err = -ENOMEM; 1290 goto out_err; 1291 } 1292 1293 /* 1st pass: calculate the new program length. */ 1294 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len, 1295 &seen_ld_abs); 1296 if (err) 1297 goto out_err_free; 1298 1299 /* Expand fp for appending the new filter representation. */ 1300 old_fp = fp; 1301 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0); 1302 if (!fp) { 1303 /* The old_fp is still around in case we couldn't 1304 * allocate new memory, so uncharge on that one. 1305 */ 1306 fp = old_fp; 1307 err = -ENOMEM; 1308 goto out_err_free; 1309 } 1310 1311 fp->len = new_len; 1312 1313 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */ 1314 err = bpf_convert_filter(old_prog, old_len, fp, &new_len, 1315 &seen_ld_abs); 1316 if (err) 1317 /* 2nd bpf_convert_filter() can fail only if it fails 1318 * to allocate memory, remapping must succeed. Note, 1319 * that at this time old_fp has already been released 1320 * by krealloc(). 1321 */ 1322 goto out_err_free; 1323 1324 fp = bpf_prog_select_runtime(fp, &err); 1325 if (err) 1326 goto out_err_free; 1327 1328 kfree(old_prog); 1329 return fp; 1330 1331 out_err_free: 1332 kfree(old_prog); 1333 out_err: 1334 __bpf_prog_release(fp); 1335 return ERR_PTR(err); 1336 } 1337 1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp, 1339 bpf_aux_classic_check_t trans) 1340 { 1341 int err; 1342 1343 fp->bpf_func = NULL; 1344 fp->jited = 0; 1345 1346 err = bpf_check_classic(fp->insns, fp->len); 1347 if (err) { 1348 __bpf_prog_release(fp); 1349 return ERR_PTR(err); 1350 } 1351 1352 /* There might be additional checks and transformations 1353 * needed on classic filters, f.e. in case of seccomp. 1354 */ 1355 if (trans) { 1356 err = trans(fp->insns, fp->len); 1357 if (err) { 1358 __bpf_prog_release(fp); 1359 return ERR_PTR(err); 1360 } 1361 } 1362 1363 /* Probe if we can JIT compile the filter and if so, do 1364 * the compilation of the filter. 1365 */ 1366 bpf_jit_compile(fp); 1367 1368 /* JIT compiler couldn't process this filter, so do the eBPF translation 1369 * for the optimized interpreter. 1370 */ 1371 if (!fp->jited) 1372 fp = bpf_migrate_filter(fp); 1373 1374 return fp; 1375 } 1376 1377 /** 1378 * bpf_prog_create - create an unattached filter 1379 * @pfp: the unattached filter that is created 1380 * @fprog: the filter program 1381 * 1382 * Create a filter independent of any socket. We first run some 1383 * sanity checks on it to make sure it does not explode on us later. 1384 * If an error occurs or there is insufficient memory for the filter 1385 * a negative errno code is returned. On success the return is zero. 1386 */ 1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog) 1388 { 1389 unsigned int fsize = bpf_classic_proglen(fprog); 1390 struct bpf_prog *fp; 1391 1392 /* Make sure new filter is there and in the right amounts. */ 1393 if (!bpf_check_basics_ok(fprog->filter, fprog->len)) 1394 return -EINVAL; 1395 1396 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); 1397 if (!fp) 1398 return -ENOMEM; 1399 1400 memcpy(fp->insns, fprog->filter, fsize); 1401 1402 fp->len = fprog->len; 1403 /* Since unattached filters are not copied back to user 1404 * space through sk_get_filter(), we do not need to hold 1405 * a copy here, and can spare us the work. 1406 */ 1407 fp->orig_prog = NULL; 1408 1409 /* bpf_prepare_filter() already takes care of freeing 1410 * memory in case something goes wrong. 1411 */ 1412 fp = bpf_prepare_filter(fp, NULL); 1413 if (IS_ERR(fp)) 1414 return PTR_ERR(fp); 1415 1416 *pfp = fp; 1417 return 0; 1418 } 1419 EXPORT_SYMBOL_GPL(bpf_prog_create); 1420 1421 /** 1422 * bpf_prog_create_from_user - create an unattached filter from user buffer 1423 * @pfp: the unattached filter that is created 1424 * @fprog: the filter program 1425 * @trans: post-classic verifier transformation handler 1426 * @save_orig: save classic BPF program 1427 * 1428 * This function effectively does the same as bpf_prog_create(), only 1429 * that it builds up its insns buffer from user space provided buffer. 1430 * It also allows for passing a bpf_aux_classic_check_t handler. 1431 */ 1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 1433 bpf_aux_classic_check_t trans, bool save_orig) 1434 { 1435 unsigned int fsize = bpf_classic_proglen(fprog); 1436 struct bpf_prog *fp; 1437 int err; 1438 1439 /* Make sure new filter is there and in the right amounts. */ 1440 if (!bpf_check_basics_ok(fprog->filter, fprog->len)) 1441 return -EINVAL; 1442 1443 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); 1444 if (!fp) 1445 return -ENOMEM; 1446 1447 if (copy_from_user(fp->insns, fprog->filter, fsize)) { 1448 __bpf_prog_free(fp); 1449 return -EFAULT; 1450 } 1451 1452 fp->len = fprog->len; 1453 fp->orig_prog = NULL; 1454 1455 if (save_orig) { 1456 err = bpf_prog_store_orig_filter(fp, fprog); 1457 if (err) { 1458 __bpf_prog_free(fp); 1459 return -ENOMEM; 1460 } 1461 } 1462 1463 /* bpf_prepare_filter() already takes care of freeing 1464 * memory in case something goes wrong. 1465 */ 1466 fp = bpf_prepare_filter(fp, trans); 1467 if (IS_ERR(fp)) 1468 return PTR_ERR(fp); 1469 1470 *pfp = fp; 1471 return 0; 1472 } 1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user); 1474 1475 void bpf_prog_destroy(struct bpf_prog *fp) 1476 { 1477 __bpf_prog_release(fp); 1478 } 1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy); 1480 1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk) 1482 { 1483 struct sk_filter *fp, *old_fp; 1484 1485 fp = kmalloc(sizeof(*fp), GFP_KERNEL); 1486 if (!fp) 1487 return -ENOMEM; 1488 1489 fp->prog = prog; 1490 1491 if (!__sk_filter_charge(sk, fp)) { 1492 kfree(fp); 1493 return -ENOMEM; 1494 } 1495 refcount_set(&fp->refcnt, 1); 1496 1497 old_fp = rcu_dereference_protected(sk->sk_filter, 1498 lockdep_sock_is_held(sk)); 1499 rcu_assign_pointer(sk->sk_filter, fp); 1500 1501 if (old_fp) 1502 sk_filter_uncharge(sk, old_fp); 1503 1504 return 0; 1505 } 1506 1507 static 1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk) 1509 { 1510 unsigned int fsize = bpf_classic_proglen(fprog); 1511 struct bpf_prog *prog; 1512 int err; 1513 1514 if (sock_flag(sk, SOCK_FILTER_LOCKED)) 1515 return ERR_PTR(-EPERM); 1516 1517 /* Make sure new filter is there and in the right amounts. */ 1518 if (!bpf_check_basics_ok(fprog->filter, fprog->len)) 1519 return ERR_PTR(-EINVAL); 1520 1521 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); 1522 if (!prog) 1523 return ERR_PTR(-ENOMEM); 1524 1525 if (copy_from_user(prog->insns, fprog->filter, fsize)) { 1526 __bpf_prog_free(prog); 1527 return ERR_PTR(-EFAULT); 1528 } 1529 1530 prog->len = fprog->len; 1531 1532 err = bpf_prog_store_orig_filter(prog, fprog); 1533 if (err) { 1534 __bpf_prog_free(prog); 1535 return ERR_PTR(-ENOMEM); 1536 } 1537 1538 /* bpf_prepare_filter() already takes care of freeing 1539 * memory in case something goes wrong. 1540 */ 1541 return bpf_prepare_filter(prog, NULL); 1542 } 1543 1544 /** 1545 * sk_attach_filter - attach a socket filter 1546 * @fprog: the filter program 1547 * @sk: the socket to use 1548 * 1549 * Attach the user's filter code. We first run some sanity checks on 1550 * it to make sure it does not explode on us later. If an error 1551 * occurs or there is insufficient memory for the filter a negative 1552 * errno code is returned. On success the return is zero. 1553 */ 1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk) 1555 { 1556 struct bpf_prog *prog = __get_filter(fprog, sk); 1557 int err; 1558 1559 if (IS_ERR(prog)) 1560 return PTR_ERR(prog); 1561 1562 err = __sk_attach_prog(prog, sk); 1563 if (err < 0) { 1564 __bpf_prog_release(prog); 1565 return err; 1566 } 1567 1568 return 0; 1569 } 1570 EXPORT_SYMBOL_GPL(sk_attach_filter); 1571 1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk) 1573 { 1574 struct bpf_prog *prog = __get_filter(fprog, sk); 1575 int err, optmem_max; 1576 1577 if (IS_ERR(prog)) 1578 return PTR_ERR(prog); 1579 1580 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 1581 if (bpf_prog_size(prog->len) > optmem_max) 1582 err = -ENOMEM; 1583 else 1584 err = reuseport_attach_prog(sk, prog); 1585 1586 if (err) 1587 __bpf_prog_release(prog); 1588 1589 return err; 1590 } 1591 1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk) 1593 { 1594 if (sock_flag(sk, SOCK_FILTER_LOCKED)) 1595 return ERR_PTR(-EPERM); 1596 1597 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); 1598 } 1599 1600 int sk_attach_bpf(u32 ufd, struct sock *sk) 1601 { 1602 struct bpf_prog *prog = __get_bpf(ufd, sk); 1603 int err; 1604 1605 if (IS_ERR(prog)) 1606 return PTR_ERR(prog); 1607 1608 err = __sk_attach_prog(prog, sk); 1609 if (err < 0) { 1610 bpf_prog_put(prog); 1611 return err; 1612 } 1613 1614 return 0; 1615 } 1616 1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk) 1618 { 1619 struct bpf_prog *prog; 1620 int err, optmem_max; 1621 1622 if (sock_flag(sk, SOCK_FILTER_LOCKED)) 1623 return -EPERM; 1624 1625 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); 1626 if (PTR_ERR(prog) == -EINVAL) 1627 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT); 1628 if (IS_ERR(prog)) 1629 return PTR_ERR(prog); 1630 1631 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) { 1632 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER 1633 * bpf prog (e.g. sockmap). It depends on the 1634 * limitation imposed by bpf_prog_load(). 1635 * Hence, sysctl_optmem_max is not checked. 1636 */ 1637 if ((sk->sk_type != SOCK_STREAM && 1638 sk->sk_type != SOCK_DGRAM) || 1639 (sk->sk_protocol != IPPROTO_UDP && 1640 sk->sk_protocol != IPPROTO_TCP) || 1641 (sk->sk_family != AF_INET && 1642 sk->sk_family != AF_INET6)) { 1643 err = -ENOTSUPP; 1644 goto err_prog_put; 1645 } 1646 } else { 1647 /* BPF_PROG_TYPE_SOCKET_FILTER */ 1648 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 1649 if (bpf_prog_size(prog->len) > optmem_max) { 1650 err = -ENOMEM; 1651 goto err_prog_put; 1652 } 1653 } 1654 1655 err = reuseport_attach_prog(sk, prog); 1656 err_prog_put: 1657 if (err) 1658 bpf_prog_put(prog); 1659 1660 return err; 1661 } 1662 1663 void sk_reuseport_prog_free(struct bpf_prog *prog) 1664 { 1665 if (!prog) 1666 return; 1667 1668 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) 1669 bpf_prog_put(prog); 1670 else 1671 bpf_prog_destroy(prog); 1672 } 1673 1674 static inline int __bpf_try_make_writable(struct sk_buff *skb, 1675 unsigned int write_len) 1676 { 1677 #ifdef CONFIG_DEBUG_NET 1678 /* Avoid a splat in pskb_may_pull_reason() */ 1679 if (write_len > INT_MAX) 1680 return -EINVAL; 1681 #endif 1682 return skb_ensure_writable(skb, write_len); 1683 } 1684 1685 static inline int bpf_try_make_writable(struct sk_buff *skb, 1686 unsigned int write_len) 1687 { 1688 int err = __bpf_try_make_writable(skb, write_len); 1689 1690 bpf_compute_data_pointers(skb); 1691 return err; 1692 } 1693 1694 static int bpf_try_make_head_writable(struct sk_buff *skb) 1695 { 1696 return bpf_try_make_writable(skb, skb_headlen(skb)); 1697 } 1698 1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb) 1700 { 1701 if (skb_at_tc_ingress(skb)) 1702 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len); 1703 } 1704 1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb) 1706 { 1707 if (skb_at_tc_ingress(skb)) 1708 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len); 1709 } 1710 1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset, 1712 const void *, from, u32, len, u64, flags) 1713 { 1714 void *ptr; 1715 1716 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH))) 1717 return -EINVAL; 1718 if (unlikely(offset > INT_MAX)) 1719 return -EFAULT; 1720 if (unlikely(bpf_try_make_writable(skb, offset + len))) 1721 return -EFAULT; 1722 1723 ptr = skb->data + offset; 1724 if (flags & BPF_F_RECOMPUTE_CSUM) 1725 __skb_postpull_rcsum(skb, ptr, len, offset); 1726 1727 memcpy(ptr, from, len); 1728 1729 if (flags & BPF_F_RECOMPUTE_CSUM) 1730 __skb_postpush_rcsum(skb, ptr, len, offset); 1731 if (flags & BPF_F_INVALIDATE_HASH) 1732 skb_clear_hash(skb); 1733 1734 return 0; 1735 } 1736 1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = { 1738 .func = bpf_skb_store_bytes, 1739 .gpl_only = false, 1740 .ret_type = RET_INTEGER, 1741 .arg1_type = ARG_PTR_TO_CTX, 1742 .arg2_type = ARG_ANYTHING, 1743 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1744 .arg4_type = ARG_CONST_SIZE, 1745 .arg5_type = ARG_ANYTHING, 1746 }; 1747 1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, 1749 u32 len, u64 flags) 1750 { 1751 return ____bpf_skb_store_bytes(skb, offset, from, len, flags); 1752 } 1753 1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset, 1755 void *, to, u32, len) 1756 { 1757 void *ptr; 1758 1759 if (unlikely(offset > INT_MAX)) 1760 goto err_clear; 1761 1762 ptr = skb_header_pointer(skb, offset, len, to); 1763 if (unlikely(!ptr)) 1764 goto err_clear; 1765 if (ptr != to) 1766 memcpy(to, ptr, len); 1767 1768 return 0; 1769 err_clear: 1770 memset(to, 0, len); 1771 return -EFAULT; 1772 } 1773 1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = { 1775 .func = bpf_skb_load_bytes, 1776 .gpl_only = false, 1777 .ret_type = RET_INTEGER, 1778 .arg1_type = ARG_PTR_TO_CTX, 1779 .arg2_type = ARG_ANYTHING, 1780 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 1781 .arg4_type = ARG_CONST_SIZE, 1782 }; 1783 1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1785 { 1786 return ____bpf_skb_load_bytes(skb, offset, to, len); 1787 } 1788 1789 BPF_CALL_4(bpf_flow_dissector_load_bytes, 1790 const struct bpf_flow_dissector *, ctx, u32, offset, 1791 void *, to, u32, len) 1792 { 1793 void *ptr; 1794 1795 if (unlikely(offset > 0xffff)) 1796 goto err_clear; 1797 1798 if (unlikely(!ctx->skb)) 1799 goto err_clear; 1800 1801 ptr = skb_header_pointer(ctx->skb, offset, len, to); 1802 if (unlikely(!ptr)) 1803 goto err_clear; 1804 if (ptr != to) 1805 memcpy(to, ptr, len); 1806 1807 return 0; 1808 err_clear: 1809 memset(to, 0, len); 1810 return -EFAULT; 1811 } 1812 1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = { 1814 .func = bpf_flow_dissector_load_bytes, 1815 .gpl_only = false, 1816 .ret_type = RET_INTEGER, 1817 .arg1_type = ARG_PTR_TO_CTX, 1818 .arg2_type = ARG_ANYTHING, 1819 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 1820 .arg4_type = ARG_CONST_SIZE, 1821 }; 1822 1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb, 1824 u32, offset, void *, to, u32, len, u32, start_header) 1825 { 1826 u8 *end = skb_tail_pointer(skb); 1827 u8 *start, *ptr; 1828 1829 if (unlikely(offset > 0xffff)) 1830 goto err_clear; 1831 1832 switch (start_header) { 1833 case BPF_HDR_START_MAC: 1834 if (unlikely(!skb_mac_header_was_set(skb))) 1835 goto err_clear; 1836 start = skb_mac_header(skb); 1837 break; 1838 case BPF_HDR_START_NET: 1839 start = skb_network_header(skb); 1840 break; 1841 default: 1842 goto err_clear; 1843 } 1844 1845 ptr = start + offset; 1846 1847 if (likely(ptr + len <= end)) { 1848 memcpy(to, ptr, len); 1849 return 0; 1850 } 1851 1852 err_clear: 1853 memset(to, 0, len); 1854 return -EFAULT; 1855 } 1856 1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = { 1858 .func = bpf_skb_load_bytes_relative, 1859 .gpl_only = false, 1860 .ret_type = RET_INTEGER, 1861 .arg1_type = ARG_PTR_TO_CTX, 1862 .arg2_type = ARG_ANYTHING, 1863 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 1864 .arg4_type = ARG_CONST_SIZE, 1865 .arg5_type = ARG_ANYTHING, 1866 }; 1867 1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len) 1869 { 1870 /* Idea is the following: should the needed direct read/write 1871 * test fail during runtime, we can pull in more data and redo 1872 * again, since implicitly, we invalidate previous checks here. 1873 * 1874 * Or, since we know how much we need to make read/writeable, 1875 * this can be done once at the program beginning for direct 1876 * access case. By this we overcome limitations of only current 1877 * headroom being accessible. 1878 */ 1879 return bpf_try_make_writable(skb, len ? : skb_headlen(skb)); 1880 } 1881 1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = { 1883 .func = bpf_skb_pull_data, 1884 .gpl_only = false, 1885 .ret_type = RET_INTEGER, 1886 .arg1_type = ARG_PTR_TO_CTX, 1887 .arg2_type = ARG_ANYTHING, 1888 }; 1889 1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk) 1891 { 1892 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL; 1893 } 1894 1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = { 1896 .func = bpf_sk_fullsock, 1897 .gpl_only = false, 1898 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 1899 .arg1_type = ARG_PTR_TO_SOCK_COMMON, 1900 }; 1901 1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb, 1903 unsigned int write_len) 1904 { 1905 return __bpf_try_make_writable(skb, write_len); 1906 } 1907 1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len) 1909 { 1910 /* Idea is the following: should the needed direct read/write 1911 * test fail during runtime, we can pull in more data and redo 1912 * again, since implicitly, we invalidate previous checks here. 1913 * 1914 * Or, since we know how much we need to make read/writeable, 1915 * this can be done once at the program beginning for direct 1916 * access case. By this we overcome limitations of only current 1917 * headroom being accessible. 1918 */ 1919 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb)); 1920 } 1921 1922 static const struct bpf_func_proto sk_skb_pull_data_proto = { 1923 .func = sk_skb_pull_data, 1924 .gpl_only = false, 1925 .ret_type = RET_INTEGER, 1926 .arg1_type = ARG_PTR_TO_CTX, 1927 .arg2_type = ARG_ANYTHING, 1928 }; 1929 1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset, 1931 u64, from, u64, to, u64, flags) 1932 { 1933 __sum16 *ptr; 1934 1935 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK))) 1936 return -EINVAL; 1937 if (unlikely(offset > 0xffff || offset & 1)) 1938 return -EFAULT; 1939 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) 1940 return -EFAULT; 1941 1942 ptr = (__sum16 *)(skb->data + offset); 1943 switch (flags & BPF_F_HDR_FIELD_MASK) { 1944 case 0: 1945 if (unlikely(from != 0)) 1946 return -EINVAL; 1947 1948 csum_replace_by_diff(ptr, to); 1949 break; 1950 case 2: 1951 csum_replace2(ptr, from, to); 1952 break; 1953 case 4: 1954 csum_replace4(ptr, from, to); 1955 break; 1956 default: 1957 return -EINVAL; 1958 } 1959 1960 return 0; 1961 } 1962 1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = { 1964 .func = bpf_l3_csum_replace, 1965 .gpl_only = false, 1966 .ret_type = RET_INTEGER, 1967 .arg1_type = ARG_PTR_TO_CTX, 1968 .arg2_type = ARG_ANYTHING, 1969 .arg3_type = ARG_ANYTHING, 1970 .arg4_type = ARG_ANYTHING, 1971 .arg5_type = ARG_ANYTHING, 1972 }; 1973 1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset, 1975 u64, from, u64, to, u64, flags) 1976 { 1977 bool is_pseudo = flags & BPF_F_PSEUDO_HDR; 1978 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0; 1979 bool do_mforce = flags & BPF_F_MARK_ENFORCE; 1980 bool is_ipv6 = flags & BPF_F_IPV6; 1981 __sum16 *ptr; 1982 1983 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE | 1984 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6))) 1985 return -EINVAL; 1986 if (unlikely(offset > 0xffff || offset & 1)) 1987 return -EFAULT; 1988 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) 1989 return -EFAULT; 1990 1991 ptr = (__sum16 *)(skb->data + offset); 1992 if (is_mmzero && !do_mforce && !*ptr) 1993 return 0; 1994 1995 switch (flags & BPF_F_HDR_FIELD_MASK) { 1996 case 0: 1997 if (unlikely(from != 0)) 1998 return -EINVAL; 1999 2000 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6); 2001 break; 2002 case 2: 2003 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo); 2004 break; 2005 case 4: 2006 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo); 2007 break; 2008 default: 2009 return -EINVAL; 2010 } 2011 2012 if (is_mmzero && !*ptr) 2013 *ptr = CSUM_MANGLED_0; 2014 return 0; 2015 } 2016 2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = { 2018 .func = bpf_l4_csum_replace, 2019 .gpl_only = false, 2020 .ret_type = RET_INTEGER, 2021 .arg1_type = ARG_PTR_TO_CTX, 2022 .arg2_type = ARG_ANYTHING, 2023 .arg3_type = ARG_ANYTHING, 2024 .arg4_type = ARG_ANYTHING, 2025 .arg5_type = ARG_ANYTHING, 2026 }; 2027 2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size, 2029 __be32 *, to, u32, to_size, __wsum, seed) 2030 { 2031 /* This is quite flexible, some examples: 2032 * 2033 * from_size == 0, to_size > 0, seed := csum --> pushing data 2034 * from_size > 0, to_size == 0, seed := csum --> pulling data 2035 * from_size > 0, to_size > 0, seed := 0 --> diffing data 2036 * 2037 * Even for diffing, from_size and to_size don't need to be equal. 2038 */ 2039 2040 __wsum ret = seed; 2041 2042 if (from_size && to_size) 2043 ret = csum_sub(csum_partial(to, to_size, ret), 2044 csum_partial(from, from_size, 0)); 2045 else if (to_size) 2046 ret = csum_partial(to, to_size, ret); 2047 2048 else if (from_size) 2049 ret = ~csum_partial(from, from_size, ~ret); 2050 2051 return csum_from32to16((__force unsigned int)ret); 2052 } 2053 2054 static const struct bpf_func_proto bpf_csum_diff_proto = { 2055 .func = bpf_csum_diff, 2056 .gpl_only = false, 2057 .pkt_access = true, 2058 .ret_type = RET_INTEGER, 2059 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 2060 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 2061 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 2062 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 2063 .arg5_type = ARG_ANYTHING, 2064 }; 2065 2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum) 2067 { 2068 /* The interface is to be used in combination with bpf_csum_diff() 2069 * for direct packet writes. csum rotation for alignment as well 2070 * as emulating csum_sub() can be done from the eBPF program. 2071 */ 2072 if (skb->ip_summed == CHECKSUM_COMPLETE) 2073 return (skb->csum = csum_add(skb->csum, csum)); 2074 2075 return -ENOTSUPP; 2076 } 2077 2078 static const struct bpf_func_proto bpf_csum_update_proto = { 2079 .func = bpf_csum_update, 2080 .gpl_only = false, 2081 .ret_type = RET_INTEGER, 2082 .arg1_type = ARG_PTR_TO_CTX, 2083 .arg2_type = ARG_ANYTHING, 2084 }; 2085 2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level) 2087 { 2088 /* The interface is to be used in combination with bpf_skb_adjust_room() 2089 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET 2090 * is passed as flags, for example. 2091 */ 2092 switch (level) { 2093 case BPF_CSUM_LEVEL_INC: 2094 __skb_incr_checksum_unnecessary(skb); 2095 break; 2096 case BPF_CSUM_LEVEL_DEC: 2097 __skb_decr_checksum_unnecessary(skb); 2098 break; 2099 case BPF_CSUM_LEVEL_RESET: 2100 __skb_reset_checksum_unnecessary(skb); 2101 break; 2102 case BPF_CSUM_LEVEL_QUERY: 2103 return skb->ip_summed == CHECKSUM_UNNECESSARY ? 2104 skb->csum_level : -EACCES; 2105 default: 2106 return -EINVAL; 2107 } 2108 2109 return 0; 2110 } 2111 2112 static const struct bpf_func_proto bpf_csum_level_proto = { 2113 .func = bpf_csum_level, 2114 .gpl_only = false, 2115 .ret_type = RET_INTEGER, 2116 .arg1_type = ARG_PTR_TO_CTX, 2117 .arg2_type = ARG_ANYTHING, 2118 }; 2119 2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb) 2121 { 2122 return dev_forward_skb_nomtu(dev, skb); 2123 } 2124 2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev, 2126 struct sk_buff *skb) 2127 { 2128 int ret = ____dev_forward_skb(dev, skb, false); 2129 2130 if (likely(!ret)) { 2131 skb->dev = dev; 2132 ret = netif_rx(skb); 2133 } 2134 2135 return ret; 2136 } 2137 2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb) 2139 { 2140 int ret; 2141 2142 if (dev_xmit_recursion()) { 2143 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); 2144 kfree_skb(skb); 2145 return -ENETDOWN; 2146 } 2147 2148 skb->dev = dev; 2149 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb)); 2150 skb_clear_tstamp(skb); 2151 2152 dev_xmit_recursion_inc(); 2153 ret = dev_queue_xmit(skb); 2154 dev_xmit_recursion_dec(); 2155 2156 return ret; 2157 } 2158 2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev, 2160 u32 flags) 2161 { 2162 unsigned int mlen = skb_network_offset(skb); 2163 2164 if (unlikely(skb->len <= mlen)) { 2165 kfree_skb(skb); 2166 return -ERANGE; 2167 } 2168 2169 if (mlen) { 2170 __skb_pull(skb, mlen); 2171 2172 /* At ingress, the mac header has already been pulled once. 2173 * At egress, skb_pospull_rcsum has to be done in case that 2174 * the skb is originated from ingress (i.e. a forwarded skb) 2175 * to ensure that rcsum starts at net header. 2176 */ 2177 if (!skb_at_tc_ingress(skb)) 2178 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen); 2179 } 2180 skb_pop_mac_header(skb); 2181 skb_reset_mac_len(skb); 2182 return flags & BPF_F_INGRESS ? 2183 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb); 2184 } 2185 2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev, 2187 u32 flags) 2188 { 2189 /* Verify that a link layer header is carried */ 2190 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) { 2191 kfree_skb(skb); 2192 return -ERANGE; 2193 } 2194 2195 bpf_push_mac_rcsum(skb); 2196 return flags & BPF_F_INGRESS ? 2197 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb); 2198 } 2199 2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev, 2201 u32 flags) 2202 { 2203 if (dev_is_mac_header_xmit(dev)) 2204 return __bpf_redirect_common(skb, dev, flags); 2205 else 2206 return __bpf_redirect_no_mac(skb, dev, flags); 2207 } 2208 2209 #if IS_ENABLED(CONFIG_IPV6) 2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb, 2211 struct net_device *dev, struct bpf_nh_params *nh) 2212 { 2213 u32 hh_len = LL_RESERVED_SPACE(dev); 2214 const struct in6_addr *nexthop; 2215 struct dst_entry *dst = NULL; 2216 struct neighbour *neigh; 2217 2218 if (dev_xmit_recursion()) { 2219 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); 2220 goto out_drop; 2221 } 2222 2223 skb->dev = dev; 2224 skb_clear_tstamp(skb); 2225 2226 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 2227 skb = skb_expand_head(skb, hh_len); 2228 if (!skb) 2229 return -ENOMEM; 2230 } 2231 2232 rcu_read_lock(); 2233 if (!nh) { 2234 dst = skb_dst(skb); 2235 nexthop = rt6_nexthop(dst_rt6_info(dst), 2236 &ipv6_hdr(skb)->daddr); 2237 } else { 2238 nexthop = &nh->ipv6_nh; 2239 } 2240 neigh = ip_neigh_gw6(dev, nexthop); 2241 if (likely(!IS_ERR(neigh))) { 2242 int ret; 2243 2244 sock_confirm_neigh(skb, neigh); 2245 local_bh_disable(); 2246 dev_xmit_recursion_inc(); 2247 ret = neigh_output(neigh, skb, false); 2248 dev_xmit_recursion_dec(); 2249 local_bh_enable(); 2250 rcu_read_unlock(); 2251 return ret; 2252 } 2253 rcu_read_unlock(); 2254 if (dst) 2255 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 2256 out_drop: 2257 kfree_skb(skb); 2258 return -ENETDOWN; 2259 } 2260 2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev, 2262 struct bpf_nh_params *nh) 2263 { 2264 const struct ipv6hdr *ip6h = ipv6_hdr(skb); 2265 struct net *net = dev_net(dev); 2266 int err, ret = NET_XMIT_DROP; 2267 2268 if (!nh) { 2269 struct dst_entry *dst; 2270 struct flowi6 fl6 = { 2271 .flowi6_flags = FLOWI_FLAG_ANYSRC, 2272 .flowi6_mark = skb->mark, 2273 .flowlabel = ip6_flowinfo(ip6h), 2274 .flowi6_oif = dev->ifindex, 2275 .flowi6_proto = ip6h->nexthdr, 2276 .daddr = ip6h->daddr, 2277 .saddr = ip6h->saddr, 2278 }; 2279 2280 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL); 2281 if (IS_ERR(dst)) 2282 goto out_drop; 2283 2284 skb_dst_set(skb, dst); 2285 } else if (nh->nh_family != AF_INET6) { 2286 goto out_drop; 2287 } 2288 2289 err = bpf_out_neigh_v6(net, skb, dev, nh); 2290 if (unlikely(net_xmit_eval(err))) 2291 DEV_STATS_INC(dev, tx_errors); 2292 else 2293 ret = NET_XMIT_SUCCESS; 2294 goto out_xmit; 2295 out_drop: 2296 DEV_STATS_INC(dev, tx_errors); 2297 kfree_skb(skb); 2298 out_xmit: 2299 return ret; 2300 } 2301 #else 2302 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev, 2303 struct bpf_nh_params *nh) 2304 { 2305 kfree_skb(skb); 2306 return NET_XMIT_DROP; 2307 } 2308 #endif /* CONFIG_IPV6 */ 2309 2310 #if IS_ENABLED(CONFIG_INET) 2311 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb, 2312 struct net_device *dev, struct bpf_nh_params *nh) 2313 { 2314 u32 hh_len = LL_RESERVED_SPACE(dev); 2315 struct neighbour *neigh; 2316 bool is_v6gw = false; 2317 2318 if (dev_xmit_recursion()) { 2319 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); 2320 goto out_drop; 2321 } 2322 2323 skb->dev = dev; 2324 skb_clear_tstamp(skb); 2325 2326 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 2327 skb = skb_expand_head(skb, hh_len); 2328 if (!skb) 2329 return -ENOMEM; 2330 } 2331 2332 rcu_read_lock(); 2333 if (!nh) { 2334 struct rtable *rt = skb_rtable(skb); 2335 2336 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 2337 } else if (nh->nh_family == AF_INET6) { 2338 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh); 2339 is_v6gw = true; 2340 } else if (nh->nh_family == AF_INET) { 2341 neigh = ip_neigh_gw4(dev, nh->ipv4_nh); 2342 } else { 2343 rcu_read_unlock(); 2344 goto out_drop; 2345 } 2346 2347 if (likely(!IS_ERR(neigh))) { 2348 int ret; 2349 2350 sock_confirm_neigh(skb, neigh); 2351 local_bh_disable(); 2352 dev_xmit_recursion_inc(); 2353 ret = neigh_output(neigh, skb, is_v6gw); 2354 dev_xmit_recursion_dec(); 2355 local_bh_enable(); 2356 rcu_read_unlock(); 2357 return ret; 2358 } 2359 rcu_read_unlock(); 2360 out_drop: 2361 kfree_skb(skb); 2362 return -ENETDOWN; 2363 } 2364 2365 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev, 2366 struct bpf_nh_params *nh) 2367 { 2368 const struct iphdr *ip4h = ip_hdr(skb); 2369 struct net *net = dev_net(dev); 2370 int err, ret = NET_XMIT_DROP; 2371 2372 if (!nh) { 2373 struct flowi4 fl4 = { 2374 .flowi4_flags = FLOWI_FLAG_ANYSRC, 2375 .flowi4_mark = skb->mark, 2376 .flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h)), 2377 .flowi4_oif = dev->ifindex, 2378 .flowi4_proto = ip4h->protocol, 2379 .daddr = ip4h->daddr, 2380 .saddr = ip4h->saddr, 2381 }; 2382 struct rtable *rt; 2383 2384 rt = ip_route_output_flow(net, &fl4, NULL); 2385 if (IS_ERR(rt)) 2386 goto out_drop; 2387 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { 2388 ip_rt_put(rt); 2389 goto out_drop; 2390 } 2391 2392 skb_dst_set(skb, &rt->dst); 2393 } 2394 2395 err = bpf_out_neigh_v4(net, skb, dev, nh); 2396 if (unlikely(net_xmit_eval(err))) 2397 DEV_STATS_INC(dev, tx_errors); 2398 else 2399 ret = NET_XMIT_SUCCESS; 2400 goto out_xmit; 2401 out_drop: 2402 DEV_STATS_INC(dev, tx_errors); 2403 kfree_skb(skb); 2404 out_xmit: 2405 return ret; 2406 } 2407 #else 2408 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev, 2409 struct bpf_nh_params *nh) 2410 { 2411 kfree_skb(skb); 2412 return NET_XMIT_DROP; 2413 } 2414 #endif /* CONFIG_INET */ 2415 2416 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev, 2417 struct bpf_nh_params *nh) 2418 { 2419 struct ethhdr *ethh = eth_hdr(skb); 2420 2421 if (unlikely(skb->mac_header >= skb->network_header)) 2422 goto out; 2423 bpf_push_mac_rcsum(skb); 2424 if (is_multicast_ether_addr(ethh->h_dest)) 2425 goto out; 2426 2427 skb_pull(skb, sizeof(*ethh)); 2428 skb_unset_mac_header(skb); 2429 skb_reset_network_header(skb); 2430 2431 if (skb->protocol == htons(ETH_P_IP)) 2432 return __bpf_redirect_neigh_v4(skb, dev, nh); 2433 else if (skb->protocol == htons(ETH_P_IPV6)) 2434 return __bpf_redirect_neigh_v6(skb, dev, nh); 2435 out: 2436 kfree_skb(skb); 2437 return -ENOTSUPP; 2438 } 2439 2440 /* Internal, non-exposed redirect flags. */ 2441 enum { 2442 BPF_F_NEIGH = (1ULL << 16), 2443 BPF_F_PEER = (1ULL << 17), 2444 BPF_F_NEXTHOP = (1ULL << 18), 2445 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP) 2446 }; 2447 2448 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags) 2449 { 2450 struct net_device *dev; 2451 struct sk_buff *clone; 2452 int ret; 2453 2454 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS); 2455 2456 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL))) 2457 return -EINVAL; 2458 2459 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex); 2460 if (unlikely(!dev)) 2461 return -EINVAL; 2462 2463 clone = skb_clone(skb, GFP_ATOMIC); 2464 if (unlikely(!clone)) 2465 return -ENOMEM; 2466 2467 /* For direct write, we need to keep the invariant that the skbs 2468 * we're dealing with need to be uncloned. Should uncloning fail 2469 * here, we need to free the just generated clone to unclone once 2470 * again. 2471 */ 2472 ret = bpf_try_make_head_writable(skb); 2473 if (unlikely(ret)) { 2474 kfree_skb(clone); 2475 return -ENOMEM; 2476 } 2477 2478 return __bpf_redirect(clone, dev, flags); 2479 } 2480 2481 static const struct bpf_func_proto bpf_clone_redirect_proto = { 2482 .func = bpf_clone_redirect, 2483 .gpl_only = false, 2484 .ret_type = RET_INTEGER, 2485 .arg1_type = ARG_PTR_TO_CTX, 2486 .arg2_type = ARG_ANYTHING, 2487 .arg3_type = ARG_ANYTHING, 2488 }; 2489 2490 static struct net_device *skb_get_peer_dev(struct net_device *dev) 2491 { 2492 const struct net_device_ops *ops = dev->netdev_ops; 2493 2494 if (likely(ops->ndo_get_peer_dev)) 2495 return INDIRECT_CALL_1(ops->ndo_get_peer_dev, 2496 netkit_peer_dev, dev); 2497 return NULL; 2498 } 2499 2500 int skb_do_redirect(struct sk_buff *skb) 2501 { 2502 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 2503 struct net *net = dev_net(skb->dev); 2504 struct net_device *dev; 2505 u32 flags = ri->flags; 2506 2507 dev = dev_get_by_index_rcu(net, ri->tgt_index); 2508 ri->tgt_index = 0; 2509 ri->flags = 0; 2510 if (unlikely(!dev)) 2511 goto out_drop; 2512 if (flags & BPF_F_PEER) { 2513 if (unlikely(!skb_at_tc_ingress(skb))) 2514 goto out_drop; 2515 dev = skb_get_peer_dev(dev); 2516 if (unlikely(!dev || 2517 !(dev->flags & IFF_UP) || 2518 net_eq(net, dev_net(dev)))) 2519 goto out_drop; 2520 skb->dev = dev; 2521 dev_sw_netstats_rx_add(dev, skb->len); 2522 skb_scrub_packet(skb, false); 2523 return -EAGAIN; 2524 } 2525 return flags & BPF_F_NEIGH ? 2526 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ? 2527 &ri->nh : NULL) : 2528 __bpf_redirect(skb, dev, flags); 2529 out_drop: 2530 kfree_skb(skb); 2531 return -EINVAL; 2532 } 2533 2534 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags) 2535 { 2536 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 2537 2538 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL))) 2539 return TC_ACT_SHOT; 2540 2541 ri->flags = flags; 2542 ri->tgt_index = ifindex; 2543 2544 return TC_ACT_REDIRECT; 2545 } 2546 2547 static const struct bpf_func_proto bpf_redirect_proto = { 2548 .func = bpf_redirect, 2549 .gpl_only = false, 2550 .ret_type = RET_INTEGER, 2551 .arg1_type = ARG_ANYTHING, 2552 .arg2_type = ARG_ANYTHING, 2553 }; 2554 2555 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags) 2556 { 2557 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 2558 2559 if (unlikely(flags)) 2560 return TC_ACT_SHOT; 2561 2562 ri->flags = BPF_F_PEER; 2563 ri->tgt_index = ifindex; 2564 2565 return TC_ACT_REDIRECT; 2566 } 2567 2568 static const struct bpf_func_proto bpf_redirect_peer_proto = { 2569 .func = bpf_redirect_peer, 2570 .gpl_only = false, 2571 .ret_type = RET_INTEGER, 2572 .arg1_type = ARG_ANYTHING, 2573 .arg2_type = ARG_ANYTHING, 2574 }; 2575 2576 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params, 2577 int, plen, u64, flags) 2578 { 2579 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 2580 2581 if (unlikely((plen && plen < sizeof(*params)) || flags)) 2582 return TC_ACT_SHOT; 2583 2584 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0); 2585 ri->tgt_index = ifindex; 2586 2587 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params)); 2588 if (plen) 2589 memcpy(&ri->nh, params, sizeof(ri->nh)); 2590 2591 return TC_ACT_REDIRECT; 2592 } 2593 2594 static const struct bpf_func_proto bpf_redirect_neigh_proto = { 2595 .func = bpf_redirect_neigh, 2596 .gpl_only = false, 2597 .ret_type = RET_INTEGER, 2598 .arg1_type = ARG_ANYTHING, 2599 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 2600 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 2601 .arg4_type = ARG_ANYTHING, 2602 }; 2603 2604 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes) 2605 { 2606 msg->apply_bytes = bytes; 2607 return 0; 2608 } 2609 2610 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = { 2611 .func = bpf_msg_apply_bytes, 2612 .gpl_only = false, 2613 .ret_type = RET_INTEGER, 2614 .arg1_type = ARG_PTR_TO_CTX, 2615 .arg2_type = ARG_ANYTHING, 2616 }; 2617 2618 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes) 2619 { 2620 msg->cork_bytes = bytes; 2621 return 0; 2622 } 2623 2624 static void sk_msg_reset_curr(struct sk_msg *msg) 2625 { 2626 if (!msg->sg.size) { 2627 msg->sg.curr = msg->sg.start; 2628 msg->sg.copybreak = 0; 2629 } else { 2630 u32 i = msg->sg.end; 2631 2632 sk_msg_iter_var_prev(i); 2633 msg->sg.curr = i; 2634 msg->sg.copybreak = msg->sg.data[i].length; 2635 } 2636 } 2637 2638 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = { 2639 .func = bpf_msg_cork_bytes, 2640 .gpl_only = false, 2641 .ret_type = RET_INTEGER, 2642 .arg1_type = ARG_PTR_TO_CTX, 2643 .arg2_type = ARG_ANYTHING, 2644 }; 2645 2646 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start, 2647 u32, end, u64, flags) 2648 { 2649 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start; 2650 u32 first_sge, last_sge, i, shift, bytes_sg_total; 2651 struct scatterlist *sge; 2652 u8 *raw, *to, *from; 2653 struct page *page; 2654 2655 if (unlikely(flags || end <= start)) 2656 return -EINVAL; 2657 2658 /* First find the starting scatterlist element */ 2659 i = msg->sg.start; 2660 do { 2661 offset += len; 2662 len = sk_msg_elem(msg, i)->length; 2663 if (start < offset + len) 2664 break; 2665 sk_msg_iter_var_next(i); 2666 } while (i != msg->sg.end); 2667 2668 if (unlikely(start >= offset + len)) 2669 return -EINVAL; 2670 2671 first_sge = i; 2672 /* The start may point into the sg element so we need to also 2673 * account for the headroom. 2674 */ 2675 bytes_sg_total = start - offset + bytes; 2676 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len) 2677 goto out; 2678 2679 /* At this point we need to linearize multiple scatterlist 2680 * elements or a single shared page. Either way we need to 2681 * copy into a linear buffer exclusively owned by BPF. Then 2682 * place the buffer in the scatterlist and fixup the original 2683 * entries by removing the entries now in the linear buffer 2684 * and shifting the remaining entries. For now we do not try 2685 * to copy partial entries to avoid complexity of running out 2686 * of sg_entry slots. The downside is reading a single byte 2687 * will copy the entire sg entry. 2688 */ 2689 do { 2690 copy += sk_msg_elem(msg, i)->length; 2691 sk_msg_iter_var_next(i); 2692 if (bytes_sg_total <= copy) 2693 break; 2694 } while (i != msg->sg.end); 2695 last_sge = i; 2696 2697 if (unlikely(bytes_sg_total > copy)) 2698 return -EINVAL; 2699 2700 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, 2701 get_order(copy)); 2702 if (unlikely(!page)) 2703 return -ENOMEM; 2704 2705 raw = page_address(page); 2706 i = first_sge; 2707 do { 2708 sge = sk_msg_elem(msg, i); 2709 from = sg_virt(sge); 2710 len = sge->length; 2711 to = raw + poffset; 2712 2713 memcpy(to, from, len); 2714 poffset += len; 2715 sge->length = 0; 2716 put_page(sg_page(sge)); 2717 2718 sk_msg_iter_var_next(i); 2719 } while (i != last_sge); 2720 2721 sg_set_page(&msg->sg.data[first_sge], page, copy, 0); 2722 2723 /* To repair sg ring we need to shift entries. If we only 2724 * had a single entry though we can just replace it and 2725 * be done. Otherwise walk the ring and shift the entries. 2726 */ 2727 WARN_ON_ONCE(last_sge == first_sge); 2728 shift = last_sge > first_sge ? 2729 last_sge - first_sge - 1 : 2730 NR_MSG_FRAG_IDS - first_sge + last_sge - 1; 2731 if (!shift) 2732 goto out; 2733 2734 i = first_sge; 2735 sk_msg_iter_var_next(i); 2736 do { 2737 u32 move_from; 2738 2739 if (i + shift >= NR_MSG_FRAG_IDS) 2740 move_from = i + shift - NR_MSG_FRAG_IDS; 2741 else 2742 move_from = i + shift; 2743 if (move_from == msg->sg.end) 2744 break; 2745 2746 msg->sg.data[i] = msg->sg.data[move_from]; 2747 msg->sg.data[move_from].length = 0; 2748 msg->sg.data[move_from].page_link = 0; 2749 msg->sg.data[move_from].offset = 0; 2750 sk_msg_iter_var_next(i); 2751 } while (1); 2752 2753 msg->sg.end = msg->sg.end - shift > msg->sg.end ? 2754 msg->sg.end - shift + NR_MSG_FRAG_IDS : 2755 msg->sg.end - shift; 2756 out: 2757 sk_msg_reset_curr(msg); 2758 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset; 2759 msg->data_end = msg->data + bytes; 2760 return 0; 2761 } 2762 2763 static const struct bpf_func_proto bpf_msg_pull_data_proto = { 2764 .func = bpf_msg_pull_data, 2765 .gpl_only = false, 2766 .ret_type = RET_INTEGER, 2767 .arg1_type = ARG_PTR_TO_CTX, 2768 .arg2_type = ARG_ANYTHING, 2769 .arg3_type = ARG_ANYTHING, 2770 .arg4_type = ARG_ANYTHING, 2771 }; 2772 2773 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start, 2774 u32, len, u64, flags) 2775 { 2776 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge; 2777 u32 new, i = 0, l = 0, space, copy = 0, offset = 0; 2778 u8 *raw, *to, *from; 2779 struct page *page; 2780 2781 if (unlikely(flags)) 2782 return -EINVAL; 2783 2784 if (unlikely(len == 0)) 2785 return 0; 2786 2787 /* First find the starting scatterlist element */ 2788 i = msg->sg.start; 2789 do { 2790 offset += l; 2791 l = sk_msg_elem(msg, i)->length; 2792 2793 if (start < offset + l) 2794 break; 2795 sk_msg_iter_var_next(i); 2796 } while (i != msg->sg.end); 2797 2798 if (start > offset + l) 2799 return -EINVAL; 2800 2801 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg); 2802 2803 /* If no space available will fallback to copy, we need at 2804 * least one scatterlist elem available to push data into 2805 * when start aligns to the beginning of an element or two 2806 * when it falls inside an element. We handle the start equals 2807 * offset case because its the common case for inserting a 2808 * header. 2809 */ 2810 if (!space || (space == 1 && start != offset)) 2811 copy = msg->sg.data[i].length; 2812 2813 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, 2814 get_order(copy + len)); 2815 if (unlikely(!page)) 2816 return -ENOMEM; 2817 2818 if (copy) { 2819 int front, back; 2820 2821 raw = page_address(page); 2822 2823 if (i == msg->sg.end) 2824 sk_msg_iter_var_prev(i); 2825 psge = sk_msg_elem(msg, i); 2826 front = start - offset; 2827 back = psge->length - front; 2828 from = sg_virt(psge); 2829 2830 if (front) 2831 memcpy(raw, from, front); 2832 2833 if (back) { 2834 from += front; 2835 to = raw + front + len; 2836 2837 memcpy(to, from, back); 2838 } 2839 2840 put_page(sg_page(psge)); 2841 new = i; 2842 goto place_new; 2843 } 2844 2845 if (start - offset) { 2846 if (i == msg->sg.end) 2847 sk_msg_iter_var_prev(i); 2848 psge = sk_msg_elem(msg, i); 2849 rsge = sk_msg_elem_cpy(msg, i); 2850 2851 psge->length = start - offset; 2852 rsge.length -= psge->length; 2853 rsge.offset += start; 2854 2855 sk_msg_iter_var_next(i); 2856 sg_unmark_end(psge); 2857 sg_unmark_end(&rsge); 2858 } 2859 2860 /* Slot(s) to place newly allocated data */ 2861 sk_msg_iter_next(msg, end); 2862 new = i; 2863 sk_msg_iter_var_next(i); 2864 2865 if (i == msg->sg.end) { 2866 if (!rsge.length) 2867 goto place_new; 2868 sk_msg_iter_next(msg, end); 2869 goto place_new; 2870 } 2871 2872 /* Shift one or two slots as needed */ 2873 sge = sk_msg_elem_cpy(msg, new); 2874 sg_unmark_end(&sge); 2875 2876 nsge = sk_msg_elem_cpy(msg, i); 2877 if (rsge.length) { 2878 sk_msg_iter_var_next(i); 2879 nnsge = sk_msg_elem_cpy(msg, i); 2880 sk_msg_iter_next(msg, end); 2881 } 2882 2883 while (i != msg->sg.end) { 2884 msg->sg.data[i] = sge; 2885 sge = nsge; 2886 sk_msg_iter_var_next(i); 2887 if (rsge.length) { 2888 nsge = nnsge; 2889 nnsge = sk_msg_elem_cpy(msg, i); 2890 } else { 2891 nsge = sk_msg_elem_cpy(msg, i); 2892 } 2893 } 2894 2895 place_new: 2896 /* Place newly allocated data buffer */ 2897 sk_mem_charge(msg->sk, len); 2898 msg->sg.size += len; 2899 __clear_bit(new, msg->sg.copy); 2900 sg_set_page(&msg->sg.data[new], page, len + copy, 0); 2901 if (rsge.length) { 2902 get_page(sg_page(&rsge)); 2903 sk_msg_iter_var_next(new); 2904 msg->sg.data[new] = rsge; 2905 } 2906 2907 sk_msg_reset_curr(msg); 2908 sk_msg_compute_data_pointers(msg); 2909 return 0; 2910 } 2911 2912 static const struct bpf_func_proto bpf_msg_push_data_proto = { 2913 .func = bpf_msg_push_data, 2914 .gpl_only = false, 2915 .ret_type = RET_INTEGER, 2916 .arg1_type = ARG_PTR_TO_CTX, 2917 .arg2_type = ARG_ANYTHING, 2918 .arg3_type = ARG_ANYTHING, 2919 .arg4_type = ARG_ANYTHING, 2920 }; 2921 2922 static void sk_msg_shift_left(struct sk_msg *msg, int i) 2923 { 2924 struct scatterlist *sge = sk_msg_elem(msg, i); 2925 int prev; 2926 2927 put_page(sg_page(sge)); 2928 do { 2929 prev = i; 2930 sk_msg_iter_var_next(i); 2931 msg->sg.data[prev] = msg->sg.data[i]; 2932 } while (i != msg->sg.end); 2933 2934 sk_msg_iter_prev(msg, end); 2935 } 2936 2937 static void sk_msg_shift_right(struct sk_msg *msg, int i) 2938 { 2939 struct scatterlist tmp, sge; 2940 2941 sk_msg_iter_next(msg, end); 2942 sge = sk_msg_elem_cpy(msg, i); 2943 sk_msg_iter_var_next(i); 2944 tmp = sk_msg_elem_cpy(msg, i); 2945 2946 while (i != msg->sg.end) { 2947 msg->sg.data[i] = sge; 2948 sk_msg_iter_var_next(i); 2949 sge = tmp; 2950 tmp = sk_msg_elem_cpy(msg, i); 2951 } 2952 } 2953 2954 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start, 2955 u32, len, u64, flags) 2956 { 2957 u32 i = 0, l = 0, space, offset = 0; 2958 u64 last = start + len; 2959 int pop; 2960 2961 if (unlikely(flags)) 2962 return -EINVAL; 2963 2964 if (unlikely(len == 0)) 2965 return 0; 2966 2967 /* First find the starting scatterlist element */ 2968 i = msg->sg.start; 2969 do { 2970 offset += l; 2971 l = sk_msg_elem(msg, i)->length; 2972 2973 if (start < offset + l) 2974 break; 2975 sk_msg_iter_var_next(i); 2976 } while (i != msg->sg.end); 2977 2978 /* Bounds checks: start and pop must be inside message */ 2979 if (start >= offset + l || last > msg->sg.size) 2980 return -EINVAL; 2981 2982 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg); 2983 2984 pop = len; 2985 /* --------------| offset 2986 * -| start |-------- len -------| 2987 * 2988 * |----- a ----|-------- pop -------|----- b ----| 2989 * |______________________________________________| length 2990 * 2991 * 2992 * a: region at front of scatter element to save 2993 * b: region at back of scatter element to save when length > A + pop 2994 * pop: region to pop from element, same as input 'pop' here will be 2995 * decremented below per iteration. 2996 * 2997 * Two top-level cases to handle when start != offset, first B is non 2998 * zero and second B is zero corresponding to when a pop includes more 2999 * than one element. 3000 * 3001 * Then if B is non-zero AND there is no space allocate space and 3002 * compact A, B regions into page. If there is space shift ring to 3003 * the right free'ing the next element in ring to place B, leaving 3004 * A untouched except to reduce length. 3005 */ 3006 if (start != offset) { 3007 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i); 3008 int a = start - offset; 3009 int b = sge->length - pop - a; 3010 3011 sk_msg_iter_var_next(i); 3012 3013 if (b > 0) { 3014 if (space) { 3015 sge->length = a; 3016 sk_msg_shift_right(msg, i); 3017 nsge = sk_msg_elem(msg, i); 3018 get_page(sg_page(sge)); 3019 sg_set_page(nsge, 3020 sg_page(sge), 3021 b, sge->offset + pop + a); 3022 } else { 3023 struct page *page, *orig; 3024 u8 *to, *from; 3025 3026 page = alloc_pages(__GFP_NOWARN | 3027 __GFP_COMP | GFP_ATOMIC, 3028 get_order(a + b)); 3029 if (unlikely(!page)) 3030 return -ENOMEM; 3031 3032 orig = sg_page(sge); 3033 from = sg_virt(sge); 3034 to = page_address(page); 3035 memcpy(to, from, a); 3036 memcpy(to + a, from + a + pop, b); 3037 sg_set_page(sge, page, a + b, 0); 3038 put_page(orig); 3039 } 3040 pop = 0; 3041 } else { 3042 pop -= (sge->length - a); 3043 sge->length = a; 3044 } 3045 } 3046 3047 /* From above the current layout _must_ be as follows, 3048 * 3049 * -| offset 3050 * -| start 3051 * 3052 * |---- pop ---|---------------- b ------------| 3053 * |____________________________________________| length 3054 * 3055 * Offset and start of the current msg elem are equal because in the 3056 * previous case we handled offset != start and either consumed the 3057 * entire element and advanced to the next element OR pop == 0. 3058 * 3059 * Two cases to handle here are first pop is less than the length 3060 * leaving some remainder b above. Simply adjust the element's layout 3061 * in this case. Or pop >= length of the element so that b = 0. In this 3062 * case advance to next element decrementing pop. 3063 */ 3064 while (pop) { 3065 struct scatterlist *sge = sk_msg_elem(msg, i); 3066 3067 if (pop < sge->length) { 3068 sge->length -= pop; 3069 sge->offset += pop; 3070 pop = 0; 3071 } else { 3072 pop -= sge->length; 3073 sk_msg_shift_left(msg, i); 3074 } 3075 } 3076 3077 sk_mem_uncharge(msg->sk, len - pop); 3078 msg->sg.size -= (len - pop); 3079 sk_msg_reset_curr(msg); 3080 sk_msg_compute_data_pointers(msg); 3081 return 0; 3082 } 3083 3084 static const struct bpf_func_proto bpf_msg_pop_data_proto = { 3085 .func = bpf_msg_pop_data, 3086 .gpl_only = false, 3087 .ret_type = RET_INTEGER, 3088 .arg1_type = ARG_PTR_TO_CTX, 3089 .arg2_type = ARG_ANYTHING, 3090 .arg3_type = ARG_ANYTHING, 3091 .arg4_type = ARG_ANYTHING, 3092 }; 3093 3094 #ifdef CONFIG_CGROUP_NET_CLASSID 3095 BPF_CALL_0(bpf_get_cgroup_classid_curr) 3096 { 3097 return __task_get_classid(current); 3098 } 3099 3100 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = { 3101 .func = bpf_get_cgroup_classid_curr, 3102 .gpl_only = false, 3103 .ret_type = RET_INTEGER, 3104 }; 3105 3106 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb) 3107 { 3108 struct sock *sk = skb_to_full_sk(skb); 3109 3110 if (!sk || !sk_fullsock(sk)) 3111 return 0; 3112 3113 return sock_cgroup_classid(&sk->sk_cgrp_data); 3114 } 3115 3116 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = { 3117 .func = bpf_skb_cgroup_classid, 3118 .gpl_only = false, 3119 .ret_type = RET_INTEGER, 3120 .arg1_type = ARG_PTR_TO_CTX, 3121 }; 3122 #endif 3123 3124 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb) 3125 { 3126 return task_get_classid(skb); 3127 } 3128 3129 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = { 3130 .func = bpf_get_cgroup_classid, 3131 .gpl_only = false, 3132 .ret_type = RET_INTEGER, 3133 .arg1_type = ARG_PTR_TO_CTX, 3134 }; 3135 3136 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb) 3137 { 3138 return dst_tclassid(skb); 3139 } 3140 3141 static const struct bpf_func_proto bpf_get_route_realm_proto = { 3142 .func = bpf_get_route_realm, 3143 .gpl_only = false, 3144 .ret_type = RET_INTEGER, 3145 .arg1_type = ARG_PTR_TO_CTX, 3146 }; 3147 3148 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb) 3149 { 3150 /* If skb_clear_hash() was called due to mangling, we can 3151 * trigger SW recalculation here. Later access to hash 3152 * can then use the inline skb->hash via context directly 3153 * instead of calling this helper again. 3154 */ 3155 return skb_get_hash(skb); 3156 } 3157 3158 static const struct bpf_func_proto bpf_get_hash_recalc_proto = { 3159 .func = bpf_get_hash_recalc, 3160 .gpl_only = false, 3161 .ret_type = RET_INTEGER, 3162 .arg1_type = ARG_PTR_TO_CTX, 3163 }; 3164 3165 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb) 3166 { 3167 /* After all direct packet write, this can be used once for 3168 * triggering a lazy recalc on next skb_get_hash() invocation. 3169 */ 3170 skb_clear_hash(skb); 3171 return 0; 3172 } 3173 3174 static const struct bpf_func_proto bpf_set_hash_invalid_proto = { 3175 .func = bpf_set_hash_invalid, 3176 .gpl_only = false, 3177 .ret_type = RET_INTEGER, 3178 .arg1_type = ARG_PTR_TO_CTX, 3179 }; 3180 3181 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash) 3182 { 3183 /* Set user specified hash as L4(+), so that it gets returned 3184 * on skb_get_hash() call unless BPF prog later on triggers a 3185 * skb_clear_hash(). 3186 */ 3187 __skb_set_sw_hash(skb, hash, true); 3188 return 0; 3189 } 3190 3191 static const struct bpf_func_proto bpf_set_hash_proto = { 3192 .func = bpf_set_hash, 3193 .gpl_only = false, 3194 .ret_type = RET_INTEGER, 3195 .arg1_type = ARG_PTR_TO_CTX, 3196 .arg2_type = ARG_ANYTHING, 3197 }; 3198 3199 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto, 3200 u16, vlan_tci) 3201 { 3202 int ret; 3203 3204 if (unlikely(vlan_proto != htons(ETH_P_8021Q) && 3205 vlan_proto != htons(ETH_P_8021AD))) 3206 vlan_proto = htons(ETH_P_8021Q); 3207 3208 bpf_push_mac_rcsum(skb); 3209 ret = skb_vlan_push(skb, vlan_proto, vlan_tci); 3210 bpf_pull_mac_rcsum(skb); 3211 skb_reset_mac_len(skb); 3212 3213 bpf_compute_data_pointers(skb); 3214 return ret; 3215 } 3216 3217 static const struct bpf_func_proto bpf_skb_vlan_push_proto = { 3218 .func = bpf_skb_vlan_push, 3219 .gpl_only = false, 3220 .ret_type = RET_INTEGER, 3221 .arg1_type = ARG_PTR_TO_CTX, 3222 .arg2_type = ARG_ANYTHING, 3223 .arg3_type = ARG_ANYTHING, 3224 }; 3225 3226 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb) 3227 { 3228 int ret; 3229 3230 bpf_push_mac_rcsum(skb); 3231 ret = skb_vlan_pop(skb); 3232 bpf_pull_mac_rcsum(skb); 3233 3234 bpf_compute_data_pointers(skb); 3235 return ret; 3236 } 3237 3238 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = { 3239 .func = bpf_skb_vlan_pop, 3240 .gpl_only = false, 3241 .ret_type = RET_INTEGER, 3242 .arg1_type = ARG_PTR_TO_CTX, 3243 }; 3244 3245 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto) 3246 { 3247 skb->protocol = htons(proto); 3248 if (skb_valid_dst(skb)) 3249 skb_dst_drop(skb); 3250 } 3251 3252 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len) 3253 { 3254 /* Caller already did skb_cow() with len as headroom, 3255 * so no need to do it here. 3256 */ 3257 skb_push(skb, len); 3258 memmove(skb->data, skb->data + len, off); 3259 memset(skb->data + off, 0, len); 3260 3261 /* No skb_postpush_rcsum(skb, skb->data + off, len) 3262 * needed here as it does not change the skb->csum 3263 * result for checksum complete when summing over 3264 * zeroed blocks. 3265 */ 3266 return 0; 3267 } 3268 3269 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len) 3270 { 3271 void *old_data; 3272 3273 /* skb_ensure_writable() is not needed here, as we're 3274 * already working on an uncloned skb. 3275 */ 3276 if (unlikely(!pskb_may_pull(skb, off + len))) 3277 return -ENOMEM; 3278 3279 old_data = skb->data; 3280 __skb_pull(skb, len); 3281 skb_postpull_rcsum(skb, old_data + off, len); 3282 memmove(skb->data, old_data, off); 3283 3284 return 0; 3285 } 3286 3287 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len) 3288 { 3289 bool trans_same = skb->transport_header == skb->network_header; 3290 int ret; 3291 3292 /* There's no need for __skb_push()/__skb_pull() pair to 3293 * get to the start of the mac header as we're guaranteed 3294 * to always start from here under eBPF. 3295 */ 3296 ret = bpf_skb_generic_push(skb, off, len); 3297 if (likely(!ret)) { 3298 skb->mac_header -= len; 3299 skb->network_header -= len; 3300 if (trans_same) 3301 skb->transport_header = skb->network_header; 3302 } 3303 3304 return ret; 3305 } 3306 3307 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len) 3308 { 3309 bool trans_same = skb->transport_header == skb->network_header; 3310 int ret; 3311 3312 /* Same here, __skb_push()/__skb_pull() pair not needed. */ 3313 ret = bpf_skb_generic_pop(skb, off, len); 3314 if (likely(!ret)) { 3315 skb->mac_header += len; 3316 skb->network_header += len; 3317 if (trans_same) 3318 skb->transport_header = skb->network_header; 3319 } 3320 3321 return ret; 3322 } 3323 3324 static int bpf_skb_proto_4_to_6(struct sk_buff *skb) 3325 { 3326 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); 3327 u32 off = skb_mac_header_len(skb); 3328 int ret; 3329 3330 ret = skb_cow(skb, len_diff); 3331 if (unlikely(ret < 0)) 3332 return ret; 3333 3334 ret = bpf_skb_net_hdr_push(skb, off, len_diff); 3335 if (unlikely(ret < 0)) 3336 return ret; 3337 3338 if (skb_is_gso(skb)) { 3339 struct skb_shared_info *shinfo = skb_shinfo(skb); 3340 3341 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */ 3342 if (shinfo->gso_type & SKB_GSO_TCPV4) { 3343 shinfo->gso_type &= ~SKB_GSO_TCPV4; 3344 shinfo->gso_type |= SKB_GSO_TCPV6; 3345 } 3346 } 3347 3348 bpf_skb_change_protocol(skb, ETH_P_IPV6); 3349 skb_clear_hash(skb); 3350 3351 return 0; 3352 } 3353 3354 static int bpf_skb_proto_6_to_4(struct sk_buff *skb) 3355 { 3356 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); 3357 u32 off = skb_mac_header_len(skb); 3358 int ret; 3359 3360 ret = skb_unclone(skb, GFP_ATOMIC); 3361 if (unlikely(ret < 0)) 3362 return ret; 3363 3364 ret = bpf_skb_net_hdr_pop(skb, off, len_diff); 3365 if (unlikely(ret < 0)) 3366 return ret; 3367 3368 if (skb_is_gso(skb)) { 3369 struct skb_shared_info *shinfo = skb_shinfo(skb); 3370 3371 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */ 3372 if (shinfo->gso_type & SKB_GSO_TCPV6) { 3373 shinfo->gso_type &= ~SKB_GSO_TCPV6; 3374 shinfo->gso_type |= SKB_GSO_TCPV4; 3375 } 3376 } 3377 3378 bpf_skb_change_protocol(skb, ETH_P_IP); 3379 skb_clear_hash(skb); 3380 3381 return 0; 3382 } 3383 3384 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto) 3385 { 3386 __be16 from_proto = skb->protocol; 3387 3388 if (from_proto == htons(ETH_P_IP) && 3389 to_proto == htons(ETH_P_IPV6)) 3390 return bpf_skb_proto_4_to_6(skb); 3391 3392 if (from_proto == htons(ETH_P_IPV6) && 3393 to_proto == htons(ETH_P_IP)) 3394 return bpf_skb_proto_6_to_4(skb); 3395 3396 return -ENOTSUPP; 3397 } 3398 3399 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto, 3400 u64, flags) 3401 { 3402 int ret; 3403 3404 if (unlikely(flags)) 3405 return -EINVAL; 3406 3407 /* General idea is that this helper does the basic groundwork 3408 * needed for changing the protocol, and eBPF program fills the 3409 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace() 3410 * and other helpers, rather than passing a raw buffer here. 3411 * 3412 * The rationale is to keep this minimal and without a need to 3413 * deal with raw packet data. F.e. even if we would pass buffers 3414 * here, the program still needs to call the bpf_lX_csum_replace() 3415 * helpers anyway. Plus, this way we keep also separation of 3416 * concerns, since f.e. bpf_skb_store_bytes() should only take 3417 * care of stores. 3418 * 3419 * Currently, additional options and extension header space are 3420 * not supported, but flags register is reserved so we can adapt 3421 * that. For offloads, we mark packet as dodgy, so that headers 3422 * need to be verified first. 3423 */ 3424 ret = bpf_skb_proto_xlat(skb, proto); 3425 bpf_compute_data_pointers(skb); 3426 return ret; 3427 } 3428 3429 static const struct bpf_func_proto bpf_skb_change_proto_proto = { 3430 .func = bpf_skb_change_proto, 3431 .gpl_only = false, 3432 .ret_type = RET_INTEGER, 3433 .arg1_type = ARG_PTR_TO_CTX, 3434 .arg2_type = ARG_ANYTHING, 3435 .arg3_type = ARG_ANYTHING, 3436 }; 3437 3438 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type) 3439 { 3440 /* We only allow a restricted subset to be changed for now. */ 3441 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) || 3442 !skb_pkt_type_ok(pkt_type))) 3443 return -EINVAL; 3444 3445 skb->pkt_type = pkt_type; 3446 return 0; 3447 } 3448 3449 static const struct bpf_func_proto bpf_skb_change_type_proto = { 3450 .func = bpf_skb_change_type, 3451 .gpl_only = false, 3452 .ret_type = RET_INTEGER, 3453 .arg1_type = ARG_PTR_TO_CTX, 3454 .arg2_type = ARG_ANYTHING, 3455 }; 3456 3457 static u32 bpf_skb_net_base_len(const struct sk_buff *skb) 3458 { 3459 switch (skb->protocol) { 3460 case htons(ETH_P_IP): 3461 return sizeof(struct iphdr); 3462 case htons(ETH_P_IPV6): 3463 return sizeof(struct ipv6hdr); 3464 default: 3465 return ~0U; 3466 } 3467 } 3468 3469 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \ 3470 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) 3471 3472 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \ 3473 BPF_F_ADJ_ROOM_DECAP_L3_IPV6) 3474 3475 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \ 3476 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \ 3477 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \ 3478 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \ 3479 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \ 3480 BPF_F_ADJ_ROOM_ENCAP_L2( \ 3481 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \ 3482 BPF_F_ADJ_ROOM_DECAP_L3_MASK) 3483 3484 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff, 3485 u64 flags) 3486 { 3487 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT; 3488 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK; 3489 u16 mac_len = 0, inner_net = 0, inner_trans = 0; 3490 unsigned int gso_type = SKB_GSO_DODGY; 3491 int ret; 3492 3493 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) { 3494 /* udp gso_size delineates datagrams, only allow if fixed */ 3495 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) || 3496 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) 3497 return -ENOTSUPP; 3498 } 3499 3500 ret = skb_cow_head(skb, len_diff); 3501 if (unlikely(ret < 0)) 3502 return ret; 3503 3504 if (encap) { 3505 if (skb->protocol != htons(ETH_P_IP) && 3506 skb->protocol != htons(ETH_P_IPV6)) 3507 return -ENOTSUPP; 3508 3509 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 && 3510 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) 3511 return -EINVAL; 3512 3513 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE && 3514 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) 3515 return -EINVAL; 3516 3517 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH && 3518 inner_mac_len < ETH_HLEN) 3519 return -EINVAL; 3520 3521 if (skb->encapsulation) 3522 return -EALREADY; 3523 3524 mac_len = skb->network_header - skb->mac_header; 3525 inner_net = skb->network_header; 3526 if (inner_mac_len > len_diff) 3527 return -EINVAL; 3528 inner_trans = skb->transport_header; 3529 } 3530 3531 ret = bpf_skb_net_hdr_push(skb, off, len_diff); 3532 if (unlikely(ret < 0)) 3533 return ret; 3534 3535 if (encap) { 3536 skb->inner_mac_header = inner_net - inner_mac_len; 3537 skb->inner_network_header = inner_net; 3538 skb->inner_transport_header = inner_trans; 3539 3540 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH) 3541 skb_set_inner_protocol(skb, htons(ETH_P_TEB)); 3542 else 3543 skb_set_inner_protocol(skb, skb->protocol); 3544 3545 skb->encapsulation = 1; 3546 skb_set_network_header(skb, mac_len); 3547 3548 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) 3549 gso_type |= SKB_GSO_UDP_TUNNEL; 3550 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE) 3551 gso_type |= SKB_GSO_GRE; 3552 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) 3553 gso_type |= SKB_GSO_IPXIP6; 3554 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4) 3555 gso_type |= SKB_GSO_IPXIP4; 3556 3557 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE || 3558 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) { 3559 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ? 3560 sizeof(struct ipv6hdr) : 3561 sizeof(struct iphdr); 3562 3563 skb_set_transport_header(skb, mac_len + nh_len); 3564 } 3565 3566 /* Match skb->protocol to new outer l3 protocol */ 3567 if (skb->protocol == htons(ETH_P_IP) && 3568 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) 3569 bpf_skb_change_protocol(skb, ETH_P_IPV6); 3570 else if (skb->protocol == htons(ETH_P_IPV6) && 3571 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4) 3572 bpf_skb_change_protocol(skb, ETH_P_IP); 3573 } 3574 3575 if (skb_is_gso(skb)) { 3576 struct skb_shared_info *shinfo = skb_shinfo(skb); 3577 3578 /* Header must be checked, and gso_segs recomputed. */ 3579 shinfo->gso_type |= gso_type; 3580 shinfo->gso_segs = 0; 3581 3582 /* Due to header growth, MSS needs to be downgraded. 3583 * There is a BUG_ON() when segmenting the frag_list with 3584 * head_frag true, so linearize the skb after downgrading 3585 * the MSS. 3586 */ 3587 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) { 3588 skb_decrease_gso_size(shinfo, len_diff); 3589 if (shinfo->frag_list) 3590 return skb_linearize(skb); 3591 } 3592 } 3593 3594 return 0; 3595 } 3596 3597 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff, 3598 u64 flags) 3599 { 3600 int ret; 3601 3602 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO | 3603 BPF_F_ADJ_ROOM_DECAP_L3_MASK | 3604 BPF_F_ADJ_ROOM_NO_CSUM_RESET))) 3605 return -EINVAL; 3606 3607 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) { 3608 /* udp gso_size delineates datagrams, only allow if fixed */ 3609 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) || 3610 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) 3611 return -ENOTSUPP; 3612 } 3613 3614 ret = skb_unclone(skb, GFP_ATOMIC); 3615 if (unlikely(ret < 0)) 3616 return ret; 3617 3618 ret = bpf_skb_net_hdr_pop(skb, off, len_diff); 3619 if (unlikely(ret < 0)) 3620 return ret; 3621 3622 /* Match skb->protocol to new outer l3 protocol */ 3623 if (skb->protocol == htons(ETH_P_IP) && 3624 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6) 3625 bpf_skb_change_protocol(skb, ETH_P_IPV6); 3626 else if (skb->protocol == htons(ETH_P_IPV6) && 3627 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4) 3628 bpf_skb_change_protocol(skb, ETH_P_IP); 3629 3630 if (skb_is_gso(skb)) { 3631 struct skb_shared_info *shinfo = skb_shinfo(skb); 3632 3633 /* Due to header shrink, MSS can be upgraded. */ 3634 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) 3635 skb_increase_gso_size(shinfo, len_diff); 3636 3637 /* Header must be checked, and gso_segs recomputed. */ 3638 shinfo->gso_type |= SKB_GSO_DODGY; 3639 shinfo->gso_segs = 0; 3640 } 3641 3642 return 0; 3643 } 3644 3645 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC 3646 3647 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, 3648 u32, mode, u64, flags) 3649 { 3650 u32 len_diff_abs = abs(len_diff); 3651 bool shrink = len_diff < 0; 3652 int ret = 0; 3653 3654 if (unlikely(flags || mode)) 3655 return -EINVAL; 3656 if (unlikely(len_diff_abs > 0xfffU)) 3657 return -EFAULT; 3658 3659 if (!shrink) { 3660 ret = skb_cow(skb, len_diff); 3661 if (unlikely(ret < 0)) 3662 return ret; 3663 __skb_push(skb, len_diff_abs); 3664 memset(skb->data, 0, len_diff_abs); 3665 } else { 3666 if (unlikely(!pskb_may_pull(skb, len_diff_abs))) 3667 return -ENOMEM; 3668 __skb_pull(skb, len_diff_abs); 3669 } 3670 if (tls_sw_has_ctx_rx(skb->sk)) { 3671 struct strp_msg *rxm = strp_msg(skb); 3672 3673 rxm->full_len += len_diff; 3674 } 3675 return ret; 3676 } 3677 3678 static const struct bpf_func_proto sk_skb_adjust_room_proto = { 3679 .func = sk_skb_adjust_room, 3680 .gpl_only = false, 3681 .ret_type = RET_INTEGER, 3682 .arg1_type = ARG_PTR_TO_CTX, 3683 .arg2_type = ARG_ANYTHING, 3684 .arg3_type = ARG_ANYTHING, 3685 .arg4_type = ARG_ANYTHING, 3686 }; 3687 3688 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, 3689 u32, mode, u64, flags) 3690 { 3691 u32 len_cur, len_diff_abs = abs(len_diff); 3692 u32 len_min = bpf_skb_net_base_len(skb); 3693 u32 len_max = BPF_SKB_MAX_LEN; 3694 __be16 proto = skb->protocol; 3695 bool shrink = len_diff < 0; 3696 u32 off; 3697 int ret; 3698 3699 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK | 3700 BPF_F_ADJ_ROOM_NO_CSUM_RESET))) 3701 return -EINVAL; 3702 if (unlikely(len_diff_abs > 0xfffU)) 3703 return -EFAULT; 3704 if (unlikely(proto != htons(ETH_P_IP) && 3705 proto != htons(ETH_P_IPV6))) 3706 return -ENOTSUPP; 3707 3708 off = skb_mac_header_len(skb); 3709 switch (mode) { 3710 case BPF_ADJ_ROOM_NET: 3711 off += bpf_skb_net_base_len(skb); 3712 break; 3713 case BPF_ADJ_ROOM_MAC: 3714 break; 3715 default: 3716 return -ENOTSUPP; 3717 } 3718 3719 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) { 3720 if (!shrink) 3721 return -EINVAL; 3722 3723 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) { 3724 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4: 3725 len_min = sizeof(struct iphdr); 3726 break; 3727 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6: 3728 len_min = sizeof(struct ipv6hdr); 3729 break; 3730 default: 3731 return -EINVAL; 3732 } 3733 } 3734 3735 len_cur = skb->len - skb_network_offset(skb); 3736 if ((shrink && (len_diff_abs >= len_cur || 3737 len_cur - len_diff_abs < len_min)) || 3738 (!shrink && (skb->len + len_diff_abs > len_max && 3739 !skb_is_gso(skb)))) 3740 return -ENOTSUPP; 3741 3742 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) : 3743 bpf_skb_net_grow(skb, off, len_diff_abs, flags); 3744 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET)) 3745 __skb_reset_checksum_unnecessary(skb); 3746 3747 bpf_compute_data_pointers(skb); 3748 return ret; 3749 } 3750 3751 static const struct bpf_func_proto bpf_skb_adjust_room_proto = { 3752 .func = bpf_skb_adjust_room, 3753 .gpl_only = false, 3754 .ret_type = RET_INTEGER, 3755 .arg1_type = ARG_PTR_TO_CTX, 3756 .arg2_type = ARG_ANYTHING, 3757 .arg3_type = ARG_ANYTHING, 3758 .arg4_type = ARG_ANYTHING, 3759 }; 3760 3761 static u32 __bpf_skb_min_len(const struct sk_buff *skb) 3762 { 3763 int offset = skb_network_offset(skb); 3764 u32 min_len = 0; 3765 3766 if (offset > 0) 3767 min_len = offset; 3768 if (skb_transport_header_was_set(skb)) { 3769 offset = skb_transport_offset(skb); 3770 if (offset > 0) 3771 min_len = offset; 3772 } 3773 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3774 offset = skb_checksum_start_offset(skb) + 3775 skb->csum_offset + sizeof(__sum16); 3776 if (offset > 0) 3777 min_len = offset; 3778 } 3779 return min_len; 3780 } 3781 3782 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len) 3783 { 3784 unsigned int old_len = skb->len; 3785 int ret; 3786 3787 ret = __skb_grow_rcsum(skb, new_len); 3788 if (!ret) 3789 memset(skb->data + old_len, 0, new_len - old_len); 3790 return ret; 3791 } 3792 3793 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len) 3794 { 3795 return __skb_trim_rcsum(skb, new_len); 3796 } 3797 3798 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len, 3799 u64 flags) 3800 { 3801 u32 max_len = BPF_SKB_MAX_LEN; 3802 u32 min_len = __bpf_skb_min_len(skb); 3803 int ret; 3804 3805 if (unlikely(flags || new_len > max_len || new_len < min_len)) 3806 return -EINVAL; 3807 if (skb->encapsulation) 3808 return -ENOTSUPP; 3809 3810 /* The basic idea of this helper is that it's performing the 3811 * needed work to either grow or trim an skb, and eBPF program 3812 * rewrites the rest via helpers like bpf_skb_store_bytes(), 3813 * bpf_lX_csum_replace() and others rather than passing a raw 3814 * buffer here. This one is a slow path helper and intended 3815 * for replies with control messages. 3816 * 3817 * Like in bpf_skb_change_proto(), we want to keep this rather 3818 * minimal and without protocol specifics so that we are able 3819 * to separate concerns as in bpf_skb_store_bytes() should only 3820 * be the one responsible for writing buffers. 3821 * 3822 * It's really expected to be a slow path operation here for 3823 * control message replies, so we're implicitly linearizing, 3824 * uncloning and drop offloads from the skb by this. 3825 */ 3826 ret = __bpf_try_make_writable(skb, skb->len); 3827 if (!ret) { 3828 if (new_len > skb->len) 3829 ret = bpf_skb_grow_rcsum(skb, new_len); 3830 else if (new_len < skb->len) 3831 ret = bpf_skb_trim_rcsum(skb, new_len); 3832 if (!ret && skb_is_gso(skb)) 3833 skb_gso_reset(skb); 3834 } 3835 return ret; 3836 } 3837 3838 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len, 3839 u64, flags) 3840 { 3841 int ret = __bpf_skb_change_tail(skb, new_len, flags); 3842 3843 bpf_compute_data_pointers(skb); 3844 return ret; 3845 } 3846 3847 static const struct bpf_func_proto bpf_skb_change_tail_proto = { 3848 .func = bpf_skb_change_tail, 3849 .gpl_only = false, 3850 .ret_type = RET_INTEGER, 3851 .arg1_type = ARG_PTR_TO_CTX, 3852 .arg2_type = ARG_ANYTHING, 3853 .arg3_type = ARG_ANYTHING, 3854 }; 3855 3856 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len, 3857 u64, flags) 3858 { 3859 return __bpf_skb_change_tail(skb, new_len, flags); 3860 } 3861 3862 static const struct bpf_func_proto sk_skb_change_tail_proto = { 3863 .func = sk_skb_change_tail, 3864 .gpl_only = false, 3865 .ret_type = RET_INTEGER, 3866 .arg1_type = ARG_PTR_TO_CTX, 3867 .arg2_type = ARG_ANYTHING, 3868 .arg3_type = ARG_ANYTHING, 3869 }; 3870 3871 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room, 3872 u64 flags) 3873 { 3874 u32 max_len = BPF_SKB_MAX_LEN; 3875 u32 new_len = skb->len + head_room; 3876 int ret; 3877 3878 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) || 3879 new_len < skb->len)) 3880 return -EINVAL; 3881 3882 ret = skb_cow(skb, head_room); 3883 if (likely(!ret)) { 3884 /* Idea for this helper is that we currently only 3885 * allow to expand on mac header. This means that 3886 * skb->protocol network header, etc, stay as is. 3887 * Compared to bpf_skb_change_tail(), we're more 3888 * flexible due to not needing to linearize or 3889 * reset GSO. Intention for this helper is to be 3890 * used by an L3 skb that needs to push mac header 3891 * for redirection into L2 device. 3892 */ 3893 __skb_push(skb, head_room); 3894 memset(skb->data, 0, head_room); 3895 skb_reset_mac_header(skb); 3896 skb_reset_mac_len(skb); 3897 } 3898 3899 return ret; 3900 } 3901 3902 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room, 3903 u64, flags) 3904 { 3905 int ret = __bpf_skb_change_head(skb, head_room, flags); 3906 3907 bpf_compute_data_pointers(skb); 3908 return ret; 3909 } 3910 3911 static const struct bpf_func_proto bpf_skb_change_head_proto = { 3912 .func = bpf_skb_change_head, 3913 .gpl_only = false, 3914 .ret_type = RET_INTEGER, 3915 .arg1_type = ARG_PTR_TO_CTX, 3916 .arg2_type = ARG_ANYTHING, 3917 .arg3_type = ARG_ANYTHING, 3918 }; 3919 3920 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room, 3921 u64, flags) 3922 { 3923 return __bpf_skb_change_head(skb, head_room, flags); 3924 } 3925 3926 static const struct bpf_func_proto sk_skb_change_head_proto = { 3927 .func = sk_skb_change_head, 3928 .gpl_only = false, 3929 .ret_type = RET_INTEGER, 3930 .arg1_type = ARG_PTR_TO_CTX, 3931 .arg2_type = ARG_ANYTHING, 3932 .arg3_type = ARG_ANYTHING, 3933 }; 3934 3935 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp) 3936 { 3937 return xdp_get_buff_len(xdp); 3938 } 3939 3940 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = { 3941 .func = bpf_xdp_get_buff_len, 3942 .gpl_only = false, 3943 .ret_type = RET_INTEGER, 3944 .arg1_type = ARG_PTR_TO_CTX, 3945 }; 3946 3947 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff) 3948 3949 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = { 3950 .func = bpf_xdp_get_buff_len, 3951 .gpl_only = false, 3952 .arg1_type = ARG_PTR_TO_BTF_ID, 3953 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0], 3954 }; 3955 3956 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp) 3957 { 3958 return xdp_data_meta_unsupported(xdp) ? 0 : 3959 xdp->data - xdp->data_meta; 3960 } 3961 3962 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset) 3963 { 3964 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); 3965 unsigned long metalen = xdp_get_metalen(xdp); 3966 void *data_start = xdp_frame_end + metalen; 3967 void *data = xdp->data + offset; 3968 3969 if (unlikely(data < data_start || 3970 data > xdp->data_end - ETH_HLEN)) 3971 return -EINVAL; 3972 3973 if (metalen) 3974 memmove(xdp->data_meta + offset, 3975 xdp->data_meta, metalen); 3976 xdp->data_meta += offset; 3977 xdp->data = data; 3978 3979 return 0; 3980 } 3981 3982 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = { 3983 .func = bpf_xdp_adjust_head, 3984 .gpl_only = false, 3985 .ret_type = RET_INTEGER, 3986 .arg1_type = ARG_PTR_TO_CTX, 3987 .arg2_type = ARG_ANYTHING, 3988 }; 3989 3990 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, 3991 void *buf, unsigned long len, bool flush) 3992 { 3993 unsigned long ptr_len, ptr_off = 0; 3994 skb_frag_t *next_frag, *end_frag; 3995 struct skb_shared_info *sinfo; 3996 void *src, *dst; 3997 u8 *ptr_buf; 3998 3999 if (likely(xdp->data_end - xdp->data >= off + len)) { 4000 src = flush ? buf : xdp->data + off; 4001 dst = flush ? xdp->data + off : buf; 4002 memcpy(dst, src, len); 4003 return; 4004 } 4005 4006 sinfo = xdp_get_shared_info_from_buff(xdp); 4007 end_frag = &sinfo->frags[sinfo->nr_frags]; 4008 next_frag = &sinfo->frags[0]; 4009 4010 ptr_len = xdp->data_end - xdp->data; 4011 ptr_buf = xdp->data; 4012 4013 while (true) { 4014 if (off < ptr_off + ptr_len) { 4015 unsigned long copy_off = off - ptr_off; 4016 unsigned long copy_len = min(len, ptr_len - copy_off); 4017 4018 src = flush ? buf : ptr_buf + copy_off; 4019 dst = flush ? ptr_buf + copy_off : buf; 4020 memcpy(dst, src, copy_len); 4021 4022 off += copy_len; 4023 len -= copy_len; 4024 buf += copy_len; 4025 } 4026 4027 if (!len || next_frag == end_frag) 4028 break; 4029 4030 ptr_off += ptr_len; 4031 ptr_buf = skb_frag_address(next_frag); 4032 ptr_len = skb_frag_size(next_frag); 4033 next_frag++; 4034 } 4035 } 4036 4037 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) 4038 { 4039 u32 size = xdp->data_end - xdp->data; 4040 struct skb_shared_info *sinfo; 4041 void *addr = xdp->data; 4042 int i; 4043 4044 if (unlikely(offset > 0xffff || len > 0xffff)) 4045 return ERR_PTR(-EFAULT); 4046 4047 if (unlikely(offset + len > xdp_get_buff_len(xdp))) 4048 return ERR_PTR(-EINVAL); 4049 4050 if (likely(offset < size)) /* linear area */ 4051 goto out; 4052 4053 sinfo = xdp_get_shared_info_from_buff(xdp); 4054 offset -= size; 4055 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */ 4056 u32 frag_size = skb_frag_size(&sinfo->frags[i]); 4057 4058 if (offset < frag_size) { 4059 addr = skb_frag_address(&sinfo->frags[i]); 4060 size = frag_size; 4061 break; 4062 } 4063 offset -= frag_size; 4064 } 4065 out: 4066 return offset + len <= size ? addr + offset : NULL; 4067 } 4068 4069 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset, 4070 void *, buf, u32, len) 4071 { 4072 void *ptr; 4073 4074 ptr = bpf_xdp_pointer(xdp, offset, len); 4075 if (IS_ERR(ptr)) 4076 return PTR_ERR(ptr); 4077 4078 if (!ptr) 4079 bpf_xdp_copy_buf(xdp, offset, buf, len, false); 4080 else 4081 memcpy(buf, ptr, len); 4082 4083 return 0; 4084 } 4085 4086 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = { 4087 .func = bpf_xdp_load_bytes, 4088 .gpl_only = false, 4089 .ret_type = RET_INTEGER, 4090 .arg1_type = ARG_PTR_TO_CTX, 4091 .arg2_type = ARG_ANYTHING, 4092 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 4093 .arg4_type = ARG_CONST_SIZE, 4094 }; 4095 4096 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len) 4097 { 4098 return ____bpf_xdp_load_bytes(xdp, offset, buf, len); 4099 } 4100 4101 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset, 4102 void *, buf, u32, len) 4103 { 4104 void *ptr; 4105 4106 ptr = bpf_xdp_pointer(xdp, offset, len); 4107 if (IS_ERR(ptr)) 4108 return PTR_ERR(ptr); 4109 4110 if (!ptr) 4111 bpf_xdp_copy_buf(xdp, offset, buf, len, true); 4112 else 4113 memcpy(ptr, buf, len); 4114 4115 return 0; 4116 } 4117 4118 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = { 4119 .func = bpf_xdp_store_bytes, 4120 .gpl_only = false, 4121 .ret_type = RET_INTEGER, 4122 .arg1_type = ARG_PTR_TO_CTX, 4123 .arg2_type = ARG_ANYTHING, 4124 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 4125 .arg4_type = ARG_CONST_SIZE, 4126 }; 4127 4128 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len) 4129 { 4130 return ____bpf_xdp_store_bytes(xdp, offset, buf, len); 4131 } 4132 4133 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset) 4134 { 4135 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 4136 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1]; 4137 struct xdp_rxq_info *rxq = xdp->rxq; 4138 unsigned int tailroom; 4139 4140 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz) 4141 return -EOPNOTSUPP; 4142 4143 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag); 4144 if (unlikely(offset > tailroom)) 4145 return -EINVAL; 4146 4147 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset); 4148 skb_frag_size_add(frag, offset); 4149 sinfo->xdp_frags_size += offset; 4150 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) 4151 xsk_buff_get_tail(xdp)->data_end += offset; 4152 4153 return 0; 4154 } 4155 4156 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink, 4157 enum xdp_mem_type mem_type, bool release) 4158 { 4159 struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp); 4160 4161 if (release) { 4162 xsk_buff_del_tail(zc_frag); 4163 __xdp_return(0, mem_type, false, zc_frag); 4164 } else { 4165 zc_frag->data_end -= shrink; 4166 } 4167 } 4168 4169 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag, 4170 int shrink) 4171 { 4172 enum xdp_mem_type mem_type = xdp->rxq->mem.type; 4173 bool release = skb_frag_size(frag) == shrink; 4174 4175 if (mem_type == MEM_TYPE_XSK_BUFF_POOL) { 4176 bpf_xdp_shrink_data_zc(xdp, shrink, mem_type, release); 4177 goto out; 4178 } 4179 4180 if (release) 4181 __xdp_return(skb_frag_netmem(frag), mem_type, false, NULL); 4182 4183 out: 4184 return release; 4185 } 4186 4187 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset) 4188 { 4189 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 4190 int i, n_frags_free = 0, len_free = 0; 4191 4192 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN)) 4193 return -EINVAL; 4194 4195 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) { 4196 skb_frag_t *frag = &sinfo->frags[i]; 4197 int shrink = min_t(int, offset, skb_frag_size(frag)); 4198 4199 len_free += shrink; 4200 offset -= shrink; 4201 if (bpf_xdp_shrink_data(xdp, frag, shrink)) { 4202 n_frags_free++; 4203 } else { 4204 skb_frag_size_sub(frag, shrink); 4205 break; 4206 } 4207 } 4208 sinfo->nr_frags -= n_frags_free; 4209 sinfo->xdp_frags_size -= len_free; 4210 4211 if (unlikely(!sinfo->nr_frags)) { 4212 xdp_buff_clear_frags_flag(xdp); 4213 xdp->data_end -= offset; 4214 } 4215 4216 return 0; 4217 } 4218 4219 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset) 4220 { 4221 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */ 4222 void *data_end = xdp->data_end + offset; 4223 4224 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */ 4225 if (offset < 0) 4226 return bpf_xdp_frags_shrink_tail(xdp, -offset); 4227 4228 return bpf_xdp_frags_increase_tail(xdp, offset); 4229 } 4230 4231 /* Notice that xdp_data_hard_end have reserved some tailroom */ 4232 if (unlikely(data_end > data_hard_end)) 4233 return -EINVAL; 4234 4235 if (unlikely(data_end < xdp->data + ETH_HLEN)) 4236 return -EINVAL; 4237 4238 /* Clear memory area on grow, can contain uninit kernel memory */ 4239 if (offset > 0) 4240 memset(xdp->data_end, 0, offset); 4241 4242 xdp->data_end = data_end; 4243 4244 return 0; 4245 } 4246 4247 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = { 4248 .func = bpf_xdp_adjust_tail, 4249 .gpl_only = false, 4250 .ret_type = RET_INTEGER, 4251 .arg1_type = ARG_PTR_TO_CTX, 4252 .arg2_type = ARG_ANYTHING, 4253 }; 4254 4255 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset) 4256 { 4257 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); 4258 void *meta = xdp->data_meta + offset; 4259 unsigned long metalen = xdp->data - meta; 4260 4261 if (xdp_data_meta_unsupported(xdp)) 4262 return -ENOTSUPP; 4263 if (unlikely(meta < xdp_frame_end || 4264 meta > xdp->data)) 4265 return -EINVAL; 4266 if (unlikely(xdp_metalen_invalid(metalen))) 4267 return -EACCES; 4268 4269 xdp->data_meta = meta; 4270 4271 return 0; 4272 } 4273 4274 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = { 4275 .func = bpf_xdp_adjust_meta, 4276 .gpl_only = false, 4277 .ret_type = RET_INTEGER, 4278 .arg1_type = ARG_PTR_TO_CTX, 4279 .arg2_type = ARG_ANYTHING, 4280 }; 4281 4282 /** 4283 * DOC: xdp redirect 4284 * 4285 * XDP_REDIRECT works by a three-step process, implemented in the functions 4286 * below: 4287 * 4288 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target 4289 * of the redirect and store it (along with some other metadata) in a per-CPU 4290 * struct bpf_redirect_info. 4291 * 4292 * 2. When the program returns the XDP_REDIRECT return code, the driver will 4293 * call xdp_do_redirect() which will use the information in struct 4294 * bpf_redirect_info to actually enqueue the frame into a map type-specific 4295 * bulk queue structure. 4296 * 4297 * 3. Before exiting its NAPI poll loop, the driver will call 4298 * xdp_do_flush(), which will flush all the different bulk queues, 4299 * thus completing the redirect. Note that xdp_do_flush() must be 4300 * called before napi_complete_done() in the driver, as the 4301 * XDP_REDIRECT logic relies on being inside a single NAPI instance 4302 * through to the xdp_do_flush() call for RCU protection of all 4303 * in-kernel data structures. 4304 */ 4305 /* 4306 * Pointers to the map entries will be kept around for this whole sequence of 4307 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in 4308 * the core code; instead, the RCU protection relies on everything happening 4309 * inside a single NAPI poll sequence, which means it's between a pair of calls 4310 * to local_bh_disable()/local_bh_enable(). 4311 * 4312 * The map entries are marked as __rcu and the map code makes sure to 4313 * dereference those pointers with rcu_dereference_check() in a way that works 4314 * for both sections that to hold an rcu_read_lock() and sections that are 4315 * called from NAPI without a separate rcu_read_lock(). The code below does not 4316 * use RCU annotations, but relies on those in the map code. 4317 */ 4318 void xdp_do_flush(void) 4319 { 4320 struct list_head *lh_map, *lh_dev, *lh_xsk; 4321 4322 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk); 4323 if (lh_dev) 4324 __dev_flush(lh_dev); 4325 if (lh_map) 4326 __cpu_map_flush(lh_map); 4327 if (lh_xsk) 4328 __xsk_map_flush(lh_xsk); 4329 } 4330 EXPORT_SYMBOL_GPL(xdp_do_flush); 4331 4332 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL) 4333 void xdp_do_check_flushed(struct napi_struct *napi) 4334 { 4335 struct list_head *lh_map, *lh_dev, *lh_xsk; 4336 bool missed = false; 4337 4338 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk); 4339 if (lh_dev) { 4340 __dev_flush(lh_dev); 4341 missed = true; 4342 } 4343 if (lh_map) { 4344 __cpu_map_flush(lh_map); 4345 missed = true; 4346 } 4347 if (lh_xsk) { 4348 __xsk_map_flush(lh_xsk); 4349 missed = true; 4350 } 4351 4352 WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n", 4353 napi->poll); 4354 } 4355 #endif 4356 4357 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 4358 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key); 4359 4360 u32 xdp_master_redirect(struct xdp_buff *xdp) 4361 { 4362 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4363 struct net_device *master, *slave; 4364 4365 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev); 4366 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp); 4367 if (slave && slave != xdp->rxq->dev) { 4368 /* The target device is different from the receiving device, so 4369 * redirect it to the new device. 4370 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled 4371 * drivers to unmap the packet from their rx ring. 4372 */ 4373 ri->tgt_index = slave->ifindex; 4374 ri->map_id = INT_MAX; 4375 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4376 return XDP_REDIRECT; 4377 } 4378 return XDP_TX; 4379 } 4380 EXPORT_SYMBOL_GPL(xdp_master_redirect); 4381 4382 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri, 4383 const struct net_device *dev, 4384 struct xdp_buff *xdp, 4385 const struct bpf_prog *xdp_prog) 4386 { 4387 enum bpf_map_type map_type = ri->map_type; 4388 void *fwd = ri->tgt_value; 4389 u32 map_id = ri->map_id; 4390 int err; 4391 4392 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ 4393 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4394 4395 err = __xsk_map_redirect(fwd, xdp); 4396 if (unlikely(err)) 4397 goto err; 4398 4399 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); 4400 return 0; 4401 err: 4402 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); 4403 return err; 4404 } 4405 4406 static __always_inline int 4407 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev, 4408 struct xdp_frame *xdpf, 4409 const struct bpf_prog *xdp_prog) 4410 { 4411 enum bpf_map_type map_type = ri->map_type; 4412 void *fwd = ri->tgt_value; 4413 u32 map_id = ri->map_id; 4414 u32 flags = ri->flags; 4415 struct bpf_map *map; 4416 int err; 4417 4418 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ 4419 ri->flags = 0; 4420 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4421 4422 if (unlikely(!xdpf)) { 4423 err = -EOVERFLOW; 4424 goto err; 4425 } 4426 4427 switch (map_type) { 4428 case BPF_MAP_TYPE_DEVMAP: 4429 fallthrough; 4430 case BPF_MAP_TYPE_DEVMAP_HASH: 4431 if (unlikely(flags & BPF_F_BROADCAST)) { 4432 map = READ_ONCE(ri->map); 4433 4434 /* The map pointer is cleared when the map is being torn 4435 * down by dev_map_free() 4436 */ 4437 if (unlikely(!map)) { 4438 err = -ENOENT; 4439 break; 4440 } 4441 4442 WRITE_ONCE(ri->map, NULL); 4443 err = dev_map_enqueue_multi(xdpf, dev, map, 4444 flags & BPF_F_EXCLUDE_INGRESS); 4445 } else { 4446 err = dev_map_enqueue(fwd, xdpf, dev); 4447 } 4448 break; 4449 case BPF_MAP_TYPE_CPUMAP: 4450 err = cpu_map_enqueue(fwd, xdpf, dev); 4451 break; 4452 case BPF_MAP_TYPE_UNSPEC: 4453 if (map_id == INT_MAX) { 4454 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index); 4455 if (unlikely(!fwd)) { 4456 err = -EINVAL; 4457 break; 4458 } 4459 err = dev_xdp_enqueue(fwd, xdpf, dev); 4460 break; 4461 } 4462 fallthrough; 4463 default: 4464 err = -EBADRQC; 4465 } 4466 4467 if (unlikely(err)) 4468 goto err; 4469 4470 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); 4471 return 0; 4472 err: 4473 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); 4474 return err; 4475 } 4476 4477 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp, 4478 const struct bpf_prog *xdp_prog) 4479 { 4480 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4481 enum bpf_map_type map_type = ri->map_type; 4482 4483 if (map_type == BPF_MAP_TYPE_XSKMAP) 4484 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog); 4485 4486 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp), 4487 xdp_prog); 4488 } 4489 EXPORT_SYMBOL_GPL(xdp_do_redirect); 4490 4491 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp, 4492 struct xdp_frame *xdpf, 4493 const struct bpf_prog *xdp_prog) 4494 { 4495 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4496 enum bpf_map_type map_type = ri->map_type; 4497 4498 if (map_type == BPF_MAP_TYPE_XSKMAP) 4499 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog); 4500 4501 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog); 4502 } 4503 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame); 4504 4505 static int xdp_do_generic_redirect_map(struct net_device *dev, 4506 struct sk_buff *skb, 4507 struct xdp_buff *xdp, 4508 const struct bpf_prog *xdp_prog, 4509 void *fwd, enum bpf_map_type map_type, 4510 u32 map_id, u32 flags) 4511 { 4512 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4513 struct bpf_map *map; 4514 int err; 4515 4516 switch (map_type) { 4517 case BPF_MAP_TYPE_DEVMAP: 4518 fallthrough; 4519 case BPF_MAP_TYPE_DEVMAP_HASH: 4520 if (unlikely(flags & BPF_F_BROADCAST)) { 4521 map = READ_ONCE(ri->map); 4522 4523 /* The map pointer is cleared when the map is being torn 4524 * down by dev_map_free() 4525 */ 4526 if (unlikely(!map)) { 4527 err = -ENOENT; 4528 break; 4529 } 4530 4531 WRITE_ONCE(ri->map, NULL); 4532 err = dev_map_redirect_multi(dev, skb, xdp_prog, map, 4533 flags & BPF_F_EXCLUDE_INGRESS); 4534 } else { 4535 err = dev_map_generic_redirect(fwd, skb, xdp_prog); 4536 } 4537 if (unlikely(err)) 4538 goto err; 4539 break; 4540 case BPF_MAP_TYPE_XSKMAP: 4541 err = xsk_generic_rcv(fwd, xdp); 4542 if (err) 4543 goto err; 4544 consume_skb(skb); 4545 break; 4546 case BPF_MAP_TYPE_CPUMAP: 4547 err = cpu_map_generic_redirect(fwd, skb); 4548 if (unlikely(err)) 4549 goto err; 4550 break; 4551 default: 4552 err = -EBADRQC; 4553 goto err; 4554 } 4555 4556 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); 4557 return 0; 4558 err: 4559 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); 4560 return err; 4561 } 4562 4563 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 4564 struct xdp_buff *xdp, 4565 const struct bpf_prog *xdp_prog) 4566 { 4567 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4568 enum bpf_map_type map_type = ri->map_type; 4569 void *fwd = ri->tgt_value; 4570 u32 map_id = ri->map_id; 4571 u32 flags = ri->flags; 4572 int err; 4573 4574 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ 4575 ri->flags = 0; 4576 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4577 4578 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) { 4579 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index); 4580 if (unlikely(!fwd)) { 4581 err = -EINVAL; 4582 goto err; 4583 } 4584 4585 err = xdp_ok_fwd_dev(fwd, skb->len); 4586 if (unlikely(err)) 4587 goto err; 4588 4589 skb->dev = fwd; 4590 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index); 4591 generic_xdp_tx(skb, xdp_prog); 4592 return 0; 4593 } 4594 4595 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags); 4596 err: 4597 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err); 4598 return err; 4599 } 4600 4601 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags) 4602 { 4603 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); 4604 4605 if (unlikely(flags)) 4606 return XDP_ABORTED; 4607 4608 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated 4609 * by map_idr) is used for ifindex based XDP redirect. 4610 */ 4611 ri->tgt_index = ifindex; 4612 ri->map_id = INT_MAX; 4613 ri->map_type = BPF_MAP_TYPE_UNSPEC; 4614 4615 return XDP_REDIRECT; 4616 } 4617 4618 static const struct bpf_func_proto bpf_xdp_redirect_proto = { 4619 .func = bpf_xdp_redirect, 4620 .gpl_only = false, 4621 .ret_type = RET_INTEGER, 4622 .arg1_type = ARG_ANYTHING, 4623 .arg2_type = ARG_ANYTHING, 4624 }; 4625 4626 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key, 4627 u64, flags) 4628 { 4629 return map->ops->map_redirect(map, key, flags); 4630 } 4631 4632 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = { 4633 .func = bpf_xdp_redirect_map, 4634 .gpl_only = false, 4635 .ret_type = RET_INTEGER, 4636 .arg1_type = ARG_CONST_MAP_PTR, 4637 .arg2_type = ARG_ANYTHING, 4638 .arg3_type = ARG_ANYTHING, 4639 }; 4640 4641 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb, 4642 unsigned long off, unsigned long len) 4643 { 4644 void *ptr = skb_header_pointer(skb, off, len, dst_buff); 4645 4646 if (unlikely(!ptr)) 4647 return len; 4648 if (ptr != dst_buff) 4649 memcpy(dst_buff, ptr, len); 4650 4651 return 0; 4652 } 4653 4654 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map, 4655 u64, flags, void *, meta, u64, meta_size) 4656 { 4657 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32; 4658 4659 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) 4660 return -EINVAL; 4661 if (unlikely(!skb || skb_size > skb->len)) 4662 return -EFAULT; 4663 4664 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size, 4665 bpf_skb_copy); 4666 } 4667 4668 static const struct bpf_func_proto bpf_skb_event_output_proto = { 4669 .func = bpf_skb_event_output, 4670 .gpl_only = true, 4671 .ret_type = RET_INTEGER, 4672 .arg1_type = ARG_PTR_TO_CTX, 4673 .arg2_type = ARG_CONST_MAP_PTR, 4674 .arg3_type = ARG_ANYTHING, 4675 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4676 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 4677 }; 4678 4679 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff) 4680 4681 const struct bpf_func_proto bpf_skb_output_proto = { 4682 .func = bpf_skb_event_output, 4683 .gpl_only = true, 4684 .ret_type = RET_INTEGER, 4685 .arg1_type = ARG_PTR_TO_BTF_ID, 4686 .arg1_btf_id = &bpf_skb_output_btf_ids[0], 4687 .arg2_type = ARG_CONST_MAP_PTR, 4688 .arg3_type = ARG_ANYTHING, 4689 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4690 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 4691 }; 4692 4693 static unsigned short bpf_tunnel_key_af(u64 flags) 4694 { 4695 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET; 4696 } 4697 4698 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to, 4699 u32, size, u64, flags) 4700 { 4701 const struct ip_tunnel_info *info = skb_tunnel_info(skb); 4702 u8 compat[sizeof(struct bpf_tunnel_key)]; 4703 void *to_orig = to; 4704 int err; 4705 4706 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 | 4707 BPF_F_TUNINFO_FLAGS)))) { 4708 err = -EINVAL; 4709 goto err_clear; 4710 } 4711 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) { 4712 err = -EPROTO; 4713 goto err_clear; 4714 } 4715 if (unlikely(size != sizeof(struct bpf_tunnel_key))) { 4716 err = -EINVAL; 4717 switch (size) { 4718 case offsetof(struct bpf_tunnel_key, local_ipv6[0]): 4719 case offsetof(struct bpf_tunnel_key, tunnel_label): 4720 case offsetof(struct bpf_tunnel_key, tunnel_ext): 4721 goto set_compat; 4722 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): 4723 /* Fixup deprecated structure layouts here, so we have 4724 * a common path later on. 4725 */ 4726 if (ip_tunnel_info_af(info) != AF_INET) 4727 goto err_clear; 4728 set_compat: 4729 to = (struct bpf_tunnel_key *)compat; 4730 break; 4731 default: 4732 goto err_clear; 4733 } 4734 } 4735 4736 to->tunnel_id = be64_to_cpu(info->key.tun_id); 4737 to->tunnel_tos = info->key.tos; 4738 to->tunnel_ttl = info->key.ttl; 4739 if (flags & BPF_F_TUNINFO_FLAGS) 4740 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags); 4741 else 4742 to->tunnel_ext = 0; 4743 4744 if (flags & BPF_F_TUNINFO_IPV6) { 4745 memcpy(to->remote_ipv6, &info->key.u.ipv6.src, 4746 sizeof(to->remote_ipv6)); 4747 memcpy(to->local_ipv6, &info->key.u.ipv6.dst, 4748 sizeof(to->local_ipv6)); 4749 to->tunnel_label = be32_to_cpu(info->key.label); 4750 } else { 4751 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src); 4752 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); 4753 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst); 4754 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3); 4755 to->tunnel_label = 0; 4756 } 4757 4758 if (unlikely(size != sizeof(struct bpf_tunnel_key))) 4759 memcpy(to_orig, to, size); 4760 4761 return 0; 4762 err_clear: 4763 memset(to_orig, 0, size); 4764 return err; 4765 } 4766 4767 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = { 4768 .func = bpf_skb_get_tunnel_key, 4769 .gpl_only = false, 4770 .ret_type = RET_INTEGER, 4771 .arg1_type = ARG_PTR_TO_CTX, 4772 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 4773 .arg3_type = ARG_CONST_SIZE, 4774 .arg4_type = ARG_ANYTHING, 4775 }; 4776 4777 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size) 4778 { 4779 const struct ip_tunnel_info *info = skb_tunnel_info(skb); 4780 int err; 4781 4782 if (unlikely(!info || 4783 !ip_tunnel_is_options_present(info->key.tun_flags))) { 4784 err = -ENOENT; 4785 goto err_clear; 4786 } 4787 if (unlikely(size < info->options_len)) { 4788 err = -ENOMEM; 4789 goto err_clear; 4790 } 4791 4792 ip_tunnel_info_opts_get(to, info); 4793 if (size > info->options_len) 4794 memset(to + info->options_len, 0, size - info->options_len); 4795 4796 return info->options_len; 4797 err_clear: 4798 memset(to, 0, size); 4799 return err; 4800 } 4801 4802 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = { 4803 .func = bpf_skb_get_tunnel_opt, 4804 .gpl_only = false, 4805 .ret_type = RET_INTEGER, 4806 .arg1_type = ARG_PTR_TO_CTX, 4807 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 4808 .arg3_type = ARG_CONST_SIZE, 4809 }; 4810 4811 static struct metadata_dst __percpu *md_dst; 4812 4813 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb, 4814 const struct bpf_tunnel_key *, from, u32, size, u64, flags) 4815 { 4816 struct metadata_dst *md = this_cpu_ptr(md_dst); 4817 u8 compat[sizeof(struct bpf_tunnel_key)]; 4818 struct ip_tunnel_info *info; 4819 4820 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX | 4821 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER | 4822 BPF_F_NO_TUNNEL_KEY))) 4823 return -EINVAL; 4824 if (unlikely(size != sizeof(struct bpf_tunnel_key))) { 4825 switch (size) { 4826 case offsetof(struct bpf_tunnel_key, local_ipv6[0]): 4827 case offsetof(struct bpf_tunnel_key, tunnel_label): 4828 case offsetof(struct bpf_tunnel_key, tunnel_ext): 4829 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): 4830 /* Fixup deprecated structure layouts here, so we have 4831 * a common path later on. 4832 */ 4833 memcpy(compat, from, size); 4834 memset(compat + size, 0, sizeof(compat) - size); 4835 from = (const struct bpf_tunnel_key *) compat; 4836 break; 4837 default: 4838 return -EINVAL; 4839 } 4840 } 4841 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) || 4842 from->tunnel_ext)) 4843 return -EINVAL; 4844 4845 skb_dst_drop(skb); 4846 dst_hold((struct dst_entry *) md); 4847 skb_dst_set(skb, (struct dst_entry *) md); 4848 4849 info = &md->u.tun_info; 4850 memset(info, 0, sizeof(*info)); 4851 info->mode = IP_TUNNEL_INFO_TX; 4852 4853 __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags); 4854 __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags, 4855 flags & BPF_F_DONT_FRAGMENT); 4856 __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags, 4857 !(flags & BPF_F_ZERO_CSUM_TX)); 4858 __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags, 4859 flags & BPF_F_SEQ_NUMBER); 4860 __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags, 4861 !(flags & BPF_F_NO_TUNNEL_KEY)); 4862 4863 info->key.tun_id = cpu_to_be64(from->tunnel_id); 4864 info->key.tos = from->tunnel_tos; 4865 info->key.ttl = from->tunnel_ttl; 4866 4867 if (flags & BPF_F_TUNINFO_IPV6) { 4868 info->mode |= IP_TUNNEL_INFO_IPV6; 4869 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6, 4870 sizeof(from->remote_ipv6)); 4871 memcpy(&info->key.u.ipv6.src, from->local_ipv6, 4872 sizeof(from->local_ipv6)); 4873 info->key.label = cpu_to_be32(from->tunnel_label) & 4874 IPV6_FLOWLABEL_MASK; 4875 } else { 4876 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4); 4877 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4); 4878 info->key.flow_flags = FLOWI_FLAG_ANYSRC; 4879 } 4880 4881 return 0; 4882 } 4883 4884 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = { 4885 .func = bpf_skb_set_tunnel_key, 4886 .gpl_only = false, 4887 .ret_type = RET_INTEGER, 4888 .arg1_type = ARG_PTR_TO_CTX, 4889 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4890 .arg3_type = ARG_CONST_SIZE, 4891 .arg4_type = ARG_ANYTHING, 4892 }; 4893 4894 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb, 4895 const u8 *, from, u32, size) 4896 { 4897 struct ip_tunnel_info *info = skb_tunnel_info(skb); 4898 const struct metadata_dst *md = this_cpu_ptr(md_dst); 4899 IP_TUNNEL_DECLARE_FLAGS(present) = { }; 4900 4901 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1)))) 4902 return -EINVAL; 4903 if (unlikely(size > IP_TUNNEL_OPTS_MAX)) 4904 return -ENOMEM; 4905 4906 ip_tunnel_set_options_present(present); 4907 ip_tunnel_info_opts_set(info, from, size, present); 4908 4909 return 0; 4910 } 4911 4912 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = { 4913 .func = bpf_skb_set_tunnel_opt, 4914 .gpl_only = false, 4915 .ret_type = RET_INTEGER, 4916 .arg1_type = ARG_PTR_TO_CTX, 4917 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 4918 .arg3_type = ARG_CONST_SIZE, 4919 }; 4920 4921 static const struct bpf_func_proto * 4922 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which) 4923 { 4924 if (!md_dst) { 4925 struct metadata_dst __percpu *tmp; 4926 4927 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX, 4928 METADATA_IP_TUNNEL, 4929 GFP_KERNEL); 4930 if (!tmp) 4931 return NULL; 4932 if (cmpxchg(&md_dst, NULL, tmp)) 4933 metadata_dst_free_percpu(tmp); 4934 } 4935 4936 switch (which) { 4937 case BPF_FUNC_skb_set_tunnel_key: 4938 return &bpf_skb_set_tunnel_key_proto; 4939 case BPF_FUNC_skb_set_tunnel_opt: 4940 return &bpf_skb_set_tunnel_opt_proto; 4941 default: 4942 return NULL; 4943 } 4944 } 4945 4946 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map, 4947 u32, idx) 4948 { 4949 struct bpf_array *array = container_of(map, struct bpf_array, map); 4950 struct cgroup *cgrp; 4951 struct sock *sk; 4952 4953 sk = skb_to_full_sk(skb); 4954 if (!sk || !sk_fullsock(sk)) 4955 return -ENOENT; 4956 if (unlikely(idx >= array->map.max_entries)) 4957 return -E2BIG; 4958 4959 cgrp = READ_ONCE(array->ptrs[idx]); 4960 if (unlikely(!cgrp)) 4961 return -EAGAIN; 4962 4963 return sk_under_cgroup_hierarchy(sk, cgrp); 4964 } 4965 4966 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = { 4967 .func = bpf_skb_under_cgroup, 4968 .gpl_only = false, 4969 .ret_type = RET_INTEGER, 4970 .arg1_type = ARG_PTR_TO_CTX, 4971 .arg2_type = ARG_CONST_MAP_PTR, 4972 .arg3_type = ARG_ANYTHING, 4973 }; 4974 4975 #ifdef CONFIG_SOCK_CGROUP_DATA 4976 static inline u64 __bpf_sk_cgroup_id(struct sock *sk) 4977 { 4978 struct cgroup *cgrp; 4979 4980 sk = sk_to_full_sk(sk); 4981 if (!sk || !sk_fullsock(sk)) 4982 return 0; 4983 4984 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 4985 return cgroup_id(cgrp); 4986 } 4987 4988 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb) 4989 { 4990 return __bpf_sk_cgroup_id(skb->sk); 4991 } 4992 4993 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = { 4994 .func = bpf_skb_cgroup_id, 4995 .gpl_only = false, 4996 .ret_type = RET_INTEGER, 4997 .arg1_type = ARG_PTR_TO_CTX, 4998 }; 4999 5000 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk, 5001 int ancestor_level) 5002 { 5003 struct cgroup *ancestor; 5004 struct cgroup *cgrp; 5005 5006 sk = sk_to_full_sk(sk); 5007 if (!sk || !sk_fullsock(sk)) 5008 return 0; 5009 5010 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 5011 ancestor = cgroup_ancestor(cgrp, ancestor_level); 5012 if (!ancestor) 5013 return 0; 5014 5015 return cgroup_id(ancestor); 5016 } 5017 5018 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int, 5019 ancestor_level) 5020 { 5021 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level); 5022 } 5023 5024 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = { 5025 .func = bpf_skb_ancestor_cgroup_id, 5026 .gpl_only = false, 5027 .ret_type = RET_INTEGER, 5028 .arg1_type = ARG_PTR_TO_CTX, 5029 .arg2_type = ARG_ANYTHING, 5030 }; 5031 5032 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk) 5033 { 5034 return __bpf_sk_cgroup_id(sk); 5035 } 5036 5037 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = { 5038 .func = bpf_sk_cgroup_id, 5039 .gpl_only = false, 5040 .ret_type = RET_INTEGER, 5041 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5042 }; 5043 5044 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level) 5045 { 5046 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level); 5047 } 5048 5049 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = { 5050 .func = bpf_sk_ancestor_cgroup_id, 5051 .gpl_only = false, 5052 .ret_type = RET_INTEGER, 5053 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5054 .arg2_type = ARG_ANYTHING, 5055 }; 5056 #endif 5057 5058 static unsigned long bpf_xdp_copy(void *dst, const void *ctx, 5059 unsigned long off, unsigned long len) 5060 { 5061 struct xdp_buff *xdp = (struct xdp_buff *)ctx; 5062 5063 bpf_xdp_copy_buf(xdp, off, dst, len, false); 5064 return 0; 5065 } 5066 5067 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map, 5068 u64, flags, void *, meta, u64, meta_size) 5069 { 5070 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32; 5071 5072 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) 5073 return -EINVAL; 5074 5075 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp))) 5076 return -EFAULT; 5077 5078 return bpf_event_output(map, flags, meta, meta_size, xdp, 5079 xdp_size, bpf_xdp_copy); 5080 } 5081 5082 static const struct bpf_func_proto bpf_xdp_event_output_proto = { 5083 .func = bpf_xdp_event_output, 5084 .gpl_only = true, 5085 .ret_type = RET_INTEGER, 5086 .arg1_type = ARG_PTR_TO_CTX, 5087 .arg2_type = ARG_CONST_MAP_PTR, 5088 .arg3_type = ARG_ANYTHING, 5089 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5090 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 5091 }; 5092 5093 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff) 5094 5095 const struct bpf_func_proto bpf_xdp_output_proto = { 5096 .func = bpf_xdp_event_output, 5097 .gpl_only = true, 5098 .ret_type = RET_INTEGER, 5099 .arg1_type = ARG_PTR_TO_BTF_ID, 5100 .arg1_btf_id = &bpf_xdp_output_btf_ids[0], 5101 .arg2_type = ARG_CONST_MAP_PTR, 5102 .arg3_type = ARG_ANYTHING, 5103 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5104 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 5105 }; 5106 5107 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb) 5108 { 5109 return skb->sk ? __sock_gen_cookie(skb->sk) : 0; 5110 } 5111 5112 static const struct bpf_func_proto bpf_get_socket_cookie_proto = { 5113 .func = bpf_get_socket_cookie, 5114 .gpl_only = false, 5115 .ret_type = RET_INTEGER, 5116 .arg1_type = ARG_PTR_TO_CTX, 5117 }; 5118 5119 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) 5120 { 5121 return __sock_gen_cookie(ctx->sk); 5122 } 5123 5124 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = { 5125 .func = bpf_get_socket_cookie_sock_addr, 5126 .gpl_only = false, 5127 .ret_type = RET_INTEGER, 5128 .arg1_type = ARG_PTR_TO_CTX, 5129 }; 5130 5131 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx) 5132 { 5133 return __sock_gen_cookie(ctx); 5134 } 5135 5136 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = { 5137 .func = bpf_get_socket_cookie_sock, 5138 .gpl_only = false, 5139 .ret_type = RET_INTEGER, 5140 .arg1_type = ARG_PTR_TO_CTX, 5141 }; 5142 5143 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk) 5144 { 5145 return sk ? sock_gen_cookie(sk) : 0; 5146 } 5147 5148 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = { 5149 .func = bpf_get_socket_ptr_cookie, 5150 .gpl_only = false, 5151 .ret_type = RET_INTEGER, 5152 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL, 5153 }; 5154 5155 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx) 5156 { 5157 return __sock_gen_cookie(ctx->sk); 5158 } 5159 5160 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = { 5161 .func = bpf_get_socket_cookie_sock_ops, 5162 .gpl_only = false, 5163 .ret_type = RET_INTEGER, 5164 .arg1_type = ARG_PTR_TO_CTX, 5165 }; 5166 5167 static u64 __bpf_get_netns_cookie(struct sock *sk) 5168 { 5169 const struct net *net = sk ? sock_net(sk) : &init_net; 5170 5171 return net->net_cookie; 5172 } 5173 5174 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb) 5175 { 5176 return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL); 5177 } 5178 5179 static const struct bpf_func_proto bpf_get_netns_cookie_proto = { 5180 .func = bpf_get_netns_cookie, 5181 .ret_type = RET_INTEGER, 5182 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5183 }; 5184 5185 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx) 5186 { 5187 return __bpf_get_netns_cookie(ctx); 5188 } 5189 5190 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = { 5191 .func = bpf_get_netns_cookie_sock, 5192 .gpl_only = false, 5193 .ret_type = RET_INTEGER, 5194 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5195 }; 5196 5197 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) 5198 { 5199 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); 5200 } 5201 5202 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = { 5203 .func = bpf_get_netns_cookie_sock_addr, 5204 .gpl_only = false, 5205 .ret_type = RET_INTEGER, 5206 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5207 }; 5208 5209 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx) 5210 { 5211 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); 5212 } 5213 5214 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = { 5215 .func = bpf_get_netns_cookie_sock_ops, 5216 .gpl_only = false, 5217 .ret_type = RET_INTEGER, 5218 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5219 }; 5220 5221 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx) 5222 { 5223 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); 5224 } 5225 5226 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = { 5227 .func = bpf_get_netns_cookie_sk_msg, 5228 .gpl_only = false, 5229 .ret_type = RET_INTEGER, 5230 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 5231 }; 5232 5233 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb) 5234 { 5235 struct sock *sk = sk_to_full_sk(skb->sk); 5236 kuid_t kuid; 5237 5238 if (!sk || !sk_fullsock(sk)) 5239 return overflowuid; 5240 kuid = sock_net_uid(sock_net(sk), sk); 5241 return from_kuid_munged(sock_net(sk)->user_ns, kuid); 5242 } 5243 5244 static const struct bpf_func_proto bpf_get_socket_uid_proto = { 5245 .func = bpf_get_socket_uid, 5246 .gpl_only = false, 5247 .ret_type = RET_INTEGER, 5248 .arg1_type = ARG_PTR_TO_CTX, 5249 }; 5250 5251 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt) 5252 { 5253 u32 sk_bpf_cb_flags; 5254 5255 if (getopt) { 5256 *(u32 *)optval = sk->sk_bpf_cb_flags; 5257 return 0; 5258 } 5259 5260 sk_bpf_cb_flags = *(u32 *)optval; 5261 5262 if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK) 5263 return -EINVAL; 5264 5265 sk->sk_bpf_cb_flags = sk_bpf_cb_flags; 5266 5267 return 0; 5268 } 5269 5270 static int sol_socket_sockopt(struct sock *sk, int optname, 5271 char *optval, int *optlen, 5272 bool getopt) 5273 { 5274 switch (optname) { 5275 case SO_REUSEADDR: 5276 case SO_SNDBUF: 5277 case SO_RCVBUF: 5278 case SO_KEEPALIVE: 5279 case SO_PRIORITY: 5280 case SO_REUSEPORT: 5281 case SO_RCVLOWAT: 5282 case SO_MARK: 5283 case SO_MAX_PACING_RATE: 5284 case SO_BINDTOIFINDEX: 5285 case SO_TXREHASH: 5286 case SK_BPF_CB_FLAGS: 5287 if (*optlen != sizeof(int)) 5288 return -EINVAL; 5289 break; 5290 case SO_BINDTODEVICE: 5291 break; 5292 default: 5293 return -EINVAL; 5294 } 5295 5296 if (optname == SK_BPF_CB_FLAGS) 5297 return sk_bpf_set_get_cb_flags(sk, optval, getopt); 5298 5299 if (getopt) { 5300 if (optname == SO_BINDTODEVICE) 5301 return -EINVAL; 5302 return sk_getsockopt(sk, SOL_SOCKET, optname, 5303 KERNEL_SOCKPTR(optval), 5304 KERNEL_SOCKPTR(optlen)); 5305 } 5306 5307 return sk_setsockopt(sk, SOL_SOCKET, optname, 5308 KERNEL_SOCKPTR(optval), *optlen); 5309 } 5310 5311 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname, 5312 char *optval, int optlen) 5313 { 5314 if (optlen != sizeof(int)) 5315 return -EINVAL; 5316 5317 switch (optname) { 5318 case TCP_BPF_SOCK_OPS_CB_FLAGS: { 5319 int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags; 5320 5321 memcpy(optval, &cb_flags, optlen); 5322 break; 5323 } 5324 case TCP_BPF_RTO_MIN: { 5325 int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min); 5326 5327 memcpy(optval, &rto_min_us, optlen); 5328 break; 5329 } 5330 case TCP_BPF_DELACK_MAX: { 5331 int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max); 5332 5333 memcpy(optval, &delack_max_us, optlen); 5334 break; 5335 } 5336 default: 5337 return -EINVAL; 5338 } 5339 5340 return 0; 5341 } 5342 5343 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname, 5344 char *optval, int optlen) 5345 { 5346 struct tcp_sock *tp = tcp_sk(sk); 5347 unsigned long timeout; 5348 int val; 5349 5350 if (optlen != sizeof(int)) 5351 return -EINVAL; 5352 5353 val = *(int *)optval; 5354 5355 /* Only some options are supported */ 5356 switch (optname) { 5357 case TCP_BPF_IW: 5358 if (val <= 0 || tp->data_segs_out > tp->syn_data) 5359 return -EINVAL; 5360 tcp_snd_cwnd_set(tp, val); 5361 break; 5362 case TCP_BPF_SNDCWND_CLAMP: 5363 if (val <= 0) 5364 return -EINVAL; 5365 tp->snd_cwnd_clamp = val; 5366 tp->snd_ssthresh = val; 5367 break; 5368 case TCP_BPF_DELACK_MAX: 5369 timeout = usecs_to_jiffies(val); 5370 if (timeout > TCP_DELACK_MAX || 5371 timeout < TCP_TIMEOUT_MIN) 5372 return -EINVAL; 5373 inet_csk(sk)->icsk_delack_max = timeout; 5374 break; 5375 case TCP_BPF_RTO_MIN: 5376 timeout = usecs_to_jiffies(val); 5377 if (timeout > TCP_RTO_MIN || 5378 timeout < TCP_TIMEOUT_MIN) 5379 return -EINVAL; 5380 inet_csk(sk)->icsk_rto_min = timeout; 5381 break; 5382 case TCP_BPF_SOCK_OPS_CB_FLAGS: 5383 if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS)) 5384 return -EINVAL; 5385 tp->bpf_sock_ops_cb_flags = val; 5386 break; 5387 default: 5388 return -EINVAL; 5389 } 5390 5391 return 0; 5392 } 5393 5394 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval, 5395 int *optlen, bool getopt) 5396 { 5397 struct tcp_sock *tp; 5398 int ret; 5399 5400 if (*optlen < 2) 5401 return -EINVAL; 5402 5403 if (getopt) { 5404 if (!inet_csk(sk)->icsk_ca_ops) 5405 return -EINVAL; 5406 /* BPF expects NULL-terminated tcp-cc string */ 5407 optval[--(*optlen)] = '\0'; 5408 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION, 5409 KERNEL_SOCKPTR(optval), 5410 KERNEL_SOCKPTR(optlen)); 5411 } 5412 5413 /* "cdg" is the only cc that alloc a ptr 5414 * in inet_csk_ca area. The bpf-tcp-cc may 5415 * overwrite this ptr after switching to cdg. 5416 */ 5417 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen)) 5418 return -ENOTSUPP; 5419 5420 /* It stops this looping 5421 * 5422 * .init => bpf_setsockopt(tcp_cc) => .init => 5423 * bpf_setsockopt(tcp_cc)" => .init => .... 5424 * 5425 * The second bpf_setsockopt(tcp_cc) is not allowed 5426 * in order to break the loop when both .init 5427 * are the same bpf prog. 5428 * 5429 * This applies even the second bpf_setsockopt(tcp_cc) 5430 * does not cause a loop. This limits only the first 5431 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to 5432 * pick a fallback cc (eg. peer does not support ECN) 5433 * and the second '.init' cannot fallback to 5434 * another. 5435 */ 5436 tp = tcp_sk(sk); 5437 if (tp->bpf_chg_cc_inprogress) 5438 return -EBUSY; 5439 5440 tp->bpf_chg_cc_inprogress = 1; 5441 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION, 5442 KERNEL_SOCKPTR(optval), *optlen); 5443 tp->bpf_chg_cc_inprogress = 0; 5444 return ret; 5445 } 5446 5447 static int sol_tcp_sockopt(struct sock *sk, int optname, 5448 char *optval, int *optlen, 5449 bool getopt) 5450 { 5451 if (sk->sk_protocol != IPPROTO_TCP) 5452 return -EINVAL; 5453 5454 switch (optname) { 5455 case TCP_NODELAY: 5456 case TCP_MAXSEG: 5457 case TCP_KEEPIDLE: 5458 case TCP_KEEPINTVL: 5459 case TCP_KEEPCNT: 5460 case TCP_SYNCNT: 5461 case TCP_WINDOW_CLAMP: 5462 case TCP_THIN_LINEAR_TIMEOUTS: 5463 case TCP_USER_TIMEOUT: 5464 case TCP_NOTSENT_LOWAT: 5465 case TCP_SAVE_SYN: 5466 case TCP_RTO_MAX_MS: 5467 if (*optlen != sizeof(int)) 5468 return -EINVAL; 5469 break; 5470 case TCP_CONGESTION: 5471 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt); 5472 case TCP_SAVED_SYN: 5473 if (*optlen < 1) 5474 return -EINVAL; 5475 break; 5476 default: 5477 if (getopt) 5478 return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen); 5479 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen); 5480 } 5481 5482 if (getopt) { 5483 if (optname == TCP_SAVED_SYN) { 5484 struct tcp_sock *tp = tcp_sk(sk); 5485 5486 if (!tp->saved_syn || 5487 *optlen > tcp_saved_syn_len(tp->saved_syn)) 5488 return -EINVAL; 5489 memcpy(optval, tp->saved_syn->data, *optlen); 5490 /* It cannot free tp->saved_syn here because it 5491 * does not know if the user space still needs it. 5492 */ 5493 return 0; 5494 } 5495 5496 return do_tcp_getsockopt(sk, SOL_TCP, optname, 5497 KERNEL_SOCKPTR(optval), 5498 KERNEL_SOCKPTR(optlen)); 5499 } 5500 5501 return do_tcp_setsockopt(sk, SOL_TCP, optname, 5502 KERNEL_SOCKPTR(optval), *optlen); 5503 } 5504 5505 static int sol_ip_sockopt(struct sock *sk, int optname, 5506 char *optval, int *optlen, 5507 bool getopt) 5508 { 5509 if (sk->sk_family != AF_INET) 5510 return -EINVAL; 5511 5512 switch (optname) { 5513 case IP_TOS: 5514 if (*optlen != sizeof(int)) 5515 return -EINVAL; 5516 break; 5517 default: 5518 return -EINVAL; 5519 } 5520 5521 if (getopt) 5522 return do_ip_getsockopt(sk, SOL_IP, optname, 5523 KERNEL_SOCKPTR(optval), 5524 KERNEL_SOCKPTR(optlen)); 5525 5526 return do_ip_setsockopt(sk, SOL_IP, optname, 5527 KERNEL_SOCKPTR(optval), *optlen); 5528 } 5529 5530 static int sol_ipv6_sockopt(struct sock *sk, int optname, 5531 char *optval, int *optlen, 5532 bool getopt) 5533 { 5534 if (sk->sk_family != AF_INET6) 5535 return -EINVAL; 5536 5537 switch (optname) { 5538 case IPV6_TCLASS: 5539 case IPV6_AUTOFLOWLABEL: 5540 if (*optlen != sizeof(int)) 5541 return -EINVAL; 5542 break; 5543 default: 5544 return -EINVAL; 5545 } 5546 5547 if (getopt) 5548 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname, 5549 KERNEL_SOCKPTR(optval), 5550 KERNEL_SOCKPTR(optlen)); 5551 5552 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname, 5553 KERNEL_SOCKPTR(optval), *optlen); 5554 } 5555 5556 static int __bpf_setsockopt(struct sock *sk, int level, int optname, 5557 char *optval, int optlen) 5558 { 5559 if (!sk_fullsock(sk)) 5560 return -EINVAL; 5561 5562 if (level == SOL_SOCKET) 5563 return sol_socket_sockopt(sk, optname, optval, &optlen, false); 5564 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP) 5565 return sol_ip_sockopt(sk, optname, optval, &optlen, false); 5566 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6) 5567 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false); 5568 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP) 5569 return sol_tcp_sockopt(sk, optname, optval, &optlen, false); 5570 5571 return -EINVAL; 5572 } 5573 5574 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock) 5575 { 5576 return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 5577 } 5578 5579 static int _bpf_setsockopt(struct sock *sk, int level, int optname, 5580 char *optval, int optlen) 5581 { 5582 if (sk_fullsock(sk)) 5583 sock_owned_by_me(sk); 5584 return __bpf_setsockopt(sk, level, optname, optval, optlen); 5585 } 5586 5587 static int __bpf_getsockopt(struct sock *sk, int level, int optname, 5588 char *optval, int optlen) 5589 { 5590 int err, saved_optlen = optlen; 5591 5592 if (!sk_fullsock(sk)) { 5593 err = -EINVAL; 5594 goto done; 5595 } 5596 5597 if (level == SOL_SOCKET) 5598 err = sol_socket_sockopt(sk, optname, optval, &optlen, true); 5599 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP) 5600 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true); 5601 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP) 5602 err = sol_ip_sockopt(sk, optname, optval, &optlen, true); 5603 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6) 5604 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true); 5605 else 5606 err = -EINVAL; 5607 5608 done: 5609 if (err) 5610 optlen = 0; 5611 if (optlen < saved_optlen) 5612 memset(optval + optlen, 0, saved_optlen - optlen); 5613 return err; 5614 } 5615 5616 static int _bpf_getsockopt(struct sock *sk, int level, int optname, 5617 char *optval, int optlen) 5618 { 5619 if (sk_fullsock(sk)) 5620 sock_owned_by_me(sk); 5621 return __bpf_getsockopt(sk, level, optname, optval, optlen); 5622 } 5623 5624 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level, 5625 int, optname, char *, optval, int, optlen) 5626 { 5627 return _bpf_setsockopt(sk, level, optname, optval, optlen); 5628 } 5629 5630 const struct bpf_func_proto bpf_sk_setsockopt_proto = { 5631 .func = bpf_sk_setsockopt, 5632 .gpl_only = false, 5633 .ret_type = RET_INTEGER, 5634 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5635 .arg2_type = ARG_ANYTHING, 5636 .arg3_type = ARG_ANYTHING, 5637 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5638 .arg5_type = ARG_CONST_SIZE, 5639 }; 5640 5641 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level, 5642 int, optname, char *, optval, int, optlen) 5643 { 5644 return _bpf_getsockopt(sk, level, optname, optval, optlen); 5645 } 5646 5647 const struct bpf_func_proto bpf_sk_getsockopt_proto = { 5648 .func = bpf_sk_getsockopt, 5649 .gpl_only = false, 5650 .ret_type = RET_INTEGER, 5651 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5652 .arg2_type = ARG_ANYTHING, 5653 .arg3_type = ARG_ANYTHING, 5654 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5655 .arg5_type = ARG_CONST_SIZE, 5656 }; 5657 5658 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level, 5659 int, optname, char *, optval, int, optlen) 5660 { 5661 return __bpf_setsockopt(sk, level, optname, optval, optlen); 5662 } 5663 5664 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = { 5665 .func = bpf_unlocked_sk_setsockopt, 5666 .gpl_only = false, 5667 .ret_type = RET_INTEGER, 5668 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5669 .arg2_type = ARG_ANYTHING, 5670 .arg3_type = ARG_ANYTHING, 5671 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5672 .arg5_type = ARG_CONST_SIZE, 5673 }; 5674 5675 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level, 5676 int, optname, char *, optval, int, optlen) 5677 { 5678 return __bpf_getsockopt(sk, level, optname, optval, optlen); 5679 } 5680 5681 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = { 5682 .func = bpf_unlocked_sk_getsockopt, 5683 .gpl_only = false, 5684 .ret_type = RET_INTEGER, 5685 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 5686 .arg2_type = ARG_ANYTHING, 5687 .arg3_type = ARG_ANYTHING, 5688 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5689 .arg5_type = ARG_CONST_SIZE, 5690 }; 5691 5692 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx, 5693 int, level, int, optname, char *, optval, int, optlen) 5694 { 5695 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen); 5696 } 5697 5698 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = { 5699 .func = bpf_sock_addr_setsockopt, 5700 .gpl_only = false, 5701 .ret_type = RET_INTEGER, 5702 .arg1_type = ARG_PTR_TO_CTX, 5703 .arg2_type = ARG_ANYTHING, 5704 .arg3_type = ARG_ANYTHING, 5705 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5706 .arg5_type = ARG_CONST_SIZE, 5707 }; 5708 5709 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx, 5710 int, level, int, optname, char *, optval, int, optlen) 5711 { 5712 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen); 5713 } 5714 5715 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = { 5716 .func = bpf_sock_addr_getsockopt, 5717 .gpl_only = false, 5718 .ret_type = RET_INTEGER, 5719 .arg1_type = ARG_PTR_TO_CTX, 5720 .arg2_type = ARG_ANYTHING, 5721 .arg3_type = ARG_ANYTHING, 5722 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5723 .arg5_type = ARG_CONST_SIZE, 5724 }; 5725 5726 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock, 5727 int, level, int, optname, char *, optval, int, optlen) 5728 { 5729 if (!is_locked_tcp_sock_ops(bpf_sock)) 5730 return -EOPNOTSUPP; 5731 5732 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen); 5733 } 5734 5735 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = { 5736 .func = bpf_sock_ops_setsockopt, 5737 .gpl_only = false, 5738 .ret_type = RET_INTEGER, 5739 .arg1_type = ARG_PTR_TO_CTX, 5740 .arg2_type = ARG_ANYTHING, 5741 .arg3_type = ARG_ANYTHING, 5742 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5743 .arg5_type = ARG_CONST_SIZE, 5744 }; 5745 5746 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock, 5747 int optname, const u8 **start) 5748 { 5749 struct sk_buff *syn_skb = bpf_sock->syn_skb; 5750 const u8 *hdr_start; 5751 int ret; 5752 5753 if (syn_skb) { 5754 /* sk is a request_sock here */ 5755 5756 if (optname == TCP_BPF_SYN) { 5757 hdr_start = syn_skb->data; 5758 ret = tcp_hdrlen(syn_skb); 5759 } else if (optname == TCP_BPF_SYN_IP) { 5760 hdr_start = skb_network_header(syn_skb); 5761 ret = skb_network_header_len(syn_skb) + 5762 tcp_hdrlen(syn_skb); 5763 } else { 5764 /* optname == TCP_BPF_SYN_MAC */ 5765 hdr_start = skb_mac_header(syn_skb); 5766 ret = skb_mac_header_len(syn_skb) + 5767 skb_network_header_len(syn_skb) + 5768 tcp_hdrlen(syn_skb); 5769 } 5770 } else { 5771 struct sock *sk = bpf_sock->sk; 5772 struct saved_syn *saved_syn; 5773 5774 if (sk->sk_state == TCP_NEW_SYN_RECV) 5775 /* synack retransmit. bpf_sock->syn_skb will 5776 * not be available. It has to resort to 5777 * saved_syn (if it is saved). 5778 */ 5779 saved_syn = inet_reqsk(sk)->saved_syn; 5780 else 5781 saved_syn = tcp_sk(sk)->saved_syn; 5782 5783 if (!saved_syn) 5784 return -ENOENT; 5785 5786 if (optname == TCP_BPF_SYN) { 5787 hdr_start = saved_syn->data + 5788 saved_syn->mac_hdrlen + 5789 saved_syn->network_hdrlen; 5790 ret = saved_syn->tcp_hdrlen; 5791 } else if (optname == TCP_BPF_SYN_IP) { 5792 hdr_start = saved_syn->data + 5793 saved_syn->mac_hdrlen; 5794 ret = saved_syn->network_hdrlen + 5795 saved_syn->tcp_hdrlen; 5796 } else { 5797 /* optname == TCP_BPF_SYN_MAC */ 5798 5799 /* TCP_SAVE_SYN may not have saved the mac hdr */ 5800 if (!saved_syn->mac_hdrlen) 5801 return -ENOENT; 5802 5803 hdr_start = saved_syn->data; 5804 ret = saved_syn->mac_hdrlen + 5805 saved_syn->network_hdrlen + 5806 saved_syn->tcp_hdrlen; 5807 } 5808 } 5809 5810 *start = hdr_start; 5811 return ret; 5812 } 5813 5814 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock, 5815 int, level, int, optname, char *, optval, int, optlen) 5816 { 5817 if (!is_locked_tcp_sock_ops(bpf_sock)) 5818 return -EOPNOTSUPP; 5819 5820 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP && 5821 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) { 5822 int ret, copy_len = 0; 5823 const u8 *start; 5824 5825 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start); 5826 if (ret > 0) { 5827 copy_len = ret; 5828 if (optlen < copy_len) { 5829 copy_len = optlen; 5830 ret = -ENOSPC; 5831 } 5832 5833 memcpy(optval, start, copy_len); 5834 } 5835 5836 /* Zero out unused buffer at the end */ 5837 memset(optval + copy_len, 0, optlen - copy_len); 5838 5839 return ret; 5840 } 5841 5842 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen); 5843 } 5844 5845 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = { 5846 .func = bpf_sock_ops_getsockopt, 5847 .gpl_only = false, 5848 .ret_type = RET_INTEGER, 5849 .arg1_type = ARG_PTR_TO_CTX, 5850 .arg2_type = ARG_ANYTHING, 5851 .arg3_type = ARG_ANYTHING, 5852 .arg4_type = ARG_PTR_TO_UNINIT_MEM, 5853 .arg5_type = ARG_CONST_SIZE, 5854 }; 5855 5856 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock, 5857 int, argval) 5858 { 5859 struct sock *sk = bpf_sock->sk; 5860 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS; 5861 5862 if (!is_locked_tcp_sock_ops(bpf_sock)) 5863 return -EOPNOTSUPP; 5864 5865 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk)) 5866 return -EINVAL; 5867 5868 tcp_sk(sk)->bpf_sock_ops_cb_flags = val; 5869 5870 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS); 5871 } 5872 5873 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = { 5874 .func = bpf_sock_ops_cb_flags_set, 5875 .gpl_only = false, 5876 .ret_type = RET_INTEGER, 5877 .arg1_type = ARG_PTR_TO_CTX, 5878 .arg2_type = ARG_ANYTHING, 5879 }; 5880 5881 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly; 5882 EXPORT_SYMBOL_GPL(ipv6_bpf_stub); 5883 5884 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr, 5885 int, addr_len) 5886 { 5887 #ifdef CONFIG_INET 5888 struct sock *sk = ctx->sk; 5889 u32 flags = BIND_FROM_BPF; 5890 int err; 5891 5892 err = -EINVAL; 5893 if (addr_len < offsetofend(struct sockaddr, sa_family)) 5894 return err; 5895 if (addr->sa_family == AF_INET) { 5896 if (addr_len < sizeof(struct sockaddr_in)) 5897 return err; 5898 if (((struct sockaddr_in *)addr)->sin_port == htons(0)) 5899 flags |= BIND_FORCE_ADDRESS_NO_PORT; 5900 return __inet_bind(sk, addr, addr_len, flags); 5901 #if IS_ENABLED(CONFIG_IPV6) 5902 } else if (addr->sa_family == AF_INET6) { 5903 if (addr_len < SIN6_LEN_RFC2133) 5904 return err; 5905 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0)) 5906 flags |= BIND_FORCE_ADDRESS_NO_PORT; 5907 /* ipv6_bpf_stub cannot be NULL, since it's called from 5908 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded 5909 */ 5910 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags); 5911 #endif /* CONFIG_IPV6 */ 5912 } 5913 #endif /* CONFIG_INET */ 5914 5915 return -EAFNOSUPPORT; 5916 } 5917 5918 static const struct bpf_func_proto bpf_bind_proto = { 5919 .func = bpf_bind, 5920 .gpl_only = false, 5921 .ret_type = RET_INTEGER, 5922 .arg1_type = ARG_PTR_TO_CTX, 5923 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 5924 .arg3_type = ARG_CONST_SIZE, 5925 }; 5926 5927 #ifdef CONFIG_XFRM 5928 5929 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \ 5930 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 5931 5932 struct metadata_dst __percpu *xfrm_bpf_md_dst; 5933 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst); 5934 5935 #endif 5936 5937 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index, 5938 struct bpf_xfrm_state *, to, u32, size, u64, flags) 5939 { 5940 const struct sec_path *sp = skb_sec_path(skb); 5941 const struct xfrm_state *x; 5942 5943 if (!sp || unlikely(index >= sp->len || flags)) 5944 goto err_clear; 5945 5946 x = sp->xvec[index]; 5947 5948 if (unlikely(size != sizeof(struct bpf_xfrm_state))) 5949 goto err_clear; 5950 5951 to->reqid = x->props.reqid; 5952 to->spi = x->id.spi; 5953 to->family = x->props.family; 5954 to->ext = 0; 5955 5956 if (to->family == AF_INET6) { 5957 memcpy(to->remote_ipv6, x->props.saddr.a6, 5958 sizeof(to->remote_ipv6)); 5959 } else { 5960 to->remote_ipv4 = x->props.saddr.a4; 5961 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); 5962 } 5963 5964 return 0; 5965 err_clear: 5966 memset(to, 0, size); 5967 return -EINVAL; 5968 } 5969 5970 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = { 5971 .func = bpf_skb_get_xfrm_state, 5972 .gpl_only = false, 5973 .ret_type = RET_INTEGER, 5974 .arg1_type = ARG_PTR_TO_CTX, 5975 .arg2_type = ARG_ANYTHING, 5976 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 5977 .arg4_type = ARG_CONST_SIZE, 5978 .arg5_type = ARG_ANYTHING, 5979 }; 5980 #endif 5981 5982 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6) 5983 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu) 5984 { 5985 params->h_vlan_TCI = 0; 5986 params->h_vlan_proto = 0; 5987 if (mtu) 5988 params->mtu_result = mtu; /* union with tot_len */ 5989 5990 return 0; 5991 } 5992 #endif 5993 5994 #if IS_ENABLED(CONFIG_INET) 5995 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params, 5996 u32 flags, bool check_mtu) 5997 { 5998 struct fib_nh_common *nhc; 5999 struct in_device *in_dev; 6000 struct neighbour *neigh; 6001 struct net_device *dev; 6002 struct fib_result res; 6003 struct flowi4 fl4; 6004 u32 mtu = 0; 6005 int err; 6006 6007 dev = dev_get_by_index_rcu(net, params->ifindex); 6008 if (unlikely(!dev)) 6009 return -ENODEV; 6010 6011 /* verify forwarding is enabled on this interface */ 6012 in_dev = __in_dev_get_rcu(dev); 6013 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev))) 6014 return BPF_FIB_LKUP_RET_FWD_DISABLED; 6015 6016 if (flags & BPF_FIB_LOOKUP_OUTPUT) { 6017 fl4.flowi4_iif = 1; 6018 fl4.flowi4_oif = params->ifindex; 6019 } else { 6020 fl4.flowi4_iif = params->ifindex; 6021 fl4.flowi4_oif = 0; 6022 } 6023 fl4.flowi4_tos = params->tos & INET_DSCP_MASK; 6024 fl4.flowi4_scope = RT_SCOPE_UNIVERSE; 6025 fl4.flowi4_flags = 0; 6026 6027 fl4.flowi4_proto = params->l4_protocol; 6028 fl4.daddr = params->ipv4_dst; 6029 fl4.saddr = params->ipv4_src; 6030 fl4.fl4_sport = params->sport; 6031 fl4.fl4_dport = params->dport; 6032 fl4.flowi4_multipath_hash = 0; 6033 6034 if (flags & BPF_FIB_LOOKUP_DIRECT) { 6035 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 6036 struct fib_table *tb; 6037 6038 if (flags & BPF_FIB_LOOKUP_TBID) { 6039 tbid = params->tbid; 6040 /* zero out for vlan output */ 6041 params->tbid = 0; 6042 } 6043 6044 tb = fib_get_table(net, tbid); 6045 if (unlikely(!tb)) 6046 return BPF_FIB_LKUP_RET_NOT_FWDED; 6047 6048 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF); 6049 } else { 6050 if (flags & BPF_FIB_LOOKUP_MARK) 6051 fl4.flowi4_mark = params->mark; 6052 else 6053 fl4.flowi4_mark = 0; 6054 fl4.flowi4_secid = 0; 6055 fl4.flowi4_tun_key.tun_id = 0; 6056 fl4.flowi4_uid = sock_net_uid(net, NULL); 6057 6058 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF); 6059 } 6060 6061 if (err) { 6062 /* map fib lookup errors to RTN_ type */ 6063 if (err == -EINVAL) 6064 return BPF_FIB_LKUP_RET_BLACKHOLE; 6065 if (err == -EHOSTUNREACH) 6066 return BPF_FIB_LKUP_RET_UNREACHABLE; 6067 if (err == -EACCES) 6068 return BPF_FIB_LKUP_RET_PROHIBIT; 6069 6070 return BPF_FIB_LKUP_RET_NOT_FWDED; 6071 } 6072 6073 if (res.type != RTN_UNICAST) 6074 return BPF_FIB_LKUP_RET_NOT_FWDED; 6075 6076 if (fib_info_num_path(res.fi) > 1) 6077 fib_select_path(net, &res, &fl4, NULL); 6078 6079 if (check_mtu) { 6080 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst); 6081 if (params->tot_len > mtu) { 6082 params->mtu_result = mtu; /* union with tot_len */ 6083 return BPF_FIB_LKUP_RET_FRAG_NEEDED; 6084 } 6085 } 6086 6087 nhc = res.nhc; 6088 6089 /* do not handle lwt encaps right now */ 6090 if (nhc->nhc_lwtstate) 6091 return BPF_FIB_LKUP_RET_UNSUPP_LWT; 6092 6093 dev = nhc->nhc_dev; 6094 6095 params->rt_metric = res.fi->fib_priority; 6096 params->ifindex = dev->ifindex; 6097 6098 if (flags & BPF_FIB_LOOKUP_SRC) 6099 params->ipv4_src = fib_result_prefsrc(net, &res); 6100 6101 /* xdp and cls_bpf programs are run in RCU-bh so 6102 * rcu_read_lock_bh is not needed here 6103 */ 6104 if (likely(nhc->nhc_gw_family != AF_INET6)) { 6105 if (nhc->nhc_gw_family) 6106 params->ipv4_dst = nhc->nhc_gw.ipv4; 6107 } else { 6108 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst; 6109 6110 params->family = AF_INET6; 6111 *dst = nhc->nhc_gw.ipv6; 6112 } 6113 6114 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH) 6115 goto set_fwd_params; 6116 6117 if (likely(nhc->nhc_gw_family != AF_INET6)) 6118 neigh = __ipv4_neigh_lookup_noref(dev, 6119 (__force u32)params->ipv4_dst); 6120 else 6121 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst); 6122 6123 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID)) 6124 return BPF_FIB_LKUP_RET_NO_NEIGH; 6125 memcpy(params->dmac, neigh->ha, ETH_ALEN); 6126 memcpy(params->smac, dev->dev_addr, ETH_ALEN); 6127 6128 set_fwd_params: 6129 return bpf_fib_set_fwd_params(params, mtu); 6130 } 6131 #endif 6132 6133 #if IS_ENABLED(CONFIG_IPV6) 6134 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params, 6135 u32 flags, bool check_mtu) 6136 { 6137 struct in6_addr *src = (struct in6_addr *) params->ipv6_src; 6138 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst; 6139 struct fib6_result res = {}; 6140 struct neighbour *neigh; 6141 struct net_device *dev; 6142 struct inet6_dev *idev; 6143 struct flowi6 fl6; 6144 int strict = 0; 6145 int oif, err; 6146 u32 mtu = 0; 6147 6148 /* link local addresses are never forwarded */ 6149 if (rt6_need_strict(dst) || rt6_need_strict(src)) 6150 return BPF_FIB_LKUP_RET_NOT_FWDED; 6151 6152 dev = dev_get_by_index_rcu(net, params->ifindex); 6153 if (unlikely(!dev)) 6154 return -ENODEV; 6155 6156 idev = __in6_dev_get_safely(dev); 6157 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding))) 6158 return BPF_FIB_LKUP_RET_FWD_DISABLED; 6159 6160 if (flags & BPF_FIB_LOOKUP_OUTPUT) { 6161 fl6.flowi6_iif = 1; 6162 oif = fl6.flowi6_oif = params->ifindex; 6163 } else { 6164 oif = fl6.flowi6_iif = params->ifindex; 6165 fl6.flowi6_oif = 0; 6166 strict = RT6_LOOKUP_F_HAS_SADDR; 6167 } 6168 fl6.flowlabel = params->flowinfo; 6169 fl6.flowi6_scope = 0; 6170 fl6.flowi6_flags = 0; 6171 fl6.mp_hash = 0; 6172 6173 fl6.flowi6_proto = params->l4_protocol; 6174 fl6.daddr = *dst; 6175 fl6.saddr = *src; 6176 fl6.fl6_sport = params->sport; 6177 fl6.fl6_dport = params->dport; 6178 6179 if (flags & BPF_FIB_LOOKUP_DIRECT) { 6180 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 6181 struct fib6_table *tb; 6182 6183 if (flags & BPF_FIB_LOOKUP_TBID) { 6184 tbid = params->tbid; 6185 /* zero out for vlan output */ 6186 params->tbid = 0; 6187 } 6188 6189 tb = ipv6_stub->fib6_get_table(net, tbid); 6190 if (unlikely(!tb)) 6191 return BPF_FIB_LKUP_RET_NOT_FWDED; 6192 6193 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res, 6194 strict); 6195 } else { 6196 if (flags & BPF_FIB_LOOKUP_MARK) 6197 fl6.flowi6_mark = params->mark; 6198 else 6199 fl6.flowi6_mark = 0; 6200 fl6.flowi6_secid = 0; 6201 fl6.flowi6_tun_key.tun_id = 0; 6202 fl6.flowi6_uid = sock_net_uid(net, NULL); 6203 6204 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict); 6205 } 6206 6207 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) || 6208 res.f6i == net->ipv6.fib6_null_entry)) 6209 return BPF_FIB_LKUP_RET_NOT_FWDED; 6210 6211 switch (res.fib6_type) { 6212 /* only unicast is forwarded */ 6213 case RTN_UNICAST: 6214 break; 6215 case RTN_BLACKHOLE: 6216 return BPF_FIB_LKUP_RET_BLACKHOLE; 6217 case RTN_UNREACHABLE: 6218 return BPF_FIB_LKUP_RET_UNREACHABLE; 6219 case RTN_PROHIBIT: 6220 return BPF_FIB_LKUP_RET_PROHIBIT; 6221 default: 6222 return BPF_FIB_LKUP_RET_NOT_FWDED; 6223 } 6224 6225 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif, 6226 fl6.flowi6_oif != 0, NULL, strict); 6227 6228 if (check_mtu) { 6229 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src); 6230 if (params->tot_len > mtu) { 6231 params->mtu_result = mtu; /* union with tot_len */ 6232 return BPF_FIB_LKUP_RET_FRAG_NEEDED; 6233 } 6234 } 6235 6236 if (res.nh->fib_nh_lws) 6237 return BPF_FIB_LKUP_RET_UNSUPP_LWT; 6238 6239 if (res.nh->fib_nh_gw_family) 6240 *dst = res.nh->fib_nh_gw6; 6241 6242 dev = res.nh->fib_nh_dev; 6243 params->rt_metric = res.f6i->fib6_metric; 6244 params->ifindex = dev->ifindex; 6245 6246 if (flags & BPF_FIB_LOOKUP_SRC) { 6247 if (res.f6i->fib6_prefsrc.plen) { 6248 *src = res.f6i->fib6_prefsrc.addr; 6249 } else { 6250 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev, 6251 &fl6.daddr, 0, 6252 src); 6253 if (err) 6254 return BPF_FIB_LKUP_RET_NO_SRC_ADDR; 6255 } 6256 } 6257 6258 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH) 6259 goto set_fwd_params; 6260 6261 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is 6262 * not needed here. 6263 */ 6264 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst); 6265 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID)) 6266 return BPF_FIB_LKUP_RET_NO_NEIGH; 6267 memcpy(params->dmac, neigh->ha, ETH_ALEN); 6268 memcpy(params->smac, dev->dev_addr, ETH_ALEN); 6269 6270 set_fwd_params: 6271 return bpf_fib_set_fwd_params(params, mtu); 6272 } 6273 #endif 6274 6275 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \ 6276 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \ 6277 BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK) 6278 6279 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx, 6280 struct bpf_fib_lookup *, params, int, plen, u32, flags) 6281 { 6282 if (plen < sizeof(*params)) 6283 return -EINVAL; 6284 6285 if (flags & ~BPF_FIB_LOOKUP_MASK) 6286 return -EINVAL; 6287 6288 switch (params->family) { 6289 #if IS_ENABLED(CONFIG_INET) 6290 case AF_INET: 6291 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params, 6292 flags, true); 6293 #endif 6294 #if IS_ENABLED(CONFIG_IPV6) 6295 case AF_INET6: 6296 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params, 6297 flags, true); 6298 #endif 6299 } 6300 return -EAFNOSUPPORT; 6301 } 6302 6303 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = { 6304 .func = bpf_xdp_fib_lookup, 6305 .gpl_only = true, 6306 .ret_type = RET_INTEGER, 6307 .arg1_type = ARG_PTR_TO_CTX, 6308 .arg2_type = ARG_PTR_TO_MEM, 6309 .arg3_type = ARG_CONST_SIZE, 6310 .arg4_type = ARG_ANYTHING, 6311 }; 6312 6313 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb, 6314 struct bpf_fib_lookup *, params, int, plen, u32, flags) 6315 { 6316 struct net *net = dev_net(skb->dev); 6317 int rc = -EAFNOSUPPORT; 6318 bool check_mtu = false; 6319 6320 if (plen < sizeof(*params)) 6321 return -EINVAL; 6322 6323 if (flags & ~BPF_FIB_LOOKUP_MASK) 6324 return -EINVAL; 6325 6326 if (params->tot_len) 6327 check_mtu = true; 6328 6329 switch (params->family) { 6330 #if IS_ENABLED(CONFIG_INET) 6331 case AF_INET: 6332 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu); 6333 break; 6334 #endif 6335 #if IS_ENABLED(CONFIG_IPV6) 6336 case AF_INET6: 6337 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu); 6338 break; 6339 #endif 6340 } 6341 6342 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) { 6343 struct net_device *dev; 6344 6345 /* When tot_len isn't provided by user, check skb 6346 * against MTU of FIB lookup resulting net_device 6347 */ 6348 dev = dev_get_by_index_rcu(net, params->ifindex); 6349 if (!is_skb_forwardable(dev, skb)) 6350 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED; 6351 6352 params->mtu_result = dev->mtu; /* union with tot_len */ 6353 } 6354 6355 return rc; 6356 } 6357 6358 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = { 6359 .func = bpf_skb_fib_lookup, 6360 .gpl_only = true, 6361 .ret_type = RET_INTEGER, 6362 .arg1_type = ARG_PTR_TO_CTX, 6363 .arg2_type = ARG_PTR_TO_MEM, 6364 .arg3_type = ARG_CONST_SIZE, 6365 .arg4_type = ARG_ANYTHING, 6366 }; 6367 6368 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr, 6369 u32 ifindex) 6370 { 6371 struct net *netns = dev_net(dev_curr); 6372 6373 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */ 6374 if (ifindex == 0) 6375 return dev_curr; 6376 6377 return dev_get_by_index_rcu(netns, ifindex); 6378 } 6379 6380 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb, 6381 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags) 6382 { 6383 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED; 6384 struct net_device *dev = skb->dev; 6385 int mtu, dev_len, skb_len; 6386 6387 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS))) 6388 return -EINVAL; 6389 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len))) 6390 return -EINVAL; 6391 6392 dev = __dev_via_ifindex(dev, ifindex); 6393 if (unlikely(!dev)) 6394 return -ENODEV; 6395 6396 mtu = READ_ONCE(dev->mtu); 6397 dev_len = mtu + dev->hard_header_len; 6398 6399 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */ 6400 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len; 6401 6402 skb_len += len_diff; /* minus result pass check */ 6403 if (skb_len <= dev_len) { 6404 ret = BPF_MTU_CHK_RET_SUCCESS; 6405 goto out; 6406 } 6407 /* At this point, skb->len exceed MTU, but as it include length of all 6408 * segments, it can still be below MTU. The SKB can possibly get 6409 * re-segmented in transmit path (see validate_xmit_skb). Thus, user 6410 * must choose if segs are to be MTU checked. 6411 */ 6412 if (skb_is_gso(skb)) { 6413 ret = BPF_MTU_CHK_RET_SUCCESS; 6414 if (flags & BPF_MTU_CHK_SEGS && 6415 !skb_gso_validate_network_len(skb, mtu)) 6416 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG; 6417 } 6418 out: 6419 *mtu_len = mtu; 6420 return ret; 6421 } 6422 6423 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp, 6424 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags) 6425 { 6426 struct net_device *dev = xdp->rxq->dev; 6427 int xdp_len = xdp->data_end - xdp->data; 6428 int ret = BPF_MTU_CHK_RET_SUCCESS; 6429 int mtu, dev_len; 6430 6431 /* XDP variant doesn't support multi-buffer segment check (yet) */ 6432 if (unlikely(flags)) 6433 return -EINVAL; 6434 6435 dev = __dev_via_ifindex(dev, ifindex); 6436 if (unlikely(!dev)) 6437 return -ENODEV; 6438 6439 mtu = READ_ONCE(dev->mtu); 6440 dev_len = mtu + dev->hard_header_len; 6441 6442 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */ 6443 if (*mtu_len) 6444 xdp_len = *mtu_len + dev->hard_header_len; 6445 6446 xdp_len += len_diff; /* minus result pass check */ 6447 if (xdp_len > dev_len) 6448 ret = BPF_MTU_CHK_RET_FRAG_NEEDED; 6449 6450 *mtu_len = mtu; 6451 return ret; 6452 } 6453 6454 static const struct bpf_func_proto bpf_skb_check_mtu_proto = { 6455 .func = bpf_skb_check_mtu, 6456 .gpl_only = true, 6457 .ret_type = RET_INTEGER, 6458 .arg1_type = ARG_PTR_TO_CTX, 6459 .arg2_type = ARG_ANYTHING, 6460 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED, 6461 .arg3_size = sizeof(u32), 6462 .arg4_type = ARG_ANYTHING, 6463 .arg5_type = ARG_ANYTHING, 6464 }; 6465 6466 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = { 6467 .func = bpf_xdp_check_mtu, 6468 .gpl_only = true, 6469 .ret_type = RET_INTEGER, 6470 .arg1_type = ARG_PTR_TO_CTX, 6471 .arg2_type = ARG_ANYTHING, 6472 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED, 6473 .arg3_size = sizeof(u32), 6474 .arg4_type = ARG_ANYTHING, 6475 .arg5_type = ARG_ANYTHING, 6476 }; 6477 6478 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) 6479 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 6480 { 6481 int err; 6482 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr; 6483 6484 if (!seg6_validate_srh(srh, len, false)) 6485 return -EINVAL; 6486 6487 switch (type) { 6488 case BPF_LWT_ENCAP_SEG6_INLINE: 6489 if (skb->protocol != htons(ETH_P_IPV6)) 6490 return -EBADMSG; 6491 6492 err = seg6_do_srh_inline(skb, srh); 6493 break; 6494 case BPF_LWT_ENCAP_SEG6: 6495 skb_reset_inner_headers(skb); 6496 skb->encapsulation = 1; 6497 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6); 6498 break; 6499 default: 6500 return -EINVAL; 6501 } 6502 6503 bpf_compute_data_pointers(skb); 6504 if (err) 6505 return err; 6506 6507 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 6508 6509 return seg6_lookup_nexthop(skb, NULL, 0); 6510 } 6511 #endif /* CONFIG_IPV6_SEG6_BPF */ 6512 6513 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) 6514 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, 6515 bool ingress) 6516 { 6517 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress); 6518 } 6519 #endif 6520 6521 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr, 6522 u32, len) 6523 { 6524 switch (type) { 6525 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) 6526 case BPF_LWT_ENCAP_SEG6: 6527 case BPF_LWT_ENCAP_SEG6_INLINE: 6528 return bpf_push_seg6_encap(skb, type, hdr, len); 6529 #endif 6530 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) 6531 case BPF_LWT_ENCAP_IP: 6532 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */); 6533 #endif 6534 default: 6535 return -EINVAL; 6536 } 6537 } 6538 6539 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type, 6540 void *, hdr, u32, len) 6541 { 6542 switch (type) { 6543 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) 6544 case BPF_LWT_ENCAP_IP: 6545 return bpf_push_ip_encap(skb, hdr, len, false /* egress */); 6546 #endif 6547 default: 6548 return -EINVAL; 6549 } 6550 } 6551 6552 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = { 6553 .func = bpf_lwt_in_push_encap, 6554 .gpl_only = false, 6555 .ret_type = RET_INTEGER, 6556 .arg1_type = ARG_PTR_TO_CTX, 6557 .arg2_type = ARG_ANYTHING, 6558 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6559 .arg4_type = ARG_CONST_SIZE 6560 }; 6561 6562 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = { 6563 .func = bpf_lwt_xmit_push_encap, 6564 .gpl_only = false, 6565 .ret_type = RET_INTEGER, 6566 .arg1_type = ARG_PTR_TO_CTX, 6567 .arg2_type = ARG_ANYTHING, 6568 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6569 .arg4_type = ARG_CONST_SIZE 6570 }; 6571 6572 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) 6573 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset, 6574 const void *, from, u32, len) 6575 { 6576 struct seg6_bpf_srh_state *srh_state = 6577 this_cpu_ptr(&seg6_bpf_srh_states); 6578 struct ipv6_sr_hdr *srh = srh_state->srh; 6579 void *srh_tlvs, *srh_end, *ptr; 6580 int srhoff = 0; 6581 6582 lockdep_assert_held(&srh_state->bh_lock); 6583 if (srh == NULL) 6584 return -EINVAL; 6585 6586 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4)); 6587 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen); 6588 6589 ptr = skb->data + offset; 6590 if (ptr >= srh_tlvs && ptr + len <= srh_end) 6591 srh_state->valid = false; 6592 else if (ptr < (void *)&srh->flags || 6593 ptr + len > (void *)&srh->segments) 6594 return -EFAULT; 6595 6596 if (unlikely(bpf_try_make_writable(skb, offset + len))) 6597 return -EFAULT; 6598 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) 6599 return -EINVAL; 6600 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); 6601 6602 memcpy(skb->data + offset, from, len); 6603 return 0; 6604 } 6605 6606 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = { 6607 .func = bpf_lwt_seg6_store_bytes, 6608 .gpl_only = false, 6609 .ret_type = RET_INTEGER, 6610 .arg1_type = ARG_PTR_TO_CTX, 6611 .arg2_type = ARG_ANYTHING, 6612 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6613 .arg4_type = ARG_CONST_SIZE 6614 }; 6615 6616 static void bpf_update_srh_state(struct sk_buff *skb) 6617 { 6618 struct seg6_bpf_srh_state *srh_state = 6619 this_cpu_ptr(&seg6_bpf_srh_states); 6620 int srhoff = 0; 6621 6622 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) { 6623 srh_state->srh = NULL; 6624 } else { 6625 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); 6626 srh_state->hdrlen = srh_state->srh->hdrlen << 3; 6627 srh_state->valid = true; 6628 } 6629 } 6630 6631 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb, 6632 u32, action, void *, param, u32, param_len) 6633 { 6634 struct seg6_bpf_srh_state *srh_state = 6635 this_cpu_ptr(&seg6_bpf_srh_states); 6636 int hdroff = 0; 6637 int err; 6638 6639 lockdep_assert_held(&srh_state->bh_lock); 6640 switch (action) { 6641 case SEG6_LOCAL_ACTION_END_X: 6642 if (!seg6_bpf_has_valid_srh(skb)) 6643 return -EBADMSG; 6644 if (param_len != sizeof(struct in6_addr)) 6645 return -EINVAL; 6646 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0); 6647 case SEG6_LOCAL_ACTION_END_T: 6648 if (!seg6_bpf_has_valid_srh(skb)) 6649 return -EBADMSG; 6650 if (param_len != sizeof(int)) 6651 return -EINVAL; 6652 return seg6_lookup_nexthop(skb, NULL, *(int *)param); 6653 case SEG6_LOCAL_ACTION_END_DT6: 6654 if (!seg6_bpf_has_valid_srh(skb)) 6655 return -EBADMSG; 6656 if (param_len != sizeof(int)) 6657 return -EINVAL; 6658 6659 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0) 6660 return -EBADMSG; 6661 if (!pskb_pull(skb, hdroff)) 6662 return -EBADMSG; 6663 6664 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff); 6665 skb_reset_network_header(skb); 6666 skb_reset_transport_header(skb); 6667 skb->encapsulation = 0; 6668 6669 bpf_compute_data_pointers(skb); 6670 bpf_update_srh_state(skb); 6671 return seg6_lookup_nexthop(skb, NULL, *(int *)param); 6672 case SEG6_LOCAL_ACTION_END_B6: 6673 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) 6674 return -EBADMSG; 6675 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE, 6676 param, param_len); 6677 if (!err) 6678 bpf_update_srh_state(skb); 6679 6680 return err; 6681 case SEG6_LOCAL_ACTION_END_B6_ENCAP: 6682 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) 6683 return -EBADMSG; 6684 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6, 6685 param, param_len); 6686 if (!err) 6687 bpf_update_srh_state(skb); 6688 6689 return err; 6690 default: 6691 return -EINVAL; 6692 } 6693 } 6694 6695 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = { 6696 .func = bpf_lwt_seg6_action, 6697 .gpl_only = false, 6698 .ret_type = RET_INTEGER, 6699 .arg1_type = ARG_PTR_TO_CTX, 6700 .arg2_type = ARG_ANYTHING, 6701 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6702 .arg4_type = ARG_CONST_SIZE 6703 }; 6704 6705 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset, 6706 s32, len) 6707 { 6708 struct seg6_bpf_srh_state *srh_state = 6709 this_cpu_ptr(&seg6_bpf_srh_states); 6710 struct ipv6_sr_hdr *srh = srh_state->srh; 6711 void *srh_end, *srh_tlvs, *ptr; 6712 struct ipv6hdr *hdr; 6713 int srhoff = 0; 6714 int ret; 6715 6716 lockdep_assert_held(&srh_state->bh_lock); 6717 if (unlikely(srh == NULL)) 6718 return -EINVAL; 6719 6720 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) + 6721 ((srh->first_segment + 1) << 4)); 6722 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) + 6723 srh_state->hdrlen); 6724 ptr = skb->data + offset; 6725 6726 if (unlikely(ptr < srh_tlvs || ptr > srh_end)) 6727 return -EFAULT; 6728 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end)) 6729 return -EFAULT; 6730 6731 if (len > 0) { 6732 ret = skb_cow_head(skb, len); 6733 if (unlikely(ret < 0)) 6734 return ret; 6735 6736 ret = bpf_skb_net_hdr_push(skb, offset, len); 6737 } else { 6738 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len); 6739 } 6740 6741 bpf_compute_data_pointers(skb); 6742 if (unlikely(ret < 0)) 6743 return ret; 6744 6745 hdr = (struct ipv6hdr *)skb->data; 6746 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); 6747 6748 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) 6749 return -EINVAL; 6750 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); 6751 srh_state->hdrlen += len; 6752 srh_state->valid = false; 6753 return 0; 6754 } 6755 6756 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = { 6757 .func = bpf_lwt_seg6_adjust_srh, 6758 .gpl_only = false, 6759 .ret_type = RET_INTEGER, 6760 .arg1_type = ARG_PTR_TO_CTX, 6761 .arg2_type = ARG_ANYTHING, 6762 .arg3_type = ARG_ANYTHING, 6763 }; 6764 #endif /* CONFIG_IPV6_SEG6_BPF */ 6765 6766 #ifdef CONFIG_INET 6767 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple, 6768 int dif, int sdif, u8 family, u8 proto) 6769 { 6770 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo; 6771 bool refcounted = false; 6772 struct sock *sk = NULL; 6773 6774 if (family == AF_INET) { 6775 __be32 src4 = tuple->ipv4.saddr; 6776 __be32 dst4 = tuple->ipv4.daddr; 6777 6778 if (proto == IPPROTO_TCP) 6779 sk = __inet_lookup(net, hinfo, NULL, 0, 6780 src4, tuple->ipv4.sport, 6781 dst4, tuple->ipv4.dport, 6782 dif, sdif, &refcounted); 6783 else 6784 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport, 6785 dst4, tuple->ipv4.dport, 6786 dif, sdif, net->ipv4.udp_table, NULL); 6787 #if IS_ENABLED(CONFIG_IPV6) 6788 } else { 6789 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr; 6790 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr; 6791 6792 if (proto == IPPROTO_TCP) 6793 sk = __inet6_lookup(net, hinfo, NULL, 0, 6794 src6, tuple->ipv6.sport, 6795 dst6, ntohs(tuple->ipv6.dport), 6796 dif, sdif, &refcounted); 6797 else if (likely(ipv6_bpf_stub)) 6798 sk = ipv6_bpf_stub->udp6_lib_lookup(net, 6799 src6, tuple->ipv6.sport, 6800 dst6, tuple->ipv6.dport, 6801 dif, sdif, 6802 net->ipv4.udp_table, NULL); 6803 #endif 6804 } 6805 6806 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) { 6807 WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); 6808 sk = NULL; 6809 } 6810 return sk; 6811 } 6812 6813 /* bpf_skc_lookup performs the core lookup for different types of sockets, 6814 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE. 6815 */ 6816 static struct sock * 6817 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, 6818 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id, 6819 u64 flags, int sdif) 6820 { 6821 struct sock *sk = NULL; 6822 struct net *net; 6823 u8 family; 6824 6825 if (len == sizeof(tuple->ipv4)) 6826 family = AF_INET; 6827 else if (len == sizeof(tuple->ipv6)) 6828 family = AF_INET6; 6829 else 6830 return NULL; 6831 6832 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX))) 6833 goto out; 6834 6835 if (sdif < 0) { 6836 if (family == AF_INET) 6837 sdif = inet_sdif(skb); 6838 else 6839 sdif = inet6_sdif(skb); 6840 } 6841 6842 if ((s32)netns_id < 0) { 6843 net = caller_net; 6844 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto); 6845 } else { 6846 net = get_net_ns_by_id(caller_net, netns_id); 6847 if (unlikely(!net)) 6848 goto out; 6849 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto); 6850 put_net(net); 6851 } 6852 6853 out: 6854 return sk; 6855 } 6856 6857 static struct sock * 6858 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, 6859 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id, 6860 u64 flags, int sdif) 6861 { 6862 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net, 6863 ifindex, proto, netns_id, flags, 6864 sdif); 6865 6866 if (sk) { 6867 struct sock *sk2 = sk_to_full_sk(sk); 6868 6869 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk 6870 * sock refcnt is decremented to prevent a request_sock leak. 6871 */ 6872 if (sk2 != sk) { 6873 sock_gen_put(sk); 6874 /* Ensure there is no need to bump sk2 refcnt */ 6875 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) { 6876 WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); 6877 return NULL; 6878 } 6879 sk = sk2; 6880 } 6881 } 6882 6883 return sk; 6884 } 6885 6886 static struct sock * 6887 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, 6888 u8 proto, u64 netns_id, u64 flags) 6889 { 6890 struct net *caller_net; 6891 int ifindex; 6892 6893 if (skb->dev) { 6894 caller_net = dev_net(skb->dev); 6895 ifindex = skb->dev->ifindex; 6896 } else { 6897 caller_net = sock_net(skb->sk); 6898 ifindex = 0; 6899 } 6900 6901 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto, 6902 netns_id, flags, -1); 6903 } 6904 6905 static struct sock * 6906 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, 6907 u8 proto, u64 netns_id, u64 flags) 6908 { 6909 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id, 6910 flags); 6911 6912 if (sk) { 6913 struct sock *sk2 = sk_to_full_sk(sk); 6914 6915 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk 6916 * sock refcnt is decremented to prevent a request_sock leak. 6917 */ 6918 if (sk2 != sk) { 6919 sock_gen_put(sk); 6920 /* Ensure there is no need to bump sk2 refcnt */ 6921 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) { 6922 WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); 6923 return NULL; 6924 } 6925 sk = sk2; 6926 } 6927 } 6928 6929 return sk; 6930 } 6931 6932 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb, 6933 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 6934 { 6935 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP, 6936 netns_id, flags); 6937 } 6938 6939 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = { 6940 .func = bpf_skc_lookup_tcp, 6941 .gpl_only = false, 6942 .pkt_access = true, 6943 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, 6944 .arg1_type = ARG_PTR_TO_CTX, 6945 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6946 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 6947 .arg4_type = ARG_ANYTHING, 6948 .arg5_type = ARG_ANYTHING, 6949 }; 6950 6951 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb, 6952 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 6953 { 6954 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP, 6955 netns_id, flags); 6956 } 6957 6958 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = { 6959 .func = bpf_sk_lookup_tcp, 6960 .gpl_only = false, 6961 .pkt_access = true, 6962 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 6963 .arg1_type = ARG_PTR_TO_CTX, 6964 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6965 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 6966 .arg4_type = ARG_ANYTHING, 6967 .arg5_type = ARG_ANYTHING, 6968 }; 6969 6970 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb, 6971 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 6972 { 6973 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP, 6974 netns_id, flags); 6975 } 6976 6977 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = { 6978 .func = bpf_sk_lookup_udp, 6979 .gpl_only = false, 6980 .pkt_access = true, 6981 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 6982 .arg1_type = ARG_PTR_TO_CTX, 6983 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6984 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 6985 .arg4_type = ARG_ANYTHING, 6986 .arg5_type = ARG_ANYTHING, 6987 }; 6988 6989 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb, 6990 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 6991 { 6992 struct net_device *dev = skb->dev; 6993 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 6994 struct net *caller_net = dev_net(dev); 6995 6996 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net, 6997 ifindex, IPPROTO_TCP, netns_id, 6998 flags, sdif); 6999 } 7000 7001 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = { 7002 .func = bpf_tc_skc_lookup_tcp, 7003 .gpl_only = false, 7004 .pkt_access = true, 7005 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, 7006 .arg1_type = ARG_PTR_TO_CTX, 7007 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7008 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7009 .arg4_type = ARG_ANYTHING, 7010 .arg5_type = ARG_ANYTHING, 7011 }; 7012 7013 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb, 7014 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7015 { 7016 struct net_device *dev = skb->dev; 7017 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7018 struct net *caller_net = dev_net(dev); 7019 7020 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net, 7021 ifindex, IPPROTO_TCP, netns_id, 7022 flags, sdif); 7023 } 7024 7025 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = { 7026 .func = bpf_tc_sk_lookup_tcp, 7027 .gpl_only = false, 7028 .pkt_access = true, 7029 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7030 .arg1_type = ARG_PTR_TO_CTX, 7031 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7032 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7033 .arg4_type = ARG_ANYTHING, 7034 .arg5_type = ARG_ANYTHING, 7035 }; 7036 7037 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb, 7038 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7039 { 7040 struct net_device *dev = skb->dev; 7041 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7042 struct net *caller_net = dev_net(dev); 7043 7044 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net, 7045 ifindex, IPPROTO_UDP, netns_id, 7046 flags, sdif); 7047 } 7048 7049 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = { 7050 .func = bpf_tc_sk_lookup_udp, 7051 .gpl_only = false, 7052 .pkt_access = true, 7053 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7054 .arg1_type = ARG_PTR_TO_CTX, 7055 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7056 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7057 .arg4_type = ARG_ANYTHING, 7058 .arg5_type = ARG_ANYTHING, 7059 }; 7060 7061 BPF_CALL_1(bpf_sk_release, struct sock *, sk) 7062 { 7063 if (sk && sk_is_refcounted(sk)) 7064 sock_gen_put(sk); 7065 return 0; 7066 } 7067 7068 static const struct bpf_func_proto bpf_sk_release_proto = { 7069 .func = bpf_sk_release, 7070 .gpl_only = false, 7071 .ret_type = RET_INTEGER, 7072 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE, 7073 }; 7074 7075 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx, 7076 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) 7077 { 7078 struct net_device *dev = ctx->rxq->dev; 7079 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7080 struct net *caller_net = dev_net(dev); 7081 7082 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net, 7083 ifindex, IPPROTO_UDP, netns_id, 7084 flags, sdif); 7085 } 7086 7087 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = { 7088 .func = bpf_xdp_sk_lookup_udp, 7089 .gpl_only = false, 7090 .pkt_access = true, 7091 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7092 .arg1_type = ARG_PTR_TO_CTX, 7093 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7094 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7095 .arg4_type = ARG_ANYTHING, 7096 .arg5_type = ARG_ANYTHING, 7097 }; 7098 7099 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx, 7100 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) 7101 { 7102 struct net_device *dev = ctx->rxq->dev; 7103 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7104 struct net *caller_net = dev_net(dev); 7105 7106 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net, 7107 ifindex, IPPROTO_TCP, netns_id, 7108 flags, sdif); 7109 } 7110 7111 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = { 7112 .func = bpf_xdp_skc_lookup_tcp, 7113 .gpl_only = false, 7114 .pkt_access = true, 7115 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, 7116 .arg1_type = ARG_PTR_TO_CTX, 7117 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7118 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7119 .arg4_type = ARG_ANYTHING, 7120 .arg5_type = ARG_ANYTHING, 7121 }; 7122 7123 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx, 7124 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) 7125 { 7126 struct net_device *dev = ctx->rxq->dev; 7127 int ifindex = dev->ifindex, sdif = dev_sdif(dev); 7128 struct net *caller_net = dev_net(dev); 7129 7130 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net, 7131 ifindex, IPPROTO_TCP, netns_id, 7132 flags, sdif); 7133 } 7134 7135 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = { 7136 .func = bpf_xdp_sk_lookup_tcp, 7137 .gpl_only = false, 7138 .pkt_access = true, 7139 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7140 .arg1_type = ARG_PTR_TO_CTX, 7141 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7142 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7143 .arg4_type = ARG_ANYTHING, 7144 .arg5_type = ARG_ANYTHING, 7145 }; 7146 7147 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx, 7148 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7149 { 7150 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, 7151 sock_net(ctx->sk), 0, 7152 IPPROTO_TCP, netns_id, flags, 7153 -1); 7154 } 7155 7156 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = { 7157 .func = bpf_sock_addr_skc_lookup_tcp, 7158 .gpl_only = false, 7159 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, 7160 .arg1_type = ARG_PTR_TO_CTX, 7161 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7162 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7163 .arg4_type = ARG_ANYTHING, 7164 .arg5_type = ARG_ANYTHING, 7165 }; 7166 7167 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx, 7168 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7169 { 7170 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, 7171 sock_net(ctx->sk), 0, IPPROTO_TCP, 7172 netns_id, flags, -1); 7173 } 7174 7175 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = { 7176 .func = bpf_sock_addr_sk_lookup_tcp, 7177 .gpl_only = false, 7178 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7179 .arg1_type = ARG_PTR_TO_CTX, 7180 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7181 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7182 .arg4_type = ARG_ANYTHING, 7183 .arg5_type = ARG_ANYTHING, 7184 }; 7185 7186 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx, 7187 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) 7188 { 7189 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, 7190 sock_net(ctx->sk), 0, IPPROTO_UDP, 7191 netns_id, flags, -1); 7192 } 7193 7194 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = { 7195 .func = bpf_sock_addr_sk_lookup_udp, 7196 .gpl_only = false, 7197 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7198 .arg1_type = ARG_PTR_TO_CTX, 7199 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7200 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7201 .arg4_type = ARG_ANYTHING, 7202 .arg5_type = ARG_ANYTHING, 7203 }; 7204 7205 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 7206 struct bpf_insn_access_aux *info) 7207 { 7208 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock, 7209 icsk_retransmits)) 7210 return false; 7211 7212 if (off % size != 0) 7213 return false; 7214 7215 switch (off) { 7216 case offsetof(struct bpf_tcp_sock, bytes_received): 7217 case offsetof(struct bpf_tcp_sock, bytes_acked): 7218 return size == sizeof(__u64); 7219 default: 7220 return size == sizeof(__u32); 7221 } 7222 } 7223 7224 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 7225 const struct bpf_insn *si, 7226 struct bpf_insn *insn_buf, 7227 struct bpf_prog *prog, u32 *target_size) 7228 { 7229 struct bpf_insn *insn = insn_buf; 7230 7231 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \ 7232 do { \ 7233 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \ 7234 sizeof_field(struct bpf_tcp_sock, FIELD)); \ 7235 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\ 7236 si->dst_reg, si->src_reg, \ 7237 offsetof(struct tcp_sock, FIELD)); \ 7238 } while (0) 7239 7240 #define BPF_INET_SOCK_GET_COMMON(FIELD) \ 7241 do { \ 7242 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \ 7243 FIELD) > \ 7244 sizeof_field(struct bpf_tcp_sock, FIELD)); \ 7245 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 7246 struct inet_connection_sock, \ 7247 FIELD), \ 7248 si->dst_reg, si->src_reg, \ 7249 offsetof( \ 7250 struct inet_connection_sock, \ 7251 FIELD)); \ 7252 } while (0) 7253 7254 BTF_TYPE_EMIT(struct bpf_tcp_sock); 7255 7256 switch (si->off) { 7257 case offsetof(struct bpf_tcp_sock, rtt_min): 7258 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) != 7259 sizeof(struct minmax)); 7260 BUILD_BUG_ON(sizeof(struct minmax) < 7261 sizeof(struct minmax_sample)); 7262 7263 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 7264 offsetof(struct tcp_sock, rtt_min) + 7265 offsetof(struct minmax_sample, v)); 7266 break; 7267 case offsetof(struct bpf_tcp_sock, snd_cwnd): 7268 BPF_TCP_SOCK_GET_COMMON(snd_cwnd); 7269 break; 7270 case offsetof(struct bpf_tcp_sock, srtt_us): 7271 BPF_TCP_SOCK_GET_COMMON(srtt_us); 7272 break; 7273 case offsetof(struct bpf_tcp_sock, snd_ssthresh): 7274 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh); 7275 break; 7276 case offsetof(struct bpf_tcp_sock, rcv_nxt): 7277 BPF_TCP_SOCK_GET_COMMON(rcv_nxt); 7278 break; 7279 case offsetof(struct bpf_tcp_sock, snd_nxt): 7280 BPF_TCP_SOCK_GET_COMMON(snd_nxt); 7281 break; 7282 case offsetof(struct bpf_tcp_sock, snd_una): 7283 BPF_TCP_SOCK_GET_COMMON(snd_una); 7284 break; 7285 case offsetof(struct bpf_tcp_sock, mss_cache): 7286 BPF_TCP_SOCK_GET_COMMON(mss_cache); 7287 break; 7288 case offsetof(struct bpf_tcp_sock, ecn_flags): 7289 BPF_TCP_SOCK_GET_COMMON(ecn_flags); 7290 break; 7291 case offsetof(struct bpf_tcp_sock, rate_delivered): 7292 BPF_TCP_SOCK_GET_COMMON(rate_delivered); 7293 break; 7294 case offsetof(struct bpf_tcp_sock, rate_interval_us): 7295 BPF_TCP_SOCK_GET_COMMON(rate_interval_us); 7296 break; 7297 case offsetof(struct bpf_tcp_sock, packets_out): 7298 BPF_TCP_SOCK_GET_COMMON(packets_out); 7299 break; 7300 case offsetof(struct bpf_tcp_sock, retrans_out): 7301 BPF_TCP_SOCK_GET_COMMON(retrans_out); 7302 break; 7303 case offsetof(struct bpf_tcp_sock, total_retrans): 7304 BPF_TCP_SOCK_GET_COMMON(total_retrans); 7305 break; 7306 case offsetof(struct bpf_tcp_sock, segs_in): 7307 BPF_TCP_SOCK_GET_COMMON(segs_in); 7308 break; 7309 case offsetof(struct bpf_tcp_sock, data_segs_in): 7310 BPF_TCP_SOCK_GET_COMMON(data_segs_in); 7311 break; 7312 case offsetof(struct bpf_tcp_sock, segs_out): 7313 BPF_TCP_SOCK_GET_COMMON(segs_out); 7314 break; 7315 case offsetof(struct bpf_tcp_sock, data_segs_out): 7316 BPF_TCP_SOCK_GET_COMMON(data_segs_out); 7317 break; 7318 case offsetof(struct bpf_tcp_sock, lost_out): 7319 BPF_TCP_SOCK_GET_COMMON(lost_out); 7320 break; 7321 case offsetof(struct bpf_tcp_sock, sacked_out): 7322 BPF_TCP_SOCK_GET_COMMON(sacked_out); 7323 break; 7324 case offsetof(struct bpf_tcp_sock, bytes_received): 7325 BPF_TCP_SOCK_GET_COMMON(bytes_received); 7326 break; 7327 case offsetof(struct bpf_tcp_sock, bytes_acked): 7328 BPF_TCP_SOCK_GET_COMMON(bytes_acked); 7329 break; 7330 case offsetof(struct bpf_tcp_sock, dsack_dups): 7331 BPF_TCP_SOCK_GET_COMMON(dsack_dups); 7332 break; 7333 case offsetof(struct bpf_tcp_sock, delivered): 7334 BPF_TCP_SOCK_GET_COMMON(delivered); 7335 break; 7336 case offsetof(struct bpf_tcp_sock, delivered_ce): 7337 BPF_TCP_SOCK_GET_COMMON(delivered_ce); 7338 break; 7339 case offsetof(struct bpf_tcp_sock, icsk_retransmits): 7340 BPF_INET_SOCK_GET_COMMON(icsk_retransmits); 7341 break; 7342 } 7343 7344 return insn - insn_buf; 7345 } 7346 7347 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk) 7348 { 7349 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP) 7350 return (unsigned long)sk; 7351 7352 return (unsigned long)NULL; 7353 } 7354 7355 const struct bpf_func_proto bpf_tcp_sock_proto = { 7356 .func = bpf_tcp_sock, 7357 .gpl_only = false, 7358 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL, 7359 .arg1_type = ARG_PTR_TO_SOCK_COMMON, 7360 }; 7361 7362 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk) 7363 { 7364 sk = sk_to_full_sk(sk); 7365 7366 if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE)) 7367 return (unsigned long)sk; 7368 7369 return (unsigned long)NULL; 7370 } 7371 7372 static const struct bpf_func_proto bpf_get_listener_sock_proto = { 7373 .func = bpf_get_listener_sock, 7374 .gpl_only = false, 7375 .ret_type = RET_PTR_TO_SOCKET_OR_NULL, 7376 .arg1_type = ARG_PTR_TO_SOCK_COMMON, 7377 }; 7378 7379 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb) 7380 { 7381 unsigned int iphdr_len; 7382 7383 switch (skb_protocol(skb, true)) { 7384 case cpu_to_be16(ETH_P_IP): 7385 iphdr_len = sizeof(struct iphdr); 7386 break; 7387 case cpu_to_be16(ETH_P_IPV6): 7388 iphdr_len = sizeof(struct ipv6hdr); 7389 break; 7390 default: 7391 return 0; 7392 } 7393 7394 if (skb_headlen(skb) < iphdr_len) 7395 return 0; 7396 7397 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len)) 7398 return 0; 7399 7400 return INET_ECN_set_ce(skb); 7401 } 7402 7403 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 7404 struct bpf_insn_access_aux *info) 7405 { 7406 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id)) 7407 return false; 7408 7409 if (off % size != 0) 7410 return false; 7411 7412 switch (off) { 7413 default: 7414 return size == sizeof(__u32); 7415 } 7416 } 7417 7418 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 7419 const struct bpf_insn *si, 7420 struct bpf_insn *insn_buf, 7421 struct bpf_prog *prog, u32 *target_size) 7422 { 7423 struct bpf_insn *insn = insn_buf; 7424 7425 #define BPF_XDP_SOCK_GET(FIELD) \ 7426 do { \ 7427 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \ 7428 sizeof_field(struct bpf_xdp_sock, FIELD)); \ 7429 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\ 7430 si->dst_reg, si->src_reg, \ 7431 offsetof(struct xdp_sock, FIELD)); \ 7432 } while (0) 7433 7434 switch (si->off) { 7435 case offsetof(struct bpf_xdp_sock, queue_id): 7436 BPF_XDP_SOCK_GET(queue_id); 7437 break; 7438 } 7439 7440 return insn - insn_buf; 7441 } 7442 7443 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = { 7444 .func = bpf_skb_ecn_set_ce, 7445 .gpl_only = false, 7446 .ret_type = RET_INTEGER, 7447 .arg1_type = ARG_PTR_TO_CTX, 7448 }; 7449 7450 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len, 7451 struct tcphdr *, th, u32, th_len) 7452 { 7453 #ifdef CONFIG_SYN_COOKIES 7454 int ret; 7455 7456 if (unlikely(!sk || th_len < sizeof(*th))) 7457 return -EINVAL; 7458 7459 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */ 7460 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN) 7461 return -EINVAL; 7462 7463 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies)) 7464 return -EINVAL; 7465 7466 if (!th->ack || th->rst || th->syn) 7467 return -ENOENT; 7468 7469 if (unlikely(iph_len < sizeof(struct iphdr))) 7470 return -EINVAL; 7471 7472 if (tcp_synq_no_recent_overflow(sk)) 7473 return -ENOENT; 7474 7475 /* Both struct iphdr and struct ipv6hdr have the version field at the 7476 * same offset so we can cast to the shorter header (struct iphdr). 7477 */ 7478 switch (((struct iphdr *)iph)->version) { 7479 case 4: 7480 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk)) 7481 return -EINVAL; 7482 7483 ret = __cookie_v4_check((struct iphdr *)iph, th); 7484 break; 7485 7486 #if IS_BUILTIN(CONFIG_IPV6) 7487 case 6: 7488 if (unlikely(iph_len < sizeof(struct ipv6hdr))) 7489 return -EINVAL; 7490 7491 if (sk->sk_family != AF_INET6) 7492 return -EINVAL; 7493 7494 ret = __cookie_v6_check((struct ipv6hdr *)iph, th); 7495 break; 7496 #endif /* CONFIG_IPV6 */ 7497 7498 default: 7499 return -EPROTONOSUPPORT; 7500 } 7501 7502 if (ret > 0) 7503 return 0; 7504 7505 return -ENOENT; 7506 #else 7507 return -ENOTSUPP; 7508 #endif 7509 } 7510 7511 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = { 7512 .func = bpf_tcp_check_syncookie, 7513 .gpl_only = true, 7514 .pkt_access = true, 7515 .ret_type = RET_INTEGER, 7516 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 7517 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7518 .arg3_type = ARG_CONST_SIZE, 7519 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7520 .arg5_type = ARG_CONST_SIZE, 7521 }; 7522 7523 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len, 7524 struct tcphdr *, th, u32, th_len) 7525 { 7526 #ifdef CONFIG_SYN_COOKIES 7527 u32 cookie; 7528 u16 mss; 7529 7530 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4)) 7531 return -EINVAL; 7532 7533 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN) 7534 return -EINVAL; 7535 7536 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies)) 7537 return -ENOENT; 7538 7539 if (!th->syn || th->ack || th->fin || th->rst) 7540 return -EINVAL; 7541 7542 if (unlikely(iph_len < sizeof(struct iphdr))) 7543 return -EINVAL; 7544 7545 /* Both struct iphdr and struct ipv6hdr have the version field at the 7546 * same offset so we can cast to the shorter header (struct iphdr). 7547 */ 7548 switch (((struct iphdr *)iph)->version) { 7549 case 4: 7550 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk)) 7551 return -EINVAL; 7552 7553 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie); 7554 break; 7555 7556 #if IS_BUILTIN(CONFIG_IPV6) 7557 case 6: 7558 if (unlikely(iph_len < sizeof(struct ipv6hdr))) 7559 return -EINVAL; 7560 7561 if (sk->sk_family != AF_INET6) 7562 return -EINVAL; 7563 7564 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie); 7565 break; 7566 #endif /* CONFIG_IPV6 */ 7567 7568 default: 7569 return -EPROTONOSUPPORT; 7570 } 7571 if (mss == 0) 7572 return -ENOENT; 7573 7574 return cookie | ((u64)mss << 32); 7575 #else 7576 return -EOPNOTSUPP; 7577 #endif /* CONFIG_SYN_COOKIES */ 7578 } 7579 7580 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = { 7581 .func = bpf_tcp_gen_syncookie, 7582 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */ 7583 .pkt_access = true, 7584 .ret_type = RET_INTEGER, 7585 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 7586 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7587 .arg3_type = ARG_CONST_SIZE, 7588 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7589 .arg5_type = ARG_CONST_SIZE, 7590 }; 7591 7592 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags) 7593 { 7594 if (!sk || flags != 0) 7595 return -EINVAL; 7596 if (!skb_at_tc_ingress(skb)) 7597 return -EOPNOTSUPP; 7598 if (unlikely(dev_net(skb->dev) != sock_net(sk))) 7599 return -ENETUNREACH; 7600 if (sk_unhashed(sk)) 7601 return -EOPNOTSUPP; 7602 if (sk_is_refcounted(sk) && 7603 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt))) 7604 return -ENOENT; 7605 7606 skb_orphan(skb); 7607 skb->sk = sk; 7608 skb->destructor = sock_pfree; 7609 7610 return 0; 7611 } 7612 7613 static const struct bpf_func_proto bpf_sk_assign_proto = { 7614 .func = bpf_sk_assign, 7615 .gpl_only = false, 7616 .ret_type = RET_INTEGER, 7617 .arg1_type = ARG_PTR_TO_CTX, 7618 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 7619 .arg3_type = ARG_ANYTHING, 7620 }; 7621 7622 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend, 7623 u8 search_kind, const u8 *magic, 7624 u8 magic_len, bool *eol) 7625 { 7626 u8 kind, kind_len; 7627 7628 *eol = false; 7629 7630 while (op < opend) { 7631 kind = op[0]; 7632 7633 if (kind == TCPOPT_EOL) { 7634 *eol = true; 7635 return ERR_PTR(-ENOMSG); 7636 } else if (kind == TCPOPT_NOP) { 7637 op++; 7638 continue; 7639 } 7640 7641 if (opend - op < 2 || opend - op < op[1] || op[1] < 2) 7642 /* Something is wrong in the received header. 7643 * Follow the TCP stack's tcp_parse_options() 7644 * and just bail here. 7645 */ 7646 return ERR_PTR(-EFAULT); 7647 7648 kind_len = op[1]; 7649 if (search_kind == kind) { 7650 if (!magic_len) 7651 return op; 7652 7653 if (magic_len > kind_len - 2) 7654 return ERR_PTR(-ENOMSG); 7655 7656 if (!memcmp(&op[2], magic, magic_len)) 7657 return op; 7658 } 7659 7660 op += kind_len; 7661 } 7662 7663 return ERR_PTR(-ENOMSG); 7664 } 7665 7666 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, 7667 void *, search_res, u32, len, u64, flags) 7668 { 7669 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN; 7670 const u8 *op, *opend, *magic, *search = search_res; 7671 u8 search_kind, search_len, copy_len, magic_len; 7672 int ret; 7673 7674 if (!is_locked_tcp_sock_ops(bpf_sock)) 7675 return -EOPNOTSUPP; 7676 7677 /* 2 byte is the minimal option len except TCPOPT_NOP and 7678 * TCPOPT_EOL which are useless for the bpf prog to learn 7679 * and this helper disallow loading them also. 7680 */ 7681 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN) 7682 return -EINVAL; 7683 7684 search_kind = search[0]; 7685 search_len = search[1]; 7686 7687 if (search_len > len || search_kind == TCPOPT_NOP || 7688 search_kind == TCPOPT_EOL) 7689 return -EINVAL; 7690 7691 if (search_kind == TCPOPT_EXP || search_kind == 253) { 7692 /* 16 or 32 bit magic. +2 for kind and kind length */ 7693 if (search_len != 4 && search_len != 6) 7694 return -EINVAL; 7695 magic = &search[2]; 7696 magic_len = search_len - 2; 7697 } else { 7698 if (search_len) 7699 return -EINVAL; 7700 magic = NULL; 7701 magic_len = 0; 7702 } 7703 7704 if (load_syn) { 7705 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op); 7706 if (ret < 0) 7707 return ret; 7708 7709 opend = op + ret; 7710 op += sizeof(struct tcphdr); 7711 } else { 7712 if (!bpf_sock->skb || 7713 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB) 7714 /* This bpf_sock->op cannot call this helper */ 7715 return -EPERM; 7716 7717 opend = bpf_sock->skb_data_end; 7718 op = bpf_sock->skb->data + sizeof(struct tcphdr); 7719 } 7720 7721 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len, 7722 &eol); 7723 if (IS_ERR(op)) 7724 return PTR_ERR(op); 7725 7726 copy_len = op[1]; 7727 ret = copy_len; 7728 if (copy_len > len) { 7729 ret = -ENOSPC; 7730 copy_len = len; 7731 } 7732 7733 memcpy(search_res, op, copy_len); 7734 return ret; 7735 } 7736 7737 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = { 7738 .func = bpf_sock_ops_load_hdr_opt, 7739 .gpl_only = false, 7740 .ret_type = RET_INTEGER, 7741 .arg1_type = ARG_PTR_TO_CTX, 7742 .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE, 7743 .arg3_type = ARG_CONST_SIZE, 7744 .arg4_type = ARG_ANYTHING, 7745 }; 7746 7747 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, 7748 const void *, from, u32, len, u64, flags) 7749 { 7750 u8 new_kind, new_kind_len, magic_len = 0, *opend; 7751 const u8 *op, *new_op, *magic = NULL; 7752 struct sk_buff *skb; 7753 bool eol; 7754 7755 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB) 7756 return -EPERM; 7757 7758 if (len < 2 || flags) 7759 return -EINVAL; 7760 7761 new_op = from; 7762 new_kind = new_op[0]; 7763 new_kind_len = new_op[1]; 7764 7765 if (new_kind_len > len || new_kind == TCPOPT_NOP || 7766 new_kind == TCPOPT_EOL) 7767 return -EINVAL; 7768 7769 if (new_kind_len > bpf_sock->remaining_opt_len) 7770 return -ENOSPC; 7771 7772 /* 253 is another experimental kind */ 7773 if (new_kind == TCPOPT_EXP || new_kind == 253) { 7774 if (new_kind_len < 4) 7775 return -EINVAL; 7776 /* Match for the 2 byte magic also. 7777 * RFC 6994: the magic could be 2 or 4 bytes. 7778 * Hence, matching by 2 byte only is on the 7779 * conservative side but it is the right 7780 * thing to do for the 'search-for-duplication' 7781 * purpose. 7782 */ 7783 magic = &new_op[2]; 7784 magic_len = 2; 7785 } 7786 7787 /* Check for duplication */ 7788 skb = bpf_sock->skb; 7789 op = skb->data + sizeof(struct tcphdr); 7790 opend = bpf_sock->skb_data_end; 7791 7792 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len, 7793 &eol); 7794 if (!IS_ERR(op)) 7795 return -EEXIST; 7796 7797 if (PTR_ERR(op) != -ENOMSG) 7798 return PTR_ERR(op); 7799 7800 if (eol) 7801 /* The option has been ended. Treat it as no more 7802 * header option can be written. 7803 */ 7804 return -ENOSPC; 7805 7806 /* No duplication found. Store the header option. */ 7807 memcpy(opend, from, new_kind_len); 7808 7809 bpf_sock->remaining_opt_len -= new_kind_len; 7810 bpf_sock->skb_data_end += new_kind_len; 7811 7812 return 0; 7813 } 7814 7815 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = { 7816 .func = bpf_sock_ops_store_hdr_opt, 7817 .gpl_only = false, 7818 .ret_type = RET_INTEGER, 7819 .arg1_type = ARG_PTR_TO_CTX, 7820 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7821 .arg3_type = ARG_CONST_SIZE, 7822 .arg4_type = ARG_ANYTHING, 7823 }; 7824 7825 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, 7826 u32, len, u64, flags) 7827 { 7828 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB) 7829 return -EPERM; 7830 7831 if (flags || len < 2) 7832 return -EINVAL; 7833 7834 if (len > bpf_sock->remaining_opt_len) 7835 return -ENOSPC; 7836 7837 bpf_sock->remaining_opt_len -= len; 7838 7839 return 0; 7840 } 7841 7842 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = { 7843 .func = bpf_sock_ops_reserve_hdr_opt, 7844 .gpl_only = false, 7845 .ret_type = RET_INTEGER, 7846 .arg1_type = ARG_PTR_TO_CTX, 7847 .arg2_type = ARG_ANYTHING, 7848 .arg3_type = ARG_ANYTHING, 7849 }; 7850 7851 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb, 7852 u64, tstamp, u32, tstamp_type) 7853 { 7854 /* skb_clear_delivery_time() is done for inet protocol */ 7855 if (skb->protocol != htons(ETH_P_IP) && 7856 skb->protocol != htons(ETH_P_IPV6)) 7857 return -EOPNOTSUPP; 7858 7859 switch (tstamp_type) { 7860 case BPF_SKB_CLOCK_REALTIME: 7861 skb->tstamp = tstamp; 7862 skb->tstamp_type = SKB_CLOCK_REALTIME; 7863 break; 7864 case BPF_SKB_CLOCK_MONOTONIC: 7865 if (!tstamp) 7866 return -EINVAL; 7867 skb->tstamp = tstamp; 7868 skb->tstamp_type = SKB_CLOCK_MONOTONIC; 7869 break; 7870 case BPF_SKB_CLOCK_TAI: 7871 if (!tstamp) 7872 return -EINVAL; 7873 skb->tstamp = tstamp; 7874 skb->tstamp_type = SKB_CLOCK_TAI; 7875 break; 7876 default: 7877 return -EINVAL; 7878 } 7879 7880 return 0; 7881 } 7882 7883 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = { 7884 .func = bpf_skb_set_tstamp, 7885 .gpl_only = false, 7886 .ret_type = RET_INTEGER, 7887 .arg1_type = ARG_PTR_TO_CTX, 7888 .arg2_type = ARG_ANYTHING, 7889 .arg3_type = ARG_ANYTHING, 7890 }; 7891 7892 #ifdef CONFIG_SYN_COOKIES 7893 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph, 7894 struct tcphdr *, th, u32, th_len) 7895 { 7896 u32 cookie; 7897 u16 mss; 7898 7899 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4)) 7900 return -EINVAL; 7901 7902 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT; 7903 cookie = __cookie_v4_init_sequence(iph, th, &mss); 7904 7905 return cookie | ((u64)mss << 32); 7906 } 7907 7908 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = { 7909 .func = bpf_tcp_raw_gen_syncookie_ipv4, 7910 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */ 7911 .pkt_access = true, 7912 .ret_type = RET_INTEGER, 7913 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM, 7914 .arg1_size = sizeof(struct iphdr), 7915 .arg2_type = ARG_PTR_TO_MEM, 7916 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7917 }; 7918 7919 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph, 7920 struct tcphdr *, th, u32, th_len) 7921 { 7922 #if IS_BUILTIN(CONFIG_IPV6) 7923 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) - 7924 sizeof(struct ipv6hdr); 7925 u32 cookie; 7926 u16 mss; 7927 7928 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4)) 7929 return -EINVAL; 7930 7931 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp; 7932 cookie = __cookie_v6_init_sequence(iph, th, &mss); 7933 7934 return cookie | ((u64)mss << 32); 7935 #else 7936 return -EPROTONOSUPPORT; 7937 #endif 7938 } 7939 7940 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = { 7941 .func = bpf_tcp_raw_gen_syncookie_ipv6, 7942 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */ 7943 .pkt_access = true, 7944 .ret_type = RET_INTEGER, 7945 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM, 7946 .arg1_size = sizeof(struct ipv6hdr), 7947 .arg2_type = ARG_PTR_TO_MEM, 7948 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 7949 }; 7950 7951 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph, 7952 struct tcphdr *, th) 7953 { 7954 if (__cookie_v4_check(iph, th) > 0) 7955 return 0; 7956 7957 return -EACCES; 7958 } 7959 7960 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = { 7961 .func = bpf_tcp_raw_check_syncookie_ipv4, 7962 .gpl_only = true, /* __cookie_v4_check is GPL */ 7963 .pkt_access = true, 7964 .ret_type = RET_INTEGER, 7965 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM, 7966 .arg1_size = sizeof(struct iphdr), 7967 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM, 7968 .arg2_size = sizeof(struct tcphdr), 7969 }; 7970 7971 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph, 7972 struct tcphdr *, th) 7973 { 7974 #if IS_BUILTIN(CONFIG_IPV6) 7975 if (__cookie_v6_check(iph, th) > 0) 7976 return 0; 7977 7978 return -EACCES; 7979 #else 7980 return -EPROTONOSUPPORT; 7981 #endif 7982 } 7983 7984 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = { 7985 .func = bpf_tcp_raw_check_syncookie_ipv6, 7986 .gpl_only = true, /* __cookie_v6_check is GPL */ 7987 .pkt_access = true, 7988 .ret_type = RET_INTEGER, 7989 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM, 7990 .arg1_size = sizeof(struct ipv6hdr), 7991 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM, 7992 .arg2_size = sizeof(struct tcphdr), 7993 }; 7994 #endif /* CONFIG_SYN_COOKIES */ 7995 7996 #endif /* CONFIG_INET */ 7997 7998 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id) 7999 { 8000 switch (func_id) { 8001 case BPF_FUNC_clone_redirect: 8002 case BPF_FUNC_l3_csum_replace: 8003 case BPF_FUNC_l4_csum_replace: 8004 case BPF_FUNC_lwt_push_encap: 8005 case BPF_FUNC_lwt_seg6_action: 8006 case BPF_FUNC_lwt_seg6_adjust_srh: 8007 case BPF_FUNC_lwt_seg6_store_bytes: 8008 case BPF_FUNC_msg_pop_data: 8009 case BPF_FUNC_msg_pull_data: 8010 case BPF_FUNC_msg_push_data: 8011 case BPF_FUNC_skb_adjust_room: 8012 case BPF_FUNC_skb_change_head: 8013 case BPF_FUNC_skb_change_proto: 8014 case BPF_FUNC_skb_change_tail: 8015 case BPF_FUNC_skb_pull_data: 8016 case BPF_FUNC_skb_store_bytes: 8017 case BPF_FUNC_skb_vlan_pop: 8018 case BPF_FUNC_skb_vlan_push: 8019 case BPF_FUNC_store_hdr_opt: 8020 case BPF_FUNC_xdp_adjust_head: 8021 case BPF_FUNC_xdp_adjust_meta: 8022 case BPF_FUNC_xdp_adjust_tail: 8023 /* tail-called program could call any of the above */ 8024 case BPF_FUNC_tail_call: 8025 return true; 8026 default: 8027 return false; 8028 } 8029 } 8030 8031 const struct bpf_func_proto bpf_event_output_data_proto __weak; 8032 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak; 8033 8034 static const struct bpf_func_proto * 8035 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8036 { 8037 const struct bpf_func_proto *func_proto; 8038 8039 func_proto = cgroup_common_func_proto(func_id, prog); 8040 if (func_proto) 8041 return func_proto; 8042 8043 switch (func_id) { 8044 case BPF_FUNC_get_socket_cookie: 8045 return &bpf_get_socket_cookie_sock_proto; 8046 case BPF_FUNC_get_netns_cookie: 8047 return &bpf_get_netns_cookie_sock_proto; 8048 case BPF_FUNC_perf_event_output: 8049 return &bpf_event_output_data_proto; 8050 case BPF_FUNC_sk_storage_get: 8051 return &bpf_sk_storage_get_cg_sock_proto; 8052 case BPF_FUNC_ktime_get_coarse_ns: 8053 return &bpf_ktime_get_coarse_ns_proto; 8054 default: 8055 return bpf_base_func_proto(func_id, prog); 8056 } 8057 } 8058 8059 static const struct bpf_func_proto * 8060 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8061 { 8062 const struct bpf_func_proto *func_proto; 8063 8064 func_proto = cgroup_common_func_proto(func_id, prog); 8065 if (func_proto) 8066 return func_proto; 8067 8068 switch (func_id) { 8069 case BPF_FUNC_bind: 8070 switch (prog->expected_attach_type) { 8071 case BPF_CGROUP_INET4_CONNECT: 8072 case BPF_CGROUP_INET6_CONNECT: 8073 return &bpf_bind_proto; 8074 default: 8075 return NULL; 8076 } 8077 case BPF_FUNC_get_socket_cookie: 8078 return &bpf_get_socket_cookie_sock_addr_proto; 8079 case BPF_FUNC_get_netns_cookie: 8080 return &bpf_get_netns_cookie_sock_addr_proto; 8081 case BPF_FUNC_perf_event_output: 8082 return &bpf_event_output_data_proto; 8083 #ifdef CONFIG_INET 8084 case BPF_FUNC_sk_lookup_tcp: 8085 return &bpf_sock_addr_sk_lookup_tcp_proto; 8086 case BPF_FUNC_sk_lookup_udp: 8087 return &bpf_sock_addr_sk_lookup_udp_proto; 8088 case BPF_FUNC_sk_release: 8089 return &bpf_sk_release_proto; 8090 case BPF_FUNC_skc_lookup_tcp: 8091 return &bpf_sock_addr_skc_lookup_tcp_proto; 8092 #endif /* CONFIG_INET */ 8093 case BPF_FUNC_sk_storage_get: 8094 return &bpf_sk_storage_get_proto; 8095 case BPF_FUNC_sk_storage_delete: 8096 return &bpf_sk_storage_delete_proto; 8097 case BPF_FUNC_setsockopt: 8098 switch (prog->expected_attach_type) { 8099 case BPF_CGROUP_INET4_BIND: 8100 case BPF_CGROUP_INET6_BIND: 8101 case BPF_CGROUP_INET4_CONNECT: 8102 case BPF_CGROUP_INET6_CONNECT: 8103 case BPF_CGROUP_UNIX_CONNECT: 8104 case BPF_CGROUP_UDP4_RECVMSG: 8105 case BPF_CGROUP_UDP6_RECVMSG: 8106 case BPF_CGROUP_UNIX_RECVMSG: 8107 case BPF_CGROUP_UDP4_SENDMSG: 8108 case BPF_CGROUP_UDP6_SENDMSG: 8109 case BPF_CGROUP_UNIX_SENDMSG: 8110 case BPF_CGROUP_INET4_GETPEERNAME: 8111 case BPF_CGROUP_INET6_GETPEERNAME: 8112 case BPF_CGROUP_UNIX_GETPEERNAME: 8113 case BPF_CGROUP_INET4_GETSOCKNAME: 8114 case BPF_CGROUP_INET6_GETSOCKNAME: 8115 case BPF_CGROUP_UNIX_GETSOCKNAME: 8116 return &bpf_sock_addr_setsockopt_proto; 8117 default: 8118 return NULL; 8119 } 8120 case BPF_FUNC_getsockopt: 8121 switch (prog->expected_attach_type) { 8122 case BPF_CGROUP_INET4_BIND: 8123 case BPF_CGROUP_INET6_BIND: 8124 case BPF_CGROUP_INET4_CONNECT: 8125 case BPF_CGROUP_INET6_CONNECT: 8126 case BPF_CGROUP_UNIX_CONNECT: 8127 case BPF_CGROUP_UDP4_RECVMSG: 8128 case BPF_CGROUP_UDP6_RECVMSG: 8129 case BPF_CGROUP_UNIX_RECVMSG: 8130 case BPF_CGROUP_UDP4_SENDMSG: 8131 case BPF_CGROUP_UDP6_SENDMSG: 8132 case BPF_CGROUP_UNIX_SENDMSG: 8133 case BPF_CGROUP_INET4_GETPEERNAME: 8134 case BPF_CGROUP_INET6_GETPEERNAME: 8135 case BPF_CGROUP_UNIX_GETPEERNAME: 8136 case BPF_CGROUP_INET4_GETSOCKNAME: 8137 case BPF_CGROUP_INET6_GETSOCKNAME: 8138 case BPF_CGROUP_UNIX_GETSOCKNAME: 8139 return &bpf_sock_addr_getsockopt_proto; 8140 default: 8141 return NULL; 8142 } 8143 default: 8144 return bpf_sk_base_func_proto(func_id, prog); 8145 } 8146 } 8147 8148 static const struct bpf_func_proto * 8149 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8150 { 8151 switch (func_id) { 8152 case BPF_FUNC_skb_load_bytes: 8153 return &bpf_skb_load_bytes_proto; 8154 case BPF_FUNC_skb_load_bytes_relative: 8155 return &bpf_skb_load_bytes_relative_proto; 8156 case BPF_FUNC_get_socket_cookie: 8157 return &bpf_get_socket_cookie_proto; 8158 case BPF_FUNC_get_netns_cookie: 8159 return &bpf_get_netns_cookie_proto; 8160 case BPF_FUNC_get_socket_uid: 8161 return &bpf_get_socket_uid_proto; 8162 case BPF_FUNC_perf_event_output: 8163 return &bpf_skb_event_output_proto; 8164 default: 8165 return bpf_sk_base_func_proto(func_id, prog); 8166 } 8167 } 8168 8169 const struct bpf_func_proto bpf_sk_storage_get_proto __weak; 8170 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak; 8171 8172 static const struct bpf_func_proto * 8173 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8174 { 8175 const struct bpf_func_proto *func_proto; 8176 8177 func_proto = cgroup_common_func_proto(func_id, prog); 8178 if (func_proto) 8179 return func_proto; 8180 8181 switch (func_id) { 8182 case BPF_FUNC_sk_fullsock: 8183 return &bpf_sk_fullsock_proto; 8184 case BPF_FUNC_sk_storage_get: 8185 return &bpf_sk_storage_get_proto; 8186 case BPF_FUNC_sk_storage_delete: 8187 return &bpf_sk_storage_delete_proto; 8188 case BPF_FUNC_perf_event_output: 8189 return &bpf_skb_event_output_proto; 8190 #ifdef CONFIG_SOCK_CGROUP_DATA 8191 case BPF_FUNC_skb_cgroup_id: 8192 return &bpf_skb_cgroup_id_proto; 8193 case BPF_FUNC_skb_ancestor_cgroup_id: 8194 return &bpf_skb_ancestor_cgroup_id_proto; 8195 case BPF_FUNC_sk_cgroup_id: 8196 return &bpf_sk_cgroup_id_proto; 8197 case BPF_FUNC_sk_ancestor_cgroup_id: 8198 return &bpf_sk_ancestor_cgroup_id_proto; 8199 #endif 8200 #ifdef CONFIG_INET 8201 case BPF_FUNC_sk_lookup_tcp: 8202 return &bpf_sk_lookup_tcp_proto; 8203 case BPF_FUNC_sk_lookup_udp: 8204 return &bpf_sk_lookup_udp_proto; 8205 case BPF_FUNC_sk_release: 8206 return &bpf_sk_release_proto; 8207 case BPF_FUNC_skc_lookup_tcp: 8208 return &bpf_skc_lookup_tcp_proto; 8209 case BPF_FUNC_tcp_sock: 8210 return &bpf_tcp_sock_proto; 8211 case BPF_FUNC_get_listener_sock: 8212 return &bpf_get_listener_sock_proto; 8213 case BPF_FUNC_skb_ecn_set_ce: 8214 return &bpf_skb_ecn_set_ce_proto; 8215 #endif 8216 default: 8217 return sk_filter_func_proto(func_id, prog); 8218 } 8219 } 8220 8221 static const struct bpf_func_proto * 8222 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8223 { 8224 switch (func_id) { 8225 case BPF_FUNC_skb_store_bytes: 8226 return &bpf_skb_store_bytes_proto; 8227 case BPF_FUNC_skb_load_bytes: 8228 return &bpf_skb_load_bytes_proto; 8229 case BPF_FUNC_skb_load_bytes_relative: 8230 return &bpf_skb_load_bytes_relative_proto; 8231 case BPF_FUNC_skb_pull_data: 8232 return &bpf_skb_pull_data_proto; 8233 case BPF_FUNC_csum_diff: 8234 return &bpf_csum_diff_proto; 8235 case BPF_FUNC_csum_update: 8236 return &bpf_csum_update_proto; 8237 case BPF_FUNC_csum_level: 8238 return &bpf_csum_level_proto; 8239 case BPF_FUNC_l3_csum_replace: 8240 return &bpf_l3_csum_replace_proto; 8241 case BPF_FUNC_l4_csum_replace: 8242 return &bpf_l4_csum_replace_proto; 8243 case BPF_FUNC_clone_redirect: 8244 return &bpf_clone_redirect_proto; 8245 case BPF_FUNC_get_cgroup_classid: 8246 return &bpf_get_cgroup_classid_proto; 8247 case BPF_FUNC_skb_vlan_push: 8248 return &bpf_skb_vlan_push_proto; 8249 case BPF_FUNC_skb_vlan_pop: 8250 return &bpf_skb_vlan_pop_proto; 8251 case BPF_FUNC_skb_change_proto: 8252 return &bpf_skb_change_proto_proto; 8253 case BPF_FUNC_skb_change_type: 8254 return &bpf_skb_change_type_proto; 8255 case BPF_FUNC_skb_adjust_room: 8256 return &bpf_skb_adjust_room_proto; 8257 case BPF_FUNC_skb_change_tail: 8258 return &bpf_skb_change_tail_proto; 8259 case BPF_FUNC_skb_change_head: 8260 return &bpf_skb_change_head_proto; 8261 case BPF_FUNC_skb_get_tunnel_key: 8262 return &bpf_skb_get_tunnel_key_proto; 8263 case BPF_FUNC_skb_set_tunnel_key: 8264 return bpf_get_skb_set_tunnel_proto(func_id); 8265 case BPF_FUNC_skb_get_tunnel_opt: 8266 return &bpf_skb_get_tunnel_opt_proto; 8267 case BPF_FUNC_skb_set_tunnel_opt: 8268 return bpf_get_skb_set_tunnel_proto(func_id); 8269 case BPF_FUNC_redirect: 8270 return &bpf_redirect_proto; 8271 case BPF_FUNC_redirect_neigh: 8272 return &bpf_redirect_neigh_proto; 8273 case BPF_FUNC_redirect_peer: 8274 return &bpf_redirect_peer_proto; 8275 case BPF_FUNC_get_route_realm: 8276 return &bpf_get_route_realm_proto; 8277 case BPF_FUNC_get_hash_recalc: 8278 return &bpf_get_hash_recalc_proto; 8279 case BPF_FUNC_set_hash_invalid: 8280 return &bpf_set_hash_invalid_proto; 8281 case BPF_FUNC_set_hash: 8282 return &bpf_set_hash_proto; 8283 case BPF_FUNC_perf_event_output: 8284 return &bpf_skb_event_output_proto; 8285 case BPF_FUNC_get_smp_processor_id: 8286 return &bpf_get_smp_processor_id_proto; 8287 case BPF_FUNC_skb_under_cgroup: 8288 return &bpf_skb_under_cgroup_proto; 8289 case BPF_FUNC_get_socket_cookie: 8290 return &bpf_get_socket_cookie_proto; 8291 case BPF_FUNC_get_netns_cookie: 8292 return &bpf_get_netns_cookie_proto; 8293 case BPF_FUNC_get_socket_uid: 8294 return &bpf_get_socket_uid_proto; 8295 case BPF_FUNC_fib_lookup: 8296 return &bpf_skb_fib_lookup_proto; 8297 case BPF_FUNC_check_mtu: 8298 return &bpf_skb_check_mtu_proto; 8299 case BPF_FUNC_sk_fullsock: 8300 return &bpf_sk_fullsock_proto; 8301 case BPF_FUNC_sk_storage_get: 8302 return &bpf_sk_storage_get_proto; 8303 case BPF_FUNC_sk_storage_delete: 8304 return &bpf_sk_storage_delete_proto; 8305 #ifdef CONFIG_XFRM 8306 case BPF_FUNC_skb_get_xfrm_state: 8307 return &bpf_skb_get_xfrm_state_proto; 8308 #endif 8309 #ifdef CONFIG_CGROUP_NET_CLASSID 8310 case BPF_FUNC_skb_cgroup_classid: 8311 return &bpf_skb_cgroup_classid_proto; 8312 #endif 8313 #ifdef CONFIG_SOCK_CGROUP_DATA 8314 case BPF_FUNC_skb_cgroup_id: 8315 return &bpf_skb_cgroup_id_proto; 8316 case BPF_FUNC_skb_ancestor_cgroup_id: 8317 return &bpf_skb_ancestor_cgroup_id_proto; 8318 #endif 8319 #ifdef CONFIG_INET 8320 case BPF_FUNC_sk_lookup_tcp: 8321 return &bpf_tc_sk_lookup_tcp_proto; 8322 case BPF_FUNC_sk_lookup_udp: 8323 return &bpf_tc_sk_lookup_udp_proto; 8324 case BPF_FUNC_sk_release: 8325 return &bpf_sk_release_proto; 8326 case BPF_FUNC_tcp_sock: 8327 return &bpf_tcp_sock_proto; 8328 case BPF_FUNC_get_listener_sock: 8329 return &bpf_get_listener_sock_proto; 8330 case BPF_FUNC_skc_lookup_tcp: 8331 return &bpf_tc_skc_lookup_tcp_proto; 8332 case BPF_FUNC_tcp_check_syncookie: 8333 return &bpf_tcp_check_syncookie_proto; 8334 case BPF_FUNC_skb_ecn_set_ce: 8335 return &bpf_skb_ecn_set_ce_proto; 8336 case BPF_FUNC_tcp_gen_syncookie: 8337 return &bpf_tcp_gen_syncookie_proto; 8338 case BPF_FUNC_sk_assign: 8339 return &bpf_sk_assign_proto; 8340 case BPF_FUNC_skb_set_tstamp: 8341 return &bpf_skb_set_tstamp_proto; 8342 #ifdef CONFIG_SYN_COOKIES 8343 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4: 8344 return &bpf_tcp_raw_gen_syncookie_ipv4_proto; 8345 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6: 8346 return &bpf_tcp_raw_gen_syncookie_ipv6_proto; 8347 case BPF_FUNC_tcp_raw_check_syncookie_ipv4: 8348 return &bpf_tcp_raw_check_syncookie_ipv4_proto; 8349 case BPF_FUNC_tcp_raw_check_syncookie_ipv6: 8350 return &bpf_tcp_raw_check_syncookie_ipv6_proto; 8351 #endif 8352 #endif 8353 default: 8354 return bpf_sk_base_func_proto(func_id, prog); 8355 } 8356 } 8357 8358 static const struct bpf_func_proto * 8359 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8360 { 8361 switch (func_id) { 8362 case BPF_FUNC_perf_event_output: 8363 return &bpf_xdp_event_output_proto; 8364 case BPF_FUNC_get_smp_processor_id: 8365 return &bpf_get_smp_processor_id_proto; 8366 case BPF_FUNC_csum_diff: 8367 return &bpf_csum_diff_proto; 8368 case BPF_FUNC_xdp_adjust_head: 8369 return &bpf_xdp_adjust_head_proto; 8370 case BPF_FUNC_xdp_adjust_meta: 8371 return &bpf_xdp_adjust_meta_proto; 8372 case BPF_FUNC_redirect: 8373 return &bpf_xdp_redirect_proto; 8374 case BPF_FUNC_redirect_map: 8375 return &bpf_xdp_redirect_map_proto; 8376 case BPF_FUNC_xdp_adjust_tail: 8377 return &bpf_xdp_adjust_tail_proto; 8378 case BPF_FUNC_xdp_get_buff_len: 8379 return &bpf_xdp_get_buff_len_proto; 8380 case BPF_FUNC_xdp_load_bytes: 8381 return &bpf_xdp_load_bytes_proto; 8382 case BPF_FUNC_xdp_store_bytes: 8383 return &bpf_xdp_store_bytes_proto; 8384 case BPF_FUNC_fib_lookup: 8385 return &bpf_xdp_fib_lookup_proto; 8386 case BPF_FUNC_check_mtu: 8387 return &bpf_xdp_check_mtu_proto; 8388 #ifdef CONFIG_INET 8389 case BPF_FUNC_sk_lookup_udp: 8390 return &bpf_xdp_sk_lookup_udp_proto; 8391 case BPF_FUNC_sk_lookup_tcp: 8392 return &bpf_xdp_sk_lookup_tcp_proto; 8393 case BPF_FUNC_sk_release: 8394 return &bpf_sk_release_proto; 8395 case BPF_FUNC_skc_lookup_tcp: 8396 return &bpf_xdp_skc_lookup_tcp_proto; 8397 case BPF_FUNC_tcp_check_syncookie: 8398 return &bpf_tcp_check_syncookie_proto; 8399 case BPF_FUNC_tcp_gen_syncookie: 8400 return &bpf_tcp_gen_syncookie_proto; 8401 #ifdef CONFIG_SYN_COOKIES 8402 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4: 8403 return &bpf_tcp_raw_gen_syncookie_ipv4_proto; 8404 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6: 8405 return &bpf_tcp_raw_gen_syncookie_ipv6_proto; 8406 case BPF_FUNC_tcp_raw_check_syncookie_ipv4: 8407 return &bpf_tcp_raw_check_syncookie_ipv4_proto; 8408 case BPF_FUNC_tcp_raw_check_syncookie_ipv6: 8409 return &bpf_tcp_raw_check_syncookie_ipv6_proto; 8410 #endif 8411 #endif 8412 default: 8413 return bpf_sk_base_func_proto(func_id, prog); 8414 } 8415 8416 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES) 8417 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The 8418 * kfuncs are defined in two different modules, and we want to be able 8419 * to use them interchangeably with the same BTF type ID. Because modules 8420 * can't de-duplicate BTF IDs between each other, we need the type to be 8421 * referenced in the vmlinux BTF or the verifier will get confused about 8422 * the different types. So we add this dummy type reference which will 8423 * be included in vmlinux BTF, allowing both modules to refer to the 8424 * same type ID. 8425 */ 8426 BTF_TYPE_EMIT(struct nf_conn___init); 8427 #endif 8428 } 8429 8430 const struct bpf_func_proto bpf_sock_map_update_proto __weak; 8431 const struct bpf_func_proto bpf_sock_hash_update_proto __weak; 8432 8433 static const struct bpf_func_proto * 8434 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8435 { 8436 const struct bpf_func_proto *func_proto; 8437 8438 func_proto = cgroup_common_func_proto(func_id, prog); 8439 if (func_proto) 8440 return func_proto; 8441 8442 switch (func_id) { 8443 case BPF_FUNC_setsockopt: 8444 return &bpf_sock_ops_setsockopt_proto; 8445 case BPF_FUNC_getsockopt: 8446 return &bpf_sock_ops_getsockopt_proto; 8447 case BPF_FUNC_sock_ops_cb_flags_set: 8448 return &bpf_sock_ops_cb_flags_set_proto; 8449 case BPF_FUNC_sock_map_update: 8450 return &bpf_sock_map_update_proto; 8451 case BPF_FUNC_sock_hash_update: 8452 return &bpf_sock_hash_update_proto; 8453 case BPF_FUNC_get_socket_cookie: 8454 return &bpf_get_socket_cookie_sock_ops_proto; 8455 case BPF_FUNC_perf_event_output: 8456 return &bpf_event_output_data_proto; 8457 case BPF_FUNC_sk_storage_get: 8458 return &bpf_sk_storage_get_proto; 8459 case BPF_FUNC_sk_storage_delete: 8460 return &bpf_sk_storage_delete_proto; 8461 case BPF_FUNC_get_netns_cookie: 8462 return &bpf_get_netns_cookie_sock_ops_proto; 8463 #ifdef CONFIG_INET 8464 case BPF_FUNC_load_hdr_opt: 8465 return &bpf_sock_ops_load_hdr_opt_proto; 8466 case BPF_FUNC_store_hdr_opt: 8467 return &bpf_sock_ops_store_hdr_opt_proto; 8468 case BPF_FUNC_reserve_hdr_opt: 8469 return &bpf_sock_ops_reserve_hdr_opt_proto; 8470 case BPF_FUNC_tcp_sock: 8471 return &bpf_tcp_sock_proto; 8472 #endif /* CONFIG_INET */ 8473 default: 8474 return bpf_sk_base_func_proto(func_id, prog); 8475 } 8476 } 8477 8478 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak; 8479 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak; 8480 8481 static const struct bpf_func_proto * 8482 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8483 { 8484 switch (func_id) { 8485 case BPF_FUNC_msg_redirect_map: 8486 return &bpf_msg_redirect_map_proto; 8487 case BPF_FUNC_msg_redirect_hash: 8488 return &bpf_msg_redirect_hash_proto; 8489 case BPF_FUNC_msg_apply_bytes: 8490 return &bpf_msg_apply_bytes_proto; 8491 case BPF_FUNC_msg_cork_bytes: 8492 return &bpf_msg_cork_bytes_proto; 8493 case BPF_FUNC_msg_pull_data: 8494 return &bpf_msg_pull_data_proto; 8495 case BPF_FUNC_msg_push_data: 8496 return &bpf_msg_push_data_proto; 8497 case BPF_FUNC_msg_pop_data: 8498 return &bpf_msg_pop_data_proto; 8499 case BPF_FUNC_perf_event_output: 8500 return &bpf_event_output_data_proto; 8501 case BPF_FUNC_sk_storage_get: 8502 return &bpf_sk_storage_get_proto; 8503 case BPF_FUNC_sk_storage_delete: 8504 return &bpf_sk_storage_delete_proto; 8505 case BPF_FUNC_get_netns_cookie: 8506 return &bpf_get_netns_cookie_sk_msg_proto; 8507 default: 8508 return bpf_sk_base_func_proto(func_id, prog); 8509 } 8510 } 8511 8512 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak; 8513 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak; 8514 8515 static const struct bpf_func_proto * 8516 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8517 { 8518 switch (func_id) { 8519 case BPF_FUNC_skb_store_bytes: 8520 return &bpf_skb_store_bytes_proto; 8521 case BPF_FUNC_skb_load_bytes: 8522 return &bpf_skb_load_bytes_proto; 8523 case BPF_FUNC_skb_pull_data: 8524 return &sk_skb_pull_data_proto; 8525 case BPF_FUNC_skb_change_tail: 8526 return &sk_skb_change_tail_proto; 8527 case BPF_FUNC_skb_change_head: 8528 return &sk_skb_change_head_proto; 8529 case BPF_FUNC_skb_adjust_room: 8530 return &sk_skb_adjust_room_proto; 8531 case BPF_FUNC_get_socket_cookie: 8532 return &bpf_get_socket_cookie_proto; 8533 case BPF_FUNC_get_socket_uid: 8534 return &bpf_get_socket_uid_proto; 8535 case BPF_FUNC_sk_redirect_map: 8536 return &bpf_sk_redirect_map_proto; 8537 case BPF_FUNC_sk_redirect_hash: 8538 return &bpf_sk_redirect_hash_proto; 8539 case BPF_FUNC_perf_event_output: 8540 return &bpf_skb_event_output_proto; 8541 #ifdef CONFIG_INET 8542 case BPF_FUNC_sk_lookup_tcp: 8543 return &bpf_sk_lookup_tcp_proto; 8544 case BPF_FUNC_sk_lookup_udp: 8545 return &bpf_sk_lookup_udp_proto; 8546 case BPF_FUNC_sk_release: 8547 return &bpf_sk_release_proto; 8548 case BPF_FUNC_skc_lookup_tcp: 8549 return &bpf_skc_lookup_tcp_proto; 8550 #endif 8551 default: 8552 return bpf_sk_base_func_proto(func_id, prog); 8553 } 8554 } 8555 8556 static const struct bpf_func_proto * 8557 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8558 { 8559 switch (func_id) { 8560 case BPF_FUNC_skb_load_bytes: 8561 return &bpf_flow_dissector_load_bytes_proto; 8562 default: 8563 return bpf_sk_base_func_proto(func_id, prog); 8564 } 8565 } 8566 8567 static const struct bpf_func_proto * 8568 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8569 { 8570 switch (func_id) { 8571 case BPF_FUNC_skb_load_bytes: 8572 return &bpf_skb_load_bytes_proto; 8573 case BPF_FUNC_skb_pull_data: 8574 return &bpf_skb_pull_data_proto; 8575 case BPF_FUNC_csum_diff: 8576 return &bpf_csum_diff_proto; 8577 case BPF_FUNC_get_cgroup_classid: 8578 return &bpf_get_cgroup_classid_proto; 8579 case BPF_FUNC_get_route_realm: 8580 return &bpf_get_route_realm_proto; 8581 case BPF_FUNC_get_hash_recalc: 8582 return &bpf_get_hash_recalc_proto; 8583 case BPF_FUNC_perf_event_output: 8584 return &bpf_skb_event_output_proto; 8585 case BPF_FUNC_get_smp_processor_id: 8586 return &bpf_get_smp_processor_id_proto; 8587 case BPF_FUNC_skb_under_cgroup: 8588 return &bpf_skb_under_cgroup_proto; 8589 default: 8590 return bpf_sk_base_func_proto(func_id, prog); 8591 } 8592 } 8593 8594 static const struct bpf_func_proto * 8595 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8596 { 8597 switch (func_id) { 8598 case BPF_FUNC_lwt_push_encap: 8599 return &bpf_lwt_in_push_encap_proto; 8600 default: 8601 return lwt_out_func_proto(func_id, prog); 8602 } 8603 } 8604 8605 static const struct bpf_func_proto * 8606 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8607 { 8608 switch (func_id) { 8609 case BPF_FUNC_skb_get_tunnel_key: 8610 return &bpf_skb_get_tunnel_key_proto; 8611 case BPF_FUNC_skb_set_tunnel_key: 8612 return bpf_get_skb_set_tunnel_proto(func_id); 8613 case BPF_FUNC_skb_get_tunnel_opt: 8614 return &bpf_skb_get_tunnel_opt_proto; 8615 case BPF_FUNC_skb_set_tunnel_opt: 8616 return bpf_get_skb_set_tunnel_proto(func_id); 8617 case BPF_FUNC_redirect: 8618 return &bpf_redirect_proto; 8619 case BPF_FUNC_clone_redirect: 8620 return &bpf_clone_redirect_proto; 8621 case BPF_FUNC_skb_change_tail: 8622 return &bpf_skb_change_tail_proto; 8623 case BPF_FUNC_skb_change_head: 8624 return &bpf_skb_change_head_proto; 8625 case BPF_FUNC_skb_store_bytes: 8626 return &bpf_skb_store_bytes_proto; 8627 case BPF_FUNC_csum_update: 8628 return &bpf_csum_update_proto; 8629 case BPF_FUNC_csum_level: 8630 return &bpf_csum_level_proto; 8631 case BPF_FUNC_l3_csum_replace: 8632 return &bpf_l3_csum_replace_proto; 8633 case BPF_FUNC_l4_csum_replace: 8634 return &bpf_l4_csum_replace_proto; 8635 case BPF_FUNC_set_hash_invalid: 8636 return &bpf_set_hash_invalid_proto; 8637 case BPF_FUNC_lwt_push_encap: 8638 return &bpf_lwt_xmit_push_encap_proto; 8639 default: 8640 return lwt_out_func_proto(func_id, prog); 8641 } 8642 } 8643 8644 static const struct bpf_func_proto * 8645 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 8646 { 8647 switch (func_id) { 8648 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) 8649 case BPF_FUNC_lwt_seg6_store_bytes: 8650 return &bpf_lwt_seg6_store_bytes_proto; 8651 case BPF_FUNC_lwt_seg6_action: 8652 return &bpf_lwt_seg6_action_proto; 8653 case BPF_FUNC_lwt_seg6_adjust_srh: 8654 return &bpf_lwt_seg6_adjust_srh_proto; 8655 #endif 8656 default: 8657 return lwt_out_func_proto(func_id, prog); 8658 } 8659 } 8660 8661 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type, 8662 const struct bpf_prog *prog, 8663 struct bpf_insn_access_aux *info) 8664 { 8665 const int size_default = sizeof(__u32); 8666 8667 if (off < 0 || off >= sizeof(struct __sk_buff)) 8668 return false; 8669 8670 /* The verifier guarantees that size > 0. */ 8671 if (off % size != 0) 8672 return false; 8673 8674 switch (off) { 8675 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 8676 if (off + size > offsetofend(struct __sk_buff, cb[4])) 8677 return false; 8678 break; 8679 case bpf_ctx_range(struct __sk_buff, data): 8680 case bpf_ctx_range(struct __sk_buff, data_meta): 8681 case bpf_ctx_range(struct __sk_buff, data_end): 8682 if (info->is_ldsx || size != size_default) 8683 return false; 8684 break; 8685 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]): 8686 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]): 8687 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4): 8688 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4): 8689 if (size != size_default) 8690 return false; 8691 break; 8692 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys): 8693 return false; 8694 case bpf_ctx_range(struct __sk_buff, hwtstamp): 8695 if (type == BPF_WRITE || size != sizeof(__u64)) 8696 return false; 8697 break; 8698 case bpf_ctx_range(struct __sk_buff, tstamp): 8699 if (size != sizeof(__u64)) 8700 return false; 8701 break; 8702 case bpf_ctx_range_ptr(struct __sk_buff, sk): 8703 if (type == BPF_WRITE || size != sizeof(__u64)) 8704 return false; 8705 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL; 8706 break; 8707 case offsetof(struct __sk_buff, tstamp_type): 8708 return false; 8709 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1: 8710 /* Explicitly prohibit access to padding in __sk_buff. */ 8711 return false; 8712 default: 8713 /* Only narrow read access allowed for now. */ 8714 if (type == BPF_WRITE) { 8715 if (size != size_default) 8716 return false; 8717 } else { 8718 bpf_ctx_record_field_size(info, size_default); 8719 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 8720 return false; 8721 } 8722 } 8723 8724 return true; 8725 } 8726 8727 static bool sk_filter_is_valid_access(int off, int size, 8728 enum bpf_access_type type, 8729 const struct bpf_prog *prog, 8730 struct bpf_insn_access_aux *info) 8731 { 8732 switch (off) { 8733 case bpf_ctx_range(struct __sk_buff, tc_classid): 8734 case bpf_ctx_range(struct __sk_buff, data): 8735 case bpf_ctx_range(struct __sk_buff, data_meta): 8736 case bpf_ctx_range(struct __sk_buff, data_end): 8737 case bpf_ctx_range_till(struct __sk_buff, family, local_port): 8738 case bpf_ctx_range(struct __sk_buff, tstamp): 8739 case bpf_ctx_range(struct __sk_buff, wire_len): 8740 case bpf_ctx_range(struct __sk_buff, hwtstamp): 8741 return false; 8742 } 8743 8744 if (type == BPF_WRITE) { 8745 switch (off) { 8746 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 8747 break; 8748 default: 8749 return false; 8750 } 8751 } 8752 8753 return bpf_skb_is_valid_access(off, size, type, prog, info); 8754 } 8755 8756 static bool cg_skb_is_valid_access(int off, int size, 8757 enum bpf_access_type type, 8758 const struct bpf_prog *prog, 8759 struct bpf_insn_access_aux *info) 8760 { 8761 switch (off) { 8762 case bpf_ctx_range(struct __sk_buff, tc_classid): 8763 case bpf_ctx_range(struct __sk_buff, data_meta): 8764 case bpf_ctx_range(struct __sk_buff, wire_len): 8765 return false; 8766 case bpf_ctx_range(struct __sk_buff, data): 8767 case bpf_ctx_range(struct __sk_buff, data_end): 8768 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 8769 return false; 8770 break; 8771 } 8772 8773 if (type == BPF_WRITE) { 8774 switch (off) { 8775 case bpf_ctx_range(struct __sk_buff, mark): 8776 case bpf_ctx_range(struct __sk_buff, priority): 8777 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 8778 break; 8779 case bpf_ctx_range(struct __sk_buff, tstamp): 8780 if (!bpf_token_capable(prog->aux->token, CAP_BPF)) 8781 return false; 8782 break; 8783 default: 8784 return false; 8785 } 8786 } 8787 8788 switch (off) { 8789 case bpf_ctx_range(struct __sk_buff, data): 8790 info->reg_type = PTR_TO_PACKET; 8791 break; 8792 case bpf_ctx_range(struct __sk_buff, data_end): 8793 info->reg_type = PTR_TO_PACKET_END; 8794 break; 8795 } 8796 8797 return bpf_skb_is_valid_access(off, size, type, prog, info); 8798 } 8799 8800 static bool lwt_is_valid_access(int off, int size, 8801 enum bpf_access_type type, 8802 const struct bpf_prog *prog, 8803 struct bpf_insn_access_aux *info) 8804 { 8805 switch (off) { 8806 case bpf_ctx_range(struct __sk_buff, tc_classid): 8807 case bpf_ctx_range_till(struct __sk_buff, family, local_port): 8808 case bpf_ctx_range(struct __sk_buff, data_meta): 8809 case bpf_ctx_range(struct __sk_buff, tstamp): 8810 case bpf_ctx_range(struct __sk_buff, wire_len): 8811 case bpf_ctx_range(struct __sk_buff, hwtstamp): 8812 return false; 8813 } 8814 8815 if (type == BPF_WRITE) { 8816 switch (off) { 8817 case bpf_ctx_range(struct __sk_buff, mark): 8818 case bpf_ctx_range(struct __sk_buff, priority): 8819 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 8820 break; 8821 default: 8822 return false; 8823 } 8824 } 8825 8826 switch (off) { 8827 case bpf_ctx_range(struct __sk_buff, data): 8828 info->reg_type = PTR_TO_PACKET; 8829 break; 8830 case bpf_ctx_range(struct __sk_buff, data_end): 8831 info->reg_type = PTR_TO_PACKET_END; 8832 break; 8833 } 8834 8835 return bpf_skb_is_valid_access(off, size, type, prog, info); 8836 } 8837 8838 /* Attach type specific accesses */ 8839 static bool __sock_filter_check_attach_type(int off, 8840 enum bpf_access_type access_type, 8841 enum bpf_attach_type attach_type) 8842 { 8843 switch (off) { 8844 case offsetof(struct bpf_sock, bound_dev_if): 8845 case offsetof(struct bpf_sock, mark): 8846 case offsetof(struct bpf_sock, priority): 8847 switch (attach_type) { 8848 case BPF_CGROUP_INET_SOCK_CREATE: 8849 case BPF_CGROUP_INET_SOCK_RELEASE: 8850 goto full_access; 8851 default: 8852 return false; 8853 } 8854 case bpf_ctx_range(struct bpf_sock, src_ip4): 8855 switch (attach_type) { 8856 case BPF_CGROUP_INET4_POST_BIND: 8857 goto read_only; 8858 default: 8859 return false; 8860 } 8861 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): 8862 switch (attach_type) { 8863 case BPF_CGROUP_INET6_POST_BIND: 8864 goto read_only; 8865 default: 8866 return false; 8867 } 8868 case bpf_ctx_range(struct bpf_sock, src_port): 8869 switch (attach_type) { 8870 case BPF_CGROUP_INET4_POST_BIND: 8871 case BPF_CGROUP_INET6_POST_BIND: 8872 goto read_only; 8873 default: 8874 return false; 8875 } 8876 } 8877 read_only: 8878 return access_type == BPF_READ; 8879 full_access: 8880 return true; 8881 } 8882 8883 bool bpf_sock_common_is_valid_access(int off, int size, 8884 enum bpf_access_type type, 8885 struct bpf_insn_access_aux *info) 8886 { 8887 switch (off) { 8888 case bpf_ctx_range_till(struct bpf_sock, type, priority): 8889 return false; 8890 default: 8891 return bpf_sock_is_valid_access(off, size, type, info); 8892 } 8893 } 8894 8895 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 8896 struct bpf_insn_access_aux *info) 8897 { 8898 const int size_default = sizeof(__u32); 8899 int field_size; 8900 8901 if (off < 0 || off >= sizeof(struct bpf_sock)) 8902 return false; 8903 if (off % size != 0) 8904 return false; 8905 8906 switch (off) { 8907 case offsetof(struct bpf_sock, state): 8908 case offsetof(struct bpf_sock, family): 8909 case offsetof(struct bpf_sock, type): 8910 case offsetof(struct bpf_sock, protocol): 8911 case offsetof(struct bpf_sock, src_port): 8912 case offsetof(struct bpf_sock, rx_queue_mapping): 8913 case bpf_ctx_range(struct bpf_sock, src_ip4): 8914 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): 8915 case bpf_ctx_range(struct bpf_sock, dst_ip4): 8916 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]): 8917 bpf_ctx_record_field_size(info, size_default); 8918 return bpf_ctx_narrow_access_ok(off, size, size_default); 8919 case bpf_ctx_range(struct bpf_sock, dst_port): 8920 field_size = size == size_default ? 8921 size_default : sizeof_field(struct bpf_sock, dst_port); 8922 bpf_ctx_record_field_size(info, field_size); 8923 return bpf_ctx_narrow_access_ok(off, size, field_size); 8924 case offsetofend(struct bpf_sock, dst_port) ... 8925 offsetof(struct bpf_sock, dst_ip4) - 1: 8926 return false; 8927 } 8928 8929 return size == size_default; 8930 } 8931 8932 static bool sock_filter_is_valid_access(int off, int size, 8933 enum bpf_access_type type, 8934 const struct bpf_prog *prog, 8935 struct bpf_insn_access_aux *info) 8936 { 8937 if (!bpf_sock_is_valid_access(off, size, type, info)) 8938 return false; 8939 return __sock_filter_check_attach_type(off, type, 8940 prog->expected_attach_type); 8941 } 8942 8943 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write, 8944 const struct bpf_prog *prog) 8945 { 8946 /* Neither direct read nor direct write requires any preliminary 8947 * action. 8948 */ 8949 return 0; 8950 } 8951 8952 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write, 8953 const struct bpf_prog *prog, int drop_verdict) 8954 { 8955 struct bpf_insn *insn = insn_buf; 8956 8957 if (!direct_write) 8958 return 0; 8959 8960 /* if (!skb->cloned) 8961 * goto start; 8962 * 8963 * (Fast-path, otherwise approximation that we might be 8964 * a clone, do the rest in helper.) 8965 */ 8966 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET); 8967 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK); 8968 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7); 8969 8970 /* ret = bpf_skb_pull_data(skb, 0); */ 8971 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 8972 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2); 8973 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 8974 BPF_FUNC_skb_pull_data); 8975 /* if (!ret) 8976 * goto restore; 8977 * return TC_ACT_SHOT; 8978 */ 8979 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2); 8980 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict); 8981 *insn++ = BPF_EXIT_INSN(); 8982 8983 /* restore: */ 8984 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 8985 /* start: */ 8986 *insn++ = prog->insnsi[0]; 8987 8988 return insn - insn_buf; 8989 } 8990 8991 static int bpf_gen_ld_abs(const struct bpf_insn *orig, 8992 struct bpf_insn *insn_buf) 8993 { 8994 bool indirect = BPF_MODE(orig->code) == BPF_IND; 8995 struct bpf_insn *insn = insn_buf; 8996 8997 if (!indirect) { 8998 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm); 8999 } else { 9000 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg); 9001 if (orig->imm) 9002 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm); 9003 } 9004 /* We're guaranteed here that CTX is in R6. */ 9005 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX); 9006 9007 switch (BPF_SIZE(orig->code)) { 9008 case BPF_B: 9009 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache); 9010 break; 9011 case BPF_H: 9012 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache); 9013 break; 9014 case BPF_W: 9015 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache); 9016 break; 9017 } 9018 9019 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2); 9020 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 9021 *insn++ = BPF_EXIT_INSN(); 9022 9023 return insn - insn_buf; 9024 } 9025 9026 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write, 9027 const struct bpf_prog *prog) 9028 { 9029 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT); 9030 } 9031 9032 static bool tc_cls_act_is_valid_access(int off, int size, 9033 enum bpf_access_type type, 9034 const struct bpf_prog *prog, 9035 struct bpf_insn_access_aux *info) 9036 { 9037 if (type == BPF_WRITE) { 9038 switch (off) { 9039 case bpf_ctx_range(struct __sk_buff, mark): 9040 case bpf_ctx_range(struct __sk_buff, tc_index): 9041 case bpf_ctx_range(struct __sk_buff, priority): 9042 case bpf_ctx_range(struct __sk_buff, tc_classid): 9043 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): 9044 case bpf_ctx_range(struct __sk_buff, tstamp): 9045 case bpf_ctx_range(struct __sk_buff, queue_mapping): 9046 break; 9047 default: 9048 return false; 9049 } 9050 } 9051 9052 switch (off) { 9053 case bpf_ctx_range(struct __sk_buff, data): 9054 info->reg_type = PTR_TO_PACKET; 9055 break; 9056 case bpf_ctx_range(struct __sk_buff, data_meta): 9057 info->reg_type = PTR_TO_PACKET_META; 9058 break; 9059 case bpf_ctx_range(struct __sk_buff, data_end): 9060 info->reg_type = PTR_TO_PACKET_END; 9061 break; 9062 case bpf_ctx_range_till(struct __sk_buff, family, local_port): 9063 return false; 9064 case offsetof(struct __sk_buff, tstamp_type): 9065 /* The convert_ctx_access() on reading and writing 9066 * __sk_buff->tstamp depends on whether the bpf prog 9067 * has used __sk_buff->tstamp_type or not. 9068 * Thus, we need to set prog->tstamp_type_access 9069 * earlier during is_valid_access() here. 9070 */ 9071 ((struct bpf_prog *)prog)->tstamp_type_access = 1; 9072 return size == sizeof(__u8); 9073 } 9074 9075 return bpf_skb_is_valid_access(off, size, type, prog, info); 9076 } 9077 9078 DEFINE_MUTEX(nf_conn_btf_access_lock); 9079 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock); 9080 9081 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 9082 const struct bpf_reg_state *reg, 9083 int off, int size); 9084 EXPORT_SYMBOL_GPL(nfct_btf_struct_access); 9085 9086 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log, 9087 const struct bpf_reg_state *reg, 9088 int off, int size) 9089 { 9090 int ret = -EACCES; 9091 9092 mutex_lock(&nf_conn_btf_access_lock); 9093 if (nfct_btf_struct_access) 9094 ret = nfct_btf_struct_access(log, reg, off, size); 9095 mutex_unlock(&nf_conn_btf_access_lock); 9096 9097 return ret; 9098 } 9099 9100 static bool __is_valid_xdp_access(int off, int size) 9101 { 9102 if (off < 0 || off >= sizeof(struct xdp_md)) 9103 return false; 9104 if (off % size != 0) 9105 return false; 9106 if (size != sizeof(__u32)) 9107 return false; 9108 9109 return true; 9110 } 9111 9112 static bool xdp_is_valid_access(int off, int size, 9113 enum bpf_access_type type, 9114 const struct bpf_prog *prog, 9115 struct bpf_insn_access_aux *info) 9116 { 9117 if (prog->expected_attach_type != BPF_XDP_DEVMAP) { 9118 switch (off) { 9119 case offsetof(struct xdp_md, egress_ifindex): 9120 return false; 9121 } 9122 } 9123 9124 if (type == BPF_WRITE) { 9125 if (bpf_prog_is_offloaded(prog->aux)) { 9126 switch (off) { 9127 case offsetof(struct xdp_md, rx_queue_index): 9128 return __is_valid_xdp_access(off, size); 9129 } 9130 } 9131 return false; 9132 } else { 9133 switch (off) { 9134 case offsetof(struct xdp_md, data_meta): 9135 case offsetof(struct xdp_md, data): 9136 case offsetof(struct xdp_md, data_end): 9137 if (info->is_ldsx) 9138 return false; 9139 } 9140 } 9141 9142 switch (off) { 9143 case offsetof(struct xdp_md, data): 9144 info->reg_type = PTR_TO_PACKET; 9145 break; 9146 case offsetof(struct xdp_md, data_meta): 9147 info->reg_type = PTR_TO_PACKET_META; 9148 break; 9149 case offsetof(struct xdp_md, data_end): 9150 info->reg_type = PTR_TO_PACKET_END; 9151 break; 9152 } 9153 9154 return __is_valid_xdp_access(off, size); 9155 } 9156 9157 void bpf_warn_invalid_xdp_action(const struct net_device *dev, 9158 const struct bpf_prog *prog, u32 act) 9159 { 9160 const u32 act_max = XDP_REDIRECT; 9161 9162 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n", 9163 act > act_max ? "Illegal" : "Driver unsupported", 9164 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A"); 9165 } 9166 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action); 9167 9168 static int xdp_btf_struct_access(struct bpf_verifier_log *log, 9169 const struct bpf_reg_state *reg, 9170 int off, int size) 9171 { 9172 int ret = -EACCES; 9173 9174 mutex_lock(&nf_conn_btf_access_lock); 9175 if (nfct_btf_struct_access) 9176 ret = nfct_btf_struct_access(log, reg, off, size); 9177 mutex_unlock(&nf_conn_btf_access_lock); 9178 9179 return ret; 9180 } 9181 9182 static bool sock_addr_is_valid_access(int off, int size, 9183 enum bpf_access_type type, 9184 const struct bpf_prog *prog, 9185 struct bpf_insn_access_aux *info) 9186 { 9187 const int size_default = sizeof(__u32); 9188 9189 if (off < 0 || off >= sizeof(struct bpf_sock_addr)) 9190 return false; 9191 if (off % size != 0) 9192 return false; 9193 9194 /* Disallow access to fields not belonging to the attach type's address 9195 * family. 9196 */ 9197 switch (off) { 9198 case bpf_ctx_range(struct bpf_sock_addr, user_ip4): 9199 switch (prog->expected_attach_type) { 9200 case BPF_CGROUP_INET4_BIND: 9201 case BPF_CGROUP_INET4_CONNECT: 9202 case BPF_CGROUP_INET4_GETPEERNAME: 9203 case BPF_CGROUP_INET4_GETSOCKNAME: 9204 case BPF_CGROUP_UDP4_SENDMSG: 9205 case BPF_CGROUP_UDP4_RECVMSG: 9206 break; 9207 default: 9208 return false; 9209 } 9210 break; 9211 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): 9212 switch (prog->expected_attach_type) { 9213 case BPF_CGROUP_INET6_BIND: 9214 case BPF_CGROUP_INET6_CONNECT: 9215 case BPF_CGROUP_INET6_GETPEERNAME: 9216 case BPF_CGROUP_INET6_GETSOCKNAME: 9217 case BPF_CGROUP_UDP6_SENDMSG: 9218 case BPF_CGROUP_UDP6_RECVMSG: 9219 break; 9220 default: 9221 return false; 9222 } 9223 break; 9224 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): 9225 switch (prog->expected_attach_type) { 9226 case BPF_CGROUP_UDP4_SENDMSG: 9227 break; 9228 default: 9229 return false; 9230 } 9231 break; 9232 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], 9233 msg_src_ip6[3]): 9234 switch (prog->expected_attach_type) { 9235 case BPF_CGROUP_UDP6_SENDMSG: 9236 break; 9237 default: 9238 return false; 9239 } 9240 break; 9241 } 9242 9243 switch (off) { 9244 case bpf_ctx_range(struct bpf_sock_addr, user_ip4): 9245 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): 9246 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): 9247 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], 9248 msg_src_ip6[3]): 9249 case bpf_ctx_range(struct bpf_sock_addr, user_port): 9250 if (type == BPF_READ) { 9251 bpf_ctx_record_field_size(info, size_default); 9252 9253 if (bpf_ctx_wide_access_ok(off, size, 9254 struct bpf_sock_addr, 9255 user_ip6)) 9256 return true; 9257 9258 if (bpf_ctx_wide_access_ok(off, size, 9259 struct bpf_sock_addr, 9260 msg_src_ip6)) 9261 return true; 9262 9263 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 9264 return false; 9265 } else { 9266 if (bpf_ctx_wide_access_ok(off, size, 9267 struct bpf_sock_addr, 9268 user_ip6)) 9269 return true; 9270 9271 if (bpf_ctx_wide_access_ok(off, size, 9272 struct bpf_sock_addr, 9273 msg_src_ip6)) 9274 return true; 9275 9276 if (size != size_default) 9277 return false; 9278 } 9279 break; 9280 case bpf_ctx_range_ptr(struct bpf_sock_addr, sk): 9281 if (type != BPF_READ) 9282 return false; 9283 if (size != sizeof(__u64)) 9284 return false; 9285 info->reg_type = PTR_TO_SOCKET; 9286 break; 9287 default: 9288 if (type == BPF_READ) { 9289 if (size != size_default) 9290 return false; 9291 } else { 9292 return false; 9293 } 9294 } 9295 9296 return true; 9297 } 9298 9299 static bool sock_ops_is_valid_access(int off, int size, 9300 enum bpf_access_type type, 9301 const struct bpf_prog *prog, 9302 struct bpf_insn_access_aux *info) 9303 { 9304 const int size_default = sizeof(__u32); 9305 9306 if (off < 0 || off >= sizeof(struct bpf_sock_ops)) 9307 return false; 9308 9309 /* The verifier guarantees that size > 0. */ 9310 if (off % size != 0) 9311 return false; 9312 9313 if (type == BPF_WRITE) { 9314 switch (off) { 9315 case offsetof(struct bpf_sock_ops, reply): 9316 case offsetof(struct bpf_sock_ops, sk_txhash): 9317 if (size != size_default) 9318 return false; 9319 break; 9320 default: 9321 return false; 9322 } 9323 } else { 9324 switch (off) { 9325 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received, 9326 bytes_acked): 9327 if (size != sizeof(__u64)) 9328 return false; 9329 break; 9330 case bpf_ctx_range_ptr(struct bpf_sock_ops, sk): 9331 if (size != sizeof(__u64)) 9332 return false; 9333 info->reg_type = PTR_TO_SOCKET_OR_NULL; 9334 break; 9335 case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data): 9336 if (size != sizeof(__u64)) 9337 return false; 9338 info->reg_type = PTR_TO_PACKET; 9339 break; 9340 case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end): 9341 if (size != sizeof(__u64)) 9342 return false; 9343 info->reg_type = PTR_TO_PACKET_END; 9344 break; 9345 case offsetof(struct bpf_sock_ops, skb_tcp_flags): 9346 bpf_ctx_record_field_size(info, size_default); 9347 return bpf_ctx_narrow_access_ok(off, size, 9348 size_default); 9349 case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp): 9350 if (size != sizeof(__u64)) 9351 return false; 9352 break; 9353 default: 9354 if (size != size_default) 9355 return false; 9356 break; 9357 } 9358 } 9359 9360 return true; 9361 } 9362 9363 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write, 9364 const struct bpf_prog *prog) 9365 { 9366 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP); 9367 } 9368 9369 static bool sk_skb_is_valid_access(int off, int size, 9370 enum bpf_access_type type, 9371 const struct bpf_prog *prog, 9372 struct bpf_insn_access_aux *info) 9373 { 9374 switch (off) { 9375 case bpf_ctx_range(struct __sk_buff, tc_classid): 9376 case bpf_ctx_range(struct __sk_buff, data_meta): 9377 case bpf_ctx_range(struct __sk_buff, tstamp): 9378 case bpf_ctx_range(struct __sk_buff, wire_len): 9379 case bpf_ctx_range(struct __sk_buff, hwtstamp): 9380 return false; 9381 } 9382 9383 if (type == BPF_WRITE) { 9384 switch (off) { 9385 case bpf_ctx_range(struct __sk_buff, tc_index): 9386 case bpf_ctx_range(struct __sk_buff, priority): 9387 break; 9388 default: 9389 return false; 9390 } 9391 } 9392 9393 switch (off) { 9394 case bpf_ctx_range(struct __sk_buff, mark): 9395 return false; 9396 case bpf_ctx_range(struct __sk_buff, data): 9397 info->reg_type = PTR_TO_PACKET; 9398 break; 9399 case bpf_ctx_range(struct __sk_buff, data_end): 9400 info->reg_type = PTR_TO_PACKET_END; 9401 break; 9402 } 9403 9404 return bpf_skb_is_valid_access(off, size, type, prog, info); 9405 } 9406 9407 static bool sk_msg_is_valid_access(int off, int size, 9408 enum bpf_access_type type, 9409 const struct bpf_prog *prog, 9410 struct bpf_insn_access_aux *info) 9411 { 9412 if (type == BPF_WRITE) 9413 return false; 9414 9415 if (off % size != 0) 9416 return false; 9417 9418 switch (off) { 9419 case bpf_ctx_range_ptr(struct sk_msg_md, data): 9420 info->reg_type = PTR_TO_PACKET; 9421 if (size != sizeof(__u64)) 9422 return false; 9423 break; 9424 case bpf_ctx_range_ptr(struct sk_msg_md, data_end): 9425 info->reg_type = PTR_TO_PACKET_END; 9426 if (size != sizeof(__u64)) 9427 return false; 9428 break; 9429 case bpf_ctx_range_ptr(struct sk_msg_md, sk): 9430 if (size != sizeof(__u64)) 9431 return false; 9432 info->reg_type = PTR_TO_SOCKET; 9433 break; 9434 case bpf_ctx_range(struct sk_msg_md, family): 9435 case bpf_ctx_range(struct sk_msg_md, remote_ip4): 9436 case bpf_ctx_range(struct sk_msg_md, local_ip4): 9437 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]): 9438 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]): 9439 case bpf_ctx_range(struct sk_msg_md, remote_port): 9440 case bpf_ctx_range(struct sk_msg_md, local_port): 9441 case bpf_ctx_range(struct sk_msg_md, size): 9442 if (size != sizeof(__u32)) 9443 return false; 9444 break; 9445 default: 9446 return false; 9447 } 9448 return true; 9449 } 9450 9451 static bool flow_dissector_is_valid_access(int off, int size, 9452 enum bpf_access_type type, 9453 const struct bpf_prog *prog, 9454 struct bpf_insn_access_aux *info) 9455 { 9456 const int size_default = sizeof(__u32); 9457 9458 if (off < 0 || off >= sizeof(struct __sk_buff)) 9459 return false; 9460 9461 if (off % size != 0) 9462 return false; 9463 9464 if (type == BPF_WRITE) 9465 return false; 9466 9467 switch (off) { 9468 case bpf_ctx_range(struct __sk_buff, data): 9469 if (info->is_ldsx || size != size_default) 9470 return false; 9471 info->reg_type = PTR_TO_PACKET; 9472 return true; 9473 case bpf_ctx_range(struct __sk_buff, data_end): 9474 if (info->is_ldsx || size != size_default) 9475 return false; 9476 info->reg_type = PTR_TO_PACKET_END; 9477 return true; 9478 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys): 9479 if (size != sizeof(__u64)) 9480 return false; 9481 info->reg_type = PTR_TO_FLOW_KEYS; 9482 return true; 9483 default: 9484 return false; 9485 } 9486 } 9487 9488 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type, 9489 const struct bpf_insn *si, 9490 struct bpf_insn *insn_buf, 9491 struct bpf_prog *prog, 9492 u32 *target_size) 9493 9494 { 9495 struct bpf_insn *insn = insn_buf; 9496 9497 switch (si->off) { 9498 case offsetof(struct __sk_buff, data): 9499 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data), 9500 si->dst_reg, si->src_reg, 9501 offsetof(struct bpf_flow_dissector, data)); 9502 break; 9503 9504 case offsetof(struct __sk_buff, data_end): 9505 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end), 9506 si->dst_reg, si->src_reg, 9507 offsetof(struct bpf_flow_dissector, data_end)); 9508 break; 9509 9510 case offsetof(struct __sk_buff, flow_keys): 9511 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys), 9512 si->dst_reg, si->src_reg, 9513 offsetof(struct bpf_flow_dissector, flow_keys)); 9514 break; 9515 } 9516 9517 return insn - insn_buf; 9518 } 9519 9520 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si, 9521 struct bpf_insn *insn) 9522 { 9523 __u8 value_reg = si->dst_reg; 9524 __u8 skb_reg = si->src_reg; 9525 BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI); 9526 BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME); 9527 BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC); 9528 BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI); 9529 *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); 9530 *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK); 9531 #ifdef __BIG_ENDIAN_BITFIELD 9532 *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT); 9533 #else 9534 BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1)); 9535 #endif 9536 9537 return insn; 9538 } 9539 9540 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg, 9541 struct bpf_insn *insn) 9542 { 9543 /* si->dst_reg = skb_shinfo(SKB); */ 9544 #ifdef NET_SKBUFF_DATA_USES_OFFSET 9545 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end), 9546 BPF_REG_AX, skb_reg, 9547 offsetof(struct sk_buff, end)); 9548 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head), 9549 dst_reg, skb_reg, 9550 offsetof(struct sk_buff, head)); 9551 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX); 9552 #else 9553 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end), 9554 dst_reg, skb_reg, 9555 offsetof(struct sk_buff, end)); 9556 #endif 9557 9558 return insn; 9559 } 9560 9561 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog, 9562 const struct bpf_insn *si, 9563 struct bpf_insn *insn) 9564 { 9565 __u8 value_reg = si->dst_reg; 9566 __u8 skb_reg = si->src_reg; 9567 9568 #ifdef CONFIG_NET_XGRESS 9569 /* If the tstamp_type is read, 9570 * the bpf prog is aware the tstamp could have delivery time. 9571 * Thus, read skb->tstamp as is if tstamp_type_access is true. 9572 */ 9573 if (!prog->tstamp_type_access) { 9574 /* AX is needed because src_reg and dst_reg could be the same */ 9575 __u8 tmp_reg = BPF_REG_AX; 9576 9577 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); 9578 /* check if ingress mask bits is set */ 9579 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1); 9580 *insn++ = BPF_JMP_A(4); 9581 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1); 9582 *insn++ = BPF_JMP_A(2); 9583 /* skb->tc_at_ingress && skb->tstamp_type, 9584 * read 0 as the (rcv) timestamp. 9585 */ 9586 *insn++ = BPF_MOV64_IMM(value_reg, 0); 9587 *insn++ = BPF_JMP_A(1); 9588 } 9589 #endif 9590 9591 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg, 9592 offsetof(struct sk_buff, tstamp)); 9593 return insn; 9594 } 9595 9596 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog, 9597 const struct bpf_insn *si, 9598 struct bpf_insn *insn) 9599 { 9600 __u8 value_reg = si->src_reg; 9601 __u8 skb_reg = si->dst_reg; 9602 9603 #ifdef CONFIG_NET_XGRESS 9604 /* If the tstamp_type is read, 9605 * the bpf prog is aware the tstamp could have delivery time. 9606 * Thus, write skb->tstamp as is if tstamp_type_access is true. 9607 * Otherwise, writing at ingress will have to clear the 9608 * skb->tstamp_type bit also. 9609 */ 9610 if (!prog->tstamp_type_access) { 9611 __u8 tmp_reg = BPF_REG_AX; 9612 9613 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); 9614 /* Writing __sk_buff->tstamp as ingress, goto <clear> */ 9615 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1); 9616 /* goto <store> */ 9617 *insn++ = BPF_JMP_A(2); 9618 /* <clear>: skb->tstamp_type */ 9619 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK); 9620 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET); 9621 } 9622 #endif 9623 9624 /* <store>: skb->tstamp = tstamp */ 9625 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM, 9626 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm); 9627 return insn; 9628 } 9629 9630 #define BPF_EMIT_STORE(size, si, off) \ 9631 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \ 9632 (si)->dst_reg, (si)->src_reg, (off), (si)->imm) 9633 9634 static u32 bpf_convert_ctx_access(enum bpf_access_type type, 9635 const struct bpf_insn *si, 9636 struct bpf_insn *insn_buf, 9637 struct bpf_prog *prog, u32 *target_size) 9638 { 9639 struct bpf_insn *insn = insn_buf; 9640 int off; 9641 9642 switch (si->off) { 9643 case offsetof(struct __sk_buff, len): 9644 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9645 bpf_target_off(struct sk_buff, len, 4, 9646 target_size)); 9647 break; 9648 9649 case offsetof(struct __sk_buff, protocol): 9650 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9651 bpf_target_off(struct sk_buff, protocol, 2, 9652 target_size)); 9653 break; 9654 9655 case offsetof(struct __sk_buff, vlan_proto): 9656 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9657 bpf_target_off(struct sk_buff, vlan_proto, 2, 9658 target_size)); 9659 break; 9660 9661 case offsetof(struct __sk_buff, priority): 9662 if (type == BPF_WRITE) 9663 *insn++ = BPF_EMIT_STORE(BPF_W, si, 9664 bpf_target_off(struct sk_buff, priority, 4, 9665 target_size)); 9666 else 9667 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9668 bpf_target_off(struct sk_buff, priority, 4, 9669 target_size)); 9670 break; 9671 9672 case offsetof(struct __sk_buff, ingress_ifindex): 9673 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9674 bpf_target_off(struct sk_buff, skb_iif, 4, 9675 target_size)); 9676 break; 9677 9678 case offsetof(struct __sk_buff, ifindex): 9679 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), 9680 si->dst_reg, si->src_reg, 9681 offsetof(struct sk_buff, dev)); 9682 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 9683 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 9684 bpf_target_off(struct net_device, ifindex, 4, 9685 target_size)); 9686 break; 9687 9688 case offsetof(struct __sk_buff, hash): 9689 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9690 bpf_target_off(struct sk_buff, hash, 4, 9691 target_size)); 9692 break; 9693 9694 case offsetof(struct __sk_buff, mark): 9695 if (type == BPF_WRITE) 9696 *insn++ = BPF_EMIT_STORE(BPF_W, si, 9697 bpf_target_off(struct sk_buff, mark, 4, 9698 target_size)); 9699 else 9700 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9701 bpf_target_off(struct sk_buff, mark, 4, 9702 target_size)); 9703 break; 9704 9705 case offsetof(struct __sk_buff, pkt_type): 9706 *target_size = 1; 9707 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg, 9708 PKT_TYPE_OFFSET); 9709 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX); 9710 #ifdef __BIG_ENDIAN_BITFIELD 9711 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5); 9712 #endif 9713 break; 9714 9715 case offsetof(struct __sk_buff, queue_mapping): 9716 if (type == BPF_WRITE) { 9717 u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size); 9718 9719 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) { 9720 *insn++ = BPF_JMP_A(0); /* noop */ 9721 break; 9722 } 9723 9724 if (BPF_CLASS(si->code) == BPF_STX) 9725 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1); 9726 *insn++ = BPF_EMIT_STORE(BPF_H, si, offset); 9727 } else { 9728 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9729 bpf_target_off(struct sk_buff, 9730 queue_mapping, 9731 2, target_size)); 9732 } 9733 break; 9734 9735 case offsetof(struct __sk_buff, vlan_present): 9736 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9737 bpf_target_off(struct sk_buff, 9738 vlan_all, 4, target_size)); 9739 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 9740 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1); 9741 break; 9742 9743 case offsetof(struct __sk_buff, vlan_tci): 9744 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9745 bpf_target_off(struct sk_buff, vlan_tci, 2, 9746 target_size)); 9747 break; 9748 9749 case offsetof(struct __sk_buff, cb[0]) ... 9750 offsetofend(struct __sk_buff, cb[4]) - 1: 9751 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20); 9752 BUILD_BUG_ON((offsetof(struct sk_buff, cb) + 9753 offsetof(struct qdisc_skb_cb, data)) % 9754 sizeof(__u64)); 9755 9756 prog->cb_access = 1; 9757 off = si->off; 9758 off -= offsetof(struct __sk_buff, cb[0]); 9759 off += offsetof(struct sk_buff, cb); 9760 off += offsetof(struct qdisc_skb_cb, data); 9761 if (type == BPF_WRITE) 9762 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off); 9763 else 9764 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, 9765 si->src_reg, off); 9766 break; 9767 9768 case offsetof(struct __sk_buff, tc_classid): 9769 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2); 9770 9771 off = si->off; 9772 off -= offsetof(struct __sk_buff, tc_classid); 9773 off += offsetof(struct sk_buff, cb); 9774 off += offsetof(struct qdisc_skb_cb, tc_classid); 9775 *target_size = 2; 9776 if (type == BPF_WRITE) 9777 *insn++ = BPF_EMIT_STORE(BPF_H, si, off); 9778 else 9779 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, 9780 si->src_reg, off); 9781 break; 9782 9783 case offsetof(struct __sk_buff, data): 9784 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), 9785 si->dst_reg, si->src_reg, 9786 offsetof(struct sk_buff, data)); 9787 break; 9788 9789 case offsetof(struct __sk_buff, data_meta): 9790 off = si->off; 9791 off -= offsetof(struct __sk_buff, data_meta); 9792 off += offsetof(struct sk_buff, cb); 9793 off += offsetof(struct bpf_skb_data_end, data_meta); 9794 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, 9795 si->src_reg, off); 9796 break; 9797 9798 case offsetof(struct __sk_buff, data_end): 9799 off = si->off; 9800 off -= offsetof(struct __sk_buff, data_end); 9801 off += offsetof(struct sk_buff, cb); 9802 off += offsetof(struct bpf_skb_data_end, data_end); 9803 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, 9804 si->src_reg, off); 9805 break; 9806 9807 case offsetof(struct __sk_buff, tc_index): 9808 #ifdef CONFIG_NET_SCHED 9809 if (type == BPF_WRITE) 9810 *insn++ = BPF_EMIT_STORE(BPF_H, si, 9811 bpf_target_off(struct sk_buff, tc_index, 2, 9812 target_size)); 9813 else 9814 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 9815 bpf_target_off(struct sk_buff, tc_index, 2, 9816 target_size)); 9817 #else 9818 *target_size = 2; 9819 if (type == BPF_WRITE) 9820 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg); 9821 else 9822 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); 9823 #endif 9824 break; 9825 9826 case offsetof(struct __sk_buff, napi_id): 9827 #if defined(CONFIG_NET_RX_BUSY_POLL) 9828 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 9829 bpf_target_off(struct sk_buff, napi_id, 4, 9830 target_size)); 9831 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1); 9832 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); 9833 #else 9834 *target_size = 4; 9835 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); 9836 #endif 9837 break; 9838 case offsetof(struct __sk_buff, family): 9839 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); 9840 9841 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9842 si->dst_reg, si->src_reg, 9843 offsetof(struct sk_buff, sk)); 9844 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 9845 bpf_target_off(struct sock_common, 9846 skc_family, 9847 2, target_size)); 9848 break; 9849 case offsetof(struct __sk_buff, remote_ip4): 9850 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); 9851 9852 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9853 si->dst_reg, si->src_reg, 9854 offsetof(struct sk_buff, sk)); 9855 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 9856 bpf_target_off(struct sock_common, 9857 skc_daddr, 9858 4, target_size)); 9859 break; 9860 case offsetof(struct __sk_buff, local_ip4): 9861 BUILD_BUG_ON(sizeof_field(struct sock_common, 9862 skc_rcv_saddr) != 4); 9863 9864 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9865 si->dst_reg, si->src_reg, 9866 offsetof(struct sk_buff, sk)); 9867 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 9868 bpf_target_off(struct sock_common, 9869 skc_rcv_saddr, 9870 4, target_size)); 9871 break; 9872 case offsetof(struct __sk_buff, remote_ip6[0]) ... 9873 offsetof(struct __sk_buff, remote_ip6[3]): 9874 #if IS_ENABLED(CONFIG_IPV6) 9875 BUILD_BUG_ON(sizeof_field(struct sock_common, 9876 skc_v6_daddr.s6_addr32[0]) != 4); 9877 9878 off = si->off; 9879 off -= offsetof(struct __sk_buff, remote_ip6[0]); 9880 9881 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9882 si->dst_reg, si->src_reg, 9883 offsetof(struct sk_buff, sk)); 9884 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 9885 offsetof(struct sock_common, 9886 skc_v6_daddr.s6_addr32[0]) + 9887 off); 9888 #else 9889 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 9890 #endif 9891 break; 9892 case offsetof(struct __sk_buff, local_ip6[0]) ... 9893 offsetof(struct __sk_buff, local_ip6[3]): 9894 #if IS_ENABLED(CONFIG_IPV6) 9895 BUILD_BUG_ON(sizeof_field(struct sock_common, 9896 skc_v6_rcv_saddr.s6_addr32[0]) != 4); 9897 9898 off = si->off; 9899 off -= offsetof(struct __sk_buff, local_ip6[0]); 9900 9901 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9902 si->dst_reg, si->src_reg, 9903 offsetof(struct sk_buff, sk)); 9904 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 9905 offsetof(struct sock_common, 9906 skc_v6_rcv_saddr.s6_addr32[0]) + 9907 off); 9908 #else 9909 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 9910 #endif 9911 break; 9912 9913 case offsetof(struct __sk_buff, remote_port): 9914 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); 9915 9916 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9917 si->dst_reg, si->src_reg, 9918 offsetof(struct sk_buff, sk)); 9919 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 9920 bpf_target_off(struct sock_common, 9921 skc_dport, 9922 2, target_size)); 9923 #ifndef __BIG_ENDIAN_BITFIELD 9924 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); 9925 #endif 9926 break; 9927 9928 case offsetof(struct __sk_buff, local_port): 9929 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); 9930 9931 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9932 si->dst_reg, si->src_reg, 9933 offsetof(struct sk_buff, sk)); 9934 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 9935 bpf_target_off(struct sock_common, 9936 skc_num, 2, target_size)); 9937 break; 9938 9939 case offsetof(struct __sk_buff, tstamp): 9940 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8); 9941 9942 if (type == BPF_WRITE) 9943 insn = bpf_convert_tstamp_write(prog, si, insn); 9944 else 9945 insn = bpf_convert_tstamp_read(prog, si, insn); 9946 break; 9947 9948 case offsetof(struct __sk_buff, tstamp_type): 9949 insn = bpf_convert_tstamp_type_read(si, insn); 9950 break; 9951 9952 case offsetof(struct __sk_buff, gso_segs): 9953 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); 9954 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs), 9955 si->dst_reg, si->dst_reg, 9956 bpf_target_off(struct skb_shared_info, 9957 gso_segs, 2, 9958 target_size)); 9959 break; 9960 case offsetof(struct __sk_buff, gso_size): 9961 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); 9962 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size), 9963 si->dst_reg, si->dst_reg, 9964 bpf_target_off(struct skb_shared_info, 9965 gso_size, 2, 9966 target_size)); 9967 break; 9968 case offsetof(struct __sk_buff, wire_len): 9969 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4); 9970 9971 off = si->off; 9972 off -= offsetof(struct __sk_buff, wire_len); 9973 off += offsetof(struct sk_buff, cb); 9974 off += offsetof(struct qdisc_skb_cb, pkt_len); 9975 *target_size = 4; 9976 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off); 9977 break; 9978 9979 case offsetof(struct __sk_buff, sk): 9980 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), 9981 si->dst_reg, si->src_reg, 9982 offsetof(struct sk_buff, sk)); 9983 break; 9984 case offsetof(struct __sk_buff, hwtstamp): 9985 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8); 9986 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0); 9987 9988 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); 9989 *insn++ = BPF_LDX_MEM(BPF_DW, 9990 si->dst_reg, si->dst_reg, 9991 bpf_target_off(struct skb_shared_info, 9992 hwtstamps, 8, 9993 target_size)); 9994 break; 9995 } 9996 9997 return insn - insn_buf; 9998 } 9999 10000 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 10001 const struct bpf_insn *si, 10002 struct bpf_insn *insn_buf, 10003 struct bpf_prog *prog, u32 *target_size) 10004 { 10005 struct bpf_insn *insn = insn_buf; 10006 int off; 10007 10008 switch (si->off) { 10009 case offsetof(struct bpf_sock, bound_dev_if): 10010 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4); 10011 10012 if (type == BPF_WRITE) 10013 *insn++ = BPF_EMIT_STORE(BPF_W, si, 10014 offsetof(struct sock, sk_bound_dev_if)); 10015 else 10016 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 10017 offsetof(struct sock, sk_bound_dev_if)); 10018 break; 10019 10020 case offsetof(struct bpf_sock, mark): 10021 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4); 10022 10023 if (type == BPF_WRITE) 10024 *insn++ = BPF_EMIT_STORE(BPF_W, si, 10025 offsetof(struct sock, sk_mark)); 10026 else 10027 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 10028 offsetof(struct sock, sk_mark)); 10029 break; 10030 10031 case offsetof(struct bpf_sock, priority): 10032 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4); 10033 10034 if (type == BPF_WRITE) 10035 *insn++ = BPF_EMIT_STORE(BPF_W, si, 10036 offsetof(struct sock, sk_priority)); 10037 else 10038 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 10039 offsetof(struct sock, sk_priority)); 10040 break; 10041 10042 case offsetof(struct bpf_sock, family): 10043 *insn++ = BPF_LDX_MEM( 10044 BPF_FIELD_SIZEOF(struct sock_common, skc_family), 10045 si->dst_reg, si->src_reg, 10046 bpf_target_off(struct sock_common, 10047 skc_family, 10048 sizeof_field(struct sock_common, 10049 skc_family), 10050 target_size)); 10051 break; 10052 10053 case offsetof(struct bpf_sock, type): 10054 *insn++ = BPF_LDX_MEM( 10055 BPF_FIELD_SIZEOF(struct sock, sk_type), 10056 si->dst_reg, si->src_reg, 10057 bpf_target_off(struct sock, sk_type, 10058 sizeof_field(struct sock, sk_type), 10059 target_size)); 10060 break; 10061 10062 case offsetof(struct bpf_sock, protocol): 10063 *insn++ = BPF_LDX_MEM( 10064 BPF_FIELD_SIZEOF(struct sock, sk_protocol), 10065 si->dst_reg, si->src_reg, 10066 bpf_target_off(struct sock, sk_protocol, 10067 sizeof_field(struct sock, sk_protocol), 10068 target_size)); 10069 break; 10070 10071 case offsetof(struct bpf_sock, src_ip4): 10072 *insn++ = BPF_LDX_MEM( 10073 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 10074 bpf_target_off(struct sock_common, skc_rcv_saddr, 10075 sizeof_field(struct sock_common, 10076 skc_rcv_saddr), 10077 target_size)); 10078 break; 10079 10080 case offsetof(struct bpf_sock, dst_ip4): 10081 *insn++ = BPF_LDX_MEM( 10082 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 10083 bpf_target_off(struct sock_common, skc_daddr, 10084 sizeof_field(struct sock_common, 10085 skc_daddr), 10086 target_size)); 10087 break; 10088 10089 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): 10090 #if IS_ENABLED(CONFIG_IPV6) 10091 off = si->off; 10092 off -= offsetof(struct bpf_sock, src_ip6[0]); 10093 *insn++ = BPF_LDX_MEM( 10094 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 10095 bpf_target_off( 10096 struct sock_common, 10097 skc_v6_rcv_saddr.s6_addr32[0], 10098 sizeof_field(struct sock_common, 10099 skc_v6_rcv_saddr.s6_addr32[0]), 10100 target_size) + off); 10101 #else 10102 (void)off; 10103 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10104 #endif 10105 break; 10106 10107 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]): 10108 #if IS_ENABLED(CONFIG_IPV6) 10109 off = si->off; 10110 off -= offsetof(struct bpf_sock, dst_ip6[0]); 10111 *insn++ = BPF_LDX_MEM( 10112 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 10113 bpf_target_off(struct sock_common, 10114 skc_v6_daddr.s6_addr32[0], 10115 sizeof_field(struct sock_common, 10116 skc_v6_daddr.s6_addr32[0]), 10117 target_size) + off); 10118 #else 10119 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10120 *target_size = 4; 10121 #endif 10122 break; 10123 10124 case offsetof(struct bpf_sock, src_port): 10125 *insn++ = BPF_LDX_MEM( 10126 BPF_FIELD_SIZEOF(struct sock_common, skc_num), 10127 si->dst_reg, si->src_reg, 10128 bpf_target_off(struct sock_common, skc_num, 10129 sizeof_field(struct sock_common, 10130 skc_num), 10131 target_size)); 10132 break; 10133 10134 case offsetof(struct bpf_sock, dst_port): 10135 *insn++ = BPF_LDX_MEM( 10136 BPF_FIELD_SIZEOF(struct sock_common, skc_dport), 10137 si->dst_reg, si->src_reg, 10138 bpf_target_off(struct sock_common, skc_dport, 10139 sizeof_field(struct sock_common, 10140 skc_dport), 10141 target_size)); 10142 break; 10143 10144 case offsetof(struct bpf_sock, state): 10145 *insn++ = BPF_LDX_MEM( 10146 BPF_FIELD_SIZEOF(struct sock_common, skc_state), 10147 si->dst_reg, si->src_reg, 10148 bpf_target_off(struct sock_common, skc_state, 10149 sizeof_field(struct sock_common, 10150 skc_state), 10151 target_size)); 10152 break; 10153 case offsetof(struct bpf_sock, rx_queue_mapping): 10154 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 10155 *insn++ = BPF_LDX_MEM( 10156 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping), 10157 si->dst_reg, si->src_reg, 10158 bpf_target_off(struct sock, sk_rx_queue_mapping, 10159 sizeof_field(struct sock, 10160 sk_rx_queue_mapping), 10161 target_size)); 10162 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING, 10163 1); 10164 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1); 10165 #else 10166 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1); 10167 *target_size = 2; 10168 #endif 10169 break; 10170 } 10171 10172 return insn - insn_buf; 10173 } 10174 10175 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type, 10176 const struct bpf_insn *si, 10177 struct bpf_insn *insn_buf, 10178 struct bpf_prog *prog, u32 *target_size) 10179 { 10180 struct bpf_insn *insn = insn_buf; 10181 10182 switch (si->off) { 10183 case offsetof(struct __sk_buff, ifindex): 10184 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), 10185 si->dst_reg, si->src_reg, 10186 offsetof(struct sk_buff, dev)); 10187 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10188 bpf_target_off(struct net_device, ifindex, 4, 10189 target_size)); 10190 break; 10191 default: 10192 return bpf_convert_ctx_access(type, si, insn_buf, prog, 10193 target_size); 10194 } 10195 10196 return insn - insn_buf; 10197 } 10198 10199 static u32 xdp_convert_ctx_access(enum bpf_access_type type, 10200 const struct bpf_insn *si, 10201 struct bpf_insn *insn_buf, 10202 struct bpf_prog *prog, u32 *target_size) 10203 { 10204 struct bpf_insn *insn = insn_buf; 10205 10206 switch (si->off) { 10207 case offsetof(struct xdp_md, data): 10208 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data), 10209 si->dst_reg, si->src_reg, 10210 offsetof(struct xdp_buff, data)); 10211 break; 10212 case offsetof(struct xdp_md, data_meta): 10213 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta), 10214 si->dst_reg, si->src_reg, 10215 offsetof(struct xdp_buff, data_meta)); 10216 break; 10217 case offsetof(struct xdp_md, data_end): 10218 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end), 10219 si->dst_reg, si->src_reg, 10220 offsetof(struct xdp_buff, data_end)); 10221 break; 10222 case offsetof(struct xdp_md, ingress_ifindex): 10223 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), 10224 si->dst_reg, si->src_reg, 10225 offsetof(struct xdp_buff, rxq)); 10226 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev), 10227 si->dst_reg, si->dst_reg, 10228 offsetof(struct xdp_rxq_info, dev)); 10229 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10230 offsetof(struct net_device, ifindex)); 10231 break; 10232 case offsetof(struct xdp_md, rx_queue_index): 10233 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), 10234 si->dst_reg, si->src_reg, 10235 offsetof(struct xdp_buff, rxq)); 10236 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10237 offsetof(struct xdp_rxq_info, 10238 queue_index)); 10239 break; 10240 case offsetof(struct xdp_md, egress_ifindex): 10241 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq), 10242 si->dst_reg, si->src_reg, 10243 offsetof(struct xdp_buff, txq)); 10244 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev), 10245 si->dst_reg, si->dst_reg, 10246 offsetof(struct xdp_txq_info, dev)); 10247 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10248 offsetof(struct net_device, ifindex)); 10249 break; 10250 } 10251 10252 return insn - insn_buf; 10253 } 10254 10255 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of 10256 * context Structure, F is Field in context structure that contains a pointer 10257 * to Nested Structure of type NS that has the field NF. 10258 * 10259 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make 10260 * sure that SIZE is not greater than actual size of S.F.NF. 10261 * 10262 * If offset OFF is provided, the load happens from that offset relative to 10263 * offset of NF. 10264 */ 10265 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \ 10266 do { \ 10267 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \ 10268 si->src_reg, offsetof(S, F)); \ 10269 *insn++ = BPF_LDX_MEM( \ 10270 SIZE, si->dst_reg, si->dst_reg, \ 10271 bpf_target_off(NS, NF, sizeof_field(NS, NF), \ 10272 target_size) \ 10273 + OFF); \ 10274 } while (0) 10275 10276 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \ 10277 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \ 10278 BPF_FIELD_SIZEOF(NS, NF), 0) 10279 10280 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to 10281 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation. 10282 * 10283 * In addition it uses Temporary Field TF (member of struct S) as the 3rd 10284 * "register" since two registers available in convert_ctx_access are not 10285 * enough: we can't override neither SRC, since it contains value to store, nor 10286 * DST since it contains pointer to context that may be used by later 10287 * instructions. But we need a temporary place to save pointer to nested 10288 * structure whose field we want to store to. 10289 */ 10290 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \ 10291 do { \ 10292 int tmp_reg = BPF_REG_9; \ 10293 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ 10294 --tmp_reg; \ 10295 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ 10296 --tmp_reg; \ 10297 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \ 10298 offsetof(S, TF)); \ 10299 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \ 10300 si->dst_reg, offsetof(S, F)); \ 10301 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \ 10302 tmp_reg, si->src_reg, \ 10303 bpf_target_off(NS, NF, sizeof_field(NS, NF), \ 10304 target_size) \ 10305 + OFF, \ 10306 si->imm); \ 10307 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \ 10308 offsetof(S, TF)); \ 10309 } while (0) 10310 10311 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \ 10312 TF) \ 10313 do { \ 10314 if (type == BPF_WRITE) { \ 10315 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \ 10316 OFF, TF); \ 10317 } else { \ 10318 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \ 10319 S, NS, F, NF, SIZE, OFF); \ 10320 } \ 10321 } while (0) 10322 10323 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type, 10324 const struct bpf_insn *si, 10325 struct bpf_insn *insn_buf, 10326 struct bpf_prog *prog, u32 *target_size) 10327 { 10328 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port); 10329 struct bpf_insn *insn = insn_buf; 10330 10331 switch (si->off) { 10332 case offsetof(struct bpf_sock_addr, user_family): 10333 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, 10334 struct sockaddr, uaddr, sa_family); 10335 break; 10336 10337 case offsetof(struct bpf_sock_addr, user_ip4): 10338 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10339 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr, 10340 sin_addr, BPF_SIZE(si->code), 0, tmp_reg); 10341 break; 10342 10343 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): 10344 off = si->off; 10345 off -= offsetof(struct bpf_sock_addr, user_ip6[0]); 10346 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10347 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, 10348 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off, 10349 tmp_reg); 10350 break; 10351 10352 case offsetof(struct bpf_sock_addr, user_port): 10353 /* To get port we need to know sa_family first and then treat 10354 * sockaddr as either sockaddr_in or sockaddr_in6. 10355 * Though we can simplify since port field has same offset and 10356 * size in both structures. 10357 * Here we check this invariant and use just one of the 10358 * structures if it's true. 10359 */ 10360 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) != 10361 offsetof(struct sockaddr_in6, sin6_port)); 10362 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) != 10363 sizeof_field(struct sockaddr_in6, sin6_port)); 10364 /* Account for sin6_port being smaller than user_port. */ 10365 port_size = min(port_size, BPF_LDST_BYTES(si)); 10366 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10367 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, 10368 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg); 10369 break; 10370 10371 case offsetof(struct bpf_sock_addr, family): 10372 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, 10373 struct sock, sk, sk_family); 10374 break; 10375 10376 case offsetof(struct bpf_sock_addr, type): 10377 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, 10378 struct sock, sk, sk_type); 10379 break; 10380 10381 case offsetof(struct bpf_sock_addr, protocol): 10382 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, 10383 struct sock, sk, sk_protocol); 10384 break; 10385 10386 case offsetof(struct bpf_sock_addr, msg_src_ip4): 10387 /* Treat t_ctx as struct in_addr for msg_src_ip4. */ 10388 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10389 struct bpf_sock_addr_kern, struct in_addr, t_ctx, 10390 s_addr, BPF_SIZE(si->code), 0, tmp_reg); 10391 break; 10392 10393 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], 10394 msg_src_ip6[3]): 10395 off = si->off; 10396 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]); 10397 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */ 10398 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( 10399 struct bpf_sock_addr_kern, struct in6_addr, t_ctx, 10400 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg); 10401 break; 10402 case offsetof(struct bpf_sock_addr, sk): 10403 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk), 10404 si->dst_reg, si->src_reg, 10405 offsetof(struct bpf_sock_addr_kern, sk)); 10406 break; 10407 } 10408 10409 return insn - insn_buf; 10410 } 10411 10412 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type, 10413 const struct bpf_insn *si, 10414 struct bpf_insn *insn_buf, 10415 struct bpf_prog *prog, 10416 u32 *target_size) 10417 { 10418 struct bpf_insn *insn = insn_buf; 10419 int off; 10420 10421 /* Helper macro for adding read access to tcp_sock or sock fields. */ 10422 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ 10423 do { \ 10424 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \ 10425 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \ 10426 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \ 10427 if (si->dst_reg == reg || si->src_reg == reg) \ 10428 reg--; \ 10429 if (si->dst_reg == reg || si->src_reg == reg) \ 10430 reg--; \ 10431 if (si->dst_reg == si->src_reg) { \ 10432 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \ 10433 offsetof(struct bpf_sock_ops_kern, \ 10434 temp)); \ 10435 fullsock_reg = reg; \ 10436 jmp += 2; \ 10437 } \ 10438 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10439 struct bpf_sock_ops_kern, \ 10440 is_locked_tcp_sock), \ 10441 fullsock_reg, si->src_reg, \ 10442 offsetof(struct bpf_sock_ops_kern, \ 10443 is_locked_tcp_sock)); \ 10444 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \ 10445 if (si->dst_reg == si->src_reg) \ 10446 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ 10447 offsetof(struct bpf_sock_ops_kern, \ 10448 temp)); \ 10449 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10450 struct bpf_sock_ops_kern, sk),\ 10451 si->dst_reg, si->src_reg, \ 10452 offsetof(struct bpf_sock_ops_kern, sk));\ 10453 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \ 10454 OBJ_FIELD), \ 10455 si->dst_reg, si->dst_reg, \ 10456 offsetof(OBJ, OBJ_FIELD)); \ 10457 if (si->dst_reg == si->src_reg) { \ 10458 *insn++ = BPF_JMP_A(1); \ 10459 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ 10460 offsetof(struct bpf_sock_ops_kern, \ 10461 temp)); \ 10462 } \ 10463 } while (0) 10464 10465 #define SOCK_OPS_GET_SK() \ 10466 do { \ 10467 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \ 10468 if (si->dst_reg == reg || si->src_reg == reg) \ 10469 reg--; \ 10470 if (si->dst_reg == reg || si->src_reg == reg) \ 10471 reg--; \ 10472 if (si->dst_reg == si->src_reg) { \ 10473 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \ 10474 offsetof(struct bpf_sock_ops_kern, \ 10475 temp)); \ 10476 fullsock_reg = reg; \ 10477 jmp += 2; \ 10478 } \ 10479 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10480 struct bpf_sock_ops_kern, \ 10481 is_fullsock), \ 10482 fullsock_reg, si->src_reg, \ 10483 offsetof(struct bpf_sock_ops_kern, \ 10484 is_fullsock)); \ 10485 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \ 10486 if (si->dst_reg == si->src_reg) \ 10487 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ 10488 offsetof(struct bpf_sock_ops_kern, \ 10489 temp)); \ 10490 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10491 struct bpf_sock_ops_kern, sk),\ 10492 si->dst_reg, si->src_reg, \ 10493 offsetof(struct bpf_sock_ops_kern, sk));\ 10494 if (si->dst_reg == si->src_reg) { \ 10495 *insn++ = BPF_JMP_A(1); \ 10496 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ 10497 offsetof(struct bpf_sock_ops_kern, \ 10498 temp)); \ 10499 } \ 10500 } while (0) 10501 10502 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \ 10503 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock) 10504 10505 /* Helper macro for adding write access to tcp_sock or sock fields. 10506 * The macro is called with two registers, dst_reg which contains a pointer 10507 * to ctx (context) and src_reg which contains the value that should be 10508 * stored. However, we need an additional register since we cannot overwrite 10509 * dst_reg because it may be used later in the program. 10510 * Instead we "borrow" one of the other register. We first save its value 10511 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore 10512 * it at the end of the macro. 10513 */ 10514 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ 10515 do { \ 10516 int reg = BPF_REG_9; \ 10517 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \ 10518 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \ 10519 if (si->dst_reg == reg || si->src_reg == reg) \ 10520 reg--; \ 10521 if (si->dst_reg == reg || si->src_reg == reg) \ 10522 reg--; \ 10523 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \ 10524 offsetof(struct bpf_sock_ops_kern, \ 10525 temp)); \ 10526 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10527 struct bpf_sock_ops_kern, \ 10528 is_locked_tcp_sock), \ 10529 reg, si->dst_reg, \ 10530 offsetof(struct bpf_sock_ops_kern, \ 10531 is_locked_tcp_sock)); \ 10532 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \ 10533 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ 10534 struct bpf_sock_ops_kern, sk),\ 10535 reg, si->dst_reg, \ 10536 offsetof(struct bpf_sock_ops_kern, sk));\ 10537 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \ 10538 BPF_MEM | BPF_CLASS(si->code), \ 10539 reg, si->src_reg, \ 10540 offsetof(OBJ, OBJ_FIELD), \ 10541 si->imm); \ 10542 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \ 10543 offsetof(struct bpf_sock_ops_kern, \ 10544 temp)); \ 10545 } while (0) 10546 10547 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \ 10548 do { \ 10549 if (TYPE == BPF_WRITE) \ 10550 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ 10551 else \ 10552 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ 10553 } while (0) 10554 10555 switch (si->off) { 10556 case offsetof(struct bpf_sock_ops, op): 10557 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10558 op), 10559 si->dst_reg, si->src_reg, 10560 offsetof(struct bpf_sock_ops_kern, op)); 10561 break; 10562 10563 case offsetof(struct bpf_sock_ops, replylong[0]) ... 10564 offsetof(struct bpf_sock_ops, replylong[3]): 10565 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) != 10566 sizeof_field(struct bpf_sock_ops_kern, reply)); 10567 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) != 10568 sizeof_field(struct bpf_sock_ops_kern, replylong)); 10569 off = si->off; 10570 off -= offsetof(struct bpf_sock_ops, replylong[0]); 10571 off += offsetof(struct bpf_sock_ops_kern, replylong[0]); 10572 if (type == BPF_WRITE) 10573 *insn++ = BPF_EMIT_STORE(BPF_W, si, off); 10574 else 10575 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 10576 off); 10577 break; 10578 10579 case offsetof(struct bpf_sock_ops, family): 10580 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); 10581 10582 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10583 struct bpf_sock_ops_kern, sk), 10584 si->dst_reg, si->src_reg, 10585 offsetof(struct bpf_sock_ops_kern, sk)); 10586 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10587 offsetof(struct sock_common, skc_family)); 10588 break; 10589 10590 case offsetof(struct bpf_sock_ops, remote_ip4): 10591 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); 10592 10593 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10594 struct bpf_sock_ops_kern, sk), 10595 si->dst_reg, si->src_reg, 10596 offsetof(struct bpf_sock_ops_kern, sk)); 10597 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10598 offsetof(struct sock_common, skc_daddr)); 10599 break; 10600 10601 case offsetof(struct bpf_sock_ops, local_ip4): 10602 BUILD_BUG_ON(sizeof_field(struct sock_common, 10603 skc_rcv_saddr) != 4); 10604 10605 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10606 struct bpf_sock_ops_kern, sk), 10607 si->dst_reg, si->src_reg, 10608 offsetof(struct bpf_sock_ops_kern, sk)); 10609 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10610 offsetof(struct sock_common, 10611 skc_rcv_saddr)); 10612 break; 10613 10614 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ... 10615 offsetof(struct bpf_sock_ops, remote_ip6[3]): 10616 #if IS_ENABLED(CONFIG_IPV6) 10617 BUILD_BUG_ON(sizeof_field(struct sock_common, 10618 skc_v6_daddr.s6_addr32[0]) != 4); 10619 10620 off = si->off; 10621 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]); 10622 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10623 struct bpf_sock_ops_kern, sk), 10624 si->dst_reg, si->src_reg, 10625 offsetof(struct bpf_sock_ops_kern, sk)); 10626 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10627 offsetof(struct sock_common, 10628 skc_v6_daddr.s6_addr32[0]) + 10629 off); 10630 #else 10631 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10632 #endif 10633 break; 10634 10635 case offsetof(struct bpf_sock_ops, local_ip6[0]) ... 10636 offsetof(struct bpf_sock_ops, local_ip6[3]): 10637 #if IS_ENABLED(CONFIG_IPV6) 10638 BUILD_BUG_ON(sizeof_field(struct sock_common, 10639 skc_v6_rcv_saddr.s6_addr32[0]) != 4); 10640 10641 off = si->off; 10642 off -= offsetof(struct bpf_sock_ops, local_ip6[0]); 10643 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10644 struct bpf_sock_ops_kern, sk), 10645 si->dst_reg, si->src_reg, 10646 offsetof(struct bpf_sock_ops_kern, sk)); 10647 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10648 offsetof(struct sock_common, 10649 skc_v6_rcv_saddr.s6_addr32[0]) + 10650 off); 10651 #else 10652 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 10653 #endif 10654 break; 10655 10656 case offsetof(struct bpf_sock_ops, remote_port): 10657 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); 10658 10659 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10660 struct bpf_sock_ops_kern, sk), 10661 si->dst_reg, si->src_reg, 10662 offsetof(struct bpf_sock_ops_kern, sk)); 10663 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10664 offsetof(struct sock_common, skc_dport)); 10665 #ifndef __BIG_ENDIAN_BITFIELD 10666 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); 10667 #endif 10668 break; 10669 10670 case offsetof(struct bpf_sock_ops, local_port): 10671 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); 10672 10673 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10674 struct bpf_sock_ops_kern, sk), 10675 si->dst_reg, si->src_reg, 10676 offsetof(struct bpf_sock_ops_kern, sk)); 10677 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10678 offsetof(struct sock_common, skc_num)); 10679 break; 10680 10681 case offsetof(struct bpf_sock_ops, is_fullsock): 10682 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10683 struct bpf_sock_ops_kern, 10684 is_fullsock), 10685 si->dst_reg, si->src_reg, 10686 offsetof(struct bpf_sock_ops_kern, 10687 is_fullsock)); 10688 break; 10689 10690 case offsetof(struct bpf_sock_ops, state): 10691 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1); 10692 10693 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10694 struct bpf_sock_ops_kern, sk), 10695 si->dst_reg, si->src_reg, 10696 offsetof(struct bpf_sock_ops_kern, sk)); 10697 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg, 10698 offsetof(struct sock_common, skc_state)); 10699 break; 10700 10701 case offsetof(struct bpf_sock_ops, rtt_min): 10702 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) != 10703 sizeof(struct minmax)); 10704 BUILD_BUG_ON(sizeof(struct minmax) < 10705 sizeof(struct minmax_sample)); 10706 10707 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10708 struct bpf_sock_ops_kern, sk), 10709 si->dst_reg, si->src_reg, 10710 offsetof(struct bpf_sock_ops_kern, sk)); 10711 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10712 offsetof(struct tcp_sock, rtt_min) + 10713 sizeof_field(struct minmax_sample, t)); 10714 break; 10715 10716 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags): 10717 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags, 10718 struct tcp_sock); 10719 break; 10720 10721 case offsetof(struct bpf_sock_ops, sk_txhash): 10722 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash, 10723 struct sock, type); 10724 break; 10725 case offsetof(struct bpf_sock_ops, snd_cwnd): 10726 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd); 10727 break; 10728 case offsetof(struct bpf_sock_ops, srtt_us): 10729 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us); 10730 break; 10731 case offsetof(struct bpf_sock_ops, snd_ssthresh): 10732 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh); 10733 break; 10734 case offsetof(struct bpf_sock_ops, rcv_nxt): 10735 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt); 10736 break; 10737 case offsetof(struct bpf_sock_ops, snd_nxt): 10738 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt); 10739 break; 10740 case offsetof(struct bpf_sock_ops, snd_una): 10741 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una); 10742 break; 10743 case offsetof(struct bpf_sock_ops, mss_cache): 10744 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache); 10745 break; 10746 case offsetof(struct bpf_sock_ops, ecn_flags): 10747 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags); 10748 break; 10749 case offsetof(struct bpf_sock_ops, rate_delivered): 10750 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered); 10751 break; 10752 case offsetof(struct bpf_sock_ops, rate_interval_us): 10753 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us); 10754 break; 10755 case offsetof(struct bpf_sock_ops, packets_out): 10756 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out); 10757 break; 10758 case offsetof(struct bpf_sock_ops, retrans_out): 10759 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out); 10760 break; 10761 case offsetof(struct bpf_sock_ops, total_retrans): 10762 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans); 10763 break; 10764 case offsetof(struct bpf_sock_ops, segs_in): 10765 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in); 10766 break; 10767 case offsetof(struct bpf_sock_ops, data_segs_in): 10768 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in); 10769 break; 10770 case offsetof(struct bpf_sock_ops, segs_out): 10771 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out); 10772 break; 10773 case offsetof(struct bpf_sock_ops, data_segs_out): 10774 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out); 10775 break; 10776 case offsetof(struct bpf_sock_ops, lost_out): 10777 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out); 10778 break; 10779 case offsetof(struct bpf_sock_ops, sacked_out): 10780 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out); 10781 break; 10782 case offsetof(struct bpf_sock_ops, bytes_received): 10783 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received); 10784 break; 10785 case offsetof(struct bpf_sock_ops, bytes_acked): 10786 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked); 10787 break; 10788 case offsetof(struct bpf_sock_ops, sk): 10789 SOCK_OPS_GET_SK(); 10790 break; 10791 case offsetof(struct bpf_sock_ops, skb_data_end): 10792 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10793 skb_data_end), 10794 si->dst_reg, si->src_reg, 10795 offsetof(struct bpf_sock_ops_kern, 10796 skb_data_end)); 10797 break; 10798 case offsetof(struct bpf_sock_ops, skb_data): 10799 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10800 skb), 10801 si->dst_reg, si->src_reg, 10802 offsetof(struct bpf_sock_ops_kern, 10803 skb)); 10804 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 10805 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), 10806 si->dst_reg, si->dst_reg, 10807 offsetof(struct sk_buff, data)); 10808 break; 10809 case offsetof(struct bpf_sock_ops, skb_len): 10810 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10811 skb), 10812 si->dst_reg, si->src_reg, 10813 offsetof(struct bpf_sock_ops_kern, 10814 skb)); 10815 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 10816 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len), 10817 si->dst_reg, si->dst_reg, 10818 offsetof(struct sk_buff, len)); 10819 break; 10820 case offsetof(struct bpf_sock_ops, skb_tcp_flags): 10821 off = offsetof(struct sk_buff, cb); 10822 off += offsetof(struct tcp_skb_cb, tcp_flags); 10823 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags); 10824 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10825 skb), 10826 si->dst_reg, si->src_reg, 10827 offsetof(struct bpf_sock_ops_kern, 10828 skb)); 10829 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 10830 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb, 10831 tcp_flags), 10832 si->dst_reg, si->dst_reg, off); 10833 break; 10834 case offsetof(struct bpf_sock_ops, skb_hwtstamp): { 10835 struct bpf_insn *jmp_on_null_skb; 10836 10837 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, 10838 skb), 10839 si->dst_reg, si->src_reg, 10840 offsetof(struct bpf_sock_ops_kern, 10841 skb)); 10842 /* Reserve one insn to test skb == NULL */ 10843 jmp_on_null_skb = insn++; 10844 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn); 10845 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, 10846 bpf_target_off(struct skb_shared_info, 10847 hwtstamps, 8, 10848 target_size)); 10849 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 10850 insn - jmp_on_null_skb - 1); 10851 break; 10852 } 10853 } 10854 return insn - insn_buf; 10855 } 10856 10857 /* data_end = skb->data + skb_headlen() */ 10858 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si, 10859 struct bpf_insn *insn) 10860 { 10861 int reg; 10862 int temp_reg_off = offsetof(struct sk_buff, cb) + 10863 offsetof(struct sk_skb_cb, temp_reg); 10864 10865 if (si->src_reg == si->dst_reg) { 10866 /* We need an extra register, choose and save a register. */ 10867 reg = BPF_REG_9; 10868 if (si->src_reg == reg || si->dst_reg == reg) 10869 reg--; 10870 if (si->src_reg == reg || si->dst_reg == reg) 10871 reg--; 10872 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off); 10873 } else { 10874 reg = si->dst_reg; 10875 } 10876 10877 /* reg = skb->data */ 10878 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), 10879 reg, si->src_reg, 10880 offsetof(struct sk_buff, data)); 10881 /* AX = skb->len */ 10882 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len), 10883 BPF_REG_AX, si->src_reg, 10884 offsetof(struct sk_buff, len)); 10885 /* reg = skb->data + skb->len */ 10886 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX); 10887 /* AX = skb->data_len */ 10888 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len), 10889 BPF_REG_AX, si->src_reg, 10890 offsetof(struct sk_buff, data_len)); 10891 10892 /* reg = skb->data + skb->len - skb->data_len */ 10893 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX); 10894 10895 if (si->src_reg == si->dst_reg) { 10896 /* Restore the saved register */ 10897 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg); 10898 *insn++ = BPF_MOV64_REG(si->dst_reg, reg); 10899 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off); 10900 } 10901 10902 return insn; 10903 } 10904 10905 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type, 10906 const struct bpf_insn *si, 10907 struct bpf_insn *insn_buf, 10908 struct bpf_prog *prog, u32 *target_size) 10909 { 10910 struct bpf_insn *insn = insn_buf; 10911 int off; 10912 10913 switch (si->off) { 10914 case offsetof(struct __sk_buff, data_end): 10915 insn = bpf_convert_data_end_access(si, insn); 10916 break; 10917 case offsetof(struct __sk_buff, cb[0]) ... 10918 offsetofend(struct __sk_buff, cb[4]) - 1: 10919 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20); 10920 BUILD_BUG_ON((offsetof(struct sk_buff, cb) + 10921 offsetof(struct sk_skb_cb, data)) % 10922 sizeof(__u64)); 10923 10924 prog->cb_access = 1; 10925 off = si->off; 10926 off -= offsetof(struct __sk_buff, cb[0]); 10927 off += offsetof(struct sk_buff, cb); 10928 off += offsetof(struct sk_skb_cb, data); 10929 if (type == BPF_WRITE) 10930 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off); 10931 else 10932 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, 10933 si->src_reg, off); 10934 break; 10935 10936 10937 default: 10938 return bpf_convert_ctx_access(type, si, insn_buf, prog, 10939 target_size); 10940 } 10941 10942 return insn - insn_buf; 10943 } 10944 10945 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type, 10946 const struct bpf_insn *si, 10947 struct bpf_insn *insn_buf, 10948 struct bpf_prog *prog, u32 *target_size) 10949 { 10950 struct bpf_insn *insn = insn_buf; 10951 #if IS_ENABLED(CONFIG_IPV6) 10952 int off; 10953 #endif 10954 10955 /* convert ctx uses the fact sg element is first in struct */ 10956 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0); 10957 10958 switch (si->off) { 10959 case offsetof(struct sk_msg_md, data): 10960 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data), 10961 si->dst_reg, si->src_reg, 10962 offsetof(struct sk_msg, data)); 10963 break; 10964 case offsetof(struct sk_msg_md, data_end): 10965 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end), 10966 si->dst_reg, si->src_reg, 10967 offsetof(struct sk_msg, data_end)); 10968 break; 10969 case offsetof(struct sk_msg_md, family): 10970 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); 10971 10972 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10973 struct sk_msg, sk), 10974 si->dst_reg, si->src_reg, 10975 offsetof(struct sk_msg, sk)); 10976 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 10977 offsetof(struct sock_common, skc_family)); 10978 break; 10979 10980 case offsetof(struct sk_msg_md, remote_ip4): 10981 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); 10982 10983 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10984 struct sk_msg, sk), 10985 si->dst_reg, si->src_reg, 10986 offsetof(struct sk_msg, sk)); 10987 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 10988 offsetof(struct sock_common, skc_daddr)); 10989 break; 10990 10991 case offsetof(struct sk_msg_md, local_ip4): 10992 BUILD_BUG_ON(sizeof_field(struct sock_common, 10993 skc_rcv_saddr) != 4); 10994 10995 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 10996 struct sk_msg, sk), 10997 si->dst_reg, si->src_reg, 10998 offsetof(struct sk_msg, sk)); 10999 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 11000 offsetof(struct sock_common, 11001 skc_rcv_saddr)); 11002 break; 11003 11004 case offsetof(struct sk_msg_md, remote_ip6[0]) ... 11005 offsetof(struct sk_msg_md, remote_ip6[3]): 11006 #if IS_ENABLED(CONFIG_IPV6) 11007 BUILD_BUG_ON(sizeof_field(struct sock_common, 11008 skc_v6_daddr.s6_addr32[0]) != 4); 11009 11010 off = si->off; 11011 off -= offsetof(struct sk_msg_md, remote_ip6[0]); 11012 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11013 struct sk_msg, sk), 11014 si->dst_reg, si->src_reg, 11015 offsetof(struct sk_msg, sk)); 11016 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 11017 offsetof(struct sock_common, 11018 skc_v6_daddr.s6_addr32[0]) + 11019 off); 11020 #else 11021 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11022 #endif 11023 break; 11024 11025 case offsetof(struct sk_msg_md, local_ip6[0]) ... 11026 offsetof(struct sk_msg_md, local_ip6[3]): 11027 #if IS_ENABLED(CONFIG_IPV6) 11028 BUILD_BUG_ON(sizeof_field(struct sock_common, 11029 skc_v6_rcv_saddr.s6_addr32[0]) != 4); 11030 11031 off = si->off; 11032 off -= offsetof(struct sk_msg_md, local_ip6[0]); 11033 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11034 struct sk_msg, sk), 11035 si->dst_reg, si->src_reg, 11036 offsetof(struct sk_msg, sk)); 11037 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, 11038 offsetof(struct sock_common, 11039 skc_v6_rcv_saddr.s6_addr32[0]) + 11040 off); 11041 #else 11042 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11043 #endif 11044 break; 11045 11046 case offsetof(struct sk_msg_md, remote_port): 11047 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); 11048 11049 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11050 struct sk_msg, sk), 11051 si->dst_reg, si->src_reg, 11052 offsetof(struct sk_msg, sk)); 11053 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 11054 offsetof(struct sock_common, skc_dport)); 11055 #ifndef __BIG_ENDIAN_BITFIELD 11056 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); 11057 #endif 11058 break; 11059 11060 case offsetof(struct sk_msg_md, local_port): 11061 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); 11062 11063 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( 11064 struct sk_msg, sk), 11065 si->dst_reg, si->src_reg, 11066 offsetof(struct sk_msg, sk)); 11067 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, 11068 offsetof(struct sock_common, skc_num)); 11069 break; 11070 11071 case offsetof(struct sk_msg_md, size): 11072 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size), 11073 si->dst_reg, si->src_reg, 11074 offsetof(struct sk_msg_sg, size)); 11075 break; 11076 11077 case offsetof(struct sk_msg_md, sk): 11078 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk), 11079 si->dst_reg, si->src_reg, 11080 offsetof(struct sk_msg, sk)); 11081 break; 11082 } 11083 11084 return insn - insn_buf; 11085 } 11086 11087 const struct bpf_verifier_ops sk_filter_verifier_ops = { 11088 .get_func_proto = sk_filter_func_proto, 11089 .is_valid_access = sk_filter_is_valid_access, 11090 .convert_ctx_access = bpf_convert_ctx_access, 11091 .gen_ld_abs = bpf_gen_ld_abs, 11092 }; 11093 11094 const struct bpf_prog_ops sk_filter_prog_ops = { 11095 .test_run = bpf_prog_test_run_skb, 11096 }; 11097 11098 const struct bpf_verifier_ops tc_cls_act_verifier_ops = { 11099 .get_func_proto = tc_cls_act_func_proto, 11100 .is_valid_access = tc_cls_act_is_valid_access, 11101 .convert_ctx_access = tc_cls_act_convert_ctx_access, 11102 .gen_prologue = tc_cls_act_prologue, 11103 .gen_ld_abs = bpf_gen_ld_abs, 11104 .btf_struct_access = tc_cls_act_btf_struct_access, 11105 }; 11106 11107 const struct bpf_prog_ops tc_cls_act_prog_ops = { 11108 .test_run = bpf_prog_test_run_skb, 11109 }; 11110 11111 const struct bpf_verifier_ops xdp_verifier_ops = { 11112 .get_func_proto = xdp_func_proto, 11113 .is_valid_access = xdp_is_valid_access, 11114 .convert_ctx_access = xdp_convert_ctx_access, 11115 .gen_prologue = bpf_noop_prologue, 11116 .btf_struct_access = xdp_btf_struct_access, 11117 }; 11118 11119 const struct bpf_prog_ops xdp_prog_ops = { 11120 .test_run = bpf_prog_test_run_xdp, 11121 }; 11122 11123 const struct bpf_verifier_ops cg_skb_verifier_ops = { 11124 .get_func_proto = cg_skb_func_proto, 11125 .is_valid_access = cg_skb_is_valid_access, 11126 .convert_ctx_access = bpf_convert_ctx_access, 11127 }; 11128 11129 const struct bpf_prog_ops cg_skb_prog_ops = { 11130 .test_run = bpf_prog_test_run_skb, 11131 }; 11132 11133 const struct bpf_verifier_ops lwt_in_verifier_ops = { 11134 .get_func_proto = lwt_in_func_proto, 11135 .is_valid_access = lwt_is_valid_access, 11136 .convert_ctx_access = bpf_convert_ctx_access, 11137 }; 11138 11139 const struct bpf_prog_ops lwt_in_prog_ops = { 11140 .test_run = bpf_prog_test_run_skb, 11141 }; 11142 11143 const struct bpf_verifier_ops lwt_out_verifier_ops = { 11144 .get_func_proto = lwt_out_func_proto, 11145 .is_valid_access = lwt_is_valid_access, 11146 .convert_ctx_access = bpf_convert_ctx_access, 11147 }; 11148 11149 const struct bpf_prog_ops lwt_out_prog_ops = { 11150 .test_run = bpf_prog_test_run_skb, 11151 }; 11152 11153 const struct bpf_verifier_ops lwt_xmit_verifier_ops = { 11154 .get_func_proto = lwt_xmit_func_proto, 11155 .is_valid_access = lwt_is_valid_access, 11156 .convert_ctx_access = bpf_convert_ctx_access, 11157 .gen_prologue = tc_cls_act_prologue, 11158 }; 11159 11160 const struct bpf_prog_ops lwt_xmit_prog_ops = { 11161 .test_run = bpf_prog_test_run_skb, 11162 }; 11163 11164 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = { 11165 .get_func_proto = lwt_seg6local_func_proto, 11166 .is_valid_access = lwt_is_valid_access, 11167 .convert_ctx_access = bpf_convert_ctx_access, 11168 }; 11169 11170 const struct bpf_prog_ops lwt_seg6local_prog_ops = { 11171 }; 11172 11173 const struct bpf_verifier_ops cg_sock_verifier_ops = { 11174 .get_func_proto = sock_filter_func_proto, 11175 .is_valid_access = sock_filter_is_valid_access, 11176 .convert_ctx_access = bpf_sock_convert_ctx_access, 11177 }; 11178 11179 const struct bpf_prog_ops cg_sock_prog_ops = { 11180 }; 11181 11182 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = { 11183 .get_func_proto = sock_addr_func_proto, 11184 .is_valid_access = sock_addr_is_valid_access, 11185 .convert_ctx_access = sock_addr_convert_ctx_access, 11186 }; 11187 11188 const struct bpf_prog_ops cg_sock_addr_prog_ops = { 11189 }; 11190 11191 const struct bpf_verifier_ops sock_ops_verifier_ops = { 11192 .get_func_proto = sock_ops_func_proto, 11193 .is_valid_access = sock_ops_is_valid_access, 11194 .convert_ctx_access = sock_ops_convert_ctx_access, 11195 }; 11196 11197 const struct bpf_prog_ops sock_ops_prog_ops = { 11198 }; 11199 11200 const struct bpf_verifier_ops sk_skb_verifier_ops = { 11201 .get_func_proto = sk_skb_func_proto, 11202 .is_valid_access = sk_skb_is_valid_access, 11203 .convert_ctx_access = sk_skb_convert_ctx_access, 11204 .gen_prologue = sk_skb_prologue, 11205 }; 11206 11207 const struct bpf_prog_ops sk_skb_prog_ops = { 11208 }; 11209 11210 const struct bpf_verifier_ops sk_msg_verifier_ops = { 11211 .get_func_proto = sk_msg_func_proto, 11212 .is_valid_access = sk_msg_is_valid_access, 11213 .convert_ctx_access = sk_msg_convert_ctx_access, 11214 .gen_prologue = bpf_noop_prologue, 11215 }; 11216 11217 const struct bpf_prog_ops sk_msg_prog_ops = { 11218 }; 11219 11220 const struct bpf_verifier_ops flow_dissector_verifier_ops = { 11221 .get_func_proto = flow_dissector_func_proto, 11222 .is_valid_access = flow_dissector_is_valid_access, 11223 .convert_ctx_access = flow_dissector_convert_ctx_access, 11224 }; 11225 11226 const struct bpf_prog_ops flow_dissector_prog_ops = { 11227 .test_run = bpf_prog_test_run_flow_dissector, 11228 }; 11229 11230 int sk_detach_filter(struct sock *sk) 11231 { 11232 int ret = -ENOENT; 11233 struct sk_filter *filter; 11234 11235 if (sock_flag(sk, SOCK_FILTER_LOCKED)) 11236 return -EPERM; 11237 11238 filter = rcu_dereference_protected(sk->sk_filter, 11239 lockdep_sock_is_held(sk)); 11240 if (filter) { 11241 RCU_INIT_POINTER(sk->sk_filter, NULL); 11242 sk_filter_uncharge(sk, filter); 11243 ret = 0; 11244 } 11245 11246 return ret; 11247 } 11248 EXPORT_SYMBOL_GPL(sk_detach_filter); 11249 11250 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len) 11251 { 11252 struct sock_fprog_kern *fprog; 11253 struct sk_filter *filter; 11254 int ret = 0; 11255 11256 sockopt_lock_sock(sk); 11257 filter = rcu_dereference_protected(sk->sk_filter, 11258 lockdep_sock_is_held(sk)); 11259 if (!filter) 11260 goto out; 11261 11262 /* We're copying the filter that has been originally attached, 11263 * so no conversion/decode needed anymore. eBPF programs that 11264 * have no original program cannot be dumped through this. 11265 */ 11266 ret = -EACCES; 11267 fprog = filter->prog->orig_prog; 11268 if (!fprog) 11269 goto out; 11270 11271 ret = fprog->len; 11272 if (!len) 11273 /* User space only enquires number of filter blocks. */ 11274 goto out; 11275 11276 ret = -EINVAL; 11277 if (len < fprog->len) 11278 goto out; 11279 11280 ret = -EFAULT; 11281 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog))) 11282 goto out; 11283 11284 /* Instead of bytes, the API requests to return the number 11285 * of filter blocks. 11286 */ 11287 ret = fprog->len; 11288 out: 11289 sockopt_release_sock(sk); 11290 return ret; 11291 } 11292 11293 #ifdef CONFIG_INET 11294 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern, 11295 struct sock_reuseport *reuse, 11296 struct sock *sk, struct sk_buff *skb, 11297 struct sock *migrating_sk, 11298 u32 hash) 11299 { 11300 reuse_kern->skb = skb; 11301 reuse_kern->sk = sk; 11302 reuse_kern->selected_sk = NULL; 11303 reuse_kern->migrating_sk = migrating_sk; 11304 reuse_kern->data_end = skb->data + skb_headlen(skb); 11305 reuse_kern->hash = hash; 11306 reuse_kern->reuseport_id = reuse->reuseport_id; 11307 reuse_kern->bind_inany = reuse->bind_inany; 11308 } 11309 11310 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 11311 struct bpf_prog *prog, struct sk_buff *skb, 11312 struct sock *migrating_sk, 11313 u32 hash) 11314 { 11315 struct sk_reuseport_kern reuse_kern; 11316 enum sk_action action; 11317 11318 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash); 11319 action = bpf_prog_run(prog, &reuse_kern); 11320 11321 if (action == SK_PASS) 11322 return reuse_kern.selected_sk; 11323 else 11324 return ERR_PTR(-ECONNREFUSED); 11325 } 11326 11327 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern, 11328 struct bpf_map *, map, void *, key, u32, flags) 11329 { 11330 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY; 11331 struct sock_reuseport *reuse; 11332 struct sock *selected_sk; 11333 int err; 11334 11335 selected_sk = map->ops->map_lookup_elem(map, key); 11336 if (!selected_sk) 11337 return -ENOENT; 11338 11339 reuse = rcu_dereference(selected_sk->sk_reuseport_cb); 11340 if (!reuse) { 11341 /* reuseport_array has only sk with non NULL sk_reuseport_cb. 11342 * The only (!reuse) case here is - the sk has already been 11343 * unhashed (e.g. by close()), so treat it as -ENOENT. 11344 * 11345 * Other maps (e.g. sock_map) do not provide this guarantee and 11346 * the sk may never be in the reuseport group to begin with. 11347 */ 11348 err = is_sockarray ? -ENOENT : -EINVAL; 11349 goto error; 11350 } 11351 11352 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) { 11353 struct sock *sk = reuse_kern->sk; 11354 11355 if (sk->sk_protocol != selected_sk->sk_protocol) { 11356 err = -EPROTOTYPE; 11357 } else if (sk->sk_family != selected_sk->sk_family) { 11358 err = -EAFNOSUPPORT; 11359 } else { 11360 /* Catch all. Likely bound to a different sockaddr. */ 11361 err = -EBADFD; 11362 } 11363 goto error; 11364 } 11365 11366 reuse_kern->selected_sk = selected_sk; 11367 11368 return 0; 11369 error: 11370 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */ 11371 if (sk_is_refcounted(selected_sk)) 11372 sock_put(selected_sk); 11373 11374 return err; 11375 } 11376 11377 static const struct bpf_func_proto sk_select_reuseport_proto = { 11378 .func = sk_select_reuseport, 11379 .gpl_only = false, 11380 .ret_type = RET_INTEGER, 11381 .arg1_type = ARG_PTR_TO_CTX, 11382 .arg2_type = ARG_CONST_MAP_PTR, 11383 .arg3_type = ARG_PTR_TO_MAP_KEY, 11384 .arg4_type = ARG_ANYTHING, 11385 }; 11386 11387 BPF_CALL_4(sk_reuseport_load_bytes, 11388 const struct sk_reuseport_kern *, reuse_kern, u32, offset, 11389 void *, to, u32, len) 11390 { 11391 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len); 11392 } 11393 11394 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = { 11395 .func = sk_reuseport_load_bytes, 11396 .gpl_only = false, 11397 .ret_type = RET_INTEGER, 11398 .arg1_type = ARG_PTR_TO_CTX, 11399 .arg2_type = ARG_ANYTHING, 11400 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 11401 .arg4_type = ARG_CONST_SIZE, 11402 }; 11403 11404 BPF_CALL_5(sk_reuseport_load_bytes_relative, 11405 const struct sk_reuseport_kern *, reuse_kern, u32, offset, 11406 void *, to, u32, len, u32, start_header) 11407 { 11408 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to, 11409 len, start_header); 11410 } 11411 11412 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = { 11413 .func = sk_reuseport_load_bytes_relative, 11414 .gpl_only = false, 11415 .ret_type = RET_INTEGER, 11416 .arg1_type = ARG_PTR_TO_CTX, 11417 .arg2_type = ARG_ANYTHING, 11418 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 11419 .arg4_type = ARG_CONST_SIZE, 11420 .arg5_type = ARG_ANYTHING, 11421 }; 11422 11423 static const struct bpf_func_proto * 11424 sk_reuseport_func_proto(enum bpf_func_id func_id, 11425 const struct bpf_prog *prog) 11426 { 11427 switch (func_id) { 11428 case BPF_FUNC_sk_select_reuseport: 11429 return &sk_select_reuseport_proto; 11430 case BPF_FUNC_skb_load_bytes: 11431 return &sk_reuseport_load_bytes_proto; 11432 case BPF_FUNC_skb_load_bytes_relative: 11433 return &sk_reuseport_load_bytes_relative_proto; 11434 case BPF_FUNC_get_socket_cookie: 11435 return &bpf_get_socket_ptr_cookie_proto; 11436 case BPF_FUNC_ktime_get_coarse_ns: 11437 return &bpf_ktime_get_coarse_ns_proto; 11438 default: 11439 return bpf_base_func_proto(func_id, prog); 11440 } 11441 } 11442 11443 static bool 11444 sk_reuseport_is_valid_access(int off, int size, 11445 enum bpf_access_type type, 11446 const struct bpf_prog *prog, 11447 struct bpf_insn_access_aux *info) 11448 { 11449 const u32 size_default = sizeof(__u32); 11450 11451 if (off < 0 || off >= sizeof(struct sk_reuseport_md) || 11452 off % size || type != BPF_READ) 11453 return false; 11454 11455 switch (off) { 11456 case offsetof(struct sk_reuseport_md, data): 11457 info->reg_type = PTR_TO_PACKET; 11458 return size == sizeof(__u64); 11459 11460 case offsetof(struct sk_reuseport_md, data_end): 11461 info->reg_type = PTR_TO_PACKET_END; 11462 return size == sizeof(__u64); 11463 11464 case offsetof(struct sk_reuseport_md, hash): 11465 return size == size_default; 11466 11467 case offsetof(struct sk_reuseport_md, sk): 11468 info->reg_type = PTR_TO_SOCKET; 11469 return size == sizeof(__u64); 11470 11471 case offsetof(struct sk_reuseport_md, migrating_sk): 11472 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL; 11473 return size == sizeof(__u64); 11474 11475 /* Fields that allow narrowing */ 11476 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol): 11477 if (size < sizeof_field(struct sk_buff, protocol)) 11478 return false; 11479 fallthrough; 11480 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol): 11481 case bpf_ctx_range(struct sk_reuseport_md, bind_inany): 11482 case bpf_ctx_range(struct sk_reuseport_md, len): 11483 bpf_ctx_record_field_size(info, size_default); 11484 return bpf_ctx_narrow_access_ok(off, size, size_default); 11485 11486 default: 11487 return false; 11488 } 11489 } 11490 11491 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \ 11492 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \ 11493 si->dst_reg, si->src_reg, \ 11494 bpf_target_off(struct sk_reuseport_kern, F, \ 11495 sizeof_field(struct sk_reuseport_kern, F), \ 11496 target_size)); \ 11497 }) 11498 11499 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \ 11500 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ 11501 struct sk_buff, \ 11502 skb, \ 11503 SKB_FIELD) 11504 11505 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \ 11506 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ 11507 struct sock, \ 11508 sk, \ 11509 SK_FIELD) 11510 11511 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type, 11512 const struct bpf_insn *si, 11513 struct bpf_insn *insn_buf, 11514 struct bpf_prog *prog, 11515 u32 *target_size) 11516 { 11517 struct bpf_insn *insn = insn_buf; 11518 11519 switch (si->off) { 11520 case offsetof(struct sk_reuseport_md, data): 11521 SK_REUSEPORT_LOAD_SKB_FIELD(data); 11522 break; 11523 11524 case offsetof(struct sk_reuseport_md, len): 11525 SK_REUSEPORT_LOAD_SKB_FIELD(len); 11526 break; 11527 11528 case offsetof(struct sk_reuseport_md, eth_protocol): 11529 SK_REUSEPORT_LOAD_SKB_FIELD(protocol); 11530 break; 11531 11532 case offsetof(struct sk_reuseport_md, ip_protocol): 11533 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol); 11534 break; 11535 11536 case offsetof(struct sk_reuseport_md, data_end): 11537 SK_REUSEPORT_LOAD_FIELD(data_end); 11538 break; 11539 11540 case offsetof(struct sk_reuseport_md, hash): 11541 SK_REUSEPORT_LOAD_FIELD(hash); 11542 break; 11543 11544 case offsetof(struct sk_reuseport_md, bind_inany): 11545 SK_REUSEPORT_LOAD_FIELD(bind_inany); 11546 break; 11547 11548 case offsetof(struct sk_reuseport_md, sk): 11549 SK_REUSEPORT_LOAD_FIELD(sk); 11550 break; 11551 11552 case offsetof(struct sk_reuseport_md, migrating_sk): 11553 SK_REUSEPORT_LOAD_FIELD(migrating_sk); 11554 break; 11555 } 11556 11557 return insn - insn_buf; 11558 } 11559 11560 const struct bpf_verifier_ops sk_reuseport_verifier_ops = { 11561 .get_func_proto = sk_reuseport_func_proto, 11562 .is_valid_access = sk_reuseport_is_valid_access, 11563 .convert_ctx_access = sk_reuseport_convert_ctx_access, 11564 }; 11565 11566 const struct bpf_prog_ops sk_reuseport_prog_ops = { 11567 }; 11568 11569 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled); 11570 EXPORT_SYMBOL(bpf_sk_lookup_enabled); 11571 11572 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx, 11573 struct sock *, sk, u64, flags) 11574 { 11575 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE | 11576 BPF_SK_LOOKUP_F_NO_REUSEPORT))) 11577 return -EINVAL; 11578 if (unlikely(sk && sk_is_refcounted(sk))) 11579 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */ 11580 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN)) 11581 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */ 11582 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE)) 11583 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */ 11584 11585 /* Check if socket is suitable for packet L3/L4 protocol */ 11586 if (sk && sk->sk_protocol != ctx->protocol) 11587 return -EPROTOTYPE; 11588 if (sk && sk->sk_family != ctx->family && 11589 (sk->sk_family == AF_INET || ipv6_only_sock(sk))) 11590 return -EAFNOSUPPORT; 11591 11592 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE)) 11593 return -EEXIST; 11594 11595 /* Select socket as lookup result */ 11596 ctx->selected_sk = sk; 11597 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT; 11598 return 0; 11599 } 11600 11601 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = { 11602 .func = bpf_sk_lookup_assign, 11603 .gpl_only = false, 11604 .ret_type = RET_INTEGER, 11605 .arg1_type = ARG_PTR_TO_CTX, 11606 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL, 11607 .arg3_type = ARG_ANYTHING, 11608 }; 11609 11610 static const struct bpf_func_proto * 11611 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 11612 { 11613 switch (func_id) { 11614 case BPF_FUNC_perf_event_output: 11615 return &bpf_event_output_data_proto; 11616 case BPF_FUNC_sk_assign: 11617 return &bpf_sk_lookup_assign_proto; 11618 case BPF_FUNC_sk_release: 11619 return &bpf_sk_release_proto; 11620 default: 11621 return bpf_sk_base_func_proto(func_id, prog); 11622 } 11623 } 11624 11625 static bool sk_lookup_is_valid_access(int off, int size, 11626 enum bpf_access_type type, 11627 const struct bpf_prog *prog, 11628 struct bpf_insn_access_aux *info) 11629 { 11630 if (off < 0 || off >= sizeof(struct bpf_sk_lookup)) 11631 return false; 11632 if (off % size != 0) 11633 return false; 11634 if (type != BPF_READ) 11635 return false; 11636 11637 switch (off) { 11638 case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk): 11639 info->reg_type = PTR_TO_SOCKET_OR_NULL; 11640 return size == sizeof(__u64); 11641 11642 case bpf_ctx_range(struct bpf_sk_lookup, family): 11643 case bpf_ctx_range(struct bpf_sk_lookup, protocol): 11644 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4): 11645 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4): 11646 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]): 11647 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]): 11648 case bpf_ctx_range(struct bpf_sk_lookup, local_port): 11649 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex): 11650 bpf_ctx_record_field_size(info, sizeof(__u32)); 11651 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32)); 11652 11653 case bpf_ctx_range(struct bpf_sk_lookup, remote_port): 11654 /* Allow 4-byte access to 2-byte field for backward compatibility */ 11655 if (size == sizeof(__u32)) 11656 return true; 11657 bpf_ctx_record_field_size(info, sizeof(__be16)); 11658 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16)); 11659 11660 case offsetofend(struct bpf_sk_lookup, remote_port) ... 11661 offsetof(struct bpf_sk_lookup, local_ip4) - 1: 11662 /* Allow access to zero padding for backward compatibility */ 11663 bpf_ctx_record_field_size(info, sizeof(__u16)); 11664 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16)); 11665 11666 default: 11667 return false; 11668 } 11669 } 11670 11671 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type, 11672 const struct bpf_insn *si, 11673 struct bpf_insn *insn_buf, 11674 struct bpf_prog *prog, 11675 u32 *target_size) 11676 { 11677 struct bpf_insn *insn = insn_buf; 11678 11679 switch (si->off) { 11680 case offsetof(struct bpf_sk_lookup, sk): 11681 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, 11682 offsetof(struct bpf_sk_lookup_kern, selected_sk)); 11683 break; 11684 11685 case offsetof(struct bpf_sk_lookup, family): 11686 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 11687 bpf_target_off(struct bpf_sk_lookup_kern, 11688 family, 2, target_size)); 11689 break; 11690 11691 case offsetof(struct bpf_sk_lookup, protocol): 11692 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 11693 bpf_target_off(struct bpf_sk_lookup_kern, 11694 protocol, 2, target_size)); 11695 break; 11696 11697 case offsetof(struct bpf_sk_lookup, remote_ip4): 11698 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 11699 bpf_target_off(struct bpf_sk_lookup_kern, 11700 v4.saddr, 4, target_size)); 11701 break; 11702 11703 case offsetof(struct bpf_sk_lookup, local_ip4): 11704 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 11705 bpf_target_off(struct bpf_sk_lookup_kern, 11706 v4.daddr, 4, target_size)); 11707 break; 11708 11709 case bpf_ctx_range_till(struct bpf_sk_lookup, 11710 remote_ip6[0], remote_ip6[3]): { 11711 #if IS_ENABLED(CONFIG_IPV6) 11712 int off = si->off; 11713 11714 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]); 11715 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size); 11716 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, 11717 offsetof(struct bpf_sk_lookup_kern, v6.saddr)); 11718 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 11719 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off); 11720 #else 11721 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11722 #endif 11723 break; 11724 } 11725 case bpf_ctx_range_till(struct bpf_sk_lookup, 11726 local_ip6[0], local_ip6[3]): { 11727 #if IS_ENABLED(CONFIG_IPV6) 11728 int off = si->off; 11729 11730 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]); 11731 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size); 11732 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, 11733 offsetof(struct bpf_sk_lookup_kern, v6.daddr)); 11734 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); 11735 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off); 11736 #else 11737 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11738 #endif 11739 break; 11740 } 11741 case offsetof(struct bpf_sk_lookup, remote_port): 11742 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 11743 bpf_target_off(struct bpf_sk_lookup_kern, 11744 sport, 2, target_size)); 11745 break; 11746 11747 case offsetofend(struct bpf_sk_lookup, remote_port): 11748 *target_size = 2; 11749 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); 11750 break; 11751 11752 case offsetof(struct bpf_sk_lookup, local_port): 11753 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, 11754 bpf_target_off(struct bpf_sk_lookup_kern, 11755 dport, 2, target_size)); 11756 break; 11757 11758 case offsetof(struct bpf_sk_lookup, ingress_ifindex): 11759 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, 11760 bpf_target_off(struct bpf_sk_lookup_kern, 11761 ingress_ifindex, 4, target_size)); 11762 break; 11763 } 11764 11765 return insn - insn_buf; 11766 } 11767 11768 const struct bpf_prog_ops sk_lookup_prog_ops = { 11769 .test_run = bpf_prog_test_run_sk_lookup, 11770 }; 11771 11772 const struct bpf_verifier_ops sk_lookup_verifier_ops = { 11773 .get_func_proto = sk_lookup_func_proto, 11774 .is_valid_access = sk_lookup_is_valid_access, 11775 .convert_ctx_access = sk_lookup_convert_ctx_access, 11776 }; 11777 11778 #endif /* CONFIG_INET */ 11779 11780 DEFINE_BPF_DISPATCHER(xdp) 11781 11782 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog) 11783 { 11784 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog); 11785 } 11786 11787 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE) 11788 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type) 11789 BTF_SOCK_TYPE_xxx 11790 #undef BTF_SOCK_TYPE 11791 11792 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk) 11793 { 11794 /* tcp6_sock type is not generated in dwarf and hence btf, 11795 * trigger an explicit type generation here. 11796 */ 11797 BTF_TYPE_EMIT(struct tcp6_sock); 11798 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP && 11799 sk->sk_family == AF_INET6) 11800 return (unsigned long)sk; 11801 11802 return (unsigned long)NULL; 11803 } 11804 11805 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = { 11806 .func = bpf_skc_to_tcp6_sock, 11807 .gpl_only = false, 11808 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11809 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11810 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6], 11811 }; 11812 11813 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk) 11814 { 11815 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP) 11816 return (unsigned long)sk; 11817 11818 return (unsigned long)NULL; 11819 } 11820 11821 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = { 11822 .func = bpf_skc_to_tcp_sock, 11823 .gpl_only = false, 11824 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11825 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11826 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 11827 }; 11828 11829 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk) 11830 { 11831 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not 11832 * generated if CONFIG_INET=n. Trigger an explicit generation here. 11833 */ 11834 BTF_TYPE_EMIT(struct inet_timewait_sock); 11835 BTF_TYPE_EMIT(struct tcp_timewait_sock); 11836 11837 #ifdef CONFIG_INET 11838 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT) 11839 return (unsigned long)sk; 11840 #endif 11841 11842 #if IS_BUILTIN(CONFIG_IPV6) 11843 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT) 11844 return (unsigned long)sk; 11845 #endif 11846 11847 return (unsigned long)NULL; 11848 } 11849 11850 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = { 11851 .func = bpf_skc_to_tcp_timewait_sock, 11852 .gpl_only = false, 11853 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11854 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11855 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW], 11856 }; 11857 11858 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk) 11859 { 11860 #ifdef CONFIG_INET 11861 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV) 11862 return (unsigned long)sk; 11863 #endif 11864 11865 #if IS_BUILTIN(CONFIG_IPV6) 11866 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV) 11867 return (unsigned long)sk; 11868 #endif 11869 11870 return (unsigned long)NULL; 11871 } 11872 11873 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = { 11874 .func = bpf_skc_to_tcp_request_sock, 11875 .gpl_only = false, 11876 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11877 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11878 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ], 11879 }; 11880 11881 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk) 11882 { 11883 /* udp6_sock type is not generated in dwarf and hence btf, 11884 * trigger an explicit type generation here. 11885 */ 11886 BTF_TYPE_EMIT(struct udp6_sock); 11887 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP && 11888 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6) 11889 return (unsigned long)sk; 11890 11891 return (unsigned long)NULL; 11892 } 11893 11894 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = { 11895 .func = bpf_skc_to_udp6_sock, 11896 .gpl_only = false, 11897 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11898 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11899 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6], 11900 }; 11901 11902 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk) 11903 { 11904 /* unix_sock type is not generated in dwarf and hence btf, 11905 * trigger an explicit type generation here. 11906 */ 11907 BTF_TYPE_EMIT(struct unix_sock); 11908 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX) 11909 return (unsigned long)sk; 11910 11911 return (unsigned long)NULL; 11912 } 11913 11914 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = { 11915 .func = bpf_skc_to_unix_sock, 11916 .gpl_only = false, 11917 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11918 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, 11919 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX], 11920 }; 11921 11922 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk) 11923 { 11924 BTF_TYPE_EMIT(struct mptcp_sock); 11925 return (unsigned long)bpf_mptcp_sock_from_subflow(sk); 11926 } 11927 11928 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = { 11929 .func = bpf_skc_to_mptcp_sock, 11930 .gpl_only = false, 11931 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11932 .arg1_type = ARG_PTR_TO_SOCK_COMMON, 11933 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP], 11934 }; 11935 11936 BPF_CALL_1(bpf_sock_from_file, struct file *, file) 11937 { 11938 return (unsigned long)sock_from_file(file); 11939 } 11940 11941 BTF_ID_LIST(bpf_sock_from_file_btf_ids) 11942 BTF_ID(struct, socket) 11943 BTF_ID(struct, file) 11944 11945 const struct bpf_func_proto bpf_sock_from_file_proto = { 11946 .func = bpf_sock_from_file, 11947 .gpl_only = false, 11948 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 11949 .ret_btf_id = &bpf_sock_from_file_btf_ids[0], 11950 .arg1_type = ARG_PTR_TO_BTF_ID, 11951 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1], 11952 }; 11953 11954 static const struct bpf_func_proto * 11955 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 11956 { 11957 const struct bpf_func_proto *func; 11958 11959 switch (func_id) { 11960 case BPF_FUNC_skc_to_tcp6_sock: 11961 func = &bpf_skc_to_tcp6_sock_proto; 11962 break; 11963 case BPF_FUNC_skc_to_tcp_sock: 11964 func = &bpf_skc_to_tcp_sock_proto; 11965 break; 11966 case BPF_FUNC_skc_to_tcp_timewait_sock: 11967 func = &bpf_skc_to_tcp_timewait_sock_proto; 11968 break; 11969 case BPF_FUNC_skc_to_tcp_request_sock: 11970 func = &bpf_skc_to_tcp_request_sock_proto; 11971 break; 11972 case BPF_FUNC_skc_to_udp6_sock: 11973 func = &bpf_skc_to_udp6_sock_proto; 11974 break; 11975 case BPF_FUNC_skc_to_unix_sock: 11976 func = &bpf_skc_to_unix_sock_proto; 11977 break; 11978 case BPF_FUNC_skc_to_mptcp_sock: 11979 func = &bpf_skc_to_mptcp_sock_proto; 11980 break; 11981 case BPF_FUNC_ktime_get_coarse_ns: 11982 return &bpf_ktime_get_coarse_ns_proto; 11983 default: 11984 return bpf_base_func_proto(func_id, prog); 11985 } 11986 11987 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) 11988 return NULL; 11989 11990 return func; 11991 } 11992 11993 __bpf_kfunc_start_defs(); 11994 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags, 11995 struct bpf_dynptr *ptr__uninit) 11996 { 11997 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; 11998 struct sk_buff *skb = (struct sk_buff *)s; 11999 12000 if (flags) { 12001 bpf_dynptr_set_null(ptr); 12002 return -EINVAL; 12003 } 12004 12005 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len); 12006 12007 return 0; 12008 } 12009 12010 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags, 12011 struct bpf_dynptr *ptr__uninit) 12012 { 12013 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; 12014 struct xdp_buff *xdp = (struct xdp_buff *)x; 12015 12016 if (flags) { 12017 bpf_dynptr_set_null(ptr); 12018 return -EINVAL; 12019 } 12020 12021 bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp)); 12022 12023 return 0; 12024 } 12025 12026 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern, 12027 const u8 *sun_path, u32 sun_path__sz) 12028 { 12029 struct sockaddr_un *un; 12030 12031 if (sa_kern->sk->sk_family != AF_UNIX) 12032 return -EINVAL; 12033 12034 /* We do not allow changing the address to unnamed or larger than the 12035 * maximum allowed address size for a unix sockaddr. 12036 */ 12037 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX) 12038 return -EINVAL; 12039 12040 un = (struct sockaddr_un *)sa_kern->uaddr; 12041 memcpy(un->sun_path, sun_path, sun_path__sz); 12042 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz; 12043 12044 return 0; 12045 } 12046 12047 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk, 12048 struct bpf_tcp_req_attrs *attrs, int attrs__sz) 12049 { 12050 #if IS_ENABLED(CONFIG_SYN_COOKIES) 12051 struct sk_buff *skb = (struct sk_buff *)s; 12052 const struct request_sock_ops *ops; 12053 struct inet_request_sock *ireq; 12054 struct tcp_request_sock *treq; 12055 struct request_sock *req; 12056 struct net *net; 12057 __u16 min_mss; 12058 u32 tsoff = 0; 12059 12060 if (attrs__sz != sizeof(*attrs) || 12061 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2]) 12062 return -EINVAL; 12063 12064 if (!skb_at_tc_ingress(skb)) 12065 return -EINVAL; 12066 12067 net = dev_net(skb->dev); 12068 if (net != sock_net(sk)) 12069 return -ENETUNREACH; 12070 12071 switch (skb->protocol) { 12072 case htons(ETH_P_IP): 12073 ops = &tcp_request_sock_ops; 12074 min_mss = 536; 12075 break; 12076 #if IS_BUILTIN(CONFIG_IPV6) 12077 case htons(ETH_P_IPV6): 12078 ops = &tcp6_request_sock_ops; 12079 min_mss = IPV6_MIN_MTU - 60; 12080 break; 12081 #endif 12082 default: 12083 return -EINVAL; 12084 } 12085 12086 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN || 12087 sk_is_mptcp(sk)) 12088 return -EINVAL; 12089 12090 if (attrs->mss < min_mss) 12091 return -EINVAL; 12092 12093 if (attrs->wscale_ok) { 12094 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) 12095 return -EINVAL; 12096 12097 if (attrs->snd_wscale > TCP_MAX_WSCALE || 12098 attrs->rcv_wscale > TCP_MAX_WSCALE) 12099 return -EINVAL; 12100 } 12101 12102 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack)) 12103 return -EINVAL; 12104 12105 if (attrs->tstamp_ok) { 12106 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps)) 12107 return -EINVAL; 12108 12109 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns()); 12110 } 12111 12112 req = inet_reqsk_alloc(ops, sk, false); 12113 if (!req) 12114 return -ENOMEM; 12115 12116 ireq = inet_rsk(req); 12117 treq = tcp_rsk(req); 12118 12119 req->rsk_listener = sk; 12120 req->syncookie = 1; 12121 req->mss = attrs->mss; 12122 req->ts_recent = attrs->rcv_tsval; 12123 12124 ireq->snd_wscale = attrs->snd_wscale; 12125 ireq->rcv_wscale = attrs->rcv_wscale; 12126 ireq->tstamp_ok = !!attrs->tstamp_ok; 12127 ireq->sack_ok = !!attrs->sack_ok; 12128 ireq->wscale_ok = !!attrs->wscale_ok; 12129 ireq->ecn_ok = !!attrs->ecn_ok; 12130 12131 treq->req_usec_ts = !!attrs->usec_ts_ok; 12132 treq->ts_off = tsoff; 12133 12134 skb_orphan(skb); 12135 skb->sk = req_to_sk(req); 12136 skb->destructor = sock_pfree; 12137 12138 return 0; 12139 #else 12140 return -EOPNOTSUPP; 12141 #endif 12142 } 12143 12144 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops, 12145 u64 flags) 12146 { 12147 struct sk_buff *skb; 12148 12149 if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB) 12150 return -EOPNOTSUPP; 12151 12152 if (flags) 12153 return -EINVAL; 12154 12155 skb = skops->skb; 12156 skb_shinfo(skb)->tx_flags |= SKBTX_BPF; 12157 TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF; 12158 skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 12159 12160 return 0; 12161 } 12162 12163 __bpf_kfunc_end_defs(); 12164 12165 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 12166 struct bpf_dynptr *ptr__uninit) 12167 { 12168 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; 12169 int err; 12170 12171 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit); 12172 if (err) 12173 return err; 12174 12175 bpf_dynptr_set_rdonly(ptr); 12176 12177 return 0; 12178 } 12179 12180 BTF_KFUNCS_START(bpf_kfunc_check_set_skb) 12181 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS) 12182 BTF_KFUNCS_END(bpf_kfunc_check_set_skb) 12183 12184 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp) 12185 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp) 12186 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp) 12187 12188 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr) 12189 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path) 12190 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr) 12191 12192 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk) 12193 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS) 12194 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk) 12195 12196 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops) 12197 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS) 12198 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops) 12199 12200 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = { 12201 .owner = THIS_MODULE, 12202 .set = &bpf_kfunc_check_set_skb, 12203 }; 12204 12205 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = { 12206 .owner = THIS_MODULE, 12207 .set = &bpf_kfunc_check_set_xdp, 12208 }; 12209 12210 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = { 12211 .owner = THIS_MODULE, 12212 .set = &bpf_kfunc_check_set_sock_addr, 12213 }; 12214 12215 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = { 12216 .owner = THIS_MODULE, 12217 .set = &bpf_kfunc_check_set_tcp_reqsk, 12218 }; 12219 12220 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = { 12221 .owner = THIS_MODULE, 12222 .set = &bpf_kfunc_check_set_sock_ops, 12223 }; 12224 12225 static int __init bpf_kfunc_init(void) 12226 { 12227 int ret; 12228 12229 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb); 12230 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb); 12231 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb); 12232 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb); 12233 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb); 12234 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb); 12235 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb); 12236 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb); 12237 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb); 12238 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb); 12239 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb); 12240 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp); 12241 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 12242 &bpf_kfunc_set_sock_addr); 12243 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk); 12244 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops); 12245 } 12246 late_initcall(bpf_kfunc_init); 12247 12248 __bpf_kfunc_start_defs(); 12249 12250 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code. 12251 * 12252 * The function expects a non-NULL pointer to a socket, and invokes the 12253 * protocol specific socket destroy handlers. 12254 * 12255 * The helper can only be called from BPF contexts that have acquired the socket 12256 * locks. 12257 * 12258 * Parameters: 12259 * @sock: Pointer to socket to be destroyed 12260 * 12261 * Return: 12262 * On error, may return EPROTONOSUPPORT, EINVAL. 12263 * EPROTONOSUPPORT if protocol specific destroy handler is not supported. 12264 * 0 otherwise 12265 */ 12266 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock) 12267 { 12268 struct sock *sk = (struct sock *)sock; 12269 12270 /* The locking semantics that allow for synchronous execution of the 12271 * destroy handlers are only supported for TCP and UDP. 12272 * Supporting protocols will need to acquire sock lock in the BPF context 12273 * prior to invoking this kfunc. 12274 */ 12275 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP && 12276 sk->sk_protocol != IPPROTO_UDP)) 12277 return -EOPNOTSUPP; 12278 12279 return sk->sk_prot->diag_destroy(sk, ECONNABORTED); 12280 } 12281 12282 __bpf_kfunc_end_defs(); 12283 12284 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids) 12285 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS) 12286 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids) 12287 12288 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id) 12289 { 12290 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) && 12291 prog->expected_attach_type != BPF_TRACE_ITER) 12292 return -EACCES; 12293 return 0; 12294 } 12295 12296 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = { 12297 .owner = THIS_MODULE, 12298 .set = &bpf_sk_iter_kfunc_ids, 12299 .filter = tracing_iter_filter, 12300 }; 12301 12302 static int init_subsystem(void) 12303 { 12304 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set); 12305 } 12306 late_initcall(init_subsystem); 12307