xref: /linux/net/core/filter.c (revision a6923c06a3b2e2c534ae28c53a7531e76cc95cfa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88 
89 #include "dev.h"
90 
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93 
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 	if (in_compat_syscall()) {
100 		struct compat_sock_fprog f32;
101 
102 		if (len != sizeof(f32))
103 			return -EINVAL;
104 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 			return -EFAULT;
106 		memset(dst, 0, sizeof(*dst));
107 		dst->len = f32.len;
108 		dst->filter = compat_ptr(f32.filter);
109 	} else {
110 		if (len != sizeof(*dst))
111 			return -EINVAL;
112 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 			return -EFAULT;
114 	}
115 
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119 
120 /**
121  *	sk_filter_trim_cap - run a packet through a socket filter
122  *	@sk: sock associated with &sk_buff
123  *	@skb: buffer to filter
124  *	@cap: limit on how short the eBPF program may trim the packet
125  *	@reason: record drop reason on errors (negative return value)
126  *
127  * Run the eBPF program and then cut skb->data to correct size returned by
128  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
129  * than pkt_len we keep whole skb->data. This is the socket level
130  * wrapper to bpf_prog_run. It returns 0 if the packet should
131  * be accepted or -EPERM if the packet should be tossed.
132  *
133  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap,enum skb_drop_reason * reason)134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb,
135 		       unsigned int cap, enum skb_drop_reason *reason)
136 {
137 	int err;
138 	struct sk_filter *filter;
139 
140 	/*
141 	 * If the skb was allocated from pfmemalloc reserves, only
142 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
143 	 * helping free memory
144 	 */
145 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
146 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
147 		*reason = SKB_DROP_REASON_PFMEMALLOC;
148 		return -ENOMEM;
149 	}
150 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
151 	if (err) {
152 		*reason = SKB_DROP_REASON_SOCKET_FILTER;
153 		return err;
154 	}
155 
156 	err = security_sock_rcv_skb(sk, skb);
157 	if (err) {
158 		*reason = SKB_DROP_REASON_SECURITY_HOOK;
159 		return err;
160 	}
161 
162 	rcu_read_lock();
163 	filter = rcu_dereference(sk->sk_filter);
164 	if (filter) {
165 		struct sock *save_sk = skb->sk;
166 		unsigned int pkt_len;
167 
168 		skb->sk = sk;
169 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
170 		skb->sk = save_sk;
171 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
172 		if (err)
173 			*reason = SKB_DROP_REASON_SOCKET_FILTER;
174 	}
175 	rcu_read_unlock();
176 
177 	return err;
178 }
179 EXPORT_SYMBOL(sk_filter_trim_cap);
180 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
182 {
183 	return skb_get_poff(skb);
184 }
185 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
200 	if (nla)
201 		return (void *) nla - (void *) skb->data;
202 
203 	return 0;
204 }
205 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
207 {
208 	struct nlattr *nla;
209 
210 	if (skb_is_nonlinear(skb))
211 		return 0;
212 
213 	if (skb->len < sizeof(struct nlattr))
214 		return 0;
215 
216 	if (a > skb->len - sizeof(struct nlattr))
217 		return 0;
218 
219 	nla = (struct nlattr *) &skb->data[a];
220 	if (!nla_ok(nla, skb->len - a))
221 		return 0;
222 
223 	nla = nla_find_nested(nla, x);
224 	if (nla)
225 		return (void *) nla - (void *) skb->data;
226 
227 	return 0;
228 }
229 
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
231 {
232 	if (likely(offset >= 0))
233 		return offset;
234 
235 	if (offset >= SKF_NET_OFF)
236 		return offset - SKF_NET_OFF + skb_network_offset(skb);
237 
238 	if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
239 		return offset - SKF_LL_OFF + skb_mac_offset(skb);
240 
241 	return INT_MIN;
242 }
243 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
245 	   data, int, headlen, int, offset)
246 {
247 	u8 tmp;
248 	const int len = sizeof(tmp);
249 
250 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
251 	if (offset == INT_MIN)
252 		return -EFAULT;
253 
254 	if (headlen - offset >= len)
255 		return *(u8 *)(data + offset);
256 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
257 		return tmp;
258 	else
259 		return -EFAULT;
260 }
261 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
263 	   int, offset)
264 {
265 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
266 					 offset);
267 }
268 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
270 	   data, int, headlen, int, offset)
271 {
272 	__be16 tmp;
273 	const int len = sizeof(tmp);
274 
275 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
276 	if (offset == INT_MIN)
277 		return -EFAULT;
278 
279 	if (headlen - offset >= len)
280 		return get_unaligned_be16(data + offset);
281 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
282 		return be16_to_cpu(tmp);
283 	else
284 		return -EFAULT;
285 }
286 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
288 	   int, offset)
289 {
290 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
291 					  offset);
292 }
293 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
295 	   data, int, headlen, int, offset)
296 {
297 	__be32 tmp;
298 	const int len = sizeof(tmp);
299 
300 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
301 	if (offset == INT_MIN)
302 		return -EFAULT;
303 
304 	if (headlen - offset >= len)
305 		return get_unaligned_be32(data + offset);
306 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
307 		return be32_to_cpu(tmp);
308 	else
309 		return -EFAULT;
310 }
311 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
313 	   int, offset)
314 {
315 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
316 					  offset);
317 }
318 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
320 			      struct bpf_insn *insn_buf)
321 {
322 	struct bpf_insn *insn = insn_buf;
323 
324 	switch (skb_field) {
325 	case SKF_AD_MARK:
326 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
327 
328 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
329 				      offsetof(struct sk_buff, mark));
330 		break;
331 
332 	case SKF_AD_PKTTYPE:
333 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
334 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
335 #ifdef __BIG_ENDIAN_BITFIELD
336 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
337 #endif
338 		break;
339 
340 	case SKF_AD_QUEUE:
341 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
342 
343 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
344 				      offsetof(struct sk_buff, queue_mapping));
345 		break;
346 
347 	case SKF_AD_VLAN_TAG:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
349 
350 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
352 				      offsetof(struct sk_buff, vlan_tci));
353 		break;
354 	case SKF_AD_VLAN_TAG_PRESENT:
355 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
356 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
357 				      offsetof(struct sk_buff, vlan_all));
358 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
359 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
360 		break;
361 	}
362 
363 	return insn - insn_buf;
364 }
365 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)366 static bool convert_bpf_extensions(struct sock_filter *fp,
367 				   struct bpf_insn **insnp)
368 {
369 	struct bpf_insn *insn = *insnp;
370 	u32 cnt;
371 
372 	switch (fp->k) {
373 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
374 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
375 
376 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
377 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
378 				      offsetof(struct sk_buff, protocol));
379 		/* A = ntohs(A) [emitting a nop or swap16] */
380 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
384 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_IFINDEX:
389 	case SKF_AD_OFF + SKF_AD_HATYPE:
390 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
391 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
392 
393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
394 				      BPF_REG_TMP, BPF_REG_CTX,
395 				      offsetof(struct sk_buff, dev));
396 		/* if (tmp != 0) goto pc + 1 */
397 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
398 		*insn++ = BPF_EXIT_INSN();
399 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
400 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
401 					    offsetof(struct net_device, ifindex));
402 		else
403 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
404 					    offsetof(struct net_device, type));
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_MARK:
408 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_RXHASH:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
414 
415 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
416 				    offsetof(struct sk_buff, hash));
417 		break;
418 
419 	case SKF_AD_OFF + SKF_AD_QUEUE:
420 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
421 		insn += cnt - 1;
422 		break;
423 
424 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
425 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
426 					 BPF_REG_A, BPF_REG_CTX, insn);
427 		insn += cnt - 1;
428 		break;
429 
430 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
431 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
432 					 BPF_REG_A, BPF_REG_CTX, insn);
433 		insn += cnt - 1;
434 		break;
435 
436 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
437 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
438 
439 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
440 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
441 				      offsetof(struct sk_buff, vlan_proto));
442 		/* A = ntohs(A) [emitting a nop or swap16] */
443 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
444 		break;
445 
446 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
447 	case SKF_AD_OFF + SKF_AD_NLATTR:
448 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 	case SKF_AD_OFF + SKF_AD_CPU:
450 	case SKF_AD_OFF + SKF_AD_RANDOM:
451 		/* arg1 = CTX */
452 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
453 		/* arg2 = A */
454 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
455 		/* arg3 = X */
456 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
457 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
458 		switch (fp->k) {
459 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
460 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
461 			break;
462 		case SKF_AD_OFF + SKF_AD_NLATTR:
463 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
464 			break;
465 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
466 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
467 			break;
468 		case SKF_AD_OFF + SKF_AD_CPU:
469 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
470 			break;
471 		case SKF_AD_OFF + SKF_AD_RANDOM:
472 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
473 			bpf_user_rnd_init_once();
474 			break;
475 		}
476 		break;
477 
478 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
479 		/* A ^= X */
480 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
481 		break;
482 
483 	default:
484 		/* This is just a dummy call to avoid letting the compiler
485 		 * evict __bpf_call_base() as an optimization. Placed here
486 		 * where no-one bothers.
487 		 */
488 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
489 		return false;
490 	}
491 
492 	*insnp = insn;
493 	return true;
494 }
495 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
497 {
498 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
499 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
500 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
501 		      BPF_SIZE(fp->code) == BPF_W;
502 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
503 	const int ip_align = NET_IP_ALIGN;
504 	struct bpf_insn *insn = *insnp;
505 	int offset = fp->k;
506 
507 	if (!indirect &&
508 	    ((unaligned_ok && offset >= 0) ||
509 	     (!unaligned_ok && offset >= 0 &&
510 	      offset + ip_align >= 0 &&
511 	      offset + ip_align % size == 0))) {
512 		bool ldx_off_ok = offset <= S16_MAX;
513 
514 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
515 		if (offset)
516 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
517 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
518 				      size, 2 + endian + (!ldx_off_ok * 2));
519 		if (ldx_off_ok) {
520 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
521 					      BPF_REG_D, offset);
522 		} else {
523 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
524 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
525 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
526 					      BPF_REG_TMP, 0);
527 		}
528 		if (endian)
529 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
530 		*insn++ = BPF_JMP_A(8);
531 	}
532 
533 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
534 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
535 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
536 	if (!indirect) {
537 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
538 	} else {
539 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
540 		if (fp->k)
541 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
542 	}
543 
544 	switch (BPF_SIZE(fp->code)) {
545 	case BPF_B:
546 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
547 		break;
548 	case BPF_H:
549 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
550 		break;
551 	case BPF_W:
552 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
553 		break;
554 	default:
555 		return false;
556 	}
557 
558 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
559 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
560 	*insn   = BPF_EXIT_INSN();
561 
562 	*insnp = insn;
563 	return true;
564 }
565 
566 /**
567  *	bpf_convert_filter - convert filter program
568  *	@prog: the user passed filter program
569  *	@len: the length of the user passed filter program
570  *	@new_prog: allocated 'struct bpf_prog' or NULL
571  *	@new_len: pointer to store length of converted program
572  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
573  *
574  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
575  * style extended BPF (eBPF).
576  * Conversion workflow:
577  *
578  * 1) First pass for calculating the new program length:
579  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
580  *
581  * 2) 2nd pass to remap in two passes: 1st pass finds new
582  *    jump offsets, 2nd pass remapping:
583  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
584  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)585 static int bpf_convert_filter(struct sock_filter *prog, int len,
586 			      struct bpf_prog *new_prog, int *new_len,
587 			      bool *seen_ld_abs)
588 {
589 	int new_flen = 0, pass = 0, target, i, stack_off;
590 	struct bpf_insn *new_insn, *first_insn = NULL;
591 	struct sock_filter *fp;
592 	int *addrs = NULL;
593 	u8 bpf_src;
594 
595 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
596 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
597 
598 	if (len <= 0 || len > BPF_MAXINSNS)
599 		return -EINVAL;
600 
601 	if (new_prog) {
602 		first_insn = new_prog->insnsi;
603 		addrs = kcalloc(len, sizeof(*addrs),
604 				GFP_KERNEL | __GFP_NOWARN);
605 		if (!addrs)
606 			return -ENOMEM;
607 	}
608 
609 do_pass:
610 	new_insn = first_insn;
611 	fp = prog;
612 
613 	/* Classic BPF related prologue emission. */
614 	if (new_prog) {
615 		/* Classic BPF expects A and X to be reset first. These need
616 		 * to be guaranteed to be the first two instructions.
617 		 */
618 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
619 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
620 
621 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
622 		 * In eBPF case it's done by the compiler, here we need to
623 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
624 		 */
625 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
626 		if (*seen_ld_abs) {
627 			/* For packet access in classic BPF, cache skb->data
628 			 * in callee-saved BPF R8 and skb->len - skb->data_len
629 			 * (headlen) in BPF R9. Since classic BPF is read-only
630 			 * on CTX, we only need to cache it once.
631 			 */
632 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
633 						  BPF_REG_D, BPF_REG_CTX,
634 						  offsetof(struct sk_buff, data));
635 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
636 						  offsetof(struct sk_buff, len));
637 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
638 						  offsetof(struct sk_buff, data_len));
639 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
640 		}
641 	} else {
642 		new_insn += 3;
643 	}
644 
645 	for (i = 0; i < len; fp++, i++) {
646 		struct bpf_insn tmp_insns[32] = { };
647 		struct bpf_insn *insn = tmp_insns;
648 
649 		if (addrs)
650 			addrs[i] = new_insn - first_insn;
651 
652 		switch (fp->code) {
653 		/* All arithmetic insns and skb loads map as-is. */
654 		case BPF_ALU | BPF_ADD | BPF_X:
655 		case BPF_ALU | BPF_ADD | BPF_K:
656 		case BPF_ALU | BPF_SUB | BPF_X:
657 		case BPF_ALU | BPF_SUB | BPF_K:
658 		case BPF_ALU | BPF_AND | BPF_X:
659 		case BPF_ALU | BPF_AND | BPF_K:
660 		case BPF_ALU | BPF_OR | BPF_X:
661 		case BPF_ALU | BPF_OR | BPF_K:
662 		case BPF_ALU | BPF_LSH | BPF_X:
663 		case BPF_ALU | BPF_LSH | BPF_K:
664 		case BPF_ALU | BPF_RSH | BPF_X:
665 		case BPF_ALU | BPF_RSH | BPF_K:
666 		case BPF_ALU | BPF_XOR | BPF_X:
667 		case BPF_ALU | BPF_XOR | BPF_K:
668 		case BPF_ALU | BPF_MUL | BPF_X:
669 		case BPF_ALU | BPF_MUL | BPF_K:
670 		case BPF_ALU | BPF_DIV | BPF_X:
671 		case BPF_ALU | BPF_DIV | BPF_K:
672 		case BPF_ALU | BPF_MOD | BPF_X:
673 		case BPF_ALU | BPF_MOD | BPF_K:
674 		case BPF_ALU | BPF_NEG:
675 		case BPF_LD | BPF_ABS | BPF_W:
676 		case BPF_LD | BPF_ABS | BPF_H:
677 		case BPF_LD | BPF_ABS | BPF_B:
678 		case BPF_LD | BPF_IND | BPF_W:
679 		case BPF_LD | BPF_IND | BPF_H:
680 		case BPF_LD | BPF_IND | BPF_B:
681 			/* Check for overloaded BPF extension and
682 			 * directly convert it if found, otherwise
683 			 * just move on with mapping.
684 			 */
685 			if (BPF_CLASS(fp->code) == BPF_LD &&
686 			    BPF_MODE(fp->code) == BPF_ABS &&
687 			    convert_bpf_extensions(fp, &insn))
688 				break;
689 			if (BPF_CLASS(fp->code) == BPF_LD &&
690 			    convert_bpf_ld_abs(fp, &insn)) {
691 				*seen_ld_abs = true;
692 				break;
693 			}
694 
695 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
696 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
697 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
698 				/* Error with exception code on div/mod by 0.
699 				 * For cBPF programs, this was always return 0.
700 				 */
701 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
702 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
703 				*insn++ = BPF_EXIT_INSN();
704 			}
705 
706 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
707 			break;
708 
709 		/* Jump transformation cannot use BPF block macros
710 		 * everywhere as offset calculation and target updates
711 		 * require a bit more work than the rest, i.e. jump
712 		 * opcodes map as-is, but offsets need adjustment.
713 		 */
714 
715 #define BPF_EMIT_JMP							\
716 	do {								\
717 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
718 		s32 off;						\
719 									\
720 		if (target >= len || target < 0)			\
721 			goto err;					\
722 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
723 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
724 		off -= insn - tmp_insns;				\
725 		/* Reject anything not fitting into insn->off. */	\
726 		if (off < off_min || off > off_max)			\
727 			goto err;					\
728 		insn->off = off;					\
729 	} while (0)
730 
731 		case BPF_JMP | BPF_JA:
732 			target = i + fp->k + 1;
733 			insn->code = fp->code;
734 			BPF_EMIT_JMP;
735 			break;
736 
737 		case BPF_JMP | BPF_JEQ | BPF_K:
738 		case BPF_JMP | BPF_JEQ | BPF_X:
739 		case BPF_JMP | BPF_JSET | BPF_K:
740 		case BPF_JMP | BPF_JSET | BPF_X:
741 		case BPF_JMP | BPF_JGT | BPF_K:
742 		case BPF_JMP | BPF_JGT | BPF_X:
743 		case BPF_JMP | BPF_JGE | BPF_K:
744 		case BPF_JMP | BPF_JGE | BPF_X:
745 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
746 				/* BPF immediates are signed, zero extend
747 				 * immediate into tmp register and use it
748 				 * in compare insn.
749 				 */
750 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
751 
752 				insn->dst_reg = BPF_REG_A;
753 				insn->src_reg = BPF_REG_TMP;
754 				bpf_src = BPF_X;
755 			} else {
756 				insn->dst_reg = BPF_REG_A;
757 				insn->imm = fp->k;
758 				bpf_src = BPF_SRC(fp->code);
759 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
760 			}
761 
762 			/* Common case where 'jump_false' is next insn. */
763 			if (fp->jf == 0) {
764 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 				target = i + fp->jt + 1;
766 				BPF_EMIT_JMP;
767 				break;
768 			}
769 
770 			/* Convert some jumps when 'jump_true' is next insn. */
771 			if (fp->jt == 0) {
772 				switch (BPF_OP(fp->code)) {
773 				case BPF_JEQ:
774 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
775 					break;
776 				case BPF_JGT:
777 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
778 					break;
779 				case BPF_JGE:
780 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
781 					break;
782 				default:
783 					goto jmp_rest;
784 				}
785 
786 				target = i + fp->jf + 1;
787 				BPF_EMIT_JMP;
788 				break;
789 			}
790 jmp_rest:
791 			/* Other jumps are mapped into two insns: Jxx and JA. */
792 			target = i + fp->jt + 1;
793 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
794 			BPF_EMIT_JMP;
795 			insn++;
796 
797 			insn->code = BPF_JMP | BPF_JA;
798 			target = i + fp->jf + 1;
799 			BPF_EMIT_JMP;
800 			break;
801 
802 		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
803 		case BPF_LDX | BPF_MSH | BPF_B: {
804 			struct sock_filter tmp = {
805 				.code	= BPF_LD | BPF_ABS | BPF_B,
806 				.k	= fp->k,
807 			};
808 
809 			*seen_ld_abs = true;
810 
811 			/* X = A */
812 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
813 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
814 			convert_bpf_ld_abs(&tmp, &insn);
815 			insn++;
816 			/* A &= 0xf */
817 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
818 			/* A <<= 2 */
819 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
820 			/* tmp = X */
821 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
822 			/* X = A */
823 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			/* A = tmp */
825 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
826 			break;
827 		}
828 		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
829 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
830 		 */
831 		case BPF_RET | BPF_A:
832 		case BPF_RET | BPF_K:
833 			if (BPF_RVAL(fp->code) == BPF_K)
834 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
835 							0, fp->k);
836 			*insn = BPF_EXIT_INSN();
837 			break;
838 
839 		/* Store to stack. */
840 		case BPF_ST:
841 		case BPF_STX:
842 			stack_off = fp->k * 4  + 4;
843 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
844 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
845 					    -stack_off);
846 			/* check_load_and_stores() verifies that classic BPF can
847 			 * load from stack only after write, so tracking
848 			 * stack_depth for ST|STX insns is enough
849 			 */
850 			if (new_prog && new_prog->aux->stack_depth < stack_off)
851 				new_prog->aux->stack_depth = stack_off;
852 			break;
853 
854 		/* Load from stack. */
855 		case BPF_LD | BPF_MEM:
856 		case BPF_LDX | BPF_MEM:
857 			stack_off = fp->k * 4  + 4;
858 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
859 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
860 					    -stack_off);
861 			break;
862 
863 		/* A = K or X = K */
864 		case BPF_LD | BPF_IMM:
865 		case BPF_LDX | BPF_IMM:
866 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
867 					      BPF_REG_A : BPF_REG_X, fp->k);
868 			break;
869 
870 		/* X = A */
871 		case BPF_MISC | BPF_TAX:
872 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
873 			break;
874 
875 		/* A = X */
876 		case BPF_MISC | BPF_TXA:
877 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
878 			break;
879 
880 		/* A = skb->len or X = skb->len */
881 		case BPF_LD | BPF_W | BPF_LEN:
882 		case BPF_LDX | BPF_W | BPF_LEN:
883 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
884 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
885 					    offsetof(struct sk_buff, len));
886 			break;
887 
888 		/* Access seccomp_data fields. */
889 		case BPF_LDX | BPF_ABS | BPF_W:
890 			/* A = *(u32 *) (ctx + K) */
891 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
892 			break;
893 
894 		/* Unknown instruction. */
895 		default:
896 			goto err;
897 		}
898 
899 		insn++;
900 		if (new_prog)
901 			memcpy(new_insn, tmp_insns,
902 			       sizeof(*insn) * (insn - tmp_insns));
903 		new_insn += insn - tmp_insns;
904 	}
905 
906 	if (!new_prog) {
907 		/* Only calculating new length. */
908 		*new_len = new_insn - first_insn;
909 		if (*seen_ld_abs)
910 			*new_len += 4; /* Prologue bits. */
911 		return 0;
912 	}
913 
914 	pass++;
915 	if (new_flen != new_insn - first_insn) {
916 		new_flen = new_insn - first_insn;
917 		if (pass > 2)
918 			goto err;
919 		goto do_pass;
920 	}
921 
922 	kfree(addrs);
923 	BUG_ON(*new_len != new_flen);
924 	return 0;
925 err:
926 	kfree(addrs);
927 	return -EINVAL;
928 }
929 
930 /* Security:
931  *
932  * As we dont want to clear mem[] array for each packet going through
933  * __bpf_prog_run(), we check that filter loaded by user never try to read
934  * a cell if not previously written, and we check all branches to be sure
935  * a malicious user doesn't try to abuse us.
936  */
check_load_and_stores(const struct sock_filter * filter,int flen)937 static int check_load_and_stores(const struct sock_filter *filter, int flen)
938 {
939 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
940 	int pc, ret = 0;
941 
942 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
943 
944 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
945 	if (!masks)
946 		return -ENOMEM;
947 
948 	memset(masks, 0xff, flen * sizeof(*masks));
949 
950 	for (pc = 0; pc < flen; pc++) {
951 		memvalid &= masks[pc];
952 
953 		switch (filter[pc].code) {
954 		case BPF_ST:
955 		case BPF_STX:
956 			memvalid |= (1 << filter[pc].k);
957 			break;
958 		case BPF_LD | BPF_MEM:
959 		case BPF_LDX | BPF_MEM:
960 			if (!(memvalid & (1 << filter[pc].k))) {
961 				ret = -EINVAL;
962 				goto error;
963 			}
964 			break;
965 		case BPF_JMP | BPF_JA:
966 			/* A jump must set masks on target */
967 			masks[pc + 1 + filter[pc].k] &= memvalid;
968 			memvalid = ~0;
969 			break;
970 		case BPF_JMP | BPF_JEQ | BPF_K:
971 		case BPF_JMP | BPF_JEQ | BPF_X:
972 		case BPF_JMP | BPF_JGE | BPF_K:
973 		case BPF_JMP | BPF_JGE | BPF_X:
974 		case BPF_JMP | BPF_JGT | BPF_K:
975 		case BPF_JMP | BPF_JGT | BPF_X:
976 		case BPF_JMP | BPF_JSET | BPF_K:
977 		case BPF_JMP | BPF_JSET | BPF_X:
978 			/* A jump must set masks on targets */
979 			masks[pc + 1 + filter[pc].jt] &= memvalid;
980 			masks[pc + 1 + filter[pc].jf] &= memvalid;
981 			memvalid = ~0;
982 			break;
983 		}
984 	}
985 error:
986 	kfree(masks);
987 	return ret;
988 }
989 
chk_code_allowed(u16 code_to_probe)990 static bool chk_code_allowed(u16 code_to_probe)
991 {
992 	static const bool codes[] = {
993 		/* 32 bit ALU operations */
994 		[BPF_ALU | BPF_ADD | BPF_K] = true,
995 		[BPF_ALU | BPF_ADD | BPF_X] = true,
996 		[BPF_ALU | BPF_SUB | BPF_K] = true,
997 		[BPF_ALU | BPF_SUB | BPF_X] = true,
998 		[BPF_ALU | BPF_MUL | BPF_K] = true,
999 		[BPF_ALU | BPF_MUL | BPF_X] = true,
1000 		[BPF_ALU | BPF_DIV | BPF_K] = true,
1001 		[BPF_ALU | BPF_DIV | BPF_X] = true,
1002 		[BPF_ALU | BPF_MOD | BPF_K] = true,
1003 		[BPF_ALU | BPF_MOD | BPF_X] = true,
1004 		[BPF_ALU | BPF_AND | BPF_K] = true,
1005 		[BPF_ALU | BPF_AND | BPF_X] = true,
1006 		[BPF_ALU | BPF_OR | BPF_K] = true,
1007 		[BPF_ALU | BPF_OR | BPF_X] = true,
1008 		[BPF_ALU | BPF_XOR | BPF_K] = true,
1009 		[BPF_ALU | BPF_XOR | BPF_X] = true,
1010 		[BPF_ALU | BPF_LSH | BPF_K] = true,
1011 		[BPF_ALU | BPF_LSH | BPF_X] = true,
1012 		[BPF_ALU | BPF_RSH | BPF_K] = true,
1013 		[BPF_ALU | BPF_RSH | BPF_X] = true,
1014 		[BPF_ALU | BPF_NEG] = true,
1015 		/* Load instructions */
1016 		[BPF_LD | BPF_W | BPF_ABS] = true,
1017 		[BPF_LD | BPF_H | BPF_ABS] = true,
1018 		[BPF_LD | BPF_B | BPF_ABS] = true,
1019 		[BPF_LD | BPF_W | BPF_LEN] = true,
1020 		[BPF_LD | BPF_W | BPF_IND] = true,
1021 		[BPF_LD | BPF_H | BPF_IND] = true,
1022 		[BPF_LD | BPF_B | BPF_IND] = true,
1023 		[BPF_LD | BPF_IMM] = true,
1024 		[BPF_LD | BPF_MEM] = true,
1025 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1026 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1027 		[BPF_LDX | BPF_IMM] = true,
1028 		[BPF_LDX | BPF_MEM] = true,
1029 		/* Store instructions */
1030 		[BPF_ST] = true,
1031 		[BPF_STX] = true,
1032 		/* Misc instructions */
1033 		[BPF_MISC | BPF_TAX] = true,
1034 		[BPF_MISC | BPF_TXA] = true,
1035 		/* Return instructions */
1036 		[BPF_RET | BPF_K] = true,
1037 		[BPF_RET | BPF_A] = true,
1038 		/* Jump instructions */
1039 		[BPF_JMP | BPF_JA] = true,
1040 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1041 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1042 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1043 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1044 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1045 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1046 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1047 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1048 	};
1049 
1050 	if (code_to_probe >= ARRAY_SIZE(codes))
1051 		return false;
1052 
1053 	return codes[code_to_probe];
1054 }
1055 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1056 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1057 				unsigned int flen)
1058 {
1059 	if (filter == NULL)
1060 		return false;
1061 	if (flen == 0 || flen > BPF_MAXINSNS)
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 /**
1068  *	bpf_check_classic - verify socket filter code
1069  *	@filter: filter to verify
1070  *	@flen: length of filter
1071  *
1072  * Check the user's filter code. If we let some ugly
1073  * filter code slip through kaboom! The filter must contain
1074  * no references or jumps that are out of range, no illegal
1075  * instructions, and must end with a RET instruction.
1076  *
1077  * All jumps are forward as they are not signed.
1078  *
1079  * Returns 0 if the rule set is legal or -EINVAL if not.
1080  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1081 static int bpf_check_classic(const struct sock_filter *filter,
1082 			     unsigned int flen)
1083 {
1084 	bool anc_found;
1085 	int pc;
1086 
1087 	/* Check the filter code now */
1088 	for (pc = 0; pc < flen; pc++) {
1089 		const struct sock_filter *ftest = &filter[pc];
1090 
1091 		/* May we actually operate on this code? */
1092 		if (!chk_code_allowed(ftest->code))
1093 			return -EINVAL;
1094 
1095 		/* Some instructions need special checks */
1096 		switch (ftest->code) {
1097 		case BPF_ALU | BPF_DIV | BPF_K:
1098 		case BPF_ALU | BPF_MOD | BPF_K:
1099 			/* Check for division by zero */
1100 			if (ftest->k == 0)
1101 				return -EINVAL;
1102 			break;
1103 		case BPF_ALU | BPF_LSH | BPF_K:
1104 		case BPF_ALU | BPF_RSH | BPF_K:
1105 			if (ftest->k >= 32)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_MEM:
1109 		case BPF_LDX | BPF_MEM:
1110 		case BPF_ST:
1111 		case BPF_STX:
1112 			/* Check for invalid memory addresses */
1113 			if (ftest->k >= BPF_MEMWORDS)
1114 				return -EINVAL;
1115 			break;
1116 		case BPF_JMP | BPF_JA:
1117 			/* Note, the large ftest->k might cause loops.
1118 			 * Compare this with conditional jumps below,
1119 			 * where offsets are limited. --ANK (981016)
1120 			 */
1121 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1122 				return -EINVAL;
1123 			break;
1124 		case BPF_JMP | BPF_JEQ | BPF_K:
1125 		case BPF_JMP | BPF_JEQ | BPF_X:
1126 		case BPF_JMP | BPF_JGE | BPF_K:
1127 		case BPF_JMP | BPF_JGE | BPF_X:
1128 		case BPF_JMP | BPF_JGT | BPF_K:
1129 		case BPF_JMP | BPF_JGT | BPF_X:
1130 		case BPF_JMP | BPF_JSET | BPF_K:
1131 		case BPF_JMP | BPF_JSET | BPF_X:
1132 			/* Both conditionals must be safe */
1133 			if (pc + ftest->jt + 1 >= flen ||
1134 			    pc + ftest->jf + 1 >= flen)
1135 				return -EINVAL;
1136 			break;
1137 		case BPF_LD | BPF_W | BPF_ABS:
1138 		case BPF_LD | BPF_H | BPF_ABS:
1139 		case BPF_LD | BPF_B | BPF_ABS:
1140 			anc_found = false;
1141 			if (bpf_anc_helper(ftest) & BPF_ANC)
1142 				anc_found = true;
1143 			/* Ancillary operation unknown or unsupported */
1144 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1145 				return -EINVAL;
1146 		}
1147 	}
1148 
1149 	/* Last instruction must be a RET code */
1150 	switch (filter[flen - 1].code) {
1151 	case BPF_RET | BPF_K:
1152 	case BPF_RET | BPF_A:
1153 		return check_load_and_stores(filter, flen);
1154 	}
1155 
1156 	return -EINVAL;
1157 }
1158 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1160 				      const struct sock_fprog *fprog)
1161 {
1162 	unsigned int fsize = bpf_classic_proglen(fprog);
1163 	struct sock_fprog_kern *fkprog;
1164 
1165 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1166 	if (!fp->orig_prog)
1167 		return -ENOMEM;
1168 
1169 	fkprog = fp->orig_prog;
1170 	fkprog->len = fprog->len;
1171 
1172 	fkprog->filter = kmemdup(fp->insns, fsize,
1173 				 GFP_KERNEL | __GFP_NOWARN);
1174 	if (!fkprog->filter) {
1175 		kfree(fp->orig_prog);
1176 		return -ENOMEM;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
bpf_release_orig_filter(struct bpf_prog * fp)1182 static void bpf_release_orig_filter(struct bpf_prog *fp)
1183 {
1184 	struct sock_fprog_kern *fprog = fp->orig_prog;
1185 
1186 	if (fprog) {
1187 		kfree(fprog->filter);
1188 		kfree(fprog);
1189 	}
1190 }
1191 
__bpf_prog_release(struct bpf_prog * prog)1192 static void __bpf_prog_release(struct bpf_prog *prog)
1193 {
1194 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1195 		bpf_prog_put(prog);
1196 	} else {
1197 		bpf_release_orig_filter(prog);
1198 		bpf_prog_free(prog);
1199 	}
1200 }
1201 
__sk_filter_release(struct sk_filter * fp)1202 static void __sk_filter_release(struct sk_filter *fp)
1203 {
1204 	__bpf_prog_release(fp->prog);
1205 	kfree(fp);
1206 }
1207 
1208 /**
1209  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1210  *	@rcu: rcu_head that contains the sk_filter to free
1211  */
sk_filter_release_rcu(struct rcu_head * rcu)1212 static void sk_filter_release_rcu(struct rcu_head *rcu)
1213 {
1214 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1215 
1216 	__sk_filter_release(fp);
1217 }
1218 
1219 /**
1220  *	sk_filter_release - release a socket filter
1221  *	@fp: filter to remove
1222  *
1223  *	Remove a filter from a socket and release its resources.
1224  */
sk_filter_release(struct sk_filter * fp)1225 static void sk_filter_release(struct sk_filter *fp)
1226 {
1227 	if (refcount_dec_and_test(&fp->refcnt))
1228 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1229 }
1230 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1232 {
1233 	u32 filter_size = bpf_prog_size(fp->prog->len);
1234 
1235 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1236 	sk_filter_release(fp);
1237 }
1238 
1239 /* try to charge the socket memory if there is space available
1240  * return true on success
1241  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1243 {
1244 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1245 	u32 filter_size = bpf_prog_size(fp->prog->len);
1246 
1247 	/* same check as in sock_kmalloc() */
1248 	if (filter_size <= optmem_max &&
1249 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1250 		atomic_add(filter_size, &sk->sk_omem_alloc);
1251 		return true;
1252 	}
1253 	return false;
1254 }
1255 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1257 {
1258 	if (!refcount_inc_not_zero(&fp->refcnt))
1259 		return false;
1260 
1261 	if (!__sk_filter_charge(sk, fp)) {
1262 		sk_filter_release(fp);
1263 		return false;
1264 	}
1265 	return true;
1266 }
1267 
bpf_migrate_filter(struct bpf_prog * fp)1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1269 {
1270 	struct sock_filter *old_prog;
1271 	struct bpf_prog *old_fp;
1272 	int err, new_len, old_len = fp->len;
1273 	bool seen_ld_abs = false;
1274 
1275 	/* We are free to overwrite insns et al right here as it won't be used at
1276 	 * this point in time anymore internally after the migration to the eBPF
1277 	 * instruction representation.
1278 	 */
1279 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1280 		     sizeof(struct bpf_insn));
1281 
1282 	/* Conversion cannot happen on overlapping memory areas,
1283 	 * so we need to keep the user BPF around until the 2nd
1284 	 * pass. At this time, the user BPF is stored in fp->insns.
1285 	 */
1286 	old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1287 				 GFP_KERNEL | __GFP_NOWARN);
1288 	if (!old_prog) {
1289 		err = -ENOMEM;
1290 		goto out_err;
1291 	}
1292 
1293 	/* 1st pass: calculate the new program length. */
1294 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1295 				 &seen_ld_abs);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	/* Expand fp for appending the new filter representation. */
1300 	old_fp = fp;
1301 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1302 	if (!fp) {
1303 		/* The old_fp is still around in case we couldn't
1304 		 * allocate new memory, so uncharge on that one.
1305 		 */
1306 		fp = old_fp;
1307 		err = -ENOMEM;
1308 		goto out_err_free;
1309 	}
1310 
1311 	fp->len = new_len;
1312 
1313 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1314 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1315 				 &seen_ld_abs);
1316 	if (err)
1317 		/* 2nd bpf_convert_filter() can fail only if it fails
1318 		 * to allocate memory, remapping must succeed. Note,
1319 		 * that at this time old_fp has already been released
1320 		 * by krealloc().
1321 		 */
1322 		goto out_err_free;
1323 
1324 	fp = bpf_prog_select_runtime(fp, &err);
1325 	if (err)
1326 		goto out_err_free;
1327 
1328 	kfree(old_prog);
1329 	return fp;
1330 
1331 out_err_free:
1332 	kfree(old_prog);
1333 out_err:
1334 	__bpf_prog_release(fp);
1335 	return ERR_PTR(err);
1336 }
1337 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1339 					   bpf_aux_classic_check_t trans)
1340 {
1341 	int err;
1342 
1343 	fp->bpf_func = NULL;
1344 	fp->jited = 0;
1345 
1346 	err = bpf_check_classic(fp->insns, fp->len);
1347 	if (err) {
1348 		__bpf_prog_release(fp);
1349 		return ERR_PTR(err);
1350 	}
1351 
1352 	/* There might be additional checks and transformations
1353 	 * needed on classic filters, f.e. in case of seccomp.
1354 	 */
1355 	if (trans) {
1356 		err = trans(fp->insns, fp->len);
1357 		if (err) {
1358 			__bpf_prog_release(fp);
1359 			return ERR_PTR(err);
1360 		}
1361 	}
1362 
1363 	/* Probe if we can JIT compile the filter and if so, do
1364 	 * the compilation of the filter.
1365 	 */
1366 	bpf_jit_compile(fp);
1367 
1368 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1369 	 * for the optimized interpreter.
1370 	 */
1371 	if (!fp->jited)
1372 		fp = bpf_migrate_filter(fp);
1373 
1374 	return fp;
1375 }
1376 
1377 /**
1378  *	bpf_prog_create - create an unattached filter
1379  *	@pfp: the unattached filter that is created
1380  *	@fprog: the filter program
1381  *
1382  * Create a filter independent of any socket. We first run some
1383  * sanity checks on it to make sure it does not explode on us later.
1384  * If an error occurs or there is insufficient memory for the filter
1385  * a negative errno code is returned. On success the return is zero.
1386  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1388 {
1389 	unsigned int fsize = bpf_classic_proglen(fprog);
1390 	struct bpf_prog *fp;
1391 
1392 	/* Make sure new filter is there and in the right amounts. */
1393 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1394 		return -EINVAL;
1395 
1396 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1397 	if (!fp)
1398 		return -ENOMEM;
1399 
1400 	memcpy(fp->insns, fprog->filter, fsize);
1401 
1402 	fp->len = fprog->len;
1403 	/* Since unattached filters are not copied back to user
1404 	 * space through sk_get_filter(), we do not need to hold
1405 	 * a copy here, and can spare us the work.
1406 	 */
1407 	fp->orig_prog = NULL;
1408 
1409 	/* bpf_prepare_filter() already takes care of freeing
1410 	 * memory in case something goes wrong.
1411 	 */
1412 	fp = bpf_prepare_filter(fp, NULL);
1413 	if (IS_ERR(fp))
1414 		return PTR_ERR(fp);
1415 
1416 	*pfp = fp;
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(bpf_prog_create);
1420 
1421 /**
1422  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1423  *	@pfp: the unattached filter that is created
1424  *	@fprog: the filter program
1425  *	@trans: post-classic verifier transformation handler
1426  *	@save_orig: save classic BPF program
1427  *
1428  * This function effectively does the same as bpf_prog_create(), only
1429  * that it builds up its insns buffer from user space provided buffer.
1430  * It also allows for passing a bpf_aux_classic_check_t handler.
1431  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1433 			      bpf_aux_classic_check_t trans, bool save_orig)
1434 {
1435 	unsigned int fsize = bpf_classic_proglen(fprog);
1436 	struct bpf_prog *fp;
1437 	int err;
1438 
1439 	/* Make sure new filter is there and in the right amounts. */
1440 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1441 		return -EINVAL;
1442 
1443 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1444 	if (!fp)
1445 		return -ENOMEM;
1446 
1447 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1448 		__bpf_prog_free(fp);
1449 		return -EFAULT;
1450 	}
1451 
1452 	fp->len = fprog->len;
1453 	fp->orig_prog = NULL;
1454 
1455 	if (save_orig) {
1456 		err = bpf_prog_store_orig_filter(fp, fprog);
1457 		if (err) {
1458 			__bpf_prog_free(fp);
1459 			return -ENOMEM;
1460 		}
1461 	}
1462 
1463 	/* bpf_prepare_filter() already takes care of freeing
1464 	 * memory in case something goes wrong.
1465 	 */
1466 	fp = bpf_prepare_filter(fp, trans);
1467 	if (IS_ERR(fp))
1468 		return PTR_ERR(fp);
1469 
1470 	*pfp = fp;
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1474 
bpf_prog_destroy(struct bpf_prog * fp)1475 void bpf_prog_destroy(struct bpf_prog *fp)
1476 {
1477 	__bpf_prog_release(fp);
1478 }
1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1480 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1482 {
1483 	struct sk_filter *fp, *old_fp;
1484 
1485 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1486 	if (!fp)
1487 		return -ENOMEM;
1488 
1489 	fp->prog = prog;
1490 
1491 	if (!__sk_filter_charge(sk, fp)) {
1492 		kfree(fp);
1493 		return -ENOMEM;
1494 	}
1495 	refcount_set(&fp->refcnt, 1);
1496 
1497 	old_fp = rcu_dereference_protected(sk->sk_filter,
1498 					   lockdep_sock_is_held(sk));
1499 	rcu_assign_pointer(sk->sk_filter, fp);
1500 
1501 	if (old_fp)
1502 		sk_filter_uncharge(sk, old_fp);
1503 
1504 	return 0;
1505 }
1506 
1507 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1509 {
1510 	unsigned int fsize = bpf_classic_proglen(fprog);
1511 	struct bpf_prog *prog;
1512 	int err;
1513 
1514 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1515 		return ERR_PTR(-EPERM);
1516 
1517 	/* Make sure new filter is there and in the right amounts. */
1518 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1519 		return ERR_PTR(-EINVAL);
1520 
1521 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1522 	if (!prog)
1523 		return ERR_PTR(-ENOMEM);
1524 
1525 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1526 		__bpf_prog_free(prog);
1527 		return ERR_PTR(-EFAULT);
1528 	}
1529 
1530 	prog->len = fprog->len;
1531 
1532 	err = bpf_prog_store_orig_filter(prog, fprog);
1533 	if (err) {
1534 		__bpf_prog_free(prog);
1535 		return ERR_PTR(-ENOMEM);
1536 	}
1537 
1538 	/* bpf_prepare_filter() already takes care of freeing
1539 	 * memory in case something goes wrong.
1540 	 */
1541 	return bpf_prepare_filter(prog, NULL);
1542 }
1543 
1544 /**
1545  *	sk_attach_filter - attach a socket filter
1546  *	@fprog: the filter program
1547  *	@sk: the socket to use
1548  *
1549  * Attach the user's filter code. We first run some sanity checks on
1550  * it to make sure it does not explode on us later. If an error
1551  * occurs or there is insufficient memory for the filter a negative
1552  * errno code is returned. On success the return is zero.
1553  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1555 {
1556 	struct bpf_prog *prog = __get_filter(fprog, sk);
1557 	int err;
1558 
1559 	if (IS_ERR(prog))
1560 		return PTR_ERR(prog);
1561 
1562 	err = __sk_attach_prog(prog, sk);
1563 	if (err < 0) {
1564 		__bpf_prog_release(prog);
1565 		return err;
1566 	}
1567 
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(sk_attach_filter);
1571 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1573 {
1574 	struct bpf_prog *prog = __get_filter(fprog, sk);
1575 	int err, optmem_max;
1576 
1577 	if (IS_ERR(prog))
1578 		return PTR_ERR(prog);
1579 
1580 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1581 	if (bpf_prog_size(prog->len) > optmem_max)
1582 		err = -ENOMEM;
1583 	else
1584 		err = reuseport_attach_prog(sk, prog);
1585 
1586 	if (err)
1587 		__bpf_prog_release(prog);
1588 
1589 	return err;
1590 }
1591 
__get_bpf(u32 ufd,struct sock * sk)1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595 		return ERR_PTR(-EPERM);
1596 
1597 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598 }
1599 
sk_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1603 	int err;
1604 
1605 	if (IS_ERR(prog))
1606 		return PTR_ERR(prog);
1607 
1608 	err = __sk_attach_prog(prog, sk);
1609 	if (err < 0) {
1610 		bpf_prog_put(prog);
1611 		return err;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1618 {
1619 	struct bpf_prog *prog;
1620 	int err, optmem_max;
1621 
1622 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1623 		return -EPERM;
1624 
1625 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1626 	if (PTR_ERR(prog) == -EINVAL)
1627 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1628 	if (IS_ERR(prog))
1629 		return PTR_ERR(prog);
1630 
1631 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1632 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1633 		 * bpf prog (e.g. sockmap).  It depends on the
1634 		 * limitation imposed by bpf_prog_load().
1635 		 * Hence, sysctl_optmem_max is not checked.
1636 		 */
1637 		if ((sk->sk_type != SOCK_STREAM &&
1638 		     sk->sk_type != SOCK_DGRAM) ||
1639 		    (sk->sk_protocol != IPPROTO_UDP &&
1640 		     sk->sk_protocol != IPPROTO_TCP) ||
1641 		    (sk->sk_family != AF_INET &&
1642 		     sk->sk_family != AF_INET6)) {
1643 			err = -ENOTSUPP;
1644 			goto err_prog_put;
1645 		}
1646 	} else {
1647 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1648 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1649 		if (bpf_prog_size(prog->len) > optmem_max) {
1650 			err = -ENOMEM;
1651 			goto err_prog_put;
1652 		}
1653 	}
1654 
1655 	err = reuseport_attach_prog(sk, prog);
1656 err_prog_put:
1657 	if (err)
1658 		bpf_prog_put(prog);
1659 
1660 	return err;
1661 }
1662 
sk_reuseport_prog_free(struct bpf_prog * prog)1663 void sk_reuseport_prog_free(struct bpf_prog *prog)
1664 {
1665 	if (!prog)
1666 		return;
1667 
1668 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1669 		bpf_prog_put(prog);
1670 	else
1671 		bpf_prog_destroy(prog);
1672 }
1673 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1674 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1675 					  unsigned int write_len)
1676 {
1677 #ifdef CONFIG_DEBUG_NET
1678 	/* Avoid a splat in pskb_may_pull_reason() */
1679 	if (write_len > INT_MAX)
1680 		return -EINVAL;
1681 #endif
1682 	return skb_ensure_writable(skb, write_len);
1683 }
1684 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1685 static inline int bpf_try_make_writable(struct sk_buff *skb,
1686 					unsigned int write_len)
1687 {
1688 	int err = __bpf_try_make_writable(skb, write_len);
1689 
1690 	bpf_compute_data_pointers(skb);
1691 	return err;
1692 }
1693 
bpf_try_make_head_writable(struct sk_buff * skb)1694 static int bpf_try_make_head_writable(struct sk_buff *skb)
1695 {
1696 	return bpf_try_make_writable(skb, skb_headlen(skb));
1697 }
1698 
bpf_push_mac_rcsum(struct sk_buff * skb)1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1700 {
1701 	if (skb_at_tc_ingress(skb))
1702 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1703 }
1704 
bpf_pull_mac_rcsum(struct sk_buff * skb)1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1706 {
1707 	if (skb_at_tc_ingress(skb))
1708 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1709 }
1710 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1712 	   const void *, from, u32, len, u64, flags)
1713 {
1714 	void *ptr;
1715 
1716 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1717 		return -EINVAL;
1718 	if (unlikely(offset > INT_MAX))
1719 		return -EFAULT;
1720 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1721 		return -EFAULT;
1722 
1723 	ptr = skb->data + offset;
1724 	if (flags & BPF_F_RECOMPUTE_CSUM)
1725 		__skb_postpull_rcsum(skb, ptr, len, offset);
1726 
1727 	memcpy(ptr, from, len);
1728 
1729 	if (flags & BPF_F_RECOMPUTE_CSUM)
1730 		__skb_postpush_rcsum(skb, ptr, len, offset);
1731 	if (flags & BPF_F_INVALIDATE_HASH)
1732 		skb_clear_hash(skb);
1733 
1734 	return 0;
1735 }
1736 
1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1738 	.func		= bpf_skb_store_bytes,
1739 	.gpl_only	= false,
1740 	.ret_type	= RET_INTEGER,
1741 	.arg1_type	= ARG_PTR_TO_CTX,
1742 	.arg2_type	= ARG_ANYTHING,
1743 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1744 	.arg4_type	= ARG_CONST_SIZE,
1745 	.arg5_type	= ARG_ANYTHING,
1746 };
1747 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1749 			  u32 len, u64 flags)
1750 {
1751 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1752 }
1753 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1755 	   void *, to, u32, len)
1756 {
1757 	void *ptr;
1758 
1759 	if (unlikely(offset > INT_MAX))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1775 	.func		= bpf_skb_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1785 {
1786 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1787 }
1788 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1789 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1790 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1791 	   void *, to, u32, len)
1792 {
1793 	void *ptr;
1794 
1795 	if (unlikely(offset > 0xffff))
1796 		goto err_clear;
1797 
1798 	if (unlikely(!ctx->skb))
1799 		goto err_clear;
1800 
1801 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1802 	if (unlikely(!ptr))
1803 		goto err_clear;
1804 	if (ptr != to)
1805 		memcpy(to, ptr, len);
1806 
1807 	return 0;
1808 err_clear:
1809 	memset(to, 0, len);
1810 	return -EFAULT;
1811 }
1812 
1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1814 	.func		= bpf_flow_dissector_load_bytes,
1815 	.gpl_only	= false,
1816 	.ret_type	= RET_INTEGER,
1817 	.arg1_type	= ARG_PTR_TO_CTX,
1818 	.arg2_type	= ARG_ANYTHING,
1819 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1820 	.arg4_type	= ARG_CONST_SIZE,
1821 };
1822 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1824 	   u32, offset, void *, to, u32, len, u32, start_header)
1825 {
1826 	u8 *end = skb_tail_pointer(skb);
1827 	u8 *start, *ptr;
1828 
1829 	if (unlikely(offset > 0xffff))
1830 		goto err_clear;
1831 
1832 	switch (start_header) {
1833 	case BPF_HDR_START_MAC:
1834 		if (unlikely(!skb_mac_header_was_set(skb)))
1835 			goto err_clear;
1836 		start = skb_mac_header(skb);
1837 		break;
1838 	case BPF_HDR_START_NET:
1839 		start = skb_network_header(skb);
1840 		break;
1841 	default:
1842 		goto err_clear;
1843 	}
1844 
1845 	ptr = start + offset;
1846 
1847 	if (likely(ptr + len <= end)) {
1848 		memcpy(to, ptr, len);
1849 		return 0;
1850 	}
1851 
1852 err_clear:
1853 	memset(to, 0, len);
1854 	return -EFAULT;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1858 	.func		= bpf_skb_load_bytes_relative,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_INTEGER,
1861 	.arg1_type	= ARG_PTR_TO_CTX,
1862 	.arg2_type	= ARG_ANYTHING,
1863 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1864 	.arg4_type	= ARG_CONST_SIZE,
1865 	.arg5_type	= ARG_ANYTHING,
1866 };
1867 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870 	/* Idea is the following: should the needed direct read/write
1871 	 * test fail during runtime, we can pull in more data and redo
1872 	 * again, since implicitly, we invalidate previous checks here.
1873 	 *
1874 	 * Or, since we know how much we need to make read/writeable,
1875 	 * this can be done once at the program beginning for direct
1876 	 * access case. By this we overcome limitations of only current
1877 	 * headroom being accessible.
1878 	 */
1879 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881 
1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1883 	.func		= bpf_skb_pull_data,
1884 	.gpl_only	= false,
1885 	.ret_type	= RET_INTEGER,
1886 	.arg1_type	= ARG_PTR_TO_CTX,
1887 	.arg2_type	= ARG_ANYTHING,
1888 };
1889 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1891 {
1892 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1893 }
1894 
1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1896 	.func		= bpf_sk_fullsock,
1897 	.gpl_only	= false,
1898 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1899 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1900 };
1901 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1903 					   unsigned int write_len)
1904 {
1905 	return __bpf_try_make_writable(skb, write_len);
1906 }
1907 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1909 {
1910 	/* Idea is the following: should the needed direct read/write
1911 	 * test fail during runtime, we can pull in more data and redo
1912 	 * again, since implicitly, we invalidate previous checks here.
1913 	 *
1914 	 * Or, since we know how much we need to make read/writeable,
1915 	 * this can be done once at the program beginning for direct
1916 	 * access case. By this we overcome limitations of only current
1917 	 * headroom being accessible.
1918 	 */
1919 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1920 }
1921 
1922 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1923 	.func		= sk_skb_pull_data,
1924 	.gpl_only	= false,
1925 	.ret_type	= RET_INTEGER,
1926 	.arg1_type	= ARG_PTR_TO_CTX,
1927 	.arg2_type	= ARG_ANYTHING,
1928 };
1929 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1931 	   u64, from, u64, to, u64, flags)
1932 {
1933 	__sum16 *ptr;
1934 
1935 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1936 		return -EINVAL;
1937 	if (unlikely(offset > 0xffff || offset & 1))
1938 		return -EFAULT;
1939 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1940 		return -EFAULT;
1941 
1942 	ptr = (__sum16 *)(skb->data + offset);
1943 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1944 	case 0:
1945 		if (unlikely(from != 0))
1946 			return -EINVAL;
1947 
1948 		csum_replace_by_diff(ptr, to);
1949 		break;
1950 	case 2:
1951 		csum_replace2(ptr, from, to);
1952 		break;
1953 	case 4:
1954 		csum_replace4(ptr, from, to);
1955 		break;
1956 	default:
1957 		return -EINVAL;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1964 	.func		= bpf_l3_csum_replace,
1965 	.gpl_only	= false,
1966 	.ret_type	= RET_INTEGER,
1967 	.arg1_type	= ARG_PTR_TO_CTX,
1968 	.arg2_type	= ARG_ANYTHING,
1969 	.arg3_type	= ARG_ANYTHING,
1970 	.arg4_type	= ARG_ANYTHING,
1971 	.arg5_type	= ARG_ANYTHING,
1972 };
1973 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1975 	   u64, from, u64, to, u64, flags)
1976 {
1977 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1978 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1979 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1980 	bool is_ipv6   = flags & BPF_F_IPV6;
1981 	__sum16 *ptr;
1982 
1983 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1984 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1985 		return -EINVAL;
1986 	if (unlikely(offset > 0xffff || offset & 1))
1987 		return -EFAULT;
1988 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1989 		return -EFAULT;
1990 
1991 	ptr = (__sum16 *)(skb->data + offset);
1992 	if (is_mmzero && !do_mforce && !*ptr)
1993 		return 0;
1994 
1995 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1996 	case 0:
1997 		if (unlikely(from != 0))
1998 			return -EINVAL;
1999 
2000 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
2001 		break;
2002 	case 2:
2003 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
2004 		break;
2005 	case 4:
2006 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2007 		break;
2008 	default:
2009 		return -EINVAL;
2010 	}
2011 
2012 	if (is_mmzero && !*ptr)
2013 		*ptr = CSUM_MANGLED_0;
2014 	return 0;
2015 }
2016 
2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2018 	.func		= bpf_l4_csum_replace,
2019 	.gpl_only	= false,
2020 	.ret_type	= RET_INTEGER,
2021 	.arg1_type	= ARG_PTR_TO_CTX,
2022 	.arg2_type	= ARG_ANYTHING,
2023 	.arg3_type	= ARG_ANYTHING,
2024 	.arg4_type	= ARG_ANYTHING,
2025 	.arg5_type	= ARG_ANYTHING,
2026 };
2027 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2029 	   __be32 *, to, u32, to_size, __wsum, seed)
2030 {
2031 	/* This is quite flexible, some examples:
2032 	 *
2033 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2034 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2035 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2036 	 *
2037 	 * Even for diffing, from_size and to_size don't need to be equal.
2038 	 */
2039 
2040 	__wsum ret = seed;
2041 
2042 	if (from_size && to_size)
2043 		ret = csum_sub(csum_partial(to, to_size, ret),
2044 			       csum_partial(from, from_size, 0));
2045 	else if (to_size)
2046 		ret = csum_partial(to, to_size, ret);
2047 
2048 	else if (from_size)
2049 		ret = ~csum_partial(from, from_size, ~ret);
2050 
2051 	return csum_from32to16((__force unsigned int)ret);
2052 }
2053 
2054 static const struct bpf_func_proto bpf_csum_diff_proto = {
2055 	.func		= bpf_csum_diff,
2056 	.gpl_only	= false,
2057 	.pkt_access	= true,
2058 	.ret_type	= RET_INTEGER,
2059 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2060 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2061 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2062 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2063 	.arg5_type	= ARG_ANYTHING,
2064 };
2065 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2067 {
2068 	/* The interface is to be used in combination with bpf_csum_diff()
2069 	 * for direct packet writes. csum rotation for alignment as well
2070 	 * as emulating csum_sub() can be done from the eBPF program.
2071 	 */
2072 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2073 		return (skb->csum = csum_add(skb->csum, csum));
2074 
2075 	return -ENOTSUPP;
2076 }
2077 
2078 static const struct bpf_func_proto bpf_csum_update_proto = {
2079 	.func		= bpf_csum_update,
2080 	.gpl_only	= false,
2081 	.ret_type	= RET_INTEGER,
2082 	.arg1_type	= ARG_PTR_TO_CTX,
2083 	.arg2_type	= ARG_ANYTHING,
2084 };
2085 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2087 {
2088 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2089 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2090 	 * is passed as flags, for example.
2091 	 */
2092 	switch (level) {
2093 	case BPF_CSUM_LEVEL_INC:
2094 		__skb_incr_checksum_unnecessary(skb);
2095 		break;
2096 	case BPF_CSUM_LEVEL_DEC:
2097 		__skb_decr_checksum_unnecessary(skb);
2098 		break;
2099 	case BPF_CSUM_LEVEL_RESET:
2100 		__skb_reset_checksum_unnecessary(skb);
2101 		break;
2102 	case BPF_CSUM_LEVEL_QUERY:
2103 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2104 		       skb->csum_level : -EACCES;
2105 	default:
2106 		return -EINVAL;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static const struct bpf_func_proto bpf_csum_level_proto = {
2113 	.func		= bpf_csum_level,
2114 	.gpl_only	= false,
2115 	.ret_type	= RET_INTEGER,
2116 	.arg1_type	= ARG_PTR_TO_CTX,
2117 	.arg2_type	= ARG_ANYTHING,
2118 };
2119 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 	return dev_forward_skb_nomtu(dev, skb);
2123 }
2124 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2126 				      struct sk_buff *skb)
2127 {
2128 	int ret = ____dev_forward_skb(dev, skb, false);
2129 
2130 	if (likely(!ret)) {
2131 		skb->dev = dev;
2132 		ret = netif_rx(skb);
2133 	}
2134 
2135 	return ret;
2136 }
2137 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2139 {
2140 	int ret;
2141 
2142 	if (dev_xmit_recursion()) {
2143 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2144 		kfree_skb(skb);
2145 		return -ENETDOWN;
2146 	}
2147 
2148 	skb->dev = dev;
2149 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2150 	skb_clear_tstamp(skb);
2151 
2152 	dev_xmit_recursion_inc();
2153 	ret = dev_queue_xmit(skb);
2154 	dev_xmit_recursion_dec();
2155 
2156 	return ret;
2157 }
2158 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2160 				 u32 flags)
2161 {
2162 	unsigned int mlen = skb_network_offset(skb);
2163 
2164 	if (unlikely(skb->len <= mlen)) {
2165 		kfree_skb(skb);
2166 		return -ERANGE;
2167 	}
2168 
2169 	if (mlen) {
2170 		__skb_pull(skb, mlen);
2171 
2172 		/* At ingress, the mac header has already been pulled once.
2173 		 * At egress, skb_pospull_rcsum has to be done in case that
2174 		 * the skb is originated from ingress (i.e. a forwarded skb)
2175 		 * to ensure that rcsum starts at net header.
2176 		 */
2177 		if (!skb_at_tc_ingress(skb))
2178 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2179 	}
2180 	skb_pop_mac_header(skb);
2181 	skb_reset_mac_len(skb);
2182 	return flags & BPF_F_INGRESS ?
2183 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2184 }
2185 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2187 				 u32 flags)
2188 {
2189 	/* Verify that a link layer header is carried */
2190 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2191 		kfree_skb(skb);
2192 		return -ERANGE;
2193 	}
2194 
2195 	bpf_push_mac_rcsum(skb);
2196 	return flags & BPF_F_INGRESS ?
2197 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2198 }
2199 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2201 			  u32 flags)
2202 {
2203 	if (dev_is_mac_header_xmit(dev))
2204 		return __bpf_redirect_common(skb, dev, flags);
2205 	else
2206 		return __bpf_redirect_no_mac(skb, dev, flags);
2207 }
2208 
2209 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2211 			    struct net_device *dev, struct bpf_nh_params *nh)
2212 {
2213 	u32 hh_len = LL_RESERVED_SPACE(dev);
2214 	const struct in6_addr *nexthop;
2215 	struct dst_entry *dst = NULL;
2216 	struct neighbour *neigh;
2217 
2218 	if (dev_xmit_recursion()) {
2219 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2220 		goto out_drop;
2221 	}
2222 
2223 	skb->dev = dev;
2224 	skb_clear_tstamp(skb);
2225 
2226 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2227 		skb = skb_expand_head(skb, hh_len);
2228 		if (!skb)
2229 			return -ENOMEM;
2230 	}
2231 
2232 	rcu_read_lock();
2233 	if (!nh) {
2234 		dst = skb_dst(skb);
2235 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2236 				      &ipv6_hdr(skb)->daddr);
2237 	} else {
2238 		nexthop = &nh->ipv6_nh;
2239 	}
2240 	neigh = ip_neigh_gw6(dev, nexthop);
2241 	if (likely(!IS_ERR(neigh))) {
2242 		int ret;
2243 
2244 		sock_confirm_neigh(skb, neigh);
2245 		local_bh_disable();
2246 		dev_xmit_recursion_inc();
2247 		ret = neigh_output(neigh, skb, false);
2248 		dev_xmit_recursion_dec();
2249 		local_bh_enable();
2250 		rcu_read_unlock();
2251 		return ret;
2252 	}
2253 	rcu_read_unlock();
2254 	if (dst)
2255 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2256 out_drop:
2257 	kfree_skb(skb);
2258 	return -ENETDOWN;
2259 }
2260 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2262 				   struct bpf_nh_params *nh)
2263 {
2264 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2265 	struct net *net = dev_net(dev);
2266 	int err, ret = NET_XMIT_DROP;
2267 
2268 	if (!nh) {
2269 		struct dst_entry *dst;
2270 		struct flowi6 fl6 = {
2271 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2272 			.flowi6_mark  = skb->mark,
2273 			.flowlabel    = ip6_flowinfo(ip6h),
2274 			.flowi6_oif   = dev->ifindex,
2275 			.flowi6_proto = ip6h->nexthdr,
2276 			.daddr	      = ip6h->daddr,
2277 			.saddr	      = ip6h->saddr,
2278 		};
2279 
2280 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2281 		if (IS_ERR(dst))
2282 			goto out_drop;
2283 
2284 		skb_dst_set(skb, dst);
2285 	} else if (nh->nh_family != AF_INET6) {
2286 		goto out_drop;
2287 	}
2288 
2289 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2290 	if (unlikely(net_xmit_eval(err)))
2291 		DEV_STATS_INC(dev, tx_errors);
2292 	else
2293 		ret = NET_XMIT_SUCCESS;
2294 	goto out_xmit;
2295 out_drop:
2296 	DEV_STATS_INC(dev, tx_errors);
2297 	kfree_skb(skb);
2298 out_xmit:
2299 	return ret;
2300 }
2301 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2302 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2303 				   struct bpf_nh_params *nh)
2304 {
2305 	kfree_skb(skb);
2306 	return NET_XMIT_DROP;
2307 }
2308 #endif /* CONFIG_IPV6 */
2309 
2310 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2311 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2312 			    struct net_device *dev, struct bpf_nh_params *nh)
2313 {
2314 	u32 hh_len = LL_RESERVED_SPACE(dev);
2315 	struct neighbour *neigh;
2316 	bool is_v6gw = false;
2317 
2318 	if (dev_xmit_recursion()) {
2319 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2320 		goto out_drop;
2321 	}
2322 
2323 	skb->dev = dev;
2324 	skb_clear_tstamp(skb);
2325 
2326 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2327 		skb = skb_expand_head(skb, hh_len);
2328 		if (!skb)
2329 			return -ENOMEM;
2330 	}
2331 
2332 	rcu_read_lock();
2333 	if (!nh) {
2334 		struct rtable *rt = skb_rtable(skb);
2335 
2336 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2337 	} else if (nh->nh_family == AF_INET6) {
2338 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2339 		is_v6gw = true;
2340 	} else if (nh->nh_family == AF_INET) {
2341 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2342 	} else {
2343 		rcu_read_unlock();
2344 		goto out_drop;
2345 	}
2346 
2347 	if (likely(!IS_ERR(neigh))) {
2348 		int ret;
2349 
2350 		sock_confirm_neigh(skb, neigh);
2351 		local_bh_disable();
2352 		dev_xmit_recursion_inc();
2353 		ret = neigh_output(neigh, skb, is_v6gw);
2354 		dev_xmit_recursion_dec();
2355 		local_bh_enable();
2356 		rcu_read_unlock();
2357 		return ret;
2358 	}
2359 	rcu_read_unlock();
2360 out_drop:
2361 	kfree_skb(skb);
2362 	return -ENETDOWN;
2363 }
2364 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2365 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2366 				   struct bpf_nh_params *nh)
2367 {
2368 	const struct iphdr *ip4h = ip_hdr(skb);
2369 	struct net *net = dev_net(dev);
2370 	int err, ret = NET_XMIT_DROP;
2371 
2372 	if (!nh) {
2373 		struct flowi4 fl4 = {
2374 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2375 			.flowi4_mark  = skb->mark,
2376 			.flowi4_tos   = inet_dscp_to_dsfield(ip4h_dscp(ip4h)),
2377 			.flowi4_oif   = dev->ifindex,
2378 			.flowi4_proto = ip4h->protocol,
2379 			.daddr	      = ip4h->daddr,
2380 			.saddr	      = ip4h->saddr,
2381 		};
2382 		struct rtable *rt;
2383 
2384 		rt = ip_route_output_flow(net, &fl4, NULL);
2385 		if (IS_ERR(rt))
2386 			goto out_drop;
2387 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2388 			ip_rt_put(rt);
2389 			goto out_drop;
2390 		}
2391 
2392 		skb_dst_set(skb, &rt->dst);
2393 	}
2394 
2395 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2396 	if (unlikely(net_xmit_eval(err)))
2397 		DEV_STATS_INC(dev, tx_errors);
2398 	else
2399 		ret = NET_XMIT_SUCCESS;
2400 	goto out_xmit;
2401 out_drop:
2402 	DEV_STATS_INC(dev, tx_errors);
2403 	kfree_skb(skb);
2404 out_xmit:
2405 	return ret;
2406 }
2407 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2408 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2409 				   struct bpf_nh_params *nh)
2410 {
2411 	kfree_skb(skb);
2412 	return NET_XMIT_DROP;
2413 }
2414 #endif /* CONFIG_INET */
2415 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2416 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2417 				struct bpf_nh_params *nh)
2418 {
2419 	struct ethhdr *ethh = eth_hdr(skb);
2420 
2421 	if (unlikely(skb->mac_header >= skb->network_header))
2422 		goto out;
2423 	bpf_push_mac_rcsum(skb);
2424 	if (is_multicast_ether_addr(ethh->h_dest))
2425 		goto out;
2426 
2427 	skb_pull(skb, sizeof(*ethh));
2428 	skb_unset_mac_header(skb);
2429 	skb_reset_network_header(skb);
2430 
2431 	if (skb->protocol == htons(ETH_P_IP))
2432 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2433 	else if (skb->protocol == htons(ETH_P_IPV6))
2434 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2435 out:
2436 	kfree_skb(skb);
2437 	return -ENOTSUPP;
2438 }
2439 
2440 /* Internal, non-exposed redirect flags. */
2441 enum {
2442 	BPF_F_NEIGH	= (1ULL << 16),
2443 	BPF_F_PEER	= (1ULL << 17),
2444 	BPF_F_NEXTHOP	= (1ULL << 18),
2445 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2446 };
2447 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2448 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2449 {
2450 	struct net_device *dev;
2451 	struct sk_buff *clone;
2452 	int ret;
2453 
2454 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2455 
2456 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2457 		return -EINVAL;
2458 
2459 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2460 	if (unlikely(!dev))
2461 		return -EINVAL;
2462 
2463 	clone = skb_clone(skb, GFP_ATOMIC);
2464 	if (unlikely(!clone))
2465 		return -ENOMEM;
2466 
2467 	/* For direct write, we need to keep the invariant that the skbs
2468 	 * we're dealing with need to be uncloned. Should uncloning fail
2469 	 * here, we need to free the just generated clone to unclone once
2470 	 * again.
2471 	 */
2472 	ret = bpf_try_make_head_writable(skb);
2473 	if (unlikely(ret)) {
2474 		kfree_skb(clone);
2475 		return -ENOMEM;
2476 	}
2477 
2478 	return __bpf_redirect(clone, dev, flags);
2479 }
2480 
2481 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2482 	.func           = bpf_clone_redirect,
2483 	.gpl_only       = false,
2484 	.ret_type       = RET_INTEGER,
2485 	.arg1_type      = ARG_PTR_TO_CTX,
2486 	.arg2_type      = ARG_ANYTHING,
2487 	.arg3_type      = ARG_ANYTHING,
2488 };
2489 
skb_get_peer_dev(struct net_device * dev)2490 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2491 {
2492 	const struct net_device_ops *ops = dev->netdev_ops;
2493 
2494 	if (likely(ops->ndo_get_peer_dev))
2495 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2496 				       netkit_peer_dev, dev);
2497 	return NULL;
2498 }
2499 
skb_do_redirect(struct sk_buff * skb)2500 int skb_do_redirect(struct sk_buff *skb)
2501 {
2502 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2503 	struct net *net = dev_net(skb->dev);
2504 	struct net_device *dev;
2505 	u32 flags = ri->flags;
2506 
2507 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2508 	ri->tgt_index = 0;
2509 	ri->flags = 0;
2510 	if (unlikely(!dev))
2511 		goto out_drop;
2512 	if (flags & BPF_F_PEER) {
2513 		if (unlikely(!skb_at_tc_ingress(skb)))
2514 			goto out_drop;
2515 		dev = skb_get_peer_dev(dev);
2516 		if (unlikely(!dev ||
2517 			     !(dev->flags & IFF_UP) ||
2518 			     net_eq(net, dev_net(dev))))
2519 			goto out_drop;
2520 		skb->dev = dev;
2521 		dev_sw_netstats_rx_add(dev, skb->len);
2522 		skb_scrub_packet(skb, false);
2523 		return -EAGAIN;
2524 	}
2525 	return flags & BPF_F_NEIGH ?
2526 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2527 				    &ri->nh : NULL) :
2528 	       __bpf_redirect(skb, dev, flags);
2529 out_drop:
2530 	kfree_skb(skb);
2531 	return -EINVAL;
2532 }
2533 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2534 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2535 {
2536 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2537 
2538 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2539 		return TC_ACT_SHOT;
2540 
2541 	ri->flags = flags;
2542 	ri->tgt_index = ifindex;
2543 
2544 	return TC_ACT_REDIRECT;
2545 }
2546 
2547 static const struct bpf_func_proto bpf_redirect_proto = {
2548 	.func           = bpf_redirect,
2549 	.gpl_only       = false,
2550 	.ret_type       = RET_INTEGER,
2551 	.arg1_type      = ARG_ANYTHING,
2552 	.arg2_type      = ARG_ANYTHING,
2553 };
2554 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2555 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2556 {
2557 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2558 
2559 	if (unlikely(flags))
2560 		return TC_ACT_SHOT;
2561 
2562 	ri->flags = BPF_F_PEER;
2563 	ri->tgt_index = ifindex;
2564 
2565 	return TC_ACT_REDIRECT;
2566 }
2567 
2568 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2569 	.func           = bpf_redirect_peer,
2570 	.gpl_only       = false,
2571 	.ret_type       = RET_INTEGER,
2572 	.arg1_type      = ARG_ANYTHING,
2573 	.arg2_type      = ARG_ANYTHING,
2574 };
2575 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2576 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2577 	   int, plen, u64, flags)
2578 {
2579 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2580 
2581 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2582 		return TC_ACT_SHOT;
2583 
2584 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2585 	ri->tgt_index = ifindex;
2586 
2587 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2588 	if (plen)
2589 		memcpy(&ri->nh, params, sizeof(ri->nh));
2590 
2591 	return TC_ACT_REDIRECT;
2592 }
2593 
2594 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2595 	.func		= bpf_redirect_neigh,
2596 	.gpl_only	= false,
2597 	.ret_type	= RET_INTEGER,
2598 	.arg1_type	= ARG_ANYTHING,
2599 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2600 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2601 	.arg4_type	= ARG_ANYTHING,
2602 };
2603 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2604 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2605 {
2606 	msg->apply_bytes = bytes;
2607 	return 0;
2608 }
2609 
2610 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2611 	.func           = bpf_msg_apply_bytes,
2612 	.gpl_only       = false,
2613 	.ret_type       = RET_INTEGER,
2614 	.arg1_type	= ARG_PTR_TO_CTX,
2615 	.arg2_type      = ARG_ANYTHING,
2616 };
2617 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2618 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2619 {
2620 	msg->cork_bytes = bytes;
2621 	return 0;
2622 }
2623 
sk_msg_reset_curr(struct sk_msg * msg)2624 static void sk_msg_reset_curr(struct sk_msg *msg)
2625 {
2626 	if (!msg->sg.size) {
2627 		msg->sg.curr = msg->sg.start;
2628 		msg->sg.copybreak = 0;
2629 	} else {
2630 		u32 i = msg->sg.end;
2631 
2632 		sk_msg_iter_var_prev(i);
2633 		msg->sg.curr = i;
2634 		msg->sg.copybreak = msg->sg.data[i].length;
2635 	}
2636 }
2637 
2638 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2639 	.func           = bpf_msg_cork_bytes,
2640 	.gpl_only       = false,
2641 	.ret_type       = RET_INTEGER,
2642 	.arg1_type	= ARG_PTR_TO_CTX,
2643 	.arg2_type      = ARG_ANYTHING,
2644 };
2645 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2646 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2647 	   u32, end, u64, flags)
2648 {
2649 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2650 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2651 	struct scatterlist *sge;
2652 	u8 *raw, *to, *from;
2653 	struct page *page;
2654 
2655 	if (unlikely(flags || end <= start))
2656 		return -EINVAL;
2657 
2658 	/* First find the starting scatterlist element */
2659 	i = msg->sg.start;
2660 	do {
2661 		offset += len;
2662 		len = sk_msg_elem(msg, i)->length;
2663 		if (start < offset + len)
2664 			break;
2665 		sk_msg_iter_var_next(i);
2666 	} while (i != msg->sg.end);
2667 
2668 	if (unlikely(start >= offset + len))
2669 		return -EINVAL;
2670 
2671 	first_sge = i;
2672 	/* The start may point into the sg element so we need to also
2673 	 * account for the headroom.
2674 	 */
2675 	bytes_sg_total = start - offset + bytes;
2676 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2677 		goto out;
2678 
2679 	/* At this point we need to linearize multiple scatterlist
2680 	 * elements or a single shared page. Either way we need to
2681 	 * copy into a linear buffer exclusively owned by BPF. Then
2682 	 * place the buffer in the scatterlist and fixup the original
2683 	 * entries by removing the entries now in the linear buffer
2684 	 * and shifting the remaining entries. For now we do not try
2685 	 * to copy partial entries to avoid complexity of running out
2686 	 * of sg_entry slots. The downside is reading a single byte
2687 	 * will copy the entire sg entry.
2688 	 */
2689 	do {
2690 		copy += sk_msg_elem(msg, i)->length;
2691 		sk_msg_iter_var_next(i);
2692 		if (bytes_sg_total <= copy)
2693 			break;
2694 	} while (i != msg->sg.end);
2695 	last_sge = i;
2696 
2697 	if (unlikely(bytes_sg_total > copy))
2698 		return -EINVAL;
2699 
2700 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2701 			   get_order(copy));
2702 	if (unlikely(!page))
2703 		return -ENOMEM;
2704 
2705 	raw = page_address(page);
2706 	i = first_sge;
2707 	do {
2708 		sge = sk_msg_elem(msg, i);
2709 		from = sg_virt(sge);
2710 		len = sge->length;
2711 		to = raw + poffset;
2712 
2713 		memcpy(to, from, len);
2714 		poffset += len;
2715 		sge->length = 0;
2716 		put_page(sg_page(sge));
2717 
2718 		sk_msg_iter_var_next(i);
2719 	} while (i != last_sge);
2720 
2721 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2722 
2723 	/* To repair sg ring we need to shift entries. If we only
2724 	 * had a single entry though we can just replace it and
2725 	 * be done. Otherwise walk the ring and shift the entries.
2726 	 */
2727 	WARN_ON_ONCE(last_sge == first_sge);
2728 	shift = last_sge > first_sge ?
2729 		last_sge - first_sge - 1 :
2730 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2731 	if (!shift)
2732 		goto out;
2733 
2734 	i = first_sge;
2735 	sk_msg_iter_var_next(i);
2736 	do {
2737 		u32 move_from;
2738 
2739 		if (i + shift >= NR_MSG_FRAG_IDS)
2740 			move_from = i + shift - NR_MSG_FRAG_IDS;
2741 		else
2742 			move_from = i + shift;
2743 		if (move_from == msg->sg.end)
2744 			break;
2745 
2746 		msg->sg.data[i] = msg->sg.data[move_from];
2747 		msg->sg.data[move_from].length = 0;
2748 		msg->sg.data[move_from].page_link = 0;
2749 		msg->sg.data[move_from].offset = 0;
2750 		sk_msg_iter_var_next(i);
2751 	} while (1);
2752 
2753 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2754 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2755 		      msg->sg.end - shift;
2756 out:
2757 	sk_msg_reset_curr(msg);
2758 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2759 	msg->data_end = msg->data + bytes;
2760 	return 0;
2761 }
2762 
2763 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2764 	.func		= bpf_msg_pull_data,
2765 	.gpl_only	= false,
2766 	.ret_type	= RET_INTEGER,
2767 	.arg1_type	= ARG_PTR_TO_CTX,
2768 	.arg2_type	= ARG_ANYTHING,
2769 	.arg3_type	= ARG_ANYTHING,
2770 	.arg4_type	= ARG_ANYTHING,
2771 };
2772 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2773 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2774 	   u32, len, u64, flags)
2775 {
2776 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2777 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2778 	u8 *raw, *to, *from;
2779 	struct page *page;
2780 
2781 	if (unlikely(flags))
2782 		return -EINVAL;
2783 
2784 	if (unlikely(len == 0))
2785 		return 0;
2786 
2787 	/* First find the starting scatterlist element */
2788 	i = msg->sg.start;
2789 	do {
2790 		offset += l;
2791 		l = sk_msg_elem(msg, i)->length;
2792 
2793 		if (start < offset + l)
2794 			break;
2795 		sk_msg_iter_var_next(i);
2796 	} while (i != msg->sg.end);
2797 
2798 	if (start > offset + l)
2799 		return -EINVAL;
2800 
2801 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2802 
2803 	/* If no space available will fallback to copy, we need at
2804 	 * least one scatterlist elem available to push data into
2805 	 * when start aligns to the beginning of an element or two
2806 	 * when it falls inside an element. We handle the start equals
2807 	 * offset case because its the common case for inserting a
2808 	 * header.
2809 	 */
2810 	if (!space || (space == 1 && start != offset))
2811 		copy = msg->sg.data[i].length;
2812 
2813 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2814 			   get_order(copy + len));
2815 	if (unlikely(!page))
2816 		return -ENOMEM;
2817 
2818 	if (copy) {
2819 		int front, back;
2820 
2821 		raw = page_address(page);
2822 
2823 		if (i == msg->sg.end)
2824 			sk_msg_iter_var_prev(i);
2825 		psge = sk_msg_elem(msg, i);
2826 		front = start - offset;
2827 		back = psge->length - front;
2828 		from = sg_virt(psge);
2829 
2830 		if (front)
2831 			memcpy(raw, from, front);
2832 
2833 		if (back) {
2834 			from += front;
2835 			to = raw + front + len;
2836 
2837 			memcpy(to, from, back);
2838 		}
2839 
2840 		put_page(sg_page(psge));
2841 		new = i;
2842 		goto place_new;
2843 	}
2844 
2845 	if (start - offset) {
2846 		if (i == msg->sg.end)
2847 			sk_msg_iter_var_prev(i);
2848 		psge = sk_msg_elem(msg, i);
2849 		rsge = sk_msg_elem_cpy(msg, i);
2850 
2851 		psge->length = start - offset;
2852 		rsge.length -= psge->length;
2853 		rsge.offset += start;
2854 
2855 		sk_msg_iter_var_next(i);
2856 		sg_unmark_end(psge);
2857 		sg_unmark_end(&rsge);
2858 	}
2859 
2860 	/* Slot(s) to place newly allocated data */
2861 	sk_msg_iter_next(msg, end);
2862 	new = i;
2863 	sk_msg_iter_var_next(i);
2864 
2865 	if (i == msg->sg.end) {
2866 		if (!rsge.length)
2867 			goto place_new;
2868 		sk_msg_iter_next(msg, end);
2869 		goto place_new;
2870 	}
2871 
2872 	/* Shift one or two slots as needed */
2873 	sge = sk_msg_elem_cpy(msg, new);
2874 	sg_unmark_end(&sge);
2875 
2876 	nsge = sk_msg_elem_cpy(msg, i);
2877 	if (rsge.length) {
2878 		sk_msg_iter_var_next(i);
2879 		nnsge = sk_msg_elem_cpy(msg, i);
2880 		sk_msg_iter_next(msg, end);
2881 	}
2882 
2883 	while (i != msg->sg.end) {
2884 		msg->sg.data[i] = sge;
2885 		sge = nsge;
2886 		sk_msg_iter_var_next(i);
2887 		if (rsge.length) {
2888 			nsge = nnsge;
2889 			nnsge = sk_msg_elem_cpy(msg, i);
2890 		} else {
2891 			nsge = sk_msg_elem_cpy(msg, i);
2892 		}
2893 	}
2894 
2895 place_new:
2896 	/* Place newly allocated data buffer */
2897 	sk_mem_charge(msg->sk, len);
2898 	msg->sg.size += len;
2899 	__clear_bit(new, msg->sg.copy);
2900 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2901 	if (rsge.length) {
2902 		get_page(sg_page(&rsge));
2903 		sk_msg_iter_var_next(new);
2904 		msg->sg.data[new] = rsge;
2905 	}
2906 
2907 	sk_msg_reset_curr(msg);
2908 	sk_msg_compute_data_pointers(msg);
2909 	return 0;
2910 }
2911 
2912 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2913 	.func		= bpf_msg_push_data,
2914 	.gpl_only	= false,
2915 	.ret_type	= RET_INTEGER,
2916 	.arg1_type	= ARG_PTR_TO_CTX,
2917 	.arg2_type	= ARG_ANYTHING,
2918 	.arg3_type	= ARG_ANYTHING,
2919 	.arg4_type	= ARG_ANYTHING,
2920 };
2921 
sk_msg_shift_left(struct sk_msg * msg,int i)2922 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2923 {
2924 	struct scatterlist *sge = sk_msg_elem(msg, i);
2925 	int prev;
2926 
2927 	put_page(sg_page(sge));
2928 	do {
2929 		prev = i;
2930 		sk_msg_iter_var_next(i);
2931 		msg->sg.data[prev] = msg->sg.data[i];
2932 	} while (i != msg->sg.end);
2933 
2934 	sk_msg_iter_prev(msg, end);
2935 }
2936 
sk_msg_shift_right(struct sk_msg * msg,int i)2937 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2938 {
2939 	struct scatterlist tmp, sge;
2940 
2941 	sk_msg_iter_next(msg, end);
2942 	sge = sk_msg_elem_cpy(msg, i);
2943 	sk_msg_iter_var_next(i);
2944 	tmp = sk_msg_elem_cpy(msg, i);
2945 
2946 	while (i != msg->sg.end) {
2947 		msg->sg.data[i] = sge;
2948 		sk_msg_iter_var_next(i);
2949 		sge = tmp;
2950 		tmp = sk_msg_elem_cpy(msg, i);
2951 	}
2952 }
2953 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2954 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2955 	   u32, len, u64, flags)
2956 {
2957 	u32 i = 0, l = 0, space, offset = 0;
2958 	u64 last = start + len;
2959 	int pop;
2960 
2961 	if (unlikely(flags))
2962 		return -EINVAL;
2963 
2964 	if (unlikely(len == 0))
2965 		return 0;
2966 
2967 	/* First find the starting scatterlist element */
2968 	i = msg->sg.start;
2969 	do {
2970 		offset += l;
2971 		l = sk_msg_elem(msg, i)->length;
2972 
2973 		if (start < offset + l)
2974 			break;
2975 		sk_msg_iter_var_next(i);
2976 	} while (i != msg->sg.end);
2977 
2978 	/* Bounds checks: start and pop must be inside message */
2979 	if (start >= offset + l || last > msg->sg.size)
2980 		return -EINVAL;
2981 
2982 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2983 
2984 	pop = len;
2985 	/* --------------| offset
2986 	 * -| start      |-------- len -------|
2987 	 *
2988 	 *  |----- a ----|-------- pop -------|----- b ----|
2989 	 *  |______________________________________________| length
2990 	 *
2991 	 *
2992 	 * a:   region at front of scatter element to save
2993 	 * b:   region at back of scatter element to save when length > A + pop
2994 	 * pop: region to pop from element, same as input 'pop' here will be
2995 	 *      decremented below per iteration.
2996 	 *
2997 	 * Two top-level cases to handle when start != offset, first B is non
2998 	 * zero and second B is zero corresponding to when a pop includes more
2999 	 * than one element.
3000 	 *
3001 	 * Then if B is non-zero AND there is no space allocate space and
3002 	 * compact A, B regions into page. If there is space shift ring to
3003 	 * the right free'ing the next element in ring to place B, leaving
3004 	 * A untouched except to reduce length.
3005 	 */
3006 	if (start != offset) {
3007 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
3008 		int a = start - offset;
3009 		int b = sge->length - pop - a;
3010 
3011 		sk_msg_iter_var_next(i);
3012 
3013 		if (b > 0) {
3014 			if (space) {
3015 				sge->length = a;
3016 				sk_msg_shift_right(msg, i);
3017 				nsge = sk_msg_elem(msg, i);
3018 				get_page(sg_page(sge));
3019 				sg_set_page(nsge,
3020 					    sg_page(sge),
3021 					    b, sge->offset + pop + a);
3022 			} else {
3023 				struct page *page, *orig;
3024 				u8 *to, *from;
3025 
3026 				page = alloc_pages(__GFP_NOWARN |
3027 						   __GFP_COMP   | GFP_ATOMIC,
3028 						   get_order(a + b));
3029 				if (unlikely(!page))
3030 					return -ENOMEM;
3031 
3032 				orig = sg_page(sge);
3033 				from = sg_virt(sge);
3034 				to = page_address(page);
3035 				memcpy(to, from, a);
3036 				memcpy(to + a, from + a + pop, b);
3037 				sg_set_page(sge, page, a + b, 0);
3038 				put_page(orig);
3039 			}
3040 			pop = 0;
3041 		} else {
3042 			pop -= (sge->length - a);
3043 			sge->length = a;
3044 		}
3045 	}
3046 
3047 	/* From above the current layout _must_ be as follows,
3048 	 *
3049 	 * -| offset
3050 	 * -| start
3051 	 *
3052 	 *  |---- pop ---|---------------- b ------------|
3053 	 *  |____________________________________________| length
3054 	 *
3055 	 * Offset and start of the current msg elem are equal because in the
3056 	 * previous case we handled offset != start and either consumed the
3057 	 * entire element and advanced to the next element OR pop == 0.
3058 	 *
3059 	 * Two cases to handle here are first pop is less than the length
3060 	 * leaving some remainder b above. Simply adjust the element's layout
3061 	 * in this case. Or pop >= length of the element so that b = 0. In this
3062 	 * case advance to next element decrementing pop.
3063 	 */
3064 	while (pop) {
3065 		struct scatterlist *sge = sk_msg_elem(msg, i);
3066 
3067 		if (pop < sge->length) {
3068 			sge->length -= pop;
3069 			sge->offset += pop;
3070 			pop = 0;
3071 		} else {
3072 			pop -= sge->length;
3073 			sk_msg_shift_left(msg, i);
3074 		}
3075 	}
3076 
3077 	sk_mem_uncharge(msg->sk, len - pop);
3078 	msg->sg.size -= (len - pop);
3079 	sk_msg_reset_curr(msg);
3080 	sk_msg_compute_data_pointers(msg);
3081 	return 0;
3082 }
3083 
3084 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3085 	.func		= bpf_msg_pop_data,
3086 	.gpl_only	= false,
3087 	.ret_type	= RET_INTEGER,
3088 	.arg1_type	= ARG_PTR_TO_CTX,
3089 	.arg2_type	= ARG_ANYTHING,
3090 	.arg3_type	= ARG_ANYTHING,
3091 	.arg4_type	= ARG_ANYTHING,
3092 };
3093 
3094 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3095 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3096 {
3097 	return __task_get_classid(current);
3098 }
3099 
3100 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3101 	.func		= bpf_get_cgroup_classid_curr,
3102 	.gpl_only	= false,
3103 	.ret_type	= RET_INTEGER,
3104 };
3105 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3106 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3107 {
3108 	struct sock *sk = skb_to_full_sk(skb);
3109 
3110 	if (!sk || !sk_fullsock(sk))
3111 		return 0;
3112 
3113 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3114 }
3115 
3116 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3117 	.func		= bpf_skb_cgroup_classid,
3118 	.gpl_only	= false,
3119 	.ret_type	= RET_INTEGER,
3120 	.arg1_type	= ARG_PTR_TO_CTX,
3121 };
3122 #endif
3123 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3124 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3125 {
3126 	return task_get_classid(skb);
3127 }
3128 
3129 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3130 	.func           = bpf_get_cgroup_classid,
3131 	.gpl_only       = false,
3132 	.ret_type       = RET_INTEGER,
3133 	.arg1_type      = ARG_PTR_TO_CTX,
3134 };
3135 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3136 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3137 {
3138 	return dst_tclassid(skb);
3139 }
3140 
3141 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3142 	.func           = bpf_get_route_realm,
3143 	.gpl_only       = false,
3144 	.ret_type       = RET_INTEGER,
3145 	.arg1_type      = ARG_PTR_TO_CTX,
3146 };
3147 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3148 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3149 {
3150 	/* If skb_clear_hash() was called due to mangling, we can
3151 	 * trigger SW recalculation here. Later access to hash
3152 	 * can then use the inline skb->hash via context directly
3153 	 * instead of calling this helper again.
3154 	 */
3155 	return skb_get_hash(skb);
3156 }
3157 
3158 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3159 	.func		= bpf_get_hash_recalc,
3160 	.gpl_only	= false,
3161 	.ret_type	= RET_INTEGER,
3162 	.arg1_type	= ARG_PTR_TO_CTX,
3163 };
3164 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3165 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3166 {
3167 	/* After all direct packet write, this can be used once for
3168 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3169 	 */
3170 	skb_clear_hash(skb);
3171 	return 0;
3172 }
3173 
3174 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3175 	.func		= bpf_set_hash_invalid,
3176 	.gpl_only	= false,
3177 	.ret_type	= RET_INTEGER,
3178 	.arg1_type	= ARG_PTR_TO_CTX,
3179 };
3180 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3181 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3182 {
3183 	/* Set user specified hash as L4(+), so that it gets returned
3184 	 * on skb_get_hash() call unless BPF prog later on triggers a
3185 	 * skb_clear_hash().
3186 	 */
3187 	__skb_set_sw_hash(skb, hash, true);
3188 	return 0;
3189 }
3190 
3191 static const struct bpf_func_proto bpf_set_hash_proto = {
3192 	.func		= bpf_set_hash,
3193 	.gpl_only	= false,
3194 	.ret_type	= RET_INTEGER,
3195 	.arg1_type	= ARG_PTR_TO_CTX,
3196 	.arg2_type	= ARG_ANYTHING,
3197 };
3198 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3199 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3200 	   u16, vlan_tci)
3201 {
3202 	int ret;
3203 
3204 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3205 		     vlan_proto != htons(ETH_P_8021AD)))
3206 		vlan_proto = htons(ETH_P_8021Q);
3207 
3208 	bpf_push_mac_rcsum(skb);
3209 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3210 	bpf_pull_mac_rcsum(skb);
3211 	skb_reset_mac_len(skb);
3212 
3213 	bpf_compute_data_pointers(skb);
3214 	return ret;
3215 }
3216 
3217 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3218 	.func           = bpf_skb_vlan_push,
3219 	.gpl_only       = false,
3220 	.ret_type       = RET_INTEGER,
3221 	.arg1_type      = ARG_PTR_TO_CTX,
3222 	.arg2_type      = ARG_ANYTHING,
3223 	.arg3_type      = ARG_ANYTHING,
3224 };
3225 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3226 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3227 {
3228 	int ret;
3229 
3230 	bpf_push_mac_rcsum(skb);
3231 	ret = skb_vlan_pop(skb);
3232 	bpf_pull_mac_rcsum(skb);
3233 
3234 	bpf_compute_data_pointers(skb);
3235 	return ret;
3236 }
3237 
3238 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3239 	.func           = bpf_skb_vlan_pop,
3240 	.gpl_only       = false,
3241 	.ret_type       = RET_INTEGER,
3242 	.arg1_type      = ARG_PTR_TO_CTX,
3243 };
3244 
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3245 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3246 {
3247 	skb->protocol = htons(proto);
3248 	if (skb_valid_dst(skb))
3249 		skb_dst_drop(skb);
3250 }
3251 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3252 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3253 {
3254 	/* Caller already did skb_cow() with len as headroom,
3255 	 * so no need to do it here.
3256 	 */
3257 	skb_push(skb, len);
3258 	memmove(skb->data, skb->data + len, off);
3259 	memset(skb->data + off, 0, len);
3260 
3261 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3262 	 * needed here as it does not change the skb->csum
3263 	 * result for checksum complete when summing over
3264 	 * zeroed blocks.
3265 	 */
3266 	return 0;
3267 }
3268 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3269 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3270 {
3271 	void *old_data;
3272 
3273 	/* skb_ensure_writable() is not needed here, as we're
3274 	 * already working on an uncloned skb.
3275 	 */
3276 	if (unlikely(!pskb_may_pull(skb, off + len)))
3277 		return -ENOMEM;
3278 
3279 	old_data = skb->data;
3280 	__skb_pull(skb, len);
3281 	skb_postpull_rcsum(skb, old_data + off, len);
3282 	memmove(skb->data, old_data, off);
3283 
3284 	return 0;
3285 }
3286 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3287 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3288 {
3289 	bool trans_same = skb->transport_header == skb->network_header;
3290 	int ret;
3291 
3292 	/* There's no need for __skb_push()/__skb_pull() pair to
3293 	 * get to the start of the mac header as we're guaranteed
3294 	 * to always start from here under eBPF.
3295 	 */
3296 	ret = bpf_skb_generic_push(skb, off, len);
3297 	if (likely(!ret)) {
3298 		skb->mac_header -= len;
3299 		skb->network_header -= len;
3300 		if (trans_same)
3301 			skb->transport_header = skb->network_header;
3302 	}
3303 
3304 	return ret;
3305 }
3306 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3307 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3308 {
3309 	bool trans_same = skb->transport_header == skb->network_header;
3310 	int ret;
3311 
3312 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3313 	ret = bpf_skb_generic_pop(skb, off, len);
3314 	if (likely(!ret)) {
3315 		skb->mac_header += len;
3316 		skb->network_header += len;
3317 		if (trans_same)
3318 			skb->transport_header = skb->network_header;
3319 	}
3320 
3321 	return ret;
3322 }
3323 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3324 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3325 {
3326 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3327 	u32 off = skb_mac_header_len(skb);
3328 	int ret;
3329 
3330 	ret = skb_cow(skb, len_diff);
3331 	if (unlikely(ret < 0))
3332 		return ret;
3333 
3334 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3335 	if (unlikely(ret < 0))
3336 		return ret;
3337 
3338 	if (skb_is_gso(skb)) {
3339 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3340 
3341 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3342 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3343 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3344 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3345 		}
3346 	}
3347 
3348 	bpf_skb_change_protocol(skb, ETH_P_IPV6);
3349 	skb_clear_hash(skb);
3350 
3351 	return 0;
3352 }
3353 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3354 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3355 {
3356 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3357 	u32 off = skb_mac_header_len(skb);
3358 	int ret;
3359 
3360 	ret = skb_unclone(skb, GFP_ATOMIC);
3361 	if (unlikely(ret < 0))
3362 		return ret;
3363 
3364 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3365 	if (unlikely(ret < 0))
3366 		return ret;
3367 
3368 	if (skb_is_gso(skb)) {
3369 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3370 
3371 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3372 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3373 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3374 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3375 		}
3376 	}
3377 
3378 	bpf_skb_change_protocol(skb, ETH_P_IP);
3379 	skb_clear_hash(skb);
3380 
3381 	return 0;
3382 }
3383 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3384 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3385 {
3386 	__be16 from_proto = skb->protocol;
3387 
3388 	if (from_proto == htons(ETH_P_IP) &&
3389 	      to_proto == htons(ETH_P_IPV6))
3390 		return bpf_skb_proto_4_to_6(skb);
3391 
3392 	if (from_proto == htons(ETH_P_IPV6) &&
3393 	      to_proto == htons(ETH_P_IP))
3394 		return bpf_skb_proto_6_to_4(skb);
3395 
3396 	return -ENOTSUPP;
3397 }
3398 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3399 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3400 	   u64, flags)
3401 {
3402 	int ret;
3403 
3404 	if (unlikely(flags))
3405 		return -EINVAL;
3406 
3407 	/* General idea is that this helper does the basic groundwork
3408 	 * needed for changing the protocol, and eBPF program fills the
3409 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3410 	 * and other helpers, rather than passing a raw buffer here.
3411 	 *
3412 	 * The rationale is to keep this minimal and without a need to
3413 	 * deal with raw packet data. F.e. even if we would pass buffers
3414 	 * here, the program still needs to call the bpf_lX_csum_replace()
3415 	 * helpers anyway. Plus, this way we keep also separation of
3416 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3417 	 * care of stores.
3418 	 *
3419 	 * Currently, additional options and extension header space are
3420 	 * not supported, but flags register is reserved so we can adapt
3421 	 * that. For offloads, we mark packet as dodgy, so that headers
3422 	 * need to be verified first.
3423 	 */
3424 	ret = bpf_skb_proto_xlat(skb, proto);
3425 	bpf_compute_data_pointers(skb);
3426 	return ret;
3427 }
3428 
3429 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3430 	.func		= bpf_skb_change_proto,
3431 	.gpl_only	= false,
3432 	.ret_type	= RET_INTEGER,
3433 	.arg1_type	= ARG_PTR_TO_CTX,
3434 	.arg2_type	= ARG_ANYTHING,
3435 	.arg3_type	= ARG_ANYTHING,
3436 };
3437 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3438 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3439 {
3440 	/* We only allow a restricted subset to be changed for now. */
3441 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3442 		     !skb_pkt_type_ok(pkt_type)))
3443 		return -EINVAL;
3444 
3445 	skb->pkt_type = pkt_type;
3446 	return 0;
3447 }
3448 
3449 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3450 	.func		= bpf_skb_change_type,
3451 	.gpl_only	= false,
3452 	.ret_type	= RET_INTEGER,
3453 	.arg1_type	= ARG_PTR_TO_CTX,
3454 	.arg2_type	= ARG_ANYTHING,
3455 };
3456 
bpf_skb_net_base_len(const struct sk_buff * skb)3457 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3458 {
3459 	switch (skb->protocol) {
3460 	case htons(ETH_P_IP):
3461 		return sizeof(struct iphdr);
3462 	case htons(ETH_P_IPV6):
3463 		return sizeof(struct ipv6hdr);
3464 	default:
3465 		return ~0U;
3466 	}
3467 }
3468 
3469 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3470 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3471 
3472 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3473 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3474 
3475 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3476 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3477 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3478 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3479 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3480 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3481 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3482 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3483 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3484 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3485 			    u64 flags)
3486 {
3487 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3488 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3489 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3490 	unsigned int gso_type = SKB_GSO_DODGY;
3491 	int ret;
3492 
3493 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3494 		/* udp gso_size delineates datagrams, only allow if fixed */
3495 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3496 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3497 			return -ENOTSUPP;
3498 	}
3499 
3500 	ret = skb_cow_head(skb, len_diff);
3501 	if (unlikely(ret < 0))
3502 		return ret;
3503 
3504 	if (encap) {
3505 		if (skb->protocol != htons(ETH_P_IP) &&
3506 		    skb->protocol != htons(ETH_P_IPV6))
3507 			return -ENOTSUPP;
3508 
3509 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3510 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3511 			return -EINVAL;
3512 
3513 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3514 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3515 			return -EINVAL;
3516 
3517 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3518 		    inner_mac_len < ETH_HLEN)
3519 			return -EINVAL;
3520 
3521 		if (skb->encapsulation)
3522 			return -EALREADY;
3523 
3524 		mac_len = skb->network_header - skb->mac_header;
3525 		inner_net = skb->network_header;
3526 		if (inner_mac_len > len_diff)
3527 			return -EINVAL;
3528 		inner_trans = skb->transport_header;
3529 	}
3530 
3531 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3532 	if (unlikely(ret < 0))
3533 		return ret;
3534 
3535 	if (encap) {
3536 		skb->inner_mac_header = inner_net - inner_mac_len;
3537 		skb->inner_network_header = inner_net;
3538 		skb->inner_transport_header = inner_trans;
3539 
3540 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3541 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3542 		else
3543 			skb_set_inner_protocol(skb, skb->protocol);
3544 
3545 		skb->encapsulation = 1;
3546 		skb_set_network_header(skb, mac_len);
3547 
3548 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3549 			gso_type |= SKB_GSO_UDP_TUNNEL;
3550 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3551 			gso_type |= SKB_GSO_GRE;
3552 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3553 			gso_type |= SKB_GSO_IPXIP6;
3554 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3555 			gso_type |= SKB_GSO_IPXIP4;
3556 
3557 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3558 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3559 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3560 					sizeof(struct ipv6hdr) :
3561 					sizeof(struct iphdr);
3562 
3563 			skb_set_transport_header(skb, mac_len + nh_len);
3564 		}
3565 
3566 		/* Match skb->protocol to new outer l3 protocol */
3567 		if (skb->protocol == htons(ETH_P_IP) &&
3568 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3569 			bpf_skb_change_protocol(skb, ETH_P_IPV6);
3570 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3571 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3572 			bpf_skb_change_protocol(skb, ETH_P_IP);
3573 	}
3574 
3575 	if (skb_is_gso(skb)) {
3576 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3577 
3578 		/* Header must be checked, and gso_segs recomputed. */
3579 		shinfo->gso_type |= gso_type;
3580 		shinfo->gso_segs = 0;
3581 
3582 		/* Due to header growth, MSS needs to be downgraded.
3583 		 * There is a BUG_ON() when segmenting the frag_list with
3584 		 * head_frag true, so linearize the skb after downgrading
3585 		 * the MSS.
3586 		 */
3587 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3588 			skb_decrease_gso_size(shinfo, len_diff);
3589 			if (shinfo->frag_list)
3590 				return skb_linearize(skb);
3591 		}
3592 	}
3593 
3594 	return 0;
3595 }
3596 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3597 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3598 			      u64 flags)
3599 {
3600 	int ret;
3601 
3602 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3603 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3604 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3605 		return -EINVAL;
3606 
3607 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3608 		/* udp gso_size delineates datagrams, only allow if fixed */
3609 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3610 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3611 			return -ENOTSUPP;
3612 	}
3613 
3614 	ret = skb_unclone(skb, GFP_ATOMIC);
3615 	if (unlikely(ret < 0))
3616 		return ret;
3617 
3618 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3619 	if (unlikely(ret < 0))
3620 		return ret;
3621 
3622 	/* Match skb->protocol to new outer l3 protocol */
3623 	if (skb->protocol == htons(ETH_P_IP) &&
3624 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3625 		bpf_skb_change_protocol(skb, ETH_P_IPV6);
3626 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3627 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3628 		bpf_skb_change_protocol(skb, ETH_P_IP);
3629 
3630 	if (skb_is_gso(skb)) {
3631 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3632 
3633 		/* Due to header shrink, MSS can be upgraded. */
3634 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3635 			skb_increase_gso_size(shinfo, len_diff);
3636 
3637 		/* Header must be checked, and gso_segs recomputed. */
3638 		shinfo->gso_type |= SKB_GSO_DODGY;
3639 		shinfo->gso_segs = 0;
3640 	}
3641 
3642 	return 0;
3643 }
3644 
3645 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3646 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3647 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3648 	   u32, mode, u64, flags)
3649 {
3650 	u32 len_diff_abs = abs(len_diff);
3651 	bool shrink = len_diff < 0;
3652 	int ret = 0;
3653 
3654 	if (unlikely(flags || mode))
3655 		return -EINVAL;
3656 	if (unlikely(len_diff_abs > 0xfffU))
3657 		return -EFAULT;
3658 
3659 	if (!shrink) {
3660 		ret = skb_cow(skb, len_diff);
3661 		if (unlikely(ret < 0))
3662 			return ret;
3663 		__skb_push(skb, len_diff_abs);
3664 		memset(skb->data, 0, len_diff_abs);
3665 	} else {
3666 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3667 			return -ENOMEM;
3668 		__skb_pull(skb, len_diff_abs);
3669 	}
3670 	if (tls_sw_has_ctx_rx(skb->sk)) {
3671 		struct strp_msg *rxm = strp_msg(skb);
3672 
3673 		rxm->full_len += len_diff;
3674 	}
3675 	return ret;
3676 }
3677 
3678 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3679 	.func		= sk_skb_adjust_room,
3680 	.gpl_only	= false,
3681 	.ret_type	= RET_INTEGER,
3682 	.arg1_type	= ARG_PTR_TO_CTX,
3683 	.arg2_type	= ARG_ANYTHING,
3684 	.arg3_type	= ARG_ANYTHING,
3685 	.arg4_type	= ARG_ANYTHING,
3686 };
3687 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3688 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3689 	   u32, mode, u64, flags)
3690 {
3691 	u32 len_cur, len_diff_abs = abs(len_diff);
3692 	u32 len_min = bpf_skb_net_base_len(skb);
3693 	u32 len_max = BPF_SKB_MAX_LEN;
3694 	__be16 proto = skb->protocol;
3695 	bool shrink = len_diff < 0;
3696 	u32 off;
3697 	int ret;
3698 
3699 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3700 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3701 		return -EINVAL;
3702 	if (unlikely(len_diff_abs > 0xfffU))
3703 		return -EFAULT;
3704 	if (unlikely(proto != htons(ETH_P_IP) &&
3705 		     proto != htons(ETH_P_IPV6)))
3706 		return -ENOTSUPP;
3707 
3708 	off = skb_mac_header_len(skb);
3709 	switch (mode) {
3710 	case BPF_ADJ_ROOM_NET:
3711 		off += bpf_skb_net_base_len(skb);
3712 		break;
3713 	case BPF_ADJ_ROOM_MAC:
3714 		break;
3715 	default:
3716 		return -ENOTSUPP;
3717 	}
3718 
3719 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3720 		if (!shrink)
3721 			return -EINVAL;
3722 
3723 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3724 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3725 			len_min = sizeof(struct iphdr);
3726 			break;
3727 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3728 			len_min = sizeof(struct ipv6hdr);
3729 			break;
3730 		default:
3731 			return -EINVAL;
3732 		}
3733 	}
3734 
3735 	len_cur = skb->len - skb_network_offset(skb);
3736 	if ((shrink && (len_diff_abs >= len_cur ||
3737 			len_cur - len_diff_abs < len_min)) ||
3738 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3739 			 !skb_is_gso(skb))))
3740 		return -ENOTSUPP;
3741 
3742 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3743 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3744 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3745 		__skb_reset_checksum_unnecessary(skb);
3746 
3747 	bpf_compute_data_pointers(skb);
3748 	return ret;
3749 }
3750 
3751 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3752 	.func		= bpf_skb_adjust_room,
3753 	.gpl_only	= false,
3754 	.ret_type	= RET_INTEGER,
3755 	.arg1_type	= ARG_PTR_TO_CTX,
3756 	.arg2_type	= ARG_ANYTHING,
3757 	.arg3_type	= ARG_ANYTHING,
3758 	.arg4_type	= ARG_ANYTHING,
3759 };
3760 
__bpf_skb_min_len(const struct sk_buff * skb)3761 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3762 {
3763 	int offset = skb_network_offset(skb);
3764 	u32 min_len = 0;
3765 
3766 	if (offset > 0)
3767 		min_len = offset;
3768 	if (skb_transport_header_was_set(skb)) {
3769 		offset = skb_transport_offset(skb);
3770 		if (offset > 0)
3771 			min_len = offset;
3772 	}
3773 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3774 		offset = skb_checksum_start_offset(skb) +
3775 			 skb->csum_offset + sizeof(__sum16);
3776 		if (offset > 0)
3777 			min_len = offset;
3778 	}
3779 	return min_len;
3780 }
3781 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3782 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3783 {
3784 	unsigned int old_len = skb->len;
3785 	int ret;
3786 
3787 	ret = __skb_grow_rcsum(skb, new_len);
3788 	if (!ret)
3789 		memset(skb->data + old_len, 0, new_len - old_len);
3790 	return ret;
3791 }
3792 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3793 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3794 {
3795 	return __skb_trim_rcsum(skb, new_len);
3796 }
3797 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3798 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3799 					u64 flags)
3800 {
3801 	u32 max_len = BPF_SKB_MAX_LEN;
3802 	u32 min_len = __bpf_skb_min_len(skb);
3803 	int ret;
3804 
3805 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3806 		return -EINVAL;
3807 	if (skb->encapsulation)
3808 		return -ENOTSUPP;
3809 
3810 	/* The basic idea of this helper is that it's performing the
3811 	 * needed work to either grow or trim an skb, and eBPF program
3812 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3813 	 * bpf_lX_csum_replace() and others rather than passing a raw
3814 	 * buffer here. This one is a slow path helper and intended
3815 	 * for replies with control messages.
3816 	 *
3817 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3818 	 * minimal and without protocol specifics so that we are able
3819 	 * to separate concerns as in bpf_skb_store_bytes() should only
3820 	 * be the one responsible for writing buffers.
3821 	 *
3822 	 * It's really expected to be a slow path operation here for
3823 	 * control message replies, so we're implicitly linearizing,
3824 	 * uncloning and drop offloads from the skb by this.
3825 	 */
3826 	ret = __bpf_try_make_writable(skb, skb->len);
3827 	if (!ret) {
3828 		if (new_len > skb->len)
3829 			ret = bpf_skb_grow_rcsum(skb, new_len);
3830 		else if (new_len < skb->len)
3831 			ret = bpf_skb_trim_rcsum(skb, new_len);
3832 		if (!ret && skb_is_gso(skb))
3833 			skb_gso_reset(skb);
3834 	}
3835 	return ret;
3836 }
3837 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3838 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3839 	   u64, flags)
3840 {
3841 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3842 
3843 	bpf_compute_data_pointers(skb);
3844 	return ret;
3845 }
3846 
3847 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3848 	.func		= bpf_skb_change_tail,
3849 	.gpl_only	= false,
3850 	.ret_type	= RET_INTEGER,
3851 	.arg1_type	= ARG_PTR_TO_CTX,
3852 	.arg2_type	= ARG_ANYTHING,
3853 	.arg3_type	= ARG_ANYTHING,
3854 };
3855 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3856 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3857 	   u64, flags)
3858 {
3859 	return __bpf_skb_change_tail(skb, new_len, flags);
3860 }
3861 
3862 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3863 	.func		= sk_skb_change_tail,
3864 	.gpl_only	= false,
3865 	.ret_type	= RET_INTEGER,
3866 	.arg1_type	= ARG_PTR_TO_CTX,
3867 	.arg2_type	= ARG_ANYTHING,
3868 	.arg3_type	= ARG_ANYTHING,
3869 };
3870 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3871 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3872 					u64 flags)
3873 {
3874 	u32 max_len = BPF_SKB_MAX_LEN;
3875 	u32 new_len = skb->len + head_room;
3876 	int ret;
3877 
3878 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3879 		     new_len < skb->len))
3880 		return -EINVAL;
3881 
3882 	ret = skb_cow(skb, head_room);
3883 	if (likely(!ret)) {
3884 		/* Idea for this helper is that we currently only
3885 		 * allow to expand on mac header. This means that
3886 		 * skb->protocol network header, etc, stay as is.
3887 		 * Compared to bpf_skb_change_tail(), we're more
3888 		 * flexible due to not needing to linearize or
3889 		 * reset GSO. Intention for this helper is to be
3890 		 * used by an L3 skb that needs to push mac header
3891 		 * for redirection into L2 device.
3892 		 */
3893 		__skb_push(skb, head_room);
3894 		memset(skb->data, 0, head_room);
3895 		skb_reset_mac_header(skb);
3896 		skb_reset_mac_len(skb);
3897 	}
3898 
3899 	return ret;
3900 }
3901 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3902 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3903 	   u64, flags)
3904 {
3905 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3906 
3907 	bpf_compute_data_pointers(skb);
3908 	return ret;
3909 }
3910 
3911 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3912 	.func		= bpf_skb_change_head,
3913 	.gpl_only	= false,
3914 	.ret_type	= RET_INTEGER,
3915 	.arg1_type	= ARG_PTR_TO_CTX,
3916 	.arg2_type	= ARG_ANYTHING,
3917 	.arg3_type	= ARG_ANYTHING,
3918 };
3919 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3920 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3921 	   u64, flags)
3922 {
3923 	return __bpf_skb_change_head(skb, head_room, flags);
3924 }
3925 
3926 static const struct bpf_func_proto sk_skb_change_head_proto = {
3927 	.func		= sk_skb_change_head,
3928 	.gpl_only	= false,
3929 	.ret_type	= RET_INTEGER,
3930 	.arg1_type	= ARG_PTR_TO_CTX,
3931 	.arg2_type	= ARG_ANYTHING,
3932 	.arg3_type	= ARG_ANYTHING,
3933 };
3934 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3935 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3936 {
3937 	return xdp_get_buff_len(xdp);
3938 }
3939 
3940 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3941 	.func		= bpf_xdp_get_buff_len,
3942 	.gpl_only	= false,
3943 	.ret_type	= RET_INTEGER,
3944 	.arg1_type	= ARG_PTR_TO_CTX,
3945 };
3946 
3947 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3948 
3949 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3950 	.func		= bpf_xdp_get_buff_len,
3951 	.gpl_only	= false,
3952 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3953 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3954 };
3955 
xdp_get_metalen(const struct xdp_buff * xdp)3956 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3957 {
3958 	return xdp_data_meta_unsupported(xdp) ? 0 :
3959 	       xdp->data - xdp->data_meta;
3960 }
3961 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3962 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3963 {
3964 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3965 	unsigned long metalen = xdp_get_metalen(xdp);
3966 	void *data_start = xdp_frame_end + metalen;
3967 	void *data = xdp->data + offset;
3968 
3969 	if (unlikely(data < data_start ||
3970 		     data > xdp->data_end - ETH_HLEN))
3971 		return -EINVAL;
3972 
3973 	if (metalen)
3974 		memmove(xdp->data_meta + offset,
3975 			xdp->data_meta, metalen);
3976 	xdp->data_meta += offset;
3977 	xdp->data = data;
3978 
3979 	return 0;
3980 }
3981 
3982 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3983 	.func		= bpf_xdp_adjust_head,
3984 	.gpl_only	= false,
3985 	.ret_type	= RET_INTEGER,
3986 	.arg1_type	= ARG_PTR_TO_CTX,
3987 	.arg2_type	= ARG_ANYTHING,
3988 };
3989 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3990 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3991 		      void *buf, unsigned long len, bool flush)
3992 {
3993 	unsigned long ptr_len, ptr_off = 0;
3994 	skb_frag_t *next_frag, *end_frag;
3995 	struct skb_shared_info *sinfo;
3996 	void *src, *dst;
3997 	u8 *ptr_buf;
3998 
3999 	if (likely(xdp->data_end - xdp->data >= off + len)) {
4000 		src = flush ? buf : xdp->data + off;
4001 		dst = flush ? xdp->data + off : buf;
4002 		memcpy(dst, src, len);
4003 		return;
4004 	}
4005 
4006 	sinfo = xdp_get_shared_info_from_buff(xdp);
4007 	end_frag = &sinfo->frags[sinfo->nr_frags];
4008 	next_frag = &sinfo->frags[0];
4009 
4010 	ptr_len = xdp->data_end - xdp->data;
4011 	ptr_buf = xdp->data;
4012 
4013 	while (true) {
4014 		if (off < ptr_off + ptr_len) {
4015 			unsigned long copy_off = off - ptr_off;
4016 			unsigned long copy_len = min(len, ptr_len - copy_off);
4017 
4018 			src = flush ? buf : ptr_buf + copy_off;
4019 			dst = flush ? ptr_buf + copy_off : buf;
4020 			memcpy(dst, src, copy_len);
4021 
4022 			off += copy_len;
4023 			len -= copy_len;
4024 			buf += copy_len;
4025 		}
4026 
4027 		if (!len || next_frag == end_frag)
4028 			break;
4029 
4030 		ptr_off += ptr_len;
4031 		ptr_buf = skb_frag_address(next_frag);
4032 		ptr_len = skb_frag_size(next_frag);
4033 		next_frag++;
4034 	}
4035 }
4036 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4037 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4038 {
4039 	u32 size = xdp->data_end - xdp->data;
4040 	struct skb_shared_info *sinfo;
4041 	void *addr = xdp->data;
4042 	int i;
4043 
4044 	if (unlikely(offset > 0xffff || len > 0xffff))
4045 		return ERR_PTR(-EFAULT);
4046 
4047 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4048 		return ERR_PTR(-EINVAL);
4049 
4050 	if (likely(offset < size)) /* linear area */
4051 		goto out;
4052 
4053 	sinfo = xdp_get_shared_info_from_buff(xdp);
4054 	offset -= size;
4055 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4056 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4057 
4058 		if  (offset < frag_size) {
4059 			addr = skb_frag_address(&sinfo->frags[i]);
4060 			size = frag_size;
4061 			break;
4062 		}
4063 		offset -= frag_size;
4064 	}
4065 out:
4066 	return offset + len <= size ? addr + offset : NULL;
4067 }
4068 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4069 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4070 	   void *, buf, u32, len)
4071 {
4072 	void *ptr;
4073 
4074 	ptr = bpf_xdp_pointer(xdp, offset, len);
4075 	if (IS_ERR(ptr))
4076 		return PTR_ERR(ptr);
4077 
4078 	if (!ptr)
4079 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4080 	else
4081 		memcpy(buf, ptr, len);
4082 
4083 	return 0;
4084 }
4085 
4086 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4087 	.func		= bpf_xdp_load_bytes,
4088 	.gpl_only	= false,
4089 	.ret_type	= RET_INTEGER,
4090 	.arg1_type	= ARG_PTR_TO_CTX,
4091 	.arg2_type	= ARG_ANYTHING,
4092 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4093 	.arg4_type	= ARG_CONST_SIZE,
4094 };
4095 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4096 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4097 {
4098 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4099 }
4100 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4101 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4102 	   void *, buf, u32, len)
4103 {
4104 	void *ptr;
4105 
4106 	ptr = bpf_xdp_pointer(xdp, offset, len);
4107 	if (IS_ERR(ptr))
4108 		return PTR_ERR(ptr);
4109 
4110 	if (!ptr)
4111 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4112 	else
4113 		memcpy(ptr, buf, len);
4114 
4115 	return 0;
4116 }
4117 
4118 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4119 	.func		= bpf_xdp_store_bytes,
4120 	.gpl_only	= false,
4121 	.ret_type	= RET_INTEGER,
4122 	.arg1_type	= ARG_PTR_TO_CTX,
4123 	.arg2_type	= ARG_ANYTHING,
4124 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4125 	.arg4_type	= ARG_CONST_SIZE,
4126 };
4127 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4128 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4129 {
4130 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4131 }
4132 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4133 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4134 {
4135 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4136 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4137 	struct xdp_rxq_info *rxq = xdp->rxq;
4138 	unsigned int tailroom;
4139 
4140 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4141 		return -EOPNOTSUPP;
4142 
4143 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4144 	if (unlikely(offset > tailroom))
4145 		return -EINVAL;
4146 
4147 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4148 	skb_frag_size_add(frag, offset);
4149 	sinfo->xdp_frags_size += offset;
4150 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4151 		xsk_buff_get_tail(xdp)->data_end += offset;
4152 
4153 	return 0;
4154 }
4155 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,enum xdp_mem_type mem_type,bool release)4156 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4157 				   enum xdp_mem_type mem_type, bool release)
4158 {
4159 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4160 
4161 	if (release) {
4162 		xsk_buff_del_tail(zc_frag);
4163 		__xdp_return(0, mem_type, false, zc_frag);
4164 	} else {
4165 		zc_frag->data_end -= shrink;
4166 	}
4167 }
4168 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4169 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4170 				int shrink)
4171 {
4172 	enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4173 	bool release = skb_frag_size(frag) == shrink;
4174 
4175 	if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4176 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_type, release);
4177 		goto out;
4178 	}
4179 
4180 	if (release)
4181 		__xdp_return(skb_frag_netmem(frag), mem_type, false, NULL);
4182 
4183 out:
4184 	return release;
4185 }
4186 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4187 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4188 {
4189 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4190 	int i, n_frags_free = 0, len_free = 0;
4191 
4192 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4193 		return -EINVAL;
4194 
4195 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4196 		skb_frag_t *frag = &sinfo->frags[i];
4197 		int shrink = min_t(int, offset, skb_frag_size(frag));
4198 
4199 		len_free += shrink;
4200 		offset -= shrink;
4201 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4202 			n_frags_free++;
4203 		} else {
4204 			skb_frag_size_sub(frag, shrink);
4205 			break;
4206 		}
4207 	}
4208 	sinfo->nr_frags -= n_frags_free;
4209 	sinfo->xdp_frags_size -= len_free;
4210 
4211 	if (unlikely(!sinfo->nr_frags)) {
4212 		xdp_buff_clear_frags_flag(xdp);
4213 		xdp->data_end -= offset;
4214 	}
4215 
4216 	return 0;
4217 }
4218 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4219 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4220 {
4221 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4222 	void *data_end = xdp->data_end + offset;
4223 
4224 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4225 		if (offset < 0)
4226 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4227 
4228 		return bpf_xdp_frags_increase_tail(xdp, offset);
4229 	}
4230 
4231 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4232 	if (unlikely(data_end > data_hard_end))
4233 		return -EINVAL;
4234 
4235 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4236 		return -EINVAL;
4237 
4238 	/* Clear memory area on grow, can contain uninit kernel memory */
4239 	if (offset > 0)
4240 		memset(xdp->data_end, 0, offset);
4241 
4242 	xdp->data_end = data_end;
4243 
4244 	return 0;
4245 }
4246 
4247 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4248 	.func		= bpf_xdp_adjust_tail,
4249 	.gpl_only	= false,
4250 	.ret_type	= RET_INTEGER,
4251 	.arg1_type	= ARG_PTR_TO_CTX,
4252 	.arg2_type	= ARG_ANYTHING,
4253 };
4254 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4255 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4256 {
4257 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4258 	void *meta = xdp->data_meta + offset;
4259 	unsigned long metalen = xdp->data - meta;
4260 
4261 	if (xdp_data_meta_unsupported(xdp))
4262 		return -ENOTSUPP;
4263 	if (unlikely(meta < xdp_frame_end ||
4264 		     meta > xdp->data))
4265 		return -EINVAL;
4266 	if (unlikely(xdp_metalen_invalid(metalen)))
4267 		return -EACCES;
4268 
4269 	xdp->data_meta = meta;
4270 
4271 	return 0;
4272 }
4273 
4274 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4275 	.func		= bpf_xdp_adjust_meta,
4276 	.gpl_only	= false,
4277 	.ret_type	= RET_INTEGER,
4278 	.arg1_type	= ARG_PTR_TO_CTX,
4279 	.arg2_type	= ARG_ANYTHING,
4280 };
4281 
4282 /**
4283  * DOC: xdp redirect
4284  *
4285  * XDP_REDIRECT works by a three-step process, implemented in the functions
4286  * below:
4287  *
4288  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4289  *    of the redirect and store it (along with some other metadata) in a per-CPU
4290  *    struct bpf_redirect_info.
4291  *
4292  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4293  *    call xdp_do_redirect() which will use the information in struct
4294  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4295  *    bulk queue structure.
4296  *
4297  * 3. Before exiting its NAPI poll loop, the driver will call
4298  *    xdp_do_flush(), which will flush all the different bulk queues,
4299  *    thus completing the redirect. Note that xdp_do_flush() must be
4300  *    called before napi_complete_done() in the driver, as the
4301  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4302  *    through to the xdp_do_flush() call for RCU protection of all
4303  *    in-kernel data structures.
4304  */
4305 /*
4306  * Pointers to the map entries will be kept around for this whole sequence of
4307  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4308  * the core code; instead, the RCU protection relies on everything happening
4309  * inside a single NAPI poll sequence, which means it's between a pair of calls
4310  * to local_bh_disable()/local_bh_enable().
4311  *
4312  * The map entries are marked as __rcu and the map code makes sure to
4313  * dereference those pointers with rcu_dereference_check() in a way that works
4314  * for both sections that to hold an rcu_read_lock() and sections that are
4315  * called from NAPI without a separate rcu_read_lock(). The code below does not
4316  * use RCU annotations, but relies on those in the map code.
4317  */
xdp_do_flush(void)4318 void xdp_do_flush(void)
4319 {
4320 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4321 
4322 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4323 	if (lh_dev)
4324 		__dev_flush(lh_dev);
4325 	if (lh_map)
4326 		__cpu_map_flush(lh_map);
4327 	if (lh_xsk)
4328 		__xsk_map_flush(lh_xsk);
4329 }
4330 EXPORT_SYMBOL_GPL(xdp_do_flush);
4331 
4332 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4333 void xdp_do_check_flushed(struct napi_struct *napi)
4334 {
4335 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4336 	bool missed = false;
4337 
4338 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4339 	if (lh_dev) {
4340 		__dev_flush(lh_dev);
4341 		missed = true;
4342 	}
4343 	if (lh_map) {
4344 		__cpu_map_flush(lh_map);
4345 		missed = true;
4346 	}
4347 	if (lh_xsk) {
4348 		__xsk_map_flush(lh_xsk);
4349 		missed = true;
4350 	}
4351 
4352 	WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4353 		  napi->poll);
4354 }
4355 #endif
4356 
4357 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4358 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4359 
xdp_master_redirect(struct xdp_buff * xdp)4360 u32 xdp_master_redirect(struct xdp_buff *xdp)
4361 {
4362 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4363 	struct net_device *master, *slave;
4364 
4365 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4366 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4367 	if (slave && slave != xdp->rxq->dev) {
4368 		/* The target device is different from the receiving device, so
4369 		 * redirect it to the new device.
4370 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4371 		 * drivers to unmap the packet from their rx ring.
4372 		 */
4373 		ri->tgt_index = slave->ifindex;
4374 		ri->map_id = INT_MAX;
4375 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4376 		return XDP_REDIRECT;
4377 	}
4378 	return XDP_TX;
4379 }
4380 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4381 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4382 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4383 					const struct net_device *dev,
4384 					struct xdp_buff *xdp,
4385 					const struct bpf_prog *xdp_prog)
4386 {
4387 	enum bpf_map_type map_type = ri->map_type;
4388 	void *fwd = ri->tgt_value;
4389 	u32 map_id = ri->map_id;
4390 	int err;
4391 
4392 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4393 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4394 
4395 	err = __xsk_map_redirect(fwd, xdp);
4396 	if (unlikely(err))
4397 		goto err;
4398 
4399 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4400 	return 0;
4401 err:
4402 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4403 	return err;
4404 }
4405 
4406 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4407 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4408 			struct xdp_frame *xdpf,
4409 			const struct bpf_prog *xdp_prog)
4410 {
4411 	enum bpf_map_type map_type = ri->map_type;
4412 	void *fwd = ri->tgt_value;
4413 	u32 map_id = ri->map_id;
4414 	u32 flags = ri->flags;
4415 	struct bpf_map *map;
4416 	int err;
4417 
4418 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4419 	ri->flags = 0;
4420 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4421 
4422 	if (unlikely(!xdpf)) {
4423 		err = -EOVERFLOW;
4424 		goto err;
4425 	}
4426 
4427 	switch (map_type) {
4428 	case BPF_MAP_TYPE_DEVMAP:
4429 		fallthrough;
4430 	case BPF_MAP_TYPE_DEVMAP_HASH:
4431 		if (unlikely(flags & BPF_F_BROADCAST)) {
4432 			map = READ_ONCE(ri->map);
4433 
4434 			/* The map pointer is cleared when the map is being torn
4435 			 * down by dev_map_free()
4436 			 */
4437 			if (unlikely(!map)) {
4438 				err = -ENOENT;
4439 				break;
4440 			}
4441 
4442 			WRITE_ONCE(ri->map, NULL);
4443 			err = dev_map_enqueue_multi(xdpf, dev, map,
4444 						    flags & BPF_F_EXCLUDE_INGRESS);
4445 		} else {
4446 			err = dev_map_enqueue(fwd, xdpf, dev);
4447 		}
4448 		break;
4449 	case BPF_MAP_TYPE_CPUMAP:
4450 		err = cpu_map_enqueue(fwd, xdpf, dev);
4451 		break;
4452 	case BPF_MAP_TYPE_UNSPEC:
4453 		if (map_id == INT_MAX) {
4454 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4455 			if (unlikely(!fwd)) {
4456 				err = -EINVAL;
4457 				break;
4458 			}
4459 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4460 			break;
4461 		}
4462 		fallthrough;
4463 	default:
4464 		err = -EBADRQC;
4465 	}
4466 
4467 	if (unlikely(err))
4468 		goto err;
4469 
4470 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4471 	return 0;
4472 err:
4473 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4474 	return err;
4475 }
4476 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4477 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4478 		    const struct bpf_prog *xdp_prog)
4479 {
4480 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4481 	enum bpf_map_type map_type = ri->map_type;
4482 
4483 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4484 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4485 
4486 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4487 				       xdp_prog);
4488 }
4489 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4490 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4491 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4492 			  struct xdp_frame *xdpf,
4493 			  const struct bpf_prog *xdp_prog)
4494 {
4495 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4496 	enum bpf_map_type map_type = ri->map_type;
4497 
4498 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4499 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4500 
4501 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4502 }
4503 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4504 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4505 static int xdp_do_generic_redirect_map(struct net_device *dev,
4506 				       struct sk_buff *skb,
4507 				       struct xdp_buff *xdp,
4508 				       const struct bpf_prog *xdp_prog,
4509 				       void *fwd, enum bpf_map_type map_type,
4510 				       u32 map_id, u32 flags)
4511 {
4512 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4513 	struct bpf_map *map;
4514 	int err;
4515 
4516 	switch (map_type) {
4517 	case BPF_MAP_TYPE_DEVMAP:
4518 		fallthrough;
4519 	case BPF_MAP_TYPE_DEVMAP_HASH:
4520 		if (unlikely(flags & BPF_F_BROADCAST)) {
4521 			map = READ_ONCE(ri->map);
4522 
4523 			/* The map pointer is cleared when the map is being torn
4524 			 * down by dev_map_free()
4525 			 */
4526 			if (unlikely(!map)) {
4527 				err = -ENOENT;
4528 				break;
4529 			}
4530 
4531 			WRITE_ONCE(ri->map, NULL);
4532 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4533 						     flags & BPF_F_EXCLUDE_INGRESS);
4534 		} else {
4535 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4536 		}
4537 		if (unlikely(err))
4538 			goto err;
4539 		break;
4540 	case BPF_MAP_TYPE_XSKMAP:
4541 		err = xsk_generic_rcv(fwd, xdp);
4542 		if (err)
4543 			goto err;
4544 		consume_skb(skb);
4545 		break;
4546 	case BPF_MAP_TYPE_CPUMAP:
4547 		err = cpu_map_generic_redirect(fwd, skb);
4548 		if (unlikely(err))
4549 			goto err;
4550 		break;
4551 	default:
4552 		err = -EBADRQC;
4553 		goto err;
4554 	}
4555 
4556 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4557 	return 0;
4558 err:
4559 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4560 	return err;
4561 }
4562 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4563 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4564 			    struct xdp_buff *xdp,
4565 			    const struct bpf_prog *xdp_prog)
4566 {
4567 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4568 	enum bpf_map_type map_type = ri->map_type;
4569 	void *fwd = ri->tgt_value;
4570 	u32 map_id = ri->map_id;
4571 	u32 flags = ri->flags;
4572 	int err;
4573 
4574 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4575 	ri->flags = 0;
4576 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4577 
4578 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4579 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4580 		if (unlikely(!fwd)) {
4581 			err = -EINVAL;
4582 			goto err;
4583 		}
4584 
4585 		err = xdp_ok_fwd_dev(fwd, skb->len);
4586 		if (unlikely(err))
4587 			goto err;
4588 
4589 		skb->dev = fwd;
4590 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4591 		generic_xdp_tx(skb, xdp_prog);
4592 		return 0;
4593 	}
4594 
4595 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4596 err:
4597 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4598 	return err;
4599 }
4600 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4601 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4602 {
4603 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4604 
4605 	if (unlikely(flags))
4606 		return XDP_ABORTED;
4607 
4608 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4609 	 * by map_idr) is used for ifindex based XDP redirect.
4610 	 */
4611 	ri->tgt_index = ifindex;
4612 	ri->map_id = INT_MAX;
4613 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4614 
4615 	return XDP_REDIRECT;
4616 }
4617 
4618 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4619 	.func           = bpf_xdp_redirect,
4620 	.gpl_only       = false,
4621 	.ret_type       = RET_INTEGER,
4622 	.arg1_type      = ARG_ANYTHING,
4623 	.arg2_type      = ARG_ANYTHING,
4624 };
4625 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4626 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4627 	   u64, flags)
4628 {
4629 	return map->ops->map_redirect(map, key, flags);
4630 }
4631 
4632 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4633 	.func           = bpf_xdp_redirect_map,
4634 	.gpl_only       = false,
4635 	.ret_type       = RET_INTEGER,
4636 	.arg1_type      = ARG_CONST_MAP_PTR,
4637 	.arg2_type      = ARG_ANYTHING,
4638 	.arg3_type      = ARG_ANYTHING,
4639 };
4640 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4641 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4642 				  unsigned long off, unsigned long len)
4643 {
4644 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4645 
4646 	if (unlikely(!ptr))
4647 		return len;
4648 	if (ptr != dst_buff)
4649 		memcpy(dst_buff, ptr, len);
4650 
4651 	return 0;
4652 }
4653 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4654 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4655 	   u64, flags, void *, meta, u64, meta_size)
4656 {
4657 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4658 
4659 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4660 		return -EINVAL;
4661 	if (unlikely(!skb || skb_size > skb->len))
4662 		return -EFAULT;
4663 
4664 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4665 				bpf_skb_copy);
4666 }
4667 
4668 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4669 	.func		= bpf_skb_event_output,
4670 	.gpl_only	= true,
4671 	.ret_type	= RET_INTEGER,
4672 	.arg1_type	= ARG_PTR_TO_CTX,
4673 	.arg2_type	= ARG_CONST_MAP_PTR,
4674 	.arg3_type	= ARG_ANYTHING,
4675 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4676 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4677 };
4678 
4679 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4680 
4681 const struct bpf_func_proto bpf_skb_output_proto = {
4682 	.func		= bpf_skb_event_output,
4683 	.gpl_only	= true,
4684 	.ret_type	= RET_INTEGER,
4685 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4686 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4687 	.arg2_type	= ARG_CONST_MAP_PTR,
4688 	.arg3_type	= ARG_ANYTHING,
4689 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4690 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4691 };
4692 
bpf_tunnel_key_af(u64 flags)4693 static unsigned short bpf_tunnel_key_af(u64 flags)
4694 {
4695 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4696 }
4697 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4698 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4699 	   u32, size, u64, flags)
4700 {
4701 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4702 	u8 compat[sizeof(struct bpf_tunnel_key)];
4703 	void *to_orig = to;
4704 	int err;
4705 
4706 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4707 					 BPF_F_TUNINFO_FLAGS)))) {
4708 		err = -EINVAL;
4709 		goto err_clear;
4710 	}
4711 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4712 		err = -EPROTO;
4713 		goto err_clear;
4714 	}
4715 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4716 		err = -EINVAL;
4717 		switch (size) {
4718 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4719 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4720 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4721 			goto set_compat;
4722 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4723 			/* Fixup deprecated structure layouts here, so we have
4724 			 * a common path later on.
4725 			 */
4726 			if (ip_tunnel_info_af(info) != AF_INET)
4727 				goto err_clear;
4728 set_compat:
4729 			to = (struct bpf_tunnel_key *)compat;
4730 			break;
4731 		default:
4732 			goto err_clear;
4733 		}
4734 	}
4735 
4736 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4737 	to->tunnel_tos = info->key.tos;
4738 	to->tunnel_ttl = info->key.ttl;
4739 	if (flags & BPF_F_TUNINFO_FLAGS)
4740 		to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4741 	else
4742 		to->tunnel_ext = 0;
4743 
4744 	if (flags & BPF_F_TUNINFO_IPV6) {
4745 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4746 		       sizeof(to->remote_ipv6));
4747 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4748 		       sizeof(to->local_ipv6));
4749 		to->tunnel_label = be32_to_cpu(info->key.label);
4750 	} else {
4751 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4752 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4753 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4754 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4755 		to->tunnel_label = 0;
4756 	}
4757 
4758 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4759 		memcpy(to_orig, to, size);
4760 
4761 	return 0;
4762 err_clear:
4763 	memset(to_orig, 0, size);
4764 	return err;
4765 }
4766 
4767 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4768 	.func		= bpf_skb_get_tunnel_key,
4769 	.gpl_only	= false,
4770 	.ret_type	= RET_INTEGER,
4771 	.arg1_type	= ARG_PTR_TO_CTX,
4772 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4773 	.arg3_type	= ARG_CONST_SIZE,
4774 	.arg4_type	= ARG_ANYTHING,
4775 };
4776 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4777 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4778 {
4779 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4780 	int err;
4781 
4782 	if (unlikely(!info ||
4783 		     !ip_tunnel_is_options_present(info->key.tun_flags))) {
4784 		err = -ENOENT;
4785 		goto err_clear;
4786 	}
4787 	if (unlikely(size < info->options_len)) {
4788 		err = -ENOMEM;
4789 		goto err_clear;
4790 	}
4791 
4792 	ip_tunnel_info_opts_get(to, info);
4793 	if (size > info->options_len)
4794 		memset(to + info->options_len, 0, size - info->options_len);
4795 
4796 	return info->options_len;
4797 err_clear:
4798 	memset(to, 0, size);
4799 	return err;
4800 }
4801 
4802 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4803 	.func		= bpf_skb_get_tunnel_opt,
4804 	.gpl_only	= false,
4805 	.ret_type	= RET_INTEGER,
4806 	.arg1_type	= ARG_PTR_TO_CTX,
4807 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4808 	.arg3_type	= ARG_CONST_SIZE,
4809 };
4810 
4811 static struct metadata_dst __percpu *md_dst;
4812 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4813 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4814 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4815 {
4816 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4817 	u8 compat[sizeof(struct bpf_tunnel_key)];
4818 	struct ip_tunnel_info *info;
4819 
4820 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4821 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4822 			       BPF_F_NO_TUNNEL_KEY)))
4823 		return -EINVAL;
4824 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4825 		switch (size) {
4826 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4827 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4828 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4829 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4830 			/* Fixup deprecated structure layouts here, so we have
4831 			 * a common path later on.
4832 			 */
4833 			memcpy(compat, from, size);
4834 			memset(compat + size, 0, sizeof(compat) - size);
4835 			from = (const struct bpf_tunnel_key *) compat;
4836 			break;
4837 		default:
4838 			return -EINVAL;
4839 		}
4840 	}
4841 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4842 		     from->tunnel_ext))
4843 		return -EINVAL;
4844 
4845 	skb_dst_drop(skb);
4846 	dst_hold((struct dst_entry *) md);
4847 	skb_dst_set(skb, (struct dst_entry *) md);
4848 
4849 	info = &md->u.tun_info;
4850 	memset(info, 0, sizeof(*info));
4851 	info->mode = IP_TUNNEL_INFO_TX;
4852 
4853 	__set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4854 	__assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4855 		     flags & BPF_F_DONT_FRAGMENT);
4856 	__assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4857 		     !(flags & BPF_F_ZERO_CSUM_TX));
4858 	__assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4859 		     flags & BPF_F_SEQ_NUMBER);
4860 	__assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4861 		     !(flags & BPF_F_NO_TUNNEL_KEY));
4862 
4863 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4864 	info->key.tos = from->tunnel_tos;
4865 	info->key.ttl = from->tunnel_ttl;
4866 
4867 	if (flags & BPF_F_TUNINFO_IPV6) {
4868 		info->mode |= IP_TUNNEL_INFO_IPV6;
4869 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4870 		       sizeof(from->remote_ipv6));
4871 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4872 		       sizeof(from->local_ipv6));
4873 		info->key.label = cpu_to_be32(from->tunnel_label) &
4874 				  IPV6_FLOWLABEL_MASK;
4875 	} else {
4876 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4877 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4878 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4885 	.func		= bpf_skb_set_tunnel_key,
4886 	.gpl_only	= false,
4887 	.ret_type	= RET_INTEGER,
4888 	.arg1_type	= ARG_PTR_TO_CTX,
4889 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4890 	.arg3_type	= ARG_CONST_SIZE,
4891 	.arg4_type	= ARG_ANYTHING,
4892 };
4893 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4894 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4895 	   const u8 *, from, u32, size)
4896 {
4897 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4898 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4899 	IP_TUNNEL_DECLARE_FLAGS(present) = { };
4900 
4901 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4902 		return -EINVAL;
4903 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4904 		return -ENOMEM;
4905 
4906 	ip_tunnel_set_options_present(present);
4907 	ip_tunnel_info_opts_set(info, from, size, present);
4908 
4909 	return 0;
4910 }
4911 
4912 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4913 	.func		= bpf_skb_set_tunnel_opt,
4914 	.gpl_only	= false,
4915 	.ret_type	= RET_INTEGER,
4916 	.arg1_type	= ARG_PTR_TO_CTX,
4917 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4918 	.arg3_type	= ARG_CONST_SIZE,
4919 };
4920 
4921 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4922 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4923 {
4924 	if (!md_dst) {
4925 		struct metadata_dst __percpu *tmp;
4926 
4927 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4928 						METADATA_IP_TUNNEL,
4929 						GFP_KERNEL);
4930 		if (!tmp)
4931 			return NULL;
4932 		if (cmpxchg(&md_dst, NULL, tmp))
4933 			metadata_dst_free_percpu(tmp);
4934 	}
4935 
4936 	switch (which) {
4937 	case BPF_FUNC_skb_set_tunnel_key:
4938 		return &bpf_skb_set_tunnel_key_proto;
4939 	case BPF_FUNC_skb_set_tunnel_opt:
4940 		return &bpf_skb_set_tunnel_opt_proto;
4941 	default:
4942 		return NULL;
4943 	}
4944 }
4945 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4946 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4947 	   u32, idx)
4948 {
4949 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4950 	struct cgroup *cgrp;
4951 	struct sock *sk;
4952 
4953 	sk = skb_to_full_sk(skb);
4954 	if (!sk || !sk_fullsock(sk))
4955 		return -ENOENT;
4956 	if (unlikely(idx >= array->map.max_entries))
4957 		return -E2BIG;
4958 
4959 	cgrp = READ_ONCE(array->ptrs[idx]);
4960 	if (unlikely(!cgrp))
4961 		return -EAGAIN;
4962 
4963 	return sk_under_cgroup_hierarchy(sk, cgrp);
4964 }
4965 
4966 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4967 	.func		= bpf_skb_under_cgroup,
4968 	.gpl_only	= false,
4969 	.ret_type	= RET_INTEGER,
4970 	.arg1_type	= ARG_PTR_TO_CTX,
4971 	.arg2_type	= ARG_CONST_MAP_PTR,
4972 	.arg3_type	= ARG_ANYTHING,
4973 };
4974 
4975 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4976 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4977 {
4978 	struct cgroup *cgrp;
4979 
4980 	sk = sk_to_full_sk(sk);
4981 	if (!sk || !sk_fullsock(sk))
4982 		return 0;
4983 
4984 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4985 	return cgroup_id(cgrp);
4986 }
4987 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4988 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4989 {
4990 	return __bpf_sk_cgroup_id(skb->sk);
4991 }
4992 
4993 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4994 	.func           = bpf_skb_cgroup_id,
4995 	.gpl_only       = false,
4996 	.ret_type       = RET_INTEGER,
4997 	.arg1_type      = ARG_PTR_TO_CTX,
4998 };
4999 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)5000 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
5001 					      int ancestor_level)
5002 {
5003 	struct cgroup *ancestor;
5004 	struct cgroup *cgrp;
5005 
5006 	sk = sk_to_full_sk(sk);
5007 	if (!sk || !sk_fullsock(sk))
5008 		return 0;
5009 
5010 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5011 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
5012 	if (!ancestor)
5013 		return 0;
5014 
5015 	return cgroup_id(ancestor);
5016 }
5017 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5018 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5019 	   ancestor_level)
5020 {
5021 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5022 }
5023 
5024 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5025 	.func           = bpf_skb_ancestor_cgroup_id,
5026 	.gpl_only       = false,
5027 	.ret_type       = RET_INTEGER,
5028 	.arg1_type      = ARG_PTR_TO_CTX,
5029 	.arg2_type      = ARG_ANYTHING,
5030 };
5031 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5032 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5033 {
5034 	return __bpf_sk_cgroup_id(sk);
5035 }
5036 
5037 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5038 	.func           = bpf_sk_cgroup_id,
5039 	.gpl_only       = false,
5040 	.ret_type       = RET_INTEGER,
5041 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5042 };
5043 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5044 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5045 {
5046 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5047 }
5048 
5049 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5050 	.func           = bpf_sk_ancestor_cgroup_id,
5051 	.gpl_only       = false,
5052 	.ret_type       = RET_INTEGER,
5053 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5054 	.arg2_type      = ARG_ANYTHING,
5055 };
5056 #endif
5057 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5058 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5059 				  unsigned long off, unsigned long len)
5060 {
5061 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5062 
5063 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5064 	return 0;
5065 }
5066 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5067 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5068 	   u64, flags, void *, meta, u64, meta_size)
5069 {
5070 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5071 
5072 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5073 		return -EINVAL;
5074 
5075 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5076 		return -EFAULT;
5077 
5078 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5079 				xdp_size, bpf_xdp_copy);
5080 }
5081 
5082 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5083 	.func		= bpf_xdp_event_output,
5084 	.gpl_only	= true,
5085 	.ret_type	= RET_INTEGER,
5086 	.arg1_type	= ARG_PTR_TO_CTX,
5087 	.arg2_type	= ARG_CONST_MAP_PTR,
5088 	.arg3_type	= ARG_ANYTHING,
5089 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5090 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5091 };
5092 
5093 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5094 
5095 const struct bpf_func_proto bpf_xdp_output_proto = {
5096 	.func		= bpf_xdp_event_output,
5097 	.gpl_only	= true,
5098 	.ret_type	= RET_INTEGER,
5099 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5100 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5101 	.arg2_type	= ARG_CONST_MAP_PTR,
5102 	.arg3_type	= ARG_ANYTHING,
5103 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5104 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5105 };
5106 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5107 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5108 {
5109 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5110 }
5111 
5112 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5113 	.func           = bpf_get_socket_cookie,
5114 	.gpl_only       = false,
5115 	.ret_type       = RET_INTEGER,
5116 	.arg1_type      = ARG_PTR_TO_CTX,
5117 };
5118 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5119 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5120 {
5121 	return __sock_gen_cookie(ctx->sk);
5122 }
5123 
5124 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5125 	.func		= bpf_get_socket_cookie_sock_addr,
5126 	.gpl_only	= false,
5127 	.ret_type	= RET_INTEGER,
5128 	.arg1_type	= ARG_PTR_TO_CTX,
5129 };
5130 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5131 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5132 {
5133 	return __sock_gen_cookie(ctx);
5134 }
5135 
5136 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5137 	.func		= bpf_get_socket_cookie_sock,
5138 	.gpl_only	= false,
5139 	.ret_type	= RET_INTEGER,
5140 	.arg1_type	= ARG_PTR_TO_CTX,
5141 };
5142 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5143 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5144 {
5145 	return sk ? sock_gen_cookie(sk) : 0;
5146 }
5147 
5148 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5149 	.func		= bpf_get_socket_ptr_cookie,
5150 	.gpl_only	= false,
5151 	.ret_type	= RET_INTEGER,
5152 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5153 };
5154 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5155 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5156 {
5157 	return __sock_gen_cookie(ctx->sk);
5158 }
5159 
5160 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5161 	.func		= bpf_get_socket_cookie_sock_ops,
5162 	.gpl_only	= false,
5163 	.ret_type	= RET_INTEGER,
5164 	.arg1_type	= ARG_PTR_TO_CTX,
5165 };
5166 
__bpf_get_netns_cookie(struct sock * sk)5167 static u64 __bpf_get_netns_cookie(struct sock *sk)
5168 {
5169 	const struct net *net = sk ? sock_net(sk) : &init_net;
5170 
5171 	return net->net_cookie;
5172 }
5173 
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5174 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5175 {
5176 	return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5177 }
5178 
5179 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5180 	.func           = bpf_get_netns_cookie,
5181 	.ret_type       = RET_INTEGER,
5182 	.arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5183 };
5184 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5185 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5186 {
5187 	return __bpf_get_netns_cookie(ctx);
5188 }
5189 
5190 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5191 	.func		= bpf_get_netns_cookie_sock,
5192 	.gpl_only	= false,
5193 	.ret_type	= RET_INTEGER,
5194 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5195 };
5196 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5197 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5198 {
5199 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5200 }
5201 
5202 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5203 	.func		= bpf_get_netns_cookie_sock_addr,
5204 	.gpl_only	= false,
5205 	.ret_type	= RET_INTEGER,
5206 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5207 };
5208 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5209 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5210 {
5211 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5212 }
5213 
5214 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5215 	.func		= bpf_get_netns_cookie_sock_ops,
5216 	.gpl_only	= false,
5217 	.ret_type	= RET_INTEGER,
5218 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5219 };
5220 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5221 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5222 {
5223 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5224 }
5225 
5226 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5227 	.func		= bpf_get_netns_cookie_sk_msg,
5228 	.gpl_only	= false,
5229 	.ret_type	= RET_INTEGER,
5230 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5231 };
5232 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5233 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5234 {
5235 	struct sock *sk = sk_to_full_sk(skb->sk);
5236 	kuid_t kuid;
5237 
5238 	if (!sk || !sk_fullsock(sk))
5239 		return overflowuid;
5240 	kuid = sock_net_uid(sock_net(sk), sk);
5241 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5242 }
5243 
5244 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5245 	.func           = bpf_get_socket_uid,
5246 	.gpl_only       = false,
5247 	.ret_type       = RET_INTEGER,
5248 	.arg1_type      = ARG_PTR_TO_CTX,
5249 };
5250 
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5251 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5252 {
5253 	u32 sk_bpf_cb_flags;
5254 
5255 	if (getopt) {
5256 		*(u32 *)optval = sk->sk_bpf_cb_flags;
5257 		return 0;
5258 	}
5259 
5260 	sk_bpf_cb_flags = *(u32 *)optval;
5261 
5262 	if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5263 		return -EINVAL;
5264 
5265 	sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5266 
5267 	return 0;
5268 }
5269 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5270 static int sol_socket_sockopt(struct sock *sk, int optname,
5271 			      char *optval, int *optlen,
5272 			      bool getopt)
5273 {
5274 	switch (optname) {
5275 	case SO_REUSEADDR:
5276 	case SO_SNDBUF:
5277 	case SO_RCVBUF:
5278 	case SO_KEEPALIVE:
5279 	case SO_PRIORITY:
5280 	case SO_REUSEPORT:
5281 	case SO_RCVLOWAT:
5282 	case SO_MARK:
5283 	case SO_MAX_PACING_RATE:
5284 	case SO_BINDTOIFINDEX:
5285 	case SO_TXREHASH:
5286 	case SK_BPF_CB_FLAGS:
5287 		if (*optlen != sizeof(int))
5288 			return -EINVAL;
5289 		break;
5290 	case SO_BINDTODEVICE:
5291 		break;
5292 	default:
5293 		return -EINVAL;
5294 	}
5295 
5296 	if (optname == SK_BPF_CB_FLAGS)
5297 		return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5298 
5299 	if (getopt) {
5300 		if (optname == SO_BINDTODEVICE)
5301 			return -EINVAL;
5302 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5303 				     KERNEL_SOCKPTR(optval),
5304 				     KERNEL_SOCKPTR(optlen));
5305 	}
5306 
5307 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5308 			     KERNEL_SOCKPTR(optval), *optlen);
5309 }
5310 
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5311 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5312 				  char *optval, int optlen)
5313 {
5314 	if (optlen != sizeof(int))
5315 		return -EINVAL;
5316 
5317 	switch (optname) {
5318 	case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5319 		int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5320 
5321 		memcpy(optval, &cb_flags, optlen);
5322 		break;
5323 	}
5324 	case TCP_BPF_RTO_MIN: {
5325 		int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5326 
5327 		memcpy(optval, &rto_min_us, optlen);
5328 		break;
5329 	}
5330 	case TCP_BPF_DELACK_MAX: {
5331 		int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5332 
5333 		memcpy(optval, &delack_max_us, optlen);
5334 		break;
5335 	}
5336 	default:
5337 		return -EINVAL;
5338 	}
5339 
5340 	return 0;
5341 }
5342 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5343 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5344 				  char *optval, int optlen)
5345 {
5346 	struct tcp_sock *tp = tcp_sk(sk);
5347 	unsigned long timeout;
5348 	int val;
5349 
5350 	if (optlen != sizeof(int))
5351 		return -EINVAL;
5352 
5353 	val = *(int *)optval;
5354 
5355 	/* Only some options are supported */
5356 	switch (optname) {
5357 	case TCP_BPF_IW:
5358 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5359 			return -EINVAL;
5360 		tcp_snd_cwnd_set(tp, val);
5361 		break;
5362 	case TCP_BPF_SNDCWND_CLAMP:
5363 		if (val <= 0)
5364 			return -EINVAL;
5365 		tp->snd_cwnd_clamp = val;
5366 		tp->snd_ssthresh = val;
5367 		break;
5368 	case TCP_BPF_DELACK_MAX:
5369 		timeout = usecs_to_jiffies(val);
5370 		if (timeout > TCP_DELACK_MAX ||
5371 		    timeout < TCP_TIMEOUT_MIN)
5372 			return -EINVAL;
5373 		inet_csk(sk)->icsk_delack_max = timeout;
5374 		break;
5375 	case TCP_BPF_RTO_MIN:
5376 		timeout = usecs_to_jiffies(val);
5377 		if (timeout > TCP_RTO_MIN ||
5378 		    timeout < TCP_TIMEOUT_MIN)
5379 			return -EINVAL;
5380 		inet_csk(sk)->icsk_rto_min = timeout;
5381 		break;
5382 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5383 		if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5384 			return -EINVAL;
5385 		tp->bpf_sock_ops_cb_flags = val;
5386 		break;
5387 	default:
5388 		return -EINVAL;
5389 	}
5390 
5391 	return 0;
5392 }
5393 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5394 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5395 				      int *optlen, bool getopt)
5396 {
5397 	struct tcp_sock *tp;
5398 	int ret;
5399 
5400 	if (*optlen < 2)
5401 		return -EINVAL;
5402 
5403 	if (getopt) {
5404 		if (!inet_csk(sk)->icsk_ca_ops)
5405 			return -EINVAL;
5406 		/* BPF expects NULL-terminated tcp-cc string */
5407 		optval[--(*optlen)] = '\0';
5408 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5409 					 KERNEL_SOCKPTR(optval),
5410 					 KERNEL_SOCKPTR(optlen));
5411 	}
5412 
5413 	/* "cdg" is the only cc that alloc a ptr
5414 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5415 	 * overwrite this ptr after switching to cdg.
5416 	 */
5417 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5418 		return -ENOTSUPP;
5419 
5420 	/* It stops this looping
5421 	 *
5422 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5423 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5424 	 *
5425 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5426 	 * in order to break the loop when both .init
5427 	 * are the same bpf prog.
5428 	 *
5429 	 * This applies even the second bpf_setsockopt(tcp_cc)
5430 	 * does not cause a loop.  This limits only the first
5431 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5432 	 * pick a fallback cc (eg. peer does not support ECN)
5433 	 * and the second '.init' cannot fallback to
5434 	 * another.
5435 	 */
5436 	tp = tcp_sk(sk);
5437 	if (tp->bpf_chg_cc_inprogress)
5438 		return -EBUSY;
5439 
5440 	tp->bpf_chg_cc_inprogress = 1;
5441 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5442 				KERNEL_SOCKPTR(optval), *optlen);
5443 	tp->bpf_chg_cc_inprogress = 0;
5444 	return ret;
5445 }
5446 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5447 static int sol_tcp_sockopt(struct sock *sk, int optname,
5448 			   char *optval, int *optlen,
5449 			   bool getopt)
5450 {
5451 	if (sk->sk_protocol != IPPROTO_TCP)
5452 		return -EINVAL;
5453 
5454 	switch (optname) {
5455 	case TCP_NODELAY:
5456 	case TCP_MAXSEG:
5457 	case TCP_KEEPIDLE:
5458 	case TCP_KEEPINTVL:
5459 	case TCP_KEEPCNT:
5460 	case TCP_SYNCNT:
5461 	case TCP_WINDOW_CLAMP:
5462 	case TCP_THIN_LINEAR_TIMEOUTS:
5463 	case TCP_USER_TIMEOUT:
5464 	case TCP_NOTSENT_LOWAT:
5465 	case TCP_SAVE_SYN:
5466 	case TCP_RTO_MAX_MS:
5467 		if (*optlen != sizeof(int))
5468 			return -EINVAL;
5469 		break;
5470 	case TCP_CONGESTION:
5471 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5472 	case TCP_SAVED_SYN:
5473 		if (*optlen < 1)
5474 			return -EINVAL;
5475 		break;
5476 	default:
5477 		if (getopt)
5478 			return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5479 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5480 	}
5481 
5482 	if (getopt) {
5483 		if (optname == TCP_SAVED_SYN) {
5484 			struct tcp_sock *tp = tcp_sk(sk);
5485 
5486 			if (!tp->saved_syn ||
5487 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5488 				return -EINVAL;
5489 			memcpy(optval, tp->saved_syn->data, *optlen);
5490 			/* It cannot free tp->saved_syn here because it
5491 			 * does not know if the user space still needs it.
5492 			 */
5493 			return 0;
5494 		}
5495 
5496 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5497 					 KERNEL_SOCKPTR(optval),
5498 					 KERNEL_SOCKPTR(optlen));
5499 	}
5500 
5501 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5502 				 KERNEL_SOCKPTR(optval), *optlen);
5503 }
5504 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5505 static int sol_ip_sockopt(struct sock *sk, int optname,
5506 			  char *optval, int *optlen,
5507 			  bool getopt)
5508 {
5509 	if (sk->sk_family != AF_INET)
5510 		return -EINVAL;
5511 
5512 	switch (optname) {
5513 	case IP_TOS:
5514 		if (*optlen != sizeof(int))
5515 			return -EINVAL;
5516 		break;
5517 	default:
5518 		return -EINVAL;
5519 	}
5520 
5521 	if (getopt)
5522 		return do_ip_getsockopt(sk, SOL_IP, optname,
5523 					KERNEL_SOCKPTR(optval),
5524 					KERNEL_SOCKPTR(optlen));
5525 
5526 	return do_ip_setsockopt(sk, SOL_IP, optname,
5527 				KERNEL_SOCKPTR(optval), *optlen);
5528 }
5529 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5530 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5531 			    char *optval, int *optlen,
5532 			    bool getopt)
5533 {
5534 	if (sk->sk_family != AF_INET6)
5535 		return -EINVAL;
5536 
5537 	switch (optname) {
5538 	case IPV6_TCLASS:
5539 	case IPV6_AUTOFLOWLABEL:
5540 		if (*optlen != sizeof(int))
5541 			return -EINVAL;
5542 		break;
5543 	default:
5544 		return -EINVAL;
5545 	}
5546 
5547 	if (getopt)
5548 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5549 						      KERNEL_SOCKPTR(optval),
5550 						      KERNEL_SOCKPTR(optlen));
5551 
5552 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5553 					      KERNEL_SOCKPTR(optval), *optlen);
5554 }
5555 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5556 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5557 			    char *optval, int optlen)
5558 {
5559 	if (!sk_fullsock(sk))
5560 		return -EINVAL;
5561 
5562 	if (level == SOL_SOCKET)
5563 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5564 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5565 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5566 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5567 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5568 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5569 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5570 
5571 	return -EINVAL;
5572 }
5573 
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5574 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5575 {
5576 	return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5577 }
5578 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5579 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5580 			   char *optval, int optlen)
5581 {
5582 	if (sk_fullsock(sk))
5583 		sock_owned_by_me(sk);
5584 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5585 }
5586 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5587 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5588 			    char *optval, int optlen)
5589 {
5590 	int err, saved_optlen = optlen;
5591 
5592 	if (!sk_fullsock(sk)) {
5593 		err = -EINVAL;
5594 		goto done;
5595 	}
5596 
5597 	if (level == SOL_SOCKET)
5598 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5599 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5600 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5601 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5602 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5603 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5604 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5605 	else
5606 		err = -EINVAL;
5607 
5608 done:
5609 	if (err)
5610 		optlen = 0;
5611 	if (optlen < saved_optlen)
5612 		memset(optval + optlen, 0, saved_optlen - optlen);
5613 	return err;
5614 }
5615 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5616 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5617 			   char *optval, int optlen)
5618 {
5619 	if (sk_fullsock(sk))
5620 		sock_owned_by_me(sk);
5621 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5622 }
5623 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5624 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5625 	   int, optname, char *, optval, int, optlen)
5626 {
5627 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5628 }
5629 
5630 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5631 	.func		= bpf_sk_setsockopt,
5632 	.gpl_only	= false,
5633 	.ret_type	= RET_INTEGER,
5634 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5635 	.arg2_type	= ARG_ANYTHING,
5636 	.arg3_type	= ARG_ANYTHING,
5637 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5638 	.arg5_type	= ARG_CONST_SIZE,
5639 };
5640 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5641 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5642 	   int, optname, char *, optval, int, optlen)
5643 {
5644 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5645 }
5646 
5647 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5648 	.func		= bpf_sk_getsockopt,
5649 	.gpl_only	= false,
5650 	.ret_type	= RET_INTEGER,
5651 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5652 	.arg2_type	= ARG_ANYTHING,
5653 	.arg3_type	= ARG_ANYTHING,
5654 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5655 	.arg5_type	= ARG_CONST_SIZE,
5656 };
5657 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5658 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5659 	   int, optname, char *, optval, int, optlen)
5660 {
5661 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5662 }
5663 
5664 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5665 	.func		= bpf_unlocked_sk_setsockopt,
5666 	.gpl_only	= false,
5667 	.ret_type	= RET_INTEGER,
5668 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5669 	.arg2_type	= ARG_ANYTHING,
5670 	.arg3_type	= ARG_ANYTHING,
5671 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5672 	.arg5_type	= ARG_CONST_SIZE,
5673 };
5674 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5675 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5676 	   int, optname, char *, optval, int, optlen)
5677 {
5678 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5679 }
5680 
5681 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5682 	.func		= bpf_unlocked_sk_getsockopt,
5683 	.gpl_only	= false,
5684 	.ret_type	= RET_INTEGER,
5685 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5686 	.arg2_type	= ARG_ANYTHING,
5687 	.arg3_type	= ARG_ANYTHING,
5688 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5689 	.arg5_type	= ARG_CONST_SIZE,
5690 };
5691 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5692 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5693 	   int, level, int, optname, char *, optval, int, optlen)
5694 {
5695 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5696 }
5697 
5698 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5699 	.func		= bpf_sock_addr_setsockopt,
5700 	.gpl_only	= false,
5701 	.ret_type	= RET_INTEGER,
5702 	.arg1_type	= ARG_PTR_TO_CTX,
5703 	.arg2_type	= ARG_ANYTHING,
5704 	.arg3_type	= ARG_ANYTHING,
5705 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5706 	.arg5_type	= ARG_CONST_SIZE,
5707 };
5708 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5709 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5710 	   int, level, int, optname, char *, optval, int, optlen)
5711 {
5712 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5713 }
5714 
5715 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5716 	.func		= bpf_sock_addr_getsockopt,
5717 	.gpl_only	= false,
5718 	.ret_type	= RET_INTEGER,
5719 	.arg1_type	= ARG_PTR_TO_CTX,
5720 	.arg2_type	= ARG_ANYTHING,
5721 	.arg3_type	= ARG_ANYTHING,
5722 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5723 	.arg5_type	= ARG_CONST_SIZE,
5724 };
5725 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5726 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5727 	   int, level, int, optname, char *, optval, int, optlen)
5728 {
5729 	if (!is_locked_tcp_sock_ops(bpf_sock))
5730 		return -EOPNOTSUPP;
5731 
5732 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5733 }
5734 
5735 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5736 	.func		= bpf_sock_ops_setsockopt,
5737 	.gpl_only	= false,
5738 	.ret_type	= RET_INTEGER,
5739 	.arg1_type	= ARG_PTR_TO_CTX,
5740 	.arg2_type	= ARG_ANYTHING,
5741 	.arg3_type	= ARG_ANYTHING,
5742 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5743 	.arg5_type	= ARG_CONST_SIZE,
5744 };
5745 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5746 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5747 				int optname, const u8 **start)
5748 {
5749 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5750 	const u8 *hdr_start;
5751 	int ret;
5752 
5753 	if (syn_skb) {
5754 		/* sk is a request_sock here */
5755 
5756 		if (optname == TCP_BPF_SYN) {
5757 			hdr_start = syn_skb->data;
5758 			ret = tcp_hdrlen(syn_skb);
5759 		} else if (optname == TCP_BPF_SYN_IP) {
5760 			hdr_start = skb_network_header(syn_skb);
5761 			ret = skb_network_header_len(syn_skb) +
5762 				tcp_hdrlen(syn_skb);
5763 		} else {
5764 			/* optname == TCP_BPF_SYN_MAC */
5765 			hdr_start = skb_mac_header(syn_skb);
5766 			ret = skb_mac_header_len(syn_skb) +
5767 				skb_network_header_len(syn_skb) +
5768 				tcp_hdrlen(syn_skb);
5769 		}
5770 	} else {
5771 		struct sock *sk = bpf_sock->sk;
5772 		struct saved_syn *saved_syn;
5773 
5774 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5775 			/* synack retransmit. bpf_sock->syn_skb will
5776 			 * not be available.  It has to resort to
5777 			 * saved_syn (if it is saved).
5778 			 */
5779 			saved_syn = inet_reqsk(sk)->saved_syn;
5780 		else
5781 			saved_syn = tcp_sk(sk)->saved_syn;
5782 
5783 		if (!saved_syn)
5784 			return -ENOENT;
5785 
5786 		if (optname == TCP_BPF_SYN) {
5787 			hdr_start = saved_syn->data +
5788 				saved_syn->mac_hdrlen +
5789 				saved_syn->network_hdrlen;
5790 			ret = saved_syn->tcp_hdrlen;
5791 		} else if (optname == TCP_BPF_SYN_IP) {
5792 			hdr_start = saved_syn->data +
5793 				saved_syn->mac_hdrlen;
5794 			ret = saved_syn->network_hdrlen +
5795 				saved_syn->tcp_hdrlen;
5796 		} else {
5797 			/* optname == TCP_BPF_SYN_MAC */
5798 
5799 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5800 			if (!saved_syn->mac_hdrlen)
5801 				return -ENOENT;
5802 
5803 			hdr_start = saved_syn->data;
5804 			ret = saved_syn->mac_hdrlen +
5805 				saved_syn->network_hdrlen +
5806 				saved_syn->tcp_hdrlen;
5807 		}
5808 	}
5809 
5810 	*start = hdr_start;
5811 	return ret;
5812 }
5813 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5814 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5815 	   int, level, int, optname, char *, optval, int, optlen)
5816 {
5817 	if (!is_locked_tcp_sock_ops(bpf_sock))
5818 		return -EOPNOTSUPP;
5819 
5820 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5821 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5822 		int ret, copy_len = 0;
5823 		const u8 *start;
5824 
5825 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5826 		if (ret > 0) {
5827 			copy_len = ret;
5828 			if (optlen < copy_len) {
5829 				copy_len = optlen;
5830 				ret = -ENOSPC;
5831 			}
5832 
5833 			memcpy(optval, start, copy_len);
5834 		}
5835 
5836 		/* Zero out unused buffer at the end */
5837 		memset(optval + copy_len, 0, optlen - copy_len);
5838 
5839 		return ret;
5840 	}
5841 
5842 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5843 }
5844 
5845 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5846 	.func		= bpf_sock_ops_getsockopt,
5847 	.gpl_only	= false,
5848 	.ret_type	= RET_INTEGER,
5849 	.arg1_type	= ARG_PTR_TO_CTX,
5850 	.arg2_type	= ARG_ANYTHING,
5851 	.arg3_type	= ARG_ANYTHING,
5852 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5853 	.arg5_type	= ARG_CONST_SIZE,
5854 };
5855 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5856 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5857 	   int, argval)
5858 {
5859 	struct sock *sk = bpf_sock->sk;
5860 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5861 
5862 	if (!is_locked_tcp_sock_ops(bpf_sock))
5863 		return -EOPNOTSUPP;
5864 
5865 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5866 		return -EINVAL;
5867 
5868 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5869 
5870 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5871 }
5872 
5873 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5874 	.func		= bpf_sock_ops_cb_flags_set,
5875 	.gpl_only	= false,
5876 	.ret_type	= RET_INTEGER,
5877 	.arg1_type	= ARG_PTR_TO_CTX,
5878 	.arg2_type	= ARG_ANYTHING,
5879 };
5880 
5881 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5882 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5883 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5884 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5885 	   int, addr_len)
5886 {
5887 #ifdef CONFIG_INET
5888 	struct sock *sk = ctx->sk;
5889 	u32 flags = BIND_FROM_BPF;
5890 	int err;
5891 
5892 	err = -EINVAL;
5893 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5894 		return err;
5895 	if (addr->sa_family == AF_INET) {
5896 		if (addr_len < sizeof(struct sockaddr_in))
5897 			return err;
5898 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5899 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5900 		return __inet_bind(sk, addr, addr_len, flags);
5901 #if IS_ENABLED(CONFIG_IPV6)
5902 	} else if (addr->sa_family == AF_INET6) {
5903 		if (addr_len < SIN6_LEN_RFC2133)
5904 			return err;
5905 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5906 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5907 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5908 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5909 		 */
5910 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5911 #endif /* CONFIG_IPV6 */
5912 	}
5913 #endif /* CONFIG_INET */
5914 
5915 	return -EAFNOSUPPORT;
5916 }
5917 
5918 static const struct bpf_func_proto bpf_bind_proto = {
5919 	.func		= bpf_bind,
5920 	.gpl_only	= false,
5921 	.ret_type	= RET_INTEGER,
5922 	.arg1_type	= ARG_PTR_TO_CTX,
5923 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5924 	.arg3_type	= ARG_CONST_SIZE,
5925 };
5926 
5927 #ifdef CONFIG_XFRM
5928 
5929 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5930     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5931 
5932 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5933 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5934 
5935 #endif
5936 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5937 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5938 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5939 {
5940 	const struct sec_path *sp = skb_sec_path(skb);
5941 	const struct xfrm_state *x;
5942 
5943 	if (!sp || unlikely(index >= sp->len || flags))
5944 		goto err_clear;
5945 
5946 	x = sp->xvec[index];
5947 
5948 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5949 		goto err_clear;
5950 
5951 	to->reqid = x->props.reqid;
5952 	to->spi = x->id.spi;
5953 	to->family = x->props.family;
5954 	to->ext = 0;
5955 
5956 	if (to->family == AF_INET6) {
5957 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5958 		       sizeof(to->remote_ipv6));
5959 	} else {
5960 		to->remote_ipv4 = x->props.saddr.a4;
5961 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5962 	}
5963 
5964 	return 0;
5965 err_clear:
5966 	memset(to, 0, size);
5967 	return -EINVAL;
5968 }
5969 
5970 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5971 	.func		= bpf_skb_get_xfrm_state,
5972 	.gpl_only	= false,
5973 	.ret_type	= RET_INTEGER,
5974 	.arg1_type	= ARG_PTR_TO_CTX,
5975 	.arg2_type	= ARG_ANYTHING,
5976 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5977 	.arg4_type	= ARG_CONST_SIZE,
5978 	.arg5_type	= ARG_ANYTHING,
5979 };
5980 #endif
5981 
5982 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5983 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5984 {
5985 	params->h_vlan_TCI = 0;
5986 	params->h_vlan_proto = 0;
5987 	if (mtu)
5988 		params->mtu_result = mtu; /* union with tot_len */
5989 
5990 	return 0;
5991 }
5992 #endif
5993 
5994 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5995 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5996 			       u32 flags, bool check_mtu)
5997 {
5998 	struct fib_nh_common *nhc;
5999 	struct in_device *in_dev;
6000 	struct neighbour *neigh;
6001 	struct net_device *dev;
6002 	struct fib_result res;
6003 	struct flowi4 fl4;
6004 	u32 mtu = 0;
6005 	int err;
6006 
6007 	dev = dev_get_by_index_rcu(net, params->ifindex);
6008 	if (unlikely(!dev))
6009 		return -ENODEV;
6010 
6011 	/* verify forwarding is enabled on this interface */
6012 	in_dev = __in_dev_get_rcu(dev);
6013 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
6014 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6015 
6016 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6017 		fl4.flowi4_iif = 1;
6018 		fl4.flowi4_oif = params->ifindex;
6019 	} else {
6020 		fl4.flowi4_iif = params->ifindex;
6021 		fl4.flowi4_oif = 0;
6022 	}
6023 	fl4.flowi4_tos = params->tos & INET_DSCP_MASK;
6024 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6025 	fl4.flowi4_flags = 0;
6026 
6027 	fl4.flowi4_proto = params->l4_protocol;
6028 	fl4.daddr = params->ipv4_dst;
6029 	fl4.saddr = params->ipv4_src;
6030 	fl4.fl4_sport = params->sport;
6031 	fl4.fl4_dport = params->dport;
6032 	fl4.flowi4_multipath_hash = 0;
6033 
6034 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6035 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6036 		struct fib_table *tb;
6037 
6038 		if (flags & BPF_FIB_LOOKUP_TBID) {
6039 			tbid = params->tbid;
6040 			/* zero out for vlan output */
6041 			params->tbid = 0;
6042 		}
6043 
6044 		tb = fib_get_table(net, tbid);
6045 		if (unlikely(!tb))
6046 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6047 
6048 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6049 	} else {
6050 		if (flags & BPF_FIB_LOOKUP_MARK)
6051 			fl4.flowi4_mark = params->mark;
6052 		else
6053 			fl4.flowi4_mark = 0;
6054 		fl4.flowi4_secid = 0;
6055 		fl4.flowi4_tun_key.tun_id = 0;
6056 		fl4.flowi4_uid = sock_net_uid(net, NULL);
6057 
6058 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6059 	}
6060 
6061 	if (err) {
6062 		/* map fib lookup errors to RTN_ type */
6063 		if (err == -EINVAL)
6064 			return BPF_FIB_LKUP_RET_BLACKHOLE;
6065 		if (err == -EHOSTUNREACH)
6066 			return BPF_FIB_LKUP_RET_UNREACHABLE;
6067 		if (err == -EACCES)
6068 			return BPF_FIB_LKUP_RET_PROHIBIT;
6069 
6070 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6071 	}
6072 
6073 	if (res.type != RTN_UNICAST)
6074 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6075 
6076 	if (fib_info_num_path(res.fi) > 1)
6077 		fib_select_path(net, &res, &fl4, NULL);
6078 
6079 	if (check_mtu) {
6080 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6081 		if (params->tot_len > mtu) {
6082 			params->mtu_result = mtu; /* union with tot_len */
6083 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6084 		}
6085 	}
6086 
6087 	nhc = res.nhc;
6088 
6089 	/* do not handle lwt encaps right now */
6090 	if (nhc->nhc_lwtstate)
6091 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6092 
6093 	dev = nhc->nhc_dev;
6094 
6095 	params->rt_metric = res.fi->fib_priority;
6096 	params->ifindex = dev->ifindex;
6097 
6098 	if (flags & BPF_FIB_LOOKUP_SRC)
6099 		params->ipv4_src = fib_result_prefsrc(net, &res);
6100 
6101 	/* xdp and cls_bpf programs are run in RCU-bh so
6102 	 * rcu_read_lock_bh is not needed here
6103 	 */
6104 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
6105 		if (nhc->nhc_gw_family)
6106 			params->ipv4_dst = nhc->nhc_gw.ipv4;
6107 	} else {
6108 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6109 
6110 		params->family = AF_INET6;
6111 		*dst = nhc->nhc_gw.ipv6;
6112 	}
6113 
6114 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6115 		goto set_fwd_params;
6116 
6117 	if (likely(nhc->nhc_gw_family != AF_INET6))
6118 		neigh = __ipv4_neigh_lookup_noref(dev,
6119 						  (__force u32)params->ipv4_dst);
6120 	else
6121 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6122 
6123 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6124 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6125 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6126 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6127 
6128 set_fwd_params:
6129 	return bpf_fib_set_fwd_params(params, mtu);
6130 }
6131 #endif
6132 
6133 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6134 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6135 			       u32 flags, bool check_mtu)
6136 {
6137 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6138 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6139 	struct fib6_result res = {};
6140 	struct neighbour *neigh;
6141 	struct net_device *dev;
6142 	struct inet6_dev *idev;
6143 	struct flowi6 fl6;
6144 	int strict = 0;
6145 	int oif, err;
6146 	u32 mtu = 0;
6147 
6148 	/* link local addresses are never forwarded */
6149 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6150 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6151 
6152 	dev = dev_get_by_index_rcu(net, params->ifindex);
6153 	if (unlikely(!dev))
6154 		return -ENODEV;
6155 
6156 	idev = __in6_dev_get_safely(dev);
6157 	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6158 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6159 
6160 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6161 		fl6.flowi6_iif = 1;
6162 		oif = fl6.flowi6_oif = params->ifindex;
6163 	} else {
6164 		oif = fl6.flowi6_iif = params->ifindex;
6165 		fl6.flowi6_oif = 0;
6166 		strict = RT6_LOOKUP_F_HAS_SADDR;
6167 	}
6168 	fl6.flowlabel = params->flowinfo;
6169 	fl6.flowi6_scope = 0;
6170 	fl6.flowi6_flags = 0;
6171 	fl6.mp_hash = 0;
6172 
6173 	fl6.flowi6_proto = params->l4_protocol;
6174 	fl6.daddr = *dst;
6175 	fl6.saddr = *src;
6176 	fl6.fl6_sport = params->sport;
6177 	fl6.fl6_dport = params->dport;
6178 
6179 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6180 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6181 		struct fib6_table *tb;
6182 
6183 		if (flags & BPF_FIB_LOOKUP_TBID) {
6184 			tbid = params->tbid;
6185 			/* zero out for vlan output */
6186 			params->tbid = 0;
6187 		}
6188 
6189 		tb = ipv6_stub->fib6_get_table(net, tbid);
6190 		if (unlikely(!tb))
6191 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6192 
6193 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6194 						   strict);
6195 	} else {
6196 		if (flags & BPF_FIB_LOOKUP_MARK)
6197 			fl6.flowi6_mark = params->mark;
6198 		else
6199 			fl6.flowi6_mark = 0;
6200 		fl6.flowi6_secid = 0;
6201 		fl6.flowi6_tun_key.tun_id = 0;
6202 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6203 
6204 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6205 	}
6206 
6207 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6208 		     res.f6i == net->ipv6.fib6_null_entry))
6209 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6210 
6211 	switch (res.fib6_type) {
6212 	/* only unicast is forwarded */
6213 	case RTN_UNICAST:
6214 		break;
6215 	case RTN_BLACKHOLE:
6216 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6217 	case RTN_UNREACHABLE:
6218 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6219 	case RTN_PROHIBIT:
6220 		return BPF_FIB_LKUP_RET_PROHIBIT;
6221 	default:
6222 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6223 	}
6224 
6225 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6226 				    fl6.flowi6_oif != 0, NULL, strict);
6227 
6228 	if (check_mtu) {
6229 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6230 		if (params->tot_len > mtu) {
6231 			params->mtu_result = mtu; /* union with tot_len */
6232 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6233 		}
6234 	}
6235 
6236 	if (res.nh->fib_nh_lws)
6237 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6238 
6239 	if (res.nh->fib_nh_gw_family)
6240 		*dst = res.nh->fib_nh_gw6;
6241 
6242 	dev = res.nh->fib_nh_dev;
6243 	params->rt_metric = res.f6i->fib6_metric;
6244 	params->ifindex = dev->ifindex;
6245 
6246 	if (flags & BPF_FIB_LOOKUP_SRC) {
6247 		if (res.f6i->fib6_prefsrc.plen) {
6248 			*src = res.f6i->fib6_prefsrc.addr;
6249 		} else {
6250 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6251 								&fl6.daddr, 0,
6252 								src);
6253 			if (err)
6254 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6255 		}
6256 	}
6257 
6258 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6259 		goto set_fwd_params;
6260 
6261 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6262 	 * not needed here.
6263 	 */
6264 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6265 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6266 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6267 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6268 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6269 
6270 set_fwd_params:
6271 	return bpf_fib_set_fwd_params(params, mtu);
6272 }
6273 #endif
6274 
6275 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6276 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6277 			     BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6278 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6279 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6280 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6281 {
6282 	if (plen < sizeof(*params))
6283 		return -EINVAL;
6284 
6285 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6286 		return -EINVAL;
6287 
6288 	switch (params->family) {
6289 #if IS_ENABLED(CONFIG_INET)
6290 	case AF_INET:
6291 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6292 					   flags, true);
6293 #endif
6294 #if IS_ENABLED(CONFIG_IPV6)
6295 	case AF_INET6:
6296 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6297 					   flags, true);
6298 #endif
6299 	}
6300 	return -EAFNOSUPPORT;
6301 }
6302 
6303 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6304 	.func		= bpf_xdp_fib_lookup,
6305 	.gpl_only	= true,
6306 	.ret_type	= RET_INTEGER,
6307 	.arg1_type      = ARG_PTR_TO_CTX,
6308 	.arg2_type      = ARG_PTR_TO_MEM,
6309 	.arg3_type      = ARG_CONST_SIZE,
6310 	.arg4_type	= ARG_ANYTHING,
6311 };
6312 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6313 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6314 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6315 {
6316 	struct net *net = dev_net(skb->dev);
6317 	int rc = -EAFNOSUPPORT;
6318 	bool check_mtu = false;
6319 
6320 	if (plen < sizeof(*params))
6321 		return -EINVAL;
6322 
6323 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6324 		return -EINVAL;
6325 
6326 	if (params->tot_len)
6327 		check_mtu = true;
6328 
6329 	switch (params->family) {
6330 #if IS_ENABLED(CONFIG_INET)
6331 	case AF_INET:
6332 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6333 		break;
6334 #endif
6335 #if IS_ENABLED(CONFIG_IPV6)
6336 	case AF_INET6:
6337 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6338 		break;
6339 #endif
6340 	}
6341 
6342 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6343 		struct net_device *dev;
6344 
6345 		/* When tot_len isn't provided by user, check skb
6346 		 * against MTU of FIB lookup resulting net_device
6347 		 */
6348 		dev = dev_get_by_index_rcu(net, params->ifindex);
6349 		if (!is_skb_forwardable(dev, skb))
6350 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6351 
6352 		params->mtu_result = dev->mtu; /* union with tot_len */
6353 	}
6354 
6355 	return rc;
6356 }
6357 
6358 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6359 	.func		= bpf_skb_fib_lookup,
6360 	.gpl_only	= true,
6361 	.ret_type	= RET_INTEGER,
6362 	.arg1_type      = ARG_PTR_TO_CTX,
6363 	.arg2_type      = ARG_PTR_TO_MEM,
6364 	.arg3_type      = ARG_CONST_SIZE,
6365 	.arg4_type	= ARG_ANYTHING,
6366 };
6367 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6368 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6369 					    u32 ifindex)
6370 {
6371 	struct net *netns = dev_net(dev_curr);
6372 
6373 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6374 	if (ifindex == 0)
6375 		return dev_curr;
6376 
6377 	return dev_get_by_index_rcu(netns, ifindex);
6378 }
6379 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6380 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6381 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6382 {
6383 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6384 	struct net_device *dev = skb->dev;
6385 	int mtu, dev_len, skb_len;
6386 
6387 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6388 		return -EINVAL;
6389 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6390 		return -EINVAL;
6391 
6392 	dev = __dev_via_ifindex(dev, ifindex);
6393 	if (unlikely(!dev))
6394 		return -ENODEV;
6395 
6396 	mtu = READ_ONCE(dev->mtu);
6397 	dev_len = mtu + dev->hard_header_len;
6398 
6399 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6400 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6401 
6402 	skb_len += len_diff; /* minus result pass check */
6403 	if (skb_len <= dev_len) {
6404 		ret = BPF_MTU_CHK_RET_SUCCESS;
6405 		goto out;
6406 	}
6407 	/* At this point, skb->len exceed MTU, but as it include length of all
6408 	 * segments, it can still be below MTU.  The SKB can possibly get
6409 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6410 	 * must choose if segs are to be MTU checked.
6411 	 */
6412 	if (skb_is_gso(skb)) {
6413 		ret = BPF_MTU_CHK_RET_SUCCESS;
6414 		if (flags & BPF_MTU_CHK_SEGS &&
6415 		    !skb_gso_validate_network_len(skb, mtu))
6416 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6417 	}
6418 out:
6419 	*mtu_len = mtu;
6420 	return ret;
6421 }
6422 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6423 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6424 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6425 {
6426 	struct net_device *dev = xdp->rxq->dev;
6427 	int xdp_len = xdp->data_end - xdp->data;
6428 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6429 	int mtu, dev_len;
6430 
6431 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6432 	if (unlikely(flags))
6433 		return -EINVAL;
6434 
6435 	dev = __dev_via_ifindex(dev, ifindex);
6436 	if (unlikely(!dev))
6437 		return -ENODEV;
6438 
6439 	mtu = READ_ONCE(dev->mtu);
6440 	dev_len = mtu + dev->hard_header_len;
6441 
6442 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6443 	if (*mtu_len)
6444 		xdp_len = *mtu_len + dev->hard_header_len;
6445 
6446 	xdp_len += len_diff; /* minus result pass check */
6447 	if (xdp_len > dev_len)
6448 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6449 
6450 	*mtu_len = mtu;
6451 	return ret;
6452 }
6453 
6454 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6455 	.func		= bpf_skb_check_mtu,
6456 	.gpl_only	= true,
6457 	.ret_type	= RET_INTEGER,
6458 	.arg1_type      = ARG_PTR_TO_CTX,
6459 	.arg2_type      = ARG_ANYTHING,
6460 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6461 	.arg3_size	= sizeof(u32),
6462 	.arg4_type      = ARG_ANYTHING,
6463 	.arg5_type      = ARG_ANYTHING,
6464 };
6465 
6466 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6467 	.func		= bpf_xdp_check_mtu,
6468 	.gpl_only	= true,
6469 	.ret_type	= RET_INTEGER,
6470 	.arg1_type      = ARG_PTR_TO_CTX,
6471 	.arg2_type      = ARG_ANYTHING,
6472 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6473 	.arg3_size	= sizeof(u32),
6474 	.arg4_type      = ARG_ANYTHING,
6475 	.arg5_type      = ARG_ANYTHING,
6476 };
6477 
6478 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6479 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6480 {
6481 	int err;
6482 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6483 
6484 	if (!seg6_validate_srh(srh, len, false))
6485 		return -EINVAL;
6486 
6487 	switch (type) {
6488 	case BPF_LWT_ENCAP_SEG6_INLINE:
6489 		if (skb->protocol != htons(ETH_P_IPV6))
6490 			return -EBADMSG;
6491 
6492 		err = seg6_do_srh_inline(skb, srh);
6493 		break;
6494 	case BPF_LWT_ENCAP_SEG6:
6495 		skb_reset_inner_headers(skb);
6496 		skb->encapsulation = 1;
6497 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6498 		break;
6499 	default:
6500 		return -EINVAL;
6501 	}
6502 
6503 	bpf_compute_data_pointers(skb);
6504 	if (err)
6505 		return err;
6506 
6507 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6508 
6509 	return seg6_lookup_nexthop(skb, NULL, 0);
6510 }
6511 #endif /* CONFIG_IPV6_SEG6_BPF */
6512 
6513 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6514 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6515 			     bool ingress)
6516 {
6517 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6518 }
6519 #endif
6520 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6521 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6522 	   u32, len)
6523 {
6524 	switch (type) {
6525 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6526 	case BPF_LWT_ENCAP_SEG6:
6527 	case BPF_LWT_ENCAP_SEG6_INLINE:
6528 		return bpf_push_seg6_encap(skb, type, hdr, len);
6529 #endif
6530 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6531 	case BPF_LWT_ENCAP_IP:
6532 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6533 #endif
6534 	default:
6535 		return -EINVAL;
6536 	}
6537 }
6538 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6539 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6540 	   void *, hdr, u32, len)
6541 {
6542 	switch (type) {
6543 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6544 	case BPF_LWT_ENCAP_IP:
6545 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6546 #endif
6547 	default:
6548 		return -EINVAL;
6549 	}
6550 }
6551 
6552 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6553 	.func		= bpf_lwt_in_push_encap,
6554 	.gpl_only	= false,
6555 	.ret_type	= RET_INTEGER,
6556 	.arg1_type	= ARG_PTR_TO_CTX,
6557 	.arg2_type	= ARG_ANYTHING,
6558 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6559 	.arg4_type	= ARG_CONST_SIZE
6560 };
6561 
6562 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6563 	.func		= bpf_lwt_xmit_push_encap,
6564 	.gpl_only	= false,
6565 	.ret_type	= RET_INTEGER,
6566 	.arg1_type	= ARG_PTR_TO_CTX,
6567 	.arg2_type	= ARG_ANYTHING,
6568 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6569 	.arg4_type	= ARG_CONST_SIZE
6570 };
6571 
6572 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6573 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6574 	   const void *, from, u32, len)
6575 {
6576 	struct seg6_bpf_srh_state *srh_state =
6577 		this_cpu_ptr(&seg6_bpf_srh_states);
6578 	struct ipv6_sr_hdr *srh = srh_state->srh;
6579 	void *srh_tlvs, *srh_end, *ptr;
6580 	int srhoff = 0;
6581 
6582 	lockdep_assert_held(&srh_state->bh_lock);
6583 	if (srh == NULL)
6584 		return -EINVAL;
6585 
6586 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6587 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6588 
6589 	ptr = skb->data + offset;
6590 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6591 		srh_state->valid = false;
6592 	else if (ptr < (void *)&srh->flags ||
6593 		 ptr + len > (void *)&srh->segments)
6594 		return -EFAULT;
6595 
6596 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6597 		return -EFAULT;
6598 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6599 		return -EINVAL;
6600 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6601 
6602 	memcpy(skb->data + offset, from, len);
6603 	return 0;
6604 }
6605 
6606 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6607 	.func		= bpf_lwt_seg6_store_bytes,
6608 	.gpl_only	= false,
6609 	.ret_type	= RET_INTEGER,
6610 	.arg1_type	= ARG_PTR_TO_CTX,
6611 	.arg2_type	= ARG_ANYTHING,
6612 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6613 	.arg4_type	= ARG_CONST_SIZE
6614 };
6615 
bpf_update_srh_state(struct sk_buff * skb)6616 static void bpf_update_srh_state(struct sk_buff *skb)
6617 {
6618 	struct seg6_bpf_srh_state *srh_state =
6619 		this_cpu_ptr(&seg6_bpf_srh_states);
6620 	int srhoff = 0;
6621 
6622 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6623 		srh_state->srh = NULL;
6624 	} else {
6625 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6626 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6627 		srh_state->valid = true;
6628 	}
6629 }
6630 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6631 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6632 	   u32, action, void *, param, u32, param_len)
6633 {
6634 	struct seg6_bpf_srh_state *srh_state =
6635 		this_cpu_ptr(&seg6_bpf_srh_states);
6636 	int hdroff = 0;
6637 	int err;
6638 
6639 	lockdep_assert_held(&srh_state->bh_lock);
6640 	switch (action) {
6641 	case SEG6_LOCAL_ACTION_END_X:
6642 		if (!seg6_bpf_has_valid_srh(skb))
6643 			return -EBADMSG;
6644 		if (param_len != sizeof(struct in6_addr))
6645 			return -EINVAL;
6646 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6647 	case SEG6_LOCAL_ACTION_END_T:
6648 		if (!seg6_bpf_has_valid_srh(skb))
6649 			return -EBADMSG;
6650 		if (param_len != sizeof(int))
6651 			return -EINVAL;
6652 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6653 	case SEG6_LOCAL_ACTION_END_DT6:
6654 		if (!seg6_bpf_has_valid_srh(skb))
6655 			return -EBADMSG;
6656 		if (param_len != sizeof(int))
6657 			return -EINVAL;
6658 
6659 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6660 			return -EBADMSG;
6661 		if (!pskb_pull(skb, hdroff))
6662 			return -EBADMSG;
6663 
6664 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6665 		skb_reset_network_header(skb);
6666 		skb_reset_transport_header(skb);
6667 		skb->encapsulation = 0;
6668 
6669 		bpf_compute_data_pointers(skb);
6670 		bpf_update_srh_state(skb);
6671 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6672 	case SEG6_LOCAL_ACTION_END_B6:
6673 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6674 			return -EBADMSG;
6675 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6676 					  param, param_len);
6677 		if (!err)
6678 			bpf_update_srh_state(skb);
6679 
6680 		return err;
6681 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6682 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6683 			return -EBADMSG;
6684 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6685 					  param, param_len);
6686 		if (!err)
6687 			bpf_update_srh_state(skb);
6688 
6689 		return err;
6690 	default:
6691 		return -EINVAL;
6692 	}
6693 }
6694 
6695 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6696 	.func		= bpf_lwt_seg6_action,
6697 	.gpl_only	= false,
6698 	.ret_type	= RET_INTEGER,
6699 	.arg1_type	= ARG_PTR_TO_CTX,
6700 	.arg2_type	= ARG_ANYTHING,
6701 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6702 	.arg4_type	= ARG_CONST_SIZE
6703 };
6704 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6705 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6706 	   s32, len)
6707 {
6708 	struct seg6_bpf_srh_state *srh_state =
6709 		this_cpu_ptr(&seg6_bpf_srh_states);
6710 	struct ipv6_sr_hdr *srh = srh_state->srh;
6711 	void *srh_end, *srh_tlvs, *ptr;
6712 	struct ipv6hdr *hdr;
6713 	int srhoff = 0;
6714 	int ret;
6715 
6716 	lockdep_assert_held(&srh_state->bh_lock);
6717 	if (unlikely(srh == NULL))
6718 		return -EINVAL;
6719 
6720 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6721 			((srh->first_segment + 1) << 4));
6722 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6723 			srh_state->hdrlen);
6724 	ptr = skb->data + offset;
6725 
6726 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6727 		return -EFAULT;
6728 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6729 		return -EFAULT;
6730 
6731 	if (len > 0) {
6732 		ret = skb_cow_head(skb, len);
6733 		if (unlikely(ret < 0))
6734 			return ret;
6735 
6736 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6737 	} else {
6738 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6739 	}
6740 
6741 	bpf_compute_data_pointers(skb);
6742 	if (unlikely(ret < 0))
6743 		return ret;
6744 
6745 	hdr = (struct ipv6hdr *)skb->data;
6746 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6747 
6748 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6749 		return -EINVAL;
6750 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6751 	srh_state->hdrlen += len;
6752 	srh_state->valid = false;
6753 	return 0;
6754 }
6755 
6756 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6757 	.func		= bpf_lwt_seg6_adjust_srh,
6758 	.gpl_only	= false,
6759 	.ret_type	= RET_INTEGER,
6760 	.arg1_type	= ARG_PTR_TO_CTX,
6761 	.arg2_type	= ARG_ANYTHING,
6762 	.arg3_type	= ARG_ANYTHING,
6763 };
6764 #endif /* CONFIG_IPV6_SEG6_BPF */
6765 
6766 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6767 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6768 			      int dif, int sdif, u8 family, u8 proto)
6769 {
6770 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6771 	bool refcounted = false;
6772 	struct sock *sk = NULL;
6773 
6774 	if (family == AF_INET) {
6775 		__be32 src4 = tuple->ipv4.saddr;
6776 		__be32 dst4 = tuple->ipv4.daddr;
6777 
6778 		if (proto == IPPROTO_TCP)
6779 			sk = __inet_lookup(net, hinfo, NULL, 0,
6780 					   src4, tuple->ipv4.sport,
6781 					   dst4, tuple->ipv4.dport,
6782 					   dif, sdif, &refcounted);
6783 		else
6784 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6785 					       dst4, tuple->ipv4.dport,
6786 					       dif, sdif, net->ipv4.udp_table, NULL);
6787 #if IS_ENABLED(CONFIG_IPV6)
6788 	} else {
6789 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6790 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6791 
6792 		if (proto == IPPROTO_TCP)
6793 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6794 					    src6, tuple->ipv6.sport,
6795 					    dst6, ntohs(tuple->ipv6.dport),
6796 					    dif, sdif, &refcounted);
6797 		else if (likely(ipv6_bpf_stub))
6798 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6799 							    src6, tuple->ipv6.sport,
6800 							    dst6, tuple->ipv6.dport,
6801 							    dif, sdif,
6802 							    net->ipv4.udp_table, NULL);
6803 #endif
6804 	}
6805 
6806 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6807 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6808 		sk = NULL;
6809 	}
6810 	return sk;
6811 }
6812 
6813 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6814  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6815  */
6816 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6817 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6818 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6819 		 u64 flags, int sdif)
6820 {
6821 	struct sock *sk = NULL;
6822 	struct net *net;
6823 	u8 family;
6824 
6825 	if (len == sizeof(tuple->ipv4))
6826 		family = AF_INET;
6827 	else if (len == sizeof(tuple->ipv6))
6828 		family = AF_INET6;
6829 	else
6830 		return NULL;
6831 
6832 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6833 		goto out;
6834 
6835 	if (sdif < 0) {
6836 		if (family == AF_INET)
6837 			sdif = inet_sdif(skb);
6838 		else
6839 			sdif = inet6_sdif(skb);
6840 	}
6841 
6842 	if ((s32)netns_id < 0) {
6843 		net = caller_net;
6844 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6845 	} else {
6846 		net = get_net_ns_by_id(caller_net, netns_id);
6847 		if (unlikely(!net))
6848 			goto out;
6849 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6850 		put_net(net);
6851 	}
6852 
6853 out:
6854 	return sk;
6855 }
6856 
6857 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6858 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6859 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6860 		u64 flags, int sdif)
6861 {
6862 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6863 					   ifindex, proto, netns_id, flags,
6864 					   sdif);
6865 
6866 	if (sk) {
6867 		struct sock *sk2 = sk_to_full_sk(sk);
6868 
6869 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6870 		 * sock refcnt is decremented to prevent a request_sock leak.
6871 		 */
6872 		if (sk2 != sk) {
6873 			sock_gen_put(sk);
6874 			/* Ensure there is no need to bump sk2 refcnt */
6875 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6876 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6877 				return NULL;
6878 			}
6879 			sk = sk2;
6880 		}
6881 	}
6882 
6883 	return sk;
6884 }
6885 
6886 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6887 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6888 	       u8 proto, u64 netns_id, u64 flags)
6889 {
6890 	struct net *caller_net;
6891 	int ifindex;
6892 
6893 	if (skb->dev) {
6894 		caller_net = dev_net(skb->dev);
6895 		ifindex = skb->dev->ifindex;
6896 	} else {
6897 		caller_net = sock_net(skb->sk);
6898 		ifindex = 0;
6899 	}
6900 
6901 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6902 				netns_id, flags, -1);
6903 }
6904 
6905 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6906 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6907 	      u8 proto, u64 netns_id, u64 flags)
6908 {
6909 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6910 					 flags);
6911 
6912 	if (sk) {
6913 		struct sock *sk2 = sk_to_full_sk(sk);
6914 
6915 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6916 		 * sock refcnt is decremented to prevent a request_sock leak.
6917 		 */
6918 		if (sk2 != sk) {
6919 			sock_gen_put(sk);
6920 			/* Ensure there is no need to bump sk2 refcnt */
6921 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6922 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6923 				return NULL;
6924 			}
6925 			sk = sk2;
6926 		}
6927 	}
6928 
6929 	return sk;
6930 }
6931 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6932 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6933 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6934 {
6935 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6936 					     netns_id, flags);
6937 }
6938 
6939 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6940 	.func		= bpf_skc_lookup_tcp,
6941 	.gpl_only	= false,
6942 	.pkt_access	= true,
6943 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6944 	.arg1_type	= ARG_PTR_TO_CTX,
6945 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6946 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6947 	.arg4_type	= ARG_ANYTHING,
6948 	.arg5_type	= ARG_ANYTHING,
6949 };
6950 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6951 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6952 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6953 {
6954 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6955 					    netns_id, flags);
6956 }
6957 
6958 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6959 	.func		= bpf_sk_lookup_tcp,
6960 	.gpl_only	= false,
6961 	.pkt_access	= true,
6962 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6963 	.arg1_type	= ARG_PTR_TO_CTX,
6964 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6965 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6966 	.arg4_type	= ARG_ANYTHING,
6967 	.arg5_type	= ARG_ANYTHING,
6968 };
6969 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6970 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6971 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6972 {
6973 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6974 					    netns_id, flags);
6975 }
6976 
6977 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6978 	.func		= bpf_sk_lookup_udp,
6979 	.gpl_only	= false,
6980 	.pkt_access	= true,
6981 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6982 	.arg1_type	= ARG_PTR_TO_CTX,
6983 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6984 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6985 	.arg4_type	= ARG_ANYTHING,
6986 	.arg5_type	= ARG_ANYTHING,
6987 };
6988 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6989 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6990 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6991 {
6992 	struct net_device *dev = skb->dev;
6993 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6994 	struct net *caller_net = dev_net(dev);
6995 
6996 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6997 					       ifindex, IPPROTO_TCP, netns_id,
6998 					       flags, sdif);
6999 }
7000 
7001 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
7002 	.func		= bpf_tc_skc_lookup_tcp,
7003 	.gpl_only	= false,
7004 	.pkt_access	= true,
7005 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7006 	.arg1_type	= ARG_PTR_TO_CTX,
7007 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7008 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7009 	.arg4_type	= ARG_ANYTHING,
7010 	.arg5_type	= ARG_ANYTHING,
7011 };
7012 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7013 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
7014 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7015 {
7016 	struct net_device *dev = skb->dev;
7017 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7018 	struct net *caller_net = dev_net(dev);
7019 
7020 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7021 					      ifindex, IPPROTO_TCP, netns_id,
7022 					      flags, sdif);
7023 }
7024 
7025 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7026 	.func		= bpf_tc_sk_lookup_tcp,
7027 	.gpl_only	= false,
7028 	.pkt_access	= true,
7029 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7030 	.arg1_type	= ARG_PTR_TO_CTX,
7031 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7032 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7033 	.arg4_type	= ARG_ANYTHING,
7034 	.arg5_type	= ARG_ANYTHING,
7035 };
7036 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7037 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7038 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7039 {
7040 	struct net_device *dev = skb->dev;
7041 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7042 	struct net *caller_net = dev_net(dev);
7043 
7044 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7045 					      ifindex, IPPROTO_UDP, netns_id,
7046 					      flags, sdif);
7047 }
7048 
7049 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7050 	.func		= bpf_tc_sk_lookup_udp,
7051 	.gpl_only	= false,
7052 	.pkt_access	= true,
7053 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7054 	.arg1_type	= ARG_PTR_TO_CTX,
7055 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7056 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7057 	.arg4_type	= ARG_ANYTHING,
7058 	.arg5_type	= ARG_ANYTHING,
7059 };
7060 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7061 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7062 {
7063 	if (sk && sk_is_refcounted(sk))
7064 		sock_gen_put(sk);
7065 	return 0;
7066 }
7067 
7068 static const struct bpf_func_proto bpf_sk_release_proto = {
7069 	.func		= bpf_sk_release,
7070 	.gpl_only	= false,
7071 	.ret_type	= RET_INTEGER,
7072 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7073 };
7074 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7075 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7076 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7077 {
7078 	struct net_device *dev = ctx->rxq->dev;
7079 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7080 	struct net *caller_net = dev_net(dev);
7081 
7082 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7083 					      ifindex, IPPROTO_UDP, netns_id,
7084 					      flags, sdif);
7085 }
7086 
7087 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7088 	.func           = bpf_xdp_sk_lookup_udp,
7089 	.gpl_only       = false,
7090 	.pkt_access     = true,
7091 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7092 	.arg1_type      = ARG_PTR_TO_CTX,
7093 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7094 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7095 	.arg4_type      = ARG_ANYTHING,
7096 	.arg5_type      = ARG_ANYTHING,
7097 };
7098 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7099 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7100 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7101 {
7102 	struct net_device *dev = ctx->rxq->dev;
7103 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7104 	struct net *caller_net = dev_net(dev);
7105 
7106 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7107 					       ifindex, IPPROTO_TCP, netns_id,
7108 					       flags, sdif);
7109 }
7110 
7111 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7112 	.func           = bpf_xdp_skc_lookup_tcp,
7113 	.gpl_only       = false,
7114 	.pkt_access     = true,
7115 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7116 	.arg1_type      = ARG_PTR_TO_CTX,
7117 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7118 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7119 	.arg4_type      = ARG_ANYTHING,
7120 	.arg5_type      = ARG_ANYTHING,
7121 };
7122 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7123 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7124 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7125 {
7126 	struct net_device *dev = ctx->rxq->dev;
7127 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7128 	struct net *caller_net = dev_net(dev);
7129 
7130 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7131 					      ifindex, IPPROTO_TCP, netns_id,
7132 					      flags, sdif);
7133 }
7134 
7135 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7136 	.func           = bpf_xdp_sk_lookup_tcp,
7137 	.gpl_only       = false,
7138 	.pkt_access     = true,
7139 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7140 	.arg1_type      = ARG_PTR_TO_CTX,
7141 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7142 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7143 	.arg4_type      = ARG_ANYTHING,
7144 	.arg5_type      = ARG_ANYTHING,
7145 };
7146 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7147 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7148 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7149 {
7150 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7151 					       sock_net(ctx->sk), 0,
7152 					       IPPROTO_TCP, netns_id, flags,
7153 					       -1);
7154 }
7155 
7156 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7157 	.func		= bpf_sock_addr_skc_lookup_tcp,
7158 	.gpl_only	= false,
7159 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7160 	.arg1_type	= ARG_PTR_TO_CTX,
7161 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7162 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7163 	.arg4_type	= ARG_ANYTHING,
7164 	.arg5_type	= ARG_ANYTHING,
7165 };
7166 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7167 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7168 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7169 {
7170 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7171 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7172 					      netns_id, flags, -1);
7173 }
7174 
7175 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7176 	.func		= bpf_sock_addr_sk_lookup_tcp,
7177 	.gpl_only	= false,
7178 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7179 	.arg1_type	= ARG_PTR_TO_CTX,
7180 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7181 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7182 	.arg4_type	= ARG_ANYTHING,
7183 	.arg5_type	= ARG_ANYTHING,
7184 };
7185 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7186 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7187 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7188 {
7189 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7190 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7191 					      netns_id, flags, -1);
7192 }
7193 
7194 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7195 	.func		= bpf_sock_addr_sk_lookup_udp,
7196 	.gpl_only	= false,
7197 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7198 	.arg1_type	= ARG_PTR_TO_CTX,
7199 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7200 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7201 	.arg4_type	= ARG_ANYTHING,
7202 	.arg5_type	= ARG_ANYTHING,
7203 };
7204 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7205 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7206 				  struct bpf_insn_access_aux *info)
7207 {
7208 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7209 					  icsk_retransmits))
7210 		return false;
7211 
7212 	if (off % size != 0)
7213 		return false;
7214 
7215 	switch (off) {
7216 	case offsetof(struct bpf_tcp_sock, bytes_received):
7217 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7218 		return size == sizeof(__u64);
7219 	default:
7220 		return size == sizeof(__u32);
7221 	}
7222 }
7223 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7224 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7225 				    const struct bpf_insn *si,
7226 				    struct bpf_insn *insn_buf,
7227 				    struct bpf_prog *prog, u32 *target_size)
7228 {
7229 	struct bpf_insn *insn = insn_buf;
7230 
7231 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7232 	do {								\
7233 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7234 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7235 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7236 				      si->dst_reg, si->src_reg,		\
7237 				      offsetof(struct tcp_sock, FIELD)); \
7238 	} while (0)
7239 
7240 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7241 	do {								\
7242 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7243 					  FIELD) >			\
7244 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7245 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7246 					struct inet_connection_sock,	\
7247 					FIELD),				\
7248 				      si->dst_reg, si->src_reg,		\
7249 				      offsetof(				\
7250 					struct inet_connection_sock,	\
7251 					FIELD));			\
7252 	} while (0)
7253 
7254 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7255 
7256 	switch (si->off) {
7257 	case offsetof(struct bpf_tcp_sock, rtt_min):
7258 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7259 			     sizeof(struct minmax));
7260 		BUILD_BUG_ON(sizeof(struct minmax) <
7261 			     sizeof(struct minmax_sample));
7262 
7263 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7264 				      offsetof(struct tcp_sock, rtt_min) +
7265 				      offsetof(struct minmax_sample, v));
7266 		break;
7267 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7268 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7269 		break;
7270 	case offsetof(struct bpf_tcp_sock, srtt_us):
7271 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7272 		break;
7273 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7274 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7275 		break;
7276 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7277 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7278 		break;
7279 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7280 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7281 		break;
7282 	case offsetof(struct bpf_tcp_sock, snd_una):
7283 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7284 		break;
7285 	case offsetof(struct bpf_tcp_sock, mss_cache):
7286 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7287 		break;
7288 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7289 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7290 		break;
7291 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7292 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7293 		break;
7294 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7295 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7296 		break;
7297 	case offsetof(struct bpf_tcp_sock, packets_out):
7298 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7299 		break;
7300 	case offsetof(struct bpf_tcp_sock, retrans_out):
7301 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7302 		break;
7303 	case offsetof(struct bpf_tcp_sock, total_retrans):
7304 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7305 		break;
7306 	case offsetof(struct bpf_tcp_sock, segs_in):
7307 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7308 		break;
7309 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7310 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7311 		break;
7312 	case offsetof(struct bpf_tcp_sock, segs_out):
7313 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7314 		break;
7315 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7316 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7317 		break;
7318 	case offsetof(struct bpf_tcp_sock, lost_out):
7319 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7320 		break;
7321 	case offsetof(struct bpf_tcp_sock, sacked_out):
7322 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7323 		break;
7324 	case offsetof(struct bpf_tcp_sock, bytes_received):
7325 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7326 		break;
7327 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7328 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7329 		break;
7330 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7331 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7332 		break;
7333 	case offsetof(struct bpf_tcp_sock, delivered):
7334 		BPF_TCP_SOCK_GET_COMMON(delivered);
7335 		break;
7336 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7337 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7338 		break;
7339 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7340 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7341 		break;
7342 	}
7343 
7344 	return insn - insn_buf;
7345 }
7346 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7347 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7348 {
7349 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7350 		return (unsigned long)sk;
7351 
7352 	return (unsigned long)NULL;
7353 }
7354 
7355 const struct bpf_func_proto bpf_tcp_sock_proto = {
7356 	.func		= bpf_tcp_sock,
7357 	.gpl_only	= false,
7358 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7359 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7360 };
7361 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7362 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7363 {
7364 	sk = sk_to_full_sk(sk);
7365 
7366 	if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7367 		return (unsigned long)sk;
7368 
7369 	return (unsigned long)NULL;
7370 }
7371 
7372 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7373 	.func		= bpf_get_listener_sock,
7374 	.gpl_only	= false,
7375 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7376 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7377 };
7378 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7379 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7380 {
7381 	unsigned int iphdr_len;
7382 
7383 	switch (skb_protocol(skb, true)) {
7384 	case cpu_to_be16(ETH_P_IP):
7385 		iphdr_len = sizeof(struct iphdr);
7386 		break;
7387 	case cpu_to_be16(ETH_P_IPV6):
7388 		iphdr_len = sizeof(struct ipv6hdr);
7389 		break;
7390 	default:
7391 		return 0;
7392 	}
7393 
7394 	if (skb_headlen(skb) < iphdr_len)
7395 		return 0;
7396 
7397 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7398 		return 0;
7399 
7400 	return INET_ECN_set_ce(skb);
7401 }
7402 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7403 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7404 				  struct bpf_insn_access_aux *info)
7405 {
7406 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7407 		return false;
7408 
7409 	if (off % size != 0)
7410 		return false;
7411 
7412 	switch (off) {
7413 	default:
7414 		return size == sizeof(__u32);
7415 	}
7416 }
7417 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7418 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7419 				    const struct bpf_insn *si,
7420 				    struct bpf_insn *insn_buf,
7421 				    struct bpf_prog *prog, u32 *target_size)
7422 {
7423 	struct bpf_insn *insn = insn_buf;
7424 
7425 #define BPF_XDP_SOCK_GET(FIELD)						\
7426 	do {								\
7427 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7428 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7429 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7430 				      si->dst_reg, si->src_reg,		\
7431 				      offsetof(struct xdp_sock, FIELD)); \
7432 	} while (0)
7433 
7434 	switch (si->off) {
7435 	case offsetof(struct bpf_xdp_sock, queue_id):
7436 		BPF_XDP_SOCK_GET(queue_id);
7437 		break;
7438 	}
7439 
7440 	return insn - insn_buf;
7441 }
7442 
7443 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7444 	.func           = bpf_skb_ecn_set_ce,
7445 	.gpl_only       = false,
7446 	.ret_type       = RET_INTEGER,
7447 	.arg1_type      = ARG_PTR_TO_CTX,
7448 };
7449 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7450 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7451 	   struct tcphdr *, th, u32, th_len)
7452 {
7453 #ifdef CONFIG_SYN_COOKIES
7454 	int ret;
7455 
7456 	if (unlikely(!sk || th_len < sizeof(*th)))
7457 		return -EINVAL;
7458 
7459 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7460 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7461 		return -EINVAL;
7462 
7463 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7464 		return -EINVAL;
7465 
7466 	if (!th->ack || th->rst || th->syn)
7467 		return -ENOENT;
7468 
7469 	if (unlikely(iph_len < sizeof(struct iphdr)))
7470 		return -EINVAL;
7471 
7472 	if (tcp_synq_no_recent_overflow(sk))
7473 		return -ENOENT;
7474 
7475 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7476 	 * same offset so we can cast to the shorter header (struct iphdr).
7477 	 */
7478 	switch (((struct iphdr *)iph)->version) {
7479 	case 4:
7480 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7481 			return -EINVAL;
7482 
7483 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7484 		break;
7485 
7486 #if IS_BUILTIN(CONFIG_IPV6)
7487 	case 6:
7488 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7489 			return -EINVAL;
7490 
7491 		if (sk->sk_family != AF_INET6)
7492 			return -EINVAL;
7493 
7494 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7495 		break;
7496 #endif /* CONFIG_IPV6 */
7497 
7498 	default:
7499 		return -EPROTONOSUPPORT;
7500 	}
7501 
7502 	if (ret > 0)
7503 		return 0;
7504 
7505 	return -ENOENT;
7506 #else
7507 	return -ENOTSUPP;
7508 #endif
7509 }
7510 
7511 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7512 	.func		= bpf_tcp_check_syncookie,
7513 	.gpl_only	= true,
7514 	.pkt_access	= true,
7515 	.ret_type	= RET_INTEGER,
7516 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7517 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7518 	.arg3_type	= ARG_CONST_SIZE,
7519 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7520 	.arg5_type	= ARG_CONST_SIZE,
7521 };
7522 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7523 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7524 	   struct tcphdr *, th, u32, th_len)
7525 {
7526 #ifdef CONFIG_SYN_COOKIES
7527 	u32 cookie;
7528 	u16 mss;
7529 
7530 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7531 		return -EINVAL;
7532 
7533 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7534 		return -EINVAL;
7535 
7536 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7537 		return -ENOENT;
7538 
7539 	if (!th->syn || th->ack || th->fin || th->rst)
7540 		return -EINVAL;
7541 
7542 	if (unlikely(iph_len < sizeof(struct iphdr)))
7543 		return -EINVAL;
7544 
7545 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7546 	 * same offset so we can cast to the shorter header (struct iphdr).
7547 	 */
7548 	switch (((struct iphdr *)iph)->version) {
7549 	case 4:
7550 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7551 			return -EINVAL;
7552 
7553 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7554 		break;
7555 
7556 #if IS_BUILTIN(CONFIG_IPV6)
7557 	case 6:
7558 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7559 			return -EINVAL;
7560 
7561 		if (sk->sk_family != AF_INET6)
7562 			return -EINVAL;
7563 
7564 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7565 		break;
7566 #endif /* CONFIG_IPV6 */
7567 
7568 	default:
7569 		return -EPROTONOSUPPORT;
7570 	}
7571 	if (mss == 0)
7572 		return -ENOENT;
7573 
7574 	return cookie | ((u64)mss << 32);
7575 #else
7576 	return -EOPNOTSUPP;
7577 #endif /* CONFIG_SYN_COOKIES */
7578 }
7579 
7580 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7581 	.func		= bpf_tcp_gen_syncookie,
7582 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7583 	.pkt_access	= true,
7584 	.ret_type	= RET_INTEGER,
7585 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7586 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7587 	.arg3_type	= ARG_CONST_SIZE,
7588 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7589 	.arg5_type	= ARG_CONST_SIZE,
7590 };
7591 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7592 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7593 {
7594 	if (!sk || flags != 0)
7595 		return -EINVAL;
7596 	if (!skb_at_tc_ingress(skb))
7597 		return -EOPNOTSUPP;
7598 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7599 		return -ENETUNREACH;
7600 	if (sk_unhashed(sk))
7601 		return -EOPNOTSUPP;
7602 	if (sk_is_refcounted(sk) &&
7603 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7604 		return -ENOENT;
7605 
7606 	skb_orphan(skb);
7607 	skb->sk = sk;
7608 	skb->destructor = sock_pfree;
7609 
7610 	return 0;
7611 }
7612 
7613 static const struct bpf_func_proto bpf_sk_assign_proto = {
7614 	.func		= bpf_sk_assign,
7615 	.gpl_only	= false,
7616 	.ret_type	= RET_INTEGER,
7617 	.arg1_type      = ARG_PTR_TO_CTX,
7618 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7619 	.arg3_type	= ARG_ANYTHING,
7620 };
7621 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7622 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7623 				    u8 search_kind, const u8 *magic,
7624 				    u8 magic_len, bool *eol)
7625 {
7626 	u8 kind, kind_len;
7627 
7628 	*eol = false;
7629 
7630 	while (op < opend) {
7631 		kind = op[0];
7632 
7633 		if (kind == TCPOPT_EOL) {
7634 			*eol = true;
7635 			return ERR_PTR(-ENOMSG);
7636 		} else if (kind == TCPOPT_NOP) {
7637 			op++;
7638 			continue;
7639 		}
7640 
7641 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7642 			/* Something is wrong in the received header.
7643 			 * Follow the TCP stack's tcp_parse_options()
7644 			 * and just bail here.
7645 			 */
7646 			return ERR_PTR(-EFAULT);
7647 
7648 		kind_len = op[1];
7649 		if (search_kind == kind) {
7650 			if (!magic_len)
7651 				return op;
7652 
7653 			if (magic_len > kind_len - 2)
7654 				return ERR_PTR(-ENOMSG);
7655 
7656 			if (!memcmp(&op[2], magic, magic_len))
7657 				return op;
7658 		}
7659 
7660 		op += kind_len;
7661 	}
7662 
7663 	return ERR_PTR(-ENOMSG);
7664 }
7665 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7666 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7667 	   void *, search_res, u32, len, u64, flags)
7668 {
7669 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7670 	const u8 *op, *opend, *magic, *search = search_res;
7671 	u8 search_kind, search_len, copy_len, magic_len;
7672 	int ret;
7673 
7674 	if (!is_locked_tcp_sock_ops(bpf_sock))
7675 		return -EOPNOTSUPP;
7676 
7677 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7678 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7679 	 * and this helper disallow loading them also.
7680 	 */
7681 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7682 		return -EINVAL;
7683 
7684 	search_kind = search[0];
7685 	search_len = search[1];
7686 
7687 	if (search_len > len || search_kind == TCPOPT_NOP ||
7688 	    search_kind == TCPOPT_EOL)
7689 		return -EINVAL;
7690 
7691 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7692 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7693 		if (search_len != 4 && search_len != 6)
7694 			return -EINVAL;
7695 		magic = &search[2];
7696 		magic_len = search_len - 2;
7697 	} else {
7698 		if (search_len)
7699 			return -EINVAL;
7700 		magic = NULL;
7701 		magic_len = 0;
7702 	}
7703 
7704 	if (load_syn) {
7705 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7706 		if (ret < 0)
7707 			return ret;
7708 
7709 		opend = op + ret;
7710 		op += sizeof(struct tcphdr);
7711 	} else {
7712 		if (!bpf_sock->skb ||
7713 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7714 			/* This bpf_sock->op cannot call this helper */
7715 			return -EPERM;
7716 
7717 		opend = bpf_sock->skb_data_end;
7718 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7719 	}
7720 
7721 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7722 				&eol);
7723 	if (IS_ERR(op))
7724 		return PTR_ERR(op);
7725 
7726 	copy_len = op[1];
7727 	ret = copy_len;
7728 	if (copy_len > len) {
7729 		ret = -ENOSPC;
7730 		copy_len = len;
7731 	}
7732 
7733 	memcpy(search_res, op, copy_len);
7734 	return ret;
7735 }
7736 
7737 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7738 	.func		= bpf_sock_ops_load_hdr_opt,
7739 	.gpl_only	= false,
7740 	.ret_type	= RET_INTEGER,
7741 	.arg1_type	= ARG_PTR_TO_CTX,
7742 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
7743 	.arg3_type	= ARG_CONST_SIZE,
7744 	.arg4_type	= ARG_ANYTHING,
7745 };
7746 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7747 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7748 	   const void *, from, u32, len, u64, flags)
7749 {
7750 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7751 	const u8 *op, *new_op, *magic = NULL;
7752 	struct sk_buff *skb;
7753 	bool eol;
7754 
7755 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7756 		return -EPERM;
7757 
7758 	if (len < 2 || flags)
7759 		return -EINVAL;
7760 
7761 	new_op = from;
7762 	new_kind = new_op[0];
7763 	new_kind_len = new_op[1];
7764 
7765 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7766 	    new_kind == TCPOPT_EOL)
7767 		return -EINVAL;
7768 
7769 	if (new_kind_len > bpf_sock->remaining_opt_len)
7770 		return -ENOSPC;
7771 
7772 	/* 253 is another experimental kind */
7773 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7774 		if (new_kind_len < 4)
7775 			return -EINVAL;
7776 		/* Match for the 2 byte magic also.
7777 		 * RFC 6994: the magic could be 2 or 4 bytes.
7778 		 * Hence, matching by 2 byte only is on the
7779 		 * conservative side but it is the right
7780 		 * thing to do for the 'search-for-duplication'
7781 		 * purpose.
7782 		 */
7783 		magic = &new_op[2];
7784 		magic_len = 2;
7785 	}
7786 
7787 	/* Check for duplication */
7788 	skb = bpf_sock->skb;
7789 	op = skb->data + sizeof(struct tcphdr);
7790 	opend = bpf_sock->skb_data_end;
7791 
7792 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7793 				&eol);
7794 	if (!IS_ERR(op))
7795 		return -EEXIST;
7796 
7797 	if (PTR_ERR(op) != -ENOMSG)
7798 		return PTR_ERR(op);
7799 
7800 	if (eol)
7801 		/* The option has been ended.  Treat it as no more
7802 		 * header option can be written.
7803 		 */
7804 		return -ENOSPC;
7805 
7806 	/* No duplication found.  Store the header option. */
7807 	memcpy(opend, from, new_kind_len);
7808 
7809 	bpf_sock->remaining_opt_len -= new_kind_len;
7810 	bpf_sock->skb_data_end += new_kind_len;
7811 
7812 	return 0;
7813 }
7814 
7815 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7816 	.func		= bpf_sock_ops_store_hdr_opt,
7817 	.gpl_only	= false,
7818 	.ret_type	= RET_INTEGER,
7819 	.arg1_type	= ARG_PTR_TO_CTX,
7820 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7821 	.arg3_type	= ARG_CONST_SIZE,
7822 	.arg4_type	= ARG_ANYTHING,
7823 };
7824 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7825 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7826 	   u32, len, u64, flags)
7827 {
7828 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7829 		return -EPERM;
7830 
7831 	if (flags || len < 2)
7832 		return -EINVAL;
7833 
7834 	if (len > bpf_sock->remaining_opt_len)
7835 		return -ENOSPC;
7836 
7837 	bpf_sock->remaining_opt_len -= len;
7838 
7839 	return 0;
7840 }
7841 
7842 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7843 	.func		= bpf_sock_ops_reserve_hdr_opt,
7844 	.gpl_only	= false,
7845 	.ret_type	= RET_INTEGER,
7846 	.arg1_type	= ARG_PTR_TO_CTX,
7847 	.arg2_type	= ARG_ANYTHING,
7848 	.arg3_type	= ARG_ANYTHING,
7849 };
7850 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7851 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7852 	   u64, tstamp, u32, tstamp_type)
7853 {
7854 	/* skb_clear_delivery_time() is done for inet protocol */
7855 	if (skb->protocol != htons(ETH_P_IP) &&
7856 	    skb->protocol != htons(ETH_P_IPV6))
7857 		return -EOPNOTSUPP;
7858 
7859 	switch (tstamp_type) {
7860 	case BPF_SKB_CLOCK_REALTIME:
7861 		skb->tstamp = tstamp;
7862 		skb->tstamp_type = SKB_CLOCK_REALTIME;
7863 		break;
7864 	case BPF_SKB_CLOCK_MONOTONIC:
7865 		if (!tstamp)
7866 			return -EINVAL;
7867 		skb->tstamp = tstamp;
7868 		skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7869 		break;
7870 	case BPF_SKB_CLOCK_TAI:
7871 		if (!tstamp)
7872 			return -EINVAL;
7873 		skb->tstamp = tstamp;
7874 		skb->tstamp_type = SKB_CLOCK_TAI;
7875 		break;
7876 	default:
7877 		return -EINVAL;
7878 	}
7879 
7880 	return 0;
7881 }
7882 
7883 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7884 	.func           = bpf_skb_set_tstamp,
7885 	.gpl_only       = false,
7886 	.ret_type       = RET_INTEGER,
7887 	.arg1_type      = ARG_PTR_TO_CTX,
7888 	.arg2_type      = ARG_ANYTHING,
7889 	.arg3_type      = ARG_ANYTHING,
7890 };
7891 
7892 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7893 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7894 	   struct tcphdr *, th, u32, th_len)
7895 {
7896 	u32 cookie;
7897 	u16 mss;
7898 
7899 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7900 		return -EINVAL;
7901 
7902 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7903 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7904 
7905 	return cookie | ((u64)mss << 32);
7906 }
7907 
7908 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7909 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7910 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7911 	.pkt_access	= true,
7912 	.ret_type	= RET_INTEGER,
7913 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7914 	.arg1_size	= sizeof(struct iphdr),
7915 	.arg2_type	= ARG_PTR_TO_MEM,
7916 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7917 };
7918 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7919 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7920 	   struct tcphdr *, th, u32, th_len)
7921 {
7922 #if IS_BUILTIN(CONFIG_IPV6)
7923 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7924 		sizeof(struct ipv6hdr);
7925 	u32 cookie;
7926 	u16 mss;
7927 
7928 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7929 		return -EINVAL;
7930 
7931 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7932 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7933 
7934 	return cookie | ((u64)mss << 32);
7935 #else
7936 	return -EPROTONOSUPPORT;
7937 #endif
7938 }
7939 
7940 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7941 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7942 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7943 	.pkt_access	= true,
7944 	.ret_type	= RET_INTEGER,
7945 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7946 	.arg1_size	= sizeof(struct ipv6hdr),
7947 	.arg2_type	= ARG_PTR_TO_MEM,
7948 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7949 };
7950 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7951 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7952 	   struct tcphdr *, th)
7953 {
7954 	if (__cookie_v4_check(iph, th) > 0)
7955 		return 0;
7956 
7957 	return -EACCES;
7958 }
7959 
7960 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7961 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7962 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7963 	.pkt_access	= true,
7964 	.ret_type	= RET_INTEGER,
7965 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7966 	.arg1_size	= sizeof(struct iphdr),
7967 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7968 	.arg2_size	= sizeof(struct tcphdr),
7969 };
7970 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7971 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7972 	   struct tcphdr *, th)
7973 {
7974 #if IS_BUILTIN(CONFIG_IPV6)
7975 	if (__cookie_v6_check(iph, th) > 0)
7976 		return 0;
7977 
7978 	return -EACCES;
7979 #else
7980 	return -EPROTONOSUPPORT;
7981 #endif
7982 }
7983 
7984 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7985 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7986 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7987 	.pkt_access	= true,
7988 	.ret_type	= RET_INTEGER,
7989 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7990 	.arg1_size	= sizeof(struct ipv6hdr),
7991 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7992 	.arg2_size	= sizeof(struct tcphdr),
7993 };
7994 #endif /* CONFIG_SYN_COOKIES */
7995 
7996 #endif /* CONFIG_INET */
7997 
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)7998 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
7999 {
8000 	switch (func_id) {
8001 	case BPF_FUNC_clone_redirect:
8002 	case BPF_FUNC_l3_csum_replace:
8003 	case BPF_FUNC_l4_csum_replace:
8004 	case BPF_FUNC_lwt_push_encap:
8005 	case BPF_FUNC_lwt_seg6_action:
8006 	case BPF_FUNC_lwt_seg6_adjust_srh:
8007 	case BPF_FUNC_lwt_seg6_store_bytes:
8008 	case BPF_FUNC_msg_pop_data:
8009 	case BPF_FUNC_msg_pull_data:
8010 	case BPF_FUNC_msg_push_data:
8011 	case BPF_FUNC_skb_adjust_room:
8012 	case BPF_FUNC_skb_change_head:
8013 	case BPF_FUNC_skb_change_proto:
8014 	case BPF_FUNC_skb_change_tail:
8015 	case BPF_FUNC_skb_pull_data:
8016 	case BPF_FUNC_skb_store_bytes:
8017 	case BPF_FUNC_skb_vlan_pop:
8018 	case BPF_FUNC_skb_vlan_push:
8019 	case BPF_FUNC_store_hdr_opt:
8020 	case BPF_FUNC_xdp_adjust_head:
8021 	case BPF_FUNC_xdp_adjust_meta:
8022 	case BPF_FUNC_xdp_adjust_tail:
8023 	/* tail-called program could call any of the above */
8024 	case BPF_FUNC_tail_call:
8025 		return true;
8026 	default:
8027 		return false;
8028 	}
8029 }
8030 
8031 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8032 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8033 
8034 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8035 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8036 {
8037 	const struct bpf_func_proto *func_proto;
8038 
8039 	func_proto = cgroup_common_func_proto(func_id, prog);
8040 	if (func_proto)
8041 		return func_proto;
8042 
8043 	switch (func_id) {
8044 	case BPF_FUNC_get_socket_cookie:
8045 		return &bpf_get_socket_cookie_sock_proto;
8046 	case BPF_FUNC_get_netns_cookie:
8047 		return &bpf_get_netns_cookie_sock_proto;
8048 	case BPF_FUNC_perf_event_output:
8049 		return &bpf_event_output_data_proto;
8050 	case BPF_FUNC_sk_storage_get:
8051 		return &bpf_sk_storage_get_cg_sock_proto;
8052 	case BPF_FUNC_ktime_get_coarse_ns:
8053 		return &bpf_ktime_get_coarse_ns_proto;
8054 	default:
8055 		return bpf_base_func_proto(func_id, prog);
8056 	}
8057 }
8058 
8059 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8060 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8061 {
8062 	const struct bpf_func_proto *func_proto;
8063 
8064 	func_proto = cgroup_common_func_proto(func_id, prog);
8065 	if (func_proto)
8066 		return func_proto;
8067 
8068 	switch (func_id) {
8069 	case BPF_FUNC_bind:
8070 		switch (prog->expected_attach_type) {
8071 		case BPF_CGROUP_INET4_CONNECT:
8072 		case BPF_CGROUP_INET6_CONNECT:
8073 			return &bpf_bind_proto;
8074 		default:
8075 			return NULL;
8076 		}
8077 	case BPF_FUNC_get_socket_cookie:
8078 		return &bpf_get_socket_cookie_sock_addr_proto;
8079 	case BPF_FUNC_get_netns_cookie:
8080 		return &bpf_get_netns_cookie_sock_addr_proto;
8081 	case BPF_FUNC_perf_event_output:
8082 		return &bpf_event_output_data_proto;
8083 #ifdef CONFIG_INET
8084 	case BPF_FUNC_sk_lookup_tcp:
8085 		return &bpf_sock_addr_sk_lookup_tcp_proto;
8086 	case BPF_FUNC_sk_lookup_udp:
8087 		return &bpf_sock_addr_sk_lookup_udp_proto;
8088 	case BPF_FUNC_sk_release:
8089 		return &bpf_sk_release_proto;
8090 	case BPF_FUNC_skc_lookup_tcp:
8091 		return &bpf_sock_addr_skc_lookup_tcp_proto;
8092 #endif /* CONFIG_INET */
8093 	case BPF_FUNC_sk_storage_get:
8094 		return &bpf_sk_storage_get_proto;
8095 	case BPF_FUNC_sk_storage_delete:
8096 		return &bpf_sk_storage_delete_proto;
8097 	case BPF_FUNC_setsockopt:
8098 		switch (prog->expected_attach_type) {
8099 		case BPF_CGROUP_INET4_BIND:
8100 		case BPF_CGROUP_INET6_BIND:
8101 		case BPF_CGROUP_INET4_CONNECT:
8102 		case BPF_CGROUP_INET6_CONNECT:
8103 		case BPF_CGROUP_UNIX_CONNECT:
8104 		case BPF_CGROUP_UDP4_RECVMSG:
8105 		case BPF_CGROUP_UDP6_RECVMSG:
8106 		case BPF_CGROUP_UNIX_RECVMSG:
8107 		case BPF_CGROUP_UDP4_SENDMSG:
8108 		case BPF_CGROUP_UDP6_SENDMSG:
8109 		case BPF_CGROUP_UNIX_SENDMSG:
8110 		case BPF_CGROUP_INET4_GETPEERNAME:
8111 		case BPF_CGROUP_INET6_GETPEERNAME:
8112 		case BPF_CGROUP_UNIX_GETPEERNAME:
8113 		case BPF_CGROUP_INET4_GETSOCKNAME:
8114 		case BPF_CGROUP_INET6_GETSOCKNAME:
8115 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8116 			return &bpf_sock_addr_setsockopt_proto;
8117 		default:
8118 			return NULL;
8119 		}
8120 	case BPF_FUNC_getsockopt:
8121 		switch (prog->expected_attach_type) {
8122 		case BPF_CGROUP_INET4_BIND:
8123 		case BPF_CGROUP_INET6_BIND:
8124 		case BPF_CGROUP_INET4_CONNECT:
8125 		case BPF_CGROUP_INET6_CONNECT:
8126 		case BPF_CGROUP_UNIX_CONNECT:
8127 		case BPF_CGROUP_UDP4_RECVMSG:
8128 		case BPF_CGROUP_UDP6_RECVMSG:
8129 		case BPF_CGROUP_UNIX_RECVMSG:
8130 		case BPF_CGROUP_UDP4_SENDMSG:
8131 		case BPF_CGROUP_UDP6_SENDMSG:
8132 		case BPF_CGROUP_UNIX_SENDMSG:
8133 		case BPF_CGROUP_INET4_GETPEERNAME:
8134 		case BPF_CGROUP_INET6_GETPEERNAME:
8135 		case BPF_CGROUP_UNIX_GETPEERNAME:
8136 		case BPF_CGROUP_INET4_GETSOCKNAME:
8137 		case BPF_CGROUP_INET6_GETSOCKNAME:
8138 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8139 			return &bpf_sock_addr_getsockopt_proto;
8140 		default:
8141 			return NULL;
8142 		}
8143 	default:
8144 		return bpf_sk_base_func_proto(func_id, prog);
8145 	}
8146 }
8147 
8148 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8149 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8150 {
8151 	switch (func_id) {
8152 	case BPF_FUNC_skb_load_bytes:
8153 		return &bpf_skb_load_bytes_proto;
8154 	case BPF_FUNC_skb_load_bytes_relative:
8155 		return &bpf_skb_load_bytes_relative_proto;
8156 	case BPF_FUNC_get_socket_cookie:
8157 		return &bpf_get_socket_cookie_proto;
8158 	case BPF_FUNC_get_netns_cookie:
8159 		return &bpf_get_netns_cookie_proto;
8160 	case BPF_FUNC_get_socket_uid:
8161 		return &bpf_get_socket_uid_proto;
8162 	case BPF_FUNC_perf_event_output:
8163 		return &bpf_skb_event_output_proto;
8164 	default:
8165 		return bpf_sk_base_func_proto(func_id, prog);
8166 	}
8167 }
8168 
8169 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8170 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8171 
8172 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8173 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8174 {
8175 	const struct bpf_func_proto *func_proto;
8176 
8177 	func_proto = cgroup_common_func_proto(func_id, prog);
8178 	if (func_proto)
8179 		return func_proto;
8180 
8181 	switch (func_id) {
8182 	case BPF_FUNC_sk_fullsock:
8183 		return &bpf_sk_fullsock_proto;
8184 	case BPF_FUNC_sk_storage_get:
8185 		return &bpf_sk_storage_get_proto;
8186 	case BPF_FUNC_sk_storage_delete:
8187 		return &bpf_sk_storage_delete_proto;
8188 	case BPF_FUNC_perf_event_output:
8189 		return &bpf_skb_event_output_proto;
8190 #ifdef CONFIG_SOCK_CGROUP_DATA
8191 	case BPF_FUNC_skb_cgroup_id:
8192 		return &bpf_skb_cgroup_id_proto;
8193 	case BPF_FUNC_skb_ancestor_cgroup_id:
8194 		return &bpf_skb_ancestor_cgroup_id_proto;
8195 	case BPF_FUNC_sk_cgroup_id:
8196 		return &bpf_sk_cgroup_id_proto;
8197 	case BPF_FUNC_sk_ancestor_cgroup_id:
8198 		return &bpf_sk_ancestor_cgroup_id_proto;
8199 #endif
8200 #ifdef CONFIG_INET
8201 	case BPF_FUNC_sk_lookup_tcp:
8202 		return &bpf_sk_lookup_tcp_proto;
8203 	case BPF_FUNC_sk_lookup_udp:
8204 		return &bpf_sk_lookup_udp_proto;
8205 	case BPF_FUNC_sk_release:
8206 		return &bpf_sk_release_proto;
8207 	case BPF_FUNC_skc_lookup_tcp:
8208 		return &bpf_skc_lookup_tcp_proto;
8209 	case BPF_FUNC_tcp_sock:
8210 		return &bpf_tcp_sock_proto;
8211 	case BPF_FUNC_get_listener_sock:
8212 		return &bpf_get_listener_sock_proto;
8213 	case BPF_FUNC_skb_ecn_set_ce:
8214 		return &bpf_skb_ecn_set_ce_proto;
8215 #endif
8216 	default:
8217 		return sk_filter_func_proto(func_id, prog);
8218 	}
8219 }
8220 
8221 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8222 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8223 {
8224 	switch (func_id) {
8225 	case BPF_FUNC_skb_store_bytes:
8226 		return &bpf_skb_store_bytes_proto;
8227 	case BPF_FUNC_skb_load_bytes:
8228 		return &bpf_skb_load_bytes_proto;
8229 	case BPF_FUNC_skb_load_bytes_relative:
8230 		return &bpf_skb_load_bytes_relative_proto;
8231 	case BPF_FUNC_skb_pull_data:
8232 		return &bpf_skb_pull_data_proto;
8233 	case BPF_FUNC_csum_diff:
8234 		return &bpf_csum_diff_proto;
8235 	case BPF_FUNC_csum_update:
8236 		return &bpf_csum_update_proto;
8237 	case BPF_FUNC_csum_level:
8238 		return &bpf_csum_level_proto;
8239 	case BPF_FUNC_l3_csum_replace:
8240 		return &bpf_l3_csum_replace_proto;
8241 	case BPF_FUNC_l4_csum_replace:
8242 		return &bpf_l4_csum_replace_proto;
8243 	case BPF_FUNC_clone_redirect:
8244 		return &bpf_clone_redirect_proto;
8245 	case BPF_FUNC_get_cgroup_classid:
8246 		return &bpf_get_cgroup_classid_proto;
8247 	case BPF_FUNC_skb_vlan_push:
8248 		return &bpf_skb_vlan_push_proto;
8249 	case BPF_FUNC_skb_vlan_pop:
8250 		return &bpf_skb_vlan_pop_proto;
8251 	case BPF_FUNC_skb_change_proto:
8252 		return &bpf_skb_change_proto_proto;
8253 	case BPF_FUNC_skb_change_type:
8254 		return &bpf_skb_change_type_proto;
8255 	case BPF_FUNC_skb_adjust_room:
8256 		return &bpf_skb_adjust_room_proto;
8257 	case BPF_FUNC_skb_change_tail:
8258 		return &bpf_skb_change_tail_proto;
8259 	case BPF_FUNC_skb_change_head:
8260 		return &bpf_skb_change_head_proto;
8261 	case BPF_FUNC_skb_get_tunnel_key:
8262 		return &bpf_skb_get_tunnel_key_proto;
8263 	case BPF_FUNC_skb_set_tunnel_key:
8264 		return bpf_get_skb_set_tunnel_proto(func_id);
8265 	case BPF_FUNC_skb_get_tunnel_opt:
8266 		return &bpf_skb_get_tunnel_opt_proto;
8267 	case BPF_FUNC_skb_set_tunnel_opt:
8268 		return bpf_get_skb_set_tunnel_proto(func_id);
8269 	case BPF_FUNC_redirect:
8270 		return &bpf_redirect_proto;
8271 	case BPF_FUNC_redirect_neigh:
8272 		return &bpf_redirect_neigh_proto;
8273 	case BPF_FUNC_redirect_peer:
8274 		return &bpf_redirect_peer_proto;
8275 	case BPF_FUNC_get_route_realm:
8276 		return &bpf_get_route_realm_proto;
8277 	case BPF_FUNC_get_hash_recalc:
8278 		return &bpf_get_hash_recalc_proto;
8279 	case BPF_FUNC_set_hash_invalid:
8280 		return &bpf_set_hash_invalid_proto;
8281 	case BPF_FUNC_set_hash:
8282 		return &bpf_set_hash_proto;
8283 	case BPF_FUNC_perf_event_output:
8284 		return &bpf_skb_event_output_proto;
8285 	case BPF_FUNC_get_smp_processor_id:
8286 		return &bpf_get_smp_processor_id_proto;
8287 	case BPF_FUNC_skb_under_cgroup:
8288 		return &bpf_skb_under_cgroup_proto;
8289 	case BPF_FUNC_get_socket_cookie:
8290 		return &bpf_get_socket_cookie_proto;
8291 	case BPF_FUNC_get_netns_cookie:
8292 		return &bpf_get_netns_cookie_proto;
8293 	case BPF_FUNC_get_socket_uid:
8294 		return &bpf_get_socket_uid_proto;
8295 	case BPF_FUNC_fib_lookup:
8296 		return &bpf_skb_fib_lookup_proto;
8297 	case BPF_FUNC_check_mtu:
8298 		return &bpf_skb_check_mtu_proto;
8299 	case BPF_FUNC_sk_fullsock:
8300 		return &bpf_sk_fullsock_proto;
8301 	case BPF_FUNC_sk_storage_get:
8302 		return &bpf_sk_storage_get_proto;
8303 	case BPF_FUNC_sk_storage_delete:
8304 		return &bpf_sk_storage_delete_proto;
8305 #ifdef CONFIG_XFRM
8306 	case BPF_FUNC_skb_get_xfrm_state:
8307 		return &bpf_skb_get_xfrm_state_proto;
8308 #endif
8309 #ifdef CONFIG_CGROUP_NET_CLASSID
8310 	case BPF_FUNC_skb_cgroup_classid:
8311 		return &bpf_skb_cgroup_classid_proto;
8312 #endif
8313 #ifdef CONFIG_SOCK_CGROUP_DATA
8314 	case BPF_FUNC_skb_cgroup_id:
8315 		return &bpf_skb_cgroup_id_proto;
8316 	case BPF_FUNC_skb_ancestor_cgroup_id:
8317 		return &bpf_skb_ancestor_cgroup_id_proto;
8318 #endif
8319 #ifdef CONFIG_INET
8320 	case BPF_FUNC_sk_lookup_tcp:
8321 		return &bpf_tc_sk_lookup_tcp_proto;
8322 	case BPF_FUNC_sk_lookup_udp:
8323 		return &bpf_tc_sk_lookup_udp_proto;
8324 	case BPF_FUNC_sk_release:
8325 		return &bpf_sk_release_proto;
8326 	case BPF_FUNC_tcp_sock:
8327 		return &bpf_tcp_sock_proto;
8328 	case BPF_FUNC_get_listener_sock:
8329 		return &bpf_get_listener_sock_proto;
8330 	case BPF_FUNC_skc_lookup_tcp:
8331 		return &bpf_tc_skc_lookup_tcp_proto;
8332 	case BPF_FUNC_tcp_check_syncookie:
8333 		return &bpf_tcp_check_syncookie_proto;
8334 	case BPF_FUNC_skb_ecn_set_ce:
8335 		return &bpf_skb_ecn_set_ce_proto;
8336 	case BPF_FUNC_tcp_gen_syncookie:
8337 		return &bpf_tcp_gen_syncookie_proto;
8338 	case BPF_FUNC_sk_assign:
8339 		return &bpf_sk_assign_proto;
8340 	case BPF_FUNC_skb_set_tstamp:
8341 		return &bpf_skb_set_tstamp_proto;
8342 #ifdef CONFIG_SYN_COOKIES
8343 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8344 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8345 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8346 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8347 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8348 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8349 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8350 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8351 #endif
8352 #endif
8353 	default:
8354 		return bpf_sk_base_func_proto(func_id, prog);
8355 	}
8356 }
8357 
8358 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8359 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8360 {
8361 	switch (func_id) {
8362 	case BPF_FUNC_perf_event_output:
8363 		return &bpf_xdp_event_output_proto;
8364 	case BPF_FUNC_get_smp_processor_id:
8365 		return &bpf_get_smp_processor_id_proto;
8366 	case BPF_FUNC_csum_diff:
8367 		return &bpf_csum_diff_proto;
8368 	case BPF_FUNC_xdp_adjust_head:
8369 		return &bpf_xdp_adjust_head_proto;
8370 	case BPF_FUNC_xdp_adjust_meta:
8371 		return &bpf_xdp_adjust_meta_proto;
8372 	case BPF_FUNC_redirect:
8373 		return &bpf_xdp_redirect_proto;
8374 	case BPF_FUNC_redirect_map:
8375 		return &bpf_xdp_redirect_map_proto;
8376 	case BPF_FUNC_xdp_adjust_tail:
8377 		return &bpf_xdp_adjust_tail_proto;
8378 	case BPF_FUNC_xdp_get_buff_len:
8379 		return &bpf_xdp_get_buff_len_proto;
8380 	case BPF_FUNC_xdp_load_bytes:
8381 		return &bpf_xdp_load_bytes_proto;
8382 	case BPF_FUNC_xdp_store_bytes:
8383 		return &bpf_xdp_store_bytes_proto;
8384 	case BPF_FUNC_fib_lookup:
8385 		return &bpf_xdp_fib_lookup_proto;
8386 	case BPF_FUNC_check_mtu:
8387 		return &bpf_xdp_check_mtu_proto;
8388 #ifdef CONFIG_INET
8389 	case BPF_FUNC_sk_lookup_udp:
8390 		return &bpf_xdp_sk_lookup_udp_proto;
8391 	case BPF_FUNC_sk_lookup_tcp:
8392 		return &bpf_xdp_sk_lookup_tcp_proto;
8393 	case BPF_FUNC_sk_release:
8394 		return &bpf_sk_release_proto;
8395 	case BPF_FUNC_skc_lookup_tcp:
8396 		return &bpf_xdp_skc_lookup_tcp_proto;
8397 	case BPF_FUNC_tcp_check_syncookie:
8398 		return &bpf_tcp_check_syncookie_proto;
8399 	case BPF_FUNC_tcp_gen_syncookie:
8400 		return &bpf_tcp_gen_syncookie_proto;
8401 #ifdef CONFIG_SYN_COOKIES
8402 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8403 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8404 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8405 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8406 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8407 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8408 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8409 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8410 #endif
8411 #endif
8412 	default:
8413 		return bpf_sk_base_func_proto(func_id, prog);
8414 	}
8415 
8416 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8417 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8418 	 * kfuncs are defined in two different modules, and we want to be able
8419 	 * to use them interchangeably with the same BTF type ID. Because modules
8420 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8421 	 * referenced in the vmlinux BTF or the verifier will get confused about
8422 	 * the different types. So we add this dummy type reference which will
8423 	 * be included in vmlinux BTF, allowing both modules to refer to the
8424 	 * same type ID.
8425 	 */
8426 	BTF_TYPE_EMIT(struct nf_conn___init);
8427 #endif
8428 }
8429 
8430 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8431 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8432 
8433 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8434 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8435 {
8436 	const struct bpf_func_proto *func_proto;
8437 
8438 	func_proto = cgroup_common_func_proto(func_id, prog);
8439 	if (func_proto)
8440 		return func_proto;
8441 
8442 	switch (func_id) {
8443 	case BPF_FUNC_setsockopt:
8444 		return &bpf_sock_ops_setsockopt_proto;
8445 	case BPF_FUNC_getsockopt:
8446 		return &bpf_sock_ops_getsockopt_proto;
8447 	case BPF_FUNC_sock_ops_cb_flags_set:
8448 		return &bpf_sock_ops_cb_flags_set_proto;
8449 	case BPF_FUNC_sock_map_update:
8450 		return &bpf_sock_map_update_proto;
8451 	case BPF_FUNC_sock_hash_update:
8452 		return &bpf_sock_hash_update_proto;
8453 	case BPF_FUNC_get_socket_cookie:
8454 		return &bpf_get_socket_cookie_sock_ops_proto;
8455 	case BPF_FUNC_perf_event_output:
8456 		return &bpf_event_output_data_proto;
8457 	case BPF_FUNC_sk_storage_get:
8458 		return &bpf_sk_storage_get_proto;
8459 	case BPF_FUNC_sk_storage_delete:
8460 		return &bpf_sk_storage_delete_proto;
8461 	case BPF_FUNC_get_netns_cookie:
8462 		return &bpf_get_netns_cookie_sock_ops_proto;
8463 #ifdef CONFIG_INET
8464 	case BPF_FUNC_load_hdr_opt:
8465 		return &bpf_sock_ops_load_hdr_opt_proto;
8466 	case BPF_FUNC_store_hdr_opt:
8467 		return &bpf_sock_ops_store_hdr_opt_proto;
8468 	case BPF_FUNC_reserve_hdr_opt:
8469 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8470 	case BPF_FUNC_tcp_sock:
8471 		return &bpf_tcp_sock_proto;
8472 #endif /* CONFIG_INET */
8473 	default:
8474 		return bpf_sk_base_func_proto(func_id, prog);
8475 	}
8476 }
8477 
8478 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8479 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8480 
8481 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8482 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8483 {
8484 	switch (func_id) {
8485 	case BPF_FUNC_msg_redirect_map:
8486 		return &bpf_msg_redirect_map_proto;
8487 	case BPF_FUNC_msg_redirect_hash:
8488 		return &bpf_msg_redirect_hash_proto;
8489 	case BPF_FUNC_msg_apply_bytes:
8490 		return &bpf_msg_apply_bytes_proto;
8491 	case BPF_FUNC_msg_cork_bytes:
8492 		return &bpf_msg_cork_bytes_proto;
8493 	case BPF_FUNC_msg_pull_data:
8494 		return &bpf_msg_pull_data_proto;
8495 	case BPF_FUNC_msg_push_data:
8496 		return &bpf_msg_push_data_proto;
8497 	case BPF_FUNC_msg_pop_data:
8498 		return &bpf_msg_pop_data_proto;
8499 	case BPF_FUNC_perf_event_output:
8500 		return &bpf_event_output_data_proto;
8501 	case BPF_FUNC_sk_storage_get:
8502 		return &bpf_sk_storage_get_proto;
8503 	case BPF_FUNC_sk_storage_delete:
8504 		return &bpf_sk_storage_delete_proto;
8505 	case BPF_FUNC_get_netns_cookie:
8506 		return &bpf_get_netns_cookie_sk_msg_proto;
8507 	default:
8508 		return bpf_sk_base_func_proto(func_id, prog);
8509 	}
8510 }
8511 
8512 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8513 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8514 
8515 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8516 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8517 {
8518 	switch (func_id) {
8519 	case BPF_FUNC_skb_store_bytes:
8520 		return &bpf_skb_store_bytes_proto;
8521 	case BPF_FUNC_skb_load_bytes:
8522 		return &bpf_skb_load_bytes_proto;
8523 	case BPF_FUNC_skb_pull_data:
8524 		return &sk_skb_pull_data_proto;
8525 	case BPF_FUNC_skb_change_tail:
8526 		return &sk_skb_change_tail_proto;
8527 	case BPF_FUNC_skb_change_head:
8528 		return &sk_skb_change_head_proto;
8529 	case BPF_FUNC_skb_adjust_room:
8530 		return &sk_skb_adjust_room_proto;
8531 	case BPF_FUNC_get_socket_cookie:
8532 		return &bpf_get_socket_cookie_proto;
8533 	case BPF_FUNC_get_socket_uid:
8534 		return &bpf_get_socket_uid_proto;
8535 	case BPF_FUNC_sk_redirect_map:
8536 		return &bpf_sk_redirect_map_proto;
8537 	case BPF_FUNC_sk_redirect_hash:
8538 		return &bpf_sk_redirect_hash_proto;
8539 	case BPF_FUNC_perf_event_output:
8540 		return &bpf_skb_event_output_proto;
8541 #ifdef CONFIG_INET
8542 	case BPF_FUNC_sk_lookup_tcp:
8543 		return &bpf_sk_lookup_tcp_proto;
8544 	case BPF_FUNC_sk_lookup_udp:
8545 		return &bpf_sk_lookup_udp_proto;
8546 	case BPF_FUNC_sk_release:
8547 		return &bpf_sk_release_proto;
8548 	case BPF_FUNC_skc_lookup_tcp:
8549 		return &bpf_skc_lookup_tcp_proto;
8550 #endif
8551 	default:
8552 		return bpf_sk_base_func_proto(func_id, prog);
8553 	}
8554 }
8555 
8556 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8557 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8558 {
8559 	switch (func_id) {
8560 	case BPF_FUNC_skb_load_bytes:
8561 		return &bpf_flow_dissector_load_bytes_proto;
8562 	default:
8563 		return bpf_sk_base_func_proto(func_id, prog);
8564 	}
8565 }
8566 
8567 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8568 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8569 {
8570 	switch (func_id) {
8571 	case BPF_FUNC_skb_load_bytes:
8572 		return &bpf_skb_load_bytes_proto;
8573 	case BPF_FUNC_skb_pull_data:
8574 		return &bpf_skb_pull_data_proto;
8575 	case BPF_FUNC_csum_diff:
8576 		return &bpf_csum_diff_proto;
8577 	case BPF_FUNC_get_cgroup_classid:
8578 		return &bpf_get_cgroup_classid_proto;
8579 	case BPF_FUNC_get_route_realm:
8580 		return &bpf_get_route_realm_proto;
8581 	case BPF_FUNC_get_hash_recalc:
8582 		return &bpf_get_hash_recalc_proto;
8583 	case BPF_FUNC_perf_event_output:
8584 		return &bpf_skb_event_output_proto;
8585 	case BPF_FUNC_get_smp_processor_id:
8586 		return &bpf_get_smp_processor_id_proto;
8587 	case BPF_FUNC_skb_under_cgroup:
8588 		return &bpf_skb_under_cgroup_proto;
8589 	default:
8590 		return bpf_sk_base_func_proto(func_id, prog);
8591 	}
8592 }
8593 
8594 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8595 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8596 {
8597 	switch (func_id) {
8598 	case BPF_FUNC_lwt_push_encap:
8599 		return &bpf_lwt_in_push_encap_proto;
8600 	default:
8601 		return lwt_out_func_proto(func_id, prog);
8602 	}
8603 }
8604 
8605 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8606 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8607 {
8608 	switch (func_id) {
8609 	case BPF_FUNC_skb_get_tunnel_key:
8610 		return &bpf_skb_get_tunnel_key_proto;
8611 	case BPF_FUNC_skb_set_tunnel_key:
8612 		return bpf_get_skb_set_tunnel_proto(func_id);
8613 	case BPF_FUNC_skb_get_tunnel_opt:
8614 		return &bpf_skb_get_tunnel_opt_proto;
8615 	case BPF_FUNC_skb_set_tunnel_opt:
8616 		return bpf_get_skb_set_tunnel_proto(func_id);
8617 	case BPF_FUNC_redirect:
8618 		return &bpf_redirect_proto;
8619 	case BPF_FUNC_clone_redirect:
8620 		return &bpf_clone_redirect_proto;
8621 	case BPF_FUNC_skb_change_tail:
8622 		return &bpf_skb_change_tail_proto;
8623 	case BPF_FUNC_skb_change_head:
8624 		return &bpf_skb_change_head_proto;
8625 	case BPF_FUNC_skb_store_bytes:
8626 		return &bpf_skb_store_bytes_proto;
8627 	case BPF_FUNC_csum_update:
8628 		return &bpf_csum_update_proto;
8629 	case BPF_FUNC_csum_level:
8630 		return &bpf_csum_level_proto;
8631 	case BPF_FUNC_l3_csum_replace:
8632 		return &bpf_l3_csum_replace_proto;
8633 	case BPF_FUNC_l4_csum_replace:
8634 		return &bpf_l4_csum_replace_proto;
8635 	case BPF_FUNC_set_hash_invalid:
8636 		return &bpf_set_hash_invalid_proto;
8637 	case BPF_FUNC_lwt_push_encap:
8638 		return &bpf_lwt_xmit_push_encap_proto;
8639 	default:
8640 		return lwt_out_func_proto(func_id, prog);
8641 	}
8642 }
8643 
8644 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8645 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8646 {
8647 	switch (func_id) {
8648 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8649 	case BPF_FUNC_lwt_seg6_store_bytes:
8650 		return &bpf_lwt_seg6_store_bytes_proto;
8651 	case BPF_FUNC_lwt_seg6_action:
8652 		return &bpf_lwt_seg6_action_proto;
8653 	case BPF_FUNC_lwt_seg6_adjust_srh:
8654 		return &bpf_lwt_seg6_adjust_srh_proto;
8655 #endif
8656 	default:
8657 		return lwt_out_func_proto(func_id, prog);
8658 	}
8659 }
8660 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8661 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8662 				    const struct bpf_prog *prog,
8663 				    struct bpf_insn_access_aux *info)
8664 {
8665 	const int size_default = sizeof(__u32);
8666 
8667 	if (off < 0 || off >= sizeof(struct __sk_buff))
8668 		return false;
8669 
8670 	/* The verifier guarantees that size > 0. */
8671 	if (off % size != 0)
8672 		return false;
8673 
8674 	switch (off) {
8675 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8676 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8677 			return false;
8678 		break;
8679 	case bpf_ctx_range(struct __sk_buff, data):
8680 	case bpf_ctx_range(struct __sk_buff, data_meta):
8681 	case bpf_ctx_range(struct __sk_buff, data_end):
8682 		if (info->is_ldsx || size != size_default)
8683 			return false;
8684 		break;
8685 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8686 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8687 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8688 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8689 		if (size != size_default)
8690 			return false;
8691 		break;
8692 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8693 		return false;
8694 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8695 		if (type == BPF_WRITE || size != sizeof(__u64))
8696 			return false;
8697 		break;
8698 	case bpf_ctx_range(struct __sk_buff, tstamp):
8699 		if (size != sizeof(__u64))
8700 			return false;
8701 		break;
8702 	case bpf_ctx_range_ptr(struct __sk_buff, sk):
8703 		if (type == BPF_WRITE || size != sizeof(__u64))
8704 			return false;
8705 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8706 		break;
8707 	case offsetof(struct __sk_buff, tstamp_type):
8708 		return false;
8709 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8710 		/* Explicitly prohibit access to padding in __sk_buff. */
8711 		return false;
8712 	default:
8713 		/* Only narrow read access allowed for now. */
8714 		if (type == BPF_WRITE) {
8715 			if (size != size_default)
8716 				return false;
8717 		} else {
8718 			bpf_ctx_record_field_size(info, size_default);
8719 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8720 				return false;
8721 		}
8722 	}
8723 
8724 	return true;
8725 }
8726 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8727 static bool sk_filter_is_valid_access(int off, int size,
8728 				      enum bpf_access_type type,
8729 				      const struct bpf_prog *prog,
8730 				      struct bpf_insn_access_aux *info)
8731 {
8732 	switch (off) {
8733 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8734 	case bpf_ctx_range(struct __sk_buff, data):
8735 	case bpf_ctx_range(struct __sk_buff, data_meta):
8736 	case bpf_ctx_range(struct __sk_buff, data_end):
8737 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8738 	case bpf_ctx_range(struct __sk_buff, tstamp):
8739 	case bpf_ctx_range(struct __sk_buff, wire_len):
8740 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8741 		return false;
8742 	}
8743 
8744 	if (type == BPF_WRITE) {
8745 		switch (off) {
8746 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8747 			break;
8748 		default:
8749 			return false;
8750 		}
8751 	}
8752 
8753 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8754 }
8755 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8756 static bool cg_skb_is_valid_access(int off, int size,
8757 				   enum bpf_access_type type,
8758 				   const struct bpf_prog *prog,
8759 				   struct bpf_insn_access_aux *info)
8760 {
8761 	switch (off) {
8762 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8763 	case bpf_ctx_range(struct __sk_buff, data_meta):
8764 	case bpf_ctx_range(struct __sk_buff, wire_len):
8765 		return false;
8766 	case bpf_ctx_range(struct __sk_buff, data):
8767 	case bpf_ctx_range(struct __sk_buff, data_end):
8768 		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8769 			return false;
8770 		break;
8771 	}
8772 
8773 	if (type == BPF_WRITE) {
8774 		switch (off) {
8775 		case bpf_ctx_range(struct __sk_buff, mark):
8776 		case bpf_ctx_range(struct __sk_buff, priority):
8777 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8778 			break;
8779 		case bpf_ctx_range(struct __sk_buff, tstamp):
8780 			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8781 				return false;
8782 			break;
8783 		default:
8784 			return false;
8785 		}
8786 	}
8787 
8788 	switch (off) {
8789 	case bpf_ctx_range(struct __sk_buff, data):
8790 		info->reg_type = PTR_TO_PACKET;
8791 		break;
8792 	case bpf_ctx_range(struct __sk_buff, data_end):
8793 		info->reg_type = PTR_TO_PACKET_END;
8794 		break;
8795 	}
8796 
8797 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8798 }
8799 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8800 static bool lwt_is_valid_access(int off, int size,
8801 				enum bpf_access_type type,
8802 				const struct bpf_prog *prog,
8803 				struct bpf_insn_access_aux *info)
8804 {
8805 	switch (off) {
8806 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8807 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8808 	case bpf_ctx_range(struct __sk_buff, data_meta):
8809 	case bpf_ctx_range(struct __sk_buff, tstamp):
8810 	case bpf_ctx_range(struct __sk_buff, wire_len):
8811 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8812 		return false;
8813 	}
8814 
8815 	if (type == BPF_WRITE) {
8816 		switch (off) {
8817 		case bpf_ctx_range(struct __sk_buff, mark):
8818 		case bpf_ctx_range(struct __sk_buff, priority):
8819 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8820 			break;
8821 		default:
8822 			return false;
8823 		}
8824 	}
8825 
8826 	switch (off) {
8827 	case bpf_ctx_range(struct __sk_buff, data):
8828 		info->reg_type = PTR_TO_PACKET;
8829 		break;
8830 	case bpf_ctx_range(struct __sk_buff, data_end):
8831 		info->reg_type = PTR_TO_PACKET_END;
8832 		break;
8833 	}
8834 
8835 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8836 }
8837 
8838 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8839 static bool __sock_filter_check_attach_type(int off,
8840 					    enum bpf_access_type access_type,
8841 					    enum bpf_attach_type attach_type)
8842 {
8843 	switch (off) {
8844 	case offsetof(struct bpf_sock, bound_dev_if):
8845 	case offsetof(struct bpf_sock, mark):
8846 	case offsetof(struct bpf_sock, priority):
8847 		switch (attach_type) {
8848 		case BPF_CGROUP_INET_SOCK_CREATE:
8849 		case BPF_CGROUP_INET_SOCK_RELEASE:
8850 			goto full_access;
8851 		default:
8852 			return false;
8853 		}
8854 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8855 		switch (attach_type) {
8856 		case BPF_CGROUP_INET4_POST_BIND:
8857 			goto read_only;
8858 		default:
8859 			return false;
8860 		}
8861 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8862 		switch (attach_type) {
8863 		case BPF_CGROUP_INET6_POST_BIND:
8864 			goto read_only;
8865 		default:
8866 			return false;
8867 		}
8868 	case bpf_ctx_range(struct bpf_sock, src_port):
8869 		switch (attach_type) {
8870 		case BPF_CGROUP_INET4_POST_BIND:
8871 		case BPF_CGROUP_INET6_POST_BIND:
8872 			goto read_only;
8873 		default:
8874 			return false;
8875 		}
8876 	}
8877 read_only:
8878 	return access_type == BPF_READ;
8879 full_access:
8880 	return true;
8881 }
8882 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8883 bool bpf_sock_common_is_valid_access(int off, int size,
8884 				     enum bpf_access_type type,
8885 				     struct bpf_insn_access_aux *info)
8886 {
8887 	switch (off) {
8888 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8889 		return false;
8890 	default:
8891 		return bpf_sock_is_valid_access(off, size, type, info);
8892 	}
8893 }
8894 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8895 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8896 			      struct bpf_insn_access_aux *info)
8897 {
8898 	const int size_default = sizeof(__u32);
8899 	int field_size;
8900 
8901 	if (off < 0 || off >= sizeof(struct bpf_sock))
8902 		return false;
8903 	if (off % size != 0)
8904 		return false;
8905 
8906 	switch (off) {
8907 	case offsetof(struct bpf_sock, state):
8908 	case offsetof(struct bpf_sock, family):
8909 	case offsetof(struct bpf_sock, type):
8910 	case offsetof(struct bpf_sock, protocol):
8911 	case offsetof(struct bpf_sock, src_port):
8912 	case offsetof(struct bpf_sock, rx_queue_mapping):
8913 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8914 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8915 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8916 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8917 		bpf_ctx_record_field_size(info, size_default);
8918 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8919 	case bpf_ctx_range(struct bpf_sock, dst_port):
8920 		field_size = size == size_default ?
8921 			size_default : sizeof_field(struct bpf_sock, dst_port);
8922 		bpf_ctx_record_field_size(info, field_size);
8923 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8924 	case offsetofend(struct bpf_sock, dst_port) ...
8925 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8926 		return false;
8927 	}
8928 
8929 	return size == size_default;
8930 }
8931 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8932 static bool sock_filter_is_valid_access(int off, int size,
8933 					enum bpf_access_type type,
8934 					const struct bpf_prog *prog,
8935 					struct bpf_insn_access_aux *info)
8936 {
8937 	if (!bpf_sock_is_valid_access(off, size, type, info))
8938 		return false;
8939 	return __sock_filter_check_attach_type(off, type,
8940 					       prog->expected_attach_type);
8941 }
8942 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8943 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8944 			     const struct bpf_prog *prog)
8945 {
8946 	/* Neither direct read nor direct write requires any preliminary
8947 	 * action.
8948 	 */
8949 	return 0;
8950 }
8951 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8952 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8953 				const struct bpf_prog *prog, int drop_verdict)
8954 {
8955 	struct bpf_insn *insn = insn_buf;
8956 
8957 	if (!direct_write)
8958 		return 0;
8959 
8960 	/* if (!skb->cloned)
8961 	 *       goto start;
8962 	 *
8963 	 * (Fast-path, otherwise approximation that we might be
8964 	 *  a clone, do the rest in helper.)
8965 	 */
8966 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8967 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8968 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8969 
8970 	/* ret = bpf_skb_pull_data(skb, 0); */
8971 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8972 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8973 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8974 			       BPF_FUNC_skb_pull_data);
8975 	/* if (!ret)
8976 	 *      goto restore;
8977 	 * return TC_ACT_SHOT;
8978 	 */
8979 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8980 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8981 	*insn++ = BPF_EXIT_INSN();
8982 
8983 	/* restore: */
8984 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8985 	/* start: */
8986 	*insn++ = prog->insnsi[0];
8987 
8988 	return insn - insn_buf;
8989 }
8990 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8991 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8992 			  struct bpf_insn *insn_buf)
8993 {
8994 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8995 	struct bpf_insn *insn = insn_buf;
8996 
8997 	if (!indirect) {
8998 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8999 	} else {
9000 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
9001 		if (orig->imm)
9002 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
9003 	}
9004 	/* We're guaranteed here that CTX is in R6. */
9005 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9006 
9007 	switch (BPF_SIZE(orig->code)) {
9008 	case BPF_B:
9009 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9010 		break;
9011 	case BPF_H:
9012 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9013 		break;
9014 	case BPF_W:
9015 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9016 		break;
9017 	}
9018 
9019 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9020 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9021 	*insn++ = BPF_EXIT_INSN();
9022 
9023 	return insn - insn_buf;
9024 }
9025 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9026 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9027 			       const struct bpf_prog *prog)
9028 {
9029 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9030 }
9031 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9032 static bool tc_cls_act_is_valid_access(int off, int size,
9033 				       enum bpf_access_type type,
9034 				       const struct bpf_prog *prog,
9035 				       struct bpf_insn_access_aux *info)
9036 {
9037 	if (type == BPF_WRITE) {
9038 		switch (off) {
9039 		case bpf_ctx_range(struct __sk_buff, mark):
9040 		case bpf_ctx_range(struct __sk_buff, tc_index):
9041 		case bpf_ctx_range(struct __sk_buff, priority):
9042 		case bpf_ctx_range(struct __sk_buff, tc_classid):
9043 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9044 		case bpf_ctx_range(struct __sk_buff, tstamp):
9045 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
9046 			break;
9047 		default:
9048 			return false;
9049 		}
9050 	}
9051 
9052 	switch (off) {
9053 	case bpf_ctx_range(struct __sk_buff, data):
9054 		info->reg_type = PTR_TO_PACKET;
9055 		break;
9056 	case bpf_ctx_range(struct __sk_buff, data_meta):
9057 		info->reg_type = PTR_TO_PACKET_META;
9058 		break;
9059 	case bpf_ctx_range(struct __sk_buff, data_end):
9060 		info->reg_type = PTR_TO_PACKET_END;
9061 		break;
9062 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9063 		return false;
9064 	case offsetof(struct __sk_buff, tstamp_type):
9065 		/* The convert_ctx_access() on reading and writing
9066 		 * __sk_buff->tstamp depends on whether the bpf prog
9067 		 * has used __sk_buff->tstamp_type or not.
9068 		 * Thus, we need to set prog->tstamp_type_access
9069 		 * earlier during is_valid_access() here.
9070 		 */
9071 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
9072 		return size == sizeof(__u8);
9073 	}
9074 
9075 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9076 }
9077 
9078 DEFINE_MUTEX(nf_conn_btf_access_lock);
9079 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9080 
9081 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9082 			      const struct bpf_reg_state *reg,
9083 			      int off, int size);
9084 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9085 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9086 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9087 					const struct bpf_reg_state *reg,
9088 					int off, int size)
9089 {
9090 	int ret = -EACCES;
9091 
9092 	mutex_lock(&nf_conn_btf_access_lock);
9093 	if (nfct_btf_struct_access)
9094 		ret = nfct_btf_struct_access(log, reg, off, size);
9095 	mutex_unlock(&nf_conn_btf_access_lock);
9096 
9097 	return ret;
9098 }
9099 
__is_valid_xdp_access(int off,int size)9100 static bool __is_valid_xdp_access(int off, int size)
9101 {
9102 	if (off < 0 || off >= sizeof(struct xdp_md))
9103 		return false;
9104 	if (off % size != 0)
9105 		return false;
9106 	if (size != sizeof(__u32))
9107 		return false;
9108 
9109 	return true;
9110 }
9111 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9112 static bool xdp_is_valid_access(int off, int size,
9113 				enum bpf_access_type type,
9114 				const struct bpf_prog *prog,
9115 				struct bpf_insn_access_aux *info)
9116 {
9117 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9118 		switch (off) {
9119 		case offsetof(struct xdp_md, egress_ifindex):
9120 			return false;
9121 		}
9122 	}
9123 
9124 	if (type == BPF_WRITE) {
9125 		if (bpf_prog_is_offloaded(prog->aux)) {
9126 			switch (off) {
9127 			case offsetof(struct xdp_md, rx_queue_index):
9128 				return __is_valid_xdp_access(off, size);
9129 			}
9130 		}
9131 		return false;
9132 	} else {
9133 		switch (off) {
9134 		case offsetof(struct xdp_md, data_meta):
9135 		case offsetof(struct xdp_md, data):
9136 		case offsetof(struct xdp_md, data_end):
9137 			if (info->is_ldsx)
9138 				return false;
9139 		}
9140 	}
9141 
9142 	switch (off) {
9143 	case offsetof(struct xdp_md, data):
9144 		info->reg_type = PTR_TO_PACKET;
9145 		break;
9146 	case offsetof(struct xdp_md, data_meta):
9147 		info->reg_type = PTR_TO_PACKET_META;
9148 		break;
9149 	case offsetof(struct xdp_md, data_end):
9150 		info->reg_type = PTR_TO_PACKET_END;
9151 		break;
9152 	}
9153 
9154 	return __is_valid_xdp_access(off, size);
9155 }
9156 
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9157 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9158 				 const struct bpf_prog *prog, u32 act)
9159 {
9160 	const u32 act_max = XDP_REDIRECT;
9161 
9162 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9163 		     act > act_max ? "Illegal" : "Driver unsupported",
9164 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9165 }
9166 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9167 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9168 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9169 				 const struct bpf_reg_state *reg,
9170 				 int off, int size)
9171 {
9172 	int ret = -EACCES;
9173 
9174 	mutex_lock(&nf_conn_btf_access_lock);
9175 	if (nfct_btf_struct_access)
9176 		ret = nfct_btf_struct_access(log, reg, off, size);
9177 	mutex_unlock(&nf_conn_btf_access_lock);
9178 
9179 	return ret;
9180 }
9181 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9182 static bool sock_addr_is_valid_access(int off, int size,
9183 				      enum bpf_access_type type,
9184 				      const struct bpf_prog *prog,
9185 				      struct bpf_insn_access_aux *info)
9186 {
9187 	const int size_default = sizeof(__u32);
9188 
9189 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9190 		return false;
9191 	if (off % size != 0)
9192 		return false;
9193 
9194 	/* Disallow access to fields not belonging to the attach type's address
9195 	 * family.
9196 	 */
9197 	switch (off) {
9198 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9199 		switch (prog->expected_attach_type) {
9200 		case BPF_CGROUP_INET4_BIND:
9201 		case BPF_CGROUP_INET4_CONNECT:
9202 		case BPF_CGROUP_INET4_GETPEERNAME:
9203 		case BPF_CGROUP_INET4_GETSOCKNAME:
9204 		case BPF_CGROUP_UDP4_SENDMSG:
9205 		case BPF_CGROUP_UDP4_RECVMSG:
9206 			break;
9207 		default:
9208 			return false;
9209 		}
9210 		break;
9211 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9212 		switch (prog->expected_attach_type) {
9213 		case BPF_CGROUP_INET6_BIND:
9214 		case BPF_CGROUP_INET6_CONNECT:
9215 		case BPF_CGROUP_INET6_GETPEERNAME:
9216 		case BPF_CGROUP_INET6_GETSOCKNAME:
9217 		case BPF_CGROUP_UDP6_SENDMSG:
9218 		case BPF_CGROUP_UDP6_RECVMSG:
9219 			break;
9220 		default:
9221 			return false;
9222 		}
9223 		break;
9224 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9225 		switch (prog->expected_attach_type) {
9226 		case BPF_CGROUP_UDP4_SENDMSG:
9227 			break;
9228 		default:
9229 			return false;
9230 		}
9231 		break;
9232 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9233 				msg_src_ip6[3]):
9234 		switch (prog->expected_attach_type) {
9235 		case BPF_CGROUP_UDP6_SENDMSG:
9236 			break;
9237 		default:
9238 			return false;
9239 		}
9240 		break;
9241 	}
9242 
9243 	switch (off) {
9244 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9245 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9246 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9247 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9248 				msg_src_ip6[3]):
9249 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9250 		if (type == BPF_READ) {
9251 			bpf_ctx_record_field_size(info, size_default);
9252 
9253 			if (bpf_ctx_wide_access_ok(off, size,
9254 						   struct bpf_sock_addr,
9255 						   user_ip6))
9256 				return true;
9257 
9258 			if (bpf_ctx_wide_access_ok(off, size,
9259 						   struct bpf_sock_addr,
9260 						   msg_src_ip6))
9261 				return true;
9262 
9263 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9264 				return false;
9265 		} else {
9266 			if (bpf_ctx_wide_access_ok(off, size,
9267 						   struct bpf_sock_addr,
9268 						   user_ip6))
9269 				return true;
9270 
9271 			if (bpf_ctx_wide_access_ok(off, size,
9272 						   struct bpf_sock_addr,
9273 						   msg_src_ip6))
9274 				return true;
9275 
9276 			if (size != size_default)
9277 				return false;
9278 		}
9279 		break;
9280 	case bpf_ctx_range_ptr(struct bpf_sock_addr, sk):
9281 		if (type != BPF_READ)
9282 			return false;
9283 		if (size != sizeof(__u64))
9284 			return false;
9285 		info->reg_type = PTR_TO_SOCKET;
9286 		break;
9287 	default:
9288 		if (type == BPF_READ) {
9289 			if (size != size_default)
9290 				return false;
9291 		} else {
9292 			return false;
9293 		}
9294 	}
9295 
9296 	return true;
9297 }
9298 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9299 static bool sock_ops_is_valid_access(int off, int size,
9300 				     enum bpf_access_type type,
9301 				     const struct bpf_prog *prog,
9302 				     struct bpf_insn_access_aux *info)
9303 {
9304 	const int size_default = sizeof(__u32);
9305 
9306 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9307 		return false;
9308 
9309 	/* The verifier guarantees that size > 0. */
9310 	if (off % size != 0)
9311 		return false;
9312 
9313 	if (type == BPF_WRITE) {
9314 		switch (off) {
9315 		case offsetof(struct bpf_sock_ops, reply):
9316 		case offsetof(struct bpf_sock_ops, sk_txhash):
9317 			if (size != size_default)
9318 				return false;
9319 			break;
9320 		default:
9321 			return false;
9322 		}
9323 	} else {
9324 		switch (off) {
9325 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9326 					bytes_acked):
9327 			if (size != sizeof(__u64))
9328 				return false;
9329 			break;
9330 		case bpf_ctx_range_ptr(struct bpf_sock_ops, sk):
9331 			if (size != sizeof(__u64))
9332 				return false;
9333 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9334 			break;
9335 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data):
9336 			if (size != sizeof(__u64))
9337 				return false;
9338 			info->reg_type = PTR_TO_PACKET;
9339 			break;
9340 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end):
9341 			if (size != sizeof(__u64))
9342 				return false;
9343 			info->reg_type = PTR_TO_PACKET_END;
9344 			break;
9345 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9346 			bpf_ctx_record_field_size(info, size_default);
9347 			return bpf_ctx_narrow_access_ok(off, size,
9348 							size_default);
9349 		case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp):
9350 			if (size != sizeof(__u64))
9351 				return false;
9352 			break;
9353 		default:
9354 			if (size != size_default)
9355 				return false;
9356 			break;
9357 		}
9358 	}
9359 
9360 	return true;
9361 }
9362 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9363 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9364 			   const struct bpf_prog *prog)
9365 {
9366 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9367 }
9368 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9369 static bool sk_skb_is_valid_access(int off, int size,
9370 				   enum bpf_access_type type,
9371 				   const struct bpf_prog *prog,
9372 				   struct bpf_insn_access_aux *info)
9373 {
9374 	switch (off) {
9375 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9376 	case bpf_ctx_range(struct __sk_buff, data_meta):
9377 	case bpf_ctx_range(struct __sk_buff, tstamp):
9378 	case bpf_ctx_range(struct __sk_buff, wire_len):
9379 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9380 		return false;
9381 	}
9382 
9383 	if (type == BPF_WRITE) {
9384 		switch (off) {
9385 		case bpf_ctx_range(struct __sk_buff, tc_index):
9386 		case bpf_ctx_range(struct __sk_buff, priority):
9387 			break;
9388 		default:
9389 			return false;
9390 		}
9391 	}
9392 
9393 	switch (off) {
9394 	case bpf_ctx_range(struct __sk_buff, mark):
9395 		return false;
9396 	case bpf_ctx_range(struct __sk_buff, data):
9397 		info->reg_type = PTR_TO_PACKET;
9398 		break;
9399 	case bpf_ctx_range(struct __sk_buff, data_end):
9400 		info->reg_type = PTR_TO_PACKET_END;
9401 		break;
9402 	}
9403 
9404 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9405 }
9406 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9407 static bool sk_msg_is_valid_access(int off, int size,
9408 				   enum bpf_access_type type,
9409 				   const struct bpf_prog *prog,
9410 				   struct bpf_insn_access_aux *info)
9411 {
9412 	if (type == BPF_WRITE)
9413 		return false;
9414 
9415 	if (off % size != 0)
9416 		return false;
9417 
9418 	switch (off) {
9419 	case bpf_ctx_range_ptr(struct sk_msg_md, data):
9420 		info->reg_type = PTR_TO_PACKET;
9421 		if (size != sizeof(__u64))
9422 			return false;
9423 		break;
9424 	case bpf_ctx_range_ptr(struct sk_msg_md, data_end):
9425 		info->reg_type = PTR_TO_PACKET_END;
9426 		if (size != sizeof(__u64))
9427 			return false;
9428 		break;
9429 	case bpf_ctx_range_ptr(struct sk_msg_md, sk):
9430 		if (size != sizeof(__u64))
9431 			return false;
9432 		info->reg_type = PTR_TO_SOCKET;
9433 		break;
9434 	case bpf_ctx_range(struct sk_msg_md, family):
9435 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9436 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9437 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9438 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9439 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9440 	case bpf_ctx_range(struct sk_msg_md, local_port):
9441 	case bpf_ctx_range(struct sk_msg_md, size):
9442 		if (size != sizeof(__u32))
9443 			return false;
9444 		break;
9445 	default:
9446 		return false;
9447 	}
9448 	return true;
9449 }
9450 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9451 static bool flow_dissector_is_valid_access(int off, int size,
9452 					   enum bpf_access_type type,
9453 					   const struct bpf_prog *prog,
9454 					   struct bpf_insn_access_aux *info)
9455 {
9456 	const int size_default = sizeof(__u32);
9457 
9458 	if (off < 0 || off >= sizeof(struct __sk_buff))
9459 		return false;
9460 
9461 	if (off % size != 0)
9462 		return false;
9463 
9464 	if (type == BPF_WRITE)
9465 		return false;
9466 
9467 	switch (off) {
9468 	case bpf_ctx_range(struct __sk_buff, data):
9469 		if (info->is_ldsx || size != size_default)
9470 			return false;
9471 		info->reg_type = PTR_TO_PACKET;
9472 		return true;
9473 	case bpf_ctx_range(struct __sk_buff, data_end):
9474 		if (info->is_ldsx || size != size_default)
9475 			return false;
9476 		info->reg_type = PTR_TO_PACKET_END;
9477 		return true;
9478 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9479 		if (size != sizeof(__u64))
9480 			return false;
9481 		info->reg_type = PTR_TO_FLOW_KEYS;
9482 		return true;
9483 	default:
9484 		return false;
9485 	}
9486 }
9487 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9488 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9489 					     const struct bpf_insn *si,
9490 					     struct bpf_insn *insn_buf,
9491 					     struct bpf_prog *prog,
9492 					     u32 *target_size)
9493 
9494 {
9495 	struct bpf_insn *insn = insn_buf;
9496 
9497 	switch (si->off) {
9498 	case offsetof(struct __sk_buff, data):
9499 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9500 				      si->dst_reg, si->src_reg,
9501 				      offsetof(struct bpf_flow_dissector, data));
9502 		break;
9503 
9504 	case offsetof(struct __sk_buff, data_end):
9505 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9506 				      si->dst_reg, si->src_reg,
9507 				      offsetof(struct bpf_flow_dissector, data_end));
9508 		break;
9509 
9510 	case offsetof(struct __sk_buff, flow_keys):
9511 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9512 				      si->dst_reg, si->src_reg,
9513 				      offsetof(struct bpf_flow_dissector, flow_keys));
9514 		break;
9515 	}
9516 
9517 	return insn - insn_buf;
9518 }
9519 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9520 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9521 						     struct bpf_insn *insn)
9522 {
9523 	__u8 value_reg = si->dst_reg;
9524 	__u8 skb_reg = si->src_reg;
9525 	BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9526 	BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9527 	BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9528 	BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9529 	*insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9530 	*insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9531 #ifdef __BIG_ENDIAN_BITFIELD
9532 	*insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9533 #else
9534 	BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9535 #endif
9536 
9537 	return insn;
9538 }
9539 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9540 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9541 						  struct bpf_insn *insn)
9542 {
9543 	/* si->dst_reg = skb_shinfo(SKB); */
9544 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9545 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9546 			      BPF_REG_AX, skb_reg,
9547 			      offsetof(struct sk_buff, end));
9548 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9549 			      dst_reg, skb_reg,
9550 			      offsetof(struct sk_buff, head));
9551 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9552 #else
9553 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9554 			      dst_reg, skb_reg,
9555 			      offsetof(struct sk_buff, end));
9556 #endif
9557 
9558 	return insn;
9559 }
9560 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9561 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9562 						const struct bpf_insn *si,
9563 						struct bpf_insn *insn)
9564 {
9565 	__u8 value_reg = si->dst_reg;
9566 	__u8 skb_reg = si->src_reg;
9567 
9568 #ifdef CONFIG_NET_XGRESS
9569 	/* If the tstamp_type is read,
9570 	 * the bpf prog is aware the tstamp could have delivery time.
9571 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9572 	 */
9573 	if (!prog->tstamp_type_access) {
9574 		/* AX is needed because src_reg and dst_reg could be the same */
9575 		__u8 tmp_reg = BPF_REG_AX;
9576 
9577 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9578 		/* check if ingress mask bits is set */
9579 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9580 		*insn++ = BPF_JMP_A(4);
9581 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9582 		*insn++ = BPF_JMP_A(2);
9583 		/* skb->tc_at_ingress && skb->tstamp_type,
9584 		 * read 0 as the (rcv) timestamp.
9585 		 */
9586 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9587 		*insn++ = BPF_JMP_A(1);
9588 	}
9589 #endif
9590 
9591 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9592 			      offsetof(struct sk_buff, tstamp));
9593 	return insn;
9594 }
9595 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9596 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9597 						 const struct bpf_insn *si,
9598 						 struct bpf_insn *insn)
9599 {
9600 	__u8 value_reg = si->src_reg;
9601 	__u8 skb_reg = si->dst_reg;
9602 
9603 #ifdef CONFIG_NET_XGRESS
9604 	/* If the tstamp_type is read,
9605 	 * the bpf prog is aware the tstamp could have delivery time.
9606 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9607 	 * Otherwise, writing at ingress will have to clear the
9608 	 * skb->tstamp_type bit also.
9609 	 */
9610 	if (!prog->tstamp_type_access) {
9611 		__u8 tmp_reg = BPF_REG_AX;
9612 
9613 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9614 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9615 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9616 		/* goto <store> */
9617 		*insn++ = BPF_JMP_A(2);
9618 		/* <clear>: skb->tstamp_type */
9619 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9620 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9621 	}
9622 #endif
9623 
9624 	/* <store>: skb->tstamp = tstamp */
9625 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9626 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9627 	return insn;
9628 }
9629 
9630 #define BPF_EMIT_STORE(size, si, off)					\
9631 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9632 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9633 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9634 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9635 				  const struct bpf_insn *si,
9636 				  struct bpf_insn *insn_buf,
9637 				  struct bpf_prog *prog, u32 *target_size)
9638 {
9639 	struct bpf_insn *insn = insn_buf;
9640 	int off;
9641 
9642 	switch (si->off) {
9643 	case offsetof(struct __sk_buff, len):
9644 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9645 				      bpf_target_off(struct sk_buff, len, 4,
9646 						     target_size));
9647 		break;
9648 
9649 	case offsetof(struct __sk_buff, protocol):
9650 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9651 				      bpf_target_off(struct sk_buff, protocol, 2,
9652 						     target_size));
9653 		break;
9654 
9655 	case offsetof(struct __sk_buff, vlan_proto):
9656 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9657 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9658 						     target_size));
9659 		break;
9660 
9661 	case offsetof(struct __sk_buff, priority):
9662 		if (type == BPF_WRITE)
9663 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9664 						 bpf_target_off(struct sk_buff, priority, 4,
9665 								target_size));
9666 		else
9667 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9668 					      bpf_target_off(struct sk_buff, priority, 4,
9669 							     target_size));
9670 		break;
9671 
9672 	case offsetof(struct __sk_buff, ingress_ifindex):
9673 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9674 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9675 						     target_size));
9676 		break;
9677 
9678 	case offsetof(struct __sk_buff, ifindex):
9679 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9680 				      si->dst_reg, si->src_reg,
9681 				      offsetof(struct sk_buff, dev));
9682 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9683 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9684 				      bpf_target_off(struct net_device, ifindex, 4,
9685 						     target_size));
9686 		break;
9687 
9688 	case offsetof(struct __sk_buff, hash):
9689 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9690 				      bpf_target_off(struct sk_buff, hash, 4,
9691 						     target_size));
9692 		break;
9693 
9694 	case offsetof(struct __sk_buff, mark):
9695 		if (type == BPF_WRITE)
9696 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9697 						 bpf_target_off(struct sk_buff, mark, 4,
9698 								target_size));
9699 		else
9700 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9701 					      bpf_target_off(struct sk_buff, mark, 4,
9702 							     target_size));
9703 		break;
9704 
9705 	case offsetof(struct __sk_buff, pkt_type):
9706 		*target_size = 1;
9707 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9708 				      PKT_TYPE_OFFSET);
9709 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9710 #ifdef __BIG_ENDIAN_BITFIELD
9711 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9712 #endif
9713 		break;
9714 
9715 	case offsetof(struct __sk_buff, queue_mapping):
9716 		if (type == BPF_WRITE) {
9717 			u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9718 
9719 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9720 				*insn++ = BPF_JMP_A(0); /* noop */
9721 				break;
9722 			}
9723 
9724 			if (BPF_CLASS(si->code) == BPF_STX)
9725 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9726 			*insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9727 		} else {
9728 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9729 					      bpf_target_off(struct sk_buff,
9730 							     queue_mapping,
9731 							     2, target_size));
9732 		}
9733 		break;
9734 
9735 	case offsetof(struct __sk_buff, vlan_present):
9736 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9737 				      bpf_target_off(struct sk_buff,
9738 						     vlan_all, 4, target_size));
9739 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9740 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9741 		break;
9742 
9743 	case offsetof(struct __sk_buff, vlan_tci):
9744 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9745 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9746 						     target_size));
9747 		break;
9748 
9749 	case offsetof(struct __sk_buff, cb[0]) ...
9750 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9751 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9752 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9753 			      offsetof(struct qdisc_skb_cb, data)) %
9754 			     sizeof(__u64));
9755 
9756 		prog->cb_access = 1;
9757 		off  = si->off;
9758 		off -= offsetof(struct __sk_buff, cb[0]);
9759 		off += offsetof(struct sk_buff, cb);
9760 		off += offsetof(struct qdisc_skb_cb, data);
9761 		if (type == BPF_WRITE)
9762 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9763 		else
9764 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9765 					      si->src_reg, off);
9766 		break;
9767 
9768 	case offsetof(struct __sk_buff, tc_classid):
9769 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9770 
9771 		off  = si->off;
9772 		off -= offsetof(struct __sk_buff, tc_classid);
9773 		off += offsetof(struct sk_buff, cb);
9774 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9775 		*target_size = 2;
9776 		if (type == BPF_WRITE)
9777 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9778 		else
9779 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9780 					      si->src_reg, off);
9781 		break;
9782 
9783 	case offsetof(struct __sk_buff, data):
9784 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9785 				      si->dst_reg, si->src_reg,
9786 				      offsetof(struct sk_buff, data));
9787 		break;
9788 
9789 	case offsetof(struct __sk_buff, data_meta):
9790 		off  = si->off;
9791 		off -= offsetof(struct __sk_buff, data_meta);
9792 		off += offsetof(struct sk_buff, cb);
9793 		off += offsetof(struct bpf_skb_data_end, data_meta);
9794 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9795 				      si->src_reg, off);
9796 		break;
9797 
9798 	case offsetof(struct __sk_buff, data_end):
9799 		off  = si->off;
9800 		off -= offsetof(struct __sk_buff, data_end);
9801 		off += offsetof(struct sk_buff, cb);
9802 		off += offsetof(struct bpf_skb_data_end, data_end);
9803 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9804 				      si->src_reg, off);
9805 		break;
9806 
9807 	case offsetof(struct __sk_buff, tc_index):
9808 #ifdef CONFIG_NET_SCHED
9809 		if (type == BPF_WRITE)
9810 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9811 						 bpf_target_off(struct sk_buff, tc_index, 2,
9812 								target_size));
9813 		else
9814 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9815 					      bpf_target_off(struct sk_buff, tc_index, 2,
9816 							     target_size));
9817 #else
9818 		*target_size = 2;
9819 		if (type == BPF_WRITE)
9820 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9821 		else
9822 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9823 #endif
9824 		break;
9825 
9826 	case offsetof(struct __sk_buff, napi_id):
9827 #if defined(CONFIG_NET_RX_BUSY_POLL)
9828 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9829 				      bpf_target_off(struct sk_buff, napi_id, 4,
9830 						     target_size));
9831 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9832 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9833 #else
9834 		*target_size = 4;
9835 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9836 #endif
9837 		break;
9838 	case offsetof(struct __sk_buff, family):
9839 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9840 
9841 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9842 				      si->dst_reg, si->src_reg,
9843 				      offsetof(struct sk_buff, sk));
9844 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9845 				      bpf_target_off(struct sock_common,
9846 						     skc_family,
9847 						     2, target_size));
9848 		break;
9849 	case offsetof(struct __sk_buff, remote_ip4):
9850 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9851 
9852 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9853 				      si->dst_reg, si->src_reg,
9854 				      offsetof(struct sk_buff, sk));
9855 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9856 				      bpf_target_off(struct sock_common,
9857 						     skc_daddr,
9858 						     4, target_size));
9859 		break;
9860 	case offsetof(struct __sk_buff, local_ip4):
9861 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9862 					  skc_rcv_saddr) != 4);
9863 
9864 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9865 				      si->dst_reg, si->src_reg,
9866 				      offsetof(struct sk_buff, sk));
9867 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9868 				      bpf_target_off(struct sock_common,
9869 						     skc_rcv_saddr,
9870 						     4, target_size));
9871 		break;
9872 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9873 	     offsetof(struct __sk_buff, remote_ip6[3]):
9874 #if IS_ENABLED(CONFIG_IPV6)
9875 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9876 					  skc_v6_daddr.s6_addr32[0]) != 4);
9877 
9878 		off = si->off;
9879 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9880 
9881 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9882 				      si->dst_reg, si->src_reg,
9883 				      offsetof(struct sk_buff, sk));
9884 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9885 				      offsetof(struct sock_common,
9886 					       skc_v6_daddr.s6_addr32[0]) +
9887 				      off);
9888 #else
9889 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9890 #endif
9891 		break;
9892 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9893 	     offsetof(struct __sk_buff, local_ip6[3]):
9894 #if IS_ENABLED(CONFIG_IPV6)
9895 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9896 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9897 
9898 		off = si->off;
9899 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9900 
9901 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9902 				      si->dst_reg, si->src_reg,
9903 				      offsetof(struct sk_buff, sk));
9904 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9905 				      offsetof(struct sock_common,
9906 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9907 				      off);
9908 #else
9909 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9910 #endif
9911 		break;
9912 
9913 	case offsetof(struct __sk_buff, remote_port):
9914 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9915 
9916 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9917 				      si->dst_reg, si->src_reg,
9918 				      offsetof(struct sk_buff, sk));
9919 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9920 				      bpf_target_off(struct sock_common,
9921 						     skc_dport,
9922 						     2, target_size));
9923 #ifndef __BIG_ENDIAN_BITFIELD
9924 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9925 #endif
9926 		break;
9927 
9928 	case offsetof(struct __sk_buff, local_port):
9929 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9930 
9931 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9932 				      si->dst_reg, si->src_reg,
9933 				      offsetof(struct sk_buff, sk));
9934 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9935 				      bpf_target_off(struct sock_common,
9936 						     skc_num, 2, target_size));
9937 		break;
9938 
9939 	case offsetof(struct __sk_buff, tstamp):
9940 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9941 
9942 		if (type == BPF_WRITE)
9943 			insn = bpf_convert_tstamp_write(prog, si, insn);
9944 		else
9945 			insn = bpf_convert_tstamp_read(prog, si, insn);
9946 		break;
9947 
9948 	case offsetof(struct __sk_buff, tstamp_type):
9949 		insn = bpf_convert_tstamp_type_read(si, insn);
9950 		break;
9951 
9952 	case offsetof(struct __sk_buff, gso_segs):
9953 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9954 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9955 				      si->dst_reg, si->dst_reg,
9956 				      bpf_target_off(struct skb_shared_info,
9957 						     gso_segs, 2,
9958 						     target_size));
9959 		break;
9960 	case offsetof(struct __sk_buff, gso_size):
9961 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9962 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9963 				      si->dst_reg, si->dst_reg,
9964 				      bpf_target_off(struct skb_shared_info,
9965 						     gso_size, 2,
9966 						     target_size));
9967 		break;
9968 	case offsetof(struct __sk_buff, wire_len):
9969 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9970 
9971 		off = si->off;
9972 		off -= offsetof(struct __sk_buff, wire_len);
9973 		off += offsetof(struct sk_buff, cb);
9974 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9975 		*target_size = 4;
9976 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9977 		break;
9978 
9979 	case offsetof(struct __sk_buff, sk):
9980 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9981 				      si->dst_reg, si->src_reg,
9982 				      offsetof(struct sk_buff, sk));
9983 		break;
9984 	case offsetof(struct __sk_buff, hwtstamp):
9985 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9986 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9987 
9988 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9989 		*insn++ = BPF_LDX_MEM(BPF_DW,
9990 				      si->dst_reg, si->dst_reg,
9991 				      bpf_target_off(struct skb_shared_info,
9992 						     hwtstamps, 8,
9993 						     target_size));
9994 		break;
9995 	}
9996 
9997 	return insn - insn_buf;
9998 }
9999 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10000 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
10001 				const struct bpf_insn *si,
10002 				struct bpf_insn *insn_buf,
10003 				struct bpf_prog *prog, u32 *target_size)
10004 {
10005 	struct bpf_insn *insn = insn_buf;
10006 	int off;
10007 
10008 	switch (si->off) {
10009 	case offsetof(struct bpf_sock, bound_dev_if):
10010 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10011 
10012 		if (type == BPF_WRITE)
10013 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10014 						 offsetof(struct sock, sk_bound_dev_if));
10015 		else
10016 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10017 				      offsetof(struct sock, sk_bound_dev_if));
10018 		break;
10019 
10020 	case offsetof(struct bpf_sock, mark):
10021 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10022 
10023 		if (type == BPF_WRITE)
10024 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10025 						 offsetof(struct sock, sk_mark));
10026 		else
10027 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10028 				      offsetof(struct sock, sk_mark));
10029 		break;
10030 
10031 	case offsetof(struct bpf_sock, priority):
10032 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10033 
10034 		if (type == BPF_WRITE)
10035 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10036 						 offsetof(struct sock, sk_priority));
10037 		else
10038 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10039 				      offsetof(struct sock, sk_priority));
10040 		break;
10041 
10042 	case offsetof(struct bpf_sock, family):
10043 		*insn++ = BPF_LDX_MEM(
10044 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10045 			si->dst_reg, si->src_reg,
10046 			bpf_target_off(struct sock_common,
10047 				       skc_family,
10048 				       sizeof_field(struct sock_common,
10049 						    skc_family),
10050 				       target_size));
10051 		break;
10052 
10053 	case offsetof(struct bpf_sock, type):
10054 		*insn++ = BPF_LDX_MEM(
10055 			BPF_FIELD_SIZEOF(struct sock, sk_type),
10056 			si->dst_reg, si->src_reg,
10057 			bpf_target_off(struct sock, sk_type,
10058 				       sizeof_field(struct sock, sk_type),
10059 				       target_size));
10060 		break;
10061 
10062 	case offsetof(struct bpf_sock, protocol):
10063 		*insn++ = BPF_LDX_MEM(
10064 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10065 			si->dst_reg, si->src_reg,
10066 			bpf_target_off(struct sock, sk_protocol,
10067 				       sizeof_field(struct sock, sk_protocol),
10068 				       target_size));
10069 		break;
10070 
10071 	case offsetof(struct bpf_sock, src_ip4):
10072 		*insn++ = BPF_LDX_MEM(
10073 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10074 			bpf_target_off(struct sock_common, skc_rcv_saddr,
10075 				       sizeof_field(struct sock_common,
10076 						    skc_rcv_saddr),
10077 				       target_size));
10078 		break;
10079 
10080 	case offsetof(struct bpf_sock, dst_ip4):
10081 		*insn++ = BPF_LDX_MEM(
10082 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10083 			bpf_target_off(struct sock_common, skc_daddr,
10084 				       sizeof_field(struct sock_common,
10085 						    skc_daddr),
10086 				       target_size));
10087 		break;
10088 
10089 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10090 #if IS_ENABLED(CONFIG_IPV6)
10091 		off = si->off;
10092 		off -= offsetof(struct bpf_sock, src_ip6[0]);
10093 		*insn++ = BPF_LDX_MEM(
10094 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10095 			bpf_target_off(
10096 				struct sock_common,
10097 				skc_v6_rcv_saddr.s6_addr32[0],
10098 				sizeof_field(struct sock_common,
10099 					     skc_v6_rcv_saddr.s6_addr32[0]),
10100 				target_size) + off);
10101 #else
10102 		(void)off;
10103 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10104 #endif
10105 		break;
10106 
10107 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10108 #if IS_ENABLED(CONFIG_IPV6)
10109 		off = si->off;
10110 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
10111 		*insn++ = BPF_LDX_MEM(
10112 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10113 			bpf_target_off(struct sock_common,
10114 				       skc_v6_daddr.s6_addr32[0],
10115 				       sizeof_field(struct sock_common,
10116 						    skc_v6_daddr.s6_addr32[0]),
10117 				       target_size) + off);
10118 #else
10119 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10120 		*target_size = 4;
10121 #endif
10122 		break;
10123 
10124 	case offsetof(struct bpf_sock, src_port):
10125 		*insn++ = BPF_LDX_MEM(
10126 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10127 			si->dst_reg, si->src_reg,
10128 			bpf_target_off(struct sock_common, skc_num,
10129 				       sizeof_field(struct sock_common,
10130 						    skc_num),
10131 				       target_size));
10132 		break;
10133 
10134 	case offsetof(struct bpf_sock, dst_port):
10135 		*insn++ = BPF_LDX_MEM(
10136 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10137 			si->dst_reg, si->src_reg,
10138 			bpf_target_off(struct sock_common, skc_dport,
10139 				       sizeof_field(struct sock_common,
10140 						    skc_dport),
10141 				       target_size));
10142 		break;
10143 
10144 	case offsetof(struct bpf_sock, state):
10145 		*insn++ = BPF_LDX_MEM(
10146 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10147 			si->dst_reg, si->src_reg,
10148 			bpf_target_off(struct sock_common, skc_state,
10149 				       sizeof_field(struct sock_common,
10150 						    skc_state),
10151 				       target_size));
10152 		break;
10153 	case offsetof(struct bpf_sock, rx_queue_mapping):
10154 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10155 		*insn++ = BPF_LDX_MEM(
10156 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10157 			si->dst_reg, si->src_reg,
10158 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10159 				       sizeof_field(struct sock,
10160 						    sk_rx_queue_mapping),
10161 				       target_size));
10162 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10163 				      1);
10164 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10165 #else
10166 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10167 		*target_size = 2;
10168 #endif
10169 		break;
10170 	}
10171 
10172 	return insn - insn_buf;
10173 }
10174 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10175 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10176 					 const struct bpf_insn *si,
10177 					 struct bpf_insn *insn_buf,
10178 					 struct bpf_prog *prog, u32 *target_size)
10179 {
10180 	struct bpf_insn *insn = insn_buf;
10181 
10182 	switch (si->off) {
10183 	case offsetof(struct __sk_buff, ifindex):
10184 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10185 				      si->dst_reg, si->src_reg,
10186 				      offsetof(struct sk_buff, dev));
10187 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10188 				      bpf_target_off(struct net_device, ifindex, 4,
10189 						     target_size));
10190 		break;
10191 	default:
10192 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10193 					      target_size);
10194 	}
10195 
10196 	return insn - insn_buf;
10197 }
10198 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10199 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10200 				  const struct bpf_insn *si,
10201 				  struct bpf_insn *insn_buf,
10202 				  struct bpf_prog *prog, u32 *target_size)
10203 {
10204 	struct bpf_insn *insn = insn_buf;
10205 
10206 	switch (si->off) {
10207 	case offsetof(struct xdp_md, data):
10208 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10209 				      si->dst_reg, si->src_reg,
10210 				      offsetof(struct xdp_buff, data));
10211 		break;
10212 	case offsetof(struct xdp_md, data_meta):
10213 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10214 				      si->dst_reg, si->src_reg,
10215 				      offsetof(struct xdp_buff, data_meta));
10216 		break;
10217 	case offsetof(struct xdp_md, data_end):
10218 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10219 				      si->dst_reg, si->src_reg,
10220 				      offsetof(struct xdp_buff, data_end));
10221 		break;
10222 	case offsetof(struct xdp_md, ingress_ifindex):
10223 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10224 				      si->dst_reg, si->src_reg,
10225 				      offsetof(struct xdp_buff, rxq));
10226 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10227 				      si->dst_reg, si->dst_reg,
10228 				      offsetof(struct xdp_rxq_info, dev));
10229 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10230 				      offsetof(struct net_device, ifindex));
10231 		break;
10232 	case offsetof(struct xdp_md, rx_queue_index):
10233 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10234 				      si->dst_reg, si->src_reg,
10235 				      offsetof(struct xdp_buff, rxq));
10236 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10237 				      offsetof(struct xdp_rxq_info,
10238 					       queue_index));
10239 		break;
10240 	case offsetof(struct xdp_md, egress_ifindex):
10241 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10242 				      si->dst_reg, si->src_reg,
10243 				      offsetof(struct xdp_buff, txq));
10244 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10245 				      si->dst_reg, si->dst_reg,
10246 				      offsetof(struct xdp_txq_info, dev));
10247 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10248 				      offsetof(struct net_device, ifindex));
10249 		break;
10250 	}
10251 
10252 	return insn - insn_buf;
10253 }
10254 
10255 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10256  * context Structure, F is Field in context structure that contains a pointer
10257  * to Nested Structure of type NS that has the field NF.
10258  *
10259  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10260  * sure that SIZE is not greater than actual size of S.F.NF.
10261  *
10262  * If offset OFF is provided, the load happens from that offset relative to
10263  * offset of NF.
10264  */
10265 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10266 	do {								       \
10267 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10268 				      si->src_reg, offsetof(S, F));	       \
10269 		*insn++ = BPF_LDX_MEM(					       \
10270 			SIZE, si->dst_reg, si->dst_reg,			       \
10271 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10272 				       target_size)			       \
10273 				+ OFF);					       \
10274 	} while (0)
10275 
10276 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10277 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10278 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10279 
10280 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10281  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10282  *
10283  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10284  * "register" since two registers available in convert_ctx_access are not
10285  * enough: we can't override neither SRC, since it contains value to store, nor
10286  * DST since it contains pointer to context that may be used by later
10287  * instructions. But we need a temporary place to save pointer to nested
10288  * structure whose field we want to store to.
10289  */
10290 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10291 	do {								       \
10292 		int tmp_reg = BPF_REG_9;				       \
10293 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10294 			--tmp_reg;					       \
10295 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10296 			--tmp_reg;					       \
10297 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10298 				      offsetof(S, TF));			       \
10299 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10300 				      si->dst_reg, offsetof(S, F));	       \
10301 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10302 				       tmp_reg, si->src_reg,		       \
10303 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10304 				       target_size)			       \
10305 				       + OFF,				       \
10306 				       si->imm);			       \
10307 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10308 				      offsetof(S, TF));			       \
10309 	} while (0)
10310 
10311 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10312 						      TF)		       \
10313 	do {								       \
10314 		if (type == BPF_WRITE) {				       \
10315 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10316 							 OFF, TF);	       \
10317 		} else {						       \
10318 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10319 				S, NS, F, NF, SIZE, OFF);  \
10320 		}							       \
10321 	} while (0)
10322 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10323 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10324 					const struct bpf_insn *si,
10325 					struct bpf_insn *insn_buf,
10326 					struct bpf_prog *prog, u32 *target_size)
10327 {
10328 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10329 	struct bpf_insn *insn = insn_buf;
10330 
10331 	switch (si->off) {
10332 	case offsetof(struct bpf_sock_addr, user_family):
10333 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10334 					    struct sockaddr, uaddr, sa_family);
10335 		break;
10336 
10337 	case offsetof(struct bpf_sock_addr, user_ip4):
10338 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10339 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10340 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10341 		break;
10342 
10343 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10344 		off = si->off;
10345 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10346 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10347 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10348 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10349 			tmp_reg);
10350 		break;
10351 
10352 	case offsetof(struct bpf_sock_addr, user_port):
10353 		/* To get port we need to know sa_family first and then treat
10354 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10355 		 * Though we can simplify since port field has same offset and
10356 		 * size in both structures.
10357 		 * Here we check this invariant and use just one of the
10358 		 * structures if it's true.
10359 		 */
10360 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10361 			     offsetof(struct sockaddr_in6, sin6_port));
10362 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10363 			     sizeof_field(struct sockaddr_in6, sin6_port));
10364 		/* Account for sin6_port being smaller than user_port. */
10365 		port_size = min(port_size, BPF_LDST_BYTES(si));
10366 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10367 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10368 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10369 		break;
10370 
10371 	case offsetof(struct bpf_sock_addr, family):
10372 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10373 					    struct sock, sk, sk_family);
10374 		break;
10375 
10376 	case offsetof(struct bpf_sock_addr, type):
10377 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10378 					    struct sock, sk, sk_type);
10379 		break;
10380 
10381 	case offsetof(struct bpf_sock_addr, protocol):
10382 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10383 					    struct sock, sk, sk_protocol);
10384 		break;
10385 
10386 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10387 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10388 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10389 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10390 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10391 		break;
10392 
10393 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10394 				msg_src_ip6[3]):
10395 		off = si->off;
10396 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10397 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10398 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10399 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10400 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10401 		break;
10402 	case offsetof(struct bpf_sock_addr, sk):
10403 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10404 				      si->dst_reg, si->src_reg,
10405 				      offsetof(struct bpf_sock_addr_kern, sk));
10406 		break;
10407 	}
10408 
10409 	return insn - insn_buf;
10410 }
10411 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10412 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10413 				       const struct bpf_insn *si,
10414 				       struct bpf_insn *insn_buf,
10415 				       struct bpf_prog *prog,
10416 				       u32 *target_size)
10417 {
10418 	struct bpf_insn *insn = insn_buf;
10419 	int off;
10420 
10421 /* Helper macro for adding read access to tcp_sock or sock fields. */
10422 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10423 	do {								      \
10424 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10425 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10426 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10427 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10428 			reg--;						      \
10429 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10430 			reg--;						      \
10431 		if (si->dst_reg == si->src_reg) {			      \
10432 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10433 					  offsetof(struct bpf_sock_ops_kern,  \
10434 					  temp));			      \
10435 			fullsock_reg = reg;				      \
10436 			jmp += 2;					      \
10437 		}							      \
10438 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10439 						struct bpf_sock_ops_kern,     \
10440 						is_locked_tcp_sock),	      \
10441 				      fullsock_reg, si->src_reg,	      \
10442 				      offsetof(struct bpf_sock_ops_kern,      \
10443 					       is_locked_tcp_sock));	      \
10444 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10445 		if (si->dst_reg == si->src_reg)				      \
10446 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10447 				      offsetof(struct bpf_sock_ops_kern,      \
10448 				      temp));				      \
10449 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10450 						struct bpf_sock_ops_kern, sk),\
10451 				      si->dst_reg, si->src_reg,		      \
10452 				      offsetof(struct bpf_sock_ops_kern, sk));\
10453 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10454 						       OBJ_FIELD),	      \
10455 				      si->dst_reg, si->dst_reg,		      \
10456 				      offsetof(OBJ, OBJ_FIELD));	      \
10457 		if (si->dst_reg == si->src_reg)	{			      \
10458 			*insn++ = BPF_JMP_A(1);				      \
10459 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10460 				      offsetof(struct bpf_sock_ops_kern,      \
10461 				      temp));				      \
10462 		}							      \
10463 	} while (0)
10464 
10465 #define SOCK_OPS_GET_SK()							      \
10466 	do {								      \
10467 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10468 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10469 			reg--;						      \
10470 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10471 			reg--;						      \
10472 		if (si->dst_reg == si->src_reg) {			      \
10473 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10474 					  offsetof(struct bpf_sock_ops_kern,  \
10475 					  temp));			      \
10476 			fullsock_reg = reg;				      \
10477 			jmp += 2;					      \
10478 		}							      \
10479 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10480 						struct bpf_sock_ops_kern,     \
10481 						is_fullsock),		      \
10482 				      fullsock_reg, si->src_reg,	      \
10483 				      offsetof(struct bpf_sock_ops_kern,      \
10484 					       is_fullsock));		      \
10485 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10486 		if (si->dst_reg == si->src_reg)				      \
10487 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10488 				      offsetof(struct bpf_sock_ops_kern,      \
10489 				      temp));				      \
10490 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10491 						struct bpf_sock_ops_kern, sk),\
10492 				      si->dst_reg, si->src_reg,		      \
10493 				      offsetof(struct bpf_sock_ops_kern, sk));\
10494 		if (si->dst_reg == si->src_reg)	{			      \
10495 			*insn++ = BPF_JMP_A(1);				      \
10496 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10497 				      offsetof(struct bpf_sock_ops_kern,      \
10498 				      temp));				      \
10499 		}							      \
10500 	} while (0)
10501 
10502 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10503 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10504 
10505 /* Helper macro for adding write access to tcp_sock or sock fields.
10506  * The macro is called with two registers, dst_reg which contains a pointer
10507  * to ctx (context) and src_reg which contains the value that should be
10508  * stored. However, we need an additional register since we cannot overwrite
10509  * dst_reg because it may be used later in the program.
10510  * Instead we "borrow" one of the other register. We first save its value
10511  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10512  * it at the end of the macro.
10513  */
10514 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10515 	do {								      \
10516 		int reg = BPF_REG_9;					      \
10517 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10518 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10519 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10520 			reg--;						      \
10521 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10522 			reg--;						      \
10523 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10524 				      offsetof(struct bpf_sock_ops_kern,      \
10525 					       temp));			      \
10526 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10527 						struct bpf_sock_ops_kern,     \
10528 						is_locked_tcp_sock),	      \
10529 				      reg, si->dst_reg,			      \
10530 				      offsetof(struct bpf_sock_ops_kern,      \
10531 					       is_locked_tcp_sock));	      \
10532 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10533 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10534 						struct bpf_sock_ops_kern, sk),\
10535 				      reg, si->dst_reg,			      \
10536 				      offsetof(struct bpf_sock_ops_kern, sk));\
10537 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10538 				       BPF_MEM | BPF_CLASS(si->code),	      \
10539 				       reg, si->src_reg,		      \
10540 				       offsetof(OBJ, OBJ_FIELD),	      \
10541 				       si->imm);			      \
10542 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10543 				      offsetof(struct bpf_sock_ops_kern,      \
10544 					       temp));			      \
10545 	} while (0)
10546 
10547 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10548 	do {								      \
10549 		if (TYPE == BPF_WRITE)					      \
10550 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10551 		else							      \
10552 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10553 	} while (0)
10554 
10555 	switch (si->off) {
10556 	case offsetof(struct bpf_sock_ops, op):
10557 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10558 						       op),
10559 				      si->dst_reg, si->src_reg,
10560 				      offsetof(struct bpf_sock_ops_kern, op));
10561 		break;
10562 
10563 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10564 	     offsetof(struct bpf_sock_ops, replylong[3]):
10565 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10566 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10567 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10568 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10569 		off = si->off;
10570 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10571 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10572 		if (type == BPF_WRITE)
10573 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10574 		else
10575 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10576 					      off);
10577 		break;
10578 
10579 	case offsetof(struct bpf_sock_ops, family):
10580 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10581 
10582 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10583 					      struct bpf_sock_ops_kern, sk),
10584 				      si->dst_reg, si->src_reg,
10585 				      offsetof(struct bpf_sock_ops_kern, sk));
10586 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10587 				      offsetof(struct sock_common, skc_family));
10588 		break;
10589 
10590 	case offsetof(struct bpf_sock_ops, remote_ip4):
10591 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10592 
10593 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10594 						struct bpf_sock_ops_kern, sk),
10595 				      si->dst_reg, si->src_reg,
10596 				      offsetof(struct bpf_sock_ops_kern, sk));
10597 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10598 				      offsetof(struct sock_common, skc_daddr));
10599 		break;
10600 
10601 	case offsetof(struct bpf_sock_ops, local_ip4):
10602 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10603 					  skc_rcv_saddr) != 4);
10604 
10605 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10606 					      struct bpf_sock_ops_kern, sk),
10607 				      si->dst_reg, si->src_reg,
10608 				      offsetof(struct bpf_sock_ops_kern, sk));
10609 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10610 				      offsetof(struct sock_common,
10611 					       skc_rcv_saddr));
10612 		break;
10613 
10614 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10615 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10616 #if IS_ENABLED(CONFIG_IPV6)
10617 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10618 					  skc_v6_daddr.s6_addr32[0]) != 4);
10619 
10620 		off = si->off;
10621 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10622 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10623 						struct bpf_sock_ops_kern, sk),
10624 				      si->dst_reg, si->src_reg,
10625 				      offsetof(struct bpf_sock_ops_kern, sk));
10626 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10627 				      offsetof(struct sock_common,
10628 					       skc_v6_daddr.s6_addr32[0]) +
10629 				      off);
10630 #else
10631 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10632 #endif
10633 		break;
10634 
10635 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10636 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10637 #if IS_ENABLED(CONFIG_IPV6)
10638 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10639 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10640 
10641 		off = si->off;
10642 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10643 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10644 						struct bpf_sock_ops_kern, sk),
10645 				      si->dst_reg, si->src_reg,
10646 				      offsetof(struct bpf_sock_ops_kern, sk));
10647 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10648 				      offsetof(struct sock_common,
10649 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10650 				      off);
10651 #else
10652 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10653 #endif
10654 		break;
10655 
10656 	case offsetof(struct bpf_sock_ops, remote_port):
10657 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10658 
10659 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10660 						struct bpf_sock_ops_kern, sk),
10661 				      si->dst_reg, si->src_reg,
10662 				      offsetof(struct bpf_sock_ops_kern, sk));
10663 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10664 				      offsetof(struct sock_common, skc_dport));
10665 #ifndef __BIG_ENDIAN_BITFIELD
10666 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10667 #endif
10668 		break;
10669 
10670 	case offsetof(struct bpf_sock_ops, local_port):
10671 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10672 
10673 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10674 						struct bpf_sock_ops_kern, sk),
10675 				      si->dst_reg, si->src_reg,
10676 				      offsetof(struct bpf_sock_ops_kern, sk));
10677 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10678 				      offsetof(struct sock_common, skc_num));
10679 		break;
10680 
10681 	case offsetof(struct bpf_sock_ops, is_fullsock):
10682 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10683 						struct bpf_sock_ops_kern,
10684 						is_fullsock),
10685 				      si->dst_reg, si->src_reg,
10686 				      offsetof(struct bpf_sock_ops_kern,
10687 					       is_fullsock));
10688 		break;
10689 
10690 	case offsetof(struct bpf_sock_ops, state):
10691 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10692 
10693 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10694 						struct bpf_sock_ops_kern, sk),
10695 				      si->dst_reg, si->src_reg,
10696 				      offsetof(struct bpf_sock_ops_kern, sk));
10697 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10698 				      offsetof(struct sock_common, skc_state));
10699 		break;
10700 
10701 	case offsetof(struct bpf_sock_ops, rtt_min):
10702 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10703 			     sizeof(struct minmax));
10704 		BUILD_BUG_ON(sizeof(struct minmax) <
10705 			     sizeof(struct minmax_sample));
10706 
10707 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10708 						struct bpf_sock_ops_kern, sk),
10709 				      si->dst_reg, si->src_reg,
10710 				      offsetof(struct bpf_sock_ops_kern, sk));
10711 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10712 				      offsetof(struct tcp_sock, rtt_min) +
10713 				      sizeof_field(struct minmax_sample, t));
10714 		break;
10715 
10716 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10717 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10718 				   struct tcp_sock);
10719 		break;
10720 
10721 	case offsetof(struct bpf_sock_ops, sk_txhash):
10722 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10723 					  struct sock, type);
10724 		break;
10725 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10726 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10727 		break;
10728 	case offsetof(struct bpf_sock_ops, srtt_us):
10729 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10730 		break;
10731 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10732 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10733 		break;
10734 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10735 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10736 		break;
10737 	case offsetof(struct bpf_sock_ops, snd_nxt):
10738 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10739 		break;
10740 	case offsetof(struct bpf_sock_ops, snd_una):
10741 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10742 		break;
10743 	case offsetof(struct bpf_sock_ops, mss_cache):
10744 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10745 		break;
10746 	case offsetof(struct bpf_sock_ops, ecn_flags):
10747 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10748 		break;
10749 	case offsetof(struct bpf_sock_ops, rate_delivered):
10750 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10751 		break;
10752 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10753 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10754 		break;
10755 	case offsetof(struct bpf_sock_ops, packets_out):
10756 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10757 		break;
10758 	case offsetof(struct bpf_sock_ops, retrans_out):
10759 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10760 		break;
10761 	case offsetof(struct bpf_sock_ops, total_retrans):
10762 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10763 		break;
10764 	case offsetof(struct bpf_sock_ops, segs_in):
10765 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10766 		break;
10767 	case offsetof(struct bpf_sock_ops, data_segs_in):
10768 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10769 		break;
10770 	case offsetof(struct bpf_sock_ops, segs_out):
10771 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10772 		break;
10773 	case offsetof(struct bpf_sock_ops, data_segs_out):
10774 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10775 		break;
10776 	case offsetof(struct bpf_sock_ops, lost_out):
10777 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10778 		break;
10779 	case offsetof(struct bpf_sock_ops, sacked_out):
10780 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10781 		break;
10782 	case offsetof(struct bpf_sock_ops, bytes_received):
10783 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10784 		break;
10785 	case offsetof(struct bpf_sock_ops, bytes_acked):
10786 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10787 		break;
10788 	case offsetof(struct bpf_sock_ops, sk):
10789 		SOCK_OPS_GET_SK();
10790 		break;
10791 	case offsetof(struct bpf_sock_ops, skb_data_end):
10792 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10793 						       skb_data_end),
10794 				      si->dst_reg, si->src_reg,
10795 				      offsetof(struct bpf_sock_ops_kern,
10796 					       skb_data_end));
10797 		break;
10798 	case offsetof(struct bpf_sock_ops, skb_data):
10799 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10800 						       skb),
10801 				      si->dst_reg, si->src_reg,
10802 				      offsetof(struct bpf_sock_ops_kern,
10803 					       skb));
10804 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10805 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10806 				      si->dst_reg, si->dst_reg,
10807 				      offsetof(struct sk_buff, data));
10808 		break;
10809 	case offsetof(struct bpf_sock_ops, skb_len):
10810 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10811 						       skb),
10812 				      si->dst_reg, si->src_reg,
10813 				      offsetof(struct bpf_sock_ops_kern,
10814 					       skb));
10815 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10816 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10817 				      si->dst_reg, si->dst_reg,
10818 				      offsetof(struct sk_buff, len));
10819 		break;
10820 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10821 		off = offsetof(struct sk_buff, cb);
10822 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10823 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10824 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10825 						       skb),
10826 				      si->dst_reg, si->src_reg,
10827 				      offsetof(struct bpf_sock_ops_kern,
10828 					       skb));
10829 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10830 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10831 						       tcp_flags),
10832 				      si->dst_reg, si->dst_reg, off);
10833 		break;
10834 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10835 		struct bpf_insn *jmp_on_null_skb;
10836 
10837 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10838 						       skb),
10839 				      si->dst_reg, si->src_reg,
10840 				      offsetof(struct bpf_sock_ops_kern,
10841 					       skb));
10842 		/* Reserve one insn to test skb == NULL */
10843 		jmp_on_null_skb = insn++;
10844 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10845 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10846 				      bpf_target_off(struct skb_shared_info,
10847 						     hwtstamps, 8,
10848 						     target_size));
10849 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10850 					       insn - jmp_on_null_skb - 1);
10851 		break;
10852 	}
10853 	}
10854 	return insn - insn_buf;
10855 }
10856 
10857 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10858 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10859 						    struct bpf_insn *insn)
10860 {
10861 	int reg;
10862 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10863 			   offsetof(struct sk_skb_cb, temp_reg);
10864 
10865 	if (si->src_reg == si->dst_reg) {
10866 		/* We need an extra register, choose and save a register. */
10867 		reg = BPF_REG_9;
10868 		if (si->src_reg == reg || si->dst_reg == reg)
10869 			reg--;
10870 		if (si->src_reg == reg || si->dst_reg == reg)
10871 			reg--;
10872 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10873 	} else {
10874 		reg = si->dst_reg;
10875 	}
10876 
10877 	/* reg = skb->data */
10878 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10879 			      reg, si->src_reg,
10880 			      offsetof(struct sk_buff, data));
10881 	/* AX = skb->len */
10882 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10883 			      BPF_REG_AX, si->src_reg,
10884 			      offsetof(struct sk_buff, len));
10885 	/* reg = skb->data + skb->len */
10886 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10887 	/* AX = skb->data_len */
10888 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10889 			      BPF_REG_AX, si->src_reg,
10890 			      offsetof(struct sk_buff, data_len));
10891 
10892 	/* reg = skb->data + skb->len - skb->data_len */
10893 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10894 
10895 	if (si->src_reg == si->dst_reg) {
10896 		/* Restore the saved register */
10897 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10898 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10899 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10900 	}
10901 
10902 	return insn;
10903 }
10904 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10905 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10906 				     const struct bpf_insn *si,
10907 				     struct bpf_insn *insn_buf,
10908 				     struct bpf_prog *prog, u32 *target_size)
10909 {
10910 	struct bpf_insn *insn = insn_buf;
10911 	int off;
10912 
10913 	switch (si->off) {
10914 	case offsetof(struct __sk_buff, data_end):
10915 		insn = bpf_convert_data_end_access(si, insn);
10916 		break;
10917 	case offsetof(struct __sk_buff, cb[0]) ...
10918 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10919 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10920 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10921 			      offsetof(struct sk_skb_cb, data)) %
10922 			     sizeof(__u64));
10923 
10924 		prog->cb_access = 1;
10925 		off  = si->off;
10926 		off -= offsetof(struct __sk_buff, cb[0]);
10927 		off += offsetof(struct sk_buff, cb);
10928 		off += offsetof(struct sk_skb_cb, data);
10929 		if (type == BPF_WRITE)
10930 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10931 		else
10932 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10933 					      si->src_reg, off);
10934 		break;
10935 
10936 
10937 	default:
10938 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10939 					      target_size);
10940 	}
10941 
10942 	return insn - insn_buf;
10943 }
10944 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10945 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10946 				     const struct bpf_insn *si,
10947 				     struct bpf_insn *insn_buf,
10948 				     struct bpf_prog *prog, u32 *target_size)
10949 {
10950 	struct bpf_insn *insn = insn_buf;
10951 #if IS_ENABLED(CONFIG_IPV6)
10952 	int off;
10953 #endif
10954 
10955 	/* convert ctx uses the fact sg element is first in struct */
10956 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10957 
10958 	switch (si->off) {
10959 	case offsetof(struct sk_msg_md, data):
10960 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10961 				      si->dst_reg, si->src_reg,
10962 				      offsetof(struct sk_msg, data));
10963 		break;
10964 	case offsetof(struct sk_msg_md, data_end):
10965 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10966 				      si->dst_reg, si->src_reg,
10967 				      offsetof(struct sk_msg, data_end));
10968 		break;
10969 	case offsetof(struct sk_msg_md, family):
10970 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10971 
10972 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10973 					      struct sk_msg, sk),
10974 				      si->dst_reg, si->src_reg,
10975 				      offsetof(struct sk_msg, sk));
10976 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10977 				      offsetof(struct sock_common, skc_family));
10978 		break;
10979 
10980 	case offsetof(struct sk_msg_md, remote_ip4):
10981 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10982 
10983 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10984 						struct sk_msg, sk),
10985 				      si->dst_reg, si->src_reg,
10986 				      offsetof(struct sk_msg, sk));
10987 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10988 				      offsetof(struct sock_common, skc_daddr));
10989 		break;
10990 
10991 	case offsetof(struct sk_msg_md, local_ip4):
10992 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10993 					  skc_rcv_saddr) != 4);
10994 
10995 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10996 					      struct sk_msg, sk),
10997 				      si->dst_reg, si->src_reg,
10998 				      offsetof(struct sk_msg, sk));
10999 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11000 				      offsetof(struct sock_common,
11001 					       skc_rcv_saddr));
11002 		break;
11003 
11004 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
11005 	     offsetof(struct sk_msg_md, remote_ip6[3]):
11006 #if IS_ENABLED(CONFIG_IPV6)
11007 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11008 					  skc_v6_daddr.s6_addr32[0]) != 4);
11009 
11010 		off = si->off;
11011 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11012 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11013 						struct sk_msg, sk),
11014 				      si->dst_reg, si->src_reg,
11015 				      offsetof(struct sk_msg, sk));
11016 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11017 				      offsetof(struct sock_common,
11018 					       skc_v6_daddr.s6_addr32[0]) +
11019 				      off);
11020 #else
11021 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11022 #endif
11023 		break;
11024 
11025 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
11026 	     offsetof(struct sk_msg_md, local_ip6[3]):
11027 #if IS_ENABLED(CONFIG_IPV6)
11028 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11029 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11030 
11031 		off = si->off;
11032 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
11033 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11034 						struct sk_msg, sk),
11035 				      si->dst_reg, si->src_reg,
11036 				      offsetof(struct sk_msg, sk));
11037 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11038 				      offsetof(struct sock_common,
11039 					       skc_v6_rcv_saddr.s6_addr32[0]) +
11040 				      off);
11041 #else
11042 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11043 #endif
11044 		break;
11045 
11046 	case offsetof(struct sk_msg_md, remote_port):
11047 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11048 
11049 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11050 						struct sk_msg, sk),
11051 				      si->dst_reg, si->src_reg,
11052 				      offsetof(struct sk_msg, sk));
11053 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11054 				      offsetof(struct sock_common, skc_dport));
11055 #ifndef __BIG_ENDIAN_BITFIELD
11056 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11057 #endif
11058 		break;
11059 
11060 	case offsetof(struct sk_msg_md, local_port):
11061 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11062 
11063 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11064 						struct sk_msg, sk),
11065 				      si->dst_reg, si->src_reg,
11066 				      offsetof(struct sk_msg, sk));
11067 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11068 				      offsetof(struct sock_common, skc_num));
11069 		break;
11070 
11071 	case offsetof(struct sk_msg_md, size):
11072 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11073 				      si->dst_reg, si->src_reg,
11074 				      offsetof(struct sk_msg_sg, size));
11075 		break;
11076 
11077 	case offsetof(struct sk_msg_md, sk):
11078 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11079 				      si->dst_reg, si->src_reg,
11080 				      offsetof(struct sk_msg, sk));
11081 		break;
11082 	}
11083 
11084 	return insn - insn_buf;
11085 }
11086 
11087 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11088 	.get_func_proto		= sk_filter_func_proto,
11089 	.is_valid_access	= sk_filter_is_valid_access,
11090 	.convert_ctx_access	= bpf_convert_ctx_access,
11091 	.gen_ld_abs		= bpf_gen_ld_abs,
11092 };
11093 
11094 const struct bpf_prog_ops sk_filter_prog_ops = {
11095 	.test_run		= bpf_prog_test_run_skb,
11096 };
11097 
11098 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11099 	.get_func_proto		= tc_cls_act_func_proto,
11100 	.is_valid_access	= tc_cls_act_is_valid_access,
11101 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
11102 	.gen_prologue		= tc_cls_act_prologue,
11103 	.gen_ld_abs		= bpf_gen_ld_abs,
11104 	.btf_struct_access	= tc_cls_act_btf_struct_access,
11105 };
11106 
11107 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11108 	.test_run		= bpf_prog_test_run_skb,
11109 };
11110 
11111 const struct bpf_verifier_ops xdp_verifier_ops = {
11112 	.get_func_proto		= xdp_func_proto,
11113 	.is_valid_access	= xdp_is_valid_access,
11114 	.convert_ctx_access	= xdp_convert_ctx_access,
11115 	.gen_prologue		= bpf_noop_prologue,
11116 	.btf_struct_access	= xdp_btf_struct_access,
11117 };
11118 
11119 const struct bpf_prog_ops xdp_prog_ops = {
11120 	.test_run		= bpf_prog_test_run_xdp,
11121 };
11122 
11123 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11124 	.get_func_proto		= cg_skb_func_proto,
11125 	.is_valid_access	= cg_skb_is_valid_access,
11126 	.convert_ctx_access	= bpf_convert_ctx_access,
11127 };
11128 
11129 const struct bpf_prog_ops cg_skb_prog_ops = {
11130 	.test_run		= bpf_prog_test_run_skb,
11131 };
11132 
11133 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11134 	.get_func_proto		= lwt_in_func_proto,
11135 	.is_valid_access	= lwt_is_valid_access,
11136 	.convert_ctx_access	= bpf_convert_ctx_access,
11137 };
11138 
11139 const struct bpf_prog_ops lwt_in_prog_ops = {
11140 	.test_run		= bpf_prog_test_run_skb,
11141 };
11142 
11143 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11144 	.get_func_proto		= lwt_out_func_proto,
11145 	.is_valid_access	= lwt_is_valid_access,
11146 	.convert_ctx_access	= bpf_convert_ctx_access,
11147 };
11148 
11149 const struct bpf_prog_ops lwt_out_prog_ops = {
11150 	.test_run		= bpf_prog_test_run_skb,
11151 };
11152 
11153 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11154 	.get_func_proto		= lwt_xmit_func_proto,
11155 	.is_valid_access	= lwt_is_valid_access,
11156 	.convert_ctx_access	= bpf_convert_ctx_access,
11157 	.gen_prologue		= tc_cls_act_prologue,
11158 };
11159 
11160 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11161 	.test_run		= bpf_prog_test_run_skb,
11162 };
11163 
11164 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11165 	.get_func_proto		= lwt_seg6local_func_proto,
11166 	.is_valid_access	= lwt_is_valid_access,
11167 	.convert_ctx_access	= bpf_convert_ctx_access,
11168 };
11169 
11170 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11171 };
11172 
11173 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11174 	.get_func_proto		= sock_filter_func_proto,
11175 	.is_valid_access	= sock_filter_is_valid_access,
11176 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11177 };
11178 
11179 const struct bpf_prog_ops cg_sock_prog_ops = {
11180 };
11181 
11182 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11183 	.get_func_proto		= sock_addr_func_proto,
11184 	.is_valid_access	= sock_addr_is_valid_access,
11185 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11186 };
11187 
11188 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11189 };
11190 
11191 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11192 	.get_func_proto		= sock_ops_func_proto,
11193 	.is_valid_access	= sock_ops_is_valid_access,
11194 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11195 };
11196 
11197 const struct bpf_prog_ops sock_ops_prog_ops = {
11198 };
11199 
11200 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11201 	.get_func_proto		= sk_skb_func_proto,
11202 	.is_valid_access	= sk_skb_is_valid_access,
11203 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11204 	.gen_prologue		= sk_skb_prologue,
11205 };
11206 
11207 const struct bpf_prog_ops sk_skb_prog_ops = {
11208 };
11209 
11210 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11211 	.get_func_proto		= sk_msg_func_proto,
11212 	.is_valid_access	= sk_msg_is_valid_access,
11213 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11214 	.gen_prologue		= bpf_noop_prologue,
11215 };
11216 
11217 const struct bpf_prog_ops sk_msg_prog_ops = {
11218 };
11219 
11220 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11221 	.get_func_proto		= flow_dissector_func_proto,
11222 	.is_valid_access	= flow_dissector_is_valid_access,
11223 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11224 };
11225 
11226 const struct bpf_prog_ops flow_dissector_prog_ops = {
11227 	.test_run		= bpf_prog_test_run_flow_dissector,
11228 };
11229 
sk_detach_filter(struct sock * sk)11230 int sk_detach_filter(struct sock *sk)
11231 {
11232 	int ret = -ENOENT;
11233 	struct sk_filter *filter;
11234 
11235 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11236 		return -EPERM;
11237 
11238 	filter = rcu_dereference_protected(sk->sk_filter,
11239 					   lockdep_sock_is_held(sk));
11240 	if (filter) {
11241 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11242 		sk_filter_uncharge(sk, filter);
11243 		ret = 0;
11244 	}
11245 
11246 	return ret;
11247 }
11248 EXPORT_SYMBOL_GPL(sk_detach_filter);
11249 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11250 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11251 {
11252 	struct sock_fprog_kern *fprog;
11253 	struct sk_filter *filter;
11254 	int ret = 0;
11255 
11256 	sockopt_lock_sock(sk);
11257 	filter = rcu_dereference_protected(sk->sk_filter,
11258 					   lockdep_sock_is_held(sk));
11259 	if (!filter)
11260 		goto out;
11261 
11262 	/* We're copying the filter that has been originally attached,
11263 	 * so no conversion/decode needed anymore. eBPF programs that
11264 	 * have no original program cannot be dumped through this.
11265 	 */
11266 	ret = -EACCES;
11267 	fprog = filter->prog->orig_prog;
11268 	if (!fprog)
11269 		goto out;
11270 
11271 	ret = fprog->len;
11272 	if (!len)
11273 		/* User space only enquires number of filter blocks. */
11274 		goto out;
11275 
11276 	ret = -EINVAL;
11277 	if (len < fprog->len)
11278 		goto out;
11279 
11280 	ret = -EFAULT;
11281 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11282 		goto out;
11283 
11284 	/* Instead of bytes, the API requests to return the number
11285 	 * of filter blocks.
11286 	 */
11287 	ret = fprog->len;
11288 out:
11289 	sockopt_release_sock(sk);
11290 	return ret;
11291 }
11292 
11293 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11294 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11295 				    struct sock_reuseport *reuse,
11296 				    struct sock *sk, struct sk_buff *skb,
11297 				    struct sock *migrating_sk,
11298 				    u32 hash)
11299 {
11300 	reuse_kern->skb = skb;
11301 	reuse_kern->sk = sk;
11302 	reuse_kern->selected_sk = NULL;
11303 	reuse_kern->migrating_sk = migrating_sk;
11304 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11305 	reuse_kern->hash = hash;
11306 	reuse_kern->reuseport_id = reuse->reuseport_id;
11307 	reuse_kern->bind_inany = reuse->bind_inany;
11308 }
11309 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11310 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11311 				  struct bpf_prog *prog, struct sk_buff *skb,
11312 				  struct sock *migrating_sk,
11313 				  u32 hash)
11314 {
11315 	struct sk_reuseport_kern reuse_kern;
11316 	enum sk_action action;
11317 
11318 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11319 	action = bpf_prog_run(prog, &reuse_kern);
11320 
11321 	if (action == SK_PASS)
11322 		return reuse_kern.selected_sk;
11323 	else
11324 		return ERR_PTR(-ECONNREFUSED);
11325 }
11326 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11327 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11328 	   struct bpf_map *, map, void *, key, u32, flags)
11329 {
11330 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11331 	struct sock_reuseport *reuse;
11332 	struct sock *selected_sk;
11333 	int err;
11334 
11335 	selected_sk = map->ops->map_lookup_elem(map, key);
11336 	if (!selected_sk)
11337 		return -ENOENT;
11338 
11339 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11340 	if (!reuse) {
11341 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11342 		 * The only (!reuse) case here is - the sk has already been
11343 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11344 		 *
11345 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11346 		 * the sk may never be in the reuseport group to begin with.
11347 		 */
11348 		err = is_sockarray ? -ENOENT : -EINVAL;
11349 		goto error;
11350 	}
11351 
11352 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11353 		struct sock *sk = reuse_kern->sk;
11354 
11355 		if (sk->sk_protocol != selected_sk->sk_protocol) {
11356 			err = -EPROTOTYPE;
11357 		} else if (sk->sk_family != selected_sk->sk_family) {
11358 			err = -EAFNOSUPPORT;
11359 		} else {
11360 			/* Catch all. Likely bound to a different sockaddr. */
11361 			err = -EBADFD;
11362 		}
11363 		goto error;
11364 	}
11365 
11366 	reuse_kern->selected_sk = selected_sk;
11367 
11368 	return 0;
11369 error:
11370 	/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11371 	if (sk_is_refcounted(selected_sk))
11372 		sock_put(selected_sk);
11373 
11374 	return err;
11375 }
11376 
11377 static const struct bpf_func_proto sk_select_reuseport_proto = {
11378 	.func           = sk_select_reuseport,
11379 	.gpl_only       = false,
11380 	.ret_type       = RET_INTEGER,
11381 	.arg1_type	= ARG_PTR_TO_CTX,
11382 	.arg2_type      = ARG_CONST_MAP_PTR,
11383 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11384 	.arg4_type	= ARG_ANYTHING,
11385 };
11386 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11387 BPF_CALL_4(sk_reuseport_load_bytes,
11388 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11389 	   void *, to, u32, len)
11390 {
11391 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11392 }
11393 
11394 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11395 	.func		= sk_reuseport_load_bytes,
11396 	.gpl_only	= false,
11397 	.ret_type	= RET_INTEGER,
11398 	.arg1_type	= ARG_PTR_TO_CTX,
11399 	.arg2_type	= ARG_ANYTHING,
11400 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11401 	.arg4_type	= ARG_CONST_SIZE,
11402 };
11403 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11404 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11405 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11406 	   void *, to, u32, len, u32, start_header)
11407 {
11408 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11409 					       len, start_header);
11410 }
11411 
11412 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11413 	.func		= sk_reuseport_load_bytes_relative,
11414 	.gpl_only	= false,
11415 	.ret_type	= RET_INTEGER,
11416 	.arg1_type	= ARG_PTR_TO_CTX,
11417 	.arg2_type	= ARG_ANYTHING,
11418 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11419 	.arg4_type	= ARG_CONST_SIZE,
11420 	.arg5_type	= ARG_ANYTHING,
11421 };
11422 
11423 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11424 sk_reuseport_func_proto(enum bpf_func_id func_id,
11425 			const struct bpf_prog *prog)
11426 {
11427 	switch (func_id) {
11428 	case BPF_FUNC_sk_select_reuseport:
11429 		return &sk_select_reuseport_proto;
11430 	case BPF_FUNC_skb_load_bytes:
11431 		return &sk_reuseport_load_bytes_proto;
11432 	case BPF_FUNC_skb_load_bytes_relative:
11433 		return &sk_reuseport_load_bytes_relative_proto;
11434 	case BPF_FUNC_get_socket_cookie:
11435 		return &bpf_get_socket_ptr_cookie_proto;
11436 	case BPF_FUNC_ktime_get_coarse_ns:
11437 		return &bpf_ktime_get_coarse_ns_proto;
11438 	default:
11439 		return bpf_base_func_proto(func_id, prog);
11440 	}
11441 }
11442 
11443 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11444 sk_reuseport_is_valid_access(int off, int size,
11445 			     enum bpf_access_type type,
11446 			     const struct bpf_prog *prog,
11447 			     struct bpf_insn_access_aux *info)
11448 {
11449 	const u32 size_default = sizeof(__u32);
11450 
11451 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11452 	    off % size || type != BPF_READ)
11453 		return false;
11454 
11455 	switch (off) {
11456 	case offsetof(struct sk_reuseport_md, data):
11457 		info->reg_type = PTR_TO_PACKET;
11458 		return size == sizeof(__u64);
11459 
11460 	case offsetof(struct sk_reuseport_md, data_end):
11461 		info->reg_type = PTR_TO_PACKET_END;
11462 		return size == sizeof(__u64);
11463 
11464 	case offsetof(struct sk_reuseport_md, hash):
11465 		return size == size_default;
11466 
11467 	case offsetof(struct sk_reuseport_md, sk):
11468 		info->reg_type = PTR_TO_SOCKET;
11469 		return size == sizeof(__u64);
11470 
11471 	case offsetof(struct sk_reuseport_md, migrating_sk):
11472 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11473 		return size == sizeof(__u64);
11474 
11475 	/* Fields that allow narrowing */
11476 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11477 		if (size < sizeof_field(struct sk_buff, protocol))
11478 			return false;
11479 		fallthrough;
11480 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11481 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11482 	case bpf_ctx_range(struct sk_reuseport_md, len):
11483 		bpf_ctx_record_field_size(info, size_default);
11484 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11485 
11486 	default:
11487 		return false;
11488 	}
11489 }
11490 
11491 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11492 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11493 			      si->dst_reg, si->src_reg,			\
11494 			      bpf_target_off(struct sk_reuseport_kern, F, \
11495 					     sizeof_field(struct sk_reuseport_kern, F), \
11496 					     target_size));		\
11497 	})
11498 
11499 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11500 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11501 				    struct sk_buff,			\
11502 				    skb,				\
11503 				    SKB_FIELD)
11504 
11505 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11506 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11507 				    struct sock,			\
11508 				    sk,					\
11509 				    SK_FIELD)
11510 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11511 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11512 					   const struct bpf_insn *si,
11513 					   struct bpf_insn *insn_buf,
11514 					   struct bpf_prog *prog,
11515 					   u32 *target_size)
11516 {
11517 	struct bpf_insn *insn = insn_buf;
11518 
11519 	switch (si->off) {
11520 	case offsetof(struct sk_reuseport_md, data):
11521 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11522 		break;
11523 
11524 	case offsetof(struct sk_reuseport_md, len):
11525 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11526 		break;
11527 
11528 	case offsetof(struct sk_reuseport_md, eth_protocol):
11529 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11530 		break;
11531 
11532 	case offsetof(struct sk_reuseport_md, ip_protocol):
11533 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11534 		break;
11535 
11536 	case offsetof(struct sk_reuseport_md, data_end):
11537 		SK_REUSEPORT_LOAD_FIELD(data_end);
11538 		break;
11539 
11540 	case offsetof(struct sk_reuseport_md, hash):
11541 		SK_REUSEPORT_LOAD_FIELD(hash);
11542 		break;
11543 
11544 	case offsetof(struct sk_reuseport_md, bind_inany):
11545 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11546 		break;
11547 
11548 	case offsetof(struct sk_reuseport_md, sk):
11549 		SK_REUSEPORT_LOAD_FIELD(sk);
11550 		break;
11551 
11552 	case offsetof(struct sk_reuseport_md, migrating_sk):
11553 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11554 		break;
11555 	}
11556 
11557 	return insn - insn_buf;
11558 }
11559 
11560 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11561 	.get_func_proto		= sk_reuseport_func_proto,
11562 	.is_valid_access	= sk_reuseport_is_valid_access,
11563 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11564 };
11565 
11566 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11567 };
11568 
11569 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11570 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11571 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11572 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11573 	   struct sock *, sk, u64, flags)
11574 {
11575 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11576 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11577 		return -EINVAL;
11578 	if (unlikely(sk && sk_is_refcounted(sk)))
11579 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11580 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11581 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11582 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11583 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11584 
11585 	/* Check if socket is suitable for packet L3/L4 protocol */
11586 	if (sk && sk->sk_protocol != ctx->protocol)
11587 		return -EPROTOTYPE;
11588 	if (sk && sk->sk_family != ctx->family &&
11589 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11590 		return -EAFNOSUPPORT;
11591 
11592 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11593 		return -EEXIST;
11594 
11595 	/* Select socket as lookup result */
11596 	ctx->selected_sk = sk;
11597 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11598 	return 0;
11599 }
11600 
11601 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11602 	.func		= bpf_sk_lookup_assign,
11603 	.gpl_only	= false,
11604 	.ret_type	= RET_INTEGER,
11605 	.arg1_type	= ARG_PTR_TO_CTX,
11606 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11607 	.arg3_type	= ARG_ANYTHING,
11608 };
11609 
11610 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11611 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11612 {
11613 	switch (func_id) {
11614 	case BPF_FUNC_perf_event_output:
11615 		return &bpf_event_output_data_proto;
11616 	case BPF_FUNC_sk_assign:
11617 		return &bpf_sk_lookup_assign_proto;
11618 	case BPF_FUNC_sk_release:
11619 		return &bpf_sk_release_proto;
11620 	default:
11621 		return bpf_sk_base_func_proto(func_id, prog);
11622 	}
11623 }
11624 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11625 static bool sk_lookup_is_valid_access(int off, int size,
11626 				      enum bpf_access_type type,
11627 				      const struct bpf_prog *prog,
11628 				      struct bpf_insn_access_aux *info)
11629 {
11630 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11631 		return false;
11632 	if (off % size != 0)
11633 		return false;
11634 	if (type != BPF_READ)
11635 		return false;
11636 
11637 	switch (off) {
11638 	case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk):
11639 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11640 		return size == sizeof(__u64);
11641 
11642 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11643 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11644 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11645 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11646 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11647 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11648 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11649 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11650 		bpf_ctx_record_field_size(info, sizeof(__u32));
11651 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11652 
11653 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11654 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11655 		if (size == sizeof(__u32))
11656 			return true;
11657 		bpf_ctx_record_field_size(info, sizeof(__be16));
11658 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11659 
11660 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11661 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11662 		/* Allow access to zero padding for backward compatibility */
11663 		bpf_ctx_record_field_size(info, sizeof(__u16));
11664 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11665 
11666 	default:
11667 		return false;
11668 	}
11669 }
11670 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11671 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11672 					const struct bpf_insn *si,
11673 					struct bpf_insn *insn_buf,
11674 					struct bpf_prog *prog,
11675 					u32 *target_size)
11676 {
11677 	struct bpf_insn *insn = insn_buf;
11678 
11679 	switch (si->off) {
11680 	case offsetof(struct bpf_sk_lookup, sk):
11681 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11682 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11683 		break;
11684 
11685 	case offsetof(struct bpf_sk_lookup, family):
11686 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11687 				      bpf_target_off(struct bpf_sk_lookup_kern,
11688 						     family, 2, target_size));
11689 		break;
11690 
11691 	case offsetof(struct bpf_sk_lookup, protocol):
11692 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11693 				      bpf_target_off(struct bpf_sk_lookup_kern,
11694 						     protocol, 2, target_size));
11695 		break;
11696 
11697 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11698 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11699 				      bpf_target_off(struct bpf_sk_lookup_kern,
11700 						     v4.saddr, 4, target_size));
11701 		break;
11702 
11703 	case offsetof(struct bpf_sk_lookup, local_ip4):
11704 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11705 				      bpf_target_off(struct bpf_sk_lookup_kern,
11706 						     v4.daddr, 4, target_size));
11707 		break;
11708 
11709 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11710 				remote_ip6[0], remote_ip6[3]): {
11711 #if IS_ENABLED(CONFIG_IPV6)
11712 		int off = si->off;
11713 
11714 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11715 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11716 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11717 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11718 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11719 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11720 #else
11721 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11722 #endif
11723 		break;
11724 	}
11725 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11726 				local_ip6[0], local_ip6[3]): {
11727 #if IS_ENABLED(CONFIG_IPV6)
11728 		int off = si->off;
11729 
11730 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11731 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11732 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11733 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11734 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11735 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11736 #else
11737 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11738 #endif
11739 		break;
11740 	}
11741 	case offsetof(struct bpf_sk_lookup, remote_port):
11742 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11743 				      bpf_target_off(struct bpf_sk_lookup_kern,
11744 						     sport, 2, target_size));
11745 		break;
11746 
11747 	case offsetofend(struct bpf_sk_lookup, remote_port):
11748 		*target_size = 2;
11749 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11750 		break;
11751 
11752 	case offsetof(struct bpf_sk_lookup, local_port):
11753 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11754 				      bpf_target_off(struct bpf_sk_lookup_kern,
11755 						     dport, 2, target_size));
11756 		break;
11757 
11758 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11759 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11760 				      bpf_target_off(struct bpf_sk_lookup_kern,
11761 						     ingress_ifindex, 4, target_size));
11762 		break;
11763 	}
11764 
11765 	return insn - insn_buf;
11766 }
11767 
11768 const struct bpf_prog_ops sk_lookup_prog_ops = {
11769 	.test_run = bpf_prog_test_run_sk_lookup,
11770 };
11771 
11772 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11773 	.get_func_proto		= sk_lookup_func_proto,
11774 	.is_valid_access	= sk_lookup_is_valid_access,
11775 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11776 };
11777 
11778 #endif /* CONFIG_INET */
11779 
DEFINE_BPF_DISPATCHER(xdp)11780 DEFINE_BPF_DISPATCHER(xdp)
11781 
11782 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11783 {
11784 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11785 }
11786 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11787 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11788 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11789 BTF_SOCK_TYPE_xxx
11790 #undef BTF_SOCK_TYPE
11791 
11792 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11793 {
11794 	/* tcp6_sock type is not generated in dwarf and hence btf,
11795 	 * trigger an explicit type generation here.
11796 	 */
11797 	BTF_TYPE_EMIT(struct tcp6_sock);
11798 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11799 	    sk->sk_family == AF_INET6)
11800 		return (unsigned long)sk;
11801 
11802 	return (unsigned long)NULL;
11803 }
11804 
11805 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11806 	.func			= bpf_skc_to_tcp6_sock,
11807 	.gpl_only		= false,
11808 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11809 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11810 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11811 };
11812 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11813 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11814 {
11815 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11816 		return (unsigned long)sk;
11817 
11818 	return (unsigned long)NULL;
11819 }
11820 
11821 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11822 	.func			= bpf_skc_to_tcp_sock,
11823 	.gpl_only		= false,
11824 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11825 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11826 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11827 };
11828 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11829 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11830 {
11831 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11832 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11833 	 */
11834 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11835 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11836 
11837 #ifdef CONFIG_INET
11838 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11839 		return (unsigned long)sk;
11840 #endif
11841 
11842 #if IS_BUILTIN(CONFIG_IPV6)
11843 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11844 		return (unsigned long)sk;
11845 #endif
11846 
11847 	return (unsigned long)NULL;
11848 }
11849 
11850 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11851 	.func			= bpf_skc_to_tcp_timewait_sock,
11852 	.gpl_only		= false,
11853 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11854 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11855 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11856 };
11857 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11858 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11859 {
11860 #ifdef CONFIG_INET
11861 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11862 		return (unsigned long)sk;
11863 #endif
11864 
11865 #if IS_BUILTIN(CONFIG_IPV6)
11866 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11867 		return (unsigned long)sk;
11868 #endif
11869 
11870 	return (unsigned long)NULL;
11871 }
11872 
11873 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11874 	.func			= bpf_skc_to_tcp_request_sock,
11875 	.gpl_only		= false,
11876 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11877 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11878 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11879 };
11880 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11881 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11882 {
11883 	/* udp6_sock type is not generated in dwarf and hence btf,
11884 	 * trigger an explicit type generation here.
11885 	 */
11886 	BTF_TYPE_EMIT(struct udp6_sock);
11887 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11888 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11889 		return (unsigned long)sk;
11890 
11891 	return (unsigned long)NULL;
11892 }
11893 
11894 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11895 	.func			= bpf_skc_to_udp6_sock,
11896 	.gpl_only		= false,
11897 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11898 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11899 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11900 };
11901 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11902 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11903 {
11904 	/* unix_sock type is not generated in dwarf and hence btf,
11905 	 * trigger an explicit type generation here.
11906 	 */
11907 	BTF_TYPE_EMIT(struct unix_sock);
11908 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11909 		return (unsigned long)sk;
11910 
11911 	return (unsigned long)NULL;
11912 }
11913 
11914 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11915 	.func			= bpf_skc_to_unix_sock,
11916 	.gpl_only		= false,
11917 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11918 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11919 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11920 };
11921 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11922 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11923 {
11924 	BTF_TYPE_EMIT(struct mptcp_sock);
11925 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11926 }
11927 
11928 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11929 	.func		= bpf_skc_to_mptcp_sock,
11930 	.gpl_only	= false,
11931 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11932 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11933 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11934 };
11935 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11936 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11937 {
11938 	return (unsigned long)sock_from_file(file);
11939 }
11940 
11941 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11942 BTF_ID(struct, socket)
11943 BTF_ID(struct, file)
11944 
11945 const struct bpf_func_proto bpf_sock_from_file_proto = {
11946 	.func		= bpf_sock_from_file,
11947 	.gpl_only	= false,
11948 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11949 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11950 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11951 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11952 };
11953 
11954 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11955 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11956 {
11957 	const struct bpf_func_proto *func;
11958 
11959 	switch (func_id) {
11960 	case BPF_FUNC_skc_to_tcp6_sock:
11961 		func = &bpf_skc_to_tcp6_sock_proto;
11962 		break;
11963 	case BPF_FUNC_skc_to_tcp_sock:
11964 		func = &bpf_skc_to_tcp_sock_proto;
11965 		break;
11966 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11967 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11968 		break;
11969 	case BPF_FUNC_skc_to_tcp_request_sock:
11970 		func = &bpf_skc_to_tcp_request_sock_proto;
11971 		break;
11972 	case BPF_FUNC_skc_to_udp6_sock:
11973 		func = &bpf_skc_to_udp6_sock_proto;
11974 		break;
11975 	case BPF_FUNC_skc_to_unix_sock:
11976 		func = &bpf_skc_to_unix_sock_proto;
11977 		break;
11978 	case BPF_FUNC_skc_to_mptcp_sock:
11979 		func = &bpf_skc_to_mptcp_sock_proto;
11980 		break;
11981 	case BPF_FUNC_ktime_get_coarse_ns:
11982 		return &bpf_ktime_get_coarse_ns_proto;
11983 	default:
11984 		return bpf_base_func_proto(func_id, prog);
11985 	}
11986 
11987 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11988 		return NULL;
11989 
11990 	return func;
11991 }
11992 
11993 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)11994 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11995 				    struct bpf_dynptr *ptr__uninit)
11996 {
11997 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11998 	struct sk_buff *skb = (struct sk_buff *)s;
11999 
12000 	if (flags) {
12001 		bpf_dynptr_set_null(ptr);
12002 		return -EINVAL;
12003 	}
12004 
12005 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
12006 
12007 	return 0;
12008 }
12009 
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)12010 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12011 				    struct bpf_dynptr *ptr__uninit)
12012 {
12013 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12014 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12015 
12016 	if (flags) {
12017 		bpf_dynptr_set_null(ptr);
12018 		return -EINVAL;
12019 	}
12020 
12021 	bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12022 
12023 	return 0;
12024 }
12025 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12026 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12027 					   const u8 *sun_path, u32 sun_path__sz)
12028 {
12029 	struct sockaddr_un *un;
12030 
12031 	if (sa_kern->sk->sk_family != AF_UNIX)
12032 		return -EINVAL;
12033 
12034 	/* We do not allow changing the address to unnamed or larger than the
12035 	 * maximum allowed address size for a unix sockaddr.
12036 	 */
12037 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12038 		return -EINVAL;
12039 
12040 	un = (struct sockaddr_un *)sa_kern->uaddr;
12041 	memcpy(un->sun_path, sun_path, sun_path__sz);
12042 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12043 
12044 	return 0;
12045 }
12046 
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12047 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12048 					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12049 {
12050 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12051 	struct sk_buff *skb = (struct sk_buff *)s;
12052 	const struct request_sock_ops *ops;
12053 	struct inet_request_sock *ireq;
12054 	struct tcp_request_sock *treq;
12055 	struct request_sock *req;
12056 	struct net *net;
12057 	__u16 min_mss;
12058 	u32 tsoff = 0;
12059 
12060 	if (attrs__sz != sizeof(*attrs) ||
12061 	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12062 		return -EINVAL;
12063 
12064 	if (!skb_at_tc_ingress(skb))
12065 		return -EINVAL;
12066 
12067 	net = dev_net(skb->dev);
12068 	if (net != sock_net(sk))
12069 		return -ENETUNREACH;
12070 
12071 	switch (skb->protocol) {
12072 	case htons(ETH_P_IP):
12073 		ops = &tcp_request_sock_ops;
12074 		min_mss = 536;
12075 		break;
12076 #if IS_BUILTIN(CONFIG_IPV6)
12077 	case htons(ETH_P_IPV6):
12078 		ops = &tcp6_request_sock_ops;
12079 		min_mss = IPV6_MIN_MTU - 60;
12080 		break;
12081 #endif
12082 	default:
12083 		return -EINVAL;
12084 	}
12085 
12086 	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12087 	    sk_is_mptcp(sk))
12088 		return -EINVAL;
12089 
12090 	if (attrs->mss < min_mss)
12091 		return -EINVAL;
12092 
12093 	if (attrs->wscale_ok) {
12094 		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12095 			return -EINVAL;
12096 
12097 		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12098 		    attrs->rcv_wscale > TCP_MAX_WSCALE)
12099 			return -EINVAL;
12100 	}
12101 
12102 	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12103 		return -EINVAL;
12104 
12105 	if (attrs->tstamp_ok) {
12106 		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12107 			return -EINVAL;
12108 
12109 		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12110 	}
12111 
12112 	req = inet_reqsk_alloc(ops, sk, false);
12113 	if (!req)
12114 		return -ENOMEM;
12115 
12116 	ireq = inet_rsk(req);
12117 	treq = tcp_rsk(req);
12118 
12119 	req->rsk_listener = sk;
12120 	req->syncookie = 1;
12121 	req->mss = attrs->mss;
12122 	req->ts_recent = attrs->rcv_tsval;
12123 
12124 	ireq->snd_wscale = attrs->snd_wscale;
12125 	ireq->rcv_wscale = attrs->rcv_wscale;
12126 	ireq->tstamp_ok	= !!attrs->tstamp_ok;
12127 	ireq->sack_ok = !!attrs->sack_ok;
12128 	ireq->wscale_ok = !!attrs->wscale_ok;
12129 	ireq->ecn_ok = !!attrs->ecn_ok;
12130 
12131 	treq->req_usec_ts = !!attrs->usec_ts_ok;
12132 	treq->ts_off = tsoff;
12133 
12134 	skb_orphan(skb);
12135 	skb->sk = req_to_sk(req);
12136 	skb->destructor = sock_pfree;
12137 
12138 	return 0;
12139 #else
12140 	return -EOPNOTSUPP;
12141 #endif
12142 }
12143 
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12144 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12145 					      u64 flags)
12146 {
12147 	struct sk_buff *skb;
12148 
12149 	if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12150 		return -EOPNOTSUPP;
12151 
12152 	if (flags)
12153 		return -EINVAL;
12154 
12155 	skb = skops->skb;
12156 	skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12157 	TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12158 	skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12159 
12160 	return 0;
12161 }
12162 
12163 __bpf_kfunc_end_defs();
12164 
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12165 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12166 			       struct bpf_dynptr *ptr__uninit)
12167 {
12168 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12169 	int err;
12170 
12171 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12172 	if (err)
12173 		return err;
12174 
12175 	bpf_dynptr_set_rdonly(ptr);
12176 
12177 	return 0;
12178 }
12179 
12180 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12181 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12182 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12183 
12184 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12185 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12186 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12187 
12188 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12189 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12190 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12191 
12192 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12193 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12194 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12195 
12196 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12197 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12198 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12199 
12200 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12201 	.owner = THIS_MODULE,
12202 	.set = &bpf_kfunc_check_set_skb,
12203 };
12204 
12205 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12206 	.owner = THIS_MODULE,
12207 	.set = &bpf_kfunc_check_set_xdp,
12208 };
12209 
12210 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12211 	.owner = THIS_MODULE,
12212 	.set = &bpf_kfunc_check_set_sock_addr,
12213 };
12214 
12215 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12216 	.owner = THIS_MODULE,
12217 	.set = &bpf_kfunc_check_set_tcp_reqsk,
12218 };
12219 
12220 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12221 	.owner = THIS_MODULE,
12222 	.set = &bpf_kfunc_check_set_sock_ops,
12223 };
12224 
bpf_kfunc_init(void)12225 static int __init bpf_kfunc_init(void)
12226 {
12227 	int ret;
12228 
12229 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12230 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12231 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12232 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12233 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12234 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12235 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12236 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12237 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12238 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12239 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12240 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12241 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12242 					       &bpf_kfunc_set_sock_addr);
12243 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12244 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12245 }
12246 late_initcall(bpf_kfunc_init);
12247 
12248 __bpf_kfunc_start_defs();
12249 
12250 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12251  *
12252  * The function expects a non-NULL pointer to a socket, and invokes the
12253  * protocol specific socket destroy handlers.
12254  *
12255  * The helper can only be called from BPF contexts that have acquired the socket
12256  * locks.
12257  *
12258  * Parameters:
12259  * @sock: Pointer to socket to be destroyed
12260  *
12261  * Return:
12262  * On error, may return EPROTONOSUPPORT, EINVAL.
12263  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12264  * 0 otherwise
12265  */
bpf_sock_destroy(struct sock_common * sock)12266 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12267 {
12268 	struct sock *sk = (struct sock *)sock;
12269 
12270 	/* The locking semantics that allow for synchronous execution of the
12271 	 * destroy handlers are only supported for TCP and UDP.
12272 	 * Supporting protocols will need to acquire sock lock in the BPF context
12273 	 * prior to invoking this kfunc.
12274 	 */
12275 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12276 					   sk->sk_protocol != IPPROTO_UDP))
12277 		return -EOPNOTSUPP;
12278 
12279 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12280 }
12281 
12282 __bpf_kfunc_end_defs();
12283 
12284 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12285 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12286 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12287 
12288 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12289 {
12290 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12291 	    prog->expected_attach_type != BPF_TRACE_ITER)
12292 		return -EACCES;
12293 	return 0;
12294 }
12295 
12296 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12297 	.owner = THIS_MODULE,
12298 	.set   = &bpf_sk_iter_kfunc_ids,
12299 	.filter = tracing_iter_filter,
12300 };
12301 
init_subsystem(void)12302 static int init_subsystem(void)
12303 {
12304 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12305 }
12306 late_initcall(init_subsystem);
12307