xref: /linux/net/core/filter.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88 
89 #include "dev.h"
90 
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93 
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 	if (in_compat_syscall()) {
100 		struct compat_sock_fprog f32;
101 
102 		if (len != sizeof(f32))
103 			return -EINVAL;
104 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 			return -EFAULT;
106 		memset(dst, 0, sizeof(*dst));
107 		dst->len = f32.len;
108 		dst->filter = compat_ptr(f32.filter);
109 	} else {
110 		if (len != sizeof(*dst))
111 			return -EINVAL;
112 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 			return -EFAULT;
114 	}
115 
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119 
120 /**
121  *	sk_filter_trim_cap - run a packet through a socket filter
122  *	@sk: sock associated with &sk_buff
123  *	@skb: buffer to filter
124  *	@cap: limit on how short the eBPF program may trim the packet
125  *	@reason: record drop reason on errors (negative return value)
126  *
127  * Run the eBPF program and then cut skb->data to correct size returned by
128  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
129  * than pkt_len we keep whole skb->data. This is the socket level
130  * wrapper to bpf_prog_run. It returns 0 if the packet should
131  * be accepted or -EPERM if the packet should be tossed.
132  *
133  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap,enum skb_drop_reason * reason)134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb,
135 		       unsigned int cap, enum skb_drop_reason *reason)
136 {
137 	int err;
138 	struct sk_filter *filter;
139 
140 	/*
141 	 * If the skb was allocated from pfmemalloc reserves, only
142 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
143 	 * helping free memory
144 	 */
145 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
146 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
147 		*reason = SKB_DROP_REASON_PFMEMALLOC;
148 		return -ENOMEM;
149 	}
150 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
151 	if (err) {
152 		*reason = SKB_DROP_REASON_SOCKET_FILTER;
153 		return err;
154 	}
155 
156 	err = security_sock_rcv_skb(sk, skb);
157 	if (err) {
158 		*reason = SKB_DROP_REASON_SECURITY_HOOK;
159 		return err;
160 	}
161 
162 	rcu_read_lock();
163 	filter = rcu_dereference(sk->sk_filter);
164 	if (filter) {
165 		struct sock *save_sk = skb->sk;
166 		unsigned int pkt_len;
167 
168 		skb->sk = sk;
169 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
170 		skb->sk = save_sk;
171 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
172 		if (err)
173 			*reason = SKB_DROP_REASON_SOCKET_FILTER;
174 	}
175 	rcu_read_unlock();
176 
177 	return err;
178 }
179 EXPORT_SYMBOL(sk_filter_trim_cap);
180 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
182 {
183 	return skb_get_poff(skb);
184 }
185 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
200 	if (nla)
201 		return (void *) nla - (void *) skb->data;
202 
203 	return 0;
204 }
205 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
207 {
208 	struct nlattr *nla;
209 
210 	if (skb_is_nonlinear(skb))
211 		return 0;
212 
213 	if (skb->len < sizeof(struct nlattr))
214 		return 0;
215 
216 	if (a > skb->len - sizeof(struct nlattr))
217 		return 0;
218 
219 	nla = (struct nlattr *) &skb->data[a];
220 	if (!nla_ok(nla, skb->len - a))
221 		return 0;
222 
223 	nla = nla_find_nested(nla, x);
224 	if (nla)
225 		return (void *) nla - (void *) skb->data;
226 
227 	return 0;
228 }
229 
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
231 {
232 	if (likely(offset >= 0))
233 		return offset;
234 
235 	if (offset >= SKF_NET_OFF)
236 		return offset - SKF_NET_OFF + skb_network_offset(skb);
237 
238 	if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
239 		return offset - SKF_LL_OFF + skb_mac_offset(skb);
240 
241 	return INT_MIN;
242 }
243 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
245 	   data, int, headlen, int, offset)
246 {
247 	u8 tmp;
248 	const int len = sizeof(tmp);
249 
250 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
251 	if (offset == INT_MIN)
252 		return -EFAULT;
253 
254 	if (headlen - offset >= len)
255 		return *(u8 *)(data + offset);
256 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
257 		return tmp;
258 	else
259 		return -EFAULT;
260 }
261 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
263 	   int, offset)
264 {
265 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
266 					 offset);
267 }
268 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
270 	   data, int, headlen, int, offset)
271 {
272 	__be16 tmp;
273 	const int len = sizeof(tmp);
274 
275 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
276 	if (offset == INT_MIN)
277 		return -EFAULT;
278 
279 	if (headlen - offset >= len)
280 		return get_unaligned_be16(data + offset);
281 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
282 		return be16_to_cpu(tmp);
283 	else
284 		return -EFAULT;
285 }
286 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
288 	   int, offset)
289 {
290 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
291 					  offset);
292 }
293 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
295 	   data, int, headlen, int, offset)
296 {
297 	__be32 tmp;
298 	const int len = sizeof(tmp);
299 
300 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
301 	if (offset == INT_MIN)
302 		return -EFAULT;
303 
304 	if (headlen - offset >= len)
305 		return get_unaligned_be32(data + offset);
306 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
307 		return be32_to_cpu(tmp);
308 	else
309 		return -EFAULT;
310 }
311 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
313 	   int, offset)
314 {
315 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
316 					  offset);
317 }
318 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
320 			      struct bpf_insn *insn_buf)
321 {
322 	struct bpf_insn *insn = insn_buf;
323 
324 	switch (skb_field) {
325 	case SKF_AD_MARK:
326 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
327 
328 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
329 				      offsetof(struct sk_buff, mark));
330 		break;
331 
332 	case SKF_AD_PKTTYPE:
333 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
334 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
335 #ifdef __BIG_ENDIAN_BITFIELD
336 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
337 #endif
338 		break;
339 
340 	case SKF_AD_QUEUE:
341 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
342 
343 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
344 				      offsetof(struct sk_buff, queue_mapping));
345 		break;
346 
347 	case SKF_AD_VLAN_TAG:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
349 
350 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
352 				      offsetof(struct sk_buff, vlan_tci));
353 		break;
354 	case SKF_AD_VLAN_TAG_PRESENT:
355 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
356 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
357 				      offsetof(struct sk_buff, vlan_all));
358 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
359 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
360 		break;
361 	}
362 
363 	return insn - insn_buf;
364 }
365 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)366 static bool convert_bpf_extensions(struct sock_filter *fp,
367 				   struct bpf_insn **insnp)
368 {
369 	struct bpf_insn *insn = *insnp;
370 	u32 cnt;
371 
372 	switch (fp->k) {
373 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
374 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
375 
376 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
377 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
378 				      offsetof(struct sk_buff, protocol));
379 		/* A = ntohs(A) [emitting a nop or swap16] */
380 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
384 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_IFINDEX:
389 	case SKF_AD_OFF + SKF_AD_HATYPE:
390 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
391 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
392 
393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
394 				      BPF_REG_TMP, BPF_REG_CTX,
395 				      offsetof(struct sk_buff, dev));
396 		/* if (tmp != 0) goto pc + 1 */
397 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
398 		*insn++ = BPF_EXIT_INSN();
399 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
400 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
401 					    offsetof(struct net_device, ifindex));
402 		else
403 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
404 					    offsetof(struct net_device, type));
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_MARK:
408 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_RXHASH:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
414 
415 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
416 				    offsetof(struct sk_buff, hash));
417 		break;
418 
419 	case SKF_AD_OFF + SKF_AD_QUEUE:
420 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
421 		insn += cnt - 1;
422 		break;
423 
424 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
425 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
426 					 BPF_REG_A, BPF_REG_CTX, insn);
427 		insn += cnt - 1;
428 		break;
429 
430 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
431 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
432 					 BPF_REG_A, BPF_REG_CTX, insn);
433 		insn += cnt - 1;
434 		break;
435 
436 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
437 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
438 
439 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
440 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
441 				      offsetof(struct sk_buff, vlan_proto));
442 		/* A = ntohs(A) [emitting a nop or swap16] */
443 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
444 		break;
445 
446 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
447 	case SKF_AD_OFF + SKF_AD_NLATTR:
448 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 	case SKF_AD_OFF + SKF_AD_CPU:
450 	case SKF_AD_OFF + SKF_AD_RANDOM:
451 		/* arg1 = CTX */
452 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
453 		/* arg2 = A */
454 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
455 		/* arg3 = X */
456 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
457 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
458 		switch (fp->k) {
459 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
460 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
461 			break;
462 		case SKF_AD_OFF + SKF_AD_NLATTR:
463 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
464 			break;
465 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
466 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
467 			break;
468 		case SKF_AD_OFF + SKF_AD_CPU:
469 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
470 			break;
471 		case SKF_AD_OFF + SKF_AD_RANDOM:
472 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
473 			bpf_user_rnd_init_once();
474 			break;
475 		}
476 		break;
477 
478 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
479 		/* A ^= X */
480 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
481 		break;
482 
483 	default:
484 		/* This is just a dummy call to avoid letting the compiler
485 		 * evict __bpf_call_base() as an optimization. Placed here
486 		 * where no-one bothers.
487 		 */
488 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
489 		return false;
490 	}
491 
492 	*insnp = insn;
493 	return true;
494 }
495 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
497 {
498 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
499 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
500 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
501 		      BPF_SIZE(fp->code) == BPF_W;
502 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
503 	const int ip_align = NET_IP_ALIGN;
504 	struct bpf_insn *insn = *insnp;
505 	int offset = fp->k;
506 
507 	if (!indirect &&
508 	    ((unaligned_ok && offset >= 0) ||
509 	     (!unaligned_ok && offset >= 0 &&
510 	      offset + ip_align >= 0 &&
511 	      offset + ip_align % size == 0))) {
512 		bool ldx_off_ok = offset <= S16_MAX;
513 
514 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
515 		if (offset)
516 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
517 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
518 				      size, 2 + endian + (!ldx_off_ok * 2));
519 		if (ldx_off_ok) {
520 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
521 					      BPF_REG_D, offset);
522 		} else {
523 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
524 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
525 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
526 					      BPF_REG_TMP, 0);
527 		}
528 		if (endian)
529 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
530 		*insn++ = BPF_JMP_A(8);
531 	}
532 
533 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
534 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
535 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
536 	if (!indirect) {
537 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
538 	} else {
539 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
540 		if (fp->k)
541 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
542 	}
543 
544 	switch (BPF_SIZE(fp->code)) {
545 	case BPF_B:
546 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
547 		break;
548 	case BPF_H:
549 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
550 		break;
551 	case BPF_W:
552 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
553 		break;
554 	default:
555 		return false;
556 	}
557 
558 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
559 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
560 	*insn   = BPF_EXIT_INSN();
561 
562 	*insnp = insn;
563 	return true;
564 }
565 
566 /**
567  *	bpf_convert_filter - convert filter program
568  *	@prog: the user passed filter program
569  *	@len: the length of the user passed filter program
570  *	@new_prog: allocated 'struct bpf_prog' or NULL
571  *	@new_len: pointer to store length of converted program
572  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
573  *
574  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
575  * style extended BPF (eBPF).
576  * Conversion workflow:
577  *
578  * 1) First pass for calculating the new program length:
579  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
580  *
581  * 2) 2nd pass to remap in two passes: 1st pass finds new
582  *    jump offsets, 2nd pass remapping:
583  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
584  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)585 static int bpf_convert_filter(struct sock_filter *prog, int len,
586 			      struct bpf_prog *new_prog, int *new_len,
587 			      bool *seen_ld_abs)
588 {
589 	int new_flen = 0, pass = 0, target, i, stack_off;
590 	struct bpf_insn *new_insn, *first_insn = NULL;
591 	struct sock_filter *fp;
592 	int *addrs = NULL;
593 	u8 bpf_src;
594 
595 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
596 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
597 
598 	if (len <= 0 || len > BPF_MAXINSNS)
599 		return -EINVAL;
600 
601 	if (new_prog) {
602 		first_insn = new_prog->insnsi;
603 		addrs = kcalloc(len, sizeof(*addrs),
604 				GFP_KERNEL | __GFP_NOWARN);
605 		if (!addrs)
606 			return -ENOMEM;
607 	}
608 
609 do_pass:
610 	new_insn = first_insn;
611 	fp = prog;
612 
613 	/* Classic BPF related prologue emission. */
614 	if (new_prog) {
615 		/* Classic BPF expects A and X to be reset first. These need
616 		 * to be guaranteed to be the first two instructions.
617 		 */
618 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
619 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
620 
621 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
622 		 * In eBPF case it's done by the compiler, here we need to
623 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
624 		 */
625 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
626 		if (*seen_ld_abs) {
627 			/* For packet access in classic BPF, cache skb->data
628 			 * in callee-saved BPF R8 and skb->len - skb->data_len
629 			 * (headlen) in BPF R9. Since classic BPF is read-only
630 			 * on CTX, we only need to cache it once.
631 			 */
632 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
633 						  BPF_REG_D, BPF_REG_CTX,
634 						  offsetof(struct sk_buff, data));
635 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
636 						  offsetof(struct sk_buff, len));
637 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
638 						  offsetof(struct sk_buff, data_len));
639 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
640 		}
641 	} else {
642 		new_insn += 3;
643 	}
644 
645 	for (i = 0; i < len; fp++, i++) {
646 		struct bpf_insn tmp_insns[32] = { };
647 		struct bpf_insn *insn = tmp_insns;
648 
649 		if (addrs)
650 			addrs[i] = new_insn - first_insn;
651 
652 		switch (fp->code) {
653 		/* All arithmetic insns and skb loads map as-is. */
654 		case BPF_ALU | BPF_ADD | BPF_X:
655 		case BPF_ALU | BPF_ADD | BPF_K:
656 		case BPF_ALU | BPF_SUB | BPF_X:
657 		case BPF_ALU | BPF_SUB | BPF_K:
658 		case BPF_ALU | BPF_AND | BPF_X:
659 		case BPF_ALU | BPF_AND | BPF_K:
660 		case BPF_ALU | BPF_OR | BPF_X:
661 		case BPF_ALU | BPF_OR | BPF_K:
662 		case BPF_ALU | BPF_LSH | BPF_X:
663 		case BPF_ALU | BPF_LSH | BPF_K:
664 		case BPF_ALU | BPF_RSH | BPF_X:
665 		case BPF_ALU | BPF_RSH | BPF_K:
666 		case BPF_ALU | BPF_XOR | BPF_X:
667 		case BPF_ALU | BPF_XOR | BPF_K:
668 		case BPF_ALU | BPF_MUL | BPF_X:
669 		case BPF_ALU | BPF_MUL | BPF_K:
670 		case BPF_ALU | BPF_DIV | BPF_X:
671 		case BPF_ALU | BPF_DIV | BPF_K:
672 		case BPF_ALU | BPF_MOD | BPF_X:
673 		case BPF_ALU | BPF_MOD | BPF_K:
674 		case BPF_ALU | BPF_NEG:
675 		case BPF_LD | BPF_ABS | BPF_W:
676 		case BPF_LD | BPF_ABS | BPF_H:
677 		case BPF_LD | BPF_ABS | BPF_B:
678 		case BPF_LD | BPF_IND | BPF_W:
679 		case BPF_LD | BPF_IND | BPF_H:
680 		case BPF_LD | BPF_IND | BPF_B:
681 			/* Check for overloaded BPF extension and
682 			 * directly convert it if found, otherwise
683 			 * just move on with mapping.
684 			 */
685 			if (BPF_CLASS(fp->code) == BPF_LD &&
686 			    BPF_MODE(fp->code) == BPF_ABS &&
687 			    convert_bpf_extensions(fp, &insn))
688 				break;
689 			if (BPF_CLASS(fp->code) == BPF_LD &&
690 			    convert_bpf_ld_abs(fp, &insn)) {
691 				*seen_ld_abs = true;
692 				break;
693 			}
694 
695 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
696 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
697 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
698 				/* Error with exception code on div/mod by 0.
699 				 * For cBPF programs, this was always return 0.
700 				 */
701 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
702 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
703 				*insn++ = BPF_EXIT_INSN();
704 			}
705 
706 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
707 			break;
708 
709 		/* Jump transformation cannot use BPF block macros
710 		 * everywhere as offset calculation and target updates
711 		 * require a bit more work than the rest, i.e. jump
712 		 * opcodes map as-is, but offsets need adjustment.
713 		 */
714 
715 #define BPF_EMIT_JMP							\
716 	do {								\
717 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
718 		s32 off;						\
719 									\
720 		if (target >= len || target < 0)			\
721 			goto err;					\
722 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
723 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
724 		off -= insn - tmp_insns;				\
725 		/* Reject anything not fitting into insn->off. */	\
726 		if (off < off_min || off > off_max)			\
727 			goto err;					\
728 		insn->off = off;					\
729 	} while (0)
730 
731 		case BPF_JMP | BPF_JA:
732 			target = i + fp->k + 1;
733 			insn->code = fp->code;
734 			BPF_EMIT_JMP;
735 			break;
736 
737 		case BPF_JMP | BPF_JEQ | BPF_K:
738 		case BPF_JMP | BPF_JEQ | BPF_X:
739 		case BPF_JMP | BPF_JSET | BPF_K:
740 		case BPF_JMP | BPF_JSET | BPF_X:
741 		case BPF_JMP | BPF_JGT | BPF_K:
742 		case BPF_JMP | BPF_JGT | BPF_X:
743 		case BPF_JMP | BPF_JGE | BPF_K:
744 		case BPF_JMP | BPF_JGE | BPF_X:
745 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
746 				/* BPF immediates are signed, zero extend
747 				 * immediate into tmp register and use it
748 				 * in compare insn.
749 				 */
750 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
751 
752 				insn->dst_reg = BPF_REG_A;
753 				insn->src_reg = BPF_REG_TMP;
754 				bpf_src = BPF_X;
755 			} else {
756 				insn->dst_reg = BPF_REG_A;
757 				insn->imm = fp->k;
758 				bpf_src = BPF_SRC(fp->code);
759 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
760 			}
761 
762 			/* Common case where 'jump_false' is next insn. */
763 			if (fp->jf == 0) {
764 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 				target = i + fp->jt + 1;
766 				BPF_EMIT_JMP;
767 				break;
768 			}
769 
770 			/* Convert some jumps when 'jump_true' is next insn. */
771 			if (fp->jt == 0) {
772 				switch (BPF_OP(fp->code)) {
773 				case BPF_JEQ:
774 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
775 					break;
776 				case BPF_JGT:
777 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
778 					break;
779 				case BPF_JGE:
780 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
781 					break;
782 				default:
783 					goto jmp_rest;
784 				}
785 
786 				target = i + fp->jf + 1;
787 				BPF_EMIT_JMP;
788 				break;
789 			}
790 jmp_rest:
791 			/* Other jumps are mapped into two insns: Jxx and JA. */
792 			target = i + fp->jt + 1;
793 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
794 			BPF_EMIT_JMP;
795 			insn++;
796 
797 			insn->code = BPF_JMP | BPF_JA;
798 			target = i + fp->jf + 1;
799 			BPF_EMIT_JMP;
800 			break;
801 
802 		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
803 		case BPF_LDX | BPF_MSH | BPF_B: {
804 			struct sock_filter tmp = {
805 				.code	= BPF_LD | BPF_ABS | BPF_B,
806 				.k	= fp->k,
807 			};
808 
809 			*seen_ld_abs = true;
810 
811 			/* X = A */
812 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
813 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
814 			convert_bpf_ld_abs(&tmp, &insn);
815 			insn++;
816 			/* A &= 0xf */
817 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
818 			/* A <<= 2 */
819 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
820 			/* tmp = X */
821 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
822 			/* X = A */
823 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			/* A = tmp */
825 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
826 			break;
827 		}
828 		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
829 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
830 		 */
831 		case BPF_RET | BPF_A:
832 		case BPF_RET | BPF_K:
833 			if (BPF_RVAL(fp->code) == BPF_K)
834 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
835 							0, fp->k);
836 			*insn = BPF_EXIT_INSN();
837 			break;
838 
839 		/* Store to stack. */
840 		case BPF_ST:
841 		case BPF_STX:
842 			stack_off = fp->k * 4  + 4;
843 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
844 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
845 					    -stack_off);
846 			/* check_load_and_stores() verifies that classic BPF can
847 			 * load from stack only after write, so tracking
848 			 * stack_depth for ST|STX insns is enough
849 			 */
850 			if (new_prog && new_prog->aux->stack_depth < stack_off)
851 				new_prog->aux->stack_depth = stack_off;
852 			break;
853 
854 		/* Load from stack. */
855 		case BPF_LD | BPF_MEM:
856 		case BPF_LDX | BPF_MEM:
857 			stack_off = fp->k * 4  + 4;
858 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
859 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
860 					    -stack_off);
861 			break;
862 
863 		/* A = K or X = K */
864 		case BPF_LD | BPF_IMM:
865 		case BPF_LDX | BPF_IMM:
866 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
867 					      BPF_REG_A : BPF_REG_X, fp->k);
868 			break;
869 
870 		/* X = A */
871 		case BPF_MISC | BPF_TAX:
872 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
873 			break;
874 
875 		/* A = X */
876 		case BPF_MISC | BPF_TXA:
877 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
878 			break;
879 
880 		/* A = skb->len or X = skb->len */
881 		case BPF_LD | BPF_W | BPF_LEN:
882 		case BPF_LDX | BPF_W | BPF_LEN:
883 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
884 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
885 					    offsetof(struct sk_buff, len));
886 			break;
887 
888 		/* Access seccomp_data fields. */
889 		case BPF_LDX | BPF_ABS | BPF_W:
890 			/* A = *(u32 *) (ctx + K) */
891 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
892 			break;
893 
894 		/* Unknown instruction. */
895 		default:
896 			goto err;
897 		}
898 
899 		insn++;
900 		if (new_prog)
901 			memcpy(new_insn, tmp_insns,
902 			       sizeof(*insn) * (insn - tmp_insns));
903 		new_insn += insn - tmp_insns;
904 	}
905 
906 	if (!new_prog) {
907 		/* Only calculating new length. */
908 		*new_len = new_insn - first_insn;
909 		if (*seen_ld_abs)
910 			*new_len += 4; /* Prologue bits. */
911 		return 0;
912 	}
913 
914 	pass++;
915 	if (new_flen != new_insn - first_insn) {
916 		new_flen = new_insn - first_insn;
917 		if (pass > 2)
918 			goto err;
919 		goto do_pass;
920 	}
921 
922 	kfree(addrs);
923 	BUG_ON(*new_len != new_flen);
924 	return 0;
925 err:
926 	kfree(addrs);
927 	return -EINVAL;
928 }
929 
930 /* Security:
931  *
932  * As we dont want to clear mem[] array for each packet going through
933  * __bpf_prog_run(), we check that filter loaded by user never try to read
934  * a cell if not previously written, and we check all branches to be sure
935  * a malicious user doesn't try to abuse us.
936  */
check_load_and_stores(const struct sock_filter * filter,int flen)937 static int check_load_and_stores(const struct sock_filter *filter, int flen)
938 {
939 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
940 	int pc, ret = 0;
941 
942 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
943 
944 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
945 	if (!masks)
946 		return -ENOMEM;
947 
948 	memset(masks, 0xff, flen * sizeof(*masks));
949 
950 	for (pc = 0; pc < flen; pc++) {
951 		memvalid &= masks[pc];
952 
953 		switch (filter[pc].code) {
954 		case BPF_ST:
955 		case BPF_STX:
956 			memvalid |= (1 << filter[pc].k);
957 			break;
958 		case BPF_LD | BPF_MEM:
959 		case BPF_LDX | BPF_MEM:
960 			if (!(memvalid & (1 << filter[pc].k))) {
961 				ret = -EINVAL;
962 				goto error;
963 			}
964 			break;
965 		case BPF_JMP | BPF_JA:
966 			/* A jump must set masks on target */
967 			masks[pc + 1 + filter[pc].k] &= memvalid;
968 			memvalid = ~0;
969 			break;
970 		case BPF_JMP | BPF_JEQ | BPF_K:
971 		case BPF_JMP | BPF_JEQ | BPF_X:
972 		case BPF_JMP | BPF_JGE | BPF_K:
973 		case BPF_JMP | BPF_JGE | BPF_X:
974 		case BPF_JMP | BPF_JGT | BPF_K:
975 		case BPF_JMP | BPF_JGT | BPF_X:
976 		case BPF_JMP | BPF_JSET | BPF_K:
977 		case BPF_JMP | BPF_JSET | BPF_X:
978 			/* A jump must set masks on targets */
979 			masks[pc + 1 + filter[pc].jt] &= memvalid;
980 			masks[pc + 1 + filter[pc].jf] &= memvalid;
981 			memvalid = ~0;
982 			break;
983 		}
984 	}
985 error:
986 	kfree(masks);
987 	return ret;
988 }
989 
chk_code_allowed(u16 code_to_probe)990 static bool chk_code_allowed(u16 code_to_probe)
991 {
992 	static const bool codes[] = {
993 		/* 32 bit ALU operations */
994 		[BPF_ALU | BPF_ADD | BPF_K] = true,
995 		[BPF_ALU | BPF_ADD | BPF_X] = true,
996 		[BPF_ALU | BPF_SUB | BPF_K] = true,
997 		[BPF_ALU | BPF_SUB | BPF_X] = true,
998 		[BPF_ALU | BPF_MUL | BPF_K] = true,
999 		[BPF_ALU | BPF_MUL | BPF_X] = true,
1000 		[BPF_ALU | BPF_DIV | BPF_K] = true,
1001 		[BPF_ALU | BPF_DIV | BPF_X] = true,
1002 		[BPF_ALU | BPF_MOD | BPF_K] = true,
1003 		[BPF_ALU | BPF_MOD | BPF_X] = true,
1004 		[BPF_ALU | BPF_AND | BPF_K] = true,
1005 		[BPF_ALU | BPF_AND | BPF_X] = true,
1006 		[BPF_ALU | BPF_OR | BPF_K] = true,
1007 		[BPF_ALU | BPF_OR | BPF_X] = true,
1008 		[BPF_ALU | BPF_XOR | BPF_K] = true,
1009 		[BPF_ALU | BPF_XOR | BPF_X] = true,
1010 		[BPF_ALU | BPF_LSH | BPF_K] = true,
1011 		[BPF_ALU | BPF_LSH | BPF_X] = true,
1012 		[BPF_ALU | BPF_RSH | BPF_K] = true,
1013 		[BPF_ALU | BPF_RSH | BPF_X] = true,
1014 		[BPF_ALU | BPF_NEG] = true,
1015 		/* Load instructions */
1016 		[BPF_LD | BPF_W | BPF_ABS] = true,
1017 		[BPF_LD | BPF_H | BPF_ABS] = true,
1018 		[BPF_LD | BPF_B | BPF_ABS] = true,
1019 		[BPF_LD | BPF_W | BPF_LEN] = true,
1020 		[BPF_LD | BPF_W | BPF_IND] = true,
1021 		[BPF_LD | BPF_H | BPF_IND] = true,
1022 		[BPF_LD | BPF_B | BPF_IND] = true,
1023 		[BPF_LD | BPF_IMM] = true,
1024 		[BPF_LD | BPF_MEM] = true,
1025 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1026 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1027 		[BPF_LDX | BPF_IMM] = true,
1028 		[BPF_LDX | BPF_MEM] = true,
1029 		/* Store instructions */
1030 		[BPF_ST] = true,
1031 		[BPF_STX] = true,
1032 		/* Misc instructions */
1033 		[BPF_MISC | BPF_TAX] = true,
1034 		[BPF_MISC | BPF_TXA] = true,
1035 		/* Return instructions */
1036 		[BPF_RET | BPF_K] = true,
1037 		[BPF_RET | BPF_A] = true,
1038 		/* Jump instructions */
1039 		[BPF_JMP | BPF_JA] = true,
1040 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1041 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1042 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1043 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1044 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1045 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1046 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1047 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1048 	};
1049 
1050 	if (code_to_probe >= ARRAY_SIZE(codes))
1051 		return false;
1052 
1053 	return codes[code_to_probe];
1054 }
1055 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1056 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1057 				unsigned int flen)
1058 {
1059 	if (filter == NULL)
1060 		return false;
1061 	if (flen == 0 || flen > BPF_MAXINSNS)
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 /**
1068  *	bpf_check_classic - verify socket filter code
1069  *	@filter: filter to verify
1070  *	@flen: length of filter
1071  *
1072  * Check the user's filter code. If we let some ugly
1073  * filter code slip through kaboom! The filter must contain
1074  * no references or jumps that are out of range, no illegal
1075  * instructions, and must end with a RET instruction.
1076  *
1077  * All jumps are forward as they are not signed.
1078  *
1079  * Returns 0 if the rule set is legal or -EINVAL if not.
1080  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1081 static int bpf_check_classic(const struct sock_filter *filter,
1082 			     unsigned int flen)
1083 {
1084 	bool anc_found;
1085 	int pc;
1086 
1087 	/* Check the filter code now */
1088 	for (pc = 0; pc < flen; pc++) {
1089 		const struct sock_filter *ftest = &filter[pc];
1090 
1091 		/* May we actually operate on this code? */
1092 		if (!chk_code_allowed(ftest->code))
1093 			return -EINVAL;
1094 
1095 		/* Some instructions need special checks */
1096 		switch (ftest->code) {
1097 		case BPF_ALU | BPF_DIV | BPF_K:
1098 		case BPF_ALU | BPF_MOD | BPF_K:
1099 			/* Check for division by zero */
1100 			if (ftest->k == 0)
1101 				return -EINVAL;
1102 			break;
1103 		case BPF_ALU | BPF_LSH | BPF_K:
1104 		case BPF_ALU | BPF_RSH | BPF_K:
1105 			if (ftest->k >= 32)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_MEM:
1109 		case BPF_LDX | BPF_MEM:
1110 		case BPF_ST:
1111 		case BPF_STX:
1112 			/* Check for invalid memory addresses */
1113 			if (ftest->k >= BPF_MEMWORDS)
1114 				return -EINVAL;
1115 			break;
1116 		case BPF_JMP | BPF_JA:
1117 			/* Note, the large ftest->k might cause loops.
1118 			 * Compare this with conditional jumps below,
1119 			 * where offsets are limited. --ANK (981016)
1120 			 */
1121 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1122 				return -EINVAL;
1123 			break;
1124 		case BPF_JMP | BPF_JEQ | BPF_K:
1125 		case BPF_JMP | BPF_JEQ | BPF_X:
1126 		case BPF_JMP | BPF_JGE | BPF_K:
1127 		case BPF_JMP | BPF_JGE | BPF_X:
1128 		case BPF_JMP | BPF_JGT | BPF_K:
1129 		case BPF_JMP | BPF_JGT | BPF_X:
1130 		case BPF_JMP | BPF_JSET | BPF_K:
1131 		case BPF_JMP | BPF_JSET | BPF_X:
1132 			/* Both conditionals must be safe */
1133 			if (pc + ftest->jt + 1 >= flen ||
1134 			    pc + ftest->jf + 1 >= flen)
1135 				return -EINVAL;
1136 			break;
1137 		case BPF_LD | BPF_W | BPF_ABS:
1138 		case BPF_LD | BPF_H | BPF_ABS:
1139 		case BPF_LD | BPF_B | BPF_ABS:
1140 			anc_found = false;
1141 			if (bpf_anc_helper(ftest) & BPF_ANC)
1142 				anc_found = true;
1143 			/* Ancillary operation unknown or unsupported */
1144 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1145 				return -EINVAL;
1146 		}
1147 	}
1148 
1149 	/* Last instruction must be a RET code */
1150 	switch (filter[flen - 1].code) {
1151 	case BPF_RET | BPF_K:
1152 	case BPF_RET | BPF_A:
1153 		return check_load_and_stores(filter, flen);
1154 	}
1155 
1156 	return -EINVAL;
1157 }
1158 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1160 				      const struct sock_fprog *fprog)
1161 {
1162 	unsigned int fsize = bpf_classic_proglen(fprog);
1163 	struct sock_fprog_kern *fkprog;
1164 
1165 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1166 	if (!fp->orig_prog)
1167 		return -ENOMEM;
1168 
1169 	fkprog = fp->orig_prog;
1170 	fkprog->len = fprog->len;
1171 
1172 	fkprog->filter = kmemdup(fp->insns, fsize,
1173 				 GFP_KERNEL | __GFP_NOWARN);
1174 	if (!fkprog->filter) {
1175 		kfree(fp->orig_prog);
1176 		return -ENOMEM;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
bpf_release_orig_filter(struct bpf_prog * fp)1182 static void bpf_release_orig_filter(struct bpf_prog *fp)
1183 {
1184 	struct sock_fprog_kern *fprog = fp->orig_prog;
1185 
1186 	if (fprog) {
1187 		kfree(fprog->filter);
1188 		kfree(fprog);
1189 	}
1190 }
1191 
__bpf_prog_release(struct bpf_prog * prog)1192 static void __bpf_prog_release(struct bpf_prog *prog)
1193 {
1194 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1195 		bpf_prog_put(prog);
1196 	} else {
1197 		bpf_release_orig_filter(prog);
1198 		bpf_prog_free(prog);
1199 	}
1200 }
1201 
__sk_filter_release(struct sk_filter * fp)1202 static void __sk_filter_release(struct sk_filter *fp)
1203 {
1204 	__bpf_prog_release(fp->prog);
1205 	kfree(fp);
1206 }
1207 
1208 /**
1209  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1210  *	@rcu: rcu_head that contains the sk_filter to free
1211  */
sk_filter_release_rcu(struct rcu_head * rcu)1212 static void sk_filter_release_rcu(struct rcu_head *rcu)
1213 {
1214 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1215 
1216 	__sk_filter_release(fp);
1217 }
1218 
1219 /**
1220  *	sk_filter_release - release a socket filter
1221  *	@fp: filter to remove
1222  *
1223  *	Remove a filter from a socket and release its resources.
1224  */
sk_filter_release(struct sk_filter * fp)1225 static void sk_filter_release(struct sk_filter *fp)
1226 {
1227 	if (refcount_dec_and_test(&fp->refcnt))
1228 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1229 }
1230 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1232 {
1233 	u32 filter_size = bpf_prog_size(fp->prog->len);
1234 
1235 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1236 	sk_filter_release(fp);
1237 }
1238 
1239 /* try to charge the socket memory if there is space available
1240  * return true on success
1241  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1243 {
1244 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1245 	u32 filter_size = bpf_prog_size(fp->prog->len);
1246 
1247 	/* same check as in sock_kmalloc() */
1248 	if (filter_size <= optmem_max &&
1249 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1250 		atomic_add(filter_size, &sk->sk_omem_alloc);
1251 		return true;
1252 	}
1253 	return false;
1254 }
1255 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1257 {
1258 	if (!refcount_inc_not_zero(&fp->refcnt))
1259 		return false;
1260 
1261 	if (!__sk_filter_charge(sk, fp)) {
1262 		sk_filter_release(fp);
1263 		return false;
1264 	}
1265 	return true;
1266 }
1267 
bpf_migrate_filter(struct bpf_prog * fp)1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1269 {
1270 	struct sock_filter *old_prog;
1271 	struct bpf_prog *old_fp;
1272 	int err, new_len, old_len = fp->len;
1273 	bool seen_ld_abs = false;
1274 
1275 	/* We are free to overwrite insns et al right here as it won't be used at
1276 	 * this point in time anymore internally after the migration to the eBPF
1277 	 * instruction representation.
1278 	 */
1279 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1280 		     sizeof(struct bpf_insn));
1281 
1282 	/* Conversion cannot happen on overlapping memory areas,
1283 	 * so we need to keep the user BPF around until the 2nd
1284 	 * pass. At this time, the user BPF is stored in fp->insns.
1285 	 */
1286 	old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1287 				 GFP_KERNEL | __GFP_NOWARN);
1288 	if (!old_prog) {
1289 		err = -ENOMEM;
1290 		goto out_err;
1291 	}
1292 
1293 	/* 1st pass: calculate the new program length. */
1294 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1295 				 &seen_ld_abs);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	/* Expand fp for appending the new filter representation. */
1300 	old_fp = fp;
1301 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1302 	if (!fp) {
1303 		/* The old_fp is still around in case we couldn't
1304 		 * allocate new memory, so uncharge on that one.
1305 		 */
1306 		fp = old_fp;
1307 		err = -ENOMEM;
1308 		goto out_err_free;
1309 	}
1310 
1311 	fp->len = new_len;
1312 
1313 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1314 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1315 				 &seen_ld_abs);
1316 	if (err)
1317 		/* 2nd bpf_convert_filter() can fail only if it fails
1318 		 * to allocate memory, remapping must succeed. Note,
1319 		 * that at this time old_fp has already been released
1320 		 * by krealloc().
1321 		 */
1322 		goto out_err_free;
1323 
1324 	fp = bpf_prog_select_runtime(fp, &err);
1325 	if (err)
1326 		goto out_err_free;
1327 
1328 	kfree(old_prog);
1329 	return fp;
1330 
1331 out_err_free:
1332 	kfree(old_prog);
1333 out_err:
1334 	__bpf_prog_release(fp);
1335 	return ERR_PTR(err);
1336 }
1337 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1339 					   bpf_aux_classic_check_t trans)
1340 {
1341 	int err;
1342 
1343 	fp->bpf_func = NULL;
1344 	fp->jited = 0;
1345 
1346 	err = bpf_check_classic(fp->insns, fp->len);
1347 	if (err) {
1348 		__bpf_prog_release(fp);
1349 		return ERR_PTR(err);
1350 	}
1351 
1352 	/* There might be additional checks and transformations
1353 	 * needed on classic filters, f.e. in case of seccomp.
1354 	 */
1355 	if (trans) {
1356 		err = trans(fp->insns, fp->len);
1357 		if (err) {
1358 			__bpf_prog_release(fp);
1359 			return ERR_PTR(err);
1360 		}
1361 	}
1362 
1363 	/* Probe if we can JIT compile the filter and if so, do
1364 	 * the compilation of the filter.
1365 	 */
1366 	bpf_jit_compile(fp);
1367 
1368 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1369 	 * for the optimized interpreter.
1370 	 */
1371 	if (!fp->jited)
1372 		fp = bpf_migrate_filter(fp);
1373 
1374 	return fp;
1375 }
1376 
1377 /**
1378  *	bpf_prog_create - create an unattached filter
1379  *	@pfp: the unattached filter that is created
1380  *	@fprog: the filter program
1381  *
1382  * Create a filter independent of any socket. We first run some
1383  * sanity checks on it to make sure it does not explode on us later.
1384  * If an error occurs or there is insufficient memory for the filter
1385  * a negative errno code is returned. On success the return is zero.
1386  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1388 {
1389 	unsigned int fsize = bpf_classic_proglen(fprog);
1390 	struct bpf_prog *fp;
1391 
1392 	/* Make sure new filter is there and in the right amounts. */
1393 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1394 		return -EINVAL;
1395 
1396 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1397 	if (!fp)
1398 		return -ENOMEM;
1399 
1400 	memcpy(fp->insns, fprog->filter, fsize);
1401 
1402 	fp->len = fprog->len;
1403 	/* Since unattached filters are not copied back to user
1404 	 * space through sk_get_filter(), we do not need to hold
1405 	 * a copy here, and can spare us the work.
1406 	 */
1407 	fp->orig_prog = NULL;
1408 
1409 	/* bpf_prepare_filter() already takes care of freeing
1410 	 * memory in case something goes wrong.
1411 	 */
1412 	fp = bpf_prepare_filter(fp, NULL);
1413 	if (IS_ERR(fp))
1414 		return PTR_ERR(fp);
1415 
1416 	*pfp = fp;
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(bpf_prog_create);
1420 
1421 /**
1422  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1423  *	@pfp: the unattached filter that is created
1424  *	@fprog: the filter program
1425  *	@trans: post-classic verifier transformation handler
1426  *	@save_orig: save classic BPF program
1427  *
1428  * This function effectively does the same as bpf_prog_create(), only
1429  * that it builds up its insns buffer from user space provided buffer.
1430  * It also allows for passing a bpf_aux_classic_check_t handler.
1431  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1433 			      bpf_aux_classic_check_t trans, bool save_orig)
1434 {
1435 	unsigned int fsize = bpf_classic_proglen(fprog);
1436 	struct bpf_prog *fp;
1437 	int err;
1438 
1439 	/* Make sure new filter is there and in the right amounts. */
1440 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1441 		return -EINVAL;
1442 
1443 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1444 	if (!fp)
1445 		return -ENOMEM;
1446 
1447 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1448 		__bpf_prog_free(fp);
1449 		return -EFAULT;
1450 	}
1451 
1452 	fp->len = fprog->len;
1453 	fp->orig_prog = NULL;
1454 
1455 	if (save_orig) {
1456 		err = bpf_prog_store_orig_filter(fp, fprog);
1457 		if (err) {
1458 			__bpf_prog_free(fp);
1459 			return -ENOMEM;
1460 		}
1461 	}
1462 
1463 	/* bpf_prepare_filter() already takes care of freeing
1464 	 * memory in case something goes wrong.
1465 	 */
1466 	fp = bpf_prepare_filter(fp, trans);
1467 	if (IS_ERR(fp))
1468 		return PTR_ERR(fp);
1469 
1470 	*pfp = fp;
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1474 
bpf_prog_destroy(struct bpf_prog * fp)1475 void bpf_prog_destroy(struct bpf_prog *fp)
1476 {
1477 	__bpf_prog_release(fp);
1478 }
1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1480 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1482 {
1483 	struct sk_filter *fp, *old_fp;
1484 
1485 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1486 	if (!fp)
1487 		return -ENOMEM;
1488 
1489 	fp->prog = prog;
1490 
1491 	if (!__sk_filter_charge(sk, fp)) {
1492 		kfree(fp);
1493 		return -ENOMEM;
1494 	}
1495 	refcount_set(&fp->refcnt, 1);
1496 
1497 	old_fp = rcu_dereference_protected(sk->sk_filter,
1498 					   lockdep_sock_is_held(sk));
1499 	rcu_assign_pointer(sk->sk_filter, fp);
1500 
1501 	if (old_fp)
1502 		sk_filter_uncharge(sk, old_fp);
1503 
1504 	return 0;
1505 }
1506 
1507 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1509 {
1510 	unsigned int fsize = bpf_classic_proglen(fprog);
1511 	struct bpf_prog *prog;
1512 	int err;
1513 
1514 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1515 		return ERR_PTR(-EPERM);
1516 
1517 	/* Make sure new filter is there and in the right amounts. */
1518 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1519 		return ERR_PTR(-EINVAL);
1520 
1521 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1522 	if (!prog)
1523 		return ERR_PTR(-ENOMEM);
1524 
1525 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1526 		__bpf_prog_free(prog);
1527 		return ERR_PTR(-EFAULT);
1528 	}
1529 
1530 	prog->len = fprog->len;
1531 
1532 	err = bpf_prog_store_orig_filter(prog, fprog);
1533 	if (err) {
1534 		__bpf_prog_free(prog);
1535 		return ERR_PTR(-ENOMEM);
1536 	}
1537 
1538 	/* bpf_prepare_filter() already takes care of freeing
1539 	 * memory in case something goes wrong.
1540 	 */
1541 	return bpf_prepare_filter(prog, NULL);
1542 }
1543 
1544 /**
1545  *	sk_attach_filter - attach a socket filter
1546  *	@fprog: the filter program
1547  *	@sk: the socket to use
1548  *
1549  * Attach the user's filter code. We first run some sanity checks on
1550  * it to make sure it does not explode on us later. If an error
1551  * occurs or there is insufficient memory for the filter a negative
1552  * errno code is returned. On success the return is zero.
1553  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1555 {
1556 	struct bpf_prog *prog = __get_filter(fprog, sk);
1557 	int err;
1558 
1559 	if (IS_ERR(prog))
1560 		return PTR_ERR(prog);
1561 
1562 	err = __sk_attach_prog(prog, sk);
1563 	if (err < 0) {
1564 		__bpf_prog_release(prog);
1565 		return err;
1566 	}
1567 
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(sk_attach_filter);
1571 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1573 {
1574 	struct bpf_prog *prog = __get_filter(fprog, sk);
1575 	int err, optmem_max;
1576 
1577 	if (IS_ERR(prog))
1578 		return PTR_ERR(prog);
1579 
1580 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1581 	if (bpf_prog_size(prog->len) > optmem_max)
1582 		err = -ENOMEM;
1583 	else
1584 		err = reuseport_attach_prog(sk, prog);
1585 
1586 	if (err)
1587 		__bpf_prog_release(prog);
1588 
1589 	return err;
1590 }
1591 
__get_bpf(u32 ufd,struct sock * sk)1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595 		return ERR_PTR(-EPERM);
1596 
1597 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598 }
1599 
sk_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1603 	int err;
1604 
1605 	if (IS_ERR(prog))
1606 		return PTR_ERR(prog);
1607 
1608 	err = __sk_attach_prog(prog, sk);
1609 	if (err < 0) {
1610 		bpf_prog_put(prog);
1611 		return err;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1618 {
1619 	struct bpf_prog *prog;
1620 	int err, optmem_max;
1621 
1622 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1623 		return -EPERM;
1624 
1625 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1626 	if (PTR_ERR(prog) == -EINVAL)
1627 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1628 	if (IS_ERR(prog))
1629 		return PTR_ERR(prog);
1630 
1631 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1632 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1633 		 * bpf prog (e.g. sockmap).  It depends on the
1634 		 * limitation imposed by bpf_prog_load().
1635 		 * Hence, sysctl_optmem_max is not checked.
1636 		 */
1637 		if ((sk->sk_type != SOCK_STREAM &&
1638 		     sk->sk_type != SOCK_DGRAM) ||
1639 		    (sk->sk_protocol != IPPROTO_UDP &&
1640 		     sk->sk_protocol != IPPROTO_TCP) ||
1641 		    (sk->sk_family != AF_INET &&
1642 		     sk->sk_family != AF_INET6)) {
1643 			err = -ENOTSUPP;
1644 			goto err_prog_put;
1645 		}
1646 	} else {
1647 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1648 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1649 		if (bpf_prog_size(prog->len) > optmem_max) {
1650 			err = -ENOMEM;
1651 			goto err_prog_put;
1652 		}
1653 	}
1654 
1655 	err = reuseport_attach_prog(sk, prog);
1656 err_prog_put:
1657 	if (err)
1658 		bpf_prog_put(prog);
1659 
1660 	return err;
1661 }
1662 
sk_reuseport_prog_free(struct bpf_prog * prog)1663 void sk_reuseport_prog_free(struct bpf_prog *prog)
1664 {
1665 	if (!prog)
1666 		return;
1667 
1668 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1669 		bpf_prog_put(prog);
1670 	else
1671 		bpf_prog_destroy(prog);
1672 }
1673 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1674 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1675 					  unsigned int write_len)
1676 {
1677 #ifdef CONFIG_DEBUG_NET
1678 	/* Avoid a splat in pskb_may_pull_reason() */
1679 	if (write_len > INT_MAX)
1680 		return -EINVAL;
1681 #endif
1682 	return skb_ensure_writable(skb, write_len);
1683 }
1684 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1685 static inline int bpf_try_make_writable(struct sk_buff *skb,
1686 					unsigned int write_len)
1687 {
1688 	int err = __bpf_try_make_writable(skb, write_len);
1689 
1690 	bpf_compute_data_pointers(skb);
1691 	return err;
1692 }
1693 
bpf_try_make_head_writable(struct sk_buff * skb)1694 static int bpf_try_make_head_writable(struct sk_buff *skb)
1695 {
1696 	return bpf_try_make_writable(skb, skb_headlen(skb));
1697 }
1698 
bpf_push_mac_rcsum(struct sk_buff * skb)1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1700 {
1701 	if (skb_at_tc_ingress(skb))
1702 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1703 }
1704 
bpf_pull_mac_rcsum(struct sk_buff * skb)1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1706 {
1707 	if (skb_at_tc_ingress(skb))
1708 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1709 }
1710 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1712 	   const void *, from, u32, len, u64, flags)
1713 {
1714 	void *ptr;
1715 
1716 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1717 		return -EINVAL;
1718 	if (unlikely(offset > INT_MAX))
1719 		return -EFAULT;
1720 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1721 		return -EFAULT;
1722 
1723 	ptr = skb->data + offset;
1724 	if (flags & BPF_F_RECOMPUTE_CSUM)
1725 		__skb_postpull_rcsum(skb, ptr, len, offset);
1726 
1727 	memcpy(ptr, from, len);
1728 
1729 	if (flags & BPF_F_RECOMPUTE_CSUM)
1730 		__skb_postpush_rcsum(skb, ptr, len, offset);
1731 	if (flags & BPF_F_INVALIDATE_HASH)
1732 		skb_clear_hash(skb);
1733 
1734 	return 0;
1735 }
1736 
1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1738 	.func		= bpf_skb_store_bytes,
1739 	.gpl_only	= false,
1740 	.ret_type	= RET_INTEGER,
1741 	.arg1_type	= ARG_PTR_TO_CTX,
1742 	.arg2_type	= ARG_ANYTHING,
1743 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1744 	.arg4_type	= ARG_CONST_SIZE,
1745 	.arg5_type	= ARG_ANYTHING,
1746 };
1747 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1749 			  u32 len, u64 flags)
1750 {
1751 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1752 }
1753 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1755 	   void *, to, u32, len)
1756 {
1757 	void *ptr;
1758 
1759 	if (unlikely(offset > INT_MAX))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1775 	.func		= bpf_skb_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1785 {
1786 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1787 }
1788 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1789 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1790 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1791 	   void *, to, u32, len)
1792 {
1793 	void *ptr;
1794 
1795 	if (unlikely(offset > 0xffff))
1796 		goto err_clear;
1797 
1798 	if (unlikely(!ctx->skb))
1799 		goto err_clear;
1800 
1801 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1802 	if (unlikely(!ptr))
1803 		goto err_clear;
1804 	if (ptr != to)
1805 		memcpy(to, ptr, len);
1806 
1807 	return 0;
1808 err_clear:
1809 	memset(to, 0, len);
1810 	return -EFAULT;
1811 }
1812 
1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1814 	.func		= bpf_flow_dissector_load_bytes,
1815 	.gpl_only	= false,
1816 	.ret_type	= RET_INTEGER,
1817 	.arg1_type	= ARG_PTR_TO_CTX,
1818 	.arg2_type	= ARG_ANYTHING,
1819 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1820 	.arg4_type	= ARG_CONST_SIZE,
1821 };
1822 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1824 	   u32, offset, void *, to, u32, len, u32, start_header)
1825 {
1826 	u8 *end = skb_tail_pointer(skb);
1827 	u8 *start, *ptr;
1828 
1829 	if (unlikely(offset > 0xffff))
1830 		goto err_clear;
1831 
1832 	switch (start_header) {
1833 	case BPF_HDR_START_MAC:
1834 		if (unlikely(!skb_mac_header_was_set(skb)))
1835 			goto err_clear;
1836 		start = skb_mac_header(skb);
1837 		break;
1838 	case BPF_HDR_START_NET:
1839 		start = skb_network_header(skb);
1840 		break;
1841 	default:
1842 		goto err_clear;
1843 	}
1844 
1845 	ptr = start + offset;
1846 
1847 	if (likely(ptr + len <= end)) {
1848 		memcpy(to, ptr, len);
1849 		return 0;
1850 	}
1851 
1852 err_clear:
1853 	memset(to, 0, len);
1854 	return -EFAULT;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1858 	.func		= bpf_skb_load_bytes_relative,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_INTEGER,
1861 	.arg1_type	= ARG_PTR_TO_CTX,
1862 	.arg2_type	= ARG_ANYTHING,
1863 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1864 	.arg4_type	= ARG_CONST_SIZE,
1865 	.arg5_type	= ARG_ANYTHING,
1866 };
1867 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870 	/* Idea is the following: should the needed direct read/write
1871 	 * test fail during runtime, we can pull in more data and redo
1872 	 * again, since implicitly, we invalidate previous checks here.
1873 	 *
1874 	 * Or, since we know how much we need to make read/writeable,
1875 	 * this can be done once at the program beginning for direct
1876 	 * access case. By this we overcome limitations of only current
1877 	 * headroom being accessible.
1878 	 */
1879 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881 
1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1883 	.func		= bpf_skb_pull_data,
1884 	.gpl_only	= false,
1885 	.ret_type	= RET_INTEGER,
1886 	.arg1_type	= ARG_PTR_TO_CTX,
1887 	.arg2_type	= ARG_ANYTHING,
1888 };
1889 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1891 {
1892 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1893 }
1894 
1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1896 	.func		= bpf_sk_fullsock,
1897 	.gpl_only	= false,
1898 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1899 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1900 };
1901 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1903 					   unsigned int write_len)
1904 {
1905 	return __bpf_try_make_writable(skb, write_len);
1906 }
1907 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1909 {
1910 	/* Idea is the following: should the needed direct read/write
1911 	 * test fail during runtime, we can pull in more data and redo
1912 	 * again, since implicitly, we invalidate previous checks here.
1913 	 *
1914 	 * Or, since we know how much we need to make read/writeable,
1915 	 * this can be done once at the program beginning for direct
1916 	 * access case. By this we overcome limitations of only current
1917 	 * headroom being accessible.
1918 	 */
1919 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1920 }
1921 
1922 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1923 	.func		= sk_skb_pull_data,
1924 	.gpl_only	= false,
1925 	.ret_type	= RET_INTEGER,
1926 	.arg1_type	= ARG_PTR_TO_CTX,
1927 	.arg2_type	= ARG_ANYTHING,
1928 };
1929 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1931 	   u64, from, u64, to, u64, flags)
1932 {
1933 	__sum16 *ptr;
1934 
1935 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1936 		return -EINVAL;
1937 	if (unlikely(offset > 0xffff || offset & 1))
1938 		return -EFAULT;
1939 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1940 		return -EFAULT;
1941 
1942 	ptr = (__sum16 *)(skb->data + offset);
1943 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1944 	case 0:
1945 		if (unlikely(from != 0))
1946 			return -EINVAL;
1947 
1948 		csum_replace_by_diff(ptr, to);
1949 		break;
1950 	case 2:
1951 		csum_replace2(ptr, from, to);
1952 		break;
1953 	case 4:
1954 		csum_replace4(ptr, from, to);
1955 		break;
1956 	default:
1957 		return -EINVAL;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1964 	.func		= bpf_l3_csum_replace,
1965 	.gpl_only	= false,
1966 	.ret_type	= RET_INTEGER,
1967 	.arg1_type	= ARG_PTR_TO_CTX,
1968 	.arg2_type	= ARG_ANYTHING,
1969 	.arg3_type	= ARG_ANYTHING,
1970 	.arg4_type	= ARG_ANYTHING,
1971 	.arg5_type	= ARG_ANYTHING,
1972 };
1973 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1975 	   u64, from, u64, to, u64, flags)
1976 {
1977 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1978 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1979 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1980 	bool is_ipv6   = flags & BPF_F_IPV6;
1981 	__sum16 *ptr;
1982 
1983 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1984 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1985 		return -EINVAL;
1986 	if (unlikely(offset > 0xffff || offset & 1))
1987 		return -EFAULT;
1988 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1989 		return -EFAULT;
1990 
1991 	ptr = (__sum16 *)(skb->data + offset);
1992 	if (is_mmzero && !do_mforce && !*ptr)
1993 		return 0;
1994 
1995 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1996 	case 0:
1997 		if (unlikely(from != 0))
1998 			return -EINVAL;
1999 
2000 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
2001 		break;
2002 	case 2:
2003 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
2004 		break;
2005 	case 4:
2006 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2007 		break;
2008 	default:
2009 		return -EINVAL;
2010 	}
2011 
2012 	if (is_mmzero && !*ptr)
2013 		*ptr = CSUM_MANGLED_0;
2014 	return 0;
2015 }
2016 
2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2018 	.func		= bpf_l4_csum_replace,
2019 	.gpl_only	= false,
2020 	.ret_type	= RET_INTEGER,
2021 	.arg1_type	= ARG_PTR_TO_CTX,
2022 	.arg2_type	= ARG_ANYTHING,
2023 	.arg3_type	= ARG_ANYTHING,
2024 	.arg4_type	= ARG_ANYTHING,
2025 	.arg5_type	= ARG_ANYTHING,
2026 };
2027 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2029 	   __be32 *, to, u32, to_size, __wsum, seed)
2030 {
2031 	/* This is quite flexible, some examples:
2032 	 *
2033 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2034 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2035 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2036 	 *
2037 	 * Even for diffing, from_size and to_size don't need to be equal.
2038 	 */
2039 
2040 	__wsum ret = seed;
2041 
2042 	if (from_size && to_size)
2043 		ret = csum_sub(csum_partial(to, to_size, ret),
2044 			       csum_partial(from, from_size, 0));
2045 	else if (to_size)
2046 		ret = csum_partial(to, to_size, ret);
2047 
2048 	else if (from_size)
2049 		ret = ~csum_partial(from, from_size, ~ret);
2050 
2051 	return csum_from32to16((__force unsigned int)ret);
2052 }
2053 
2054 static const struct bpf_func_proto bpf_csum_diff_proto = {
2055 	.func		= bpf_csum_diff,
2056 	.gpl_only	= false,
2057 	.pkt_access	= true,
2058 	.ret_type	= RET_INTEGER,
2059 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2060 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2061 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2062 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2063 	.arg5_type	= ARG_ANYTHING,
2064 };
2065 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2067 {
2068 	/* The interface is to be used in combination with bpf_csum_diff()
2069 	 * for direct packet writes. csum rotation for alignment as well
2070 	 * as emulating csum_sub() can be done from the eBPF program.
2071 	 */
2072 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2073 		return (skb->csum = csum_add(skb->csum, csum));
2074 
2075 	return -ENOTSUPP;
2076 }
2077 
2078 static const struct bpf_func_proto bpf_csum_update_proto = {
2079 	.func		= bpf_csum_update,
2080 	.gpl_only	= false,
2081 	.ret_type	= RET_INTEGER,
2082 	.arg1_type	= ARG_PTR_TO_CTX,
2083 	.arg2_type	= ARG_ANYTHING,
2084 };
2085 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2087 {
2088 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2089 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2090 	 * is passed as flags, for example.
2091 	 */
2092 	switch (level) {
2093 	case BPF_CSUM_LEVEL_INC:
2094 		__skb_incr_checksum_unnecessary(skb);
2095 		break;
2096 	case BPF_CSUM_LEVEL_DEC:
2097 		__skb_decr_checksum_unnecessary(skb);
2098 		break;
2099 	case BPF_CSUM_LEVEL_RESET:
2100 		__skb_reset_checksum_unnecessary(skb);
2101 		break;
2102 	case BPF_CSUM_LEVEL_QUERY:
2103 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2104 		       skb->csum_level : -EACCES;
2105 	default:
2106 		return -EINVAL;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static const struct bpf_func_proto bpf_csum_level_proto = {
2113 	.func		= bpf_csum_level,
2114 	.gpl_only	= false,
2115 	.ret_type	= RET_INTEGER,
2116 	.arg1_type	= ARG_PTR_TO_CTX,
2117 	.arg2_type	= ARG_ANYTHING,
2118 };
2119 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 	return dev_forward_skb_nomtu(dev, skb);
2123 }
2124 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2126 				      struct sk_buff *skb)
2127 {
2128 	int ret = ____dev_forward_skb(dev, skb, false);
2129 
2130 	if (likely(!ret)) {
2131 		skb->dev = dev;
2132 		ret = netif_rx(skb);
2133 	}
2134 
2135 	return ret;
2136 }
2137 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2139 {
2140 	int ret;
2141 
2142 	if (dev_xmit_recursion()) {
2143 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2144 		kfree_skb(skb);
2145 		return -ENETDOWN;
2146 	}
2147 
2148 	skb->dev = dev;
2149 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2150 	skb_clear_tstamp(skb);
2151 
2152 	dev_xmit_recursion_inc();
2153 	ret = dev_queue_xmit(skb);
2154 	dev_xmit_recursion_dec();
2155 
2156 	return ret;
2157 }
2158 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2160 				 u32 flags)
2161 {
2162 	unsigned int mlen = skb_network_offset(skb);
2163 
2164 	if (unlikely(skb->len <= mlen)) {
2165 		kfree_skb(skb);
2166 		return -ERANGE;
2167 	}
2168 
2169 	if (mlen) {
2170 		__skb_pull(skb, mlen);
2171 
2172 		/* At ingress, the mac header has already been pulled once.
2173 		 * At egress, skb_pospull_rcsum has to be done in case that
2174 		 * the skb is originated from ingress (i.e. a forwarded skb)
2175 		 * to ensure that rcsum starts at net header.
2176 		 */
2177 		if (!skb_at_tc_ingress(skb))
2178 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2179 	}
2180 	skb_pop_mac_header(skb);
2181 	skb_reset_mac_len(skb);
2182 	return flags & BPF_F_INGRESS ?
2183 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2184 }
2185 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2187 				 u32 flags)
2188 {
2189 	/* Verify that a link layer header is carried */
2190 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2191 		kfree_skb(skb);
2192 		return -ERANGE;
2193 	}
2194 
2195 	bpf_push_mac_rcsum(skb);
2196 	return flags & BPF_F_INGRESS ?
2197 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2198 }
2199 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2201 			  u32 flags)
2202 {
2203 	if (dev_is_mac_header_xmit(dev))
2204 		return __bpf_redirect_common(skb, dev, flags);
2205 	else
2206 		return __bpf_redirect_no_mac(skb, dev, flags);
2207 }
2208 
2209 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2211 			    struct net_device *dev, struct bpf_nh_params *nh)
2212 {
2213 	u32 hh_len = LL_RESERVED_SPACE(dev);
2214 	const struct in6_addr *nexthop;
2215 	struct dst_entry *dst = NULL;
2216 	struct neighbour *neigh;
2217 
2218 	if (dev_xmit_recursion()) {
2219 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2220 		goto out_drop;
2221 	}
2222 
2223 	skb->dev = dev;
2224 	skb_clear_tstamp(skb);
2225 
2226 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2227 		skb = skb_expand_head(skb, hh_len);
2228 		if (!skb)
2229 			return -ENOMEM;
2230 	}
2231 
2232 	rcu_read_lock();
2233 	if (!nh) {
2234 		dst = skb_dst(skb);
2235 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2236 				      &ipv6_hdr(skb)->daddr);
2237 	} else {
2238 		nexthop = &nh->ipv6_nh;
2239 	}
2240 	neigh = ip_neigh_gw6(dev, nexthop);
2241 	if (likely(!IS_ERR(neigh))) {
2242 		int ret;
2243 
2244 		sock_confirm_neigh(skb, neigh);
2245 		local_bh_disable();
2246 		dev_xmit_recursion_inc();
2247 		ret = neigh_output(neigh, skb, false);
2248 		dev_xmit_recursion_dec();
2249 		local_bh_enable();
2250 		rcu_read_unlock();
2251 		return ret;
2252 	}
2253 	rcu_read_unlock();
2254 	if (dst)
2255 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2256 out_drop:
2257 	kfree_skb(skb);
2258 	return -ENETDOWN;
2259 }
2260 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2262 				   struct bpf_nh_params *nh)
2263 {
2264 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2265 	struct net *net = dev_net(dev);
2266 	int err, ret = NET_XMIT_DROP;
2267 
2268 	if (!nh) {
2269 		struct dst_entry *dst;
2270 		struct flowi6 fl6 = {
2271 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2272 			.flowi6_mark  = skb->mark,
2273 			.flowlabel    = ip6_flowinfo(ip6h),
2274 			.flowi6_oif   = dev->ifindex,
2275 			.flowi6_proto = ip6h->nexthdr,
2276 			.daddr	      = ip6h->daddr,
2277 			.saddr	      = ip6h->saddr,
2278 		};
2279 
2280 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2281 		if (IS_ERR(dst))
2282 			goto out_drop;
2283 
2284 		skb_dst_drop(skb);
2285 		skb_dst_set(skb, dst);
2286 	} else if (nh->nh_family != AF_INET6) {
2287 		goto out_drop;
2288 	}
2289 
2290 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2291 	if (unlikely(net_xmit_eval(err)))
2292 		DEV_STATS_INC(dev, tx_errors);
2293 	else
2294 		ret = NET_XMIT_SUCCESS;
2295 	goto out_xmit;
2296 out_drop:
2297 	DEV_STATS_INC(dev, tx_errors);
2298 	kfree_skb(skb);
2299 out_xmit:
2300 	return ret;
2301 }
2302 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2303 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2304 				   struct bpf_nh_params *nh)
2305 {
2306 	kfree_skb(skb);
2307 	return NET_XMIT_DROP;
2308 }
2309 #endif /* CONFIG_IPV6 */
2310 
2311 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2312 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2313 			    struct net_device *dev, struct bpf_nh_params *nh)
2314 {
2315 	u32 hh_len = LL_RESERVED_SPACE(dev);
2316 	struct neighbour *neigh;
2317 	bool is_v6gw = false;
2318 
2319 	if (dev_xmit_recursion()) {
2320 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2321 		goto out_drop;
2322 	}
2323 
2324 	skb->dev = dev;
2325 	skb_clear_tstamp(skb);
2326 
2327 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2328 		skb = skb_expand_head(skb, hh_len);
2329 		if (!skb)
2330 			return -ENOMEM;
2331 	}
2332 
2333 	rcu_read_lock();
2334 	if (!nh) {
2335 		struct rtable *rt = skb_rtable(skb);
2336 
2337 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2338 	} else if (nh->nh_family == AF_INET6) {
2339 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2340 		is_v6gw = true;
2341 	} else if (nh->nh_family == AF_INET) {
2342 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2343 	} else {
2344 		rcu_read_unlock();
2345 		goto out_drop;
2346 	}
2347 
2348 	if (likely(!IS_ERR(neigh))) {
2349 		int ret;
2350 
2351 		sock_confirm_neigh(skb, neigh);
2352 		local_bh_disable();
2353 		dev_xmit_recursion_inc();
2354 		ret = neigh_output(neigh, skb, is_v6gw);
2355 		dev_xmit_recursion_dec();
2356 		local_bh_enable();
2357 		rcu_read_unlock();
2358 		return ret;
2359 	}
2360 	rcu_read_unlock();
2361 out_drop:
2362 	kfree_skb(skb);
2363 	return -ENETDOWN;
2364 }
2365 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2366 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2367 				   struct bpf_nh_params *nh)
2368 {
2369 	const struct iphdr *ip4h = ip_hdr(skb);
2370 	struct net *net = dev_net(dev);
2371 	int err, ret = NET_XMIT_DROP;
2372 
2373 	if (!nh) {
2374 		struct flowi4 fl4 = {
2375 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2376 			.flowi4_mark  = skb->mark,
2377 			.flowi4_dscp  = ip4h_dscp(ip4h),
2378 			.flowi4_oif   = dev->ifindex,
2379 			.flowi4_proto = ip4h->protocol,
2380 			.daddr	      = ip4h->daddr,
2381 			.saddr	      = ip4h->saddr,
2382 		};
2383 		struct rtable *rt;
2384 
2385 		rt = ip_route_output_flow(net, &fl4, NULL);
2386 		if (IS_ERR(rt))
2387 			goto out_drop;
2388 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2389 			ip_rt_put(rt);
2390 			goto out_drop;
2391 		}
2392 
2393 		skb_dst_drop(skb);
2394 		skb_dst_set(skb, &rt->dst);
2395 	}
2396 
2397 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2398 	if (unlikely(net_xmit_eval(err)))
2399 		DEV_STATS_INC(dev, tx_errors);
2400 	else
2401 		ret = NET_XMIT_SUCCESS;
2402 	goto out_xmit;
2403 out_drop:
2404 	DEV_STATS_INC(dev, tx_errors);
2405 	kfree_skb(skb);
2406 out_xmit:
2407 	return ret;
2408 }
2409 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2410 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2411 				   struct bpf_nh_params *nh)
2412 {
2413 	kfree_skb(skb);
2414 	return NET_XMIT_DROP;
2415 }
2416 #endif /* CONFIG_INET */
2417 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2418 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2419 				struct bpf_nh_params *nh)
2420 {
2421 	struct ethhdr *ethh = eth_hdr(skb);
2422 
2423 	if (unlikely(skb->mac_header >= skb->network_header))
2424 		goto out;
2425 	bpf_push_mac_rcsum(skb);
2426 	if (is_multicast_ether_addr(ethh->h_dest))
2427 		goto out;
2428 
2429 	skb_pull(skb, sizeof(*ethh));
2430 	skb_unset_mac_header(skb);
2431 	skb_reset_network_header(skb);
2432 
2433 	if (skb->protocol == htons(ETH_P_IP))
2434 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2435 	else if (skb->protocol == htons(ETH_P_IPV6))
2436 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2437 out:
2438 	kfree_skb(skb);
2439 	return -ENOTSUPP;
2440 }
2441 
2442 /* Internal, non-exposed redirect flags. */
2443 enum {
2444 	BPF_F_NEIGH	= (1ULL << 16),
2445 	BPF_F_PEER	= (1ULL << 17),
2446 	BPF_F_NEXTHOP	= (1ULL << 18),
2447 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2448 };
2449 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2450 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2451 {
2452 	struct net_device *dev;
2453 	struct sk_buff *clone;
2454 	int ret;
2455 
2456 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2457 
2458 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2459 		return -EINVAL;
2460 
2461 	/* BPF test infra's convert___skb_to_skb() can create type-less
2462 	 * GSO packets. gso_features_check() will detect this as a bad
2463 	 * offload. However, lets not leak them out in the first place.
2464 	 */
2465 	if (unlikely(skb_is_gso(skb) && !skb_shinfo(skb)->gso_type))
2466 		return -EBADMSG;
2467 
2468 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2469 	if (unlikely(!dev))
2470 		return -EINVAL;
2471 
2472 	clone = skb_clone(skb, GFP_ATOMIC);
2473 	if (unlikely(!clone))
2474 		return -ENOMEM;
2475 
2476 	/* For direct write, we need to keep the invariant that the skbs
2477 	 * we're dealing with need to be uncloned. Should uncloning fail
2478 	 * here, we need to free the just generated clone to unclone once
2479 	 * again.
2480 	 */
2481 	ret = bpf_try_make_head_writable(skb);
2482 	if (unlikely(ret)) {
2483 		kfree_skb(clone);
2484 		return -ENOMEM;
2485 	}
2486 
2487 	return __bpf_redirect(clone, dev, flags);
2488 }
2489 
2490 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2491 	.func           = bpf_clone_redirect,
2492 	.gpl_only       = false,
2493 	.ret_type       = RET_INTEGER,
2494 	.arg1_type      = ARG_PTR_TO_CTX,
2495 	.arg2_type      = ARG_ANYTHING,
2496 	.arg3_type      = ARG_ANYTHING,
2497 };
2498 
skb_get_peer_dev(struct net_device * dev)2499 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2500 {
2501 	const struct net_device_ops *ops = dev->netdev_ops;
2502 
2503 	if (likely(ops->ndo_get_peer_dev))
2504 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2505 				       netkit_peer_dev, dev);
2506 	return NULL;
2507 }
2508 
skb_do_redirect(struct sk_buff * skb)2509 int skb_do_redirect(struct sk_buff *skb)
2510 {
2511 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2512 	struct net *net = dev_net(skb->dev);
2513 	struct net_device *dev;
2514 	u32 flags = ri->flags;
2515 
2516 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2517 	ri->tgt_index = 0;
2518 	ri->flags = 0;
2519 	if (unlikely(!dev))
2520 		goto out_drop;
2521 	if (flags & BPF_F_PEER) {
2522 		if (unlikely(!skb_at_tc_ingress(skb)))
2523 			goto out_drop;
2524 		dev = skb_get_peer_dev(dev);
2525 		if (unlikely(!dev ||
2526 			     !(dev->flags & IFF_UP) ||
2527 			     net_eq(net, dev_net(dev))))
2528 			goto out_drop;
2529 		skb->dev = dev;
2530 		dev_sw_netstats_rx_add(dev, skb->len);
2531 		skb_scrub_packet(skb, false);
2532 		return -EAGAIN;
2533 	}
2534 	return flags & BPF_F_NEIGH ?
2535 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2536 				    &ri->nh : NULL) :
2537 	       __bpf_redirect(skb, dev, flags);
2538 out_drop:
2539 	kfree_skb(skb);
2540 	return -EINVAL;
2541 }
2542 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2543 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2544 {
2545 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2546 
2547 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2548 		return TC_ACT_SHOT;
2549 
2550 	ri->flags = flags;
2551 	ri->tgt_index = ifindex;
2552 
2553 	return TC_ACT_REDIRECT;
2554 }
2555 
2556 static const struct bpf_func_proto bpf_redirect_proto = {
2557 	.func           = bpf_redirect,
2558 	.gpl_only       = false,
2559 	.ret_type       = RET_INTEGER,
2560 	.arg1_type      = ARG_ANYTHING,
2561 	.arg2_type      = ARG_ANYTHING,
2562 };
2563 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2564 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2565 {
2566 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2567 
2568 	if (unlikely(flags))
2569 		return TC_ACT_SHOT;
2570 
2571 	ri->flags = BPF_F_PEER;
2572 	ri->tgt_index = ifindex;
2573 
2574 	return TC_ACT_REDIRECT;
2575 }
2576 
2577 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2578 	.func           = bpf_redirect_peer,
2579 	.gpl_only       = false,
2580 	.ret_type       = RET_INTEGER,
2581 	.arg1_type      = ARG_ANYTHING,
2582 	.arg2_type      = ARG_ANYTHING,
2583 };
2584 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2585 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2586 	   int, plen, u64, flags)
2587 {
2588 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2589 
2590 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2591 		return TC_ACT_SHOT;
2592 
2593 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2594 	ri->tgt_index = ifindex;
2595 
2596 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2597 	if (plen)
2598 		memcpy(&ri->nh, params, sizeof(ri->nh));
2599 
2600 	return TC_ACT_REDIRECT;
2601 }
2602 
2603 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2604 	.func		= bpf_redirect_neigh,
2605 	.gpl_only	= false,
2606 	.ret_type	= RET_INTEGER,
2607 	.arg1_type	= ARG_ANYTHING,
2608 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2609 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2610 	.arg4_type	= ARG_ANYTHING,
2611 };
2612 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2613 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2614 {
2615 	msg->apply_bytes = bytes;
2616 	return 0;
2617 }
2618 
2619 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2620 	.func           = bpf_msg_apply_bytes,
2621 	.gpl_only       = false,
2622 	.ret_type       = RET_INTEGER,
2623 	.arg1_type	= ARG_PTR_TO_CTX,
2624 	.arg2_type      = ARG_ANYTHING,
2625 };
2626 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2627 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2628 {
2629 	msg->cork_bytes = bytes;
2630 	return 0;
2631 }
2632 
sk_msg_reset_curr(struct sk_msg * msg)2633 static void sk_msg_reset_curr(struct sk_msg *msg)
2634 {
2635 	if (!msg->sg.size) {
2636 		msg->sg.curr = msg->sg.start;
2637 		msg->sg.copybreak = 0;
2638 	} else {
2639 		u32 i = msg->sg.end;
2640 
2641 		sk_msg_iter_var_prev(i);
2642 		msg->sg.curr = i;
2643 		msg->sg.copybreak = msg->sg.data[i].length;
2644 	}
2645 }
2646 
2647 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2648 	.func           = bpf_msg_cork_bytes,
2649 	.gpl_only       = false,
2650 	.ret_type       = RET_INTEGER,
2651 	.arg1_type	= ARG_PTR_TO_CTX,
2652 	.arg2_type      = ARG_ANYTHING,
2653 };
2654 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2655 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2656 	   u32, end, u64, flags)
2657 {
2658 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2659 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2660 	struct scatterlist *sge;
2661 	u8 *raw, *to, *from;
2662 	struct page *page;
2663 
2664 	if (unlikely(flags || end <= start))
2665 		return -EINVAL;
2666 
2667 	/* First find the starting scatterlist element */
2668 	i = msg->sg.start;
2669 	do {
2670 		offset += len;
2671 		len = sk_msg_elem(msg, i)->length;
2672 		if (start < offset + len)
2673 			break;
2674 		sk_msg_iter_var_next(i);
2675 	} while (i != msg->sg.end);
2676 
2677 	if (unlikely(start >= offset + len))
2678 		return -EINVAL;
2679 
2680 	first_sge = i;
2681 	/* The start may point into the sg element so we need to also
2682 	 * account for the headroom.
2683 	 */
2684 	bytes_sg_total = start - offset + bytes;
2685 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2686 		goto out;
2687 
2688 	/* At this point we need to linearize multiple scatterlist
2689 	 * elements or a single shared page. Either way we need to
2690 	 * copy into a linear buffer exclusively owned by BPF. Then
2691 	 * place the buffer in the scatterlist and fixup the original
2692 	 * entries by removing the entries now in the linear buffer
2693 	 * and shifting the remaining entries. For now we do not try
2694 	 * to copy partial entries to avoid complexity of running out
2695 	 * of sg_entry slots. The downside is reading a single byte
2696 	 * will copy the entire sg entry.
2697 	 */
2698 	do {
2699 		copy += sk_msg_elem(msg, i)->length;
2700 		sk_msg_iter_var_next(i);
2701 		if (bytes_sg_total <= copy)
2702 			break;
2703 	} while (i != msg->sg.end);
2704 	last_sge = i;
2705 
2706 	if (unlikely(bytes_sg_total > copy))
2707 		return -EINVAL;
2708 
2709 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2710 			   get_order(copy));
2711 	if (unlikely(!page))
2712 		return -ENOMEM;
2713 
2714 	raw = page_address(page);
2715 	i = first_sge;
2716 	do {
2717 		sge = sk_msg_elem(msg, i);
2718 		from = sg_virt(sge);
2719 		len = sge->length;
2720 		to = raw + poffset;
2721 
2722 		memcpy(to, from, len);
2723 		poffset += len;
2724 		sge->length = 0;
2725 		put_page(sg_page(sge));
2726 
2727 		sk_msg_iter_var_next(i);
2728 	} while (i != last_sge);
2729 
2730 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2731 
2732 	/* To repair sg ring we need to shift entries. If we only
2733 	 * had a single entry though we can just replace it and
2734 	 * be done. Otherwise walk the ring and shift the entries.
2735 	 */
2736 	WARN_ON_ONCE(last_sge == first_sge);
2737 	shift = last_sge > first_sge ?
2738 		last_sge - first_sge - 1 :
2739 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2740 	if (!shift)
2741 		goto out;
2742 
2743 	i = first_sge;
2744 	sk_msg_iter_var_next(i);
2745 	do {
2746 		u32 move_from;
2747 
2748 		if (i + shift >= NR_MSG_FRAG_IDS)
2749 			move_from = i + shift - NR_MSG_FRAG_IDS;
2750 		else
2751 			move_from = i + shift;
2752 		if (move_from == msg->sg.end)
2753 			break;
2754 
2755 		msg->sg.data[i] = msg->sg.data[move_from];
2756 		msg->sg.data[move_from].length = 0;
2757 		msg->sg.data[move_from].page_link = 0;
2758 		msg->sg.data[move_from].offset = 0;
2759 		sk_msg_iter_var_next(i);
2760 	} while (1);
2761 
2762 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2763 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2764 		      msg->sg.end - shift;
2765 out:
2766 	sk_msg_reset_curr(msg);
2767 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2768 	msg->data_end = msg->data + bytes;
2769 	return 0;
2770 }
2771 
2772 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2773 	.func		= bpf_msg_pull_data,
2774 	.gpl_only	= false,
2775 	.ret_type	= RET_INTEGER,
2776 	.arg1_type	= ARG_PTR_TO_CTX,
2777 	.arg2_type	= ARG_ANYTHING,
2778 	.arg3_type	= ARG_ANYTHING,
2779 	.arg4_type	= ARG_ANYTHING,
2780 };
2781 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2782 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2783 	   u32, len, u64, flags)
2784 {
2785 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2786 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2787 	u8 *raw, *to, *from;
2788 	struct page *page;
2789 
2790 	if (unlikely(flags))
2791 		return -EINVAL;
2792 
2793 	if (unlikely(len == 0))
2794 		return 0;
2795 
2796 	/* First find the starting scatterlist element */
2797 	i = msg->sg.start;
2798 	do {
2799 		offset += l;
2800 		l = sk_msg_elem(msg, i)->length;
2801 
2802 		if (start < offset + l)
2803 			break;
2804 		sk_msg_iter_var_next(i);
2805 	} while (i != msg->sg.end);
2806 
2807 	if (start > offset + l)
2808 		return -EINVAL;
2809 
2810 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2811 
2812 	/* If no space available will fallback to copy, we need at
2813 	 * least one scatterlist elem available to push data into
2814 	 * when start aligns to the beginning of an element or two
2815 	 * when it falls inside an element. We handle the start equals
2816 	 * offset case because its the common case for inserting a
2817 	 * header.
2818 	 */
2819 	if (!space || (space == 1 && start != offset))
2820 		copy = msg->sg.data[i].length;
2821 
2822 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2823 			   get_order(copy + len));
2824 	if (unlikely(!page))
2825 		return -ENOMEM;
2826 
2827 	if (copy) {
2828 		int front, back;
2829 
2830 		raw = page_address(page);
2831 
2832 		if (i == msg->sg.end)
2833 			sk_msg_iter_var_prev(i);
2834 		psge = sk_msg_elem(msg, i);
2835 		front = start - offset;
2836 		back = psge->length - front;
2837 		from = sg_virt(psge);
2838 
2839 		if (front)
2840 			memcpy(raw, from, front);
2841 
2842 		if (back) {
2843 			from += front;
2844 			to = raw + front + len;
2845 
2846 			memcpy(to, from, back);
2847 		}
2848 
2849 		put_page(sg_page(psge));
2850 		new = i;
2851 		goto place_new;
2852 	}
2853 
2854 	if (start - offset) {
2855 		if (i == msg->sg.end)
2856 			sk_msg_iter_var_prev(i);
2857 		psge = sk_msg_elem(msg, i);
2858 		rsge = sk_msg_elem_cpy(msg, i);
2859 
2860 		psge->length = start - offset;
2861 		rsge.length -= psge->length;
2862 		rsge.offset += start;
2863 
2864 		sk_msg_iter_var_next(i);
2865 		sg_unmark_end(psge);
2866 		sg_unmark_end(&rsge);
2867 	}
2868 
2869 	/* Slot(s) to place newly allocated data */
2870 	sk_msg_iter_next(msg, end);
2871 	new = i;
2872 	sk_msg_iter_var_next(i);
2873 
2874 	if (i == msg->sg.end) {
2875 		if (!rsge.length)
2876 			goto place_new;
2877 		sk_msg_iter_next(msg, end);
2878 		goto place_new;
2879 	}
2880 
2881 	/* Shift one or two slots as needed */
2882 	sge = sk_msg_elem_cpy(msg, new);
2883 	sg_unmark_end(&sge);
2884 
2885 	nsge = sk_msg_elem_cpy(msg, i);
2886 	if (rsge.length) {
2887 		sk_msg_iter_var_next(i);
2888 		nnsge = sk_msg_elem_cpy(msg, i);
2889 		sk_msg_iter_next(msg, end);
2890 	}
2891 
2892 	while (i != msg->sg.end) {
2893 		msg->sg.data[i] = sge;
2894 		sge = nsge;
2895 		sk_msg_iter_var_next(i);
2896 		if (rsge.length) {
2897 			nsge = nnsge;
2898 			nnsge = sk_msg_elem_cpy(msg, i);
2899 		} else {
2900 			nsge = sk_msg_elem_cpy(msg, i);
2901 		}
2902 	}
2903 
2904 place_new:
2905 	/* Place newly allocated data buffer */
2906 	sk_mem_charge(msg->sk, len);
2907 	msg->sg.size += len;
2908 	__clear_bit(new, msg->sg.copy);
2909 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2910 	if (rsge.length) {
2911 		get_page(sg_page(&rsge));
2912 		sk_msg_iter_var_next(new);
2913 		msg->sg.data[new] = rsge;
2914 	}
2915 
2916 	sk_msg_reset_curr(msg);
2917 	sk_msg_compute_data_pointers(msg);
2918 	return 0;
2919 }
2920 
2921 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2922 	.func		= bpf_msg_push_data,
2923 	.gpl_only	= false,
2924 	.ret_type	= RET_INTEGER,
2925 	.arg1_type	= ARG_PTR_TO_CTX,
2926 	.arg2_type	= ARG_ANYTHING,
2927 	.arg3_type	= ARG_ANYTHING,
2928 	.arg4_type	= ARG_ANYTHING,
2929 };
2930 
sk_msg_shift_left(struct sk_msg * msg,int i)2931 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2932 {
2933 	struct scatterlist *sge = sk_msg_elem(msg, i);
2934 	int prev;
2935 
2936 	put_page(sg_page(sge));
2937 	do {
2938 		prev = i;
2939 		sk_msg_iter_var_next(i);
2940 		msg->sg.data[prev] = msg->sg.data[i];
2941 	} while (i != msg->sg.end);
2942 
2943 	sk_msg_iter_prev(msg, end);
2944 }
2945 
sk_msg_shift_right(struct sk_msg * msg,int i)2946 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2947 {
2948 	struct scatterlist tmp, sge;
2949 
2950 	sk_msg_iter_next(msg, end);
2951 	sge = sk_msg_elem_cpy(msg, i);
2952 	sk_msg_iter_var_next(i);
2953 	tmp = sk_msg_elem_cpy(msg, i);
2954 
2955 	while (i != msg->sg.end) {
2956 		msg->sg.data[i] = sge;
2957 		sk_msg_iter_var_next(i);
2958 		sge = tmp;
2959 		tmp = sk_msg_elem_cpy(msg, i);
2960 	}
2961 }
2962 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2963 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2964 	   u32, len, u64, flags)
2965 {
2966 	u32 i = 0, l = 0, space, offset = 0;
2967 	u64 last = start + len;
2968 	int pop;
2969 
2970 	if (unlikely(flags))
2971 		return -EINVAL;
2972 
2973 	if (unlikely(len == 0))
2974 		return 0;
2975 
2976 	/* First find the starting scatterlist element */
2977 	i = msg->sg.start;
2978 	do {
2979 		offset += l;
2980 		l = sk_msg_elem(msg, i)->length;
2981 
2982 		if (start < offset + l)
2983 			break;
2984 		sk_msg_iter_var_next(i);
2985 	} while (i != msg->sg.end);
2986 
2987 	/* Bounds checks: start and pop must be inside message */
2988 	if (start >= offset + l || last > msg->sg.size)
2989 		return -EINVAL;
2990 
2991 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2992 
2993 	pop = len;
2994 	/* --------------| offset
2995 	 * -| start      |-------- len -------|
2996 	 *
2997 	 *  |----- a ----|-------- pop -------|----- b ----|
2998 	 *  |______________________________________________| length
2999 	 *
3000 	 *
3001 	 * a:   region at front of scatter element to save
3002 	 * b:   region at back of scatter element to save when length > A + pop
3003 	 * pop: region to pop from element, same as input 'pop' here will be
3004 	 *      decremented below per iteration.
3005 	 *
3006 	 * Two top-level cases to handle when start != offset, first B is non
3007 	 * zero and second B is zero corresponding to when a pop includes more
3008 	 * than one element.
3009 	 *
3010 	 * Then if B is non-zero AND there is no space allocate space and
3011 	 * compact A, B regions into page. If there is space shift ring to
3012 	 * the right free'ing the next element in ring to place B, leaving
3013 	 * A untouched except to reduce length.
3014 	 */
3015 	if (start != offset) {
3016 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
3017 		int a = start - offset;
3018 		int b = sge->length - pop - a;
3019 
3020 		sk_msg_iter_var_next(i);
3021 
3022 		if (b > 0) {
3023 			if (space) {
3024 				sge->length = a;
3025 				sk_msg_shift_right(msg, i);
3026 				nsge = sk_msg_elem(msg, i);
3027 				get_page(sg_page(sge));
3028 				sg_set_page(nsge,
3029 					    sg_page(sge),
3030 					    b, sge->offset + pop + a);
3031 			} else {
3032 				struct page *page, *orig;
3033 				u8 *to, *from;
3034 
3035 				page = alloc_pages(__GFP_NOWARN |
3036 						   __GFP_COMP   | GFP_ATOMIC,
3037 						   get_order(a + b));
3038 				if (unlikely(!page))
3039 					return -ENOMEM;
3040 
3041 				orig = sg_page(sge);
3042 				from = sg_virt(sge);
3043 				to = page_address(page);
3044 				memcpy(to, from, a);
3045 				memcpy(to + a, from + a + pop, b);
3046 				sg_set_page(sge, page, a + b, 0);
3047 				put_page(orig);
3048 			}
3049 			pop = 0;
3050 		} else {
3051 			pop -= (sge->length - a);
3052 			sge->length = a;
3053 		}
3054 	}
3055 
3056 	/* From above the current layout _must_ be as follows,
3057 	 *
3058 	 * -| offset
3059 	 * -| start
3060 	 *
3061 	 *  |---- pop ---|---------------- b ------------|
3062 	 *  |____________________________________________| length
3063 	 *
3064 	 * Offset and start of the current msg elem are equal because in the
3065 	 * previous case we handled offset != start and either consumed the
3066 	 * entire element and advanced to the next element OR pop == 0.
3067 	 *
3068 	 * Two cases to handle here are first pop is less than the length
3069 	 * leaving some remainder b above. Simply adjust the element's layout
3070 	 * in this case. Or pop >= length of the element so that b = 0. In this
3071 	 * case advance to next element decrementing pop.
3072 	 */
3073 	while (pop) {
3074 		struct scatterlist *sge = sk_msg_elem(msg, i);
3075 
3076 		if (pop < sge->length) {
3077 			sge->length -= pop;
3078 			sge->offset += pop;
3079 			pop = 0;
3080 		} else {
3081 			pop -= sge->length;
3082 			sk_msg_shift_left(msg, i);
3083 		}
3084 	}
3085 
3086 	sk_mem_uncharge(msg->sk, len - pop);
3087 	msg->sg.size -= (len - pop);
3088 	sk_msg_reset_curr(msg);
3089 	sk_msg_compute_data_pointers(msg);
3090 	return 0;
3091 }
3092 
3093 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3094 	.func		= bpf_msg_pop_data,
3095 	.gpl_only	= false,
3096 	.ret_type	= RET_INTEGER,
3097 	.arg1_type	= ARG_PTR_TO_CTX,
3098 	.arg2_type	= ARG_ANYTHING,
3099 	.arg3_type	= ARG_ANYTHING,
3100 	.arg4_type	= ARG_ANYTHING,
3101 };
3102 
3103 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3104 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3105 {
3106 	return __task_get_classid(current);
3107 }
3108 
3109 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3110 	.func		= bpf_get_cgroup_classid_curr,
3111 	.gpl_only	= false,
3112 	.ret_type	= RET_INTEGER,
3113 };
3114 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3115 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3116 {
3117 	struct sock *sk = skb_to_full_sk(skb);
3118 
3119 	if (!sk || !sk_fullsock(sk))
3120 		return 0;
3121 
3122 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3123 }
3124 
3125 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3126 	.func		= bpf_skb_cgroup_classid,
3127 	.gpl_only	= false,
3128 	.ret_type	= RET_INTEGER,
3129 	.arg1_type	= ARG_PTR_TO_CTX,
3130 };
3131 #endif
3132 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3133 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3134 {
3135 	return task_get_classid(skb);
3136 }
3137 
3138 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3139 	.func           = bpf_get_cgroup_classid,
3140 	.gpl_only       = false,
3141 	.ret_type       = RET_INTEGER,
3142 	.arg1_type      = ARG_PTR_TO_CTX,
3143 };
3144 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3145 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3146 {
3147 	return dst_tclassid(skb);
3148 }
3149 
3150 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3151 	.func           = bpf_get_route_realm,
3152 	.gpl_only       = false,
3153 	.ret_type       = RET_INTEGER,
3154 	.arg1_type      = ARG_PTR_TO_CTX,
3155 };
3156 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3157 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3158 {
3159 	/* If skb_clear_hash() was called due to mangling, we can
3160 	 * trigger SW recalculation here. Later access to hash
3161 	 * can then use the inline skb->hash via context directly
3162 	 * instead of calling this helper again.
3163 	 */
3164 	return skb_get_hash(skb);
3165 }
3166 
3167 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3168 	.func		= bpf_get_hash_recalc,
3169 	.gpl_only	= false,
3170 	.ret_type	= RET_INTEGER,
3171 	.arg1_type	= ARG_PTR_TO_CTX,
3172 };
3173 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3174 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3175 {
3176 	/* After all direct packet write, this can be used once for
3177 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3178 	 */
3179 	skb_clear_hash(skb);
3180 	return 0;
3181 }
3182 
3183 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3184 	.func		= bpf_set_hash_invalid,
3185 	.gpl_only	= false,
3186 	.ret_type	= RET_INTEGER,
3187 	.arg1_type	= ARG_PTR_TO_CTX,
3188 };
3189 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3190 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3191 {
3192 	/* Set user specified hash as L4(+), so that it gets returned
3193 	 * on skb_get_hash() call unless BPF prog later on triggers a
3194 	 * skb_clear_hash().
3195 	 */
3196 	__skb_set_sw_hash(skb, hash, true);
3197 	return 0;
3198 }
3199 
3200 static const struct bpf_func_proto bpf_set_hash_proto = {
3201 	.func		= bpf_set_hash,
3202 	.gpl_only	= false,
3203 	.ret_type	= RET_INTEGER,
3204 	.arg1_type	= ARG_PTR_TO_CTX,
3205 	.arg2_type	= ARG_ANYTHING,
3206 };
3207 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3208 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3209 	   u16, vlan_tci)
3210 {
3211 	int ret;
3212 
3213 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3214 		     vlan_proto != htons(ETH_P_8021AD)))
3215 		vlan_proto = htons(ETH_P_8021Q);
3216 
3217 	bpf_push_mac_rcsum(skb);
3218 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3219 	bpf_pull_mac_rcsum(skb);
3220 	skb_reset_mac_len(skb);
3221 
3222 	bpf_compute_data_pointers(skb);
3223 	return ret;
3224 }
3225 
3226 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3227 	.func           = bpf_skb_vlan_push,
3228 	.gpl_only       = false,
3229 	.ret_type       = RET_INTEGER,
3230 	.arg1_type      = ARG_PTR_TO_CTX,
3231 	.arg2_type      = ARG_ANYTHING,
3232 	.arg3_type      = ARG_ANYTHING,
3233 };
3234 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3235 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3236 {
3237 	int ret;
3238 
3239 	bpf_push_mac_rcsum(skb);
3240 	ret = skb_vlan_pop(skb);
3241 	bpf_pull_mac_rcsum(skb);
3242 
3243 	bpf_compute_data_pointers(skb);
3244 	return ret;
3245 }
3246 
3247 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3248 	.func           = bpf_skb_vlan_pop,
3249 	.gpl_only       = false,
3250 	.ret_type       = RET_INTEGER,
3251 	.arg1_type      = ARG_PTR_TO_CTX,
3252 };
3253 
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3254 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3255 {
3256 	skb->protocol = htons(proto);
3257 	if (skb_valid_dst(skb))
3258 		skb_dst_drop(skb);
3259 }
3260 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3261 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3262 {
3263 	/* Caller already did skb_cow() with meta_len+len as headroom,
3264 	 * so no need to do it here.
3265 	 */
3266 	skb_push(skb, len);
3267 	skb_postpush_data_move(skb, len, off);
3268 	memset(skb->data + off, 0, len);
3269 
3270 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3271 	 * needed here as it does not change the skb->csum
3272 	 * result for checksum complete when summing over
3273 	 * zeroed blocks.
3274 	 */
3275 	return 0;
3276 }
3277 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3278 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3279 {
3280 	void *old_data;
3281 
3282 	/* skb_ensure_writable() is not needed here, as we're
3283 	 * already working on an uncloned skb.
3284 	 */
3285 	if (unlikely(!pskb_may_pull(skb, off + len)))
3286 		return -ENOMEM;
3287 
3288 	old_data = skb->data;
3289 	__skb_pull(skb, len);
3290 	skb_postpull_rcsum(skb, old_data + off, len);
3291 	skb_postpull_data_move(skb, len, off);
3292 
3293 	return 0;
3294 }
3295 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3296 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3297 {
3298 	bool trans_same = skb->transport_header == skb->network_header;
3299 	int ret;
3300 
3301 	/* There's no need for __skb_push()/__skb_pull() pair to
3302 	 * get to the start of the mac header as we're guaranteed
3303 	 * to always start from here under eBPF.
3304 	 */
3305 	ret = bpf_skb_generic_push(skb, off, len);
3306 	if (likely(!ret)) {
3307 		skb->mac_header -= len;
3308 		skb->network_header -= len;
3309 		if (trans_same)
3310 			skb->transport_header = skb->network_header;
3311 	}
3312 
3313 	return ret;
3314 }
3315 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3316 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3317 {
3318 	bool trans_same = skb->transport_header == skb->network_header;
3319 	int ret;
3320 
3321 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3322 	ret = bpf_skb_generic_pop(skb, off, len);
3323 	if (likely(!ret)) {
3324 		skb->mac_header += len;
3325 		skb->network_header += len;
3326 		if (trans_same)
3327 			skb->transport_header = skb->network_header;
3328 	}
3329 
3330 	return ret;
3331 }
3332 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3333 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3334 {
3335 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3336 	const u8 meta_len = skb_metadata_len(skb);
3337 	u32 off = skb_mac_header_len(skb);
3338 	int ret;
3339 
3340 	ret = skb_cow(skb, meta_len + len_diff);
3341 	if (unlikely(ret < 0))
3342 		return ret;
3343 
3344 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3345 	if (unlikely(ret < 0))
3346 		return ret;
3347 
3348 	if (skb_is_gso(skb)) {
3349 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3350 
3351 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3352 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3353 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3354 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3355 		}
3356 	}
3357 
3358 	bpf_skb_change_protocol(skb, ETH_P_IPV6);
3359 	skb_clear_hash(skb);
3360 
3361 	return 0;
3362 }
3363 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3364 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3365 {
3366 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3367 	u32 off = skb_mac_header_len(skb);
3368 	int ret;
3369 
3370 	ret = skb_unclone(skb, GFP_ATOMIC);
3371 	if (unlikely(ret < 0))
3372 		return ret;
3373 
3374 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3375 	if (unlikely(ret < 0))
3376 		return ret;
3377 
3378 	if (skb_is_gso(skb)) {
3379 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3380 
3381 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3382 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3383 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3384 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3385 		}
3386 	}
3387 
3388 	bpf_skb_change_protocol(skb, ETH_P_IP);
3389 	skb_clear_hash(skb);
3390 
3391 	return 0;
3392 }
3393 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3394 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3395 {
3396 	__be16 from_proto = skb->protocol;
3397 
3398 	if (from_proto == htons(ETH_P_IP) &&
3399 	      to_proto == htons(ETH_P_IPV6))
3400 		return bpf_skb_proto_4_to_6(skb);
3401 
3402 	if (from_proto == htons(ETH_P_IPV6) &&
3403 	      to_proto == htons(ETH_P_IP))
3404 		return bpf_skb_proto_6_to_4(skb);
3405 
3406 	return -ENOTSUPP;
3407 }
3408 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3409 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3410 	   u64, flags)
3411 {
3412 	int ret;
3413 
3414 	if (unlikely(flags))
3415 		return -EINVAL;
3416 
3417 	/* General idea is that this helper does the basic groundwork
3418 	 * needed for changing the protocol, and eBPF program fills the
3419 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3420 	 * and other helpers, rather than passing a raw buffer here.
3421 	 *
3422 	 * The rationale is to keep this minimal and without a need to
3423 	 * deal with raw packet data. F.e. even if we would pass buffers
3424 	 * here, the program still needs to call the bpf_lX_csum_replace()
3425 	 * helpers anyway. Plus, this way we keep also separation of
3426 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3427 	 * care of stores.
3428 	 *
3429 	 * Currently, additional options and extension header space are
3430 	 * not supported, but flags register is reserved so we can adapt
3431 	 * that. For offloads, we mark packet as dodgy, so that headers
3432 	 * need to be verified first.
3433 	 */
3434 	ret = bpf_skb_proto_xlat(skb, proto);
3435 	bpf_compute_data_pointers(skb);
3436 	return ret;
3437 }
3438 
3439 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3440 	.func		= bpf_skb_change_proto,
3441 	.gpl_only	= false,
3442 	.ret_type	= RET_INTEGER,
3443 	.arg1_type	= ARG_PTR_TO_CTX,
3444 	.arg2_type	= ARG_ANYTHING,
3445 	.arg3_type	= ARG_ANYTHING,
3446 };
3447 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3448 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3449 {
3450 	/* We only allow a restricted subset to be changed for now. */
3451 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3452 		     !skb_pkt_type_ok(pkt_type)))
3453 		return -EINVAL;
3454 
3455 	skb->pkt_type = pkt_type;
3456 	return 0;
3457 }
3458 
3459 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3460 	.func		= bpf_skb_change_type,
3461 	.gpl_only	= false,
3462 	.ret_type	= RET_INTEGER,
3463 	.arg1_type	= ARG_PTR_TO_CTX,
3464 	.arg2_type	= ARG_ANYTHING,
3465 };
3466 
bpf_skb_net_base_len(const struct sk_buff * skb)3467 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3468 {
3469 	switch (skb->protocol) {
3470 	case htons(ETH_P_IP):
3471 		return sizeof(struct iphdr);
3472 	case htons(ETH_P_IPV6):
3473 		return sizeof(struct ipv6hdr);
3474 	default:
3475 		return ~0U;
3476 	}
3477 }
3478 
3479 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3480 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3481 
3482 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3483 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3484 
3485 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3486 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3487 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3488 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3489 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3490 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3491 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3492 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3493 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3494 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3495 			    u64 flags)
3496 {
3497 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3498 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3499 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3500 	const u8 meta_len = skb_metadata_len(skb);
3501 	unsigned int gso_type = SKB_GSO_DODGY;
3502 	int ret;
3503 
3504 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3505 		/* udp gso_size delineates datagrams, only allow if fixed */
3506 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3507 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3508 			return -ENOTSUPP;
3509 	}
3510 
3511 	ret = skb_cow_head(skb, meta_len + len_diff);
3512 	if (unlikely(ret < 0))
3513 		return ret;
3514 
3515 	if (encap) {
3516 		if (skb->protocol != htons(ETH_P_IP) &&
3517 		    skb->protocol != htons(ETH_P_IPV6))
3518 			return -ENOTSUPP;
3519 
3520 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3521 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3522 			return -EINVAL;
3523 
3524 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3525 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3526 			return -EINVAL;
3527 
3528 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3529 		    inner_mac_len < ETH_HLEN)
3530 			return -EINVAL;
3531 
3532 		if (skb->encapsulation)
3533 			return -EALREADY;
3534 
3535 		mac_len = skb->network_header - skb->mac_header;
3536 		inner_net = skb->network_header;
3537 		if (inner_mac_len > len_diff)
3538 			return -EINVAL;
3539 		inner_trans = skb->transport_header;
3540 	}
3541 
3542 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3543 	if (unlikely(ret < 0))
3544 		return ret;
3545 
3546 	if (encap) {
3547 		skb->inner_mac_header = inner_net - inner_mac_len;
3548 		skb->inner_network_header = inner_net;
3549 		skb->inner_transport_header = inner_trans;
3550 
3551 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3552 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3553 		else
3554 			skb_set_inner_protocol(skb, skb->protocol);
3555 
3556 		skb->encapsulation = 1;
3557 		skb_set_network_header(skb, mac_len);
3558 
3559 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3560 			gso_type |= SKB_GSO_UDP_TUNNEL;
3561 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3562 			gso_type |= SKB_GSO_GRE;
3563 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3564 			gso_type |= SKB_GSO_IPXIP6;
3565 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3566 			gso_type |= SKB_GSO_IPXIP4;
3567 
3568 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3569 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3570 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3571 					sizeof(struct ipv6hdr) :
3572 					sizeof(struct iphdr);
3573 
3574 			skb_set_transport_header(skb, mac_len + nh_len);
3575 		}
3576 
3577 		/* Match skb->protocol to new outer l3 protocol */
3578 		if (skb->protocol == htons(ETH_P_IP) &&
3579 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3580 			bpf_skb_change_protocol(skb, ETH_P_IPV6);
3581 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3582 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3583 			bpf_skb_change_protocol(skb, ETH_P_IP);
3584 	}
3585 
3586 	if (skb_is_gso(skb)) {
3587 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3588 
3589 		/* Header must be checked, and gso_segs recomputed. */
3590 		shinfo->gso_type |= gso_type;
3591 		shinfo->gso_segs = 0;
3592 
3593 		/* Due to header growth, MSS needs to be downgraded.
3594 		 * There is a BUG_ON() when segmenting the frag_list with
3595 		 * head_frag true, so linearize the skb after downgrading
3596 		 * the MSS.
3597 		 */
3598 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3599 			skb_decrease_gso_size(shinfo, len_diff);
3600 			if (shinfo->frag_list)
3601 				return skb_linearize(skb);
3602 		}
3603 	}
3604 
3605 	return 0;
3606 }
3607 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3608 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3609 			      u64 flags)
3610 {
3611 	int ret;
3612 
3613 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3614 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3615 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3616 		return -EINVAL;
3617 
3618 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3619 		/* udp gso_size delineates datagrams, only allow if fixed */
3620 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3621 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3622 			return -ENOTSUPP;
3623 	}
3624 
3625 	ret = skb_unclone(skb, GFP_ATOMIC);
3626 	if (unlikely(ret < 0))
3627 		return ret;
3628 
3629 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3630 	if (unlikely(ret < 0))
3631 		return ret;
3632 
3633 	/* Match skb->protocol to new outer l3 protocol */
3634 	if (skb->protocol == htons(ETH_P_IP) &&
3635 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3636 		bpf_skb_change_protocol(skb, ETH_P_IPV6);
3637 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3638 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3639 		bpf_skb_change_protocol(skb, ETH_P_IP);
3640 
3641 	if (skb_is_gso(skb)) {
3642 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3643 
3644 		/* Due to header shrink, MSS can be upgraded. */
3645 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3646 			skb_increase_gso_size(shinfo, len_diff);
3647 
3648 		/* Header must be checked, and gso_segs recomputed. */
3649 		shinfo->gso_type |= SKB_GSO_DODGY;
3650 		shinfo->gso_segs = 0;
3651 	}
3652 
3653 	return 0;
3654 }
3655 
3656 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3657 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3658 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3659 	   u32, mode, u64, flags)
3660 {
3661 	u32 len_diff_abs = abs(len_diff);
3662 	bool shrink = len_diff < 0;
3663 	int ret = 0;
3664 
3665 	if (unlikely(flags || mode))
3666 		return -EINVAL;
3667 	if (unlikely(len_diff_abs > 0xfffU))
3668 		return -EFAULT;
3669 
3670 	if (!shrink) {
3671 		ret = skb_cow(skb, len_diff);
3672 		if (unlikely(ret < 0))
3673 			return ret;
3674 		__skb_push(skb, len_diff_abs);
3675 		memset(skb->data, 0, len_diff_abs);
3676 	} else {
3677 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3678 			return -ENOMEM;
3679 		__skb_pull(skb, len_diff_abs);
3680 	}
3681 	if (tls_sw_has_ctx_rx(skb->sk)) {
3682 		struct strp_msg *rxm = strp_msg(skb);
3683 
3684 		rxm->full_len += len_diff;
3685 	}
3686 	return ret;
3687 }
3688 
3689 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3690 	.func		= sk_skb_adjust_room,
3691 	.gpl_only	= false,
3692 	.ret_type	= RET_INTEGER,
3693 	.arg1_type	= ARG_PTR_TO_CTX,
3694 	.arg2_type	= ARG_ANYTHING,
3695 	.arg3_type	= ARG_ANYTHING,
3696 	.arg4_type	= ARG_ANYTHING,
3697 };
3698 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3699 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3700 	   u32, mode, u64, flags)
3701 {
3702 	u32 len_cur, len_diff_abs = abs(len_diff);
3703 	u32 len_min = bpf_skb_net_base_len(skb);
3704 	u32 len_max = BPF_SKB_MAX_LEN;
3705 	__be16 proto = skb->protocol;
3706 	bool shrink = len_diff < 0;
3707 	u32 off;
3708 	int ret;
3709 
3710 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3711 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3712 		return -EINVAL;
3713 	if (unlikely(len_diff_abs > 0xfffU))
3714 		return -EFAULT;
3715 	if (unlikely(proto != htons(ETH_P_IP) &&
3716 		     proto != htons(ETH_P_IPV6)))
3717 		return -ENOTSUPP;
3718 
3719 	off = skb_mac_header_len(skb);
3720 	switch (mode) {
3721 	case BPF_ADJ_ROOM_NET:
3722 		off += bpf_skb_net_base_len(skb);
3723 		break;
3724 	case BPF_ADJ_ROOM_MAC:
3725 		break;
3726 	default:
3727 		return -ENOTSUPP;
3728 	}
3729 
3730 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3731 		if (!shrink)
3732 			return -EINVAL;
3733 
3734 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3735 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3736 			len_min = sizeof(struct iphdr);
3737 			break;
3738 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3739 			len_min = sizeof(struct ipv6hdr);
3740 			break;
3741 		default:
3742 			return -EINVAL;
3743 		}
3744 	}
3745 
3746 	len_cur = skb->len - skb_network_offset(skb);
3747 	if ((shrink && (len_diff_abs >= len_cur ||
3748 			len_cur - len_diff_abs < len_min)) ||
3749 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3750 			 !skb_is_gso(skb))))
3751 		return -ENOTSUPP;
3752 
3753 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3754 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3755 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3756 		__skb_reset_checksum_unnecessary(skb);
3757 
3758 	bpf_compute_data_pointers(skb);
3759 	return ret;
3760 }
3761 
3762 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3763 	.func		= bpf_skb_adjust_room,
3764 	.gpl_only	= false,
3765 	.ret_type	= RET_INTEGER,
3766 	.arg1_type	= ARG_PTR_TO_CTX,
3767 	.arg2_type	= ARG_ANYTHING,
3768 	.arg3_type	= ARG_ANYTHING,
3769 	.arg4_type	= ARG_ANYTHING,
3770 };
3771 
__bpf_skb_min_len(const struct sk_buff * skb)3772 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3773 {
3774 	int offset = skb_network_offset(skb);
3775 	u32 min_len = 0;
3776 
3777 	if (offset > 0)
3778 		min_len = offset;
3779 	if (skb_transport_header_was_set(skb)) {
3780 		offset = skb_transport_offset(skb);
3781 		if (offset > 0)
3782 			min_len = offset;
3783 	}
3784 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3785 		offset = skb_checksum_start_offset(skb) +
3786 			 skb->csum_offset + sizeof(__sum16);
3787 		if (offset > 0)
3788 			min_len = offset;
3789 	}
3790 	return min_len;
3791 }
3792 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3793 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3794 {
3795 	unsigned int old_len = skb->len;
3796 	int ret;
3797 
3798 	ret = __skb_grow_rcsum(skb, new_len);
3799 	if (!ret)
3800 		memset(skb->data + old_len, 0, new_len - old_len);
3801 	return ret;
3802 }
3803 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3804 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3805 {
3806 	return __skb_trim_rcsum(skb, new_len);
3807 }
3808 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3809 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3810 					u64 flags)
3811 {
3812 	u32 max_len = BPF_SKB_MAX_LEN;
3813 	u32 min_len = __bpf_skb_min_len(skb);
3814 	int ret;
3815 
3816 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3817 		return -EINVAL;
3818 	if (skb->encapsulation)
3819 		return -ENOTSUPP;
3820 
3821 	/* The basic idea of this helper is that it's performing the
3822 	 * needed work to either grow or trim an skb, and eBPF program
3823 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3824 	 * bpf_lX_csum_replace() and others rather than passing a raw
3825 	 * buffer here. This one is a slow path helper and intended
3826 	 * for replies with control messages.
3827 	 *
3828 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3829 	 * minimal and without protocol specifics so that we are able
3830 	 * to separate concerns as in bpf_skb_store_bytes() should only
3831 	 * be the one responsible for writing buffers.
3832 	 *
3833 	 * It's really expected to be a slow path operation here for
3834 	 * control message replies, so we're implicitly linearizing,
3835 	 * uncloning and drop offloads from the skb by this.
3836 	 */
3837 	ret = __bpf_try_make_writable(skb, skb->len);
3838 	if (!ret) {
3839 		if (new_len > skb->len)
3840 			ret = bpf_skb_grow_rcsum(skb, new_len);
3841 		else if (new_len < skb->len)
3842 			ret = bpf_skb_trim_rcsum(skb, new_len);
3843 		if (!ret && skb_is_gso(skb))
3844 			skb_gso_reset(skb);
3845 	}
3846 	return ret;
3847 }
3848 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3849 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3850 	   u64, flags)
3851 {
3852 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3853 
3854 	bpf_compute_data_pointers(skb);
3855 	return ret;
3856 }
3857 
3858 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3859 	.func		= bpf_skb_change_tail,
3860 	.gpl_only	= false,
3861 	.ret_type	= RET_INTEGER,
3862 	.arg1_type	= ARG_PTR_TO_CTX,
3863 	.arg2_type	= ARG_ANYTHING,
3864 	.arg3_type	= ARG_ANYTHING,
3865 };
3866 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3867 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3868 	   u64, flags)
3869 {
3870 	return __bpf_skb_change_tail(skb, new_len, flags);
3871 }
3872 
3873 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3874 	.func		= sk_skb_change_tail,
3875 	.gpl_only	= false,
3876 	.ret_type	= RET_INTEGER,
3877 	.arg1_type	= ARG_PTR_TO_CTX,
3878 	.arg2_type	= ARG_ANYTHING,
3879 	.arg3_type	= ARG_ANYTHING,
3880 };
3881 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3882 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3883 					u64 flags)
3884 {
3885 	const u8 meta_len = skb_metadata_len(skb);
3886 	u32 max_len = BPF_SKB_MAX_LEN;
3887 	u32 new_len = skb->len + head_room;
3888 	int ret;
3889 
3890 	if (unlikely(flags || (int)head_room < 0 ||
3891 		     (!skb_is_gso(skb) && new_len > max_len) ||
3892 		     new_len < skb->len))
3893 		return -EINVAL;
3894 
3895 	ret = skb_cow(skb, meta_len + head_room);
3896 	if (likely(!ret)) {
3897 		/* Idea for this helper is that we currently only
3898 		 * allow to expand on mac header. This means that
3899 		 * skb->protocol network header, etc, stay as is.
3900 		 * Compared to bpf_skb_change_tail(), we're more
3901 		 * flexible due to not needing to linearize or
3902 		 * reset GSO. Intention for this helper is to be
3903 		 * used by an L3 skb that needs to push mac header
3904 		 * for redirection into L2 device.
3905 		 */
3906 		__skb_push(skb, head_room);
3907 		skb_postpush_data_move(skb, head_room, 0);
3908 		memset(skb->data, 0, head_room);
3909 		skb_reset_mac_header(skb);
3910 		skb_reset_mac_len(skb);
3911 	}
3912 
3913 	return ret;
3914 }
3915 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3916 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3917 	   u64, flags)
3918 {
3919 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3920 
3921 	bpf_compute_data_pointers(skb);
3922 	return ret;
3923 }
3924 
3925 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3926 	.func		= bpf_skb_change_head,
3927 	.gpl_only	= false,
3928 	.ret_type	= RET_INTEGER,
3929 	.arg1_type	= ARG_PTR_TO_CTX,
3930 	.arg2_type	= ARG_ANYTHING,
3931 	.arg3_type	= ARG_ANYTHING,
3932 };
3933 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3934 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3935 	   u64, flags)
3936 {
3937 	return __bpf_skb_change_head(skb, head_room, flags);
3938 }
3939 
3940 static const struct bpf_func_proto sk_skb_change_head_proto = {
3941 	.func		= sk_skb_change_head,
3942 	.gpl_only	= false,
3943 	.ret_type	= RET_INTEGER,
3944 	.arg1_type	= ARG_PTR_TO_CTX,
3945 	.arg2_type	= ARG_ANYTHING,
3946 	.arg3_type	= ARG_ANYTHING,
3947 };
3948 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3949 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3950 {
3951 	return xdp_get_buff_len(xdp);
3952 }
3953 
3954 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3955 	.func		= bpf_xdp_get_buff_len,
3956 	.gpl_only	= false,
3957 	.ret_type	= RET_INTEGER,
3958 	.arg1_type	= ARG_PTR_TO_CTX,
3959 };
3960 
3961 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3962 
3963 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3964 	.func		= bpf_xdp_get_buff_len,
3965 	.gpl_only	= false,
3966 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3967 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3968 };
3969 
xdp_get_metalen(const struct xdp_buff * xdp)3970 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3971 {
3972 	return xdp_data_meta_unsupported(xdp) ? 0 :
3973 	       xdp->data - xdp->data_meta;
3974 }
3975 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3976 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3977 {
3978 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3979 	unsigned long metalen = xdp_get_metalen(xdp);
3980 	void *data_start = xdp_frame_end + metalen;
3981 	void *data = xdp->data + offset;
3982 
3983 	if (unlikely(data < data_start ||
3984 		     data > xdp->data_end - ETH_HLEN))
3985 		return -EINVAL;
3986 
3987 	if (metalen)
3988 		memmove(xdp->data_meta + offset,
3989 			xdp->data_meta, metalen);
3990 	xdp->data_meta += offset;
3991 	xdp->data = data;
3992 
3993 	return 0;
3994 }
3995 
3996 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3997 	.func		= bpf_xdp_adjust_head,
3998 	.gpl_only	= false,
3999 	.ret_type	= RET_INTEGER,
4000 	.arg1_type	= ARG_PTR_TO_CTX,
4001 	.arg2_type	= ARG_ANYTHING,
4002 };
4003 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)4004 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
4005 		      void *buf, unsigned long len, bool flush)
4006 {
4007 	unsigned long ptr_len, ptr_off = 0;
4008 	skb_frag_t *next_frag, *end_frag;
4009 	struct skb_shared_info *sinfo;
4010 	void *src, *dst;
4011 	u8 *ptr_buf;
4012 
4013 	if (likely(xdp->data_end - xdp->data >= off + len)) {
4014 		src = flush ? buf : xdp->data + off;
4015 		dst = flush ? xdp->data + off : buf;
4016 		memcpy(dst, src, len);
4017 		return;
4018 	}
4019 
4020 	sinfo = xdp_get_shared_info_from_buff(xdp);
4021 	end_frag = &sinfo->frags[sinfo->nr_frags];
4022 	next_frag = &sinfo->frags[0];
4023 
4024 	ptr_len = xdp->data_end - xdp->data;
4025 	ptr_buf = xdp->data;
4026 
4027 	while (true) {
4028 		if (off < ptr_off + ptr_len) {
4029 			unsigned long copy_off = off - ptr_off;
4030 			unsigned long copy_len = min(len, ptr_len - copy_off);
4031 
4032 			src = flush ? buf : ptr_buf + copy_off;
4033 			dst = flush ? ptr_buf + copy_off : buf;
4034 			memcpy(dst, src, copy_len);
4035 
4036 			off += copy_len;
4037 			len -= copy_len;
4038 			buf += copy_len;
4039 		}
4040 
4041 		if (!len || next_frag == end_frag)
4042 			break;
4043 
4044 		ptr_off += ptr_len;
4045 		ptr_buf = skb_frag_address(next_frag);
4046 		ptr_len = skb_frag_size(next_frag);
4047 		next_frag++;
4048 	}
4049 }
4050 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4051 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4052 {
4053 	u32 size = xdp->data_end - xdp->data;
4054 	struct skb_shared_info *sinfo;
4055 	void *addr = xdp->data;
4056 	int i;
4057 
4058 	if (unlikely(offset > 0xffff || len > 0xffff))
4059 		return ERR_PTR(-EFAULT);
4060 
4061 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4062 		return ERR_PTR(-EINVAL);
4063 
4064 	if (likely(offset < size)) /* linear area */
4065 		goto out;
4066 
4067 	sinfo = xdp_get_shared_info_from_buff(xdp);
4068 	offset -= size;
4069 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4070 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4071 
4072 		if  (offset < frag_size) {
4073 			addr = skb_frag_address(&sinfo->frags[i]);
4074 			size = frag_size;
4075 			break;
4076 		}
4077 		offset -= frag_size;
4078 	}
4079 out:
4080 	return offset + len <= size ? addr + offset : NULL;
4081 }
4082 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4083 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4084 	   void *, buf, u32, len)
4085 {
4086 	void *ptr;
4087 
4088 	ptr = bpf_xdp_pointer(xdp, offset, len);
4089 	if (IS_ERR(ptr))
4090 		return PTR_ERR(ptr);
4091 
4092 	if (!ptr)
4093 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4094 	else
4095 		memcpy(buf, ptr, len);
4096 
4097 	return 0;
4098 }
4099 
4100 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4101 	.func		= bpf_xdp_load_bytes,
4102 	.gpl_only	= false,
4103 	.ret_type	= RET_INTEGER,
4104 	.arg1_type	= ARG_PTR_TO_CTX,
4105 	.arg2_type	= ARG_ANYTHING,
4106 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4107 	.arg4_type	= ARG_CONST_SIZE,
4108 };
4109 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4110 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4111 {
4112 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4113 }
4114 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4115 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4116 	   void *, buf, u32, len)
4117 {
4118 	void *ptr;
4119 
4120 	ptr = bpf_xdp_pointer(xdp, offset, len);
4121 	if (IS_ERR(ptr))
4122 		return PTR_ERR(ptr);
4123 
4124 	if (!ptr)
4125 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4126 	else
4127 		memcpy(ptr, buf, len);
4128 
4129 	return 0;
4130 }
4131 
4132 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4133 	.func		= bpf_xdp_store_bytes,
4134 	.gpl_only	= false,
4135 	.ret_type	= RET_INTEGER,
4136 	.arg1_type	= ARG_PTR_TO_CTX,
4137 	.arg2_type	= ARG_ANYTHING,
4138 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4139 	.arg4_type	= ARG_CONST_SIZE,
4140 };
4141 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4142 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4143 {
4144 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4145 }
4146 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4147 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4148 {
4149 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4150 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4151 	struct xdp_rxq_info *rxq = xdp->rxq;
4152 	unsigned int tailroom;
4153 
4154 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4155 		return -EOPNOTSUPP;
4156 
4157 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4158 	if (unlikely(offset > tailroom))
4159 		return -EINVAL;
4160 
4161 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4162 	skb_frag_size_add(frag, offset);
4163 	sinfo->xdp_frags_size += offset;
4164 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4165 		xsk_buff_get_tail(xdp)->data_end += offset;
4166 
4167 	return 0;
4168 }
4169 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,bool tail,bool release)4170 static struct xdp_buff *bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4171 					       bool tail, bool release)
4172 {
4173 	struct xdp_buff *zc_frag = tail ? xsk_buff_get_tail(xdp) :
4174 					  xsk_buff_get_head(xdp);
4175 
4176 	if (release) {
4177 		xsk_buff_del_frag(zc_frag);
4178 	} else {
4179 		if (tail)
4180 			zc_frag->data_end -= shrink;
4181 		else
4182 			zc_frag->data += shrink;
4183 	}
4184 
4185 	return zc_frag;
4186 }
4187 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink,bool tail)4188 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4189 				int shrink, bool tail)
4190 {
4191 	enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4192 	bool release = skb_frag_size(frag) == shrink;
4193 	netmem_ref netmem = skb_frag_netmem(frag);
4194 	struct xdp_buff *zc_frag = NULL;
4195 
4196 	if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4197 		netmem = 0;
4198 		zc_frag = bpf_xdp_shrink_data_zc(xdp, shrink, tail, release);
4199 	}
4200 
4201 	if (release) {
4202 		__xdp_return(netmem, mem_type, false, zc_frag);
4203 	} else {
4204 		if (!tail)
4205 			skb_frag_off_add(frag, shrink);
4206 		skb_frag_size_sub(frag, shrink);
4207 	}
4208 
4209 	return release;
4210 }
4211 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4212 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4213 {
4214 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4215 	int i, n_frags_free = 0, len_free = 0;
4216 
4217 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4218 		return -EINVAL;
4219 
4220 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4221 		skb_frag_t *frag = &sinfo->frags[i];
4222 		int shrink = min_t(int, offset, skb_frag_size(frag));
4223 
4224 		len_free += shrink;
4225 		offset -= shrink;
4226 		if (bpf_xdp_shrink_data(xdp, frag, shrink, true))
4227 			n_frags_free++;
4228 	}
4229 	sinfo->nr_frags -= n_frags_free;
4230 	sinfo->xdp_frags_size -= len_free;
4231 
4232 	if (unlikely(!sinfo->nr_frags)) {
4233 		xdp_buff_clear_frags_flag(xdp);
4234 		xdp_buff_clear_frag_pfmemalloc(xdp);
4235 		xdp->data_end -= offset;
4236 	}
4237 
4238 	return 0;
4239 }
4240 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4241 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4242 {
4243 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4244 	void *data_end = xdp->data_end + offset;
4245 
4246 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4247 		if (offset < 0)
4248 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4249 
4250 		return bpf_xdp_frags_increase_tail(xdp, offset);
4251 	}
4252 
4253 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4254 	if (unlikely(data_end > data_hard_end))
4255 		return -EINVAL;
4256 
4257 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4258 		return -EINVAL;
4259 
4260 	/* Clear memory area on grow, can contain uninit kernel memory */
4261 	if (offset > 0)
4262 		memset(xdp->data_end, 0, offset);
4263 
4264 	xdp->data_end = data_end;
4265 
4266 	return 0;
4267 }
4268 
4269 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4270 	.func		= bpf_xdp_adjust_tail,
4271 	.gpl_only	= false,
4272 	.ret_type	= RET_INTEGER,
4273 	.arg1_type	= ARG_PTR_TO_CTX,
4274 	.arg2_type	= ARG_ANYTHING,
4275 };
4276 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4277 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4278 {
4279 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4280 	void *meta = xdp->data_meta + offset;
4281 	unsigned long metalen = xdp->data - meta;
4282 
4283 	if (xdp_data_meta_unsupported(xdp))
4284 		return -ENOTSUPP;
4285 	if (unlikely(meta < xdp_frame_end ||
4286 		     meta > xdp->data))
4287 		return -EINVAL;
4288 	if (unlikely(xdp_metalen_invalid(metalen)))
4289 		return -EACCES;
4290 
4291 	xdp->data_meta = meta;
4292 
4293 	return 0;
4294 }
4295 
4296 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4297 	.func		= bpf_xdp_adjust_meta,
4298 	.gpl_only	= false,
4299 	.ret_type	= RET_INTEGER,
4300 	.arg1_type	= ARG_PTR_TO_CTX,
4301 	.arg2_type	= ARG_ANYTHING,
4302 };
4303 
4304 /**
4305  * DOC: xdp redirect
4306  *
4307  * XDP_REDIRECT works by a three-step process, implemented in the functions
4308  * below:
4309  *
4310  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4311  *    of the redirect and store it (along with some other metadata) in a per-CPU
4312  *    struct bpf_redirect_info.
4313  *
4314  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4315  *    call xdp_do_redirect() which will use the information in struct
4316  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4317  *    bulk queue structure.
4318  *
4319  * 3. Before exiting its NAPI poll loop, the driver will call
4320  *    xdp_do_flush(), which will flush all the different bulk queues,
4321  *    thus completing the redirect. Note that xdp_do_flush() must be
4322  *    called before napi_complete_done() in the driver, as the
4323  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4324  *    through to the xdp_do_flush() call for RCU protection of all
4325  *    in-kernel data structures.
4326  */
4327 /*
4328  * Pointers to the map entries will be kept around for this whole sequence of
4329  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4330  * the core code; instead, the RCU protection relies on everything happening
4331  * inside a single NAPI poll sequence, which means it's between a pair of calls
4332  * to local_bh_disable()/local_bh_enable().
4333  *
4334  * The map entries are marked as __rcu and the map code makes sure to
4335  * dereference those pointers with rcu_dereference_check() in a way that works
4336  * for both sections that to hold an rcu_read_lock() and sections that are
4337  * called from NAPI without a separate rcu_read_lock(). The code below does not
4338  * use RCU annotations, but relies on those in the map code.
4339  */
xdp_do_flush(void)4340 void xdp_do_flush(void)
4341 {
4342 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4343 
4344 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4345 	if (lh_dev)
4346 		__dev_flush(lh_dev);
4347 	if (lh_map)
4348 		__cpu_map_flush(lh_map);
4349 	if (lh_xsk)
4350 		__xsk_map_flush(lh_xsk);
4351 }
4352 EXPORT_SYMBOL_GPL(xdp_do_flush);
4353 
4354 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4355 void xdp_do_check_flushed(struct napi_struct *napi)
4356 {
4357 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4358 	bool missed = false;
4359 
4360 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4361 	if (lh_dev) {
4362 		__dev_flush(lh_dev);
4363 		missed = true;
4364 	}
4365 	if (lh_map) {
4366 		__cpu_map_flush(lh_map);
4367 		missed = true;
4368 	}
4369 	if (lh_xsk) {
4370 		__xsk_map_flush(lh_xsk);
4371 		missed = true;
4372 	}
4373 
4374 	WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4375 		  napi->poll);
4376 }
4377 #endif
4378 
4379 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4380 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4381 
xdp_master_redirect(struct xdp_buff * xdp)4382 u32 xdp_master_redirect(struct xdp_buff *xdp)
4383 {
4384 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4385 	struct net_device *master, *slave;
4386 
4387 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4388 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4389 	if (slave && slave != xdp->rxq->dev) {
4390 		/* The target device is different from the receiving device, so
4391 		 * redirect it to the new device.
4392 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4393 		 * drivers to unmap the packet from their rx ring.
4394 		 */
4395 		ri->tgt_index = slave->ifindex;
4396 		ri->map_id = INT_MAX;
4397 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4398 		return XDP_REDIRECT;
4399 	}
4400 	return XDP_TX;
4401 }
4402 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4403 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4404 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4405 					const struct net_device *dev,
4406 					struct xdp_buff *xdp,
4407 					const struct bpf_prog *xdp_prog)
4408 {
4409 	enum bpf_map_type map_type = ri->map_type;
4410 	void *fwd = ri->tgt_value;
4411 	u32 map_id = ri->map_id;
4412 	int err;
4413 
4414 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4415 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4416 
4417 	err = __xsk_map_redirect(fwd, xdp);
4418 	if (unlikely(err))
4419 		goto err;
4420 
4421 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4422 	return 0;
4423 err:
4424 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4425 	return err;
4426 }
4427 
4428 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4429 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4430 			struct xdp_frame *xdpf,
4431 			const struct bpf_prog *xdp_prog)
4432 {
4433 	enum bpf_map_type map_type = ri->map_type;
4434 	void *fwd = ri->tgt_value;
4435 	u32 map_id = ri->map_id;
4436 	u32 flags = ri->flags;
4437 	struct bpf_map *map;
4438 	int err;
4439 
4440 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4441 	ri->flags = 0;
4442 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4443 
4444 	if (unlikely(!xdpf)) {
4445 		err = -EOVERFLOW;
4446 		goto err;
4447 	}
4448 
4449 	switch (map_type) {
4450 	case BPF_MAP_TYPE_DEVMAP:
4451 		fallthrough;
4452 	case BPF_MAP_TYPE_DEVMAP_HASH:
4453 		if (unlikely(flags & BPF_F_BROADCAST)) {
4454 			map = READ_ONCE(ri->map);
4455 
4456 			/* The map pointer is cleared when the map is being torn
4457 			 * down by dev_map_free()
4458 			 */
4459 			if (unlikely(!map)) {
4460 				err = -ENOENT;
4461 				break;
4462 			}
4463 
4464 			WRITE_ONCE(ri->map, NULL);
4465 			err = dev_map_enqueue_multi(xdpf, dev, map,
4466 						    flags & BPF_F_EXCLUDE_INGRESS);
4467 		} else {
4468 			err = dev_map_enqueue(fwd, xdpf, dev);
4469 		}
4470 		break;
4471 	case BPF_MAP_TYPE_CPUMAP:
4472 		err = cpu_map_enqueue(fwd, xdpf, dev);
4473 		break;
4474 	case BPF_MAP_TYPE_UNSPEC:
4475 		if (map_id == INT_MAX) {
4476 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4477 			if (unlikely(!fwd)) {
4478 				err = -EINVAL;
4479 				break;
4480 			}
4481 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4482 			break;
4483 		}
4484 		fallthrough;
4485 	default:
4486 		err = -EBADRQC;
4487 	}
4488 
4489 	if (unlikely(err))
4490 		goto err;
4491 
4492 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4493 	return 0;
4494 err:
4495 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4496 	return err;
4497 }
4498 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4499 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4500 		    const struct bpf_prog *xdp_prog)
4501 {
4502 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4503 	enum bpf_map_type map_type = ri->map_type;
4504 
4505 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4506 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4507 
4508 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4509 				       xdp_prog);
4510 }
4511 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4512 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4513 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4514 			  struct xdp_frame *xdpf,
4515 			  const struct bpf_prog *xdp_prog)
4516 {
4517 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4518 	enum bpf_map_type map_type = ri->map_type;
4519 
4520 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4521 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4522 
4523 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4524 }
4525 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4526 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4527 static int xdp_do_generic_redirect_map(struct net_device *dev,
4528 				       struct sk_buff *skb,
4529 				       struct xdp_buff *xdp,
4530 				       const struct bpf_prog *xdp_prog,
4531 				       void *fwd, enum bpf_map_type map_type,
4532 				       u32 map_id, u32 flags)
4533 {
4534 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4535 	struct bpf_map *map;
4536 	int err;
4537 
4538 	switch (map_type) {
4539 	case BPF_MAP_TYPE_DEVMAP:
4540 		fallthrough;
4541 	case BPF_MAP_TYPE_DEVMAP_HASH:
4542 		if (unlikely(flags & BPF_F_BROADCAST)) {
4543 			map = READ_ONCE(ri->map);
4544 
4545 			/* The map pointer is cleared when the map is being torn
4546 			 * down by dev_map_free()
4547 			 */
4548 			if (unlikely(!map)) {
4549 				err = -ENOENT;
4550 				break;
4551 			}
4552 
4553 			WRITE_ONCE(ri->map, NULL);
4554 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4555 						     flags & BPF_F_EXCLUDE_INGRESS);
4556 		} else {
4557 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4558 		}
4559 		if (unlikely(err))
4560 			goto err;
4561 		break;
4562 	case BPF_MAP_TYPE_XSKMAP:
4563 		err = xsk_generic_rcv(fwd, xdp);
4564 		if (err)
4565 			goto err;
4566 		consume_skb(skb);
4567 		break;
4568 	case BPF_MAP_TYPE_CPUMAP:
4569 		err = cpu_map_generic_redirect(fwd, skb);
4570 		if (unlikely(err))
4571 			goto err;
4572 		break;
4573 	default:
4574 		err = -EBADRQC;
4575 		goto err;
4576 	}
4577 
4578 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4579 	return 0;
4580 err:
4581 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4582 	return err;
4583 }
4584 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4585 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4586 			    struct xdp_buff *xdp,
4587 			    const struct bpf_prog *xdp_prog)
4588 {
4589 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4590 	enum bpf_map_type map_type = ri->map_type;
4591 	void *fwd = ri->tgt_value;
4592 	u32 map_id = ri->map_id;
4593 	u32 flags = ri->flags;
4594 	int err;
4595 
4596 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4597 	ri->flags = 0;
4598 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4599 
4600 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4601 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4602 		if (unlikely(!fwd)) {
4603 			err = -EINVAL;
4604 			goto err;
4605 		}
4606 
4607 		err = xdp_ok_fwd_dev(fwd, skb->len);
4608 		if (unlikely(err))
4609 			goto err;
4610 
4611 		skb->dev = fwd;
4612 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4613 		generic_xdp_tx(skb, xdp_prog);
4614 		return 0;
4615 	}
4616 
4617 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4618 err:
4619 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4620 	return err;
4621 }
4622 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4623 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4624 {
4625 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4626 
4627 	if (unlikely(flags))
4628 		return XDP_ABORTED;
4629 
4630 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4631 	 * by map_idr) is used for ifindex based XDP redirect.
4632 	 */
4633 	ri->tgt_index = ifindex;
4634 	ri->map_id = INT_MAX;
4635 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4636 
4637 	return XDP_REDIRECT;
4638 }
4639 
4640 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4641 	.func           = bpf_xdp_redirect,
4642 	.gpl_only       = false,
4643 	.ret_type       = RET_INTEGER,
4644 	.arg1_type      = ARG_ANYTHING,
4645 	.arg2_type      = ARG_ANYTHING,
4646 };
4647 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4648 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4649 	   u64, flags)
4650 {
4651 	return map->ops->map_redirect(map, key, flags);
4652 }
4653 
4654 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4655 	.func           = bpf_xdp_redirect_map,
4656 	.gpl_only       = false,
4657 	.ret_type       = RET_INTEGER,
4658 	.arg1_type      = ARG_CONST_MAP_PTR,
4659 	.arg2_type      = ARG_ANYTHING,
4660 	.arg3_type      = ARG_ANYTHING,
4661 };
4662 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4663 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4664 				  unsigned long off, unsigned long len)
4665 {
4666 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4667 
4668 	if (unlikely(!ptr))
4669 		return len;
4670 	if (ptr != dst_buff)
4671 		memcpy(dst_buff, ptr, len);
4672 
4673 	return 0;
4674 }
4675 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4676 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4677 	   u64, flags, void *, meta, u64, meta_size)
4678 {
4679 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4680 
4681 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4682 		return -EINVAL;
4683 	if (unlikely(!skb || skb_size > skb->len))
4684 		return -EFAULT;
4685 
4686 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4687 				bpf_skb_copy);
4688 }
4689 
4690 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4691 	.func		= bpf_skb_event_output,
4692 	.gpl_only	= true,
4693 	.ret_type	= RET_INTEGER,
4694 	.arg1_type	= ARG_PTR_TO_CTX,
4695 	.arg2_type	= ARG_CONST_MAP_PTR,
4696 	.arg3_type	= ARG_ANYTHING,
4697 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4698 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4699 };
4700 
4701 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4702 
4703 const struct bpf_func_proto bpf_skb_output_proto = {
4704 	.func		= bpf_skb_event_output,
4705 	.gpl_only	= true,
4706 	.ret_type	= RET_INTEGER,
4707 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4708 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4709 	.arg2_type	= ARG_CONST_MAP_PTR,
4710 	.arg3_type	= ARG_ANYTHING,
4711 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4712 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4713 };
4714 
bpf_tunnel_key_af(u64 flags)4715 static unsigned short bpf_tunnel_key_af(u64 flags)
4716 {
4717 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4718 }
4719 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4720 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4721 	   u32, size, u64, flags)
4722 {
4723 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4724 	u8 compat[sizeof(struct bpf_tunnel_key)];
4725 	void *to_orig = to;
4726 	int err;
4727 
4728 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4729 					 BPF_F_TUNINFO_FLAGS)))) {
4730 		err = -EINVAL;
4731 		goto err_clear;
4732 	}
4733 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4734 		err = -EPROTO;
4735 		goto err_clear;
4736 	}
4737 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4738 		err = -EINVAL;
4739 		switch (size) {
4740 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4741 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4742 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4743 			goto set_compat;
4744 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4745 			/* Fixup deprecated structure layouts here, so we have
4746 			 * a common path later on.
4747 			 */
4748 			if (ip_tunnel_info_af(info) != AF_INET)
4749 				goto err_clear;
4750 set_compat:
4751 			to = (struct bpf_tunnel_key *)compat;
4752 			break;
4753 		default:
4754 			goto err_clear;
4755 		}
4756 	}
4757 
4758 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4759 	to->tunnel_tos = info->key.tos;
4760 	to->tunnel_ttl = info->key.ttl;
4761 	if (flags & BPF_F_TUNINFO_FLAGS)
4762 		to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4763 	else
4764 		to->tunnel_ext = 0;
4765 
4766 	if (flags & BPF_F_TUNINFO_IPV6) {
4767 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4768 		       sizeof(to->remote_ipv6));
4769 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4770 		       sizeof(to->local_ipv6));
4771 		to->tunnel_label = be32_to_cpu(info->key.label);
4772 	} else {
4773 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4774 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4775 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4776 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4777 		to->tunnel_label = 0;
4778 	}
4779 
4780 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4781 		memcpy(to_orig, to, size);
4782 
4783 	return 0;
4784 err_clear:
4785 	memset(to_orig, 0, size);
4786 	return err;
4787 }
4788 
4789 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4790 	.func		= bpf_skb_get_tunnel_key,
4791 	.gpl_only	= false,
4792 	.ret_type	= RET_INTEGER,
4793 	.arg1_type	= ARG_PTR_TO_CTX,
4794 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4795 	.arg3_type	= ARG_CONST_SIZE,
4796 	.arg4_type	= ARG_ANYTHING,
4797 };
4798 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4799 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4800 {
4801 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4802 	int err;
4803 
4804 	if (unlikely(!info ||
4805 		     !ip_tunnel_is_options_present(info->key.tun_flags))) {
4806 		err = -ENOENT;
4807 		goto err_clear;
4808 	}
4809 	if (unlikely(size < info->options_len)) {
4810 		err = -ENOMEM;
4811 		goto err_clear;
4812 	}
4813 
4814 	ip_tunnel_info_opts_get(to, info);
4815 	if (size > info->options_len)
4816 		memset(to + info->options_len, 0, size - info->options_len);
4817 
4818 	return info->options_len;
4819 err_clear:
4820 	memset(to, 0, size);
4821 	return err;
4822 }
4823 
4824 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4825 	.func		= bpf_skb_get_tunnel_opt,
4826 	.gpl_only	= false,
4827 	.ret_type	= RET_INTEGER,
4828 	.arg1_type	= ARG_PTR_TO_CTX,
4829 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4830 	.arg3_type	= ARG_CONST_SIZE,
4831 };
4832 
4833 static struct metadata_dst __percpu *md_dst;
4834 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4835 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4836 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4837 {
4838 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4839 	u8 compat[sizeof(struct bpf_tunnel_key)];
4840 	struct ip_tunnel_info *info;
4841 
4842 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4843 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4844 			       BPF_F_NO_TUNNEL_KEY)))
4845 		return -EINVAL;
4846 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4847 		switch (size) {
4848 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4849 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4850 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4851 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4852 			/* Fixup deprecated structure layouts here, so we have
4853 			 * a common path later on.
4854 			 */
4855 			memcpy(compat, from, size);
4856 			memset(compat + size, 0, sizeof(compat) - size);
4857 			from = (const struct bpf_tunnel_key *) compat;
4858 			break;
4859 		default:
4860 			return -EINVAL;
4861 		}
4862 	}
4863 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4864 		     from->tunnel_ext))
4865 		return -EINVAL;
4866 
4867 	skb_dst_drop(skb);
4868 	dst_hold((struct dst_entry *) md);
4869 	skb_dst_set(skb, (struct dst_entry *) md);
4870 
4871 	info = &md->u.tun_info;
4872 	memset(info, 0, sizeof(*info));
4873 	info->mode = IP_TUNNEL_INFO_TX;
4874 
4875 	__set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4876 	__assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4877 		     flags & BPF_F_DONT_FRAGMENT);
4878 	__assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4879 		     !(flags & BPF_F_ZERO_CSUM_TX));
4880 	__assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4881 		     flags & BPF_F_SEQ_NUMBER);
4882 	__assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4883 		     !(flags & BPF_F_NO_TUNNEL_KEY));
4884 
4885 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4886 	info->key.tos = from->tunnel_tos;
4887 	info->key.ttl = from->tunnel_ttl;
4888 
4889 	if (flags & BPF_F_TUNINFO_IPV6) {
4890 		info->mode |= IP_TUNNEL_INFO_IPV6;
4891 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4892 		       sizeof(from->remote_ipv6));
4893 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4894 		       sizeof(from->local_ipv6));
4895 		info->key.label = cpu_to_be32(from->tunnel_label) &
4896 				  IPV6_FLOWLABEL_MASK;
4897 	} else {
4898 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4899 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4900 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4901 	}
4902 
4903 	return 0;
4904 }
4905 
4906 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4907 	.func		= bpf_skb_set_tunnel_key,
4908 	.gpl_only	= false,
4909 	.ret_type	= RET_INTEGER,
4910 	.arg1_type	= ARG_PTR_TO_CTX,
4911 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4912 	.arg3_type	= ARG_CONST_SIZE,
4913 	.arg4_type	= ARG_ANYTHING,
4914 };
4915 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4916 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4917 	   const u8 *, from, u32, size)
4918 {
4919 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4920 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4921 	IP_TUNNEL_DECLARE_FLAGS(present) = { };
4922 
4923 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4924 		return -EINVAL;
4925 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4926 		return -ENOMEM;
4927 
4928 	ip_tunnel_set_options_present(present);
4929 	ip_tunnel_info_opts_set(info, from, size, present);
4930 
4931 	return 0;
4932 }
4933 
4934 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4935 	.func		= bpf_skb_set_tunnel_opt,
4936 	.gpl_only	= false,
4937 	.ret_type	= RET_INTEGER,
4938 	.arg1_type	= ARG_PTR_TO_CTX,
4939 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4940 	.arg3_type	= ARG_CONST_SIZE,
4941 };
4942 
4943 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4944 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4945 {
4946 	if (!md_dst) {
4947 		struct metadata_dst __percpu *tmp;
4948 
4949 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4950 						METADATA_IP_TUNNEL,
4951 						GFP_KERNEL);
4952 		if (!tmp)
4953 			return NULL;
4954 		if (cmpxchg(&md_dst, NULL, tmp))
4955 			metadata_dst_free_percpu(tmp);
4956 	}
4957 
4958 	switch (which) {
4959 	case BPF_FUNC_skb_set_tunnel_key:
4960 		return &bpf_skb_set_tunnel_key_proto;
4961 	case BPF_FUNC_skb_set_tunnel_opt:
4962 		return &bpf_skb_set_tunnel_opt_proto;
4963 	default:
4964 		return NULL;
4965 	}
4966 }
4967 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4968 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4969 	   u32, idx)
4970 {
4971 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4972 	struct cgroup *cgrp;
4973 	struct sock *sk;
4974 
4975 	sk = skb_to_full_sk(skb);
4976 	if (!sk || !sk_fullsock(sk))
4977 		return -ENOENT;
4978 	if (unlikely(idx >= array->map.max_entries))
4979 		return -E2BIG;
4980 
4981 	cgrp = READ_ONCE(array->ptrs[idx]);
4982 	if (unlikely(!cgrp))
4983 		return -EAGAIN;
4984 
4985 	return sk_under_cgroup_hierarchy(sk, cgrp);
4986 }
4987 
4988 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4989 	.func		= bpf_skb_under_cgroup,
4990 	.gpl_only	= false,
4991 	.ret_type	= RET_INTEGER,
4992 	.arg1_type	= ARG_PTR_TO_CTX,
4993 	.arg2_type	= ARG_CONST_MAP_PTR,
4994 	.arg3_type	= ARG_ANYTHING,
4995 };
4996 
4997 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4998 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4999 {
5000 	struct cgroup *cgrp;
5001 
5002 	sk = sk_to_full_sk(sk);
5003 	if (!sk || !sk_fullsock(sk))
5004 		return 0;
5005 
5006 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5007 	return cgroup_id(cgrp);
5008 }
5009 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)5010 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
5011 {
5012 	return __bpf_sk_cgroup_id(skb->sk);
5013 }
5014 
5015 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
5016 	.func           = bpf_skb_cgroup_id,
5017 	.gpl_only       = false,
5018 	.ret_type       = RET_INTEGER,
5019 	.arg1_type      = ARG_PTR_TO_CTX,
5020 };
5021 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)5022 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
5023 					      int ancestor_level)
5024 {
5025 	struct cgroup *ancestor;
5026 	struct cgroup *cgrp;
5027 
5028 	sk = sk_to_full_sk(sk);
5029 	if (!sk || !sk_fullsock(sk))
5030 		return 0;
5031 
5032 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5033 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
5034 	if (!ancestor)
5035 		return 0;
5036 
5037 	return cgroup_id(ancestor);
5038 }
5039 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5040 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5041 	   ancestor_level)
5042 {
5043 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5044 }
5045 
5046 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5047 	.func           = bpf_skb_ancestor_cgroup_id,
5048 	.gpl_only       = false,
5049 	.ret_type       = RET_INTEGER,
5050 	.arg1_type      = ARG_PTR_TO_CTX,
5051 	.arg2_type      = ARG_ANYTHING,
5052 };
5053 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5054 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5055 {
5056 	return __bpf_sk_cgroup_id(sk);
5057 }
5058 
5059 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5060 	.func           = bpf_sk_cgroup_id,
5061 	.gpl_only       = false,
5062 	.ret_type       = RET_INTEGER,
5063 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5064 };
5065 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5066 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5067 {
5068 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5069 }
5070 
5071 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5072 	.func           = bpf_sk_ancestor_cgroup_id,
5073 	.gpl_only       = false,
5074 	.ret_type       = RET_INTEGER,
5075 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5076 	.arg2_type      = ARG_ANYTHING,
5077 };
5078 #endif
5079 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5080 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5081 				  unsigned long off, unsigned long len)
5082 {
5083 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5084 
5085 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5086 	return 0;
5087 }
5088 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5089 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5090 	   u64, flags, void *, meta, u64, meta_size)
5091 {
5092 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5093 
5094 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5095 		return -EINVAL;
5096 
5097 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5098 		return -EFAULT;
5099 
5100 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5101 				xdp_size, bpf_xdp_copy);
5102 }
5103 
5104 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5105 	.func		= bpf_xdp_event_output,
5106 	.gpl_only	= true,
5107 	.ret_type	= RET_INTEGER,
5108 	.arg1_type	= ARG_PTR_TO_CTX,
5109 	.arg2_type	= ARG_CONST_MAP_PTR,
5110 	.arg3_type	= ARG_ANYTHING,
5111 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5112 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5113 };
5114 
5115 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5116 
5117 const struct bpf_func_proto bpf_xdp_output_proto = {
5118 	.func		= bpf_xdp_event_output,
5119 	.gpl_only	= true,
5120 	.ret_type	= RET_INTEGER,
5121 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5122 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5123 	.arg2_type	= ARG_CONST_MAP_PTR,
5124 	.arg3_type	= ARG_ANYTHING,
5125 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5126 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5127 };
5128 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5129 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5130 {
5131 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5132 }
5133 
5134 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5135 	.func           = bpf_get_socket_cookie,
5136 	.gpl_only       = false,
5137 	.ret_type       = RET_INTEGER,
5138 	.arg1_type      = ARG_PTR_TO_CTX,
5139 };
5140 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5141 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5142 {
5143 	return __sock_gen_cookie(ctx->sk);
5144 }
5145 
5146 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5147 	.func		= bpf_get_socket_cookie_sock_addr,
5148 	.gpl_only	= false,
5149 	.ret_type	= RET_INTEGER,
5150 	.arg1_type	= ARG_PTR_TO_CTX,
5151 };
5152 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5153 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5154 {
5155 	return __sock_gen_cookie(ctx);
5156 }
5157 
5158 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5159 	.func		= bpf_get_socket_cookie_sock,
5160 	.gpl_only	= false,
5161 	.ret_type	= RET_INTEGER,
5162 	.arg1_type	= ARG_PTR_TO_CTX,
5163 };
5164 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5165 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5166 {
5167 	return sk ? sock_gen_cookie(sk) : 0;
5168 }
5169 
5170 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5171 	.func		= bpf_get_socket_ptr_cookie,
5172 	.gpl_only	= false,
5173 	.ret_type	= RET_INTEGER,
5174 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5175 };
5176 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5177 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5178 {
5179 	return __sock_gen_cookie(ctx->sk);
5180 }
5181 
5182 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5183 	.func		= bpf_get_socket_cookie_sock_ops,
5184 	.gpl_only	= false,
5185 	.ret_type	= RET_INTEGER,
5186 	.arg1_type	= ARG_PTR_TO_CTX,
5187 };
5188 
__bpf_get_netns_cookie(struct sock * sk)5189 static u64 __bpf_get_netns_cookie(struct sock *sk)
5190 {
5191 	const struct net *net = sk ? sock_net(sk) : &init_net;
5192 
5193 	return net->net_cookie;
5194 }
5195 
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5196 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5197 {
5198 	return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5199 }
5200 
5201 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5202 	.func           = bpf_get_netns_cookie,
5203 	.ret_type       = RET_INTEGER,
5204 	.arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5205 };
5206 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5207 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5208 {
5209 	return __bpf_get_netns_cookie(ctx);
5210 }
5211 
5212 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5213 	.func		= bpf_get_netns_cookie_sock,
5214 	.gpl_only	= false,
5215 	.ret_type	= RET_INTEGER,
5216 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5217 };
5218 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5219 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5220 {
5221 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5222 }
5223 
5224 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5225 	.func		= bpf_get_netns_cookie_sock_addr,
5226 	.gpl_only	= false,
5227 	.ret_type	= RET_INTEGER,
5228 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5229 };
5230 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5231 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5232 {
5233 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5234 }
5235 
5236 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5237 	.func		= bpf_get_netns_cookie_sock_ops,
5238 	.gpl_only	= false,
5239 	.ret_type	= RET_INTEGER,
5240 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5241 };
5242 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5243 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5244 {
5245 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5246 }
5247 
5248 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5249 	.func		= bpf_get_netns_cookie_sk_msg,
5250 	.gpl_only	= false,
5251 	.ret_type	= RET_INTEGER,
5252 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5253 };
5254 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5255 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5256 {
5257 	struct sock *sk = sk_to_full_sk(skb->sk);
5258 	kuid_t kuid;
5259 
5260 	if (!sk || !sk_fullsock(sk))
5261 		return overflowuid;
5262 	kuid = sock_net_uid(sock_net(sk), sk);
5263 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5264 }
5265 
5266 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5267 	.func           = bpf_get_socket_uid,
5268 	.gpl_only       = false,
5269 	.ret_type       = RET_INTEGER,
5270 	.arg1_type      = ARG_PTR_TO_CTX,
5271 };
5272 
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5273 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5274 {
5275 	u32 sk_bpf_cb_flags;
5276 
5277 	if (getopt) {
5278 		*(u32 *)optval = sk->sk_bpf_cb_flags;
5279 		return 0;
5280 	}
5281 
5282 	sk_bpf_cb_flags = *(u32 *)optval;
5283 
5284 	if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5285 		return -EINVAL;
5286 
5287 	sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5288 
5289 	return 0;
5290 }
5291 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5292 static int sol_socket_sockopt(struct sock *sk, int optname,
5293 			      char *optval, int *optlen,
5294 			      bool getopt)
5295 {
5296 	switch (optname) {
5297 	case SO_REUSEADDR:
5298 	case SO_SNDBUF:
5299 	case SO_RCVBUF:
5300 	case SO_KEEPALIVE:
5301 	case SO_PRIORITY:
5302 	case SO_REUSEPORT:
5303 	case SO_RCVLOWAT:
5304 	case SO_MARK:
5305 	case SO_MAX_PACING_RATE:
5306 	case SO_BINDTOIFINDEX:
5307 	case SO_TXREHASH:
5308 	case SK_BPF_CB_FLAGS:
5309 		if (*optlen != sizeof(int))
5310 			return -EINVAL;
5311 		break;
5312 	case SO_BINDTODEVICE:
5313 		break;
5314 	default:
5315 		return -EINVAL;
5316 	}
5317 
5318 	if (optname == SK_BPF_CB_FLAGS)
5319 		return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5320 
5321 	if (getopt) {
5322 		if (optname == SO_BINDTODEVICE)
5323 			return -EINVAL;
5324 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5325 				     KERNEL_SOCKPTR(optval),
5326 				     KERNEL_SOCKPTR(optlen));
5327 	}
5328 
5329 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5330 			     KERNEL_SOCKPTR(optval), *optlen);
5331 }
5332 
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5333 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5334 				  char *optval, int optlen)
5335 {
5336 	if (optlen != sizeof(int))
5337 		return -EINVAL;
5338 
5339 	switch (optname) {
5340 	case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5341 		int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5342 
5343 		memcpy(optval, &cb_flags, optlen);
5344 		break;
5345 	}
5346 	case TCP_BPF_RTO_MIN: {
5347 		int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5348 
5349 		memcpy(optval, &rto_min_us, optlen);
5350 		break;
5351 	}
5352 	case TCP_BPF_DELACK_MAX: {
5353 		int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5354 
5355 		memcpy(optval, &delack_max_us, optlen);
5356 		break;
5357 	}
5358 	default:
5359 		return -EINVAL;
5360 	}
5361 
5362 	return 0;
5363 }
5364 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5365 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5366 				  char *optval, int optlen)
5367 {
5368 	struct tcp_sock *tp = tcp_sk(sk);
5369 	unsigned long timeout;
5370 	int val;
5371 
5372 	if (optlen != sizeof(int))
5373 		return -EINVAL;
5374 
5375 	val = *(int *)optval;
5376 
5377 	/* Only some options are supported */
5378 	switch (optname) {
5379 	case TCP_BPF_IW:
5380 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5381 			return -EINVAL;
5382 		tcp_snd_cwnd_set(tp, val);
5383 		break;
5384 	case TCP_BPF_SNDCWND_CLAMP:
5385 		if (val <= 0)
5386 			return -EINVAL;
5387 		tp->snd_cwnd_clamp = val;
5388 		tp->snd_ssthresh = val;
5389 		break;
5390 	case TCP_BPF_DELACK_MAX:
5391 		timeout = usecs_to_jiffies(val);
5392 		if (timeout > TCP_DELACK_MAX ||
5393 		    timeout < TCP_TIMEOUT_MIN)
5394 			return -EINVAL;
5395 		inet_csk(sk)->icsk_delack_max = timeout;
5396 		break;
5397 	case TCP_BPF_RTO_MIN:
5398 		timeout = usecs_to_jiffies(val);
5399 		if (timeout > TCP_RTO_MIN ||
5400 		    timeout < TCP_TIMEOUT_MIN)
5401 			return -EINVAL;
5402 		inet_csk(sk)->icsk_rto_min = timeout;
5403 		break;
5404 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5405 		if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5406 			return -EINVAL;
5407 		tp->bpf_sock_ops_cb_flags = val;
5408 		break;
5409 	default:
5410 		return -EINVAL;
5411 	}
5412 
5413 	return 0;
5414 }
5415 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5416 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5417 				      int *optlen, bool getopt)
5418 {
5419 	struct tcp_sock *tp;
5420 	int ret;
5421 
5422 	if (*optlen < 2)
5423 		return -EINVAL;
5424 
5425 	if (getopt) {
5426 		if (!inet_csk(sk)->icsk_ca_ops)
5427 			return -EINVAL;
5428 		/* BPF expects NULL-terminated tcp-cc string */
5429 		optval[--(*optlen)] = '\0';
5430 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5431 					 KERNEL_SOCKPTR(optval),
5432 					 KERNEL_SOCKPTR(optlen));
5433 	}
5434 
5435 	/* "cdg" is the only cc that alloc a ptr
5436 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5437 	 * overwrite this ptr after switching to cdg.
5438 	 */
5439 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5440 		return -ENOTSUPP;
5441 
5442 	/* It stops this looping
5443 	 *
5444 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5445 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5446 	 *
5447 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5448 	 * in order to break the loop when both .init
5449 	 * are the same bpf prog.
5450 	 *
5451 	 * This applies even the second bpf_setsockopt(tcp_cc)
5452 	 * does not cause a loop.  This limits only the first
5453 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5454 	 * pick a fallback cc (eg. peer does not support ECN)
5455 	 * and the second '.init' cannot fallback to
5456 	 * another.
5457 	 */
5458 	tp = tcp_sk(sk);
5459 	if (tp->bpf_chg_cc_inprogress)
5460 		return -EBUSY;
5461 
5462 	tp->bpf_chg_cc_inprogress = 1;
5463 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5464 				KERNEL_SOCKPTR(optval), *optlen);
5465 	tp->bpf_chg_cc_inprogress = 0;
5466 	return ret;
5467 }
5468 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5469 static int sol_tcp_sockopt(struct sock *sk, int optname,
5470 			   char *optval, int *optlen,
5471 			   bool getopt)
5472 {
5473 	if (sk->sk_protocol != IPPROTO_TCP)
5474 		return -EINVAL;
5475 
5476 	switch (optname) {
5477 	case TCP_NODELAY:
5478 	case TCP_MAXSEG:
5479 	case TCP_KEEPIDLE:
5480 	case TCP_KEEPINTVL:
5481 	case TCP_KEEPCNT:
5482 	case TCP_SYNCNT:
5483 	case TCP_WINDOW_CLAMP:
5484 	case TCP_THIN_LINEAR_TIMEOUTS:
5485 	case TCP_USER_TIMEOUT:
5486 	case TCP_NOTSENT_LOWAT:
5487 	case TCP_SAVE_SYN:
5488 	case TCP_RTO_MAX_MS:
5489 		if (*optlen != sizeof(int))
5490 			return -EINVAL;
5491 		break;
5492 	case TCP_CONGESTION:
5493 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5494 	case TCP_SAVED_SYN:
5495 		if (*optlen < 1)
5496 			return -EINVAL;
5497 		break;
5498 	default:
5499 		if (getopt)
5500 			return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5501 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5502 	}
5503 
5504 	if (getopt) {
5505 		if (optname == TCP_SAVED_SYN) {
5506 			struct tcp_sock *tp = tcp_sk(sk);
5507 
5508 			if (!tp->saved_syn ||
5509 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5510 				return -EINVAL;
5511 			memcpy(optval, tp->saved_syn->data, *optlen);
5512 			/* It cannot free tp->saved_syn here because it
5513 			 * does not know if the user space still needs it.
5514 			 */
5515 			return 0;
5516 		}
5517 
5518 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5519 					 KERNEL_SOCKPTR(optval),
5520 					 KERNEL_SOCKPTR(optlen));
5521 	}
5522 
5523 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5524 				 KERNEL_SOCKPTR(optval), *optlen);
5525 }
5526 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5527 static int sol_ip_sockopt(struct sock *sk, int optname,
5528 			  char *optval, int *optlen,
5529 			  bool getopt)
5530 {
5531 	if (sk->sk_family != AF_INET)
5532 		return -EINVAL;
5533 
5534 	switch (optname) {
5535 	case IP_TOS:
5536 		if (*optlen != sizeof(int))
5537 			return -EINVAL;
5538 		break;
5539 	default:
5540 		return -EINVAL;
5541 	}
5542 
5543 	if (getopt)
5544 		return do_ip_getsockopt(sk, SOL_IP, optname,
5545 					KERNEL_SOCKPTR(optval),
5546 					KERNEL_SOCKPTR(optlen));
5547 
5548 	return do_ip_setsockopt(sk, SOL_IP, optname,
5549 				KERNEL_SOCKPTR(optval), *optlen);
5550 }
5551 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5552 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5553 			    char *optval, int *optlen,
5554 			    bool getopt)
5555 {
5556 	if (sk->sk_family != AF_INET6)
5557 		return -EINVAL;
5558 
5559 	switch (optname) {
5560 	case IPV6_TCLASS:
5561 	case IPV6_AUTOFLOWLABEL:
5562 		if (*optlen != sizeof(int))
5563 			return -EINVAL;
5564 		break;
5565 	default:
5566 		return -EINVAL;
5567 	}
5568 
5569 	if (getopt)
5570 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5571 						      KERNEL_SOCKPTR(optval),
5572 						      KERNEL_SOCKPTR(optlen));
5573 
5574 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5575 					      KERNEL_SOCKPTR(optval), *optlen);
5576 }
5577 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5578 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5579 			    char *optval, int optlen)
5580 {
5581 	if (!sk_fullsock(sk))
5582 		return -EINVAL;
5583 
5584 	if (level == SOL_SOCKET)
5585 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5586 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5587 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5588 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5589 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5590 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5591 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5592 
5593 	return -EINVAL;
5594 }
5595 
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5596 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5597 {
5598 	return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5599 }
5600 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5601 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5602 			   char *optval, int optlen)
5603 {
5604 	if (sk_fullsock(sk))
5605 		sock_owned_by_me(sk);
5606 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5607 }
5608 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5609 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5610 			    char *optval, int optlen)
5611 {
5612 	int err, saved_optlen = optlen;
5613 
5614 	if (!sk_fullsock(sk)) {
5615 		err = -EINVAL;
5616 		goto done;
5617 	}
5618 
5619 	if (level == SOL_SOCKET)
5620 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5621 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5622 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5623 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5624 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5625 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5626 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5627 	else
5628 		err = -EINVAL;
5629 
5630 done:
5631 	if (err)
5632 		optlen = 0;
5633 	if (optlen < saved_optlen)
5634 		memset(optval + optlen, 0, saved_optlen - optlen);
5635 	return err;
5636 }
5637 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5638 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5639 			   char *optval, int optlen)
5640 {
5641 	if (sk_fullsock(sk))
5642 		sock_owned_by_me(sk);
5643 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5644 }
5645 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5646 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5647 	   int, optname, char *, optval, int, optlen)
5648 {
5649 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5650 }
5651 
5652 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5653 	.func		= bpf_sk_setsockopt,
5654 	.gpl_only	= false,
5655 	.ret_type	= RET_INTEGER,
5656 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5657 	.arg2_type	= ARG_ANYTHING,
5658 	.arg3_type	= ARG_ANYTHING,
5659 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5660 	.arg5_type	= ARG_CONST_SIZE,
5661 };
5662 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5663 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5664 	   int, optname, char *, optval, int, optlen)
5665 {
5666 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5667 }
5668 
5669 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5670 	.func		= bpf_sk_getsockopt,
5671 	.gpl_only	= false,
5672 	.ret_type	= RET_INTEGER,
5673 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5674 	.arg2_type	= ARG_ANYTHING,
5675 	.arg3_type	= ARG_ANYTHING,
5676 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5677 	.arg5_type	= ARG_CONST_SIZE,
5678 };
5679 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5680 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5681 	   int, optname, char *, optval, int, optlen)
5682 {
5683 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5684 }
5685 
5686 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5687 	.func		= bpf_unlocked_sk_setsockopt,
5688 	.gpl_only	= false,
5689 	.ret_type	= RET_INTEGER,
5690 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5691 	.arg2_type	= ARG_ANYTHING,
5692 	.arg3_type	= ARG_ANYTHING,
5693 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5694 	.arg5_type	= ARG_CONST_SIZE,
5695 };
5696 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5697 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5698 	   int, optname, char *, optval, int, optlen)
5699 {
5700 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5701 }
5702 
5703 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5704 	.func		= bpf_unlocked_sk_getsockopt,
5705 	.gpl_only	= false,
5706 	.ret_type	= RET_INTEGER,
5707 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5708 	.arg2_type	= ARG_ANYTHING,
5709 	.arg3_type	= ARG_ANYTHING,
5710 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5711 	.arg5_type	= ARG_CONST_SIZE,
5712 };
5713 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5714 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5715 	   int, level, int, optname, char *, optval, int, optlen)
5716 {
5717 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5718 }
5719 
5720 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5721 	.func		= bpf_sock_addr_setsockopt,
5722 	.gpl_only	= false,
5723 	.ret_type	= RET_INTEGER,
5724 	.arg1_type	= ARG_PTR_TO_CTX,
5725 	.arg2_type	= ARG_ANYTHING,
5726 	.arg3_type	= ARG_ANYTHING,
5727 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5728 	.arg5_type	= ARG_CONST_SIZE,
5729 };
5730 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5731 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5732 	   int, level, int, optname, char *, optval, int, optlen)
5733 {
5734 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5735 }
5736 
5737 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5738 	.func		= bpf_sock_addr_getsockopt,
5739 	.gpl_only	= false,
5740 	.ret_type	= RET_INTEGER,
5741 	.arg1_type	= ARG_PTR_TO_CTX,
5742 	.arg2_type	= ARG_ANYTHING,
5743 	.arg3_type	= ARG_ANYTHING,
5744 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5745 	.arg5_type	= ARG_CONST_SIZE,
5746 };
5747 
sk_bpf_set_get_bypass_prot_mem(struct sock * sk,char * optval,int optlen,bool getopt)5748 static int sk_bpf_set_get_bypass_prot_mem(struct sock *sk,
5749 					  char *optval, int optlen,
5750 					  bool getopt)
5751 {
5752 	int val;
5753 
5754 	if (optlen != sizeof(int))
5755 		return -EINVAL;
5756 
5757 	if (!sk_has_account(sk))
5758 		return -EOPNOTSUPP;
5759 
5760 	if (getopt) {
5761 		*(int *)optval = sk->sk_bypass_prot_mem;
5762 		return 0;
5763 	}
5764 
5765 	val = *(int *)optval;
5766 	if (val < 0 || val > 1)
5767 		return -EINVAL;
5768 
5769 	sk->sk_bypass_prot_mem = val;
5770 	return 0;
5771 }
5772 
BPF_CALL_5(bpf_sock_create_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5773 BPF_CALL_5(bpf_sock_create_setsockopt, struct sock *, sk, int, level,
5774 	   int, optname, char *, optval, int, optlen)
5775 {
5776 	if (level == SOL_SOCKET && optname == SK_BPF_BYPASS_PROT_MEM)
5777 		return sk_bpf_set_get_bypass_prot_mem(sk, optval, optlen, false);
5778 
5779 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5780 }
5781 
5782 static const struct bpf_func_proto bpf_sock_create_setsockopt_proto = {
5783 	.func		= bpf_sock_create_setsockopt,
5784 	.gpl_only	= false,
5785 	.ret_type	= RET_INTEGER,
5786 	.arg1_type	= ARG_PTR_TO_CTX,
5787 	.arg2_type	= ARG_ANYTHING,
5788 	.arg3_type	= ARG_ANYTHING,
5789 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5790 	.arg5_type	= ARG_CONST_SIZE,
5791 };
5792 
BPF_CALL_5(bpf_sock_create_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5793 BPF_CALL_5(bpf_sock_create_getsockopt, struct sock *, sk, int, level,
5794 	   int, optname, char *, optval, int, optlen)
5795 {
5796 	if (level == SOL_SOCKET && optname == SK_BPF_BYPASS_PROT_MEM) {
5797 		int err = sk_bpf_set_get_bypass_prot_mem(sk, optval, optlen, true);
5798 
5799 		if (err)
5800 			memset(optval, 0, optlen);
5801 
5802 		return err;
5803 	}
5804 
5805 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5806 }
5807 
5808 static const struct bpf_func_proto bpf_sock_create_getsockopt_proto = {
5809 	.func		= bpf_sock_create_getsockopt,
5810 	.gpl_only	= false,
5811 	.ret_type	= RET_INTEGER,
5812 	.arg1_type	= ARG_PTR_TO_CTX,
5813 	.arg2_type	= ARG_ANYTHING,
5814 	.arg3_type	= ARG_ANYTHING,
5815 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5816 	.arg5_type	= ARG_CONST_SIZE,
5817 };
5818 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5819 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5820 	   int, level, int, optname, char *, optval, int, optlen)
5821 {
5822 	if (!is_locked_tcp_sock_ops(bpf_sock))
5823 		return -EOPNOTSUPP;
5824 
5825 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5826 }
5827 
5828 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5829 	.func		= bpf_sock_ops_setsockopt,
5830 	.gpl_only	= false,
5831 	.ret_type	= RET_INTEGER,
5832 	.arg1_type	= ARG_PTR_TO_CTX,
5833 	.arg2_type	= ARG_ANYTHING,
5834 	.arg3_type	= ARG_ANYTHING,
5835 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5836 	.arg5_type	= ARG_CONST_SIZE,
5837 };
5838 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5839 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5840 				int optname, const u8 **start)
5841 {
5842 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5843 	const u8 *hdr_start;
5844 	int ret;
5845 
5846 	if (syn_skb) {
5847 		/* sk is a request_sock here */
5848 
5849 		if (optname == TCP_BPF_SYN) {
5850 			hdr_start = syn_skb->data;
5851 			ret = tcp_hdrlen(syn_skb);
5852 		} else if (optname == TCP_BPF_SYN_IP) {
5853 			hdr_start = skb_network_header(syn_skb);
5854 			ret = skb_network_header_len(syn_skb) +
5855 				tcp_hdrlen(syn_skb);
5856 		} else {
5857 			/* optname == TCP_BPF_SYN_MAC */
5858 			hdr_start = skb_mac_header(syn_skb);
5859 			ret = skb_mac_header_len(syn_skb) +
5860 				skb_network_header_len(syn_skb) +
5861 				tcp_hdrlen(syn_skb);
5862 		}
5863 	} else {
5864 		struct sock *sk = bpf_sock->sk;
5865 		struct saved_syn *saved_syn;
5866 
5867 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5868 			/* synack retransmit. bpf_sock->syn_skb will
5869 			 * not be available.  It has to resort to
5870 			 * saved_syn (if it is saved).
5871 			 */
5872 			saved_syn = inet_reqsk(sk)->saved_syn;
5873 		else
5874 			saved_syn = tcp_sk(sk)->saved_syn;
5875 
5876 		if (!saved_syn)
5877 			return -ENOENT;
5878 
5879 		if (optname == TCP_BPF_SYN) {
5880 			hdr_start = saved_syn->data +
5881 				saved_syn->mac_hdrlen +
5882 				saved_syn->network_hdrlen;
5883 			ret = saved_syn->tcp_hdrlen;
5884 		} else if (optname == TCP_BPF_SYN_IP) {
5885 			hdr_start = saved_syn->data +
5886 				saved_syn->mac_hdrlen;
5887 			ret = saved_syn->network_hdrlen +
5888 				saved_syn->tcp_hdrlen;
5889 		} else {
5890 			/* optname == TCP_BPF_SYN_MAC */
5891 
5892 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5893 			if (!saved_syn->mac_hdrlen)
5894 				return -ENOENT;
5895 
5896 			hdr_start = saved_syn->data;
5897 			ret = saved_syn->mac_hdrlen +
5898 				saved_syn->network_hdrlen +
5899 				saved_syn->tcp_hdrlen;
5900 		}
5901 	}
5902 
5903 	*start = hdr_start;
5904 	return ret;
5905 }
5906 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5907 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5908 	   int, level, int, optname, char *, optval, int, optlen)
5909 {
5910 	if (!is_locked_tcp_sock_ops(bpf_sock))
5911 		return -EOPNOTSUPP;
5912 
5913 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5914 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5915 		int ret, copy_len = 0;
5916 		const u8 *start;
5917 
5918 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5919 		if (ret > 0) {
5920 			copy_len = ret;
5921 			if (optlen < copy_len) {
5922 				copy_len = optlen;
5923 				ret = -ENOSPC;
5924 			}
5925 
5926 			memcpy(optval, start, copy_len);
5927 		}
5928 
5929 		/* Zero out unused buffer at the end */
5930 		memset(optval + copy_len, 0, optlen - copy_len);
5931 
5932 		return ret;
5933 	}
5934 
5935 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5936 }
5937 
5938 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5939 	.func		= bpf_sock_ops_getsockopt,
5940 	.gpl_only	= false,
5941 	.ret_type	= RET_INTEGER,
5942 	.arg1_type	= ARG_PTR_TO_CTX,
5943 	.arg2_type	= ARG_ANYTHING,
5944 	.arg3_type	= ARG_ANYTHING,
5945 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5946 	.arg5_type	= ARG_CONST_SIZE,
5947 };
5948 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5949 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5950 	   int, argval)
5951 {
5952 	struct sock *sk = bpf_sock->sk;
5953 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5954 
5955 	if (!is_locked_tcp_sock_ops(bpf_sock))
5956 		return -EOPNOTSUPP;
5957 
5958 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5959 		return -EINVAL;
5960 
5961 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5962 
5963 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5964 }
5965 
5966 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5967 	.func		= bpf_sock_ops_cb_flags_set,
5968 	.gpl_only	= false,
5969 	.ret_type	= RET_INTEGER,
5970 	.arg1_type	= ARG_PTR_TO_CTX,
5971 	.arg2_type	= ARG_ANYTHING,
5972 };
5973 
5974 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5975 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5976 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5977 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5978 	   int, addr_len)
5979 {
5980 #ifdef CONFIG_INET
5981 	struct sock *sk = ctx->sk;
5982 	u32 flags = BIND_FROM_BPF;
5983 	int err;
5984 
5985 	err = -EINVAL;
5986 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5987 		return err;
5988 	if (addr->sa_family == AF_INET) {
5989 		if (addr_len < sizeof(struct sockaddr_in))
5990 			return err;
5991 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5992 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5993 		return __inet_bind(sk, (struct sockaddr_unsized *)addr, addr_len, flags);
5994 #if IS_ENABLED(CONFIG_IPV6)
5995 	} else if (addr->sa_family == AF_INET6) {
5996 		if (addr_len < SIN6_LEN_RFC2133)
5997 			return err;
5998 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5999 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
6000 		/* ipv6_bpf_stub cannot be NULL, since it's called from
6001 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
6002 		 */
6003 		return ipv6_bpf_stub->inet6_bind(sk, (struct sockaddr_unsized *)addr,
6004 						 addr_len, flags);
6005 #endif /* CONFIG_IPV6 */
6006 	}
6007 #endif /* CONFIG_INET */
6008 
6009 	return -EAFNOSUPPORT;
6010 }
6011 
6012 static const struct bpf_func_proto bpf_bind_proto = {
6013 	.func		= bpf_bind,
6014 	.gpl_only	= false,
6015 	.ret_type	= RET_INTEGER,
6016 	.arg1_type	= ARG_PTR_TO_CTX,
6017 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6018 	.arg3_type	= ARG_CONST_SIZE,
6019 };
6020 
6021 #ifdef CONFIG_XFRM
6022 
6023 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
6024     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
6025 
6026 struct metadata_dst __percpu *xfrm_bpf_md_dst;
6027 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
6028 
6029 #endif
6030 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)6031 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
6032 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
6033 {
6034 	const struct sec_path *sp = skb_sec_path(skb);
6035 	const struct xfrm_state *x;
6036 
6037 	if (!sp || unlikely(index >= sp->len || flags))
6038 		goto err_clear;
6039 
6040 	x = sp->xvec[index];
6041 
6042 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
6043 		goto err_clear;
6044 
6045 	to->reqid = x->props.reqid;
6046 	to->spi = x->id.spi;
6047 	to->family = x->props.family;
6048 	to->ext = 0;
6049 
6050 	if (to->family == AF_INET6) {
6051 		memcpy(to->remote_ipv6, x->props.saddr.a6,
6052 		       sizeof(to->remote_ipv6));
6053 	} else {
6054 		to->remote_ipv4 = x->props.saddr.a4;
6055 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
6056 	}
6057 
6058 	return 0;
6059 err_clear:
6060 	memset(to, 0, size);
6061 	return -EINVAL;
6062 }
6063 
6064 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
6065 	.func		= bpf_skb_get_xfrm_state,
6066 	.gpl_only	= false,
6067 	.ret_type	= RET_INTEGER,
6068 	.arg1_type	= ARG_PTR_TO_CTX,
6069 	.arg2_type	= ARG_ANYTHING,
6070 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
6071 	.arg4_type	= ARG_CONST_SIZE,
6072 	.arg5_type	= ARG_ANYTHING,
6073 };
6074 #endif
6075 
6076 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)6077 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
6078 {
6079 	params->h_vlan_TCI = 0;
6080 	params->h_vlan_proto = 0;
6081 	if (mtu)
6082 		params->mtu_result = mtu; /* union with tot_len */
6083 
6084 	return 0;
6085 }
6086 #endif
6087 
6088 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6089 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6090 			       u32 flags, bool check_mtu)
6091 {
6092 	struct fib_nh_common *nhc;
6093 	struct in_device *in_dev;
6094 	struct neighbour *neigh;
6095 	struct net_device *dev;
6096 	struct fib_result res;
6097 	struct flowi4 fl4;
6098 	u32 mtu = 0;
6099 	int err;
6100 
6101 	dev = dev_get_by_index_rcu(net, params->ifindex);
6102 	if (unlikely(!dev))
6103 		return -ENODEV;
6104 
6105 	/* verify forwarding is enabled on this interface */
6106 	in_dev = __in_dev_get_rcu(dev);
6107 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
6108 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6109 
6110 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6111 		fl4.flowi4_iif = 1;
6112 		fl4.flowi4_oif = params->ifindex;
6113 	} else {
6114 		fl4.flowi4_iif = params->ifindex;
6115 		fl4.flowi4_oif = 0;
6116 	}
6117 	fl4.flowi4_dscp = inet_dsfield_to_dscp(params->tos);
6118 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6119 	fl4.flowi4_flags = 0;
6120 
6121 	fl4.flowi4_proto = params->l4_protocol;
6122 	fl4.daddr = params->ipv4_dst;
6123 	fl4.saddr = params->ipv4_src;
6124 	fl4.fl4_sport = params->sport;
6125 	fl4.fl4_dport = params->dport;
6126 	fl4.flowi4_multipath_hash = 0;
6127 
6128 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6129 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6130 		struct fib_table *tb;
6131 
6132 		if (flags & BPF_FIB_LOOKUP_TBID) {
6133 			tbid = params->tbid;
6134 			/* zero out for vlan output */
6135 			params->tbid = 0;
6136 		}
6137 
6138 		tb = fib_get_table(net, tbid);
6139 		if (unlikely(!tb))
6140 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6141 
6142 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6143 	} else {
6144 		if (flags & BPF_FIB_LOOKUP_MARK)
6145 			fl4.flowi4_mark = params->mark;
6146 		else
6147 			fl4.flowi4_mark = 0;
6148 		fl4.flowi4_secid = 0;
6149 		fl4.flowi4_tun_key.tun_id = 0;
6150 		fl4.flowi4_uid = sock_net_uid(net, NULL);
6151 
6152 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6153 	}
6154 
6155 	if (err) {
6156 		/* map fib lookup errors to RTN_ type */
6157 		if (err == -EINVAL)
6158 			return BPF_FIB_LKUP_RET_BLACKHOLE;
6159 		if (err == -EHOSTUNREACH)
6160 			return BPF_FIB_LKUP_RET_UNREACHABLE;
6161 		if (err == -EACCES)
6162 			return BPF_FIB_LKUP_RET_PROHIBIT;
6163 
6164 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6165 	}
6166 
6167 	if (res.type != RTN_UNICAST)
6168 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6169 
6170 	if (fib_info_num_path(res.fi) > 1)
6171 		fib_select_path(net, &res, &fl4, NULL);
6172 
6173 	if (check_mtu) {
6174 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6175 		if (params->tot_len > mtu) {
6176 			params->mtu_result = mtu; /* union with tot_len */
6177 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6178 		}
6179 	}
6180 
6181 	nhc = res.nhc;
6182 
6183 	/* do not handle lwt encaps right now */
6184 	if (nhc->nhc_lwtstate)
6185 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6186 
6187 	dev = nhc->nhc_dev;
6188 
6189 	params->rt_metric = res.fi->fib_priority;
6190 	params->ifindex = dev->ifindex;
6191 
6192 	if (flags & BPF_FIB_LOOKUP_SRC)
6193 		params->ipv4_src = fib_result_prefsrc(net, &res);
6194 
6195 	/* xdp and cls_bpf programs are run in RCU-bh so
6196 	 * rcu_read_lock_bh is not needed here
6197 	 */
6198 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
6199 		if (nhc->nhc_gw_family)
6200 			params->ipv4_dst = nhc->nhc_gw.ipv4;
6201 	} else {
6202 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6203 
6204 		params->family = AF_INET6;
6205 		*dst = nhc->nhc_gw.ipv6;
6206 	}
6207 
6208 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6209 		goto set_fwd_params;
6210 
6211 	if (likely(nhc->nhc_gw_family != AF_INET6))
6212 		neigh = __ipv4_neigh_lookup_noref(dev,
6213 						  (__force u32)params->ipv4_dst);
6214 	else
6215 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6216 
6217 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6218 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6219 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6220 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6221 
6222 set_fwd_params:
6223 	return bpf_fib_set_fwd_params(params, mtu);
6224 }
6225 #endif
6226 
6227 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6228 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6229 			       u32 flags, bool check_mtu)
6230 {
6231 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6232 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6233 	struct fib6_result res = {};
6234 	struct neighbour *neigh;
6235 	struct net_device *dev;
6236 	struct inet6_dev *idev;
6237 	struct flowi6 fl6;
6238 	int strict = 0;
6239 	int oif, err;
6240 	u32 mtu = 0;
6241 
6242 	/* link local addresses are never forwarded */
6243 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6244 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6245 
6246 	dev = dev_get_by_index_rcu(net, params->ifindex);
6247 	if (unlikely(!dev))
6248 		return -ENODEV;
6249 
6250 	idev = __in6_dev_get_safely(dev);
6251 	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6252 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6253 
6254 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6255 		fl6.flowi6_iif = 1;
6256 		oif = fl6.flowi6_oif = params->ifindex;
6257 	} else {
6258 		oif = fl6.flowi6_iif = params->ifindex;
6259 		fl6.flowi6_oif = 0;
6260 		strict = RT6_LOOKUP_F_HAS_SADDR;
6261 	}
6262 	fl6.flowlabel = params->flowinfo;
6263 	fl6.flowi6_scope = 0;
6264 	fl6.flowi6_flags = 0;
6265 	fl6.mp_hash = 0;
6266 
6267 	fl6.flowi6_proto = params->l4_protocol;
6268 	fl6.daddr = *dst;
6269 	fl6.saddr = *src;
6270 	fl6.fl6_sport = params->sport;
6271 	fl6.fl6_dport = params->dport;
6272 
6273 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6274 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6275 		struct fib6_table *tb;
6276 
6277 		if (flags & BPF_FIB_LOOKUP_TBID) {
6278 			tbid = params->tbid;
6279 			/* zero out for vlan output */
6280 			params->tbid = 0;
6281 		}
6282 
6283 		tb = ipv6_stub->fib6_get_table(net, tbid);
6284 		if (unlikely(!tb))
6285 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6286 
6287 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6288 						   strict);
6289 	} else {
6290 		if (flags & BPF_FIB_LOOKUP_MARK)
6291 			fl6.flowi6_mark = params->mark;
6292 		else
6293 			fl6.flowi6_mark = 0;
6294 		fl6.flowi6_secid = 0;
6295 		fl6.flowi6_tun_key.tun_id = 0;
6296 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6297 
6298 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6299 	}
6300 
6301 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6302 		     res.f6i == net->ipv6.fib6_null_entry))
6303 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6304 
6305 	switch (res.fib6_type) {
6306 	/* only unicast is forwarded */
6307 	case RTN_UNICAST:
6308 		break;
6309 	case RTN_BLACKHOLE:
6310 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6311 	case RTN_UNREACHABLE:
6312 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6313 	case RTN_PROHIBIT:
6314 		return BPF_FIB_LKUP_RET_PROHIBIT;
6315 	default:
6316 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6317 	}
6318 
6319 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6320 				    fl6.flowi6_oif != 0, NULL, strict);
6321 
6322 	if (check_mtu) {
6323 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6324 		if (params->tot_len > mtu) {
6325 			params->mtu_result = mtu; /* union with tot_len */
6326 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6327 		}
6328 	}
6329 
6330 	if (res.nh->fib_nh_lws)
6331 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6332 
6333 	if (res.nh->fib_nh_gw_family)
6334 		*dst = res.nh->fib_nh_gw6;
6335 
6336 	dev = res.nh->fib_nh_dev;
6337 	params->rt_metric = res.f6i->fib6_metric;
6338 	params->ifindex = dev->ifindex;
6339 
6340 	if (flags & BPF_FIB_LOOKUP_SRC) {
6341 		if (res.f6i->fib6_prefsrc.plen) {
6342 			*src = res.f6i->fib6_prefsrc.addr;
6343 		} else {
6344 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6345 								&fl6.daddr, 0,
6346 								src);
6347 			if (err)
6348 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6349 		}
6350 	}
6351 
6352 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6353 		goto set_fwd_params;
6354 
6355 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6356 	 * not needed here.
6357 	 */
6358 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6359 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6360 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6361 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6362 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6363 
6364 set_fwd_params:
6365 	return bpf_fib_set_fwd_params(params, mtu);
6366 }
6367 #endif
6368 
6369 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6370 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6371 			     BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6372 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6373 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6374 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6375 {
6376 	if (plen < sizeof(*params))
6377 		return -EINVAL;
6378 
6379 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6380 		return -EINVAL;
6381 
6382 	switch (params->family) {
6383 #if IS_ENABLED(CONFIG_INET)
6384 	case AF_INET:
6385 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6386 					   flags, true);
6387 #endif
6388 #if IS_ENABLED(CONFIG_IPV6)
6389 	case AF_INET6:
6390 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6391 					   flags, true);
6392 #endif
6393 	}
6394 	return -EAFNOSUPPORT;
6395 }
6396 
6397 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6398 	.func		= bpf_xdp_fib_lookup,
6399 	.gpl_only	= true,
6400 	.ret_type	= RET_INTEGER,
6401 	.arg1_type      = ARG_PTR_TO_CTX,
6402 	.arg2_type      = ARG_PTR_TO_MEM,
6403 	.arg3_type      = ARG_CONST_SIZE,
6404 	.arg4_type	= ARG_ANYTHING,
6405 };
6406 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6407 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6408 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6409 {
6410 	struct net *net = dev_net(skb->dev);
6411 	int rc = -EAFNOSUPPORT;
6412 	bool check_mtu = false;
6413 
6414 	if (plen < sizeof(*params))
6415 		return -EINVAL;
6416 
6417 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6418 		return -EINVAL;
6419 
6420 	if (params->tot_len)
6421 		check_mtu = true;
6422 
6423 	switch (params->family) {
6424 #if IS_ENABLED(CONFIG_INET)
6425 	case AF_INET:
6426 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6427 		break;
6428 #endif
6429 #if IS_ENABLED(CONFIG_IPV6)
6430 	case AF_INET6:
6431 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6432 		break;
6433 #endif
6434 	}
6435 
6436 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6437 		struct net_device *dev;
6438 
6439 		/* When tot_len isn't provided by user, check skb
6440 		 * against MTU of FIB lookup resulting net_device
6441 		 */
6442 		dev = dev_get_by_index_rcu(net, params->ifindex);
6443 		if (!is_skb_forwardable(dev, skb))
6444 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6445 
6446 		params->mtu_result = dev->mtu; /* union with tot_len */
6447 	}
6448 
6449 	return rc;
6450 }
6451 
6452 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6453 	.func		= bpf_skb_fib_lookup,
6454 	.gpl_only	= true,
6455 	.ret_type	= RET_INTEGER,
6456 	.arg1_type      = ARG_PTR_TO_CTX,
6457 	.arg2_type      = ARG_PTR_TO_MEM,
6458 	.arg3_type      = ARG_CONST_SIZE,
6459 	.arg4_type	= ARG_ANYTHING,
6460 };
6461 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6462 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6463 					    u32 ifindex)
6464 {
6465 	struct net *netns = dev_net(dev_curr);
6466 
6467 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6468 	if (ifindex == 0)
6469 		return dev_curr;
6470 
6471 	return dev_get_by_index_rcu(netns, ifindex);
6472 }
6473 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6474 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6475 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6476 {
6477 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6478 	struct net_device *dev = skb->dev;
6479 	int mtu, dev_len, skb_len;
6480 
6481 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6482 		return -EINVAL;
6483 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6484 		return -EINVAL;
6485 
6486 	dev = __dev_via_ifindex(dev, ifindex);
6487 	if (unlikely(!dev))
6488 		return -ENODEV;
6489 
6490 	mtu = READ_ONCE(dev->mtu);
6491 	dev_len = mtu + dev->hard_header_len;
6492 
6493 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6494 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6495 
6496 	skb_len += len_diff; /* minus result pass check */
6497 	if (skb_len <= dev_len) {
6498 		ret = BPF_MTU_CHK_RET_SUCCESS;
6499 		goto out;
6500 	}
6501 	/* At this point, skb->len exceed MTU, but as it include length of all
6502 	 * segments, it can still be below MTU.  The SKB can possibly get
6503 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6504 	 * must choose if segs are to be MTU checked.
6505 	 */
6506 	if (skb_is_gso(skb)) {
6507 		ret = BPF_MTU_CHK_RET_SUCCESS;
6508 		if (flags & BPF_MTU_CHK_SEGS) {
6509 			if (!skb_transport_header_was_set(skb))
6510 				return -EINVAL;
6511 			if (!skb_gso_validate_network_len(skb, mtu))
6512 				ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6513 		}
6514 	}
6515 out:
6516 	*mtu_len = mtu;
6517 	return ret;
6518 }
6519 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6520 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6521 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6522 {
6523 	struct net_device *dev = xdp->rxq->dev;
6524 	int xdp_len = xdp->data_end - xdp->data;
6525 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6526 	int mtu, dev_len;
6527 
6528 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6529 	if (unlikely(flags))
6530 		return -EINVAL;
6531 
6532 	dev = __dev_via_ifindex(dev, ifindex);
6533 	if (unlikely(!dev))
6534 		return -ENODEV;
6535 
6536 	mtu = READ_ONCE(dev->mtu);
6537 	dev_len = mtu + dev->hard_header_len;
6538 
6539 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6540 	if (*mtu_len)
6541 		xdp_len = *mtu_len + dev->hard_header_len;
6542 
6543 	xdp_len += len_diff; /* minus result pass check */
6544 	if (xdp_len > dev_len)
6545 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6546 
6547 	*mtu_len = mtu;
6548 	return ret;
6549 }
6550 
6551 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6552 	.func		= bpf_skb_check_mtu,
6553 	.gpl_only	= true,
6554 	.ret_type	= RET_INTEGER,
6555 	.arg1_type      = ARG_PTR_TO_CTX,
6556 	.arg2_type      = ARG_ANYTHING,
6557 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6558 	.arg3_size	= sizeof(u32),
6559 	.arg4_type      = ARG_ANYTHING,
6560 	.arg5_type      = ARG_ANYTHING,
6561 };
6562 
6563 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6564 	.func		= bpf_xdp_check_mtu,
6565 	.gpl_only	= true,
6566 	.ret_type	= RET_INTEGER,
6567 	.arg1_type      = ARG_PTR_TO_CTX,
6568 	.arg2_type      = ARG_ANYTHING,
6569 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6570 	.arg3_size	= sizeof(u32),
6571 	.arg4_type      = ARG_ANYTHING,
6572 	.arg5_type      = ARG_ANYTHING,
6573 };
6574 
6575 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6576 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6577 {
6578 	int err;
6579 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6580 
6581 	if (!seg6_validate_srh(srh, len, false))
6582 		return -EINVAL;
6583 
6584 	switch (type) {
6585 	case BPF_LWT_ENCAP_SEG6_INLINE:
6586 		if (skb->protocol != htons(ETH_P_IPV6))
6587 			return -EBADMSG;
6588 
6589 		err = seg6_do_srh_inline(skb, srh);
6590 		break;
6591 	case BPF_LWT_ENCAP_SEG6:
6592 		skb_reset_inner_headers(skb);
6593 		skb->encapsulation = 1;
6594 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6595 		break;
6596 	default:
6597 		return -EINVAL;
6598 	}
6599 
6600 	bpf_compute_data_pointers(skb);
6601 	if (err)
6602 		return err;
6603 
6604 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6605 
6606 	return seg6_lookup_nexthop(skb, NULL, 0);
6607 }
6608 #endif /* CONFIG_IPV6_SEG6_BPF */
6609 
6610 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6611 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6612 			     bool ingress)
6613 {
6614 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6615 }
6616 #endif
6617 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6618 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6619 	   u32, len)
6620 {
6621 	switch (type) {
6622 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6623 	case BPF_LWT_ENCAP_SEG6:
6624 	case BPF_LWT_ENCAP_SEG6_INLINE:
6625 		return bpf_push_seg6_encap(skb, type, hdr, len);
6626 #endif
6627 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6628 	case BPF_LWT_ENCAP_IP:
6629 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6630 #endif
6631 	default:
6632 		return -EINVAL;
6633 	}
6634 }
6635 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6636 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6637 	   void *, hdr, u32, len)
6638 {
6639 	switch (type) {
6640 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6641 	case BPF_LWT_ENCAP_IP:
6642 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6643 #endif
6644 	default:
6645 		return -EINVAL;
6646 	}
6647 }
6648 
6649 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6650 	.func		= bpf_lwt_in_push_encap,
6651 	.gpl_only	= false,
6652 	.ret_type	= RET_INTEGER,
6653 	.arg1_type	= ARG_PTR_TO_CTX,
6654 	.arg2_type	= ARG_ANYTHING,
6655 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6656 	.arg4_type	= ARG_CONST_SIZE
6657 };
6658 
6659 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6660 	.func		= bpf_lwt_xmit_push_encap,
6661 	.gpl_only	= false,
6662 	.ret_type	= RET_INTEGER,
6663 	.arg1_type	= ARG_PTR_TO_CTX,
6664 	.arg2_type	= ARG_ANYTHING,
6665 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6666 	.arg4_type	= ARG_CONST_SIZE
6667 };
6668 
6669 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6670 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6671 	   const void *, from, u32, len)
6672 {
6673 	struct seg6_bpf_srh_state *srh_state =
6674 		this_cpu_ptr(&seg6_bpf_srh_states);
6675 	struct ipv6_sr_hdr *srh = srh_state->srh;
6676 	void *srh_tlvs, *srh_end, *ptr;
6677 	int srhoff = 0;
6678 
6679 	lockdep_assert_held(&srh_state->bh_lock);
6680 	if (srh == NULL)
6681 		return -EINVAL;
6682 
6683 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6684 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6685 
6686 	ptr = skb->data + offset;
6687 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6688 		srh_state->valid = false;
6689 	else if (ptr < (void *)&srh->flags ||
6690 		 ptr + len > (void *)&srh->segments)
6691 		return -EFAULT;
6692 
6693 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6694 		return -EFAULT;
6695 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6696 		return -EINVAL;
6697 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6698 
6699 	memcpy(skb->data + offset, from, len);
6700 	return 0;
6701 }
6702 
6703 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6704 	.func		= bpf_lwt_seg6_store_bytes,
6705 	.gpl_only	= false,
6706 	.ret_type	= RET_INTEGER,
6707 	.arg1_type	= ARG_PTR_TO_CTX,
6708 	.arg2_type	= ARG_ANYTHING,
6709 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6710 	.arg4_type	= ARG_CONST_SIZE
6711 };
6712 
bpf_update_srh_state(struct sk_buff * skb)6713 static void bpf_update_srh_state(struct sk_buff *skb)
6714 {
6715 	struct seg6_bpf_srh_state *srh_state =
6716 		this_cpu_ptr(&seg6_bpf_srh_states);
6717 	int srhoff = 0;
6718 
6719 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6720 		srh_state->srh = NULL;
6721 	} else {
6722 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6723 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6724 		srh_state->valid = true;
6725 	}
6726 }
6727 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6728 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6729 	   u32, action, void *, param, u32, param_len)
6730 {
6731 	struct seg6_bpf_srh_state *srh_state =
6732 		this_cpu_ptr(&seg6_bpf_srh_states);
6733 	int hdroff = 0;
6734 	int err;
6735 
6736 	lockdep_assert_held(&srh_state->bh_lock);
6737 	switch (action) {
6738 	case SEG6_LOCAL_ACTION_END_X:
6739 		if (!seg6_bpf_has_valid_srh(skb))
6740 			return -EBADMSG;
6741 		if (param_len != sizeof(struct in6_addr))
6742 			return -EINVAL;
6743 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6744 	case SEG6_LOCAL_ACTION_END_T:
6745 		if (!seg6_bpf_has_valid_srh(skb))
6746 			return -EBADMSG;
6747 		if (param_len != sizeof(int))
6748 			return -EINVAL;
6749 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6750 	case SEG6_LOCAL_ACTION_END_DT6:
6751 		if (!seg6_bpf_has_valid_srh(skb))
6752 			return -EBADMSG;
6753 		if (param_len != sizeof(int))
6754 			return -EINVAL;
6755 
6756 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6757 			return -EBADMSG;
6758 		if (!pskb_pull(skb, hdroff))
6759 			return -EBADMSG;
6760 
6761 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6762 		skb_reset_network_header(skb);
6763 		skb_reset_transport_header(skb);
6764 		skb->encapsulation = 0;
6765 
6766 		bpf_compute_data_pointers(skb);
6767 		bpf_update_srh_state(skb);
6768 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6769 	case SEG6_LOCAL_ACTION_END_B6:
6770 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6771 			return -EBADMSG;
6772 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6773 					  param, param_len);
6774 		if (!err)
6775 			bpf_update_srh_state(skb);
6776 
6777 		return err;
6778 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6779 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6780 			return -EBADMSG;
6781 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6782 					  param, param_len);
6783 		if (!err)
6784 			bpf_update_srh_state(skb);
6785 
6786 		return err;
6787 	default:
6788 		return -EINVAL;
6789 	}
6790 }
6791 
6792 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6793 	.func		= bpf_lwt_seg6_action,
6794 	.gpl_only	= false,
6795 	.ret_type	= RET_INTEGER,
6796 	.arg1_type	= ARG_PTR_TO_CTX,
6797 	.arg2_type	= ARG_ANYTHING,
6798 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6799 	.arg4_type	= ARG_CONST_SIZE
6800 };
6801 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6802 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6803 	   s32, len)
6804 {
6805 	struct seg6_bpf_srh_state *srh_state =
6806 		this_cpu_ptr(&seg6_bpf_srh_states);
6807 	struct ipv6_sr_hdr *srh = srh_state->srh;
6808 	void *srh_end, *srh_tlvs, *ptr;
6809 	struct ipv6hdr *hdr;
6810 	int srhoff = 0;
6811 	int ret;
6812 
6813 	lockdep_assert_held(&srh_state->bh_lock);
6814 	if (unlikely(srh == NULL))
6815 		return -EINVAL;
6816 
6817 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6818 			((srh->first_segment + 1) << 4));
6819 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6820 			srh_state->hdrlen);
6821 	ptr = skb->data + offset;
6822 
6823 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6824 		return -EFAULT;
6825 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6826 		return -EFAULT;
6827 
6828 	if (len > 0) {
6829 		ret = skb_cow_head(skb, len);
6830 		if (unlikely(ret < 0))
6831 			return ret;
6832 
6833 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6834 	} else {
6835 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6836 	}
6837 
6838 	bpf_compute_data_pointers(skb);
6839 	if (unlikely(ret < 0))
6840 		return ret;
6841 
6842 	hdr = (struct ipv6hdr *)skb->data;
6843 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6844 
6845 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6846 		return -EINVAL;
6847 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6848 	srh_state->hdrlen += len;
6849 	srh_state->valid = false;
6850 	return 0;
6851 }
6852 
6853 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6854 	.func		= bpf_lwt_seg6_adjust_srh,
6855 	.gpl_only	= false,
6856 	.ret_type	= RET_INTEGER,
6857 	.arg1_type	= ARG_PTR_TO_CTX,
6858 	.arg2_type	= ARG_ANYTHING,
6859 	.arg3_type	= ARG_ANYTHING,
6860 };
6861 #endif /* CONFIG_IPV6_SEG6_BPF */
6862 
6863 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6864 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6865 			      int dif, int sdif, u8 family, u8 proto)
6866 {
6867 	bool refcounted = false;
6868 	struct sock *sk = NULL;
6869 
6870 	if (family == AF_INET) {
6871 		__be32 src4 = tuple->ipv4.saddr;
6872 		__be32 dst4 = tuple->ipv4.daddr;
6873 
6874 		if (proto == IPPROTO_TCP)
6875 			sk = __inet_lookup(net, NULL, 0,
6876 					   src4, tuple->ipv4.sport,
6877 					   dst4, tuple->ipv4.dport,
6878 					   dif, sdif, &refcounted);
6879 		else
6880 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6881 					       dst4, tuple->ipv4.dport,
6882 					       dif, sdif, net->ipv4.udp_table, NULL);
6883 #if IS_ENABLED(CONFIG_IPV6)
6884 	} else {
6885 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6886 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6887 
6888 		if (proto == IPPROTO_TCP)
6889 			sk = __inet6_lookup(net, NULL, 0,
6890 					    src6, tuple->ipv6.sport,
6891 					    dst6, ntohs(tuple->ipv6.dport),
6892 					    dif, sdif, &refcounted);
6893 		else if (likely(ipv6_bpf_stub))
6894 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6895 							    src6, tuple->ipv6.sport,
6896 							    dst6, tuple->ipv6.dport,
6897 							    dif, sdif,
6898 							    net->ipv4.udp_table, NULL);
6899 #endif
6900 	}
6901 
6902 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6903 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6904 		sk = NULL;
6905 	}
6906 	return sk;
6907 }
6908 
6909 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6910  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6911  */
6912 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6913 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6914 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6915 		 u64 flags, int sdif)
6916 {
6917 	struct sock *sk = NULL;
6918 	struct net *net;
6919 	u8 family;
6920 
6921 	if (len == sizeof(tuple->ipv4))
6922 		family = AF_INET;
6923 	else if (len == sizeof(tuple->ipv6))
6924 		family = AF_INET6;
6925 	else
6926 		return NULL;
6927 
6928 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6929 		goto out;
6930 
6931 	if (sdif < 0) {
6932 		if (family == AF_INET)
6933 			sdif = inet_sdif(skb);
6934 		else
6935 			sdif = inet6_sdif(skb);
6936 	}
6937 
6938 	if ((s32)netns_id < 0) {
6939 		net = caller_net;
6940 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6941 	} else {
6942 		net = get_net_ns_by_id(caller_net, netns_id);
6943 		if (unlikely(!net))
6944 			goto out;
6945 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6946 		put_net(net);
6947 	}
6948 
6949 out:
6950 	return sk;
6951 }
6952 
6953 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6954 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6955 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6956 		u64 flags, int sdif)
6957 {
6958 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6959 					   ifindex, proto, netns_id, flags,
6960 					   sdif);
6961 
6962 	if (sk) {
6963 		struct sock *sk2 = sk_to_full_sk(sk);
6964 
6965 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6966 		 * sock refcnt is decremented to prevent a request_sock leak.
6967 		 */
6968 		if (sk2 != sk) {
6969 			sock_gen_put(sk);
6970 			/* Ensure there is no need to bump sk2 refcnt */
6971 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6972 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6973 				return NULL;
6974 			}
6975 			sk = sk2;
6976 		}
6977 	}
6978 
6979 	return sk;
6980 }
6981 
6982 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6983 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6984 	       u8 proto, u64 netns_id, u64 flags)
6985 {
6986 	struct net *caller_net;
6987 	int ifindex;
6988 
6989 	if (skb->dev) {
6990 		caller_net = dev_net(skb->dev);
6991 		ifindex = skb->dev->ifindex;
6992 	} else {
6993 		caller_net = sock_net(skb->sk);
6994 		ifindex = 0;
6995 	}
6996 
6997 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6998 				netns_id, flags, -1);
6999 }
7000 
7001 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)7002 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
7003 	      u8 proto, u64 netns_id, u64 flags)
7004 {
7005 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
7006 					 flags);
7007 
7008 	if (sk) {
7009 		struct sock *sk2 = sk_to_full_sk(sk);
7010 
7011 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
7012 		 * sock refcnt is decremented to prevent a request_sock leak.
7013 		 */
7014 		if (sk2 != sk) {
7015 			sock_gen_put(sk);
7016 			/* Ensure there is no need to bump sk2 refcnt */
7017 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
7018 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
7019 				return NULL;
7020 			}
7021 			sk = sk2;
7022 		}
7023 	}
7024 
7025 	return sk;
7026 }
7027 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7028 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
7029 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7030 {
7031 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
7032 					     netns_id, flags);
7033 }
7034 
7035 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
7036 	.func		= bpf_skc_lookup_tcp,
7037 	.gpl_only	= false,
7038 	.pkt_access	= true,
7039 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7040 	.arg1_type	= ARG_PTR_TO_CTX,
7041 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7042 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7043 	.arg4_type	= ARG_ANYTHING,
7044 	.arg5_type	= ARG_ANYTHING,
7045 };
7046 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7047 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
7048 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7049 {
7050 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
7051 					    netns_id, flags);
7052 }
7053 
7054 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
7055 	.func		= bpf_sk_lookup_tcp,
7056 	.gpl_only	= false,
7057 	.pkt_access	= true,
7058 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7059 	.arg1_type	= ARG_PTR_TO_CTX,
7060 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7061 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7062 	.arg4_type	= ARG_ANYTHING,
7063 	.arg5_type	= ARG_ANYTHING,
7064 };
7065 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7066 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
7067 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7068 {
7069 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
7070 					    netns_id, flags);
7071 }
7072 
7073 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
7074 	.func		= bpf_sk_lookup_udp,
7075 	.gpl_only	= false,
7076 	.pkt_access	= true,
7077 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7078 	.arg1_type	= ARG_PTR_TO_CTX,
7079 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7080 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7081 	.arg4_type	= ARG_ANYTHING,
7082 	.arg5_type	= ARG_ANYTHING,
7083 };
7084 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7085 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
7086 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7087 {
7088 	struct net_device *dev = skb->dev;
7089 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7090 	struct net *caller_net = dev_net(dev);
7091 
7092 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
7093 					       ifindex, IPPROTO_TCP, netns_id,
7094 					       flags, sdif);
7095 }
7096 
7097 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
7098 	.func		= bpf_tc_skc_lookup_tcp,
7099 	.gpl_only	= false,
7100 	.pkt_access	= true,
7101 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7102 	.arg1_type	= ARG_PTR_TO_CTX,
7103 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7104 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7105 	.arg4_type	= ARG_ANYTHING,
7106 	.arg5_type	= ARG_ANYTHING,
7107 };
7108 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7109 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
7110 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7111 {
7112 	struct net_device *dev = skb->dev;
7113 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7114 	struct net *caller_net = dev_net(dev);
7115 
7116 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7117 					      ifindex, IPPROTO_TCP, netns_id,
7118 					      flags, sdif);
7119 }
7120 
7121 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7122 	.func		= bpf_tc_sk_lookup_tcp,
7123 	.gpl_only	= false,
7124 	.pkt_access	= true,
7125 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7126 	.arg1_type	= ARG_PTR_TO_CTX,
7127 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7128 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7129 	.arg4_type	= ARG_ANYTHING,
7130 	.arg5_type	= ARG_ANYTHING,
7131 };
7132 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7133 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7134 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7135 {
7136 	struct net_device *dev = skb->dev;
7137 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7138 	struct net *caller_net = dev_net(dev);
7139 
7140 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7141 					      ifindex, IPPROTO_UDP, netns_id,
7142 					      flags, sdif);
7143 }
7144 
7145 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7146 	.func		= bpf_tc_sk_lookup_udp,
7147 	.gpl_only	= false,
7148 	.pkt_access	= true,
7149 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7150 	.arg1_type	= ARG_PTR_TO_CTX,
7151 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7152 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7153 	.arg4_type	= ARG_ANYTHING,
7154 	.arg5_type	= ARG_ANYTHING,
7155 };
7156 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7157 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7158 {
7159 	if (sk && sk_is_refcounted(sk))
7160 		sock_gen_put(sk);
7161 	return 0;
7162 }
7163 
7164 static const struct bpf_func_proto bpf_sk_release_proto = {
7165 	.func		= bpf_sk_release,
7166 	.gpl_only	= false,
7167 	.ret_type	= RET_INTEGER,
7168 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7169 };
7170 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7171 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7172 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7173 {
7174 	struct net_device *dev = ctx->rxq->dev;
7175 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7176 	struct net *caller_net = dev_net(dev);
7177 
7178 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7179 					      ifindex, IPPROTO_UDP, netns_id,
7180 					      flags, sdif);
7181 }
7182 
7183 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7184 	.func           = bpf_xdp_sk_lookup_udp,
7185 	.gpl_only       = false,
7186 	.pkt_access     = true,
7187 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7188 	.arg1_type      = ARG_PTR_TO_CTX,
7189 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7190 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7191 	.arg4_type      = ARG_ANYTHING,
7192 	.arg5_type      = ARG_ANYTHING,
7193 };
7194 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7195 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7196 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7197 {
7198 	struct net_device *dev = ctx->rxq->dev;
7199 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7200 	struct net *caller_net = dev_net(dev);
7201 
7202 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7203 					       ifindex, IPPROTO_TCP, netns_id,
7204 					       flags, sdif);
7205 }
7206 
7207 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7208 	.func           = bpf_xdp_skc_lookup_tcp,
7209 	.gpl_only       = false,
7210 	.pkt_access     = true,
7211 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7212 	.arg1_type      = ARG_PTR_TO_CTX,
7213 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7214 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7215 	.arg4_type      = ARG_ANYTHING,
7216 	.arg5_type      = ARG_ANYTHING,
7217 };
7218 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7219 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7220 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7221 {
7222 	struct net_device *dev = ctx->rxq->dev;
7223 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7224 	struct net *caller_net = dev_net(dev);
7225 
7226 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7227 					      ifindex, IPPROTO_TCP, netns_id,
7228 					      flags, sdif);
7229 }
7230 
7231 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7232 	.func           = bpf_xdp_sk_lookup_tcp,
7233 	.gpl_only       = false,
7234 	.pkt_access     = true,
7235 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7236 	.arg1_type      = ARG_PTR_TO_CTX,
7237 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7238 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7239 	.arg4_type      = ARG_ANYTHING,
7240 	.arg5_type      = ARG_ANYTHING,
7241 };
7242 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7243 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7244 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7245 {
7246 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7247 					       sock_net(ctx->sk), 0,
7248 					       IPPROTO_TCP, netns_id, flags,
7249 					       -1);
7250 }
7251 
7252 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7253 	.func		= bpf_sock_addr_skc_lookup_tcp,
7254 	.gpl_only	= false,
7255 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7256 	.arg1_type	= ARG_PTR_TO_CTX,
7257 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7258 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7259 	.arg4_type	= ARG_ANYTHING,
7260 	.arg5_type	= ARG_ANYTHING,
7261 };
7262 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7263 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7264 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7265 {
7266 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7267 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7268 					      netns_id, flags, -1);
7269 }
7270 
7271 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7272 	.func		= bpf_sock_addr_sk_lookup_tcp,
7273 	.gpl_only	= false,
7274 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7275 	.arg1_type	= ARG_PTR_TO_CTX,
7276 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7277 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7278 	.arg4_type	= ARG_ANYTHING,
7279 	.arg5_type	= ARG_ANYTHING,
7280 };
7281 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7282 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7283 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7284 {
7285 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7286 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7287 					      netns_id, flags, -1);
7288 }
7289 
7290 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7291 	.func		= bpf_sock_addr_sk_lookup_udp,
7292 	.gpl_only	= false,
7293 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7294 	.arg1_type	= ARG_PTR_TO_CTX,
7295 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7296 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7297 	.arg4_type	= ARG_ANYTHING,
7298 	.arg5_type	= ARG_ANYTHING,
7299 };
7300 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7301 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7302 				  struct bpf_insn_access_aux *info)
7303 {
7304 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7305 					  icsk_retransmits))
7306 		return false;
7307 
7308 	if (off % size != 0)
7309 		return false;
7310 
7311 	switch (off) {
7312 	case offsetof(struct bpf_tcp_sock, bytes_received):
7313 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7314 		return size == sizeof(__u64);
7315 	default:
7316 		return size == sizeof(__u32);
7317 	}
7318 }
7319 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7320 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7321 				    const struct bpf_insn *si,
7322 				    struct bpf_insn *insn_buf,
7323 				    struct bpf_prog *prog, u32 *target_size)
7324 {
7325 	struct bpf_insn *insn = insn_buf;
7326 
7327 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7328 	do {								\
7329 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7330 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7331 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7332 				      si->dst_reg, si->src_reg,		\
7333 				      offsetof(struct tcp_sock, FIELD)); \
7334 	} while (0)
7335 
7336 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7337 	do {								\
7338 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7339 					  FIELD) >			\
7340 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7341 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7342 					struct inet_connection_sock,	\
7343 					FIELD),				\
7344 				      si->dst_reg, si->src_reg,		\
7345 				      offsetof(				\
7346 					struct inet_connection_sock,	\
7347 					FIELD));			\
7348 	} while (0)
7349 
7350 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7351 
7352 	switch (si->off) {
7353 	case offsetof(struct bpf_tcp_sock, rtt_min):
7354 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7355 			     sizeof(struct minmax));
7356 		BUILD_BUG_ON(sizeof(struct minmax) <
7357 			     sizeof(struct minmax_sample));
7358 
7359 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7360 				      offsetof(struct tcp_sock, rtt_min) +
7361 				      offsetof(struct minmax_sample, v));
7362 		break;
7363 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7364 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7365 		break;
7366 	case offsetof(struct bpf_tcp_sock, srtt_us):
7367 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7368 		break;
7369 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7370 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7371 		break;
7372 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7373 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7374 		break;
7375 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7376 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7377 		break;
7378 	case offsetof(struct bpf_tcp_sock, snd_una):
7379 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7380 		break;
7381 	case offsetof(struct bpf_tcp_sock, mss_cache):
7382 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7383 		break;
7384 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7385 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7386 		break;
7387 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7388 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7389 		break;
7390 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7391 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7392 		break;
7393 	case offsetof(struct bpf_tcp_sock, packets_out):
7394 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7395 		break;
7396 	case offsetof(struct bpf_tcp_sock, retrans_out):
7397 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7398 		break;
7399 	case offsetof(struct bpf_tcp_sock, total_retrans):
7400 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7401 		break;
7402 	case offsetof(struct bpf_tcp_sock, segs_in):
7403 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7404 		break;
7405 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7406 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7407 		break;
7408 	case offsetof(struct bpf_tcp_sock, segs_out):
7409 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7410 		break;
7411 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7412 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7413 		break;
7414 	case offsetof(struct bpf_tcp_sock, lost_out):
7415 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7416 		break;
7417 	case offsetof(struct bpf_tcp_sock, sacked_out):
7418 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7419 		break;
7420 	case offsetof(struct bpf_tcp_sock, bytes_received):
7421 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7422 		break;
7423 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7424 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7425 		break;
7426 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7427 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7428 		break;
7429 	case offsetof(struct bpf_tcp_sock, delivered):
7430 		BPF_TCP_SOCK_GET_COMMON(delivered);
7431 		break;
7432 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7433 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7434 		break;
7435 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7436 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7437 		break;
7438 	}
7439 
7440 	return insn - insn_buf;
7441 }
7442 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7443 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7444 {
7445 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7446 		return (unsigned long)sk;
7447 
7448 	return (unsigned long)NULL;
7449 }
7450 
7451 const struct bpf_func_proto bpf_tcp_sock_proto = {
7452 	.func		= bpf_tcp_sock,
7453 	.gpl_only	= false,
7454 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7455 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7456 };
7457 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7458 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7459 {
7460 	sk = sk_to_full_sk(sk);
7461 
7462 	if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7463 		return (unsigned long)sk;
7464 
7465 	return (unsigned long)NULL;
7466 }
7467 
7468 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7469 	.func		= bpf_get_listener_sock,
7470 	.gpl_only	= false,
7471 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7472 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7473 };
7474 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7475 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7476 {
7477 	unsigned int iphdr_len;
7478 
7479 	switch (skb_protocol(skb, true)) {
7480 	case cpu_to_be16(ETH_P_IP):
7481 		iphdr_len = sizeof(struct iphdr);
7482 		break;
7483 	case cpu_to_be16(ETH_P_IPV6):
7484 		iphdr_len = sizeof(struct ipv6hdr);
7485 		break;
7486 	default:
7487 		return 0;
7488 	}
7489 
7490 	if (skb_headlen(skb) < iphdr_len)
7491 		return 0;
7492 
7493 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7494 		return 0;
7495 
7496 	return INET_ECN_set_ce(skb);
7497 }
7498 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7499 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7500 				  struct bpf_insn_access_aux *info)
7501 {
7502 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7503 		return false;
7504 
7505 	if (off % size != 0)
7506 		return false;
7507 
7508 	switch (off) {
7509 	default:
7510 		return size == sizeof(__u32);
7511 	}
7512 }
7513 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7514 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7515 				    const struct bpf_insn *si,
7516 				    struct bpf_insn *insn_buf,
7517 				    struct bpf_prog *prog, u32 *target_size)
7518 {
7519 	struct bpf_insn *insn = insn_buf;
7520 
7521 #define BPF_XDP_SOCK_GET(FIELD)						\
7522 	do {								\
7523 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7524 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7525 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7526 				      si->dst_reg, si->src_reg,		\
7527 				      offsetof(struct xdp_sock, FIELD)); \
7528 	} while (0)
7529 
7530 	BTF_TYPE_EMIT(struct bpf_xdp_sock);
7531 
7532 	switch (si->off) {
7533 	case offsetof(struct bpf_xdp_sock, queue_id):
7534 		BPF_XDP_SOCK_GET(queue_id);
7535 		break;
7536 	}
7537 
7538 	return insn - insn_buf;
7539 }
7540 
7541 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7542 	.func           = bpf_skb_ecn_set_ce,
7543 	.gpl_only       = false,
7544 	.ret_type       = RET_INTEGER,
7545 	.arg1_type      = ARG_PTR_TO_CTX,
7546 };
7547 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7548 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7549 	   struct tcphdr *, th, u32, th_len)
7550 {
7551 #ifdef CONFIG_SYN_COOKIES
7552 	int ret;
7553 
7554 	if (unlikely(!sk || th_len < sizeof(*th)))
7555 		return -EINVAL;
7556 
7557 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7558 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7559 		return -EINVAL;
7560 
7561 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7562 		return -EINVAL;
7563 
7564 	if (!th->ack || th->rst || th->syn)
7565 		return -ENOENT;
7566 
7567 	if (unlikely(iph_len < sizeof(struct iphdr)))
7568 		return -EINVAL;
7569 
7570 	if (tcp_synq_no_recent_overflow(sk))
7571 		return -ENOENT;
7572 
7573 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7574 	 * same offset so we can cast to the shorter header (struct iphdr).
7575 	 */
7576 	switch (((struct iphdr *)iph)->version) {
7577 	case 4:
7578 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7579 			return -EINVAL;
7580 
7581 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7582 		break;
7583 
7584 #if IS_BUILTIN(CONFIG_IPV6)
7585 	case 6:
7586 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7587 			return -EINVAL;
7588 
7589 		if (sk->sk_family != AF_INET6)
7590 			return -EINVAL;
7591 
7592 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7593 		break;
7594 #endif /* CONFIG_IPV6 */
7595 
7596 	default:
7597 		return -EPROTONOSUPPORT;
7598 	}
7599 
7600 	if (ret > 0)
7601 		return 0;
7602 
7603 	return -ENOENT;
7604 #else
7605 	return -ENOTSUPP;
7606 #endif
7607 }
7608 
7609 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7610 	.func		= bpf_tcp_check_syncookie,
7611 	.gpl_only	= true,
7612 	.pkt_access	= true,
7613 	.ret_type	= RET_INTEGER,
7614 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7615 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7616 	.arg3_type	= ARG_CONST_SIZE,
7617 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7618 	.arg5_type	= ARG_CONST_SIZE,
7619 };
7620 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7621 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7622 	   struct tcphdr *, th, u32, th_len)
7623 {
7624 #ifdef CONFIG_SYN_COOKIES
7625 	u32 cookie;
7626 	u16 mss;
7627 
7628 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7629 		return -EINVAL;
7630 
7631 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7632 		return -EINVAL;
7633 
7634 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7635 		return -ENOENT;
7636 
7637 	if (!th->syn || th->ack || th->fin || th->rst)
7638 		return -EINVAL;
7639 
7640 	if (unlikely(iph_len < sizeof(struct iphdr)))
7641 		return -EINVAL;
7642 
7643 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7644 	 * same offset so we can cast to the shorter header (struct iphdr).
7645 	 */
7646 	switch (((struct iphdr *)iph)->version) {
7647 	case 4:
7648 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7649 			return -EINVAL;
7650 
7651 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7652 		break;
7653 
7654 #if IS_BUILTIN(CONFIG_IPV6)
7655 	case 6:
7656 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7657 			return -EINVAL;
7658 
7659 		if (sk->sk_family != AF_INET6)
7660 			return -EINVAL;
7661 
7662 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7663 		break;
7664 #endif /* CONFIG_IPV6 */
7665 
7666 	default:
7667 		return -EPROTONOSUPPORT;
7668 	}
7669 	if (mss == 0)
7670 		return -ENOENT;
7671 
7672 	return cookie | ((u64)mss << 32);
7673 #else
7674 	return -EOPNOTSUPP;
7675 #endif /* CONFIG_SYN_COOKIES */
7676 }
7677 
7678 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7679 	.func		= bpf_tcp_gen_syncookie,
7680 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7681 	.pkt_access	= true,
7682 	.ret_type	= RET_INTEGER,
7683 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7684 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7685 	.arg3_type	= ARG_CONST_SIZE,
7686 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7687 	.arg5_type	= ARG_CONST_SIZE,
7688 };
7689 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7690 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7691 {
7692 	if (!sk || flags != 0)
7693 		return -EINVAL;
7694 	if (!skb_at_tc_ingress(skb))
7695 		return -EOPNOTSUPP;
7696 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7697 		return -ENETUNREACH;
7698 	if (sk_unhashed(sk))
7699 		return -EOPNOTSUPP;
7700 	if (sk_is_refcounted(sk) &&
7701 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7702 		return -ENOENT;
7703 
7704 	skb_orphan(skb);
7705 	skb->sk = sk;
7706 	skb->destructor = sock_pfree;
7707 
7708 	return 0;
7709 }
7710 
7711 static const struct bpf_func_proto bpf_sk_assign_proto = {
7712 	.func		= bpf_sk_assign,
7713 	.gpl_only	= false,
7714 	.ret_type	= RET_INTEGER,
7715 	.arg1_type      = ARG_PTR_TO_CTX,
7716 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7717 	.arg3_type	= ARG_ANYTHING,
7718 };
7719 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7720 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7721 				    u8 search_kind, const u8 *magic,
7722 				    u8 magic_len, bool *eol)
7723 {
7724 	u8 kind, kind_len;
7725 
7726 	*eol = false;
7727 
7728 	while (op < opend) {
7729 		kind = op[0];
7730 
7731 		if (kind == TCPOPT_EOL) {
7732 			*eol = true;
7733 			return ERR_PTR(-ENOMSG);
7734 		} else if (kind == TCPOPT_NOP) {
7735 			op++;
7736 			continue;
7737 		}
7738 
7739 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7740 			/* Something is wrong in the received header.
7741 			 * Follow the TCP stack's tcp_parse_options()
7742 			 * and just bail here.
7743 			 */
7744 			return ERR_PTR(-EFAULT);
7745 
7746 		kind_len = op[1];
7747 		if (search_kind == kind) {
7748 			if (!magic_len)
7749 				return op;
7750 
7751 			if (magic_len > kind_len - 2)
7752 				return ERR_PTR(-ENOMSG);
7753 
7754 			if (!memcmp(&op[2], magic, magic_len))
7755 				return op;
7756 		}
7757 
7758 		op += kind_len;
7759 	}
7760 
7761 	return ERR_PTR(-ENOMSG);
7762 }
7763 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7764 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7765 	   void *, search_res, u32, len, u64, flags)
7766 {
7767 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7768 	const u8 *op, *opend, *magic, *search = search_res;
7769 	u8 search_kind, search_len, copy_len, magic_len;
7770 	int ret;
7771 
7772 	if (!is_locked_tcp_sock_ops(bpf_sock))
7773 		return -EOPNOTSUPP;
7774 
7775 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7776 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7777 	 * and this helper disallow loading them also.
7778 	 */
7779 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7780 		return -EINVAL;
7781 
7782 	search_kind = search[0];
7783 	search_len = search[1];
7784 
7785 	if (search_len > len || search_kind == TCPOPT_NOP ||
7786 	    search_kind == TCPOPT_EOL)
7787 		return -EINVAL;
7788 
7789 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7790 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7791 		if (search_len != 4 && search_len != 6)
7792 			return -EINVAL;
7793 		magic = &search[2];
7794 		magic_len = search_len - 2;
7795 	} else {
7796 		if (search_len)
7797 			return -EINVAL;
7798 		magic = NULL;
7799 		magic_len = 0;
7800 	}
7801 
7802 	if (load_syn) {
7803 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7804 		if (ret < 0)
7805 			return ret;
7806 
7807 		opend = op + ret;
7808 		op += sizeof(struct tcphdr);
7809 	} else {
7810 		if (!bpf_sock->skb ||
7811 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7812 			/* This bpf_sock->op cannot call this helper */
7813 			return -EPERM;
7814 
7815 		opend = bpf_sock->skb_data_end;
7816 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7817 	}
7818 
7819 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7820 				&eol);
7821 	if (IS_ERR(op))
7822 		return PTR_ERR(op);
7823 
7824 	copy_len = op[1];
7825 	ret = copy_len;
7826 	if (copy_len > len) {
7827 		ret = -ENOSPC;
7828 		copy_len = len;
7829 	}
7830 
7831 	memcpy(search_res, op, copy_len);
7832 	return ret;
7833 }
7834 
7835 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7836 	.func		= bpf_sock_ops_load_hdr_opt,
7837 	.gpl_only	= false,
7838 	.ret_type	= RET_INTEGER,
7839 	.arg1_type	= ARG_PTR_TO_CTX,
7840 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
7841 	.arg3_type	= ARG_CONST_SIZE,
7842 	.arg4_type	= ARG_ANYTHING,
7843 };
7844 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7845 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7846 	   const void *, from, u32, len, u64, flags)
7847 {
7848 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7849 	const u8 *op, *new_op, *magic = NULL;
7850 	struct sk_buff *skb;
7851 	bool eol;
7852 
7853 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7854 		return -EPERM;
7855 
7856 	if (len < 2 || flags)
7857 		return -EINVAL;
7858 
7859 	new_op = from;
7860 	new_kind = new_op[0];
7861 	new_kind_len = new_op[1];
7862 
7863 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7864 	    new_kind == TCPOPT_EOL)
7865 		return -EINVAL;
7866 
7867 	if (new_kind_len > bpf_sock->remaining_opt_len)
7868 		return -ENOSPC;
7869 
7870 	/* 253 is another experimental kind */
7871 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7872 		if (new_kind_len < 4)
7873 			return -EINVAL;
7874 		/* Match for the 2 byte magic also.
7875 		 * RFC 6994: the magic could be 2 or 4 bytes.
7876 		 * Hence, matching by 2 byte only is on the
7877 		 * conservative side but it is the right
7878 		 * thing to do for the 'search-for-duplication'
7879 		 * purpose.
7880 		 */
7881 		magic = &new_op[2];
7882 		magic_len = 2;
7883 	}
7884 
7885 	/* Check for duplication */
7886 	skb = bpf_sock->skb;
7887 	op = skb->data + sizeof(struct tcphdr);
7888 	opend = bpf_sock->skb_data_end;
7889 
7890 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7891 				&eol);
7892 	if (!IS_ERR(op))
7893 		return -EEXIST;
7894 
7895 	if (PTR_ERR(op) != -ENOMSG)
7896 		return PTR_ERR(op);
7897 
7898 	if (eol)
7899 		/* The option has been ended.  Treat it as no more
7900 		 * header option can be written.
7901 		 */
7902 		return -ENOSPC;
7903 
7904 	/* No duplication found.  Store the header option. */
7905 	memcpy(opend, from, new_kind_len);
7906 
7907 	bpf_sock->remaining_opt_len -= new_kind_len;
7908 	bpf_sock->skb_data_end += new_kind_len;
7909 
7910 	return 0;
7911 }
7912 
7913 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7914 	.func		= bpf_sock_ops_store_hdr_opt,
7915 	.gpl_only	= false,
7916 	.ret_type	= RET_INTEGER,
7917 	.arg1_type	= ARG_PTR_TO_CTX,
7918 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7919 	.arg3_type	= ARG_CONST_SIZE,
7920 	.arg4_type	= ARG_ANYTHING,
7921 };
7922 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7923 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7924 	   u32, len, u64, flags)
7925 {
7926 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7927 		return -EPERM;
7928 
7929 	if (flags || len < 2)
7930 		return -EINVAL;
7931 
7932 	if (len > bpf_sock->remaining_opt_len)
7933 		return -ENOSPC;
7934 
7935 	bpf_sock->remaining_opt_len -= len;
7936 
7937 	return 0;
7938 }
7939 
7940 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7941 	.func		= bpf_sock_ops_reserve_hdr_opt,
7942 	.gpl_only	= false,
7943 	.ret_type	= RET_INTEGER,
7944 	.arg1_type	= ARG_PTR_TO_CTX,
7945 	.arg2_type	= ARG_ANYTHING,
7946 	.arg3_type	= ARG_ANYTHING,
7947 };
7948 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7949 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7950 	   u64, tstamp, u32, tstamp_type)
7951 {
7952 	/* skb_clear_delivery_time() is done for inet protocol */
7953 	if (skb->protocol != htons(ETH_P_IP) &&
7954 	    skb->protocol != htons(ETH_P_IPV6))
7955 		return -EOPNOTSUPP;
7956 
7957 	switch (tstamp_type) {
7958 	case BPF_SKB_CLOCK_REALTIME:
7959 		skb->tstamp = tstamp;
7960 		skb->tstamp_type = SKB_CLOCK_REALTIME;
7961 		break;
7962 	case BPF_SKB_CLOCK_MONOTONIC:
7963 		if (!tstamp)
7964 			return -EINVAL;
7965 		skb->tstamp = tstamp;
7966 		skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7967 		break;
7968 	case BPF_SKB_CLOCK_TAI:
7969 		if (!tstamp)
7970 			return -EINVAL;
7971 		skb->tstamp = tstamp;
7972 		skb->tstamp_type = SKB_CLOCK_TAI;
7973 		break;
7974 	default:
7975 		return -EINVAL;
7976 	}
7977 
7978 	return 0;
7979 }
7980 
7981 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7982 	.func           = bpf_skb_set_tstamp,
7983 	.gpl_only       = false,
7984 	.ret_type       = RET_INTEGER,
7985 	.arg1_type      = ARG_PTR_TO_CTX,
7986 	.arg2_type      = ARG_ANYTHING,
7987 	.arg3_type      = ARG_ANYTHING,
7988 };
7989 
7990 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7991 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7992 	   struct tcphdr *, th, u32, th_len)
7993 {
7994 	u32 cookie;
7995 	u16 mss;
7996 
7997 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7998 		return -EINVAL;
7999 
8000 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
8001 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
8002 
8003 	return cookie | ((u64)mss << 32);
8004 }
8005 
8006 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
8007 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
8008 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
8009 	.pkt_access	= true,
8010 	.ret_type	= RET_INTEGER,
8011 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8012 	.arg1_size	= sizeof(struct iphdr),
8013 	.arg2_type	= ARG_PTR_TO_MEM,
8014 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
8015 };
8016 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)8017 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
8018 	   struct tcphdr *, th, u32, th_len)
8019 {
8020 #if IS_BUILTIN(CONFIG_IPV6)
8021 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
8022 		sizeof(struct ipv6hdr);
8023 	u32 cookie;
8024 	u16 mss;
8025 
8026 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
8027 		return -EINVAL;
8028 
8029 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
8030 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
8031 
8032 	return cookie | ((u64)mss << 32);
8033 #else
8034 	return -EPROTONOSUPPORT;
8035 #endif
8036 }
8037 
8038 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
8039 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
8040 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
8041 	.pkt_access	= true,
8042 	.ret_type	= RET_INTEGER,
8043 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8044 	.arg1_size	= sizeof(struct ipv6hdr),
8045 	.arg2_type	= ARG_PTR_TO_MEM,
8046 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
8047 };
8048 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)8049 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
8050 	   struct tcphdr *, th)
8051 {
8052 	if (__cookie_v4_check(iph, th) > 0)
8053 		return 0;
8054 
8055 	return -EACCES;
8056 }
8057 
8058 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
8059 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
8060 	.gpl_only	= true, /* __cookie_v4_check is GPL */
8061 	.pkt_access	= true,
8062 	.ret_type	= RET_INTEGER,
8063 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8064 	.arg1_size	= sizeof(struct iphdr),
8065 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8066 	.arg2_size	= sizeof(struct tcphdr),
8067 };
8068 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)8069 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
8070 	   struct tcphdr *, th)
8071 {
8072 #if IS_BUILTIN(CONFIG_IPV6)
8073 	if (__cookie_v6_check(iph, th) > 0)
8074 		return 0;
8075 
8076 	return -EACCES;
8077 #else
8078 	return -EPROTONOSUPPORT;
8079 #endif
8080 }
8081 
8082 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
8083 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
8084 	.gpl_only	= true, /* __cookie_v6_check is GPL */
8085 	.pkt_access	= true,
8086 	.ret_type	= RET_INTEGER,
8087 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8088 	.arg1_size	= sizeof(struct ipv6hdr),
8089 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8090 	.arg2_size	= sizeof(struct tcphdr),
8091 };
8092 #endif /* CONFIG_SYN_COOKIES */
8093 
8094 #endif /* CONFIG_INET */
8095 
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)8096 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
8097 {
8098 	switch (func_id) {
8099 	case BPF_FUNC_clone_redirect:
8100 	case BPF_FUNC_l3_csum_replace:
8101 	case BPF_FUNC_l4_csum_replace:
8102 	case BPF_FUNC_lwt_push_encap:
8103 	case BPF_FUNC_lwt_seg6_action:
8104 	case BPF_FUNC_lwt_seg6_adjust_srh:
8105 	case BPF_FUNC_lwt_seg6_store_bytes:
8106 	case BPF_FUNC_msg_pop_data:
8107 	case BPF_FUNC_msg_pull_data:
8108 	case BPF_FUNC_msg_push_data:
8109 	case BPF_FUNC_skb_adjust_room:
8110 	case BPF_FUNC_skb_change_head:
8111 	case BPF_FUNC_skb_change_proto:
8112 	case BPF_FUNC_skb_change_tail:
8113 	case BPF_FUNC_skb_pull_data:
8114 	case BPF_FUNC_skb_store_bytes:
8115 	case BPF_FUNC_skb_vlan_pop:
8116 	case BPF_FUNC_skb_vlan_push:
8117 	case BPF_FUNC_store_hdr_opt:
8118 	case BPF_FUNC_xdp_adjust_head:
8119 	case BPF_FUNC_xdp_adjust_meta:
8120 	case BPF_FUNC_xdp_adjust_tail:
8121 	/* tail-called program could call any of the above */
8122 	case BPF_FUNC_tail_call:
8123 		return true;
8124 	default:
8125 		return false;
8126 	}
8127 }
8128 
8129 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8130 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8131 
8132 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8133 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8134 {
8135 	const struct bpf_func_proto *func_proto;
8136 
8137 	func_proto = cgroup_common_func_proto(func_id, prog);
8138 	if (func_proto)
8139 		return func_proto;
8140 
8141 	switch (func_id) {
8142 	case BPF_FUNC_get_socket_cookie:
8143 		return &bpf_get_socket_cookie_sock_proto;
8144 	case BPF_FUNC_get_netns_cookie:
8145 		return &bpf_get_netns_cookie_sock_proto;
8146 	case BPF_FUNC_perf_event_output:
8147 		return &bpf_event_output_data_proto;
8148 	case BPF_FUNC_sk_storage_get:
8149 		return &bpf_sk_storage_get_cg_sock_proto;
8150 	case BPF_FUNC_ktime_get_coarse_ns:
8151 		return &bpf_ktime_get_coarse_ns_proto;
8152 	case BPF_FUNC_setsockopt:
8153 		switch (prog->expected_attach_type) {
8154 		case BPF_CGROUP_INET_SOCK_CREATE:
8155 			return &bpf_sock_create_setsockopt_proto;
8156 		default:
8157 			return NULL;
8158 		}
8159 	case BPF_FUNC_getsockopt:
8160 		switch (prog->expected_attach_type) {
8161 		case BPF_CGROUP_INET_SOCK_CREATE:
8162 			return &bpf_sock_create_getsockopt_proto;
8163 		default:
8164 			return NULL;
8165 		}
8166 	default:
8167 		return bpf_base_func_proto(func_id, prog);
8168 	}
8169 }
8170 
8171 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8172 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8173 {
8174 	const struct bpf_func_proto *func_proto;
8175 
8176 	func_proto = cgroup_common_func_proto(func_id, prog);
8177 	if (func_proto)
8178 		return func_proto;
8179 
8180 	switch (func_id) {
8181 	case BPF_FUNC_bind:
8182 		switch (prog->expected_attach_type) {
8183 		case BPF_CGROUP_INET4_CONNECT:
8184 		case BPF_CGROUP_INET6_CONNECT:
8185 			return &bpf_bind_proto;
8186 		default:
8187 			return NULL;
8188 		}
8189 	case BPF_FUNC_get_socket_cookie:
8190 		return &bpf_get_socket_cookie_sock_addr_proto;
8191 	case BPF_FUNC_get_netns_cookie:
8192 		return &bpf_get_netns_cookie_sock_addr_proto;
8193 	case BPF_FUNC_perf_event_output:
8194 		return &bpf_event_output_data_proto;
8195 #ifdef CONFIG_INET
8196 	case BPF_FUNC_sk_lookup_tcp:
8197 		return &bpf_sock_addr_sk_lookup_tcp_proto;
8198 	case BPF_FUNC_sk_lookup_udp:
8199 		return &bpf_sock_addr_sk_lookup_udp_proto;
8200 	case BPF_FUNC_sk_release:
8201 		return &bpf_sk_release_proto;
8202 	case BPF_FUNC_skc_lookup_tcp:
8203 		return &bpf_sock_addr_skc_lookup_tcp_proto;
8204 #endif /* CONFIG_INET */
8205 	case BPF_FUNC_sk_storage_get:
8206 		return &bpf_sk_storage_get_proto;
8207 	case BPF_FUNC_sk_storage_delete:
8208 		return &bpf_sk_storage_delete_proto;
8209 	case BPF_FUNC_setsockopt:
8210 		switch (prog->expected_attach_type) {
8211 		case BPF_CGROUP_INET4_BIND:
8212 		case BPF_CGROUP_INET6_BIND:
8213 		case BPF_CGROUP_INET4_CONNECT:
8214 		case BPF_CGROUP_INET6_CONNECT:
8215 		case BPF_CGROUP_UNIX_CONNECT:
8216 		case BPF_CGROUP_UDP4_RECVMSG:
8217 		case BPF_CGROUP_UDP6_RECVMSG:
8218 		case BPF_CGROUP_UNIX_RECVMSG:
8219 		case BPF_CGROUP_UDP4_SENDMSG:
8220 		case BPF_CGROUP_UDP6_SENDMSG:
8221 		case BPF_CGROUP_UNIX_SENDMSG:
8222 		case BPF_CGROUP_INET4_GETPEERNAME:
8223 		case BPF_CGROUP_INET6_GETPEERNAME:
8224 		case BPF_CGROUP_UNIX_GETPEERNAME:
8225 		case BPF_CGROUP_INET4_GETSOCKNAME:
8226 		case BPF_CGROUP_INET6_GETSOCKNAME:
8227 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8228 			return &bpf_sock_addr_setsockopt_proto;
8229 		default:
8230 			return NULL;
8231 		}
8232 	case BPF_FUNC_getsockopt:
8233 		switch (prog->expected_attach_type) {
8234 		case BPF_CGROUP_INET4_BIND:
8235 		case BPF_CGROUP_INET6_BIND:
8236 		case BPF_CGROUP_INET4_CONNECT:
8237 		case BPF_CGROUP_INET6_CONNECT:
8238 		case BPF_CGROUP_UNIX_CONNECT:
8239 		case BPF_CGROUP_UDP4_RECVMSG:
8240 		case BPF_CGROUP_UDP6_RECVMSG:
8241 		case BPF_CGROUP_UNIX_RECVMSG:
8242 		case BPF_CGROUP_UDP4_SENDMSG:
8243 		case BPF_CGROUP_UDP6_SENDMSG:
8244 		case BPF_CGROUP_UNIX_SENDMSG:
8245 		case BPF_CGROUP_INET4_GETPEERNAME:
8246 		case BPF_CGROUP_INET6_GETPEERNAME:
8247 		case BPF_CGROUP_UNIX_GETPEERNAME:
8248 		case BPF_CGROUP_INET4_GETSOCKNAME:
8249 		case BPF_CGROUP_INET6_GETSOCKNAME:
8250 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8251 			return &bpf_sock_addr_getsockopt_proto;
8252 		default:
8253 			return NULL;
8254 		}
8255 	default:
8256 		return bpf_sk_base_func_proto(func_id, prog);
8257 	}
8258 }
8259 
8260 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8261 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8262 {
8263 	switch (func_id) {
8264 	case BPF_FUNC_skb_load_bytes:
8265 		return &bpf_skb_load_bytes_proto;
8266 	case BPF_FUNC_skb_load_bytes_relative:
8267 		return &bpf_skb_load_bytes_relative_proto;
8268 	case BPF_FUNC_get_socket_cookie:
8269 		return &bpf_get_socket_cookie_proto;
8270 	case BPF_FUNC_get_netns_cookie:
8271 		return &bpf_get_netns_cookie_proto;
8272 	case BPF_FUNC_get_socket_uid:
8273 		return &bpf_get_socket_uid_proto;
8274 	case BPF_FUNC_perf_event_output:
8275 		return &bpf_skb_event_output_proto;
8276 	default:
8277 		return bpf_sk_base_func_proto(func_id, prog);
8278 	}
8279 }
8280 
8281 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8282 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8283 
8284 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8285 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8286 {
8287 	const struct bpf_func_proto *func_proto;
8288 
8289 	func_proto = cgroup_common_func_proto(func_id, prog);
8290 	if (func_proto)
8291 		return func_proto;
8292 
8293 	switch (func_id) {
8294 	case BPF_FUNC_sk_fullsock:
8295 		return &bpf_sk_fullsock_proto;
8296 	case BPF_FUNC_sk_storage_get:
8297 		return &bpf_sk_storage_get_proto;
8298 	case BPF_FUNC_sk_storage_delete:
8299 		return &bpf_sk_storage_delete_proto;
8300 	case BPF_FUNC_perf_event_output:
8301 		return &bpf_skb_event_output_proto;
8302 #ifdef CONFIG_SOCK_CGROUP_DATA
8303 	case BPF_FUNC_skb_cgroup_id:
8304 		return &bpf_skb_cgroup_id_proto;
8305 	case BPF_FUNC_skb_ancestor_cgroup_id:
8306 		return &bpf_skb_ancestor_cgroup_id_proto;
8307 	case BPF_FUNC_sk_cgroup_id:
8308 		return &bpf_sk_cgroup_id_proto;
8309 	case BPF_FUNC_sk_ancestor_cgroup_id:
8310 		return &bpf_sk_ancestor_cgroup_id_proto;
8311 #endif
8312 #ifdef CONFIG_INET
8313 	case BPF_FUNC_sk_lookup_tcp:
8314 		return &bpf_sk_lookup_tcp_proto;
8315 	case BPF_FUNC_sk_lookup_udp:
8316 		return &bpf_sk_lookup_udp_proto;
8317 	case BPF_FUNC_sk_release:
8318 		return &bpf_sk_release_proto;
8319 	case BPF_FUNC_skc_lookup_tcp:
8320 		return &bpf_skc_lookup_tcp_proto;
8321 	case BPF_FUNC_tcp_sock:
8322 		return &bpf_tcp_sock_proto;
8323 	case BPF_FUNC_get_listener_sock:
8324 		return &bpf_get_listener_sock_proto;
8325 	case BPF_FUNC_skb_ecn_set_ce:
8326 		return &bpf_skb_ecn_set_ce_proto;
8327 #endif
8328 	default:
8329 		return sk_filter_func_proto(func_id, prog);
8330 	}
8331 }
8332 
8333 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8334 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8335 {
8336 	switch (func_id) {
8337 	case BPF_FUNC_skb_store_bytes:
8338 		return &bpf_skb_store_bytes_proto;
8339 	case BPF_FUNC_skb_load_bytes:
8340 		return &bpf_skb_load_bytes_proto;
8341 	case BPF_FUNC_skb_load_bytes_relative:
8342 		return &bpf_skb_load_bytes_relative_proto;
8343 	case BPF_FUNC_skb_pull_data:
8344 		return &bpf_skb_pull_data_proto;
8345 	case BPF_FUNC_csum_diff:
8346 		return &bpf_csum_diff_proto;
8347 	case BPF_FUNC_csum_update:
8348 		return &bpf_csum_update_proto;
8349 	case BPF_FUNC_csum_level:
8350 		return &bpf_csum_level_proto;
8351 	case BPF_FUNC_l3_csum_replace:
8352 		return &bpf_l3_csum_replace_proto;
8353 	case BPF_FUNC_l4_csum_replace:
8354 		return &bpf_l4_csum_replace_proto;
8355 	case BPF_FUNC_clone_redirect:
8356 		return &bpf_clone_redirect_proto;
8357 	case BPF_FUNC_get_cgroup_classid:
8358 		return &bpf_get_cgroup_classid_proto;
8359 	case BPF_FUNC_skb_vlan_push:
8360 		return &bpf_skb_vlan_push_proto;
8361 	case BPF_FUNC_skb_vlan_pop:
8362 		return &bpf_skb_vlan_pop_proto;
8363 	case BPF_FUNC_skb_change_proto:
8364 		return &bpf_skb_change_proto_proto;
8365 	case BPF_FUNC_skb_change_type:
8366 		return &bpf_skb_change_type_proto;
8367 	case BPF_FUNC_skb_adjust_room:
8368 		return &bpf_skb_adjust_room_proto;
8369 	case BPF_FUNC_skb_change_tail:
8370 		return &bpf_skb_change_tail_proto;
8371 	case BPF_FUNC_skb_change_head:
8372 		return &bpf_skb_change_head_proto;
8373 	case BPF_FUNC_skb_get_tunnel_key:
8374 		return &bpf_skb_get_tunnel_key_proto;
8375 	case BPF_FUNC_skb_set_tunnel_key:
8376 		return bpf_get_skb_set_tunnel_proto(func_id);
8377 	case BPF_FUNC_skb_get_tunnel_opt:
8378 		return &bpf_skb_get_tunnel_opt_proto;
8379 	case BPF_FUNC_skb_set_tunnel_opt:
8380 		return bpf_get_skb_set_tunnel_proto(func_id);
8381 	case BPF_FUNC_redirect:
8382 		return &bpf_redirect_proto;
8383 	case BPF_FUNC_redirect_neigh:
8384 		return &bpf_redirect_neigh_proto;
8385 	case BPF_FUNC_redirect_peer:
8386 		return &bpf_redirect_peer_proto;
8387 	case BPF_FUNC_get_route_realm:
8388 		return &bpf_get_route_realm_proto;
8389 	case BPF_FUNC_get_hash_recalc:
8390 		return &bpf_get_hash_recalc_proto;
8391 	case BPF_FUNC_set_hash_invalid:
8392 		return &bpf_set_hash_invalid_proto;
8393 	case BPF_FUNC_set_hash:
8394 		return &bpf_set_hash_proto;
8395 	case BPF_FUNC_perf_event_output:
8396 		return &bpf_skb_event_output_proto;
8397 	case BPF_FUNC_get_smp_processor_id:
8398 		return &bpf_get_smp_processor_id_proto;
8399 	case BPF_FUNC_skb_under_cgroup:
8400 		return &bpf_skb_under_cgroup_proto;
8401 	case BPF_FUNC_get_socket_cookie:
8402 		return &bpf_get_socket_cookie_proto;
8403 	case BPF_FUNC_get_netns_cookie:
8404 		return &bpf_get_netns_cookie_proto;
8405 	case BPF_FUNC_get_socket_uid:
8406 		return &bpf_get_socket_uid_proto;
8407 	case BPF_FUNC_fib_lookup:
8408 		return &bpf_skb_fib_lookup_proto;
8409 	case BPF_FUNC_check_mtu:
8410 		return &bpf_skb_check_mtu_proto;
8411 	case BPF_FUNC_sk_fullsock:
8412 		return &bpf_sk_fullsock_proto;
8413 	case BPF_FUNC_sk_storage_get:
8414 		return &bpf_sk_storage_get_proto;
8415 	case BPF_FUNC_sk_storage_delete:
8416 		return &bpf_sk_storage_delete_proto;
8417 #ifdef CONFIG_XFRM
8418 	case BPF_FUNC_skb_get_xfrm_state:
8419 		return &bpf_skb_get_xfrm_state_proto;
8420 #endif
8421 #ifdef CONFIG_CGROUP_NET_CLASSID
8422 	case BPF_FUNC_skb_cgroup_classid:
8423 		return &bpf_skb_cgroup_classid_proto;
8424 #endif
8425 #ifdef CONFIG_SOCK_CGROUP_DATA
8426 	case BPF_FUNC_skb_cgroup_id:
8427 		return &bpf_skb_cgroup_id_proto;
8428 	case BPF_FUNC_skb_ancestor_cgroup_id:
8429 		return &bpf_skb_ancestor_cgroup_id_proto;
8430 #endif
8431 #ifdef CONFIG_INET
8432 	case BPF_FUNC_sk_lookup_tcp:
8433 		return &bpf_tc_sk_lookup_tcp_proto;
8434 	case BPF_FUNC_sk_lookup_udp:
8435 		return &bpf_tc_sk_lookup_udp_proto;
8436 	case BPF_FUNC_sk_release:
8437 		return &bpf_sk_release_proto;
8438 	case BPF_FUNC_tcp_sock:
8439 		return &bpf_tcp_sock_proto;
8440 	case BPF_FUNC_get_listener_sock:
8441 		return &bpf_get_listener_sock_proto;
8442 	case BPF_FUNC_skc_lookup_tcp:
8443 		return &bpf_tc_skc_lookup_tcp_proto;
8444 	case BPF_FUNC_tcp_check_syncookie:
8445 		return &bpf_tcp_check_syncookie_proto;
8446 	case BPF_FUNC_skb_ecn_set_ce:
8447 		return &bpf_skb_ecn_set_ce_proto;
8448 	case BPF_FUNC_tcp_gen_syncookie:
8449 		return &bpf_tcp_gen_syncookie_proto;
8450 	case BPF_FUNC_sk_assign:
8451 		return &bpf_sk_assign_proto;
8452 	case BPF_FUNC_skb_set_tstamp:
8453 		return &bpf_skb_set_tstamp_proto;
8454 #ifdef CONFIG_SYN_COOKIES
8455 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8456 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8457 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8458 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8459 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8460 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8461 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8462 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8463 #endif
8464 #endif
8465 	default:
8466 		return bpf_sk_base_func_proto(func_id, prog);
8467 	}
8468 }
8469 
8470 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8471 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8472 {
8473 	switch (func_id) {
8474 	case BPF_FUNC_perf_event_output:
8475 		return &bpf_xdp_event_output_proto;
8476 	case BPF_FUNC_get_smp_processor_id:
8477 		return &bpf_get_smp_processor_id_proto;
8478 	case BPF_FUNC_csum_diff:
8479 		return &bpf_csum_diff_proto;
8480 	case BPF_FUNC_xdp_adjust_head:
8481 		return &bpf_xdp_adjust_head_proto;
8482 	case BPF_FUNC_xdp_adjust_meta:
8483 		return &bpf_xdp_adjust_meta_proto;
8484 	case BPF_FUNC_redirect:
8485 		return &bpf_xdp_redirect_proto;
8486 	case BPF_FUNC_redirect_map:
8487 		return &bpf_xdp_redirect_map_proto;
8488 	case BPF_FUNC_xdp_adjust_tail:
8489 		return &bpf_xdp_adjust_tail_proto;
8490 	case BPF_FUNC_xdp_get_buff_len:
8491 		return &bpf_xdp_get_buff_len_proto;
8492 	case BPF_FUNC_xdp_load_bytes:
8493 		return &bpf_xdp_load_bytes_proto;
8494 	case BPF_FUNC_xdp_store_bytes:
8495 		return &bpf_xdp_store_bytes_proto;
8496 	case BPF_FUNC_fib_lookup:
8497 		return &bpf_xdp_fib_lookup_proto;
8498 	case BPF_FUNC_check_mtu:
8499 		return &bpf_xdp_check_mtu_proto;
8500 #ifdef CONFIG_INET
8501 	case BPF_FUNC_sk_lookup_udp:
8502 		return &bpf_xdp_sk_lookup_udp_proto;
8503 	case BPF_FUNC_sk_lookup_tcp:
8504 		return &bpf_xdp_sk_lookup_tcp_proto;
8505 	case BPF_FUNC_sk_release:
8506 		return &bpf_sk_release_proto;
8507 	case BPF_FUNC_skc_lookup_tcp:
8508 		return &bpf_xdp_skc_lookup_tcp_proto;
8509 	case BPF_FUNC_tcp_check_syncookie:
8510 		return &bpf_tcp_check_syncookie_proto;
8511 	case BPF_FUNC_tcp_gen_syncookie:
8512 		return &bpf_tcp_gen_syncookie_proto;
8513 #ifdef CONFIG_SYN_COOKIES
8514 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8515 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8516 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8517 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8518 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8519 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8520 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8521 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8522 #endif
8523 #endif
8524 	default:
8525 		return bpf_sk_base_func_proto(func_id, prog);
8526 	}
8527 
8528 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8529 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8530 	 * kfuncs are defined in two different modules, and we want to be able
8531 	 * to use them interchangeably with the same BTF type ID. Because modules
8532 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8533 	 * referenced in the vmlinux BTF or the verifier will get confused about
8534 	 * the different types. So we add this dummy type reference which will
8535 	 * be included in vmlinux BTF, allowing both modules to refer to the
8536 	 * same type ID.
8537 	 */
8538 	BTF_TYPE_EMIT(struct nf_conn___init);
8539 #endif
8540 }
8541 
8542 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8543 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8544 
8545 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8546 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8547 {
8548 	const struct bpf_func_proto *func_proto;
8549 
8550 	func_proto = cgroup_common_func_proto(func_id, prog);
8551 	if (func_proto)
8552 		return func_proto;
8553 
8554 	switch (func_id) {
8555 	case BPF_FUNC_setsockopt:
8556 		return &bpf_sock_ops_setsockopt_proto;
8557 	case BPF_FUNC_getsockopt:
8558 		return &bpf_sock_ops_getsockopt_proto;
8559 	case BPF_FUNC_sock_ops_cb_flags_set:
8560 		return &bpf_sock_ops_cb_flags_set_proto;
8561 	case BPF_FUNC_sock_map_update:
8562 		return &bpf_sock_map_update_proto;
8563 	case BPF_FUNC_sock_hash_update:
8564 		return &bpf_sock_hash_update_proto;
8565 	case BPF_FUNC_get_socket_cookie:
8566 		return &bpf_get_socket_cookie_sock_ops_proto;
8567 	case BPF_FUNC_perf_event_output:
8568 		return &bpf_event_output_data_proto;
8569 	case BPF_FUNC_sk_storage_get:
8570 		return &bpf_sk_storage_get_proto;
8571 	case BPF_FUNC_sk_storage_delete:
8572 		return &bpf_sk_storage_delete_proto;
8573 	case BPF_FUNC_get_netns_cookie:
8574 		return &bpf_get_netns_cookie_sock_ops_proto;
8575 #ifdef CONFIG_INET
8576 	case BPF_FUNC_load_hdr_opt:
8577 		return &bpf_sock_ops_load_hdr_opt_proto;
8578 	case BPF_FUNC_store_hdr_opt:
8579 		return &bpf_sock_ops_store_hdr_opt_proto;
8580 	case BPF_FUNC_reserve_hdr_opt:
8581 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8582 	case BPF_FUNC_tcp_sock:
8583 		return &bpf_tcp_sock_proto;
8584 #endif /* CONFIG_INET */
8585 	default:
8586 		return bpf_sk_base_func_proto(func_id, prog);
8587 	}
8588 }
8589 
8590 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8591 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8592 
8593 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8594 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8595 {
8596 	switch (func_id) {
8597 	case BPF_FUNC_msg_redirect_map:
8598 		return &bpf_msg_redirect_map_proto;
8599 	case BPF_FUNC_msg_redirect_hash:
8600 		return &bpf_msg_redirect_hash_proto;
8601 	case BPF_FUNC_msg_apply_bytes:
8602 		return &bpf_msg_apply_bytes_proto;
8603 	case BPF_FUNC_msg_cork_bytes:
8604 		return &bpf_msg_cork_bytes_proto;
8605 	case BPF_FUNC_msg_pull_data:
8606 		return &bpf_msg_pull_data_proto;
8607 	case BPF_FUNC_msg_push_data:
8608 		return &bpf_msg_push_data_proto;
8609 	case BPF_FUNC_msg_pop_data:
8610 		return &bpf_msg_pop_data_proto;
8611 	case BPF_FUNC_perf_event_output:
8612 		return &bpf_event_output_data_proto;
8613 	case BPF_FUNC_sk_storage_get:
8614 		return &bpf_sk_storage_get_proto;
8615 	case BPF_FUNC_sk_storage_delete:
8616 		return &bpf_sk_storage_delete_proto;
8617 	case BPF_FUNC_get_netns_cookie:
8618 		return &bpf_get_netns_cookie_sk_msg_proto;
8619 	default:
8620 		return bpf_sk_base_func_proto(func_id, prog);
8621 	}
8622 }
8623 
8624 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8625 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8626 
8627 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8628 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8629 {
8630 	switch (func_id) {
8631 	case BPF_FUNC_skb_store_bytes:
8632 		return &bpf_skb_store_bytes_proto;
8633 	case BPF_FUNC_skb_load_bytes:
8634 		return &bpf_skb_load_bytes_proto;
8635 	case BPF_FUNC_skb_pull_data:
8636 		return &sk_skb_pull_data_proto;
8637 	case BPF_FUNC_skb_change_tail:
8638 		return &sk_skb_change_tail_proto;
8639 	case BPF_FUNC_skb_change_head:
8640 		return &sk_skb_change_head_proto;
8641 	case BPF_FUNC_skb_adjust_room:
8642 		return &sk_skb_adjust_room_proto;
8643 	case BPF_FUNC_get_socket_cookie:
8644 		return &bpf_get_socket_cookie_proto;
8645 	case BPF_FUNC_get_socket_uid:
8646 		return &bpf_get_socket_uid_proto;
8647 	case BPF_FUNC_sk_redirect_map:
8648 		return &bpf_sk_redirect_map_proto;
8649 	case BPF_FUNC_sk_redirect_hash:
8650 		return &bpf_sk_redirect_hash_proto;
8651 	case BPF_FUNC_perf_event_output:
8652 		return &bpf_skb_event_output_proto;
8653 #ifdef CONFIG_INET
8654 	case BPF_FUNC_sk_lookup_tcp:
8655 		return &bpf_sk_lookup_tcp_proto;
8656 	case BPF_FUNC_sk_lookup_udp:
8657 		return &bpf_sk_lookup_udp_proto;
8658 	case BPF_FUNC_sk_release:
8659 		return &bpf_sk_release_proto;
8660 	case BPF_FUNC_skc_lookup_tcp:
8661 		return &bpf_skc_lookup_tcp_proto;
8662 #endif
8663 	default:
8664 		return bpf_sk_base_func_proto(func_id, prog);
8665 	}
8666 }
8667 
8668 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8669 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8670 {
8671 	switch (func_id) {
8672 	case BPF_FUNC_skb_load_bytes:
8673 		return &bpf_flow_dissector_load_bytes_proto;
8674 	default:
8675 		return bpf_sk_base_func_proto(func_id, prog);
8676 	}
8677 }
8678 
8679 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8680 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8681 {
8682 	switch (func_id) {
8683 	case BPF_FUNC_skb_load_bytes:
8684 		return &bpf_skb_load_bytes_proto;
8685 	case BPF_FUNC_skb_pull_data:
8686 		return &bpf_skb_pull_data_proto;
8687 	case BPF_FUNC_csum_diff:
8688 		return &bpf_csum_diff_proto;
8689 	case BPF_FUNC_get_cgroup_classid:
8690 		return &bpf_get_cgroup_classid_proto;
8691 	case BPF_FUNC_get_route_realm:
8692 		return &bpf_get_route_realm_proto;
8693 	case BPF_FUNC_get_hash_recalc:
8694 		return &bpf_get_hash_recalc_proto;
8695 	case BPF_FUNC_perf_event_output:
8696 		return &bpf_skb_event_output_proto;
8697 	case BPF_FUNC_get_smp_processor_id:
8698 		return &bpf_get_smp_processor_id_proto;
8699 	case BPF_FUNC_skb_under_cgroup:
8700 		return &bpf_skb_under_cgroup_proto;
8701 	default:
8702 		return bpf_sk_base_func_proto(func_id, prog);
8703 	}
8704 }
8705 
8706 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8707 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8708 {
8709 	switch (func_id) {
8710 	case BPF_FUNC_lwt_push_encap:
8711 		return &bpf_lwt_in_push_encap_proto;
8712 	default:
8713 		return lwt_out_func_proto(func_id, prog);
8714 	}
8715 }
8716 
8717 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8718 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8719 {
8720 	switch (func_id) {
8721 	case BPF_FUNC_skb_get_tunnel_key:
8722 		return &bpf_skb_get_tunnel_key_proto;
8723 	case BPF_FUNC_skb_set_tunnel_key:
8724 		return bpf_get_skb_set_tunnel_proto(func_id);
8725 	case BPF_FUNC_skb_get_tunnel_opt:
8726 		return &bpf_skb_get_tunnel_opt_proto;
8727 	case BPF_FUNC_skb_set_tunnel_opt:
8728 		return bpf_get_skb_set_tunnel_proto(func_id);
8729 	case BPF_FUNC_redirect:
8730 		return &bpf_redirect_proto;
8731 	case BPF_FUNC_clone_redirect:
8732 		return &bpf_clone_redirect_proto;
8733 	case BPF_FUNC_skb_change_tail:
8734 		return &bpf_skb_change_tail_proto;
8735 	case BPF_FUNC_skb_change_head:
8736 		return &bpf_skb_change_head_proto;
8737 	case BPF_FUNC_skb_store_bytes:
8738 		return &bpf_skb_store_bytes_proto;
8739 	case BPF_FUNC_csum_update:
8740 		return &bpf_csum_update_proto;
8741 	case BPF_FUNC_csum_level:
8742 		return &bpf_csum_level_proto;
8743 	case BPF_FUNC_l3_csum_replace:
8744 		return &bpf_l3_csum_replace_proto;
8745 	case BPF_FUNC_l4_csum_replace:
8746 		return &bpf_l4_csum_replace_proto;
8747 	case BPF_FUNC_set_hash_invalid:
8748 		return &bpf_set_hash_invalid_proto;
8749 	case BPF_FUNC_lwt_push_encap:
8750 		return &bpf_lwt_xmit_push_encap_proto;
8751 	default:
8752 		return lwt_out_func_proto(func_id, prog);
8753 	}
8754 }
8755 
8756 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8757 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8758 {
8759 	switch (func_id) {
8760 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8761 	case BPF_FUNC_lwt_seg6_store_bytes:
8762 		return &bpf_lwt_seg6_store_bytes_proto;
8763 	case BPF_FUNC_lwt_seg6_action:
8764 		return &bpf_lwt_seg6_action_proto;
8765 	case BPF_FUNC_lwt_seg6_adjust_srh:
8766 		return &bpf_lwt_seg6_adjust_srh_proto;
8767 #endif
8768 	default:
8769 		return lwt_out_func_proto(func_id, prog);
8770 	}
8771 }
8772 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8773 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8774 				    const struct bpf_prog *prog,
8775 				    struct bpf_insn_access_aux *info)
8776 {
8777 	const int size_default = sizeof(__u32);
8778 
8779 	if (off < 0 || off >= sizeof(struct __sk_buff))
8780 		return false;
8781 
8782 	/* The verifier guarantees that size > 0. */
8783 	if (off % size != 0)
8784 		return false;
8785 
8786 	switch (off) {
8787 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8788 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8789 			return false;
8790 		break;
8791 	case bpf_ctx_range(struct __sk_buff, data):
8792 	case bpf_ctx_range(struct __sk_buff, data_meta):
8793 	case bpf_ctx_range(struct __sk_buff, data_end):
8794 		if (info->is_ldsx || size != size_default)
8795 			return false;
8796 		break;
8797 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8798 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8799 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8800 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8801 		if (size != size_default)
8802 			return false;
8803 		break;
8804 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8805 		return false;
8806 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8807 		if (type == BPF_WRITE || size != sizeof(__u64))
8808 			return false;
8809 		break;
8810 	case bpf_ctx_range(struct __sk_buff, tstamp):
8811 		if (size != sizeof(__u64))
8812 			return false;
8813 		break;
8814 	case bpf_ctx_range_ptr(struct __sk_buff, sk):
8815 		if (type == BPF_WRITE || size != sizeof(__u64))
8816 			return false;
8817 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8818 		break;
8819 	case offsetof(struct __sk_buff, tstamp_type):
8820 		return false;
8821 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8822 		/* Explicitly prohibit access to padding in __sk_buff. */
8823 		return false;
8824 	default:
8825 		/* Only narrow read access allowed for now. */
8826 		if (type == BPF_WRITE) {
8827 			if (size != size_default)
8828 				return false;
8829 		} else {
8830 			bpf_ctx_record_field_size(info, size_default);
8831 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8832 				return false;
8833 		}
8834 	}
8835 
8836 	return true;
8837 }
8838 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8839 static bool sk_filter_is_valid_access(int off, int size,
8840 				      enum bpf_access_type type,
8841 				      const struct bpf_prog *prog,
8842 				      struct bpf_insn_access_aux *info)
8843 {
8844 	switch (off) {
8845 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8846 	case bpf_ctx_range(struct __sk_buff, data):
8847 	case bpf_ctx_range(struct __sk_buff, data_meta):
8848 	case bpf_ctx_range(struct __sk_buff, data_end):
8849 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8850 	case bpf_ctx_range(struct __sk_buff, tstamp):
8851 	case bpf_ctx_range(struct __sk_buff, wire_len):
8852 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8853 		return false;
8854 	}
8855 
8856 	if (type == BPF_WRITE) {
8857 		switch (off) {
8858 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8859 			break;
8860 		default:
8861 			return false;
8862 		}
8863 	}
8864 
8865 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8866 }
8867 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8868 static bool cg_skb_is_valid_access(int off, int size,
8869 				   enum bpf_access_type type,
8870 				   const struct bpf_prog *prog,
8871 				   struct bpf_insn_access_aux *info)
8872 {
8873 	switch (off) {
8874 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8875 	case bpf_ctx_range(struct __sk_buff, data_meta):
8876 	case bpf_ctx_range(struct __sk_buff, wire_len):
8877 		return false;
8878 	case bpf_ctx_range(struct __sk_buff, data):
8879 	case bpf_ctx_range(struct __sk_buff, data_end):
8880 		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8881 			return false;
8882 		break;
8883 	}
8884 
8885 	if (type == BPF_WRITE) {
8886 		switch (off) {
8887 		case bpf_ctx_range(struct __sk_buff, mark):
8888 		case bpf_ctx_range(struct __sk_buff, priority):
8889 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8890 			break;
8891 		case bpf_ctx_range(struct __sk_buff, tstamp):
8892 			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8893 				return false;
8894 			break;
8895 		default:
8896 			return false;
8897 		}
8898 	}
8899 
8900 	switch (off) {
8901 	case bpf_ctx_range(struct __sk_buff, data):
8902 		info->reg_type = PTR_TO_PACKET;
8903 		break;
8904 	case bpf_ctx_range(struct __sk_buff, data_end):
8905 		info->reg_type = PTR_TO_PACKET_END;
8906 		break;
8907 	}
8908 
8909 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8910 }
8911 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8912 static bool lwt_is_valid_access(int off, int size,
8913 				enum bpf_access_type type,
8914 				const struct bpf_prog *prog,
8915 				struct bpf_insn_access_aux *info)
8916 {
8917 	switch (off) {
8918 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8919 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8920 	case bpf_ctx_range(struct __sk_buff, data_meta):
8921 	case bpf_ctx_range(struct __sk_buff, tstamp):
8922 	case bpf_ctx_range(struct __sk_buff, wire_len):
8923 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8924 		return false;
8925 	}
8926 
8927 	if (type == BPF_WRITE) {
8928 		switch (off) {
8929 		case bpf_ctx_range(struct __sk_buff, mark):
8930 		case bpf_ctx_range(struct __sk_buff, priority):
8931 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8932 			break;
8933 		default:
8934 			return false;
8935 		}
8936 	}
8937 
8938 	switch (off) {
8939 	case bpf_ctx_range(struct __sk_buff, data):
8940 		info->reg_type = PTR_TO_PACKET;
8941 		break;
8942 	case bpf_ctx_range(struct __sk_buff, data_end):
8943 		info->reg_type = PTR_TO_PACKET_END;
8944 		break;
8945 	}
8946 
8947 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8948 }
8949 
8950 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8951 static bool __sock_filter_check_attach_type(int off,
8952 					    enum bpf_access_type access_type,
8953 					    enum bpf_attach_type attach_type)
8954 {
8955 	switch (off) {
8956 	case offsetof(struct bpf_sock, bound_dev_if):
8957 	case offsetof(struct bpf_sock, mark):
8958 	case offsetof(struct bpf_sock, priority):
8959 		switch (attach_type) {
8960 		case BPF_CGROUP_INET_SOCK_CREATE:
8961 		case BPF_CGROUP_INET_SOCK_RELEASE:
8962 			goto full_access;
8963 		default:
8964 			return false;
8965 		}
8966 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8967 		switch (attach_type) {
8968 		case BPF_CGROUP_INET4_POST_BIND:
8969 			goto read_only;
8970 		default:
8971 			return false;
8972 		}
8973 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8974 		switch (attach_type) {
8975 		case BPF_CGROUP_INET6_POST_BIND:
8976 			goto read_only;
8977 		default:
8978 			return false;
8979 		}
8980 	case bpf_ctx_range(struct bpf_sock, src_port):
8981 		switch (attach_type) {
8982 		case BPF_CGROUP_INET4_POST_BIND:
8983 		case BPF_CGROUP_INET6_POST_BIND:
8984 			goto read_only;
8985 		default:
8986 			return false;
8987 		}
8988 	}
8989 read_only:
8990 	return access_type == BPF_READ;
8991 full_access:
8992 	return true;
8993 }
8994 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8995 bool bpf_sock_common_is_valid_access(int off, int size,
8996 				     enum bpf_access_type type,
8997 				     struct bpf_insn_access_aux *info)
8998 {
8999 	switch (off) {
9000 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
9001 		return false;
9002 	default:
9003 		return bpf_sock_is_valid_access(off, size, type, info);
9004 	}
9005 }
9006 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)9007 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
9008 			      struct bpf_insn_access_aux *info)
9009 {
9010 	const int size_default = sizeof(__u32);
9011 	int field_size;
9012 
9013 	if (off < 0 || off >= sizeof(struct bpf_sock))
9014 		return false;
9015 	if (off % size != 0)
9016 		return false;
9017 
9018 	switch (off) {
9019 	case offsetof(struct bpf_sock, state):
9020 	case offsetof(struct bpf_sock, family):
9021 	case offsetof(struct bpf_sock, type):
9022 	case offsetof(struct bpf_sock, protocol):
9023 	case offsetof(struct bpf_sock, src_port):
9024 	case offsetof(struct bpf_sock, rx_queue_mapping):
9025 	case bpf_ctx_range(struct bpf_sock, src_ip4):
9026 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9027 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
9028 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9029 		bpf_ctx_record_field_size(info, size_default);
9030 		return bpf_ctx_narrow_access_ok(off, size, size_default);
9031 	case bpf_ctx_range(struct bpf_sock, dst_port):
9032 		field_size = size == size_default ?
9033 			size_default : sizeof_field(struct bpf_sock, dst_port);
9034 		bpf_ctx_record_field_size(info, field_size);
9035 		return bpf_ctx_narrow_access_ok(off, size, field_size);
9036 	case offsetofend(struct bpf_sock, dst_port) ...
9037 	     offsetof(struct bpf_sock, dst_ip4) - 1:
9038 		return false;
9039 	}
9040 
9041 	return size == size_default;
9042 }
9043 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9044 static bool sock_filter_is_valid_access(int off, int size,
9045 					enum bpf_access_type type,
9046 					const struct bpf_prog *prog,
9047 					struct bpf_insn_access_aux *info)
9048 {
9049 	if (!bpf_sock_is_valid_access(off, size, type, info))
9050 		return false;
9051 	return __sock_filter_check_attach_type(off, type,
9052 					       prog->expected_attach_type);
9053 }
9054 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9055 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
9056 			     const struct bpf_prog *prog)
9057 {
9058 	/* Neither direct read nor direct write requires any preliminary
9059 	 * action.
9060 	 */
9061 	return 0;
9062 }
9063 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)9064 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
9065 				const struct bpf_prog *prog, int drop_verdict)
9066 {
9067 	struct bpf_insn *insn = insn_buf;
9068 
9069 	if (!direct_write)
9070 		return 0;
9071 
9072 	/* if (!skb->cloned)
9073 	 *       goto start;
9074 	 *
9075 	 * (Fast-path, otherwise approximation that we might be
9076 	 *  a clone, do the rest in helper.)
9077 	 */
9078 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
9079 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
9080 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
9081 
9082 	/* ret = bpf_skb_pull_data(skb, 0); */
9083 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
9084 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
9085 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
9086 			       BPF_FUNC_skb_pull_data);
9087 	/* if (!ret)
9088 	 *      goto restore;
9089 	 * return TC_ACT_SHOT;
9090 	 */
9091 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
9092 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
9093 	*insn++ = BPF_EXIT_INSN();
9094 
9095 	/* restore: */
9096 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
9097 	/* start: */
9098 	*insn++ = prog->insnsi[0];
9099 
9100 	return insn - insn_buf;
9101 }
9102 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)9103 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
9104 			  struct bpf_insn *insn_buf)
9105 {
9106 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
9107 	struct bpf_insn *insn = insn_buf;
9108 
9109 	if (!indirect) {
9110 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
9111 	} else {
9112 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
9113 		if (orig->imm)
9114 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
9115 	}
9116 	/* We're guaranteed here that CTX is in R6. */
9117 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9118 
9119 	switch (BPF_SIZE(orig->code)) {
9120 	case BPF_B:
9121 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9122 		break;
9123 	case BPF_H:
9124 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9125 		break;
9126 	case BPF_W:
9127 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9128 		break;
9129 	}
9130 
9131 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9132 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9133 	*insn++ = BPF_EXIT_INSN();
9134 
9135 	return insn - insn_buf;
9136 }
9137 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9138 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9139 			       const struct bpf_prog *prog)
9140 {
9141 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9142 }
9143 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9144 static bool tc_cls_act_is_valid_access(int off, int size,
9145 				       enum bpf_access_type type,
9146 				       const struct bpf_prog *prog,
9147 				       struct bpf_insn_access_aux *info)
9148 {
9149 	if (type == BPF_WRITE) {
9150 		switch (off) {
9151 		case bpf_ctx_range(struct __sk_buff, mark):
9152 		case bpf_ctx_range(struct __sk_buff, tc_index):
9153 		case bpf_ctx_range(struct __sk_buff, priority):
9154 		case bpf_ctx_range(struct __sk_buff, tc_classid):
9155 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9156 		case bpf_ctx_range(struct __sk_buff, tstamp):
9157 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
9158 			break;
9159 		default:
9160 			return false;
9161 		}
9162 	}
9163 
9164 	switch (off) {
9165 	case bpf_ctx_range(struct __sk_buff, data):
9166 		info->reg_type = PTR_TO_PACKET;
9167 		break;
9168 	case bpf_ctx_range(struct __sk_buff, data_meta):
9169 		info->reg_type = PTR_TO_PACKET_META;
9170 		break;
9171 	case bpf_ctx_range(struct __sk_buff, data_end):
9172 		info->reg_type = PTR_TO_PACKET_END;
9173 		break;
9174 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9175 		return false;
9176 	case offsetof(struct __sk_buff, tstamp_type):
9177 		/* The convert_ctx_access() on reading and writing
9178 		 * __sk_buff->tstamp depends on whether the bpf prog
9179 		 * has used __sk_buff->tstamp_type or not.
9180 		 * Thus, we need to set prog->tstamp_type_access
9181 		 * earlier during is_valid_access() here.
9182 		 */
9183 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
9184 		return size == sizeof(__u8);
9185 	}
9186 
9187 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9188 }
9189 
9190 DEFINE_MUTEX(nf_conn_btf_access_lock);
9191 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9192 
9193 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9194 			      const struct bpf_reg_state *reg,
9195 			      int off, int size);
9196 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9197 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9198 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9199 					const struct bpf_reg_state *reg,
9200 					int off, int size)
9201 {
9202 	int ret = -EACCES;
9203 
9204 	mutex_lock(&nf_conn_btf_access_lock);
9205 	if (nfct_btf_struct_access)
9206 		ret = nfct_btf_struct_access(log, reg, off, size);
9207 	mutex_unlock(&nf_conn_btf_access_lock);
9208 
9209 	return ret;
9210 }
9211 
__is_valid_xdp_access(int off,int size)9212 static bool __is_valid_xdp_access(int off, int size)
9213 {
9214 	if (off < 0 || off >= sizeof(struct xdp_md))
9215 		return false;
9216 	if (off % size != 0)
9217 		return false;
9218 	if (size != sizeof(__u32))
9219 		return false;
9220 
9221 	return true;
9222 }
9223 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9224 static bool xdp_is_valid_access(int off, int size,
9225 				enum bpf_access_type type,
9226 				const struct bpf_prog *prog,
9227 				struct bpf_insn_access_aux *info)
9228 {
9229 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9230 		switch (off) {
9231 		case offsetof(struct xdp_md, egress_ifindex):
9232 			return false;
9233 		}
9234 	}
9235 
9236 	if (type == BPF_WRITE) {
9237 		if (bpf_prog_is_offloaded(prog->aux)) {
9238 			switch (off) {
9239 			case offsetof(struct xdp_md, rx_queue_index):
9240 				return __is_valid_xdp_access(off, size);
9241 			}
9242 		}
9243 		return false;
9244 	} else {
9245 		switch (off) {
9246 		case offsetof(struct xdp_md, data_meta):
9247 		case offsetof(struct xdp_md, data):
9248 		case offsetof(struct xdp_md, data_end):
9249 			if (info->is_ldsx)
9250 				return false;
9251 		}
9252 	}
9253 
9254 	switch (off) {
9255 	case offsetof(struct xdp_md, data):
9256 		info->reg_type = PTR_TO_PACKET;
9257 		break;
9258 	case offsetof(struct xdp_md, data_meta):
9259 		info->reg_type = PTR_TO_PACKET_META;
9260 		break;
9261 	case offsetof(struct xdp_md, data_end):
9262 		info->reg_type = PTR_TO_PACKET_END;
9263 		break;
9264 	}
9265 
9266 	return __is_valid_xdp_access(off, size);
9267 }
9268 
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9269 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9270 				 const struct bpf_prog *prog, u32 act)
9271 {
9272 	const u32 act_max = XDP_REDIRECT;
9273 
9274 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9275 		     act > act_max ? "Illegal" : "Driver unsupported",
9276 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9277 }
9278 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9279 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9280 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9281 				 const struct bpf_reg_state *reg,
9282 				 int off, int size)
9283 {
9284 	int ret = -EACCES;
9285 
9286 	mutex_lock(&nf_conn_btf_access_lock);
9287 	if (nfct_btf_struct_access)
9288 		ret = nfct_btf_struct_access(log, reg, off, size);
9289 	mutex_unlock(&nf_conn_btf_access_lock);
9290 
9291 	return ret;
9292 }
9293 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9294 static bool sock_addr_is_valid_access(int off, int size,
9295 				      enum bpf_access_type type,
9296 				      const struct bpf_prog *prog,
9297 				      struct bpf_insn_access_aux *info)
9298 {
9299 	const int size_default = sizeof(__u32);
9300 
9301 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9302 		return false;
9303 	if (off % size != 0)
9304 		return false;
9305 
9306 	/* Disallow access to fields not belonging to the attach type's address
9307 	 * family.
9308 	 */
9309 	switch (off) {
9310 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9311 		switch (prog->expected_attach_type) {
9312 		case BPF_CGROUP_INET4_BIND:
9313 		case BPF_CGROUP_INET4_CONNECT:
9314 		case BPF_CGROUP_INET4_GETPEERNAME:
9315 		case BPF_CGROUP_INET4_GETSOCKNAME:
9316 		case BPF_CGROUP_UDP4_SENDMSG:
9317 		case BPF_CGROUP_UDP4_RECVMSG:
9318 			break;
9319 		default:
9320 			return false;
9321 		}
9322 		break;
9323 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9324 		switch (prog->expected_attach_type) {
9325 		case BPF_CGROUP_INET6_BIND:
9326 		case BPF_CGROUP_INET6_CONNECT:
9327 		case BPF_CGROUP_INET6_GETPEERNAME:
9328 		case BPF_CGROUP_INET6_GETSOCKNAME:
9329 		case BPF_CGROUP_UDP6_SENDMSG:
9330 		case BPF_CGROUP_UDP6_RECVMSG:
9331 			break;
9332 		default:
9333 			return false;
9334 		}
9335 		break;
9336 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9337 		switch (prog->expected_attach_type) {
9338 		case BPF_CGROUP_UDP4_SENDMSG:
9339 			break;
9340 		default:
9341 			return false;
9342 		}
9343 		break;
9344 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9345 				msg_src_ip6[3]):
9346 		switch (prog->expected_attach_type) {
9347 		case BPF_CGROUP_UDP6_SENDMSG:
9348 			break;
9349 		default:
9350 			return false;
9351 		}
9352 		break;
9353 	}
9354 
9355 	switch (off) {
9356 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9357 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9358 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9359 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9360 				msg_src_ip6[3]):
9361 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9362 		if (type == BPF_READ) {
9363 			bpf_ctx_record_field_size(info, size_default);
9364 
9365 			if (bpf_ctx_wide_access_ok(off, size,
9366 						   struct bpf_sock_addr,
9367 						   user_ip6))
9368 				return true;
9369 
9370 			if (bpf_ctx_wide_access_ok(off, size,
9371 						   struct bpf_sock_addr,
9372 						   msg_src_ip6))
9373 				return true;
9374 
9375 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9376 				return false;
9377 		} else {
9378 			if (bpf_ctx_wide_access_ok(off, size,
9379 						   struct bpf_sock_addr,
9380 						   user_ip6))
9381 				return true;
9382 
9383 			if (bpf_ctx_wide_access_ok(off, size,
9384 						   struct bpf_sock_addr,
9385 						   msg_src_ip6))
9386 				return true;
9387 
9388 			if (size != size_default)
9389 				return false;
9390 		}
9391 		break;
9392 	case bpf_ctx_range_ptr(struct bpf_sock_addr, sk):
9393 		if (type != BPF_READ)
9394 			return false;
9395 		if (size != sizeof(__u64))
9396 			return false;
9397 		info->reg_type = PTR_TO_SOCKET;
9398 		break;
9399 	case bpf_ctx_range(struct bpf_sock_addr, user_family):
9400 	case bpf_ctx_range(struct bpf_sock_addr, family):
9401 	case bpf_ctx_range(struct bpf_sock_addr, type):
9402 	case bpf_ctx_range(struct bpf_sock_addr, protocol):
9403 		if (type != BPF_READ)
9404 			return false;
9405 		if (size != size_default)
9406 			return false;
9407 		break;
9408 	default:
9409 		return false;
9410 	}
9411 
9412 	return true;
9413 }
9414 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9415 static bool sock_ops_is_valid_access(int off, int size,
9416 				     enum bpf_access_type type,
9417 				     const struct bpf_prog *prog,
9418 				     struct bpf_insn_access_aux *info)
9419 {
9420 	const int size_default = sizeof(__u32);
9421 
9422 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9423 		return false;
9424 
9425 	/* The verifier guarantees that size > 0. */
9426 	if (off % size != 0)
9427 		return false;
9428 
9429 	if (type == BPF_WRITE) {
9430 		switch (off) {
9431 		case offsetof(struct bpf_sock_ops, reply):
9432 		case offsetof(struct bpf_sock_ops, sk_txhash):
9433 			if (size != size_default)
9434 				return false;
9435 			break;
9436 		default:
9437 			return false;
9438 		}
9439 	} else {
9440 		switch (off) {
9441 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9442 					bytes_acked):
9443 			if (size != sizeof(__u64))
9444 				return false;
9445 			break;
9446 		case bpf_ctx_range_ptr(struct bpf_sock_ops, sk):
9447 			if (size != sizeof(__u64))
9448 				return false;
9449 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9450 			break;
9451 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data):
9452 			if (size != sizeof(__u64))
9453 				return false;
9454 			info->reg_type = PTR_TO_PACKET;
9455 			break;
9456 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end):
9457 			if (size != sizeof(__u64))
9458 				return false;
9459 			info->reg_type = PTR_TO_PACKET_END;
9460 			break;
9461 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9462 			bpf_ctx_record_field_size(info, size_default);
9463 			return bpf_ctx_narrow_access_ok(off, size,
9464 							size_default);
9465 		case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp):
9466 			if (size != sizeof(__u64))
9467 				return false;
9468 			break;
9469 		default:
9470 			if (size != size_default)
9471 				return false;
9472 			break;
9473 		}
9474 	}
9475 
9476 	return true;
9477 }
9478 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9479 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9480 			   const struct bpf_prog *prog)
9481 {
9482 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9483 }
9484 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9485 static bool sk_skb_is_valid_access(int off, int size,
9486 				   enum bpf_access_type type,
9487 				   const struct bpf_prog *prog,
9488 				   struct bpf_insn_access_aux *info)
9489 {
9490 	switch (off) {
9491 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9492 	case bpf_ctx_range(struct __sk_buff, data_meta):
9493 	case bpf_ctx_range(struct __sk_buff, tstamp):
9494 	case bpf_ctx_range(struct __sk_buff, wire_len):
9495 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9496 		return false;
9497 	}
9498 
9499 	if (type == BPF_WRITE) {
9500 		switch (off) {
9501 		case bpf_ctx_range(struct __sk_buff, tc_index):
9502 		case bpf_ctx_range(struct __sk_buff, priority):
9503 			break;
9504 		default:
9505 			return false;
9506 		}
9507 	}
9508 
9509 	switch (off) {
9510 	case bpf_ctx_range(struct __sk_buff, mark):
9511 		return false;
9512 	case bpf_ctx_range(struct __sk_buff, data):
9513 		info->reg_type = PTR_TO_PACKET;
9514 		break;
9515 	case bpf_ctx_range(struct __sk_buff, data_end):
9516 		info->reg_type = PTR_TO_PACKET_END;
9517 		break;
9518 	}
9519 
9520 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9521 }
9522 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9523 static bool sk_msg_is_valid_access(int off, int size,
9524 				   enum bpf_access_type type,
9525 				   const struct bpf_prog *prog,
9526 				   struct bpf_insn_access_aux *info)
9527 {
9528 	if (type == BPF_WRITE)
9529 		return false;
9530 
9531 	if (off % size != 0)
9532 		return false;
9533 
9534 	switch (off) {
9535 	case bpf_ctx_range_ptr(struct sk_msg_md, data):
9536 		info->reg_type = PTR_TO_PACKET;
9537 		if (size != sizeof(__u64))
9538 			return false;
9539 		break;
9540 	case bpf_ctx_range_ptr(struct sk_msg_md, data_end):
9541 		info->reg_type = PTR_TO_PACKET_END;
9542 		if (size != sizeof(__u64))
9543 			return false;
9544 		break;
9545 	case bpf_ctx_range_ptr(struct sk_msg_md, sk):
9546 		if (size != sizeof(__u64))
9547 			return false;
9548 		info->reg_type = PTR_TO_SOCKET;
9549 		break;
9550 	case bpf_ctx_range(struct sk_msg_md, family):
9551 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9552 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9553 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9554 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9555 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9556 	case bpf_ctx_range(struct sk_msg_md, local_port):
9557 	case bpf_ctx_range(struct sk_msg_md, size):
9558 		if (size != sizeof(__u32))
9559 			return false;
9560 		break;
9561 	default:
9562 		return false;
9563 	}
9564 	return true;
9565 }
9566 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9567 static bool flow_dissector_is_valid_access(int off, int size,
9568 					   enum bpf_access_type type,
9569 					   const struct bpf_prog *prog,
9570 					   struct bpf_insn_access_aux *info)
9571 {
9572 	const int size_default = sizeof(__u32);
9573 
9574 	if (off < 0 || off >= sizeof(struct __sk_buff))
9575 		return false;
9576 
9577 	if (off % size != 0)
9578 		return false;
9579 
9580 	if (type == BPF_WRITE)
9581 		return false;
9582 
9583 	switch (off) {
9584 	case bpf_ctx_range(struct __sk_buff, data):
9585 		if (info->is_ldsx || size != size_default)
9586 			return false;
9587 		info->reg_type = PTR_TO_PACKET;
9588 		return true;
9589 	case bpf_ctx_range(struct __sk_buff, data_end):
9590 		if (info->is_ldsx || size != size_default)
9591 			return false;
9592 		info->reg_type = PTR_TO_PACKET_END;
9593 		return true;
9594 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9595 		if (size != sizeof(__u64))
9596 			return false;
9597 		info->reg_type = PTR_TO_FLOW_KEYS;
9598 		return true;
9599 	default:
9600 		return false;
9601 	}
9602 }
9603 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9604 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9605 					     const struct bpf_insn *si,
9606 					     struct bpf_insn *insn_buf,
9607 					     struct bpf_prog *prog,
9608 					     u32 *target_size)
9609 
9610 {
9611 	struct bpf_insn *insn = insn_buf;
9612 
9613 	switch (si->off) {
9614 	case offsetof(struct __sk_buff, data):
9615 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9616 				      si->dst_reg, si->src_reg,
9617 				      offsetof(struct bpf_flow_dissector, data));
9618 		break;
9619 
9620 	case offsetof(struct __sk_buff, data_end):
9621 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9622 				      si->dst_reg, si->src_reg,
9623 				      offsetof(struct bpf_flow_dissector, data_end));
9624 		break;
9625 
9626 	case offsetof(struct __sk_buff, flow_keys):
9627 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9628 				      si->dst_reg, si->src_reg,
9629 				      offsetof(struct bpf_flow_dissector, flow_keys));
9630 		break;
9631 	}
9632 
9633 	return insn - insn_buf;
9634 }
9635 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9636 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9637 						     struct bpf_insn *insn)
9638 {
9639 	__u8 value_reg = si->dst_reg;
9640 	__u8 skb_reg = si->src_reg;
9641 	BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9642 	BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9643 	BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9644 	BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9645 	*insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9646 	*insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9647 #ifdef __BIG_ENDIAN_BITFIELD
9648 	*insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9649 #else
9650 	BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9651 #endif
9652 
9653 	return insn;
9654 }
9655 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9656 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9657 						  struct bpf_insn *insn)
9658 {
9659 	/* si->dst_reg = skb_shinfo(SKB); */
9660 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9661 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9662 			      BPF_REG_AX, skb_reg,
9663 			      offsetof(struct sk_buff, end));
9664 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9665 			      dst_reg, skb_reg,
9666 			      offsetof(struct sk_buff, head));
9667 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9668 #else
9669 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9670 			      dst_reg, skb_reg,
9671 			      offsetof(struct sk_buff, end));
9672 #endif
9673 
9674 	return insn;
9675 }
9676 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9677 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9678 						const struct bpf_insn *si,
9679 						struct bpf_insn *insn)
9680 {
9681 	__u8 value_reg = si->dst_reg;
9682 	__u8 skb_reg = si->src_reg;
9683 
9684 #ifdef CONFIG_NET_XGRESS
9685 	/* If the tstamp_type is read,
9686 	 * the bpf prog is aware the tstamp could have delivery time.
9687 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9688 	 */
9689 	if (!prog->tstamp_type_access) {
9690 		/* AX is needed because src_reg and dst_reg could be the same */
9691 		__u8 tmp_reg = BPF_REG_AX;
9692 
9693 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9694 		/* check if ingress mask bits is set */
9695 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9696 		*insn++ = BPF_JMP_A(4);
9697 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9698 		*insn++ = BPF_JMP_A(2);
9699 		/* skb->tc_at_ingress && skb->tstamp_type,
9700 		 * read 0 as the (rcv) timestamp.
9701 		 */
9702 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9703 		*insn++ = BPF_JMP_A(1);
9704 	}
9705 #endif
9706 
9707 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9708 			      offsetof(struct sk_buff, tstamp));
9709 	return insn;
9710 }
9711 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9712 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9713 						 const struct bpf_insn *si,
9714 						 struct bpf_insn *insn)
9715 {
9716 	__u8 value_reg = si->src_reg;
9717 	__u8 skb_reg = si->dst_reg;
9718 
9719 #ifdef CONFIG_NET_XGRESS
9720 	/* If the tstamp_type is read,
9721 	 * the bpf prog is aware the tstamp could have delivery time.
9722 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9723 	 * Otherwise, writing at ingress will have to clear the
9724 	 * skb->tstamp_type bit also.
9725 	 */
9726 	if (!prog->tstamp_type_access) {
9727 		__u8 tmp_reg = BPF_REG_AX;
9728 
9729 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9730 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9731 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9732 		/* goto <store> */
9733 		*insn++ = BPF_JMP_A(2);
9734 		/* <clear>: skb->tstamp_type */
9735 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9736 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9737 	}
9738 #endif
9739 
9740 	/* <store>: skb->tstamp = tstamp */
9741 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9742 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9743 	return insn;
9744 }
9745 
9746 #define BPF_EMIT_STORE(size, si, off)					\
9747 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9748 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9749 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9750 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9751 				  const struct bpf_insn *si,
9752 				  struct bpf_insn *insn_buf,
9753 				  struct bpf_prog *prog, u32 *target_size)
9754 {
9755 	struct bpf_insn *insn = insn_buf;
9756 	int off;
9757 
9758 	switch (si->off) {
9759 	case offsetof(struct __sk_buff, len):
9760 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9761 				      bpf_target_off(struct sk_buff, len, 4,
9762 						     target_size));
9763 		break;
9764 
9765 	case offsetof(struct __sk_buff, protocol):
9766 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9767 				      bpf_target_off(struct sk_buff, protocol, 2,
9768 						     target_size));
9769 		break;
9770 
9771 	case offsetof(struct __sk_buff, vlan_proto):
9772 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9773 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9774 						     target_size));
9775 		break;
9776 
9777 	case offsetof(struct __sk_buff, priority):
9778 		if (type == BPF_WRITE)
9779 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9780 						 bpf_target_off(struct sk_buff, priority, 4,
9781 								target_size));
9782 		else
9783 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9784 					      bpf_target_off(struct sk_buff, priority, 4,
9785 							     target_size));
9786 		break;
9787 
9788 	case offsetof(struct __sk_buff, ingress_ifindex):
9789 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9790 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9791 						     target_size));
9792 		break;
9793 
9794 	case offsetof(struct __sk_buff, ifindex):
9795 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9796 				      si->dst_reg, si->src_reg,
9797 				      offsetof(struct sk_buff, dev));
9798 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9799 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9800 				      bpf_target_off(struct net_device, ifindex, 4,
9801 						     target_size));
9802 		break;
9803 
9804 	case offsetof(struct __sk_buff, hash):
9805 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9806 				      bpf_target_off(struct sk_buff, hash, 4,
9807 						     target_size));
9808 		break;
9809 
9810 	case offsetof(struct __sk_buff, mark):
9811 		if (type == BPF_WRITE)
9812 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9813 						 bpf_target_off(struct sk_buff, mark, 4,
9814 								target_size));
9815 		else
9816 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9817 					      bpf_target_off(struct sk_buff, mark, 4,
9818 							     target_size));
9819 		break;
9820 
9821 	case offsetof(struct __sk_buff, pkt_type):
9822 		*target_size = 1;
9823 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9824 				      PKT_TYPE_OFFSET);
9825 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9826 #ifdef __BIG_ENDIAN_BITFIELD
9827 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9828 #endif
9829 		break;
9830 
9831 	case offsetof(struct __sk_buff, queue_mapping):
9832 		if (type == BPF_WRITE) {
9833 			u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9834 
9835 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9836 				*insn++ = BPF_JMP_A(0); /* noop */
9837 				break;
9838 			}
9839 
9840 			if (BPF_CLASS(si->code) == BPF_STX)
9841 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9842 			*insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9843 		} else {
9844 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9845 					      bpf_target_off(struct sk_buff,
9846 							     queue_mapping,
9847 							     2, target_size));
9848 		}
9849 		break;
9850 
9851 	case offsetof(struct __sk_buff, vlan_present):
9852 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9853 				      bpf_target_off(struct sk_buff,
9854 						     vlan_all, 4, target_size));
9855 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9856 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9857 		break;
9858 
9859 	case offsetof(struct __sk_buff, vlan_tci):
9860 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9861 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9862 						     target_size));
9863 		break;
9864 
9865 	case offsetof(struct __sk_buff, cb[0]) ...
9866 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9867 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9868 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9869 			      offsetof(struct qdisc_skb_cb, data)) %
9870 			     sizeof(__u64));
9871 
9872 		prog->cb_access = 1;
9873 		off  = si->off;
9874 		off -= offsetof(struct __sk_buff, cb[0]);
9875 		off += offsetof(struct sk_buff, cb);
9876 		off += offsetof(struct qdisc_skb_cb, data);
9877 		if (type == BPF_WRITE)
9878 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9879 		else
9880 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9881 					      si->src_reg, off);
9882 		break;
9883 
9884 	case offsetof(struct __sk_buff, tc_classid):
9885 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9886 
9887 		off  = si->off;
9888 		off -= offsetof(struct __sk_buff, tc_classid);
9889 		off += offsetof(struct sk_buff, cb);
9890 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9891 		*target_size = 2;
9892 		if (type == BPF_WRITE)
9893 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9894 		else
9895 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9896 					      si->src_reg, off);
9897 		break;
9898 
9899 	case offsetof(struct __sk_buff, data):
9900 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9901 				      si->dst_reg, si->src_reg,
9902 				      offsetof(struct sk_buff, data));
9903 		break;
9904 
9905 	case offsetof(struct __sk_buff, data_meta):
9906 		off  = si->off;
9907 		off -= offsetof(struct __sk_buff, data_meta);
9908 		off += offsetof(struct sk_buff, cb);
9909 		off += offsetof(struct bpf_skb_data_end, data_meta);
9910 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9911 				      si->src_reg, off);
9912 		break;
9913 
9914 	case offsetof(struct __sk_buff, data_end):
9915 		off  = si->off;
9916 		off -= offsetof(struct __sk_buff, data_end);
9917 		off += offsetof(struct sk_buff, cb);
9918 		off += offsetof(struct bpf_skb_data_end, data_end);
9919 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9920 				      si->src_reg, off);
9921 		break;
9922 
9923 	case offsetof(struct __sk_buff, tc_index):
9924 #ifdef CONFIG_NET_SCHED
9925 		if (type == BPF_WRITE)
9926 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9927 						 bpf_target_off(struct sk_buff, tc_index, 2,
9928 								target_size));
9929 		else
9930 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9931 					      bpf_target_off(struct sk_buff, tc_index, 2,
9932 							     target_size));
9933 #else
9934 		*target_size = 2;
9935 		if (type == BPF_WRITE)
9936 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9937 		else
9938 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9939 #endif
9940 		break;
9941 
9942 	case offsetof(struct __sk_buff, napi_id):
9943 #if defined(CONFIG_NET_RX_BUSY_POLL)
9944 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9945 				      bpf_target_off(struct sk_buff, napi_id, 4,
9946 						     target_size));
9947 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9948 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9949 #else
9950 		*target_size = 4;
9951 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9952 #endif
9953 		break;
9954 	case offsetof(struct __sk_buff, family):
9955 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9956 
9957 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9958 				      si->dst_reg, si->src_reg,
9959 				      offsetof(struct sk_buff, sk));
9960 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9961 				      bpf_target_off(struct sock_common,
9962 						     skc_family,
9963 						     2, target_size));
9964 		break;
9965 	case offsetof(struct __sk_buff, remote_ip4):
9966 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9967 
9968 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9969 				      si->dst_reg, si->src_reg,
9970 				      offsetof(struct sk_buff, sk));
9971 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9972 				      bpf_target_off(struct sock_common,
9973 						     skc_daddr,
9974 						     4, target_size));
9975 		break;
9976 	case offsetof(struct __sk_buff, local_ip4):
9977 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9978 					  skc_rcv_saddr) != 4);
9979 
9980 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9981 				      si->dst_reg, si->src_reg,
9982 				      offsetof(struct sk_buff, sk));
9983 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9984 				      bpf_target_off(struct sock_common,
9985 						     skc_rcv_saddr,
9986 						     4, target_size));
9987 		break;
9988 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9989 	     offsetof(struct __sk_buff, remote_ip6[3]):
9990 #if IS_ENABLED(CONFIG_IPV6)
9991 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9992 					  skc_v6_daddr.s6_addr32[0]) != 4);
9993 
9994 		off = si->off;
9995 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9996 
9997 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9998 				      si->dst_reg, si->src_reg,
9999 				      offsetof(struct sk_buff, sk));
10000 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10001 				      offsetof(struct sock_common,
10002 					       skc_v6_daddr.s6_addr32[0]) +
10003 				      off);
10004 #else
10005 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10006 #endif
10007 		break;
10008 	case offsetof(struct __sk_buff, local_ip6[0]) ...
10009 	     offsetof(struct __sk_buff, local_ip6[3]):
10010 #if IS_ENABLED(CONFIG_IPV6)
10011 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10012 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10013 
10014 		off = si->off;
10015 		off -= offsetof(struct __sk_buff, local_ip6[0]);
10016 
10017 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10018 				      si->dst_reg, si->src_reg,
10019 				      offsetof(struct sk_buff, sk));
10020 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10021 				      offsetof(struct sock_common,
10022 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10023 				      off);
10024 #else
10025 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10026 #endif
10027 		break;
10028 
10029 	case offsetof(struct __sk_buff, remote_port):
10030 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10031 
10032 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10033 				      si->dst_reg, si->src_reg,
10034 				      offsetof(struct sk_buff, sk));
10035 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10036 				      bpf_target_off(struct sock_common,
10037 						     skc_dport,
10038 						     2, target_size));
10039 #ifndef __BIG_ENDIAN_BITFIELD
10040 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10041 #endif
10042 		break;
10043 
10044 	case offsetof(struct __sk_buff, local_port):
10045 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10046 
10047 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10048 				      si->dst_reg, si->src_reg,
10049 				      offsetof(struct sk_buff, sk));
10050 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10051 				      bpf_target_off(struct sock_common,
10052 						     skc_num, 2, target_size));
10053 		break;
10054 
10055 	case offsetof(struct __sk_buff, tstamp):
10056 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
10057 
10058 		if (type == BPF_WRITE)
10059 			insn = bpf_convert_tstamp_write(prog, si, insn);
10060 		else
10061 			insn = bpf_convert_tstamp_read(prog, si, insn);
10062 		break;
10063 
10064 	case offsetof(struct __sk_buff, tstamp_type):
10065 		insn = bpf_convert_tstamp_type_read(si, insn);
10066 		break;
10067 
10068 	case offsetof(struct __sk_buff, gso_segs):
10069 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10070 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
10071 				      si->dst_reg, si->dst_reg,
10072 				      bpf_target_off(struct skb_shared_info,
10073 						     gso_segs, 2,
10074 						     target_size));
10075 		break;
10076 	case offsetof(struct __sk_buff, gso_size):
10077 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10078 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
10079 				      si->dst_reg, si->dst_reg,
10080 				      bpf_target_off(struct skb_shared_info,
10081 						     gso_size, 2,
10082 						     target_size));
10083 		break;
10084 	case offsetof(struct __sk_buff, wire_len):
10085 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
10086 
10087 		off = si->off;
10088 		off -= offsetof(struct __sk_buff, wire_len);
10089 		off += offsetof(struct sk_buff, cb);
10090 		off += offsetof(struct qdisc_skb_cb, pkt_len);
10091 		*target_size = 4;
10092 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
10093 		break;
10094 
10095 	case offsetof(struct __sk_buff, sk):
10096 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10097 				      si->dst_reg, si->src_reg,
10098 				      offsetof(struct sk_buff, sk));
10099 		break;
10100 	case offsetof(struct __sk_buff, hwtstamp):
10101 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
10102 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
10103 
10104 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10105 		*insn++ = BPF_LDX_MEM(BPF_DW,
10106 				      si->dst_reg, si->dst_reg,
10107 				      bpf_target_off(struct skb_shared_info,
10108 						     hwtstamps, 8,
10109 						     target_size));
10110 		break;
10111 	}
10112 
10113 	return insn - insn_buf;
10114 }
10115 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10116 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
10117 				const struct bpf_insn *si,
10118 				struct bpf_insn *insn_buf,
10119 				struct bpf_prog *prog, u32 *target_size)
10120 {
10121 	struct bpf_insn *insn = insn_buf;
10122 	int off;
10123 
10124 	switch (si->off) {
10125 	case offsetof(struct bpf_sock, bound_dev_if):
10126 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10127 
10128 		if (type == BPF_WRITE)
10129 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10130 						 offsetof(struct sock, sk_bound_dev_if));
10131 		else
10132 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10133 				      offsetof(struct sock, sk_bound_dev_if));
10134 		break;
10135 
10136 	case offsetof(struct bpf_sock, mark):
10137 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10138 
10139 		if (type == BPF_WRITE)
10140 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10141 						 offsetof(struct sock, sk_mark));
10142 		else
10143 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10144 				      offsetof(struct sock, sk_mark));
10145 		break;
10146 
10147 	case offsetof(struct bpf_sock, priority):
10148 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10149 
10150 		if (type == BPF_WRITE)
10151 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10152 						 offsetof(struct sock, sk_priority));
10153 		else
10154 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10155 				      offsetof(struct sock, sk_priority));
10156 		break;
10157 
10158 	case offsetof(struct bpf_sock, family):
10159 		*insn++ = BPF_LDX_MEM(
10160 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10161 			si->dst_reg, si->src_reg,
10162 			bpf_target_off(struct sock_common,
10163 				       skc_family,
10164 				       sizeof_field(struct sock_common,
10165 						    skc_family),
10166 				       target_size));
10167 		break;
10168 
10169 	case offsetof(struct bpf_sock, type):
10170 		*insn++ = BPF_LDX_MEM(
10171 			BPF_FIELD_SIZEOF(struct sock, sk_type),
10172 			si->dst_reg, si->src_reg,
10173 			bpf_target_off(struct sock, sk_type,
10174 				       sizeof_field(struct sock, sk_type),
10175 				       target_size));
10176 		break;
10177 
10178 	case offsetof(struct bpf_sock, protocol):
10179 		*insn++ = BPF_LDX_MEM(
10180 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10181 			si->dst_reg, si->src_reg,
10182 			bpf_target_off(struct sock, sk_protocol,
10183 				       sizeof_field(struct sock, sk_protocol),
10184 				       target_size));
10185 		break;
10186 
10187 	case offsetof(struct bpf_sock, src_ip4):
10188 		*insn++ = BPF_LDX_MEM(
10189 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10190 			bpf_target_off(struct sock_common, skc_rcv_saddr,
10191 				       sizeof_field(struct sock_common,
10192 						    skc_rcv_saddr),
10193 				       target_size));
10194 		break;
10195 
10196 	case offsetof(struct bpf_sock, dst_ip4):
10197 		*insn++ = BPF_LDX_MEM(
10198 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10199 			bpf_target_off(struct sock_common, skc_daddr,
10200 				       sizeof_field(struct sock_common,
10201 						    skc_daddr),
10202 				       target_size));
10203 		break;
10204 
10205 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10206 #if IS_ENABLED(CONFIG_IPV6)
10207 		off = si->off;
10208 		off -= offsetof(struct bpf_sock, src_ip6[0]);
10209 		*insn++ = BPF_LDX_MEM(
10210 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10211 			bpf_target_off(
10212 				struct sock_common,
10213 				skc_v6_rcv_saddr.s6_addr32[0],
10214 				sizeof_field(struct sock_common,
10215 					     skc_v6_rcv_saddr.s6_addr32[0]),
10216 				target_size) + off);
10217 #else
10218 		(void)off;
10219 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10220 #endif
10221 		break;
10222 
10223 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10224 #if IS_ENABLED(CONFIG_IPV6)
10225 		off = si->off;
10226 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
10227 		*insn++ = BPF_LDX_MEM(
10228 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10229 			bpf_target_off(struct sock_common,
10230 				       skc_v6_daddr.s6_addr32[0],
10231 				       sizeof_field(struct sock_common,
10232 						    skc_v6_daddr.s6_addr32[0]),
10233 				       target_size) + off);
10234 #else
10235 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10236 		*target_size = 4;
10237 #endif
10238 		break;
10239 
10240 	case offsetof(struct bpf_sock, src_port):
10241 		*insn++ = BPF_LDX_MEM(
10242 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10243 			si->dst_reg, si->src_reg,
10244 			bpf_target_off(struct sock_common, skc_num,
10245 				       sizeof_field(struct sock_common,
10246 						    skc_num),
10247 				       target_size));
10248 		break;
10249 
10250 	case offsetof(struct bpf_sock, dst_port):
10251 		*insn++ = BPF_LDX_MEM(
10252 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10253 			si->dst_reg, si->src_reg,
10254 			bpf_target_off(struct sock_common, skc_dport,
10255 				       sizeof_field(struct sock_common,
10256 						    skc_dport),
10257 				       target_size));
10258 		break;
10259 
10260 	case offsetof(struct bpf_sock, state):
10261 		*insn++ = BPF_LDX_MEM(
10262 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10263 			si->dst_reg, si->src_reg,
10264 			bpf_target_off(struct sock_common, skc_state,
10265 				       sizeof_field(struct sock_common,
10266 						    skc_state),
10267 				       target_size));
10268 		break;
10269 	case offsetof(struct bpf_sock, rx_queue_mapping):
10270 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10271 		*insn++ = BPF_LDX_MEM(
10272 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10273 			si->dst_reg, si->src_reg,
10274 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10275 				       sizeof_field(struct sock,
10276 						    sk_rx_queue_mapping),
10277 				       target_size));
10278 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10279 				      1);
10280 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10281 #else
10282 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10283 		*target_size = 2;
10284 #endif
10285 		break;
10286 	}
10287 
10288 	return insn - insn_buf;
10289 }
10290 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10291 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10292 					 const struct bpf_insn *si,
10293 					 struct bpf_insn *insn_buf,
10294 					 struct bpf_prog *prog, u32 *target_size)
10295 {
10296 	struct bpf_insn *insn = insn_buf;
10297 
10298 	switch (si->off) {
10299 	case offsetof(struct __sk_buff, ifindex):
10300 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10301 				      si->dst_reg, si->src_reg,
10302 				      offsetof(struct sk_buff, dev));
10303 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10304 				      bpf_target_off(struct net_device, ifindex, 4,
10305 						     target_size));
10306 		break;
10307 	default:
10308 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10309 					      target_size);
10310 	}
10311 
10312 	return insn - insn_buf;
10313 }
10314 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10315 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10316 				  const struct bpf_insn *si,
10317 				  struct bpf_insn *insn_buf,
10318 				  struct bpf_prog *prog, u32 *target_size)
10319 {
10320 	struct bpf_insn *insn = insn_buf;
10321 
10322 	switch (si->off) {
10323 	case offsetof(struct xdp_md, data):
10324 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10325 				      si->dst_reg, si->src_reg,
10326 				      offsetof(struct xdp_buff, data));
10327 		break;
10328 	case offsetof(struct xdp_md, data_meta):
10329 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10330 				      si->dst_reg, si->src_reg,
10331 				      offsetof(struct xdp_buff, data_meta));
10332 		break;
10333 	case offsetof(struct xdp_md, data_end):
10334 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10335 				      si->dst_reg, si->src_reg,
10336 				      offsetof(struct xdp_buff, data_end));
10337 		break;
10338 	case offsetof(struct xdp_md, ingress_ifindex):
10339 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10340 				      si->dst_reg, si->src_reg,
10341 				      offsetof(struct xdp_buff, rxq));
10342 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10343 				      si->dst_reg, si->dst_reg,
10344 				      offsetof(struct xdp_rxq_info, dev));
10345 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10346 				      offsetof(struct net_device, ifindex));
10347 		break;
10348 	case offsetof(struct xdp_md, rx_queue_index):
10349 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10350 				      si->dst_reg, si->src_reg,
10351 				      offsetof(struct xdp_buff, rxq));
10352 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10353 				      offsetof(struct xdp_rxq_info,
10354 					       queue_index));
10355 		break;
10356 	case offsetof(struct xdp_md, egress_ifindex):
10357 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10358 				      si->dst_reg, si->src_reg,
10359 				      offsetof(struct xdp_buff, txq));
10360 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10361 				      si->dst_reg, si->dst_reg,
10362 				      offsetof(struct xdp_txq_info, dev));
10363 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10364 				      offsetof(struct net_device, ifindex));
10365 		break;
10366 	}
10367 
10368 	return insn - insn_buf;
10369 }
10370 
10371 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10372  * context Structure, F is Field in context structure that contains a pointer
10373  * to Nested Structure of type NS that has the field NF.
10374  *
10375  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10376  * sure that SIZE is not greater than actual size of S.F.NF.
10377  *
10378  * If offset OFF is provided, the load happens from that offset relative to
10379  * offset of NF.
10380  */
10381 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10382 	do {								       \
10383 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10384 				      si->src_reg, offsetof(S, F));	       \
10385 		*insn++ = BPF_LDX_MEM(					       \
10386 			SIZE, si->dst_reg, si->dst_reg,			       \
10387 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10388 				       target_size)			       \
10389 				+ OFF);					       \
10390 	} while (0)
10391 
10392 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10393 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10394 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10395 
10396 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10397  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10398  *
10399  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10400  * "register" since two registers available in convert_ctx_access are not
10401  * enough: we can't override neither SRC, since it contains value to store, nor
10402  * DST since it contains pointer to context that may be used by later
10403  * instructions. But we need a temporary place to save pointer to nested
10404  * structure whose field we want to store to.
10405  */
10406 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10407 	do {								       \
10408 		int tmp_reg = BPF_REG_9;				       \
10409 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10410 			--tmp_reg;					       \
10411 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10412 			--tmp_reg;					       \
10413 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10414 				      offsetof(S, TF));			       \
10415 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10416 				      si->dst_reg, offsetof(S, F));	       \
10417 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10418 				       tmp_reg, si->src_reg,		       \
10419 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10420 				       target_size)			       \
10421 				       + OFF,				       \
10422 				       si->imm);			       \
10423 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10424 				      offsetof(S, TF));			       \
10425 	} while (0)
10426 
10427 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10428 						      TF)		       \
10429 	do {								       \
10430 		if (type == BPF_WRITE) {				       \
10431 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10432 							 OFF, TF);	       \
10433 		} else {						       \
10434 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10435 				S, NS, F, NF, SIZE, OFF);  \
10436 		}							       \
10437 	} while (0)
10438 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10439 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10440 					const struct bpf_insn *si,
10441 					struct bpf_insn *insn_buf,
10442 					struct bpf_prog *prog, u32 *target_size)
10443 {
10444 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10445 	struct bpf_insn *insn = insn_buf;
10446 
10447 	switch (si->off) {
10448 	case offsetof(struct bpf_sock_addr, user_family):
10449 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10450 					    struct sockaddr, uaddr, sa_family);
10451 		break;
10452 
10453 	case offsetof(struct bpf_sock_addr, user_ip4):
10454 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10455 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10456 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10457 		break;
10458 
10459 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10460 		off = si->off;
10461 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10462 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10463 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10464 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10465 			tmp_reg);
10466 		break;
10467 
10468 	case offsetof(struct bpf_sock_addr, user_port):
10469 		/* To get port we need to know sa_family first and then treat
10470 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10471 		 * Though we can simplify since port field has same offset and
10472 		 * size in both structures.
10473 		 * Here we check this invariant and use just one of the
10474 		 * structures if it's true.
10475 		 */
10476 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10477 			     offsetof(struct sockaddr_in6, sin6_port));
10478 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10479 			     sizeof_field(struct sockaddr_in6, sin6_port));
10480 		/* Account for sin6_port being smaller than user_port. */
10481 		port_size = min(port_size, BPF_LDST_BYTES(si));
10482 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10483 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10484 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10485 		break;
10486 
10487 	case offsetof(struct bpf_sock_addr, family):
10488 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10489 					    struct sock, sk, sk_family);
10490 		break;
10491 
10492 	case offsetof(struct bpf_sock_addr, type):
10493 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10494 					    struct sock, sk, sk_type);
10495 		break;
10496 
10497 	case offsetof(struct bpf_sock_addr, protocol):
10498 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10499 					    struct sock, sk, sk_protocol);
10500 		break;
10501 
10502 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10503 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10504 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10505 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10506 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10507 		break;
10508 
10509 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10510 				msg_src_ip6[3]):
10511 		off = si->off;
10512 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10513 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10514 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10515 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10516 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10517 		break;
10518 	case offsetof(struct bpf_sock_addr, sk):
10519 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10520 				      si->dst_reg, si->src_reg,
10521 				      offsetof(struct bpf_sock_addr_kern, sk));
10522 		break;
10523 	}
10524 
10525 	return insn - insn_buf;
10526 }
10527 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10528 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10529 				       const struct bpf_insn *si,
10530 				       struct bpf_insn *insn_buf,
10531 				       struct bpf_prog *prog,
10532 				       u32 *target_size)
10533 {
10534 	struct bpf_insn *insn = insn_buf;
10535 	int off;
10536 
10537 /* Helper macro for adding read access to tcp_sock or sock fields. */
10538 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10539 	do {								      \
10540 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10541 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10542 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10543 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10544 			reg--;						      \
10545 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10546 			reg--;						      \
10547 		if (si->dst_reg == si->src_reg) {			      \
10548 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10549 					  offsetof(struct bpf_sock_ops_kern,  \
10550 					  temp));			      \
10551 			fullsock_reg = reg;				      \
10552 			jmp += 2;					      \
10553 		}							      \
10554 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10555 						struct bpf_sock_ops_kern,     \
10556 						is_locked_tcp_sock),	      \
10557 				      fullsock_reg, si->src_reg,	      \
10558 				      offsetof(struct bpf_sock_ops_kern,      \
10559 					       is_locked_tcp_sock));	      \
10560 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10561 		if (si->dst_reg == si->src_reg)				      \
10562 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10563 				      offsetof(struct bpf_sock_ops_kern,      \
10564 				      temp));				      \
10565 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10566 						struct bpf_sock_ops_kern, sk),\
10567 				      si->dst_reg, si->src_reg,		      \
10568 				      offsetof(struct bpf_sock_ops_kern, sk));\
10569 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10570 						       OBJ_FIELD),	      \
10571 				      si->dst_reg, si->dst_reg,		      \
10572 				      offsetof(OBJ, OBJ_FIELD));	      \
10573 		if (si->dst_reg == si->src_reg)	{			      \
10574 			*insn++ = BPF_JMP_A(1);				      \
10575 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10576 				      offsetof(struct bpf_sock_ops_kern,      \
10577 				      temp));				      \
10578 		}							      \
10579 	} while (0)
10580 
10581 #define SOCK_OPS_GET_SK()							      \
10582 	do {								      \
10583 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10584 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10585 			reg--;						      \
10586 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10587 			reg--;						      \
10588 		if (si->dst_reg == si->src_reg) {			      \
10589 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10590 					  offsetof(struct bpf_sock_ops_kern,  \
10591 					  temp));			      \
10592 			fullsock_reg = reg;				      \
10593 			jmp += 2;					      \
10594 		}							      \
10595 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10596 						struct bpf_sock_ops_kern,     \
10597 						is_fullsock),		      \
10598 				      fullsock_reg, si->src_reg,	      \
10599 				      offsetof(struct bpf_sock_ops_kern,      \
10600 					       is_fullsock));		      \
10601 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10602 		if (si->dst_reg == si->src_reg)				      \
10603 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10604 				      offsetof(struct bpf_sock_ops_kern,      \
10605 				      temp));				      \
10606 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10607 						struct bpf_sock_ops_kern, sk),\
10608 				      si->dst_reg, si->src_reg,		      \
10609 				      offsetof(struct bpf_sock_ops_kern, sk));\
10610 		if (si->dst_reg == si->src_reg)	{			      \
10611 			*insn++ = BPF_JMP_A(1);				      \
10612 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10613 				      offsetof(struct bpf_sock_ops_kern,      \
10614 				      temp));				      \
10615 		}							      \
10616 	} while (0)
10617 
10618 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10619 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10620 
10621 /* Helper macro for adding write access to tcp_sock or sock fields.
10622  * The macro is called with two registers, dst_reg which contains a pointer
10623  * to ctx (context) and src_reg which contains the value that should be
10624  * stored. However, we need an additional register since we cannot overwrite
10625  * dst_reg because it may be used later in the program.
10626  * Instead we "borrow" one of the other register. We first save its value
10627  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10628  * it at the end of the macro.
10629  */
10630 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10631 	do {								      \
10632 		int reg = BPF_REG_9;					      \
10633 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10634 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10635 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10636 			reg--;						      \
10637 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10638 			reg--;						      \
10639 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10640 				      offsetof(struct bpf_sock_ops_kern,      \
10641 					       temp));			      \
10642 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10643 						struct bpf_sock_ops_kern,     \
10644 						is_locked_tcp_sock),	      \
10645 				      reg, si->dst_reg,			      \
10646 				      offsetof(struct bpf_sock_ops_kern,      \
10647 					       is_locked_tcp_sock));	      \
10648 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10649 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10650 						struct bpf_sock_ops_kern, sk),\
10651 				      reg, si->dst_reg,			      \
10652 				      offsetof(struct bpf_sock_ops_kern, sk));\
10653 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10654 				       BPF_MEM | BPF_CLASS(si->code),	      \
10655 				       reg, si->src_reg,		      \
10656 				       offsetof(OBJ, OBJ_FIELD),	      \
10657 				       si->imm);			      \
10658 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10659 				      offsetof(struct bpf_sock_ops_kern,      \
10660 					       temp));			      \
10661 	} while (0)
10662 
10663 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10664 	do {								      \
10665 		if (TYPE == BPF_WRITE)					      \
10666 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10667 		else							      \
10668 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10669 	} while (0)
10670 
10671 	switch (si->off) {
10672 	case offsetof(struct bpf_sock_ops, op):
10673 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10674 						       op),
10675 				      si->dst_reg, si->src_reg,
10676 				      offsetof(struct bpf_sock_ops_kern, op));
10677 		break;
10678 
10679 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10680 	     offsetof(struct bpf_sock_ops, replylong[3]):
10681 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10682 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10683 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10684 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10685 		off = si->off;
10686 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10687 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10688 		if (type == BPF_WRITE)
10689 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10690 		else
10691 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10692 					      off);
10693 		break;
10694 
10695 	case offsetof(struct bpf_sock_ops, family):
10696 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10697 
10698 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10699 					      struct bpf_sock_ops_kern, sk),
10700 				      si->dst_reg, si->src_reg,
10701 				      offsetof(struct bpf_sock_ops_kern, sk));
10702 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10703 				      offsetof(struct sock_common, skc_family));
10704 		break;
10705 
10706 	case offsetof(struct bpf_sock_ops, remote_ip4):
10707 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10708 
10709 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10710 						struct bpf_sock_ops_kern, sk),
10711 				      si->dst_reg, si->src_reg,
10712 				      offsetof(struct bpf_sock_ops_kern, sk));
10713 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10714 				      offsetof(struct sock_common, skc_daddr));
10715 		break;
10716 
10717 	case offsetof(struct bpf_sock_ops, local_ip4):
10718 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10719 					  skc_rcv_saddr) != 4);
10720 
10721 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10722 					      struct bpf_sock_ops_kern, sk),
10723 				      si->dst_reg, si->src_reg,
10724 				      offsetof(struct bpf_sock_ops_kern, sk));
10725 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10726 				      offsetof(struct sock_common,
10727 					       skc_rcv_saddr));
10728 		break;
10729 
10730 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10731 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10732 #if IS_ENABLED(CONFIG_IPV6)
10733 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10734 					  skc_v6_daddr.s6_addr32[0]) != 4);
10735 
10736 		off = si->off;
10737 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10738 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10739 						struct bpf_sock_ops_kern, sk),
10740 				      si->dst_reg, si->src_reg,
10741 				      offsetof(struct bpf_sock_ops_kern, sk));
10742 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10743 				      offsetof(struct sock_common,
10744 					       skc_v6_daddr.s6_addr32[0]) +
10745 				      off);
10746 #else
10747 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10748 #endif
10749 		break;
10750 
10751 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10752 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10753 #if IS_ENABLED(CONFIG_IPV6)
10754 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10755 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10756 
10757 		off = si->off;
10758 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10759 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10760 						struct bpf_sock_ops_kern, sk),
10761 				      si->dst_reg, si->src_reg,
10762 				      offsetof(struct bpf_sock_ops_kern, sk));
10763 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10764 				      offsetof(struct sock_common,
10765 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10766 				      off);
10767 #else
10768 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10769 #endif
10770 		break;
10771 
10772 	case offsetof(struct bpf_sock_ops, remote_port):
10773 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10774 
10775 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10776 						struct bpf_sock_ops_kern, sk),
10777 				      si->dst_reg, si->src_reg,
10778 				      offsetof(struct bpf_sock_ops_kern, sk));
10779 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10780 				      offsetof(struct sock_common, skc_dport));
10781 #ifndef __BIG_ENDIAN_BITFIELD
10782 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10783 #endif
10784 		break;
10785 
10786 	case offsetof(struct bpf_sock_ops, local_port):
10787 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10788 
10789 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10790 						struct bpf_sock_ops_kern, sk),
10791 				      si->dst_reg, si->src_reg,
10792 				      offsetof(struct bpf_sock_ops_kern, sk));
10793 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10794 				      offsetof(struct sock_common, skc_num));
10795 		break;
10796 
10797 	case offsetof(struct bpf_sock_ops, is_fullsock):
10798 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10799 						struct bpf_sock_ops_kern,
10800 						is_fullsock),
10801 				      si->dst_reg, si->src_reg,
10802 				      offsetof(struct bpf_sock_ops_kern,
10803 					       is_fullsock));
10804 		break;
10805 
10806 	case offsetof(struct bpf_sock_ops, state):
10807 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10808 
10809 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10810 						struct bpf_sock_ops_kern, sk),
10811 				      si->dst_reg, si->src_reg,
10812 				      offsetof(struct bpf_sock_ops_kern, sk));
10813 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10814 				      offsetof(struct sock_common, skc_state));
10815 		break;
10816 
10817 	case offsetof(struct bpf_sock_ops, rtt_min):
10818 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10819 			     sizeof(struct minmax));
10820 		BUILD_BUG_ON(sizeof(struct minmax) <
10821 			     sizeof(struct minmax_sample));
10822 
10823 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10824 						struct bpf_sock_ops_kern, sk),
10825 				      si->dst_reg, si->src_reg,
10826 				      offsetof(struct bpf_sock_ops_kern, sk));
10827 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10828 				      offsetof(struct tcp_sock, rtt_min) +
10829 				      sizeof_field(struct minmax_sample, t));
10830 		break;
10831 
10832 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10833 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10834 				   struct tcp_sock);
10835 		break;
10836 
10837 	case offsetof(struct bpf_sock_ops, sk_txhash):
10838 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10839 					  struct sock, type);
10840 		break;
10841 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10842 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10843 		break;
10844 	case offsetof(struct bpf_sock_ops, srtt_us):
10845 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10846 		break;
10847 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10848 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10849 		break;
10850 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10851 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10852 		break;
10853 	case offsetof(struct bpf_sock_ops, snd_nxt):
10854 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10855 		break;
10856 	case offsetof(struct bpf_sock_ops, snd_una):
10857 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10858 		break;
10859 	case offsetof(struct bpf_sock_ops, mss_cache):
10860 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10861 		break;
10862 	case offsetof(struct bpf_sock_ops, ecn_flags):
10863 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10864 		break;
10865 	case offsetof(struct bpf_sock_ops, rate_delivered):
10866 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10867 		break;
10868 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10869 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10870 		break;
10871 	case offsetof(struct bpf_sock_ops, packets_out):
10872 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10873 		break;
10874 	case offsetof(struct bpf_sock_ops, retrans_out):
10875 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10876 		break;
10877 	case offsetof(struct bpf_sock_ops, total_retrans):
10878 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10879 		break;
10880 	case offsetof(struct bpf_sock_ops, segs_in):
10881 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10882 		break;
10883 	case offsetof(struct bpf_sock_ops, data_segs_in):
10884 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10885 		break;
10886 	case offsetof(struct bpf_sock_ops, segs_out):
10887 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10888 		break;
10889 	case offsetof(struct bpf_sock_ops, data_segs_out):
10890 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10891 		break;
10892 	case offsetof(struct bpf_sock_ops, lost_out):
10893 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10894 		break;
10895 	case offsetof(struct bpf_sock_ops, sacked_out):
10896 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10897 		break;
10898 	case offsetof(struct bpf_sock_ops, bytes_received):
10899 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10900 		break;
10901 	case offsetof(struct bpf_sock_ops, bytes_acked):
10902 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10903 		break;
10904 	case offsetof(struct bpf_sock_ops, sk):
10905 		SOCK_OPS_GET_SK();
10906 		break;
10907 	case offsetof(struct bpf_sock_ops, skb_data_end):
10908 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10909 						       skb_data_end),
10910 				      si->dst_reg, si->src_reg,
10911 				      offsetof(struct bpf_sock_ops_kern,
10912 					       skb_data_end));
10913 		break;
10914 	case offsetof(struct bpf_sock_ops, skb_data):
10915 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10916 						       skb),
10917 				      si->dst_reg, si->src_reg,
10918 				      offsetof(struct bpf_sock_ops_kern,
10919 					       skb));
10920 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10921 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10922 				      si->dst_reg, si->dst_reg,
10923 				      offsetof(struct sk_buff, data));
10924 		break;
10925 	case offsetof(struct bpf_sock_ops, skb_len):
10926 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10927 						       skb),
10928 				      si->dst_reg, si->src_reg,
10929 				      offsetof(struct bpf_sock_ops_kern,
10930 					       skb));
10931 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10932 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10933 				      si->dst_reg, si->dst_reg,
10934 				      offsetof(struct sk_buff, len));
10935 		break;
10936 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10937 		off = offsetof(struct sk_buff, cb);
10938 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10939 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10940 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10941 						       skb),
10942 				      si->dst_reg, si->src_reg,
10943 				      offsetof(struct bpf_sock_ops_kern,
10944 					       skb));
10945 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10946 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10947 						       tcp_flags),
10948 				      si->dst_reg, si->dst_reg, off);
10949 		break;
10950 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10951 		struct bpf_insn *jmp_on_null_skb;
10952 
10953 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10954 						       skb),
10955 				      si->dst_reg, si->src_reg,
10956 				      offsetof(struct bpf_sock_ops_kern,
10957 					       skb));
10958 		/* Reserve one insn to test skb == NULL */
10959 		jmp_on_null_skb = insn++;
10960 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10961 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10962 				      bpf_target_off(struct skb_shared_info,
10963 						     hwtstamps, 8,
10964 						     target_size));
10965 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10966 					       insn - jmp_on_null_skb - 1);
10967 		break;
10968 	}
10969 	}
10970 	return insn - insn_buf;
10971 }
10972 
10973 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10974 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10975 						    struct bpf_insn *insn)
10976 {
10977 	int reg;
10978 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10979 			   offsetof(struct sk_skb_cb, temp_reg);
10980 
10981 	if (si->src_reg == si->dst_reg) {
10982 		/* We need an extra register, choose and save a register. */
10983 		reg = BPF_REG_9;
10984 		if (si->src_reg == reg || si->dst_reg == reg)
10985 			reg--;
10986 		if (si->src_reg == reg || si->dst_reg == reg)
10987 			reg--;
10988 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10989 	} else {
10990 		reg = si->dst_reg;
10991 	}
10992 
10993 	/* reg = skb->data */
10994 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10995 			      reg, si->src_reg,
10996 			      offsetof(struct sk_buff, data));
10997 	/* AX = skb->len */
10998 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10999 			      BPF_REG_AX, si->src_reg,
11000 			      offsetof(struct sk_buff, len));
11001 	/* reg = skb->data + skb->len */
11002 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
11003 	/* AX = skb->data_len */
11004 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
11005 			      BPF_REG_AX, si->src_reg,
11006 			      offsetof(struct sk_buff, data_len));
11007 
11008 	/* reg = skb->data + skb->len - skb->data_len */
11009 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
11010 
11011 	if (si->src_reg == si->dst_reg) {
11012 		/* Restore the saved register */
11013 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
11014 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
11015 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
11016 	}
11017 
11018 	return insn;
11019 }
11020 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11021 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
11022 				     const struct bpf_insn *si,
11023 				     struct bpf_insn *insn_buf,
11024 				     struct bpf_prog *prog, u32 *target_size)
11025 {
11026 	struct bpf_insn *insn = insn_buf;
11027 	int off;
11028 
11029 	switch (si->off) {
11030 	case offsetof(struct __sk_buff, data_end):
11031 		insn = bpf_convert_data_end_access(si, insn);
11032 		break;
11033 	case offsetof(struct __sk_buff, cb[0]) ...
11034 	     offsetofend(struct __sk_buff, cb[4]) - 1:
11035 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
11036 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
11037 			      offsetof(struct sk_skb_cb, data)) %
11038 			     sizeof(__u64));
11039 
11040 		prog->cb_access = 1;
11041 		off  = si->off;
11042 		off -= offsetof(struct __sk_buff, cb[0]);
11043 		off += offsetof(struct sk_buff, cb);
11044 		off += offsetof(struct sk_skb_cb, data);
11045 		if (type == BPF_WRITE)
11046 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
11047 		else
11048 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
11049 					      si->src_reg, off);
11050 		break;
11051 
11052 
11053 	default:
11054 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
11055 					      target_size);
11056 	}
11057 
11058 	return insn - insn_buf;
11059 }
11060 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11061 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
11062 				     const struct bpf_insn *si,
11063 				     struct bpf_insn *insn_buf,
11064 				     struct bpf_prog *prog, u32 *target_size)
11065 {
11066 	struct bpf_insn *insn = insn_buf;
11067 #if IS_ENABLED(CONFIG_IPV6)
11068 	int off;
11069 #endif
11070 
11071 	/* convert ctx uses the fact sg element is first in struct */
11072 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
11073 
11074 	switch (si->off) {
11075 	case offsetof(struct sk_msg_md, data):
11076 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
11077 				      si->dst_reg, si->src_reg,
11078 				      offsetof(struct sk_msg, data));
11079 		break;
11080 	case offsetof(struct sk_msg_md, data_end):
11081 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
11082 				      si->dst_reg, si->src_reg,
11083 				      offsetof(struct sk_msg, data_end));
11084 		break;
11085 	case offsetof(struct sk_msg_md, family):
11086 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
11087 
11088 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11089 					      struct sk_msg, sk),
11090 				      si->dst_reg, si->src_reg,
11091 				      offsetof(struct sk_msg, sk));
11092 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11093 				      offsetof(struct sock_common, skc_family));
11094 		break;
11095 
11096 	case offsetof(struct sk_msg_md, remote_ip4):
11097 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
11098 
11099 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11100 						struct sk_msg, sk),
11101 				      si->dst_reg, si->src_reg,
11102 				      offsetof(struct sk_msg, sk));
11103 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11104 				      offsetof(struct sock_common, skc_daddr));
11105 		break;
11106 
11107 	case offsetof(struct sk_msg_md, local_ip4):
11108 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11109 					  skc_rcv_saddr) != 4);
11110 
11111 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11112 					      struct sk_msg, sk),
11113 				      si->dst_reg, si->src_reg,
11114 				      offsetof(struct sk_msg, sk));
11115 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11116 				      offsetof(struct sock_common,
11117 					       skc_rcv_saddr));
11118 		break;
11119 
11120 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
11121 	     offsetof(struct sk_msg_md, remote_ip6[3]):
11122 #if IS_ENABLED(CONFIG_IPV6)
11123 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11124 					  skc_v6_daddr.s6_addr32[0]) != 4);
11125 
11126 		off = si->off;
11127 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11128 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11129 						struct sk_msg, sk),
11130 				      si->dst_reg, si->src_reg,
11131 				      offsetof(struct sk_msg, sk));
11132 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11133 				      offsetof(struct sock_common,
11134 					       skc_v6_daddr.s6_addr32[0]) +
11135 				      off);
11136 #else
11137 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11138 #endif
11139 		break;
11140 
11141 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
11142 	     offsetof(struct sk_msg_md, local_ip6[3]):
11143 #if IS_ENABLED(CONFIG_IPV6)
11144 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11145 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11146 
11147 		off = si->off;
11148 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
11149 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11150 						struct sk_msg, sk),
11151 				      si->dst_reg, si->src_reg,
11152 				      offsetof(struct sk_msg, sk));
11153 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11154 				      offsetof(struct sock_common,
11155 					       skc_v6_rcv_saddr.s6_addr32[0]) +
11156 				      off);
11157 #else
11158 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11159 #endif
11160 		break;
11161 
11162 	case offsetof(struct sk_msg_md, remote_port):
11163 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11164 
11165 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11166 						struct sk_msg, sk),
11167 				      si->dst_reg, si->src_reg,
11168 				      offsetof(struct sk_msg, sk));
11169 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11170 				      offsetof(struct sock_common, skc_dport));
11171 #ifndef __BIG_ENDIAN_BITFIELD
11172 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11173 #endif
11174 		break;
11175 
11176 	case offsetof(struct sk_msg_md, local_port):
11177 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11178 
11179 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11180 						struct sk_msg, sk),
11181 				      si->dst_reg, si->src_reg,
11182 				      offsetof(struct sk_msg, sk));
11183 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11184 				      offsetof(struct sock_common, skc_num));
11185 		break;
11186 
11187 	case offsetof(struct sk_msg_md, size):
11188 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11189 				      si->dst_reg, si->src_reg,
11190 				      offsetof(struct sk_msg_sg, size));
11191 		break;
11192 
11193 	case offsetof(struct sk_msg_md, sk):
11194 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11195 				      si->dst_reg, si->src_reg,
11196 				      offsetof(struct sk_msg, sk));
11197 		break;
11198 	}
11199 
11200 	return insn - insn_buf;
11201 }
11202 
11203 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11204 	.get_func_proto		= sk_filter_func_proto,
11205 	.is_valid_access	= sk_filter_is_valid_access,
11206 	.convert_ctx_access	= bpf_convert_ctx_access,
11207 	.gen_ld_abs		= bpf_gen_ld_abs,
11208 };
11209 
11210 const struct bpf_prog_ops sk_filter_prog_ops = {
11211 	.test_run		= bpf_prog_test_run_skb,
11212 };
11213 
11214 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11215 	.get_func_proto		= tc_cls_act_func_proto,
11216 	.is_valid_access	= tc_cls_act_is_valid_access,
11217 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
11218 	.gen_prologue		= tc_cls_act_prologue,
11219 	.gen_ld_abs		= bpf_gen_ld_abs,
11220 	.btf_struct_access	= tc_cls_act_btf_struct_access,
11221 };
11222 
11223 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11224 	.test_run		= bpf_prog_test_run_skb,
11225 };
11226 
11227 const struct bpf_verifier_ops xdp_verifier_ops = {
11228 	.get_func_proto		= xdp_func_proto,
11229 	.is_valid_access	= xdp_is_valid_access,
11230 	.convert_ctx_access	= xdp_convert_ctx_access,
11231 	.gen_prologue		= bpf_noop_prologue,
11232 	.btf_struct_access	= xdp_btf_struct_access,
11233 };
11234 
11235 const struct bpf_prog_ops xdp_prog_ops = {
11236 	.test_run		= bpf_prog_test_run_xdp,
11237 };
11238 
11239 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11240 	.get_func_proto		= cg_skb_func_proto,
11241 	.is_valid_access	= cg_skb_is_valid_access,
11242 	.convert_ctx_access	= bpf_convert_ctx_access,
11243 };
11244 
11245 const struct bpf_prog_ops cg_skb_prog_ops = {
11246 	.test_run		= bpf_prog_test_run_skb,
11247 };
11248 
11249 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11250 	.get_func_proto		= lwt_in_func_proto,
11251 	.is_valid_access	= lwt_is_valid_access,
11252 	.convert_ctx_access	= bpf_convert_ctx_access,
11253 };
11254 
11255 const struct bpf_prog_ops lwt_in_prog_ops = {
11256 	.test_run		= bpf_prog_test_run_skb,
11257 };
11258 
11259 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11260 	.get_func_proto		= lwt_out_func_proto,
11261 	.is_valid_access	= lwt_is_valid_access,
11262 	.convert_ctx_access	= bpf_convert_ctx_access,
11263 };
11264 
11265 const struct bpf_prog_ops lwt_out_prog_ops = {
11266 	.test_run		= bpf_prog_test_run_skb,
11267 };
11268 
11269 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11270 	.get_func_proto		= lwt_xmit_func_proto,
11271 	.is_valid_access	= lwt_is_valid_access,
11272 	.convert_ctx_access	= bpf_convert_ctx_access,
11273 	.gen_prologue		= tc_cls_act_prologue,
11274 };
11275 
11276 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11277 	.test_run		= bpf_prog_test_run_skb,
11278 };
11279 
11280 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11281 	.get_func_proto		= lwt_seg6local_func_proto,
11282 	.is_valid_access	= lwt_is_valid_access,
11283 	.convert_ctx_access	= bpf_convert_ctx_access,
11284 };
11285 
11286 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11287 };
11288 
11289 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11290 	.get_func_proto		= sock_filter_func_proto,
11291 	.is_valid_access	= sock_filter_is_valid_access,
11292 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11293 };
11294 
11295 const struct bpf_prog_ops cg_sock_prog_ops = {
11296 };
11297 
11298 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11299 	.get_func_proto		= sock_addr_func_proto,
11300 	.is_valid_access	= sock_addr_is_valid_access,
11301 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11302 };
11303 
11304 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11305 };
11306 
11307 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11308 	.get_func_proto		= sock_ops_func_proto,
11309 	.is_valid_access	= sock_ops_is_valid_access,
11310 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11311 };
11312 
11313 const struct bpf_prog_ops sock_ops_prog_ops = {
11314 };
11315 
11316 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11317 	.get_func_proto		= sk_skb_func_proto,
11318 	.is_valid_access	= sk_skb_is_valid_access,
11319 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11320 	.gen_prologue		= sk_skb_prologue,
11321 };
11322 
11323 const struct bpf_prog_ops sk_skb_prog_ops = {
11324 };
11325 
11326 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11327 	.get_func_proto		= sk_msg_func_proto,
11328 	.is_valid_access	= sk_msg_is_valid_access,
11329 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11330 	.gen_prologue		= bpf_noop_prologue,
11331 };
11332 
11333 const struct bpf_prog_ops sk_msg_prog_ops = {
11334 };
11335 
11336 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11337 	.get_func_proto		= flow_dissector_func_proto,
11338 	.is_valid_access	= flow_dissector_is_valid_access,
11339 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11340 };
11341 
11342 const struct bpf_prog_ops flow_dissector_prog_ops = {
11343 	.test_run		= bpf_prog_test_run_flow_dissector,
11344 };
11345 
sk_detach_filter(struct sock * sk)11346 int sk_detach_filter(struct sock *sk)
11347 {
11348 	int ret = -ENOENT;
11349 	struct sk_filter *filter;
11350 
11351 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11352 		return -EPERM;
11353 
11354 	filter = rcu_dereference_protected(sk->sk_filter,
11355 					   lockdep_sock_is_held(sk));
11356 	if (filter) {
11357 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11358 		sk_filter_uncharge(sk, filter);
11359 		ret = 0;
11360 	}
11361 
11362 	return ret;
11363 }
11364 EXPORT_SYMBOL_GPL(sk_detach_filter);
11365 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11366 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11367 {
11368 	struct sock_fprog_kern *fprog;
11369 	struct sk_filter *filter;
11370 	int ret = 0;
11371 
11372 	sockopt_lock_sock(sk);
11373 	filter = rcu_dereference_protected(sk->sk_filter,
11374 					   lockdep_sock_is_held(sk));
11375 	if (!filter)
11376 		goto out;
11377 
11378 	/* We're copying the filter that has been originally attached,
11379 	 * so no conversion/decode needed anymore. eBPF programs that
11380 	 * have no original program cannot be dumped through this.
11381 	 */
11382 	ret = -EACCES;
11383 	fprog = filter->prog->orig_prog;
11384 	if (!fprog)
11385 		goto out;
11386 
11387 	ret = fprog->len;
11388 	if (!len)
11389 		/* User space only enquires number of filter blocks. */
11390 		goto out;
11391 
11392 	ret = -EINVAL;
11393 	if (len < fprog->len)
11394 		goto out;
11395 
11396 	ret = -EFAULT;
11397 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11398 		goto out;
11399 
11400 	/* Instead of bytes, the API requests to return the number
11401 	 * of filter blocks.
11402 	 */
11403 	ret = fprog->len;
11404 out:
11405 	sockopt_release_sock(sk);
11406 	return ret;
11407 }
11408 
11409 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11410 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11411 				    struct sock_reuseport *reuse,
11412 				    struct sock *sk, struct sk_buff *skb,
11413 				    struct sock *migrating_sk,
11414 				    u32 hash)
11415 {
11416 	reuse_kern->skb = skb;
11417 	reuse_kern->sk = sk;
11418 	reuse_kern->selected_sk = NULL;
11419 	reuse_kern->migrating_sk = migrating_sk;
11420 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11421 	reuse_kern->hash = hash;
11422 	reuse_kern->reuseport_id = reuse->reuseport_id;
11423 	reuse_kern->bind_inany = reuse->bind_inany;
11424 }
11425 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11426 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11427 				  struct bpf_prog *prog, struct sk_buff *skb,
11428 				  struct sock *migrating_sk,
11429 				  u32 hash)
11430 {
11431 	struct sk_reuseport_kern reuse_kern;
11432 	enum sk_action action;
11433 
11434 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11435 	action = bpf_prog_run(prog, &reuse_kern);
11436 
11437 	if (action == SK_PASS)
11438 		return reuse_kern.selected_sk;
11439 	else
11440 		return ERR_PTR(-ECONNREFUSED);
11441 }
11442 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11443 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11444 	   struct bpf_map *, map, void *, key, u32, flags)
11445 {
11446 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11447 	struct sock_reuseport *reuse;
11448 	struct sock *selected_sk;
11449 	int err;
11450 
11451 	selected_sk = map->ops->map_lookup_elem(map, key);
11452 	if (!selected_sk)
11453 		return -ENOENT;
11454 
11455 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11456 	if (!reuse) {
11457 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11458 		 * The only (!reuse) case here is - the sk has already been
11459 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11460 		 *
11461 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11462 		 * the sk may never be in the reuseport group to begin with.
11463 		 */
11464 		err = is_sockarray ? -ENOENT : -EINVAL;
11465 		goto error;
11466 	}
11467 
11468 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11469 		struct sock *sk = reuse_kern->sk;
11470 
11471 		if (sk->sk_protocol != selected_sk->sk_protocol) {
11472 			err = -EPROTOTYPE;
11473 		} else if (sk->sk_family != selected_sk->sk_family) {
11474 			err = -EAFNOSUPPORT;
11475 		} else {
11476 			/* Catch all. Likely bound to a different sockaddr. */
11477 			err = -EBADFD;
11478 		}
11479 		goto error;
11480 	}
11481 
11482 	reuse_kern->selected_sk = selected_sk;
11483 
11484 	return 0;
11485 error:
11486 	/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11487 	if (sk_is_refcounted(selected_sk))
11488 		sock_put(selected_sk);
11489 
11490 	return err;
11491 }
11492 
11493 static const struct bpf_func_proto sk_select_reuseport_proto = {
11494 	.func           = sk_select_reuseport,
11495 	.gpl_only       = false,
11496 	.ret_type       = RET_INTEGER,
11497 	.arg1_type	= ARG_PTR_TO_CTX,
11498 	.arg2_type      = ARG_CONST_MAP_PTR,
11499 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11500 	.arg4_type	= ARG_ANYTHING,
11501 };
11502 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11503 BPF_CALL_4(sk_reuseport_load_bytes,
11504 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11505 	   void *, to, u32, len)
11506 {
11507 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11508 }
11509 
11510 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11511 	.func		= sk_reuseport_load_bytes,
11512 	.gpl_only	= false,
11513 	.ret_type	= RET_INTEGER,
11514 	.arg1_type	= ARG_PTR_TO_CTX,
11515 	.arg2_type	= ARG_ANYTHING,
11516 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11517 	.arg4_type	= ARG_CONST_SIZE,
11518 };
11519 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11520 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11521 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11522 	   void *, to, u32, len, u32, start_header)
11523 {
11524 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11525 					       len, start_header);
11526 }
11527 
11528 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11529 	.func		= sk_reuseport_load_bytes_relative,
11530 	.gpl_only	= false,
11531 	.ret_type	= RET_INTEGER,
11532 	.arg1_type	= ARG_PTR_TO_CTX,
11533 	.arg2_type	= ARG_ANYTHING,
11534 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11535 	.arg4_type	= ARG_CONST_SIZE,
11536 	.arg5_type	= ARG_ANYTHING,
11537 };
11538 
11539 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11540 sk_reuseport_func_proto(enum bpf_func_id func_id,
11541 			const struct bpf_prog *prog)
11542 {
11543 	switch (func_id) {
11544 	case BPF_FUNC_sk_select_reuseport:
11545 		return &sk_select_reuseport_proto;
11546 	case BPF_FUNC_skb_load_bytes:
11547 		return &sk_reuseport_load_bytes_proto;
11548 	case BPF_FUNC_skb_load_bytes_relative:
11549 		return &sk_reuseport_load_bytes_relative_proto;
11550 	case BPF_FUNC_get_socket_cookie:
11551 		return &bpf_get_socket_ptr_cookie_proto;
11552 	case BPF_FUNC_ktime_get_coarse_ns:
11553 		return &bpf_ktime_get_coarse_ns_proto;
11554 	default:
11555 		return bpf_base_func_proto(func_id, prog);
11556 	}
11557 }
11558 
11559 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11560 sk_reuseport_is_valid_access(int off, int size,
11561 			     enum bpf_access_type type,
11562 			     const struct bpf_prog *prog,
11563 			     struct bpf_insn_access_aux *info)
11564 {
11565 	const u32 size_default = sizeof(__u32);
11566 
11567 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11568 	    off % size || type != BPF_READ)
11569 		return false;
11570 
11571 	switch (off) {
11572 	case offsetof(struct sk_reuseport_md, data):
11573 		info->reg_type = PTR_TO_PACKET;
11574 		return size == sizeof(__u64);
11575 
11576 	case offsetof(struct sk_reuseport_md, data_end):
11577 		info->reg_type = PTR_TO_PACKET_END;
11578 		return size == sizeof(__u64);
11579 
11580 	case offsetof(struct sk_reuseport_md, hash):
11581 		return size == size_default;
11582 
11583 	case offsetof(struct sk_reuseport_md, sk):
11584 		info->reg_type = PTR_TO_SOCKET;
11585 		return size == sizeof(__u64);
11586 
11587 	case offsetof(struct sk_reuseport_md, migrating_sk):
11588 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11589 		return size == sizeof(__u64);
11590 
11591 	/* Fields that allow narrowing */
11592 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11593 		if (size < sizeof_field(struct sk_buff, protocol))
11594 			return false;
11595 		fallthrough;
11596 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11597 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11598 	case bpf_ctx_range(struct sk_reuseport_md, len):
11599 		bpf_ctx_record_field_size(info, size_default);
11600 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11601 
11602 	default:
11603 		return false;
11604 	}
11605 }
11606 
11607 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11608 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11609 			      si->dst_reg, si->src_reg,			\
11610 			      bpf_target_off(struct sk_reuseport_kern, F, \
11611 					     sizeof_field(struct sk_reuseport_kern, F), \
11612 					     target_size));		\
11613 	})
11614 
11615 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11616 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11617 				    struct sk_buff,			\
11618 				    skb,				\
11619 				    SKB_FIELD)
11620 
11621 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11622 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11623 				    struct sock,			\
11624 				    sk,					\
11625 				    SK_FIELD)
11626 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11627 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11628 					   const struct bpf_insn *si,
11629 					   struct bpf_insn *insn_buf,
11630 					   struct bpf_prog *prog,
11631 					   u32 *target_size)
11632 {
11633 	struct bpf_insn *insn = insn_buf;
11634 
11635 	switch (si->off) {
11636 	case offsetof(struct sk_reuseport_md, data):
11637 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11638 		break;
11639 
11640 	case offsetof(struct sk_reuseport_md, len):
11641 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11642 		break;
11643 
11644 	case offsetof(struct sk_reuseport_md, eth_protocol):
11645 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11646 		break;
11647 
11648 	case offsetof(struct sk_reuseport_md, ip_protocol):
11649 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11650 		break;
11651 
11652 	case offsetof(struct sk_reuseport_md, data_end):
11653 		SK_REUSEPORT_LOAD_FIELD(data_end);
11654 		break;
11655 
11656 	case offsetof(struct sk_reuseport_md, hash):
11657 		SK_REUSEPORT_LOAD_FIELD(hash);
11658 		break;
11659 
11660 	case offsetof(struct sk_reuseport_md, bind_inany):
11661 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11662 		break;
11663 
11664 	case offsetof(struct sk_reuseport_md, sk):
11665 		SK_REUSEPORT_LOAD_FIELD(sk);
11666 		break;
11667 
11668 	case offsetof(struct sk_reuseport_md, migrating_sk):
11669 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11670 		break;
11671 	}
11672 
11673 	return insn - insn_buf;
11674 }
11675 
11676 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11677 	.get_func_proto		= sk_reuseport_func_proto,
11678 	.is_valid_access	= sk_reuseport_is_valid_access,
11679 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11680 };
11681 
11682 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11683 };
11684 
11685 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11686 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11687 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11688 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11689 	   struct sock *, sk, u64, flags)
11690 {
11691 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11692 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11693 		return -EINVAL;
11694 	if (unlikely(sk && sk_is_refcounted(sk)))
11695 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11696 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11697 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11698 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11699 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11700 
11701 	/* Check if socket is suitable for packet L3/L4 protocol */
11702 	if (sk && sk->sk_protocol != ctx->protocol)
11703 		return -EPROTOTYPE;
11704 	if (sk && sk->sk_family != ctx->family &&
11705 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11706 		return -EAFNOSUPPORT;
11707 
11708 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11709 		return -EEXIST;
11710 
11711 	/* Select socket as lookup result */
11712 	ctx->selected_sk = sk;
11713 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11714 	return 0;
11715 }
11716 
11717 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11718 	.func		= bpf_sk_lookup_assign,
11719 	.gpl_only	= false,
11720 	.ret_type	= RET_INTEGER,
11721 	.arg1_type	= ARG_PTR_TO_CTX,
11722 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11723 	.arg3_type	= ARG_ANYTHING,
11724 };
11725 
11726 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11727 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11728 {
11729 	switch (func_id) {
11730 	case BPF_FUNC_perf_event_output:
11731 		return &bpf_event_output_data_proto;
11732 	case BPF_FUNC_sk_assign:
11733 		return &bpf_sk_lookup_assign_proto;
11734 	case BPF_FUNC_sk_release:
11735 		return &bpf_sk_release_proto;
11736 	default:
11737 		return bpf_sk_base_func_proto(func_id, prog);
11738 	}
11739 }
11740 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11741 static bool sk_lookup_is_valid_access(int off, int size,
11742 				      enum bpf_access_type type,
11743 				      const struct bpf_prog *prog,
11744 				      struct bpf_insn_access_aux *info)
11745 {
11746 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11747 		return false;
11748 	if (off % size != 0)
11749 		return false;
11750 	if (type != BPF_READ)
11751 		return false;
11752 
11753 	switch (off) {
11754 	case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk):
11755 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11756 		return size == sizeof(__u64);
11757 
11758 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11759 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11760 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11761 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11762 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11763 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11764 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11765 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11766 		bpf_ctx_record_field_size(info, sizeof(__u32));
11767 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11768 
11769 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11770 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11771 		if (size == sizeof(__u32))
11772 			return true;
11773 		bpf_ctx_record_field_size(info, sizeof(__be16));
11774 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11775 
11776 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11777 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11778 		/* Allow access to zero padding for backward compatibility */
11779 		bpf_ctx_record_field_size(info, sizeof(__u16));
11780 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11781 
11782 	default:
11783 		return false;
11784 	}
11785 }
11786 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11787 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11788 					const struct bpf_insn *si,
11789 					struct bpf_insn *insn_buf,
11790 					struct bpf_prog *prog,
11791 					u32 *target_size)
11792 {
11793 	struct bpf_insn *insn = insn_buf;
11794 
11795 	switch (si->off) {
11796 	case offsetof(struct bpf_sk_lookup, sk):
11797 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11798 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11799 		break;
11800 
11801 	case offsetof(struct bpf_sk_lookup, family):
11802 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11803 				      bpf_target_off(struct bpf_sk_lookup_kern,
11804 						     family, 2, target_size));
11805 		break;
11806 
11807 	case offsetof(struct bpf_sk_lookup, protocol):
11808 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11809 				      bpf_target_off(struct bpf_sk_lookup_kern,
11810 						     protocol, 2, target_size));
11811 		break;
11812 
11813 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11814 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11815 				      bpf_target_off(struct bpf_sk_lookup_kern,
11816 						     v4.saddr, 4, target_size));
11817 		break;
11818 
11819 	case offsetof(struct bpf_sk_lookup, local_ip4):
11820 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11821 				      bpf_target_off(struct bpf_sk_lookup_kern,
11822 						     v4.daddr, 4, target_size));
11823 		break;
11824 
11825 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11826 				remote_ip6[0], remote_ip6[3]): {
11827 #if IS_ENABLED(CONFIG_IPV6)
11828 		int off = si->off;
11829 
11830 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11831 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11832 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11833 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11834 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11835 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11836 #else
11837 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11838 #endif
11839 		break;
11840 	}
11841 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11842 				local_ip6[0], local_ip6[3]): {
11843 #if IS_ENABLED(CONFIG_IPV6)
11844 		int off = si->off;
11845 
11846 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11847 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11848 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11849 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11850 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11851 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11852 #else
11853 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11854 #endif
11855 		break;
11856 	}
11857 	case offsetof(struct bpf_sk_lookup, remote_port):
11858 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11859 				      bpf_target_off(struct bpf_sk_lookup_kern,
11860 						     sport, 2, target_size));
11861 		break;
11862 
11863 	case offsetofend(struct bpf_sk_lookup, remote_port):
11864 		*target_size = 2;
11865 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11866 		break;
11867 
11868 	case offsetof(struct bpf_sk_lookup, local_port):
11869 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11870 				      bpf_target_off(struct bpf_sk_lookup_kern,
11871 						     dport, 2, target_size));
11872 		break;
11873 
11874 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11875 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11876 				      bpf_target_off(struct bpf_sk_lookup_kern,
11877 						     ingress_ifindex, 4, target_size));
11878 		break;
11879 	}
11880 
11881 	return insn - insn_buf;
11882 }
11883 
11884 const struct bpf_prog_ops sk_lookup_prog_ops = {
11885 	.test_run = bpf_prog_test_run_sk_lookup,
11886 };
11887 
11888 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11889 	.get_func_proto		= sk_lookup_func_proto,
11890 	.is_valid_access	= sk_lookup_is_valid_access,
11891 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11892 };
11893 
11894 #endif /* CONFIG_INET */
11895 
DEFINE_BPF_DISPATCHER(xdp)11896 DEFINE_BPF_DISPATCHER(xdp)
11897 
11898 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11899 {
11900 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11901 }
11902 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11903 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11904 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11905 BTF_SOCK_TYPE_xxx
11906 #undef BTF_SOCK_TYPE
11907 
11908 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11909 {
11910 	/* tcp6_sock type is not generated in dwarf and hence btf,
11911 	 * trigger an explicit type generation here.
11912 	 */
11913 	BTF_TYPE_EMIT(struct tcp6_sock);
11914 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11915 	    sk->sk_family == AF_INET6)
11916 		return (unsigned long)sk;
11917 
11918 	return (unsigned long)NULL;
11919 }
11920 
11921 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11922 	.func			= bpf_skc_to_tcp6_sock,
11923 	.gpl_only		= false,
11924 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11925 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11926 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11927 };
11928 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11929 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11930 {
11931 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11932 		return (unsigned long)sk;
11933 
11934 	return (unsigned long)NULL;
11935 }
11936 
11937 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11938 	.func			= bpf_skc_to_tcp_sock,
11939 	.gpl_only		= false,
11940 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11941 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11942 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11943 };
11944 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11945 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11946 {
11947 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11948 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11949 	 */
11950 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11951 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11952 
11953 #ifdef CONFIG_INET
11954 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11955 		return (unsigned long)sk;
11956 #endif
11957 
11958 #if IS_BUILTIN(CONFIG_IPV6)
11959 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11960 		return (unsigned long)sk;
11961 #endif
11962 
11963 	return (unsigned long)NULL;
11964 }
11965 
11966 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11967 	.func			= bpf_skc_to_tcp_timewait_sock,
11968 	.gpl_only		= false,
11969 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11970 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11971 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11972 };
11973 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11974 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11975 {
11976 #ifdef CONFIG_INET
11977 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11978 		return (unsigned long)sk;
11979 #endif
11980 
11981 #if IS_BUILTIN(CONFIG_IPV6)
11982 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11983 		return (unsigned long)sk;
11984 #endif
11985 
11986 	return (unsigned long)NULL;
11987 }
11988 
11989 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11990 	.func			= bpf_skc_to_tcp_request_sock,
11991 	.gpl_only		= false,
11992 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11993 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11994 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11995 };
11996 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11997 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11998 {
11999 	/* udp6_sock type is not generated in dwarf and hence btf,
12000 	 * trigger an explicit type generation here.
12001 	 */
12002 	BTF_TYPE_EMIT(struct udp6_sock);
12003 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
12004 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
12005 		return (unsigned long)sk;
12006 
12007 	return (unsigned long)NULL;
12008 }
12009 
12010 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
12011 	.func			= bpf_skc_to_udp6_sock,
12012 	.gpl_only		= false,
12013 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
12014 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
12015 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
12016 };
12017 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)12018 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
12019 {
12020 	/* unix_sock type is not generated in dwarf and hence btf,
12021 	 * trigger an explicit type generation here.
12022 	 */
12023 	BTF_TYPE_EMIT(struct unix_sock);
12024 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
12025 		return (unsigned long)sk;
12026 
12027 	return (unsigned long)NULL;
12028 }
12029 
12030 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
12031 	.func			= bpf_skc_to_unix_sock,
12032 	.gpl_only		= false,
12033 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
12034 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
12035 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
12036 };
12037 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)12038 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
12039 {
12040 	BTF_TYPE_EMIT(struct mptcp_sock);
12041 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
12042 }
12043 
12044 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
12045 	.func		= bpf_skc_to_mptcp_sock,
12046 	.gpl_only	= false,
12047 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
12048 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
12049 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
12050 };
12051 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)12052 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
12053 {
12054 	return (unsigned long)sock_from_file(file);
12055 }
12056 
12057 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
12058 BTF_ID(struct, socket)
12059 BTF_ID(struct, file)
12060 
12061 const struct bpf_func_proto bpf_sock_from_file_proto = {
12062 	.func		= bpf_sock_from_file,
12063 	.gpl_only	= false,
12064 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
12065 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
12066 	.arg1_type	= ARG_PTR_TO_BTF_ID,
12067 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
12068 };
12069 
12070 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)12071 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
12072 {
12073 	const struct bpf_func_proto *func;
12074 
12075 	switch (func_id) {
12076 	case BPF_FUNC_skc_to_tcp6_sock:
12077 		func = &bpf_skc_to_tcp6_sock_proto;
12078 		break;
12079 	case BPF_FUNC_skc_to_tcp_sock:
12080 		func = &bpf_skc_to_tcp_sock_proto;
12081 		break;
12082 	case BPF_FUNC_skc_to_tcp_timewait_sock:
12083 		func = &bpf_skc_to_tcp_timewait_sock_proto;
12084 		break;
12085 	case BPF_FUNC_skc_to_tcp_request_sock:
12086 		func = &bpf_skc_to_tcp_request_sock_proto;
12087 		break;
12088 	case BPF_FUNC_skc_to_udp6_sock:
12089 		func = &bpf_skc_to_udp6_sock_proto;
12090 		break;
12091 	case BPF_FUNC_skc_to_unix_sock:
12092 		func = &bpf_skc_to_unix_sock_proto;
12093 		break;
12094 	case BPF_FUNC_skc_to_mptcp_sock:
12095 		func = &bpf_skc_to_mptcp_sock_proto;
12096 		break;
12097 	case BPF_FUNC_ktime_get_coarse_ns:
12098 		return &bpf_ktime_get_coarse_ns_proto;
12099 	default:
12100 		return bpf_base_func_proto(func_id, prog);
12101 	}
12102 
12103 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
12104 		return NULL;
12105 
12106 	return func;
12107 }
12108 
12109 /**
12110  * bpf_skb_meta_pointer() - Gets a mutable pointer within the skb metadata area.
12111  * @skb: socket buffer carrying the metadata
12112  * @offset: offset into the metadata area, must be <= skb_metadata_len()
12113  */
bpf_skb_meta_pointer(struct sk_buff * skb,u32 offset)12114 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset)
12115 {
12116 	return skb_metadata_end(skb) - skb_metadata_len(skb) + offset;
12117 }
12118 
__bpf_skb_meta_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)12119 int __bpf_skb_meta_store_bytes(struct sk_buff *skb, u32 offset,
12120 			       const void *from, u32 len, u64 flags)
12121 {
12122 	if (unlikely(flags))
12123 		return -EINVAL;
12124 	if (unlikely(bpf_try_make_writable(skb, 0)))
12125 		return -EFAULT;
12126 
12127 	memmove(bpf_skb_meta_pointer(skb, offset), from, len);
12128 	return 0;
12129 }
12130 
12131 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)12132 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
12133 				    struct bpf_dynptr *ptr__uninit)
12134 {
12135 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12136 	struct sk_buff *skb = (struct sk_buff *)s;
12137 
12138 	if (flags) {
12139 		bpf_dynptr_set_null(ptr);
12140 		return -EINVAL;
12141 	}
12142 
12143 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
12144 
12145 	return 0;
12146 }
12147 
12148 /**
12149  * bpf_dynptr_from_skb_meta() - Initialize a dynptr to the skb metadata area.
12150  * @skb_: socket buffer carrying the metadata
12151  * @flags: future use, must be zero
12152  * @ptr__uninit: dynptr to initialize
12153  *
12154  * Set up a dynptr for access to the metadata area earlier allocated from the
12155  * XDP context with bpf_xdp_adjust_meta(). Serves as an alternative to
12156  * &__sk_buff->data_meta.
12157  *
12158  * Return:
12159  * * %0         - dynptr ready to use
12160  * * %-EINVAL   - invalid flags, dynptr set to null
12161  */
bpf_dynptr_from_skb_meta(struct __sk_buff * skb_,u64 flags,struct bpf_dynptr * ptr__uninit)12162 __bpf_kfunc int bpf_dynptr_from_skb_meta(struct __sk_buff *skb_, u64 flags,
12163 					 struct bpf_dynptr *ptr__uninit)
12164 {
12165 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12166 	struct sk_buff *skb = (struct sk_buff *)skb_;
12167 
12168 	if (flags) {
12169 		bpf_dynptr_set_null(ptr);
12170 		return -EINVAL;
12171 	}
12172 
12173 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB_META, 0, skb_metadata_len(skb));
12174 
12175 	return 0;
12176 }
12177 
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)12178 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12179 				    struct bpf_dynptr *ptr__uninit)
12180 {
12181 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12182 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12183 
12184 	if (flags) {
12185 		bpf_dynptr_set_null(ptr);
12186 		return -EINVAL;
12187 	}
12188 
12189 	bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12190 
12191 	return 0;
12192 }
12193 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12194 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12195 					   const u8 *sun_path, u32 sun_path__sz)
12196 {
12197 	struct sockaddr_un *un;
12198 
12199 	if (sa_kern->sk->sk_family != AF_UNIX)
12200 		return -EINVAL;
12201 
12202 	/* We do not allow changing the address to unnamed or larger than the
12203 	 * maximum allowed address size for a unix sockaddr.
12204 	 */
12205 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12206 		return -EINVAL;
12207 
12208 	un = (struct sockaddr_un *)sa_kern->uaddr;
12209 	memcpy(un->sun_path, sun_path, sun_path__sz);
12210 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12211 
12212 	return 0;
12213 }
12214 
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12215 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12216 					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12217 {
12218 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12219 	struct sk_buff *skb = (struct sk_buff *)s;
12220 	const struct request_sock_ops *ops;
12221 	struct inet_request_sock *ireq;
12222 	struct tcp_request_sock *treq;
12223 	struct request_sock *req;
12224 	struct net *net;
12225 	__u16 min_mss;
12226 	u32 tsoff = 0;
12227 
12228 	if (attrs__sz != sizeof(*attrs) ||
12229 	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12230 		return -EINVAL;
12231 
12232 	if (!skb_at_tc_ingress(skb))
12233 		return -EINVAL;
12234 
12235 	net = dev_net(skb->dev);
12236 	if (net != sock_net(sk))
12237 		return -ENETUNREACH;
12238 
12239 	switch (skb->protocol) {
12240 	case htons(ETH_P_IP):
12241 		ops = &tcp_request_sock_ops;
12242 		min_mss = 536;
12243 		break;
12244 #if IS_BUILTIN(CONFIG_IPV6)
12245 	case htons(ETH_P_IPV6):
12246 		ops = &tcp6_request_sock_ops;
12247 		min_mss = IPV6_MIN_MTU - 60;
12248 		break;
12249 #endif
12250 	default:
12251 		return -EINVAL;
12252 	}
12253 
12254 	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12255 	    sk_is_mptcp(sk))
12256 		return -EINVAL;
12257 
12258 	if (attrs->mss < min_mss)
12259 		return -EINVAL;
12260 
12261 	if (attrs->wscale_ok) {
12262 		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12263 			return -EINVAL;
12264 
12265 		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12266 		    attrs->rcv_wscale > TCP_MAX_WSCALE)
12267 			return -EINVAL;
12268 	}
12269 
12270 	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12271 		return -EINVAL;
12272 
12273 	if (attrs->tstamp_ok) {
12274 		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12275 			return -EINVAL;
12276 
12277 		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12278 	}
12279 
12280 	req = inet_reqsk_alloc(ops, sk, false);
12281 	if (!req)
12282 		return -ENOMEM;
12283 
12284 	ireq = inet_rsk(req);
12285 	treq = tcp_rsk(req);
12286 
12287 	req->rsk_listener = sk;
12288 	req->syncookie = 1;
12289 	req->mss = attrs->mss;
12290 	req->ts_recent = attrs->rcv_tsval;
12291 
12292 	ireq->snd_wscale = attrs->snd_wscale;
12293 	ireq->rcv_wscale = attrs->rcv_wscale;
12294 	ireq->tstamp_ok	= !!attrs->tstamp_ok;
12295 	ireq->sack_ok = !!attrs->sack_ok;
12296 	ireq->wscale_ok = !!attrs->wscale_ok;
12297 	ireq->ecn_ok = !!attrs->ecn_ok;
12298 
12299 	treq->req_usec_ts = !!attrs->usec_ts_ok;
12300 	treq->ts_off = tsoff;
12301 
12302 	skb_orphan(skb);
12303 	skb->sk = req_to_sk(req);
12304 	skb->destructor = sock_pfree;
12305 
12306 	return 0;
12307 #else
12308 	return -EOPNOTSUPP;
12309 #endif
12310 }
12311 
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12312 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12313 					      u64 flags)
12314 {
12315 	struct sk_buff *skb;
12316 
12317 	if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12318 		return -EOPNOTSUPP;
12319 
12320 	if (flags)
12321 		return -EINVAL;
12322 
12323 	skb = skops->skb;
12324 	skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12325 	TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12326 	skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12327 
12328 	return 0;
12329 }
12330 
12331 /**
12332  * bpf_xdp_pull_data() - Pull in non-linear xdp data.
12333  * @x: &xdp_md associated with the XDP buffer
12334  * @len: length of data to be made directly accessible in the linear part
12335  *
12336  * Pull in data in case the XDP buffer associated with @x is non-linear and
12337  * not all @len are in the linear data area.
12338  *
12339  * Direct packet access allows reading and writing linear XDP data through
12340  * packet pointers (i.e., &xdp_md->data + offsets). The amount of data which
12341  * ends up in the linear part of the xdp_buff depends on the NIC and its
12342  * configuration. When a frag-capable XDP program wants to directly access
12343  * headers that may be in the non-linear area, call this kfunc to make sure
12344  * the data is available in the linear area. Alternatively, use dynptr or
12345  * bpf_xdp_{load,store}_bytes() to access data without pulling.
12346  *
12347  * This kfunc can also be used with bpf_xdp_adjust_head() to decapsulate
12348  * headers in the non-linear data area.
12349  *
12350  * A call to this kfunc may reduce headroom. If there is not enough tailroom
12351  * in the linear data area, metadata and data will be shifted down.
12352  *
12353  * A call to this kfunc is susceptible to change the buffer geometry.
12354  * Therefore, at load time, all checks on pointers previously done by the
12355  * verifier are invalidated and must be performed again, if the kfunc is used
12356  * in combination with direct packet access.
12357  *
12358  * Return:
12359  * * %0         - success
12360  * * %-EINVAL   - invalid len
12361  */
bpf_xdp_pull_data(struct xdp_md * x,u32 len)12362 __bpf_kfunc int bpf_xdp_pull_data(struct xdp_md *x, u32 len)
12363 {
12364 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12365 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
12366 	int i, delta, shift, headroom, tailroom, n_frags_free = 0;
12367 	void *data_hard_end = xdp_data_hard_end(xdp);
12368 	int data_len = xdp->data_end - xdp->data;
12369 	void *start;
12370 
12371 	if (len <= data_len)
12372 		return 0;
12373 
12374 	if (unlikely(len > xdp_get_buff_len(xdp)))
12375 		return -EINVAL;
12376 
12377 	start = xdp_data_meta_unsupported(xdp) ? xdp->data : xdp->data_meta;
12378 
12379 	headroom = start - xdp->data_hard_start - sizeof(struct xdp_frame);
12380 	tailroom = data_hard_end - xdp->data_end;
12381 
12382 	delta = len - data_len;
12383 	if (unlikely(delta > tailroom + headroom))
12384 		return -EINVAL;
12385 
12386 	shift = delta - tailroom;
12387 	if (shift > 0) {
12388 		memmove(start - shift, start, xdp->data_end - start);
12389 
12390 		xdp->data_meta -= shift;
12391 		xdp->data -= shift;
12392 		xdp->data_end -= shift;
12393 	}
12394 
12395 	for (i = 0; i < sinfo->nr_frags && delta; i++) {
12396 		skb_frag_t *frag = &sinfo->frags[i];
12397 		u32 shrink = min_t(u32, delta, skb_frag_size(frag));
12398 
12399 		memcpy(xdp->data_end, skb_frag_address(frag), shrink);
12400 
12401 		xdp->data_end += shrink;
12402 		sinfo->xdp_frags_size -= shrink;
12403 		delta -= shrink;
12404 		if (bpf_xdp_shrink_data(xdp, frag, shrink, false))
12405 			n_frags_free++;
12406 	}
12407 
12408 	if (unlikely(n_frags_free)) {
12409 		memmove(sinfo->frags, sinfo->frags + n_frags_free,
12410 			(sinfo->nr_frags - n_frags_free) * sizeof(skb_frag_t));
12411 
12412 		sinfo->nr_frags -= n_frags_free;
12413 
12414 		if (!sinfo->nr_frags) {
12415 			xdp_buff_clear_frags_flag(xdp);
12416 			xdp_buff_clear_frag_pfmemalloc(xdp);
12417 		}
12418 	}
12419 
12420 	return 0;
12421 }
12422 
12423 __bpf_kfunc_end_defs();
12424 
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12425 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12426 			       struct bpf_dynptr *ptr__uninit)
12427 {
12428 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12429 	int err;
12430 
12431 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12432 	if (err)
12433 		return err;
12434 
12435 	bpf_dynptr_set_rdonly(ptr);
12436 
12437 	return 0;
12438 }
12439 
12440 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12441 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12442 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12443 
12444 BTF_KFUNCS_START(bpf_kfunc_check_set_skb_meta)
12445 BTF_ID_FLAGS(func, bpf_dynptr_from_skb_meta, KF_TRUSTED_ARGS)
12446 BTF_KFUNCS_END(bpf_kfunc_check_set_skb_meta)
12447 
12448 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12449 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12450 BTF_ID_FLAGS(func, bpf_xdp_pull_data)
12451 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12452 
12453 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12454 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12455 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12456 
12457 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12458 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12459 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12460 
12461 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12462 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12463 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12464 
12465 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12466 	.owner = THIS_MODULE,
12467 	.set = &bpf_kfunc_check_set_skb,
12468 };
12469 
12470 static const struct btf_kfunc_id_set bpf_kfunc_set_skb_meta = {
12471 	.owner = THIS_MODULE,
12472 	.set = &bpf_kfunc_check_set_skb_meta,
12473 };
12474 
12475 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12476 	.owner = THIS_MODULE,
12477 	.set = &bpf_kfunc_check_set_xdp,
12478 };
12479 
12480 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12481 	.owner = THIS_MODULE,
12482 	.set = &bpf_kfunc_check_set_sock_addr,
12483 };
12484 
12485 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12486 	.owner = THIS_MODULE,
12487 	.set = &bpf_kfunc_check_set_tcp_reqsk,
12488 };
12489 
12490 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12491 	.owner = THIS_MODULE,
12492 	.set = &bpf_kfunc_check_set_sock_ops,
12493 };
12494 
bpf_kfunc_init(void)12495 static int __init bpf_kfunc_init(void)
12496 {
12497 	int ret;
12498 
12499 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12500 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12501 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12502 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12503 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12504 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12505 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12506 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12507 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12508 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12509 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12510 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb_meta);
12511 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb_meta);
12512 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12513 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12514 					       &bpf_kfunc_set_sock_addr);
12515 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12516 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12517 }
12518 late_initcall(bpf_kfunc_init);
12519 
12520 __bpf_kfunc_start_defs();
12521 
12522 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12523  *
12524  * The function expects a non-NULL pointer to a socket, and invokes the
12525  * protocol specific socket destroy handlers.
12526  *
12527  * The helper can only be called from BPF contexts that have acquired the socket
12528  * locks.
12529  *
12530  * Parameters:
12531  * @sock: Pointer to socket to be destroyed
12532  *
12533  * Return:
12534  * On error, may return EPROTONOSUPPORT, EINVAL.
12535  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12536  * 0 otherwise
12537  */
bpf_sock_destroy(struct sock_common * sock)12538 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12539 {
12540 	struct sock *sk = (struct sock *)sock;
12541 
12542 	/* The locking semantics that allow for synchronous execution of the
12543 	 * destroy handlers are only supported for TCP and UDP.
12544 	 * Supporting protocols will need to acquire sock lock in the BPF context
12545 	 * prior to invoking this kfunc.
12546 	 */
12547 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12548 					   sk->sk_protocol != IPPROTO_UDP))
12549 		return -EOPNOTSUPP;
12550 
12551 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12552 }
12553 
12554 __bpf_kfunc_end_defs();
12555 
12556 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12557 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12558 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12559 
12560 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12561 {
12562 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12563 	    prog->expected_attach_type != BPF_TRACE_ITER)
12564 		return -EACCES;
12565 	return 0;
12566 }
12567 
12568 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12569 	.owner = THIS_MODULE,
12570 	.set   = &bpf_sk_iter_kfunc_ids,
12571 	.filter = tracing_iter_filter,
12572 };
12573 
init_subsystem(void)12574 static int init_subsystem(void)
12575 {
12576 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12577 }
12578 late_initcall(init_subsystem);
12579