xref: /linux/net/core/filter.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88 
89 #include "dev.h"
90 
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93 
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96 
97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 	if (in_compat_syscall()) {
100 		struct compat_sock_fprog f32;
101 
102 		if (len != sizeof(f32))
103 			return -EINVAL;
104 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 			return -EFAULT;
106 		memset(dst, 0, sizeof(*dst));
107 		dst->len = f32.len;
108 		dst->filter = compat_ptr(f32.filter);
109 	} else {
110 		if (len != sizeof(*dst))
111 			return -EINVAL;
112 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 			return -EFAULT;
114 	}
115 
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119 
120 /**
121  *	sk_filter_trim_cap - run a packet through a socket filter
122  *	@sk: sock associated with &sk_buff
123  *	@skb: buffer to filter
124  *	@cap: limit on how short the eBPF program may trim the packet
125  *	@reason: record drop reason on errors (negative return value)
126  *
127  * Run the eBPF program and then cut skb->data to correct size returned by
128  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
129  * than pkt_len we keep whole skb->data. This is the socket level
130  * wrapper to bpf_prog_run. It returns 0 if the packet should
131  * be accepted or -EPERM if the packet should be tossed.
132  *
133  */
134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb,
135 		       unsigned int cap, enum skb_drop_reason *reason)
136 {
137 	int err;
138 	struct sk_filter *filter;
139 
140 	/*
141 	 * If the skb was allocated from pfmemalloc reserves, only
142 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
143 	 * helping free memory
144 	 */
145 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
146 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
147 		*reason = SKB_DROP_REASON_PFMEMALLOC;
148 		return -ENOMEM;
149 	}
150 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
151 	if (err) {
152 		*reason = SKB_DROP_REASON_SOCKET_FILTER;
153 		return err;
154 	}
155 
156 	err = security_sock_rcv_skb(sk, skb);
157 	if (err) {
158 		*reason = SKB_DROP_REASON_SECURITY_HOOK;
159 		return err;
160 	}
161 
162 	rcu_read_lock();
163 	filter = rcu_dereference(sk->sk_filter);
164 	if (filter) {
165 		struct sock *save_sk = skb->sk;
166 		unsigned int pkt_len;
167 
168 		skb->sk = sk;
169 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
170 		skb->sk = save_sk;
171 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
172 		if (err)
173 			*reason = SKB_DROP_REASON_SOCKET_FILTER;
174 	}
175 	rcu_read_unlock();
176 
177 	return err;
178 }
179 EXPORT_SYMBOL(sk_filter_trim_cap);
180 
181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
182 {
183 	return skb_get_poff(skb);
184 }
185 
186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
200 	if (nla)
201 		return (void *) nla - (void *) skb->data;
202 
203 	return 0;
204 }
205 
206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
207 {
208 	struct nlattr *nla;
209 
210 	if (skb_is_nonlinear(skb))
211 		return 0;
212 
213 	if (skb->len < sizeof(struct nlattr))
214 		return 0;
215 
216 	if (a > skb->len - sizeof(struct nlattr))
217 		return 0;
218 
219 	nla = (struct nlattr *) &skb->data[a];
220 	if (!nla_ok(nla, skb->len - a))
221 		return 0;
222 
223 	nla = nla_find_nested(nla, x);
224 	if (nla)
225 		return (void *) nla - (void *) skb->data;
226 
227 	return 0;
228 }
229 
230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
231 {
232 	if (likely(offset >= 0))
233 		return offset;
234 
235 	if (offset >= SKF_NET_OFF)
236 		return offset - SKF_NET_OFF + skb_network_offset(skb);
237 
238 	if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
239 		return offset - SKF_LL_OFF + skb_mac_offset(skb);
240 
241 	return INT_MIN;
242 }
243 
244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
245 	   data, int, headlen, int, offset)
246 {
247 	u8 tmp;
248 	const int len = sizeof(tmp);
249 
250 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
251 	if (offset == INT_MIN)
252 		return -EFAULT;
253 
254 	if (headlen - offset >= len)
255 		return *(u8 *)(data + offset);
256 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
257 		return tmp;
258 	else
259 		return -EFAULT;
260 }
261 
262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
263 	   int, offset)
264 {
265 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
266 					 offset);
267 }
268 
269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
270 	   data, int, headlen, int, offset)
271 {
272 	__be16 tmp;
273 	const int len = sizeof(tmp);
274 
275 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
276 	if (offset == INT_MIN)
277 		return -EFAULT;
278 
279 	if (headlen - offset >= len)
280 		return get_unaligned_be16(data + offset);
281 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
282 		return be16_to_cpu(tmp);
283 	else
284 		return -EFAULT;
285 }
286 
287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
288 	   int, offset)
289 {
290 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
291 					  offset);
292 }
293 
294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
295 	   data, int, headlen, int, offset)
296 {
297 	__be32 tmp;
298 	const int len = sizeof(tmp);
299 
300 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
301 	if (offset == INT_MIN)
302 		return -EFAULT;
303 
304 	if (headlen - offset >= len)
305 		return get_unaligned_be32(data + offset);
306 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
307 		return be32_to_cpu(tmp);
308 	else
309 		return -EFAULT;
310 }
311 
312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
313 	   int, offset)
314 {
315 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
316 					  offset);
317 }
318 
319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
320 			      struct bpf_insn *insn_buf)
321 {
322 	struct bpf_insn *insn = insn_buf;
323 
324 	switch (skb_field) {
325 	case SKF_AD_MARK:
326 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
327 
328 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
329 				      offsetof(struct sk_buff, mark));
330 		break;
331 
332 	case SKF_AD_PKTTYPE:
333 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
334 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
335 #ifdef __BIG_ENDIAN_BITFIELD
336 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
337 #endif
338 		break;
339 
340 	case SKF_AD_QUEUE:
341 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
342 
343 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
344 				      offsetof(struct sk_buff, queue_mapping));
345 		break;
346 
347 	case SKF_AD_VLAN_TAG:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
349 
350 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
352 				      offsetof(struct sk_buff, vlan_tci));
353 		break;
354 	case SKF_AD_VLAN_TAG_PRESENT:
355 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
356 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
357 				      offsetof(struct sk_buff, vlan_all));
358 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
359 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
360 		break;
361 	}
362 
363 	return insn - insn_buf;
364 }
365 
366 static bool convert_bpf_extensions(struct sock_filter *fp,
367 				   struct bpf_insn **insnp)
368 {
369 	struct bpf_insn *insn = *insnp;
370 	u32 cnt;
371 
372 	switch (fp->k) {
373 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
374 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
375 
376 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
377 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
378 				      offsetof(struct sk_buff, protocol));
379 		/* A = ntohs(A) [emitting a nop or swap16] */
380 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
384 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_IFINDEX:
389 	case SKF_AD_OFF + SKF_AD_HATYPE:
390 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
391 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
392 
393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
394 				      BPF_REG_TMP, BPF_REG_CTX,
395 				      offsetof(struct sk_buff, dev));
396 		/* if (tmp != 0) goto pc + 1 */
397 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
398 		*insn++ = BPF_EXIT_INSN();
399 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
400 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
401 					    offsetof(struct net_device, ifindex));
402 		else
403 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
404 					    offsetof(struct net_device, type));
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_MARK:
408 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_RXHASH:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
414 
415 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
416 				    offsetof(struct sk_buff, hash));
417 		break;
418 
419 	case SKF_AD_OFF + SKF_AD_QUEUE:
420 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
421 		insn += cnt - 1;
422 		break;
423 
424 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
425 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
426 					 BPF_REG_A, BPF_REG_CTX, insn);
427 		insn += cnt - 1;
428 		break;
429 
430 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
431 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
432 					 BPF_REG_A, BPF_REG_CTX, insn);
433 		insn += cnt - 1;
434 		break;
435 
436 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
437 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
438 
439 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
440 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
441 				      offsetof(struct sk_buff, vlan_proto));
442 		/* A = ntohs(A) [emitting a nop or swap16] */
443 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
444 		break;
445 
446 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
447 	case SKF_AD_OFF + SKF_AD_NLATTR:
448 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 	case SKF_AD_OFF + SKF_AD_CPU:
450 	case SKF_AD_OFF + SKF_AD_RANDOM:
451 		/* arg1 = CTX */
452 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
453 		/* arg2 = A */
454 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
455 		/* arg3 = X */
456 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
457 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
458 		switch (fp->k) {
459 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
460 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
461 			break;
462 		case SKF_AD_OFF + SKF_AD_NLATTR:
463 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
464 			break;
465 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
466 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
467 			break;
468 		case SKF_AD_OFF + SKF_AD_CPU:
469 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
470 			break;
471 		case SKF_AD_OFF + SKF_AD_RANDOM:
472 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
473 			bpf_user_rnd_init_once();
474 			break;
475 		}
476 		break;
477 
478 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
479 		/* A ^= X */
480 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
481 		break;
482 
483 	default:
484 		/* This is just a dummy call to avoid letting the compiler
485 		 * evict __bpf_call_base() as an optimization. Placed here
486 		 * where no-one bothers.
487 		 */
488 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
489 		return false;
490 	}
491 
492 	*insnp = insn;
493 	return true;
494 }
495 
496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
497 {
498 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
499 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
500 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
501 		      BPF_SIZE(fp->code) == BPF_W;
502 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
503 	const int ip_align = NET_IP_ALIGN;
504 	struct bpf_insn *insn = *insnp;
505 	int offset = fp->k;
506 
507 	if (!indirect &&
508 	    ((unaligned_ok && offset >= 0) ||
509 	     (!unaligned_ok && offset >= 0 &&
510 	      offset + ip_align >= 0 &&
511 	      offset + ip_align % size == 0))) {
512 		bool ldx_off_ok = offset <= S16_MAX;
513 
514 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
515 		if (offset)
516 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
517 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
518 				      size, 2 + endian + (!ldx_off_ok * 2));
519 		if (ldx_off_ok) {
520 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
521 					      BPF_REG_D, offset);
522 		} else {
523 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
524 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
525 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
526 					      BPF_REG_TMP, 0);
527 		}
528 		if (endian)
529 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
530 		*insn++ = BPF_JMP_A(8);
531 	}
532 
533 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
534 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
535 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
536 	if (!indirect) {
537 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
538 	} else {
539 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
540 		if (fp->k)
541 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
542 	}
543 
544 	switch (BPF_SIZE(fp->code)) {
545 	case BPF_B:
546 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
547 		break;
548 	case BPF_H:
549 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
550 		break;
551 	case BPF_W:
552 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
553 		break;
554 	default:
555 		return false;
556 	}
557 
558 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
559 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
560 	*insn   = BPF_EXIT_INSN();
561 
562 	*insnp = insn;
563 	return true;
564 }
565 
566 /**
567  *	bpf_convert_filter - convert filter program
568  *	@prog: the user passed filter program
569  *	@len: the length of the user passed filter program
570  *	@new_prog: allocated 'struct bpf_prog' or NULL
571  *	@new_len: pointer to store length of converted program
572  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
573  *
574  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
575  * style extended BPF (eBPF).
576  * Conversion workflow:
577  *
578  * 1) First pass for calculating the new program length:
579  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
580  *
581  * 2) 2nd pass to remap in two passes: 1st pass finds new
582  *    jump offsets, 2nd pass remapping:
583  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
584  */
585 static int bpf_convert_filter(struct sock_filter *prog, int len,
586 			      struct bpf_prog *new_prog, int *new_len,
587 			      bool *seen_ld_abs)
588 {
589 	int new_flen = 0, pass = 0, target, i, stack_off;
590 	struct bpf_insn *new_insn, *first_insn = NULL;
591 	struct sock_filter *fp;
592 	int *addrs = NULL;
593 	u8 bpf_src;
594 
595 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
596 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
597 
598 	if (len <= 0 || len > BPF_MAXINSNS)
599 		return -EINVAL;
600 
601 	if (new_prog) {
602 		first_insn = new_prog->insnsi;
603 		addrs = kcalloc(len, sizeof(*addrs),
604 				GFP_KERNEL | __GFP_NOWARN);
605 		if (!addrs)
606 			return -ENOMEM;
607 	}
608 
609 do_pass:
610 	new_insn = first_insn;
611 	fp = prog;
612 
613 	/* Classic BPF related prologue emission. */
614 	if (new_prog) {
615 		/* Classic BPF expects A and X to be reset first. These need
616 		 * to be guaranteed to be the first two instructions.
617 		 */
618 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
619 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
620 
621 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
622 		 * In eBPF case it's done by the compiler, here we need to
623 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
624 		 */
625 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
626 		if (*seen_ld_abs) {
627 			/* For packet access in classic BPF, cache skb->data
628 			 * in callee-saved BPF R8 and skb->len - skb->data_len
629 			 * (headlen) in BPF R9. Since classic BPF is read-only
630 			 * on CTX, we only need to cache it once.
631 			 */
632 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
633 						  BPF_REG_D, BPF_REG_CTX,
634 						  offsetof(struct sk_buff, data));
635 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
636 						  offsetof(struct sk_buff, len));
637 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
638 						  offsetof(struct sk_buff, data_len));
639 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
640 		}
641 	} else {
642 		new_insn += 3;
643 	}
644 
645 	for (i = 0; i < len; fp++, i++) {
646 		struct bpf_insn tmp_insns[32] = { };
647 		struct bpf_insn *insn = tmp_insns;
648 
649 		if (addrs)
650 			addrs[i] = new_insn - first_insn;
651 
652 		switch (fp->code) {
653 		/* All arithmetic insns and skb loads map as-is. */
654 		case BPF_ALU | BPF_ADD | BPF_X:
655 		case BPF_ALU | BPF_ADD | BPF_K:
656 		case BPF_ALU | BPF_SUB | BPF_X:
657 		case BPF_ALU | BPF_SUB | BPF_K:
658 		case BPF_ALU | BPF_AND | BPF_X:
659 		case BPF_ALU | BPF_AND | BPF_K:
660 		case BPF_ALU | BPF_OR | BPF_X:
661 		case BPF_ALU | BPF_OR | BPF_K:
662 		case BPF_ALU | BPF_LSH | BPF_X:
663 		case BPF_ALU | BPF_LSH | BPF_K:
664 		case BPF_ALU | BPF_RSH | BPF_X:
665 		case BPF_ALU | BPF_RSH | BPF_K:
666 		case BPF_ALU | BPF_XOR | BPF_X:
667 		case BPF_ALU | BPF_XOR | BPF_K:
668 		case BPF_ALU | BPF_MUL | BPF_X:
669 		case BPF_ALU | BPF_MUL | BPF_K:
670 		case BPF_ALU | BPF_DIV | BPF_X:
671 		case BPF_ALU | BPF_DIV | BPF_K:
672 		case BPF_ALU | BPF_MOD | BPF_X:
673 		case BPF_ALU | BPF_MOD | BPF_K:
674 		case BPF_ALU | BPF_NEG:
675 		case BPF_LD | BPF_ABS | BPF_W:
676 		case BPF_LD | BPF_ABS | BPF_H:
677 		case BPF_LD | BPF_ABS | BPF_B:
678 		case BPF_LD | BPF_IND | BPF_W:
679 		case BPF_LD | BPF_IND | BPF_H:
680 		case BPF_LD | BPF_IND | BPF_B:
681 			/* Check for overloaded BPF extension and
682 			 * directly convert it if found, otherwise
683 			 * just move on with mapping.
684 			 */
685 			if (BPF_CLASS(fp->code) == BPF_LD &&
686 			    BPF_MODE(fp->code) == BPF_ABS &&
687 			    convert_bpf_extensions(fp, &insn))
688 				break;
689 			if (BPF_CLASS(fp->code) == BPF_LD &&
690 			    convert_bpf_ld_abs(fp, &insn)) {
691 				*seen_ld_abs = true;
692 				break;
693 			}
694 
695 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
696 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
697 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
698 				/* Error with exception code on div/mod by 0.
699 				 * For cBPF programs, this was always return 0.
700 				 */
701 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
702 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
703 				*insn++ = BPF_EXIT_INSN();
704 			}
705 
706 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
707 			break;
708 
709 		/* Jump transformation cannot use BPF block macros
710 		 * everywhere as offset calculation and target updates
711 		 * require a bit more work than the rest, i.e. jump
712 		 * opcodes map as-is, but offsets need adjustment.
713 		 */
714 
715 #define BPF_EMIT_JMP							\
716 	do {								\
717 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
718 		s32 off;						\
719 									\
720 		if (target >= len || target < 0)			\
721 			goto err;					\
722 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
723 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
724 		off -= insn - tmp_insns;				\
725 		/* Reject anything not fitting into insn->off. */	\
726 		if (off < off_min || off > off_max)			\
727 			goto err;					\
728 		insn->off = off;					\
729 	} while (0)
730 
731 		case BPF_JMP | BPF_JA:
732 			target = i + fp->k + 1;
733 			insn->code = fp->code;
734 			BPF_EMIT_JMP;
735 			break;
736 
737 		case BPF_JMP | BPF_JEQ | BPF_K:
738 		case BPF_JMP | BPF_JEQ | BPF_X:
739 		case BPF_JMP | BPF_JSET | BPF_K:
740 		case BPF_JMP | BPF_JSET | BPF_X:
741 		case BPF_JMP | BPF_JGT | BPF_K:
742 		case BPF_JMP | BPF_JGT | BPF_X:
743 		case BPF_JMP | BPF_JGE | BPF_K:
744 		case BPF_JMP | BPF_JGE | BPF_X:
745 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
746 				/* BPF immediates are signed, zero extend
747 				 * immediate into tmp register and use it
748 				 * in compare insn.
749 				 */
750 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
751 
752 				insn->dst_reg = BPF_REG_A;
753 				insn->src_reg = BPF_REG_TMP;
754 				bpf_src = BPF_X;
755 			} else {
756 				insn->dst_reg = BPF_REG_A;
757 				insn->imm = fp->k;
758 				bpf_src = BPF_SRC(fp->code);
759 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
760 			}
761 
762 			/* Common case where 'jump_false' is next insn. */
763 			if (fp->jf == 0) {
764 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 				target = i + fp->jt + 1;
766 				BPF_EMIT_JMP;
767 				break;
768 			}
769 
770 			/* Convert some jumps when 'jump_true' is next insn. */
771 			if (fp->jt == 0) {
772 				switch (BPF_OP(fp->code)) {
773 				case BPF_JEQ:
774 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
775 					break;
776 				case BPF_JGT:
777 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
778 					break;
779 				case BPF_JGE:
780 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
781 					break;
782 				default:
783 					goto jmp_rest;
784 				}
785 
786 				target = i + fp->jf + 1;
787 				BPF_EMIT_JMP;
788 				break;
789 			}
790 jmp_rest:
791 			/* Other jumps are mapped into two insns: Jxx and JA. */
792 			target = i + fp->jt + 1;
793 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
794 			BPF_EMIT_JMP;
795 			insn++;
796 
797 			insn->code = BPF_JMP | BPF_JA;
798 			target = i + fp->jf + 1;
799 			BPF_EMIT_JMP;
800 			break;
801 
802 		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
803 		case BPF_LDX | BPF_MSH | BPF_B: {
804 			struct sock_filter tmp = {
805 				.code	= BPF_LD | BPF_ABS | BPF_B,
806 				.k	= fp->k,
807 			};
808 
809 			*seen_ld_abs = true;
810 
811 			/* X = A */
812 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
813 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
814 			convert_bpf_ld_abs(&tmp, &insn);
815 			insn++;
816 			/* A &= 0xf */
817 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
818 			/* A <<= 2 */
819 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
820 			/* tmp = X */
821 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
822 			/* X = A */
823 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			/* A = tmp */
825 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
826 			break;
827 		}
828 		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
829 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
830 		 */
831 		case BPF_RET | BPF_A:
832 		case BPF_RET | BPF_K:
833 			if (BPF_RVAL(fp->code) == BPF_K)
834 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
835 							0, fp->k);
836 			*insn = BPF_EXIT_INSN();
837 			break;
838 
839 		/* Store to stack. */
840 		case BPF_ST:
841 		case BPF_STX:
842 			stack_off = fp->k * 4  + 4;
843 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
844 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
845 					    -stack_off);
846 			/* check_load_and_stores() verifies that classic BPF can
847 			 * load from stack only after write, so tracking
848 			 * stack_depth for ST|STX insns is enough
849 			 */
850 			if (new_prog && new_prog->aux->stack_depth < stack_off)
851 				new_prog->aux->stack_depth = stack_off;
852 			break;
853 
854 		/* Load from stack. */
855 		case BPF_LD | BPF_MEM:
856 		case BPF_LDX | BPF_MEM:
857 			stack_off = fp->k * 4  + 4;
858 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
859 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
860 					    -stack_off);
861 			break;
862 
863 		/* A = K or X = K */
864 		case BPF_LD | BPF_IMM:
865 		case BPF_LDX | BPF_IMM:
866 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
867 					      BPF_REG_A : BPF_REG_X, fp->k);
868 			break;
869 
870 		/* X = A */
871 		case BPF_MISC | BPF_TAX:
872 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
873 			break;
874 
875 		/* A = X */
876 		case BPF_MISC | BPF_TXA:
877 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
878 			break;
879 
880 		/* A = skb->len or X = skb->len */
881 		case BPF_LD | BPF_W | BPF_LEN:
882 		case BPF_LDX | BPF_W | BPF_LEN:
883 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
884 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
885 					    offsetof(struct sk_buff, len));
886 			break;
887 
888 		/* Access seccomp_data fields. */
889 		case BPF_LDX | BPF_ABS | BPF_W:
890 			/* A = *(u32 *) (ctx + K) */
891 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
892 			break;
893 
894 		/* Unknown instruction. */
895 		default:
896 			goto err;
897 		}
898 
899 		insn++;
900 		if (new_prog)
901 			memcpy(new_insn, tmp_insns,
902 			       sizeof(*insn) * (insn - tmp_insns));
903 		new_insn += insn - tmp_insns;
904 	}
905 
906 	if (!new_prog) {
907 		/* Only calculating new length. */
908 		*new_len = new_insn - first_insn;
909 		if (*seen_ld_abs)
910 			*new_len += 4; /* Prologue bits. */
911 		return 0;
912 	}
913 
914 	pass++;
915 	if (new_flen != new_insn - first_insn) {
916 		new_flen = new_insn - first_insn;
917 		if (pass > 2)
918 			goto err;
919 		goto do_pass;
920 	}
921 
922 	kfree(addrs);
923 	BUG_ON(*new_len != new_flen);
924 	return 0;
925 err:
926 	kfree(addrs);
927 	return -EINVAL;
928 }
929 
930 /* Security:
931  *
932  * As we dont want to clear mem[] array for each packet going through
933  * __bpf_prog_run(), we check that filter loaded by user never try to read
934  * a cell if not previously written, and we check all branches to be sure
935  * a malicious user doesn't try to abuse us.
936  */
937 static int check_load_and_stores(const struct sock_filter *filter, int flen)
938 {
939 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
940 	int pc, ret = 0;
941 
942 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
943 
944 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
945 	if (!masks)
946 		return -ENOMEM;
947 
948 	memset(masks, 0xff, flen * sizeof(*masks));
949 
950 	for (pc = 0; pc < flen; pc++) {
951 		memvalid &= masks[pc];
952 
953 		switch (filter[pc].code) {
954 		case BPF_ST:
955 		case BPF_STX:
956 			memvalid |= (1 << filter[pc].k);
957 			break;
958 		case BPF_LD | BPF_MEM:
959 		case BPF_LDX | BPF_MEM:
960 			if (!(memvalid & (1 << filter[pc].k))) {
961 				ret = -EINVAL;
962 				goto error;
963 			}
964 			break;
965 		case BPF_JMP | BPF_JA:
966 			/* A jump must set masks on target */
967 			masks[pc + 1 + filter[pc].k] &= memvalid;
968 			memvalid = ~0;
969 			break;
970 		case BPF_JMP | BPF_JEQ | BPF_K:
971 		case BPF_JMP | BPF_JEQ | BPF_X:
972 		case BPF_JMP | BPF_JGE | BPF_K:
973 		case BPF_JMP | BPF_JGE | BPF_X:
974 		case BPF_JMP | BPF_JGT | BPF_K:
975 		case BPF_JMP | BPF_JGT | BPF_X:
976 		case BPF_JMP | BPF_JSET | BPF_K:
977 		case BPF_JMP | BPF_JSET | BPF_X:
978 			/* A jump must set masks on targets */
979 			masks[pc + 1 + filter[pc].jt] &= memvalid;
980 			masks[pc + 1 + filter[pc].jf] &= memvalid;
981 			memvalid = ~0;
982 			break;
983 		}
984 	}
985 error:
986 	kfree(masks);
987 	return ret;
988 }
989 
990 static bool chk_code_allowed(u16 code_to_probe)
991 {
992 	static const bool codes[] = {
993 		/* 32 bit ALU operations */
994 		[BPF_ALU | BPF_ADD | BPF_K] = true,
995 		[BPF_ALU | BPF_ADD | BPF_X] = true,
996 		[BPF_ALU | BPF_SUB | BPF_K] = true,
997 		[BPF_ALU | BPF_SUB | BPF_X] = true,
998 		[BPF_ALU | BPF_MUL | BPF_K] = true,
999 		[BPF_ALU | BPF_MUL | BPF_X] = true,
1000 		[BPF_ALU | BPF_DIV | BPF_K] = true,
1001 		[BPF_ALU | BPF_DIV | BPF_X] = true,
1002 		[BPF_ALU | BPF_MOD | BPF_K] = true,
1003 		[BPF_ALU | BPF_MOD | BPF_X] = true,
1004 		[BPF_ALU | BPF_AND | BPF_K] = true,
1005 		[BPF_ALU | BPF_AND | BPF_X] = true,
1006 		[BPF_ALU | BPF_OR | BPF_K] = true,
1007 		[BPF_ALU | BPF_OR | BPF_X] = true,
1008 		[BPF_ALU | BPF_XOR | BPF_K] = true,
1009 		[BPF_ALU | BPF_XOR | BPF_X] = true,
1010 		[BPF_ALU | BPF_LSH | BPF_K] = true,
1011 		[BPF_ALU | BPF_LSH | BPF_X] = true,
1012 		[BPF_ALU | BPF_RSH | BPF_K] = true,
1013 		[BPF_ALU | BPF_RSH | BPF_X] = true,
1014 		[BPF_ALU | BPF_NEG] = true,
1015 		/* Load instructions */
1016 		[BPF_LD | BPF_W | BPF_ABS] = true,
1017 		[BPF_LD | BPF_H | BPF_ABS] = true,
1018 		[BPF_LD | BPF_B | BPF_ABS] = true,
1019 		[BPF_LD | BPF_W | BPF_LEN] = true,
1020 		[BPF_LD | BPF_W | BPF_IND] = true,
1021 		[BPF_LD | BPF_H | BPF_IND] = true,
1022 		[BPF_LD | BPF_B | BPF_IND] = true,
1023 		[BPF_LD | BPF_IMM] = true,
1024 		[BPF_LD | BPF_MEM] = true,
1025 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1026 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1027 		[BPF_LDX | BPF_IMM] = true,
1028 		[BPF_LDX | BPF_MEM] = true,
1029 		/* Store instructions */
1030 		[BPF_ST] = true,
1031 		[BPF_STX] = true,
1032 		/* Misc instructions */
1033 		[BPF_MISC | BPF_TAX] = true,
1034 		[BPF_MISC | BPF_TXA] = true,
1035 		/* Return instructions */
1036 		[BPF_RET | BPF_K] = true,
1037 		[BPF_RET | BPF_A] = true,
1038 		/* Jump instructions */
1039 		[BPF_JMP | BPF_JA] = true,
1040 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1041 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1042 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1043 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1044 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1045 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1046 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1047 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1048 	};
1049 
1050 	if (code_to_probe >= ARRAY_SIZE(codes))
1051 		return false;
1052 
1053 	return codes[code_to_probe];
1054 }
1055 
1056 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1057 				unsigned int flen)
1058 {
1059 	if (filter == NULL)
1060 		return false;
1061 	if (flen == 0 || flen > BPF_MAXINSNS)
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 /**
1068  *	bpf_check_classic - verify socket filter code
1069  *	@filter: filter to verify
1070  *	@flen: length of filter
1071  *
1072  * Check the user's filter code. If we let some ugly
1073  * filter code slip through kaboom! The filter must contain
1074  * no references or jumps that are out of range, no illegal
1075  * instructions, and must end with a RET instruction.
1076  *
1077  * All jumps are forward as they are not signed.
1078  *
1079  * Returns 0 if the rule set is legal or -EINVAL if not.
1080  */
1081 static int bpf_check_classic(const struct sock_filter *filter,
1082 			     unsigned int flen)
1083 {
1084 	bool anc_found;
1085 	int pc;
1086 
1087 	/* Check the filter code now */
1088 	for (pc = 0; pc < flen; pc++) {
1089 		const struct sock_filter *ftest = &filter[pc];
1090 
1091 		/* May we actually operate on this code? */
1092 		if (!chk_code_allowed(ftest->code))
1093 			return -EINVAL;
1094 
1095 		/* Some instructions need special checks */
1096 		switch (ftest->code) {
1097 		case BPF_ALU | BPF_DIV | BPF_K:
1098 		case BPF_ALU | BPF_MOD | BPF_K:
1099 			/* Check for division by zero */
1100 			if (ftest->k == 0)
1101 				return -EINVAL;
1102 			break;
1103 		case BPF_ALU | BPF_LSH | BPF_K:
1104 		case BPF_ALU | BPF_RSH | BPF_K:
1105 			if (ftest->k >= 32)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_MEM:
1109 		case BPF_LDX | BPF_MEM:
1110 		case BPF_ST:
1111 		case BPF_STX:
1112 			/* Check for invalid memory addresses */
1113 			if (ftest->k >= BPF_MEMWORDS)
1114 				return -EINVAL;
1115 			break;
1116 		case BPF_JMP | BPF_JA:
1117 			/* Note, the large ftest->k might cause loops.
1118 			 * Compare this with conditional jumps below,
1119 			 * where offsets are limited. --ANK (981016)
1120 			 */
1121 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1122 				return -EINVAL;
1123 			break;
1124 		case BPF_JMP | BPF_JEQ | BPF_K:
1125 		case BPF_JMP | BPF_JEQ | BPF_X:
1126 		case BPF_JMP | BPF_JGE | BPF_K:
1127 		case BPF_JMP | BPF_JGE | BPF_X:
1128 		case BPF_JMP | BPF_JGT | BPF_K:
1129 		case BPF_JMP | BPF_JGT | BPF_X:
1130 		case BPF_JMP | BPF_JSET | BPF_K:
1131 		case BPF_JMP | BPF_JSET | BPF_X:
1132 			/* Both conditionals must be safe */
1133 			if (pc + ftest->jt + 1 >= flen ||
1134 			    pc + ftest->jf + 1 >= flen)
1135 				return -EINVAL;
1136 			break;
1137 		case BPF_LD | BPF_W | BPF_ABS:
1138 		case BPF_LD | BPF_H | BPF_ABS:
1139 		case BPF_LD | BPF_B | BPF_ABS:
1140 			anc_found = false;
1141 			if (bpf_anc_helper(ftest) & BPF_ANC)
1142 				anc_found = true;
1143 			/* Ancillary operation unknown or unsupported */
1144 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1145 				return -EINVAL;
1146 		}
1147 	}
1148 
1149 	/* Last instruction must be a RET code */
1150 	switch (filter[flen - 1].code) {
1151 	case BPF_RET | BPF_K:
1152 	case BPF_RET | BPF_A:
1153 		return check_load_and_stores(filter, flen);
1154 	}
1155 
1156 	return -EINVAL;
1157 }
1158 
1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1160 				      const struct sock_fprog *fprog)
1161 {
1162 	unsigned int fsize = bpf_classic_proglen(fprog);
1163 	struct sock_fprog_kern *fkprog;
1164 
1165 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1166 	if (!fp->orig_prog)
1167 		return -ENOMEM;
1168 
1169 	fkprog = fp->orig_prog;
1170 	fkprog->len = fprog->len;
1171 
1172 	fkprog->filter = kmemdup(fp->insns, fsize,
1173 				 GFP_KERNEL | __GFP_NOWARN);
1174 	if (!fkprog->filter) {
1175 		kfree(fp->orig_prog);
1176 		return -ENOMEM;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 static void bpf_release_orig_filter(struct bpf_prog *fp)
1183 {
1184 	struct sock_fprog_kern *fprog = fp->orig_prog;
1185 
1186 	if (fprog) {
1187 		kfree(fprog->filter);
1188 		kfree(fprog);
1189 	}
1190 }
1191 
1192 static void __bpf_prog_release(struct bpf_prog *prog)
1193 {
1194 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1195 		bpf_prog_put(prog);
1196 	} else {
1197 		bpf_release_orig_filter(prog);
1198 		bpf_prog_free(prog);
1199 	}
1200 }
1201 
1202 static void __sk_filter_release(struct sk_filter *fp)
1203 {
1204 	__bpf_prog_release(fp->prog);
1205 	kfree(fp);
1206 }
1207 
1208 /**
1209  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1210  *	@rcu: rcu_head that contains the sk_filter to free
1211  */
1212 static void sk_filter_release_rcu(struct rcu_head *rcu)
1213 {
1214 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1215 
1216 	__sk_filter_release(fp);
1217 }
1218 
1219 /**
1220  *	sk_filter_release - release a socket filter
1221  *	@fp: filter to remove
1222  *
1223  *	Remove a filter from a socket and release its resources.
1224  */
1225 static void sk_filter_release(struct sk_filter *fp)
1226 {
1227 	if (refcount_dec_and_test(&fp->refcnt))
1228 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1229 }
1230 
1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1232 {
1233 	u32 filter_size = bpf_prog_size(fp->prog->len);
1234 
1235 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1236 	sk_filter_release(fp);
1237 }
1238 
1239 /* try to charge the socket memory if there is space available
1240  * return true on success
1241  */
1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1243 {
1244 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1245 	u32 filter_size = bpf_prog_size(fp->prog->len);
1246 
1247 	/* same check as in sock_kmalloc() */
1248 	if (filter_size <= optmem_max &&
1249 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1250 		atomic_add(filter_size, &sk->sk_omem_alloc);
1251 		return true;
1252 	}
1253 	return false;
1254 }
1255 
1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1257 {
1258 	if (!refcount_inc_not_zero(&fp->refcnt))
1259 		return false;
1260 
1261 	if (!__sk_filter_charge(sk, fp)) {
1262 		sk_filter_release(fp);
1263 		return false;
1264 	}
1265 	return true;
1266 }
1267 
1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1269 {
1270 	struct sock_filter *old_prog;
1271 	struct bpf_prog *old_fp;
1272 	int err, new_len, old_len = fp->len;
1273 	bool seen_ld_abs = false;
1274 
1275 	/* We are free to overwrite insns et al right here as it won't be used at
1276 	 * this point in time anymore internally after the migration to the eBPF
1277 	 * instruction representation.
1278 	 */
1279 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1280 		     sizeof(struct bpf_insn));
1281 
1282 	/* Conversion cannot happen on overlapping memory areas,
1283 	 * so we need to keep the user BPF around until the 2nd
1284 	 * pass. At this time, the user BPF is stored in fp->insns.
1285 	 */
1286 	old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1287 				 GFP_KERNEL | __GFP_NOWARN);
1288 	if (!old_prog) {
1289 		err = -ENOMEM;
1290 		goto out_err;
1291 	}
1292 
1293 	/* 1st pass: calculate the new program length. */
1294 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1295 				 &seen_ld_abs);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	/* Expand fp for appending the new filter representation. */
1300 	old_fp = fp;
1301 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1302 	if (!fp) {
1303 		/* The old_fp is still around in case we couldn't
1304 		 * allocate new memory, so uncharge on that one.
1305 		 */
1306 		fp = old_fp;
1307 		err = -ENOMEM;
1308 		goto out_err_free;
1309 	}
1310 
1311 	fp->len = new_len;
1312 
1313 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1314 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1315 				 &seen_ld_abs);
1316 	if (err)
1317 		/* 2nd bpf_convert_filter() can fail only if it fails
1318 		 * to allocate memory, remapping must succeed. Note,
1319 		 * that at this time old_fp has already been released
1320 		 * by krealloc().
1321 		 */
1322 		goto out_err_free;
1323 
1324 	fp = bpf_prog_select_runtime(fp, &err);
1325 	if (err)
1326 		goto out_err_free;
1327 
1328 	kfree(old_prog);
1329 	return fp;
1330 
1331 out_err_free:
1332 	kfree(old_prog);
1333 out_err:
1334 	__bpf_prog_release(fp);
1335 	return ERR_PTR(err);
1336 }
1337 
1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1339 					   bpf_aux_classic_check_t trans)
1340 {
1341 	int err;
1342 
1343 	fp->bpf_func = NULL;
1344 	fp->jited = 0;
1345 
1346 	err = bpf_check_classic(fp->insns, fp->len);
1347 	if (err) {
1348 		__bpf_prog_release(fp);
1349 		return ERR_PTR(err);
1350 	}
1351 
1352 	/* There might be additional checks and transformations
1353 	 * needed on classic filters, f.e. in case of seccomp.
1354 	 */
1355 	if (trans) {
1356 		err = trans(fp->insns, fp->len);
1357 		if (err) {
1358 			__bpf_prog_release(fp);
1359 			return ERR_PTR(err);
1360 		}
1361 	}
1362 
1363 	/* Probe if we can JIT compile the filter and if so, do
1364 	 * the compilation of the filter.
1365 	 */
1366 	bpf_jit_compile(fp);
1367 
1368 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1369 	 * for the optimized interpreter.
1370 	 */
1371 	if (!fp->jited)
1372 		fp = bpf_migrate_filter(fp);
1373 
1374 	return fp;
1375 }
1376 
1377 /**
1378  *	bpf_prog_create - create an unattached filter
1379  *	@pfp: the unattached filter that is created
1380  *	@fprog: the filter program
1381  *
1382  * Create a filter independent of any socket. We first run some
1383  * sanity checks on it to make sure it does not explode on us later.
1384  * If an error occurs or there is insufficient memory for the filter
1385  * a negative errno code is returned. On success the return is zero.
1386  */
1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1388 {
1389 	unsigned int fsize = bpf_classic_proglen(fprog);
1390 	struct bpf_prog *fp;
1391 
1392 	/* Make sure new filter is there and in the right amounts. */
1393 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1394 		return -EINVAL;
1395 
1396 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1397 	if (!fp)
1398 		return -ENOMEM;
1399 
1400 	memcpy(fp->insns, fprog->filter, fsize);
1401 
1402 	fp->len = fprog->len;
1403 	/* Since unattached filters are not copied back to user
1404 	 * space through sk_get_filter(), we do not need to hold
1405 	 * a copy here, and can spare us the work.
1406 	 */
1407 	fp->orig_prog = NULL;
1408 
1409 	/* bpf_prepare_filter() already takes care of freeing
1410 	 * memory in case something goes wrong.
1411 	 */
1412 	fp = bpf_prepare_filter(fp, NULL);
1413 	if (IS_ERR(fp))
1414 		return PTR_ERR(fp);
1415 
1416 	*pfp = fp;
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(bpf_prog_create);
1420 
1421 /**
1422  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1423  *	@pfp: the unattached filter that is created
1424  *	@fprog: the filter program
1425  *	@trans: post-classic verifier transformation handler
1426  *	@save_orig: save classic BPF program
1427  *
1428  * This function effectively does the same as bpf_prog_create(), only
1429  * that it builds up its insns buffer from user space provided buffer.
1430  * It also allows for passing a bpf_aux_classic_check_t handler.
1431  */
1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1433 			      bpf_aux_classic_check_t trans, bool save_orig)
1434 {
1435 	unsigned int fsize = bpf_classic_proglen(fprog);
1436 	struct bpf_prog *fp;
1437 	int err;
1438 
1439 	/* Make sure new filter is there and in the right amounts. */
1440 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1441 		return -EINVAL;
1442 
1443 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1444 	if (!fp)
1445 		return -ENOMEM;
1446 
1447 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1448 		__bpf_prog_free(fp);
1449 		return -EFAULT;
1450 	}
1451 
1452 	fp->len = fprog->len;
1453 	fp->orig_prog = NULL;
1454 
1455 	if (save_orig) {
1456 		err = bpf_prog_store_orig_filter(fp, fprog);
1457 		if (err) {
1458 			__bpf_prog_free(fp);
1459 			return -ENOMEM;
1460 		}
1461 	}
1462 
1463 	/* bpf_prepare_filter() already takes care of freeing
1464 	 * memory in case something goes wrong.
1465 	 */
1466 	fp = bpf_prepare_filter(fp, trans);
1467 	if (IS_ERR(fp))
1468 		return PTR_ERR(fp);
1469 
1470 	*pfp = fp;
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1474 
1475 void bpf_prog_destroy(struct bpf_prog *fp)
1476 {
1477 	__bpf_prog_release(fp);
1478 }
1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1480 
1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1482 {
1483 	struct sk_filter *fp, *old_fp;
1484 
1485 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1486 	if (!fp)
1487 		return -ENOMEM;
1488 
1489 	fp->prog = prog;
1490 
1491 	if (!__sk_filter_charge(sk, fp)) {
1492 		kfree(fp);
1493 		return -ENOMEM;
1494 	}
1495 	refcount_set(&fp->refcnt, 1);
1496 
1497 	old_fp = rcu_dereference_protected(sk->sk_filter,
1498 					   lockdep_sock_is_held(sk));
1499 	rcu_assign_pointer(sk->sk_filter, fp);
1500 
1501 	if (old_fp)
1502 		sk_filter_uncharge(sk, old_fp);
1503 
1504 	return 0;
1505 }
1506 
1507 static
1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1509 {
1510 	unsigned int fsize = bpf_classic_proglen(fprog);
1511 	struct bpf_prog *prog;
1512 	int err;
1513 
1514 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1515 		return ERR_PTR(-EPERM);
1516 
1517 	/* Make sure new filter is there and in the right amounts. */
1518 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1519 		return ERR_PTR(-EINVAL);
1520 
1521 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1522 	if (!prog)
1523 		return ERR_PTR(-ENOMEM);
1524 
1525 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1526 		__bpf_prog_free(prog);
1527 		return ERR_PTR(-EFAULT);
1528 	}
1529 
1530 	prog->len = fprog->len;
1531 
1532 	err = bpf_prog_store_orig_filter(prog, fprog);
1533 	if (err) {
1534 		__bpf_prog_free(prog);
1535 		return ERR_PTR(-ENOMEM);
1536 	}
1537 
1538 	/* bpf_prepare_filter() already takes care of freeing
1539 	 * memory in case something goes wrong.
1540 	 */
1541 	return bpf_prepare_filter(prog, NULL);
1542 }
1543 
1544 /**
1545  *	sk_attach_filter - attach a socket filter
1546  *	@fprog: the filter program
1547  *	@sk: the socket to use
1548  *
1549  * Attach the user's filter code. We first run some sanity checks on
1550  * it to make sure it does not explode on us later. If an error
1551  * occurs or there is insufficient memory for the filter a negative
1552  * errno code is returned. On success the return is zero.
1553  */
1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1555 {
1556 	struct bpf_prog *prog = __get_filter(fprog, sk);
1557 	int err;
1558 
1559 	if (IS_ERR(prog))
1560 		return PTR_ERR(prog);
1561 
1562 	err = __sk_attach_prog(prog, sk);
1563 	if (err < 0) {
1564 		__bpf_prog_release(prog);
1565 		return err;
1566 	}
1567 
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(sk_attach_filter);
1571 
1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1573 {
1574 	struct bpf_prog *prog = __get_filter(fprog, sk);
1575 	int err, optmem_max;
1576 
1577 	if (IS_ERR(prog))
1578 		return PTR_ERR(prog);
1579 
1580 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1581 	if (bpf_prog_size(prog->len) > optmem_max)
1582 		err = -ENOMEM;
1583 	else
1584 		err = reuseport_attach_prog(sk, prog);
1585 
1586 	if (err)
1587 		__bpf_prog_release(prog);
1588 
1589 	return err;
1590 }
1591 
1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595 		return ERR_PTR(-EPERM);
1596 
1597 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598 }
1599 
1600 int sk_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1603 	int err;
1604 
1605 	if (IS_ERR(prog))
1606 		return PTR_ERR(prog);
1607 
1608 	err = __sk_attach_prog(prog, sk);
1609 	if (err < 0) {
1610 		bpf_prog_put(prog);
1611 		return err;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1618 {
1619 	struct bpf_prog *prog;
1620 	int err, optmem_max;
1621 
1622 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1623 		return -EPERM;
1624 
1625 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1626 	if (PTR_ERR(prog) == -EINVAL)
1627 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1628 	if (IS_ERR(prog))
1629 		return PTR_ERR(prog);
1630 
1631 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1632 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1633 		 * bpf prog (e.g. sockmap).  It depends on the
1634 		 * limitation imposed by bpf_prog_load().
1635 		 * Hence, sysctl_optmem_max is not checked.
1636 		 */
1637 		if ((sk->sk_type != SOCK_STREAM &&
1638 		     sk->sk_type != SOCK_DGRAM) ||
1639 		    (sk->sk_protocol != IPPROTO_UDP &&
1640 		     sk->sk_protocol != IPPROTO_TCP) ||
1641 		    (sk->sk_family != AF_INET &&
1642 		     sk->sk_family != AF_INET6)) {
1643 			err = -ENOTSUPP;
1644 			goto err_prog_put;
1645 		}
1646 	} else {
1647 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1648 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1649 		if (bpf_prog_size(prog->len) > optmem_max) {
1650 			err = -ENOMEM;
1651 			goto err_prog_put;
1652 		}
1653 	}
1654 
1655 	err = reuseport_attach_prog(sk, prog);
1656 err_prog_put:
1657 	if (err)
1658 		bpf_prog_put(prog);
1659 
1660 	return err;
1661 }
1662 
1663 void sk_reuseport_prog_free(struct bpf_prog *prog)
1664 {
1665 	if (!prog)
1666 		return;
1667 
1668 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1669 		bpf_prog_put(prog);
1670 	else
1671 		bpf_prog_destroy(prog);
1672 }
1673 
1674 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1675 					  unsigned int write_len)
1676 {
1677 #ifdef CONFIG_DEBUG_NET
1678 	/* Avoid a splat in pskb_may_pull_reason() */
1679 	if (write_len > INT_MAX)
1680 		return -EINVAL;
1681 #endif
1682 	return skb_ensure_writable(skb, write_len);
1683 }
1684 
1685 static inline int bpf_try_make_writable(struct sk_buff *skb,
1686 					unsigned int write_len)
1687 {
1688 	int err = __bpf_try_make_writable(skb, write_len);
1689 
1690 	bpf_compute_data_pointers(skb);
1691 	return err;
1692 }
1693 
1694 static int bpf_try_make_head_writable(struct sk_buff *skb)
1695 {
1696 	return bpf_try_make_writable(skb, skb_headlen(skb));
1697 }
1698 
1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1700 {
1701 	if (skb_at_tc_ingress(skb))
1702 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1703 }
1704 
1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1706 {
1707 	if (skb_at_tc_ingress(skb))
1708 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1709 }
1710 
1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1712 	   const void *, from, u32, len, u64, flags)
1713 {
1714 	void *ptr;
1715 
1716 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1717 		return -EINVAL;
1718 	if (unlikely(offset > INT_MAX))
1719 		return -EFAULT;
1720 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1721 		return -EFAULT;
1722 
1723 	ptr = skb->data + offset;
1724 	if (flags & BPF_F_RECOMPUTE_CSUM)
1725 		__skb_postpull_rcsum(skb, ptr, len, offset);
1726 
1727 	memcpy(ptr, from, len);
1728 
1729 	if (flags & BPF_F_RECOMPUTE_CSUM)
1730 		__skb_postpush_rcsum(skb, ptr, len, offset);
1731 	if (flags & BPF_F_INVALIDATE_HASH)
1732 		skb_clear_hash(skb);
1733 
1734 	return 0;
1735 }
1736 
1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1738 	.func		= bpf_skb_store_bytes,
1739 	.gpl_only	= false,
1740 	.ret_type	= RET_INTEGER,
1741 	.arg1_type	= ARG_PTR_TO_CTX,
1742 	.arg2_type	= ARG_ANYTHING,
1743 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1744 	.arg4_type	= ARG_CONST_SIZE,
1745 	.arg5_type	= ARG_ANYTHING,
1746 };
1747 
1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1749 			  u32 len, u64 flags)
1750 {
1751 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1752 }
1753 
1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1755 	   void *, to, u32, len)
1756 {
1757 	void *ptr;
1758 
1759 	if (unlikely(offset > INT_MAX))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1775 	.func		= bpf_skb_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1785 {
1786 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1787 }
1788 
1789 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1790 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1791 	   void *, to, u32, len)
1792 {
1793 	void *ptr;
1794 
1795 	if (unlikely(offset > 0xffff))
1796 		goto err_clear;
1797 
1798 	if (unlikely(!ctx->skb))
1799 		goto err_clear;
1800 
1801 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1802 	if (unlikely(!ptr))
1803 		goto err_clear;
1804 	if (ptr != to)
1805 		memcpy(to, ptr, len);
1806 
1807 	return 0;
1808 err_clear:
1809 	memset(to, 0, len);
1810 	return -EFAULT;
1811 }
1812 
1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1814 	.func		= bpf_flow_dissector_load_bytes,
1815 	.gpl_only	= false,
1816 	.ret_type	= RET_INTEGER,
1817 	.arg1_type	= ARG_PTR_TO_CTX,
1818 	.arg2_type	= ARG_ANYTHING,
1819 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1820 	.arg4_type	= ARG_CONST_SIZE,
1821 };
1822 
1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1824 	   u32, offset, void *, to, u32, len, u32, start_header)
1825 {
1826 	u8 *end = skb_tail_pointer(skb);
1827 	u8 *start, *ptr;
1828 
1829 	if (unlikely(offset > 0xffff))
1830 		goto err_clear;
1831 
1832 	switch (start_header) {
1833 	case BPF_HDR_START_MAC:
1834 		if (unlikely(!skb_mac_header_was_set(skb)))
1835 			goto err_clear;
1836 		start = skb_mac_header(skb);
1837 		break;
1838 	case BPF_HDR_START_NET:
1839 		start = skb_network_header(skb);
1840 		break;
1841 	default:
1842 		goto err_clear;
1843 	}
1844 
1845 	ptr = start + offset;
1846 
1847 	if (likely(ptr + len <= end)) {
1848 		memcpy(to, ptr, len);
1849 		return 0;
1850 	}
1851 
1852 err_clear:
1853 	memset(to, 0, len);
1854 	return -EFAULT;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1858 	.func		= bpf_skb_load_bytes_relative,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_INTEGER,
1861 	.arg1_type	= ARG_PTR_TO_CTX,
1862 	.arg2_type	= ARG_ANYTHING,
1863 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1864 	.arg4_type	= ARG_CONST_SIZE,
1865 	.arg5_type	= ARG_ANYTHING,
1866 };
1867 
1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870 	/* Idea is the following: should the needed direct read/write
1871 	 * test fail during runtime, we can pull in more data and redo
1872 	 * again, since implicitly, we invalidate previous checks here.
1873 	 *
1874 	 * Or, since we know how much we need to make read/writeable,
1875 	 * this can be done once at the program beginning for direct
1876 	 * access case. By this we overcome limitations of only current
1877 	 * headroom being accessible.
1878 	 */
1879 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881 
1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1883 	.func		= bpf_skb_pull_data,
1884 	.gpl_only	= false,
1885 	.ret_type	= RET_INTEGER,
1886 	.arg1_type	= ARG_PTR_TO_CTX,
1887 	.arg2_type	= ARG_ANYTHING,
1888 };
1889 
1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1891 {
1892 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1893 }
1894 
1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1896 	.func		= bpf_sk_fullsock,
1897 	.gpl_only	= false,
1898 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1899 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1900 };
1901 
1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1903 					   unsigned int write_len)
1904 {
1905 	return __bpf_try_make_writable(skb, write_len);
1906 }
1907 
1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1909 {
1910 	/* Idea is the following: should the needed direct read/write
1911 	 * test fail during runtime, we can pull in more data and redo
1912 	 * again, since implicitly, we invalidate previous checks here.
1913 	 *
1914 	 * Or, since we know how much we need to make read/writeable,
1915 	 * this can be done once at the program beginning for direct
1916 	 * access case. By this we overcome limitations of only current
1917 	 * headroom being accessible.
1918 	 */
1919 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1920 }
1921 
1922 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1923 	.func		= sk_skb_pull_data,
1924 	.gpl_only	= false,
1925 	.ret_type	= RET_INTEGER,
1926 	.arg1_type	= ARG_PTR_TO_CTX,
1927 	.arg2_type	= ARG_ANYTHING,
1928 };
1929 
1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1931 	   u64, from, u64, to, u64, flags)
1932 {
1933 	__sum16 *ptr;
1934 
1935 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1936 		return -EINVAL;
1937 	if (unlikely(offset > 0xffff || offset & 1))
1938 		return -EFAULT;
1939 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1940 		return -EFAULT;
1941 
1942 	ptr = (__sum16 *)(skb->data + offset);
1943 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1944 	case 0:
1945 		if (unlikely(from != 0))
1946 			return -EINVAL;
1947 
1948 		csum_replace_by_diff(ptr, to);
1949 		break;
1950 	case 2:
1951 		csum_replace2(ptr, from, to);
1952 		break;
1953 	case 4:
1954 		csum_replace4(ptr, from, to);
1955 		break;
1956 	default:
1957 		return -EINVAL;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1964 	.func		= bpf_l3_csum_replace,
1965 	.gpl_only	= false,
1966 	.ret_type	= RET_INTEGER,
1967 	.arg1_type	= ARG_PTR_TO_CTX,
1968 	.arg2_type	= ARG_ANYTHING,
1969 	.arg3_type	= ARG_ANYTHING,
1970 	.arg4_type	= ARG_ANYTHING,
1971 	.arg5_type	= ARG_ANYTHING,
1972 };
1973 
1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1975 	   u64, from, u64, to, u64, flags)
1976 {
1977 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1978 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1979 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1980 	bool is_ipv6   = flags & BPF_F_IPV6;
1981 	__sum16 *ptr;
1982 
1983 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1984 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1985 		return -EINVAL;
1986 	if (unlikely(offset > 0xffff || offset & 1))
1987 		return -EFAULT;
1988 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1989 		return -EFAULT;
1990 
1991 	ptr = (__sum16 *)(skb->data + offset);
1992 	if (is_mmzero && !do_mforce && !*ptr)
1993 		return 0;
1994 
1995 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1996 	case 0:
1997 		if (unlikely(from != 0))
1998 			return -EINVAL;
1999 
2000 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
2001 		break;
2002 	case 2:
2003 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
2004 		break;
2005 	case 4:
2006 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2007 		break;
2008 	default:
2009 		return -EINVAL;
2010 	}
2011 
2012 	if (is_mmzero && !*ptr)
2013 		*ptr = CSUM_MANGLED_0;
2014 	return 0;
2015 }
2016 
2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2018 	.func		= bpf_l4_csum_replace,
2019 	.gpl_only	= false,
2020 	.ret_type	= RET_INTEGER,
2021 	.arg1_type	= ARG_PTR_TO_CTX,
2022 	.arg2_type	= ARG_ANYTHING,
2023 	.arg3_type	= ARG_ANYTHING,
2024 	.arg4_type	= ARG_ANYTHING,
2025 	.arg5_type	= ARG_ANYTHING,
2026 };
2027 
2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2029 	   __be32 *, to, u32, to_size, __wsum, seed)
2030 {
2031 	/* This is quite flexible, some examples:
2032 	 *
2033 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2034 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2035 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2036 	 *
2037 	 * Even for diffing, from_size and to_size don't need to be equal.
2038 	 */
2039 
2040 	__wsum ret = seed;
2041 
2042 	if (from_size && to_size)
2043 		ret = csum_sub(csum_partial(to, to_size, ret),
2044 			       csum_partial(from, from_size, 0));
2045 	else if (to_size)
2046 		ret = csum_partial(to, to_size, ret);
2047 
2048 	else if (from_size)
2049 		ret = ~csum_partial(from, from_size, ~ret);
2050 
2051 	return csum_from32to16((__force unsigned int)ret);
2052 }
2053 
2054 static const struct bpf_func_proto bpf_csum_diff_proto = {
2055 	.func		= bpf_csum_diff,
2056 	.gpl_only	= false,
2057 	.pkt_access	= true,
2058 	.ret_type	= RET_INTEGER,
2059 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2060 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2061 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2062 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2063 	.arg5_type	= ARG_ANYTHING,
2064 };
2065 
2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2067 {
2068 	/* The interface is to be used in combination with bpf_csum_diff()
2069 	 * for direct packet writes. csum rotation for alignment as well
2070 	 * as emulating csum_sub() can be done from the eBPF program.
2071 	 */
2072 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2073 		return (skb->csum = csum_add(skb->csum, csum));
2074 
2075 	return -ENOTSUPP;
2076 }
2077 
2078 static const struct bpf_func_proto bpf_csum_update_proto = {
2079 	.func		= bpf_csum_update,
2080 	.gpl_only	= false,
2081 	.ret_type	= RET_INTEGER,
2082 	.arg1_type	= ARG_PTR_TO_CTX,
2083 	.arg2_type	= ARG_ANYTHING,
2084 };
2085 
2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2087 {
2088 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2089 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2090 	 * is passed as flags, for example.
2091 	 */
2092 	switch (level) {
2093 	case BPF_CSUM_LEVEL_INC:
2094 		__skb_incr_checksum_unnecessary(skb);
2095 		break;
2096 	case BPF_CSUM_LEVEL_DEC:
2097 		__skb_decr_checksum_unnecessary(skb);
2098 		break;
2099 	case BPF_CSUM_LEVEL_RESET:
2100 		__skb_reset_checksum_unnecessary(skb);
2101 		break;
2102 	case BPF_CSUM_LEVEL_QUERY:
2103 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2104 		       skb->csum_level : -EACCES;
2105 	default:
2106 		return -EINVAL;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static const struct bpf_func_proto bpf_csum_level_proto = {
2113 	.func		= bpf_csum_level,
2114 	.gpl_only	= false,
2115 	.ret_type	= RET_INTEGER,
2116 	.arg1_type	= ARG_PTR_TO_CTX,
2117 	.arg2_type	= ARG_ANYTHING,
2118 };
2119 
2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 	return dev_forward_skb_nomtu(dev, skb);
2123 }
2124 
2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2126 				      struct sk_buff *skb)
2127 {
2128 	int ret = ____dev_forward_skb(dev, skb, false);
2129 
2130 	if (likely(!ret)) {
2131 		skb->dev = dev;
2132 		ret = netif_rx(skb);
2133 	}
2134 
2135 	return ret;
2136 }
2137 
2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2139 {
2140 	int ret;
2141 
2142 	if (dev_xmit_recursion()) {
2143 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2144 		kfree_skb(skb);
2145 		return -ENETDOWN;
2146 	}
2147 
2148 	skb->dev = dev;
2149 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2150 	skb_clear_tstamp(skb);
2151 
2152 	dev_xmit_recursion_inc();
2153 	ret = dev_queue_xmit(skb);
2154 	dev_xmit_recursion_dec();
2155 
2156 	return ret;
2157 }
2158 
2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2160 				 u32 flags)
2161 {
2162 	unsigned int mlen = skb_network_offset(skb);
2163 
2164 	if (unlikely(skb->len <= mlen)) {
2165 		kfree_skb(skb);
2166 		return -ERANGE;
2167 	}
2168 
2169 	if (mlen) {
2170 		__skb_pull(skb, mlen);
2171 
2172 		/* At ingress, the mac header has already been pulled once.
2173 		 * At egress, skb_pospull_rcsum has to be done in case that
2174 		 * the skb is originated from ingress (i.e. a forwarded skb)
2175 		 * to ensure that rcsum starts at net header.
2176 		 */
2177 		if (!skb_at_tc_ingress(skb))
2178 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2179 	}
2180 	skb_pop_mac_header(skb);
2181 	skb_reset_mac_len(skb);
2182 	return flags & BPF_F_INGRESS ?
2183 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2184 }
2185 
2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2187 				 u32 flags)
2188 {
2189 	/* Verify that a link layer header is carried */
2190 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2191 		kfree_skb(skb);
2192 		return -ERANGE;
2193 	}
2194 
2195 	bpf_push_mac_rcsum(skb);
2196 	return flags & BPF_F_INGRESS ?
2197 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2198 }
2199 
2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2201 			  u32 flags)
2202 {
2203 	if (dev_is_mac_header_xmit(dev))
2204 		return __bpf_redirect_common(skb, dev, flags);
2205 	else
2206 		return __bpf_redirect_no_mac(skb, dev, flags);
2207 }
2208 
2209 #if IS_ENABLED(CONFIG_IPV6)
2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2211 			    struct net_device *dev, struct bpf_nh_params *nh)
2212 {
2213 	u32 hh_len = LL_RESERVED_SPACE(dev);
2214 	const struct in6_addr *nexthop;
2215 	struct dst_entry *dst = NULL;
2216 	struct neighbour *neigh;
2217 
2218 	if (dev_xmit_recursion()) {
2219 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2220 		goto out_drop;
2221 	}
2222 
2223 	skb->dev = dev;
2224 	skb_clear_tstamp(skb);
2225 
2226 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2227 		skb = skb_expand_head(skb, hh_len);
2228 		if (!skb)
2229 			return -ENOMEM;
2230 	}
2231 
2232 	rcu_read_lock();
2233 	if (!nh) {
2234 		dst = skb_dst(skb);
2235 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2236 				      &ipv6_hdr(skb)->daddr);
2237 	} else {
2238 		nexthop = &nh->ipv6_nh;
2239 	}
2240 	neigh = ip_neigh_gw6(dev, nexthop);
2241 	if (likely(!IS_ERR(neigh))) {
2242 		int ret;
2243 
2244 		sock_confirm_neigh(skb, neigh);
2245 		local_bh_disable();
2246 		dev_xmit_recursion_inc();
2247 		ret = neigh_output(neigh, skb, false);
2248 		dev_xmit_recursion_dec();
2249 		local_bh_enable();
2250 		rcu_read_unlock();
2251 		return ret;
2252 	}
2253 	rcu_read_unlock();
2254 	if (dst)
2255 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2256 out_drop:
2257 	kfree_skb(skb);
2258 	return -ENETDOWN;
2259 }
2260 
2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2262 				   struct bpf_nh_params *nh)
2263 {
2264 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2265 	struct net *net = dev_net(dev);
2266 	int err, ret = NET_XMIT_DROP;
2267 
2268 	if (!nh) {
2269 		struct dst_entry *dst;
2270 		struct flowi6 fl6 = {
2271 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2272 			.flowi6_mark  = skb->mark,
2273 			.flowlabel    = ip6_flowinfo(ip6h),
2274 			.flowi6_oif   = dev->ifindex,
2275 			.flowi6_proto = ip6h->nexthdr,
2276 			.daddr	      = ip6h->daddr,
2277 			.saddr	      = ip6h->saddr,
2278 		};
2279 
2280 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2281 		if (IS_ERR(dst))
2282 			goto out_drop;
2283 
2284 		skb_dst_set(skb, dst);
2285 	} else if (nh->nh_family != AF_INET6) {
2286 		goto out_drop;
2287 	}
2288 
2289 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2290 	if (unlikely(net_xmit_eval(err)))
2291 		DEV_STATS_INC(dev, tx_errors);
2292 	else
2293 		ret = NET_XMIT_SUCCESS;
2294 	goto out_xmit;
2295 out_drop:
2296 	DEV_STATS_INC(dev, tx_errors);
2297 	kfree_skb(skb);
2298 out_xmit:
2299 	return ret;
2300 }
2301 #else
2302 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2303 				   struct bpf_nh_params *nh)
2304 {
2305 	kfree_skb(skb);
2306 	return NET_XMIT_DROP;
2307 }
2308 #endif /* CONFIG_IPV6 */
2309 
2310 #if IS_ENABLED(CONFIG_INET)
2311 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2312 			    struct net_device *dev, struct bpf_nh_params *nh)
2313 {
2314 	u32 hh_len = LL_RESERVED_SPACE(dev);
2315 	struct neighbour *neigh;
2316 	bool is_v6gw = false;
2317 
2318 	if (dev_xmit_recursion()) {
2319 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2320 		goto out_drop;
2321 	}
2322 
2323 	skb->dev = dev;
2324 	skb_clear_tstamp(skb);
2325 
2326 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2327 		skb = skb_expand_head(skb, hh_len);
2328 		if (!skb)
2329 			return -ENOMEM;
2330 	}
2331 
2332 	rcu_read_lock();
2333 	if (!nh) {
2334 		struct rtable *rt = skb_rtable(skb);
2335 
2336 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2337 	} else if (nh->nh_family == AF_INET6) {
2338 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2339 		is_v6gw = true;
2340 	} else if (nh->nh_family == AF_INET) {
2341 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2342 	} else {
2343 		rcu_read_unlock();
2344 		goto out_drop;
2345 	}
2346 
2347 	if (likely(!IS_ERR(neigh))) {
2348 		int ret;
2349 
2350 		sock_confirm_neigh(skb, neigh);
2351 		local_bh_disable();
2352 		dev_xmit_recursion_inc();
2353 		ret = neigh_output(neigh, skb, is_v6gw);
2354 		dev_xmit_recursion_dec();
2355 		local_bh_enable();
2356 		rcu_read_unlock();
2357 		return ret;
2358 	}
2359 	rcu_read_unlock();
2360 out_drop:
2361 	kfree_skb(skb);
2362 	return -ENETDOWN;
2363 }
2364 
2365 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2366 				   struct bpf_nh_params *nh)
2367 {
2368 	const struct iphdr *ip4h = ip_hdr(skb);
2369 	struct net *net = dev_net(dev);
2370 	int err, ret = NET_XMIT_DROP;
2371 
2372 	if (!nh) {
2373 		struct flowi4 fl4 = {
2374 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2375 			.flowi4_mark  = skb->mark,
2376 			.flowi4_dscp  = ip4h_dscp(ip4h),
2377 			.flowi4_oif   = dev->ifindex,
2378 			.flowi4_proto = ip4h->protocol,
2379 			.daddr	      = ip4h->daddr,
2380 			.saddr	      = ip4h->saddr,
2381 		};
2382 		struct rtable *rt;
2383 
2384 		rt = ip_route_output_flow(net, &fl4, NULL);
2385 		if (IS_ERR(rt))
2386 			goto out_drop;
2387 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2388 			ip_rt_put(rt);
2389 			goto out_drop;
2390 		}
2391 
2392 		skb_dst_set(skb, &rt->dst);
2393 	}
2394 
2395 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2396 	if (unlikely(net_xmit_eval(err)))
2397 		DEV_STATS_INC(dev, tx_errors);
2398 	else
2399 		ret = NET_XMIT_SUCCESS;
2400 	goto out_xmit;
2401 out_drop:
2402 	DEV_STATS_INC(dev, tx_errors);
2403 	kfree_skb(skb);
2404 out_xmit:
2405 	return ret;
2406 }
2407 #else
2408 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2409 				   struct bpf_nh_params *nh)
2410 {
2411 	kfree_skb(skb);
2412 	return NET_XMIT_DROP;
2413 }
2414 #endif /* CONFIG_INET */
2415 
2416 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2417 				struct bpf_nh_params *nh)
2418 {
2419 	struct ethhdr *ethh = eth_hdr(skb);
2420 
2421 	if (unlikely(skb->mac_header >= skb->network_header))
2422 		goto out;
2423 	bpf_push_mac_rcsum(skb);
2424 	if (is_multicast_ether_addr(ethh->h_dest))
2425 		goto out;
2426 
2427 	skb_pull(skb, sizeof(*ethh));
2428 	skb_unset_mac_header(skb);
2429 	skb_reset_network_header(skb);
2430 
2431 	if (skb->protocol == htons(ETH_P_IP))
2432 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2433 	else if (skb->protocol == htons(ETH_P_IPV6))
2434 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2435 out:
2436 	kfree_skb(skb);
2437 	return -ENOTSUPP;
2438 }
2439 
2440 /* Internal, non-exposed redirect flags. */
2441 enum {
2442 	BPF_F_NEIGH	= (1ULL << 16),
2443 	BPF_F_PEER	= (1ULL << 17),
2444 	BPF_F_NEXTHOP	= (1ULL << 18),
2445 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2446 };
2447 
2448 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2449 {
2450 	struct net_device *dev;
2451 	struct sk_buff *clone;
2452 	int ret;
2453 
2454 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2455 
2456 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2457 		return -EINVAL;
2458 
2459 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2460 	if (unlikely(!dev))
2461 		return -EINVAL;
2462 
2463 	clone = skb_clone(skb, GFP_ATOMIC);
2464 	if (unlikely(!clone))
2465 		return -ENOMEM;
2466 
2467 	/* For direct write, we need to keep the invariant that the skbs
2468 	 * we're dealing with need to be uncloned. Should uncloning fail
2469 	 * here, we need to free the just generated clone to unclone once
2470 	 * again.
2471 	 */
2472 	ret = bpf_try_make_head_writable(skb);
2473 	if (unlikely(ret)) {
2474 		kfree_skb(clone);
2475 		return -ENOMEM;
2476 	}
2477 
2478 	return __bpf_redirect(clone, dev, flags);
2479 }
2480 
2481 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2482 	.func           = bpf_clone_redirect,
2483 	.gpl_only       = false,
2484 	.ret_type       = RET_INTEGER,
2485 	.arg1_type      = ARG_PTR_TO_CTX,
2486 	.arg2_type      = ARG_ANYTHING,
2487 	.arg3_type      = ARG_ANYTHING,
2488 };
2489 
2490 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2491 {
2492 	const struct net_device_ops *ops = dev->netdev_ops;
2493 
2494 	if (likely(ops->ndo_get_peer_dev))
2495 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2496 				       netkit_peer_dev, dev);
2497 	return NULL;
2498 }
2499 
2500 int skb_do_redirect(struct sk_buff *skb)
2501 {
2502 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2503 	struct net *net = dev_net(skb->dev);
2504 	struct net_device *dev;
2505 	u32 flags = ri->flags;
2506 
2507 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2508 	ri->tgt_index = 0;
2509 	ri->flags = 0;
2510 	if (unlikely(!dev))
2511 		goto out_drop;
2512 	if (flags & BPF_F_PEER) {
2513 		if (unlikely(!skb_at_tc_ingress(skb)))
2514 			goto out_drop;
2515 		dev = skb_get_peer_dev(dev);
2516 		if (unlikely(!dev ||
2517 			     !(dev->flags & IFF_UP) ||
2518 			     net_eq(net, dev_net(dev))))
2519 			goto out_drop;
2520 		skb->dev = dev;
2521 		dev_sw_netstats_rx_add(dev, skb->len);
2522 		skb_scrub_packet(skb, false);
2523 		return -EAGAIN;
2524 	}
2525 	return flags & BPF_F_NEIGH ?
2526 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2527 				    &ri->nh : NULL) :
2528 	       __bpf_redirect(skb, dev, flags);
2529 out_drop:
2530 	kfree_skb(skb);
2531 	return -EINVAL;
2532 }
2533 
2534 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2535 {
2536 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2537 
2538 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2539 		return TC_ACT_SHOT;
2540 
2541 	ri->flags = flags;
2542 	ri->tgt_index = ifindex;
2543 
2544 	return TC_ACT_REDIRECT;
2545 }
2546 
2547 static const struct bpf_func_proto bpf_redirect_proto = {
2548 	.func           = bpf_redirect,
2549 	.gpl_only       = false,
2550 	.ret_type       = RET_INTEGER,
2551 	.arg1_type      = ARG_ANYTHING,
2552 	.arg2_type      = ARG_ANYTHING,
2553 };
2554 
2555 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2556 {
2557 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2558 
2559 	if (unlikely(flags))
2560 		return TC_ACT_SHOT;
2561 
2562 	ri->flags = BPF_F_PEER;
2563 	ri->tgt_index = ifindex;
2564 
2565 	return TC_ACT_REDIRECT;
2566 }
2567 
2568 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2569 	.func           = bpf_redirect_peer,
2570 	.gpl_only       = false,
2571 	.ret_type       = RET_INTEGER,
2572 	.arg1_type      = ARG_ANYTHING,
2573 	.arg2_type      = ARG_ANYTHING,
2574 };
2575 
2576 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2577 	   int, plen, u64, flags)
2578 {
2579 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2580 
2581 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2582 		return TC_ACT_SHOT;
2583 
2584 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2585 	ri->tgt_index = ifindex;
2586 
2587 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2588 	if (plen)
2589 		memcpy(&ri->nh, params, sizeof(ri->nh));
2590 
2591 	return TC_ACT_REDIRECT;
2592 }
2593 
2594 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2595 	.func		= bpf_redirect_neigh,
2596 	.gpl_only	= false,
2597 	.ret_type	= RET_INTEGER,
2598 	.arg1_type	= ARG_ANYTHING,
2599 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2600 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2601 	.arg4_type	= ARG_ANYTHING,
2602 };
2603 
2604 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2605 {
2606 	msg->apply_bytes = bytes;
2607 	return 0;
2608 }
2609 
2610 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2611 	.func           = bpf_msg_apply_bytes,
2612 	.gpl_only       = false,
2613 	.ret_type       = RET_INTEGER,
2614 	.arg1_type	= ARG_PTR_TO_CTX,
2615 	.arg2_type      = ARG_ANYTHING,
2616 };
2617 
2618 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2619 {
2620 	msg->cork_bytes = bytes;
2621 	return 0;
2622 }
2623 
2624 static void sk_msg_reset_curr(struct sk_msg *msg)
2625 {
2626 	if (!msg->sg.size) {
2627 		msg->sg.curr = msg->sg.start;
2628 		msg->sg.copybreak = 0;
2629 	} else {
2630 		u32 i = msg->sg.end;
2631 
2632 		sk_msg_iter_var_prev(i);
2633 		msg->sg.curr = i;
2634 		msg->sg.copybreak = msg->sg.data[i].length;
2635 	}
2636 }
2637 
2638 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2639 	.func           = bpf_msg_cork_bytes,
2640 	.gpl_only       = false,
2641 	.ret_type       = RET_INTEGER,
2642 	.arg1_type	= ARG_PTR_TO_CTX,
2643 	.arg2_type      = ARG_ANYTHING,
2644 };
2645 
2646 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2647 	   u32, end, u64, flags)
2648 {
2649 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2650 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2651 	struct scatterlist *sge;
2652 	u8 *raw, *to, *from;
2653 	struct page *page;
2654 
2655 	if (unlikely(flags || end <= start))
2656 		return -EINVAL;
2657 
2658 	/* First find the starting scatterlist element */
2659 	i = msg->sg.start;
2660 	do {
2661 		offset += len;
2662 		len = sk_msg_elem(msg, i)->length;
2663 		if (start < offset + len)
2664 			break;
2665 		sk_msg_iter_var_next(i);
2666 	} while (i != msg->sg.end);
2667 
2668 	if (unlikely(start >= offset + len))
2669 		return -EINVAL;
2670 
2671 	first_sge = i;
2672 	/* The start may point into the sg element so we need to also
2673 	 * account for the headroom.
2674 	 */
2675 	bytes_sg_total = start - offset + bytes;
2676 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2677 		goto out;
2678 
2679 	/* At this point we need to linearize multiple scatterlist
2680 	 * elements or a single shared page. Either way we need to
2681 	 * copy into a linear buffer exclusively owned by BPF. Then
2682 	 * place the buffer in the scatterlist and fixup the original
2683 	 * entries by removing the entries now in the linear buffer
2684 	 * and shifting the remaining entries. For now we do not try
2685 	 * to copy partial entries to avoid complexity of running out
2686 	 * of sg_entry slots. The downside is reading a single byte
2687 	 * will copy the entire sg entry.
2688 	 */
2689 	do {
2690 		copy += sk_msg_elem(msg, i)->length;
2691 		sk_msg_iter_var_next(i);
2692 		if (bytes_sg_total <= copy)
2693 			break;
2694 	} while (i != msg->sg.end);
2695 	last_sge = i;
2696 
2697 	if (unlikely(bytes_sg_total > copy))
2698 		return -EINVAL;
2699 
2700 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2701 			   get_order(copy));
2702 	if (unlikely(!page))
2703 		return -ENOMEM;
2704 
2705 	raw = page_address(page);
2706 	i = first_sge;
2707 	do {
2708 		sge = sk_msg_elem(msg, i);
2709 		from = sg_virt(sge);
2710 		len = sge->length;
2711 		to = raw + poffset;
2712 
2713 		memcpy(to, from, len);
2714 		poffset += len;
2715 		sge->length = 0;
2716 		put_page(sg_page(sge));
2717 
2718 		sk_msg_iter_var_next(i);
2719 	} while (i != last_sge);
2720 
2721 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2722 
2723 	/* To repair sg ring we need to shift entries. If we only
2724 	 * had a single entry though we can just replace it and
2725 	 * be done. Otherwise walk the ring and shift the entries.
2726 	 */
2727 	WARN_ON_ONCE(last_sge == first_sge);
2728 	shift = last_sge > first_sge ?
2729 		last_sge - first_sge - 1 :
2730 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2731 	if (!shift)
2732 		goto out;
2733 
2734 	i = first_sge;
2735 	sk_msg_iter_var_next(i);
2736 	do {
2737 		u32 move_from;
2738 
2739 		if (i + shift >= NR_MSG_FRAG_IDS)
2740 			move_from = i + shift - NR_MSG_FRAG_IDS;
2741 		else
2742 			move_from = i + shift;
2743 		if (move_from == msg->sg.end)
2744 			break;
2745 
2746 		msg->sg.data[i] = msg->sg.data[move_from];
2747 		msg->sg.data[move_from].length = 0;
2748 		msg->sg.data[move_from].page_link = 0;
2749 		msg->sg.data[move_from].offset = 0;
2750 		sk_msg_iter_var_next(i);
2751 	} while (1);
2752 
2753 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2754 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2755 		      msg->sg.end - shift;
2756 out:
2757 	sk_msg_reset_curr(msg);
2758 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2759 	msg->data_end = msg->data + bytes;
2760 	return 0;
2761 }
2762 
2763 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2764 	.func		= bpf_msg_pull_data,
2765 	.gpl_only	= false,
2766 	.ret_type	= RET_INTEGER,
2767 	.arg1_type	= ARG_PTR_TO_CTX,
2768 	.arg2_type	= ARG_ANYTHING,
2769 	.arg3_type	= ARG_ANYTHING,
2770 	.arg4_type	= ARG_ANYTHING,
2771 };
2772 
2773 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2774 	   u32, len, u64, flags)
2775 {
2776 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2777 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2778 	u8 *raw, *to, *from;
2779 	struct page *page;
2780 
2781 	if (unlikely(flags))
2782 		return -EINVAL;
2783 
2784 	if (unlikely(len == 0))
2785 		return 0;
2786 
2787 	/* First find the starting scatterlist element */
2788 	i = msg->sg.start;
2789 	do {
2790 		offset += l;
2791 		l = sk_msg_elem(msg, i)->length;
2792 
2793 		if (start < offset + l)
2794 			break;
2795 		sk_msg_iter_var_next(i);
2796 	} while (i != msg->sg.end);
2797 
2798 	if (start > offset + l)
2799 		return -EINVAL;
2800 
2801 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2802 
2803 	/* If no space available will fallback to copy, we need at
2804 	 * least one scatterlist elem available to push data into
2805 	 * when start aligns to the beginning of an element or two
2806 	 * when it falls inside an element. We handle the start equals
2807 	 * offset case because its the common case for inserting a
2808 	 * header.
2809 	 */
2810 	if (!space || (space == 1 && start != offset))
2811 		copy = msg->sg.data[i].length;
2812 
2813 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2814 			   get_order(copy + len));
2815 	if (unlikely(!page))
2816 		return -ENOMEM;
2817 
2818 	if (copy) {
2819 		int front, back;
2820 
2821 		raw = page_address(page);
2822 
2823 		if (i == msg->sg.end)
2824 			sk_msg_iter_var_prev(i);
2825 		psge = sk_msg_elem(msg, i);
2826 		front = start - offset;
2827 		back = psge->length - front;
2828 		from = sg_virt(psge);
2829 
2830 		if (front)
2831 			memcpy(raw, from, front);
2832 
2833 		if (back) {
2834 			from += front;
2835 			to = raw + front + len;
2836 
2837 			memcpy(to, from, back);
2838 		}
2839 
2840 		put_page(sg_page(psge));
2841 		new = i;
2842 		goto place_new;
2843 	}
2844 
2845 	if (start - offset) {
2846 		if (i == msg->sg.end)
2847 			sk_msg_iter_var_prev(i);
2848 		psge = sk_msg_elem(msg, i);
2849 		rsge = sk_msg_elem_cpy(msg, i);
2850 
2851 		psge->length = start - offset;
2852 		rsge.length -= psge->length;
2853 		rsge.offset += start;
2854 
2855 		sk_msg_iter_var_next(i);
2856 		sg_unmark_end(psge);
2857 		sg_unmark_end(&rsge);
2858 	}
2859 
2860 	/* Slot(s) to place newly allocated data */
2861 	sk_msg_iter_next(msg, end);
2862 	new = i;
2863 	sk_msg_iter_var_next(i);
2864 
2865 	if (i == msg->sg.end) {
2866 		if (!rsge.length)
2867 			goto place_new;
2868 		sk_msg_iter_next(msg, end);
2869 		goto place_new;
2870 	}
2871 
2872 	/* Shift one or two slots as needed */
2873 	sge = sk_msg_elem_cpy(msg, new);
2874 	sg_unmark_end(&sge);
2875 
2876 	nsge = sk_msg_elem_cpy(msg, i);
2877 	if (rsge.length) {
2878 		sk_msg_iter_var_next(i);
2879 		nnsge = sk_msg_elem_cpy(msg, i);
2880 		sk_msg_iter_next(msg, end);
2881 	}
2882 
2883 	while (i != msg->sg.end) {
2884 		msg->sg.data[i] = sge;
2885 		sge = nsge;
2886 		sk_msg_iter_var_next(i);
2887 		if (rsge.length) {
2888 			nsge = nnsge;
2889 			nnsge = sk_msg_elem_cpy(msg, i);
2890 		} else {
2891 			nsge = sk_msg_elem_cpy(msg, i);
2892 		}
2893 	}
2894 
2895 place_new:
2896 	/* Place newly allocated data buffer */
2897 	sk_mem_charge(msg->sk, len);
2898 	msg->sg.size += len;
2899 	__clear_bit(new, msg->sg.copy);
2900 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2901 	if (rsge.length) {
2902 		get_page(sg_page(&rsge));
2903 		sk_msg_iter_var_next(new);
2904 		msg->sg.data[new] = rsge;
2905 	}
2906 
2907 	sk_msg_reset_curr(msg);
2908 	sk_msg_compute_data_pointers(msg);
2909 	return 0;
2910 }
2911 
2912 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2913 	.func		= bpf_msg_push_data,
2914 	.gpl_only	= false,
2915 	.ret_type	= RET_INTEGER,
2916 	.arg1_type	= ARG_PTR_TO_CTX,
2917 	.arg2_type	= ARG_ANYTHING,
2918 	.arg3_type	= ARG_ANYTHING,
2919 	.arg4_type	= ARG_ANYTHING,
2920 };
2921 
2922 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2923 {
2924 	struct scatterlist *sge = sk_msg_elem(msg, i);
2925 	int prev;
2926 
2927 	put_page(sg_page(sge));
2928 	do {
2929 		prev = i;
2930 		sk_msg_iter_var_next(i);
2931 		msg->sg.data[prev] = msg->sg.data[i];
2932 	} while (i != msg->sg.end);
2933 
2934 	sk_msg_iter_prev(msg, end);
2935 }
2936 
2937 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2938 {
2939 	struct scatterlist tmp, sge;
2940 
2941 	sk_msg_iter_next(msg, end);
2942 	sge = sk_msg_elem_cpy(msg, i);
2943 	sk_msg_iter_var_next(i);
2944 	tmp = sk_msg_elem_cpy(msg, i);
2945 
2946 	while (i != msg->sg.end) {
2947 		msg->sg.data[i] = sge;
2948 		sk_msg_iter_var_next(i);
2949 		sge = tmp;
2950 		tmp = sk_msg_elem_cpy(msg, i);
2951 	}
2952 }
2953 
2954 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2955 	   u32, len, u64, flags)
2956 {
2957 	u32 i = 0, l = 0, space, offset = 0;
2958 	u64 last = start + len;
2959 	int pop;
2960 
2961 	if (unlikely(flags))
2962 		return -EINVAL;
2963 
2964 	if (unlikely(len == 0))
2965 		return 0;
2966 
2967 	/* First find the starting scatterlist element */
2968 	i = msg->sg.start;
2969 	do {
2970 		offset += l;
2971 		l = sk_msg_elem(msg, i)->length;
2972 
2973 		if (start < offset + l)
2974 			break;
2975 		sk_msg_iter_var_next(i);
2976 	} while (i != msg->sg.end);
2977 
2978 	/* Bounds checks: start and pop must be inside message */
2979 	if (start >= offset + l || last > msg->sg.size)
2980 		return -EINVAL;
2981 
2982 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2983 
2984 	pop = len;
2985 	/* --------------| offset
2986 	 * -| start      |-------- len -------|
2987 	 *
2988 	 *  |----- a ----|-------- pop -------|----- b ----|
2989 	 *  |______________________________________________| length
2990 	 *
2991 	 *
2992 	 * a:   region at front of scatter element to save
2993 	 * b:   region at back of scatter element to save when length > A + pop
2994 	 * pop: region to pop from element, same as input 'pop' here will be
2995 	 *      decremented below per iteration.
2996 	 *
2997 	 * Two top-level cases to handle when start != offset, first B is non
2998 	 * zero and second B is zero corresponding to when a pop includes more
2999 	 * than one element.
3000 	 *
3001 	 * Then if B is non-zero AND there is no space allocate space and
3002 	 * compact A, B regions into page. If there is space shift ring to
3003 	 * the right free'ing the next element in ring to place B, leaving
3004 	 * A untouched except to reduce length.
3005 	 */
3006 	if (start != offset) {
3007 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
3008 		int a = start - offset;
3009 		int b = sge->length - pop - a;
3010 
3011 		sk_msg_iter_var_next(i);
3012 
3013 		if (b > 0) {
3014 			if (space) {
3015 				sge->length = a;
3016 				sk_msg_shift_right(msg, i);
3017 				nsge = sk_msg_elem(msg, i);
3018 				get_page(sg_page(sge));
3019 				sg_set_page(nsge,
3020 					    sg_page(sge),
3021 					    b, sge->offset + pop + a);
3022 			} else {
3023 				struct page *page, *orig;
3024 				u8 *to, *from;
3025 
3026 				page = alloc_pages(__GFP_NOWARN |
3027 						   __GFP_COMP   | GFP_ATOMIC,
3028 						   get_order(a + b));
3029 				if (unlikely(!page))
3030 					return -ENOMEM;
3031 
3032 				orig = sg_page(sge);
3033 				from = sg_virt(sge);
3034 				to = page_address(page);
3035 				memcpy(to, from, a);
3036 				memcpy(to + a, from + a + pop, b);
3037 				sg_set_page(sge, page, a + b, 0);
3038 				put_page(orig);
3039 			}
3040 			pop = 0;
3041 		} else {
3042 			pop -= (sge->length - a);
3043 			sge->length = a;
3044 		}
3045 	}
3046 
3047 	/* From above the current layout _must_ be as follows,
3048 	 *
3049 	 * -| offset
3050 	 * -| start
3051 	 *
3052 	 *  |---- pop ---|---------------- b ------------|
3053 	 *  |____________________________________________| length
3054 	 *
3055 	 * Offset and start of the current msg elem are equal because in the
3056 	 * previous case we handled offset != start and either consumed the
3057 	 * entire element and advanced to the next element OR pop == 0.
3058 	 *
3059 	 * Two cases to handle here are first pop is less than the length
3060 	 * leaving some remainder b above. Simply adjust the element's layout
3061 	 * in this case. Or pop >= length of the element so that b = 0. In this
3062 	 * case advance to next element decrementing pop.
3063 	 */
3064 	while (pop) {
3065 		struct scatterlist *sge = sk_msg_elem(msg, i);
3066 
3067 		if (pop < sge->length) {
3068 			sge->length -= pop;
3069 			sge->offset += pop;
3070 			pop = 0;
3071 		} else {
3072 			pop -= sge->length;
3073 			sk_msg_shift_left(msg, i);
3074 		}
3075 	}
3076 
3077 	sk_mem_uncharge(msg->sk, len - pop);
3078 	msg->sg.size -= (len - pop);
3079 	sk_msg_reset_curr(msg);
3080 	sk_msg_compute_data_pointers(msg);
3081 	return 0;
3082 }
3083 
3084 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3085 	.func		= bpf_msg_pop_data,
3086 	.gpl_only	= false,
3087 	.ret_type	= RET_INTEGER,
3088 	.arg1_type	= ARG_PTR_TO_CTX,
3089 	.arg2_type	= ARG_ANYTHING,
3090 	.arg3_type	= ARG_ANYTHING,
3091 	.arg4_type	= ARG_ANYTHING,
3092 };
3093 
3094 #ifdef CONFIG_CGROUP_NET_CLASSID
3095 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3096 {
3097 	return __task_get_classid(current);
3098 }
3099 
3100 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3101 	.func		= bpf_get_cgroup_classid_curr,
3102 	.gpl_only	= false,
3103 	.ret_type	= RET_INTEGER,
3104 };
3105 
3106 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3107 {
3108 	struct sock *sk = skb_to_full_sk(skb);
3109 
3110 	if (!sk || !sk_fullsock(sk))
3111 		return 0;
3112 
3113 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3114 }
3115 
3116 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3117 	.func		= bpf_skb_cgroup_classid,
3118 	.gpl_only	= false,
3119 	.ret_type	= RET_INTEGER,
3120 	.arg1_type	= ARG_PTR_TO_CTX,
3121 };
3122 #endif
3123 
3124 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3125 {
3126 	return task_get_classid(skb);
3127 }
3128 
3129 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3130 	.func           = bpf_get_cgroup_classid,
3131 	.gpl_only       = false,
3132 	.ret_type       = RET_INTEGER,
3133 	.arg1_type      = ARG_PTR_TO_CTX,
3134 };
3135 
3136 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3137 {
3138 	return dst_tclassid(skb);
3139 }
3140 
3141 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3142 	.func           = bpf_get_route_realm,
3143 	.gpl_only       = false,
3144 	.ret_type       = RET_INTEGER,
3145 	.arg1_type      = ARG_PTR_TO_CTX,
3146 };
3147 
3148 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3149 {
3150 	/* If skb_clear_hash() was called due to mangling, we can
3151 	 * trigger SW recalculation here. Later access to hash
3152 	 * can then use the inline skb->hash via context directly
3153 	 * instead of calling this helper again.
3154 	 */
3155 	return skb_get_hash(skb);
3156 }
3157 
3158 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3159 	.func		= bpf_get_hash_recalc,
3160 	.gpl_only	= false,
3161 	.ret_type	= RET_INTEGER,
3162 	.arg1_type	= ARG_PTR_TO_CTX,
3163 };
3164 
3165 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3166 {
3167 	/* After all direct packet write, this can be used once for
3168 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3169 	 */
3170 	skb_clear_hash(skb);
3171 	return 0;
3172 }
3173 
3174 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3175 	.func		= bpf_set_hash_invalid,
3176 	.gpl_only	= false,
3177 	.ret_type	= RET_INTEGER,
3178 	.arg1_type	= ARG_PTR_TO_CTX,
3179 };
3180 
3181 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3182 {
3183 	/* Set user specified hash as L4(+), so that it gets returned
3184 	 * on skb_get_hash() call unless BPF prog later on triggers a
3185 	 * skb_clear_hash().
3186 	 */
3187 	__skb_set_sw_hash(skb, hash, true);
3188 	return 0;
3189 }
3190 
3191 static const struct bpf_func_proto bpf_set_hash_proto = {
3192 	.func		= bpf_set_hash,
3193 	.gpl_only	= false,
3194 	.ret_type	= RET_INTEGER,
3195 	.arg1_type	= ARG_PTR_TO_CTX,
3196 	.arg2_type	= ARG_ANYTHING,
3197 };
3198 
3199 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3200 	   u16, vlan_tci)
3201 {
3202 	int ret;
3203 
3204 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3205 		     vlan_proto != htons(ETH_P_8021AD)))
3206 		vlan_proto = htons(ETH_P_8021Q);
3207 
3208 	bpf_push_mac_rcsum(skb);
3209 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3210 	bpf_pull_mac_rcsum(skb);
3211 	skb_reset_mac_len(skb);
3212 
3213 	bpf_compute_data_pointers(skb);
3214 	return ret;
3215 }
3216 
3217 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3218 	.func           = bpf_skb_vlan_push,
3219 	.gpl_only       = false,
3220 	.ret_type       = RET_INTEGER,
3221 	.arg1_type      = ARG_PTR_TO_CTX,
3222 	.arg2_type      = ARG_ANYTHING,
3223 	.arg3_type      = ARG_ANYTHING,
3224 };
3225 
3226 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3227 {
3228 	int ret;
3229 
3230 	bpf_push_mac_rcsum(skb);
3231 	ret = skb_vlan_pop(skb);
3232 	bpf_pull_mac_rcsum(skb);
3233 
3234 	bpf_compute_data_pointers(skb);
3235 	return ret;
3236 }
3237 
3238 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3239 	.func           = bpf_skb_vlan_pop,
3240 	.gpl_only       = false,
3241 	.ret_type       = RET_INTEGER,
3242 	.arg1_type      = ARG_PTR_TO_CTX,
3243 };
3244 
3245 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3246 {
3247 	skb->protocol = htons(proto);
3248 	if (skb_valid_dst(skb))
3249 		skb_dst_drop(skb);
3250 }
3251 
3252 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3253 {
3254 	/* Caller already did skb_cow() with len as headroom,
3255 	 * so no need to do it here.
3256 	 */
3257 	skb_push(skb, len);
3258 	memmove(skb->data, skb->data + len, off);
3259 	memset(skb->data + off, 0, len);
3260 
3261 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3262 	 * needed here as it does not change the skb->csum
3263 	 * result for checksum complete when summing over
3264 	 * zeroed blocks.
3265 	 */
3266 	return 0;
3267 }
3268 
3269 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3270 {
3271 	void *old_data;
3272 
3273 	/* skb_ensure_writable() is not needed here, as we're
3274 	 * already working on an uncloned skb.
3275 	 */
3276 	if (unlikely(!pskb_may_pull(skb, off + len)))
3277 		return -ENOMEM;
3278 
3279 	old_data = skb->data;
3280 	__skb_pull(skb, len);
3281 	skb_postpull_rcsum(skb, old_data + off, len);
3282 	memmove(skb->data, old_data, off);
3283 
3284 	return 0;
3285 }
3286 
3287 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3288 {
3289 	bool trans_same = skb->transport_header == skb->network_header;
3290 	int ret;
3291 
3292 	/* There's no need for __skb_push()/__skb_pull() pair to
3293 	 * get to the start of the mac header as we're guaranteed
3294 	 * to always start from here under eBPF.
3295 	 */
3296 	ret = bpf_skb_generic_push(skb, off, len);
3297 	if (likely(!ret)) {
3298 		skb->mac_header -= len;
3299 		skb->network_header -= len;
3300 		if (trans_same)
3301 			skb->transport_header = skb->network_header;
3302 	}
3303 
3304 	return ret;
3305 }
3306 
3307 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3308 {
3309 	bool trans_same = skb->transport_header == skb->network_header;
3310 	int ret;
3311 
3312 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3313 	ret = bpf_skb_generic_pop(skb, off, len);
3314 	if (likely(!ret)) {
3315 		skb->mac_header += len;
3316 		skb->network_header += len;
3317 		if (trans_same)
3318 			skb->transport_header = skb->network_header;
3319 	}
3320 
3321 	return ret;
3322 }
3323 
3324 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3325 {
3326 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3327 	u32 off = skb_mac_header_len(skb);
3328 	int ret;
3329 
3330 	ret = skb_cow(skb, len_diff);
3331 	if (unlikely(ret < 0))
3332 		return ret;
3333 
3334 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3335 	if (unlikely(ret < 0))
3336 		return ret;
3337 
3338 	if (skb_is_gso(skb)) {
3339 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3340 
3341 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3342 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3343 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3344 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3345 		}
3346 	}
3347 
3348 	bpf_skb_change_protocol(skb, ETH_P_IPV6);
3349 	skb_clear_hash(skb);
3350 
3351 	return 0;
3352 }
3353 
3354 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3355 {
3356 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3357 	u32 off = skb_mac_header_len(skb);
3358 	int ret;
3359 
3360 	ret = skb_unclone(skb, GFP_ATOMIC);
3361 	if (unlikely(ret < 0))
3362 		return ret;
3363 
3364 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3365 	if (unlikely(ret < 0))
3366 		return ret;
3367 
3368 	if (skb_is_gso(skb)) {
3369 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3370 
3371 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3372 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3373 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3374 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3375 		}
3376 	}
3377 
3378 	bpf_skb_change_protocol(skb, ETH_P_IP);
3379 	skb_clear_hash(skb);
3380 
3381 	return 0;
3382 }
3383 
3384 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3385 {
3386 	__be16 from_proto = skb->protocol;
3387 
3388 	if (from_proto == htons(ETH_P_IP) &&
3389 	      to_proto == htons(ETH_P_IPV6))
3390 		return bpf_skb_proto_4_to_6(skb);
3391 
3392 	if (from_proto == htons(ETH_P_IPV6) &&
3393 	      to_proto == htons(ETH_P_IP))
3394 		return bpf_skb_proto_6_to_4(skb);
3395 
3396 	return -ENOTSUPP;
3397 }
3398 
3399 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3400 	   u64, flags)
3401 {
3402 	int ret;
3403 
3404 	if (unlikely(flags))
3405 		return -EINVAL;
3406 
3407 	/* General idea is that this helper does the basic groundwork
3408 	 * needed for changing the protocol, and eBPF program fills the
3409 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3410 	 * and other helpers, rather than passing a raw buffer here.
3411 	 *
3412 	 * The rationale is to keep this minimal and without a need to
3413 	 * deal with raw packet data. F.e. even if we would pass buffers
3414 	 * here, the program still needs to call the bpf_lX_csum_replace()
3415 	 * helpers anyway. Plus, this way we keep also separation of
3416 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3417 	 * care of stores.
3418 	 *
3419 	 * Currently, additional options and extension header space are
3420 	 * not supported, but flags register is reserved so we can adapt
3421 	 * that. For offloads, we mark packet as dodgy, so that headers
3422 	 * need to be verified first.
3423 	 */
3424 	ret = bpf_skb_proto_xlat(skb, proto);
3425 	bpf_compute_data_pointers(skb);
3426 	return ret;
3427 }
3428 
3429 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3430 	.func		= bpf_skb_change_proto,
3431 	.gpl_only	= false,
3432 	.ret_type	= RET_INTEGER,
3433 	.arg1_type	= ARG_PTR_TO_CTX,
3434 	.arg2_type	= ARG_ANYTHING,
3435 	.arg3_type	= ARG_ANYTHING,
3436 };
3437 
3438 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3439 {
3440 	/* We only allow a restricted subset to be changed for now. */
3441 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3442 		     !skb_pkt_type_ok(pkt_type)))
3443 		return -EINVAL;
3444 
3445 	skb->pkt_type = pkt_type;
3446 	return 0;
3447 }
3448 
3449 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3450 	.func		= bpf_skb_change_type,
3451 	.gpl_only	= false,
3452 	.ret_type	= RET_INTEGER,
3453 	.arg1_type	= ARG_PTR_TO_CTX,
3454 	.arg2_type	= ARG_ANYTHING,
3455 };
3456 
3457 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3458 {
3459 	switch (skb->protocol) {
3460 	case htons(ETH_P_IP):
3461 		return sizeof(struct iphdr);
3462 	case htons(ETH_P_IPV6):
3463 		return sizeof(struct ipv6hdr);
3464 	default:
3465 		return ~0U;
3466 	}
3467 }
3468 
3469 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3470 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3471 
3472 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3473 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3474 
3475 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3476 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3477 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3478 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3479 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3480 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3481 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3482 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3483 
3484 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3485 			    u64 flags)
3486 {
3487 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3488 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3489 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3490 	unsigned int gso_type = SKB_GSO_DODGY;
3491 	int ret;
3492 
3493 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3494 		/* udp gso_size delineates datagrams, only allow if fixed */
3495 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3496 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3497 			return -ENOTSUPP;
3498 	}
3499 
3500 	ret = skb_cow_head(skb, len_diff);
3501 	if (unlikely(ret < 0))
3502 		return ret;
3503 
3504 	if (encap) {
3505 		if (skb->protocol != htons(ETH_P_IP) &&
3506 		    skb->protocol != htons(ETH_P_IPV6))
3507 			return -ENOTSUPP;
3508 
3509 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3510 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3511 			return -EINVAL;
3512 
3513 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3514 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3515 			return -EINVAL;
3516 
3517 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3518 		    inner_mac_len < ETH_HLEN)
3519 			return -EINVAL;
3520 
3521 		if (skb->encapsulation)
3522 			return -EALREADY;
3523 
3524 		mac_len = skb->network_header - skb->mac_header;
3525 		inner_net = skb->network_header;
3526 		if (inner_mac_len > len_diff)
3527 			return -EINVAL;
3528 		inner_trans = skb->transport_header;
3529 	}
3530 
3531 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3532 	if (unlikely(ret < 0))
3533 		return ret;
3534 
3535 	if (encap) {
3536 		skb->inner_mac_header = inner_net - inner_mac_len;
3537 		skb->inner_network_header = inner_net;
3538 		skb->inner_transport_header = inner_trans;
3539 
3540 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3541 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3542 		else
3543 			skb_set_inner_protocol(skb, skb->protocol);
3544 
3545 		skb->encapsulation = 1;
3546 		skb_set_network_header(skb, mac_len);
3547 
3548 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3549 			gso_type |= SKB_GSO_UDP_TUNNEL;
3550 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3551 			gso_type |= SKB_GSO_GRE;
3552 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3553 			gso_type |= SKB_GSO_IPXIP6;
3554 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3555 			gso_type |= SKB_GSO_IPXIP4;
3556 
3557 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3558 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3559 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3560 					sizeof(struct ipv6hdr) :
3561 					sizeof(struct iphdr);
3562 
3563 			skb_set_transport_header(skb, mac_len + nh_len);
3564 		}
3565 
3566 		/* Match skb->protocol to new outer l3 protocol */
3567 		if (skb->protocol == htons(ETH_P_IP) &&
3568 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3569 			bpf_skb_change_protocol(skb, ETH_P_IPV6);
3570 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3571 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3572 			bpf_skb_change_protocol(skb, ETH_P_IP);
3573 	}
3574 
3575 	if (skb_is_gso(skb)) {
3576 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3577 
3578 		/* Header must be checked, and gso_segs recomputed. */
3579 		shinfo->gso_type |= gso_type;
3580 		shinfo->gso_segs = 0;
3581 
3582 		/* Due to header growth, MSS needs to be downgraded.
3583 		 * There is a BUG_ON() when segmenting the frag_list with
3584 		 * head_frag true, so linearize the skb after downgrading
3585 		 * the MSS.
3586 		 */
3587 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3588 			skb_decrease_gso_size(shinfo, len_diff);
3589 			if (shinfo->frag_list)
3590 				return skb_linearize(skb);
3591 		}
3592 	}
3593 
3594 	return 0;
3595 }
3596 
3597 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3598 			      u64 flags)
3599 {
3600 	int ret;
3601 
3602 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3603 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3604 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3605 		return -EINVAL;
3606 
3607 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3608 		/* udp gso_size delineates datagrams, only allow if fixed */
3609 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3610 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3611 			return -ENOTSUPP;
3612 	}
3613 
3614 	ret = skb_unclone(skb, GFP_ATOMIC);
3615 	if (unlikely(ret < 0))
3616 		return ret;
3617 
3618 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3619 	if (unlikely(ret < 0))
3620 		return ret;
3621 
3622 	/* Match skb->protocol to new outer l3 protocol */
3623 	if (skb->protocol == htons(ETH_P_IP) &&
3624 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3625 		bpf_skb_change_protocol(skb, ETH_P_IPV6);
3626 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3627 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3628 		bpf_skb_change_protocol(skb, ETH_P_IP);
3629 
3630 	if (skb_is_gso(skb)) {
3631 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3632 
3633 		/* Due to header shrink, MSS can be upgraded. */
3634 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3635 			skb_increase_gso_size(shinfo, len_diff);
3636 
3637 		/* Header must be checked, and gso_segs recomputed. */
3638 		shinfo->gso_type |= SKB_GSO_DODGY;
3639 		shinfo->gso_segs = 0;
3640 	}
3641 
3642 	return 0;
3643 }
3644 
3645 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3646 
3647 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3648 	   u32, mode, u64, flags)
3649 {
3650 	u32 len_diff_abs = abs(len_diff);
3651 	bool shrink = len_diff < 0;
3652 	int ret = 0;
3653 
3654 	if (unlikely(flags || mode))
3655 		return -EINVAL;
3656 	if (unlikely(len_diff_abs > 0xfffU))
3657 		return -EFAULT;
3658 
3659 	if (!shrink) {
3660 		ret = skb_cow(skb, len_diff);
3661 		if (unlikely(ret < 0))
3662 			return ret;
3663 		__skb_push(skb, len_diff_abs);
3664 		memset(skb->data, 0, len_diff_abs);
3665 	} else {
3666 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3667 			return -ENOMEM;
3668 		__skb_pull(skb, len_diff_abs);
3669 	}
3670 	if (tls_sw_has_ctx_rx(skb->sk)) {
3671 		struct strp_msg *rxm = strp_msg(skb);
3672 
3673 		rxm->full_len += len_diff;
3674 	}
3675 	return ret;
3676 }
3677 
3678 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3679 	.func		= sk_skb_adjust_room,
3680 	.gpl_only	= false,
3681 	.ret_type	= RET_INTEGER,
3682 	.arg1_type	= ARG_PTR_TO_CTX,
3683 	.arg2_type	= ARG_ANYTHING,
3684 	.arg3_type	= ARG_ANYTHING,
3685 	.arg4_type	= ARG_ANYTHING,
3686 };
3687 
3688 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3689 	   u32, mode, u64, flags)
3690 {
3691 	u32 len_cur, len_diff_abs = abs(len_diff);
3692 	u32 len_min = bpf_skb_net_base_len(skb);
3693 	u32 len_max = BPF_SKB_MAX_LEN;
3694 	__be16 proto = skb->protocol;
3695 	bool shrink = len_diff < 0;
3696 	u32 off;
3697 	int ret;
3698 
3699 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3700 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3701 		return -EINVAL;
3702 	if (unlikely(len_diff_abs > 0xfffU))
3703 		return -EFAULT;
3704 	if (unlikely(proto != htons(ETH_P_IP) &&
3705 		     proto != htons(ETH_P_IPV6)))
3706 		return -ENOTSUPP;
3707 
3708 	off = skb_mac_header_len(skb);
3709 	switch (mode) {
3710 	case BPF_ADJ_ROOM_NET:
3711 		off += bpf_skb_net_base_len(skb);
3712 		break;
3713 	case BPF_ADJ_ROOM_MAC:
3714 		break;
3715 	default:
3716 		return -ENOTSUPP;
3717 	}
3718 
3719 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3720 		if (!shrink)
3721 			return -EINVAL;
3722 
3723 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3724 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3725 			len_min = sizeof(struct iphdr);
3726 			break;
3727 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3728 			len_min = sizeof(struct ipv6hdr);
3729 			break;
3730 		default:
3731 			return -EINVAL;
3732 		}
3733 	}
3734 
3735 	len_cur = skb->len - skb_network_offset(skb);
3736 	if ((shrink && (len_diff_abs >= len_cur ||
3737 			len_cur - len_diff_abs < len_min)) ||
3738 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3739 			 !skb_is_gso(skb))))
3740 		return -ENOTSUPP;
3741 
3742 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3743 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3744 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3745 		__skb_reset_checksum_unnecessary(skb);
3746 
3747 	bpf_compute_data_pointers(skb);
3748 	return ret;
3749 }
3750 
3751 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3752 	.func		= bpf_skb_adjust_room,
3753 	.gpl_only	= false,
3754 	.ret_type	= RET_INTEGER,
3755 	.arg1_type	= ARG_PTR_TO_CTX,
3756 	.arg2_type	= ARG_ANYTHING,
3757 	.arg3_type	= ARG_ANYTHING,
3758 	.arg4_type	= ARG_ANYTHING,
3759 };
3760 
3761 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3762 {
3763 	int offset = skb_network_offset(skb);
3764 	u32 min_len = 0;
3765 
3766 	if (offset > 0)
3767 		min_len = offset;
3768 	if (skb_transport_header_was_set(skb)) {
3769 		offset = skb_transport_offset(skb);
3770 		if (offset > 0)
3771 			min_len = offset;
3772 	}
3773 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3774 		offset = skb_checksum_start_offset(skb) +
3775 			 skb->csum_offset + sizeof(__sum16);
3776 		if (offset > 0)
3777 			min_len = offset;
3778 	}
3779 	return min_len;
3780 }
3781 
3782 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3783 {
3784 	unsigned int old_len = skb->len;
3785 	int ret;
3786 
3787 	ret = __skb_grow_rcsum(skb, new_len);
3788 	if (!ret)
3789 		memset(skb->data + old_len, 0, new_len - old_len);
3790 	return ret;
3791 }
3792 
3793 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3794 {
3795 	return __skb_trim_rcsum(skb, new_len);
3796 }
3797 
3798 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3799 					u64 flags)
3800 {
3801 	u32 max_len = BPF_SKB_MAX_LEN;
3802 	u32 min_len = __bpf_skb_min_len(skb);
3803 	int ret;
3804 
3805 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3806 		return -EINVAL;
3807 	if (skb->encapsulation)
3808 		return -ENOTSUPP;
3809 
3810 	/* The basic idea of this helper is that it's performing the
3811 	 * needed work to either grow or trim an skb, and eBPF program
3812 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3813 	 * bpf_lX_csum_replace() and others rather than passing a raw
3814 	 * buffer here. This one is a slow path helper and intended
3815 	 * for replies with control messages.
3816 	 *
3817 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3818 	 * minimal and without protocol specifics so that we are able
3819 	 * to separate concerns as in bpf_skb_store_bytes() should only
3820 	 * be the one responsible for writing buffers.
3821 	 *
3822 	 * It's really expected to be a slow path operation here for
3823 	 * control message replies, so we're implicitly linearizing,
3824 	 * uncloning and drop offloads from the skb by this.
3825 	 */
3826 	ret = __bpf_try_make_writable(skb, skb->len);
3827 	if (!ret) {
3828 		if (new_len > skb->len)
3829 			ret = bpf_skb_grow_rcsum(skb, new_len);
3830 		else if (new_len < skb->len)
3831 			ret = bpf_skb_trim_rcsum(skb, new_len);
3832 		if (!ret && skb_is_gso(skb))
3833 			skb_gso_reset(skb);
3834 	}
3835 	return ret;
3836 }
3837 
3838 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3839 	   u64, flags)
3840 {
3841 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3842 
3843 	bpf_compute_data_pointers(skb);
3844 	return ret;
3845 }
3846 
3847 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3848 	.func		= bpf_skb_change_tail,
3849 	.gpl_only	= false,
3850 	.ret_type	= RET_INTEGER,
3851 	.arg1_type	= ARG_PTR_TO_CTX,
3852 	.arg2_type	= ARG_ANYTHING,
3853 	.arg3_type	= ARG_ANYTHING,
3854 };
3855 
3856 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3857 	   u64, flags)
3858 {
3859 	return __bpf_skb_change_tail(skb, new_len, flags);
3860 }
3861 
3862 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3863 	.func		= sk_skb_change_tail,
3864 	.gpl_only	= false,
3865 	.ret_type	= RET_INTEGER,
3866 	.arg1_type	= ARG_PTR_TO_CTX,
3867 	.arg2_type	= ARG_ANYTHING,
3868 	.arg3_type	= ARG_ANYTHING,
3869 };
3870 
3871 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3872 					u64 flags)
3873 {
3874 	u32 max_len = BPF_SKB_MAX_LEN;
3875 	u32 new_len = skb->len + head_room;
3876 	int ret;
3877 
3878 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3879 		     new_len < skb->len))
3880 		return -EINVAL;
3881 
3882 	ret = skb_cow(skb, head_room);
3883 	if (likely(!ret)) {
3884 		/* Idea for this helper is that we currently only
3885 		 * allow to expand on mac header. This means that
3886 		 * skb->protocol network header, etc, stay as is.
3887 		 * Compared to bpf_skb_change_tail(), we're more
3888 		 * flexible due to not needing to linearize or
3889 		 * reset GSO. Intention for this helper is to be
3890 		 * used by an L3 skb that needs to push mac header
3891 		 * for redirection into L2 device.
3892 		 */
3893 		__skb_push(skb, head_room);
3894 		memset(skb->data, 0, head_room);
3895 		skb_reset_mac_header(skb);
3896 		skb_reset_mac_len(skb);
3897 	}
3898 
3899 	return ret;
3900 }
3901 
3902 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3903 	   u64, flags)
3904 {
3905 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3906 
3907 	bpf_compute_data_pointers(skb);
3908 	return ret;
3909 }
3910 
3911 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3912 	.func		= bpf_skb_change_head,
3913 	.gpl_only	= false,
3914 	.ret_type	= RET_INTEGER,
3915 	.arg1_type	= ARG_PTR_TO_CTX,
3916 	.arg2_type	= ARG_ANYTHING,
3917 	.arg3_type	= ARG_ANYTHING,
3918 };
3919 
3920 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3921 	   u64, flags)
3922 {
3923 	return __bpf_skb_change_head(skb, head_room, flags);
3924 }
3925 
3926 static const struct bpf_func_proto sk_skb_change_head_proto = {
3927 	.func		= sk_skb_change_head,
3928 	.gpl_only	= false,
3929 	.ret_type	= RET_INTEGER,
3930 	.arg1_type	= ARG_PTR_TO_CTX,
3931 	.arg2_type	= ARG_ANYTHING,
3932 	.arg3_type	= ARG_ANYTHING,
3933 };
3934 
3935 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3936 {
3937 	return xdp_get_buff_len(xdp);
3938 }
3939 
3940 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3941 	.func		= bpf_xdp_get_buff_len,
3942 	.gpl_only	= false,
3943 	.ret_type	= RET_INTEGER,
3944 	.arg1_type	= ARG_PTR_TO_CTX,
3945 };
3946 
3947 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3948 
3949 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3950 	.func		= bpf_xdp_get_buff_len,
3951 	.gpl_only	= false,
3952 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3953 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3954 };
3955 
3956 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3957 {
3958 	return xdp_data_meta_unsupported(xdp) ? 0 :
3959 	       xdp->data - xdp->data_meta;
3960 }
3961 
3962 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3963 {
3964 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3965 	unsigned long metalen = xdp_get_metalen(xdp);
3966 	void *data_start = xdp_frame_end + metalen;
3967 	void *data = xdp->data + offset;
3968 
3969 	if (unlikely(data < data_start ||
3970 		     data > xdp->data_end - ETH_HLEN))
3971 		return -EINVAL;
3972 
3973 	if (metalen)
3974 		memmove(xdp->data_meta + offset,
3975 			xdp->data_meta, metalen);
3976 	xdp->data_meta += offset;
3977 	xdp->data = data;
3978 
3979 	return 0;
3980 }
3981 
3982 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3983 	.func		= bpf_xdp_adjust_head,
3984 	.gpl_only	= false,
3985 	.ret_type	= RET_INTEGER,
3986 	.arg1_type	= ARG_PTR_TO_CTX,
3987 	.arg2_type	= ARG_ANYTHING,
3988 };
3989 
3990 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3991 		      void *buf, unsigned long len, bool flush)
3992 {
3993 	unsigned long ptr_len, ptr_off = 0;
3994 	skb_frag_t *next_frag, *end_frag;
3995 	struct skb_shared_info *sinfo;
3996 	void *src, *dst;
3997 	u8 *ptr_buf;
3998 
3999 	if (likely(xdp->data_end - xdp->data >= off + len)) {
4000 		src = flush ? buf : xdp->data + off;
4001 		dst = flush ? xdp->data + off : buf;
4002 		memcpy(dst, src, len);
4003 		return;
4004 	}
4005 
4006 	sinfo = xdp_get_shared_info_from_buff(xdp);
4007 	end_frag = &sinfo->frags[sinfo->nr_frags];
4008 	next_frag = &sinfo->frags[0];
4009 
4010 	ptr_len = xdp->data_end - xdp->data;
4011 	ptr_buf = xdp->data;
4012 
4013 	while (true) {
4014 		if (off < ptr_off + ptr_len) {
4015 			unsigned long copy_off = off - ptr_off;
4016 			unsigned long copy_len = min(len, ptr_len - copy_off);
4017 
4018 			src = flush ? buf : ptr_buf + copy_off;
4019 			dst = flush ? ptr_buf + copy_off : buf;
4020 			memcpy(dst, src, copy_len);
4021 
4022 			off += copy_len;
4023 			len -= copy_len;
4024 			buf += copy_len;
4025 		}
4026 
4027 		if (!len || next_frag == end_frag)
4028 			break;
4029 
4030 		ptr_off += ptr_len;
4031 		ptr_buf = skb_frag_address(next_frag);
4032 		ptr_len = skb_frag_size(next_frag);
4033 		next_frag++;
4034 	}
4035 }
4036 
4037 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4038 {
4039 	u32 size = xdp->data_end - xdp->data;
4040 	struct skb_shared_info *sinfo;
4041 	void *addr = xdp->data;
4042 	int i;
4043 
4044 	if (unlikely(offset > 0xffff || len > 0xffff))
4045 		return ERR_PTR(-EFAULT);
4046 
4047 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4048 		return ERR_PTR(-EINVAL);
4049 
4050 	if (likely(offset < size)) /* linear area */
4051 		goto out;
4052 
4053 	sinfo = xdp_get_shared_info_from_buff(xdp);
4054 	offset -= size;
4055 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4056 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4057 
4058 		if  (offset < frag_size) {
4059 			addr = skb_frag_address(&sinfo->frags[i]);
4060 			size = frag_size;
4061 			break;
4062 		}
4063 		offset -= frag_size;
4064 	}
4065 out:
4066 	return offset + len <= size ? addr + offset : NULL;
4067 }
4068 
4069 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4070 	   void *, buf, u32, len)
4071 {
4072 	void *ptr;
4073 
4074 	ptr = bpf_xdp_pointer(xdp, offset, len);
4075 	if (IS_ERR(ptr))
4076 		return PTR_ERR(ptr);
4077 
4078 	if (!ptr)
4079 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4080 	else
4081 		memcpy(buf, ptr, len);
4082 
4083 	return 0;
4084 }
4085 
4086 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4087 	.func		= bpf_xdp_load_bytes,
4088 	.gpl_only	= false,
4089 	.ret_type	= RET_INTEGER,
4090 	.arg1_type	= ARG_PTR_TO_CTX,
4091 	.arg2_type	= ARG_ANYTHING,
4092 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4093 	.arg4_type	= ARG_CONST_SIZE,
4094 };
4095 
4096 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4097 {
4098 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4099 }
4100 
4101 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4102 	   void *, buf, u32, len)
4103 {
4104 	void *ptr;
4105 
4106 	ptr = bpf_xdp_pointer(xdp, offset, len);
4107 	if (IS_ERR(ptr))
4108 		return PTR_ERR(ptr);
4109 
4110 	if (!ptr)
4111 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4112 	else
4113 		memcpy(ptr, buf, len);
4114 
4115 	return 0;
4116 }
4117 
4118 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4119 	.func		= bpf_xdp_store_bytes,
4120 	.gpl_only	= false,
4121 	.ret_type	= RET_INTEGER,
4122 	.arg1_type	= ARG_PTR_TO_CTX,
4123 	.arg2_type	= ARG_ANYTHING,
4124 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4125 	.arg4_type	= ARG_CONST_SIZE,
4126 };
4127 
4128 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4129 {
4130 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4131 }
4132 
4133 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4134 {
4135 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4136 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4137 	struct xdp_rxq_info *rxq = xdp->rxq;
4138 	unsigned int tailroom;
4139 
4140 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4141 		return -EOPNOTSUPP;
4142 
4143 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4144 	if (unlikely(offset > tailroom))
4145 		return -EINVAL;
4146 
4147 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4148 	skb_frag_size_add(frag, offset);
4149 	sinfo->xdp_frags_size += offset;
4150 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4151 		xsk_buff_get_tail(xdp)->data_end += offset;
4152 
4153 	return 0;
4154 }
4155 
4156 static struct xdp_buff *bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4157 					       bool tail, bool release)
4158 {
4159 	struct xdp_buff *zc_frag = tail ? xsk_buff_get_tail(xdp) :
4160 					  xsk_buff_get_head(xdp);
4161 
4162 	if (release) {
4163 		xsk_buff_del_frag(zc_frag);
4164 	} else {
4165 		if (tail)
4166 			zc_frag->data_end -= shrink;
4167 		else
4168 			zc_frag->data += shrink;
4169 	}
4170 
4171 	return zc_frag;
4172 }
4173 
4174 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4175 				int shrink, bool tail)
4176 {
4177 	enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4178 	bool release = skb_frag_size(frag) == shrink;
4179 	netmem_ref netmem = skb_frag_netmem(frag);
4180 	struct xdp_buff *zc_frag = NULL;
4181 
4182 	if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4183 		netmem = 0;
4184 		zc_frag = bpf_xdp_shrink_data_zc(xdp, shrink, tail, release);
4185 	}
4186 
4187 	if (release) {
4188 		__xdp_return(netmem, mem_type, false, zc_frag);
4189 	} else {
4190 		if (!tail)
4191 			skb_frag_off_add(frag, shrink);
4192 		skb_frag_size_sub(frag, shrink);
4193 	}
4194 
4195 	return release;
4196 }
4197 
4198 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4199 {
4200 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4201 	int i, n_frags_free = 0, len_free = 0;
4202 
4203 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4204 		return -EINVAL;
4205 
4206 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4207 		skb_frag_t *frag = &sinfo->frags[i];
4208 		int shrink = min_t(int, offset, skb_frag_size(frag));
4209 
4210 		len_free += shrink;
4211 		offset -= shrink;
4212 		if (bpf_xdp_shrink_data(xdp, frag, shrink, true))
4213 			n_frags_free++;
4214 	}
4215 	sinfo->nr_frags -= n_frags_free;
4216 	sinfo->xdp_frags_size -= len_free;
4217 
4218 	if (unlikely(!sinfo->nr_frags)) {
4219 		xdp_buff_clear_frags_flag(xdp);
4220 		xdp_buff_clear_frag_pfmemalloc(xdp);
4221 		xdp->data_end -= offset;
4222 	}
4223 
4224 	return 0;
4225 }
4226 
4227 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4228 {
4229 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4230 	void *data_end = xdp->data_end + offset;
4231 
4232 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4233 		if (offset < 0)
4234 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4235 
4236 		return bpf_xdp_frags_increase_tail(xdp, offset);
4237 	}
4238 
4239 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4240 	if (unlikely(data_end > data_hard_end))
4241 		return -EINVAL;
4242 
4243 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4244 		return -EINVAL;
4245 
4246 	/* Clear memory area on grow, can contain uninit kernel memory */
4247 	if (offset > 0)
4248 		memset(xdp->data_end, 0, offset);
4249 
4250 	xdp->data_end = data_end;
4251 
4252 	return 0;
4253 }
4254 
4255 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4256 	.func		= bpf_xdp_adjust_tail,
4257 	.gpl_only	= false,
4258 	.ret_type	= RET_INTEGER,
4259 	.arg1_type	= ARG_PTR_TO_CTX,
4260 	.arg2_type	= ARG_ANYTHING,
4261 };
4262 
4263 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4264 {
4265 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4266 	void *meta = xdp->data_meta + offset;
4267 	unsigned long metalen = xdp->data - meta;
4268 
4269 	if (xdp_data_meta_unsupported(xdp))
4270 		return -ENOTSUPP;
4271 	if (unlikely(meta < xdp_frame_end ||
4272 		     meta > xdp->data))
4273 		return -EINVAL;
4274 	if (unlikely(xdp_metalen_invalid(metalen)))
4275 		return -EACCES;
4276 
4277 	xdp->data_meta = meta;
4278 
4279 	return 0;
4280 }
4281 
4282 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4283 	.func		= bpf_xdp_adjust_meta,
4284 	.gpl_only	= false,
4285 	.ret_type	= RET_INTEGER,
4286 	.arg1_type	= ARG_PTR_TO_CTX,
4287 	.arg2_type	= ARG_ANYTHING,
4288 };
4289 
4290 /**
4291  * DOC: xdp redirect
4292  *
4293  * XDP_REDIRECT works by a three-step process, implemented in the functions
4294  * below:
4295  *
4296  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4297  *    of the redirect and store it (along with some other metadata) in a per-CPU
4298  *    struct bpf_redirect_info.
4299  *
4300  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4301  *    call xdp_do_redirect() which will use the information in struct
4302  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4303  *    bulk queue structure.
4304  *
4305  * 3. Before exiting its NAPI poll loop, the driver will call
4306  *    xdp_do_flush(), which will flush all the different bulk queues,
4307  *    thus completing the redirect. Note that xdp_do_flush() must be
4308  *    called before napi_complete_done() in the driver, as the
4309  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4310  *    through to the xdp_do_flush() call for RCU protection of all
4311  *    in-kernel data structures.
4312  */
4313 /*
4314  * Pointers to the map entries will be kept around for this whole sequence of
4315  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4316  * the core code; instead, the RCU protection relies on everything happening
4317  * inside a single NAPI poll sequence, which means it's between a pair of calls
4318  * to local_bh_disable()/local_bh_enable().
4319  *
4320  * The map entries are marked as __rcu and the map code makes sure to
4321  * dereference those pointers with rcu_dereference_check() in a way that works
4322  * for both sections that to hold an rcu_read_lock() and sections that are
4323  * called from NAPI without a separate rcu_read_lock(). The code below does not
4324  * use RCU annotations, but relies on those in the map code.
4325  */
4326 void xdp_do_flush(void)
4327 {
4328 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4329 
4330 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4331 	if (lh_dev)
4332 		__dev_flush(lh_dev);
4333 	if (lh_map)
4334 		__cpu_map_flush(lh_map);
4335 	if (lh_xsk)
4336 		__xsk_map_flush(lh_xsk);
4337 }
4338 EXPORT_SYMBOL_GPL(xdp_do_flush);
4339 
4340 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
4341 void xdp_do_check_flushed(struct napi_struct *napi)
4342 {
4343 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4344 	bool missed = false;
4345 
4346 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4347 	if (lh_dev) {
4348 		__dev_flush(lh_dev);
4349 		missed = true;
4350 	}
4351 	if (lh_map) {
4352 		__cpu_map_flush(lh_map);
4353 		missed = true;
4354 	}
4355 	if (lh_xsk) {
4356 		__xsk_map_flush(lh_xsk);
4357 		missed = true;
4358 	}
4359 
4360 	WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4361 		  napi->poll);
4362 }
4363 #endif
4364 
4365 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4366 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4367 
4368 u32 xdp_master_redirect(struct xdp_buff *xdp)
4369 {
4370 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4371 	struct net_device *master, *slave;
4372 
4373 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4374 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4375 	if (slave && slave != xdp->rxq->dev) {
4376 		/* The target device is different from the receiving device, so
4377 		 * redirect it to the new device.
4378 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4379 		 * drivers to unmap the packet from their rx ring.
4380 		 */
4381 		ri->tgt_index = slave->ifindex;
4382 		ri->map_id = INT_MAX;
4383 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4384 		return XDP_REDIRECT;
4385 	}
4386 	return XDP_TX;
4387 }
4388 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4389 
4390 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4391 					const struct net_device *dev,
4392 					struct xdp_buff *xdp,
4393 					const struct bpf_prog *xdp_prog)
4394 {
4395 	enum bpf_map_type map_type = ri->map_type;
4396 	void *fwd = ri->tgt_value;
4397 	u32 map_id = ri->map_id;
4398 	int err;
4399 
4400 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4401 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4402 
4403 	err = __xsk_map_redirect(fwd, xdp);
4404 	if (unlikely(err))
4405 		goto err;
4406 
4407 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4408 	return 0;
4409 err:
4410 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4411 	return err;
4412 }
4413 
4414 static __always_inline int
4415 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4416 			struct xdp_frame *xdpf,
4417 			const struct bpf_prog *xdp_prog)
4418 {
4419 	enum bpf_map_type map_type = ri->map_type;
4420 	void *fwd = ri->tgt_value;
4421 	u32 map_id = ri->map_id;
4422 	u32 flags = ri->flags;
4423 	struct bpf_map *map;
4424 	int err;
4425 
4426 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4427 	ri->flags = 0;
4428 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4429 
4430 	if (unlikely(!xdpf)) {
4431 		err = -EOVERFLOW;
4432 		goto err;
4433 	}
4434 
4435 	switch (map_type) {
4436 	case BPF_MAP_TYPE_DEVMAP:
4437 		fallthrough;
4438 	case BPF_MAP_TYPE_DEVMAP_HASH:
4439 		if (unlikely(flags & BPF_F_BROADCAST)) {
4440 			map = READ_ONCE(ri->map);
4441 
4442 			/* The map pointer is cleared when the map is being torn
4443 			 * down by dev_map_free()
4444 			 */
4445 			if (unlikely(!map)) {
4446 				err = -ENOENT;
4447 				break;
4448 			}
4449 
4450 			WRITE_ONCE(ri->map, NULL);
4451 			err = dev_map_enqueue_multi(xdpf, dev, map,
4452 						    flags & BPF_F_EXCLUDE_INGRESS);
4453 		} else {
4454 			err = dev_map_enqueue(fwd, xdpf, dev);
4455 		}
4456 		break;
4457 	case BPF_MAP_TYPE_CPUMAP:
4458 		err = cpu_map_enqueue(fwd, xdpf, dev);
4459 		break;
4460 	case BPF_MAP_TYPE_UNSPEC:
4461 		if (map_id == INT_MAX) {
4462 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4463 			if (unlikely(!fwd)) {
4464 				err = -EINVAL;
4465 				break;
4466 			}
4467 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4468 			break;
4469 		}
4470 		fallthrough;
4471 	default:
4472 		err = -EBADRQC;
4473 	}
4474 
4475 	if (unlikely(err))
4476 		goto err;
4477 
4478 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4479 	return 0;
4480 err:
4481 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4482 	return err;
4483 }
4484 
4485 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4486 		    const struct bpf_prog *xdp_prog)
4487 {
4488 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4489 	enum bpf_map_type map_type = ri->map_type;
4490 
4491 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4492 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4493 
4494 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4495 				       xdp_prog);
4496 }
4497 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4498 
4499 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4500 			  struct xdp_frame *xdpf,
4501 			  const struct bpf_prog *xdp_prog)
4502 {
4503 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4504 	enum bpf_map_type map_type = ri->map_type;
4505 
4506 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4507 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4508 
4509 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4510 }
4511 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4512 
4513 static int xdp_do_generic_redirect_map(struct net_device *dev,
4514 				       struct sk_buff *skb,
4515 				       struct xdp_buff *xdp,
4516 				       const struct bpf_prog *xdp_prog,
4517 				       void *fwd, enum bpf_map_type map_type,
4518 				       u32 map_id, u32 flags)
4519 {
4520 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4521 	struct bpf_map *map;
4522 	int err;
4523 
4524 	switch (map_type) {
4525 	case BPF_MAP_TYPE_DEVMAP:
4526 		fallthrough;
4527 	case BPF_MAP_TYPE_DEVMAP_HASH:
4528 		if (unlikely(flags & BPF_F_BROADCAST)) {
4529 			map = READ_ONCE(ri->map);
4530 
4531 			/* The map pointer is cleared when the map is being torn
4532 			 * down by dev_map_free()
4533 			 */
4534 			if (unlikely(!map)) {
4535 				err = -ENOENT;
4536 				break;
4537 			}
4538 
4539 			WRITE_ONCE(ri->map, NULL);
4540 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4541 						     flags & BPF_F_EXCLUDE_INGRESS);
4542 		} else {
4543 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4544 		}
4545 		if (unlikely(err))
4546 			goto err;
4547 		break;
4548 	case BPF_MAP_TYPE_XSKMAP:
4549 		err = xsk_generic_rcv(fwd, xdp);
4550 		if (err)
4551 			goto err;
4552 		consume_skb(skb);
4553 		break;
4554 	case BPF_MAP_TYPE_CPUMAP:
4555 		err = cpu_map_generic_redirect(fwd, skb);
4556 		if (unlikely(err))
4557 			goto err;
4558 		break;
4559 	default:
4560 		err = -EBADRQC;
4561 		goto err;
4562 	}
4563 
4564 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4565 	return 0;
4566 err:
4567 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4568 	return err;
4569 }
4570 
4571 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4572 			    struct xdp_buff *xdp,
4573 			    const struct bpf_prog *xdp_prog)
4574 {
4575 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4576 	enum bpf_map_type map_type = ri->map_type;
4577 	void *fwd = ri->tgt_value;
4578 	u32 map_id = ri->map_id;
4579 	u32 flags = ri->flags;
4580 	int err;
4581 
4582 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4583 	ri->flags = 0;
4584 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4585 
4586 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4587 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4588 		if (unlikely(!fwd)) {
4589 			err = -EINVAL;
4590 			goto err;
4591 		}
4592 
4593 		err = xdp_ok_fwd_dev(fwd, skb->len);
4594 		if (unlikely(err))
4595 			goto err;
4596 
4597 		skb->dev = fwd;
4598 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4599 		generic_xdp_tx(skb, xdp_prog);
4600 		return 0;
4601 	}
4602 
4603 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4604 err:
4605 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4606 	return err;
4607 }
4608 
4609 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4610 {
4611 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4612 
4613 	if (unlikely(flags))
4614 		return XDP_ABORTED;
4615 
4616 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4617 	 * by map_idr) is used for ifindex based XDP redirect.
4618 	 */
4619 	ri->tgt_index = ifindex;
4620 	ri->map_id = INT_MAX;
4621 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4622 
4623 	return XDP_REDIRECT;
4624 }
4625 
4626 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4627 	.func           = bpf_xdp_redirect,
4628 	.gpl_only       = false,
4629 	.ret_type       = RET_INTEGER,
4630 	.arg1_type      = ARG_ANYTHING,
4631 	.arg2_type      = ARG_ANYTHING,
4632 };
4633 
4634 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4635 	   u64, flags)
4636 {
4637 	return map->ops->map_redirect(map, key, flags);
4638 }
4639 
4640 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4641 	.func           = bpf_xdp_redirect_map,
4642 	.gpl_only       = false,
4643 	.ret_type       = RET_INTEGER,
4644 	.arg1_type      = ARG_CONST_MAP_PTR,
4645 	.arg2_type      = ARG_ANYTHING,
4646 	.arg3_type      = ARG_ANYTHING,
4647 };
4648 
4649 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4650 				  unsigned long off, unsigned long len)
4651 {
4652 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4653 
4654 	if (unlikely(!ptr))
4655 		return len;
4656 	if (ptr != dst_buff)
4657 		memcpy(dst_buff, ptr, len);
4658 
4659 	return 0;
4660 }
4661 
4662 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4663 	   u64, flags, void *, meta, u64, meta_size)
4664 {
4665 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4666 
4667 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4668 		return -EINVAL;
4669 	if (unlikely(!skb || skb_size > skb->len))
4670 		return -EFAULT;
4671 
4672 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4673 				bpf_skb_copy);
4674 }
4675 
4676 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4677 	.func		= bpf_skb_event_output,
4678 	.gpl_only	= true,
4679 	.ret_type	= RET_INTEGER,
4680 	.arg1_type	= ARG_PTR_TO_CTX,
4681 	.arg2_type	= ARG_CONST_MAP_PTR,
4682 	.arg3_type	= ARG_ANYTHING,
4683 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4684 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4685 };
4686 
4687 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4688 
4689 const struct bpf_func_proto bpf_skb_output_proto = {
4690 	.func		= bpf_skb_event_output,
4691 	.gpl_only	= true,
4692 	.ret_type	= RET_INTEGER,
4693 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4694 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4695 	.arg2_type	= ARG_CONST_MAP_PTR,
4696 	.arg3_type	= ARG_ANYTHING,
4697 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4698 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4699 };
4700 
4701 static unsigned short bpf_tunnel_key_af(u64 flags)
4702 {
4703 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4704 }
4705 
4706 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4707 	   u32, size, u64, flags)
4708 {
4709 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4710 	u8 compat[sizeof(struct bpf_tunnel_key)];
4711 	void *to_orig = to;
4712 	int err;
4713 
4714 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4715 					 BPF_F_TUNINFO_FLAGS)))) {
4716 		err = -EINVAL;
4717 		goto err_clear;
4718 	}
4719 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4720 		err = -EPROTO;
4721 		goto err_clear;
4722 	}
4723 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4724 		err = -EINVAL;
4725 		switch (size) {
4726 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4727 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4728 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4729 			goto set_compat;
4730 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4731 			/* Fixup deprecated structure layouts here, so we have
4732 			 * a common path later on.
4733 			 */
4734 			if (ip_tunnel_info_af(info) != AF_INET)
4735 				goto err_clear;
4736 set_compat:
4737 			to = (struct bpf_tunnel_key *)compat;
4738 			break;
4739 		default:
4740 			goto err_clear;
4741 		}
4742 	}
4743 
4744 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4745 	to->tunnel_tos = info->key.tos;
4746 	to->tunnel_ttl = info->key.ttl;
4747 	if (flags & BPF_F_TUNINFO_FLAGS)
4748 		to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4749 	else
4750 		to->tunnel_ext = 0;
4751 
4752 	if (flags & BPF_F_TUNINFO_IPV6) {
4753 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4754 		       sizeof(to->remote_ipv6));
4755 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4756 		       sizeof(to->local_ipv6));
4757 		to->tunnel_label = be32_to_cpu(info->key.label);
4758 	} else {
4759 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4760 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4761 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4762 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4763 		to->tunnel_label = 0;
4764 	}
4765 
4766 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4767 		memcpy(to_orig, to, size);
4768 
4769 	return 0;
4770 err_clear:
4771 	memset(to_orig, 0, size);
4772 	return err;
4773 }
4774 
4775 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4776 	.func		= bpf_skb_get_tunnel_key,
4777 	.gpl_only	= false,
4778 	.ret_type	= RET_INTEGER,
4779 	.arg1_type	= ARG_PTR_TO_CTX,
4780 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4781 	.arg3_type	= ARG_CONST_SIZE,
4782 	.arg4_type	= ARG_ANYTHING,
4783 };
4784 
4785 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4786 {
4787 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4788 	int err;
4789 
4790 	if (unlikely(!info ||
4791 		     !ip_tunnel_is_options_present(info->key.tun_flags))) {
4792 		err = -ENOENT;
4793 		goto err_clear;
4794 	}
4795 	if (unlikely(size < info->options_len)) {
4796 		err = -ENOMEM;
4797 		goto err_clear;
4798 	}
4799 
4800 	ip_tunnel_info_opts_get(to, info);
4801 	if (size > info->options_len)
4802 		memset(to + info->options_len, 0, size - info->options_len);
4803 
4804 	return info->options_len;
4805 err_clear:
4806 	memset(to, 0, size);
4807 	return err;
4808 }
4809 
4810 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4811 	.func		= bpf_skb_get_tunnel_opt,
4812 	.gpl_only	= false,
4813 	.ret_type	= RET_INTEGER,
4814 	.arg1_type	= ARG_PTR_TO_CTX,
4815 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4816 	.arg3_type	= ARG_CONST_SIZE,
4817 };
4818 
4819 static struct metadata_dst __percpu *md_dst;
4820 
4821 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4822 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4823 {
4824 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4825 	u8 compat[sizeof(struct bpf_tunnel_key)];
4826 	struct ip_tunnel_info *info;
4827 
4828 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4829 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4830 			       BPF_F_NO_TUNNEL_KEY)))
4831 		return -EINVAL;
4832 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4833 		switch (size) {
4834 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4835 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4836 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4837 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4838 			/* Fixup deprecated structure layouts here, so we have
4839 			 * a common path later on.
4840 			 */
4841 			memcpy(compat, from, size);
4842 			memset(compat + size, 0, sizeof(compat) - size);
4843 			from = (const struct bpf_tunnel_key *) compat;
4844 			break;
4845 		default:
4846 			return -EINVAL;
4847 		}
4848 	}
4849 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4850 		     from->tunnel_ext))
4851 		return -EINVAL;
4852 
4853 	skb_dst_drop(skb);
4854 	dst_hold((struct dst_entry *) md);
4855 	skb_dst_set(skb, (struct dst_entry *) md);
4856 
4857 	info = &md->u.tun_info;
4858 	memset(info, 0, sizeof(*info));
4859 	info->mode = IP_TUNNEL_INFO_TX;
4860 
4861 	__set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4862 	__assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4863 		     flags & BPF_F_DONT_FRAGMENT);
4864 	__assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4865 		     !(flags & BPF_F_ZERO_CSUM_TX));
4866 	__assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4867 		     flags & BPF_F_SEQ_NUMBER);
4868 	__assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4869 		     !(flags & BPF_F_NO_TUNNEL_KEY));
4870 
4871 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4872 	info->key.tos = from->tunnel_tos;
4873 	info->key.ttl = from->tunnel_ttl;
4874 
4875 	if (flags & BPF_F_TUNINFO_IPV6) {
4876 		info->mode |= IP_TUNNEL_INFO_IPV6;
4877 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4878 		       sizeof(from->remote_ipv6));
4879 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4880 		       sizeof(from->local_ipv6));
4881 		info->key.label = cpu_to_be32(from->tunnel_label) &
4882 				  IPV6_FLOWLABEL_MASK;
4883 	} else {
4884 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4885 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4886 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4887 	}
4888 
4889 	return 0;
4890 }
4891 
4892 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4893 	.func		= bpf_skb_set_tunnel_key,
4894 	.gpl_only	= false,
4895 	.ret_type	= RET_INTEGER,
4896 	.arg1_type	= ARG_PTR_TO_CTX,
4897 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4898 	.arg3_type	= ARG_CONST_SIZE,
4899 	.arg4_type	= ARG_ANYTHING,
4900 };
4901 
4902 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4903 	   const u8 *, from, u32, size)
4904 {
4905 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4906 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4907 	IP_TUNNEL_DECLARE_FLAGS(present) = { };
4908 
4909 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4910 		return -EINVAL;
4911 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4912 		return -ENOMEM;
4913 
4914 	ip_tunnel_set_options_present(present);
4915 	ip_tunnel_info_opts_set(info, from, size, present);
4916 
4917 	return 0;
4918 }
4919 
4920 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4921 	.func		= bpf_skb_set_tunnel_opt,
4922 	.gpl_only	= false,
4923 	.ret_type	= RET_INTEGER,
4924 	.arg1_type	= ARG_PTR_TO_CTX,
4925 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4926 	.arg3_type	= ARG_CONST_SIZE,
4927 };
4928 
4929 static const struct bpf_func_proto *
4930 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4931 {
4932 	if (!md_dst) {
4933 		struct metadata_dst __percpu *tmp;
4934 
4935 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4936 						METADATA_IP_TUNNEL,
4937 						GFP_KERNEL);
4938 		if (!tmp)
4939 			return NULL;
4940 		if (cmpxchg(&md_dst, NULL, tmp))
4941 			metadata_dst_free_percpu(tmp);
4942 	}
4943 
4944 	switch (which) {
4945 	case BPF_FUNC_skb_set_tunnel_key:
4946 		return &bpf_skb_set_tunnel_key_proto;
4947 	case BPF_FUNC_skb_set_tunnel_opt:
4948 		return &bpf_skb_set_tunnel_opt_proto;
4949 	default:
4950 		return NULL;
4951 	}
4952 }
4953 
4954 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4955 	   u32, idx)
4956 {
4957 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4958 	struct cgroup *cgrp;
4959 	struct sock *sk;
4960 
4961 	sk = skb_to_full_sk(skb);
4962 	if (!sk || !sk_fullsock(sk))
4963 		return -ENOENT;
4964 	if (unlikely(idx >= array->map.max_entries))
4965 		return -E2BIG;
4966 
4967 	cgrp = READ_ONCE(array->ptrs[idx]);
4968 	if (unlikely(!cgrp))
4969 		return -EAGAIN;
4970 
4971 	return sk_under_cgroup_hierarchy(sk, cgrp);
4972 }
4973 
4974 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4975 	.func		= bpf_skb_under_cgroup,
4976 	.gpl_only	= false,
4977 	.ret_type	= RET_INTEGER,
4978 	.arg1_type	= ARG_PTR_TO_CTX,
4979 	.arg2_type	= ARG_CONST_MAP_PTR,
4980 	.arg3_type	= ARG_ANYTHING,
4981 };
4982 
4983 #ifdef CONFIG_SOCK_CGROUP_DATA
4984 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4985 {
4986 	struct cgroup *cgrp;
4987 
4988 	sk = sk_to_full_sk(sk);
4989 	if (!sk || !sk_fullsock(sk))
4990 		return 0;
4991 
4992 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4993 	return cgroup_id(cgrp);
4994 }
4995 
4996 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4997 {
4998 	return __bpf_sk_cgroup_id(skb->sk);
4999 }
5000 
5001 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
5002 	.func           = bpf_skb_cgroup_id,
5003 	.gpl_only       = false,
5004 	.ret_type       = RET_INTEGER,
5005 	.arg1_type      = ARG_PTR_TO_CTX,
5006 };
5007 
5008 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
5009 					      int ancestor_level)
5010 {
5011 	struct cgroup *ancestor;
5012 	struct cgroup *cgrp;
5013 
5014 	sk = sk_to_full_sk(sk);
5015 	if (!sk || !sk_fullsock(sk))
5016 		return 0;
5017 
5018 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5019 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
5020 	if (!ancestor)
5021 		return 0;
5022 
5023 	return cgroup_id(ancestor);
5024 }
5025 
5026 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5027 	   ancestor_level)
5028 {
5029 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5030 }
5031 
5032 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5033 	.func           = bpf_skb_ancestor_cgroup_id,
5034 	.gpl_only       = false,
5035 	.ret_type       = RET_INTEGER,
5036 	.arg1_type      = ARG_PTR_TO_CTX,
5037 	.arg2_type      = ARG_ANYTHING,
5038 };
5039 
5040 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5041 {
5042 	return __bpf_sk_cgroup_id(sk);
5043 }
5044 
5045 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5046 	.func           = bpf_sk_cgroup_id,
5047 	.gpl_only       = false,
5048 	.ret_type       = RET_INTEGER,
5049 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5050 };
5051 
5052 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5053 {
5054 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5055 }
5056 
5057 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5058 	.func           = bpf_sk_ancestor_cgroup_id,
5059 	.gpl_only       = false,
5060 	.ret_type       = RET_INTEGER,
5061 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5062 	.arg2_type      = ARG_ANYTHING,
5063 };
5064 #endif
5065 
5066 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5067 				  unsigned long off, unsigned long len)
5068 {
5069 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5070 
5071 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5072 	return 0;
5073 }
5074 
5075 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5076 	   u64, flags, void *, meta, u64, meta_size)
5077 {
5078 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5079 
5080 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5081 		return -EINVAL;
5082 
5083 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5084 		return -EFAULT;
5085 
5086 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5087 				xdp_size, bpf_xdp_copy);
5088 }
5089 
5090 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5091 	.func		= bpf_xdp_event_output,
5092 	.gpl_only	= true,
5093 	.ret_type	= RET_INTEGER,
5094 	.arg1_type	= ARG_PTR_TO_CTX,
5095 	.arg2_type	= ARG_CONST_MAP_PTR,
5096 	.arg3_type	= ARG_ANYTHING,
5097 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5098 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5099 };
5100 
5101 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5102 
5103 const struct bpf_func_proto bpf_xdp_output_proto = {
5104 	.func		= bpf_xdp_event_output,
5105 	.gpl_only	= true,
5106 	.ret_type	= RET_INTEGER,
5107 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5108 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5109 	.arg2_type	= ARG_CONST_MAP_PTR,
5110 	.arg3_type	= ARG_ANYTHING,
5111 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5112 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5113 };
5114 
5115 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5116 {
5117 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5118 }
5119 
5120 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5121 	.func           = bpf_get_socket_cookie,
5122 	.gpl_only       = false,
5123 	.ret_type       = RET_INTEGER,
5124 	.arg1_type      = ARG_PTR_TO_CTX,
5125 };
5126 
5127 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5128 {
5129 	return __sock_gen_cookie(ctx->sk);
5130 }
5131 
5132 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5133 	.func		= bpf_get_socket_cookie_sock_addr,
5134 	.gpl_only	= false,
5135 	.ret_type	= RET_INTEGER,
5136 	.arg1_type	= ARG_PTR_TO_CTX,
5137 };
5138 
5139 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5140 {
5141 	return __sock_gen_cookie(ctx);
5142 }
5143 
5144 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5145 	.func		= bpf_get_socket_cookie_sock,
5146 	.gpl_only	= false,
5147 	.ret_type	= RET_INTEGER,
5148 	.arg1_type	= ARG_PTR_TO_CTX,
5149 };
5150 
5151 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5152 {
5153 	return sk ? sock_gen_cookie(sk) : 0;
5154 }
5155 
5156 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5157 	.func		= bpf_get_socket_ptr_cookie,
5158 	.gpl_only	= false,
5159 	.ret_type	= RET_INTEGER,
5160 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5161 };
5162 
5163 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5164 {
5165 	return __sock_gen_cookie(ctx->sk);
5166 }
5167 
5168 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5169 	.func		= bpf_get_socket_cookie_sock_ops,
5170 	.gpl_only	= false,
5171 	.ret_type	= RET_INTEGER,
5172 	.arg1_type	= ARG_PTR_TO_CTX,
5173 };
5174 
5175 static u64 __bpf_get_netns_cookie(struct sock *sk)
5176 {
5177 	const struct net *net = sk ? sock_net(sk) : &init_net;
5178 
5179 	return net->net_cookie;
5180 }
5181 
5182 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5183 {
5184 	return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5185 }
5186 
5187 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5188 	.func           = bpf_get_netns_cookie,
5189 	.ret_type       = RET_INTEGER,
5190 	.arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5191 };
5192 
5193 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5194 {
5195 	return __bpf_get_netns_cookie(ctx);
5196 }
5197 
5198 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5199 	.func		= bpf_get_netns_cookie_sock,
5200 	.gpl_only	= false,
5201 	.ret_type	= RET_INTEGER,
5202 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5203 };
5204 
5205 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5206 {
5207 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5208 }
5209 
5210 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5211 	.func		= bpf_get_netns_cookie_sock_addr,
5212 	.gpl_only	= false,
5213 	.ret_type	= RET_INTEGER,
5214 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5215 };
5216 
5217 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5218 {
5219 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5220 }
5221 
5222 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5223 	.func		= bpf_get_netns_cookie_sock_ops,
5224 	.gpl_only	= false,
5225 	.ret_type	= RET_INTEGER,
5226 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5227 };
5228 
5229 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5230 {
5231 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5232 }
5233 
5234 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5235 	.func		= bpf_get_netns_cookie_sk_msg,
5236 	.gpl_only	= false,
5237 	.ret_type	= RET_INTEGER,
5238 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5239 };
5240 
5241 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5242 {
5243 	struct sock *sk = sk_to_full_sk(skb->sk);
5244 	kuid_t kuid;
5245 
5246 	if (!sk || !sk_fullsock(sk))
5247 		return overflowuid;
5248 	kuid = sock_net_uid(sock_net(sk), sk);
5249 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5250 }
5251 
5252 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5253 	.func           = bpf_get_socket_uid,
5254 	.gpl_only       = false,
5255 	.ret_type       = RET_INTEGER,
5256 	.arg1_type      = ARG_PTR_TO_CTX,
5257 };
5258 
5259 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5260 {
5261 	u32 sk_bpf_cb_flags;
5262 
5263 	if (getopt) {
5264 		*(u32 *)optval = sk->sk_bpf_cb_flags;
5265 		return 0;
5266 	}
5267 
5268 	sk_bpf_cb_flags = *(u32 *)optval;
5269 
5270 	if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5271 		return -EINVAL;
5272 
5273 	sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5274 
5275 	return 0;
5276 }
5277 
5278 static int sol_socket_sockopt(struct sock *sk, int optname,
5279 			      char *optval, int *optlen,
5280 			      bool getopt)
5281 {
5282 	switch (optname) {
5283 	case SO_REUSEADDR:
5284 	case SO_SNDBUF:
5285 	case SO_RCVBUF:
5286 	case SO_KEEPALIVE:
5287 	case SO_PRIORITY:
5288 	case SO_REUSEPORT:
5289 	case SO_RCVLOWAT:
5290 	case SO_MARK:
5291 	case SO_MAX_PACING_RATE:
5292 	case SO_BINDTOIFINDEX:
5293 	case SO_TXREHASH:
5294 	case SK_BPF_CB_FLAGS:
5295 		if (*optlen != sizeof(int))
5296 			return -EINVAL;
5297 		break;
5298 	case SO_BINDTODEVICE:
5299 		break;
5300 	default:
5301 		return -EINVAL;
5302 	}
5303 
5304 	if (optname == SK_BPF_CB_FLAGS)
5305 		return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5306 
5307 	if (getopt) {
5308 		if (optname == SO_BINDTODEVICE)
5309 			return -EINVAL;
5310 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5311 				     KERNEL_SOCKPTR(optval),
5312 				     KERNEL_SOCKPTR(optlen));
5313 	}
5314 
5315 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5316 			     KERNEL_SOCKPTR(optval), *optlen);
5317 }
5318 
5319 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5320 				  char *optval, int optlen)
5321 {
5322 	if (optlen != sizeof(int))
5323 		return -EINVAL;
5324 
5325 	switch (optname) {
5326 	case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5327 		int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5328 
5329 		memcpy(optval, &cb_flags, optlen);
5330 		break;
5331 	}
5332 	case TCP_BPF_RTO_MIN: {
5333 		int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5334 
5335 		memcpy(optval, &rto_min_us, optlen);
5336 		break;
5337 	}
5338 	case TCP_BPF_DELACK_MAX: {
5339 		int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5340 
5341 		memcpy(optval, &delack_max_us, optlen);
5342 		break;
5343 	}
5344 	default:
5345 		return -EINVAL;
5346 	}
5347 
5348 	return 0;
5349 }
5350 
5351 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5352 				  char *optval, int optlen)
5353 {
5354 	struct tcp_sock *tp = tcp_sk(sk);
5355 	unsigned long timeout;
5356 	int val;
5357 
5358 	if (optlen != sizeof(int))
5359 		return -EINVAL;
5360 
5361 	val = *(int *)optval;
5362 
5363 	/* Only some options are supported */
5364 	switch (optname) {
5365 	case TCP_BPF_IW:
5366 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5367 			return -EINVAL;
5368 		tcp_snd_cwnd_set(tp, val);
5369 		break;
5370 	case TCP_BPF_SNDCWND_CLAMP:
5371 		if (val <= 0)
5372 			return -EINVAL;
5373 		tp->snd_cwnd_clamp = val;
5374 		tp->snd_ssthresh = val;
5375 		break;
5376 	case TCP_BPF_DELACK_MAX:
5377 		timeout = usecs_to_jiffies(val);
5378 		if (timeout > TCP_DELACK_MAX ||
5379 		    timeout < TCP_TIMEOUT_MIN)
5380 			return -EINVAL;
5381 		inet_csk(sk)->icsk_delack_max = timeout;
5382 		break;
5383 	case TCP_BPF_RTO_MIN:
5384 		timeout = usecs_to_jiffies(val);
5385 		if (timeout > TCP_RTO_MIN ||
5386 		    timeout < TCP_TIMEOUT_MIN)
5387 			return -EINVAL;
5388 		inet_csk(sk)->icsk_rto_min = timeout;
5389 		break;
5390 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5391 		if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5392 			return -EINVAL;
5393 		tp->bpf_sock_ops_cb_flags = val;
5394 		break;
5395 	default:
5396 		return -EINVAL;
5397 	}
5398 
5399 	return 0;
5400 }
5401 
5402 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5403 				      int *optlen, bool getopt)
5404 {
5405 	struct tcp_sock *tp;
5406 	int ret;
5407 
5408 	if (*optlen < 2)
5409 		return -EINVAL;
5410 
5411 	if (getopt) {
5412 		if (!inet_csk(sk)->icsk_ca_ops)
5413 			return -EINVAL;
5414 		/* BPF expects NULL-terminated tcp-cc string */
5415 		optval[--(*optlen)] = '\0';
5416 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5417 					 KERNEL_SOCKPTR(optval),
5418 					 KERNEL_SOCKPTR(optlen));
5419 	}
5420 
5421 	/* "cdg" is the only cc that alloc a ptr
5422 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5423 	 * overwrite this ptr after switching to cdg.
5424 	 */
5425 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5426 		return -ENOTSUPP;
5427 
5428 	/* It stops this looping
5429 	 *
5430 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5431 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5432 	 *
5433 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5434 	 * in order to break the loop when both .init
5435 	 * are the same bpf prog.
5436 	 *
5437 	 * This applies even the second bpf_setsockopt(tcp_cc)
5438 	 * does not cause a loop.  This limits only the first
5439 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5440 	 * pick a fallback cc (eg. peer does not support ECN)
5441 	 * and the second '.init' cannot fallback to
5442 	 * another.
5443 	 */
5444 	tp = tcp_sk(sk);
5445 	if (tp->bpf_chg_cc_inprogress)
5446 		return -EBUSY;
5447 
5448 	tp->bpf_chg_cc_inprogress = 1;
5449 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5450 				KERNEL_SOCKPTR(optval), *optlen);
5451 	tp->bpf_chg_cc_inprogress = 0;
5452 	return ret;
5453 }
5454 
5455 static int sol_tcp_sockopt(struct sock *sk, int optname,
5456 			   char *optval, int *optlen,
5457 			   bool getopt)
5458 {
5459 	if (sk->sk_protocol != IPPROTO_TCP)
5460 		return -EINVAL;
5461 
5462 	switch (optname) {
5463 	case TCP_NODELAY:
5464 	case TCP_MAXSEG:
5465 	case TCP_KEEPIDLE:
5466 	case TCP_KEEPINTVL:
5467 	case TCP_KEEPCNT:
5468 	case TCP_SYNCNT:
5469 	case TCP_WINDOW_CLAMP:
5470 	case TCP_THIN_LINEAR_TIMEOUTS:
5471 	case TCP_USER_TIMEOUT:
5472 	case TCP_NOTSENT_LOWAT:
5473 	case TCP_SAVE_SYN:
5474 	case TCP_RTO_MAX_MS:
5475 		if (*optlen != sizeof(int))
5476 			return -EINVAL;
5477 		break;
5478 	case TCP_CONGESTION:
5479 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5480 	case TCP_SAVED_SYN:
5481 		if (*optlen < 1)
5482 			return -EINVAL;
5483 		break;
5484 	default:
5485 		if (getopt)
5486 			return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5487 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5488 	}
5489 
5490 	if (getopt) {
5491 		if (optname == TCP_SAVED_SYN) {
5492 			struct tcp_sock *tp = tcp_sk(sk);
5493 
5494 			if (!tp->saved_syn ||
5495 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5496 				return -EINVAL;
5497 			memcpy(optval, tp->saved_syn->data, *optlen);
5498 			/* It cannot free tp->saved_syn here because it
5499 			 * does not know if the user space still needs it.
5500 			 */
5501 			return 0;
5502 		}
5503 
5504 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5505 					 KERNEL_SOCKPTR(optval),
5506 					 KERNEL_SOCKPTR(optlen));
5507 	}
5508 
5509 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5510 				 KERNEL_SOCKPTR(optval), *optlen);
5511 }
5512 
5513 static int sol_ip_sockopt(struct sock *sk, int optname,
5514 			  char *optval, int *optlen,
5515 			  bool getopt)
5516 {
5517 	if (sk->sk_family != AF_INET)
5518 		return -EINVAL;
5519 
5520 	switch (optname) {
5521 	case IP_TOS:
5522 		if (*optlen != sizeof(int))
5523 			return -EINVAL;
5524 		break;
5525 	default:
5526 		return -EINVAL;
5527 	}
5528 
5529 	if (getopt)
5530 		return do_ip_getsockopt(sk, SOL_IP, optname,
5531 					KERNEL_SOCKPTR(optval),
5532 					KERNEL_SOCKPTR(optlen));
5533 
5534 	return do_ip_setsockopt(sk, SOL_IP, optname,
5535 				KERNEL_SOCKPTR(optval), *optlen);
5536 }
5537 
5538 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5539 			    char *optval, int *optlen,
5540 			    bool getopt)
5541 {
5542 	if (sk->sk_family != AF_INET6)
5543 		return -EINVAL;
5544 
5545 	switch (optname) {
5546 	case IPV6_TCLASS:
5547 	case IPV6_AUTOFLOWLABEL:
5548 		if (*optlen != sizeof(int))
5549 			return -EINVAL;
5550 		break;
5551 	default:
5552 		return -EINVAL;
5553 	}
5554 
5555 	if (getopt)
5556 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5557 						      KERNEL_SOCKPTR(optval),
5558 						      KERNEL_SOCKPTR(optlen));
5559 
5560 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5561 					      KERNEL_SOCKPTR(optval), *optlen);
5562 }
5563 
5564 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5565 			    char *optval, int optlen)
5566 {
5567 	if (!sk_fullsock(sk))
5568 		return -EINVAL;
5569 
5570 	if (level == SOL_SOCKET)
5571 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5572 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5573 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5574 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5575 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5576 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5577 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5578 
5579 	return -EINVAL;
5580 }
5581 
5582 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5583 {
5584 	return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5585 }
5586 
5587 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5588 			   char *optval, int optlen)
5589 {
5590 	if (sk_fullsock(sk))
5591 		sock_owned_by_me(sk);
5592 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5593 }
5594 
5595 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5596 			    char *optval, int optlen)
5597 {
5598 	int err, saved_optlen = optlen;
5599 
5600 	if (!sk_fullsock(sk)) {
5601 		err = -EINVAL;
5602 		goto done;
5603 	}
5604 
5605 	if (level == SOL_SOCKET)
5606 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5607 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5608 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5609 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5610 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5611 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5612 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5613 	else
5614 		err = -EINVAL;
5615 
5616 done:
5617 	if (err)
5618 		optlen = 0;
5619 	if (optlen < saved_optlen)
5620 		memset(optval + optlen, 0, saved_optlen - optlen);
5621 	return err;
5622 }
5623 
5624 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5625 			   char *optval, int optlen)
5626 {
5627 	if (sk_fullsock(sk))
5628 		sock_owned_by_me(sk);
5629 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5630 }
5631 
5632 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5633 	   int, optname, char *, optval, int, optlen)
5634 {
5635 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5636 }
5637 
5638 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5639 	.func		= bpf_sk_setsockopt,
5640 	.gpl_only	= false,
5641 	.ret_type	= RET_INTEGER,
5642 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5643 	.arg2_type	= ARG_ANYTHING,
5644 	.arg3_type	= ARG_ANYTHING,
5645 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5646 	.arg5_type	= ARG_CONST_SIZE,
5647 };
5648 
5649 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5650 	   int, optname, char *, optval, int, optlen)
5651 {
5652 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5653 }
5654 
5655 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5656 	.func		= bpf_sk_getsockopt,
5657 	.gpl_only	= false,
5658 	.ret_type	= RET_INTEGER,
5659 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5660 	.arg2_type	= ARG_ANYTHING,
5661 	.arg3_type	= ARG_ANYTHING,
5662 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5663 	.arg5_type	= ARG_CONST_SIZE,
5664 };
5665 
5666 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5667 	   int, optname, char *, optval, int, optlen)
5668 {
5669 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5670 }
5671 
5672 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5673 	.func		= bpf_unlocked_sk_setsockopt,
5674 	.gpl_only	= false,
5675 	.ret_type	= RET_INTEGER,
5676 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5677 	.arg2_type	= ARG_ANYTHING,
5678 	.arg3_type	= ARG_ANYTHING,
5679 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5680 	.arg5_type	= ARG_CONST_SIZE,
5681 };
5682 
5683 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5684 	   int, optname, char *, optval, int, optlen)
5685 {
5686 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5687 }
5688 
5689 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5690 	.func		= bpf_unlocked_sk_getsockopt,
5691 	.gpl_only	= false,
5692 	.ret_type	= RET_INTEGER,
5693 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5694 	.arg2_type	= ARG_ANYTHING,
5695 	.arg3_type	= ARG_ANYTHING,
5696 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5697 	.arg5_type	= ARG_CONST_SIZE,
5698 };
5699 
5700 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5701 	   int, level, int, optname, char *, optval, int, optlen)
5702 {
5703 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5704 }
5705 
5706 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5707 	.func		= bpf_sock_addr_setsockopt,
5708 	.gpl_only	= false,
5709 	.ret_type	= RET_INTEGER,
5710 	.arg1_type	= ARG_PTR_TO_CTX,
5711 	.arg2_type	= ARG_ANYTHING,
5712 	.arg3_type	= ARG_ANYTHING,
5713 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5714 	.arg5_type	= ARG_CONST_SIZE,
5715 };
5716 
5717 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5718 	   int, level, int, optname, char *, optval, int, optlen)
5719 {
5720 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5721 }
5722 
5723 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5724 	.func		= bpf_sock_addr_getsockopt,
5725 	.gpl_only	= false,
5726 	.ret_type	= RET_INTEGER,
5727 	.arg1_type	= ARG_PTR_TO_CTX,
5728 	.arg2_type	= ARG_ANYTHING,
5729 	.arg3_type	= ARG_ANYTHING,
5730 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5731 	.arg5_type	= ARG_CONST_SIZE,
5732 };
5733 
5734 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5735 	   int, level, int, optname, char *, optval, int, optlen)
5736 {
5737 	if (!is_locked_tcp_sock_ops(bpf_sock))
5738 		return -EOPNOTSUPP;
5739 
5740 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5741 }
5742 
5743 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5744 	.func		= bpf_sock_ops_setsockopt,
5745 	.gpl_only	= false,
5746 	.ret_type	= RET_INTEGER,
5747 	.arg1_type	= ARG_PTR_TO_CTX,
5748 	.arg2_type	= ARG_ANYTHING,
5749 	.arg3_type	= ARG_ANYTHING,
5750 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5751 	.arg5_type	= ARG_CONST_SIZE,
5752 };
5753 
5754 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5755 				int optname, const u8 **start)
5756 {
5757 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5758 	const u8 *hdr_start;
5759 	int ret;
5760 
5761 	if (syn_skb) {
5762 		/* sk is a request_sock here */
5763 
5764 		if (optname == TCP_BPF_SYN) {
5765 			hdr_start = syn_skb->data;
5766 			ret = tcp_hdrlen(syn_skb);
5767 		} else if (optname == TCP_BPF_SYN_IP) {
5768 			hdr_start = skb_network_header(syn_skb);
5769 			ret = skb_network_header_len(syn_skb) +
5770 				tcp_hdrlen(syn_skb);
5771 		} else {
5772 			/* optname == TCP_BPF_SYN_MAC */
5773 			hdr_start = skb_mac_header(syn_skb);
5774 			ret = skb_mac_header_len(syn_skb) +
5775 				skb_network_header_len(syn_skb) +
5776 				tcp_hdrlen(syn_skb);
5777 		}
5778 	} else {
5779 		struct sock *sk = bpf_sock->sk;
5780 		struct saved_syn *saved_syn;
5781 
5782 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5783 			/* synack retransmit. bpf_sock->syn_skb will
5784 			 * not be available.  It has to resort to
5785 			 * saved_syn (if it is saved).
5786 			 */
5787 			saved_syn = inet_reqsk(sk)->saved_syn;
5788 		else
5789 			saved_syn = tcp_sk(sk)->saved_syn;
5790 
5791 		if (!saved_syn)
5792 			return -ENOENT;
5793 
5794 		if (optname == TCP_BPF_SYN) {
5795 			hdr_start = saved_syn->data +
5796 				saved_syn->mac_hdrlen +
5797 				saved_syn->network_hdrlen;
5798 			ret = saved_syn->tcp_hdrlen;
5799 		} else if (optname == TCP_BPF_SYN_IP) {
5800 			hdr_start = saved_syn->data +
5801 				saved_syn->mac_hdrlen;
5802 			ret = saved_syn->network_hdrlen +
5803 				saved_syn->tcp_hdrlen;
5804 		} else {
5805 			/* optname == TCP_BPF_SYN_MAC */
5806 
5807 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5808 			if (!saved_syn->mac_hdrlen)
5809 				return -ENOENT;
5810 
5811 			hdr_start = saved_syn->data;
5812 			ret = saved_syn->mac_hdrlen +
5813 				saved_syn->network_hdrlen +
5814 				saved_syn->tcp_hdrlen;
5815 		}
5816 	}
5817 
5818 	*start = hdr_start;
5819 	return ret;
5820 }
5821 
5822 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5823 	   int, level, int, optname, char *, optval, int, optlen)
5824 {
5825 	if (!is_locked_tcp_sock_ops(bpf_sock))
5826 		return -EOPNOTSUPP;
5827 
5828 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5829 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5830 		int ret, copy_len = 0;
5831 		const u8 *start;
5832 
5833 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5834 		if (ret > 0) {
5835 			copy_len = ret;
5836 			if (optlen < copy_len) {
5837 				copy_len = optlen;
5838 				ret = -ENOSPC;
5839 			}
5840 
5841 			memcpy(optval, start, copy_len);
5842 		}
5843 
5844 		/* Zero out unused buffer at the end */
5845 		memset(optval + copy_len, 0, optlen - copy_len);
5846 
5847 		return ret;
5848 	}
5849 
5850 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5851 }
5852 
5853 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5854 	.func		= bpf_sock_ops_getsockopt,
5855 	.gpl_only	= false,
5856 	.ret_type	= RET_INTEGER,
5857 	.arg1_type	= ARG_PTR_TO_CTX,
5858 	.arg2_type	= ARG_ANYTHING,
5859 	.arg3_type	= ARG_ANYTHING,
5860 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5861 	.arg5_type	= ARG_CONST_SIZE,
5862 };
5863 
5864 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5865 	   int, argval)
5866 {
5867 	struct sock *sk = bpf_sock->sk;
5868 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5869 
5870 	if (!is_locked_tcp_sock_ops(bpf_sock))
5871 		return -EOPNOTSUPP;
5872 
5873 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5874 		return -EINVAL;
5875 
5876 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5877 
5878 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5879 }
5880 
5881 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5882 	.func		= bpf_sock_ops_cb_flags_set,
5883 	.gpl_only	= false,
5884 	.ret_type	= RET_INTEGER,
5885 	.arg1_type	= ARG_PTR_TO_CTX,
5886 	.arg2_type	= ARG_ANYTHING,
5887 };
5888 
5889 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5890 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5891 
5892 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5893 	   int, addr_len)
5894 {
5895 #ifdef CONFIG_INET
5896 	struct sock *sk = ctx->sk;
5897 	u32 flags = BIND_FROM_BPF;
5898 	int err;
5899 
5900 	err = -EINVAL;
5901 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5902 		return err;
5903 	if (addr->sa_family == AF_INET) {
5904 		if (addr_len < sizeof(struct sockaddr_in))
5905 			return err;
5906 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5907 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5908 		return __inet_bind(sk, addr, addr_len, flags);
5909 #if IS_ENABLED(CONFIG_IPV6)
5910 	} else if (addr->sa_family == AF_INET6) {
5911 		if (addr_len < SIN6_LEN_RFC2133)
5912 			return err;
5913 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5914 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5915 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5916 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5917 		 */
5918 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5919 #endif /* CONFIG_IPV6 */
5920 	}
5921 #endif /* CONFIG_INET */
5922 
5923 	return -EAFNOSUPPORT;
5924 }
5925 
5926 static const struct bpf_func_proto bpf_bind_proto = {
5927 	.func		= bpf_bind,
5928 	.gpl_only	= false,
5929 	.ret_type	= RET_INTEGER,
5930 	.arg1_type	= ARG_PTR_TO_CTX,
5931 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5932 	.arg3_type	= ARG_CONST_SIZE,
5933 };
5934 
5935 #ifdef CONFIG_XFRM
5936 
5937 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5938     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5939 
5940 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5941 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5942 
5943 #endif
5944 
5945 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5946 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5947 {
5948 	const struct sec_path *sp = skb_sec_path(skb);
5949 	const struct xfrm_state *x;
5950 
5951 	if (!sp || unlikely(index >= sp->len || flags))
5952 		goto err_clear;
5953 
5954 	x = sp->xvec[index];
5955 
5956 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5957 		goto err_clear;
5958 
5959 	to->reqid = x->props.reqid;
5960 	to->spi = x->id.spi;
5961 	to->family = x->props.family;
5962 	to->ext = 0;
5963 
5964 	if (to->family == AF_INET6) {
5965 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5966 		       sizeof(to->remote_ipv6));
5967 	} else {
5968 		to->remote_ipv4 = x->props.saddr.a4;
5969 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5970 	}
5971 
5972 	return 0;
5973 err_clear:
5974 	memset(to, 0, size);
5975 	return -EINVAL;
5976 }
5977 
5978 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5979 	.func		= bpf_skb_get_xfrm_state,
5980 	.gpl_only	= false,
5981 	.ret_type	= RET_INTEGER,
5982 	.arg1_type	= ARG_PTR_TO_CTX,
5983 	.arg2_type	= ARG_ANYTHING,
5984 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5985 	.arg4_type	= ARG_CONST_SIZE,
5986 	.arg5_type	= ARG_ANYTHING,
5987 };
5988 #endif
5989 
5990 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5991 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5992 {
5993 	params->h_vlan_TCI = 0;
5994 	params->h_vlan_proto = 0;
5995 	if (mtu)
5996 		params->mtu_result = mtu; /* union with tot_len */
5997 
5998 	return 0;
5999 }
6000 #endif
6001 
6002 #if IS_ENABLED(CONFIG_INET)
6003 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6004 			       u32 flags, bool check_mtu)
6005 {
6006 	struct fib_nh_common *nhc;
6007 	struct in_device *in_dev;
6008 	struct neighbour *neigh;
6009 	struct net_device *dev;
6010 	struct fib_result res;
6011 	struct flowi4 fl4;
6012 	u32 mtu = 0;
6013 	int err;
6014 
6015 	dev = dev_get_by_index_rcu(net, params->ifindex);
6016 	if (unlikely(!dev))
6017 		return -ENODEV;
6018 
6019 	/* verify forwarding is enabled on this interface */
6020 	in_dev = __in_dev_get_rcu(dev);
6021 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
6022 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6023 
6024 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6025 		fl4.flowi4_iif = 1;
6026 		fl4.flowi4_oif = params->ifindex;
6027 	} else {
6028 		fl4.flowi4_iif = params->ifindex;
6029 		fl4.flowi4_oif = 0;
6030 	}
6031 	fl4.flowi4_dscp = inet_dsfield_to_dscp(params->tos);
6032 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6033 	fl4.flowi4_flags = 0;
6034 
6035 	fl4.flowi4_proto = params->l4_protocol;
6036 	fl4.daddr = params->ipv4_dst;
6037 	fl4.saddr = params->ipv4_src;
6038 	fl4.fl4_sport = params->sport;
6039 	fl4.fl4_dport = params->dport;
6040 	fl4.flowi4_multipath_hash = 0;
6041 
6042 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6043 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6044 		struct fib_table *tb;
6045 
6046 		if (flags & BPF_FIB_LOOKUP_TBID) {
6047 			tbid = params->tbid;
6048 			/* zero out for vlan output */
6049 			params->tbid = 0;
6050 		}
6051 
6052 		tb = fib_get_table(net, tbid);
6053 		if (unlikely(!tb))
6054 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6055 
6056 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6057 	} else {
6058 		if (flags & BPF_FIB_LOOKUP_MARK)
6059 			fl4.flowi4_mark = params->mark;
6060 		else
6061 			fl4.flowi4_mark = 0;
6062 		fl4.flowi4_secid = 0;
6063 		fl4.flowi4_tun_key.tun_id = 0;
6064 		fl4.flowi4_uid = sock_net_uid(net, NULL);
6065 
6066 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6067 	}
6068 
6069 	if (err) {
6070 		/* map fib lookup errors to RTN_ type */
6071 		if (err == -EINVAL)
6072 			return BPF_FIB_LKUP_RET_BLACKHOLE;
6073 		if (err == -EHOSTUNREACH)
6074 			return BPF_FIB_LKUP_RET_UNREACHABLE;
6075 		if (err == -EACCES)
6076 			return BPF_FIB_LKUP_RET_PROHIBIT;
6077 
6078 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6079 	}
6080 
6081 	if (res.type != RTN_UNICAST)
6082 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6083 
6084 	if (fib_info_num_path(res.fi) > 1)
6085 		fib_select_path(net, &res, &fl4, NULL);
6086 
6087 	if (check_mtu) {
6088 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6089 		if (params->tot_len > mtu) {
6090 			params->mtu_result = mtu; /* union with tot_len */
6091 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6092 		}
6093 	}
6094 
6095 	nhc = res.nhc;
6096 
6097 	/* do not handle lwt encaps right now */
6098 	if (nhc->nhc_lwtstate)
6099 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6100 
6101 	dev = nhc->nhc_dev;
6102 
6103 	params->rt_metric = res.fi->fib_priority;
6104 	params->ifindex = dev->ifindex;
6105 
6106 	if (flags & BPF_FIB_LOOKUP_SRC)
6107 		params->ipv4_src = fib_result_prefsrc(net, &res);
6108 
6109 	/* xdp and cls_bpf programs are run in RCU-bh so
6110 	 * rcu_read_lock_bh is not needed here
6111 	 */
6112 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
6113 		if (nhc->nhc_gw_family)
6114 			params->ipv4_dst = nhc->nhc_gw.ipv4;
6115 	} else {
6116 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6117 
6118 		params->family = AF_INET6;
6119 		*dst = nhc->nhc_gw.ipv6;
6120 	}
6121 
6122 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6123 		goto set_fwd_params;
6124 
6125 	if (likely(nhc->nhc_gw_family != AF_INET6))
6126 		neigh = __ipv4_neigh_lookup_noref(dev,
6127 						  (__force u32)params->ipv4_dst);
6128 	else
6129 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6130 
6131 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6132 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6133 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6134 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6135 
6136 set_fwd_params:
6137 	return bpf_fib_set_fwd_params(params, mtu);
6138 }
6139 #endif
6140 
6141 #if IS_ENABLED(CONFIG_IPV6)
6142 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6143 			       u32 flags, bool check_mtu)
6144 {
6145 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6146 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6147 	struct fib6_result res = {};
6148 	struct neighbour *neigh;
6149 	struct net_device *dev;
6150 	struct inet6_dev *idev;
6151 	struct flowi6 fl6;
6152 	int strict = 0;
6153 	int oif, err;
6154 	u32 mtu = 0;
6155 
6156 	/* link local addresses are never forwarded */
6157 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6158 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6159 
6160 	dev = dev_get_by_index_rcu(net, params->ifindex);
6161 	if (unlikely(!dev))
6162 		return -ENODEV;
6163 
6164 	idev = __in6_dev_get_safely(dev);
6165 	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6166 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6167 
6168 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6169 		fl6.flowi6_iif = 1;
6170 		oif = fl6.flowi6_oif = params->ifindex;
6171 	} else {
6172 		oif = fl6.flowi6_iif = params->ifindex;
6173 		fl6.flowi6_oif = 0;
6174 		strict = RT6_LOOKUP_F_HAS_SADDR;
6175 	}
6176 	fl6.flowlabel = params->flowinfo;
6177 	fl6.flowi6_scope = 0;
6178 	fl6.flowi6_flags = 0;
6179 	fl6.mp_hash = 0;
6180 
6181 	fl6.flowi6_proto = params->l4_protocol;
6182 	fl6.daddr = *dst;
6183 	fl6.saddr = *src;
6184 	fl6.fl6_sport = params->sport;
6185 	fl6.fl6_dport = params->dport;
6186 
6187 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6188 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6189 		struct fib6_table *tb;
6190 
6191 		if (flags & BPF_FIB_LOOKUP_TBID) {
6192 			tbid = params->tbid;
6193 			/* zero out for vlan output */
6194 			params->tbid = 0;
6195 		}
6196 
6197 		tb = ipv6_stub->fib6_get_table(net, tbid);
6198 		if (unlikely(!tb))
6199 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6200 
6201 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6202 						   strict);
6203 	} else {
6204 		if (flags & BPF_FIB_LOOKUP_MARK)
6205 			fl6.flowi6_mark = params->mark;
6206 		else
6207 			fl6.flowi6_mark = 0;
6208 		fl6.flowi6_secid = 0;
6209 		fl6.flowi6_tun_key.tun_id = 0;
6210 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6211 
6212 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6213 	}
6214 
6215 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6216 		     res.f6i == net->ipv6.fib6_null_entry))
6217 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6218 
6219 	switch (res.fib6_type) {
6220 	/* only unicast is forwarded */
6221 	case RTN_UNICAST:
6222 		break;
6223 	case RTN_BLACKHOLE:
6224 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6225 	case RTN_UNREACHABLE:
6226 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6227 	case RTN_PROHIBIT:
6228 		return BPF_FIB_LKUP_RET_PROHIBIT;
6229 	default:
6230 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6231 	}
6232 
6233 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6234 				    fl6.flowi6_oif != 0, NULL, strict);
6235 
6236 	if (check_mtu) {
6237 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6238 		if (params->tot_len > mtu) {
6239 			params->mtu_result = mtu; /* union with tot_len */
6240 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6241 		}
6242 	}
6243 
6244 	if (res.nh->fib_nh_lws)
6245 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6246 
6247 	if (res.nh->fib_nh_gw_family)
6248 		*dst = res.nh->fib_nh_gw6;
6249 
6250 	dev = res.nh->fib_nh_dev;
6251 	params->rt_metric = res.f6i->fib6_metric;
6252 	params->ifindex = dev->ifindex;
6253 
6254 	if (flags & BPF_FIB_LOOKUP_SRC) {
6255 		if (res.f6i->fib6_prefsrc.plen) {
6256 			*src = res.f6i->fib6_prefsrc.addr;
6257 		} else {
6258 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6259 								&fl6.daddr, 0,
6260 								src);
6261 			if (err)
6262 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6263 		}
6264 	}
6265 
6266 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6267 		goto set_fwd_params;
6268 
6269 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6270 	 * not needed here.
6271 	 */
6272 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6273 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6274 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6275 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6276 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6277 
6278 set_fwd_params:
6279 	return bpf_fib_set_fwd_params(params, mtu);
6280 }
6281 #endif
6282 
6283 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6284 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6285 			     BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6286 
6287 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6288 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6289 {
6290 	if (plen < sizeof(*params))
6291 		return -EINVAL;
6292 
6293 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6294 		return -EINVAL;
6295 
6296 	switch (params->family) {
6297 #if IS_ENABLED(CONFIG_INET)
6298 	case AF_INET:
6299 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6300 					   flags, true);
6301 #endif
6302 #if IS_ENABLED(CONFIG_IPV6)
6303 	case AF_INET6:
6304 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6305 					   flags, true);
6306 #endif
6307 	}
6308 	return -EAFNOSUPPORT;
6309 }
6310 
6311 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6312 	.func		= bpf_xdp_fib_lookup,
6313 	.gpl_only	= true,
6314 	.ret_type	= RET_INTEGER,
6315 	.arg1_type      = ARG_PTR_TO_CTX,
6316 	.arg2_type      = ARG_PTR_TO_MEM,
6317 	.arg3_type      = ARG_CONST_SIZE,
6318 	.arg4_type	= ARG_ANYTHING,
6319 };
6320 
6321 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6322 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6323 {
6324 	struct net *net = dev_net(skb->dev);
6325 	int rc = -EAFNOSUPPORT;
6326 	bool check_mtu = false;
6327 
6328 	if (plen < sizeof(*params))
6329 		return -EINVAL;
6330 
6331 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6332 		return -EINVAL;
6333 
6334 	if (params->tot_len)
6335 		check_mtu = true;
6336 
6337 	switch (params->family) {
6338 #if IS_ENABLED(CONFIG_INET)
6339 	case AF_INET:
6340 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6341 		break;
6342 #endif
6343 #if IS_ENABLED(CONFIG_IPV6)
6344 	case AF_INET6:
6345 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6346 		break;
6347 #endif
6348 	}
6349 
6350 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6351 		struct net_device *dev;
6352 
6353 		/* When tot_len isn't provided by user, check skb
6354 		 * against MTU of FIB lookup resulting net_device
6355 		 */
6356 		dev = dev_get_by_index_rcu(net, params->ifindex);
6357 		if (!is_skb_forwardable(dev, skb))
6358 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6359 
6360 		params->mtu_result = dev->mtu; /* union with tot_len */
6361 	}
6362 
6363 	return rc;
6364 }
6365 
6366 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6367 	.func		= bpf_skb_fib_lookup,
6368 	.gpl_only	= true,
6369 	.ret_type	= RET_INTEGER,
6370 	.arg1_type      = ARG_PTR_TO_CTX,
6371 	.arg2_type      = ARG_PTR_TO_MEM,
6372 	.arg3_type      = ARG_CONST_SIZE,
6373 	.arg4_type	= ARG_ANYTHING,
6374 };
6375 
6376 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6377 					    u32 ifindex)
6378 {
6379 	struct net *netns = dev_net(dev_curr);
6380 
6381 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6382 	if (ifindex == 0)
6383 		return dev_curr;
6384 
6385 	return dev_get_by_index_rcu(netns, ifindex);
6386 }
6387 
6388 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6389 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6390 {
6391 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6392 	struct net_device *dev = skb->dev;
6393 	int mtu, dev_len, skb_len;
6394 
6395 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6396 		return -EINVAL;
6397 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6398 		return -EINVAL;
6399 
6400 	dev = __dev_via_ifindex(dev, ifindex);
6401 	if (unlikely(!dev))
6402 		return -ENODEV;
6403 
6404 	mtu = READ_ONCE(dev->mtu);
6405 	dev_len = mtu + dev->hard_header_len;
6406 
6407 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6408 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6409 
6410 	skb_len += len_diff; /* minus result pass check */
6411 	if (skb_len <= dev_len) {
6412 		ret = BPF_MTU_CHK_RET_SUCCESS;
6413 		goto out;
6414 	}
6415 	/* At this point, skb->len exceed MTU, but as it include length of all
6416 	 * segments, it can still be below MTU.  The SKB can possibly get
6417 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6418 	 * must choose if segs are to be MTU checked.
6419 	 */
6420 	if (skb_is_gso(skb)) {
6421 		ret = BPF_MTU_CHK_RET_SUCCESS;
6422 		if (flags & BPF_MTU_CHK_SEGS &&
6423 		    !skb_gso_validate_network_len(skb, mtu))
6424 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6425 	}
6426 out:
6427 	*mtu_len = mtu;
6428 	return ret;
6429 }
6430 
6431 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6432 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6433 {
6434 	struct net_device *dev = xdp->rxq->dev;
6435 	int xdp_len = xdp->data_end - xdp->data;
6436 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6437 	int mtu, dev_len;
6438 
6439 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6440 	if (unlikely(flags))
6441 		return -EINVAL;
6442 
6443 	dev = __dev_via_ifindex(dev, ifindex);
6444 	if (unlikely(!dev))
6445 		return -ENODEV;
6446 
6447 	mtu = READ_ONCE(dev->mtu);
6448 	dev_len = mtu + dev->hard_header_len;
6449 
6450 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6451 	if (*mtu_len)
6452 		xdp_len = *mtu_len + dev->hard_header_len;
6453 
6454 	xdp_len += len_diff; /* minus result pass check */
6455 	if (xdp_len > dev_len)
6456 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6457 
6458 	*mtu_len = mtu;
6459 	return ret;
6460 }
6461 
6462 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6463 	.func		= bpf_skb_check_mtu,
6464 	.gpl_only	= true,
6465 	.ret_type	= RET_INTEGER,
6466 	.arg1_type      = ARG_PTR_TO_CTX,
6467 	.arg2_type      = ARG_ANYTHING,
6468 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6469 	.arg3_size	= sizeof(u32),
6470 	.arg4_type      = ARG_ANYTHING,
6471 	.arg5_type      = ARG_ANYTHING,
6472 };
6473 
6474 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6475 	.func		= bpf_xdp_check_mtu,
6476 	.gpl_only	= true,
6477 	.ret_type	= RET_INTEGER,
6478 	.arg1_type      = ARG_PTR_TO_CTX,
6479 	.arg2_type      = ARG_ANYTHING,
6480 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6481 	.arg3_size	= sizeof(u32),
6482 	.arg4_type      = ARG_ANYTHING,
6483 	.arg5_type      = ARG_ANYTHING,
6484 };
6485 
6486 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6487 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6488 {
6489 	int err;
6490 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6491 
6492 	if (!seg6_validate_srh(srh, len, false))
6493 		return -EINVAL;
6494 
6495 	switch (type) {
6496 	case BPF_LWT_ENCAP_SEG6_INLINE:
6497 		if (skb->protocol != htons(ETH_P_IPV6))
6498 			return -EBADMSG;
6499 
6500 		err = seg6_do_srh_inline(skb, srh);
6501 		break;
6502 	case BPF_LWT_ENCAP_SEG6:
6503 		skb_reset_inner_headers(skb);
6504 		skb->encapsulation = 1;
6505 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6506 		break;
6507 	default:
6508 		return -EINVAL;
6509 	}
6510 
6511 	bpf_compute_data_pointers(skb);
6512 	if (err)
6513 		return err;
6514 
6515 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6516 
6517 	return seg6_lookup_nexthop(skb, NULL, 0);
6518 }
6519 #endif /* CONFIG_IPV6_SEG6_BPF */
6520 
6521 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6522 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6523 			     bool ingress)
6524 {
6525 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6526 }
6527 #endif
6528 
6529 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6530 	   u32, len)
6531 {
6532 	switch (type) {
6533 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6534 	case BPF_LWT_ENCAP_SEG6:
6535 	case BPF_LWT_ENCAP_SEG6_INLINE:
6536 		return bpf_push_seg6_encap(skb, type, hdr, len);
6537 #endif
6538 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6539 	case BPF_LWT_ENCAP_IP:
6540 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6541 #endif
6542 	default:
6543 		return -EINVAL;
6544 	}
6545 }
6546 
6547 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6548 	   void *, hdr, u32, len)
6549 {
6550 	switch (type) {
6551 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6552 	case BPF_LWT_ENCAP_IP:
6553 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6554 #endif
6555 	default:
6556 		return -EINVAL;
6557 	}
6558 }
6559 
6560 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6561 	.func		= bpf_lwt_in_push_encap,
6562 	.gpl_only	= false,
6563 	.ret_type	= RET_INTEGER,
6564 	.arg1_type	= ARG_PTR_TO_CTX,
6565 	.arg2_type	= ARG_ANYTHING,
6566 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6567 	.arg4_type	= ARG_CONST_SIZE
6568 };
6569 
6570 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6571 	.func		= bpf_lwt_xmit_push_encap,
6572 	.gpl_only	= false,
6573 	.ret_type	= RET_INTEGER,
6574 	.arg1_type	= ARG_PTR_TO_CTX,
6575 	.arg2_type	= ARG_ANYTHING,
6576 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6577 	.arg4_type	= ARG_CONST_SIZE
6578 };
6579 
6580 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6581 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6582 	   const void *, from, u32, len)
6583 {
6584 	struct seg6_bpf_srh_state *srh_state =
6585 		this_cpu_ptr(&seg6_bpf_srh_states);
6586 	struct ipv6_sr_hdr *srh = srh_state->srh;
6587 	void *srh_tlvs, *srh_end, *ptr;
6588 	int srhoff = 0;
6589 
6590 	lockdep_assert_held(&srh_state->bh_lock);
6591 	if (srh == NULL)
6592 		return -EINVAL;
6593 
6594 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6595 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6596 
6597 	ptr = skb->data + offset;
6598 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6599 		srh_state->valid = false;
6600 	else if (ptr < (void *)&srh->flags ||
6601 		 ptr + len > (void *)&srh->segments)
6602 		return -EFAULT;
6603 
6604 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6605 		return -EFAULT;
6606 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6607 		return -EINVAL;
6608 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6609 
6610 	memcpy(skb->data + offset, from, len);
6611 	return 0;
6612 }
6613 
6614 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6615 	.func		= bpf_lwt_seg6_store_bytes,
6616 	.gpl_only	= false,
6617 	.ret_type	= RET_INTEGER,
6618 	.arg1_type	= ARG_PTR_TO_CTX,
6619 	.arg2_type	= ARG_ANYTHING,
6620 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6621 	.arg4_type	= ARG_CONST_SIZE
6622 };
6623 
6624 static void bpf_update_srh_state(struct sk_buff *skb)
6625 {
6626 	struct seg6_bpf_srh_state *srh_state =
6627 		this_cpu_ptr(&seg6_bpf_srh_states);
6628 	int srhoff = 0;
6629 
6630 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6631 		srh_state->srh = NULL;
6632 	} else {
6633 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6634 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6635 		srh_state->valid = true;
6636 	}
6637 }
6638 
6639 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6640 	   u32, action, void *, param, u32, param_len)
6641 {
6642 	struct seg6_bpf_srh_state *srh_state =
6643 		this_cpu_ptr(&seg6_bpf_srh_states);
6644 	int hdroff = 0;
6645 	int err;
6646 
6647 	lockdep_assert_held(&srh_state->bh_lock);
6648 	switch (action) {
6649 	case SEG6_LOCAL_ACTION_END_X:
6650 		if (!seg6_bpf_has_valid_srh(skb))
6651 			return -EBADMSG;
6652 		if (param_len != sizeof(struct in6_addr))
6653 			return -EINVAL;
6654 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6655 	case SEG6_LOCAL_ACTION_END_T:
6656 		if (!seg6_bpf_has_valid_srh(skb))
6657 			return -EBADMSG;
6658 		if (param_len != sizeof(int))
6659 			return -EINVAL;
6660 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6661 	case SEG6_LOCAL_ACTION_END_DT6:
6662 		if (!seg6_bpf_has_valid_srh(skb))
6663 			return -EBADMSG;
6664 		if (param_len != sizeof(int))
6665 			return -EINVAL;
6666 
6667 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6668 			return -EBADMSG;
6669 		if (!pskb_pull(skb, hdroff))
6670 			return -EBADMSG;
6671 
6672 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6673 		skb_reset_network_header(skb);
6674 		skb_reset_transport_header(skb);
6675 		skb->encapsulation = 0;
6676 
6677 		bpf_compute_data_pointers(skb);
6678 		bpf_update_srh_state(skb);
6679 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6680 	case SEG6_LOCAL_ACTION_END_B6:
6681 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6682 			return -EBADMSG;
6683 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6684 					  param, param_len);
6685 		if (!err)
6686 			bpf_update_srh_state(skb);
6687 
6688 		return err;
6689 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6690 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6691 			return -EBADMSG;
6692 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6693 					  param, param_len);
6694 		if (!err)
6695 			bpf_update_srh_state(skb);
6696 
6697 		return err;
6698 	default:
6699 		return -EINVAL;
6700 	}
6701 }
6702 
6703 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6704 	.func		= bpf_lwt_seg6_action,
6705 	.gpl_only	= false,
6706 	.ret_type	= RET_INTEGER,
6707 	.arg1_type	= ARG_PTR_TO_CTX,
6708 	.arg2_type	= ARG_ANYTHING,
6709 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6710 	.arg4_type	= ARG_CONST_SIZE
6711 };
6712 
6713 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6714 	   s32, len)
6715 {
6716 	struct seg6_bpf_srh_state *srh_state =
6717 		this_cpu_ptr(&seg6_bpf_srh_states);
6718 	struct ipv6_sr_hdr *srh = srh_state->srh;
6719 	void *srh_end, *srh_tlvs, *ptr;
6720 	struct ipv6hdr *hdr;
6721 	int srhoff = 0;
6722 	int ret;
6723 
6724 	lockdep_assert_held(&srh_state->bh_lock);
6725 	if (unlikely(srh == NULL))
6726 		return -EINVAL;
6727 
6728 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6729 			((srh->first_segment + 1) << 4));
6730 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6731 			srh_state->hdrlen);
6732 	ptr = skb->data + offset;
6733 
6734 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6735 		return -EFAULT;
6736 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6737 		return -EFAULT;
6738 
6739 	if (len > 0) {
6740 		ret = skb_cow_head(skb, len);
6741 		if (unlikely(ret < 0))
6742 			return ret;
6743 
6744 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6745 	} else {
6746 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6747 	}
6748 
6749 	bpf_compute_data_pointers(skb);
6750 	if (unlikely(ret < 0))
6751 		return ret;
6752 
6753 	hdr = (struct ipv6hdr *)skb->data;
6754 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6755 
6756 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6757 		return -EINVAL;
6758 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6759 	srh_state->hdrlen += len;
6760 	srh_state->valid = false;
6761 	return 0;
6762 }
6763 
6764 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6765 	.func		= bpf_lwt_seg6_adjust_srh,
6766 	.gpl_only	= false,
6767 	.ret_type	= RET_INTEGER,
6768 	.arg1_type	= ARG_PTR_TO_CTX,
6769 	.arg2_type	= ARG_ANYTHING,
6770 	.arg3_type	= ARG_ANYTHING,
6771 };
6772 #endif /* CONFIG_IPV6_SEG6_BPF */
6773 
6774 #ifdef CONFIG_INET
6775 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6776 			      int dif, int sdif, u8 family, u8 proto)
6777 {
6778 	bool refcounted = false;
6779 	struct sock *sk = NULL;
6780 
6781 	if (family == AF_INET) {
6782 		__be32 src4 = tuple->ipv4.saddr;
6783 		__be32 dst4 = tuple->ipv4.daddr;
6784 
6785 		if (proto == IPPROTO_TCP)
6786 			sk = __inet_lookup(net, NULL, 0,
6787 					   src4, tuple->ipv4.sport,
6788 					   dst4, tuple->ipv4.dport,
6789 					   dif, sdif, &refcounted);
6790 		else
6791 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6792 					       dst4, tuple->ipv4.dport,
6793 					       dif, sdif, net->ipv4.udp_table, NULL);
6794 #if IS_ENABLED(CONFIG_IPV6)
6795 	} else {
6796 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6797 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6798 
6799 		if (proto == IPPROTO_TCP)
6800 			sk = __inet6_lookup(net, NULL, 0,
6801 					    src6, tuple->ipv6.sport,
6802 					    dst6, ntohs(tuple->ipv6.dport),
6803 					    dif, sdif, &refcounted);
6804 		else if (likely(ipv6_bpf_stub))
6805 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6806 							    src6, tuple->ipv6.sport,
6807 							    dst6, tuple->ipv6.dport,
6808 							    dif, sdif,
6809 							    net->ipv4.udp_table, NULL);
6810 #endif
6811 	}
6812 
6813 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6814 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6815 		sk = NULL;
6816 	}
6817 	return sk;
6818 }
6819 
6820 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6821  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6822  */
6823 static struct sock *
6824 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6825 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6826 		 u64 flags, int sdif)
6827 {
6828 	struct sock *sk = NULL;
6829 	struct net *net;
6830 	u8 family;
6831 
6832 	if (len == sizeof(tuple->ipv4))
6833 		family = AF_INET;
6834 	else if (len == sizeof(tuple->ipv6))
6835 		family = AF_INET6;
6836 	else
6837 		return NULL;
6838 
6839 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6840 		goto out;
6841 
6842 	if (sdif < 0) {
6843 		if (family == AF_INET)
6844 			sdif = inet_sdif(skb);
6845 		else
6846 			sdif = inet6_sdif(skb);
6847 	}
6848 
6849 	if ((s32)netns_id < 0) {
6850 		net = caller_net;
6851 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6852 	} else {
6853 		net = get_net_ns_by_id(caller_net, netns_id);
6854 		if (unlikely(!net))
6855 			goto out;
6856 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6857 		put_net(net);
6858 	}
6859 
6860 out:
6861 	return sk;
6862 }
6863 
6864 static struct sock *
6865 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6866 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6867 		u64 flags, int sdif)
6868 {
6869 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6870 					   ifindex, proto, netns_id, flags,
6871 					   sdif);
6872 
6873 	if (sk) {
6874 		struct sock *sk2 = sk_to_full_sk(sk);
6875 
6876 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6877 		 * sock refcnt is decremented to prevent a request_sock leak.
6878 		 */
6879 		if (sk2 != sk) {
6880 			sock_gen_put(sk);
6881 			/* Ensure there is no need to bump sk2 refcnt */
6882 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6883 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6884 				return NULL;
6885 			}
6886 			sk = sk2;
6887 		}
6888 	}
6889 
6890 	return sk;
6891 }
6892 
6893 static struct sock *
6894 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6895 	       u8 proto, u64 netns_id, u64 flags)
6896 {
6897 	struct net *caller_net;
6898 	int ifindex;
6899 
6900 	if (skb->dev) {
6901 		caller_net = dev_net(skb->dev);
6902 		ifindex = skb->dev->ifindex;
6903 	} else {
6904 		caller_net = sock_net(skb->sk);
6905 		ifindex = 0;
6906 	}
6907 
6908 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6909 				netns_id, flags, -1);
6910 }
6911 
6912 static struct sock *
6913 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6914 	      u8 proto, u64 netns_id, u64 flags)
6915 {
6916 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6917 					 flags);
6918 
6919 	if (sk) {
6920 		struct sock *sk2 = sk_to_full_sk(sk);
6921 
6922 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6923 		 * sock refcnt is decremented to prevent a request_sock leak.
6924 		 */
6925 		if (sk2 != sk) {
6926 			sock_gen_put(sk);
6927 			/* Ensure there is no need to bump sk2 refcnt */
6928 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6929 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6930 				return NULL;
6931 			}
6932 			sk = sk2;
6933 		}
6934 	}
6935 
6936 	return sk;
6937 }
6938 
6939 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6940 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6941 {
6942 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6943 					     netns_id, flags);
6944 }
6945 
6946 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6947 	.func		= bpf_skc_lookup_tcp,
6948 	.gpl_only	= false,
6949 	.pkt_access	= true,
6950 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6951 	.arg1_type	= ARG_PTR_TO_CTX,
6952 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6953 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6954 	.arg4_type	= ARG_ANYTHING,
6955 	.arg5_type	= ARG_ANYTHING,
6956 };
6957 
6958 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6959 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6960 {
6961 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6962 					    netns_id, flags);
6963 }
6964 
6965 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6966 	.func		= bpf_sk_lookup_tcp,
6967 	.gpl_only	= false,
6968 	.pkt_access	= true,
6969 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6970 	.arg1_type	= ARG_PTR_TO_CTX,
6971 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6972 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6973 	.arg4_type	= ARG_ANYTHING,
6974 	.arg5_type	= ARG_ANYTHING,
6975 };
6976 
6977 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6978 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6979 {
6980 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6981 					    netns_id, flags);
6982 }
6983 
6984 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6985 	.func		= bpf_sk_lookup_udp,
6986 	.gpl_only	= false,
6987 	.pkt_access	= true,
6988 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6989 	.arg1_type	= ARG_PTR_TO_CTX,
6990 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6991 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
6992 	.arg4_type	= ARG_ANYTHING,
6993 	.arg5_type	= ARG_ANYTHING,
6994 };
6995 
6996 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6997 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6998 {
6999 	struct net_device *dev = skb->dev;
7000 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7001 	struct net *caller_net = dev_net(dev);
7002 
7003 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
7004 					       ifindex, IPPROTO_TCP, netns_id,
7005 					       flags, sdif);
7006 }
7007 
7008 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
7009 	.func		= bpf_tc_skc_lookup_tcp,
7010 	.gpl_only	= false,
7011 	.pkt_access	= true,
7012 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7013 	.arg1_type	= ARG_PTR_TO_CTX,
7014 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7015 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7016 	.arg4_type	= ARG_ANYTHING,
7017 	.arg5_type	= ARG_ANYTHING,
7018 };
7019 
7020 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
7021 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7022 {
7023 	struct net_device *dev = skb->dev;
7024 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7025 	struct net *caller_net = dev_net(dev);
7026 
7027 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7028 					      ifindex, IPPROTO_TCP, netns_id,
7029 					      flags, sdif);
7030 }
7031 
7032 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7033 	.func		= bpf_tc_sk_lookup_tcp,
7034 	.gpl_only	= false,
7035 	.pkt_access	= true,
7036 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7037 	.arg1_type	= ARG_PTR_TO_CTX,
7038 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7039 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7040 	.arg4_type	= ARG_ANYTHING,
7041 	.arg5_type	= ARG_ANYTHING,
7042 };
7043 
7044 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7045 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7046 {
7047 	struct net_device *dev = skb->dev;
7048 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7049 	struct net *caller_net = dev_net(dev);
7050 
7051 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7052 					      ifindex, IPPROTO_UDP, netns_id,
7053 					      flags, sdif);
7054 }
7055 
7056 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7057 	.func		= bpf_tc_sk_lookup_udp,
7058 	.gpl_only	= false,
7059 	.pkt_access	= true,
7060 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7061 	.arg1_type	= ARG_PTR_TO_CTX,
7062 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7063 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7064 	.arg4_type	= ARG_ANYTHING,
7065 	.arg5_type	= ARG_ANYTHING,
7066 };
7067 
7068 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7069 {
7070 	if (sk && sk_is_refcounted(sk))
7071 		sock_gen_put(sk);
7072 	return 0;
7073 }
7074 
7075 static const struct bpf_func_proto bpf_sk_release_proto = {
7076 	.func		= bpf_sk_release,
7077 	.gpl_only	= false,
7078 	.ret_type	= RET_INTEGER,
7079 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7080 };
7081 
7082 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7083 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7084 {
7085 	struct net_device *dev = ctx->rxq->dev;
7086 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7087 	struct net *caller_net = dev_net(dev);
7088 
7089 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7090 					      ifindex, IPPROTO_UDP, netns_id,
7091 					      flags, sdif);
7092 }
7093 
7094 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7095 	.func           = bpf_xdp_sk_lookup_udp,
7096 	.gpl_only       = false,
7097 	.pkt_access     = true,
7098 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7099 	.arg1_type      = ARG_PTR_TO_CTX,
7100 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7101 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7102 	.arg4_type      = ARG_ANYTHING,
7103 	.arg5_type      = ARG_ANYTHING,
7104 };
7105 
7106 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7107 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7108 {
7109 	struct net_device *dev = ctx->rxq->dev;
7110 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7111 	struct net *caller_net = dev_net(dev);
7112 
7113 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7114 					       ifindex, IPPROTO_TCP, netns_id,
7115 					       flags, sdif);
7116 }
7117 
7118 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7119 	.func           = bpf_xdp_skc_lookup_tcp,
7120 	.gpl_only       = false,
7121 	.pkt_access     = true,
7122 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7123 	.arg1_type      = ARG_PTR_TO_CTX,
7124 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7125 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7126 	.arg4_type      = ARG_ANYTHING,
7127 	.arg5_type      = ARG_ANYTHING,
7128 };
7129 
7130 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7131 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7132 {
7133 	struct net_device *dev = ctx->rxq->dev;
7134 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7135 	struct net *caller_net = dev_net(dev);
7136 
7137 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7138 					      ifindex, IPPROTO_TCP, netns_id,
7139 					      flags, sdif);
7140 }
7141 
7142 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7143 	.func           = bpf_xdp_sk_lookup_tcp,
7144 	.gpl_only       = false,
7145 	.pkt_access     = true,
7146 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7147 	.arg1_type      = ARG_PTR_TO_CTX,
7148 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7149 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7150 	.arg4_type      = ARG_ANYTHING,
7151 	.arg5_type      = ARG_ANYTHING,
7152 };
7153 
7154 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7155 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7156 {
7157 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7158 					       sock_net(ctx->sk), 0,
7159 					       IPPROTO_TCP, netns_id, flags,
7160 					       -1);
7161 }
7162 
7163 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7164 	.func		= bpf_sock_addr_skc_lookup_tcp,
7165 	.gpl_only	= false,
7166 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7167 	.arg1_type	= ARG_PTR_TO_CTX,
7168 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7169 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7170 	.arg4_type	= ARG_ANYTHING,
7171 	.arg5_type	= ARG_ANYTHING,
7172 };
7173 
7174 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7175 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7176 {
7177 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7178 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7179 					      netns_id, flags, -1);
7180 }
7181 
7182 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7183 	.func		= bpf_sock_addr_sk_lookup_tcp,
7184 	.gpl_only	= false,
7185 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7186 	.arg1_type	= ARG_PTR_TO_CTX,
7187 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7188 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7189 	.arg4_type	= ARG_ANYTHING,
7190 	.arg5_type	= ARG_ANYTHING,
7191 };
7192 
7193 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7194 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7195 {
7196 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7197 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7198 					      netns_id, flags, -1);
7199 }
7200 
7201 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7202 	.func		= bpf_sock_addr_sk_lookup_udp,
7203 	.gpl_only	= false,
7204 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7205 	.arg1_type	= ARG_PTR_TO_CTX,
7206 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7207 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7208 	.arg4_type	= ARG_ANYTHING,
7209 	.arg5_type	= ARG_ANYTHING,
7210 };
7211 
7212 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7213 				  struct bpf_insn_access_aux *info)
7214 {
7215 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7216 					  icsk_retransmits))
7217 		return false;
7218 
7219 	if (off % size != 0)
7220 		return false;
7221 
7222 	switch (off) {
7223 	case offsetof(struct bpf_tcp_sock, bytes_received):
7224 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7225 		return size == sizeof(__u64);
7226 	default:
7227 		return size == sizeof(__u32);
7228 	}
7229 }
7230 
7231 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7232 				    const struct bpf_insn *si,
7233 				    struct bpf_insn *insn_buf,
7234 				    struct bpf_prog *prog, u32 *target_size)
7235 {
7236 	struct bpf_insn *insn = insn_buf;
7237 
7238 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7239 	do {								\
7240 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7241 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7242 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7243 				      si->dst_reg, si->src_reg,		\
7244 				      offsetof(struct tcp_sock, FIELD)); \
7245 	} while (0)
7246 
7247 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7248 	do {								\
7249 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7250 					  FIELD) >			\
7251 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7252 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7253 					struct inet_connection_sock,	\
7254 					FIELD),				\
7255 				      si->dst_reg, si->src_reg,		\
7256 				      offsetof(				\
7257 					struct inet_connection_sock,	\
7258 					FIELD));			\
7259 	} while (0)
7260 
7261 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7262 
7263 	switch (si->off) {
7264 	case offsetof(struct bpf_tcp_sock, rtt_min):
7265 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7266 			     sizeof(struct minmax));
7267 		BUILD_BUG_ON(sizeof(struct minmax) <
7268 			     sizeof(struct minmax_sample));
7269 
7270 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7271 				      offsetof(struct tcp_sock, rtt_min) +
7272 				      offsetof(struct minmax_sample, v));
7273 		break;
7274 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7275 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7276 		break;
7277 	case offsetof(struct bpf_tcp_sock, srtt_us):
7278 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7279 		break;
7280 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7281 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7282 		break;
7283 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7284 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7285 		break;
7286 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7287 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7288 		break;
7289 	case offsetof(struct bpf_tcp_sock, snd_una):
7290 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7291 		break;
7292 	case offsetof(struct bpf_tcp_sock, mss_cache):
7293 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7294 		break;
7295 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7296 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7297 		break;
7298 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7299 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7300 		break;
7301 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7302 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7303 		break;
7304 	case offsetof(struct bpf_tcp_sock, packets_out):
7305 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7306 		break;
7307 	case offsetof(struct bpf_tcp_sock, retrans_out):
7308 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7309 		break;
7310 	case offsetof(struct bpf_tcp_sock, total_retrans):
7311 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7312 		break;
7313 	case offsetof(struct bpf_tcp_sock, segs_in):
7314 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7315 		break;
7316 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7317 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7318 		break;
7319 	case offsetof(struct bpf_tcp_sock, segs_out):
7320 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7321 		break;
7322 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7323 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7324 		break;
7325 	case offsetof(struct bpf_tcp_sock, lost_out):
7326 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7327 		break;
7328 	case offsetof(struct bpf_tcp_sock, sacked_out):
7329 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7330 		break;
7331 	case offsetof(struct bpf_tcp_sock, bytes_received):
7332 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7333 		break;
7334 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7335 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7336 		break;
7337 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7338 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7339 		break;
7340 	case offsetof(struct bpf_tcp_sock, delivered):
7341 		BPF_TCP_SOCK_GET_COMMON(delivered);
7342 		break;
7343 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7344 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7345 		break;
7346 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7347 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7348 		break;
7349 	}
7350 
7351 	return insn - insn_buf;
7352 }
7353 
7354 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7355 {
7356 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7357 		return (unsigned long)sk;
7358 
7359 	return (unsigned long)NULL;
7360 }
7361 
7362 const struct bpf_func_proto bpf_tcp_sock_proto = {
7363 	.func		= bpf_tcp_sock,
7364 	.gpl_only	= false,
7365 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7366 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7367 };
7368 
7369 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7370 {
7371 	sk = sk_to_full_sk(sk);
7372 
7373 	if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7374 		return (unsigned long)sk;
7375 
7376 	return (unsigned long)NULL;
7377 }
7378 
7379 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7380 	.func		= bpf_get_listener_sock,
7381 	.gpl_only	= false,
7382 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7383 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7384 };
7385 
7386 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7387 {
7388 	unsigned int iphdr_len;
7389 
7390 	switch (skb_protocol(skb, true)) {
7391 	case cpu_to_be16(ETH_P_IP):
7392 		iphdr_len = sizeof(struct iphdr);
7393 		break;
7394 	case cpu_to_be16(ETH_P_IPV6):
7395 		iphdr_len = sizeof(struct ipv6hdr);
7396 		break;
7397 	default:
7398 		return 0;
7399 	}
7400 
7401 	if (skb_headlen(skb) < iphdr_len)
7402 		return 0;
7403 
7404 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7405 		return 0;
7406 
7407 	return INET_ECN_set_ce(skb);
7408 }
7409 
7410 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7411 				  struct bpf_insn_access_aux *info)
7412 {
7413 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7414 		return false;
7415 
7416 	if (off % size != 0)
7417 		return false;
7418 
7419 	switch (off) {
7420 	default:
7421 		return size == sizeof(__u32);
7422 	}
7423 }
7424 
7425 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7426 				    const struct bpf_insn *si,
7427 				    struct bpf_insn *insn_buf,
7428 				    struct bpf_prog *prog, u32 *target_size)
7429 {
7430 	struct bpf_insn *insn = insn_buf;
7431 
7432 #define BPF_XDP_SOCK_GET(FIELD)						\
7433 	do {								\
7434 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7435 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7436 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7437 				      si->dst_reg, si->src_reg,		\
7438 				      offsetof(struct xdp_sock, FIELD)); \
7439 	} while (0)
7440 
7441 	BTF_TYPE_EMIT(struct bpf_xdp_sock);
7442 
7443 	switch (si->off) {
7444 	case offsetof(struct bpf_xdp_sock, queue_id):
7445 		BPF_XDP_SOCK_GET(queue_id);
7446 		break;
7447 	}
7448 
7449 	return insn - insn_buf;
7450 }
7451 
7452 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7453 	.func           = bpf_skb_ecn_set_ce,
7454 	.gpl_only       = false,
7455 	.ret_type       = RET_INTEGER,
7456 	.arg1_type      = ARG_PTR_TO_CTX,
7457 };
7458 
7459 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7460 	   struct tcphdr *, th, u32, th_len)
7461 {
7462 #ifdef CONFIG_SYN_COOKIES
7463 	int ret;
7464 
7465 	if (unlikely(!sk || th_len < sizeof(*th)))
7466 		return -EINVAL;
7467 
7468 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7469 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7470 		return -EINVAL;
7471 
7472 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7473 		return -EINVAL;
7474 
7475 	if (!th->ack || th->rst || th->syn)
7476 		return -ENOENT;
7477 
7478 	if (unlikely(iph_len < sizeof(struct iphdr)))
7479 		return -EINVAL;
7480 
7481 	if (tcp_synq_no_recent_overflow(sk))
7482 		return -ENOENT;
7483 
7484 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7485 	 * same offset so we can cast to the shorter header (struct iphdr).
7486 	 */
7487 	switch (((struct iphdr *)iph)->version) {
7488 	case 4:
7489 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7490 			return -EINVAL;
7491 
7492 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7493 		break;
7494 
7495 #if IS_BUILTIN(CONFIG_IPV6)
7496 	case 6:
7497 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7498 			return -EINVAL;
7499 
7500 		if (sk->sk_family != AF_INET6)
7501 			return -EINVAL;
7502 
7503 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7504 		break;
7505 #endif /* CONFIG_IPV6 */
7506 
7507 	default:
7508 		return -EPROTONOSUPPORT;
7509 	}
7510 
7511 	if (ret > 0)
7512 		return 0;
7513 
7514 	return -ENOENT;
7515 #else
7516 	return -ENOTSUPP;
7517 #endif
7518 }
7519 
7520 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7521 	.func		= bpf_tcp_check_syncookie,
7522 	.gpl_only	= true,
7523 	.pkt_access	= true,
7524 	.ret_type	= RET_INTEGER,
7525 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7526 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7527 	.arg3_type	= ARG_CONST_SIZE,
7528 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7529 	.arg5_type	= ARG_CONST_SIZE,
7530 };
7531 
7532 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7533 	   struct tcphdr *, th, u32, th_len)
7534 {
7535 #ifdef CONFIG_SYN_COOKIES
7536 	u32 cookie;
7537 	u16 mss;
7538 
7539 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7540 		return -EINVAL;
7541 
7542 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7543 		return -EINVAL;
7544 
7545 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7546 		return -ENOENT;
7547 
7548 	if (!th->syn || th->ack || th->fin || th->rst)
7549 		return -EINVAL;
7550 
7551 	if (unlikely(iph_len < sizeof(struct iphdr)))
7552 		return -EINVAL;
7553 
7554 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7555 	 * same offset so we can cast to the shorter header (struct iphdr).
7556 	 */
7557 	switch (((struct iphdr *)iph)->version) {
7558 	case 4:
7559 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7560 			return -EINVAL;
7561 
7562 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7563 		break;
7564 
7565 #if IS_BUILTIN(CONFIG_IPV6)
7566 	case 6:
7567 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7568 			return -EINVAL;
7569 
7570 		if (sk->sk_family != AF_INET6)
7571 			return -EINVAL;
7572 
7573 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7574 		break;
7575 #endif /* CONFIG_IPV6 */
7576 
7577 	default:
7578 		return -EPROTONOSUPPORT;
7579 	}
7580 	if (mss == 0)
7581 		return -ENOENT;
7582 
7583 	return cookie | ((u64)mss << 32);
7584 #else
7585 	return -EOPNOTSUPP;
7586 #endif /* CONFIG_SYN_COOKIES */
7587 }
7588 
7589 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7590 	.func		= bpf_tcp_gen_syncookie,
7591 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7592 	.pkt_access	= true,
7593 	.ret_type	= RET_INTEGER,
7594 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7595 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7596 	.arg3_type	= ARG_CONST_SIZE,
7597 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7598 	.arg5_type	= ARG_CONST_SIZE,
7599 };
7600 
7601 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7602 {
7603 	if (!sk || flags != 0)
7604 		return -EINVAL;
7605 	if (!skb_at_tc_ingress(skb))
7606 		return -EOPNOTSUPP;
7607 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7608 		return -ENETUNREACH;
7609 	if (sk_unhashed(sk))
7610 		return -EOPNOTSUPP;
7611 	if (sk_is_refcounted(sk) &&
7612 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7613 		return -ENOENT;
7614 
7615 	skb_orphan(skb);
7616 	skb->sk = sk;
7617 	skb->destructor = sock_pfree;
7618 
7619 	return 0;
7620 }
7621 
7622 static const struct bpf_func_proto bpf_sk_assign_proto = {
7623 	.func		= bpf_sk_assign,
7624 	.gpl_only	= false,
7625 	.ret_type	= RET_INTEGER,
7626 	.arg1_type      = ARG_PTR_TO_CTX,
7627 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7628 	.arg3_type	= ARG_ANYTHING,
7629 };
7630 
7631 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7632 				    u8 search_kind, const u8 *magic,
7633 				    u8 magic_len, bool *eol)
7634 {
7635 	u8 kind, kind_len;
7636 
7637 	*eol = false;
7638 
7639 	while (op < opend) {
7640 		kind = op[0];
7641 
7642 		if (kind == TCPOPT_EOL) {
7643 			*eol = true;
7644 			return ERR_PTR(-ENOMSG);
7645 		} else if (kind == TCPOPT_NOP) {
7646 			op++;
7647 			continue;
7648 		}
7649 
7650 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7651 			/* Something is wrong in the received header.
7652 			 * Follow the TCP stack's tcp_parse_options()
7653 			 * and just bail here.
7654 			 */
7655 			return ERR_PTR(-EFAULT);
7656 
7657 		kind_len = op[1];
7658 		if (search_kind == kind) {
7659 			if (!magic_len)
7660 				return op;
7661 
7662 			if (magic_len > kind_len - 2)
7663 				return ERR_PTR(-ENOMSG);
7664 
7665 			if (!memcmp(&op[2], magic, magic_len))
7666 				return op;
7667 		}
7668 
7669 		op += kind_len;
7670 	}
7671 
7672 	return ERR_PTR(-ENOMSG);
7673 }
7674 
7675 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7676 	   void *, search_res, u32, len, u64, flags)
7677 {
7678 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7679 	const u8 *op, *opend, *magic, *search = search_res;
7680 	u8 search_kind, search_len, copy_len, magic_len;
7681 	int ret;
7682 
7683 	if (!is_locked_tcp_sock_ops(bpf_sock))
7684 		return -EOPNOTSUPP;
7685 
7686 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7687 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7688 	 * and this helper disallow loading them also.
7689 	 */
7690 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7691 		return -EINVAL;
7692 
7693 	search_kind = search[0];
7694 	search_len = search[1];
7695 
7696 	if (search_len > len || search_kind == TCPOPT_NOP ||
7697 	    search_kind == TCPOPT_EOL)
7698 		return -EINVAL;
7699 
7700 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7701 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7702 		if (search_len != 4 && search_len != 6)
7703 			return -EINVAL;
7704 		magic = &search[2];
7705 		magic_len = search_len - 2;
7706 	} else {
7707 		if (search_len)
7708 			return -EINVAL;
7709 		magic = NULL;
7710 		magic_len = 0;
7711 	}
7712 
7713 	if (load_syn) {
7714 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7715 		if (ret < 0)
7716 			return ret;
7717 
7718 		opend = op + ret;
7719 		op += sizeof(struct tcphdr);
7720 	} else {
7721 		if (!bpf_sock->skb ||
7722 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7723 			/* This bpf_sock->op cannot call this helper */
7724 			return -EPERM;
7725 
7726 		opend = bpf_sock->skb_data_end;
7727 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7728 	}
7729 
7730 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7731 				&eol);
7732 	if (IS_ERR(op))
7733 		return PTR_ERR(op);
7734 
7735 	copy_len = op[1];
7736 	ret = copy_len;
7737 	if (copy_len > len) {
7738 		ret = -ENOSPC;
7739 		copy_len = len;
7740 	}
7741 
7742 	memcpy(search_res, op, copy_len);
7743 	return ret;
7744 }
7745 
7746 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7747 	.func		= bpf_sock_ops_load_hdr_opt,
7748 	.gpl_only	= false,
7749 	.ret_type	= RET_INTEGER,
7750 	.arg1_type	= ARG_PTR_TO_CTX,
7751 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
7752 	.arg3_type	= ARG_CONST_SIZE,
7753 	.arg4_type	= ARG_ANYTHING,
7754 };
7755 
7756 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7757 	   const void *, from, u32, len, u64, flags)
7758 {
7759 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7760 	const u8 *op, *new_op, *magic = NULL;
7761 	struct sk_buff *skb;
7762 	bool eol;
7763 
7764 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7765 		return -EPERM;
7766 
7767 	if (len < 2 || flags)
7768 		return -EINVAL;
7769 
7770 	new_op = from;
7771 	new_kind = new_op[0];
7772 	new_kind_len = new_op[1];
7773 
7774 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7775 	    new_kind == TCPOPT_EOL)
7776 		return -EINVAL;
7777 
7778 	if (new_kind_len > bpf_sock->remaining_opt_len)
7779 		return -ENOSPC;
7780 
7781 	/* 253 is another experimental kind */
7782 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7783 		if (new_kind_len < 4)
7784 			return -EINVAL;
7785 		/* Match for the 2 byte magic also.
7786 		 * RFC 6994: the magic could be 2 or 4 bytes.
7787 		 * Hence, matching by 2 byte only is on the
7788 		 * conservative side but it is the right
7789 		 * thing to do for the 'search-for-duplication'
7790 		 * purpose.
7791 		 */
7792 		magic = &new_op[2];
7793 		magic_len = 2;
7794 	}
7795 
7796 	/* Check for duplication */
7797 	skb = bpf_sock->skb;
7798 	op = skb->data + sizeof(struct tcphdr);
7799 	opend = bpf_sock->skb_data_end;
7800 
7801 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7802 				&eol);
7803 	if (!IS_ERR(op))
7804 		return -EEXIST;
7805 
7806 	if (PTR_ERR(op) != -ENOMSG)
7807 		return PTR_ERR(op);
7808 
7809 	if (eol)
7810 		/* The option has been ended.  Treat it as no more
7811 		 * header option can be written.
7812 		 */
7813 		return -ENOSPC;
7814 
7815 	/* No duplication found.  Store the header option. */
7816 	memcpy(opend, from, new_kind_len);
7817 
7818 	bpf_sock->remaining_opt_len -= new_kind_len;
7819 	bpf_sock->skb_data_end += new_kind_len;
7820 
7821 	return 0;
7822 }
7823 
7824 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7825 	.func		= bpf_sock_ops_store_hdr_opt,
7826 	.gpl_only	= false,
7827 	.ret_type	= RET_INTEGER,
7828 	.arg1_type	= ARG_PTR_TO_CTX,
7829 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7830 	.arg3_type	= ARG_CONST_SIZE,
7831 	.arg4_type	= ARG_ANYTHING,
7832 };
7833 
7834 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7835 	   u32, len, u64, flags)
7836 {
7837 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7838 		return -EPERM;
7839 
7840 	if (flags || len < 2)
7841 		return -EINVAL;
7842 
7843 	if (len > bpf_sock->remaining_opt_len)
7844 		return -ENOSPC;
7845 
7846 	bpf_sock->remaining_opt_len -= len;
7847 
7848 	return 0;
7849 }
7850 
7851 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7852 	.func		= bpf_sock_ops_reserve_hdr_opt,
7853 	.gpl_only	= false,
7854 	.ret_type	= RET_INTEGER,
7855 	.arg1_type	= ARG_PTR_TO_CTX,
7856 	.arg2_type	= ARG_ANYTHING,
7857 	.arg3_type	= ARG_ANYTHING,
7858 };
7859 
7860 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7861 	   u64, tstamp, u32, tstamp_type)
7862 {
7863 	/* skb_clear_delivery_time() is done for inet protocol */
7864 	if (skb->protocol != htons(ETH_P_IP) &&
7865 	    skb->protocol != htons(ETH_P_IPV6))
7866 		return -EOPNOTSUPP;
7867 
7868 	switch (tstamp_type) {
7869 	case BPF_SKB_CLOCK_REALTIME:
7870 		skb->tstamp = tstamp;
7871 		skb->tstamp_type = SKB_CLOCK_REALTIME;
7872 		break;
7873 	case BPF_SKB_CLOCK_MONOTONIC:
7874 		if (!tstamp)
7875 			return -EINVAL;
7876 		skb->tstamp = tstamp;
7877 		skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7878 		break;
7879 	case BPF_SKB_CLOCK_TAI:
7880 		if (!tstamp)
7881 			return -EINVAL;
7882 		skb->tstamp = tstamp;
7883 		skb->tstamp_type = SKB_CLOCK_TAI;
7884 		break;
7885 	default:
7886 		return -EINVAL;
7887 	}
7888 
7889 	return 0;
7890 }
7891 
7892 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7893 	.func           = bpf_skb_set_tstamp,
7894 	.gpl_only       = false,
7895 	.ret_type       = RET_INTEGER,
7896 	.arg1_type      = ARG_PTR_TO_CTX,
7897 	.arg2_type      = ARG_ANYTHING,
7898 	.arg3_type      = ARG_ANYTHING,
7899 };
7900 
7901 #ifdef CONFIG_SYN_COOKIES
7902 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7903 	   struct tcphdr *, th, u32, th_len)
7904 {
7905 	u32 cookie;
7906 	u16 mss;
7907 
7908 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7909 		return -EINVAL;
7910 
7911 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7912 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7913 
7914 	return cookie | ((u64)mss << 32);
7915 }
7916 
7917 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7918 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7919 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7920 	.pkt_access	= true,
7921 	.ret_type	= RET_INTEGER,
7922 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7923 	.arg1_size	= sizeof(struct iphdr),
7924 	.arg2_type	= ARG_PTR_TO_MEM,
7925 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7926 };
7927 
7928 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7929 	   struct tcphdr *, th, u32, th_len)
7930 {
7931 #if IS_BUILTIN(CONFIG_IPV6)
7932 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7933 		sizeof(struct ipv6hdr);
7934 	u32 cookie;
7935 	u16 mss;
7936 
7937 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7938 		return -EINVAL;
7939 
7940 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7941 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7942 
7943 	return cookie | ((u64)mss << 32);
7944 #else
7945 	return -EPROTONOSUPPORT;
7946 #endif
7947 }
7948 
7949 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7950 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7951 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7952 	.pkt_access	= true,
7953 	.ret_type	= RET_INTEGER,
7954 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7955 	.arg1_size	= sizeof(struct ipv6hdr),
7956 	.arg2_type	= ARG_PTR_TO_MEM,
7957 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7958 };
7959 
7960 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7961 	   struct tcphdr *, th)
7962 {
7963 	if (__cookie_v4_check(iph, th) > 0)
7964 		return 0;
7965 
7966 	return -EACCES;
7967 }
7968 
7969 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7970 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7971 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7972 	.pkt_access	= true,
7973 	.ret_type	= RET_INTEGER,
7974 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7975 	.arg1_size	= sizeof(struct iphdr),
7976 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7977 	.arg2_size	= sizeof(struct tcphdr),
7978 };
7979 
7980 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7981 	   struct tcphdr *, th)
7982 {
7983 #if IS_BUILTIN(CONFIG_IPV6)
7984 	if (__cookie_v6_check(iph, th) > 0)
7985 		return 0;
7986 
7987 	return -EACCES;
7988 #else
7989 	return -EPROTONOSUPPORT;
7990 #endif
7991 }
7992 
7993 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7994 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7995 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7996 	.pkt_access	= true,
7997 	.ret_type	= RET_INTEGER,
7998 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7999 	.arg1_size	= sizeof(struct ipv6hdr),
8000 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8001 	.arg2_size	= sizeof(struct tcphdr),
8002 };
8003 #endif /* CONFIG_SYN_COOKIES */
8004 
8005 #endif /* CONFIG_INET */
8006 
8007 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
8008 {
8009 	switch (func_id) {
8010 	case BPF_FUNC_clone_redirect:
8011 	case BPF_FUNC_l3_csum_replace:
8012 	case BPF_FUNC_l4_csum_replace:
8013 	case BPF_FUNC_lwt_push_encap:
8014 	case BPF_FUNC_lwt_seg6_action:
8015 	case BPF_FUNC_lwt_seg6_adjust_srh:
8016 	case BPF_FUNC_lwt_seg6_store_bytes:
8017 	case BPF_FUNC_msg_pop_data:
8018 	case BPF_FUNC_msg_pull_data:
8019 	case BPF_FUNC_msg_push_data:
8020 	case BPF_FUNC_skb_adjust_room:
8021 	case BPF_FUNC_skb_change_head:
8022 	case BPF_FUNC_skb_change_proto:
8023 	case BPF_FUNC_skb_change_tail:
8024 	case BPF_FUNC_skb_pull_data:
8025 	case BPF_FUNC_skb_store_bytes:
8026 	case BPF_FUNC_skb_vlan_pop:
8027 	case BPF_FUNC_skb_vlan_push:
8028 	case BPF_FUNC_store_hdr_opt:
8029 	case BPF_FUNC_xdp_adjust_head:
8030 	case BPF_FUNC_xdp_adjust_meta:
8031 	case BPF_FUNC_xdp_adjust_tail:
8032 	/* tail-called program could call any of the above */
8033 	case BPF_FUNC_tail_call:
8034 		return true;
8035 	default:
8036 		return false;
8037 	}
8038 }
8039 
8040 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8041 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8042 
8043 static const struct bpf_func_proto *
8044 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8045 {
8046 	const struct bpf_func_proto *func_proto;
8047 
8048 	func_proto = cgroup_common_func_proto(func_id, prog);
8049 	if (func_proto)
8050 		return func_proto;
8051 
8052 	switch (func_id) {
8053 	case BPF_FUNC_get_socket_cookie:
8054 		return &bpf_get_socket_cookie_sock_proto;
8055 	case BPF_FUNC_get_netns_cookie:
8056 		return &bpf_get_netns_cookie_sock_proto;
8057 	case BPF_FUNC_perf_event_output:
8058 		return &bpf_event_output_data_proto;
8059 	case BPF_FUNC_sk_storage_get:
8060 		return &bpf_sk_storage_get_cg_sock_proto;
8061 	case BPF_FUNC_ktime_get_coarse_ns:
8062 		return &bpf_ktime_get_coarse_ns_proto;
8063 	default:
8064 		return bpf_base_func_proto(func_id, prog);
8065 	}
8066 }
8067 
8068 static const struct bpf_func_proto *
8069 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8070 {
8071 	const struct bpf_func_proto *func_proto;
8072 
8073 	func_proto = cgroup_common_func_proto(func_id, prog);
8074 	if (func_proto)
8075 		return func_proto;
8076 
8077 	switch (func_id) {
8078 	case BPF_FUNC_bind:
8079 		switch (prog->expected_attach_type) {
8080 		case BPF_CGROUP_INET4_CONNECT:
8081 		case BPF_CGROUP_INET6_CONNECT:
8082 			return &bpf_bind_proto;
8083 		default:
8084 			return NULL;
8085 		}
8086 	case BPF_FUNC_get_socket_cookie:
8087 		return &bpf_get_socket_cookie_sock_addr_proto;
8088 	case BPF_FUNC_get_netns_cookie:
8089 		return &bpf_get_netns_cookie_sock_addr_proto;
8090 	case BPF_FUNC_perf_event_output:
8091 		return &bpf_event_output_data_proto;
8092 #ifdef CONFIG_INET
8093 	case BPF_FUNC_sk_lookup_tcp:
8094 		return &bpf_sock_addr_sk_lookup_tcp_proto;
8095 	case BPF_FUNC_sk_lookup_udp:
8096 		return &bpf_sock_addr_sk_lookup_udp_proto;
8097 	case BPF_FUNC_sk_release:
8098 		return &bpf_sk_release_proto;
8099 	case BPF_FUNC_skc_lookup_tcp:
8100 		return &bpf_sock_addr_skc_lookup_tcp_proto;
8101 #endif /* CONFIG_INET */
8102 	case BPF_FUNC_sk_storage_get:
8103 		return &bpf_sk_storage_get_proto;
8104 	case BPF_FUNC_sk_storage_delete:
8105 		return &bpf_sk_storage_delete_proto;
8106 	case BPF_FUNC_setsockopt:
8107 		switch (prog->expected_attach_type) {
8108 		case BPF_CGROUP_INET4_BIND:
8109 		case BPF_CGROUP_INET6_BIND:
8110 		case BPF_CGROUP_INET4_CONNECT:
8111 		case BPF_CGROUP_INET6_CONNECT:
8112 		case BPF_CGROUP_UNIX_CONNECT:
8113 		case BPF_CGROUP_UDP4_RECVMSG:
8114 		case BPF_CGROUP_UDP6_RECVMSG:
8115 		case BPF_CGROUP_UNIX_RECVMSG:
8116 		case BPF_CGROUP_UDP4_SENDMSG:
8117 		case BPF_CGROUP_UDP6_SENDMSG:
8118 		case BPF_CGROUP_UNIX_SENDMSG:
8119 		case BPF_CGROUP_INET4_GETPEERNAME:
8120 		case BPF_CGROUP_INET6_GETPEERNAME:
8121 		case BPF_CGROUP_UNIX_GETPEERNAME:
8122 		case BPF_CGROUP_INET4_GETSOCKNAME:
8123 		case BPF_CGROUP_INET6_GETSOCKNAME:
8124 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8125 			return &bpf_sock_addr_setsockopt_proto;
8126 		default:
8127 			return NULL;
8128 		}
8129 	case BPF_FUNC_getsockopt:
8130 		switch (prog->expected_attach_type) {
8131 		case BPF_CGROUP_INET4_BIND:
8132 		case BPF_CGROUP_INET6_BIND:
8133 		case BPF_CGROUP_INET4_CONNECT:
8134 		case BPF_CGROUP_INET6_CONNECT:
8135 		case BPF_CGROUP_UNIX_CONNECT:
8136 		case BPF_CGROUP_UDP4_RECVMSG:
8137 		case BPF_CGROUP_UDP6_RECVMSG:
8138 		case BPF_CGROUP_UNIX_RECVMSG:
8139 		case BPF_CGROUP_UDP4_SENDMSG:
8140 		case BPF_CGROUP_UDP6_SENDMSG:
8141 		case BPF_CGROUP_UNIX_SENDMSG:
8142 		case BPF_CGROUP_INET4_GETPEERNAME:
8143 		case BPF_CGROUP_INET6_GETPEERNAME:
8144 		case BPF_CGROUP_UNIX_GETPEERNAME:
8145 		case BPF_CGROUP_INET4_GETSOCKNAME:
8146 		case BPF_CGROUP_INET6_GETSOCKNAME:
8147 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8148 			return &bpf_sock_addr_getsockopt_proto;
8149 		default:
8150 			return NULL;
8151 		}
8152 	default:
8153 		return bpf_sk_base_func_proto(func_id, prog);
8154 	}
8155 }
8156 
8157 static const struct bpf_func_proto *
8158 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8159 {
8160 	switch (func_id) {
8161 	case BPF_FUNC_skb_load_bytes:
8162 		return &bpf_skb_load_bytes_proto;
8163 	case BPF_FUNC_skb_load_bytes_relative:
8164 		return &bpf_skb_load_bytes_relative_proto;
8165 	case BPF_FUNC_get_socket_cookie:
8166 		return &bpf_get_socket_cookie_proto;
8167 	case BPF_FUNC_get_netns_cookie:
8168 		return &bpf_get_netns_cookie_proto;
8169 	case BPF_FUNC_get_socket_uid:
8170 		return &bpf_get_socket_uid_proto;
8171 	case BPF_FUNC_perf_event_output:
8172 		return &bpf_skb_event_output_proto;
8173 	default:
8174 		return bpf_sk_base_func_proto(func_id, prog);
8175 	}
8176 }
8177 
8178 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8179 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8180 
8181 static const struct bpf_func_proto *
8182 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8183 {
8184 	const struct bpf_func_proto *func_proto;
8185 
8186 	func_proto = cgroup_common_func_proto(func_id, prog);
8187 	if (func_proto)
8188 		return func_proto;
8189 
8190 	switch (func_id) {
8191 	case BPF_FUNC_sk_fullsock:
8192 		return &bpf_sk_fullsock_proto;
8193 	case BPF_FUNC_sk_storage_get:
8194 		return &bpf_sk_storage_get_proto;
8195 	case BPF_FUNC_sk_storage_delete:
8196 		return &bpf_sk_storage_delete_proto;
8197 	case BPF_FUNC_perf_event_output:
8198 		return &bpf_skb_event_output_proto;
8199 #ifdef CONFIG_SOCK_CGROUP_DATA
8200 	case BPF_FUNC_skb_cgroup_id:
8201 		return &bpf_skb_cgroup_id_proto;
8202 	case BPF_FUNC_skb_ancestor_cgroup_id:
8203 		return &bpf_skb_ancestor_cgroup_id_proto;
8204 	case BPF_FUNC_sk_cgroup_id:
8205 		return &bpf_sk_cgroup_id_proto;
8206 	case BPF_FUNC_sk_ancestor_cgroup_id:
8207 		return &bpf_sk_ancestor_cgroup_id_proto;
8208 #endif
8209 #ifdef CONFIG_INET
8210 	case BPF_FUNC_sk_lookup_tcp:
8211 		return &bpf_sk_lookup_tcp_proto;
8212 	case BPF_FUNC_sk_lookup_udp:
8213 		return &bpf_sk_lookup_udp_proto;
8214 	case BPF_FUNC_sk_release:
8215 		return &bpf_sk_release_proto;
8216 	case BPF_FUNC_skc_lookup_tcp:
8217 		return &bpf_skc_lookup_tcp_proto;
8218 	case BPF_FUNC_tcp_sock:
8219 		return &bpf_tcp_sock_proto;
8220 	case BPF_FUNC_get_listener_sock:
8221 		return &bpf_get_listener_sock_proto;
8222 	case BPF_FUNC_skb_ecn_set_ce:
8223 		return &bpf_skb_ecn_set_ce_proto;
8224 #endif
8225 	default:
8226 		return sk_filter_func_proto(func_id, prog);
8227 	}
8228 }
8229 
8230 static const struct bpf_func_proto *
8231 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8232 {
8233 	switch (func_id) {
8234 	case BPF_FUNC_skb_store_bytes:
8235 		return &bpf_skb_store_bytes_proto;
8236 	case BPF_FUNC_skb_load_bytes:
8237 		return &bpf_skb_load_bytes_proto;
8238 	case BPF_FUNC_skb_load_bytes_relative:
8239 		return &bpf_skb_load_bytes_relative_proto;
8240 	case BPF_FUNC_skb_pull_data:
8241 		return &bpf_skb_pull_data_proto;
8242 	case BPF_FUNC_csum_diff:
8243 		return &bpf_csum_diff_proto;
8244 	case BPF_FUNC_csum_update:
8245 		return &bpf_csum_update_proto;
8246 	case BPF_FUNC_csum_level:
8247 		return &bpf_csum_level_proto;
8248 	case BPF_FUNC_l3_csum_replace:
8249 		return &bpf_l3_csum_replace_proto;
8250 	case BPF_FUNC_l4_csum_replace:
8251 		return &bpf_l4_csum_replace_proto;
8252 	case BPF_FUNC_clone_redirect:
8253 		return &bpf_clone_redirect_proto;
8254 	case BPF_FUNC_get_cgroup_classid:
8255 		return &bpf_get_cgroup_classid_proto;
8256 	case BPF_FUNC_skb_vlan_push:
8257 		return &bpf_skb_vlan_push_proto;
8258 	case BPF_FUNC_skb_vlan_pop:
8259 		return &bpf_skb_vlan_pop_proto;
8260 	case BPF_FUNC_skb_change_proto:
8261 		return &bpf_skb_change_proto_proto;
8262 	case BPF_FUNC_skb_change_type:
8263 		return &bpf_skb_change_type_proto;
8264 	case BPF_FUNC_skb_adjust_room:
8265 		return &bpf_skb_adjust_room_proto;
8266 	case BPF_FUNC_skb_change_tail:
8267 		return &bpf_skb_change_tail_proto;
8268 	case BPF_FUNC_skb_change_head:
8269 		return &bpf_skb_change_head_proto;
8270 	case BPF_FUNC_skb_get_tunnel_key:
8271 		return &bpf_skb_get_tunnel_key_proto;
8272 	case BPF_FUNC_skb_set_tunnel_key:
8273 		return bpf_get_skb_set_tunnel_proto(func_id);
8274 	case BPF_FUNC_skb_get_tunnel_opt:
8275 		return &bpf_skb_get_tunnel_opt_proto;
8276 	case BPF_FUNC_skb_set_tunnel_opt:
8277 		return bpf_get_skb_set_tunnel_proto(func_id);
8278 	case BPF_FUNC_redirect:
8279 		return &bpf_redirect_proto;
8280 	case BPF_FUNC_redirect_neigh:
8281 		return &bpf_redirect_neigh_proto;
8282 	case BPF_FUNC_redirect_peer:
8283 		return &bpf_redirect_peer_proto;
8284 	case BPF_FUNC_get_route_realm:
8285 		return &bpf_get_route_realm_proto;
8286 	case BPF_FUNC_get_hash_recalc:
8287 		return &bpf_get_hash_recalc_proto;
8288 	case BPF_FUNC_set_hash_invalid:
8289 		return &bpf_set_hash_invalid_proto;
8290 	case BPF_FUNC_set_hash:
8291 		return &bpf_set_hash_proto;
8292 	case BPF_FUNC_perf_event_output:
8293 		return &bpf_skb_event_output_proto;
8294 	case BPF_FUNC_get_smp_processor_id:
8295 		return &bpf_get_smp_processor_id_proto;
8296 	case BPF_FUNC_skb_under_cgroup:
8297 		return &bpf_skb_under_cgroup_proto;
8298 	case BPF_FUNC_get_socket_cookie:
8299 		return &bpf_get_socket_cookie_proto;
8300 	case BPF_FUNC_get_netns_cookie:
8301 		return &bpf_get_netns_cookie_proto;
8302 	case BPF_FUNC_get_socket_uid:
8303 		return &bpf_get_socket_uid_proto;
8304 	case BPF_FUNC_fib_lookup:
8305 		return &bpf_skb_fib_lookup_proto;
8306 	case BPF_FUNC_check_mtu:
8307 		return &bpf_skb_check_mtu_proto;
8308 	case BPF_FUNC_sk_fullsock:
8309 		return &bpf_sk_fullsock_proto;
8310 	case BPF_FUNC_sk_storage_get:
8311 		return &bpf_sk_storage_get_proto;
8312 	case BPF_FUNC_sk_storage_delete:
8313 		return &bpf_sk_storage_delete_proto;
8314 #ifdef CONFIG_XFRM
8315 	case BPF_FUNC_skb_get_xfrm_state:
8316 		return &bpf_skb_get_xfrm_state_proto;
8317 #endif
8318 #ifdef CONFIG_CGROUP_NET_CLASSID
8319 	case BPF_FUNC_skb_cgroup_classid:
8320 		return &bpf_skb_cgroup_classid_proto;
8321 #endif
8322 #ifdef CONFIG_SOCK_CGROUP_DATA
8323 	case BPF_FUNC_skb_cgroup_id:
8324 		return &bpf_skb_cgroup_id_proto;
8325 	case BPF_FUNC_skb_ancestor_cgroup_id:
8326 		return &bpf_skb_ancestor_cgroup_id_proto;
8327 #endif
8328 #ifdef CONFIG_INET
8329 	case BPF_FUNC_sk_lookup_tcp:
8330 		return &bpf_tc_sk_lookup_tcp_proto;
8331 	case BPF_FUNC_sk_lookup_udp:
8332 		return &bpf_tc_sk_lookup_udp_proto;
8333 	case BPF_FUNC_sk_release:
8334 		return &bpf_sk_release_proto;
8335 	case BPF_FUNC_tcp_sock:
8336 		return &bpf_tcp_sock_proto;
8337 	case BPF_FUNC_get_listener_sock:
8338 		return &bpf_get_listener_sock_proto;
8339 	case BPF_FUNC_skc_lookup_tcp:
8340 		return &bpf_tc_skc_lookup_tcp_proto;
8341 	case BPF_FUNC_tcp_check_syncookie:
8342 		return &bpf_tcp_check_syncookie_proto;
8343 	case BPF_FUNC_skb_ecn_set_ce:
8344 		return &bpf_skb_ecn_set_ce_proto;
8345 	case BPF_FUNC_tcp_gen_syncookie:
8346 		return &bpf_tcp_gen_syncookie_proto;
8347 	case BPF_FUNC_sk_assign:
8348 		return &bpf_sk_assign_proto;
8349 	case BPF_FUNC_skb_set_tstamp:
8350 		return &bpf_skb_set_tstamp_proto;
8351 #ifdef CONFIG_SYN_COOKIES
8352 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8353 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8354 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8355 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8356 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8357 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8358 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8359 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8360 #endif
8361 #endif
8362 	default:
8363 		return bpf_sk_base_func_proto(func_id, prog);
8364 	}
8365 }
8366 
8367 static const struct bpf_func_proto *
8368 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8369 {
8370 	switch (func_id) {
8371 	case BPF_FUNC_perf_event_output:
8372 		return &bpf_xdp_event_output_proto;
8373 	case BPF_FUNC_get_smp_processor_id:
8374 		return &bpf_get_smp_processor_id_proto;
8375 	case BPF_FUNC_csum_diff:
8376 		return &bpf_csum_diff_proto;
8377 	case BPF_FUNC_xdp_adjust_head:
8378 		return &bpf_xdp_adjust_head_proto;
8379 	case BPF_FUNC_xdp_adjust_meta:
8380 		return &bpf_xdp_adjust_meta_proto;
8381 	case BPF_FUNC_redirect:
8382 		return &bpf_xdp_redirect_proto;
8383 	case BPF_FUNC_redirect_map:
8384 		return &bpf_xdp_redirect_map_proto;
8385 	case BPF_FUNC_xdp_adjust_tail:
8386 		return &bpf_xdp_adjust_tail_proto;
8387 	case BPF_FUNC_xdp_get_buff_len:
8388 		return &bpf_xdp_get_buff_len_proto;
8389 	case BPF_FUNC_xdp_load_bytes:
8390 		return &bpf_xdp_load_bytes_proto;
8391 	case BPF_FUNC_xdp_store_bytes:
8392 		return &bpf_xdp_store_bytes_proto;
8393 	case BPF_FUNC_fib_lookup:
8394 		return &bpf_xdp_fib_lookup_proto;
8395 	case BPF_FUNC_check_mtu:
8396 		return &bpf_xdp_check_mtu_proto;
8397 #ifdef CONFIG_INET
8398 	case BPF_FUNC_sk_lookup_udp:
8399 		return &bpf_xdp_sk_lookup_udp_proto;
8400 	case BPF_FUNC_sk_lookup_tcp:
8401 		return &bpf_xdp_sk_lookup_tcp_proto;
8402 	case BPF_FUNC_sk_release:
8403 		return &bpf_sk_release_proto;
8404 	case BPF_FUNC_skc_lookup_tcp:
8405 		return &bpf_xdp_skc_lookup_tcp_proto;
8406 	case BPF_FUNC_tcp_check_syncookie:
8407 		return &bpf_tcp_check_syncookie_proto;
8408 	case BPF_FUNC_tcp_gen_syncookie:
8409 		return &bpf_tcp_gen_syncookie_proto;
8410 #ifdef CONFIG_SYN_COOKIES
8411 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8412 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8413 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8414 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8415 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8416 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8417 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8418 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8419 #endif
8420 #endif
8421 	default:
8422 		return bpf_sk_base_func_proto(func_id, prog);
8423 	}
8424 
8425 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8426 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8427 	 * kfuncs are defined in two different modules, and we want to be able
8428 	 * to use them interchangeably with the same BTF type ID. Because modules
8429 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8430 	 * referenced in the vmlinux BTF or the verifier will get confused about
8431 	 * the different types. So we add this dummy type reference which will
8432 	 * be included in vmlinux BTF, allowing both modules to refer to the
8433 	 * same type ID.
8434 	 */
8435 	BTF_TYPE_EMIT(struct nf_conn___init);
8436 #endif
8437 }
8438 
8439 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8440 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8441 
8442 static const struct bpf_func_proto *
8443 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8444 {
8445 	const struct bpf_func_proto *func_proto;
8446 
8447 	func_proto = cgroup_common_func_proto(func_id, prog);
8448 	if (func_proto)
8449 		return func_proto;
8450 
8451 	switch (func_id) {
8452 	case BPF_FUNC_setsockopt:
8453 		return &bpf_sock_ops_setsockopt_proto;
8454 	case BPF_FUNC_getsockopt:
8455 		return &bpf_sock_ops_getsockopt_proto;
8456 	case BPF_FUNC_sock_ops_cb_flags_set:
8457 		return &bpf_sock_ops_cb_flags_set_proto;
8458 	case BPF_FUNC_sock_map_update:
8459 		return &bpf_sock_map_update_proto;
8460 	case BPF_FUNC_sock_hash_update:
8461 		return &bpf_sock_hash_update_proto;
8462 	case BPF_FUNC_get_socket_cookie:
8463 		return &bpf_get_socket_cookie_sock_ops_proto;
8464 	case BPF_FUNC_perf_event_output:
8465 		return &bpf_event_output_data_proto;
8466 	case BPF_FUNC_sk_storage_get:
8467 		return &bpf_sk_storage_get_proto;
8468 	case BPF_FUNC_sk_storage_delete:
8469 		return &bpf_sk_storage_delete_proto;
8470 	case BPF_FUNC_get_netns_cookie:
8471 		return &bpf_get_netns_cookie_sock_ops_proto;
8472 #ifdef CONFIG_INET
8473 	case BPF_FUNC_load_hdr_opt:
8474 		return &bpf_sock_ops_load_hdr_opt_proto;
8475 	case BPF_FUNC_store_hdr_opt:
8476 		return &bpf_sock_ops_store_hdr_opt_proto;
8477 	case BPF_FUNC_reserve_hdr_opt:
8478 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8479 	case BPF_FUNC_tcp_sock:
8480 		return &bpf_tcp_sock_proto;
8481 #endif /* CONFIG_INET */
8482 	default:
8483 		return bpf_sk_base_func_proto(func_id, prog);
8484 	}
8485 }
8486 
8487 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8488 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8489 
8490 static const struct bpf_func_proto *
8491 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8492 {
8493 	switch (func_id) {
8494 	case BPF_FUNC_msg_redirect_map:
8495 		return &bpf_msg_redirect_map_proto;
8496 	case BPF_FUNC_msg_redirect_hash:
8497 		return &bpf_msg_redirect_hash_proto;
8498 	case BPF_FUNC_msg_apply_bytes:
8499 		return &bpf_msg_apply_bytes_proto;
8500 	case BPF_FUNC_msg_cork_bytes:
8501 		return &bpf_msg_cork_bytes_proto;
8502 	case BPF_FUNC_msg_pull_data:
8503 		return &bpf_msg_pull_data_proto;
8504 	case BPF_FUNC_msg_push_data:
8505 		return &bpf_msg_push_data_proto;
8506 	case BPF_FUNC_msg_pop_data:
8507 		return &bpf_msg_pop_data_proto;
8508 	case BPF_FUNC_perf_event_output:
8509 		return &bpf_event_output_data_proto;
8510 	case BPF_FUNC_sk_storage_get:
8511 		return &bpf_sk_storage_get_proto;
8512 	case BPF_FUNC_sk_storage_delete:
8513 		return &bpf_sk_storage_delete_proto;
8514 	case BPF_FUNC_get_netns_cookie:
8515 		return &bpf_get_netns_cookie_sk_msg_proto;
8516 	default:
8517 		return bpf_sk_base_func_proto(func_id, prog);
8518 	}
8519 }
8520 
8521 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8522 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8523 
8524 static const struct bpf_func_proto *
8525 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8526 {
8527 	switch (func_id) {
8528 	case BPF_FUNC_skb_store_bytes:
8529 		return &bpf_skb_store_bytes_proto;
8530 	case BPF_FUNC_skb_load_bytes:
8531 		return &bpf_skb_load_bytes_proto;
8532 	case BPF_FUNC_skb_pull_data:
8533 		return &sk_skb_pull_data_proto;
8534 	case BPF_FUNC_skb_change_tail:
8535 		return &sk_skb_change_tail_proto;
8536 	case BPF_FUNC_skb_change_head:
8537 		return &sk_skb_change_head_proto;
8538 	case BPF_FUNC_skb_adjust_room:
8539 		return &sk_skb_adjust_room_proto;
8540 	case BPF_FUNC_get_socket_cookie:
8541 		return &bpf_get_socket_cookie_proto;
8542 	case BPF_FUNC_get_socket_uid:
8543 		return &bpf_get_socket_uid_proto;
8544 	case BPF_FUNC_sk_redirect_map:
8545 		return &bpf_sk_redirect_map_proto;
8546 	case BPF_FUNC_sk_redirect_hash:
8547 		return &bpf_sk_redirect_hash_proto;
8548 	case BPF_FUNC_perf_event_output:
8549 		return &bpf_skb_event_output_proto;
8550 #ifdef CONFIG_INET
8551 	case BPF_FUNC_sk_lookup_tcp:
8552 		return &bpf_sk_lookup_tcp_proto;
8553 	case BPF_FUNC_sk_lookup_udp:
8554 		return &bpf_sk_lookup_udp_proto;
8555 	case BPF_FUNC_sk_release:
8556 		return &bpf_sk_release_proto;
8557 	case BPF_FUNC_skc_lookup_tcp:
8558 		return &bpf_skc_lookup_tcp_proto;
8559 #endif
8560 	default:
8561 		return bpf_sk_base_func_proto(func_id, prog);
8562 	}
8563 }
8564 
8565 static const struct bpf_func_proto *
8566 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8567 {
8568 	switch (func_id) {
8569 	case BPF_FUNC_skb_load_bytes:
8570 		return &bpf_flow_dissector_load_bytes_proto;
8571 	default:
8572 		return bpf_sk_base_func_proto(func_id, prog);
8573 	}
8574 }
8575 
8576 static const struct bpf_func_proto *
8577 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8578 {
8579 	switch (func_id) {
8580 	case BPF_FUNC_skb_load_bytes:
8581 		return &bpf_skb_load_bytes_proto;
8582 	case BPF_FUNC_skb_pull_data:
8583 		return &bpf_skb_pull_data_proto;
8584 	case BPF_FUNC_csum_diff:
8585 		return &bpf_csum_diff_proto;
8586 	case BPF_FUNC_get_cgroup_classid:
8587 		return &bpf_get_cgroup_classid_proto;
8588 	case BPF_FUNC_get_route_realm:
8589 		return &bpf_get_route_realm_proto;
8590 	case BPF_FUNC_get_hash_recalc:
8591 		return &bpf_get_hash_recalc_proto;
8592 	case BPF_FUNC_perf_event_output:
8593 		return &bpf_skb_event_output_proto;
8594 	case BPF_FUNC_get_smp_processor_id:
8595 		return &bpf_get_smp_processor_id_proto;
8596 	case BPF_FUNC_skb_under_cgroup:
8597 		return &bpf_skb_under_cgroup_proto;
8598 	default:
8599 		return bpf_sk_base_func_proto(func_id, prog);
8600 	}
8601 }
8602 
8603 static const struct bpf_func_proto *
8604 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8605 {
8606 	switch (func_id) {
8607 	case BPF_FUNC_lwt_push_encap:
8608 		return &bpf_lwt_in_push_encap_proto;
8609 	default:
8610 		return lwt_out_func_proto(func_id, prog);
8611 	}
8612 }
8613 
8614 static const struct bpf_func_proto *
8615 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8616 {
8617 	switch (func_id) {
8618 	case BPF_FUNC_skb_get_tunnel_key:
8619 		return &bpf_skb_get_tunnel_key_proto;
8620 	case BPF_FUNC_skb_set_tunnel_key:
8621 		return bpf_get_skb_set_tunnel_proto(func_id);
8622 	case BPF_FUNC_skb_get_tunnel_opt:
8623 		return &bpf_skb_get_tunnel_opt_proto;
8624 	case BPF_FUNC_skb_set_tunnel_opt:
8625 		return bpf_get_skb_set_tunnel_proto(func_id);
8626 	case BPF_FUNC_redirect:
8627 		return &bpf_redirect_proto;
8628 	case BPF_FUNC_clone_redirect:
8629 		return &bpf_clone_redirect_proto;
8630 	case BPF_FUNC_skb_change_tail:
8631 		return &bpf_skb_change_tail_proto;
8632 	case BPF_FUNC_skb_change_head:
8633 		return &bpf_skb_change_head_proto;
8634 	case BPF_FUNC_skb_store_bytes:
8635 		return &bpf_skb_store_bytes_proto;
8636 	case BPF_FUNC_csum_update:
8637 		return &bpf_csum_update_proto;
8638 	case BPF_FUNC_csum_level:
8639 		return &bpf_csum_level_proto;
8640 	case BPF_FUNC_l3_csum_replace:
8641 		return &bpf_l3_csum_replace_proto;
8642 	case BPF_FUNC_l4_csum_replace:
8643 		return &bpf_l4_csum_replace_proto;
8644 	case BPF_FUNC_set_hash_invalid:
8645 		return &bpf_set_hash_invalid_proto;
8646 	case BPF_FUNC_lwt_push_encap:
8647 		return &bpf_lwt_xmit_push_encap_proto;
8648 	default:
8649 		return lwt_out_func_proto(func_id, prog);
8650 	}
8651 }
8652 
8653 static const struct bpf_func_proto *
8654 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8655 {
8656 	switch (func_id) {
8657 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8658 	case BPF_FUNC_lwt_seg6_store_bytes:
8659 		return &bpf_lwt_seg6_store_bytes_proto;
8660 	case BPF_FUNC_lwt_seg6_action:
8661 		return &bpf_lwt_seg6_action_proto;
8662 	case BPF_FUNC_lwt_seg6_adjust_srh:
8663 		return &bpf_lwt_seg6_adjust_srh_proto;
8664 #endif
8665 	default:
8666 		return lwt_out_func_proto(func_id, prog);
8667 	}
8668 }
8669 
8670 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8671 				    const struct bpf_prog *prog,
8672 				    struct bpf_insn_access_aux *info)
8673 {
8674 	const int size_default = sizeof(__u32);
8675 
8676 	if (off < 0 || off >= sizeof(struct __sk_buff))
8677 		return false;
8678 
8679 	/* The verifier guarantees that size > 0. */
8680 	if (off % size != 0)
8681 		return false;
8682 
8683 	switch (off) {
8684 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8685 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8686 			return false;
8687 		break;
8688 	case bpf_ctx_range(struct __sk_buff, data):
8689 	case bpf_ctx_range(struct __sk_buff, data_meta):
8690 	case bpf_ctx_range(struct __sk_buff, data_end):
8691 		if (info->is_ldsx || size != size_default)
8692 			return false;
8693 		break;
8694 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8695 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8696 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8697 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8698 		if (size != size_default)
8699 			return false;
8700 		break;
8701 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8702 		return false;
8703 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8704 		if (type == BPF_WRITE || size != sizeof(__u64))
8705 			return false;
8706 		break;
8707 	case bpf_ctx_range(struct __sk_buff, tstamp):
8708 		if (size != sizeof(__u64))
8709 			return false;
8710 		break;
8711 	case bpf_ctx_range_ptr(struct __sk_buff, sk):
8712 		if (type == BPF_WRITE || size != sizeof(__u64))
8713 			return false;
8714 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8715 		break;
8716 	case offsetof(struct __sk_buff, tstamp_type):
8717 		return false;
8718 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8719 		/* Explicitly prohibit access to padding in __sk_buff. */
8720 		return false;
8721 	default:
8722 		/* Only narrow read access allowed for now. */
8723 		if (type == BPF_WRITE) {
8724 			if (size != size_default)
8725 				return false;
8726 		} else {
8727 			bpf_ctx_record_field_size(info, size_default);
8728 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8729 				return false;
8730 		}
8731 	}
8732 
8733 	return true;
8734 }
8735 
8736 static bool sk_filter_is_valid_access(int off, int size,
8737 				      enum bpf_access_type type,
8738 				      const struct bpf_prog *prog,
8739 				      struct bpf_insn_access_aux *info)
8740 {
8741 	switch (off) {
8742 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8743 	case bpf_ctx_range(struct __sk_buff, data):
8744 	case bpf_ctx_range(struct __sk_buff, data_meta):
8745 	case bpf_ctx_range(struct __sk_buff, data_end):
8746 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8747 	case bpf_ctx_range(struct __sk_buff, tstamp):
8748 	case bpf_ctx_range(struct __sk_buff, wire_len):
8749 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8750 		return false;
8751 	}
8752 
8753 	if (type == BPF_WRITE) {
8754 		switch (off) {
8755 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8756 			break;
8757 		default:
8758 			return false;
8759 		}
8760 	}
8761 
8762 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8763 }
8764 
8765 static bool cg_skb_is_valid_access(int off, int size,
8766 				   enum bpf_access_type type,
8767 				   const struct bpf_prog *prog,
8768 				   struct bpf_insn_access_aux *info)
8769 {
8770 	switch (off) {
8771 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8772 	case bpf_ctx_range(struct __sk_buff, data_meta):
8773 	case bpf_ctx_range(struct __sk_buff, wire_len):
8774 		return false;
8775 	case bpf_ctx_range(struct __sk_buff, data):
8776 	case bpf_ctx_range(struct __sk_buff, data_end):
8777 		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8778 			return false;
8779 		break;
8780 	}
8781 
8782 	if (type == BPF_WRITE) {
8783 		switch (off) {
8784 		case bpf_ctx_range(struct __sk_buff, mark):
8785 		case bpf_ctx_range(struct __sk_buff, priority):
8786 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8787 			break;
8788 		case bpf_ctx_range(struct __sk_buff, tstamp):
8789 			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8790 				return false;
8791 			break;
8792 		default:
8793 			return false;
8794 		}
8795 	}
8796 
8797 	switch (off) {
8798 	case bpf_ctx_range(struct __sk_buff, data):
8799 		info->reg_type = PTR_TO_PACKET;
8800 		break;
8801 	case bpf_ctx_range(struct __sk_buff, data_end):
8802 		info->reg_type = PTR_TO_PACKET_END;
8803 		break;
8804 	}
8805 
8806 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8807 }
8808 
8809 static bool lwt_is_valid_access(int off, int size,
8810 				enum bpf_access_type type,
8811 				const struct bpf_prog *prog,
8812 				struct bpf_insn_access_aux *info)
8813 {
8814 	switch (off) {
8815 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8816 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8817 	case bpf_ctx_range(struct __sk_buff, data_meta):
8818 	case bpf_ctx_range(struct __sk_buff, tstamp):
8819 	case bpf_ctx_range(struct __sk_buff, wire_len):
8820 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8821 		return false;
8822 	}
8823 
8824 	if (type == BPF_WRITE) {
8825 		switch (off) {
8826 		case bpf_ctx_range(struct __sk_buff, mark):
8827 		case bpf_ctx_range(struct __sk_buff, priority):
8828 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8829 			break;
8830 		default:
8831 			return false;
8832 		}
8833 	}
8834 
8835 	switch (off) {
8836 	case bpf_ctx_range(struct __sk_buff, data):
8837 		info->reg_type = PTR_TO_PACKET;
8838 		break;
8839 	case bpf_ctx_range(struct __sk_buff, data_end):
8840 		info->reg_type = PTR_TO_PACKET_END;
8841 		break;
8842 	}
8843 
8844 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8845 }
8846 
8847 /* Attach type specific accesses */
8848 static bool __sock_filter_check_attach_type(int off,
8849 					    enum bpf_access_type access_type,
8850 					    enum bpf_attach_type attach_type)
8851 {
8852 	switch (off) {
8853 	case offsetof(struct bpf_sock, bound_dev_if):
8854 	case offsetof(struct bpf_sock, mark):
8855 	case offsetof(struct bpf_sock, priority):
8856 		switch (attach_type) {
8857 		case BPF_CGROUP_INET_SOCK_CREATE:
8858 		case BPF_CGROUP_INET_SOCK_RELEASE:
8859 			goto full_access;
8860 		default:
8861 			return false;
8862 		}
8863 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8864 		switch (attach_type) {
8865 		case BPF_CGROUP_INET4_POST_BIND:
8866 			goto read_only;
8867 		default:
8868 			return false;
8869 		}
8870 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8871 		switch (attach_type) {
8872 		case BPF_CGROUP_INET6_POST_BIND:
8873 			goto read_only;
8874 		default:
8875 			return false;
8876 		}
8877 	case bpf_ctx_range(struct bpf_sock, src_port):
8878 		switch (attach_type) {
8879 		case BPF_CGROUP_INET4_POST_BIND:
8880 		case BPF_CGROUP_INET6_POST_BIND:
8881 			goto read_only;
8882 		default:
8883 			return false;
8884 		}
8885 	}
8886 read_only:
8887 	return access_type == BPF_READ;
8888 full_access:
8889 	return true;
8890 }
8891 
8892 bool bpf_sock_common_is_valid_access(int off, int size,
8893 				     enum bpf_access_type type,
8894 				     struct bpf_insn_access_aux *info)
8895 {
8896 	switch (off) {
8897 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8898 		return false;
8899 	default:
8900 		return bpf_sock_is_valid_access(off, size, type, info);
8901 	}
8902 }
8903 
8904 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8905 			      struct bpf_insn_access_aux *info)
8906 {
8907 	const int size_default = sizeof(__u32);
8908 	int field_size;
8909 
8910 	if (off < 0 || off >= sizeof(struct bpf_sock))
8911 		return false;
8912 	if (off % size != 0)
8913 		return false;
8914 
8915 	switch (off) {
8916 	case offsetof(struct bpf_sock, state):
8917 	case offsetof(struct bpf_sock, family):
8918 	case offsetof(struct bpf_sock, type):
8919 	case offsetof(struct bpf_sock, protocol):
8920 	case offsetof(struct bpf_sock, src_port):
8921 	case offsetof(struct bpf_sock, rx_queue_mapping):
8922 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8923 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8924 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8925 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8926 		bpf_ctx_record_field_size(info, size_default);
8927 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8928 	case bpf_ctx_range(struct bpf_sock, dst_port):
8929 		field_size = size == size_default ?
8930 			size_default : sizeof_field(struct bpf_sock, dst_port);
8931 		bpf_ctx_record_field_size(info, field_size);
8932 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8933 	case offsetofend(struct bpf_sock, dst_port) ...
8934 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8935 		return false;
8936 	}
8937 
8938 	return size == size_default;
8939 }
8940 
8941 static bool sock_filter_is_valid_access(int off, int size,
8942 					enum bpf_access_type type,
8943 					const struct bpf_prog *prog,
8944 					struct bpf_insn_access_aux *info)
8945 {
8946 	if (!bpf_sock_is_valid_access(off, size, type, info))
8947 		return false;
8948 	return __sock_filter_check_attach_type(off, type,
8949 					       prog->expected_attach_type);
8950 }
8951 
8952 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8953 			     const struct bpf_prog *prog)
8954 {
8955 	/* Neither direct read nor direct write requires any preliminary
8956 	 * action.
8957 	 */
8958 	return 0;
8959 }
8960 
8961 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8962 				const struct bpf_prog *prog, int drop_verdict)
8963 {
8964 	struct bpf_insn *insn = insn_buf;
8965 
8966 	if (!direct_write)
8967 		return 0;
8968 
8969 	/* if (!skb->cloned)
8970 	 *       goto start;
8971 	 *
8972 	 * (Fast-path, otherwise approximation that we might be
8973 	 *  a clone, do the rest in helper.)
8974 	 */
8975 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8976 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8977 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8978 
8979 	/* ret = bpf_skb_pull_data(skb, 0); */
8980 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8981 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8982 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8983 			       BPF_FUNC_skb_pull_data);
8984 	/* if (!ret)
8985 	 *      goto restore;
8986 	 * return TC_ACT_SHOT;
8987 	 */
8988 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8989 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8990 	*insn++ = BPF_EXIT_INSN();
8991 
8992 	/* restore: */
8993 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8994 	/* start: */
8995 	*insn++ = prog->insnsi[0];
8996 
8997 	return insn - insn_buf;
8998 }
8999 
9000 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
9001 			  struct bpf_insn *insn_buf)
9002 {
9003 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
9004 	struct bpf_insn *insn = insn_buf;
9005 
9006 	if (!indirect) {
9007 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
9008 	} else {
9009 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
9010 		if (orig->imm)
9011 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
9012 	}
9013 	/* We're guaranteed here that CTX is in R6. */
9014 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9015 
9016 	switch (BPF_SIZE(orig->code)) {
9017 	case BPF_B:
9018 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9019 		break;
9020 	case BPF_H:
9021 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9022 		break;
9023 	case BPF_W:
9024 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9025 		break;
9026 	}
9027 
9028 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9029 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9030 	*insn++ = BPF_EXIT_INSN();
9031 
9032 	return insn - insn_buf;
9033 }
9034 
9035 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9036 			       const struct bpf_prog *prog)
9037 {
9038 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9039 }
9040 
9041 static bool tc_cls_act_is_valid_access(int off, int size,
9042 				       enum bpf_access_type type,
9043 				       const struct bpf_prog *prog,
9044 				       struct bpf_insn_access_aux *info)
9045 {
9046 	if (type == BPF_WRITE) {
9047 		switch (off) {
9048 		case bpf_ctx_range(struct __sk_buff, mark):
9049 		case bpf_ctx_range(struct __sk_buff, tc_index):
9050 		case bpf_ctx_range(struct __sk_buff, priority):
9051 		case bpf_ctx_range(struct __sk_buff, tc_classid):
9052 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9053 		case bpf_ctx_range(struct __sk_buff, tstamp):
9054 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
9055 			break;
9056 		default:
9057 			return false;
9058 		}
9059 	}
9060 
9061 	switch (off) {
9062 	case bpf_ctx_range(struct __sk_buff, data):
9063 		info->reg_type = PTR_TO_PACKET;
9064 		break;
9065 	case bpf_ctx_range(struct __sk_buff, data_meta):
9066 		info->reg_type = PTR_TO_PACKET_META;
9067 		break;
9068 	case bpf_ctx_range(struct __sk_buff, data_end):
9069 		info->reg_type = PTR_TO_PACKET_END;
9070 		break;
9071 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9072 		return false;
9073 	case offsetof(struct __sk_buff, tstamp_type):
9074 		/* The convert_ctx_access() on reading and writing
9075 		 * __sk_buff->tstamp depends on whether the bpf prog
9076 		 * has used __sk_buff->tstamp_type or not.
9077 		 * Thus, we need to set prog->tstamp_type_access
9078 		 * earlier during is_valid_access() here.
9079 		 */
9080 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
9081 		return size == sizeof(__u8);
9082 	}
9083 
9084 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9085 }
9086 
9087 DEFINE_MUTEX(nf_conn_btf_access_lock);
9088 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9089 
9090 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9091 			      const struct bpf_reg_state *reg,
9092 			      int off, int size);
9093 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9094 
9095 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9096 					const struct bpf_reg_state *reg,
9097 					int off, int size)
9098 {
9099 	int ret = -EACCES;
9100 
9101 	mutex_lock(&nf_conn_btf_access_lock);
9102 	if (nfct_btf_struct_access)
9103 		ret = nfct_btf_struct_access(log, reg, off, size);
9104 	mutex_unlock(&nf_conn_btf_access_lock);
9105 
9106 	return ret;
9107 }
9108 
9109 static bool __is_valid_xdp_access(int off, int size)
9110 {
9111 	if (off < 0 || off >= sizeof(struct xdp_md))
9112 		return false;
9113 	if (off % size != 0)
9114 		return false;
9115 	if (size != sizeof(__u32))
9116 		return false;
9117 
9118 	return true;
9119 }
9120 
9121 static bool xdp_is_valid_access(int off, int size,
9122 				enum bpf_access_type type,
9123 				const struct bpf_prog *prog,
9124 				struct bpf_insn_access_aux *info)
9125 {
9126 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9127 		switch (off) {
9128 		case offsetof(struct xdp_md, egress_ifindex):
9129 			return false;
9130 		}
9131 	}
9132 
9133 	if (type == BPF_WRITE) {
9134 		if (bpf_prog_is_offloaded(prog->aux)) {
9135 			switch (off) {
9136 			case offsetof(struct xdp_md, rx_queue_index):
9137 				return __is_valid_xdp_access(off, size);
9138 			}
9139 		}
9140 		return false;
9141 	} else {
9142 		switch (off) {
9143 		case offsetof(struct xdp_md, data_meta):
9144 		case offsetof(struct xdp_md, data):
9145 		case offsetof(struct xdp_md, data_end):
9146 			if (info->is_ldsx)
9147 				return false;
9148 		}
9149 	}
9150 
9151 	switch (off) {
9152 	case offsetof(struct xdp_md, data):
9153 		info->reg_type = PTR_TO_PACKET;
9154 		break;
9155 	case offsetof(struct xdp_md, data_meta):
9156 		info->reg_type = PTR_TO_PACKET_META;
9157 		break;
9158 	case offsetof(struct xdp_md, data_end):
9159 		info->reg_type = PTR_TO_PACKET_END;
9160 		break;
9161 	}
9162 
9163 	return __is_valid_xdp_access(off, size);
9164 }
9165 
9166 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9167 				 const struct bpf_prog *prog, u32 act)
9168 {
9169 	const u32 act_max = XDP_REDIRECT;
9170 
9171 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9172 		     act > act_max ? "Illegal" : "Driver unsupported",
9173 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9174 }
9175 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9176 
9177 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9178 				 const struct bpf_reg_state *reg,
9179 				 int off, int size)
9180 {
9181 	int ret = -EACCES;
9182 
9183 	mutex_lock(&nf_conn_btf_access_lock);
9184 	if (nfct_btf_struct_access)
9185 		ret = nfct_btf_struct_access(log, reg, off, size);
9186 	mutex_unlock(&nf_conn_btf_access_lock);
9187 
9188 	return ret;
9189 }
9190 
9191 static bool sock_addr_is_valid_access(int off, int size,
9192 				      enum bpf_access_type type,
9193 				      const struct bpf_prog *prog,
9194 				      struct bpf_insn_access_aux *info)
9195 {
9196 	const int size_default = sizeof(__u32);
9197 
9198 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9199 		return false;
9200 	if (off % size != 0)
9201 		return false;
9202 
9203 	/* Disallow access to fields not belonging to the attach type's address
9204 	 * family.
9205 	 */
9206 	switch (off) {
9207 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9208 		switch (prog->expected_attach_type) {
9209 		case BPF_CGROUP_INET4_BIND:
9210 		case BPF_CGROUP_INET4_CONNECT:
9211 		case BPF_CGROUP_INET4_GETPEERNAME:
9212 		case BPF_CGROUP_INET4_GETSOCKNAME:
9213 		case BPF_CGROUP_UDP4_SENDMSG:
9214 		case BPF_CGROUP_UDP4_RECVMSG:
9215 			break;
9216 		default:
9217 			return false;
9218 		}
9219 		break;
9220 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9221 		switch (prog->expected_attach_type) {
9222 		case BPF_CGROUP_INET6_BIND:
9223 		case BPF_CGROUP_INET6_CONNECT:
9224 		case BPF_CGROUP_INET6_GETPEERNAME:
9225 		case BPF_CGROUP_INET6_GETSOCKNAME:
9226 		case BPF_CGROUP_UDP6_SENDMSG:
9227 		case BPF_CGROUP_UDP6_RECVMSG:
9228 			break;
9229 		default:
9230 			return false;
9231 		}
9232 		break;
9233 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9234 		switch (prog->expected_attach_type) {
9235 		case BPF_CGROUP_UDP4_SENDMSG:
9236 			break;
9237 		default:
9238 			return false;
9239 		}
9240 		break;
9241 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9242 				msg_src_ip6[3]):
9243 		switch (prog->expected_attach_type) {
9244 		case BPF_CGROUP_UDP6_SENDMSG:
9245 			break;
9246 		default:
9247 			return false;
9248 		}
9249 		break;
9250 	}
9251 
9252 	switch (off) {
9253 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9254 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9255 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9256 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9257 				msg_src_ip6[3]):
9258 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9259 		if (type == BPF_READ) {
9260 			bpf_ctx_record_field_size(info, size_default);
9261 
9262 			if (bpf_ctx_wide_access_ok(off, size,
9263 						   struct bpf_sock_addr,
9264 						   user_ip6))
9265 				return true;
9266 
9267 			if (bpf_ctx_wide_access_ok(off, size,
9268 						   struct bpf_sock_addr,
9269 						   msg_src_ip6))
9270 				return true;
9271 
9272 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9273 				return false;
9274 		} else {
9275 			if (bpf_ctx_wide_access_ok(off, size,
9276 						   struct bpf_sock_addr,
9277 						   user_ip6))
9278 				return true;
9279 
9280 			if (bpf_ctx_wide_access_ok(off, size,
9281 						   struct bpf_sock_addr,
9282 						   msg_src_ip6))
9283 				return true;
9284 
9285 			if (size != size_default)
9286 				return false;
9287 		}
9288 		break;
9289 	case bpf_ctx_range_ptr(struct bpf_sock_addr, sk):
9290 		if (type != BPF_READ)
9291 			return false;
9292 		if (size != sizeof(__u64))
9293 			return false;
9294 		info->reg_type = PTR_TO_SOCKET;
9295 		break;
9296 	case bpf_ctx_range(struct bpf_sock_addr, user_family):
9297 	case bpf_ctx_range(struct bpf_sock_addr, family):
9298 	case bpf_ctx_range(struct bpf_sock_addr, type):
9299 	case bpf_ctx_range(struct bpf_sock_addr, protocol):
9300 		if (type != BPF_READ)
9301 			return false;
9302 		if (size != size_default)
9303 			return false;
9304 		break;
9305 	default:
9306 		return false;
9307 	}
9308 
9309 	return true;
9310 }
9311 
9312 static bool sock_ops_is_valid_access(int off, int size,
9313 				     enum bpf_access_type type,
9314 				     const struct bpf_prog *prog,
9315 				     struct bpf_insn_access_aux *info)
9316 {
9317 	const int size_default = sizeof(__u32);
9318 
9319 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9320 		return false;
9321 
9322 	/* The verifier guarantees that size > 0. */
9323 	if (off % size != 0)
9324 		return false;
9325 
9326 	if (type == BPF_WRITE) {
9327 		switch (off) {
9328 		case offsetof(struct bpf_sock_ops, reply):
9329 		case offsetof(struct bpf_sock_ops, sk_txhash):
9330 			if (size != size_default)
9331 				return false;
9332 			break;
9333 		default:
9334 			return false;
9335 		}
9336 	} else {
9337 		switch (off) {
9338 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9339 					bytes_acked):
9340 			if (size != sizeof(__u64))
9341 				return false;
9342 			break;
9343 		case bpf_ctx_range_ptr(struct bpf_sock_ops, sk):
9344 			if (size != sizeof(__u64))
9345 				return false;
9346 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9347 			break;
9348 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data):
9349 			if (size != sizeof(__u64))
9350 				return false;
9351 			info->reg_type = PTR_TO_PACKET;
9352 			break;
9353 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end):
9354 			if (size != sizeof(__u64))
9355 				return false;
9356 			info->reg_type = PTR_TO_PACKET_END;
9357 			break;
9358 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9359 			bpf_ctx_record_field_size(info, size_default);
9360 			return bpf_ctx_narrow_access_ok(off, size,
9361 							size_default);
9362 		case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp):
9363 			if (size != sizeof(__u64))
9364 				return false;
9365 			break;
9366 		default:
9367 			if (size != size_default)
9368 				return false;
9369 			break;
9370 		}
9371 	}
9372 
9373 	return true;
9374 }
9375 
9376 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9377 			   const struct bpf_prog *prog)
9378 {
9379 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9380 }
9381 
9382 static bool sk_skb_is_valid_access(int off, int size,
9383 				   enum bpf_access_type type,
9384 				   const struct bpf_prog *prog,
9385 				   struct bpf_insn_access_aux *info)
9386 {
9387 	switch (off) {
9388 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9389 	case bpf_ctx_range(struct __sk_buff, data_meta):
9390 	case bpf_ctx_range(struct __sk_buff, tstamp):
9391 	case bpf_ctx_range(struct __sk_buff, wire_len):
9392 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9393 		return false;
9394 	}
9395 
9396 	if (type == BPF_WRITE) {
9397 		switch (off) {
9398 		case bpf_ctx_range(struct __sk_buff, tc_index):
9399 		case bpf_ctx_range(struct __sk_buff, priority):
9400 			break;
9401 		default:
9402 			return false;
9403 		}
9404 	}
9405 
9406 	switch (off) {
9407 	case bpf_ctx_range(struct __sk_buff, mark):
9408 		return false;
9409 	case bpf_ctx_range(struct __sk_buff, data):
9410 		info->reg_type = PTR_TO_PACKET;
9411 		break;
9412 	case bpf_ctx_range(struct __sk_buff, data_end):
9413 		info->reg_type = PTR_TO_PACKET_END;
9414 		break;
9415 	}
9416 
9417 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9418 }
9419 
9420 static bool sk_msg_is_valid_access(int off, int size,
9421 				   enum bpf_access_type type,
9422 				   const struct bpf_prog *prog,
9423 				   struct bpf_insn_access_aux *info)
9424 {
9425 	if (type == BPF_WRITE)
9426 		return false;
9427 
9428 	if (off % size != 0)
9429 		return false;
9430 
9431 	switch (off) {
9432 	case bpf_ctx_range_ptr(struct sk_msg_md, data):
9433 		info->reg_type = PTR_TO_PACKET;
9434 		if (size != sizeof(__u64))
9435 			return false;
9436 		break;
9437 	case bpf_ctx_range_ptr(struct sk_msg_md, data_end):
9438 		info->reg_type = PTR_TO_PACKET_END;
9439 		if (size != sizeof(__u64))
9440 			return false;
9441 		break;
9442 	case bpf_ctx_range_ptr(struct sk_msg_md, sk):
9443 		if (size != sizeof(__u64))
9444 			return false;
9445 		info->reg_type = PTR_TO_SOCKET;
9446 		break;
9447 	case bpf_ctx_range(struct sk_msg_md, family):
9448 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9449 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9450 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9451 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9452 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9453 	case bpf_ctx_range(struct sk_msg_md, local_port):
9454 	case bpf_ctx_range(struct sk_msg_md, size):
9455 		if (size != sizeof(__u32))
9456 			return false;
9457 		break;
9458 	default:
9459 		return false;
9460 	}
9461 	return true;
9462 }
9463 
9464 static bool flow_dissector_is_valid_access(int off, int size,
9465 					   enum bpf_access_type type,
9466 					   const struct bpf_prog *prog,
9467 					   struct bpf_insn_access_aux *info)
9468 {
9469 	const int size_default = sizeof(__u32);
9470 
9471 	if (off < 0 || off >= sizeof(struct __sk_buff))
9472 		return false;
9473 
9474 	if (off % size != 0)
9475 		return false;
9476 
9477 	if (type == BPF_WRITE)
9478 		return false;
9479 
9480 	switch (off) {
9481 	case bpf_ctx_range(struct __sk_buff, data):
9482 		if (info->is_ldsx || size != size_default)
9483 			return false;
9484 		info->reg_type = PTR_TO_PACKET;
9485 		return true;
9486 	case bpf_ctx_range(struct __sk_buff, data_end):
9487 		if (info->is_ldsx || size != size_default)
9488 			return false;
9489 		info->reg_type = PTR_TO_PACKET_END;
9490 		return true;
9491 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9492 		if (size != sizeof(__u64))
9493 			return false;
9494 		info->reg_type = PTR_TO_FLOW_KEYS;
9495 		return true;
9496 	default:
9497 		return false;
9498 	}
9499 }
9500 
9501 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9502 					     const struct bpf_insn *si,
9503 					     struct bpf_insn *insn_buf,
9504 					     struct bpf_prog *prog,
9505 					     u32 *target_size)
9506 
9507 {
9508 	struct bpf_insn *insn = insn_buf;
9509 
9510 	switch (si->off) {
9511 	case offsetof(struct __sk_buff, data):
9512 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9513 				      si->dst_reg, si->src_reg,
9514 				      offsetof(struct bpf_flow_dissector, data));
9515 		break;
9516 
9517 	case offsetof(struct __sk_buff, data_end):
9518 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9519 				      si->dst_reg, si->src_reg,
9520 				      offsetof(struct bpf_flow_dissector, data_end));
9521 		break;
9522 
9523 	case offsetof(struct __sk_buff, flow_keys):
9524 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9525 				      si->dst_reg, si->src_reg,
9526 				      offsetof(struct bpf_flow_dissector, flow_keys));
9527 		break;
9528 	}
9529 
9530 	return insn - insn_buf;
9531 }
9532 
9533 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9534 						     struct bpf_insn *insn)
9535 {
9536 	__u8 value_reg = si->dst_reg;
9537 	__u8 skb_reg = si->src_reg;
9538 	BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9539 	BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9540 	BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9541 	BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9542 	*insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9543 	*insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9544 #ifdef __BIG_ENDIAN_BITFIELD
9545 	*insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9546 #else
9547 	BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9548 #endif
9549 
9550 	return insn;
9551 }
9552 
9553 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9554 						  struct bpf_insn *insn)
9555 {
9556 	/* si->dst_reg = skb_shinfo(SKB); */
9557 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9558 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9559 			      BPF_REG_AX, skb_reg,
9560 			      offsetof(struct sk_buff, end));
9561 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9562 			      dst_reg, skb_reg,
9563 			      offsetof(struct sk_buff, head));
9564 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9565 #else
9566 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9567 			      dst_reg, skb_reg,
9568 			      offsetof(struct sk_buff, end));
9569 #endif
9570 
9571 	return insn;
9572 }
9573 
9574 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9575 						const struct bpf_insn *si,
9576 						struct bpf_insn *insn)
9577 {
9578 	__u8 value_reg = si->dst_reg;
9579 	__u8 skb_reg = si->src_reg;
9580 
9581 #ifdef CONFIG_NET_XGRESS
9582 	/* If the tstamp_type is read,
9583 	 * the bpf prog is aware the tstamp could have delivery time.
9584 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9585 	 */
9586 	if (!prog->tstamp_type_access) {
9587 		/* AX is needed because src_reg and dst_reg could be the same */
9588 		__u8 tmp_reg = BPF_REG_AX;
9589 
9590 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9591 		/* check if ingress mask bits is set */
9592 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9593 		*insn++ = BPF_JMP_A(4);
9594 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9595 		*insn++ = BPF_JMP_A(2);
9596 		/* skb->tc_at_ingress && skb->tstamp_type,
9597 		 * read 0 as the (rcv) timestamp.
9598 		 */
9599 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9600 		*insn++ = BPF_JMP_A(1);
9601 	}
9602 #endif
9603 
9604 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9605 			      offsetof(struct sk_buff, tstamp));
9606 	return insn;
9607 }
9608 
9609 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9610 						 const struct bpf_insn *si,
9611 						 struct bpf_insn *insn)
9612 {
9613 	__u8 value_reg = si->src_reg;
9614 	__u8 skb_reg = si->dst_reg;
9615 
9616 #ifdef CONFIG_NET_XGRESS
9617 	/* If the tstamp_type is read,
9618 	 * the bpf prog is aware the tstamp could have delivery time.
9619 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9620 	 * Otherwise, writing at ingress will have to clear the
9621 	 * skb->tstamp_type bit also.
9622 	 */
9623 	if (!prog->tstamp_type_access) {
9624 		__u8 tmp_reg = BPF_REG_AX;
9625 
9626 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9627 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9628 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9629 		/* goto <store> */
9630 		*insn++ = BPF_JMP_A(2);
9631 		/* <clear>: skb->tstamp_type */
9632 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9633 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9634 	}
9635 #endif
9636 
9637 	/* <store>: skb->tstamp = tstamp */
9638 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9639 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9640 	return insn;
9641 }
9642 
9643 #define BPF_EMIT_STORE(size, si, off)					\
9644 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9645 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9646 
9647 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9648 				  const struct bpf_insn *si,
9649 				  struct bpf_insn *insn_buf,
9650 				  struct bpf_prog *prog, u32 *target_size)
9651 {
9652 	struct bpf_insn *insn = insn_buf;
9653 	int off;
9654 
9655 	switch (si->off) {
9656 	case offsetof(struct __sk_buff, len):
9657 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9658 				      bpf_target_off(struct sk_buff, len, 4,
9659 						     target_size));
9660 		break;
9661 
9662 	case offsetof(struct __sk_buff, protocol):
9663 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9664 				      bpf_target_off(struct sk_buff, protocol, 2,
9665 						     target_size));
9666 		break;
9667 
9668 	case offsetof(struct __sk_buff, vlan_proto):
9669 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9670 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9671 						     target_size));
9672 		break;
9673 
9674 	case offsetof(struct __sk_buff, priority):
9675 		if (type == BPF_WRITE)
9676 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9677 						 bpf_target_off(struct sk_buff, priority, 4,
9678 								target_size));
9679 		else
9680 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9681 					      bpf_target_off(struct sk_buff, priority, 4,
9682 							     target_size));
9683 		break;
9684 
9685 	case offsetof(struct __sk_buff, ingress_ifindex):
9686 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9687 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9688 						     target_size));
9689 		break;
9690 
9691 	case offsetof(struct __sk_buff, ifindex):
9692 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9693 				      si->dst_reg, si->src_reg,
9694 				      offsetof(struct sk_buff, dev));
9695 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9696 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9697 				      bpf_target_off(struct net_device, ifindex, 4,
9698 						     target_size));
9699 		break;
9700 
9701 	case offsetof(struct __sk_buff, hash):
9702 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9703 				      bpf_target_off(struct sk_buff, hash, 4,
9704 						     target_size));
9705 		break;
9706 
9707 	case offsetof(struct __sk_buff, mark):
9708 		if (type == BPF_WRITE)
9709 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9710 						 bpf_target_off(struct sk_buff, mark, 4,
9711 								target_size));
9712 		else
9713 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9714 					      bpf_target_off(struct sk_buff, mark, 4,
9715 							     target_size));
9716 		break;
9717 
9718 	case offsetof(struct __sk_buff, pkt_type):
9719 		*target_size = 1;
9720 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9721 				      PKT_TYPE_OFFSET);
9722 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9723 #ifdef __BIG_ENDIAN_BITFIELD
9724 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9725 #endif
9726 		break;
9727 
9728 	case offsetof(struct __sk_buff, queue_mapping):
9729 		if (type == BPF_WRITE) {
9730 			u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9731 
9732 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9733 				*insn++ = BPF_JMP_A(0); /* noop */
9734 				break;
9735 			}
9736 
9737 			if (BPF_CLASS(si->code) == BPF_STX)
9738 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9739 			*insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9740 		} else {
9741 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9742 					      bpf_target_off(struct sk_buff,
9743 							     queue_mapping,
9744 							     2, target_size));
9745 		}
9746 		break;
9747 
9748 	case offsetof(struct __sk_buff, vlan_present):
9749 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9750 				      bpf_target_off(struct sk_buff,
9751 						     vlan_all, 4, target_size));
9752 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9753 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9754 		break;
9755 
9756 	case offsetof(struct __sk_buff, vlan_tci):
9757 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9758 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9759 						     target_size));
9760 		break;
9761 
9762 	case offsetof(struct __sk_buff, cb[0]) ...
9763 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9764 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9765 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9766 			      offsetof(struct qdisc_skb_cb, data)) %
9767 			     sizeof(__u64));
9768 
9769 		prog->cb_access = 1;
9770 		off  = si->off;
9771 		off -= offsetof(struct __sk_buff, cb[0]);
9772 		off += offsetof(struct sk_buff, cb);
9773 		off += offsetof(struct qdisc_skb_cb, data);
9774 		if (type == BPF_WRITE)
9775 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9776 		else
9777 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9778 					      si->src_reg, off);
9779 		break;
9780 
9781 	case offsetof(struct __sk_buff, tc_classid):
9782 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9783 
9784 		off  = si->off;
9785 		off -= offsetof(struct __sk_buff, tc_classid);
9786 		off += offsetof(struct sk_buff, cb);
9787 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9788 		*target_size = 2;
9789 		if (type == BPF_WRITE)
9790 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9791 		else
9792 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9793 					      si->src_reg, off);
9794 		break;
9795 
9796 	case offsetof(struct __sk_buff, data):
9797 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9798 				      si->dst_reg, si->src_reg,
9799 				      offsetof(struct sk_buff, data));
9800 		break;
9801 
9802 	case offsetof(struct __sk_buff, data_meta):
9803 		off  = si->off;
9804 		off -= offsetof(struct __sk_buff, data_meta);
9805 		off += offsetof(struct sk_buff, cb);
9806 		off += offsetof(struct bpf_skb_data_end, data_meta);
9807 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9808 				      si->src_reg, off);
9809 		break;
9810 
9811 	case offsetof(struct __sk_buff, data_end):
9812 		off  = si->off;
9813 		off -= offsetof(struct __sk_buff, data_end);
9814 		off += offsetof(struct sk_buff, cb);
9815 		off += offsetof(struct bpf_skb_data_end, data_end);
9816 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9817 				      si->src_reg, off);
9818 		break;
9819 
9820 	case offsetof(struct __sk_buff, tc_index):
9821 #ifdef CONFIG_NET_SCHED
9822 		if (type == BPF_WRITE)
9823 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9824 						 bpf_target_off(struct sk_buff, tc_index, 2,
9825 								target_size));
9826 		else
9827 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9828 					      bpf_target_off(struct sk_buff, tc_index, 2,
9829 							     target_size));
9830 #else
9831 		*target_size = 2;
9832 		if (type == BPF_WRITE)
9833 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9834 		else
9835 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9836 #endif
9837 		break;
9838 
9839 	case offsetof(struct __sk_buff, napi_id):
9840 #if defined(CONFIG_NET_RX_BUSY_POLL)
9841 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9842 				      bpf_target_off(struct sk_buff, napi_id, 4,
9843 						     target_size));
9844 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9845 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9846 #else
9847 		*target_size = 4;
9848 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9849 #endif
9850 		break;
9851 	case offsetof(struct __sk_buff, family):
9852 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9853 
9854 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9855 				      si->dst_reg, si->src_reg,
9856 				      offsetof(struct sk_buff, sk));
9857 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9858 				      bpf_target_off(struct sock_common,
9859 						     skc_family,
9860 						     2, target_size));
9861 		break;
9862 	case offsetof(struct __sk_buff, remote_ip4):
9863 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9864 
9865 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9866 				      si->dst_reg, si->src_reg,
9867 				      offsetof(struct sk_buff, sk));
9868 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9869 				      bpf_target_off(struct sock_common,
9870 						     skc_daddr,
9871 						     4, target_size));
9872 		break;
9873 	case offsetof(struct __sk_buff, local_ip4):
9874 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9875 					  skc_rcv_saddr) != 4);
9876 
9877 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9878 				      si->dst_reg, si->src_reg,
9879 				      offsetof(struct sk_buff, sk));
9880 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9881 				      bpf_target_off(struct sock_common,
9882 						     skc_rcv_saddr,
9883 						     4, target_size));
9884 		break;
9885 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9886 	     offsetof(struct __sk_buff, remote_ip6[3]):
9887 #if IS_ENABLED(CONFIG_IPV6)
9888 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9889 					  skc_v6_daddr.s6_addr32[0]) != 4);
9890 
9891 		off = si->off;
9892 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9893 
9894 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9895 				      si->dst_reg, si->src_reg,
9896 				      offsetof(struct sk_buff, sk));
9897 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9898 				      offsetof(struct sock_common,
9899 					       skc_v6_daddr.s6_addr32[0]) +
9900 				      off);
9901 #else
9902 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9903 #endif
9904 		break;
9905 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9906 	     offsetof(struct __sk_buff, local_ip6[3]):
9907 #if IS_ENABLED(CONFIG_IPV6)
9908 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9909 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9910 
9911 		off = si->off;
9912 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9913 
9914 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9915 				      si->dst_reg, si->src_reg,
9916 				      offsetof(struct sk_buff, sk));
9917 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9918 				      offsetof(struct sock_common,
9919 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9920 				      off);
9921 #else
9922 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9923 #endif
9924 		break;
9925 
9926 	case offsetof(struct __sk_buff, remote_port):
9927 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9928 
9929 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9930 				      si->dst_reg, si->src_reg,
9931 				      offsetof(struct sk_buff, sk));
9932 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9933 				      bpf_target_off(struct sock_common,
9934 						     skc_dport,
9935 						     2, target_size));
9936 #ifndef __BIG_ENDIAN_BITFIELD
9937 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9938 #endif
9939 		break;
9940 
9941 	case offsetof(struct __sk_buff, local_port):
9942 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9943 
9944 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9945 				      si->dst_reg, si->src_reg,
9946 				      offsetof(struct sk_buff, sk));
9947 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9948 				      bpf_target_off(struct sock_common,
9949 						     skc_num, 2, target_size));
9950 		break;
9951 
9952 	case offsetof(struct __sk_buff, tstamp):
9953 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9954 
9955 		if (type == BPF_WRITE)
9956 			insn = bpf_convert_tstamp_write(prog, si, insn);
9957 		else
9958 			insn = bpf_convert_tstamp_read(prog, si, insn);
9959 		break;
9960 
9961 	case offsetof(struct __sk_buff, tstamp_type):
9962 		insn = bpf_convert_tstamp_type_read(si, insn);
9963 		break;
9964 
9965 	case offsetof(struct __sk_buff, gso_segs):
9966 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9967 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9968 				      si->dst_reg, si->dst_reg,
9969 				      bpf_target_off(struct skb_shared_info,
9970 						     gso_segs, 2,
9971 						     target_size));
9972 		break;
9973 	case offsetof(struct __sk_buff, gso_size):
9974 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9975 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9976 				      si->dst_reg, si->dst_reg,
9977 				      bpf_target_off(struct skb_shared_info,
9978 						     gso_size, 2,
9979 						     target_size));
9980 		break;
9981 	case offsetof(struct __sk_buff, wire_len):
9982 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9983 
9984 		off = si->off;
9985 		off -= offsetof(struct __sk_buff, wire_len);
9986 		off += offsetof(struct sk_buff, cb);
9987 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9988 		*target_size = 4;
9989 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9990 		break;
9991 
9992 	case offsetof(struct __sk_buff, sk):
9993 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9994 				      si->dst_reg, si->src_reg,
9995 				      offsetof(struct sk_buff, sk));
9996 		break;
9997 	case offsetof(struct __sk_buff, hwtstamp):
9998 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9999 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
10000 
10001 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10002 		*insn++ = BPF_LDX_MEM(BPF_DW,
10003 				      si->dst_reg, si->dst_reg,
10004 				      bpf_target_off(struct skb_shared_info,
10005 						     hwtstamps, 8,
10006 						     target_size));
10007 		break;
10008 	}
10009 
10010 	return insn - insn_buf;
10011 }
10012 
10013 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
10014 				const struct bpf_insn *si,
10015 				struct bpf_insn *insn_buf,
10016 				struct bpf_prog *prog, u32 *target_size)
10017 {
10018 	struct bpf_insn *insn = insn_buf;
10019 	int off;
10020 
10021 	switch (si->off) {
10022 	case offsetof(struct bpf_sock, bound_dev_if):
10023 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10024 
10025 		if (type == BPF_WRITE)
10026 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10027 						 offsetof(struct sock, sk_bound_dev_if));
10028 		else
10029 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10030 				      offsetof(struct sock, sk_bound_dev_if));
10031 		break;
10032 
10033 	case offsetof(struct bpf_sock, mark):
10034 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10035 
10036 		if (type == BPF_WRITE)
10037 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10038 						 offsetof(struct sock, sk_mark));
10039 		else
10040 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10041 				      offsetof(struct sock, sk_mark));
10042 		break;
10043 
10044 	case offsetof(struct bpf_sock, priority):
10045 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10046 
10047 		if (type == BPF_WRITE)
10048 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10049 						 offsetof(struct sock, sk_priority));
10050 		else
10051 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10052 				      offsetof(struct sock, sk_priority));
10053 		break;
10054 
10055 	case offsetof(struct bpf_sock, family):
10056 		*insn++ = BPF_LDX_MEM(
10057 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10058 			si->dst_reg, si->src_reg,
10059 			bpf_target_off(struct sock_common,
10060 				       skc_family,
10061 				       sizeof_field(struct sock_common,
10062 						    skc_family),
10063 				       target_size));
10064 		break;
10065 
10066 	case offsetof(struct bpf_sock, type):
10067 		*insn++ = BPF_LDX_MEM(
10068 			BPF_FIELD_SIZEOF(struct sock, sk_type),
10069 			si->dst_reg, si->src_reg,
10070 			bpf_target_off(struct sock, sk_type,
10071 				       sizeof_field(struct sock, sk_type),
10072 				       target_size));
10073 		break;
10074 
10075 	case offsetof(struct bpf_sock, protocol):
10076 		*insn++ = BPF_LDX_MEM(
10077 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10078 			si->dst_reg, si->src_reg,
10079 			bpf_target_off(struct sock, sk_protocol,
10080 				       sizeof_field(struct sock, sk_protocol),
10081 				       target_size));
10082 		break;
10083 
10084 	case offsetof(struct bpf_sock, src_ip4):
10085 		*insn++ = BPF_LDX_MEM(
10086 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10087 			bpf_target_off(struct sock_common, skc_rcv_saddr,
10088 				       sizeof_field(struct sock_common,
10089 						    skc_rcv_saddr),
10090 				       target_size));
10091 		break;
10092 
10093 	case offsetof(struct bpf_sock, dst_ip4):
10094 		*insn++ = BPF_LDX_MEM(
10095 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10096 			bpf_target_off(struct sock_common, skc_daddr,
10097 				       sizeof_field(struct sock_common,
10098 						    skc_daddr),
10099 				       target_size));
10100 		break;
10101 
10102 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10103 #if IS_ENABLED(CONFIG_IPV6)
10104 		off = si->off;
10105 		off -= offsetof(struct bpf_sock, src_ip6[0]);
10106 		*insn++ = BPF_LDX_MEM(
10107 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10108 			bpf_target_off(
10109 				struct sock_common,
10110 				skc_v6_rcv_saddr.s6_addr32[0],
10111 				sizeof_field(struct sock_common,
10112 					     skc_v6_rcv_saddr.s6_addr32[0]),
10113 				target_size) + off);
10114 #else
10115 		(void)off;
10116 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10117 #endif
10118 		break;
10119 
10120 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10121 #if IS_ENABLED(CONFIG_IPV6)
10122 		off = si->off;
10123 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
10124 		*insn++ = BPF_LDX_MEM(
10125 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10126 			bpf_target_off(struct sock_common,
10127 				       skc_v6_daddr.s6_addr32[0],
10128 				       sizeof_field(struct sock_common,
10129 						    skc_v6_daddr.s6_addr32[0]),
10130 				       target_size) + off);
10131 #else
10132 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10133 		*target_size = 4;
10134 #endif
10135 		break;
10136 
10137 	case offsetof(struct bpf_sock, src_port):
10138 		*insn++ = BPF_LDX_MEM(
10139 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10140 			si->dst_reg, si->src_reg,
10141 			bpf_target_off(struct sock_common, skc_num,
10142 				       sizeof_field(struct sock_common,
10143 						    skc_num),
10144 				       target_size));
10145 		break;
10146 
10147 	case offsetof(struct bpf_sock, dst_port):
10148 		*insn++ = BPF_LDX_MEM(
10149 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10150 			si->dst_reg, si->src_reg,
10151 			bpf_target_off(struct sock_common, skc_dport,
10152 				       sizeof_field(struct sock_common,
10153 						    skc_dport),
10154 				       target_size));
10155 		break;
10156 
10157 	case offsetof(struct bpf_sock, state):
10158 		*insn++ = BPF_LDX_MEM(
10159 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10160 			si->dst_reg, si->src_reg,
10161 			bpf_target_off(struct sock_common, skc_state,
10162 				       sizeof_field(struct sock_common,
10163 						    skc_state),
10164 				       target_size));
10165 		break;
10166 	case offsetof(struct bpf_sock, rx_queue_mapping):
10167 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10168 		*insn++ = BPF_LDX_MEM(
10169 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10170 			si->dst_reg, si->src_reg,
10171 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10172 				       sizeof_field(struct sock,
10173 						    sk_rx_queue_mapping),
10174 				       target_size));
10175 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10176 				      1);
10177 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10178 #else
10179 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10180 		*target_size = 2;
10181 #endif
10182 		break;
10183 	}
10184 
10185 	return insn - insn_buf;
10186 }
10187 
10188 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10189 					 const struct bpf_insn *si,
10190 					 struct bpf_insn *insn_buf,
10191 					 struct bpf_prog *prog, u32 *target_size)
10192 {
10193 	struct bpf_insn *insn = insn_buf;
10194 
10195 	switch (si->off) {
10196 	case offsetof(struct __sk_buff, ifindex):
10197 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10198 				      si->dst_reg, si->src_reg,
10199 				      offsetof(struct sk_buff, dev));
10200 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10201 				      bpf_target_off(struct net_device, ifindex, 4,
10202 						     target_size));
10203 		break;
10204 	default:
10205 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10206 					      target_size);
10207 	}
10208 
10209 	return insn - insn_buf;
10210 }
10211 
10212 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10213 				  const struct bpf_insn *si,
10214 				  struct bpf_insn *insn_buf,
10215 				  struct bpf_prog *prog, u32 *target_size)
10216 {
10217 	struct bpf_insn *insn = insn_buf;
10218 
10219 	switch (si->off) {
10220 	case offsetof(struct xdp_md, data):
10221 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10222 				      si->dst_reg, si->src_reg,
10223 				      offsetof(struct xdp_buff, data));
10224 		break;
10225 	case offsetof(struct xdp_md, data_meta):
10226 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10227 				      si->dst_reg, si->src_reg,
10228 				      offsetof(struct xdp_buff, data_meta));
10229 		break;
10230 	case offsetof(struct xdp_md, data_end):
10231 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10232 				      si->dst_reg, si->src_reg,
10233 				      offsetof(struct xdp_buff, data_end));
10234 		break;
10235 	case offsetof(struct xdp_md, ingress_ifindex):
10236 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10237 				      si->dst_reg, si->src_reg,
10238 				      offsetof(struct xdp_buff, rxq));
10239 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10240 				      si->dst_reg, si->dst_reg,
10241 				      offsetof(struct xdp_rxq_info, dev));
10242 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10243 				      offsetof(struct net_device, ifindex));
10244 		break;
10245 	case offsetof(struct xdp_md, rx_queue_index):
10246 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10247 				      si->dst_reg, si->src_reg,
10248 				      offsetof(struct xdp_buff, rxq));
10249 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10250 				      offsetof(struct xdp_rxq_info,
10251 					       queue_index));
10252 		break;
10253 	case offsetof(struct xdp_md, egress_ifindex):
10254 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10255 				      si->dst_reg, si->src_reg,
10256 				      offsetof(struct xdp_buff, txq));
10257 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10258 				      si->dst_reg, si->dst_reg,
10259 				      offsetof(struct xdp_txq_info, dev));
10260 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10261 				      offsetof(struct net_device, ifindex));
10262 		break;
10263 	}
10264 
10265 	return insn - insn_buf;
10266 }
10267 
10268 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10269  * context Structure, F is Field in context structure that contains a pointer
10270  * to Nested Structure of type NS that has the field NF.
10271  *
10272  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10273  * sure that SIZE is not greater than actual size of S.F.NF.
10274  *
10275  * If offset OFF is provided, the load happens from that offset relative to
10276  * offset of NF.
10277  */
10278 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10279 	do {								       \
10280 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10281 				      si->src_reg, offsetof(S, F));	       \
10282 		*insn++ = BPF_LDX_MEM(					       \
10283 			SIZE, si->dst_reg, si->dst_reg,			       \
10284 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10285 				       target_size)			       \
10286 				+ OFF);					       \
10287 	} while (0)
10288 
10289 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10290 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10291 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10292 
10293 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10294  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10295  *
10296  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10297  * "register" since two registers available in convert_ctx_access are not
10298  * enough: we can't override neither SRC, since it contains value to store, nor
10299  * DST since it contains pointer to context that may be used by later
10300  * instructions. But we need a temporary place to save pointer to nested
10301  * structure whose field we want to store to.
10302  */
10303 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10304 	do {								       \
10305 		int tmp_reg = BPF_REG_9;				       \
10306 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10307 			--tmp_reg;					       \
10308 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10309 			--tmp_reg;					       \
10310 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10311 				      offsetof(S, TF));			       \
10312 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10313 				      si->dst_reg, offsetof(S, F));	       \
10314 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10315 				       tmp_reg, si->src_reg,		       \
10316 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10317 				       target_size)			       \
10318 				       + OFF,				       \
10319 				       si->imm);			       \
10320 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10321 				      offsetof(S, TF));			       \
10322 	} while (0)
10323 
10324 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10325 						      TF)		       \
10326 	do {								       \
10327 		if (type == BPF_WRITE) {				       \
10328 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10329 							 OFF, TF);	       \
10330 		} else {						       \
10331 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10332 				S, NS, F, NF, SIZE, OFF);  \
10333 		}							       \
10334 	} while (0)
10335 
10336 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10337 					const struct bpf_insn *si,
10338 					struct bpf_insn *insn_buf,
10339 					struct bpf_prog *prog, u32 *target_size)
10340 {
10341 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10342 	struct bpf_insn *insn = insn_buf;
10343 
10344 	switch (si->off) {
10345 	case offsetof(struct bpf_sock_addr, user_family):
10346 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10347 					    struct sockaddr, uaddr, sa_family);
10348 		break;
10349 
10350 	case offsetof(struct bpf_sock_addr, user_ip4):
10351 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10352 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10353 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10354 		break;
10355 
10356 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10357 		off = si->off;
10358 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10359 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10360 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10361 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10362 			tmp_reg);
10363 		break;
10364 
10365 	case offsetof(struct bpf_sock_addr, user_port):
10366 		/* To get port we need to know sa_family first and then treat
10367 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10368 		 * Though we can simplify since port field has same offset and
10369 		 * size in both structures.
10370 		 * Here we check this invariant and use just one of the
10371 		 * structures if it's true.
10372 		 */
10373 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10374 			     offsetof(struct sockaddr_in6, sin6_port));
10375 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10376 			     sizeof_field(struct sockaddr_in6, sin6_port));
10377 		/* Account for sin6_port being smaller than user_port. */
10378 		port_size = min(port_size, BPF_LDST_BYTES(si));
10379 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10380 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10381 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10382 		break;
10383 
10384 	case offsetof(struct bpf_sock_addr, family):
10385 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10386 					    struct sock, sk, sk_family);
10387 		break;
10388 
10389 	case offsetof(struct bpf_sock_addr, type):
10390 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10391 					    struct sock, sk, sk_type);
10392 		break;
10393 
10394 	case offsetof(struct bpf_sock_addr, protocol):
10395 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10396 					    struct sock, sk, sk_protocol);
10397 		break;
10398 
10399 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10400 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10401 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10402 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10403 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10404 		break;
10405 
10406 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10407 				msg_src_ip6[3]):
10408 		off = si->off;
10409 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10410 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10411 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10412 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10413 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10414 		break;
10415 	case offsetof(struct bpf_sock_addr, sk):
10416 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10417 				      si->dst_reg, si->src_reg,
10418 				      offsetof(struct bpf_sock_addr_kern, sk));
10419 		break;
10420 	}
10421 
10422 	return insn - insn_buf;
10423 }
10424 
10425 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10426 				       const struct bpf_insn *si,
10427 				       struct bpf_insn *insn_buf,
10428 				       struct bpf_prog *prog,
10429 				       u32 *target_size)
10430 {
10431 	struct bpf_insn *insn = insn_buf;
10432 	int off;
10433 
10434 /* Helper macro for adding read access to tcp_sock or sock fields. */
10435 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10436 	do {								      \
10437 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10438 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10439 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10440 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10441 			reg--;						      \
10442 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10443 			reg--;						      \
10444 		if (si->dst_reg == si->src_reg) {			      \
10445 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10446 					  offsetof(struct bpf_sock_ops_kern,  \
10447 					  temp));			      \
10448 			fullsock_reg = reg;				      \
10449 			jmp += 2;					      \
10450 		}							      \
10451 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10452 						struct bpf_sock_ops_kern,     \
10453 						is_locked_tcp_sock),	      \
10454 				      fullsock_reg, si->src_reg,	      \
10455 				      offsetof(struct bpf_sock_ops_kern,      \
10456 					       is_locked_tcp_sock));	      \
10457 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10458 		if (si->dst_reg == si->src_reg)				      \
10459 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10460 				      offsetof(struct bpf_sock_ops_kern,      \
10461 				      temp));				      \
10462 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10463 						struct bpf_sock_ops_kern, sk),\
10464 				      si->dst_reg, si->src_reg,		      \
10465 				      offsetof(struct bpf_sock_ops_kern, sk));\
10466 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10467 						       OBJ_FIELD),	      \
10468 				      si->dst_reg, si->dst_reg,		      \
10469 				      offsetof(OBJ, OBJ_FIELD));	      \
10470 		if (si->dst_reg == si->src_reg)	{			      \
10471 			*insn++ = BPF_JMP_A(1);				      \
10472 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10473 				      offsetof(struct bpf_sock_ops_kern,      \
10474 				      temp));				      \
10475 		}							      \
10476 	} while (0)
10477 
10478 #define SOCK_OPS_GET_SK()							      \
10479 	do {								      \
10480 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10481 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10482 			reg--;						      \
10483 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10484 			reg--;						      \
10485 		if (si->dst_reg == si->src_reg) {			      \
10486 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10487 					  offsetof(struct bpf_sock_ops_kern,  \
10488 					  temp));			      \
10489 			fullsock_reg = reg;				      \
10490 			jmp += 2;					      \
10491 		}							      \
10492 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10493 						struct bpf_sock_ops_kern,     \
10494 						is_fullsock),		      \
10495 				      fullsock_reg, si->src_reg,	      \
10496 				      offsetof(struct bpf_sock_ops_kern,      \
10497 					       is_fullsock));		      \
10498 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10499 		if (si->dst_reg == si->src_reg)				      \
10500 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10501 				      offsetof(struct bpf_sock_ops_kern,      \
10502 				      temp));				      \
10503 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10504 						struct bpf_sock_ops_kern, sk),\
10505 				      si->dst_reg, si->src_reg,		      \
10506 				      offsetof(struct bpf_sock_ops_kern, sk));\
10507 		if (si->dst_reg == si->src_reg)	{			      \
10508 			*insn++ = BPF_JMP_A(1);				      \
10509 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10510 				      offsetof(struct bpf_sock_ops_kern,      \
10511 				      temp));				      \
10512 		}							      \
10513 	} while (0)
10514 
10515 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10516 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10517 
10518 /* Helper macro for adding write access to tcp_sock or sock fields.
10519  * The macro is called with two registers, dst_reg which contains a pointer
10520  * to ctx (context) and src_reg which contains the value that should be
10521  * stored. However, we need an additional register since we cannot overwrite
10522  * dst_reg because it may be used later in the program.
10523  * Instead we "borrow" one of the other register. We first save its value
10524  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10525  * it at the end of the macro.
10526  */
10527 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10528 	do {								      \
10529 		int reg = BPF_REG_9;					      \
10530 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10531 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10532 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10533 			reg--;						      \
10534 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10535 			reg--;						      \
10536 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10537 				      offsetof(struct bpf_sock_ops_kern,      \
10538 					       temp));			      \
10539 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10540 						struct bpf_sock_ops_kern,     \
10541 						is_locked_tcp_sock),	      \
10542 				      reg, si->dst_reg,			      \
10543 				      offsetof(struct bpf_sock_ops_kern,      \
10544 					       is_locked_tcp_sock));	      \
10545 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10546 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10547 						struct bpf_sock_ops_kern, sk),\
10548 				      reg, si->dst_reg,			      \
10549 				      offsetof(struct bpf_sock_ops_kern, sk));\
10550 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10551 				       BPF_MEM | BPF_CLASS(si->code),	      \
10552 				       reg, si->src_reg,		      \
10553 				       offsetof(OBJ, OBJ_FIELD),	      \
10554 				       si->imm);			      \
10555 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10556 				      offsetof(struct bpf_sock_ops_kern,      \
10557 					       temp));			      \
10558 	} while (0)
10559 
10560 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10561 	do {								      \
10562 		if (TYPE == BPF_WRITE)					      \
10563 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10564 		else							      \
10565 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10566 	} while (0)
10567 
10568 	switch (si->off) {
10569 	case offsetof(struct bpf_sock_ops, op):
10570 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10571 						       op),
10572 				      si->dst_reg, si->src_reg,
10573 				      offsetof(struct bpf_sock_ops_kern, op));
10574 		break;
10575 
10576 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10577 	     offsetof(struct bpf_sock_ops, replylong[3]):
10578 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10579 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10580 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10581 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10582 		off = si->off;
10583 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10584 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10585 		if (type == BPF_WRITE)
10586 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10587 		else
10588 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10589 					      off);
10590 		break;
10591 
10592 	case offsetof(struct bpf_sock_ops, family):
10593 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10594 
10595 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10596 					      struct bpf_sock_ops_kern, sk),
10597 				      si->dst_reg, si->src_reg,
10598 				      offsetof(struct bpf_sock_ops_kern, sk));
10599 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10600 				      offsetof(struct sock_common, skc_family));
10601 		break;
10602 
10603 	case offsetof(struct bpf_sock_ops, remote_ip4):
10604 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10605 
10606 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10607 						struct bpf_sock_ops_kern, sk),
10608 				      si->dst_reg, si->src_reg,
10609 				      offsetof(struct bpf_sock_ops_kern, sk));
10610 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10611 				      offsetof(struct sock_common, skc_daddr));
10612 		break;
10613 
10614 	case offsetof(struct bpf_sock_ops, local_ip4):
10615 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10616 					  skc_rcv_saddr) != 4);
10617 
10618 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10619 					      struct bpf_sock_ops_kern, sk),
10620 				      si->dst_reg, si->src_reg,
10621 				      offsetof(struct bpf_sock_ops_kern, sk));
10622 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10623 				      offsetof(struct sock_common,
10624 					       skc_rcv_saddr));
10625 		break;
10626 
10627 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10628 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10629 #if IS_ENABLED(CONFIG_IPV6)
10630 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10631 					  skc_v6_daddr.s6_addr32[0]) != 4);
10632 
10633 		off = si->off;
10634 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10635 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10636 						struct bpf_sock_ops_kern, sk),
10637 				      si->dst_reg, si->src_reg,
10638 				      offsetof(struct bpf_sock_ops_kern, sk));
10639 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10640 				      offsetof(struct sock_common,
10641 					       skc_v6_daddr.s6_addr32[0]) +
10642 				      off);
10643 #else
10644 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10645 #endif
10646 		break;
10647 
10648 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10649 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10650 #if IS_ENABLED(CONFIG_IPV6)
10651 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10652 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10653 
10654 		off = si->off;
10655 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10656 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10657 						struct bpf_sock_ops_kern, sk),
10658 				      si->dst_reg, si->src_reg,
10659 				      offsetof(struct bpf_sock_ops_kern, sk));
10660 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10661 				      offsetof(struct sock_common,
10662 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10663 				      off);
10664 #else
10665 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10666 #endif
10667 		break;
10668 
10669 	case offsetof(struct bpf_sock_ops, remote_port):
10670 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10671 
10672 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10673 						struct bpf_sock_ops_kern, sk),
10674 				      si->dst_reg, si->src_reg,
10675 				      offsetof(struct bpf_sock_ops_kern, sk));
10676 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10677 				      offsetof(struct sock_common, skc_dport));
10678 #ifndef __BIG_ENDIAN_BITFIELD
10679 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10680 #endif
10681 		break;
10682 
10683 	case offsetof(struct bpf_sock_ops, local_port):
10684 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10685 
10686 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10687 						struct bpf_sock_ops_kern, sk),
10688 				      si->dst_reg, si->src_reg,
10689 				      offsetof(struct bpf_sock_ops_kern, sk));
10690 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10691 				      offsetof(struct sock_common, skc_num));
10692 		break;
10693 
10694 	case offsetof(struct bpf_sock_ops, is_fullsock):
10695 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10696 						struct bpf_sock_ops_kern,
10697 						is_fullsock),
10698 				      si->dst_reg, si->src_reg,
10699 				      offsetof(struct bpf_sock_ops_kern,
10700 					       is_fullsock));
10701 		break;
10702 
10703 	case offsetof(struct bpf_sock_ops, state):
10704 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10705 
10706 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10707 						struct bpf_sock_ops_kern, sk),
10708 				      si->dst_reg, si->src_reg,
10709 				      offsetof(struct bpf_sock_ops_kern, sk));
10710 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10711 				      offsetof(struct sock_common, skc_state));
10712 		break;
10713 
10714 	case offsetof(struct bpf_sock_ops, rtt_min):
10715 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10716 			     sizeof(struct minmax));
10717 		BUILD_BUG_ON(sizeof(struct minmax) <
10718 			     sizeof(struct minmax_sample));
10719 
10720 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10721 						struct bpf_sock_ops_kern, sk),
10722 				      si->dst_reg, si->src_reg,
10723 				      offsetof(struct bpf_sock_ops_kern, sk));
10724 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10725 				      offsetof(struct tcp_sock, rtt_min) +
10726 				      sizeof_field(struct minmax_sample, t));
10727 		break;
10728 
10729 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10730 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10731 				   struct tcp_sock);
10732 		break;
10733 
10734 	case offsetof(struct bpf_sock_ops, sk_txhash):
10735 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10736 					  struct sock, type);
10737 		break;
10738 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10739 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10740 		break;
10741 	case offsetof(struct bpf_sock_ops, srtt_us):
10742 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10743 		break;
10744 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10745 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10746 		break;
10747 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10748 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10749 		break;
10750 	case offsetof(struct bpf_sock_ops, snd_nxt):
10751 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10752 		break;
10753 	case offsetof(struct bpf_sock_ops, snd_una):
10754 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10755 		break;
10756 	case offsetof(struct bpf_sock_ops, mss_cache):
10757 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10758 		break;
10759 	case offsetof(struct bpf_sock_ops, ecn_flags):
10760 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10761 		break;
10762 	case offsetof(struct bpf_sock_ops, rate_delivered):
10763 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10764 		break;
10765 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10766 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10767 		break;
10768 	case offsetof(struct bpf_sock_ops, packets_out):
10769 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10770 		break;
10771 	case offsetof(struct bpf_sock_ops, retrans_out):
10772 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10773 		break;
10774 	case offsetof(struct bpf_sock_ops, total_retrans):
10775 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10776 		break;
10777 	case offsetof(struct bpf_sock_ops, segs_in):
10778 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10779 		break;
10780 	case offsetof(struct bpf_sock_ops, data_segs_in):
10781 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10782 		break;
10783 	case offsetof(struct bpf_sock_ops, segs_out):
10784 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10785 		break;
10786 	case offsetof(struct bpf_sock_ops, data_segs_out):
10787 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10788 		break;
10789 	case offsetof(struct bpf_sock_ops, lost_out):
10790 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10791 		break;
10792 	case offsetof(struct bpf_sock_ops, sacked_out):
10793 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10794 		break;
10795 	case offsetof(struct bpf_sock_ops, bytes_received):
10796 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10797 		break;
10798 	case offsetof(struct bpf_sock_ops, bytes_acked):
10799 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10800 		break;
10801 	case offsetof(struct bpf_sock_ops, sk):
10802 		SOCK_OPS_GET_SK();
10803 		break;
10804 	case offsetof(struct bpf_sock_ops, skb_data_end):
10805 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10806 						       skb_data_end),
10807 				      si->dst_reg, si->src_reg,
10808 				      offsetof(struct bpf_sock_ops_kern,
10809 					       skb_data_end));
10810 		break;
10811 	case offsetof(struct bpf_sock_ops, skb_data):
10812 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10813 						       skb),
10814 				      si->dst_reg, si->src_reg,
10815 				      offsetof(struct bpf_sock_ops_kern,
10816 					       skb));
10817 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10818 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10819 				      si->dst_reg, si->dst_reg,
10820 				      offsetof(struct sk_buff, data));
10821 		break;
10822 	case offsetof(struct bpf_sock_ops, skb_len):
10823 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10824 						       skb),
10825 				      si->dst_reg, si->src_reg,
10826 				      offsetof(struct bpf_sock_ops_kern,
10827 					       skb));
10828 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10829 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10830 				      si->dst_reg, si->dst_reg,
10831 				      offsetof(struct sk_buff, len));
10832 		break;
10833 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10834 		off = offsetof(struct sk_buff, cb);
10835 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10836 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10837 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10838 						       skb),
10839 				      si->dst_reg, si->src_reg,
10840 				      offsetof(struct bpf_sock_ops_kern,
10841 					       skb));
10842 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10843 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10844 						       tcp_flags),
10845 				      si->dst_reg, si->dst_reg, off);
10846 		break;
10847 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10848 		struct bpf_insn *jmp_on_null_skb;
10849 
10850 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10851 						       skb),
10852 				      si->dst_reg, si->src_reg,
10853 				      offsetof(struct bpf_sock_ops_kern,
10854 					       skb));
10855 		/* Reserve one insn to test skb == NULL */
10856 		jmp_on_null_skb = insn++;
10857 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10858 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10859 				      bpf_target_off(struct skb_shared_info,
10860 						     hwtstamps, 8,
10861 						     target_size));
10862 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10863 					       insn - jmp_on_null_skb - 1);
10864 		break;
10865 	}
10866 	}
10867 	return insn - insn_buf;
10868 }
10869 
10870 /* data_end = skb->data + skb_headlen() */
10871 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10872 						    struct bpf_insn *insn)
10873 {
10874 	int reg;
10875 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10876 			   offsetof(struct sk_skb_cb, temp_reg);
10877 
10878 	if (si->src_reg == si->dst_reg) {
10879 		/* We need an extra register, choose and save a register. */
10880 		reg = BPF_REG_9;
10881 		if (si->src_reg == reg || si->dst_reg == reg)
10882 			reg--;
10883 		if (si->src_reg == reg || si->dst_reg == reg)
10884 			reg--;
10885 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10886 	} else {
10887 		reg = si->dst_reg;
10888 	}
10889 
10890 	/* reg = skb->data */
10891 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10892 			      reg, si->src_reg,
10893 			      offsetof(struct sk_buff, data));
10894 	/* AX = skb->len */
10895 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10896 			      BPF_REG_AX, si->src_reg,
10897 			      offsetof(struct sk_buff, len));
10898 	/* reg = skb->data + skb->len */
10899 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10900 	/* AX = skb->data_len */
10901 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10902 			      BPF_REG_AX, si->src_reg,
10903 			      offsetof(struct sk_buff, data_len));
10904 
10905 	/* reg = skb->data + skb->len - skb->data_len */
10906 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10907 
10908 	if (si->src_reg == si->dst_reg) {
10909 		/* Restore the saved register */
10910 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10911 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10912 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10913 	}
10914 
10915 	return insn;
10916 }
10917 
10918 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10919 				     const struct bpf_insn *si,
10920 				     struct bpf_insn *insn_buf,
10921 				     struct bpf_prog *prog, u32 *target_size)
10922 {
10923 	struct bpf_insn *insn = insn_buf;
10924 	int off;
10925 
10926 	switch (si->off) {
10927 	case offsetof(struct __sk_buff, data_end):
10928 		insn = bpf_convert_data_end_access(si, insn);
10929 		break;
10930 	case offsetof(struct __sk_buff, cb[0]) ...
10931 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10932 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10933 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10934 			      offsetof(struct sk_skb_cb, data)) %
10935 			     sizeof(__u64));
10936 
10937 		prog->cb_access = 1;
10938 		off  = si->off;
10939 		off -= offsetof(struct __sk_buff, cb[0]);
10940 		off += offsetof(struct sk_buff, cb);
10941 		off += offsetof(struct sk_skb_cb, data);
10942 		if (type == BPF_WRITE)
10943 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10944 		else
10945 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10946 					      si->src_reg, off);
10947 		break;
10948 
10949 
10950 	default:
10951 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10952 					      target_size);
10953 	}
10954 
10955 	return insn - insn_buf;
10956 }
10957 
10958 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10959 				     const struct bpf_insn *si,
10960 				     struct bpf_insn *insn_buf,
10961 				     struct bpf_prog *prog, u32 *target_size)
10962 {
10963 	struct bpf_insn *insn = insn_buf;
10964 #if IS_ENABLED(CONFIG_IPV6)
10965 	int off;
10966 #endif
10967 
10968 	/* convert ctx uses the fact sg element is first in struct */
10969 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10970 
10971 	switch (si->off) {
10972 	case offsetof(struct sk_msg_md, data):
10973 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10974 				      si->dst_reg, si->src_reg,
10975 				      offsetof(struct sk_msg, data));
10976 		break;
10977 	case offsetof(struct sk_msg_md, data_end):
10978 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10979 				      si->dst_reg, si->src_reg,
10980 				      offsetof(struct sk_msg, data_end));
10981 		break;
10982 	case offsetof(struct sk_msg_md, family):
10983 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10984 
10985 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10986 					      struct sk_msg, sk),
10987 				      si->dst_reg, si->src_reg,
10988 				      offsetof(struct sk_msg, sk));
10989 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10990 				      offsetof(struct sock_common, skc_family));
10991 		break;
10992 
10993 	case offsetof(struct sk_msg_md, remote_ip4):
10994 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10995 
10996 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10997 						struct sk_msg, sk),
10998 				      si->dst_reg, si->src_reg,
10999 				      offsetof(struct sk_msg, sk));
11000 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11001 				      offsetof(struct sock_common, skc_daddr));
11002 		break;
11003 
11004 	case offsetof(struct sk_msg_md, local_ip4):
11005 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11006 					  skc_rcv_saddr) != 4);
11007 
11008 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11009 					      struct sk_msg, sk),
11010 				      si->dst_reg, si->src_reg,
11011 				      offsetof(struct sk_msg, sk));
11012 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11013 				      offsetof(struct sock_common,
11014 					       skc_rcv_saddr));
11015 		break;
11016 
11017 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
11018 	     offsetof(struct sk_msg_md, remote_ip6[3]):
11019 #if IS_ENABLED(CONFIG_IPV6)
11020 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11021 					  skc_v6_daddr.s6_addr32[0]) != 4);
11022 
11023 		off = si->off;
11024 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11025 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11026 						struct sk_msg, sk),
11027 				      si->dst_reg, si->src_reg,
11028 				      offsetof(struct sk_msg, sk));
11029 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11030 				      offsetof(struct sock_common,
11031 					       skc_v6_daddr.s6_addr32[0]) +
11032 				      off);
11033 #else
11034 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11035 #endif
11036 		break;
11037 
11038 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
11039 	     offsetof(struct sk_msg_md, local_ip6[3]):
11040 #if IS_ENABLED(CONFIG_IPV6)
11041 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11042 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11043 
11044 		off = si->off;
11045 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
11046 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11047 						struct sk_msg, sk),
11048 				      si->dst_reg, si->src_reg,
11049 				      offsetof(struct sk_msg, sk));
11050 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11051 				      offsetof(struct sock_common,
11052 					       skc_v6_rcv_saddr.s6_addr32[0]) +
11053 				      off);
11054 #else
11055 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11056 #endif
11057 		break;
11058 
11059 	case offsetof(struct sk_msg_md, remote_port):
11060 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11061 
11062 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11063 						struct sk_msg, sk),
11064 				      si->dst_reg, si->src_reg,
11065 				      offsetof(struct sk_msg, sk));
11066 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11067 				      offsetof(struct sock_common, skc_dport));
11068 #ifndef __BIG_ENDIAN_BITFIELD
11069 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11070 #endif
11071 		break;
11072 
11073 	case offsetof(struct sk_msg_md, local_port):
11074 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11075 
11076 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11077 						struct sk_msg, sk),
11078 				      si->dst_reg, si->src_reg,
11079 				      offsetof(struct sk_msg, sk));
11080 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11081 				      offsetof(struct sock_common, skc_num));
11082 		break;
11083 
11084 	case offsetof(struct sk_msg_md, size):
11085 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11086 				      si->dst_reg, si->src_reg,
11087 				      offsetof(struct sk_msg_sg, size));
11088 		break;
11089 
11090 	case offsetof(struct sk_msg_md, sk):
11091 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11092 				      si->dst_reg, si->src_reg,
11093 				      offsetof(struct sk_msg, sk));
11094 		break;
11095 	}
11096 
11097 	return insn - insn_buf;
11098 }
11099 
11100 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11101 	.get_func_proto		= sk_filter_func_proto,
11102 	.is_valid_access	= sk_filter_is_valid_access,
11103 	.convert_ctx_access	= bpf_convert_ctx_access,
11104 	.gen_ld_abs		= bpf_gen_ld_abs,
11105 };
11106 
11107 const struct bpf_prog_ops sk_filter_prog_ops = {
11108 	.test_run		= bpf_prog_test_run_skb,
11109 };
11110 
11111 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11112 	.get_func_proto		= tc_cls_act_func_proto,
11113 	.is_valid_access	= tc_cls_act_is_valid_access,
11114 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
11115 	.gen_prologue		= tc_cls_act_prologue,
11116 	.gen_ld_abs		= bpf_gen_ld_abs,
11117 	.btf_struct_access	= tc_cls_act_btf_struct_access,
11118 };
11119 
11120 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11121 	.test_run		= bpf_prog_test_run_skb,
11122 };
11123 
11124 const struct bpf_verifier_ops xdp_verifier_ops = {
11125 	.get_func_proto		= xdp_func_proto,
11126 	.is_valid_access	= xdp_is_valid_access,
11127 	.convert_ctx_access	= xdp_convert_ctx_access,
11128 	.gen_prologue		= bpf_noop_prologue,
11129 	.btf_struct_access	= xdp_btf_struct_access,
11130 };
11131 
11132 const struct bpf_prog_ops xdp_prog_ops = {
11133 	.test_run		= bpf_prog_test_run_xdp,
11134 };
11135 
11136 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11137 	.get_func_proto		= cg_skb_func_proto,
11138 	.is_valid_access	= cg_skb_is_valid_access,
11139 	.convert_ctx_access	= bpf_convert_ctx_access,
11140 };
11141 
11142 const struct bpf_prog_ops cg_skb_prog_ops = {
11143 	.test_run		= bpf_prog_test_run_skb,
11144 };
11145 
11146 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11147 	.get_func_proto		= lwt_in_func_proto,
11148 	.is_valid_access	= lwt_is_valid_access,
11149 	.convert_ctx_access	= bpf_convert_ctx_access,
11150 };
11151 
11152 const struct bpf_prog_ops lwt_in_prog_ops = {
11153 	.test_run		= bpf_prog_test_run_skb,
11154 };
11155 
11156 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11157 	.get_func_proto		= lwt_out_func_proto,
11158 	.is_valid_access	= lwt_is_valid_access,
11159 	.convert_ctx_access	= bpf_convert_ctx_access,
11160 };
11161 
11162 const struct bpf_prog_ops lwt_out_prog_ops = {
11163 	.test_run		= bpf_prog_test_run_skb,
11164 };
11165 
11166 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11167 	.get_func_proto		= lwt_xmit_func_proto,
11168 	.is_valid_access	= lwt_is_valid_access,
11169 	.convert_ctx_access	= bpf_convert_ctx_access,
11170 	.gen_prologue		= tc_cls_act_prologue,
11171 };
11172 
11173 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11174 	.test_run		= bpf_prog_test_run_skb,
11175 };
11176 
11177 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11178 	.get_func_proto		= lwt_seg6local_func_proto,
11179 	.is_valid_access	= lwt_is_valid_access,
11180 	.convert_ctx_access	= bpf_convert_ctx_access,
11181 };
11182 
11183 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11184 };
11185 
11186 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11187 	.get_func_proto		= sock_filter_func_proto,
11188 	.is_valid_access	= sock_filter_is_valid_access,
11189 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11190 };
11191 
11192 const struct bpf_prog_ops cg_sock_prog_ops = {
11193 };
11194 
11195 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11196 	.get_func_proto		= sock_addr_func_proto,
11197 	.is_valid_access	= sock_addr_is_valid_access,
11198 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11199 };
11200 
11201 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11202 };
11203 
11204 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11205 	.get_func_proto		= sock_ops_func_proto,
11206 	.is_valid_access	= sock_ops_is_valid_access,
11207 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11208 };
11209 
11210 const struct bpf_prog_ops sock_ops_prog_ops = {
11211 };
11212 
11213 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11214 	.get_func_proto		= sk_skb_func_proto,
11215 	.is_valid_access	= sk_skb_is_valid_access,
11216 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11217 	.gen_prologue		= sk_skb_prologue,
11218 };
11219 
11220 const struct bpf_prog_ops sk_skb_prog_ops = {
11221 };
11222 
11223 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11224 	.get_func_proto		= sk_msg_func_proto,
11225 	.is_valid_access	= sk_msg_is_valid_access,
11226 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11227 	.gen_prologue		= bpf_noop_prologue,
11228 };
11229 
11230 const struct bpf_prog_ops sk_msg_prog_ops = {
11231 };
11232 
11233 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11234 	.get_func_proto		= flow_dissector_func_proto,
11235 	.is_valid_access	= flow_dissector_is_valid_access,
11236 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11237 };
11238 
11239 const struct bpf_prog_ops flow_dissector_prog_ops = {
11240 	.test_run		= bpf_prog_test_run_flow_dissector,
11241 };
11242 
11243 int sk_detach_filter(struct sock *sk)
11244 {
11245 	int ret = -ENOENT;
11246 	struct sk_filter *filter;
11247 
11248 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11249 		return -EPERM;
11250 
11251 	filter = rcu_dereference_protected(sk->sk_filter,
11252 					   lockdep_sock_is_held(sk));
11253 	if (filter) {
11254 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11255 		sk_filter_uncharge(sk, filter);
11256 		ret = 0;
11257 	}
11258 
11259 	return ret;
11260 }
11261 EXPORT_SYMBOL_GPL(sk_detach_filter);
11262 
11263 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11264 {
11265 	struct sock_fprog_kern *fprog;
11266 	struct sk_filter *filter;
11267 	int ret = 0;
11268 
11269 	sockopt_lock_sock(sk);
11270 	filter = rcu_dereference_protected(sk->sk_filter,
11271 					   lockdep_sock_is_held(sk));
11272 	if (!filter)
11273 		goto out;
11274 
11275 	/* We're copying the filter that has been originally attached,
11276 	 * so no conversion/decode needed anymore. eBPF programs that
11277 	 * have no original program cannot be dumped through this.
11278 	 */
11279 	ret = -EACCES;
11280 	fprog = filter->prog->orig_prog;
11281 	if (!fprog)
11282 		goto out;
11283 
11284 	ret = fprog->len;
11285 	if (!len)
11286 		/* User space only enquires number of filter blocks. */
11287 		goto out;
11288 
11289 	ret = -EINVAL;
11290 	if (len < fprog->len)
11291 		goto out;
11292 
11293 	ret = -EFAULT;
11294 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11295 		goto out;
11296 
11297 	/* Instead of bytes, the API requests to return the number
11298 	 * of filter blocks.
11299 	 */
11300 	ret = fprog->len;
11301 out:
11302 	sockopt_release_sock(sk);
11303 	return ret;
11304 }
11305 
11306 #ifdef CONFIG_INET
11307 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11308 				    struct sock_reuseport *reuse,
11309 				    struct sock *sk, struct sk_buff *skb,
11310 				    struct sock *migrating_sk,
11311 				    u32 hash)
11312 {
11313 	reuse_kern->skb = skb;
11314 	reuse_kern->sk = sk;
11315 	reuse_kern->selected_sk = NULL;
11316 	reuse_kern->migrating_sk = migrating_sk;
11317 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11318 	reuse_kern->hash = hash;
11319 	reuse_kern->reuseport_id = reuse->reuseport_id;
11320 	reuse_kern->bind_inany = reuse->bind_inany;
11321 }
11322 
11323 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11324 				  struct bpf_prog *prog, struct sk_buff *skb,
11325 				  struct sock *migrating_sk,
11326 				  u32 hash)
11327 {
11328 	struct sk_reuseport_kern reuse_kern;
11329 	enum sk_action action;
11330 
11331 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11332 	action = bpf_prog_run(prog, &reuse_kern);
11333 
11334 	if (action == SK_PASS)
11335 		return reuse_kern.selected_sk;
11336 	else
11337 		return ERR_PTR(-ECONNREFUSED);
11338 }
11339 
11340 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11341 	   struct bpf_map *, map, void *, key, u32, flags)
11342 {
11343 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11344 	struct sock_reuseport *reuse;
11345 	struct sock *selected_sk;
11346 	int err;
11347 
11348 	selected_sk = map->ops->map_lookup_elem(map, key);
11349 	if (!selected_sk)
11350 		return -ENOENT;
11351 
11352 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11353 	if (!reuse) {
11354 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11355 		 * The only (!reuse) case here is - the sk has already been
11356 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11357 		 *
11358 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11359 		 * the sk may never be in the reuseport group to begin with.
11360 		 */
11361 		err = is_sockarray ? -ENOENT : -EINVAL;
11362 		goto error;
11363 	}
11364 
11365 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11366 		struct sock *sk = reuse_kern->sk;
11367 
11368 		if (sk->sk_protocol != selected_sk->sk_protocol) {
11369 			err = -EPROTOTYPE;
11370 		} else if (sk->sk_family != selected_sk->sk_family) {
11371 			err = -EAFNOSUPPORT;
11372 		} else {
11373 			/* Catch all. Likely bound to a different sockaddr. */
11374 			err = -EBADFD;
11375 		}
11376 		goto error;
11377 	}
11378 
11379 	reuse_kern->selected_sk = selected_sk;
11380 
11381 	return 0;
11382 error:
11383 	/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11384 	if (sk_is_refcounted(selected_sk))
11385 		sock_put(selected_sk);
11386 
11387 	return err;
11388 }
11389 
11390 static const struct bpf_func_proto sk_select_reuseport_proto = {
11391 	.func           = sk_select_reuseport,
11392 	.gpl_only       = false,
11393 	.ret_type       = RET_INTEGER,
11394 	.arg1_type	= ARG_PTR_TO_CTX,
11395 	.arg2_type      = ARG_CONST_MAP_PTR,
11396 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11397 	.arg4_type	= ARG_ANYTHING,
11398 };
11399 
11400 BPF_CALL_4(sk_reuseport_load_bytes,
11401 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11402 	   void *, to, u32, len)
11403 {
11404 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11405 }
11406 
11407 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11408 	.func		= sk_reuseport_load_bytes,
11409 	.gpl_only	= false,
11410 	.ret_type	= RET_INTEGER,
11411 	.arg1_type	= ARG_PTR_TO_CTX,
11412 	.arg2_type	= ARG_ANYTHING,
11413 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11414 	.arg4_type	= ARG_CONST_SIZE,
11415 };
11416 
11417 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11418 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11419 	   void *, to, u32, len, u32, start_header)
11420 {
11421 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11422 					       len, start_header);
11423 }
11424 
11425 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11426 	.func		= sk_reuseport_load_bytes_relative,
11427 	.gpl_only	= false,
11428 	.ret_type	= RET_INTEGER,
11429 	.arg1_type	= ARG_PTR_TO_CTX,
11430 	.arg2_type	= ARG_ANYTHING,
11431 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11432 	.arg4_type	= ARG_CONST_SIZE,
11433 	.arg5_type	= ARG_ANYTHING,
11434 };
11435 
11436 static const struct bpf_func_proto *
11437 sk_reuseport_func_proto(enum bpf_func_id func_id,
11438 			const struct bpf_prog *prog)
11439 {
11440 	switch (func_id) {
11441 	case BPF_FUNC_sk_select_reuseport:
11442 		return &sk_select_reuseport_proto;
11443 	case BPF_FUNC_skb_load_bytes:
11444 		return &sk_reuseport_load_bytes_proto;
11445 	case BPF_FUNC_skb_load_bytes_relative:
11446 		return &sk_reuseport_load_bytes_relative_proto;
11447 	case BPF_FUNC_get_socket_cookie:
11448 		return &bpf_get_socket_ptr_cookie_proto;
11449 	case BPF_FUNC_ktime_get_coarse_ns:
11450 		return &bpf_ktime_get_coarse_ns_proto;
11451 	default:
11452 		return bpf_base_func_proto(func_id, prog);
11453 	}
11454 }
11455 
11456 static bool
11457 sk_reuseport_is_valid_access(int off, int size,
11458 			     enum bpf_access_type type,
11459 			     const struct bpf_prog *prog,
11460 			     struct bpf_insn_access_aux *info)
11461 {
11462 	const u32 size_default = sizeof(__u32);
11463 
11464 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11465 	    off % size || type != BPF_READ)
11466 		return false;
11467 
11468 	switch (off) {
11469 	case offsetof(struct sk_reuseport_md, data):
11470 		info->reg_type = PTR_TO_PACKET;
11471 		return size == sizeof(__u64);
11472 
11473 	case offsetof(struct sk_reuseport_md, data_end):
11474 		info->reg_type = PTR_TO_PACKET_END;
11475 		return size == sizeof(__u64);
11476 
11477 	case offsetof(struct sk_reuseport_md, hash):
11478 		return size == size_default;
11479 
11480 	case offsetof(struct sk_reuseport_md, sk):
11481 		info->reg_type = PTR_TO_SOCKET;
11482 		return size == sizeof(__u64);
11483 
11484 	case offsetof(struct sk_reuseport_md, migrating_sk):
11485 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11486 		return size == sizeof(__u64);
11487 
11488 	/* Fields that allow narrowing */
11489 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11490 		if (size < sizeof_field(struct sk_buff, protocol))
11491 			return false;
11492 		fallthrough;
11493 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11494 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11495 	case bpf_ctx_range(struct sk_reuseport_md, len):
11496 		bpf_ctx_record_field_size(info, size_default);
11497 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11498 
11499 	default:
11500 		return false;
11501 	}
11502 }
11503 
11504 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11505 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11506 			      si->dst_reg, si->src_reg,			\
11507 			      bpf_target_off(struct sk_reuseport_kern, F, \
11508 					     sizeof_field(struct sk_reuseport_kern, F), \
11509 					     target_size));		\
11510 	})
11511 
11512 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11513 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11514 				    struct sk_buff,			\
11515 				    skb,				\
11516 				    SKB_FIELD)
11517 
11518 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11519 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11520 				    struct sock,			\
11521 				    sk,					\
11522 				    SK_FIELD)
11523 
11524 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11525 					   const struct bpf_insn *si,
11526 					   struct bpf_insn *insn_buf,
11527 					   struct bpf_prog *prog,
11528 					   u32 *target_size)
11529 {
11530 	struct bpf_insn *insn = insn_buf;
11531 
11532 	switch (si->off) {
11533 	case offsetof(struct sk_reuseport_md, data):
11534 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11535 		break;
11536 
11537 	case offsetof(struct sk_reuseport_md, len):
11538 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11539 		break;
11540 
11541 	case offsetof(struct sk_reuseport_md, eth_protocol):
11542 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11543 		break;
11544 
11545 	case offsetof(struct sk_reuseport_md, ip_protocol):
11546 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11547 		break;
11548 
11549 	case offsetof(struct sk_reuseport_md, data_end):
11550 		SK_REUSEPORT_LOAD_FIELD(data_end);
11551 		break;
11552 
11553 	case offsetof(struct sk_reuseport_md, hash):
11554 		SK_REUSEPORT_LOAD_FIELD(hash);
11555 		break;
11556 
11557 	case offsetof(struct sk_reuseport_md, bind_inany):
11558 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11559 		break;
11560 
11561 	case offsetof(struct sk_reuseport_md, sk):
11562 		SK_REUSEPORT_LOAD_FIELD(sk);
11563 		break;
11564 
11565 	case offsetof(struct sk_reuseport_md, migrating_sk):
11566 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11567 		break;
11568 	}
11569 
11570 	return insn - insn_buf;
11571 }
11572 
11573 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11574 	.get_func_proto		= sk_reuseport_func_proto,
11575 	.is_valid_access	= sk_reuseport_is_valid_access,
11576 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11577 };
11578 
11579 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11580 };
11581 
11582 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11583 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11584 
11585 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11586 	   struct sock *, sk, u64, flags)
11587 {
11588 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11589 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11590 		return -EINVAL;
11591 	if (unlikely(sk && sk_is_refcounted(sk)))
11592 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11593 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11594 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11595 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11596 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11597 
11598 	/* Check if socket is suitable for packet L3/L4 protocol */
11599 	if (sk && sk->sk_protocol != ctx->protocol)
11600 		return -EPROTOTYPE;
11601 	if (sk && sk->sk_family != ctx->family &&
11602 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11603 		return -EAFNOSUPPORT;
11604 
11605 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11606 		return -EEXIST;
11607 
11608 	/* Select socket as lookup result */
11609 	ctx->selected_sk = sk;
11610 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11611 	return 0;
11612 }
11613 
11614 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11615 	.func		= bpf_sk_lookup_assign,
11616 	.gpl_only	= false,
11617 	.ret_type	= RET_INTEGER,
11618 	.arg1_type	= ARG_PTR_TO_CTX,
11619 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11620 	.arg3_type	= ARG_ANYTHING,
11621 };
11622 
11623 static const struct bpf_func_proto *
11624 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11625 {
11626 	switch (func_id) {
11627 	case BPF_FUNC_perf_event_output:
11628 		return &bpf_event_output_data_proto;
11629 	case BPF_FUNC_sk_assign:
11630 		return &bpf_sk_lookup_assign_proto;
11631 	case BPF_FUNC_sk_release:
11632 		return &bpf_sk_release_proto;
11633 	default:
11634 		return bpf_sk_base_func_proto(func_id, prog);
11635 	}
11636 }
11637 
11638 static bool sk_lookup_is_valid_access(int off, int size,
11639 				      enum bpf_access_type type,
11640 				      const struct bpf_prog *prog,
11641 				      struct bpf_insn_access_aux *info)
11642 {
11643 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11644 		return false;
11645 	if (off % size != 0)
11646 		return false;
11647 	if (type != BPF_READ)
11648 		return false;
11649 
11650 	switch (off) {
11651 	case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk):
11652 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11653 		return size == sizeof(__u64);
11654 
11655 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11656 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11657 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11658 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11659 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11660 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11661 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11662 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11663 		bpf_ctx_record_field_size(info, sizeof(__u32));
11664 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11665 
11666 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11667 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11668 		if (size == sizeof(__u32))
11669 			return true;
11670 		bpf_ctx_record_field_size(info, sizeof(__be16));
11671 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11672 
11673 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11674 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11675 		/* Allow access to zero padding for backward compatibility */
11676 		bpf_ctx_record_field_size(info, sizeof(__u16));
11677 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11678 
11679 	default:
11680 		return false;
11681 	}
11682 }
11683 
11684 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11685 					const struct bpf_insn *si,
11686 					struct bpf_insn *insn_buf,
11687 					struct bpf_prog *prog,
11688 					u32 *target_size)
11689 {
11690 	struct bpf_insn *insn = insn_buf;
11691 
11692 	switch (si->off) {
11693 	case offsetof(struct bpf_sk_lookup, sk):
11694 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11695 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11696 		break;
11697 
11698 	case offsetof(struct bpf_sk_lookup, family):
11699 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11700 				      bpf_target_off(struct bpf_sk_lookup_kern,
11701 						     family, 2, target_size));
11702 		break;
11703 
11704 	case offsetof(struct bpf_sk_lookup, protocol):
11705 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11706 				      bpf_target_off(struct bpf_sk_lookup_kern,
11707 						     protocol, 2, target_size));
11708 		break;
11709 
11710 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11711 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11712 				      bpf_target_off(struct bpf_sk_lookup_kern,
11713 						     v4.saddr, 4, target_size));
11714 		break;
11715 
11716 	case offsetof(struct bpf_sk_lookup, local_ip4):
11717 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11718 				      bpf_target_off(struct bpf_sk_lookup_kern,
11719 						     v4.daddr, 4, target_size));
11720 		break;
11721 
11722 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11723 				remote_ip6[0], remote_ip6[3]): {
11724 #if IS_ENABLED(CONFIG_IPV6)
11725 		int off = si->off;
11726 
11727 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11728 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11729 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11730 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11731 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11732 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11733 #else
11734 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11735 #endif
11736 		break;
11737 	}
11738 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11739 				local_ip6[0], local_ip6[3]): {
11740 #if IS_ENABLED(CONFIG_IPV6)
11741 		int off = si->off;
11742 
11743 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11744 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11745 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11746 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11747 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11748 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11749 #else
11750 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11751 #endif
11752 		break;
11753 	}
11754 	case offsetof(struct bpf_sk_lookup, remote_port):
11755 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11756 				      bpf_target_off(struct bpf_sk_lookup_kern,
11757 						     sport, 2, target_size));
11758 		break;
11759 
11760 	case offsetofend(struct bpf_sk_lookup, remote_port):
11761 		*target_size = 2;
11762 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11763 		break;
11764 
11765 	case offsetof(struct bpf_sk_lookup, local_port):
11766 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11767 				      bpf_target_off(struct bpf_sk_lookup_kern,
11768 						     dport, 2, target_size));
11769 		break;
11770 
11771 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11772 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11773 				      bpf_target_off(struct bpf_sk_lookup_kern,
11774 						     ingress_ifindex, 4, target_size));
11775 		break;
11776 	}
11777 
11778 	return insn - insn_buf;
11779 }
11780 
11781 const struct bpf_prog_ops sk_lookup_prog_ops = {
11782 	.test_run = bpf_prog_test_run_sk_lookup,
11783 };
11784 
11785 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11786 	.get_func_proto		= sk_lookup_func_proto,
11787 	.is_valid_access	= sk_lookup_is_valid_access,
11788 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11789 };
11790 
11791 #endif /* CONFIG_INET */
11792 
11793 DEFINE_BPF_DISPATCHER(xdp)
11794 
11795 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11796 {
11797 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11798 }
11799 
11800 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11801 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11802 BTF_SOCK_TYPE_xxx
11803 #undef BTF_SOCK_TYPE
11804 
11805 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11806 {
11807 	/* tcp6_sock type is not generated in dwarf and hence btf,
11808 	 * trigger an explicit type generation here.
11809 	 */
11810 	BTF_TYPE_EMIT(struct tcp6_sock);
11811 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11812 	    sk->sk_family == AF_INET6)
11813 		return (unsigned long)sk;
11814 
11815 	return (unsigned long)NULL;
11816 }
11817 
11818 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11819 	.func			= bpf_skc_to_tcp6_sock,
11820 	.gpl_only		= false,
11821 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11822 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11823 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11824 };
11825 
11826 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11827 {
11828 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11829 		return (unsigned long)sk;
11830 
11831 	return (unsigned long)NULL;
11832 }
11833 
11834 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11835 	.func			= bpf_skc_to_tcp_sock,
11836 	.gpl_only		= false,
11837 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11838 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11839 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11840 };
11841 
11842 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11843 {
11844 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11845 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11846 	 */
11847 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11848 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11849 
11850 #ifdef CONFIG_INET
11851 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11852 		return (unsigned long)sk;
11853 #endif
11854 
11855 #if IS_BUILTIN(CONFIG_IPV6)
11856 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11857 		return (unsigned long)sk;
11858 #endif
11859 
11860 	return (unsigned long)NULL;
11861 }
11862 
11863 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11864 	.func			= bpf_skc_to_tcp_timewait_sock,
11865 	.gpl_only		= false,
11866 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11867 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11868 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11869 };
11870 
11871 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11872 {
11873 #ifdef CONFIG_INET
11874 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11875 		return (unsigned long)sk;
11876 #endif
11877 
11878 #if IS_BUILTIN(CONFIG_IPV6)
11879 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11880 		return (unsigned long)sk;
11881 #endif
11882 
11883 	return (unsigned long)NULL;
11884 }
11885 
11886 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11887 	.func			= bpf_skc_to_tcp_request_sock,
11888 	.gpl_only		= false,
11889 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11890 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11891 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11892 };
11893 
11894 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11895 {
11896 	/* udp6_sock type is not generated in dwarf and hence btf,
11897 	 * trigger an explicit type generation here.
11898 	 */
11899 	BTF_TYPE_EMIT(struct udp6_sock);
11900 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11901 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11902 		return (unsigned long)sk;
11903 
11904 	return (unsigned long)NULL;
11905 }
11906 
11907 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11908 	.func			= bpf_skc_to_udp6_sock,
11909 	.gpl_only		= false,
11910 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11911 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11912 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11913 };
11914 
11915 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11916 {
11917 	/* unix_sock type is not generated in dwarf and hence btf,
11918 	 * trigger an explicit type generation here.
11919 	 */
11920 	BTF_TYPE_EMIT(struct unix_sock);
11921 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11922 		return (unsigned long)sk;
11923 
11924 	return (unsigned long)NULL;
11925 }
11926 
11927 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11928 	.func			= bpf_skc_to_unix_sock,
11929 	.gpl_only		= false,
11930 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11931 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11932 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11933 };
11934 
11935 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11936 {
11937 	BTF_TYPE_EMIT(struct mptcp_sock);
11938 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11939 }
11940 
11941 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11942 	.func		= bpf_skc_to_mptcp_sock,
11943 	.gpl_only	= false,
11944 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11945 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11946 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11947 };
11948 
11949 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11950 {
11951 	return (unsigned long)sock_from_file(file);
11952 }
11953 
11954 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11955 BTF_ID(struct, socket)
11956 BTF_ID(struct, file)
11957 
11958 const struct bpf_func_proto bpf_sock_from_file_proto = {
11959 	.func		= bpf_sock_from_file,
11960 	.gpl_only	= false,
11961 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11962 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11963 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11964 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11965 };
11966 
11967 static const struct bpf_func_proto *
11968 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11969 {
11970 	const struct bpf_func_proto *func;
11971 
11972 	switch (func_id) {
11973 	case BPF_FUNC_skc_to_tcp6_sock:
11974 		func = &bpf_skc_to_tcp6_sock_proto;
11975 		break;
11976 	case BPF_FUNC_skc_to_tcp_sock:
11977 		func = &bpf_skc_to_tcp_sock_proto;
11978 		break;
11979 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11980 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11981 		break;
11982 	case BPF_FUNC_skc_to_tcp_request_sock:
11983 		func = &bpf_skc_to_tcp_request_sock_proto;
11984 		break;
11985 	case BPF_FUNC_skc_to_udp6_sock:
11986 		func = &bpf_skc_to_udp6_sock_proto;
11987 		break;
11988 	case BPF_FUNC_skc_to_unix_sock:
11989 		func = &bpf_skc_to_unix_sock_proto;
11990 		break;
11991 	case BPF_FUNC_skc_to_mptcp_sock:
11992 		func = &bpf_skc_to_mptcp_sock_proto;
11993 		break;
11994 	case BPF_FUNC_ktime_get_coarse_ns:
11995 		return &bpf_ktime_get_coarse_ns_proto;
11996 	default:
11997 		return bpf_base_func_proto(func_id, prog);
11998 	}
11999 
12000 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
12001 		return NULL;
12002 
12003 	return func;
12004 }
12005 
12006 /**
12007  * bpf_skb_meta_pointer() - Gets a mutable pointer within the skb metadata area.
12008  * @skb: socket buffer carrying the metadata
12009  * @offset: offset into the metadata area, must be <= skb_metadata_len()
12010  */
12011 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset)
12012 {
12013 	return skb_metadata_end(skb) - skb_metadata_len(skb) + offset;
12014 }
12015 
12016 __bpf_kfunc_start_defs();
12017 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
12018 				    struct bpf_dynptr *ptr__uninit)
12019 {
12020 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12021 	struct sk_buff *skb = (struct sk_buff *)s;
12022 
12023 	if (flags) {
12024 		bpf_dynptr_set_null(ptr);
12025 		return -EINVAL;
12026 	}
12027 
12028 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
12029 
12030 	return 0;
12031 }
12032 
12033 /**
12034  * bpf_dynptr_from_skb_meta() - Initialize a dynptr to the skb metadata area.
12035  * @skb_: socket buffer carrying the metadata
12036  * @flags: future use, must be zero
12037  * @ptr__uninit: dynptr to initialize
12038  *
12039  * Set up a dynptr for access to the metadata area earlier allocated from the
12040  * XDP context with bpf_xdp_adjust_meta(). Serves as an alternative to
12041  * &__sk_buff->data_meta.
12042  *
12043  * If passed @skb_ is a clone which shares the data with the original, the
12044  * dynptr will be read-only. This limitation may be lifted in the future.
12045  *
12046  * Return:
12047  * * %0         - dynptr ready to use
12048  * * %-EINVAL   - invalid flags, dynptr set to null
12049  */
12050 __bpf_kfunc int bpf_dynptr_from_skb_meta(struct __sk_buff *skb_, u64 flags,
12051 					 struct bpf_dynptr *ptr__uninit)
12052 {
12053 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12054 	struct sk_buff *skb = (struct sk_buff *)skb_;
12055 
12056 	if (flags) {
12057 		bpf_dynptr_set_null(ptr);
12058 		return -EINVAL;
12059 	}
12060 
12061 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB_META, 0, skb_metadata_len(skb));
12062 
12063 	if (skb_cloned(skb))
12064 		bpf_dynptr_set_rdonly(ptr);
12065 
12066 	return 0;
12067 }
12068 
12069 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12070 				    struct bpf_dynptr *ptr__uninit)
12071 {
12072 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12073 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12074 
12075 	if (flags) {
12076 		bpf_dynptr_set_null(ptr);
12077 		return -EINVAL;
12078 	}
12079 
12080 	bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12081 
12082 	return 0;
12083 }
12084 
12085 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12086 					   const u8 *sun_path, u32 sun_path__sz)
12087 {
12088 	struct sockaddr_un *un;
12089 
12090 	if (sa_kern->sk->sk_family != AF_UNIX)
12091 		return -EINVAL;
12092 
12093 	/* We do not allow changing the address to unnamed or larger than the
12094 	 * maximum allowed address size for a unix sockaddr.
12095 	 */
12096 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12097 		return -EINVAL;
12098 
12099 	un = (struct sockaddr_un *)sa_kern->uaddr;
12100 	memcpy(un->sun_path, sun_path, sun_path__sz);
12101 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12102 
12103 	return 0;
12104 }
12105 
12106 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12107 					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12108 {
12109 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12110 	struct sk_buff *skb = (struct sk_buff *)s;
12111 	const struct request_sock_ops *ops;
12112 	struct inet_request_sock *ireq;
12113 	struct tcp_request_sock *treq;
12114 	struct request_sock *req;
12115 	struct net *net;
12116 	__u16 min_mss;
12117 	u32 tsoff = 0;
12118 
12119 	if (attrs__sz != sizeof(*attrs) ||
12120 	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12121 		return -EINVAL;
12122 
12123 	if (!skb_at_tc_ingress(skb))
12124 		return -EINVAL;
12125 
12126 	net = dev_net(skb->dev);
12127 	if (net != sock_net(sk))
12128 		return -ENETUNREACH;
12129 
12130 	switch (skb->protocol) {
12131 	case htons(ETH_P_IP):
12132 		ops = &tcp_request_sock_ops;
12133 		min_mss = 536;
12134 		break;
12135 #if IS_BUILTIN(CONFIG_IPV6)
12136 	case htons(ETH_P_IPV6):
12137 		ops = &tcp6_request_sock_ops;
12138 		min_mss = IPV6_MIN_MTU - 60;
12139 		break;
12140 #endif
12141 	default:
12142 		return -EINVAL;
12143 	}
12144 
12145 	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12146 	    sk_is_mptcp(sk))
12147 		return -EINVAL;
12148 
12149 	if (attrs->mss < min_mss)
12150 		return -EINVAL;
12151 
12152 	if (attrs->wscale_ok) {
12153 		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12154 			return -EINVAL;
12155 
12156 		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12157 		    attrs->rcv_wscale > TCP_MAX_WSCALE)
12158 			return -EINVAL;
12159 	}
12160 
12161 	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12162 		return -EINVAL;
12163 
12164 	if (attrs->tstamp_ok) {
12165 		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12166 			return -EINVAL;
12167 
12168 		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12169 	}
12170 
12171 	req = inet_reqsk_alloc(ops, sk, false);
12172 	if (!req)
12173 		return -ENOMEM;
12174 
12175 	ireq = inet_rsk(req);
12176 	treq = tcp_rsk(req);
12177 
12178 	req->rsk_listener = sk;
12179 	req->syncookie = 1;
12180 	req->mss = attrs->mss;
12181 	req->ts_recent = attrs->rcv_tsval;
12182 
12183 	ireq->snd_wscale = attrs->snd_wscale;
12184 	ireq->rcv_wscale = attrs->rcv_wscale;
12185 	ireq->tstamp_ok	= !!attrs->tstamp_ok;
12186 	ireq->sack_ok = !!attrs->sack_ok;
12187 	ireq->wscale_ok = !!attrs->wscale_ok;
12188 	ireq->ecn_ok = !!attrs->ecn_ok;
12189 
12190 	treq->req_usec_ts = !!attrs->usec_ts_ok;
12191 	treq->ts_off = tsoff;
12192 
12193 	skb_orphan(skb);
12194 	skb->sk = req_to_sk(req);
12195 	skb->destructor = sock_pfree;
12196 
12197 	return 0;
12198 #else
12199 	return -EOPNOTSUPP;
12200 #endif
12201 }
12202 
12203 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12204 					      u64 flags)
12205 {
12206 	struct sk_buff *skb;
12207 
12208 	if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12209 		return -EOPNOTSUPP;
12210 
12211 	if (flags)
12212 		return -EINVAL;
12213 
12214 	skb = skops->skb;
12215 	skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12216 	TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12217 	skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12218 
12219 	return 0;
12220 }
12221 
12222 /**
12223  * bpf_xdp_pull_data() - Pull in non-linear xdp data.
12224  * @x: &xdp_md associated with the XDP buffer
12225  * @len: length of data to be made directly accessible in the linear part
12226  *
12227  * Pull in data in case the XDP buffer associated with @x is non-linear and
12228  * not all @len are in the linear data area.
12229  *
12230  * Direct packet access allows reading and writing linear XDP data through
12231  * packet pointers (i.e., &xdp_md->data + offsets). The amount of data which
12232  * ends up in the linear part of the xdp_buff depends on the NIC and its
12233  * configuration. When a frag-capable XDP program wants to directly access
12234  * headers that may be in the non-linear area, call this kfunc to make sure
12235  * the data is available in the linear area. Alternatively, use dynptr or
12236  * bpf_xdp_{load,store}_bytes() to access data without pulling.
12237  *
12238  * This kfunc can also be used with bpf_xdp_adjust_head() to decapsulate
12239  * headers in the non-linear data area.
12240  *
12241  * A call to this kfunc may reduce headroom. If there is not enough tailroom
12242  * in the linear data area, metadata and data will be shifted down.
12243  *
12244  * A call to this kfunc is susceptible to change the buffer geometry.
12245  * Therefore, at load time, all checks on pointers previously done by the
12246  * verifier are invalidated and must be performed again, if the kfunc is used
12247  * in combination with direct packet access.
12248  *
12249  * Return:
12250  * * %0         - success
12251  * * %-EINVAL   - invalid len
12252  */
12253 __bpf_kfunc int bpf_xdp_pull_data(struct xdp_md *x, u32 len)
12254 {
12255 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12256 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
12257 	int i, delta, shift, headroom, tailroom, n_frags_free = 0;
12258 	void *data_hard_end = xdp_data_hard_end(xdp);
12259 	int data_len = xdp->data_end - xdp->data;
12260 	void *start;
12261 
12262 	if (len <= data_len)
12263 		return 0;
12264 
12265 	if (unlikely(len > xdp_get_buff_len(xdp)))
12266 		return -EINVAL;
12267 
12268 	start = xdp_data_meta_unsupported(xdp) ? xdp->data : xdp->data_meta;
12269 
12270 	headroom = start - xdp->data_hard_start - sizeof(struct xdp_frame);
12271 	tailroom = data_hard_end - xdp->data_end;
12272 
12273 	delta = len - data_len;
12274 	if (unlikely(delta > tailroom + headroom))
12275 		return -EINVAL;
12276 
12277 	shift = delta - tailroom;
12278 	if (shift > 0) {
12279 		memmove(start - shift, start, xdp->data_end - start);
12280 
12281 		xdp->data_meta -= shift;
12282 		xdp->data -= shift;
12283 		xdp->data_end -= shift;
12284 	}
12285 
12286 	for (i = 0; i < sinfo->nr_frags && delta; i++) {
12287 		skb_frag_t *frag = &sinfo->frags[i];
12288 		u32 shrink = min_t(u32, delta, skb_frag_size(frag));
12289 
12290 		memcpy(xdp->data_end, skb_frag_address(frag), shrink);
12291 
12292 		xdp->data_end += shrink;
12293 		sinfo->xdp_frags_size -= shrink;
12294 		delta -= shrink;
12295 		if (bpf_xdp_shrink_data(xdp, frag, shrink, false))
12296 			n_frags_free++;
12297 	}
12298 
12299 	if (unlikely(n_frags_free)) {
12300 		memmove(sinfo->frags, sinfo->frags + n_frags_free,
12301 			(sinfo->nr_frags - n_frags_free) * sizeof(skb_frag_t));
12302 
12303 		sinfo->nr_frags -= n_frags_free;
12304 
12305 		if (!sinfo->nr_frags) {
12306 			xdp_buff_clear_frags_flag(xdp);
12307 			xdp_buff_clear_frag_pfmemalloc(xdp);
12308 		}
12309 	}
12310 
12311 	return 0;
12312 }
12313 
12314 __bpf_kfunc_end_defs();
12315 
12316 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12317 			       struct bpf_dynptr *ptr__uninit)
12318 {
12319 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12320 	int err;
12321 
12322 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12323 	if (err)
12324 		return err;
12325 
12326 	bpf_dynptr_set_rdonly(ptr);
12327 
12328 	return 0;
12329 }
12330 
12331 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12332 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12333 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12334 
12335 BTF_KFUNCS_START(bpf_kfunc_check_set_skb_meta)
12336 BTF_ID_FLAGS(func, bpf_dynptr_from_skb_meta, KF_TRUSTED_ARGS)
12337 BTF_KFUNCS_END(bpf_kfunc_check_set_skb_meta)
12338 
12339 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12340 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12341 BTF_ID_FLAGS(func, bpf_xdp_pull_data)
12342 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12343 
12344 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12345 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12346 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12347 
12348 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12349 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12350 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12351 
12352 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12353 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12354 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12355 
12356 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12357 	.owner = THIS_MODULE,
12358 	.set = &bpf_kfunc_check_set_skb,
12359 };
12360 
12361 static const struct btf_kfunc_id_set bpf_kfunc_set_skb_meta = {
12362 	.owner = THIS_MODULE,
12363 	.set = &bpf_kfunc_check_set_skb_meta,
12364 };
12365 
12366 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12367 	.owner = THIS_MODULE,
12368 	.set = &bpf_kfunc_check_set_xdp,
12369 };
12370 
12371 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12372 	.owner = THIS_MODULE,
12373 	.set = &bpf_kfunc_check_set_sock_addr,
12374 };
12375 
12376 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12377 	.owner = THIS_MODULE,
12378 	.set = &bpf_kfunc_check_set_tcp_reqsk,
12379 };
12380 
12381 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12382 	.owner = THIS_MODULE,
12383 	.set = &bpf_kfunc_check_set_sock_ops,
12384 };
12385 
12386 static int __init bpf_kfunc_init(void)
12387 {
12388 	int ret;
12389 
12390 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12391 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12392 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12393 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12394 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12395 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12396 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12397 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12398 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12399 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12400 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12401 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb_meta);
12402 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb_meta);
12403 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12404 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12405 					       &bpf_kfunc_set_sock_addr);
12406 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12407 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12408 }
12409 late_initcall(bpf_kfunc_init);
12410 
12411 __bpf_kfunc_start_defs();
12412 
12413 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12414  *
12415  * The function expects a non-NULL pointer to a socket, and invokes the
12416  * protocol specific socket destroy handlers.
12417  *
12418  * The helper can only be called from BPF contexts that have acquired the socket
12419  * locks.
12420  *
12421  * Parameters:
12422  * @sock: Pointer to socket to be destroyed
12423  *
12424  * Return:
12425  * On error, may return EPROTONOSUPPORT, EINVAL.
12426  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12427  * 0 otherwise
12428  */
12429 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12430 {
12431 	struct sock *sk = (struct sock *)sock;
12432 
12433 	/* The locking semantics that allow for synchronous execution of the
12434 	 * destroy handlers are only supported for TCP and UDP.
12435 	 * Supporting protocols will need to acquire sock lock in the BPF context
12436 	 * prior to invoking this kfunc.
12437 	 */
12438 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12439 					   sk->sk_protocol != IPPROTO_UDP))
12440 		return -EOPNOTSUPP;
12441 
12442 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12443 }
12444 
12445 __bpf_kfunc_end_defs();
12446 
12447 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
12448 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12449 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12450 
12451 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12452 {
12453 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12454 	    prog->expected_attach_type != BPF_TRACE_ITER)
12455 		return -EACCES;
12456 	return 0;
12457 }
12458 
12459 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12460 	.owner = THIS_MODULE,
12461 	.set   = &bpf_sk_iter_kfunc_ids,
12462 	.filter = tracing_iter_filter,
12463 };
12464 
12465 static int init_subsystem(void)
12466 {
12467 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12468 }
12469 late_initcall(init_subsystem);
12470