1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27
28 #include <net/bpf_sk_storage.h>
29
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32
33 #include <asm/tlb.h>
34
35 #include "trace_probe.h"
36 #include "trace.h"
37
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40
41 #define bpf_event_rcu_dereference(p) \
42 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49 struct module *module;
50 struct list_head list;
51 };
52
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55
bpf_get_raw_tracepoint_module(const char * name)56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 struct bpf_raw_event_map *btp, *ret = NULL;
59 struct bpf_trace_module *btm;
60 unsigned int i;
61
62 mutex_lock(&bpf_module_mutex);
63 list_for_each_entry(btm, &bpf_trace_modules, list) {
64 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65 btp = &btm->module->bpf_raw_events[i];
66 if (!strcmp(btp->tp->name, name)) {
67 if (try_module_get(btm->module))
68 ret = btp;
69 goto out;
70 }
71 }
72 }
73 out:
74 mutex_unlock(&bpf_module_mutex);
75 return ret;
76 }
77 #else
bpf_get_raw_tracepoint_module(const char * name)78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80 return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88 u64 flags, const struct btf **btf,
89 s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95
96 /**
97 * trace_call_bpf - invoke BPF program
98 * @call: tracepoint event
99 * @ctx: opaque context pointer
100 *
101 * kprobe handlers execute BPF programs via this helper.
102 * Can be used from static tracepoints in the future.
103 *
104 * Return: BPF programs always return an integer which is interpreted by
105 * kprobe handler as:
106 * 0 - return from kprobe (event is filtered out)
107 * 1 - store kprobe event into ring buffer
108 * Other values are reserved and currently alias to 1
109 */
trace_call_bpf(struct trace_event_call * call,void * ctx)110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112 unsigned int ret;
113
114 cant_sleep();
115
116 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117 /*
118 * since some bpf program is already running on this cpu,
119 * don't call into another bpf program (same or different)
120 * and don't send kprobe event into ring-buffer,
121 * so return zero here
122 */
123 rcu_read_lock();
124 bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
125 rcu_read_unlock();
126 ret = 0;
127 goto out;
128 }
129
130 /*
131 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
132 * to all call sites, we did a bpf_prog_array_valid() there to check
133 * whether call->prog_array is empty or not, which is
134 * a heuristic to speed up execution.
135 *
136 * If bpf_prog_array_valid() fetched prog_array was
137 * non-NULL, we go into trace_call_bpf() and do the actual
138 * proper rcu_dereference() under RCU lock.
139 * If it turns out that prog_array is NULL then, we bail out.
140 * For the opposite, if the bpf_prog_array_valid() fetched pointer
141 * was NULL, you'll skip the prog_array with the risk of missing
142 * out of events when it was updated in between this and the
143 * rcu_dereference() which is accepted risk.
144 */
145 rcu_read_lock();
146 ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
147 ctx, bpf_prog_run);
148 rcu_read_unlock();
149
150 out:
151 __this_cpu_dec(bpf_prog_active);
152
153 return ret;
154 }
155
156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
158 {
159 regs_set_return_value(regs, rc);
160 override_function_with_return(regs);
161 return 0;
162 }
163
164 static const struct bpf_func_proto bpf_override_return_proto = {
165 .func = bpf_override_return,
166 .gpl_only = true,
167 .ret_type = RET_INTEGER,
168 .arg1_type = ARG_PTR_TO_CTX,
169 .arg2_type = ARG_ANYTHING,
170 };
171 #endif
172
173 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
175 {
176 int ret;
177
178 ret = copy_from_user_nofault(dst, unsafe_ptr, size);
179 if (unlikely(ret < 0))
180 memset(dst, 0, size);
181 return ret;
182 }
183
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
185 const void __user *, unsafe_ptr)
186 {
187 return bpf_probe_read_user_common(dst, size, unsafe_ptr);
188 }
189
190 const struct bpf_func_proto bpf_probe_read_user_proto = {
191 .func = bpf_probe_read_user,
192 .gpl_only = true,
193 .ret_type = RET_INTEGER,
194 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
195 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
196 .arg3_type = ARG_ANYTHING,
197 };
198
199 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)200 bpf_probe_read_user_str_common(void *dst, u32 size,
201 const void __user *unsafe_ptr)
202 {
203 int ret;
204
205 /*
206 * NB: We rely on strncpy_from_user() not copying junk past the NUL
207 * terminator into `dst`.
208 *
209 * strncpy_from_user() does long-sized strides in the fast path. If the
210 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
211 * then there could be junk after the NUL in `dst`. If user takes `dst`
212 * and keys a hash map with it, then semantically identical strings can
213 * occupy multiple entries in the map.
214 */
215 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
216 if (unlikely(ret < 0))
217 memset(dst, 0, size);
218 return ret;
219 }
220
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
222 const void __user *, unsafe_ptr)
223 {
224 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
225 }
226
227 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
228 .func = bpf_probe_read_user_str,
229 .gpl_only = true,
230 .ret_type = RET_INTEGER,
231 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
232 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
233 .arg3_type = ARG_ANYTHING,
234 };
235
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
237 const void *, unsafe_ptr)
238 {
239 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
240 }
241
242 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
243 .func = bpf_probe_read_kernel,
244 .gpl_only = true,
245 .ret_type = RET_INTEGER,
246 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
247 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
248 .arg3_type = ARG_ANYTHING,
249 };
250
251 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
253 {
254 int ret;
255
256 /*
257 * The strncpy_from_kernel_nofault() call will likely not fill the
258 * entire buffer, but that's okay in this circumstance as we're probing
259 * arbitrary memory anyway similar to bpf_probe_read_*() and might
260 * as well probe the stack. Thus, memory is explicitly cleared
261 * only in error case, so that improper users ignoring return
262 * code altogether don't copy garbage; otherwise length of string
263 * is returned that can be used for bpf_perf_event_output() et al.
264 */
265 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
266 if (unlikely(ret < 0))
267 memset(dst, 0, size);
268 return ret;
269 }
270
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
272 const void *, unsafe_ptr)
273 {
274 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
275 }
276
277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
278 .func = bpf_probe_read_kernel_str,
279 .gpl_only = true,
280 .ret_type = RET_INTEGER,
281 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
282 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
283 .arg3_type = ARG_ANYTHING,
284 };
285
286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
288 const void *, unsafe_ptr)
289 {
290 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
291 return bpf_probe_read_user_common(dst, size,
292 (__force void __user *)unsafe_ptr);
293 }
294 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
295 }
296
297 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
298 .func = bpf_probe_read_compat,
299 .gpl_only = true,
300 .ret_type = RET_INTEGER,
301 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
302 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
303 .arg3_type = ARG_ANYTHING,
304 };
305
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
307 const void *, unsafe_ptr)
308 {
309 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
310 return bpf_probe_read_user_str_common(dst, size,
311 (__force void __user *)unsafe_ptr);
312 }
313 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
314 }
315
316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
317 .func = bpf_probe_read_compat_str,
318 .gpl_only = true,
319 .ret_type = RET_INTEGER,
320 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
321 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
322 .arg3_type = ARG_ANYTHING,
323 };
324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
325
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
327 u32, size)
328 {
329 /*
330 * Ensure we're in user context which is safe for the helper to
331 * run. This helper has no business in a kthread.
332 *
333 * access_ok() should prevent writing to non-user memory, but in
334 * some situations (nommu, temporary switch, etc) access_ok() does
335 * not provide enough validation, hence the check on KERNEL_DS.
336 *
337 * nmi_uaccess_okay() ensures the probe is not run in an interim
338 * state, when the task or mm are switched. This is specifically
339 * required to prevent the use of temporary mm.
340 */
341
342 if (unlikely(in_interrupt() ||
343 current->flags & (PF_KTHREAD | PF_EXITING)))
344 return -EPERM;
345 if (unlikely(!nmi_uaccess_okay()))
346 return -EPERM;
347
348 return copy_to_user_nofault(unsafe_ptr, src, size);
349 }
350
351 static const struct bpf_func_proto bpf_probe_write_user_proto = {
352 .func = bpf_probe_write_user,
353 .gpl_only = true,
354 .ret_type = RET_INTEGER,
355 .arg1_type = ARG_ANYTHING,
356 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
357 .arg3_type = ARG_CONST_SIZE,
358 };
359
bpf_get_probe_write_proto(void)360 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
361 {
362 if (!capable(CAP_SYS_ADMIN))
363 return NULL;
364
365 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
366 current->comm, task_pid_nr(current));
367
368 return &bpf_probe_write_user_proto;
369 }
370
371 #define MAX_TRACE_PRINTK_VARARGS 3
372 #define BPF_TRACE_PRINTK_SIZE 1024
373
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)374 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
375 u64, arg2, u64, arg3)
376 {
377 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
378 struct bpf_bprintf_data data = {
379 .get_bin_args = true,
380 .get_buf = true,
381 };
382 int ret;
383
384 ret = bpf_bprintf_prepare(fmt, fmt_size, args,
385 MAX_TRACE_PRINTK_VARARGS, &data);
386 if (ret < 0)
387 return ret;
388
389 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
390
391 trace_bpf_trace_printk(data.buf);
392
393 bpf_bprintf_cleanup(&data);
394
395 return ret;
396 }
397
398 static const struct bpf_func_proto bpf_trace_printk_proto = {
399 .func = bpf_trace_printk,
400 .gpl_only = true,
401 .ret_type = RET_INTEGER,
402 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
403 .arg2_type = ARG_CONST_SIZE,
404 };
405
__set_printk_clr_event(void)406 static void __set_printk_clr_event(void)
407 {
408 /*
409 * This program might be calling bpf_trace_printk,
410 * so enable the associated bpf_trace/bpf_trace_printk event.
411 * Repeat this each time as it is possible a user has
412 * disabled bpf_trace_printk events. By loading a program
413 * calling bpf_trace_printk() however the user has expressed
414 * the intent to see such events.
415 */
416 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
417 pr_warn_ratelimited("could not enable bpf_trace_printk events");
418 }
419
bpf_get_trace_printk_proto(void)420 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
421 {
422 __set_printk_clr_event();
423 return &bpf_trace_printk_proto;
424 }
425
BPF_CALL_4(bpf_trace_vprintk,char *,fmt,u32,fmt_size,const void *,args,u32,data_len)426 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
427 u32, data_len)
428 {
429 struct bpf_bprintf_data data = {
430 .get_bin_args = true,
431 .get_buf = true,
432 };
433 int ret, num_args;
434
435 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
436 (data_len && !args))
437 return -EINVAL;
438 num_args = data_len / 8;
439
440 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
441 if (ret < 0)
442 return ret;
443
444 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
445
446 trace_bpf_trace_printk(data.buf);
447
448 bpf_bprintf_cleanup(&data);
449
450 return ret;
451 }
452
453 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
454 .func = bpf_trace_vprintk,
455 .gpl_only = true,
456 .ret_type = RET_INTEGER,
457 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
458 .arg2_type = ARG_CONST_SIZE,
459 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
460 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
461 };
462
bpf_get_trace_vprintk_proto(void)463 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
464 {
465 __set_printk_clr_event();
466 return &bpf_trace_vprintk_proto;
467 }
468
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,args,u32,data_len)469 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
470 const void *, args, u32, data_len)
471 {
472 struct bpf_bprintf_data data = {
473 .get_bin_args = true,
474 };
475 int err, num_args;
476
477 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
478 (data_len && !args))
479 return -EINVAL;
480 num_args = data_len / 8;
481
482 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
483 if (err < 0)
484 return err;
485
486 seq_bprintf(m, fmt, data.bin_args);
487
488 bpf_bprintf_cleanup(&data);
489
490 return seq_has_overflowed(m) ? -EOVERFLOW : 0;
491 }
492
493 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
494
495 static const struct bpf_func_proto bpf_seq_printf_proto = {
496 .func = bpf_seq_printf,
497 .gpl_only = true,
498 .ret_type = RET_INTEGER,
499 .arg1_type = ARG_PTR_TO_BTF_ID,
500 .arg1_btf_id = &btf_seq_file_ids[0],
501 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
502 .arg3_type = ARG_CONST_SIZE,
503 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
504 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
505 };
506
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)507 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
508 {
509 return seq_write(m, data, len) ? -EOVERFLOW : 0;
510 }
511
512 static const struct bpf_func_proto bpf_seq_write_proto = {
513 .func = bpf_seq_write,
514 .gpl_only = true,
515 .ret_type = RET_INTEGER,
516 .arg1_type = ARG_PTR_TO_BTF_ID,
517 .arg1_btf_id = &btf_seq_file_ids[0],
518 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
519 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
520 };
521
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)522 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
523 u32, btf_ptr_size, u64, flags)
524 {
525 const struct btf *btf;
526 s32 btf_id;
527 int ret;
528
529 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
530 if (ret)
531 return ret;
532
533 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
534 }
535
536 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
537 .func = bpf_seq_printf_btf,
538 .gpl_only = true,
539 .ret_type = RET_INTEGER,
540 .arg1_type = ARG_PTR_TO_BTF_ID,
541 .arg1_btf_id = &btf_seq_file_ids[0],
542 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
543 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
544 .arg4_type = ARG_ANYTHING,
545 };
546
547 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)548 get_map_perf_counter(struct bpf_map *map, u64 flags,
549 u64 *value, u64 *enabled, u64 *running)
550 {
551 struct bpf_array *array = container_of(map, struct bpf_array, map);
552 unsigned int cpu = smp_processor_id();
553 u64 index = flags & BPF_F_INDEX_MASK;
554 struct bpf_event_entry *ee;
555
556 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
557 return -EINVAL;
558 if (index == BPF_F_CURRENT_CPU)
559 index = cpu;
560 if (unlikely(index >= array->map.max_entries))
561 return -E2BIG;
562
563 ee = READ_ONCE(array->ptrs[index]);
564 if (!ee)
565 return -ENOENT;
566
567 return perf_event_read_local(ee->event, value, enabled, running);
568 }
569
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)570 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
571 {
572 u64 value = 0;
573 int err;
574
575 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
576 /*
577 * this api is ugly since we miss [-22..-2] range of valid
578 * counter values, but that's uapi
579 */
580 if (err)
581 return err;
582 return value;
583 }
584
585 static const struct bpf_func_proto bpf_perf_event_read_proto = {
586 .func = bpf_perf_event_read,
587 .gpl_only = true,
588 .ret_type = RET_INTEGER,
589 .arg1_type = ARG_CONST_MAP_PTR,
590 .arg2_type = ARG_ANYTHING,
591 };
592
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)593 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
594 struct bpf_perf_event_value *, buf, u32, size)
595 {
596 int err = -EINVAL;
597
598 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
599 goto clear;
600 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
601 &buf->running);
602 if (unlikely(err))
603 goto clear;
604 return 0;
605 clear:
606 memset(buf, 0, size);
607 return err;
608 }
609
610 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
611 .func = bpf_perf_event_read_value,
612 .gpl_only = true,
613 .ret_type = RET_INTEGER,
614 .arg1_type = ARG_CONST_MAP_PTR,
615 .arg2_type = ARG_ANYTHING,
616 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
617 .arg4_type = ARG_CONST_SIZE,
618 };
619
620 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)621 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
622 u64 flags, struct perf_sample_data *sd)
623 {
624 struct bpf_array *array = container_of(map, struct bpf_array, map);
625 unsigned int cpu = smp_processor_id();
626 u64 index = flags & BPF_F_INDEX_MASK;
627 struct bpf_event_entry *ee;
628 struct perf_event *event;
629
630 if (index == BPF_F_CURRENT_CPU)
631 index = cpu;
632 if (unlikely(index >= array->map.max_entries))
633 return -E2BIG;
634
635 ee = READ_ONCE(array->ptrs[index]);
636 if (!ee)
637 return -ENOENT;
638
639 event = ee->event;
640 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
641 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
642 return -EINVAL;
643
644 if (unlikely(event->oncpu != cpu))
645 return -EOPNOTSUPP;
646
647 return perf_event_output(event, sd, regs);
648 }
649
650 /*
651 * Support executing tracepoints in normal, irq, and nmi context that each call
652 * bpf_perf_event_output
653 */
654 struct bpf_trace_sample_data {
655 struct perf_sample_data sds[3];
656 };
657
658 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
659 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)660 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
661 u64, flags, void *, data, u64, size)
662 {
663 struct bpf_trace_sample_data *sds;
664 struct perf_raw_record raw = {
665 .frag = {
666 .size = size,
667 .data = data,
668 },
669 };
670 struct perf_sample_data *sd;
671 int nest_level, err;
672
673 preempt_disable();
674 sds = this_cpu_ptr(&bpf_trace_sds);
675 nest_level = this_cpu_inc_return(bpf_trace_nest_level);
676
677 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
678 err = -EBUSY;
679 goto out;
680 }
681
682 sd = &sds->sds[nest_level - 1];
683
684 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
685 err = -EINVAL;
686 goto out;
687 }
688
689 perf_sample_data_init(sd, 0, 0);
690 perf_sample_save_raw_data(sd, &raw);
691
692 err = __bpf_perf_event_output(regs, map, flags, sd);
693 out:
694 this_cpu_dec(bpf_trace_nest_level);
695 preempt_enable();
696 return err;
697 }
698
699 static const struct bpf_func_proto bpf_perf_event_output_proto = {
700 .func = bpf_perf_event_output,
701 .gpl_only = true,
702 .ret_type = RET_INTEGER,
703 .arg1_type = ARG_PTR_TO_CTX,
704 .arg2_type = ARG_CONST_MAP_PTR,
705 .arg3_type = ARG_ANYTHING,
706 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
707 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
708 };
709
710 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
711 struct bpf_nested_pt_regs {
712 struct pt_regs regs[3];
713 };
714 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
715 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
716
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)717 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
718 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
719 {
720 struct perf_raw_frag frag = {
721 .copy = ctx_copy,
722 .size = ctx_size,
723 .data = ctx,
724 };
725 struct perf_raw_record raw = {
726 .frag = {
727 {
728 .next = ctx_size ? &frag : NULL,
729 },
730 .size = meta_size,
731 .data = meta,
732 },
733 };
734 struct perf_sample_data *sd;
735 struct pt_regs *regs;
736 int nest_level;
737 u64 ret;
738
739 preempt_disable();
740 nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
741
742 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
743 ret = -EBUSY;
744 goto out;
745 }
746 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
747 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
748
749 perf_fetch_caller_regs(regs);
750 perf_sample_data_init(sd, 0, 0);
751 perf_sample_save_raw_data(sd, &raw);
752
753 ret = __bpf_perf_event_output(regs, map, flags, sd);
754 out:
755 this_cpu_dec(bpf_event_output_nest_level);
756 preempt_enable();
757 return ret;
758 }
759
BPF_CALL_0(bpf_get_current_task)760 BPF_CALL_0(bpf_get_current_task)
761 {
762 return (long) current;
763 }
764
765 const struct bpf_func_proto bpf_get_current_task_proto = {
766 .func = bpf_get_current_task,
767 .gpl_only = true,
768 .ret_type = RET_INTEGER,
769 };
770
BPF_CALL_0(bpf_get_current_task_btf)771 BPF_CALL_0(bpf_get_current_task_btf)
772 {
773 return (unsigned long) current;
774 }
775
776 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
777 .func = bpf_get_current_task_btf,
778 .gpl_only = true,
779 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED,
780 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
781 };
782
BPF_CALL_1(bpf_task_pt_regs,struct task_struct *,task)783 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
784 {
785 return (unsigned long) task_pt_regs(task);
786 }
787
788 BTF_ID_LIST(bpf_task_pt_regs_ids)
789 BTF_ID(struct, pt_regs)
790
791 const struct bpf_func_proto bpf_task_pt_regs_proto = {
792 .func = bpf_task_pt_regs,
793 .gpl_only = true,
794 .arg1_type = ARG_PTR_TO_BTF_ID,
795 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
796 .ret_type = RET_PTR_TO_BTF_ID,
797 .ret_btf_id = &bpf_task_pt_regs_ids[0],
798 };
799
800 struct send_signal_irq_work {
801 struct irq_work irq_work;
802 struct task_struct *task;
803 u32 sig;
804 enum pid_type type;
805 bool has_siginfo;
806 struct kernel_siginfo info;
807 };
808
809 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
810
do_bpf_send_signal(struct irq_work * entry)811 static void do_bpf_send_signal(struct irq_work *entry)
812 {
813 struct send_signal_irq_work *work;
814 struct kernel_siginfo *siginfo;
815
816 work = container_of(entry, struct send_signal_irq_work, irq_work);
817 siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
818
819 group_send_sig_info(work->sig, siginfo, work->task, work->type);
820 put_task_struct(work->task);
821 }
822
bpf_send_signal_common(u32 sig,enum pid_type type,struct task_struct * task,u64 value)823 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
824 {
825 struct send_signal_irq_work *work = NULL;
826 struct kernel_siginfo info;
827 struct kernel_siginfo *siginfo;
828
829 if (!task) {
830 task = current;
831 siginfo = SEND_SIG_PRIV;
832 } else {
833 clear_siginfo(&info);
834 info.si_signo = sig;
835 info.si_errno = 0;
836 info.si_code = SI_KERNEL;
837 info.si_pid = 0;
838 info.si_uid = 0;
839 info.si_value.sival_ptr = (void *)(unsigned long)value;
840 siginfo = &info;
841 }
842
843 /* Similar to bpf_probe_write_user, task needs to be
844 * in a sound condition and kernel memory access be
845 * permitted in order to send signal to the current
846 * task.
847 */
848 if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
849 return -EPERM;
850 if (unlikely(!nmi_uaccess_okay()))
851 return -EPERM;
852 /* Task should not be pid=1 to avoid kernel panic. */
853 if (unlikely(is_global_init(task)))
854 return -EPERM;
855
856 if (irqs_disabled()) {
857 /* Do an early check on signal validity. Otherwise,
858 * the error is lost in deferred irq_work.
859 */
860 if (unlikely(!valid_signal(sig)))
861 return -EINVAL;
862
863 work = this_cpu_ptr(&send_signal_work);
864 if (irq_work_is_busy(&work->irq_work))
865 return -EBUSY;
866
867 /* Add the current task, which is the target of sending signal,
868 * to the irq_work. The current task may change when queued
869 * irq works get executed.
870 */
871 work->task = get_task_struct(task);
872 work->has_siginfo = siginfo == &info;
873 if (work->has_siginfo)
874 copy_siginfo(&work->info, &info);
875 work->sig = sig;
876 work->type = type;
877 irq_work_queue(&work->irq_work);
878 return 0;
879 }
880
881 return group_send_sig_info(sig, siginfo, task, type);
882 }
883
BPF_CALL_1(bpf_send_signal,u32,sig)884 BPF_CALL_1(bpf_send_signal, u32, sig)
885 {
886 return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
887 }
888
889 static const struct bpf_func_proto bpf_send_signal_proto = {
890 .func = bpf_send_signal,
891 .gpl_only = false,
892 .ret_type = RET_INTEGER,
893 .arg1_type = ARG_ANYTHING,
894 };
895
BPF_CALL_1(bpf_send_signal_thread,u32,sig)896 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
897 {
898 return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
899 }
900
901 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
902 .func = bpf_send_signal_thread,
903 .gpl_only = false,
904 .ret_type = RET_INTEGER,
905 .arg1_type = ARG_ANYTHING,
906 };
907
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)908 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
909 {
910 struct path copy;
911 long len;
912 char *p;
913
914 if (!sz)
915 return 0;
916
917 /*
918 * The path pointer is verified as trusted and safe to use,
919 * but let's double check it's valid anyway to workaround
920 * potentially broken verifier.
921 */
922 len = copy_from_kernel_nofault(©, path, sizeof(*path));
923 if (len < 0)
924 return len;
925
926 p = d_path(©, buf, sz);
927 if (IS_ERR(p)) {
928 len = PTR_ERR(p);
929 } else {
930 len = buf + sz - p;
931 memmove(buf, p, len);
932 }
933
934 return len;
935 }
936
937 BTF_SET_START(btf_allowlist_d_path)
938 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)939 BTF_ID(func, security_file_permission)
940 BTF_ID(func, security_inode_getattr)
941 BTF_ID(func, security_file_open)
942 #endif
943 #ifdef CONFIG_SECURITY_PATH
944 BTF_ID(func, security_path_truncate)
945 #endif
946 BTF_ID(func, vfs_truncate)
947 BTF_ID(func, vfs_fallocate)
948 BTF_ID(func, dentry_open)
949 BTF_ID(func, vfs_getattr)
950 BTF_ID(func, filp_close)
951 BTF_SET_END(btf_allowlist_d_path)
952
953 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
954 {
955 if (prog->type == BPF_PROG_TYPE_TRACING &&
956 prog->expected_attach_type == BPF_TRACE_ITER)
957 return true;
958
959 if (prog->type == BPF_PROG_TYPE_LSM)
960 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
961
962 return btf_id_set_contains(&btf_allowlist_d_path,
963 prog->aux->attach_btf_id);
964 }
965
966 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
967
968 static const struct bpf_func_proto bpf_d_path_proto = {
969 .func = bpf_d_path,
970 .gpl_only = false,
971 .ret_type = RET_INTEGER,
972 .arg1_type = ARG_PTR_TO_BTF_ID,
973 .arg1_btf_id = &bpf_d_path_btf_ids[0],
974 .arg2_type = ARG_PTR_TO_MEM,
975 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
976 .allowed = bpf_d_path_allowed,
977 };
978
979 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
980 BTF_F_PTR_RAW | BTF_F_ZERO)
981
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)982 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
983 u64 flags, const struct btf **btf,
984 s32 *btf_id)
985 {
986 const struct btf_type *t;
987
988 if (unlikely(flags & ~(BTF_F_ALL)))
989 return -EINVAL;
990
991 if (btf_ptr_size != sizeof(struct btf_ptr))
992 return -EINVAL;
993
994 *btf = bpf_get_btf_vmlinux();
995
996 if (IS_ERR_OR_NULL(*btf))
997 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
998
999 if (ptr->type_id > 0)
1000 *btf_id = ptr->type_id;
1001 else
1002 return -EINVAL;
1003
1004 if (*btf_id > 0)
1005 t = btf_type_by_id(*btf, *btf_id);
1006 if (*btf_id <= 0 || !t)
1007 return -ENOENT;
1008
1009 return 0;
1010 }
1011
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)1012 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1013 u32, btf_ptr_size, u64, flags)
1014 {
1015 const struct btf *btf;
1016 s32 btf_id;
1017 int ret;
1018
1019 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1020 if (ret)
1021 return ret;
1022
1023 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1024 flags);
1025 }
1026
1027 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1028 .func = bpf_snprintf_btf,
1029 .gpl_only = false,
1030 .ret_type = RET_INTEGER,
1031 .arg1_type = ARG_PTR_TO_MEM,
1032 .arg2_type = ARG_CONST_SIZE,
1033 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1034 .arg4_type = ARG_CONST_SIZE,
1035 .arg5_type = ARG_ANYTHING,
1036 };
1037
BPF_CALL_1(bpf_get_func_ip_tracing,void *,ctx)1038 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1039 {
1040 /* This helper call is inlined by verifier. */
1041 return ((u64 *)ctx)[-2];
1042 }
1043
1044 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1045 .func = bpf_get_func_ip_tracing,
1046 .gpl_only = true,
1047 .ret_type = RET_INTEGER,
1048 .arg1_type = ARG_PTR_TO_CTX,
1049 };
1050
1051 #ifdef CONFIG_X86_KERNEL_IBT
get_entry_ip(unsigned long fentry_ip)1052 static unsigned long get_entry_ip(unsigned long fentry_ip)
1053 {
1054 u32 instr;
1055
1056 /* We want to be extra safe in case entry ip is on the page edge,
1057 * but otherwise we need to avoid get_kernel_nofault()'s overhead.
1058 */
1059 if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) {
1060 if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE)))
1061 return fentry_ip;
1062 } else {
1063 instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE);
1064 }
1065 if (is_endbr(instr))
1066 fentry_ip -= ENDBR_INSN_SIZE;
1067 return fentry_ip;
1068 }
1069 #else
1070 #define get_entry_ip(fentry_ip) fentry_ip
1071 #endif
1072
BPF_CALL_1(bpf_get_func_ip_kprobe,struct pt_regs *,regs)1073 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1074 {
1075 struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1076 struct kprobe *kp;
1077
1078 #ifdef CONFIG_UPROBES
1079 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1080 if (run_ctx->is_uprobe)
1081 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1082 #endif
1083
1084 kp = kprobe_running();
1085
1086 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1087 return 0;
1088
1089 return get_entry_ip((uintptr_t)kp->addr);
1090 }
1091
1092 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1093 .func = bpf_get_func_ip_kprobe,
1094 .gpl_only = true,
1095 .ret_type = RET_INTEGER,
1096 .arg1_type = ARG_PTR_TO_CTX,
1097 };
1098
BPF_CALL_1(bpf_get_func_ip_kprobe_multi,struct pt_regs *,regs)1099 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1100 {
1101 return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1102 }
1103
1104 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1105 .func = bpf_get_func_ip_kprobe_multi,
1106 .gpl_only = false,
1107 .ret_type = RET_INTEGER,
1108 .arg1_type = ARG_PTR_TO_CTX,
1109 };
1110
BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi,struct pt_regs *,regs)1111 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1112 {
1113 return bpf_kprobe_multi_cookie(current->bpf_ctx);
1114 }
1115
1116 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1117 .func = bpf_get_attach_cookie_kprobe_multi,
1118 .gpl_only = false,
1119 .ret_type = RET_INTEGER,
1120 .arg1_type = ARG_PTR_TO_CTX,
1121 };
1122
BPF_CALL_1(bpf_get_func_ip_uprobe_multi,struct pt_regs *,regs)1123 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1124 {
1125 return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1126 }
1127
1128 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1129 .func = bpf_get_func_ip_uprobe_multi,
1130 .gpl_only = false,
1131 .ret_type = RET_INTEGER,
1132 .arg1_type = ARG_PTR_TO_CTX,
1133 };
1134
BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi,struct pt_regs *,regs)1135 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1136 {
1137 return bpf_uprobe_multi_cookie(current->bpf_ctx);
1138 }
1139
1140 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1141 .func = bpf_get_attach_cookie_uprobe_multi,
1142 .gpl_only = false,
1143 .ret_type = RET_INTEGER,
1144 .arg1_type = ARG_PTR_TO_CTX,
1145 };
1146
BPF_CALL_1(bpf_get_attach_cookie_trace,void *,ctx)1147 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1148 {
1149 struct bpf_trace_run_ctx *run_ctx;
1150
1151 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1152 return run_ctx->bpf_cookie;
1153 }
1154
1155 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1156 .func = bpf_get_attach_cookie_trace,
1157 .gpl_only = false,
1158 .ret_type = RET_INTEGER,
1159 .arg1_type = ARG_PTR_TO_CTX,
1160 };
1161
BPF_CALL_1(bpf_get_attach_cookie_pe,struct bpf_perf_event_data_kern *,ctx)1162 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1163 {
1164 return ctx->event->bpf_cookie;
1165 }
1166
1167 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1168 .func = bpf_get_attach_cookie_pe,
1169 .gpl_only = false,
1170 .ret_type = RET_INTEGER,
1171 .arg1_type = ARG_PTR_TO_CTX,
1172 };
1173
BPF_CALL_1(bpf_get_attach_cookie_tracing,void *,ctx)1174 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1175 {
1176 struct bpf_trace_run_ctx *run_ctx;
1177
1178 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1179 return run_ctx->bpf_cookie;
1180 }
1181
1182 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1183 .func = bpf_get_attach_cookie_tracing,
1184 .gpl_only = false,
1185 .ret_type = RET_INTEGER,
1186 .arg1_type = ARG_PTR_TO_CTX,
1187 };
1188
BPF_CALL_3(bpf_get_branch_snapshot,void *,buf,u32,size,u64,flags)1189 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1190 {
1191 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1192 u32 entry_cnt = size / br_entry_size;
1193
1194 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1195
1196 if (unlikely(flags))
1197 return -EINVAL;
1198
1199 if (!entry_cnt)
1200 return -ENOENT;
1201
1202 return entry_cnt * br_entry_size;
1203 }
1204
1205 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1206 .func = bpf_get_branch_snapshot,
1207 .gpl_only = true,
1208 .ret_type = RET_INTEGER,
1209 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1210 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1211 };
1212
BPF_CALL_3(get_func_arg,void *,ctx,u32,n,u64 *,value)1213 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1214 {
1215 /* This helper call is inlined by verifier. */
1216 u64 nr_args = ((u64 *)ctx)[-1];
1217
1218 if ((u64) n >= nr_args)
1219 return -EINVAL;
1220 *value = ((u64 *)ctx)[n];
1221 return 0;
1222 }
1223
1224 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1225 .func = get_func_arg,
1226 .ret_type = RET_INTEGER,
1227 .arg1_type = ARG_PTR_TO_CTX,
1228 .arg2_type = ARG_ANYTHING,
1229 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1230 .arg3_size = sizeof(u64),
1231 };
1232
BPF_CALL_2(get_func_ret,void *,ctx,u64 *,value)1233 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1234 {
1235 /* This helper call is inlined by verifier. */
1236 u64 nr_args = ((u64 *)ctx)[-1];
1237
1238 *value = ((u64 *)ctx)[nr_args];
1239 return 0;
1240 }
1241
1242 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1243 .func = get_func_ret,
1244 .ret_type = RET_INTEGER,
1245 .arg1_type = ARG_PTR_TO_CTX,
1246 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1247 .arg2_size = sizeof(u64),
1248 };
1249
BPF_CALL_1(get_func_arg_cnt,void *,ctx)1250 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1251 {
1252 /* This helper call is inlined by verifier. */
1253 return ((u64 *)ctx)[-1];
1254 }
1255
1256 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1257 .func = get_func_arg_cnt,
1258 .ret_type = RET_INTEGER,
1259 .arg1_type = ARG_PTR_TO_CTX,
1260 };
1261
1262 #ifdef CONFIG_KEYS
1263 __bpf_kfunc_start_defs();
1264
1265 /**
1266 * bpf_lookup_user_key - lookup a key by its serial
1267 * @serial: key handle serial number
1268 * @flags: lookup-specific flags
1269 *
1270 * Search a key with a given *serial* and the provided *flags*.
1271 * If found, increment the reference count of the key by one, and
1272 * return it in the bpf_key structure.
1273 *
1274 * The bpf_key structure must be passed to bpf_key_put() when done
1275 * with it, so that the key reference count is decremented and the
1276 * bpf_key structure is freed.
1277 *
1278 * Permission checks are deferred to the time the key is used by
1279 * one of the available key-specific kfuncs.
1280 *
1281 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1282 * special keyring (e.g. session keyring), if it doesn't yet exist.
1283 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1284 * for the key construction, and to retrieve uninstantiated keys (keys
1285 * without data attached to them).
1286 *
1287 * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1288 * NULL pointer otherwise.
1289 */
bpf_lookup_user_key(u32 serial,u64 flags)1290 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1291 {
1292 key_ref_t key_ref;
1293 struct bpf_key *bkey;
1294
1295 if (flags & ~KEY_LOOKUP_ALL)
1296 return NULL;
1297
1298 /*
1299 * Permission check is deferred until the key is used, as the
1300 * intent of the caller is unknown here.
1301 */
1302 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1303 if (IS_ERR(key_ref))
1304 return NULL;
1305
1306 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1307 if (!bkey) {
1308 key_put(key_ref_to_ptr(key_ref));
1309 return NULL;
1310 }
1311
1312 bkey->key = key_ref_to_ptr(key_ref);
1313 bkey->has_ref = true;
1314
1315 return bkey;
1316 }
1317
1318 /**
1319 * bpf_lookup_system_key - lookup a key by a system-defined ID
1320 * @id: key ID
1321 *
1322 * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1323 * The key pointer is marked as invalid, to prevent bpf_key_put() from
1324 * attempting to decrement the key reference count on that pointer. The key
1325 * pointer set in such way is currently understood only by
1326 * verify_pkcs7_signature().
1327 *
1328 * Set *id* to one of the values defined in include/linux/verification.h:
1329 * 0 for the primary keyring (immutable keyring of system keys);
1330 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1331 * (where keys can be added only if they are vouched for by existing keys
1332 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1333 * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1334 * kerned image and, possibly, the initramfs signature).
1335 *
1336 * Return: a bpf_key pointer with an invalid key pointer set from the
1337 * pre-determined ID on success, a NULL pointer otherwise
1338 */
bpf_lookup_system_key(u64 id)1339 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1340 {
1341 struct bpf_key *bkey;
1342
1343 if (system_keyring_id_check(id) < 0)
1344 return NULL;
1345
1346 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1347 if (!bkey)
1348 return NULL;
1349
1350 bkey->key = (struct key *)(unsigned long)id;
1351 bkey->has_ref = false;
1352
1353 return bkey;
1354 }
1355
1356 /**
1357 * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1358 * @bkey: bpf_key structure
1359 *
1360 * Decrement the reference count of the key inside *bkey*, if the pointer
1361 * is valid, and free *bkey*.
1362 */
bpf_key_put(struct bpf_key * bkey)1363 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1364 {
1365 if (bkey->has_ref)
1366 key_put(bkey->key);
1367
1368 kfree(bkey);
1369 }
1370
1371 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1372 /**
1373 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1374 * @data_p: data to verify
1375 * @sig_p: signature of the data
1376 * @trusted_keyring: keyring with keys trusted for signature verification
1377 *
1378 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1379 * with keys in a keyring referenced by *trusted_keyring*.
1380 *
1381 * Return: 0 on success, a negative value on error.
1382 */
bpf_verify_pkcs7_signature(struct bpf_dynptr * data_p,struct bpf_dynptr * sig_p,struct bpf_key * trusted_keyring)1383 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
1384 struct bpf_dynptr *sig_p,
1385 struct bpf_key *trusted_keyring)
1386 {
1387 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
1388 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
1389 const void *data, *sig;
1390 u32 data_len, sig_len;
1391 int ret;
1392
1393 if (trusted_keyring->has_ref) {
1394 /*
1395 * Do the permission check deferred in bpf_lookup_user_key().
1396 * See bpf_lookup_user_key() for more details.
1397 *
1398 * A call to key_task_permission() here would be redundant, as
1399 * it is already done by keyring_search() called by
1400 * find_asymmetric_key().
1401 */
1402 ret = key_validate(trusted_keyring->key);
1403 if (ret < 0)
1404 return ret;
1405 }
1406
1407 data_len = __bpf_dynptr_size(data_ptr);
1408 data = __bpf_dynptr_data(data_ptr, data_len);
1409 sig_len = __bpf_dynptr_size(sig_ptr);
1410 sig = __bpf_dynptr_data(sig_ptr, sig_len);
1411
1412 return verify_pkcs7_signature(data, data_len, sig, sig_len,
1413 trusted_keyring->key,
1414 VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1415 NULL);
1416 }
1417 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1418
1419 __bpf_kfunc_end_defs();
1420
1421 BTF_KFUNCS_START(key_sig_kfunc_set)
1422 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1423 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1424 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1425 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1426 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1427 #endif
1428 BTF_KFUNCS_END(key_sig_kfunc_set)
1429
1430 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1431 .owner = THIS_MODULE,
1432 .set = &key_sig_kfunc_set,
1433 };
1434
bpf_key_sig_kfuncs_init(void)1435 static int __init bpf_key_sig_kfuncs_init(void)
1436 {
1437 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1438 &bpf_key_sig_kfunc_set);
1439 }
1440
1441 late_initcall(bpf_key_sig_kfuncs_init);
1442 #endif /* CONFIG_KEYS */
1443
1444 static const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1445 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1446 {
1447 switch (func_id) {
1448 case BPF_FUNC_map_lookup_elem:
1449 return &bpf_map_lookup_elem_proto;
1450 case BPF_FUNC_map_update_elem:
1451 return &bpf_map_update_elem_proto;
1452 case BPF_FUNC_map_delete_elem:
1453 return &bpf_map_delete_elem_proto;
1454 case BPF_FUNC_map_push_elem:
1455 return &bpf_map_push_elem_proto;
1456 case BPF_FUNC_map_pop_elem:
1457 return &bpf_map_pop_elem_proto;
1458 case BPF_FUNC_map_peek_elem:
1459 return &bpf_map_peek_elem_proto;
1460 case BPF_FUNC_map_lookup_percpu_elem:
1461 return &bpf_map_lookup_percpu_elem_proto;
1462 case BPF_FUNC_ktime_get_ns:
1463 return &bpf_ktime_get_ns_proto;
1464 case BPF_FUNC_ktime_get_boot_ns:
1465 return &bpf_ktime_get_boot_ns_proto;
1466 case BPF_FUNC_tail_call:
1467 return &bpf_tail_call_proto;
1468 case BPF_FUNC_get_current_task:
1469 return &bpf_get_current_task_proto;
1470 case BPF_FUNC_get_current_task_btf:
1471 return &bpf_get_current_task_btf_proto;
1472 case BPF_FUNC_task_pt_regs:
1473 return &bpf_task_pt_regs_proto;
1474 case BPF_FUNC_get_current_uid_gid:
1475 return &bpf_get_current_uid_gid_proto;
1476 case BPF_FUNC_get_current_comm:
1477 return &bpf_get_current_comm_proto;
1478 case BPF_FUNC_trace_printk:
1479 return bpf_get_trace_printk_proto();
1480 case BPF_FUNC_get_smp_processor_id:
1481 return &bpf_get_smp_processor_id_proto;
1482 case BPF_FUNC_get_numa_node_id:
1483 return &bpf_get_numa_node_id_proto;
1484 case BPF_FUNC_perf_event_read:
1485 return &bpf_perf_event_read_proto;
1486 case BPF_FUNC_get_prandom_u32:
1487 return &bpf_get_prandom_u32_proto;
1488 case BPF_FUNC_probe_write_user:
1489 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1490 NULL : bpf_get_probe_write_proto();
1491 case BPF_FUNC_probe_read_user:
1492 return &bpf_probe_read_user_proto;
1493 case BPF_FUNC_probe_read_kernel:
1494 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1495 NULL : &bpf_probe_read_kernel_proto;
1496 case BPF_FUNC_probe_read_user_str:
1497 return &bpf_probe_read_user_str_proto;
1498 case BPF_FUNC_probe_read_kernel_str:
1499 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1500 NULL : &bpf_probe_read_kernel_str_proto;
1501 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1502 case BPF_FUNC_probe_read:
1503 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1504 NULL : &bpf_probe_read_compat_proto;
1505 case BPF_FUNC_probe_read_str:
1506 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1507 NULL : &bpf_probe_read_compat_str_proto;
1508 #endif
1509 #ifdef CONFIG_CGROUPS
1510 case BPF_FUNC_cgrp_storage_get:
1511 return &bpf_cgrp_storage_get_proto;
1512 case BPF_FUNC_cgrp_storage_delete:
1513 return &bpf_cgrp_storage_delete_proto;
1514 case BPF_FUNC_current_task_under_cgroup:
1515 return &bpf_current_task_under_cgroup_proto;
1516 #endif
1517 case BPF_FUNC_send_signal:
1518 return &bpf_send_signal_proto;
1519 case BPF_FUNC_send_signal_thread:
1520 return &bpf_send_signal_thread_proto;
1521 case BPF_FUNC_perf_event_read_value:
1522 return &bpf_perf_event_read_value_proto;
1523 case BPF_FUNC_ringbuf_output:
1524 return &bpf_ringbuf_output_proto;
1525 case BPF_FUNC_ringbuf_reserve:
1526 return &bpf_ringbuf_reserve_proto;
1527 case BPF_FUNC_ringbuf_submit:
1528 return &bpf_ringbuf_submit_proto;
1529 case BPF_FUNC_ringbuf_discard:
1530 return &bpf_ringbuf_discard_proto;
1531 case BPF_FUNC_ringbuf_query:
1532 return &bpf_ringbuf_query_proto;
1533 case BPF_FUNC_jiffies64:
1534 return &bpf_jiffies64_proto;
1535 case BPF_FUNC_get_task_stack:
1536 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
1537 : &bpf_get_task_stack_proto;
1538 case BPF_FUNC_copy_from_user:
1539 return &bpf_copy_from_user_proto;
1540 case BPF_FUNC_copy_from_user_task:
1541 return &bpf_copy_from_user_task_proto;
1542 case BPF_FUNC_snprintf_btf:
1543 return &bpf_snprintf_btf_proto;
1544 case BPF_FUNC_per_cpu_ptr:
1545 return &bpf_per_cpu_ptr_proto;
1546 case BPF_FUNC_this_cpu_ptr:
1547 return &bpf_this_cpu_ptr_proto;
1548 case BPF_FUNC_task_storage_get:
1549 if (bpf_prog_check_recur(prog))
1550 return &bpf_task_storage_get_recur_proto;
1551 return &bpf_task_storage_get_proto;
1552 case BPF_FUNC_task_storage_delete:
1553 if (bpf_prog_check_recur(prog))
1554 return &bpf_task_storage_delete_recur_proto;
1555 return &bpf_task_storage_delete_proto;
1556 case BPF_FUNC_for_each_map_elem:
1557 return &bpf_for_each_map_elem_proto;
1558 case BPF_FUNC_snprintf:
1559 return &bpf_snprintf_proto;
1560 case BPF_FUNC_get_func_ip:
1561 return &bpf_get_func_ip_proto_tracing;
1562 case BPF_FUNC_get_branch_snapshot:
1563 return &bpf_get_branch_snapshot_proto;
1564 case BPF_FUNC_find_vma:
1565 return &bpf_find_vma_proto;
1566 case BPF_FUNC_trace_vprintk:
1567 return bpf_get_trace_vprintk_proto();
1568 default:
1569 return bpf_base_func_proto(func_id, prog);
1570 }
1571 }
1572
is_kprobe_multi(const struct bpf_prog * prog)1573 static bool is_kprobe_multi(const struct bpf_prog *prog)
1574 {
1575 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1576 prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1577 }
1578
is_kprobe_session(const struct bpf_prog * prog)1579 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1580 {
1581 return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1582 }
1583
is_uprobe_multi(const struct bpf_prog * prog)1584 static inline bool is_uprobe_multi(const struct bpf_prog *prog)
1585 {
1586 return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
1587 prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1588 }
1589
is_uprobe_session(const struct bpf_prog * prog)1590 static inline bool is_uprobe_session(const struct bpf_prog *prog)
1591 {
1592 return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1593 }
1594
1595 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1596 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1597 {
1598 switch (func_id) {
1599 case BPF_FUNC_perf_event_output:
1600 return &bpf_perf_event_output_proto;
1601 case BPF_FUNC_get_stackid:
1602 return &bpf_get_stackid_proto;
1603 case BPF_FUNC_get_stack:
1604 return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1605 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1606 case BPF_FUNC_override_return:
1607 return &bpf_override_return_proto;
1608 #endif
1609 case BPF_FUNC_get_func_ip:
1610 if (is_kprobe_multi(prog))
1611 return &bpf_get_func_ip_proto_kprobe_multi;
1612 if (is_uprobe_multi(prog))
1613 return &bpf_get_func_ip_proto_uprobe_multi;
1614 return &bpf_get_func_ip_proto_kprobe;
1615 case BPF_FUNC_get_attach_cookie:
1616 if (is_kprobe_multi(prog))
1617 return &bpf_get_attach_cookie_proto_kmulti;
1618 if (is_uprobe_multi(prog))
1619 return &bpf_get_attach_cookie_proto_umulti;
1620 return &bpf_get_attach_cookie_proto_trace;
1621 default:
1622 return bpf_tracing_func_proto(func_id, prog);
1623 }
1624 }
1625
1626 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1627 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1628 const struct bpf_prog *prog,
1629 struct bpf_insn_access_aux *info)
1630 {
1631 if (off < 0 || off >= sizeof(struct pt_regs))
1632 return false;
1633 if (type != BPF_READ)
1634 return false;
1635 if (off % size != 0)
1636 return false;
1637 /*
1638 * Assertion for 32 bit to make sure last 8 byte access
1639 * (BPF_DW) to the last 4 byte member is disallowed.
1640 */
1641 if (off + size > sizeof(struct pt_regs))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 const struct bpf_verifier_ops kprobe_verifier_ops = {
1648 .get_func_proto = kprobe_prog_func_proto,
1649 .is_valid_access = kprobe_prog_is_valid_access,
1650 };
1651
1652 const struct bpf_prog_ops kprobe_prog_ops = {
1653 };
1654
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1655 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1656 u64, flags, void *, data, u64, size)
1657 {
1658 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1659
1660 /*
1661 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1662 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1663 * from there and call the same bpf_perf_event_output() helper inline.
1664 */
1665 return ____bpf_perf_event_output(regs, map, flags, data, size);
1666 }
1667
1668 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1669 .func = bpf_perf_event_output_tp,
1670 .gpl_only = true,
1671 .ret_type = RET_INTEGER,
1672 .arg1_type = ARG_PTR_TO_CTX,
1673 .arg2_type = ARG_CONST_MAP_PTR,
1674 .arg3_type = ARG_ANYTHING,
1675 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1676 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1677 };
1678
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1679 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1680 u64, flags)
1681 {
1682 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1683
1684 /*
1685 * Same comment as in bpf_perf_event_output_tp(), only that this time
1686 * the other helper's function body cannot be inlined due to being
1687 * external, thus we need to call raw helper function.
1688 */
1689 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1690 flags, 0, 0);
1691 }
1692
1693 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1694 .func = bpf_get_stackid_tp,
1695 .gpl_only = true,
1696 .ret_type = RET_INTEGER,
1697 .arg1_type = ARG_PTR_TO_CTX,
1698 .arg2_type = ARG_CONST_MAP_PTR,
1699 .arg3_type = ARG_ANYTHING,
1700 };
1701
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1702 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1703 u64, flags)
1704 {
1705 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1706
1707 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1708 (unsigned long) size, flags, 0);
1709 }
1710
1711 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1712 .func = bpf_get_stack_tp,
1713 .gpl_only = true,
1714 .ret_type = RET_INTEGER,
1715 .arg1_type = ARG_PTR_TO_CTX,
1716 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1717 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1718 .arg4_type = ARG_ANYTHING,
1719 };
1720
1721 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1722 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1723 {
1724 switch (func_id) {
1725 case BPF_FUNC_perf_event_output:
1726 return &bpf_perf_event_output_proto_tp;
1727 case BPF_FUNC_get_stackid:
1728 return &bpf_get_stackid_proto_tp;
1729 case BPF_FUNC_get_stack:
1730 return &bpf_get_stack_proto_tp;
1731 case BPF_FUNC_get_attach_cookie:
1732 return &bpf_get_attach_cookie_proto_trace;
1733 default:
1734 return bpf_tracing_func_proto(func_id, prog);
1735 }
1736 }
1737
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1738 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1739 const struct bpf_prog *prog,
1740 struct bpf_insn_access_aux *info)
1741 {
1742 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1743 return false;
1744 if (type != BPF_READ)
1745 return false;
1746 if (off % size != 0)
1747 return false;
1748
1749 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1750 return true;
1751 }
1752
1753 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1754 .get_func_proto = tp_prog_func_proto,
1755 .is_valid_access = tp_prog_is_valid_access,
1756 };
1757
1758 const struct bpf_prog_ops tracepoint_prog_ops = {
1759 };
1760
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1761 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1762 struct bpf_perf_event_value *, buf, u32, size)
1763 {
1764 int err = -EINVAL;
1765
1766 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1767 goto clear;
1768 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1769 &buf->running);
1770 if (unlikely(err))
1771 goto clear;
1772 return 0;
1773 clear:
1774 memset(buf, 0, size);
1775 return err;
1776 }
1777
1778 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1779 .func = bpf_perf_prog_read_value,
1780 .gpl_only = true,
1781 .ret_type = RET_INTEGER,
1782 .arg1_type = ARG_PTR_TO_CTX,
1783 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1784 .arg3_type = ARG_CONST_SIZE,
1785 };
1786
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1787 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1788 void *, buf, u32, size, u64, flags)
1789 {
1790 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1791 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1792 u32 to_copy;
1793
1794 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1795 return -EINVAL;
1796
1797 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1798 return -ENOENT;
1799
1800 if (unlikely(!br_stack))
1801 return -ENOENT;
1802
1803 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1804 return br_stack->nr * br_entry_size;
1805
1806 if (!buf || (size % br_entry_size != 0))
1807 return -EINVAL;
1808
1809 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1810 memcpy(buf, br_stack->entries, to_copy);
1811
1812 return to_copy;
1813 }
1814
1815 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1816 .func = bpf_read_branch_records,
1817 .gpl_only = true,
1818 .ret_type = RET_INTEGER,
1819 .arg1_type = ARG_PTR_TO_CTX,
1820 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1821 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1822 .arg4_type = ARG_ANYTHING,
1823 };
1824
1825 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1826 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1827 {
1828 switch (func_id) {
1829 case BPF_FUNC_perf_event_output:
1830 return &bpf_perf_event_output_proto_tp;
1831 case BPF_FUNC_get_stackid:
1832 return &bpf_get_stackid_proto_pe;
1833 case BPF_FUNC_get_stack:
1834 return &bpf_get_stack_proto_pe;
1835 case BPF_FUNC_perf_prog_read_value:
1836 return &bpf_perf_prog_read_value_proto;
1837 case BPF_FUNC_read_branch_records:
1838 return &bpf_read_branch_records_proto;
1839 case BPF_FUNC_get_attach_cookie:
1840 return &bpf_get_attach_cookie_proto_pe;
1841 default:
1842 return bpf_tracing_func_proto(func_id, prog);
1843 }
1844 }
1845
1846 /*
1847 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1848 * to avoid potential recursive reuse issue when/if tracepoints are added
1849 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1850 *
1851 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1852 * in normal, irq, and nmi context.
1853 */
1854 struct bpf_raw_tp_regs {
1855 struct pt_regs regs[3];
1856 };
1857 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1858 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1859 static struct pt_regs *get_bpf_raw_tp_regs(void)
1860 {
1861 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1862 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1863
1864 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1865 this_cpu_dec(bpf_raw_tp_nest_level);
1866 return ERR_PTR(-EBUSY);
1867 }
1868
1869 return &tp_regs->regs[nest_level - 1];
1870 }
1871
put_bpf_raw_tp_regs(void)1872 static void put_bpf_raw_tp_regs(void)
1873 {
1874 this_cpu_dec(bpf_raw_tp_nest_level);
1875 }
1876
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1877 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1878 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1879 {
1880 struct pt_regs *regs = get_bpf_raw_tp_regs();
1881 int ret;
1882
1883 if (IS_ERR(regs))
1884 return PTR_ERR(regs);
1885
1886 perf_fetch_caller_regs(regs);
1887 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1888
1889 put_bpf_raw_tp_regs();
1890 return ret;
1891 }
1892
1893 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1894 .func = bpf_perf_event_output_raw_tp,
1895 .gpl_only = true,
1896 .ret_type = RET_INTEGER,
1897 .arg1_type = ARG_PTR_TO_CTX,
1898 .arg2_type = ARG_CONST_MAP_PTR,
1899 .arg3_type = ARG_ANYTHING,
1900 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1901 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1902 };
1903
1904 extern const struct bpf_func_proto bpf_skb_output_proto;
1905 extern const struct bpf_func_proto bpf_xdp_output_proto;
1906 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1907
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1908 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1909 struct bpf_map *, map, u64, flags)
1910 {
1911 struct pt_regs *regs = get_bpf_raw_tp_regs();
1912 int ret;
1913
1914 if (IS_ERR(regs))
1915 return PTR_ERR(regs);
1916
1917 perf_fetch_caller_regs(regs);
1918 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1919 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1920 flags, 0, 0);
1921 put_bpf_raw_tp_regs();
1922 return ret;
1923 }
1924
1925 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1926 .func = bpf_get_stackid_raw_tp,
1927 .gpl_only = true,
1928 .ret_type = RET_INTEGER,
1929 .arg1_type = ARG_PTR_TO_CTX,
1930 .arg2_type = ARG_CONST_MAP_PTR,
1931 .arg3_type = ARG_ANYTHING,
1932 };
1933
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1934 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1935 void *, buf, u32, size, u64, flags)
1936 {
1937 struct pt_regs *regs = get_bpf_raw_tp_regs();
1938 int ret;
1939
1940 if (IS_ERR(regs))
1941 return PTR_ERR(regs);
1942
1943 perf_fetch_caller_regs(regs);
1944 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1945 (unsigned long) size, flags, 0);
1946 put_bpf_raw_tp_regs();
1947 return ret;
1948 }
1949
1950 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1951 .func = bpf_get_stack_raw_tp,
1952 .gpl_only = true,
1953 .ret_type = RET_INTEGER,
1954 .arg1_type = ARG_PTR_TO_CTX,
1955 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1956 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1957 .arg4_type = ARG_ANYTHING,
1958 };
1959
1960 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1961 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1962 {
1963 switch (func_id) {
1964 case BPF_FUNC_perf_event_output:
1965 return &bpf_perf_event_output_proto_raw_tp;
1966 case BPF_FUNC_get_stackid:
1967 return &bpf_get_stackid_proto_raw_tp;
1968 case BPF_FUNC_get_stack:
1969 return &bpf_get_stack_proto_raw_tp;
1970 case BPF_FUNC_get_attach_cookie:
1971 return &bpf_get_attach_cookie_proto_tracing;
1972 default:
1973 return bpf_tracing_func_proto(func_id, prog);
1974 }
1975 }
1976
1977 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1978 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1979 {
1980 const struct bpf_func_proto *fn;
1981
1982 switch (func_id) {
1983 #ifdef CONFIG_NET
1984 case BPF_FUNC_skb_output:
1985 return &bpf_skb_output_proto;
1986 case BPF_FUNC_xdp_output:
1987 return &bpf_xdp_output_proto;
1988 case BPF_FUNC_skc_to_tcp6_sock:
1989 return &bpf_skc_to_tcp6_sock_proto;
1990 case BPF_FUNC_skc_to_tcp_sock:
1991 return &bpf_skc_to_tcp_sock_proto;
1992 case BPF_FUNC_skc_to_tcp_timewait_sock:
1993 return &bpf_skc_to_tcp_timewait_sock_proto;
1994 case BPF_FUNC_skc_to_tcp_request_sock:
1995 return &bpf_skc_to_tcp_request_sock_proto;
1996 case BPF_FUNC_skc_to_udp6_sock:
1997 return &bpf_skc_to_udp6_sock_proto;
1998 case BPF_FUNC_skc_to_unix_sock:
1999 return &bpf_skc_to_unix_sock_proto;
2000 case BPF_FUNC_skc_to_mptcp_sock:
2001 return &bpf_skc_to_mptcp_sock_proto;
2002 case BPF_FUNC_sk_storage_get:
2003 return &bpf_sk_storage_get_tracing_proto;
2004 case BPF_FUNC_sk_storage_delete:
2005 return &bpf_sk_storage_delete_tracing_proto;
2006 case BPF_FUNC_sock_from_file:
2007 return &bpf_sock_from_file_proto;
2008 case BPF_FUNC_get_socket_cookie:
2009 return &bpf_get_socket_ptr_cookie_proto;
2010 case BPF_FUNC_xdp_get_buff_len:
2011 return &bpf_xdp_get_buff_len_trace_proto;
2012 #endif
2013 case BPF_FUNC_seq_printf:
2014 return prog->expected_attach_type == BPF_TRACE_ITER ?
2015 &bpf_seq_printf_proto :
2016 NULL;
2017 case BPF_FUNC_seq_write:
2018 return prog->expected_attach_type == BPF_TRACE_ITER ?
2019 &bpf_seq_write_proto :
2020 NULL;
2021 case BPF_FUNC_seq_printf_btf:
2022 return prog->expected_attach_type == BPF_TRACE_ITER ?
2023 &bpf_seq_printf_btf_proto :
2024 NULL;
2025 case BPF_FUNC_d_path:
2026 return &bpf_d_path_proto;
2027 case BPF_FUNC_get_func_arg:
2028 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
2029 case BPF_FUNC_get_func_ret:
2030 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
2031 case BPF_FUNC_get_func_arg_cnt:
2032 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
2033 case BPF_FUNC_get_attach_cookie:
2034 if (prog->type == BPF_PROG_TYPE_TRACING &&
2035 prog->expected_attach_type == BPF_TRACE_RAW_TP)
2036 return &bpf_get_attach_cookie_proto_tracing;
2037 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
2038 default:
2039 fn = raw_tp_prog_func_proto(func_id, prog);
2040 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
2041 fn = bpf_iter_get_func_proto(func_id, prog);
2042 return fn;
2043 }
2044 }
2045
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2046 static bool raw_tp_prog_is_valid_access(int off, int size,
2047 enum bpf_access_type type,
2048 const struct bpf_prog *prog,
2049 struct bpf_insn_access_aux *info)
2050 {
2051 return bpf_tracing_ctx_access(off, size, type);
2052 }
2053
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2054 static bool tracing_prog_is_valid_access(int off, int size,
2055 enum bpf_access_type type,
2056 const struct bpf_prog *prog,
2057 struct bpf_insn_access_aux *info)
2058 {
2059 return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
2060 }
2061
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2062 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
2063 const union bpf_attr *kattr,
2064 union bpf_attr __user *uattr)
2065 {
2066 return -ENOTSUPP;
2067 }
2068
2069 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2070 .get_func_proto = raw_tp_prog_func_proto,
2071 .is_valid_access = raw_tp_prog_is_valid_access,
2072 };
2073
2074 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2075 #ifdef CONFIG_NET
2076 .test_run = bpf_prog_test_run_raw_tp,
2077 #endif
2078 };
2079
2080 const struct bpf_verifier_ops tracing_verifier_ops = {
2081 .get_func_proto = tracing_prog_func_proto,
2082 .is_valid_access = tracing_prog_is_valid_access,
2083 };
2084
2085 const struct bpf_prog_ops tracing_prog_ops = {
2086 .test_run = bpf_prog_test_run_tracing,
2087 };
2088
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2089 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2090 enum bpf_access_type type,
2091 const struct bpf_prog *prog,
2092 struct bpf_insn_access_aux *info)
2093 {
2094 if (off == 0) {
2095 if (size != sizeof(u64) || type != BPF_READ)
2096 return false;
2097 info->reg_type = PTR_TO_TP_BUFFER;
2098 }
2099 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2100 }
2101
2102 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2103 .get_func_proto = raw_tp_prog_func_proto,
2104 .is_valid_access = raw_tp_writable_prog_is_valid_access,
2105 };
2106
2107 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2108 };
2109
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2110 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2111 const struct bpf_prog *prog,
2112 struct bpf_insn_access_aux *info)
2113 {
2114 const int size_u64 = sizeof(u64);
2115
2116 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2117 return false;
2118 if (type != BPF_READ)
2119 return false;
2120 if (off % size != 0) {
2121 if (sizeof(unsigned long) != 4)
2122 return false;
2123 if (size != 8)
2124 return false;
2125 if (off % size != 4)
2126 return false;
2127 }
2128
2129 switch (off) {
2130 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2131 bpf_ctx_record_field_size(info, size_u64);
2132 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2133 return false;
2134 break;
2135 case bpf_ctx_range(struct bpf_perf_event_data, addr):
2136 bpf_ctx_record_field_size(info, size_u64);
2137 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2138 return false;
2139 break;
2140 default:
2141 if (size != sizeof(long))
2142 return false;
2143 }
2144
2145 return true;
2146 }
2147
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2148 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2149 const struct bpf_insn *si,
2150 struct bpf_insn *insn_buf,
2151 struct bpf_prog *prog, u32 *target_size)
2152 {
2153 struct bpf_insn *insn = insn_buf;
2154
2155 switch (si->off) {
2156 case offsetof(struct bpf_perf_event_data, sample_period):
2157 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2158 data), si->dst_reg, si->src_reg,
2159 offsetof(struct bpf_perf_event_data_kern, data));
2160 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2161 bpf_target_off(struct perf_sample_data, period, 8,
2162 target_size));
2163 break;
2164 case offsetof(struct bpf_perf_event_data, addr):
2165 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2166 data), si->dst_reg, si->src_reg,
2167 offsetof(struct bpf_perf_event_data_kern, data));
2168 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2169 bpf_target_off(struct perf_sample_data, addr, 8,
2170 target_size));
2171 break;
2172 default:
2173 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2174 regs), si->dst_reg, si->src_reg,
2175 offsetof(struct bpf_perf_event_data_kern, regs));
2176 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2177 si->off);
2178 break;
2179 }
2180
2181 return insn - insn_buf;
2182 }
2183
2184 const struct bpf_verifier_ops perf_event_verifier_ops = {
2185 .get_func_proto = pe_prog_func_proto,
2186 .is_valid_access = pe_prog_is_valid_access,
2187 .convert_ctx_access = pe_prog_convert_ctx_access,
2188 };
2189
2190 const struct bpf_prog_ops perf_event_prog_ops = {
2191 };
2192
2193 static DEFINE_MUTEX(bpf_event_mutex);
2194
2195 #define BPF_TRACE_MAX_PROGS 64
2196
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)2197 int perf_event_attach_bpf_prog(struct perf_event *event,
2198 struct bpf_prog *prog,
2199 u64 bpf_cookie)
2200 {
2201 struct bpf_prog_array *old_array;
2202 struct bpf_prog_array *new_array;
2203 int ret = -EEXIST;
2204
2205 /*
2206 * Kprobe override only works if they are on the function entry,
2207 * and only if they are on the opt-in list.
2208 */
2209 if (prog->kprobe_override &&
2210 (!trace_kprobe_on_func_entry(event->tp_event) ||
2211 !trace_kprobe_error_injectable(event->tp_event)))
2212 return -EINVAL;
2213
2214 mutex_lock(&bpf_event_mutex);
2215
2216 if (event->prog)
2217 goto unlock;
2218
2219 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2220 if (old_array &&
2221 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2222 ret = -E2BIG;
2223 goto unlock;
2224 }
2225
2226 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2227 if (ret < 0)
2228 goto unlock;
2229
2230 /* set the new array to event->tp_event and set event->prog */
2231 event->prog = prog;
2232 event->bpf_cookie = bpf_cookie;
2233 rcu_assign_pointer(event->tp_event->prog_array, new_array);
2234 bpf_prog_array_free_sleepable(old_array);
2235
2236 unlock:
2237 mutex_unlock(&bpf_event_mutex);
2238 return ret;
2239 }
2240
perf_event_detach_bpf_prog(struct perf_event * event)2241 void perf_event_detach_bpf_prog(struct perf_event *event)
2242 {
2243 struct bpf_prog_array *old_array;
2244 struct bpf_prog_array *new_array;
2245 int ret;
2246
2247 mutex_lock(&bpf_event_mutex);
2248
2249 if (!event->prog)
2250 goto unlock;
2251
2252 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2253 if (!old_array)
2254 goto put;
2255
2256 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2257 if (ret < 0) {
2258 bpf_prog_array_delete_safe(old_array, event->prog);
2259 } else {
2260 rcu_assign_pointer(event->tp_event->prog_array, new_array);
2261 bpf_prog_array_free_sleepable(old_array);
2262 }
2263
2264 put:
2265 /*
2266 * It could be that the bpf_prog is not sleepable (and will be freed
2267 * via normal RCU), but is called from a point that supports sleepable
2268 * programs and uses tasks-trace-RCU.
2269 */
2270 synchronize_rcu_tasks_trace();
2271
2272 bpf_prog_put(event->prog);
2273 event->prog = NULL;
2274
2275 unlock:
2276 mutex_unlock(&bpf_event_mutex);
2277 }
2278
perf_event_query_prog_array(struct perf_event * event,void __user * info)2279 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2280 {
2281 struct perf_event_query_bpf __user *uquery = info;
2282 struct perf_event_query_bpf query = {};
2283 struct bpf_prog_array *progs;
2284 u32 *ids, prog_cnt, ids_len;
2285 int ret;
2286
2287 if (!perfmon_capable())
2288 return -EPERM;
2289 if (event->attr.type != PERF_TYPE_TRACEPOINT)
2290 return -EINVAL;
2291 if (copy_from_user(&query, uquery, sizeof(query)))
2292 return -EFAULT;
2293
2294 ids_len = query.ids_len;
2295 if (ids_len > BPF_TRACE_MAX_PROGS)
2296 return -E2BIG;
2297 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2298 if (!ids)
2299 return -ENOMEM;
2300 /*
2301 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2302 * is required when user only wants to check for uquery->prog_cnt.
2303 * There is no need to check for it since the case is handled
2304 * gracefully in bpf_prog_array_copy_info.
2305 */
2306
2307 mutex_lock(&bpf_event_mutex);
2308 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2309 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2310 mutex_unlock(&bpf_event_mutex);
2311
2312 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2313 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2314 ret = -EFAULT;
2315
2316 kfree(ids);
2317 return ret;
2318 }
2319
2320 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2321 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2322
bpf_get_raw_tracepoint(const char * name)2323 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2324 {
2325 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2326
2327 for (; btp < __stop__bpf_raw_tp; btp++) {
2328 if (!strcmp(btp->tp->name, name))
2329 return btp;
2330 }
2331
2332 return bpf_get_raw_tracepoint_module(name);
2333 }
2334
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)2335 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2336 {
2337 struct module *mod;
2338
2339 preempt_disable();
2340 mod = __module_address((unsigned long)btp);
2341 module_put(mod);
2342 preempt_enable();
2343 }
2344
2345 static __always_inline
__bpf_trace_run(struct bpf_raw_tp_link * link,u64 * args)2346 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2347 {
2348 struct bpf_prog *prog = link->link.prog;
2349 struct bpf_run_ctx *old_run_ctx;
2350 struct bpf_trace_run_ctx run_ctx;
2351
2352 cant_sleep();
2353 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2354 bpf_prog_inc_misses_counter(prog);
2355 goto out;
2356 }
2357
2358 run_ctx.bpf_cookie = link->cookie;
2359 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2360
2361 rcu_read_lock();
2362 (void) bpf_prog_run(prog, args);
2363 rcu_read_unlock();
2364
2365 bpf_reset_run_ctx(old_run_ctx);
2366 out:
2367 this_cpu_dec(*(prog->active));
2368 }
2369
2370 #define UNPACK(...) __VA_ARGS__
2371 #define REPEAT_1(FN, DL, X, ...) FN(X)
2372 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2373 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2374 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2375 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2376 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2377 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2378 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2379 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2380 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2381 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2382 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2383 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
2384
2385 #define SARG(X) u64 arg##X
2386 #define COPY(X) args[X] = arg##X
2387
2388 #define __DL_COM (,)
2389 #define __DL_SEM (;)
2390
2391 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2392
2393 #define BPF_TRACE_DEFN_x(x) \
2394 void bpf_trace_run##x(struct bpf_raw_tp_link *link, \
2395 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
2396 { \
2397 u64 args[x]; \
2398 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
2399 __bpf_trace_run(link, args); \
2400 } \
2401 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2402 BPF_TRACE_DEFN_x(1);
2403 BPF_TRACE_DEFN_x(2);
2404 BPF_TRACE_DEFN_x(3);
2405 BPF_TRACE_DEFN_x(4);
2406 BPF_TRACE_DEFN_x(5);
2407 BPF_TRACE_DEFN_x(6);
2408 BPF_TRACE_DEFN_x(7);
2409 BPF_TRACE_DEFN_x(8);
2410 BPF_TRACE_DEFN_x(9);
2411 BPF_TRACE_DEFN_x(10);
2412 BPF_TRACE_DEFN_x(11);
2413 BPF_TRACE_DEFN_x(12);
2414
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_raw_tp_link * link)2415 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2416 {
2417 struct tracepoint *tp = btp->tp;
2418 struct bpf_prog *prog = link->link.prog;
2419
2420 /*
2421 * check that program doesn't access arguments beyond what's
2422 * available in this tracepoint
2423 */
2424 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2425 return -EINVAL;
2426
2427 if (prog->aux->max_tp_access > btp->writable_size)
2428 return -EINVAL;
2429
2430 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2431 }
2432
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_raw_tp_link * link)2433 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2434 {
2435 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2436 }
2437
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr,unsigned long * missed)2438 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2439 u32 *fd_type, const char **buf,
2440 u64 *probe_offset, u64 *probe_addr,
2441 unsigned long *missed)
2442 {
2443 bool is_tracepoint, is_syscall_tp;
2444 struct bpf_prog *prog;
2445 int flags, err = 0;
2446
2447 prog = event->prog;
2448 if (!prog)
2449 return -ENOENT;
2450
2451 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2452 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2453 return -EOPNOTSUPP;
2454
2455 *prog_id = prog->aux->id;
2456 flags = event->tp_event->flags;
2457 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2458 is_syscall_tp = is_syscall_trace_event(event->tp_event);
2459
2460 if (is_tracepoint || is_syscall_tp) {
2461 *buf = is_tracepoint ? event->tp_event->tp->name
2462 : event->tp_event->name;
2463 /* We allow NULL pointer for tracepoint */
2464 if (fd_type)
2465 *fd_type = BPF_FD_TYPE_TRACEPOINT;
2466 if (probe_offset)
2467 *probe_offset = 0x0;
2468 if (probe_addr)
2469 *probe_addr = 0x0;
2470 } else {
2471 /* kprobe/uprobe */
2472 err = -EOPNOTSUPP;
2473 #ifdef CONFIG_KPROBE_EVENTS
2474 if (flags & TRACE_EVENT_FL_KPROBE)
2475 err = bpf_get_kprobe_info(event, fd_type, buf,
2476 probe_offset, probe_addr, missed,
2477 event->attr.type == PERF_TYPE_TRACEPOINT);
2478 #endif
2479 #ifdef CONFIG_UPROBE_EVENTS
2480 if (flags & TRACE_EVENT_FL_UPROBE)
2481 err = bpf_get_uprobe_info(event, fd_type, buf,
2482 probe_offset, probe_addr,
2483 event->attr.type == PERF_TYPE_TRACEPOINT);
2484 #endif
2485 }
2486
2487 return err;
2488 }
2489
send_signal_irq_work_init(void)2490 static int __init send_signal_irq_work_init(void)
2491 {
2492 int cpu;
2493 struct send_signal_irq_work *work;
2494
2495 for_each_possible_cpu(cpu) {
2496 work = per_cpu_ptr(&send_signal_work, cpu);
2497 init_irq_work(&work->irq_work, do_bpf_send_signal);
2498 }
2499 return 0;
2500 }
2501
2502 subsys_initcall(send_signal_irq_work_init);
2503
2504 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2505 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2506 void *module)
2507 {
2508 struct bpf_trace_module *btm, *tmp;
2509 struct module *mod = module;
2510 int ret = 0;
2511
2512 if (mod->num_bpf_raw_events == 0 ||
2513 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2514 goto out;
2515
2516 mutex_lock(&bpf_module_mutex);
2517
2518 switch (op) {
2519 case MODULE_STATE_COMING:
2520 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2521 if (btm) {
2522 btm->module = module;
2523 list_add(&btm->list, &bpf_trace_modules);
2524 } else {
2525 ret = -ENOMEM;
2526 }
2527 break;
2528 case MODULE_STATE_GOING:
2529 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2530 if (btm->module == module) {
2531 list_del(&btm->list);
2532 kfree(btm);
2533 break;
2534 }
2535 }
2536 break;
2537 }
2538
2539 mutex_unlock(&bpf_module_mutex);
2540
2541 out:
2542 return notifier_from_errno(ret);
2543 }
2544
2545 static struct notifier_block bpf_module_nb = {
2546 .notifier_call = bpf_event_notify,
2547 };
2548
bpf_event_init(void)2549 static int __init bpf_event_init(void)
2550 {
2551 register_module_notifier(&bpf_module_nb);
2552 return 0;
2553 }
2554
2555 fs_initcall(bpf_event_init);
2556 #endif /* CONFIG_MODULES */
2557
2558 struct bpf_session_run_ctx {
2559 struct bpf_run_ctx run_ctx;
2560 bool is_return;
2561 void *data;
2562 };
2563
2564 #ifdef CONFIG_FPROBE
2565 struct bpf_kprobe_multi_link {
2566 struct bpf_link link;
2567 struct fprobe fp;
2568 unsigned long *addrs;
2569 u64 *cookies;
2570 u32 cnt;
2571 u32 mods_cnt;
2572 struct module **mods;
2573 u32 flags;
2574 };
2575
2576 struct bpf_kprobe_multi_run_ctx {
2577 struct bpf_session_run_ctx session_ctx;
2578 struct bpf_kprobe_multi_link *link;
2579 unsigned long entry_ip;
2580 };
2581
2582 struct user_syms {
2583 const char **syms;
2584 char *buf;
2585 };
2586
copy_user_syms(struct user_syms * us,unsigned long __user * usyms,u32 cnt)2587 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2588 {
2589 unsigned long __user usymbol;
2590 const char **syms = NULL;
2591 char *buf = NULL, *p;
2592 int err = -ENOMEM;
2593 unsigned int i;
2594
2595 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2596 if (!syms)
2597 goto error;
2598
2599 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2600 if (!buf)
2601 goto error;
2602
2603 for (p = buf, i = 0; i < cnt; i++) {
2604 if (__get_user(usymbol, usyms + i)) {
2605 err = -EFAULT;
2606 goto error;
2607 }
2608 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2609 if (err == KSYM_NAME_LEN)
2610 err = -E2BIG;
2611 if (err < 0)
2612 goto error;
2613 syms[i] = p;
2614 p += err + 1;
2615 }
2616
2617 us->syms = syms;
2618 us->buf = buf;
2619 return 0;
2620
2621 error:
2622 if (err) {
2623 kvfree(syms);
2624 kvfree(buf);
2625 }
2626 return err;
2627 }
2628
kprobe_multi_put_modules(struct module ** mods,u32 cnt)2629 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2630 {
2631 u32 i;
2632
2633 for (i = 0; i < cnt; i++)
2634 module_put(mods[i]);
2635 }
2636
free_user_syms(struct user_syms * us)2637 static void free_user_syms(struct user_syms *us)
2638 {
2639 kvfree(us->syms);
2640 kvfree(us->buf);
2641 }
2642
bpf_kprobe_multi_link_release(struct bpf_link * link)2643 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2644 {
2645 struct bpf_kprobe_multi_link *kmulti_link;
2646
2647 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2648 unregister_fprobe(&kmulti_link->fp);
2649 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2650 }
2651
bpf_kprobe_multi_link_dealloc(struct bpf_link * link)2652 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2653 {
2654 struct bpf_kprobe_multi_link *kmulti_link;
2655
2656 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2657 kvfree(kmulti_link->addrs);
2658 kvfree(kmulti_link->cookies);
2659 kfree(kmulti_link->mods);
2660 kfree(kmulti_link);
2661 }
2662
bpf_kprobe_multi_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)2663 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2664 struct bpf_link_info *info)
2665 {
2666 u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2667 u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2668 struct bpf_kprobe_multi_link *kmulti_link;
2669 u32 ucount = info->kprobe_multi.count;
2670 int err = 0, i;
2671
2672 if (!uaddrs ^ !ucount)
2673 return -EINVAL;
2674 if (ucookies && !ucount)
2675 return -EINVAL;
2676
2677 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2678 info->kprobe_multi.count = kmulti_link->cnt;
2679 info->kprobe_multi.flags = kmulti_link->flags;
2680 info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2681
2682 if (!uaddrs)
2683 return 0;
2684 if (ucount < kmulti_link->cnt)
2685 err = -ENOSPC;
2686 else
2687 ucount = kmulti_link->cnt;
2688
2689 if (ucookies) {
2690 if (kmulti_link->cookies) {
2691 if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2692 return -EFAULT;
2693 } else {
2694 for (i = 0; i < ucount; i++) {
2695 if (put_user(0, ucookies + i))
2696 return -EFAULT;
2697 }
2698 }
2699 }
2700
2701 if (kallsyms_show_value(current_cred())) {
2702 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2703 return -EFAULT;
2704 } else {
2705 for (i = 0; i < ucount; i++) {
2706 if (put_user(0, uaddrs + i))
2707 return -EFAULT;
2708 }
2709 }
2710 return err;
2711 }
2712
2713 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2714 .release = bpf_kprobe_multi_link_release,
2715 .dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2716 .fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2717 };
2718
bpf_kprobe_multi_cookie_swap(void * a,void * b,int size,const void * priv)2719 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2720 {
2721 const struct bpf_kprobe_multi_link *link = priv;
2722 unsigned long *addr_a = a, *addr_b = b;
2723 u64 *cookie_a, *cookie_b;
2724
2725 cookie_a = link->cookies + (addr_a - link->addrs);
2726 cookie_b = link->cookies + (addr_b - link->addrs);
2727
2728 /* swap addr_a/addr_b and cookie_a/cookie_b values */
2729 swap(*addr_a, *addr_b);
2730 swap(*cookie_a, *cookie_b);
2731 }
2732
bpf_kprobe_multi_addrs_cmp(const void * a,const void * b)2733 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2734 {
2735 const unsigned long *addr_a = a, *addr_b = b;
2736
2737 if (*addr_a == *addr_b)
2738 return 0;
2739 return *addr_a < *addr_b ? -1 : 1;
2740 }
2741
bpf_kprobe_multi_cookie_cmp(const void * a,const void * b,const void * priv)2742 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2743 {
2744 return bpf_kprobe_multi_addrs_cmp(a, b);
2745 }
2746
bpf_kprobe_multi_cookie(struct bpf_run_ctx * ctx)2747 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2748 {
2749 struct bpf_kprobe_multi_run_ctx *run_ctx;
2750 struct bpf_kprobe_multi_link *link;
2751 u64 *cookie, entry_ip;
2752 unsigned long *addr;
2753
2754 if (WARN_ON_ONCE(!ctx))
2755 return 0;
2756 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2757 session_ctx.run_ctx);
2758 link = run_ctx->link;
2759 if (!link->cookies)
2760 return 0;
2761 entry_ip = run_ctx->entry_ip;
2762 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2763 bpf_kprobe_multi_addrs_cmp);
2764 if (!addr)
2765 return 0;
2766 cookie = link->cookies + (addr - link->addrs);
2767 return *cookie;
2768 }
2769
bpf_kprobe_multi_entry_ip(struct bpf_run_ctx * ctx)2770 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2771 {
2772 struct bpf_kprobe_multi_run_ctx *run_ctx;
2773
2774 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2775 session_ctx.run_ctx);
2776 return run_ctx->entry_ip;
2777 }
2778
2779 static int
kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link * link,unsigned long entry_ip,struct pt_regs * regs,bool is_return,void * data)2780 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2781 unsigned long entry_ip, struct pt_regs *regs,
2782 bool is_return, void *data)
2783 {
2784 struct bpf_kprobe_multi_run_ctx run_ctx = {
2785 .session_ctx = {
2786 .is_return = is_return,
2787 .data = data,
2788 },
2789 .link = link,
2790 .entry_ip = entry_ip,
2791 };
2792 struct bpf_run_ctx *old_run_ctx;
2793 int err;
2794
2795 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2796 bpf_prog_inc_misses_counter(link->link.prog);
2797 err = 0;
2798 goto out;
2799 }
2800
2801 migrate_disable();
2802 rcu_read_lock();
2803 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2804 err = bpf_prog_run(link->link.prog, regs);
2805 bpf_reset_run_ctx(old_run_ctx);
2806 rcu_read_unlock();
2807 migrate_enable();
2808
2809 out:
2810 __this_cpu_dec(bpf_prog_active);
2811 return err;
2812 }
2813
2814 static int
kprobe_multi_link_handler(struct fprobe * fp,unsigned long fentry_ip,unsigned long ret_ip,struct pt_regs * regs,void * data)2815 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2816 unsigned long ret_ip, struct pt_regs *regs,
2817 void *data)
2818 {
2819 struct bpf_kprobe_multi_link *link;
2820 int err;
2821
2822 link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2823 err = kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, false, data);
2824 return is_kprobe_session(link->link.prog) ? err : 0;
2825 }
2826
2827 static void
kprobe_multi_link_exit_handler(struct fprobe * fp,unsigned long fentry_ip,unsigned long ret_ip,struct pt_regs * regs,void * data)2828 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2829 unsigned long ret_ip, struct pt_regs *regs,
2830 void *data)
2831 {
2832 struct bpf_kprobe_multi_link *link;
2833
2834 link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2835 kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, true, data);
2836 }
2837
symbols_cmp_r(const void * a,const void * b,const void * priv)2838 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2839 {
2840 const char **str_a = (const char **) a;
2841 const char **str_b = (const char **) b;
2842
2843 return strcmp(*str_a, *str_b);
2844 }
2845
2846 struct multi_symbols_sort {
2847 const char **funcs;
2848 u64 *cookies;
2849 };
2850
symbols_swap_r(void * a,void * b,int size,const void * priv)2851 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2852 {
2853 const struct multi_symbols_sort *data = priv;
2854 const char **name_a = a, **name_b = b;
2855
2856 swap(*name_a, *name_b);
2857
2858 /* If defined, swap also related cookies. */
2859 if (data->cookies) {
2860 u64 *cookie_a, *cookie_b;
2861
2862 cookie_a = data->cookies + (name_a - data->funcs);
2863 cookie_b = data->cookies + (name_b - data->funcs);
2864 swap(*cookie_a, *cookie_b);
2865 }
2866 }
2867
2868 struct modules_array {
2869 struct module **mods;
2870 int mods_cnt;
2871 int mods_cap;
2872 };
2873
add_module(struct modules_array * arr,struct module * mod)2874 static int add_module(struct modules_array *arr, struct module *mod)
2875 {
2876 struct module **mods;
2877
2878 if (arr->mods_cnt == arr->mods_cap) {
2879 arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2880 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2881 if (!mods)
2882 return -ENOMEM;
2883 arr->mods = mods;
2884 }
2885
2886 arr->mods[arr->mods_cnt] = mod;
2887 arr->mods_cnt++;
2888 return 0;
2889 }
2890
has_module(struct modules_array * arr,struct module * mod)2891 static bool has_module(struct modules_array *arr, struct module *mod)
2892 {
2893 int i;
2894
2895 for (i = arr->mods_cnt - 1; i >= 0; i--) {
2896 if (arr->mods[i] == mod)
2897 return true;
2898 }
2899 return false;
2900 }
2901
get_modules_for_addrs(struct module *** mods,unsigned long * addrs,u32 addrs_cnt)2902 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2903 {
2904 struct modules_array arr = {};
2905 u32 i, err = 0;
2906
2907 for (i = 0; i < addrs_cnt; i++) {
2908 struct module *mod;
2909
2910 preempt_disable();
2911 mod = __module_address(addrs[i]);
2912 /* Either no module or we it's already stored */
2913 if (!mod || has_module(&arr, mod)) {
2914 preempt_enable();
2915 continue;
2916 }
2917 if (!try_module_get(mod))
2918 err = -EINVAL;
2919 preempt_enable();
2920 if (err)
2921 break;
2922 err = add_module(&arr, mod);
2923 if (err) {
2924 module_put(mod);
2925 break;
2926 }
2927 }
2928
2929 /* We return either err < 0 in case of error, ... */
2930 if (err) {
2931 kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2932 kfree(arr.mods);
2933 return err;
2934 }
2935
2936 /* or number of modules found if everything is ok. */
2937 *mods = arr.mods;
2938 return arr.mods_cnt;
2939 }
2940
addrs_check_error_injection_list(unsigned long * addrs,u32 cnt)2941 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2942 {
2943 u32 i;
2944
2945 for (i = 0; i < cnt; i++) {
2946 if (!within_error_injection_list(addrs[i]))
2947 return -EINVAL;
2948 }
2949 return 0;
2950 }
2951
bpf_kprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)2952 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2953 {
2954 struct bpf_kprobe_multi_link *link = NULL;
2955 struct bpf_link_primer link_primer;
2956 void __user *ucookies;
2957 unsigned long *addrs;
2958 u32 flags, cnt, size;
2959 void __user *uaddrs;
2960 u64 *cookies = NULL;
2961 void __user *usyms;
2962 int err;
2963
2964 /* no support for 32bit archs yet */
2965 if (sizeof(u64) != sizeof(void *))
2966 return -EOPNOTSUPP;
2967
2968 if (!is_kprobe_multi(prog))
2969 return -EINVAL;
2970
2971 flags = attr->link_create.kprobe_multi.flags;
2972 if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2973 return -EINVAL;
2974
2975 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2976 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2977 if (!!uaddrs == !!usyms)
2978 return -EINVAL;
2979
2980 cnt = attr->link_create.kprobe_multi.cnt;
2981 if (!cnt)
2982 return -EINVAL;
2983 if (cnt > MAX_KPROBE_MULTI_CNT)
2984 return -E2BIG;
2985
2986 size = cnt * sizeof(*addrs);
2987 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2988 if (!addrs)
2989 return -ENOMEM;
2990
2991 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2992 if (ucookies) {
2993 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2994 if (!cookies) {
2995 err = -ENOMEM;
2996 goto error;
2997 }
2998 if (copy_from_user(cookies, ucookies, size)) {
2999 err = -EFAULT;
3000 goto error;
3001 }
3002 }
3003
3004 if (uaddrs) {
3005 if (copy_from_user(addrs, uaddrs, size)) {
3006 err = -EFAULT;
3007 goto error;
3008 }
3009 } else {
3010 struct multi_symbols_sort data = {
3011 .cookies = cookies,
3012 };
3013 struct user_syms us;
3014
3015 err = copy_user_syms(&us, usyms, cnt);
3016 if (err)
3017 goto error;
3018
3019 if (cookies)
3020 data.funcs = us.syms;
3021
3022 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
3023 symbols_swap_r, &data);
3024
3025 err = ftrace_lookup_symbols(us.syms, cnt, addrs);
3026 free_user_syms(&us);
3027 if (err)
3028 goto error;
3029 }
3030
3031 if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
3032 err = -EINVAL;
3033 goto error;
3034 }
3035
3036 link = kzalloc(sizeof(*link), GFP_KERNEL);
3037 if (!link) {
3038 err = -ENOMEM;
3039 goto error;
3040 }
3041
3042 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
3043 &bpf_kprobe_multi_link_lops, prog);
3044
3045 err = bpf_link_prime(&link->link, &link_primer);
3046 if (err)
3047 goto error;
3048
3049 if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
3050 link->fp.entry_handler = kprobe_multi_link_handler;
3051 if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
3052 link->fp.exit_handler = kprobe_multi_link_exit_handler;
3053 if (is_kprobe_session(prog))
3054 link->fp.entry_data_size = sizeof(u64);
3055
3056 link->addrs = addrs;
3057 link->cookies = cookies;
3058 link->cnt = cnt;
3059 link->flags = flags;
3060
3061 if (cookies) {
3062 /*
3063 * Sorting addresses will trigger sorting cookies as well
3064 * (check bpf_kprobe_multi_cookie_swap). This way we can
3065 * find cookie based on the address in bpf_get_attach_cookie
3066 * helper.
3067 */
3068 sort_r(addrs, cnt, sizeof(*addrs),
3069 bpf_kprobe_multi_cookie_cmp,
3070 bpf_kprobe_multi_cookie_swap,
3071 link);
3072 }
3073
3074 err = get_modules_for_addrs(&link->mods, addrs, cnt);
3075 if (err < 0) {
3076 bpf_link_cleanup(&link_primer);
3077 return err;
3078 }
3079 link->mods_cnt = err;
3080
3081 err = register_fprobe_ips(&link->fp, addrs, cnt);
3082 if (err) {
3083 kprobe_multi_put_modules(link->mods, link->mods_cnt);
3084 bpf_link_cleanup(&link_primer);
3085 return err;
3086 }
3087
3088 return bpf_link_settle(&link_primer);
3089
3090 error:
3091 kfree(link);
3092 kvfree(addrs);
3093 kvfree(cookies);
3094 return err;
3095 }
3096 #else /* !CONFIG_FPROBE */
bpf_kprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3097 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3098 {
3099 return -EOPNOTSUPP;
3100 }
bpf_kprobe_multi_cookie(struct bpf_run_ctx * ctx)3101 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3102 {
3103 return 0;
3104 }
bpf_kprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3105 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3106 {
3107 return 0;
3108 }
3109 #endif
3110
3111 #ifdef CONFIG_UPROBES
3112 struct bpf_uprobe_multi_link;
3113
3114 struct bpf_uprobe {
3115 struct bpf_uprobe_multi_link *link;
3116 loff_t offset;
3117 unsigned long ref_ctr_offset;
3118 u64 cookie;
3119 struct uprobe *uprobe;
3120 struct uprobe_consumer consumer;
3121 bool session;
3122 };
3123
3124 struct bpf_uprobe_multi_link {
3125 struct path path;
3126 struct bpf_link link;
3127 u32 cnt;
3128 u32 flags;
3129 struct bpf_uprobe *uprobes;
3130 struct task_struct *task;
3131 };
3132
3133 struct bpf_uprobe_multi_run_ctx {
3134 struct bpf_session_run_ctx session_ctx;
3135 unsigned long entry_ip;
3136 struct bpf_uprobe *uprobe;
3137 };
3138
bpf_uprobe_unregister(struct bpf_uprobe * uprobes,u32 cnt)3139 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
3140 {
3141 u32 i;
3142
3143 for (i = 0; i < cnt; i++)
3144 uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
3145
3146 if (cnt)
3147 uprobe_unregister_sync();
3148 }
3149
bpf_uprobe_multi_link_release(struct bpf_link * link)3150 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3151 {
3152 struct bpf_uprobe_multi_link *umulti_link;
3153
3154 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3155 bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
3156 if (umulti_link->task)
3157 put_task_struct(umulti_link->task);
3158 path_put(&umulti_link->path);
3159 }
3160
bpf_uprobe_multi_link_dealloc(struct bpf_link * link)3161 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3162 {
3163 struct bpf_uprobe_multi_link *umulti_link;
3164
3165 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3166 kvfree(umulti_link->uprobes);
3167 kfree(umulti_link);
3168 }
3169
bpf_uprobe_multi_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)3170 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
3171 struct bpf_link_info *info)
3172 {
3173 u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
3174 u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
3175 u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
3176 u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
3177 u32 upath_size = info->uprobe_multi.path_size;
3178 struct bpf_uprobe_multi_link *umulti_link;
3179 u32 ucount = info->uprobe_multi.count;
3180 int err = 0, i;
3181 char *p, *buf;
3182 long left = 0;
3183
3184 if (!upath ^ !upath_size)
3185 return -EINVAL;
3186
3187 if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
3188 return -EINVAL;
3189
3190 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3191 info->uprobe_multi.count = umulti_link->cnt;
3192 info->uprobe_multi.flags = umulti_link->flags;
3193 info->uprobe_multi.pid = umulti_link->task ?
3194 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3195
3196 upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
3197 buf = kmalloc(upath_size, GFP_KERNEL);
3198 if (!buf)
3199 return -ENOMEM;
3200 p = d_path(&umulti_link->path, buf, upath_size);
3201 if (IS_ERR(p)) {
3202 kfree(buf);
3203 return PTR_ERR(p);
3204 }
3205 upath_size = buf + upath_size - p;
3206
3207 if (upath)
3208 left = copy_to_user(upath, p, upath_size);
3209 kfree(buf);
3210 if (left)
3211 return -EFAULT;
3212 info->uprobe_multi.path_size = upath_size;
3213
3214 if (!uoffsets && !ucookies && !uref_ctr_offsets)
3215 return 0;
3216
3217 if (ucount < umulti_link->cnt)
3218 err = -ENOSPC;
3219 else
3220 ucount = umulti_link->cnt;
3221
3222 for (i = 0; i < ucount; i++) {
3223 if (uoffsets &&
3224 put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3225 return -EFAULT;
3226 if (uref_ctr_offsets &&
3227 put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3228 return -EFAULT;
3229 if (ucookies &&
3230 put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3231 return -EFAULT;
3232 }
3233
3234 return err;
3235 }
3236
3237 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3238 .release = bpf_uprobe_multi_link_release,
3239 .dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3240 .fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3241 };
3242
uprobe_prog_run(struct bpf_uprobe * uprobe,unsigned long entry_ip,struct pt_regs * regs,bool is_return,void * data)3243 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3244 unsigned long entry_ip,
3245 struct pt_regs *regs,
3246 bool is_return, void *data)
3247 {
3248 struct bpf_uprobe_multi_link *link = uprobe->link;
3249 struct bpf_uprobe_multi_run_ctx run_ctx = {
3250 .session_ctx = {
3251 .is_return = is_return,
3252 .data = data,
3253 },
3254 .entry_ip = entry_ip,
3255 .uprobe = uprobe,
3256 };
3257 struct bpf_prog *prog = link->link.prog;
3258 bool sleepable = prog->sleepable;
3259 struct bpf_run_ctx *old_run_ctx;
3260 int err;
3261
3262 if (link->task && !same_thread_group(current, link->task))
3263 return 0;
3264
3265 if (sleepable)
3266 rcu_read_lock_trace();
3267 else
3268 rcu_read_lock();
3269
3270 migrate_disable();
3271
3272 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
3273 err = bpf_prog_run(link->link.prog, regs);
3274 bpf_reset_run_ctx(old_run_ctx);
3275
3276 migrate_enable();
3277
3278 if (sleepable)
3279 rcu_read_unlock_trace();
3280 else
3281 rcu_read_unlock();
3282 return err;
3283 }
3284
3285 static bool
uprobe_multi_link_filter(struct uprobe_consumer * con,struct mm_struct * mm)3286 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3287 {
3288 struct bpf_uprobe *uprobe;
3289
3290 uprobe = container_of(con, struct bpf_uprobe, consumer);
3291 return uprobe->link->task->mm == mm;
3292 }
3293
3294 static int
uprobe_multi_link_handler(struct uprobe_consumer * con,struct pt_regs * regs,__u64 * data)3295 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
3296 __u64 *data)
3297 {
3298 struct bpf_uprobe *uprobe;
3299 int ret;
3300
3301 uprobe = container_of(con, struct bpf_uprobe, consumer);
3302 ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
3303 if (uprobe->session)
3304 return ret ? UPROBE_HANDLER_IGNORE : 0;
3305 return 0;
3306 }
3307
3308 static int
uprobe_multi_link_ret_handler(struct uprobe_consumer * con,unsigned long func,struct pt_regs * regs,__u64 * data)3309 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
3310 __u64 *data)
3311 {
3312 struct bpf_uprobe *uprobe;
3313
3314 uprobe = container_of(con, struct bpf_uprobe, consumer);
3315 uprobe_prog_run(uprobe, func, regs, true, data);
3316 return 0;
3317 }
3318
bpf_uprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3319 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3320 {
3321 struct bpf_uprobe_multi_run_ctx *run_ctx;
3322
3323 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3324 session_ctx.run_ctx);
3325 return run_ctx->entry_ip;
3326 }
3327
bpf_uprobe_multi_cookie(struct bpf_run_ctx * ctx)3328 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3329 {
3330 struct bpf_uprobe_multi_run_ctx *run_ctx;
3331
3332 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3333 session_ctx.run_ctx);
3334 return run_ctx->uprobe->cookie;
3335 }
3336
bpf_uprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3337 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3338 {
3339 struct bpf_uprobe_multi_link *link = NULL;
3340 unsigned long __user *uref_ctr_offsets;
3341 struct bpf_link_primer link_primer;
3342 struct bpf_uprobe *uprobes = NULL;
3343 struct task_struct *task = NULL;
3344 unsigned long __user *uoffsets;
3345 u64 __user *ucookies;
3346 void __user *upath;
3347 u32 flags, cnt, i;
3348 struct path path;
3349 char *name;
3350 pid_t pid;
3351 int err;
3352
3353 /* no support for 32bit archs yet */
3354 if (sizeof(u64) != sizeof(void *))
3355 return -EOPNOTSUPP;
3356
3357 if (!is_uprobe_multi(prog))
3358 return -EINVAL;
3359
3360 flags = attr->link_create.uprobe_multi.flags;
3361 if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3362 return -EINVAL;
3363
3364 /*
3365 * path, offsets and cnt are mandatory,
3366 * ref_ctr_offsets and cookies are optional
3367 */
3368 upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3369 uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3370 cnt = attr->link_create.uprobe_multi.cnt;
3371 pid = attr->link_create.uprobe_multi.pid;
3372
3373 if (!upath || !uoffsets || !cnt || pid < 0)
3374 return -EINVAL;
3375 if (cnt > MAX_UPROBE_MULTI_CNT)
3376 return -E2BIG;
3377
3378 uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3379 ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3380
3381 name = strndup_user(upath, PATH_MAX);
3382 if (IS_ERR(name)) {
3383 err = PTR_ERR(name);
3384 return err;
3385 }
3386
3387 err = kern_path(name, LOOKUP_FOLLOW, &path);
3388 kfree(name);
3389 if (err)
3390 return err;
3391
3392 if (!d_is_reg(path.dentry)) {
3393 err = -EBADF;
3394 goto error_path_put;
3395 }
3396
3397 if (pid) {
3398 task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3399 if (!task) {
3400 err = -ESRCH;
3401 goto error_path_put;
3402 }
3403 }
3404
3405 err = -ENOMEM;
3406
3407 link = kzalloc(sizeof(*link), GFP_KERNEL);
3408 uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3409
3410 if (!uprobes || !link)
3411 goto error_free;
3412
3413 for (i = 0; i < cnt; i++) {
3414 if (__get_user(uprobes[i].offset, uoffsets + i)) {
3415 err = -EFAULT;
3416 goto error_free;
3417 }
3418 if (uprobes[i].offset < 0) {
3419 err = -EINVAL;
3420 goto error_free;
3421 }
3422 if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3423 err = -EFAULT;
3424 goto error_free;
3425 }
3426 if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3427 err = -EFAULT;
3428 goto error_free;
3429 }
3430
3431 uprobes[i].link = link;
3432
3433 if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
3434 uprobes[i].consumer.handler = uprobe_multi_link_handler;
3435 if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
3436 uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3437 if (is_uprobe_session(prog))
3438 uprobes[i].session = true;
3439 if (pid)
3440 uprobes[i].consumer.filter = uprobe_multi_link_filter;
3441 }
3442
3443 link->cnt = cnt;
3444 link->uprobes = uprobes;
3445 link->path = path;
3446 link->task = task;
3447 link->flags = flags;
3448
3449 bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3450 &bpf_uprobe_multi_link_lops, prog);
3451
3452 for (i = 0; i < cnt; i++) {
3453 uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3454 uprobes[i].offset,
3455 uprobes[i].ref_ctr_offset,
3456 &uprobes[i].consumer);
3457 if (IS_ERR(uprobes[i].uprobe)) {
3458 err = PTR_ERR(uprobes[i].uprobe);
3459 link->cnt = i;
3460 goto error_unregister;
3461 }
3462 }
3463
3464 err = bpf_link_prime(&link->link, &link_primer);
3465 if (err)
3466 goto error_unregister;
3467
3468 return bpf_link_settle(&link_primer);
3469
3470 error_unregister:
3471 bpf_uprobe_unregister(uprobes, link->cnt);
3472
3473 error_free:
3474 kvfree(uprobes);
3475 kfree(link);
3476 if (task)
3477 put_task_struct(task);
3478 error_path_put:
3479 path_put(&path);
3480 return err;
3481 }
3482 #else /* !CONFIG_UPROBES */
bpf_uprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3483 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3484 {
3485 return -EOPNOTSUPP;
3486 }
bpf_uprobe_multi_cookie(struct bpf_run_ctx * ctx)3487 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3488 {
3489 return 0;
3490 }
bpf_uprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3491 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3492 {
3493 return 0;
3494 }
3495 #endif /* CONFIG_UPROBES */
3496
3497 __bpf_kfunc_start_defs();
3498
bpf_session_is_return(void)3499 __bpf_kfunc bool bpf_session_is_return(void)
3500 {
3501 struct bpf_session_run_ctx *session_ctx;
3502
3503 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3504 return session_ctx->is_return;
3505 }
3506
bpf_session_cookie(void)3507 __bpf_kfunc __u64 *bpf_session_cookie(void)
3508 {
3509 struct bpf_session_run_ctx *session_ctx;
3510
3511 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3512 return session_ctx->data;
3513 }
3514
3515 __bpf_kfunc_end_defs();
3516
3517 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
BTF_ID_FLAGS(func,bpf_session_is_return)3518 BTF_ID_FLAGS(func, bpf_session_is_return)
3519 BTF_ID_FLAGS(func, bpf_session_cookie)
3520 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
3521
3522 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
3523 {
3524 if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
3525 return 0;
3526
3527 if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
3528 return -EACCES;
3529
3530 return 0;
3531 }
3532
3533 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
3534 .owner = THIS_MODULE,
3535 .set = &kprobe_multi_kfunc_set_ids,
3536 .filter = bpf_kprobe_multi_filter,
3537 };
3538
bpf_kprobe_multi_kfuncs_init(void)3539 static int __init bpf_kprobe_multi_kfuncs_init(void)
3540 {
3541 return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
3542 }
3543
3544 late_initcall(bpf_kprobe_multi_kfuncs_init);
3545
3546 __bpf_kfunc_start_defs();
3547
bpf_send_signal_task(struct task_struct * task,int sig,enum pid_type type,u64 value)3548 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3549 u64 value)
3550 {
3551 if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3552 return -EINVAL;
3553
3554 return bpf_send_signal_common(sig, type, task, value);
3555 }
3556
3557 __bpf_kfunc_end_defs();
3558