xref: /linux/kernel/bpf/ringbuf.c (revision b676ac484f847bbe5c7d29603f41475b64fefe55)
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14 #include <asm/rqspinlock.h>
15 
16 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
17 
18 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
19 #define RINGBUF_PGOFF \
20 	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
21 /* consumer page and producer page */
22 #define RINGBUF_POS_PAGES 2
23 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
24 
25 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
26 
27 struct bpf_ringbuf {
28 	wait_queue_head_t waitq;
29 	struct irq_work work;
30 	u64 mask;
31 	struct page **pages;
32 	int nr_pages;
33 	rqspinlock_t spinlock ____cacheline_aligned_in_smp;
34 	/* For user-space producer ring buffers, an atomic_t busy bit is used
35 	 * to synchronize access to the ring buffers in the kernel, rather than
36 	 * the spinlock that is used for kernel-producer ring buffers. This is
37 	 * done because the ring buffer must hold a lock across a BPF program's
38 	 * callback:
39 	 *
40 	 *    __bpf_user_ringbuf_peek() // lock acquired
41 	 * -> program callback_fn()
42 	 * -> __bpf_user_ringbuf_sample_release() // lock released
43 	 *
44 	 * It is unsafe and incorrect to hold an IRQ spinlock across what could
45 	 * be a long execution window, so we instead simply disallow concurrent
46 	 * access to the ring buffer by kernel consumers, and return -EBUSY from
47 	 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
48 	 */
49 	atomic_t busy ____cacheline_aligned_in_smp;
50 	/* Consumer and producer counters are put into separate pages to
51 	 * allow each position to be mapped with different permissions.
52 	 * This prevents a user-space application from modifying the
53 	 * position and ruining in-kernel tracking. The permissions of the
54 	 * pages depend on who is producing samples: user-space or the
55 	 * kernel. Note that the pending counter is placed in the same
56 	 * page as the producer, so that it shares the same cache line.
57 	 *
58 	 * Kernel-producer
59 	 * ---------------
60 	 * The producer position and data pages are mapped as r/o in
61 	 * userspace. For this approach, bits in the header of samples are
62 	 * used to signal to user-space, and to other producers, whether a
63 	 * sample is currently being written.
64 	 *
65 	 * User-space producer
66 	 * -------------------
67 	 * Only the page containing the consumer position is mapped r/o in
68 	 * user-space. User-space producers also use bits of the header to
69 	 * communicate to the kernel, but the kernel must carefully check and
70 	 * validate each sample to ensure that they're correctly formatted, and
71 	 * fully contained within the ring buffer.
72 	 */
73 	unsigned long consumer_pos __aligned(PAGE_SIZE);
74 	unsigned long producer_pos __aligned(PAGE_SIZE);
75 	unsigned long pending_pos;
76 	char data[] __aligned(PAGE_SIZE);
77 };
78 
79 struct bpf_ringbuf_map {
80 	struct bpf_map map;
81 	struct bpf_ringbuf *rb;
82 };
83 
84 /* 8-byte ring buffer record header structure */
85 struct bpf_ringbuf_hdr {
86 	u32 len;
87 	u32 pg_off;
88 };
89 
bpf_ringbuf_area_alloc(size_t data_sz,int numa_node)90 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
91 {
92 	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
93 			    __GFP_NOWARN | __GFP_ZERO;
94 	int nr_meta_pages = RINGBUF_NR_META_PAGES;
95 	int nr_data_pages = data_sz >> PAGE_SHIFT;
96 	int nr_pages = nr_meta_pages + nr_data_pages;
97 	struct page **pages, *page;
98 	struct bpf_ringbuf *rb;
99 	size_t array_size;
100 	int i;
101 
102 	/* Each data page is mapped twice to allow "virtual"
103 	 * continuous read of samples wrapping around the end of ring
104 	 * buffer area:
105 	 * ------------------------------------------------------
106 	 * | meta pages |  real data pages  |  same data pages  |
107 	 * ------------------------------------------------------
108 	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
109 	 * ------------------------------------------------------
110 	 * |            | TA             DA | TA             DA |
111 	 * ------------------------------------------------------
112 	 *                               ^^^^^^^
113 	 *                                  |
114 	 * Here, no need to worry about special handling of wrapped-around
115 	 * data due to double-mapped data pages. This works both in kernel and
116 	 * when mmap()'ed in user-space, simplifying both kernel and
117 	 * user-space implementations significantly.
118 	 */
119 	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
120 	pages = bpf_map_area_alloc(array_size, numa_node);
121 	if (!pages)
122 		return NULL;
123 
124 	for (i = 0; i < nr_pages; i++) {
125 		page = alloc_pages_node(numa_node, flags, 0);
126 		if (!page) {
127 			nr_pages = i;
128 			goto err_free_pages;
129 		}
130 		pages[i] = page;
131 		if (i >= nr_meta_pages)
132 			pages[nr_data_pages + i] = page;
133 	}
134 
135 	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
136 		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
137 	if (rb) {
138 		kmemleak_not_leak(pages);
139 		rb->pages = pages;
140 		rb->nr_pages = nr_pages;
141 		return rb;
142 	}
143 
144 err_free_pages:
145 	for (i = 0; i < nr_pages; i++)
146 		__free_page(pages[i]);
147 	bpf_map_area_free(pages);
148 	return NULL;
149 }
150 
bpf_ringbuf_notify(struct irq_work * work)151 static void bpf_ringbuf_notify(struct irq_work *work)
152 {
153 	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
154 
155 	wake_up_all(&rb->waitq);
156 }
157 
158 /* Maximum size of ring buffer area is limited by 32-bit page offset within
159  * record header, counted in pages. Reserve 8 bits for extensibility, and
160  * take into account few extra pages for consumer/producer pages and
161  * non-mmap()'able parts, the current maximum size would be:
162  *
163  *     (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
164  *
165  * This gives 64GB limit, which seems plenty for single ring buffer. Now
166  * considering that the maximum value of data_sz is (4GB - 1), there
167  * will be no overflow, so just note the size limit in the comments.
168  */
bpf_ringbuf_alloc(size_t data_sz,int numa_node)169 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
170 {
171 	struct bpf_ringbuf *rb;
172 
173 	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
174 	if (!rb)
175 		return NULL;
176 
177 	raw_res_spin_lock_init(&rb->spinlock);
178 	atomic_set(&rb->busy, 0);
179 	init_waitqueue_head(&rb->waitq);
180 	init_irq_work(&rb->work, bpf_ringbuf_notify);
181 
182 	rb->mask = data_sz - 1;
183 	rb->consumer_pos = 0;
184 	rb->producer_pos = 0;
185 	rb->pending_pos = 0;
186 
187 	return rb;
188 }
189 
ringbuf_map_alloc(union bpf_attr * attr)190 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
191 {
192 	struct bpf_ringbuf_map *rb_map;
193 
194 	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
195 		return ERR_PTR(-EINVAL);
196 
197 	if (attr->key_size || attr->value_size ||
198 	    !is_power_of_2(attr->max_entries) ||
199 	    !PAGE_ALIGNED(attr->max_entries))
200 		return ERR_PTR(-EINVAL);
201 
202 	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
203 	if (!rb_map)
204 		return ERR_PTR(-ENOMEM);
205 
206 	bpf_map_init_from_attr(&rb_map->map, attr);
207 
208 	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
209 	if (!rb_map->rb) {
210 		bpf_map_area_free(rb_map);
211 		return ERR_PTR(-ENOMEM);
212 	}
213 
214 	return &rb_map->map;
215 }
216 
bpf_ringbuf_free(struct bpf_ringbuf * rb)217 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
218 {
219 	/* copy pages pointer and nr_pages to local variable, as we are going
220 	 * to unmap rb itself with vunmap() below
221 	 */
222 	struct page **pages = rb->pages;
223 	int i, nr_pages = rb->nr_pages;
224 
225 	vunmap(rb);
226 	for (i = 0; i < nr_pages; i++)
227 		__free_page(pages[i]);
228 	bpf_map_area_free(pages);
229 }
230 
ringbuf_map_free(struct bpf_map * map)231 static void ringbuf_map_free(struct bpf_map *map)
232 {
233 	struct bpf_ringbuf_map *rb_map;
234 
235 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
236 	bpf_ringbuf_free(rb_map->rb);
237 	bpf_map_area_free(rb_map);
238 }
239 
ringbuf_map_lookup_elem(struct bpf_map * map,void * key)240 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
241 {
242 	return ERR_PTR(-ENOTSUPP);
243 }
244 
ringbuf_map_update_elem(struct bpf_map * map,void * key,void * value,u64 flags)245 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
246 				    u64 flags)
247 {
248 	return -ENOTSUPP;
249 }
250 
ringbuf_map_delete_elem(struct bpf_map * map,void * key)251 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
252 {
253 	return -ENOTSUPP;
254 }
255 
ringbuf_map_get_next_key(struct bpf_map * map,void * key,void * next_key)256 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
257 				    void *next_key)
258 {
259 	return -ENOTSUPP;
260 }
261 
ringbuf_map_mmap_kern(struct bpf_map * map,struct vm_area_struct * vma)262 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
263 {
264 	struct bpf_ringbuf_map *rb_map;
265 
266 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
267 
268 	if (vma->vm_flags & VM_WRITE) {
269 		/* allow writable mapping for the consumer_pos only */
270 		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
271 			return -EPERM;
272 	}
273 	/* remap_vmalloc_range() checks size and offset constraints */
274 	return remap_vmalloc_range(vma, rb_map->rb,
275 				   vma->vm_pgoff + RINGBUF_PGOFF);
276 }
277 
ringbuf_map_mmap_user(struct bpf_map * map,struct vm_area_struct * vma)278 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
279 {
280 	struct bpf_ringbuf_map *rb_map;
281 
282 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
283 
284 	if (vma->vm_flags & VM_WRITE) {
285 		if (vma->vm_pgoff == 0)
286 			/* Disallow writable mappings to the consumer pointer,
287 			 * and allow writable mappings to both the producer
288 			 * position, and the ring buffer data itself.
289 			 */
290 			return -EPERM;
291 	}
292 	/* remap_vmalloc_range() checks size and offset constraints */
293 	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
294 }
295 
ringbuf_avail_data_sz(struct bpf_ringbuf * rb)296 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
297 {
298 	unsigned long cons_pos, prod_pos;
299 
300 	cons_pos = smp_load_acquire(&rb->consumer_pos);
301 	prod_pos = smp_load_acquire(&rb->producer_pos);
302 	return prod_pos - cons_pos;
303 }
304 
ringbuf_total_data_sz(const struct bpf_ringbuf * rb)305 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
306 {
307 	return rb->mask + 1;
308 }
309 
ringbuf_map_poll_kern(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)310 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
311 				      struct poll_table_struct *pts)
312 {
313 	struct bpf_ringbuf_map *rb_map;
314 
315 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
316 	poll_wait(filp, &rb_map->rb->waitq, pts);
317 
318 	if (ringbuf_avail_data_sz(rb_map->rb))
319 		return EPOLLIN | EPOLLRDNORM;
320 	return 0;
321 }
322 
ringbuf_map_poll_user(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)323 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
324 				      struct poll_table_struct *pts)
325 {
326 	struct bpf_ringbuf_map *rb_map;
327 
328 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
329 	poll_wait(filp, &rb_map->rb->waitq, pts);
330 
331 	if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
332 		return EPOLLOUT | EPOLLWRNORM;
333 	return 0;
334 }
335 
ringbuf_map_mem_usage(const struct bpf_map * map)336 static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
337 {
338 	struct bpf_ringbuf *rb;
339 	int nr_data_pages;
340 	int nr_meta_pages;
341 	u64 usage = sizeof(struct bpf_ringbuf_map);
342 
343 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
344 	usage += (u64)rb->nr_pages << PAGE_SHIFT;
345 	nr_meta_pages = RINGBUF_NR_META_PAGES;
346 	nr_data_pages = map->max_entries >> PAGE_SHIFT;
347 	usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
348 	return usage;
349 }
350 
351 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
352 const struct bpf_map_ops ringbuf_map_ops = {
353 	.map_meta_equal = bpf_map_meta_equal,
354 	.map_alloc = ringbuf_map_alloc,
355 	.map_free = ringbuf_map_free,
356 	.map_mmap = ringbuf_map_mmap_kern,
357 	.map_poll = ringbuf_map_poll_kern,
358 	.map_lookup_elem = ringbuf_map_lookup_elem,
359 	.map_update_elem = ringbuf_map_update_elem,
360 	.map_delete_elem = ringbuf_map_delete_elem,
361 	.map_get_next_key = ringbuf_map_get_next_key,
362 	.map_mem_usage = ringbuf_map_mem_usage,
363 	.map_btf_id = &ringbuf_map_btf_ids[0],
364 };
365 
366 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
367 const struct bpf_map_ops user_ringbuf_map_ops = {
368 	.map_meta_equal = bpf_map_meta_equal,
369 	.map_alloc = ringbuf_map_alloc,
370 	.map_free = ringbuf_map_free,
371 	.map_mmap = ringbuf_map_mmap_user,
372 	.map_poll = ringbuf_map_poll_user,
373 	.map_lookup_elem = ringbuf_map_lookup_elem,
374 	.map_update_elem = ringbuf_map_update_elem,
375 	.map_delete_elem = ringbuf_map_delete_elem,
376 	.map_get_next_key = ringbuf_map_get_next_key,
377 	.map_mem_usage = ringbuf_map_mem_usage,
378 	.map_btf_id = &user_ringbuf_map_btf_ids[0],
379 };
380 
381 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
382  * calculate offset from record metadata to ring buffer in pages, rounded
383  * down. This page offset is stored as part of record metadata and allows to
384  * restore struct bpf_ringbuf * from record pointer. This page offset is
385  * stored at offset 4 of record metadata header.
386  */
bpf_ringbuf_rec_pg_off(struct bpf_ringbuf * rb,struct bpf_ringbuf_hdr * hdr)387 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
388 				     struct bpf_ringbuf_hdr *hdr)
389 {
390 	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
391 }
392 
393 /* Given pointer to ring buffer record header, restore pointer to struct
394  * bpf_ringbuf itself by using page offset stored at offset 4
395  */
396 static struct bpf_ringbuf *
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr * hdr)397 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
398 {
399 	unsigned long addr = (unsigned long)(void *)hdr;
400 	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
401 
402 	return (void*)((addr & PAGE_MASK) - off);
403 }
404 
__bpf_ringbuf_reserve(struct bpf_ringbuf * rb,u64 size)405 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
406 {
407 	unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags;
408 	struct bpf_ringbuf_hdr *hdr;
409 	u32 len, pg_off, tmp_size, hdr_len;
410 
411 	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
412 		return NULL;
413 
414 	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
415 	if (len > ringbuf_total_data_sz(rb))
416 		return NULL;
417 
418 	cons_pos = smp_load_acquire(&rb->consumer_pos);
419 
420 	if (raw_res_spin_lock_irqsave(&rb->spinlock, flags))
421 		return NULL;
422 
423 	pend_pos = rb->pending_pos;
424 	prod_pos = rb->producer_pos;
425 	new_prod_pos = prod_pos + len;
426 
427 	while (pend_pos < prod_pos) {
428 		hdr = (void *)rb->data + (pend_pos & rb->mask);
429 		hdr_len = READ_ONCE(hdr->len);
430 		if (hdr_len & BPF_RINGBUF_BUSY_BIT)
431 			break;
432 		tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT;
433 		tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8);
434 		pend_pos += tmp_size;
435 	}
436 	rb->pending_pos = pend_pos;
437 
438 	/* check for out of ringbuf space:
439 	 * - by ensuring producer position doesn't advance more than
440 	 *   (ringbuf_size - 1) ahead
441 	 * - by ensuring oldest not yet committed record until newest
442 	 *   record does not span more than (ringbuf_size - 1)
443 	 */
444 	if (new_prod_pos - cons_pos > rb->mask ||
445 	    new_prod_pos - pend_pos > rb->mask) {
446 		raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
447 		return NULL;
448 	}
449 
450 	hdr = (void *)rb->data + (prod_pos & rb->mask);
451 	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
452 	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
453 	hdr->pg_off = pg_off;
454 
455 	/* pairs with consumer's smp_load_acquire() */
456 	smp_store_release(&rb->producer_pos, new_prod_pos);
457 
458 	raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
459 
460 	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
461 }
462 
BPF_CALL_3(bpf_ringbuf_reserve,struct bpf_map *,map,u64,size,u64,flags)463 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
464 {
465 	struct bpf_ringbuf_map *rb_map;
466 
467 	if (unlikely(flags))
468 		return 0;
469 
470 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
471 	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
472 }
473 
474 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
475 	.func		= bpf_ringbuf_reserve,
476 	.ret_type	= RET_PTR_TO_RINGBUF_MEM_OR_NULL,
477 	.arg1_type	= ARG_CONST_MAP_PTR,
478 	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
479 	.arg3_type	= ARG_ANYTHING,
480 };
481 
bpf_ringbuf_commit(void * sample,u64 flags,bool discard)482 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
483 {
484 	unsigned long rec_pos, cons_pos;
485 	struct bpf_ringbuf_hdr *hdr;
486 	struct bpf_ringbuf *rb;
487 	u32 new_len;
488 
489 	hdr = sample - BPF_RINGBUF_HDR_SZ;
490 	rb = bpf_ringbuf_restore_from_rec(hdr);
491 	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
492 	if (discard)
493 		new_len |= BPF_RINGBUF_DISCARD_BIT;
494 
495 	/* update record header with correct final size prefix */
496 	xchg(&hdr->len, new_len);
497 
498 	/* if consumer caught up and is waiting for our record, notify about
499 	 * new data availability
500 	 */
501 	rec_pos = (void *)hdr - (void *)rb->data;
502 	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
503 
504 	if (flags & BPF_RB_FORCE_WAKEUP)
505 		irq_work_queue(&rb->work);
506 	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
507 		irq_work_queue(&rb->work);
508 }
509 
BPF_CALL_2(bpf_ringbuf_submit,void *,sample,u64,flags)510 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
511 {
512 	bpf_ringbuf_commit(sample, flags, false /* discard */);
513 	return 0;
514 }
515 
516 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
517 	.func		= bpf_ringbuf_submit,
518 	.ret_type	= RET_VOID,
519 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
520 	.arg2_type	= ARG_ANYTHING,
521 };
522 
BPF_CALL_2(bpf_ringbuf_discard,void *,sample,u64,flags)523 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
524 {
525 	bpf_ringbuf_commit(sample, flags, true /* discard */);
526 	return 0;
527 }
528 
529 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
530 	.func		= bpf_ringbuf_discard,
531 	.ret_type	= RET_VOID,
532 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
533 	.arg2_type	= ARG_ANYTHING,
534 };
535 
BPF_CALL_4(bpf_ringbuf_output,struct bpf_map *,map,void *,data,u64,size,u64,flags)536 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
537 	   u64, flags)
538 {
539 	struct bpf_ringbuf_map *rb_map;
540 	void *rec;
541 
542 	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
543 		return -EINVAL;
544 
545 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
546 	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
547 	if (!rec)
548 		return -EAGAIN;
549 
550 	memcpy(rec, data, size);
551 	bpf_ringbuf_commit(rec, flags, false /* discard */);
552 	return 0;
553 }
554 
555 const struct bpf_func_proto bpf_ringbuf_output_proto = {
556 	.func		= bpf_ringbuf_output,
557 	.ret_type	= RET_INTEGER,
558 	.arg1_type	= ARG_CONST_MAP_PTR,
559 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
560 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
561 	.arg4_type	= ARG_ANYTHING,
562 };
563 
BPF_CALL_2(bpf_ringbuf_query,struct bpf_map *,map,u64,flags)564 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
565 {
566 	struct bpf_ringbuf *rb;
567 
568 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
569 
570 	switch (flags) {
571 	case BPF_RB_AVAIL_DATA:
572 		return ringbuf_avail_data_sz(rb);
573 	case BPF_RB_RING_SIZE:
574 		return ringbuf_total_data_sz(rb);
575 	case BPF_RB_CONS_POS:
576 		return smp_load_acquire(&rb->consumer_pos);
577 	case BPF_RB_PROD_POS:
578 		return smp_load_acquire(&rb->producer_pos);
579 	default:
580 		return 0;
581 	}
582 }
583 
584 const struct bpf_func_proto bpf_ringbuf_query_proto = {
585 	.func		= bpf_ringbuf_query,
586 	.ret_type	= RET_INTEGER,
587 	.arg1_type	= ARG_CONST_MAP_PTR,
588 	.arg2_type	= ARG_ANYTHING,
589 };
590 
BPF_CALL_4(bpf_ringbuf_reserve_dynptr,struct bpf_map *,map,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)591 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
592 	   struct bpf_dynptr_kern *, ptr)
593 {
594 	struct bpf_ringbuf_map *rb_map;
595 	void *sample;
596 	int err;
597 
598 	if (unlikely(flags)) {
599 		bpf_dynptr_set_null(ptr);
600 		return -EINVAL;
601 	}
602 
603 	err = bpf_dynptr_check_size(size);
604 	if (err) {
605 		bpf_dynptr_set_null(ptr);
606 		return err;
607 	}
608 
609 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
610 
611 	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
612 	if (!sample) {
613 		bpf_dynptr_set_null(ptr);
614 		return -EINVAL;
615 	}
616 
617 	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
618 
619 	return 0;
620 }
621 
622 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
623 	.func		= bpf_ringbuf_reserve_dynptr,
624 	.ret_type	= RET_INTEGER,
625 	.arg1_type	= ARG_CONST_MAP_PTR,
626 	.arg2_type	= ARG_ANYTHING,
627 	.arg3_type	= ARG_ANYTHING,
628 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE,
629 };
630 
BPF_CALL_2(bpf_ringbuf_submit_dynptr,struct bpf_dynptr_kern *,ptr,u64,flags)631 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
632 {
633 	if (!ptr->data)
634 		return 0;
635 
636 	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
637 
638 	bpf_dynptr_set_null(ptr);
639 
640 	return 0;
641 }
642 
643 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
644 	.func		= bpf_ringbuf_submit_dynptr,
645 	.ret_type	= RET_VOID,
646 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
647 	.arg2_type	= ARG_ANYTHING,
648 };
649 
BPF_CALL_2(bpf_ringbuf_discard_dynptr,struct bpf_dynptr_kern *,ptr,u64,flags)650 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
651 {
652 	if (!ptr->data)
653 		return 0;
654 
655 	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
656 
657 	bpf_dynptr_set_null(ptr);
658 
659 	return 0;
660 }
661 
662 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
663 	.func		= bpf_ringbuf_discard_dynptr,
664 	.ret_type	= RET_VOID,
665 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
666 	.arg2_type	= ARG_ANYTHING,
667 };
668 
__bpf_user_ringbuf_peek(struct bpf_ringbuf * rb,void ** sample,u32 * size)669 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
670 {
671 	int err;
672 	u32 hdr_len, sample_len, total_len, flags, *hdr;
673 	u64 cons_pos, prod_pos;
674 
675 	/* Synchronizes with smp_store_release() in user-space producer. */
676 	prod_pos = smp_load_acquire(&rb->producer_pos);
677 	if (prod_pos % 8)
678 		return -EINVAL;
679 
680 	/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
681 	cons_pos = smp_load_acquire(&rb->consumer_pos);
682 	if (cons_pos >= prod_pos)
683 		return -ENODATA;
684 
685 	hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
686 	/* Synchronizes with smp_store_release() in user-space producer. */
687 	hdr_len = smp_load_acquire(hdr);
688 	flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
689 	sample_len = hdr_len & ~flags;
690 	total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
691 
692 	/* The sample must fit within the region advertised by the producer position. */
693 	if (total_len > prod_pos - cons_pos)
694 		return -EINVAL;
695 
696 	/* The sample must fit within the data region of the ring buffer. */
697 	if (total_len > ringbuf_total_data_sz(rb))
698 		return -E2BIG;
699 
700 	/* The sample must fit into a struct bpf_dynptr. */
701 	err = bpf_dynptr_check_size(sample_len);
702 	if (err)
703 		return -E2BIG;
704 
705 	if (flags & BPF_RINGBUF_DISCARD_BIT) {
706 		/* If the discard bit is set, the sample should be skipped.
707 		 *
708 		 * Update the consumer pos, and return -EAGAIN so the caller
709 		 * knows to skip this sample and try to read the next one.
710 		 */
711 		smp_store_release(&rb->consumer_pos, cons_pos + total_len);
712 		return -EAGAIN;
713 	}
714 
715 	if (flags & BPF_RINGBUF_BUSY_BIT)
716 		return -ENODATA;
717 
718 	*sample = (void *)((uintptr_t)rb->data +
719 			   (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
720 	*size = sample_len;
721 	return 0;
722 }
723 
__bpf_user_ringbuf_sample_release(struct bpf_ringbuf * rb,size_t size,u64 flags)724 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
725 {
726 	u64 consumer_pos;
727 	u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
728 
729 	/* Using smp_load_acquire() is unnecessary here, as the busy-bit
730 	 * prevents another task from writing to consumer_pos after it was read
731 	 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
732 	 */
733 	consumer_pos = rb->consumer_pos;
734 	 /* Synchronizes with smp_load_acquire() in user-space producer. */
735 	smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
736 }
737 
BPF_CALL_4(bpf_user_ringbuf_drain,struct bpf_map *,map,void *,callback_fn,void *,callback_ctx,u64,flags)738 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
739 	   void *, callback_fn, void *, callback_ctx, u64, flags)
740 {
741 	struct bpf_ringbuf *rb;
742 	long samples, discarded_samples = 0, ret = 0;
743 	bpf_callback_t callback = (bpf_callback_t)callback_fn;
744 	u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
745 	int busy = 0;
746 
747 	if (unlikely(flags & ~wakeup_flags))
748 		return -EINVAL;
749 
750 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
751 
752 	/* If another consumer is already consuming a sample, wait for them to finish. */
753 	if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
754 		return -EBUSY;
755 
756 	for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
757 		int err;
758 		u32 size;
759 		void *sample;
760 		struct bpf_dynptr_kern dynptr;
761 
762 		err = __bpf_user_ringbuf_peek(rb, &sample, &size);
763 		if (err) {
764 			if (err == -ENODATA) {
765 				break;
766 			} else if (err == -EAGAIN) {
767 				discarded_samples++;
768 				continue;
769 			} else {
770 				ret = err;
771 				goto schedule_work_return;
772 			}
773 		}
774 
775 		bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
776 		ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
777 		__bpf_user_ringbuf_sample_release(rb, size, flags);
778 	}
779 	ret = samples - discarded_samples;
780 
781 schedule_work_return:
782 	/* Prevent the clearing of the busy-bit from being reordered before the
783 	 * storing of any rb consumer or producer positions.
784 	 */
785 	atomic_set_release(&rb->busy, 0);
786 
787 	if (flags & BPF_RB_FORCE_WAKEUP)
788 		irq_work_queue(&rb->work);
789 	else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
790 		irq_work_queue(&rb->work);
791 	return ret;
792 }
793 
794 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
795 	.func		= bpf_user_ringbuf_drain,
796 	.ret_type	= RET_INTEGER,
797 	.arg1_type	= ARG_CONST_MAP_PTR,
798 	.arg2_type	= ARG_PTR_TO_FUNC,
799 	.arg3_type	= ARG_PTR_TO_STACK_OR_NULL,
800 	.arg4_type	= ARG_ANYTHING,
801 };
802