xref: /linux/kernel/bpf/ringbuf.c (revision ba36dd5ee6fd4643ebbf6ee6eefcecf0b07e35c7)
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14 #include <asm/rqspinlock.h>
15 
16 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
17 
18 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
19 #define RINGBUF_PGOFF \
20 	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
21 /* consumer page and producer page */
22 #define RINGBUF_POS_PAGES 2
23 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
24 
25 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
26 
27 struct bpf_ringbuf {
28 	wait_queue_head_t waitq;
29 	struct irq_work work;
30 	u64 mask;
31 	struct page **pages;
32 	int nr_pages;
33 	rqspinlock_t spinlock ____cacheline_aligned_in_smp;
34 	/* For user-space producer ring buffers, an atomic_t busy bit is used
35 	 * to synchronize access to the ring buffers in the kernel, rather than
36 	 * the spinlock that is used for kernel-producer ring buffers. This is
37 	 * done because the ring buffer must hold a lock across a BPF program's
38 	 * callback:
39 	 *
40 	 *    __bpf_user_ringbuf_peek() // lock acquired
41 	 * -> program callback_fn()
42 	 * -> __bpf_user_ringbuf_sample_release() // lock released
43 	 *
44 	 * It is unsafe and incorrect to hold an IRQ spinlock across what could
45 	 * be a long execution window, so we instead simply disallow concurrent
46 	 * access to the ring buffer by kernel consumers, and return -EBUSY from
47 	 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
48 	 */
49 	atomic_t busy ____cacheline_aligned_in_smp;
50 	/* Consumer and producer counters are put into separate pages to
51 	 * allow each position to be mapped with different permissions.
52 	 * This prevents a user-space application from modifying the
53 	 * position and ruining in-kernel tracking. The permissions of the
54 	 * pages depend on who is producing samples: user-space or the
55 	 * kernel. Note that the pending counter is placed in the same
56 	 * page as the producer, so that it shares the same cache line.
57 	 *
58 	 * Kernel-producer
59 	 * ---------------
60 	 * The producer position and data pages are mapped as r/o in
61 	 * userspace. For this approach, bits in the header of samples are
62 	 * used to signal to user-space, and to other producers, whether a
63 	 * sample is currently being written.
64 	 *
65 	 * User-space producer
66 	 * -------------------
67 	 * Only the page containing the consumer position is mapped r/o in
68 	 * user-space. User-space producers also use bits of the header to
69 	 * communicate to the kernel, but the kernel must carefully check and
70 	 * validate each sample to ensure that they're correctly formatted, and
71 	 * fully contained within the ring buffer.
72 	 */
73 	unsigned long consumer_pos __aligned(PAGE_SIZE);
74 	unsigned long producer_pos __aligned(PAGE_SIZE);
75 	unsigned long pending_pos;
76 	char data[] __aligned(PAGE_SIZE);
77 };
78 
79 struct bpf_ringbuf_map {
80 	struct bpf_map map;
81 	struct bpf_ringbuf *rb;
82 };
83 
84 /* 8-byte ring buffer record header structure */
85 struct bpf_ringbuf_hdr {
86 	u32 len;
87 	u32 pg_off;
88 };
89 
bpf_ringbuf_area_alloc(size_t data_sz,int numa_node)90 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
91 {
92 	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
93 			    __GFP_NOWARN | __GFP_ZERO;
94 	int nr_meta_pages = RINGBUF_NR_META_PAGES;
95 	int nr_data_pages = data_sz >> PAGE_SHIFT;
96 	int nr_pages = nr_meta_pages + nr_data_pages;
97 	struct page **pages, *page;
98 	struct bpf_ringbuf *rb;
99 	size_t array_size;
100 	int i;
101 
102 	/* Each data page is mapped twice to allow "virtual"
103 	 * continuous read of samples wrapping around the end of ring
104 	 * buffer area:
105 	 * ------------------------------------------------------
106 	 * | meta pages |  real data pages  |  same data pages  |
107 	 * ------------------------------------------------------
108 	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
109 	 * ------------------------------------------------------
110 	 * |            | TA             DA | TA             DA |
111 	 * ------------------------------------------------------
112 	 *                               ^^^^^^^
113 	 *                                  |
114 	 * Here, no need to worry about special handling of wrapped-around
115 	 * data due to double-mapped data pages. This works both in kernel and
116 	 * when mmap()'ed in user-space, simplifying both kernel and
117 	 * user-space implementations significantly.
118 	 */
119 	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
120 	pages = bpf_map_area_alloc(array_size, numa_node);
121 	if (!pages)
122 		return NULL;
123 
124 	for (i = 0; i < nr_pages; i++) {
125 		page = alloc_pages_node(numa_node, flags, 0);
126 		if (!page) {
127 			nr_pages = i;
128 			goto err_free_pages;
129 		}
130 		pages[i] = page;
131 		if (i >= nr_meta_pages)
132 			pages[nr_data_pages + i] = page;
133 	}
134 
135 	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
136 		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
137 	if (rb) {
138 		kmemleak_not_leak(pages);
139 		rb->pages = pages;
140 		rb->nr_pages = nr_pages;
141 		return rb;
142 	}
143 
144 err_free_pages:
145 	for (i = 0; i < nr_pages; i++)
146 		__free_page(pages[i]);
147 	bpf_map_area_free(pages);
148 	return NULL;
149 }
150 
bpf_ringbuf_notify(struct irq_work * work)151 static void bpf_ringbuf_notify(struct irq_work *work)
152 {
153 	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
154 
155 	wake_up_all(&rb->waitq);
156 }
157 
158 /* Maximum size of ring buffer area is limited by 32-bit page offset within
159  * record header, counted in pages. Reserve 8 bits for extensibility, and
160  * take into account few extra pages for consumer/producer pages and
161  * non-mmap()'able parts, the current maximum size would be:
162  *
163  *     (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
164  *
165  * This gives 64GB limit, which seems plenty for single ring buffer. Now
166  * considering that the maximum value of data_sz is (4GB - 1), there
167  * will be no overflow, so just note the size limit in the comments.
168  */
bpf_ringbuf_alloc(size_t data_sz,int numa_node)169 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
170 {
171 	struct bpf_ringbuf *rb;
172 
173 	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
174 	if (!rb)
175 		return NULL;
176 
177 	raw_res_spin_lock_init(&rb->spinlock);
178 	atomic_set(&rb->busy, 0);
179 	init_waitqueue_head(&rb->waitq);
180 	init_irq_work(&rb->work, bpf_ringbuf_notify);
181 
182 	rb->mask = data_sz - 1;
183 	rb->consumer_pos = 0;
184 	rb->producer_pos = 0;
185 	rb->pending_pos = 0;
186 
187 	return rb;
188 }
189 
ringbuf_map_alloc(union bpf_attr * attr)190 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
191 {
192 	struct bpf_ringbuf_map *rb_map;
193 
194 	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
195 		return ERR_PTR(-EINVAL);
196 
197 	if (attr->key_size || attr->value_size ||
198 	    !is_power_of_2(attr->max_entries) ||
199 	    !PAGE_ALIGNED(attr->max_entries))
200 		return ERR_PTR(-EINVAL);
201 
202 	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
203 	if (!rb_map)
204 		return ERR_PTR(-ENOMEM);
205 
206 	bpf_map_init_from_attr(&rb_map->map, attr);
207 
208 	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
209 	if (!rb_map->rb) {
210 		bpf_map_area_free(rb_map);
211 		return ERR_PTR(-ENOMEM);
212 	}
213 
214 	return &rb_map->map;
215 }
216 
bpf_ringbuf_free(struct bpf_ringbuf * rb)217 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
218 {
219 	irq_work_sync(&rb->work);
220 
221 	/* copy pages pointer and nr_pages to local variable, as we are going
222 	 * to unmap rb itself with vunmap() below
223 	 */
224 	struct page **pages = rb->pages;
225 	int i, nr_pages = rb->nr_pages;
226 
227 	vunmap(rb);
228 	for (i = 0; i < nr_pages; i++)
229 		__free_page(pages[i]);
230 	bpf_map_area_free(pages);
231 }
232 
ringbuf_map_free(struct bpf_map * map)233 static void ringbuf_map_free(struct bpf_map *map)
234 {
235 	struct bpf_ringbuf_map *rb_map;
236 
237 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
238 	bpf_ringbuf_free(rb_map->rb);
239 	bpf_map_area_free(rb_map);
240 }
241 
ringbuf_map_lookup_elem(struct bpf_map * map,void * key)242 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
243 {
244 	return ERR_PTR(-ENOTSUPP);
245 }
246 
ringbuf_map_update_elem(struct bpf_map * map,void * key,void * value,u64 flags)247 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
248 				    u64 flags)
249 {
250 	return -ENOTSUPP;
251 }
252 
ringbuf_map_delete_elem(struct bpf_map * map,void * key)253 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
254 {
255 	return -ENOTSUPP;
256 }
257 
ringbuf_map_get_next_key(struct bpf_map * map,void * key,void * next_key)258 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
259 				    void *next_key)
260 {
261 	return -ENOTSUPP;
262 }
263 
ringbuf_map_mmap_kern(struct bpf_map * map,struct vm_area_struct * vma)264 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
265 {
266 	struct bpf_ringbuf_map *rb_map;
267 
268 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
269 
270 	if (vma->vm_flags & VM_WRITE) {
271 		/* allow writable mapping for the consumer_pos only */
272 		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
273 			return -EPERM;
274 	}
275 	/* remap_vmalloc_range() checks size and offset constraints */
276 	return remap_vmalloc_range(vma, rb_map->rb,
277 				   vma->vm_pgoff + RINGBUF_PGOFF);
278 }
279 
ringbuf_map_mmap_user(struct bpf_map * map,struct vm_area_struct * vma)280 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
281 {
282 	struct bpf_ringbuf_map *rb_map;
283 
284 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
285 
286 	if (vma->vm_flags & VM_WRITE) {
287 		if (vma->vm_pgoff == 0)
288 			/* Disallow writable mappings to the consumer pointer,
289 			 * and allow writable mappings to both the producer
290 			 * position, and the ring buffer data itself.
291 			 */
292 			return -EPERM;
293 	}
294 	/* remap_vmalloc_range() checks size and offset constraints */
295 	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
296 }
297 
ringbuf_avail_data_sz(struct bpf_ringbuf * rb)298 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
299 {
300 	unsigned long cons_pos, prod_pos;
301 
302 	cons_pos = smp_load_acquire(&rb->consumer_pos);
303 	prod_pos = smp_load_acquire(&rb->producer_pos);
304 	return prod_pos - cons_pos;
305 }
306 
ringbuf_total_data_sz(const struct bpf_ringbuf * rb)307 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
308 {
309 	return rb->mask + 1;
310 }
311 
ringbuf_map_poll_kern(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)312 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
313 				      struct poll_table_struct *pts)
314 {
315 	struct bpf_ringbuf_map *rb_map;
316 
317 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
318 	poll_wait(filp, &rb_map->rb->waitq, pts);
319 
320 	if (ringbuf_avail_data_sz(rb_map->rb))
321 		return EPOLLIN | EPOLLRDNORM;
322 	return 0;
323 }
324 
ringbuf_map_poll_user(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)325 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
326 				      struct poll_table_struct *pts)
327 {
328 	struct bpf_ringbuf_map *rb_map;
329 
330 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
331 	poll_wait(filp, &rb_map->rb->waitq, pts);
332 
333 	if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
334 		return EPOLLOUT | EPOLLWRNORM;
335 	return 0;
336 }
337 
ringbuf_map_mem_usage(const struct bpf_map * map)338 static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
339 {
340 	struct bpf_ringbuf *rb;
341 	int nr_data_pages;
342 	int nr_meta_pages;
343 	u64 usage = sizeof(struct bpf_ringbuf_map);
344 
345 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
346 	usage += (u64)rb->nr_pages << PAGE_SHIFT;
347 	nr_meta_pages = RINGBUF_NR_META_PAGES;
348 	nr_data_pages = map->max_entries >> PAGE_SHIFT;
349 	usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
350 	return usage;
351 }
352 
353 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
354 const struct bpf_map_ops ringbuf_map_ops = {
355 	.map_meta_equal = bpf_map_meta_equal,
356 	.map_alloc = ringbuf_map_alloc,
357 	.map_free = ringbuf_map_free,
358 	.map_mmap = ringbuf_map_mmap_kern,
359 	.map_poll = ringbuf_map_poll_kern,
360 	.map_lookup_elem = ringbuf_map_lookup_elem,
361 	.map_update_elem = ringbuf_map_update_elem,
362 	.map_delete_elem = ringbuf_map_delete_elem,
363 	.map_get_next_key = ringbuf_map_get_next_key,
364 	.map_mem_usage = ringbuf_map_mem_usage,
365 	.map_btf_id = &ringbuf_map_btf_ids[0],
366 };
367 
368 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
369 const struct bpf_map_ops user_ringbuf_map_ops = {
370 	.map_meta_equal = bpf_map_meta_equal,
371 	.map_alloc = ringbuf_map_alloc,
372 	.map_free = ringbuf_map_free,
373 	.map_mmap = ringbuf_map_mmap_user,
374 	.map_poll = ringbuf_map_poll_user,
375 	.map_lookup_elem = ringbuf_map_lookup_elem,
376 	.map_update_elem = ringbuf_map_update_elem,
377 	.map_delete_elem = ringbuf_map_delete_elem,
378 	.map_get_next_key = ringbuf_map_get_next_key,
379 	.map_mem_usage = ringbuf_map_mem_usage,
380 	.map_btf_id = &user_ringbuf_map_btf_ids[0],
381 };
382 
383 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
384  * calculate offset from record metadata to ring buffer in pages, rounded
385  * down. This page offset is stored as part of record metadata and allows to
386  * restore struct bpf_ringbuf * from record pointer. This page offset is
387  * stored at offset 4 of record metadata header.
388  */
bpf_ringbuf_rec_pg_off(struct bpf_ringbuf * rb,struct bpf_ringbuf_hdr * hdr)389 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
390 				     struct bpf_ringbuf_hdr *hdr)
391 {
392 	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
393 }
394 
395 /* Given pointer to ring buffer record header, restore pointer to struct
396  * bpf_ringbuf itself by using page offset stored at offset 4
397  */
398 static struct bpf_ringbuf *
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr * hdr)399 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
400 {
401 	unsigned long addr = (unsigned long)(void *)hdr;
402 	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
403 
404 	return (void*)((addr & PAGE_MASK) - off);
405 }
406 
__bpf_ringbuf_reserve(struct bpf_ringbuf * rb,u64 size)407 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
408 {
409 	unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags;
410 	struct bpf_ringbuf_hdr *hdr;
411 	u32 len, pg_off, tmp_size, hdr_len;
412 
413 	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
414 		return NULL;
415 
416 	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
417 	if (len > ringbuf_total_data_sz(rb))
418 		return NULL;
419 
420 	cons_pos = smp_load_acquire(&rb->consumer_pos);
421 
422 	if (raw_res_spin_lock_irqsave(&rb->spinlock, flags))
423 		return NULL;
424 
425 	pend_pos = rb->pending_pos;
426 	prod_pos = rb->producer_pos;
427 	new_prod_pos = prod_pos + len;
428 
429 	while (pend_pos < prod_pos) {
430 		hdr = (void *)rb->data + (pend_pos & rb->mask);
431 		hdr_len = READ_ONCE(hdr->len);
432 		if (hdr_len & BPF_RINGBUF_BUSY_BIT)
433 			break;
434 		tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT;
435 		tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8);
436 		pend_pos += tmp_size;
437 	}
438 	rb->pending_pos = pend_pos;
439 
440 	/* check for out of ringbuf space:
441 	 * - by ensuring producer position doesn't advance more than
442 	 *   (ringbuf_size - 1) ahead
443 	 * - by ensuring oldest not yet committed record until newest
444 	 *   record does not span more than (ringbuf_size - 1)
445 	 */
446 	if (new_prod_pos - cons_pos > rb->mask ||
447 	    new_prod_pos - pend_pos > rb->mask) {
448 		raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
449 		return NULL;
450 	}
451 
452 	hdr = (void *)rb->data + (prod_pos & rb->mask);
453 	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
454 	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
455 	hdr->pg_off = pg_off;
456 
457 	/* pairs with consumer's smp_load_acquire() */
458 	smp_store_release(&rb->producer_pos, new_prod_pos);
459 
460 	raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
461 
462 	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
463 }
464 
BPF_CALL_3(bpf_ringbuf_reserve,struct bpf_map *,map,u64,size,u64,flags)465 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
466 {
467 	struct bpf_ringbuf_map *rb_map;
468 
469 	if (unlikely(flags))
470 		return 0;
471 
472 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
473 	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
474 }
475 
476 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
477 	.func		= bpf_ringbuf_reserve,
478 	.ret_type	= RET_PTR_TO_RINGBUF_MEM_OR_NULL,
479 	.arg1_type	= ARG_CONST_MAP_PTR,
480 	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
481 	.arg3_type	= ARG_ANYTHING,
482 };
483 
bpf_ringbuf_commit(void * sample,u64 flags,bool discard)484 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
485 {
486 	unsigned long rec_pos, cons_pos;
487 	struct bpf_ringbuf_hdr *hdr;
488 	struct bpf_ringbuf *rb;
489 	u32 new_len;
490 
491 	hdr = sample - BPF_RINGBUF_HDR_SZ;
492 	rb = bpf_ringbuf_restore_from_rec(hdr);
493 	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
494 	if (discard)
495 		new_len |= BPF_RINGBUF_DISCARD_BIT;
496 
497 	/* update record header with correct final size prefix */
498 	xchg(&hdr->len, new_len);
499 
500 	/* if consumer caught up and is waiting for our record, notify about
501 	 * new data availability
502 	 */
503 	rec_pos = (void *)hdr - (void *)rb->data;
504 	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
505 
506 	if (flags & BPF_RB_FORCE_WAKEUP)
507 		irq_work_queue(&rb->work);
508 	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
509 		irq_work_queue(&rb->work);
510 }
511 
BPF_CALL_2(bpf_ringbuf_submit,void *,sample,u64,flags)512 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
513 {
514 	bpf_ringbuf_commit(sample, flags, false /* discard */);
515 	return 0;
516 }
517 
518 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
519 	.func		= bpf_ringbuf_submit,
520 	.ret_type	= RET_VOID,
521 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
522 	.arg2_type	= ARG_ANYTHING,
523 };
524 
BPF_CALL_2(bpf_ringbuf_discard,void *,sample,u64,flags)525 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
526 {
527 	bpf_ringbuf_commit(sample, flags, true /* discard */);
528 	return 0;
529 }
530 
531 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
532 	.func		= bpf_ringbuf_discard,
533 	.ret_type	= RET_VOID,
534 	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
535 	.arg2_type	= ARG_ANYTHING,
536 };
537 
BPF_CALL_4(bpf_ringbuf_output,struct bpf_map *,map,void *,data,u64,size,u64,flags)538 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
539 	   u64, flags)
540 {
541 	struct bpf_ringbuf_map *rb_map;
542 	void *rec;
543 
544 	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
545 		return -EINVAL;
546 
547 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
548 	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
549 	if (!rec)
550 		return -EAGAIN;
551 
552 	memcpy(rec, data, size);
553 	bpf_ringbuf_commit(rec, flags, false /* discard */);
554 	return 0;
555 }
556 
557 const struct bpf_func_proto bpf_ringbuf_output_proto = {
558 	.func		= bpf_ringbuf_output,
559 	.ret_type	= RET_INTEGER,
560 	.arg1_type	= ARG_CONST_MAP_PTR,
561 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
562 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
563 	.arg4_type	= ARG_ANYTHING,
564 };
565 
BPF_CALL_2(bpf_ringbuf_query,struct bpf_map *,map,u64,flags)566 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
567 {
568 	struct bpf_ringbuf *rb;
569 
570 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
571 
572 	switch (flags) {
573 	case BPF_RB_AVAIL_DATA:
574 		return ringbuf_avail_data_sz(rb);
575 	case BPF_RB_RING_SIZE:
576 		return ringbuf_total_data_sz(rb);
577 	case BPF_RB_CONS_POS:
578 		return smp_load_acquire(&rb->consumer_pos);
579 	case BPF_RB_PROD_POS:
580 		return smp_load_acquire(&rb->producer_pos);
581 	default:
582 		return 0;
583 	}
584 }
585 
586 const struct bpf_func_proto bpf_ringbuf_query_proto = {
587 	.func		= bpf_ringbuf_query,
588 	.ret_type	= RET_INTEGER,
589 	.arg1_type	= ARG_CONST_MAP_PTR,
590 	.arg2_type	= ARG_ANYTHING,
591 };
592 
BPF_CALL_4(bpf_ringbuf_reserve_dynptr,struct bpf_map *,map,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)593 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
594 	   struct bpf_dynptr_kern *, ptr)
595 {
596 	struct bpf_ringbuf_map *rb_map;
597 	void *sample;
598 	int err;
599 
600 	if (unlikely(flags)) {
601 		bpf_dynptr_set_null(ptr);
602 		return -EINVAL;
603 	}
604 
605 	err = bpf_dynptr_check_size(size);
606 	if (err) {
607 		bpf_dynptr_set_null(ptr);
608 		return err;
609 	}
610 
611 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
612 
613 	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
614 	if (!sample) {
615 		bpf_dynptr_set_null(ptr);
616 		return -EINVAL;
617 	}
618 
619 	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
620 
621 	return 0;
622 }
623 
624 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
625 	.func		= bpf_ringbuf_reserve_dynptr,
626 	.ret_type	= RET_INTEGER,
627 	.arg1_type	= ARG_CONST_MAP_PTR,
628 	.arg2_type	= ARG_ANYTHING,
629 	.arg3_type	= ARG_ANYTHING,
630 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE,
631 };
632 
BPF_CALL_2(bpf_ringbuf_submit_dynptr,struct bpf_dynptr_kern *,ptr,u64,flags)633 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
634 {
635 	if (!ptr->data)
636 		return 0;
637 
638 	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
639 
640 	bpf_dynptr_set_null(ptr);
641 
642 	return 0;
643 }
644 
645 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
646 	.func		= bpf_ringbuf_submit_dynptr,
647 	.ret_type	= RET_VOID,
648 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
649 	.arg2_type	= ARG_ANYTHING,
650 };
651 
BPF_CALL_2(bpf_ringbuf_discard_dynptr,struct bpf_dynptr_kern *,ptr,u64,flags)652 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
653 {
654 	if (!ptr->data)
655 		return 0;
656 
657 	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
658 
659 	bpf_dynptr_set_null(ptr);
660 
661 	return 0;
662 }
663 
664 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
665 	.func		= bpf_ringbuf_discard_dynptr,
666 	.ret_type	= RET_VOID,
667 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
668 	.arg2_type	= ARG_ANYTHING,
669 };
670 
__bpf_user_ringbuf_peek(struct bpf_ringbuf * rb,void ** sample,u32 * size)671 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
672 {
673 	int err;
674 	u32 hdr_len, sample_len, total_len, flags, *hdr;
675 	u64 cons_pos, prod_pos;
676 
677 	/* Synchronizes with smp_store_release() in user-space producer. */
678 	prod_pos = smp_load_acquire(&rb->producer_pos);
679 	if (prod_pos % 8)
680 		return -EINVAL;
681 
682 	/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
683 	cons_pos = smp_load_acquire(&rb->consumer_pos);
684 	if (cons_pos >= prod_pos)
685 		return -ENODATA;
686 
687 	hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
688 	/* Synchronizes with smp_store_release() in user-space producer. */
689 	hdr_len = smp_load_acquire(hdr);
690 	flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
691 	sample_len = hdr_len & ~flags;
692 	total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
693 
694 	/* The sample must fit within the region advertised by the producer position. */
695 	if (total_len > prod_pos - cons_pos)
696 		return -EINVAL;
697 
698 	/* The sample must fit within the data region of the ring buffer. */
699 	if (total_len > ringbuf_total_data_sz(rb))
700 		return -E2BIG;
701 
702 	/* The sample must fit into a struct bpf_dynptr. */
703 	err = bpf_dynptr_check_size(sample_len);
704 	if (err)
705 		return -E2BIG;
706 
707 	if (flags & BPF_RINGBUF_DISCARD_BIT) {
708 		/* If the discard bit is set, the sample should be skipped.
709 		 *
710 		 * Update the consumer pos, and return -EAGAIN so the caller
711 		 * knows to skip this sample and try to read the next one.
712 		 */
713 		smp_store_release(&rb->consumer_pos, cons_pos + total_len);
714 		return -EAGAIN;
715 	}
716 
717 	if (flags & BPF_RINGBUF_BUSY_BIT)
718 		return -ENODATA;
719 
720 	*sample = (void *)((uintptr_t)rb->data +
721 			   (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
722 	*size = sample_len;
723 	return 0;
724 }
725 
__bpf_user_ringbuf_sample_release(struct bpf_ringbuf * rb,size_t size,u64 flags)726 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
727 {
728 	u64 consumer_pos;
729 	u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
730 
731 	/* Using smp_load_acquire() is unnecessary here, as the busy-bit
732 	 * prevents another task from writing to consumer_pos after it was read
733 	 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
734 	 */
735 	consumer_pos = rb->consumer_pos;
736 	 /* Synchronizes with smp_load_acquire() in user-space producer. */
737 	smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
738 }
739 
BPF_CALL_4(bpf_user_ringbuf_drain,struct bpf_map *,map,void *,callback_fn,void *,callback_ctx,u64,flags)740 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
741 	   void *, callback_fn, void *, callback_ctx, u64, flags)
742 {
743 	struct bpf_ringbuf *rb;
744 	long samples, discarded_samples = 0, ret = 0;
745 	bpf_callback_t callback = (bpf_callback_t)callback_fn;
746 	u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
747 	int busy = 0;
748 
749 	if (unlikely(flags & ~wakeup_flags))
750 		return -EINVAL;
751 
752 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
753 
754 	/* If another consumer is already consuming a sample, wait for them to finish. */
755 	if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
756 		return -EBUSY;
757 
758 	for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
759 		int err;
760 		u32 size;
761 		void *sample;
762 		struct bpf_dynptr_kern dynptr;
763 
764 		err = __bpf_user_ringbuf_peek(rb, &sample, &size);
765 		if (err) {
766 			if (err == -ENODATA) {
767 				break;
768 			} else if (err == -EAGAIN) {
769 				discarded_samples++;
770 				continue;
771 			} else {
772 				ret = err;
773 				goto schedule_work_return;
774 			}
775 		}
776 
777 		bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
778 		ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
779 		__bpf_user_ringbuf_sample_release(rb, size, flags);
780 	}
781 	ret = samples - discarded_samples;
782 
783 schedule_work_return:
784 	/* Prevent the clearing of the busy-bit from being reordered before the
785 	 * storing of any rb consumer or producer positions.
786 	 */
787 	atomic_set_release(&rb->busy, 0);
788 
789 	if (flags & BPF_RB_FORCE_WAKEUP)
790 		irq_work_queue(&rb->work);
791 	else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
792 		irq_work_queue(&rb->work);
793 	return ret;
794 }
795 
796 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
797 	.func		= bpf_user_ringbuf_drain,
798 	.ret_type	= RET_INTEGER,
799 	.arg1_type	= ARG_CONST_MAP_PTR,
800 	.arg2_type	= ARG_PTR_TO_FUNC,
801 	.arg3_type	= ARG_PTR_TO_STACK_OR_NULL,
802 	.arg4_type	= ARG_ANYTHING,
803 };
804