1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bpf.h> 3 #include <linux/btf.h> 4 #include <linux/err.h> 5 #include <linux/irq_work.h> 6 #include <linux/slab.h> 7 #include <linux/filter.h> 8 #include <linux/mm.h> 9 #include <linux/vmalloc.h> 10 #include <linux/wait.h> 11 #include <linux/poll.h> 12 #include <linux/kmemleak.h> 13 #include <uapi/linux/btf.h> 14 #include <linux/btf_ids.h> 15 #include <asm/rqspinlock.h> 16 17 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE | BPF_F_RB_OVERWRITE) 18 19 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 20 #define RINGBUF_PGOFF \ 21 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 22 /* consumer page and producer page */ 23 #define RINGBUF_POS_PAGES 2 24 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) 25 26 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 27 28 struct bpf_ringbuf { 29 wait_queue_head_t waitq; 30 struct irq_work work; 31 u64 mask; 32 struct page **pages; 33 int nr_pages; 34 bool overwrite_mode; 35 rqspinlock_t spinlock ____cacheline_aligned_in_smp; 36 /* For user-space producer ring buffers, an atomic_t busy bit is used 37 * to synchronize access to the ring buffers in the kernel, rather than 38 * the spinlock that is used for kernel-producer ring buffers. This is 39 * done because the ring buffer must hold a lock across a BPF program's 40 * callback: 41 * 42 * __bpf_user_ringbuf_peek() // lock acquired 43 * -> program callback_fn() 44 * -> __bpf_user_ringbuf_sample_release() // lock released 45 * 46 * It is unsafe and incorrect to hold an IRQ spinlock across what could 47 * be a long execution window, so we instead simply disallow concurrent 48 * access to the ring buffer by kernel consumers, and return -EBUSY from 49 * __bpf_user_ringbuf_peek() if the busy bit is held by another task. 50 */ 51 atomic_t busy ____cacheline_aligned_in_smp; 52 /* Consumer and producer counters are put into separate pages to 53 * allow each position to be mapped with different permissions. 54 * This prevents a user-space application from modifying the 55 * position and ruining in-kernel tracking. The permissions of the 56 * pages depend on who is producing samples: user-space or the 57 * kernel. Note that the pending counter is placed in the same 58 * page as the producer, so that it shares the same cache line. 59 * 60 * Kernel-producer 61 * --------------- 62 * The producer position and data pages are mapped as r/o in 63 * userspace. For this approach, bits in the header of samples are 64 * used to signal to user-space, and to other producers, whether a 65 * sample is currently being written. 66 * 67 * User-space producer 68 * ------------------- 69 * Only the page containing the consumer position is mapped r/o in 70 * user-space. User-space producers also use bits of the header to 71 * communicate to the kernel, but the kernel must carefully check and 72 * validate each sample to ensure that they're correctly formatted, and 73 * fully contained within the ring buffer. 74 */ 75 unsigned long consumer_pos __aligned(PAGE_SIZE); 76 unsigned long producer_pos __aligned(PAGE_SIZE); 77 unsigned long pending_pos; 78 unsigned long overwrite_pos; /* position after the last overwritten record */ 79 char data[] __aligned(PAGE_SIZE); 80 }; 81 82 struct bpf_ringbuf_map { 83 struct bpf_map map; 84 struct bpf_ringbuf *rb; 85 }; 86 87 /* 8-byte ring buffer record header structure */ 88 struct bpf_ringbuf_hdr { 89 u32 len; 90 u32 pg_off; 91 }; 92 93 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 94 { 95 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | 96 __GFP_NOWARN | __GFP_ZERO; 97 int nr_meta_pages = RINGBUF_NR_META_PAGES; 98 int nr_data_pages = data_sz >> PAGE_SHIFT; 99 int nr_pages = nr_meta_pages + nr_data_pages; 100 struct page **pages, *page; 101 struct bpf_ringbuf *rb; 102 size_t array_size; 103 int i; 104 105 /* Each data page is mapped twice to allow "virtual" 106 * continuous read of samples wrapping around the end of ring 107 * buffer area: 108 * ------------------------------------------------------ 109 * | meta pages | real data pages | same data pages | 110 * ------------------------------------------------------ 111 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 112 * ------------------------------------------------------ 113 * | | TA DA | TA DA | 114 * ------------------------------------------------------ 115 * ^^^^^^^ 116 * | 117 * Here, no need to worry about special handling of wrapped-around 118 * data due to double-mapped data pages. This works both in kernel and 119 * when mmap()'ed in user-space, simplifying both kernel and 120 * user-space implementations significantly. 121 */ 122 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 123 pages = bpf_map_area_alloc(array_size, numa_node); 124 if (!pages) 125 return NULL; 126 127 for (i = 0; i < nr_pages; i++) { 128 page = alloc_pages_node(numa_node, flags, 0); 129 if (!page) { 130 nr_pages = i; 131 goto err_free_pages; 132 } 133 pages[i] = page; 134 if (i >= nr_meta_pages) 135 pages[nr_data_pages + i] = page; 136 } 137 138 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 139 VM_MAP | VM_USERMAP, PAGE_KERNEL); 140 if (rb) { 141 kmemleak_not_leak(pages); 142 rb->pages = pages; 143 rb->nr_pages = nr_pages; 144 return rb; 145 } 146 147 err_free_pages: 148 for (i = 0; i < nr_pages; i++) 149 __free_page(pages[i]); 150 bpf_map_area_free(pages); 151 return NULL; 152 } 153 154 static void bpf_ringbuf_notify(struct irq_work *work) 155 { 156 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 157 158 wake_up_all(&rb->waitq); 159 } 160 161 /* Maximum size of ring buffer area is limited by 32-bit page offset within 162 * record header, counted in pages. Reserve 8 bits for extensibility, and 163 * take into account few extra pages for consumer/producer pages and 164 * non-mmap()'able parts, the current maximum size would be: 165 * 166 * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 167 * 168 * This gives 64GB limit, which seems plenty for single ring buffer. Now 169 * considering that the maximum value of data_sz is (4GB - 1), there 170 * will be no overflow, so just note the size limit in the comments. 171 */ 172 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node, bool overwrite_mode) 173 { 174 struct bpf_ringbuf *rb; 175 176 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 177 if (!rb) 178 return NULL; 179 180 raw_res_spin_lock_init(&rb->spinlock); 181 atomic_set(&rb->busy, 0); 182 init_waitqueue_head(&rb->waitq); 183 init_irq_work(&rb->work, bpf_ringbuf_notify); 184 185 rb->mask = data_sz - 1; 186 rb->consumer_pos = 0; 187 rb->producer_pos = 0; 188 rb->pending_pos = 0; 189 rb->overwrite_mode = overwrite_mode; 190 191 return rb; 192 } 193 194 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 195 { 196 bool overwrite_mode = false; 197 struct bpf_ringbuf_map *rb_map; 198 199 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 200 return ERR_PTR(-EINVAL); 201 202 if (attr->map_flags & BPF_F_RB_OVERWRITE) { 203 if (attr->map_type != BPF_MAP_TYPE_RINGBUF) 204 return ERR_PTR(-EINVAL); 205 overwrite_mode = true; 206 } 207 208 if (attr->key_size || attr->value_size || 209 !is_power_of_2(attr->max_entries) || 210 !PAGE_ALIGNED(attr->max_entries)) 211 return ERR_PTR(-EINVAL); 212 213 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); 214 if (!rb_map) 215 return ERR_PTR(-ENOMEM); 216 217 bpf_map_init_from_attr(&rb_map->map, attr); 218 219 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node, overwrite_mode); 220 if (!rb_map->rb) { 221 bpf_map_area_free(rb_map); 222 return ERR_PTR(-ENOMEM); 223 } 224 225 return &rb_map->map; 226 } 227 228 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 229 { 230 irq_work_sync(&rb->work); 231 232 /* copy pages pointer and nr_pages to local variable, as we are going 233 * to unmap rb itself with vunmap() below 234 */ 235 struct page **pages = rb->pages; 236 int i, nr_pages = rb->nr_pages; 237 238 vunmap(rb); 239 for (i = 0; i < nr_pages; i++) 240 __free_page(pages[i]); 241 bpf_map_area_free(pages); 242 } 243 244 static void ringbuf_map_free(struct bpf_map *map) 245 { 246 struct bpf_ringbuf_map *rb_map; 247 248 rb_map = container_of(map, struct bpf_ringbuf_map, map); 249 bpf_ringbuf_free(rb_map->rb); 250 bpf_map_area_free(rb_map); 251 } 252 253 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 254 { 255 return ERR_PTR(-ENOTSUPP); 256 } 257 258 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 259 u64 flags) 260 { 261 return -ENOTSUPP; 262 } 263 264 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) 265 { 266 return -ENOTSUPP; 267 } 268 269 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 270 void *next_key) 271 { 272 return -ENOTSUPP; 273 } 274 275 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) 276 { 277 struct bpf_ringbuf_map *rb_map; 278 279 rb_map = container_of(map, struct bpf_ringbuf_map, map); 280 281 if (vma->vm_flags & VM_WRITE) { 282 /* allow writable mapping for the consumer_pos only */ 283 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) 284 return -EPERM; 285 } 286 /* remap_vmalloc_range() checks size and offset constraints */ 287 return remap_vmalloc_range(vma, rb_map->rb, 288 vma->vm_pgoff + RINGBUF_PGOFF); 289 } 290 291 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) 292 { 293 struct bpf_ringbuf_map *rb_map; 294 295 rb_map = container_of(map, struct bpf_ringbuf_map, map); 296 297 if (vma->vm_flags & VM_WRITE) { 298 if (vma->vm_pgoff == 0) 299 /* Disallow writable mappings to the consumer pointer, 300 * and allow writable mappings to both the producer 301 * position, and the ring buffer data itself. 302 */ 303 return -EPERM; 304 } 305 /* remap_vmalloc_range() checks size and offset constraints */ 306 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); 307 } 308 309 /* 310 * Return an estimate of the available data in the ring buffer. 311 * Note: the returned value can exceed the actual ring buffer size because the 312 * function is not synchronized with the producer. The producer acquires the 313 * ring buffer's spinlock, but this function does not. 314 */ 315 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 316 { 317 unsigned long cons_pos, prod_pos, over_pos; 318 319 cons_pos = smp_load_acquire(&rb->consumer_pos); 320 321 if (unlikely(rb->overwrite_mode)) { 322 over_pos = smp_load_acquire(&rb->overwrite_pos); 323 prod_pos = smp_load_acquire(&rb->producer_pos); 324 return prod_pos - max(cons_pos, over_pos); 325 } else { 326 prod_pos = smp_load_acquire(&rb->producer_pos); 327 return prod_pos - cons_pos; 328 } 329 } 330 331 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) 332 { 333 return rb->mask + 1; 334 } 335 336 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, 337 struct poll_table_struct *pts) 338 { 339 struct bpf_ringbuf_map *rb_map; 340 341 rb_map = container_of(map, struct bpf_ringbuf_map, map); 342 poll_wait(filp, &rb_map->rb->waitq, pts); 343 344 if (ringbuf_avail_data_sz(rb_map->rb)) 345 return EPOLLIN | EPOLLRDNORM; 346 return 0; 347 } 348 349 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, 350 struct poll_table_struct *pts) 351 { 352 struct bpf_ringbuf_map *rb_map; 353 354 rb_map = container_of(map, struct bpf_ringbuf_map, map); 355 poll_wait(filp, &rb_map->rb->waitq, pts); 356 357 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) 358 return EPOLLOUT | EPOLLWRNORM; 359 return 0; 360 } 361 362 static u64 ringbuf_map_mem_usage(const struct bpf_map *map) 363 { 364 struct bpf_ringbuf *rb; 365 int nr_data_pages; 366 int nr_meta_pages; 367 u64 usage = sizeof(struct bpf_ringbuf_map); 368 369 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 370 usage += (u64)rb->nr_pages << PAGE_SHIFT; 371 nr_meta_pages = RINGBUF_NR_META_PAGES; 372 nr_data_pages = map->max_entries >> PAGE_SHIFT; 373 usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); 374 return usage; 375 } 376 377 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 378 const struct bpf_map_ops ringbuf_map_ops = { 379 .map_meta_equal = bpf_map_meta_equal, 380 .map_alloc = ringbuf_map_alloc, 381 .map_free = ringbuf_map_free, 382 .map_mmap = ringbuf_map_mmap_kern, 383 .map_poll = ringbuf_map_poll_kern, 384 .map_lookup_elem = ringbuf_map_lookup_elem, 385 .map_update_elem = ringbuf_map_update_elem, 386 .map_delete_elem = ringbuf_map_delete_elem, 387 .map_get_next_key = ringbuf_map_get_next_key, 388 .map_mem_usage = ringbuf_map_mem_usage, 389 .map_btf_id = &ringbuf_map_btf_ids[0], 390 }; 391 392 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 393 const struct bpf_map_ops user_ringbuf_map_ops = { 394 .map_meta_equal = bpf_map_meta_equal, 395 .map_alloc = ringbuf_map_alloc, 396 .map_free = ringbuf_map_free, 397 .map_mmap = ringbuf_map_mmap_user, 398 .map_poll = ringbuf_map_poll_user, 399 .map_lookup_elem = ringbuf_map_lookup_elem, 400 .map_update_elem = ringbuf_map_update_elem, 401 .map_delete_elem = ringbuf_map_delete_elem, 402 .map_get_next_key = ringbuf_map_get_next_key, 403 .map_mem_usage = ringbuf_map_mem_usage, 404 .map_btf_id = &user_ringbuf_map_btf_ids[0], 405 }; 406 407 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 408 * calculate offset from record metadata to ring buffer in pages, rounded 409 * down. This page offset is stored as part of record metadata and allows to 410 * restore struct bpf_ringbuf * from record pointer. This page offset is 411 * stored at offset 4 of record metadata header. 412 */ 413 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 414 struct bpf_ringbuf_hdr *hdr) 415 { 416 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 417 } 418 419 /* Given pointer to ring buffer record header, restore pointer to struct 420 * bpf_ringbuf itself by using page offset stored at offset 4 421 */ 422 static struct bpf_ringbuf * 423 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 424 { 425 unsigned long addr = (unsigned long)(void *)hdr; 426 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 427 428 return (void*)((addr & PAGE_MASK) - off); 429 } 430 431 static bool bpf_ringbuf_has_space(const struct bpf_ringbuf *rb, 432 unsigned long new_prod_pos, 433 unsigned long cons_pos, 434 unsigned long pend_pos) 435 { 436 /* 437 * No space if oldest not yet committed record until the newest 438 * record span more than (ringbuf_size - 1). 439 */ 440 if (new_prod_pos - pend_pos > rb->mask) 441 return false; 442 443 /* Ok, we have space in overwrite mode */ 444 if (unlikely(rb->overwrite_mode)) 445 return true; 446 447 /* 448 * No space if producer position advances more than (ringbuf_size - 1) 449 * ahead of consumer position when not in overwrite mode. 450 */ 451 if (new_prod_pos - cons_pos > rb->mask) 452 return false; 453 454 return true; 455 } 456 457 static u32 bpf_ringbuf_round_up_hdr_len(u32 hdr_len) 458 { 459 hdr_len &= ~BPF_RINGBUF_DISCARD_BIT; 460 return round_up(hdr_len + BPF_RINGBUF_HDR_SZ, 8); 461 } 462 463 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 464 { 465 unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, over_pos, flags; 466 struct bpf_ringbuf_hdr *hdr; 467 u32 len, pg_off, hdr_len; 468 469 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 470 return NULL; 471 472 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 473 if (len > ringbuf_total_data_sz(rb)) 474 return NULL; 475 476 cons_pos = smp_load_acquire(&rb->consumer_pos); 477 478 if (raw_res_spin_lock_irqsave(&rb->spinlock, flags)) 479 return NULL; 480 481 pend_pos = rb->pending_pos; 482 prod_pos = rb->producer_pos; 483 new_prod_pos = prod_pos + len; 484 485 while (pend_pos < prod_pos) { 486 hdr = (void *)rb->data + (pend_pos & rb->mask); 487 hdr_len = READ_ONCE(hdr->len); 488 if (hdr_len & BPF_RINGBUF_BUSY_BIT) 489 break; 490 pend_pos += bpf_ringbuf_round_up_hdr_len(hdr_len); 491 } 492 rb->pending_pos = pend_pos; 493 494 if (!bpf_ringbuf_has_space(rb, new_prod_pos, cons_pos, pend_pos)) { 495 raw_res_spin_unlock_irqrestore(&rb->spinlock, flags); 496 return NULL; 497 } 498 499 /* 500 * In overwrite mode, advance overwrite_pos when the ring buffer is full. 501 * The key points are to stay on record boundaries and consume enough records 502 * to fit the new one. 503 */ 504 if (unlikely(rb->overwrite_mode)) { 505 over_pos = rb->overwrite_pos; 506 while (new_prod_pos - over_pos > rb->mask) { 507 hdr = (void *)rb->data + (over_pos & rb->mask); 508 hdr_len = READ_ONCE(hdr->len); 509 /* 510 * The bpf_ringbuf_has_space() check above ensures we won’t 511 * step over a record currently being worked on by another 512 * producer. 513 */ 514 over_pos += bpf_ringbuf_round_up_hdr_len(hdr_len); 515 } 516 /* 517 * smp_store_release(&rb->producer_pos, new_prod_pos) at 518 * the end of the function ensures that when consumer sees 519 * the updated rb->producer_pos, it always sees the updated 520 * rb->overwrite_pos, so when consumer reads overwrite_pos 521 * after smp_load_acquire(r->producer_pos), the overwrite_pos 522 * will always be valid. 523 */ 524 WRITE_ONCE(rb->overwrite_pos, over_pos); 525 } 526 527 hdr = (void *)rb->data + (prod_pos & rb->mask); 528 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 529 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 530 hdr->pg_off = pg_off; 531 532 /* pairs with consumer's smp_load_acquire() */ 533 smp_store_release(&rb->producer_pos, new_prod_pos); 534 535 raw_res_spin_unlock_irqrestore(&rb->spinlock, flags); 536 537 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 538 } 539 540 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 541 { 542 struct bpf_ringbuf_map *rb_map; 543 544 if (unlikely(flags)) 545 return 0; 546 547 rb_map = container_of(map, struct bpf_ringbuf_map, map); 548 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 549 } 550 551 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 552 .func = bpf_ringbuf_reserve, 553 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, 554 .arg1_type = ARG_CONST_MAP_PTR, 555 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 556 .arg3_type = ARG_ANYTHING, 557 }; 558 559 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 560 { 561 unsigned long rec_pos, cons_pos; 562 struct bpf_ringbuf_hdr *hdr; 563 struct bpf_ringbuf *rb; 564 u32 new_len; 565 566 hdr = sample - BPF_RINGBUF_HDR_SZ; 567 rb = bpf_ringbuf_restore_from_rec(hdr); 568 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 569 if (discard) 570 new_len |= BPF_RINGBUF_DISCARD_BIT; 571 572 /* update record header with correct final size prefix */ 573 xchg(&hdr->len, new_len); 574 575 /* if consumer caught up and is waiting for our record, notify about 576 * new data availability 577 */ 578 rec_pos = (void *)hdr - (void *)rb->data; 579 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 580 581 if (flags & BPF_RB_FORCE_WAKEUP) 582 irq_work_queue(&rb->work); 583 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 584 irq_work_queue(&rb->work); 585 } 586 587 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 588 { 589 bpf_ringbuf_commit(sample, flags, false /* discard */); 590 return 0; 591 } 592 593 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 594 .func = bpf_ringbuf_submit, 595 .ret_type = RET_VOID, 596 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 597 .arg2_type = ARG_ANYTHING, 598 }; 599 600 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 601 { 602 bpf_ringbuf_commit(sample, flags, true /* discard */); 603 return 0; 604 } 605 606 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 607 .func = bpf_ringbuf_discard, 608 .ret_type = RET_VOID, 609 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 610 .arg2_type = ARG_ANYTHING, 611 }; 612 613 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 614 u64, flags) 615 { 616 struct bpf_ringbuf_map *rb_map; 617 void *rec; 618 619 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 620 return -EINVAL; 621 622 rb_map = container_of(map, struct bpf_ringbuf_map, map); 623 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 624 if (!rec) 625 return -EAGAIN; 626 627 memcpy(rec, data, size); 628 bpf_ringbuf_commit(rec, flags, false /* discard */); 629 return 0; 630 } 631 632 const struct bpf_func_proto bpf_ringbuf_output_proto = { 633 .func = bpf_ringbuf_output, 634 .ret_type = RET_INTEGER, 635 .arg1_type = ARG_CONST_MAP_PTR, 636 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 637 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 638 .arg4_type = ARG_ANYTHING, 639 }; 640 641 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 642 { 643 struct bpf_ringbuf *rb; 644 645 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 646 647 switch (flags) { 648 case BPF_RB_AVAIL_DATA: 649 return ringbuf_avail_data_sz(rb); 650 case BPF_RB_RING_SIZE: 651 return ringbuf_total_data_sz(rb); 652 case BPF_RB_CONS_POS: 653 return smp_load_acquire(&rb->consumer_pos); 654 case BPF_RB_PROD_POS: 655 return smp_load_acquire(&rb->producer_pos); 656 case BPF_RB_OVERWRITE_POS: 657 return smp_load_acquire(&rb->overwrite_pos); 658 default: 659 return 0; 660 } 661 } 662 663 const struct bpf_func_proto bpf_ringbuf_query_proto = { 664 .func = bpf_ringbuf_query, 665 .ret_type = RET_INTEGER, 666 .arg1_type = ARG_CONST_MAP_PTR, 667 .arg2_type = ARG_ANYTHING, 668 }; 669 670 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, 671 struct bpf_dynptr_kern *, ptr) 672 { 673 struct bpf_ringbuf_map *rb_map; 674 void *sample; 675 int err; 676 677 if (unlikely(flags)) { 678 bpf_dynptr_set_null(ptr); 679 return -EINVAL; 680 } 681 682 err = bpf_dynptr_check_size(size); 683 if (err) { 684 bpf_dynptr_set_null(ptr); 685 return err; 686 } 687 688 rb_map = container_of(map, struct bpf_ringbuf_map, map); 689 690 sample = __bpf_ringbuf_reserve(rb_map->rb, size); 691 if (!sample) { 692 bpf_dynptr_set_null(ptr); 693 return -EINVAL; 694 } 695 696 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); 697 698 return 0; 699 } 700 701 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { 702 .func = bpf_ringbuf_reserve_dynptr, 703 .ret_type = RET_INTEGER, 704 .arg1_type = ARG_CONST_MAP_PTR, 705 .arg2_type = ARG_ANYTHING, 706 .arg3_type = ARG_ANYTHING, 707 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE, 708 }; 709 710 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 711 { 712 if (!ptr->data) 713 return 0; 714 715 bpf_ringbuf_commit(ptr->data, flags, false /* discard */); 716 717 bpf_dynptr_set_null(ptr); 718 719 return 0; 720 } 721 722 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { 723 .func = bpf_ringbuf_submit_dynptr, 724 .ret_type = RET_VOID, 725 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 726 .arg2_type = ARG_ANYTHING, 727 }; 728 729 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 730 { 731 if (!ptr->data) 732 return 0; 733 734 bpf_ringbuf_commit(ptr->data, flags, true /* discard */); 735 736 bpf_dynptr_set_null(ptr); 737 738 return 0; 739 } 740 741 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { 742 .func = bpf_ringbuf_discard_dynptr, 743 .ret_type = RET_VOID, 744 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 745 .arg2_type = ARG_ANYTHING, 746 }; 747 748 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) 749 { 750 int err; 751 u32 hdr_len, sample_len, total_len, flags, *hdr; 752 u64 cons_pos, prod_pos; 753 754 /* Synchronizes with smp_store_release() in user-space producer. */ 755 prod_pos = smp_load_acquire(&rb->producer_pos); 756 if (prod_pos % 8) 757 return -EINVAL; 758 759 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ 760 cons_pos = smp_load_acquire(&rb->consumer_pos); 761 if (cons_pos >= prod_pos) 762 return -ENODATA; 763 764 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); 765 /* Synchronizes with smp_store_release() in user-space producer. */ 766 hdr_len = smp_load_acquire(hdr); 767 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); 768 sample_len = hdr_len & ~flags; 769 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); 770 771 /* The sample must fit within the region advertised by the producer position. */ 772 if (total_len > prod_pos - cons_pos) 773 return -EINVAL; 774 775 /* The sample must fit within the data region of the ring buffer. */ 776 if (total_len > ringbuf_total_data_sz(rb)) 777 return -E2BIG; 778 779 /* The sample must fit into a struct bpf_dynptr. */ 780 err = bpf_dynptr_check_size(sample_len); 781 if (err) 782 return -E2BIG; 783 784 if (flags & BPF_RINGBUF_DISCARD_BIT) { 785 /* If the discard bit is set, the sample should be skipped. 786 * 787 * Update the consumer pos, and return -EAGAIN so the caller 788 * knows to skip this sample and try to read the next one. 789 */ 790 smp_store_release(&rb->consumer_pos, cons_pos + total_len); 791 return -EAGAIN; 792 } 793 794 if (flags & BPF_RINGBUF_BUSY_BIT) 795 return -ENODATA; 796 797 *sample = (void *)((uintptr_t)rb->data + 798 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); 799 *size = sample_len; 800 return 0; 801 } 802 803 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) 804 { 805 u64 consumer_pos; 806 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 807 808 /* Using smp_load_acquire() is unnecessary here, as the busy-bit 809 * prevents another task from writing to consumer_pos after it was read 810 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). 811 */ 812 consumer_pos = rb->consumer_pos; 813 /* Synchronizes with smp_load_acquire() in user-space producer. */ 814 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); 815 } 816 817 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, 818 void *, callback_fn, void *, callback_ctx, u64, flags) 819 { 820 struct bpf_ringbuf *rb; 821 long samples, discarded_samples = 0, ret = 0; 822 bpf_callback_t callback = (bpf_callback_t)callback_fn; 823 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; 824 int busy = 0; 825 826 if (unlikely(flags & ~wakeup_flags)) 827 return -EINVAL; 828 829 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 830 831 /* If another consumer is already consuming a sample, wait for them to finish. */ 832 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) 833 return -EBUSY; 834 835 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { 836 int err; 837 u32 size; 838 void *sample; 839 struct bpf_dynptr_kern dynptr; 840 841 err = __bpf_user_ringbuf_peek(rb, &sample, &size); 842 if (err) { 843 if (err == -ENODATA) { 844 break; 845 } else if (err == -EAGAIN) { 846 discarded_samples++; 847 continue; 848 } else { 849 ret = err; 850 goto schedule_work_return; 851 } 852 } 853 854 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); 855 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); 856 __bpf_user_ringbuf_sample_release(rb, size, flags); 857 } 858 ret = samples - discarded_samples; 859 860 schedule_work_return: 861 /* Prevent the clearing of the busy-bit from being reordered before the 862 * storing of any rb consumer or producer positions. 863 */ 864 atomic_set_release(&rb->busy, 0); 865 866 if (flags & BPF_RB_FORCE_WAKEUP) 867 irq_work_queue(&rb->work); 868 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) 869 irq_work_queue(&rb->work); 870 return ret; 871 } 872 873 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { 874 .func = bpf_user_ringbuf_drain, 875 .ret_type = RET_INTEGER, 876 .arg1_type = ARG_CONST_MAP_PTR, 877 .arg2_type = ARG_PTR_TO_FUNC, 878 .arg3_type = ARG_PTR_TO_STACK_OR_NULL, 879 .arg4_type = ARG_ANYTHING, 880 }; 881