1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88
89 #include "dev.h"
90
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 if (in_compat_syscall()) {
100 struct compat_sock_fprog f32;
101
102 if (len != sizeof(f32))
103 return -EINVAL;
104 if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 return -EFAULT;
106 memset(dst, 0, sizeof(*dst));
107 dst->len = f32.len;
108 dst->filter = compat_ptr(f32.filter);
109 } else {
110 if (len != sizeof(*dst))
111 return -EINVAL;
112 if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 return -EFAULT;
114 }
115
116 return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119
120 /**
121 * sk_filter_trim_cap - run a packet through a socket filter
122 * @sk: sock associated with &sk_buff
123 * @skb: buffer to filter
124 * @cap: limit on how short the eBPF program may trim the packet
125 *
126 * Run the eBPF program and then cut skb->data to correct size returned by
127 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
128 * than pkt_len we keep whole skb->data. This is the socket level
129 * wrapper to bpf_prog_run. It returns 0 if the packet should
130 * be accepted or -EPERM if the packet should be tossed.
131 *
132 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)133 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
134 {
135 int err;
136 struct sk_filter *filter;
137
138 /*
139 * If the skb was allocated from pfmemalloc reserves, only
140 * allow SOCK_MEMALLOC sockets to use it as this socket is
141 * helping free memory
142 */
143 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
144 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
145 return -ENOMEM;
146 }
147 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
148 if (err)
149 return err;
150
151 err = security_sock_rcv_skb(sk, skb);
152 if (err)
153 return err;
154
155 rcu_read_lock();
156 filter = rcu_dereference(sk->sk_filter);
157 if (filter) {
158 struct sock *save_sk = skb->sk;
159 unsigned int pkt_len;
160
161 skb->sk = sk;
162 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
163 skb->sk = save_sk;
164 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
165 }
166 rcu_read_unlock();
167
168 return err;
169 }
170 EXPORT_SYMBOL(sk_filter_trim_cap);
171
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)172 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
173 {
174 return skb_get_poff(skb);
175 }
176
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)177 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
178 {
179 struct nlattr *nla;
180
181 if (skb_is_nonlinear(skb))
182 return 0;
183
184 if (skb->len < sizeof(struct nlattr))
185 return 0;
186
187 if (a > skb->len - sizeof(struct nlattr))
188 return 0;
189
190 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
191 if (nla)
192 return (void *) nla - (void *) skb->data;
193
194 return 0;
195 }
196
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)197 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
198 {
199 struct nlattr *nla;
200
201 if (skb_is_nonlinear(skb))
202 return 0;
203
204 if (skb->len < sizeof(struct nlattr))
205 return 0;
206
207 if (a > skb->len - sizeof(struct nlattr))
208 return 0;
209
210 nla = (struct nlattr *) &skb->data[a];
211 if (!nla_ok(nla, skb->len - a))
212 return 0;
213
214 nla = nla_find_nested(nla, x);
215 if (nla)
216 return (void *) nla - (void *) skb->data;
217
218 return 0;
219 }
220
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)221 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
222 data, int, headlen, int, offset)
223 {
224 u8 tmp, *ptr;
225 const int len = sizeof(tmp);
226
227 if (offset >= 0) {
228 if (headlen - offset >= len)
229 return *(u8 *)(data + offset);
230 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
231 return tmp;
232 } else {
233 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
234 if (likely(ptr))
235 return *(u8 *)ptr;
236 }
237
238 return -EFAULT;
239 }
240
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)241 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
242 int, offset)
243 {
244 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
245 offset);
246 }
247
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)248 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
249 data, int, headlen, int, offset)
250 {
251 __be16 tmp, *ptr;
252 const int len = sizeof(tmp);
253
254 if (offset >= 0) {
255 if (headlen - offset >= len)
256 return get_unaligned_be16(data + offset);
257 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
258 return be16_to_cpu(tmp);
259 } else {
260 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
261 if (likely(ptr))
262 return get_unaligned_be16(ptr);
263 }
264
265 return -EFAULT;
266 }
267
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)268 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
269 int, offset)
270 {
271 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
272 offset);
273 }
274
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)275 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
276 data, int, headlen, int, offset)
277 {
278 __be32 tmp, *ptr;
279 const int len = sizeof(tmp);
280
281 if (likely(offset >= 0)) {
282 if (headlen - offset >= len)
283 return get_unaligned_be32(data + offset);
284 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
285 return be32_to_cpu(tmp);
286 } else {
287 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
288 if (likely(ptr))
289 return get_unaligned_be32(ptr);
290 }
291
292 return -EFAULT;
293 }
294
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)295 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
296 int, offset)
297 {
298 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
299 offset);
300 }
301
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)302 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
303 struct bpf_insn *insn_buf)
304 {
305 struct bpf_insn *insn = insn_buf;
306
307 switch (skb_field) {
308 case SKF_AD_MARK:
309 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
310
311 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
312 offsetof(struct sk_buff, mark));
313 break;
314
315 case SKF_AD_PKTTYPE:
316 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
317 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
318 #ifdef __BIG_ENDIAN_BITFIELD
319 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
320 #endif
321 break;
322
323 case SKF_AD_QUEUE:
324 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
325
326 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
327 offsetof(struct sk_buff, queue_mapping));
328 break;
329
330 case SKF_AD_VLAN_TAG:
331 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
332
333 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
334 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
335 offsetof(struct sk_buff, vlan_tci));
336 break;
337 case SKF_AD_VLAN_TAG_PRESENT:
338 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
339 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
340 offsetof(struct sk_buff, vlan_all));
341 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
342 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
343 break;
344 }
345
346 return insn - insn_buf;
347 }
348
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)349 static bool convert_bpf_extensions(struct sock_filter *fp,
350 struct bpf_insn **insnp)
351 {
352 struct bpf_insn *insn = *insnp;
353 u32 cnt;
354
355 switch (fp->k) {
356 case SKF_AD_OFF + SKF_AD_PROTOCOL:
357 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
358
359 /* A = *(u16 *) (CTX + offsetof(protocol)) */
360 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
361 offsetof(struct sk_buff, protocol));
362 /* A = ntohs(A) [emitting a nop or swap16] */
363 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
364 break;
365
366 case SKF_AD_OFF + SKF_AD_PKTTYPE:
367 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
368 insn += cnt - 1;
369 break;
370
371 case SKF_AD_OFF + SKF_AD_IFINDEX:
372 case SKF_AD_OFF + SKF_AD_HATYPE:
373 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
374 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
375
376 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
377 BPF_REG_TMP, BPF_REG_CTX,
378 offsetof(struct sk_buff, dev));
379 /* if (tmp != 0) goto pc + 1 */
380 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
381 *insn++ = BPF_EXIT_INSN();
382 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
383 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
384 offsetof(struct net_device, ifindex));
385 else
386 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
387 offsetof(struct net_device, type));
388 break;
389
390 case SKF_AD_OFF + SKF_AD_MARK:
391 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
392 insn += cnt - 1;
393 break;
394
395 case SKF_AD_OFF + SKF_AD_RXHASH:
396 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
397
398 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
399 offsetof(struct sk_buff, hash));
400 break;
401
402 case SKF_AD_OFF + SKF_AD_QUEUE:
403 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
404 insn += cnt - 1;
405 break;
406
407 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
408 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
409 BPF_REG_A, BPF_REG_CTX, insn);
410 insn += cnt - 1;
411 break;
412
413 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
414 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
415 BPF_REG_A, BPF_REG_CTX, insn);
416 insn += cnt - 1;
417 break;
418
419 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
420 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
421
422 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
423 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
424 offsetof(struct sk_buff, vlan_proto));
425 /* A = ntohs(A) [emitting a nop or swap16] */
426 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
427 break;
428
429 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 case SKF_AD_OFF + SKF_AD_NLATTR:
431 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
432 case SKF_AD_OFF + SKF_AD_CPU:
433 case SKF_AD_OFF + SKF_AD_RANDOM:
434 /* arg1 = CTX */
435 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
436 /* arg2 = A */
437 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
438 /* arg3 = X */
439 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
440 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
441 switch (fp->k) {
442 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
443 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
444 break;
445 case SKF_AD_OFF + SKF_AD_NLATTR:
446 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
447 break;
448 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
450 break;
451 case SKF_AD_OFF + SKF_AD_CPU:
452 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
453 break;
454 case SKF_AD_OFF + SKF_AD_RANDOM:
455 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
456 bpf_user_rnd_init_once();
457 break;
458 }
459 break;
460
461 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
462 /* A ^= X */
463 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
464 break;
465
466 default:
467 /* This is just a dummy call to avoid letting the compiler
468 * evict __bpf_call_base() as an optimization. Placed here
469 * where no-one bothers.
470 */
471 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
472 return false;
473 }
474
475 *insnp = insn;
476 return true;
477 }
478
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)479 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
480 {
481 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
482 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
483 bool endian = BPF_SIZE(fp->code) == BPF_H ||
484 BPF_SIZE(fp->code) == BPF_W;
485 bool indirect = BPF_MODE(fp->code) == BPF_IND;
486 const int ip_align = NET_IP_ALIGN;
487 struct bpf_insn *insn = *insnp;
488 int offset = fp->k;
489
490 if (!indirect &&
491 ((unaligned_ok && offset >= 0) ||
492 (!unaligned_ok && offset >= 0 &&
493 offset + ip_align >= 0 &&
494 offset + ip_align % size == 0))) {
495 bool ldx_off_ok = offset <= S16_MAX;
496
497 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
498 if (offset)
499 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
500 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
501 size, 2 + endian + (!ldx_off_ok * 2));
502 if (ldx_off_ok) {
503 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
504 BPF_REG_D, offset);
505 } else {
506 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
507 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
508 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
509 BPF_REG_TMP, 0);
510 }
511 if (endian)
512 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
513 *insn++ = BPF_JMP_A(8);
514 }
515
516 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
517 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
518 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
519 if (!indirect) {
520 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
521 } else {
522 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
523 if (fp->k)
524 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
525 }
526
527 switch (BPF_SIZE(fp->code)) {
528 case BPF_B:
529 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
530 break;
531 case BPF_H:
532 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
533 break;
534 case BPF_W:
535 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
536 break;
537 default:
538 return false;
539 }
540
541 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
542 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
543 *insn = BPF_EXIT_INSN();
544
545 *insnp = insn;
546 return true;
547 }
548
549 /**
550 * bpf_convert_filter - convert filter program
551 * @prog: the user passed filter program
552 * @len: the length of the user passed filter program
553 * @new_prog: allocated 'struct bpf_prog' or NULL
554 * @new_len: pointer to store length of converted program
555 * @seen_ld_abs: bool whether we've seen ld_abs/ind
556 *
557 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
558 * style extended BPF (eBPF).
559 * Conversion workflow:
560 *
561 * 1) First pass for calculating the new program length:
562 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
563 *
564 * 2) 2nd pass to remap in two passes: 1st pass finds new
565 * jump offsets, 2nd pass remapping:
566 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
567 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)568 static int bpf_convert_filter(struct sock_filter *prog, int len,
569 struct bpf_prog *new_prog, int *new_len,
570 bool *seen_ld_abs)
571 {
572 int new_flen = 0, pass = 0, target, i, stack_off;
573 struct bpf_insn *new_insn, *first_insn = NULL;
574 struct sock_filter *fp;
575 int *addrs = NULL;
576 u8 bpf_src;
577
578 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
579 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
580
581 if (len <= 0 || len > BPF_MAXINSNS)
582 return -EINVAL;
583
584 if (new_prog) {
585 first_insn = new_prog->insnsi;
586 addrs = kcalloc(len, sizeof(*addrs),
587 GFP_KERNEL | __GFP_NOWARN);
588 if (!addrs)
589 return -ENOMEM;
590 }
591
592 do_pass:
593 new_insn = first_insn;
594 fp = prog;
595
596 /* Classic BPF related prologue emission. */
597 if (new_prog) {
598 /* Classic BPF expects A and X to be reset first. These need
599 * to be guaranteed to be the first two instructions.
600 */
601 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
602 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
603
604 /* All programs must keep CTX in callee saved BPF_REG_CTX.
605 * In eBPF case it's done by the compiler, here we need to
606 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
607 */
608 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
609 if (*seen_ld_abs) {
610 /* For packet access in classic BPF, cache skb->data
611 * in callee-saved BPF R8 and skb->len - skb->data_len
612 * (headlen) in BPF R9. Since classic BPF is read-only
613 * on CTX, we only need to cache it once.
614 */
615 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
616 BPF_REG_D, BPF_REG_CTX,
617 offsetof(struct sk_buff, data));
618 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
619 offsetof(struct sk_buff, len));
620 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
621 offsetof(struct sk_buff, data_len));
622 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
623 }
624 } else {
625 new_insn += 3;
626 }
627
628 for (i = 0; i < len; fp++, i++) {
629 struct bpf_insn tmp_insns[32] = { };
630 struct bpf_insn *insn = tmp_insns;
631
632 if (addrs)
633 addrs[i] = new_insn - first_insn;
634
635 switch (fp->code) {
636 /* All arithmetic insns and skb loads map as-is. */
637 case BPF_ALU | BPF_ADD | BPF_X:
638 case BPF_ALU | BPF_ADD | BPF_K:
639 case BPF_ALU | BPF_SUB | BPF_X:
640 case BPF_ALU | BPF_SUB | BPF_K:
641 case BPF_ALU | BPF_AND | BPF_X:
642 case BPF_ALU | BPF_AND | BPF_K:
643 case BPF_ALU | BPF_OR | BPF_X:
644 case BPF_ALU | BPF_OR | BPF_K:
645 case BPF_ALU | BPF_LSH | BPF_X:
646 case BPF_ALU | BPF_LSH | BPF_K:
647 case BPF_ALU | BPF_RSH | BPF_X:
648 case BPF_ALU | BPF_RSH | BPF_K:
649 case BPF_ALU | BPF_XOR | BPF_X:
650 case BPF_ALU | BPF_XOR | BPF_K:
651 case BPF_ALU | BPF_MUL | BPF_X:
652 case BPF_ALU | BPF_MUL | BPF_K:
653 case BPF_ALU | BPF_DIV | BPF_X:
654 case BPF_ALU | BPF_DIV | BPF_K:
655 case BPF_ALU | BPF_MOD | BPF_X:
656 case BPF_ALU | BPF_MOD | BPF_K:
657 case BPF_ALU | BPF_NEG:
658 case BPF_LD | BPF_ABS | BPF_W:
659 case BPF_LD | BPF_ABS | BPF_H:
660 case BPF_LD | BPF_ABS | BPF_B:
661 case BPF_LD | BPF_IND | BPF_W:
662 case BPF_LD | BPF_IND | BPF_H:
663 case BPF_LD | BPF_IND | BPF_B:
664 /* Check for overloaded BPF extension and
665 * directly convert it if found, otherwise
666 * just move on with mapping.
667 */
668 if (BPF_CLASS(fp->code) == BPF_LD &&
669 BPF_MODE(fp->code) == BPF_ABS &&
670 convert_bpf_extensions(fp, &insn))
671 break;
672 if (BPF_CLASS(fp->code) == BPF_LD &&
673 convert_bpf_ld_abs(fp, &insn)) {
674 *seen_ld_abs = true;
675 break;
676 }
677
678 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
679 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
680 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
681 /* Error with exception code on div/mod by 0.
682 * For cBPF programs, this was always return 0.
683 */
684 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
685 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
686 *insn++ = BPF_EXIT_INSN();
687 }
688
689 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
690 break;
691
692 /* Jump transformation cannot use BPF block macros
693 * everywhere as offset calculation and target updates
694 * require a bit more work than the rest, i.e. jump
695 * opcodes map as-is, but offsets need adjustment.
696 */
697
698 #define BPF_EMIT_JMP \
699 do { \
700 const s32 off_min = S16_MIN, off_max = S16_MAX; \
701 s32 off; \
702 \
703 if (target >= len || target < 0) \
704 goto err; \
705 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
706 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
707 off -= insn - tmp_insns; \
708 /* Reject anything not fitting into insn->off. */ \
709 if (off < off_min || off > off_max) \
710 goto err; \
711 insn->off = off; \
712 } while (0)
713
714 case BPF_JMP | BPF_JA:
715 target = i + fp->k + 1;
716 insn->code = fp->code;
717 BPF_EMIT_JMP;
718 break;
719
720 case BPF_JMP | BPF_JEQ | BPF_K:
721 case BPF_JMP | BPF_JEQ | BPF_X:
722 case BPF_JMP | BPF_JSET | BPF_K:
723 case BPF_JMP | BPF_JSET | BPF_X:
724 case BPF_JMP | BPF_JGT | BPF_K:
725 case BPF_JMP | BPF_JGT | BPF_X:
726 case BPF_JMP | BPF_JGE | BPF_K:
727 case BPF_JMP | BPF_JGE | BPF_X:
728 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
729 /* BPF immediates are signed, zero extend
730 * immediate into tmp register and use it
731 * in compare insn.
732 */
733 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
734
735 insn->dst_reg = BPF_REG_A;
736 insn->src_reg = BPF_REG_TMP;
737 bpf_src = BPF_X;
738 } else {
739 insn->dst_reg = BPF_REG_A;
740 insn->imm = fp->k;
741 bpf_src = BPF_SRC(fp->code);
742 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
743 }
744
745 /* Common case where 'jump_false' is next insn. */
746 if (fp->jf == 0) {
747 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
748 target = i + fp->jt + 1;
749 BPF_EMIT_JMP;
750 break;
751 }
752
753 /* Convert some jumps when 'jump_true' is next insn. */
754 if (fp->jt == 0) {
755 switch (BPF_OP(fp->code)) {
756 case BPF_JEQ:
757 insn->code = BPF_JMP | BPF_JNE | bpf_src;
758 break;
759 case BPF_JGT:
760 insn->code = BPF_JMP | BPF_JLE | bpf_src;
761 break;
762 case BPF_JGE:
763 insn->code = BPF_JMP | BPF_JLT | bpf_src;
764 break;
765 default:
766 goto jmp_rest;
767 }
768
769 target = i + fp->jf + 1;
770 BPF_EMIT_JMP;
771 break;
772 }
773 jmp_rest:
774 /* Other jumps are mapped into two insns: Jxx and JA. */
775 target = i + fp->jt + 1;
776 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
777 BPF_EMIT_JMP;
778 insn++;
779
780 insn->code = BPF_JMP | BPF_JA;
781 target = i + fp->jf + 1;
782 BPF_EMIT_JMP;
783 break;
784
785 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
786 case BPF_LDX | BPF_MSH | BPF_B: {
787 struct sock_filter tmp = {
788 .code = BPF_LD | BPF_ABS | BPF_B,
789 .k = fp->k,
790 };
791
792 *seen_ld_abs = true;
793
794 /* X = A */
795 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
797 convert_bpf_ld_abs(&tmp, &insn);
798 insn++;
799 /* A &= 0xf */
800 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
801 /* A <<= 2 */
802 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
803 /* tmp = X */
804 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
805 /* X = A */
806 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
807 /* A = tmp */
808 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
809 break;
810 }
811 /* RET_K is remapped into 2 insns. RET_A case doesn't need an
812 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
813 */
814 case BPF_RET | BPF_A:
815 case BPF_RET | BPF_K:
816 if (BPF_RVAL(fp->code) == BPF_K)
817 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
818 0, fp->k);
819 *insn = BPF_EXIT_INSN();
820 break;
821
822 /* Store to stack. */
823 case BPF_ST:
824 case BPF_STX:
825 stack_off = fp->k * 4 + 4;
826 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
827 BPF_ST ? BPF_REG_A : BPF_REG_X,
828 -stack_off);
829 /* check_load_and_stores() verifies that classic BPF can
830 * load from stack only after write, so tracking
831 * stack_depth for ST|STX insns is enough
832 */
833 if (new_prog && new_prog->aux->stack_depth < stack_off)
834 new_prog->aux->stack_depth = stack_off;
835 break;
836
837 /* Load from stack. */
838 case BPF_LD | BPF_MEM:
839 case BPF_LDX | BPF_MEM:
840 stack_off = fp->k * 4 + 4;
841 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
842 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
843 -stack_off);
844 break;
845
846 /* A = K or X = K */
847 case BPF_LD | BPF_IMM:
848 case BPF_LDX | BPF_IMM:
849 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
850 BPF_REG_A : BPF_REG_X, fp->k);
851 break;
852
853 /* X = A */
854 case BPF_MISC | BPF_TAX:
855 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
856 break;
857
858 /* A = X */
859 case BPF_MISC | BPF_TXA:
860 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
861 break;
862
863 /* A = skb->len or X = skb->len */
864 case BPF_LD | BPF_W | BPF_LEN:
865 case BPF_LDX | BPF_W | BPF_LEN:
866 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
867 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
868 offsetof(struct sk_buff, len));
869 break;
870
871 /* Access seccomp_data fields. */
872 case BPF_LDX | BPF_ABS | BPF_W:
873 /* A = *(u32 *) (ctx + K) */
874 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
875 break;
876
877 /* Unknown instruction. */
878 default:
879 goto err;
880 }
881
882 insn++;
883 if (new_prog)
884 memcpy(new_insn, tmp_insns,
885 sizeof(*insn) * (insn - tmp_insns));
886 new_insn += insn - tmp_insns;
887 }
888
889 if (!new_prog) {
890 /* Only calculating new length. */
891 *new_len = new_insn - first_insn;
892 if (*seen_ld_abs)
893 *new_len += 4; /* Prologue bits. */
894 return 0;
895 }
896
897 pass++;
898 if (new_flen != new_insn - first_insn) {
899 new_flen = new_insn - first_insn;
900 if (pass > 2)
901 goto err;
902 goto do_pass;
903 }
904
905 kfree(addrs);
906 BUG_ON(*new_len != new_flen);
907 return 0;
908 err:
909 kfree(addrs);
910 return -EINVAL;
911 }
912
913 /* Security:
914 *
915 * As we dont want to clear mem[] array for each packet going through
916 * __bpf_prog_run(), we check that filter loaded by user never try to read
917 * a cell if not previously written, and we check all branches to be sure
918 * a malicious user doesn't try to abuse us.
919 */
check_load_and_stores(const struct sock_filter * filter,int flen)920 static int check_load_and_stores(const struct sock_filter *filter, int flen)
921 {
922 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
923 int pc, ret = 0;
924
925 BUILD_BUG_ON(BPF_MEMWORDS > 16);
926
927 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
928 if (!masks)
929 return -ENOMEM;
930
931 memset(masks, 0xff, flen * sizeof(*masks));
932
933 for (pc = 0; pc < flen; pc++) {
934 memvalid &= masks[pc];
935
936 switch (filter[pc].code) {
937 case BPF_ST:
938 case BPF_STX:
939 memvalid |= (1 << filter[pc].k);
940 break;
941 case BPF_LD | BPF_MEM:
942 case BPF_LDX | BPF_MEM:
943 if (!(memvalid & (1 << filter[pc].k))) {
944 ret = -EINVAL;
945 goto error;
946 }
947 break;
948 case BPF_JMP | BPF_JA:
949 /* A jump must set masks on target */
950 masks[pc + 1 + filter[pc].k] &= memvalid;
951 memvalid = ~0;
952 break;
953 case BPF_JMP | BPF_JEQ | BPF_K:
954 case BPF_JMP | BPF_JEQ | BPF_X:
955 case BPF_JMP | BPF_JGE | BPF_K:
956 case BPF_JMP | BPF_JGE | BPF_X:
957 case BPF_JMP | BPF_JGT | BPF_K:
958 case BPF_JMP | BPF_JGT | BPF_X:
959 case BPF_JMP | BPF_JSET | BPF_K:
960 case BPF_JMP | BPF_JSET | BPF_X:
961 /* A jump must set masks on targets */
962 masks[pc + 1 + filter[pc].jt] &= memvalid;
963 masks[pc + 1 + filter[pc].jf] &= memvalid;
964 memvalid = ~0;
965 break;
966 }
967 }
968 error:
969 kfree(masks);
970 return ret;
971 }
972
chk_code_allowed(u16 code_to_probe)973 static bool chk_code_allowed(u16 code_to_probe)
974 {
975 static const bool codes[] = {
976 /* 32 bit ALU operations */
977 [BPF_ALU | BPF_ADD | BPF_K] = true,
978 [BPF_ALU | BPF_ADD | BPF_X] = true,
979 [BPF_ALU | BPF_SUB | BPF_K] = true,
980 [BPF_ALU | BPF_SUB | BPF_X] = true,
981 [BPF_ALU | BPF_MUL | BPF_K] = true,
982 [BPF_ALU | BPF_MUL | BPF_X] = true,
983 [BPF_ALU | BPF_DIV | BPF_K] = true,
984 [BPF_ALU | BPF_DIV | BPF_X] = true,
985 [BPF_ALU | BPF_MOD | BPF_K] = true,
986 [BPF_ALU | BPF_MOD | BPF_X] = true,
987 [BPF_ALU | BPF_AND | BPF_K] = true,
988 [BPF_ALU | BPF_AND | BPF_X] = true,
989 [BPF_ALU | BPF_OR | BPF_K] = true,
990 [BPF_ALU | BPF_OR | BPF_X] = true,
991 [BPF_ALU | BPF_XOR | BPF_K] = true,
992 [BPF_ALU | BPF_XOR | BPF_X] = true,
993 [BPF_ALU | BPF_LSH | BPF_K] = true,
994 [BPF_ALU | BPF_LSH | BPF_X] = true,
995 [BPF_ALU | BPF_RSH | BPF_K] = true,
996 [BPF_ALU | BPF_RSH | BPF_X] = true,
997 [BPF_ALU | BPF_NEG] = true,
998 /* Load instructions */
999 [BPF_LD | BPF_W | BPF_ABS] = true,
1000 [BPF_LD | BPF_H | BPF_ABS] = true,
1001 [BPF_LD | BPF_B | BPF_ABS] = true,
1002 [BPF_LD | BPF_W | BPF_LEN] = true,
1003 [BPF_LD | BPF_W | BPF_IND] = true,
1004 [BPF_LD | BPF_H | BPF_IND] = true,
1005 [BPF_LD | BPF_B | BPF_IND] = true,
1006 [BPF_LD | BPF_IMM] = true,
1007 [BPF_LD | BPF_MEM] = true,
1008 [BPF_LDX | BPF_W | BPF_LEN] = true,
1009 [BPF_LDX | BPF_B | BPF_MSH] = true,
1010 [BPF_LDX | BPF_IMM] = true,
1011 [BPF_LDX | BPF_MEM] = true,
1012 /* Store instructions */
1013 [BPF_ST] = true,
1014 [BPF_STX] = true,
1015 /* Misc instructions */
1016 [BPF_MISC | BPF_TAX] = true,
1017 [BPF_MISC | BPF_TXA] = true,
1018 /* Return instructions */
1019 [BPF_RET | BPF_K] = true,
1020 [BPF_RET | BPF_A] = true,
1021 /* Jump instructions */
1022 [BPF_JMP | BPF_JA] = true,
1023 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1024 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1025 [BPF_JMP | BPF_JGE | BPF_K] = true,
1026 [BPF_JMP | BPF_JGE | BPF_X] = true,
1027 [BPF_JMP | BPF_JGT | BPF_K] = true,
1028 [BPF_JMP | BPF_JGT | BPF_X] = true,
1029 [BPF_JMP | BPF_JSET | BPF_K] = true,
1030 [BPF_JMP | BPF_JSET | BPF_X] = true,
1031 };
1032
1033 if (code_to_probe >= ARRAY_SIZE(codes))
1034 return false;
1035
1036 return codes[code_to_probe];
1037 }
1038
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1039 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1040 unsigned int flen)
1041 {
1042 if (filter == NULL)
1043 return false;
1044 if (flen == 0 || flen > BPF_MAXINSNS)
1045 return false;
1046
1047 return true;
1048 }
1049
1050 /**
1051 * bpf_check_classic - verify socket filter code
1052 * @filter: filter to verify
1053 * @flen: length of filter
1054 *
1055 * Check the user's filter code. If we let some ugly
1056 * filter code slip through kaboom! The filter must contain
1057 * no references or jumps that are out of range, no illegal
1058 * instructions, and must end with a RET instruction.
1059 *
1060 * All jumps are forward as they are not signed.
1061 *
1062 * Returns 0 if the rule set is legal or -EINVAL if not.
1063 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1064 static int bpf_check_classic(const struct sock_filter *filter,
1065 unsigned int flen)
1066 {
1067 bool anc_found;
1068 int pc;
1069
1070 /* Check the filter code now */
1071 for (pc = 0; pc < flen; pc++) {
1072 const struct sock_filter *ftest = &filter[pc];
1073
1074 /* May we actually operate on this code? */
1075 if (!chk_code_allowed(ftest->code))
1076 return -EINVAL;
1077
1078 /* Some instructions need special checks */
1079 switch (ftest->code) {
1080 case BPF_ALU | BPF_DIV | BPF_K:
1081 case BPF_ALU | BPF_MOD | BPF_K:
1082 /* Check for division by zero */
1083 if (ftest->k == 0)
1084 return -EINVAL;
1085 break;
1086 case BPF_ALU | BPF_LSH | BPF_K:
1087 case BPF_ALU | BPF_RSH | BPF_K:
1088 if (ftest->k >= 32)
1089 return -EINVAL;
1090 break;
1091 case BPF_LD | BPF_MEM:
1092 case BPF_LDX | BPF_MEM:
1093 case BPF_ST:
1094 case BPF_STX:
1095 /* Check for invalid memory addresses */
1096 if (ftest->k >= BPF_MEMWORDS)
1097 return -EINVAL;
1098 break;
1099 case BPF_JMP | BPF_JA:
1100 /* Note, the large ftest->k might cause loops.
1101 * Compare this with conditional jumps below,
1102 * where offsets are limited. --ANK (981016)
1103 */
1104 if (ftest->k >= (unsigned int)(flen - pc - 1))
1105 return -EINVAL;
1106 break;
1107 case BPF_JMP | BPF_JEQ | BPF_K:
1108 case BPF_JMP | BPF_JEQ | BPF_X:
1109 case BPF_JMP | BPF_JGE | BPF_K:
1110 case BPF_JMP | BPF_JGE | BPF_X:
1111 case BPF_JMP | BPF_JGT | BPF_K:
1112 case BPF_JMP | BPF_JGT | BPF_X:
1113 case BPF_JMP | BPF_JSET | BPF_K:
1114 case BPF_JMP | BPF_JSET | BPF_X:
1115 /* Both conditionals must be safe */
1116 if (pc + ftest->jt + 1 >= flen ||
1117 pc + ftest->jf + 1 >= flen)
1118 return -EINVAL;
1119 break;
1120 case BPF_LD | BPF_W | BPF_ABS:
1121 case BPF_LD | BPF_H | BPF_ABS:
1122 case BPF_LD | BPF_B | BPF_ABS:
1123 anc_found = false;
1124 if (bpf_anc_helper(ftest) & BPF_ANC)
1125 anc_found = true;
1126 /* Ancillary operation unknown or unsupported */
1127 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1128 return -EINVAL;
1129 }
1130 }
1131
1132 /* Last instruction must be a RET code */
1133 switch (filter[flen - 1].code) {
1134 case BPF_RET | BPF_K:
1135 case BPF_RET | BPF_A:
1136 return check_load_and_stores(filter, flen);
1137 }
1138
1139 return -EINVAL;
1140 }
1141
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1142 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1143 const struct sock_fprog *fprog)
1144 {
1145 unsigned int fsize = bpf_classic_proglen(fprog);
1146 struct sock_fprog_kern *fkprog;
1147
1148 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1149 if (!fp->orig_prog)
1150 return -ENOMEM;
1151
1152 fkprog = fp->orig_prog;
1153 fkprog->len = fprog->len;
1154
1155 fkprog->filter = kmemdup(fp->insns, fsize,
1156 GFP_KERNEL | __GFP_NOWARN);
1157 if (!fkprog->filter) {
1158 kfree(fp->orig_prog);
1159 return -ENOMEM;
1160 }
1161
1162 return 0;
1163 }
1164
bpf_release_orig_filter(struct bpf_prog * fp)1165 static void bpf_release_orig_filter(struct bpf_prog *fp)
1166 {
1167 struct sock_fprog_kern *fprog = fp->orig_prog;
1168
1169 if (fprog) {
1170 kfree(fprog->filter);
1171 kfree(fprog);
1172 }
1173 }
1174
__bpf_prog_release(struct bpf_prog * prog)1175 static void __bpf_prog_release(struct bpf_prog *prog)
1176 {
1177 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1178 bpf_prog_put(prog);
1179 } else {
1180 bpf_release_orig_filter(prog);
1181 bpf_prog_free(prog);
1182 }
1183 }
1184
__sk_filter_release(struct sk_filter * fp)1185 static void __sk_filter_release(struct sk_filter *fp)
1186 {
1187 __bpf_prog_release(fp->prog);
1188 kfree(fp);
1189 }
1190
1191 /**
1192 * sk_filter_release_rcu - Release a socket filter by rcu_head
1193 * @rcu: rcu_head that contains the sk_filter to free
1194 */
sk_filter_release_rcu(struct rcu_head * rcu)1195 static void sk_filter_release_rcu(struct rcu_head *rcu)
1196 {
1197 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1198
1199 __sk_filter_release(fp);
1200 }
1201
1202 /**
1203 * sk_filter_release - release a socket filter
1204 * @fp: filter to remove
1205 *
1206 * Remove a filter from a socket and release its resources.
1207 */
sk_filter_release(struct sk_filter * fp)1208 static void sk_filter_release(struct sk_filter *fp)
1209 {
1210 if (refcount_dec_and_test(&fp->refcnt))
1211 call_rcu(&fp->rcu, sk_filter_release_rcu);
1212 }
1213
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1214 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1215 {
1216 u32 filter_size = bpf_prog_size(fp->prog->len);
1217
1218 atomic_sub(filter_size, &sk->sk_omem_alloc);
1219 sk_filter_release(fp);
1220 }
1221
1222 /* try to charge the socket memory if there is space available
1223 * return true on success
1224 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1225 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1228 u32 filter_size = bpf_prog_size(fp->prog->len);
1229
1230 /* same check as in sock_kmalloc() */
1231 if (filter_size <= optmem_max &&
1232 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1233 atomic_add(filter_size, &sk->sk_omem_alloc);
1234 return true;
1235 }
1236 return false;
1237 }
1238
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1239 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1240 {
1241 if (!refcount_inc_not_zero(&fp->refcnt))
1242 return false;
1243
1244 if (!__sk_filter_charge(sk, fp)) {
1245 sk_filter_release(fp);
1246 return false;
1247 }
1248 return true;
1249 }
1250
bpf_migrate_filter(struct bpf_prog * fp)1251 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1252 {
1253 struct sock_filter *old_prog;
1254 struct bpf_prog *old_fp;
1255 int err, new_len, old_len = fp->len;
1256 bool seen_ld_abs = false;
1257
1258 /* We are free to overwrite insns et al right here as it won't be used at
1259 * this point in time anymore internally after the migration to the eBPF
1260 * instruction representation.
1261 */
1262 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1263 sizeof(struct bpf_insn));
1264
1265 /* Conversion cannot happen on overlapping memory areas,
1266 * so we need to keep the user BPF around until the 2nd
1267 * pass. At this time, the user BPF is stored in fp->insns.
1268 */
1269 old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1270 GFP_KERNEL | __GFP_NOWARN);
1271 if (!old_prog) {
1272 err = -ENOMEM;
1273 goto out_err;
1274 }
1275
1276 /* 1st pass: calculate the new program length. */
1277 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1278 &seen_ld_abs);
1279 if (err)
1280 goto out_err_free;
1281
1282 /* Expand fp for appending the new filter representation. */
1283 old_fp = fp;
1284 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1285 if (!fp) {
1286 /* The old_fp is still around in case we couldn't
1287 * allocate new memory, so uncharge on that one.
1288 */
1289 fp = old_fp;
1290 err = -ENOMEM;
1291 goto out_err_free;
1292 }
1293
1294 fp->len = new_len;
1295
1296 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1297 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1298 &seen_ld_abs);
1299 if (err)
1300 /* 2nd bpf_convert_filter() can fail only if it fails
1301 * to allocate memory, remapping must succeed. Note,
1302 * that at this time old_fp has already been released
1303 * by krealloc().
1304 */
1305 goto out_err_free;
1306
1307 fp = bpf_prog_select_runtime(fp, &err);
1308 if (err)
1309 goto out_err_free;
1310
1311 kfree(old_prog);
1312 return fp;
1313
1314 out_err_free:
1315 kfree(old_prog);
1316 out_err:
1317 __bpf_prog_release(fp);
1318 return ERR_PTR(err);
1319 }
1320
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1321 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1322 bpf_aux_classic_check_t trans)
1323 {
1324 int err;
1325
1326 fp->bpf_func = NULL;
1327 fp->jited = 0;
1328
1329 err = bpf_check_classic(fp->insns, fp->len);
1330 if (err) {
1331 __bpf_prog_release(fp);
1332 return ERR_PTR(err);
1333 }
1334
1335 /* There might be additional checks and transformations
1336 * needed on classic filters, f.e. in case of seccomp.
1337 */
1338 if (trans) {
1339 err = trans(fp->insns, fp->len);
1340 if (err) {
1341 __bpf_prog_release(fp);
1342 return ERR_PTR(err);
1343 }
1344 }
1345
1346 /* Probe if we can JIT compile the filter and if so, do
1347 * the compilation of the filter.
1348 */
1349 bpf_jit_compile(fp);
1350
1351 /* JIT compiler couldn't process this filter, so do the eBPF translation
1352 * for the optimized interpreter.
1353 */
1354 if (!fp->jited)
1355 fp = bpf_migrate_filter(fp);
1356
1357 return fp;
1358 }
1359
1360 /**
1361 * bpf_prog_create - create an unattached filter
1362 * @pfp: the unattached filter that is created
1363 * @fprog: the filter program
1364 *
1365 * Create a filter independent of any socket. We first run some
1366 * sanity checks on it to make sure it does not explode on us later.
1367 * If an error occurs or there is insufficient memory for the filter
1368 * a negative errno code is returned. On success the return is zero.
1369 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1370 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1371 {
1372 unsigned int fsize = bpf_classic_proglen(fprog);
1373 struct bpf_prog *fp;
1374
1375 /* Make sure new filter is there and in the right amounts. */
1376 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1377 return -EINVAL;
1378
1379 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1380 if (!fp)
1381 return -ENOMEM;
1382
1383 memcpy(fp->insns, fprog->filter, fsize);
1384
1385 fp->len = fprog->len;
1386 /* Since unattached filters are not copied back to user
1387 * space through sk_get_filter(), we do not need to hold
1388 * a copy here, and can spare us the work.
1389 */
1390 fp->orig_prog = NULL;
1391
1392 /* bpf_prepare_filter() already takes care of freeing
1393 * memory in case something goes wrong.
1394 */
1395 fp = bpf_prepare_filter(fp, NULL);
1396 if (IS_ERR(fp))
1397 return PTR_ERR(fp);
1398
1399 *pfp = fp;
1400 return 0;
1401 }
1402 EXPORT_SYMBOL_GPL(bpf_prog_create);
1403
1404 /**
1405 * bpf_prog_create_from_user - create an unattached filter from user buffer
1406 * @pfp: the unattached filter that is created
1407 * @fprog: the filter program
1408 * @trans: post-classic verifier transformation handler
1409 * @save_orig: save classic BPF program
1410 *
1411 * This function effectively does the same as bpf_prog_create(), only
1412 * that it builds up its insns buffer from user space provided buffer.
1413 * It also allows for passing a bpf_aux_classic_check_t handler.
1414 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1415 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1416 bpf_aux_classic_check_t trans, bool save_orig)
1417 {
1418 unsigned int fsize = bpf_classic_proglen(fprog);
1419 struct bpf_prog *fp;
1420 int err;
1421
1422 /* Make sure new filter is there and in the right amounts. */
1423 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1424 return -EINVAL;
1425
1426 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1427 if (!fp)
1428 return -ENOMEM;
1429
1430 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1431 __bpf_prog_free(fp);
1432 return -EFAULT;
1433 }
1434
1435 fp->len = fprog->len;
1436 fp->orig_prog = NULL;
1437
1438 if (save_orig) {
1439 err = bpf_prog_store_orig_filter(fp, fprog);
1440 if (err) {
1441 __bpf_prog_free(fp);
1442 return -ENOMEM;
1443 }
1444 }
1445
1446 /* bpf_prepare_filter() already takes care of freeing
1447 * memory in case something goes wrong.
1448 */
1449 fp = bpf_prepare_filter(fp, trans);
1450 if (IS_ERR(fp))
1451 return PTR_ERR(fp);
1452
1453 *pfp = fp;
1454 return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1457
bpf_prog_destroy(struct bpf_prog * fp)1458 void bpf_prog_destroy(struct bpf_prog *fp)
1459 {
1460 __bpf_prog_release(fp);
1461 }
1462 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1463
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1464 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1465 {
1466 struct sk_filter *fp, *old_fp;
1467
1468 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1469 if (!fp)
1470 return -ENOMEM;
1471
1472 fp->prog = prog;
1473
1474 if (!__sk_filter_charge(sk, fp)) {
1475 kfree(fp);
1476 return -ENOMEM;
1477 }
1478 refcount_set(&fp->refcnt, 1);
1479
1480 old_fp = rcu_dereference_protected(sk->sk_filter,
1481 lockdep_sock_is_held(sk));
1482 rcu_assign_pointer(sk->sk_filter, fp);
1483
1484 if (old_fp)
1485 sk_filter_uncharge(sk, old_fp);
1486
1487 return 0;
1488 }
1489
1490 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1491 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1492 {
1493 unsigned int fsize = bpf_classic_proglen(fprog);
1494 struct bpf_prog *prog;
1495 int err;
1496
1497 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1498 return ERR_PTR(-EPERM);
1499
1500 /* Make sure new filter is there and in the right amounts. */
1501 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1502 return ERR_PTR(-EINVAL);
1503
1504 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1505 if (!prog)
1506 return ERR_PTR(-ENOMEM);
1507
1508 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1509 __bpf_prog_free(prog);
1510 return ERR_PTR(-EFAULT);
1511 }
1512
1513 prog->len = fprog->len;
1514
1515 err = bpf_prog_store_orig_filter(prog, fprog);
1516 if (err) {
1517 __bpf_prog_free(prog);
1518 return ERR_PTR(-ENOMEM);
1519 }
1520
1521 /* bpf_prepare_filter() already takes care of freeing
1522 * memory in case something goes wrong.
1523 */
1524 return bpf_prepare_filter(prog, NULL);
1525 }
1526
1527 /**
1528 * sk_attach_filter - attach a socket filter
1529 * @fprog: the filter program
1530 * @sk: the socket to use
1531 *
1532 * Attach the user's filter code. We first run some sanity checks on
1533 * it to make sure it does not explode on us later. If an error
1534 * occurs or there is insufficient memory for the filter a negative
1535 * errno code is returned. On success the return is zero.
1536 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1537 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1538 {
1539 struct bpf_prog *prog = __get_filter(fprog, sk);
1540 int err;
1541
1542 if (IS_ERR(prog))
1543 return PTR_ERR(prog);
1544
1545 err = __sk_attach_prog(prog, sk);
1546 if (err < 0) {
1547 __bpf_prog_release(prog);
1548 return err;
1549 }
1550
1551 return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(sk_attach_filter);
1554
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1555 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1556 {
1557 struct bpf_prog *prog = __get_filter(fprog, sk);
1558 int err, optmem_max;
1559
1560 if (IS_ERR(prog))
1561 return PTR_ERR(prog);
1562
1563 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1564 if (bpf_prog_size(prog->len) > optmem_max)
1565 err = -ENOMEM;
1566 else
1567 err = reuseport_attach_prog(sk, prog);
1568
1569 if (err)
1570 __bpf_prog_release(prog);
1571
1572 return err;
1573 }
1574
__get_bpf(u32 ufd,struct sock * sk)1575 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1576 {
1577 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1578 return ERR_PTR(-EPERM);
1579
1580 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1581 }
1582
sk_attach_bpf(u32 ufd,struct sock * sk)1583 int sk_attach_bpf(u32 ufd, struct sock *sk)
1584 {
1585 struct bpf_prog *prog = __get_bpf(ufd, sk);
1586 int err;
1587
1588 if (IS_ERR(prog))
1589 return PTR_ERR(prog);
1590
1591 err = __sk_attach_prog(prog, sk);
1592 if (err < 0) {
1593 bpf_prog_put(prog);
1594 return err;
1595 }
1596
1597 return 0;
1598 }
1599
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 struct bpf_prog *prog;
1603 int err, optmem_max;
1604
1605 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1606 return -EPERM;
1607
1608 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1609 if (PTR_ERR(prog) == -EINVAL)
1610 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1611 if (IS_ERR(prog))
1612 return PTR_ERR(prog);
1613
1614 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1615 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1616 * bpf prog (e.g. sockmap). It depends on the
1617 * limitation imposed by bpf_prog_load().
1618 * Hence, sysctl_optmem_max is not checked.
1619 */
1620 if ((sk->sk_type != SOCK_STREAM &&
1621 sk->sk_type != SOCK_DGRAM) ||
1622 (sk->sk_protocol != IPPROTO_UDP &&
1623 sk->sk_protocol != IPPROTO_TCP) ||
1624 (sk->sk_family != AF_INET &&
1625 sk->sk_family != AF_INET6)) {
1626 err = -ENOTSUPP;
1627 goto err_prog_put;
1628 }
1629 } else {
1630 /* BPF_PROG_TYPE_SOCKET_FILTER */
1631 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1632 if (bpf_prog_size(prog->len) > optmem_max) {
1633 err = -ENOMEM;
1634 goto err_prog_put;
1635 }
1636 }
1637
1638 err = reuseport_attach_prog(sk, prog);
1639 err_prog_put:
1640 if (err)
1641 bpf_prog_put(prog);
1642
1643 return err;
1644 }
1645
sk_reuseport_prog_free(struct bpf_prog * prog)1646 void sk_reuseport_prog_free(struct bpf_prog *prog)
1647 {
1648 if (!prog)
1649 return;
1650
1651 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1652 bpf_prog_put(prog);
1653 else
1654 bpf_prog_destroy(prog);
1655 }
1656
1657 struct bpf_scratchpad {
1658 union {
1659 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1660 u8 buff[MAX_BPF_STACK];
1661 };
1662 local_lock_t bh_lock;
1663 };
1664
1665 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp) = {
1666 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
1667 };
1668
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1669 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1670 unsigned int write_len)
1671 {
1672 #ifdef CONFIG_DEBUG_NET
1673 /* Avoid a splat in pskb_may_pull_reason() */
1674 if (write_len > INT_MAX)
1675 return -EINVAL;
1676 #endif
1677 return skb_ensure_writable(skb, write_len);
1678 }
1679
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1680 static inline int bpf_try_make_writable(struct sk_buff *skb,
1681 unsigned int write_len)
1682 {
1683 int err = __bpf_try_make_writable(skb, write_len);
1684
1685 bpf_compute_data_pointers(skb);
1686 return err;
1687 }
1688
bpf_try_make_head_writable(struct sk_buff * skb)1689 static int bpf_try_make_head_writable(struct sk_buff *skb)
1690 {
1691 return bpf_try_make_writable(skb, skb_headlen(skb));
1692 }
1693
bpf_push_mac_rcsum(struct sk_buff * skb)1694 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1695 {
1696 if (skb_at_tc_ingress(skb))
1697 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1698 }
1699
bpf_pull_mac_rcsum(struct sk_buff * skb)1700 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1701 {
1702 if (skb_at_tc_ingress(skb))
1703 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1704 }
1705
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1706 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1707 const void *, from, u32, len, u64, flags)
1708 {
1709 void *ptr;
1710
1711 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1712 return -EINVAL;
1713 if (unlikely(offset > INT_MAX))
1714 return -EFAULT;
1715 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1716 return -EFAULT;
1717
1718 ptr = skb->data + offset;
1719 if (flags & BPF_F_RECOMPUTE_CSUM)
1720 __skb_postpull_rcsum(skb, ptr, len, offset);
1721
1722 memcpy(ptr, from, len);
1723
1724 if (flags & BPF_F_RECOMPUTE_CSUM)
1725 __skb_postpush_rcsum(skb, ptr, len, offset);
1726 if (flags & BPF_F_INVALIDATE_HASH)
1727 skb_clear_hash(skb);
1728
1729 return 0;
1730 }
1731
1732 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1733 .func = bpf_skb_store_bytes,
1734 .gpl_only = false,
1735 .ret_type = RET_INTEGER,
1736 .arg1_type = ARG_PTR_TO_CTX,
1737 .arg2_type = ARG_ANYTHING,
1738 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1739 .arg4_type = ARG_CONST_SIZE,
1740 .arg5_type = ARG_ANYTHING,
1741 };
1742
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1743 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1744 u32 len, u64 flags)
1745 {
1746 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1747 }
1748
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1749 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1750 void *, to, u32, len)
1751 {
1752 void *ptr;
1753
1754 if (unlikely(offset > INT_MAX))
1755 goto err_clear;
1756
1757 ptr = skb_header_pointer(skb, offset, len, to);
1758 if (unlikely(!ptr))
1759 goto err_clear;
1760 if (ptr != to)
1761 memcpy(to, ptr, len);
1762
1763 return 0;
1764 err_clear:
1765 memset(to, 0, len);
1766 return -EFAULT;
1767 }
1768
1769 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1770 .func = bpf_skb_load_bytes,
1771 .gpl_only = false,
1772 .ret_type = RET_INTEGER,
1773 .arg1_type = ARG_PTR_TO_CTX,
1774 .arg2_type = ARG_ANYTHING,
1775 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1776 .arg4_type = ARG_CONST_SIZE,
1777 };
1778
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1779 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1780 {
1781 return ____bpf_skb_load_bytes(skb, offset, to, len);
1782 }
1783
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1784 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1785 const struct bpf_flow_dissector *, ctx, u32, offset,
1786 void *, to, u32, len)
1787 {
1788 void *ptr;
1789
1790 if (unlikely(offset > 0xffff))
1791 goto err_clear;
1792
1793 if (unlikely(!ctx->skb))
1794 goto err_clear;
1795
1796 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1797 if (unlikely(!ptr))
1798 goto err_clear;
1799 if (ptr != to)
1800 memcpy(to, ptr, len);
1801
1802 return 0;
1803 err_clear:
1804 memset(to, 0, len);
1805 return -EFAULT;
1806 }
1807
1808 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1809 .func = bpf_flow_dissector_load_bytes,
1810 .gpl_only = false,
1811 .ret_type = RET_INTEGER,
1812 .arg1_type = ARG_PTR_TO_CTX,
1813 .arg2_type = ARG_ANYTHING,
1814 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1815 .arg4_type = ARG_CONST_SIZE,
1816 };
1817
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1818 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1819 u32, offset, void *, to, u32, len, u32, start_header)
1820 {
1821 u8 *end = skb_tail_pointer(skb);
1822 u8 *start, *ptr;
1823
1824 if (unlikely(offset > 0xffff))
1825 goto err_clear;
1826
1827 switch (start_header) {
1828 case BPF_HDR_START_MAC:
1829 if (unlikely(!skb_mac_header_was_set(skb)))
1830 goto err_clear;
1831 start = skb_mac_header(skb);
1832 break;
1833 case BPF_HDR_START_NET:
1834 start = skb_network_header(skb);
1835 break;
1836 default:
1837 goto err_clear;
1838 }
1839
1840 ptr = start + offset;
1841
1842 if (likely(ptr + len <= end)) {
1843 memcpy(to, ptr, len);
1844 return 0;
1845 }
1846
1847 err_clear:
1848 memset(to, 0, len);
1849 return -EFAULT;
1850 }
1851
1852 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1853 .func = bpf_skb_load_bytes_relative,
1854 .gpl_only = false,
1855 .ret_type = RET_INTEGER,
1856 .arg1_type = ARG_PTR_TO_CTX,
1857 .arg2_type = ARG_ANYTHING,
1858 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1859 .arg4_type = ARG_CONST_SIZE,
1860 .arg5_type = ARG_ANYTHING,
1861 };
1862
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1863 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1864 {
1865 /* Idea is the following: should the needed direct read/write
1866 * test fail during runtime, we can pull in more data and redo
1867 * again, since implicitly, we invalidate previous checks here.
1868 *
1869 * Or, since we know how much we need to make read/writeable,
1870 * this can be done once at the program beginning for direct
1871 * access case. By this we overcome limitations of only current
1872 * headroom being accessible.
1873 */
1874 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1875 }
1876
1877 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1878 .func = bpf_skb_pull_data,
1879 .gpl_only = false,
1880 .ret_type = RET_INTEGER,
1881 .arg1_type = ARG_PTR_TO_CTX,
1882 .arg2_type = ARG_ANYTHING,
1883 };
1884
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1885 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1886 {
1887 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1888 }
1889
1890 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1891 .func = bpf_sk_fullsock,
1892 .gpl_only = false,
1893 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1894 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1895 };
1896
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1897 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1898 unsigned int write_len)
1899 {
1900 return __bpf_try_make_writable(skb, write_len);
1901 }
1902
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1903 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1904 {
1905 /* Idea is the following: should the needed direct read/write
1906 * test fail during runtime, we can pull in more data and redo
1907 * again, since implicitly, we invalidate previous checks here.
1908 *
1909 * Or, since we know how much we need to make read/writeable,
1910 * this can be done once at the program beginning for direct
1911 * access case. By this we overcome limitations of only current
1912 * headroom being accessible.
1913 */
1914 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1915 }
1916
1917 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1918 .func = sk_skb_pull_data,
1919 .gpl_only = false,
1920 .ret_type = RET_INTEGER,
1921 .arg1_type = ARG_PTR_TO_CTX,
1922 .arg2_type = ARG_ANYTHING,
1923 };
1924
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1925 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1926 u64, from, u64, to, u64, flags)
1927 {
1928 __sum16 *ptr;
1929
1930 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1931 return -EINVAL;
1932 if (unlikely(offset > 0xffff || offset & 1))
1933 return -EFAULT;
1934 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1935 return -EFAULT;
1936
1937 ptr = (__sum16 *)(skb->data + offset);
1938 switch (flags & BPF_F_HDR_FIELD_MASK) {
1939 case 0:
1940 if (unlikely(from != 0))
1941 return -EINVAL;
1942
1943 csum_replace_by_diff(ptr, to);
1944 break;
1945 case 2:
1946 csum_replace2(ptr, from, to);
1947 break;
1948 case 4:
1949 csum_replace4(ptr, from, to);
1950 break;
1951 default:
1952 return -EINVAL;
1953 }
1954
1955 return 0;
1956 }
1957
1958 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1959 .func = bpf_l3_csum_replace,
1960 .gpl_only = false,
1961 .ret_type = RET_INTEGER,
1962 .arg1_type = ARG_PTR_TO_CTX,
1963 .arg2_type = ARG_ANYTHING,
1964 .arg3_type = ARG_ANYTHING,
1965 .arg4_type = ARG_ANYTHING,
1966 .arg5_type = ARG_ANYTHING,
1967 };
1968
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1969 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1970 u64, from, u64, to, u64, flags)
1971 {
1972 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1973 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1974 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1975 __sum16 *ptr;
1976
1977 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1978 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1979 return -EINVAL;
1980 if (unlikely(offset > 0xffff || offset & 1))
1981 return -EFAULT;
1982 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1983 return -EFAULT;
1984
1985 ptr = (__sum16 *)(skb->data + offset);
1986 if (is_mmzero && !do_mforce && !*ptr)
1987 return 0;
1988
1989 switch (flags & BPF_F_HDR_FIELD_MASK) {
1990 case 0:
1991 if (unlikely(from != 0))
1992 return -EINVAL;
1993
1994 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1995 break;
1996 case 2:
1997 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1998 break;
1999 case 4:
2000 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2001 break;
2002 default:
2003 return -EINVAL;
2004 }
2005
2006 if (is_mmzero && !*ptr)
2007 *ptr = CSUM_MANGLED_0;
2008 return 0;
2009 }
2010
2011 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2012 .func = bpf_l4_csum_replace,
2013 .gpl_only = false,
2014 .ret_type = RET_INTEGER,
2015 .arg1_type = ARG_PTR_TO_CTX,
2016 .arg2_type = ARG_ANYTHING,
2017 .arg3_type = ARG_ANYTHING,
2018 .arg4_type = ARG_ANYTHING,
2019 .arg5_type = ARG_ANYTHING,
2020 };
2021
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2022 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2023 __be32 *, to, u32, to_size, __wsum, seed)
2024 {
2025 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2026 u32 diff_size = from_size + to_size;
2027 int i, j = 0;
2028 __wsum ret;
2029
2030 /* This is quite flexible, some examples:
2031 *
2032 * from_size == 0, to_size > 0, seed := csum --> pushing data
2033 * from_size > 0, to_size == 0, seed := csum --> pulling data
2034 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2035 *
2036 * Even for diffing, from_size and to_size don't need to be equal.
2037 */
2038 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2039 diff_size > sizeof(sp->diff)))
2040 return -EINVAL;
2041
2042 local_lock_nested_bh(&bpf_sp.bh_lock);
2043 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2044 sp->diff[j] = ~from[i];
2045 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
2046 sp->diff[j] = to[i];
2047
2048 ret = csum_partial(sp->diff, diff_size, seed);
2049 local_unlock_nested_bh(&bpf_sp.bh_lock);
2050 return ret;
2051 }
2052
2053 static const struct bpf_func_proto bpf_csum_diff_proto = {
2054 .func = bpf_csum_diff,
2055 .gpl_only = false,
2056 .pkt_access = true,
2057 .ret_type = RET_INTEGER,
2058 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2059 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2060 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2061 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2062 .arg5_type = ARG_ANYTHING,
2063 };
2064
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2065 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2066 {
2067 /* The interface is to be used in combination with bpf_csum_diff()
2068 * for direct packet writes. csum rotation for alignment as well
2069 * as emulating csum_sub() can be done from the eBPF program.
2070 */
2071 if (skb->ip_summed == CHECKSUM_COMPLETE)
2072 return (skb->csum = csum_add(skb->csum, csum));
2073
2074 return -ENOTSUPP;
2075 }
2076
2077 static const struct bpf_func_proto bpf_csum_update_proto = {
2078 .func = bpf_csum_update,
2079 .gpl_only = false,
2080 .ret_type = RET_INTEGER,
2081 .arg1_type = ARG_PTR_TO_CTX,
2082 .arg2_type = ARG_ANYTHING,
2083 };
2084
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2085 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2086 {
2087 /* The interface is to be used in combination with bpf_skb_adjust_room()
2088 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2089 * is passed as flags, for example.
2090 */
2091 switch (level) {
2092 case BPF_CSUM_LEVEL_INC:
2093 __skb_incr_checksum_unnecessary(skb);
2094 break;
2095 case BPF_CSUM_LEVEL_DEC:
2096 __skb_decr_checksum_unnecessary(skb);
2097 break;
2098 case BPF_CSUM_LEVEL_RESET:
2099 __skb_reset_checksum_unnecessary(skb);
2100 break;
2101 case BPF_CSUM_LEVEL_QUERY:
2102 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2103 skb->csum_level : -EACCES;
2104 default:
2105 return -EINVAL;
2106 }
2107
2108 return 0;
2109 }
2110
2111 static const struct bpf_func_proto bpf_csum_level_proto = {
2112 .func = bpf_csum_level,
2113 .gpl_only = false,
2114 .ret_type = RET_INTEGER,
2115 .arg1_type = ARG_PTR_TO_CTX,
2116 .arg2_type = ARG_ANYTHING,
2117 };
2118
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2119 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2120 {
2121 return dev_forward_skb_nomtu(dev, skb);
2122 }
2123
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2124 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2125 struct sk_buff *skb)
2126 {
2127 int ret = ____dev_forward_skb(dev, skb, false);
2128
2129 if (likely(!ret)) {
2130 skb->dev = dev;
2131 ret = netif_rx(skb);
2132 }
2133
2134 return ret;
2135 }
2136
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2137 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2138 {
2139 int ret;
2140
2141 if (dev_xmit_recursion()) {
2142 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2143 kfree_skb(skb);
2144 return -ENETDOWN;
2145 }
2146
2147 skb->dev = dev;
2148 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2149 skb_clear_tstamp(skb);
2150
2151 dev_xmit_recursion_inc();
2152 ret = dev_queue_xmit(skb);
2153 dev_xmit_recursion_dec();
2154
2155 return ret;
2156 }
2157
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2158 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2159 u32 flags)
2160 {
2161 unsigned int mlen = skb_network_offset(skb);
2162
2163 if (unlikely(skb->len <= mlen)) {
2164 kfree_skb(skb);
2165 return -ERANGE;
2166 }
2167
2168 if (mlen) {
2169 __skb_pull(skb, mlen);
2170
2171 /* At ingress, the mac header has already been pulled once.
2172 * At egress, skb_pospull_rcsum has to be done in case that
2173 * the skb is originated from ingress (i.e. a forwarded skb)
2174 * to ensure that rcsum starts at net header.
2175 */
2176 if (!skb_at_tc_ingress(skb))
2177 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2178 }
2179 skb_pop_mac_header(skb);
2180 skb_reset_mac_len(skb);
2181 return flags & BPF_F_INGRESS ?
2182 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2183 }
2184
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2185 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2186 u32 flags)
2187 {
2188 /* Verify that a link layer header is carried */
2189 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2190 kfree_skb(skb);
2191 return -ERANGE;
2192 }
2193
2194 bpf_push_mac_rcsum(skb);
2195 return flags & BPF_F_INGRESS ?
2196 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2197 }
2198
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2199 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2200 u32 flags)
2201 {
2202 if (dev_is_mac_header_xmit(dev))
2203 return __bpf_redirect_common(skb, dev, flags);
2204 else
2205 return __bpf_redirect_no_mac(skb, dev, flags);
2206 }
2207
2208 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2209 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2210 struct net_device *dev, struct bpf_nh_params *nh)
2211 {
2212 u32 hh_len = LL_RESERVED_SPACE(dev);
2213 const struct in6_addr *nexthop;
2214 struct dst_entry *dst = NULL;
2215 struct neighbour *neigh;
2216
2217 if (dev_xmit_recursion()) {
2218 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2219 goto out_drop;
2220 }
2221
2222 skb->dev = dev;
2223 skb_clear_tstamp(skb);
2224
2225 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2226 skb = skb_expand_head(skb, hh_len);
2227 if (!skb)
2228 return -ENOMEM;
2229 }
2230
2231 rcu_read_lock();
2232 if (!nh) {
2233 dst = skb_dst(skb);
2234 nexthop = rt6_nexthop(dst_rt6_info(dst),
2235 &ipv6_hdr(skb)->daddr);
2236 } else {
2237 nexthop = &nh->ipv6_nh;
2238 }
2239 neigh = ip_neigh_gw6(dev, nexthop);
2240 if (likely(!IS_ERR(neigh))) {
2241 int ret;
2242
2243 sock_confirm_neigh(skb, neigh);
2244 local_bh_disable();
2245 dev_xmit_recursion_inc();
2246 ret = neigh_output(neigh, skb, false);
2247 dev_xmit_recursion_dec();
2248 local_bh_enable();
2249 rcu_read_unlock();
2250 return ret;
2251 }
2252 rcu_read_unlock_bh();
2253 if (dst)
2254 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2255 out_drop:
2256 kfree_skb(skb);
2257 return -ENETDOWN;
2258 }
2259
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2260 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2261 struct bpf_nh_params *nh)
2262 {
2263 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2264 struct net *net = dev_net(dev);
2265 int err, ret = NET_XMIT_DROP;
2266
2267 if (!nh) {
2268 struct dst_entry *dst;
2269 struct flowi6 fl6 = {
2270 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2271 .flowi6_mark = skb->mark,
2272 .flowlabel = ip6_flowinfo(ip6h),
2273 .flowi6_oif = dev->ifindex,
2274 .flowi6_proto = ip6h->nexthdr,
2275 .daddr = ip6h->daddr,
2276 .saddr = ip6h->saddr,
2277 };
2278
2279 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2280 if (IS_ERR(dst))
2281 goto out_drop;
2282
2283 skb_dst_set(skb, dst);
2284 } else if (nh->nh_family != AF_INET6) {
2285 goto out_drop;
2286 }
2287
2288 err = bpf_out_neigh_v6(net, skb, dev, nh);
2289 if (unlikely(net_xmit_eval(err)))
2290 DEV_STATS_INC(dev, tx_errors);
2291 else
2292 ret = NET_XMIT_SUCCESS;
2293 goto out_xmit;
2294 out_drop:
2295 DEV_STATS_INC(dev, tx_errors);
2296 kfree_skb(skb);
2297 out_xmit:
2298 return ret;
2299 }
2300 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2301 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2302 struct bpf_nh_params *nh)
2303 {
2304 kfree_skb(skb);
2305 return NET_XMIT_DROP;
2306 }
2307 #endif /* CONFIG_IPV6 */
2308
2309 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2310 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2311 struct net_device *dev, struct bpf_nh_params *nh)
2312 {
2313 u32 hh_len = LL_RESERVED_SPACE(dev);
2314 struct neighbour *neigh;
2315 bool is_v6gw = false;
2316
2317 if (dev_xmit_recursion()) {
2318 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2319 goto out_drop;
2320 }
2321
2322 skb->dev = dev;
2323 skb_clear_tstamp(skb);
2324
2325 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2326 skb = skb_expand_head(skb, hh_len);
2327 if (!skb)
2328 return -ENOMEM;
2329 }
2330
2331 rcu_read_lock();
2332 if (!nh) {
2333 struct rtable *rt = skb_rtable(skb);
2334
2335 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2336 } else if (nh->nh_family == AF_INET6) {
2337 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2338 is_v6gw = true;
2339 } else if (nh->nh_family == AF_INET) {
2340 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2341 } else {
2342 rcu_read_unlock();
2343 goto out_drop;
2344 }
2345
2346 if (likely(!IS_ERR(neigh))) {
2347 int ret;
2348
2349 sock_confirm_neigh(skb, neigh);
2350 local_bh_disable();
2351 dev_xmit_recursion_inc();
2352 ret = neigh_output(neigh, skb, is_v6gw);
2353 dev_xmit_recursion_dec();
2354 local_bh_enable();
2355 rcu_read_unlock();
2356 return ret;
2357 }
2358 rcu_read_unlock();
2359 out_drop:
2360 kfree_skb(skb);
2361 return -ENETDOWN;
2362 }
2363
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2364 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2365 struct bpf_nh_params *nh)
2366 {
2367 const struct iphdr *ip4h = ip_hdr(skb);
2368 struct net *net = dev_net(dev);
2369 int err, ret = NET_XMIT_DROP;
2370
2371 if (!nh) {
2372 struct flowi4 fl4 = {
2373 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2374 .flowi4_mark = skb->mark,
2375 .flowi4_tos = ip4h->tos & INET_DSCP_MASK,
2376 .flowi4_oif = dev->ifindex,
2377 .flowi4_proto = ip4h->protocol,
2378 .daddr = ip4h->daddr,
2379 .saddr = ip4h->saddr,
2380 };
2381 struct rtable *rt;
2382
2383 rt = ip_route_output_flow(net, &fl4, NULL);
2384 if (IS_ERR(rt))
2385 goto out_drop;
2386 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2387 ip_rt_put(rt);
2388 goto out_drop;
2389 }
2390
2391 skb_dst_set(skb, &rt->dst);
2392 }
2393
2394 err = bpf_out_neigh_v4(net, skb, dev, nh);
2395 if (unlikely(net_xmit_eval(err)))
2396 DEV_STATS_INC(dev, tx_errors);
2397 else
2398 ret = NET_XMIT_SUCCESS;
2399 goto out_xmit;
2400 out_drop:
2401 DEV_STATS_INC(dev, tx_errors);
2402 kfree_skb(skb);
2403 out_xmit:
2404 return ret;
2405 }
2406 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2407 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2408 struct bpf_nh_params *nh)
2409 {
2410 kfree_skb(skb);
2411 return NET_XMIT_DROP;
2412 }
2413 #endif /* CONFIG_INET */
2414
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2415 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2416 struct bpf_nh_params *nh)
2417 {
2418 struct ethhdr *ethh = eth_hdr(skb);
2419
2420 if (unlikely(skb->mac_header >= skb->network_header))
2421 goto out;
2422 bpf_push_mac_rcsum(skb);
2423 if (is_multicast_ether_addr(ethh->h_dest))
2424 goto out;
2425
2426 skb_pull(skb, sizeof(*ethh));
2427 skb_unset_mac_header(skb);
2428 skb_reset_network_header(skb);
2429
2430 if (skb->protocol == htons(ETH_P_IP))
2431 return __bpf_redirect_neigh_v4(skb, dev, nh);
2432 else if (skb->protocol == htons(ETH_P_IPV6))
2433 return __bpf_redirect_neigh_v6(skb, dev, nh);
2434 out:
2435 kfree_skb(skb);
2436 return -ENOTSUPP;
2437 }
2438
2439 /* Internal, non-exposed redirect flags. */
2440 enum {
2441 BPF_F_NEIGH = (1ULL << 16),
2442 BPF_F_PEER = (1ULL << 17),
2443 BPF_F_NEXTHOP = (1ULL << 18),
2444 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2445 };
2446
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2447 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2448 {
2449 struct net_device *dev;
2450 struct sk_buff *clone;
2451 int ret;
2452
2453 BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2454
2455 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2456 return -EINVAL;
2457
2458 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2459 if (unlikely(!dev))
2460 return -EINVAL;
2461
2462 clone = skb_clone(skb, GFP_ATOMIC);
2463 if (unlikely(!clone))
2464 return -ENOMEM;
2465
2466 /* For direct write, we need to keep the invariant that the skbs
2467 * we're dealing with need to be uncloned. Should uncloning fail
2468 * here, we need to free the just generated clone to unclone once
2469 * again.
2470 */
2471 ret = bpf_try_make_head_writable(skb);
2472 if (unlikely(ret)) {
2473 kfree_skb(clone);
2474 return -ENOMEM;
2475 }
2476
2477 return __bpf_redirect(clone, dev, flags);
2478 }
2479
2480 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2481 .func = bpf_clone_redirect,
2482 .gpl_only = false,
2483 .ret_type = RET_INTEGER,
2484 .arg1_type = ARG_PTR_TO_CTX,
2485 .arg2_type = ARG_ANYTHING,
2486 .arg3_type = ARG_ANYTHING,
2487 };
2488
skb_get_peer_dev(struct net_device * dev)2489 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2490 {
2491 const struct net_device_ops *ops = dev->netdev_ops;
2492
2493 if (likely(ops->ndo_get_peer_dev))
2494 return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2495 netkit_peer_dev, dev);
2496 return NULL;
2497 }
2498
skb_do_redirect(struct sk_buff * skb)2499 int skb_do_redirect(struct sk_buff *skb)
2500 {
2501 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2502 struct net *net = dev_net(skb->dev);
2503 struct net_device *dev;
2504 u32 flags = ri->flags;
2505
2506 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2507 ri->tgt_index = 0;
2508 ri->flags = 0;
2509 if (unlikely(!dev))
2510 goto out_drop;
2511 if (flags & BPF_F_PEER) {
2512 if (unlikely(!skb_at_tc_ingress(skb)))
2513 goto out_drop;
2514 dev = skb_get_peer_dev(dev);
2515 if (unlikely(!dev ||
2516 !(dev->flags & IFF_UP) ||
2517 net_eq(net, dev_net(dev))))
2518 goto out_drop;
2519 skb->dev = dev;
2520 dev_sw_netstats_rx_add(dev, skb->len);
2521 return -EAGAIN;
2522 }
2523 return flags & BPF_F_NEIGH ?
2524 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2525 &ri->nh : NULL) :
2526 __bpf_redirect(skb, dev, flags);
2527 out_drop:
2528 kfree_skb(skb);
2529 return -EINVAL;
2530 }
2531
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2532 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2533 {
2534 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2535
2536 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2537 return TC_ACT_SHOT;
2538
2539 ri->flags = flags;
2540 ri->tgt_index = ifindex;
2541
2542 return TC_ACT_REDIRECT;
2543 }
2544
2545 static const struct bpf_func_proto bpf_redirect_proto = {
2546 .func = bpf_redirect,
2547 .gpl_only = false,
2548 .ret_type = RET_INTEGER,
2549 .arg1_type = ARG_ANYTHING,
2550 .arg2_type = ARG_ANYTHING,
2551 };
2552
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2553 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2554 {
2555 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2556
2557 if (unlikely(flags))
2558 return TC_ACT_SHOT;
2559
2560 ri->flags = BPF_F_PEER;
2561 ri->tgt_index = ifindex;
2562
2563 return TC_ACT_REDIRECT;
2564 }
2565
2566 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2567 .func = bpf_redirect_peer,
2568 .gpl_only = false,
2569 .ret_type = RET_INTEGER,
2570 .arg1_type = ARG_ANYTHING,
2571 .arg2_type = ARG_ANYTHING,
2572 };
2573
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2574 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2575 int, plen, u64, flags)
2576 {
2577 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2578
2579 if (unlikely((plen && plen < sizeof(*params)) || flags))
2580 return TC_ACT_SHOT;
2581
2582 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2583 ri->tgt_index = ifindex;
2584
2585 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2586 if (plen)
2587 memcpy(&ri->nh, params, sizeof(ri->nh));
2588
2589 return TC_ACT_REDIRECT;
2590 }
2591
2592 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2593 .func = bpf_redirect_neigh,
2594 .gpl_only = false,
2595 .ret_type = RET_INTEGER,
2596 .arg1_type = ARG_ANYTHING,
2597 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2598 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2599 .arg4_type = ARG_ANYTHING,
2600 };
2601
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2602 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2603 {
2604 msg->apply_bytes = bytes;
2605 return 0;
2606 }
2607
2608 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2609 .func = bpf_msg_apply_bytes,
2610 .gpl_only = false,
2611 .ret_type = RET_INTEGER,
2612 .arg1_type = ARG_PTR_TO_CTX,
2613 .arg2_type = ARG_ANYTHING,
2614 };
2615
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2616 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2617 {
2618 msg->cork_bytes = bytes;
2619 return 0;
2620 }
2621
sk_msg_reset_curr(struct sk_msg * msg)2622 static void sk_msg_reset_curr(struct sk_msg *msg)
2623 {
2624 u32 i = msg->sg.start;
2625 u32 len = 0;
2626
2627 do {
2628 len += sk_msg_elem(msg, i)->length;
2629 sk_msg_iter_var_next(i);
2630 if (len >= msg->sg.size)
2631 break;
2632 } while (i != msg->sg.end);
2633
2634 msg->sg.curr = i;
2635 msg->sg.copybreak = 0;
2636 }
2637
2638 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2639 .func = bpf_msg_cork_bytes,
2640 .gpl_only = false,
2641 .ret_type = RET_INTEGER,
2642 .arg1_type = ARG_PTR_TO_CTX,
2643 .arg2_type = ARG_ANYTHING,
2644 };
2645
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2646 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2647 u32, end, u64, flags)
2648 {
2649 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2650 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2651 struct scatterlist *sge;
2652 u8 *raw, *to, *from;
2653 struct page *page;
2654
2655 if (unlikely(flags || end <= start))
2656 return -EINVAL;
2657
2658 /* First find the starting scatterlist element */
2659 i = msg->sg.start;
2660 do {
2661 offset += len;
2662 len = sk_msg_elem(msg, i)->length;
2663 if (start < offset + len)
2664 break;
2665 sk_msg_iter_var_next(i);
2666 } while (i != msg->sg.end);
2667
2668 if (unlikely(start >= offset + len))
2669 return -EINVAL;
2670
2671 first_sge = i;
2672 /* The start may point into the sg element so we need to also
2673 * account for the headroom.
2674 */
2675 bytes_sg_total = start - offset + bytes;
2676 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2677 goto out;
2678
2679 /* At this point we need to linearize multiple scatterlist
2680 * elements or a single shared page. Either way we need to
2681 * copy into a linear buffer exclusively owned by BPF. Then
2682 * place the buffer in the scatterlist and fixup the original
2683 * entries by removing the entries now in the linear buffer
2684 * and shifting the remaining entries. For now we do not try
2685 * to copy partial entries to avoid complexity of running out
2686 * of sg_entry slots. The downside is reading a single byte
2687 * will copy the entire sg entry.
2688 */
2689 do {
2690 copy += sk_msg_elem(msg, i)->length;
2691 sk_msg_iter_var_next(i);
2692 if (bytes_sg_total <= copy)
2693 break;
2694 } while (i != msg->sg.end);
2695 last_sge = i;
2696
2697 if (unlikely(bytes_sg_total > copy))
2698 return -EINVAL;
2699
2700 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2701 get_order(copy));
2702 if (unlikely(!page))
2703 return -ENOMEM;
2704
2705 raw = page_address(page);
2706 i = first_sge;
2707 do {
2708 sge = sk_msg_elem(msg, i);
2709 from = sg_virt(sge);
2710 len = sge->length;
2711 to = raw + poffset;
2712
2713 memcpy(to, from, len);
2714 poffset += len;
2715 sge->length = 0;
2716 put_page(sg_page(sge));
2717
2718 sk_msg_iter_var_next(i);
2719 } while (i != last_sge);
2720
2721 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2722
2723 /* To repair sg ring we need to shift entries. If we only
2724 * had a single entry though we can just replace it and
2725 * be done. Otherwise walk the ring and shift the entries.
2726 */
2727 WARN_ON_ONCE(last_sge == first_sge);
2728 shift = last_sge > first_sge ?
2729 last_sge - first_sge - 1 :
2730 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2731 if (!shift)
2732 goto out;
2733
2734 i = first_sge;
2735 sk_msg_iter_var_next(i);
2736 do {
2737 u32 move_from;
2738
2739 if (i + shift >= NR_MSG_FRAG_IDS)
2740 move_from = i + shift - NR_MSG_FRAG_IDS;
2741 else
2742 move_from = i + shift;
2743 if (move_from == msg->sg.end)
2744 break;
2745
2746 msg->sg.data[i] = msg->sg.data[move_from];
2747 msg->sg.data[move_from].length = 0;
2748 msg->sg.data[move_from].page_link = 0;
2749 msg->sg.data[move_from].offset = 0;
2750 sk_msg_iter_var_next(i);
2751 } while (1);
2752
2753 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2754 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2755 msg->sg.end - shift;
2756 out:
2757 sk_msg_reset_curr(msg);
2758 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2759 msg->data_end = msg->data + bytes;
2760 return 0;
2761 }
2762
2763 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2764 .func = bpf_msg_pull_data,
2765 .gpl_only = false,
2766 .ret_type = RET_INTEGER,
2767 .arg1_type = ARG_PTR_TO_CTX,
2768 .arg2_type = ARG_ANYTHING,
2769 .arg3_type = ARG_ANYTHING,
2770 .arg4_type = ARG_ANYTHING,
2771 };
2772
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2773 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2774 u32, len, u64, flags)
2775 {
2776 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2777 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2778 u8 *raw, *to, *from;
2779 struct page *page;
2780
2781 if (unlikely(flags))
2782 return -EINVAL;
2783
2784 if (unlikely(len == 0))
2785 return 0;
2786
2787 /* First find the starting scatterlist element */
2788 i = msg->sg.start;
2789 do {
2790 offset += l;
2791 l = sk_msg_elem(msg, i)->length;
2792
2793 if (start < offset + l)
2794 break;
2795 sk_msg_iter_var_next(i);
2796 } while (i != msg->sg.end);
2797
2798 if (start >= offset + l)
2799 return -EINVAL;
2800
2801 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2802
2803 /* If no space available will fallback to copy, we need at
2804 * least one scatterlist elem available to push data into
2805 * when start aligns to the beginning of an element or two
2806 * when it falls inside an element. We handle the start equals
2807 * offset case because its the common case for inserting a
2808 * header.
2809 */
2810 if (!space || (space == 1 && start != offset))
2811 copy = msg->sg.data[i].length;
2812
2813 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2814 get_order(copy + len));
2815 if (unlikely(!page))
2816 return -ENOMEM;
2817
2818 if (copy) {
2819 int front, back;
2820
2821 raw = page_address(page);
2822
2823 psge = sk_msg_elem(msg, i);
2824 front = start - offset;
2825 back = psge->length - front;
2826 from = sg_virt(psge);
2827
2828 if (front)
2829 memcpy(raw, from, front);
2830
2831 if (back) {
2832 from += front;
2833 to = raw + front + len;
2834
2835 memcpy(to, from, back);
2836 }
2837
2838 put_page(sg_page(psge));
2839 } else if (start - offset) {
2840 psge = sk_msg_elem(msg, i);
2841 rsge = sk_msg_elem_cpy(msg, i);
2842
2843 psge->length = start - offset;
2844 rsge.length -= psge->length;
2845 rsge.offset += start;
2846
2847 sk_msg_iter_var_next(i);
2848 sg_unmark_end(psge);
2849 sg_unmark_end(&rsge);
2850 sk_msg_iter_next(msg, end);
2851 }
2852
2853 /* Slot(s) to place newly allocated data */
2854 new = i;
2855
2856 /* Shift one or two slots as needed */
2857 if (!copy) {
2858 sge = sk_msg_elem_cpy(msg, i);
2859
2860 sk_msg_iter_var_next(i);
2861 sg_unmark_end(&sge);
2862 sk_msg_iter_next(msg, end);
2863
2864 nsge = sk_msg_elem_cpy(msg, i);
2865 if (rsge.length) {
2866 sk_msg_iter_var_next(i);
2867 nnsge = sk_msg_elem_cpy(msg, i);
2868 }
2869
2870 while (i != msg->sg.end) {
2871 msg->sg.data[i] = sge;
2872 sge = nsge;
2873 sk_msg_iter_var_next(i);
2874 if (rsge.length) {
2875 nsge = nnsge;
2876 nnsge = sk_msg_elem_cpy(msg, i);
2877 } else {
2878 nsge = sk_msg_elem_cpy(msg, i);
2879 }
2880 }
2881 }
2882
2883 /* Place newly allocated data buffer */
2884 sk_mem_charge(msg->sk, len);
2885 msg->sg.size += len;
2886 __clear_bit(new, msg->sg.copy);
2887 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2888 if (rsge.length) {
2889 get_page(sg_page(&rsge));
2890 sk_msg_iter_var_next(new);
2891 msg->sg.data[new] = rsge;
2892 }
2893
2894 sk_msg_reset_curr(msg);
2895 sk_msg_compute_data_pointers(msg);
2896 return 0;
2897 }
2898
2899 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2900 .func = bpf_msg_push_data,
2901 .gpl_only = false,
2902 .ret_type = RET_INTEGER,
2903 .arg1_type = ARG_PTR_TO_CTX,
2904 .arg2_type = ARG_ANYTHING,
2905 .arg3_type = ARG_ANYTHING,
2906 .arg4_type = ARG_ANYTHING,
2907 };
2908
sk_msg_shift_left(struct sk_msg * msg,int i)2909 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2910 {
2911 int prev;
2912
2913 do {
2914 prev = i;
2915 sk_msg_iter_var_next(i);
2916 msg->sg.data[prev] = msg->sg.data[i];
2917 } while (i != msg->sg.end);
2918
2919 sk_msg_iter_prev(msg, end);
2920 }
2921
sk_msg_shift_right(struct sk_msg * msg,int i)2922 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2923 {
2924 struct scatterlist tmp, sge;
2925
2926 sk_msg_iter_next(msg, end);
2927 sge = sk_msg_elem_cpy(msg, i);
2928 sk_msg_iter_var_next(i);
2929 tmp = sk_msg_elem_cpy(msg, i);
2930
2931 while (i != msg->sg.end) {
2932 msg->sg.data[i] = sge;
2933 sk_msg_iter_var_next(i);
2934 sge = tmp;
2935 tmp = sk_msg_elem_cpy(msg, i);
2936 }
2937 }
2938
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2939 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2940 u32, len, u64, flags)
2941 {
2942 u32 i = 0, l = 0, space, offset = 0;
2943 u64 last = start + len;
2944 int pop;
2945
2946 if (unlikely(flags))
2947 return -EINVAL;
2948
2949 /* First find the starting scatterlist element */
2950 i = msg->sg.start;
2951 do {
2952 offset += l;
2953 l = sk_msg_elem(msg, i)->length;
2954
2955 if (start < offset + l)
2956 break;
2957 sk_msg_iter_var_next(i);
2958 } while (i != msg->sg.end);
2959
2960 /* Bounds checks: start and pop must be inside message */
2961 if (start >= offset + l || last >= msg->sg.size)
2962 return -EINVAL;
2963
2964 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2965
2966 pop = len;
2967 /* --------------| offset
2968 * -| start |-------- len -------|
2969 *
2970 * |----- a ----|-------- pop -------|----- b ----|
2971 * |______________________________________________| length
2972 *
2973 *
2974 * a: region at front of scatter element to save
2975 * b: region at back of scatter element to save when length > A + pop
2976 * pop: region to pop from element, same as input 'pop' here will be
2977 * decremented below per iteration.
2978 *
2979 * Two top-level cases to handle when start != offset, first B is non
2980 * zero and second B is zero corresponding to when a pop includes more
2981 * than one element.
2982 *
2983 * Then if B is non-zero AND there is no space allocate space and
2984 * compact A, B regions into page. If there is space shift ring to
2985 * the right free'ing the next element in ring to place B, leaving
2986 * A untouched except to reduce length.
2987 */
2988 if (start != offset) {
2989 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2990 int a = start;
2991 int b = sge->length - pop - a;
2992
2993 sk_msg_iter_var_next(i);
2994
2995 if (pop < sge->length - a) {
2996 if (space) {
2997 sge->length = a;
2998 sk_msg_shift_right(msg, i);
2999 nsge = sk_msg_elem(msg, i);
3000 get_page(sg_page(sge));
3001 sg_set_page(nsge,
3002 sg_page(sge),
3003 b, sge->offset + pop + a);
3004 } else {
3005 struct page *page, *orig;
3006 u8 *to, *from;
3007
3008 page = alloc_pages(__GFP_NOWARN |
3009 __GFP_COMP | GFP_ATOMIC,
3010 get_order(a + b));
3011 if (unlikely(!page))
3012 return -ENOMEM;
3013
3014 sge->length = a;
3015 orig = sg_page(sge);
3016 from = sg_virt(sge);
3017 to = page_address(page);
3018 memcpy(to, from, a);
3019 memcpy(to + a, from + a + pop, b);
3020 sg_set_page(sge, page, a + b, 0);
3021 put_page(orig);
3022 }
3023 pop = 0;
3024 } else if (pop >= sge->length - a) {
3025 pop -= (sge->length - a);
3026 sge->length = a;
3027 }
3028 }
3029
3030 /* From above the current layout _must_ be as follows,
3031 *
3032 * -| offset
3033 * -| start
3034 *
3035 * |---- pop ---|---------------- b ------------|
3036 * |____________________________________________| length
3037 *
3038 * Offset and start of the current msg elem are equal because in the
3039 * previous case we handled offset != start and either consumed the
3040 * entire element and advanced to the next element OR pop == 0.
3041 *
3042 * Two cases to handle here are first pop is less than the length
3043 * leaving some remainder b above. Simply adjust the element's layout
3044 * in this case. Or pop >= length of the element so that b = 0. In this
3045 * case advance to next element decrementing pop.
3046 */
3047 while (pop) {
3048 struct scatterlist *sge = sk_msg_elem(msg, i);
3049
3050 if (pop < sge->length) {
3051 sge->length -= pop;
3052 sge->offset += pop;
3053 pop = 0;
3054 } else {
3055 pop -= sge->length;
3056 sk_msg_shift_left(msg, i);
3057 }
3058 sk_msg_iter_var_next(i);
3059 }
3060
3061 sk_mem_uncharge(msg->sk, len - pop);
3062 msg->sg.size -= (len - pop);
3063 sk_msg_reset_curr(msg);
3064 sk_msg_compute_data_pointers(msg);
3065 return 0;
3066 }
3067
3068 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3069 .func = bpf_msg_pop_data,
3070 .gpl_only = false,
3071 .ret_type = RET_INTEGER,
3072 .arg1_type = ARG_PTR_TO_CTX,
3073 .arg2_type = ARG_ANYTHING,
3074 .arg3_type = ARG_ANYTHING,
3075 .arg4_type = ARG_ANYTHING,
3076 };
3077
3078 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3079 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3080 {
3081 return __task_get_classid(current);
3082 }
3083
3084 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3085 .func = bpf_get_cgroup_classid_curr,
3086 .gpl_only = false,
3087 .ret_type = RET_INTEGER,
3088 };
3089
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3090 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3091 {
3092 struct sock *sk = skb_to_full_sk(skb);
3093
3094 if (!sk || !sk_fullsock(sk))
3095 return 0;
3096
3097 return sock_cgroup_classid(&sk->sk_cgrp_data);
3098 }
3099
3100 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3101 .func = bpf_skb_cgroup_classid,
3102 .gpl_only = false,
3103 .ret_type = RET_INTEGER,
3104 .arg1_type = ARG_PTR_TO_CTX,
3105 };
3106 #endif
3107
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3108 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3109 {
3110 return task_get_classid(skb);
3111 }
3112
3113 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3114 .func = bpf_get_cgroup_classid,
3115 .gpl_only = false,
3116 .ret_type = RET_INTEGER,
3117 .arg1_type = ARG_PTR_TO_CTX,
3118 };
3119
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3120 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3121 {
3122 return dst_tclassid(skb);
3123 }
3124
3125 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3126 .func = bpf_get_route_realm,
3127 .gpl_only = false,
3128 .ret_type = RET_INTEGER,
3129 .arg1_type = ARG_PTR_TO_CTX,
3130 };
3131
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3132 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3133 {
3134 /* If skb_clear_hash() was called due to mangling, we can
3135 * trigger SW recalculation here. Later access to hash
3136 * can then use the inline skb->hash via context directly
3137 * instead of calling this helper again.
3138 */
3139 return skb_get_hash(skb);
3140 }
3141
3142 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3143 .func = bpf_get_hash_recalc,
3144 .gpl_only = false,
3145 .ret_type = RET_INTEGER,
3146 .arg1_type = ARG_PTR_TO_CTX,
3147 };
3148
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3149 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3150 {
3151 /* After all direct packet write, this can be used once for
3152 * triggering a lazy recalc on next skb_get_hash() invocation.
3153 */
3154 skb_clear_hash(skb);
3155 return 0;
3156 }
3157
3158 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3159 .func = bpf_set_hash_invalid,
3160 .gpl_only = false,
3161 .ret_type = RET_INTEGER,
3162 .arg1_type = ARG_PTR_TO_CTX,
3163 };
3164
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3165 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3166 {
3167 /* Set user specified hash as L4(+), so that it gets returned
3168 * on skb_get_hash() call unless BPF prog later on triggers a
3169 * skb_clear_hash().
3170 */
3171 __skb_set_sw_hash(skb, hash, true);
3172 return 0;
3173 }
3174
3175 static const struct bpf_func_proto bpf_set_hash_proto = {
3176 .func = bpf_set_hash,
3177 .gpl_only = false,
3178 .ret_type = RET_INTEGER,
3179 .arg1_type = ARG_PTR_TO_CTX,
3180 .arg2_type = ARG_ANYTHING,
3181 };
3182
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3183 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3184 u16, vlan_tci)
3185 {
3186 int ret;
3187
3188 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3189 vlan_proto != htons(ETH_P_8021AD)))
3190 vlan_proto = htons(ETH_P_8021Q);
3191
3192 bpf_push_mac_rcsum(skb);
3193 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3194 bpf_pull_mac_rcsum(skb);
3195 skb_reset_mac_len(skb);
3196
3197 bpf_compute_data_pointers(skb);
3198 return ret;
3199 }
3200
3201 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3202 .func = bpf_skb_vlan_push,
3203 .gpl_only = false,
3204 .ret_type = RET_INTEGER,
3205 .arg1_type = ARG_PTR_TO_CTX,
3206 .arg2_type = ARG_ANYTHING,
3207 .arg3_type = ARG_ANYTHING,
3208 };
3209
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3210 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3211 {
3212 int ret;
3213
3214 bpf_push_mac_rcsum(skb);
3215 ret = skb_vlan_pop(skb);
3216 bpf_pull_mac_rcsum(skb);
3217
3218 bpf_compute_data_pointers(skb);
3219 return ret;
3220 }
3221
3222 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3223 .func = bpf_skb_vlan_pop,
3224 .gpl_only = false,
3225 .ret_type = RET_INTEGER,
3226 .arg1_type = ARG_PTR_TO_CTX,
3227 };
3228
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3229 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3230 {
3231 /* Caller already did skb_cow() with len as headroom,
3232 * so no need to do it here.
3233 */
3234 skb_push(skb, len);
3235 memmove(skb->data, skb->data + len, off);
3236 memset(skb->data + off, 0, len);
3237
3238 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3239 * needed here as it does not change the skb->csum
3240 * result for checksum complete when summing over
3241 * zeroed blocks.
3242 */
3243 return 0;
3244 }
3245
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3246 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3247 {
3248 void *old_data;
3249
3250 /* skb_ensure_writable() is not needed here, as we're
3251 * already working on an uncloned skb.
3252 */
3253 if (unlikely(!pskb_may_pull(skb, off + len)))
3254 return -ENOMEM;
3255
3256 old_data = skb->data;
3257 __skb_pull(skb, len);
3258 skb_postpull_rcsum(skb, old_data + off, len);
3259 memmove(skb->data, old_data, off);
3260
3261 return 0;
3262 }
3263
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3264 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3265 {
3266 bool trans_same = skb->transport_header == skb->network_header;
3267 int ret;
3268
3269 /* There's no need for __skb_push()/__skb_pull() pair to
3270 * get to the start of the mac header as we're guaranteed
3271 * to always start from here under eBPF.
3272 */
3273 ret = bpf_skb_generic_push(skb, off, len);
3274 if (likely(!ret)) {
3275 skb->mac_header -= len;
3276 skb->network_header -= len;
3277 if (trans_same)
3278 skb->transport_header = skb->network_header;
3279 }
3280
3281 return ret;
3282 }
3283
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3284 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3285 {
3286 bool trans_same = skb->transport_header == skb->network_header;
3287 int ret;
3288
3289 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3290 ret = bpf_skb_generic_pop(skb, off, len);
3291 if (likely(!ret)) {
3292 skb->mac_header += len;
3293 skb->network_header += len;
3294 if (trans_same)
3295 skb->transport_header = skb->network_header;
3296 }
3297
3298 return ret;
3299 }
3300
bpf_skb_proto_4_to_6(struct sk_buff * skb)3301 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3302 {
3303 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3304 u32 off = skb_mac_header_len(skb);
3305 int ret;
3306
3307 ret = skb_cow(skb, len_diff);
3308 if (unlikely(ret < 0))
3309 return ret;
3310
3311 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3312 if (unlikely(ret < 0))
3313 return ret;
3314
3315 if (skb_is_gso(skb)) {
3316 struct skb_shared_info *shinfo = skb_shinfo(skb);
3317
3318 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3319 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3320 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3321 shinfo->gso_type |= SKB_GSO_TCPV6;
3322 }
3323 }
3324
3325 skb->protocol = htons(ETH_P_IPV6);
3326 skb_clear_hash(skb);
3327
3328 return 0;
3329 }
3330
bpf_skb_proto_6_to_4(struct sk_buff * skb)3331 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3332 {
3333 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3334 u32 off = skb_mac_header_len(skb);
3335 int ret;
3336
3337 ret = skb_unclone(skb, GFP_ATOMIC);
3338 if (unlikely(ret < 0))
3339 return ret;
3340
3341 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3342 if (unlikely(ret < 0))
3343 return ret;
3344
3345 if (skb_is_gso(skb)) {
3346 struct skb_shared_info *shinfo = skb_shinfo(skb);
3347
3348 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3349 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3350 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3351 shinfo->gso_type |= SKB_GSO_TCPV4;
3352 }
3353 }
3354
3355 skb->protocol = htons(ETH_P_IP);
3356 skb_clear_hash(skb);
3357
3358 return 0;
3359 }
3360
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3361 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3362 {
3363 __be16 from_proto = skb->protocol;
3364
3365 if (from_proto == htons(ETH_P_IP) &&
3366 to_proto == htons(ETH_P_IPV6))
3367 return bpf_skb_proto_4_to_6(skb);
3368
3369 if (from_proto == htons(ETH_P_IPV6) &&
3370 to_proto == htons(ETH_P_IP))
3371 return bpf_skb_proto_6_to_4(skb);
3372
3373 return -ENOTSUPP;
3374 }
3375
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3376 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3377 u64, flags)
3378 {
3379 int ret;
3380
3381 if (unlikely(flags))
3382 return -EINVAL;
3383
3384 /* General idea is that this helper does the basic groundwork
3385 * needed for changing the protocol, and eBPF program fills the
3386 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3387 * and other helpers, rather than passing a raw buffer here.
3388 *
3389 * The rationale is to keep this minimal and without a need to
3390 * deal with raw packet data. F.e. even if we would pass buffers
3391 * here, the program still needs to call the bpf_lX_csum_replace()
3392 * helpers anyway. Plus, this way we keep also separation of
3393 * concerns, since f.e. bpf_skb_store_bytes() should only take
3394 * care of stores.
3395 *
3396 * Currently, additional options and extension header space are
3397 * not supported, but flags register is reserved so we can adapt
3398 * that. For offloads, we mark packet as dodgy, so that headers
3399 * need to be verified first.
3400 */
3401 ret = bpf_skb_proto_xlat(skb, proto);
3402 bpf_compute_data_pointers(skb);
3403 return ret;
3404 }
3405
3406 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3407 .func = bpf_skb_change_proto,
3408 .gpl_only = false,
3409 .ret_type = RET_INTEGER,
3410 .arg1_type = ARG_PTR_TO_CTX,
3411 .arg2_type = ARG_ANYTHING,
3412 .arg3_type = ARG_ANYTHING,
3413 };
3414
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3415 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3416 {
3417 /* We only allow a restricted subset to be changed for now. */
3418 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3419 !skb_pkt_type_ok(pkt_type)))
3420 return -EINVAL;
3421
3422 skb->pkt_type = pkt_type;
3423 return 0;
3424 }
3425
3426 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3427 .func = bpf_skb_change_type,
3428 .gpl_only = false,
3429 .ret_type = RET_INTEGER,
3430 .arg1_type = ARG_PTR_TO_CTX,
3431 .arg2_type = ARG_ANYTHING,
3432 };
3433
bpf_skb_net_base_len(const struct sk_buff * skb)3434 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3435 {
3436 switch (skb->protocol) {
3437 case htons(ETH_P_IP):
3438 return sizeof(struct iphdr);
3439 case htons(ETH_P_IPV6):
3440 return sizeof(struct ipv6hdr);
3441 default:
3442 return ~0U;
3443 }
3444 }
3445
3446 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3447 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3448
3449 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3450 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3451
3452 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3453 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3454 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3455 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3456 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3457 BPF_F_ADJ_ROOM_ENCAP_L2( \
3458 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3459 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3460
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3461 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3462 u64 flags)
3463 {
3464 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3465 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3466 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3467 unsigned int gso_type = SKB_GSO_DODGY;
3468 int ret;
3469
3470 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3471 /* udp gso_size delineates datagrams, only allow if fixed */
3472 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3473 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3474 return -ENOTSUPP;
3475 }
3476
3477 ret = skb_cow_head(skb, len_diff);
3478 if (unlikely(ret < 0))
3479 return ret;
3480
3481 if (encap) {
3482 if (skb->protocol != htons(ETH_P_IP) &&
3483 skb->protocol != htons(ETH_P_IPV6))
3484 return -ENOTSUPP;
3485
3486 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3487 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3488 return -EINVAL;
3489
3490 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3491 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3492 return -EINVAL;
3493
3494 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3495 inner_mac_len < ETH_HLEN)
3496 return -EINVAL;
3497
3498 if (skb->encapsulation)
3499 return -EALREADY;
3500
3501 mac_len = skb->network_header - skb->mac_header;
3502 inner_net = skb->network_header;
3503 if (inner_mac_len > len_diff)
3504 return -EINVAL;
3505 inner_trans = skb->transport_header;
3506 }
3507
3508 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3509 if (unlikely(ret < 0))
3510 return ret;
3511
3512 if (encap) {
3513 skb->inner_mac_header = inner_net - inner_mac_len;
3514 skb->inner_network_header = inner_net;
3515 skb->inner_transport_header = inner_trans;
3516
3517 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3518 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3519 else
3520 skb_set_inner_protocol(skb, skb->protocol);
3521
3522 skb->encapsulation = 1;
3523 skb_set_network_header(skb, mac_len);
3524
3525 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3526 gso_type |= SKB_GSO_UDP_TUNNEL;
3527 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3528 gso_type |= SKB_GSO_GRE;
3529 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3530 gso_type |= SKB_GSO_IPXIP6;
3531 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3532 gso_type |= SKB_GSO_IPXIP4;
3533
3534 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3535 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3536 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3537 sizeof(struct ipv6hdr) :
3538 sizeof(struct iphdr);
3539
3540 skb_set_transport_header(skb, mac_len + nh_len);
3541 }
3542
3543 /* Match skb->protocol to new outer l3 protocol */
3544 if (skb->protocol == htons(ETH_P_IP) &&
3545 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3546 skb->protocol = htons(ETH_P_IPV6);
3547 else if (skb->protocol == htons(ETH_P_IPV6) &&
3548 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3549 skb->protocol = htons(ETH_P_IP);
3550 }
3551
3552 if (skb_is_gso(skb)) {
3553 struct skb_shared_info *shinfo = skb_shinfo(skb);
3554
3555 /* Header must be checked, and gso_segs recomputed. */
3556 shinfo->gso_type |= gso_type;
3557 shinfo->gso_segs = 0;
3558
3559 /* Due to header growth, MSS needs to be downgraded.
3560 * There is a BUG_ON() when segmenting the frag_list with
3561 * head_frag true, so linearize the skb after downgrading
3562 * the MSS.
3563 */
3564 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3565 skb_decrease_gso_size(shinfo, len_diff);
3566 if (shinfo->frag_list)
3567 return skb_linearize(skb);
3568 }
3569 }
3570
3571 return 0;
3572 }
3573
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3574 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3575 u64 flags)
3576 {
3577 int ret;
3578
3579 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3580 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3581 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3582 return -EINVAL;
3583
3584 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3585 /* udp gso_size delineates datagrams, only allow if fixed */
3586 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3587 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3588 return -ENOTSUPP;
3589 }
3590
3591 ret = skb_unclone(skb, GFP_ATOMIC);
3592 if (unlikely(ret < 0))
3593 return ret;
3594
3595 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3596 if (unlikely(ret < 0))
3597 return ret;
3598
3599 /* Match skb->protocol to new outer l3 protocol */
3600 if (skb->protocol == htons(ETH_P_IP) &&
3601 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3602 skb->protocol = htons(ETH_P_IPV6);
3603 else if (skb->protocol == htons(ETH_P_IPV6) &&
3604 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3605 skb->protocol = htons(ETH_P_IP);
3606
3607 if (skb_is_gso(skb)) {
3608 struct skb_shared_info *shinfo = skb_shinfo(skb);
3609
3610 /* Due to header shrink, MSS can be upgraded. */
3611 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3612 skb_increase_gso_size(shinfo, len_diff);
3613
3614 /* Header must be checked, and gso_segs recomputed. */
3615 shinfo->gso_type |= SKB_GSO_DODGY;
3616 shinfo->gso_segs = 0;
3617 }
3618
3619 return 0;
3620 }
3621
3622 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3623
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3624 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3625 u32, mode, u64, flags)
3626 {
3627 u32 len_diff_abs = abs(len_diff);
3628 bool shrink = len_diff < 0;
3629 int ret = 0;
3630
3631 if (unlikely(flags || mode))
3632 return -EINVAL;
3633 if (unlikely(len_diff_abs > 0xfffU))
3634 return -EFAULT;
3635
3636 if (!shrink) {
3637 ret = skb_cow(skb, len_diff);
3638 if (unlikely(ret < 0))
3639 return ret;
3640 __skb_push(skb, len_diff_abs);
3641 memset(skb->data, 0, len_diff_abs);
3642 } else {
3643 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3644 return -ENOMEM;
3645 __skb_pull(skb, len_diff_abs);
3646 }
3647 if (tls_sw_has_ctx_rx(skb->sk)) {
3648 struct strp_msg *rxm = strp_msg(skb);
3649
3650 rxm->full_len += len_diff;
3651 }
3652 return ret;
3653 }
3654
3655 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3656 .func = sk_skb_adjust_room,
3657 .gpl_only = false,
3658 .ret_type = RET_INTEGER,
3659 .arg1_type = ARG_PTR_TO_CTX,
3660 .arg2_type = ARG_ANYTHING,
3661 .arg3_type = ARG_ANYTHING,
3662 .arg4_type = ARG_ANYTHING,
3663 };
3664
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3665 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3666 u32, mode, u64, flags)
3667 {
3668 u32 len_cur, len_diff_abs = abs(len_diff);
3669 u32 len_min = bpf_skb_net_base_len(skb);
3670 u32 len_max = BPF_SKB_MAX_LEN;
3671 __be16 proto = skb->protocol;
3672 bool shrink = len_diff < 0;
3673 u32 off;
3674 int ret;
3675
3676 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3677 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3678 return -EINVAL;
3679 if (unlikely(len_diff_abs > 0xfffU))
3680 return -EFAULT;
3681 if (unlikely(proto != htons(ETH_P_IP) &&
3682 proto != htons(ETH_P_IPV6)))
3683 return -ENOTSUPP;
3684
3685 off = skb_mac_header_len(skb);
3686 switch (mode) {
3687 case BPF_ADJ_ROOM_NET:
3688 off += bpf_skb_net_base_len(skb);
3689 break;
3690 case BPF_ADJ_ROOM_MAC:
3691 break;
3692 default:
3693 return -ENOTSUPP;
3694 }
3695
3696 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3697 if (!shrink)
3698 return -EINVAL;
3699
3700 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3701 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3702 len_min = sizeof(struct iphdr);
3703 break;
3704 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3705 len_min = sizeof(struct ipv6hdr);
3706 break;
3707 default:
3708 return -EINVAL;
3709 }
3710 }
3711
3712 len_cur = skb->len - skb_network_offset(skb);
3713 if ((shrink && (len_diff_abs >= len_cur ||
3714 len_cur - len_diff_abs < len_min)) ||
3715 (!shrink && (skb->len + len_diff_abs > len_max &&
3716 !skb_is_gso(skb))))
3717 return -ENOTSUPP;
3718
3719 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3720 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3721 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3722 __skb_reset_checksum_unnecessary(skb);
3723
3724 bpf_compute_data_pointers(skb);
3725 return ret;
3726 }
3727
3728 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3729 .func = bpf_skb_adjust_room,
3730 .gpl_only = false,
3731 .ret_type = RET_INTEGER,
3732 .arg1_type = ARG_PTR_TO_CTX,
3733 .arg2_type = ARG_ANYTHING,
3734 .arg3_type = ARG_ANYTHING,
3735 .arg4_type = ARG_ANYTHING,
3736 };
3737
__bpf_skb_min_len(const struct sk_buff * skb)3738 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3739 {
3740 u32 min_len = skb_network_offset(skb);
3741
3742 if (skb_transport_header_was_set(skb))
3743 min_len = skb_transport_offset(skb);
3744 if (skb->ip_summed == CHECKSUM_PARTIAL)
3745 min_len = skb_checksum_start_offset(skb) +
3746 skb->csum_offset + sizeof(__sum16);
3747 return min_len;
3748 }
3749
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3750 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3751 {
3752 unsigned int old_len = skb->len;
3753 int ret;
3754
3755 ret = __skb_grow_rcsum(skb, new_len);
3756 if (!ret)
3757 memset(skb->data + old_len, 0, new_len - old_len);
3758 return ret;
3759 }
3760
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3761 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3762 {
3763 return __skb_trim_rcsum(skb, new_len);
3764 }
3765
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3766 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3767 u64 flags)
3768 {
3769 u32 max_len = BPF_SKB_MAX_LEN;
3770 u32 min_len = __bpf_skb_min_len(skb);
3771 int ret;
3772
3773 if (unlikely(flags || new_len > max_len || new_len < min_len))
3774 return -EINVAL;
3775 if (skb->encapsulation)
3776 return -ENOTSUPP;
3777
3778 /* The basic idea of this helper is that it's performing the
3779 * needed work to either grow or trim an skb, and eBPF program
3780 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3781 * bpf_lX_csum_replace() and others rather than passing a raw
3782 * buffer here. This one is a slow path helper and intended
3783 * for replies with control messages.
3784 *
3785 * Like in bpf_skb_change_proto(), we want to keep this rather
3786 * minimal and without protocol specifics so that we are able
3787 * to separate concerns as in bpf_skb_store_bytes() should only
3788 * be the one responsible for writing buffers.
3789 *
3790 * It's really expected to be a slow path operation here for
3791 * control message replies, so we're implicitly linearizing,
3792 * uncloning and drop offloads from the skb by this.
3793 */
3794 ret = __bpf_try_make_writable(skb, skb->len);
3795 if (!ret) {
3796 if (new_len > skb->len)
3797 ret = bpf_skb_grow_rcsum(skb, new_len);
3798 else if (new_len < skb->len)
3799 ret = bpf_skb_trim_rcsum(skb, new_len);
3800 if (!ret && skb_is_gso(skb))
3801 skb_gso_reset(skb);
3802 }
3803 return ret;
3804 }
3805
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3806 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3807 u64, flags)
3808 {
3809 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3810
3811 bpf_compute_data_pointers(skb);
3812 return ret;
3813 }
3814
3815 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3816 .func = bpf_skb_change_tail,
3817 .gpl_only = false,
3818 .ret_type = RET_INTEGER,
3819 .arg1_type = ARG_PTR_TO_CTX,
3820 .arg2_type = ARG_ANYTHING,
3821 .arg3_type = ARG_ANYTHING,
3822 };
3823
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3824 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3825 u64, flags)
3826 {
3827 return __bpf_skb_change_tail(skb, new_len, flags);
3828 }
3829
3830 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3831 .func = sk_skb_change_tail,
3832 .gpl_only = false,
3833 .ret_type = RET_INTEGER,
3834 .arg1_type = ARG_PTR_TO_CTX,
3835 .arg2_type = ARG_ANYTHING,
3836 .arg3_type = ARG_ANYTHING,
3837 };
3838
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3839 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3840 u64 flags)
3841 {
3842 u32 max_len = BPF_SKB_MAX_LEN;
3843 u32 new_len = skb->len + head_room;
3844 int ret;
3845
3846 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3847 new_len < skb->len))
3848 return -EINVAL;
3849
3850 ret = skb_cow(skb, head_room);
3851 if (likely(!ret)) {
3852 /* Idea for this helper is that we currently only
3853 * allow to expand on mac header. This means that
3854 * skb->protocol network header, etc, stay as is.
3855 * Compared to bpf_skb_change_tail(), we're more
3856 * flexible due to not needing to linearize or
3857 * reset GSO. Intention for this helper is to be
3858 * used by an L3 skb that needs to push mac header
3859 * for redirection into L2 device.
3860 */
3861 __skb_push(skb, head_room);
3862 memset(skb->data, 0, head_room);
3863 skb_reset_mac_header(skb);
3864 skb_reset_mac_len(skb);
3865 }
3866
3867 return ret;
3868 }
3869
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3870 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3871 u64, flags)
3872 {
3873 int ret = __bpf_skb_change_head(skb, head_room, flags);
3874
3875 bpf_compute_data_pointers(skb);
3876 return ret;
3877 }
3878
3879 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3880 .func = bpf_skb_change_head,
3881 .gpl_only = false,
3882 .ret_type = RET_INTEGER,
3883 .arg1_type = ARG_PTR_TO_CTX,
3884 .arg2_type = ARG_ANYTHING,
3885 .arg3_type = ARG_ANYTHING,
3886 };
3887
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3888 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3889 u64, flags)
3890 {
3891 return __bpf_skb_change_head(skb, head_room, flags);
3892 }
3893
3894 static const struct bpf_func_proto sk_skb_change_head_proto = {
3895 .func = sk_skb_change_head,
3896 .gpl_only = false,
3897 .ret_type = RET_INTEGER,
3898 .arg1_type = ARG_PTR_TO_CTX,
3899 .arg2_type = ARG_ANYTHING,
3900 .arg3_type = ARG_ANYTHING,
3901 };
3902
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3903 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3904 {
3905 return xdp_get_buff_len(xdp);
3906 }
3907
3908 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3909 .func = bpf_xdp_get_buff_len,
3910 .gpl_only = false,
3911 .ret_type = RET_INTEGER,
3912 .arg1_type = ARG_PTR_TO_CTX,
3913 };
3914
3915 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3916
3917 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3918 .func = bpf_xdp_get_buff_len,
3919 .gpl_only = false,
3920 .arg1_type = ARG_PTR_TO_BTF_ID,
3921 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3922 };
3923
xdp_get_metalen(const struct xdp_buff * xdp)3924 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3925 {
3926 return xdp_data_meta_unsupported(xdp) ? 0 :
3927 xdp->data - xdp->data_meta;
3928 }
3929
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3930 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3931 {
3932 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3933 unsigned long metalen = xdp_get_metalen(xdp);
3934 void *data_start = xdp_frame_end + metalen;
3935 void *data = xdp->data + offset;
3936
3937 if (unlikely(data < data_start ||
3938 data > xdp->data_end - ETH_HLEN))
3939 return -EINVAL;
3940
3941 if (metalen)
3942 memmove(xdp->data_meta + offset,
3943 xdp->data_meta, metalen);
3944 xdp->data_meta += offset;
3945 xdp->data = data;
3946
3947 return 0;
3948 }
3949
3950 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3951 .func = bpf_xdp_adjust_head,
3952 .gpl_only = false,
3953 .ret_type = RET_INTEGER,
3954 .arg1_type = ARG_PTR_TO_CTX,
3955 .arg2_type = ARG_ANYTHING,
3956 };
3957
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3958 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3959 void *buf, unsigned long len, bool flush)
3960 {
3961 unsigned long ptr_len, ptr_off = 0;
3962 skb_frag_t *next_frag, *end_frag;
3963 struct skb_shared_info *sinfo;
3964 void *src, *dst;
3965 u8 *ptr_buf;
3966
3967 if (likely(xdp->data_end - xdp->data >= off + len)) {
3968 src = flush ? buf : xdp->data + off;
3969 dst = flush ? xdp->data + off : buf;
3970 memcpy(dst, src, len);
3971 return;
3972 }
3973
3974 sinfo = xdp_get_shared_info_from_buff(xdp);
3975 end_frag = &sinfo->frags[sinfo->nr_frags];
3976 next_frag = &sinfo->frags[0];
3977
3978 ptr_len = xdp->data_end - xdp->data;
3979 ptr_buf = xdp->data;
3980
3981 while (true) {
3982 if (off < ptr_off + ptr_len) {
3983 unsigned long copy_off = off - ptr_off;
3984 unsigned long copy_len = min(len, ptr_len - copy_off);
3985
3986 src = flush ? buf : ptr_buf + copy_off;
3987 dst = flush ? ptr_buf + copy_off : buf;
3988 memcpy(dst, src, copy_len);
3989
3990 off += copy_len;
3991 len -= copy_len;
3992 buf += copy_len;
3993 }
3994
3995 if (!len || next_frag == end_frag)
3996 break;
3997
3998 ptr_off += ptr_len;
3999 ptr_buf = skb_frag_address(next_frag);
4000 ptr_len = skb_frag_size(next_frag);
4001 next_frag++;
4002 }
4003 }
4004
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4005 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4006 {
4007 u32 size = xdp->data_end - xdp->data;
4008 struct skb_shared_info *sinfo;
4009 void *addr = xdp->data;
4010 int i;
4011
4012 if (unlikely(offset > 0xffff || len > 0xffff))
4013 return ERR_PTR(-EFAULT);
4014
4015 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4016 return ERR_PTR(-EINVAL);
4017
4018 if (likely(offset < size)) /* linear area */
4019 goto out;
4020
4021 sinfo = xdp_get_shared_info_from_buff(xdp);
4022 offset -= size;
4023 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4024 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4025
4026 if (offset < frag_size) {
4027 addr = skb_frag_address(&sinfo->frags[i]);
4028 size = frag_size;
4029 break;
4030 }
4031 offset -= frag_size;
4032 }
4033 out:
4034 return offset + len <= size ? addr + offset : NULL;
4035 }
4036
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4037 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4038 void *, buf, u32, len)
4039 {
4040 void *ptr;
4041
4042 ptr = bpf_xdp_pointer(xdp, offset, len);
4043 if (IS_ERR(ptr))
4044 return PTR_ERR(ptr);
4045
4046 if (!ptr)
4047 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4048 else
4049 memcpy(buf, ptr, len);
4050
4051 return 0;
4052 }
4053
4054 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4055 .func = bpf_xdp_load_bytes,
4056 .gpl_only = false,
4057 .ret_type = RET_INTEGER,
4058 .arg1_type = ARG_PTR_TO_CTX,
4059 .arg2_type = ARG_ANYTHING,
4060 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4061 .arg4_type = ARG_CONST_SIZE,
4062 };
4063
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4064 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4065 {
4066 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4067 }
4068
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4069 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4070 void *, buf, u32, len)
4071 {
4072 void *ptr;
4073
4074 ptr = bpf_xdp_pointer(xdp, offset, len);
4075 if (IS_ERR(ptr))
4076 return PTR_ERR(ptr);
4077
4078 if (!ptr)
4079 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4080 else
4081 memcpy(ptr, buf, len);
4082
4083 return 0;
4084 }
4085
4086 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4087 .func = bpf_xdp_store_bytes,
4088 .gpl_only = false,
4089 .ret_type = RET_INTEGER,
4090 .arg1_type = ARG_PTR_TO_CTX,
4091 .arg2_type = ARG_ANYTHING,
4092 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4093 .arg4_type = ARG_CONST_SIZE,
4094 };
4095
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4096 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4097 {
4098 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4099 }
4100
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4101 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4102 {
4103 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4104 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4105 struct xdp_rxq_info *rxq = xdp->rxq;
4106 unsigned int tailroom;
4107
4108 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4109 return -EOPNOTSUPP;
4110
4111 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4112 if (unlikely(offset > tailroom))
4113 return -EINVAL;
4114
4115 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4116 skb_frag_size_add(frag, offset);
4117 sinfo->xdp_frags_size += offset;
4118 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4119 xsk_buff_get_tail(xdp)->data_end += offset;
4120
4121 return 0;
4122 }
4123
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,struct xdp_mem_info * mem_info,bool release)4124 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4125 struct xdp_mem_info *mem_info, bool release)
4126 {
4127 struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4128
4129 if (release) {
4130 xsk_buff_del_tail(zc_frag);
4131 __xdp_return(NULL, mem_info, false, zc_frag);
4132 } else {
4133 zc_frag->data_end -= shrink;
4134 }
4135 }
4136
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4137 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4138 int shrink)
4139 {
4140 struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4141 bool release = skb_frag_size(frag) == shrink;
4142
4143 if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4144 bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4145 goto out;
4146 }
4147
4148 if (release) {
4149 struct page *page = skb_frag_page(frag);
4150
4151 __xdp_return(page_address(page), mem_info, false, NULL);
4152 }
4153
4154 out:
4155 return release;
4156 }
4157
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4158 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4159 {
4160 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4161 int i, n_frags_free = 0, len_free = 0;
4162
4163 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4164 return -EINVAL;
4165
4166 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4167 skb_frag_t *frag = &sinfo->frags[i];
4168 int shrink = min_t(int, offset, skb_frag_size(frag));
4169
4170 len_free += shrink;
4171 offset -= shrink;
4172 if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4173 n_frags_free++;
4174 } else {
4175 skb_frag_size_sub(frag, shrink);
4176 break;
4177 }
4178 }
4179 sinfo->nr_frags -= n_frags_free;
4180 sinfo->xdp_frags_size -= len_free;
4181
4182 if (unlikely(!sinfo->nr_frags)) {
4183 xdp_buff_clear_frags_flag(xdp);
4184 xdp->data_end -= offset;
4185 }
4186
4187 return 0;
4188 }
4189
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4190 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4191 {
4192 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4193 void *data_end = xdp->data_end + offset;
4194
4195 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4196 if (offset < 0)
4197 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4198
4199 return bpf_xdp_frags_increase_tail(xdp, offset);
4200 }
4201
4202 /* Notice that xdp_data_hard_end have reserved some tailroom */
4203 if (unlikely(data_end > data_hard_end))
4204 return -EINVAL;
4205
4206 if (unlikely(data_end < xdp->data + ETH_HLEN))
4207 return -EINVAL;
4208
4209 /* Clear memory area on grow, can contain uninit kernel memory */
4210 if (offset > 0)
4211 memset(xdp->data_end, 0, offset);
4212
4213 xdp->data_end = data_end;
4214
4215 return 0;
4216 }
4217
4218 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4219 .func = bpf_xdp_adjust_tail,
4220 .gpl_only = false,
4221 .ret_type = RET_INTEGER,
4222 .arg1_type = ARG_PTR_TO_CTX,
4223 .arg2_type = ARG_ANYTHING,
4224 };
4225
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4226 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4227 {
4228 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4229 void *meta = xdp->data_meta + offset;
4230 unsigned long metalen = xdp->data - meta;
4231
4232 if (xdp_data_meta_unsupported(xdp))
4233 return -ENOTSUPP;
4234 if (unlikely(meta < xdp_frame_end ||
4235 meta > xdp->data))
4236 return -EINVAL;
4237 if (unlikely(xdp_metalen_invalid(metalen)))
4238 return -EACCES;
4239
4240 xdp->data_meta = meta;
4241
4242 return 0;
4243 }
4244
4245 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4246 .func = bpf_xdp_adjust_meta,
4247 .gpl_only = false,
4248 .ret_type = RET_INTEGER,
4249 .arg1_type = ARG_PTR_TO_CTX,
4250 .arg2_type = ARG_ANYTHING,
4251 };
4252
4253 /**
4254 * DOC: xdp redirect
4255 *
4256 * XDP_REDIRECT works by a three-step process, implemented in the functions
4257 * below:
4258 *
4259 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4260 * of the redirect and store it (along with some other metadata) in a per-CPU
4261 * struct bpf_redirect_info.
4262 *
4263 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4264 * call xdp_do_redirect() which will use the information in struct
4265 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4266 * bulk queue structure.
4267 *
4268 * 3. Before exiting its NAPI poll loop, the driver will call
4269 * xdp_do_flush(), which will flush all the different bulk queues,
4270 * thus completing the redirect. Note that xdp_do_flush() must be
4271 * called before napi_complete_done() in the driver, as the
4272 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4273 * through to the xdp_do_flush() call for RCU protection of all
4274 * in-kernel data structures.
4275 */
4276 /*
4277 * Pointers to the map entries will be kept around for this whole sequence of
4278 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4279 * the core code; instead, the RCU protection relies on everything happening
4280 * inside a single NAPI poll sequence, which means it's between a pair of calls
4281 * to local_bh_disable()/local_bh_enable().
4282 *
4283 * The map entries are marked as __rcu and the map code makes sure to
4284 * dereference those pointers with rcu_dereference_check() in a way that works
4285 * for both sections that to hold an rcu_read_lock() and sections that are
4286 * called from NAPI without a separate rcu_read_lock(). The code below does not
4287 * use RCU annotations, but relies on those in the map code.
4288 */
xdp_do_flush(void)4289 void xdp_do_flush(void)
4290 {
4291 struct list_head *lh_map, *lh_dev, *lh_xsk;
4292
4293 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4294 if (lh_dev)
4295 __dev_flush(lh_dev);
4296 if (lh_map)
4297 __cpu_map_flush(lh_map);
4298 if (lh_xsk)
4299 __xsk_map_flush(lh_xsk);
4300 }
4301 EXPORT_SYMBOL_GPL(xdp_do_flush);
4302
4303 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4304 void xdp_do_check_flushed(struct napi_struct *napi)
4305 {
4306 struct list_head *lh_map, *lh_dev, *lh_xsk;
4307 bool missed = false;
4308
4309 bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4310 if (lh_dev) {
4311 __dev_flush(lh_dev);
4312 missed = true;
4313 }
4314 if (lh_map) {
4315 __cpu_map_flush(lh_map);
4316 missed = true;
4317 }
4318 if (lh_xsk) {
4319 __xsk_map_flush(lh_xsk);
4320 missed = true;
4321 }
4322
4323 WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4324 napi->poll);
4325 }
4326 #endif
4327
4328 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4329 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4330
xdp_master_redirect(struct xdp_buff * xdp)4331 u32 xdp_master_redirect(struct xdp_buff *xdp)
4332 {
4333 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4334 struct net_device *master, *slave;
4335
4336 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4337 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4338 if (slave && slave != xdp->rxq->dev) {
4339 /* The target device is different from the receiving device, so
4340 * redirect it to the new device.
4341 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4342 * drivers to unmap the packet from their rx ring.
4343 */
4344 ri->tgt_index = slave->ifindex;
4345 ri->map_id = INT_MAX;
4346 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4347 return XDP_REDIRECT;
4348 }
4349 return XDP_TX;
4350 }
4351 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4352
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4353 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4354 struct net_device *dev,
4355 struct xdp_buff *xdp,
4356 struct bpf_prog *xdp_prog)
4357 {
4358 enum bpf_map_type map_type = ri->map_type;
4359 void *fwd = ri->tgt_value;
4360 u32 map_id = ri->map_id;
4361 int err;
4362
4363 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4364 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4365
4366 err = __xsk_map_redirect(fwd, xdp);
4367 if (unlikely(err))
4368 goto err;
4369
4370 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4371 return 0;
4372 err:
4373 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4374 return err;
4375 }
4376
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4377 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4378 struct net_device *dev,
4379 struct xdp_frame *xdpf,
4380 struct bpf_prog *xdp_prog)
4381 {
4382 enum bpf_map_type map_type = ri->map_type;
4383 void *fwd = ri->tgt_value;
4384 u32 map_id = ri->map_id;
4385 u32 flags = ri->flags;
4386 struct bpf_map *map;
4387 int err;
4388
4389 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4390 ri->flags = 0;
4391 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4392
4393 if (unlikely(!xdpf)) {
4394 err = -EOVERFLOW;
4395 goto err;
4396 }
4397
4398 switch (map_type) {
4399 case BPF_MAP_TYPE_DEVMAP:
4400 fallthrough;
4401 case BPF_MAP_TYPE_DEVMAP_HASH:
4402 if (unlikely(flags & BPF_F_BROADCAST)) {
4403 map = READ_ONCE(ri->map);
4404
4405 /* The map pointer is cleared when the map is being torn
4406 * down by dev_map_free()
4407 */
4408 if (unlikely(!map)) {
4409 err = -ENOENT;
4410 break;
4411 }
4412
4413 WRITE_ONCE(ri->map, NULL);
4414 err = dev_map_enqueue_multi(xdpf, dev, map,
4415 flags & BPF_F_EXCLUDE_INGRESS);
4416 } else {
4417 err = dev_map_enqueue(fwd, xdpf, dev);
4418 }
4419 break;
4420 case BPF_MAP_TYPE_CPUMAP:
4421 err = cpu_map_enqueue(fwd, xdpf, dev);
4422 break;
4423 case BPF_MAP_TYPE_UNSPEC:
4424 if (map_id == INT_MAX) {
4425 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4426 if (unlikely(!fwd)) {
4427 err = -EINVAL;
4428 break;
4429 }
4430 err = dev_xdp_enqueue(fwd, xdpf, dev);
4431 break;
4432 }
4433 fallthrough;
4434 default:
4435 err = -EBADRQC;
4436 }
4437
4438 if (unlikely(err))
4439 goto err;
4440
4441 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4442 return 0;
4443 err:
4444 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4445 return err;
4446 }
4447
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4448 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4449 struct bpf_prog *xdp_prog)
4450 {
4451 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4452 enum bpf_map_type map_type = ri->map_type;
4453
4454 if (map_type == BPF_MAP_TYPE_XSKMAP)
4455 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4456
4457 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4458 xdp_prog);
4459 }
4460 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4461
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4462 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4463 struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4464 {
4465 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4466 enum bpf_map_type map_type = ri->map_type;
4467
4468 if (map_type == BPF_MAP_TYPE_XSKMAP)
4469 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4470
4471 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4472 }
4473 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4474
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4475 static int xdp_do_generic_redirect_map(struct net_device *dev,
4476 struct sk_buff *skb,
4477 struct xdp_buff *xdp,
4478 struct bpf_prog *xdp_prog, void *fwd,
4479 enum bpf_map_type map_type, u32 map_id,
4480 u32 flags)
4481 {
4482 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4483 struct bpf_map *map;
4484 int err;
4485
4486 switch (map_type) {
4487 case BPF_MAP_TYPE_DEVMAP:
4488 fallthrough;
4489 case BPF_MAP_TYPE_DEVMAP_HASH:
4490 if (unlikely(flags & BPF_F_BROADCAST)) {
4491 map = READ_ONCE(ri->map);
4492
4493 /* The map pointer is cleared when the map is being torn
4494 * down by dev_map_free()
4495 */
4496 if (unlikely(!map)) {
4497 err = -ENOENT;
4498 break;
4499 }
4500
4501 WRITE_ONCE(ri->map, NULL);
4502 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4503 flags & BPF_F_EXCLUDE_INGRESS);
4504 } else {
4505 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4506 }
4507 if (unlikely(err))
4508 goto err;
4509 break;
4510 case BPF_MAP_TYPE_XSKMAP:
4511 err = xsk_generic_rcv(fwd, xdp);
4512 if (err)
4513 goto err;
4514 consume_skb(skb);
4515 break;
4516 case BPF_MAP_TYPE_CPUMAP:
4517 err = cpu_map_generic_redirect(fwd, skb);
4518 if (unlikely(err))
4519 goto err;
4520 break;
4521 default:
4522 err = -EBADRQC;
4523 goto err;
4524 }
4525
4526 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4527 return 0;
4528 err:
4529 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4530 return err;
4531 }
4532
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4533 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4534 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4535 {
4536 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4537 enum bpf_map_type map_type = ri->map_type;
4538 void *fwd = ri->tgt_value;
4539 u32 map_id = ri->map_id;
4540 u32 flags = ri->flags;
4541 int err;
4542
4543 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4544 ri->flags = 0;
4545 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4546
4547 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4548 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4549 if (unlikely(!fwd)) {
4550 err = -EINVAL;
4551 goto err;
4552 }
4553
4554 err = xdp_ok_fwd_dev(fwd, skb->len);
4555 if (unlikely(err))
4556 goto err;
4557
4558 skb->dev = fwd;
4559 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4560 generic_xdp_tx(skb, xdp_prog);
4561 return 0;
4562 }
4563
4564 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4565 err:
4566 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4567 return err;
4568 }
4569
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4570 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4571 {
4572 struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4573
4574 if (unlikely(flags))
4575 return XDP_ABORTED;
4576
4577 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4578 * by map_idr) is used for ifindex based XDP redirect.
4579 */
4580 ri->tgt_index = ifindex;
4581 ri->map_id = INT_MAX;
4582 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4583
4584 return XDP_REDIRECT;
4585 }
4586
4587 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4588 .func = bpf_xdp_redirect,
4589 .gpl_only = false,
4590 .ret_type = RET_INTEGER,
4591 .arg1_type = ARG_ANYTHING,
4592 .arg2_type = ARG_ANYTHING,
4593 };
4594
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4595 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4596 u64, flags)
4597 {
4598 return map->ops->map_redirect(map, key, flags);
4599 }
4600
4601 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4602 .func = bpf_xdp_redirect_map,
4603 .gpl_only = false,
4604 .ret_type = RET_INTEGER,
4605 .arg1_type = ARG_CONST_MAP_PTR,
4606 .arg2_type = ARG_ANYTHING,
4607 .arg3_type = ARG_ANYTHING,
4608 };
4609
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4610 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4611 unsigned long off, unsigned long len)
4612 {
4613 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4614
4615 if (unlikely(!ptr))
4616 return len;
4617 if (ptr != dst_buff)
4618 memcpy(dst_buff, ptr, len);
4619
4620 return 0;
4621 }
4622
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4623 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4624 u64, flags, void *, meta, u64, meta_size)
4625 {
4626 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4627
4628 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4629 return -EINVAL;
4630 if (unlikely(!skb || skb_size > skb->len))
4631 return -EFAULT;
4632
4633 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4634 bpf_skb_copy);
4635 }
4636
4637 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4638 .func = bpf_skb_event_output,
4639 .gpl_only = true,
4640 .ret_type = RET_INTEGER,
4641 .arg1_type = ARG_PTR_TO_CTX,
4642 .arg2_type = ARG_CONST_MAP_PTR,
4643 .arg3_type = ARG_ANYTHING,
4644 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4645 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4646 };
4647
4648 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4649
4650 const struct bpf_func_proto bpf_skb_output_proto = {
4651 .func = bpf_skb_event_output,
4652 .gpl_only = true,
4653 .ret_type = RET_INTEGER,
4654 .arg1_type = ARG_PTR_TO_BTF_ID,
4655 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4656 .arg2_type = ARG_CONST_MAP_PTR,
4657 .arg3_type = ARG_ANYTHING,
4658 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4659 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4660 };
4661
bpf_tunnel_key_af(u64 flags)4662 static unsigned short bpf_tunnel_key_af(u64 flags)
4663 {
4664 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4665 }
4666
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4667 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4668 u32, size, u64, flags)
4669 {
4670 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4671 u8 compat[sizeof(struct bpf_tunnel_key)];
4672 void *to_orig = to;
4673 int err;
4674
4675 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4676 BPF_F_TUNINFO_FLAGS)))) {
4677 err = -EINVAL;
4678 goto err_clear;
4679 }
4680 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4681 err = -EPROTO;
4682 goto err_clear;
4683 }
4684 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4685 err = -EINVAL;
4686 switch (size) {
4687 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4688 case offsetof(struct bpf_tunnel_key, tunnel_label):
4689 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4690 goto set_compat;
4691 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4692 /* Fixup deprecated structure layouts here, so we have
4693 * a common path later on.
4694 */
4695 if (ip_tunnel_info_af(info) != AF_INET)
4696 goto err_clear;
4697 set_compat:
4698 to = (struct bpf_tunnel_key *)compat;
4699 break;
4700 default:
4701 goto err_clear;
4702 }
4703 }
4704
4705 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4706 to->tunnel_tos = info->key.tos;
4707 to->tunnel_ttl = info->key.ttl;
4708 if (flags & BPF_F_TUNINFO_FLAGS)
4709 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4710 else
4711 to->tunnel_ext = 0;
4712
4713 if (flags & BPF_F_TUNINFO_IPV6) {
4714 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4715 sizeof(to->remote_ipv6));
4716 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4717 sizeof(to->local_ipv6));
4718 to->tunnel_label = be32_to_cpu(info->key.label);
4719 } else {
4720 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4721 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4722 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4723 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4724 to->tunnel_label = 0;
4725 }
4726
4727 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4728 memcpy(to_orig, to, size);
4729
4730 return 0;
4731 err_clear:
4732 memset(to_orig, 0, size);
4733 return err;
4734 }
4735
4736 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4737 .func = bpf_skb_get_tunnel_key,
4738 .gpl_only = false,
4739 .ret_type = RET_INTEGER,
4740 .arg1_type = ARG_PTR_TO_CTX,
4741 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4742 .arg3_type = ARG_CONST_SIZE,
4743 .arg4_type = ARG_ANYTHING,
4744 };
4745
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4746 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4747 {
4748 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4749 int err;
4750
4751 if (unlikely(!info ||
4752 !ip_tunnel_is_options_present(info->key.tun_flags))) {
4753 err = -ENOENT;
4754 goto err_clear;
4755 }
4756 if (unlikely(size < info->options_len)) {
4757 err = -ENOMEM;
4758 goto err_clear;
4759 }
4760
4761 ip_tunnel_info_opts_get(to, info);
4762 if (size > info->options_len)
4763 memset(to + info->options_len, 0, size - info->options_len);
4764
4765 return info->options_len;
4766 err_clear:
4767 memset(to, 0, size);
4768 return err;
4769 }
4770
4771 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4772 .func = bpf_skb_get_tunnel_opt,
4773 .gpl_only = false,
4774 .ret_type = RET_INTEGER,
4775 .arg1_type = ARG_PTR_TO_CTX,
4776 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4777 .arg3_type = ARG_CONST_SIZE,
4778 };
4779
4780 static struct metadata_dst __percpu *md_dst;
4781
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4782 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4783 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4784 {
4785 struct metadata_dst *md = this_cpu_ptr(md_dst);
4786 u8 compat[sizeof(struct bpf_tunnel_key)];
4787 struct ip_tunnel_info *info;
4788
4789 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4790 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4791 BPF_F_NO_TUNNEL_KEY)))
4792 return -EINVAL;
4793 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4794 switch (size) {
4795 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4796 case offsetof(struct bpf_tunnel_key, tunnel_label):
4797 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4798 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4799 /* Fixup deprecated structure layouts here, so we have
4800 * a common path later on.
4801 */
4802 memcpy(compat, from, size);
4803 memset(compat + size, 0, sizeof(compat) - size);
4804 from = (const struct bpf_tunnel_key *) compat;
4805 break;
4806 default:
4807 return -EINVAL;
4808 }
4809 }
4810 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4811 from->tunnel_ext))
4812 return -EINVAL;
4813
4814 skb_dst_drop(skb);
4815 dst_hold((struct dst_entry *) md);
4816 skb_dst_set(skb, (struct dst_entry *) md);
4817
4818 info = &md->u.tun_info;
4819 memset(info, 0, sizeof(*info));
4820 info->mode = IP_TUNNEL_INFO_TX;
4821
4822 __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4823 __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4824 flags & BPF_F_DONT_FRAGMENT);
4825 __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4826 !(flags & BPF_F_ZERO_CSUM_TX));
4827 __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4828 flags & BPF_F_SEQ_NUMBER);
4829 __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4830 !(flags & BPF_F_NO_TUNNEL_KEY));
4831
4832 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4833 info->key.tos = from->tunnel_tos;
4834 info->key.ttl = from->tunnel_ttl;
4835
4836 if (flags & BPF_F_TUNINFO_IPV6) {
4837 info->mode |= IP_TUNNEL_INFO_IPV6;
4838 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4839 sizeof(from->remote_ipv6));
4840 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4841 sizeof(from->local_ipv6));
4842 info->key.label = cpu_to_be32(from->tunnel_label) &
4843 IPV6_FLOWLABEL_MASK;
4844 } else {
4845 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4846 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4847 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4848 }
4849
4850 return 0;
4851 }
4852
4853 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4854 .func = bpf_skb_set_tunnel_key,
4855 .gpl_only = false,
4856 .ret_type = RET_INTEGER,
4857 .arg1_type = ARG_PTR_TO_CTX,
4858 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4859 .arg3_type = ARG_CONST_SIZE,
4860 .arg4_type = ARG_ANYTHING,
4861 };
4862
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4863 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4864 const u8 *, from, u32, size)
4865 {
4866 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4867 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4868 IP_TUNNEL_DECLARE_FLAGS(present) = { };
4869
4870 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4871 return -EINVAL;
4872 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4873 return -ENOMEM;
4874
4875 ip_tunnel_set_options_present(present);
4876 ip_tunnel_info_opts_set(info, from, size, present);
4877
4878 return 0;
4879 }
4880
4881 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4882 .func = bpf_skb_set_tunnel_opt,
4883 .gpl_only = false,
4884 .ret_type = RET_INTEGER,
4885 .arg1_type = ARG_PTR_TO_CTX,
4886 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4887 .arg3_type = ARG_CONST_SIZE,
4888 };
4889
4890 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4891 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4892 {
4893 if (!md_dst) {
4894 struct metadata_dst __percpu *tmp;
4895
4896 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4897 METADATA_IP_TUNNEL,
4898 GFP_KERNEL);
4899 if (!tmp)
4900 return NULL;
4901 if (cmpxchg(&md_dst, NULL, tmp))
4902 metadata_dst_free_percpu(tmp);
4903 }
4904
4905 switch (which) {
4906 case BPF_FUNC_skb_set_tunnel_key:
4907 return &bpf_skb_set_tunnel_key_proto;
4908 case BPF_FUNC_skb_set_tunnel_opt:
4909 return &bpf_skb_set_tunnel_opt_proto;
4910 default:
4911 return NULL;
4912 }
4913 }
4914
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4915 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4916 u32, idx)
4917 {
4918 struct bpf_array *array = container_of(map, struct bpf_array, map);
4919 struct cgroup *cgrp;
4920 struct sock *sk;
4921
4922 sk = skb_to_full_sk(skb);
4923 if (!sk || !sk_fullsock(sk))
4924 return -ENOENT;
4925 if (unlikely(idx >= array->map.max_entries))
4926 return -E2BIG;
4927
4928 cgrp = READ_ONCE(array->ptrs[idx]);
4929 if (unlikely(!cgrp))
4930 return -EAGAIN;
4931
4932 return sk_under_cgroup_hierarchy(sk, cgrp);
4933 }
4934
4935 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4936 .func = bpf_skb_under_cgroup,
4937 .gpl_only = false,
4938 .ret_type = RET_INTEGER,
4939 .arg1_type = ARG_PTR_TO_CTX,
4940 .arg2_type = ARG_CONST_MAP_PTR,
4941 .arg3_type = ARG_ANYTHING,
4942 };
4943
4944 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4945 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4946 {
4947 struct cgroup *cgrp;
4948
4949 sk = sk_to_full_sk(sk);
4950 if (!sk || !sk_fullsock(sk))
4951 return 0;
4952
4953 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4954 return cgroup_id(cgrp);
4955 }
4956
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4957 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4958 {
4959 return __bpf_sk_cgroup_id(skb->sk);
4960 }
4961
4962 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4963 .func = bpf_skb_cgroup_id,
4964 .gpl_only = false,
4965 .ret_type = RET_INTEGER,
4966 .arg1_type = ARG_PTR_TO_CTX,
4967 };
4968
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4969 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4970 int ancestor_level)
4971 {
4972 struct cgroup *ancestor;
4973 struct cgroup *cgrp;
4974
4975 sk = sk_to_full_sk(sk);
4976 if (!sk || !sk_fullsock(sk))
4977 return 0;
4978
4979 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4980 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4981 if (!ancestor)
4982 return 0;
4983
4984 return cgroup_id(ancestor);
4985 }
4986
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4987 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4988 ancestor_level)
4989 {
4990 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4991 }
4992
4993 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4994 .func = bpf_skb_ancestor_cgroup_id,
4995 .gpl_only = false,
4996 .ret_type = RET_INTEGER,
4997 .arg1_type = ARG_PTR_TO_CTX,
4998 .arg2_type = ARG_ANYTHING,
4999 };
5000
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5001 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5002 {
5003 return __bpf_sk_cgroup_id(sk);
5004 }
5005
5006 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5007 .func = bpf_sk_cgroup_id,
5008 .gpl_only = false,
5009 .ret_type = RET_INTEGER,
5010 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5011 };
5012
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5013 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5014 {
5015 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5016 }
5017
5018 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5019 .func = bpf_sk_ancestor_cgroup_id,
5020 .gpl_only = false,
5021 .ret_type = RET_INTEGER,
5022 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5023 .arg2_type = ARG_ANYTHING,
5024 };
5025 #endif
5026
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5027 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5028 unsigned long off, unsigned long len)
5029 {
5030 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5031
5032 bpf_xdp_copy_buf(xdp, off, dst, len, false);
5033 return 0;
5034 }
5035
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5036 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5037 u64, flags, void *, meta, u64, meta_size)
5038 {
5039 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5040
5041 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5042 return -EINVAL;
5043
5044 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5045 return -EFAULT;
5046
5047 return bpf_event_output(map, flags, meta, meta_size, xdp,
5048 xdp_size, bpf_xdp_copy);
5049 }
5050
5051 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5052 .func = bpf_xdp_event_output,
5053 .gpl_only = true,
5054 .ret_type = RET_INTEGER,
5055 .arg1_type = ARG_PTR_TO_CTX,
5056 .arg2_type = ARG_CONST_MAP_PTR,
5057 .arg3_type = ARG_ANYTHING,
5058 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5059 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5060 };
5061
5062 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5063
5064 const struct bpf_func_proto bpf_xdp_output_proto = {
5065 .func = bpf_xdp_event_output,
5066 .gpl_only = true,
5067 .ret_type = RET_INTEGER,
5068 .arg1_type = ARG_PTR_TO_BTF_ID,
5069 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
5070 .arg2_type = ARG_CONST_MAP_PTR,
5071 .arg3_type = ARG_ANYTHING,
5072 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5073 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5074 };
5075
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5076 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5077 {
5078 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5079 }
5080
5081 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5082 .func = bpf_get_socket_cookie,
5083 .gpl_only = false,
5084 .ret_type = RET_INTEGER,
5085 .arg1_type = ARG_PTR_TO_CTX,
5086 };
5087
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5088 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5089 {
5090 return __sock_gen_cookie(ctx->sk);
5091 }
5092
5093 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5094 .func = bpf_get_socket_cookie_sock_addr,
5095 .gpl_only = false,
5096 .ret_type = RET_INTEGER,
5097 .arg1_type = ARG_PTR_TO_CTX,
5098 };
5099
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5100 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5101 {
5102 return __sock_gen_cookie(ctx);
5103 }
5104
5105 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5106 .func = bpf_get_socket_cookie_sock,
5107 .gpl_only = false,
5108 .ret_type = RET_INTEGER,
5109 .arg1_type = ARG_PTR_TO_CTX,
5110 };
5111
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5112 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5113 {
5114 return sk ? sock_gen_cookie(sk) : 0;
5115 }
5116
5117 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5118 .func = bpf_get_socket_ptr_cookie,
5119 .gpl_only = false,
5120 .ret_type = RET_INTEGER,
5121 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5122 };
5123
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5124 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5125 {
5126 return __sock_gen_cookie(ctx->sk);
5127 }
5128
5129 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5130 .func = bpf_get_socket_cookie_sock_ops,
5131 .gpl_only = false,
5132 .ret_type = RET_INTEGER,
5133 .arg1_type = ARG_PTR_TO_CTX,
5134 };
5135
__bpf_get_netns_cookie(struct sock * sk)5136 static u64 __bpf_get_netns_cookie(struct sock *sk)
5137 {
5138 const struct net *net = sk ? sock_net(sk) : &init_net;
5139
5140 return net->net_cookie;
5141 }
5142
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5143 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5144 {
5145 return __bpf_get_netns_cookie(ctx);
5146 }
5147
5148 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5149 .func = bpf_get_netns_cookie_sock,
5150 .gpl_only = false,
5151 .ret_type = RET_INTEGER,
5152 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5153 };
5154
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5155 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5156 {
5157 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5158 }
5159
5160 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5161 .func = bpf_get_netns_cookie_sock_addr,
5162 .gpl_only = false,
5163 .ret_type = RET_INTEGER,
5164 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5165 };
5166
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5167 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5168 {
5169 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5170 }
5171
5172 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5173 .func = bpf_get_netns_cookie_sock_ops,
5174 .gpl_only = false,
5175 .ret_type = RET_INTEGER,
5176 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5177 };
5178
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5179 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5180 {
5181 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5182 }
5183
5184 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5185 .func = bpf_get_netns_cookie_sk_msg,
5186 .gpl_only = false,
5187 .ret_type = RET_INTEGER,
5188 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5189 };
5190
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5191 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5192 {
5193 struct sock *sk = sk_to_full_sk(skb->sk);
5194 kuid_t kuid;
5195
5196 if (!sk || !sk_fullsock(sk))
5197 return overflowuid;
5198 kuid = sock_net_uid(sock_net(sk), sk);
5199 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5200 }
5201
5202 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5203 .func = bpf_get_socket_uid,
5204 .gpl_only = false,
5205 .ret_type = RET_INTEGER,
5206 .arg1_type = ARG_PTR_TO_CTX,
5207 };
5208
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5209 static int sol_socket_sockopt(struct sock *sk, int optname,
5210 char *optval, int *optlen,
5211 bool getopt)
5212 {
5213 switch (optname) {
5214 case SO_REUSEADDR:
5215 case SO_SNDBUF:
5216 case SO_RCVBUF:
5217 case SO_KEEPALIVE:
5218 case SO_PRIORITY:
5219 case SO_REUSEPORT:
5220 case SO_RCVLOWAT:
5221 case SO_MARK:
5222 case SO_MAX_PACING_RATE:
5223 case SO_BINDTOIFINDEX:
5224 case SO_TXREHASH:
5225 if (*optlen != sizeof(int))
5226 return -EINVAL;
5227 break;
5228 case SO_BINDTODEVICE:
5229 break;
5230 default:
5231 return -EINVAL;
5232 }
5233
5234 if (getopt) {
5235 if (optname == SO_BINDTODEVICE)
5236 return -EINVAL;
5237 return sk_getsockopt(sk, SOL_SOCKET, optname,
5238 KERNEL_SOCKPTR(optval),
5239 KERNEL_SOCKPTR(optlen));
5240 }
5241
5242 return sk_setsockopt(sk, SOL_SOCKET, optname,
5243 KERNEL_SOCKPTR(optval), *optlen);
5244 }
5245
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5246 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5247 char *optval, int optlen)
5248 {
5249 struct tcp_sock *tp = tcp_sk(sk);
5250 unsigned long timeout;
5251 int val;
5252
5253 if (optlen != sizeof(int))
5254 return -EINVAL;
5255
5256 val = *(int *)optval;
5257
5258 /* Only some options are supported */
5259 switch (optname) {
5260 case TCP_BPF_IW:
5261 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5262 return -EINVAL;
5263 tcp_snd_cwnd_set(tp, val);
5264 break;
5265 case TCP_BPF_SNDCWND_CLAMP:
5266 if (val <= 0)
5267 return -EINVAL;
5268 tp->snd_cwnd_clamp = val;
5269 tp->snd_ssthresh = val;
5270 break;
5271 case TCP_BPF_DELACK_MAX:
5272 timeout = usecs_to_jiffies(val);
5273 if (timeout > TCP_DELACK_MAX ||
5274 timeout < TCP_TIMEOUT_MIN)
5275 return -EINVAL;
5276 inet_csk(sk)->icsk_delack_max = timeout;
5277 break;
5278 case TCP_BPF_RTO_MIN:
5279 timeout = usecs_to_jiffies(val);
5280 if (timeout > TCP_RTO_MIN ||
5281 timeout < TCP_TIMEOUT_MIN)
5282 return -EINVAL;
5283 inet_csk(sk)->icsk_rto_min = timeout;
5284 break;
5285 case TCP_BPF_SOCK_OPS_CB_FLAGS:
5286 if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5287 return -EINVAL;
5288 tp->bpf_sock_ops_cb_flags = val;
5289 break;
5290 default:
5291 return -EINVAL;
5292 }
5293
5294 return 0;
5295 }
5296
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5297 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5298 int *optlen, bool getopt)
5299 {
5300 struct tcp_sock *tp;
5301 int ret;
5302
5303 if (*optlen < 2)
5304 return -EINVAL;
5305
5306 if (getopt) {
5307 if (!inet_csk(sk)->icsk_ca_ops)
5308 return -EINVAL;
5309 /* BPF expects NULL-terminated tcp-cc string */
5310 optval[--(*optlen)] = '\0';
5311 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5312 KERNEL_SOCKPTR(optval),
5313 KERNEL_SOCKPTR(optlen));
5314 }
5315
5316 /* "cdg" is the only cc that alloc a ptr
5317 * in inet_csk_ca area. The bpf-tcp-cc may
5318 * overwrite this ptr after switching to cdg.
5319 */
5320 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5321 return -ENOTSUPP;
5322
5323 /* It stops this looping
5324 *
5325 * .init => bpf_setsockopt(tcp_cc) => .init =>
5326 * bpf_setsockopt(tcp_cc)" => .init => ....
5327 *
5328 * The second bpf_setsockopt(tcp_cc) is not allowed
5329 * in order to break the loop when both .init
5330 * are the same bpf prog.
5331 *
5332 * This applies even the second bpf_setsockopt(tcp_cc)
5333 * does not cause a loop. This limits only the first
5334 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5335 * pick a fallback cc (eg. peer does not support ECN)
5336 * and the second '.init' cannot fallback to
5337 * another.
5338 */
5339 tp = tcp_sk(sk);
5340 if (tp->bpf_chg_cc_inprogress)
5341 return -EBUSY;
5342
5343 tp->bpf_chg_cc_inprogress = 1;
5344 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5345 KERNEL_SOCKPTR(optval), *optlen);
5346 tp->bpf_chg_cc_inprogress = 0;
5347 return ret;
5348 }
5349
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5350 static int sol_tcp_sockopt(struct sock *sk, int optname,
5351 char *optval, int *optlen,
5352 bool getopt)
5353 {
5354 if (sk->sk_protocol != IPPROTO_TCP)
5355 return -EINVAL;
5356
5357 switch (optname) {
5358 case TCP_NODELAY:
5359 case TCP_MAXSEG:
5360 case TCP_KEEPIDLE:
5361 case TCP_KEEPINTVL:
5362 case TCP_KEEPCNT:
5363 case TCP_SYNCNT:
5364 case TCP_WINDOW_CLAMP:
5365 case TCP_THIN_LINEAR_TIMEOUTS:
5366 case TCP_USER_TIMEOUT:
5367 case TCP_NOTSENT_LOWAT:
5368 case TCP_SAVE_SYN:
5369 if (*optlen != sizeof(int))
5370 return -EINVAL;
5371 break;
5372 case TCP_CONGESTION:
5373 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5374 case TCP_SAVED_SYN:
5375 if (*optlen < 1)
5376 return -EINVAL;
5377 break;
5378 case TCP_BPF_SOCK_OPS_CB_FLAGS:
5379 if (*optlen != sizeof(int))
5380 return -EINVAL;
5381 if (getopt) {
5382 struct tcp_sock *tp = tcp_sk(sk);
5383 int cb_flags = tp->bpf_sock_ops_cb_flags;
5384
5385 memcpy(optval, &cb_flags, *optlen);
5386 return 0;
5387 }
5388 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5389 default:
5390 if (getopt)
5391 return -EINVAL;
5392 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5393 }
5394
5395 if (getopt) {
5396 if (optname == TCP_SAVED_SYN) {
5397 struct tcp_sock *tp = tcp_sk(sk);
5398
5399 if (!tp->saved_syn ||
5400 *optlen > tcp_saved_syn_len(tp->saved_syn))
5401 return -EINVAL;
5402 memcpy(optval, tp->saved_syn->data, *optlen);
5403 /* It cannot free tp->saved_syn here because it
5404 * does not know if the user space still needs it.
5405 */
5406 return 0;
5407 }
5408
5409 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5410 KERNEL_SOCKPTR(optval),
5411 KERNEL_SOCKPTR(optlen));
5412 }
5413
5414 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5415 KERNEL_SOCKPTR(optval), *optlen);
5416 }
5417
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5418 static int sol_ip_sockopt(struct sock *sk, int optname,
5419 char *optval, int *optlen,
5420 bool getopt)
5421 {
5422 if (sk->sk_family != AF_INET)
5423 return -EINVAL;
5424
5425 switch (optname) {
5426 case IP_TOS:
5427 if (*optlen != sizeof(int))
5428 return -EINVAL;
5429 break;
5430 default:
5431 return -EINVAL;
5432 }
5433
5434 if (getopt)
5435 return do_ip_getsockopt(sk, SOL_IP, optname,
5436 KERNEL_SOCKPTR(optval),
5437 KERNEL_SOCKPTR(optlen));
5438
5439 return do_ip_setsockopt(sk, SOL_IP, optname,
5440 KERNEL_SOCKPTR(optval), *optlen);
5441 }
5442
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5443 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5444 char *optval, int *optlen,
5445 bool getopt)
5446 {
5447 if (sk->sk_family != AF_INET6)
5448 return -EINVAL;
5449
5450 switch (optname) {
5451 case IPV6_TCLASS:
5452 case IPV6_AUTOFLOWLABEL:
5453 if (*optlen != sizeof(int))
5454 return -EINVAL;
5455 break;
5456 default:
5457 return -EINVAL;
5458 }
5459
5460 if (getopt)
5461 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5462 KERNEL_SOCKPTR(optval),
5463 KERNEL_SOCKPTR(optlen));
5464
5465 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5466 KERNEL_SOCKPTR(optval), *optlen);
5467 }
5468
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5469 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5470 char *optval, int optlen)
5471 {
5472 if (!sk_fullsock(sk))
5473 return -EINVAL;
5474
5475 if (level == SOL_SOCKET)
5476 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5477 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5478 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5479 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5480 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5481 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5482 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5483
5484 return -EINVAL;
5485 }
5486
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5487 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5488 char *optval, int optlen)
5489 {
5490 if (sk_fullsock(sk))
5491 sock_owned_by_me(sk);
5492 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5493 }
5494
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5495 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5496 char *optval, int optlen)
5497 {
5498 int err, saved_optlen = optlen;
5499
5500 if (!sk_fullsock(sk)) {
5501 err = -EINVAL;
5502 goto done;
5503 }
5504
5505 if (level == SOL_SOCKET)
5506 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5507 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5508 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5509 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5510 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5511 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5512 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5513 else
5514 err = -EINVAL;
5515
5516 done:
5517 if (err)
5518 optlen = 0;
5519 if (optlen < saved_optlen)
5520 memset(optval + optlen, 0, saved_optlen - optlen);
5521 return err;
5522 }
5523
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5524 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5525 char *optval, int optlen)
5526 {
5527 if (sk_fullsock(sk))
5528 sock_owned_by_me(sk);
5529 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5530 }
5531
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5532 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5533 int, optname, char *, optval, int, optlen)
5534 {
5535 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5536 }
5537
5538 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5539 .func = bpf_sk_setsockopt,
5540 .gpl_only = false,
5541 .ret_type = RET_INTEGER,
5542 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5543 .arg2_type = ARG_ANYTHING,
5544 .arg3_type = ARG_ANYTHING,
5545 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5546 .arg5_type = ARG_CONST_SIZE,
5547 };
5548
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5549 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5550 int, optname, char *, optval, int, optlen)
5551 {
5552 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5553 }
5554
5555 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5556 .func = bpf_sk_getsockopt,
5557 .gpl_only = false,
5558 .ret_type = RET_INTEGER,
5559 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5560 .arg2_type = ARG_ANYTHING,
5561 .arg3_type = ARG_ANYTHING,
5562 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5563 .arg5_type = ARG_CONST_SIZE,
5564 };
5565
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5566 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5567 int, optname, char *, optval, int, optlen)
5568 {
5569 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5570 }
5571
5572 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5573 .func = bpf_unlocked_sk_setsockopt,
5574 .gpl_only = false,
5575 .ret_type = RET_INTEGER,
5576 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5577 .arg2_type = ARG_ANYTHING,
5578 .arg3_type = ARG_ANYTHING,
5579 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5580 .arg5_type = ARG_CONST_SIZE,
5581 };
5582
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5583 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5584 int, optname, char *, optval, int, optlen)
5585 {
5586 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5587 }
5588
5589 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5590 .func = bpf_unlocked_sk_getsockopt,
5591 .gpl_only = false,
5592 .ret_type = RET_INTEGER,
5593 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5594 .arg2_type = ARG_ANYTHING,
5595 .arg3_type = ARG_ANYTHING,
5596 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5597 .arg5_type = ARG_CONST_SIZE,
5598 };
5599
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5600 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5601 int, level, int, optname, char *, optval, int, optlen)
5602 {
5603 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5604 }
5605
5606 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5607 .func = bpf_sock_addr_setsockopt,
5608 .gpl_only = false,
5609 .ret_type = RET_INTEGER,
5610 .arg1_type = ARG_PTR_TO_CTX,
5611 .arg2_type = ARG_ANYTHING,
5612 .arg3_type = ARG_ANYTHING,
5613 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5614 .arg5_type = ARG_CONST_SIZE,
5615 };
5616
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5617 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5618 int, level, int, optname, char *, optval, int, optlen)
5619 {
5620 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5621 }
5622
5623 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5624 .func = bpf_sock_addr_getsockopt,
5625 .gpl_only = false,
5626 .ret_type = RET_INTEGER,
5627 .arg1_type = ARG_PTR_TO_CTX,
5628 .arg2_type = ARG_ANYTHING,
5629 .arg3_type = ARG_ANYTHING,
5630 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5631 .arg5_type = ARG_CONST_SIZE,
5632 };
5633
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5634 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5635 int, level, int, optname, char *, optval, int, optlen)
5636 {
5637 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5638 }
5639
5640 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5641 .func = bpf_sock_ops_setsockopt,
5642 .gpl_only = false,
5643 .ret_type = RET_INTEGER,
5644 .arg1_type = ARG_PTR_TO_CTX,
5645 .arg2_type = ARG_ANYTHING,
5646 .arg3_type = ARG_ANYTHING,
5647 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5648 .arg5_type = ARG_CONST_SIZE,
5649 };
5650
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5651 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5652 int optname, const u8 **start)
5653 {
5654 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5655 const u8 *hdr_start;
5656 int ret;
5657
5658 if (syn_skb) {
5659 /* sk is a request_sock here */
5660
5661 if (optname == TCP_BPF_SYN) {
5662 hdr_start = syn_skb->data;
5663 ret = tcp_hdrlen(syn_skb);
5664 } else if (optname == TCP_BPF_SYN_IP) {
5665 hdr_start = skb_network_header(syn_skb);
5666 ret = skb_network_header_len(syn_skb) +
5667 tcp_hdrlen(syn_skb);
5668 } else {
5669 /* optname == TCP_BPF_SYN_MAC */
5670 hdr_start = skb_mac_header(syn_skb);
5671 ret = skb_mac_header_len(syn_skb) +
5672 skb_network_header_len(syn_skb) +
5673 tcp_hdrlen(syn_skb);
5674 }
5675 } else {
5676 struct sock *sk = bpf_sock->sk;
5677 struct saved_syn *saved_syn;
5678
5679 if (sk->sk_state == TCP_NEW_SYN_RECV)
5680 /* synack retransmit. bpf_sock->syn_skb will
5681 * not be available. It has to resort to
5682 * saved_syn (if it is saved).
5683 */
5684 saved_syn = inet_reqsk(sk)->saved_syn;
5685 else
5686 saved_syn = tcp_sk(sk)->saved_syn;
5687
5688 if (!saved_syn)
5689 return -ENOENT;
5690
5691 if (optname == TCP_BPF_SYN) {
5692 hdr_start = saved_syn->data +
5693 saved_syn->mac_hdrlen +
5694 saved_syn->network_hdrlen;
5695 ret = saved_syn->tcp_hdrlen;
5696 } else if (optname == TCP_BPF_SYN_IP) {
5697 hdr_start = saved_syn->data +
5698 saved_syn->mac_hdrlen;
5699 ret = saved_syn->network_hdrlen +
5700 saved_syn->tcp_hdrlen;
5701 } else {
5702 /* optname == TCP_BPF_SYN_MAC */
5703
5704 /* TCP_SAVE_SYN may not have saved the mac hdr */
5705 if (!saved_syn->mac_hdrlen)
5706 return -ENOENT;
5707
5708 hdr_start = saved_syn->data;
5709 ret = saved_syn->mac_hdrlen +
5710 saved_syn->network_hdrlen +
5711 saved_syn->tcp_hdrlen;
5712 }
5713 }
5714
5715 *start = hdr_start;
5716 return ret;
5717 }
5718
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5719 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5720 int, level, int, optname, char *, optval, int, optlen)
5721 {
5722 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5723 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5724 int ret, copy_len = 0;
5725 const u8 *start;
5726
5727 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5728 if (ret > 0) {
5729 copy_len = ret;
5730 if (optlen < copy_len) {
5731 copy_len = optlen;
5732 ret = -ENOSPC;
5733 }
5734
5735 memcpy(optval, start, copy_len);
5736 }
5737
5738 /* Zero out unused buffer at the end */
5739 memset(optval + copy_len, 0, optlen - copy_len);
5740
5741 return ret;
5742 }
5743
5744 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5745 }
5746
5747 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5748 .func = bpf_sock_ops_getsockopt,
5749 .gpl_only = false,
5750 .ret_type = RET_INTEGER,
5751 .arg1_type = ARG_PTR_TO_CTX,
5752 .arg2_type = ARG_ANYTHING,
5753 .arg3_type = ARG_ANYTHING,
5754 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5755 .arg5_type = ARG_CONST_SIZE,
5756 };
5757
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5758 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5759 int, argval)
5760 {
5761 struct sock *sk = bpf_sock->sk;
5762 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5763
5764 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5765 return -EINVAL;
5766
5767 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5768
5769 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5770 }
5771
5772 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5773 .func = bpf_sock_ops_cb_flags_set,
5774 .gpl_only = false,
5775 .ret_type = RET_INTEGER,
5776 .arg1_type = ARG_PTR_TO_CTX,
5777 .arg2_type = ARG_ANYTHING,
5778 };
5779
5780 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5781 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5782
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5783 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5784 int, addr_len)
5785 {
5786 #ifdef CONFIG_INET
5787 struct sock *sk = ctx->sk;
5788 u32 flags = BIND_FROM_BPF;
5789 int err;
5790
5791 err = -EINVAL;
5792 if (addr_len < offsetofend(struct sockaddr, sa_family))
5793 return err;
5794 if (addr->sa_family == AF_INET) {
5795 if (addr_len < sizeof(struct sockaddr_in))
5796 return err;
5797 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5798 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5799 return __inet_bind(sk, addr, addr_len, flags);
5800 #if IS_ENABLED(CONFIG_IPV6)
5801 } else if (addr->sa_family == AF_INET6) {
5802 if (addr_len < SIN6_LEN_RFC2133)
5803 return err;
5804 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5805 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5806 /* ipv6_bpf_stub cannot be NULL, since it's called from
5807 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5808 */
5809 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5810 #endif /* CONFIG_IPV6 */
5811 }
5812 #endif /* CONFIG_INET */
5813
5814 return -EAFNOSUPPORT;
5815 }
5816
5817 static const struct bpf_func_proto bpf_bind_proto = {
5818 .func = bpf_bind,
5819 .gpl_only = false,
5820 .ret_type = RET_INTEGER,
5821 .arg1_type = ARG_PTR_TO_CTX,
5822 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5823 .arg3_type = ARG_CONST_SIZE,
5824 };
5825
5826 #ifdef CONFIG_XFRM
5827
5828 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5829 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5830
5831 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5832 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5833
5834 #endif
5835
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5836 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5837 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5838 {
5839 const struct sec_path *sp = skb_sec_path(skb);
5840 const struct xfrm_state *x;
5841
5842 if (!sp || unlikely(index >= sp->len || flags))
5843 goto err_clear;
5844
5845 x = sp->xvec[index];
5846
5847 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5848 goto err_clear;
5849
5850 to->reqid = x->props.reqid;
5851 to->spi = x->id.spi;
5852 to->family = x->props.family;
5853 to->ext = 0;
5854
5855 if (to->family == AF_INET6) {
5856 memcpy(to->remote_ipv6, x->props.saddr.a6,
5857 sizeof(to->remote_ipv6));
5858 } else {
5859 to->remote_ipv4 = x->props.saddr.a4;
5860 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5861 }
5862
5863 return 0;
5864 err_clear:
5865 memset(to, 0, size);
5866 return -EINVAL;
5867 }
5868
5869 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5870 .func = bpf_skb_get_xfrm_state,
5871 .gpl_only = false,
5872 .ret_type = RET_INTEGER,
5873 .arg1_type = ARG_PTR_TO_CTX,
5874 .arg2_type = ARG_ANYTHING,
5875 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5876 .arg4_type = ARG_CONST_SIZE,
5877 .arg5_type = ARG_ANYTHING,
5878 };
5879 #endif
5880
5881 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5882 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5883 {
5884 params->h_vlan_TCI = 0;
5885 params->h_vlan_proto = 0;
5886 if (mtu)
5887 params->mtu_result = mtu; /* union with tot_len */
5888
5889 return 0;
5890 }
5891 #endif
5892
5893 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5894 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5895 u32 flags, bool check_mtu)
5896 {
5897 struct fib_nh_common *nhc;
5898 struct in_device *in_dev;
5899 struct neighbour *neigh;
5900 struct net_device *dev;
5901 struct fib_result res;
5902 struct flowi4 fl4;
5903 u32 mtu = 0;
5904 int err;
5905
5906 dev = dev_get_by_index_rcu(net, params->ifindex);
5907 if (unlikely(!dev))
5908 return -ENODEV;
5909
5910 /* verify forwarding is enabled on this interface */
5911 in_dev = __in_dev_get_rcu(dev);
5912 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5913 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5914
5915 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5916 fl4.flowi4_iif = 1;
5917 fl4.flowi4_oif = params->ifindex;
5918 } else {
5919 fl4.flowi4_iif = params->ifindex;
5920 fl4.flowi4_oif = 0;
5921 }
5922 fl4.flowi4_tos = params->tos & INET_DSCP_MASK;
5923 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5924 fl4.flowi4_flags = 0;
5925
5926 fl4.flowi4_proto = params->l4_protocol;
5927 fl4.daddr = params->ipv4_dst;
5928 fl4.saddr = params->ipv4_src;
5929 fl4.fl4_sport = params->sport;
5930 fl4.fl4_dport = params->dport;
5931 fl4.flowi4_multipath_hash = 0;
5932
5933 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5934 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5935 struct fib_table *tb;
5936
5937 if (flags & BPF_FIB_LOOKUP_TBID) {
5938 tbid = params->tbid;
5939 /* zero out for vlan output */
5940 params->tbid = 0;
5941 }
5942
5943 tb = fib_get_table(net, tbid);
5944 if (unlikely(!tb))
5945 return BPF_FIB_LKUP_RET_NOT_FWDED;
5946
5947 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5948 } else {
5949 if (flags & BPF_FIB_LOOKUP_MARK)
5950 fl4.flowi4_mark = params->mark;
5951 else
5952 fl4.flowi4_mark = 0;
5953 fl4.flowi4_secid = 0;
5954 fl4.flowi4_tun_key.tun_id = 0;
5955 fl4.flowi4_uid = sock_net_uid(net, NULL);
5956
5957 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5958 }
5959
5960 if (err) {
5961 /* map fib lookup errors to RTN_ type */
5962 if (err == -EINVAL)
5963 return BPF_FIB_LKUP_RET_BLACKHOLE;
5964 if (err == -EHOSTUNREACH)
5965 return BPF_FIB_LKUP_RET_UNREACHABLE;
5966 if (err == -EACCES)
5967 return BPF_FIB_LKUP_RET_PROHIBIT;
5968
5969 return BPF_FIB_LKUP_RET_NOT_FWDED;
5970 }
5971
5972 if (res.type != RTN_UNICAST)
5973 return BPF_FIB_LKUP_RET_NOT_FWDED;
5974
5975 if (fib_info_num_path(res.fi) > 1)
5976 fib_select_path(net, &res, &fl4, NULL);
5977
5978 if (check_mtu) {
5979 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5980 if (params->tot_len > mtu) {
5981 params->mtu_result = mtu; /* union with tot_len */
5982 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5983 }
5984 }
5985
5986 nhc = res.nhc;
5987
5988 /* do not handle lwt encaps right now */
5989 if (nhc->nhc_lwtstate)
5990 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5991
5992 dev = nhc->nhc_dev;
5993
5994 params->rt_metric = res.fi->fib_priority;
5995 params->ifindex = dev->ifindex;
5996
5997 if (flags & BPF_FIB_LOOKUP_SRC)
5998 params->ipv4_src = fib_result_prefsrc(net, &res);
5999
6000 /* xdp and cls_bpf programs are run in RCU-bh so
6001 * rcu_read_lock_bh is not needed here
6002 */
6003 if (likely(nhc->nhc_gw_family != AF_INET6)) {
6004 if (nhc->nhc_gw_family)
6005 params->ipv4_dst = nhc->nhc_gw.ipv4;
6006 } else {
6007 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6008
6009 params->family = AF_INET6;
6010 *dst = nhc->nhc_gw.ipv6;
6011 }
6012
6013 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6014 goto set_fwd_params;
6015
6016 if (likely(nhc->nhc_gw_family != AF_INET6))
6017 neigh = __ipv4_neigh_lookup_noref(dev,
6018 (__force u32)params->ipv4_dst);
6019 else
6020 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6021
6022 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6023 return BPF_FIB_LKUP_RET_NO_NEIGH;
6024 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6025 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6026
6027 set_fwd_params:
6028 return bpf_fib_set_fwd_params(params, mtu);
6029 }
6030 #endif
6031
6032 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6033 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6034 u32 flags, bool check_mtu)
6035 {
6036 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6037 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6038 struct fib6_result res = {};
6039 struct neighbour *neigh;
6040 struct net_device *dev;
6041 struct inet6_dev *idev;
6042 struct flowi6 fl6;
6043 int strict = 0;
6044 int oif, err;
6045 u32 mtu = 0;
6046
6047 /* link local addresses are never forwarded */
6048 if (rt6_need_strict(dst) || rt6_need_strict(src))
6049 return BPF_FIB_LKUP_RET_NOT_FWDED;
6050
6051 dev = dev_get_by_index_rcu(net, params->ifindex);
6052 if (unlikely(!dev))
6053 return -ENODEV;
6054
6055 idev = __in6_dev_get_safely(dev);
6056 if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6057 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6058
6059 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6060 fl6.flowi6_iif = 1;
6061 oif = fl6.flowi6_oif = params->ifindex;
6062 } else {
6063 oif = fl6.flowi6_iif = params->ifindex;
6064 fl6.flowi6_oif = 0;
6065 strict = RT6_LOOKUP_F_HAS_SADDR;
6066 }
6067 fl6.flowlabel = params->flowinfo;
6068 fl6.flowi6_scope = 0;
6069 fl6.flowi6_flags = 0;
6070 fl6.mp_hash = 0;
6071
6072 fl6.flowi6_proto = params->l4_protocol;
6073 fl6.daddr = *dst;
6074 fl6.saddr = *src;
6075 fl6.fl6_sport = params->sport;
6076 fl6.fl6_dport = params->dport;
6077
6078 if (flags & BPF_FIB_LOOKUP_DIRECT) {
6079 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6080 struct fib6_table *tb;
6081
6082 if (flags & BPF_FIB_LOOKUP_TBID) {
6083 tbid = params->tbid;
6084 /* zero out for vlan output */
6085 params->tbid = 0;
6086 }
6087
6088 tb = ipv6_stub->fib6_get_table(net, tbid);
6089 if (unlikely(!tb))
6090 return BPF_FIB_LKUP_RET_NOT_FWDED;
6091
6092 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6093 strict);
6094 } else {
6095 if (flags & BPF_FIB_LOOKUP_MARK)
6096 fl6.flowi6_mark = params->mark;
6097 else
6098 fl6.flowi6_mark = 0;
6099 fl6.flowi6_secid = 0;
6100 fl6.flowi6_tun_key.tun_id = 0;
6101 fl6.flowi6_uid = sock_net_uid(net, NULL);
6102
6103 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6104 }
6105
6106 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6107 res.f6i == net->ipv6.fib6_null_entry))
6108 return BPF_FIB_LKUP_RET_NOT_FWDED;
6109
6110 switch (res.fib6_type) {
6111 /* only unicast is forwarded */
6112 case RTN_UNICAST:
6113 break;
6114 case RTN_BLACKHOLE:
6115 return BPF_FIB_LKUP_RET_BLACKHOLE;
6116 case RTN_UNREACHABLE:
6117 return BPF_FIB_LKUP_RET_UNREACHABLE;
6118 case RTN_PROHIBIT:
6119 return BPF_FIB_LKUP_RET_PROHIBIT;
6120 default:
6121 return BPF_FIB_LKUP_RET_NOT_FWDED;
6122 }
6123
6124 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6125 fl6.flowi6_oif != 0, NULL, strict);
6126
6127 if (check_mtu) {
6128 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6129 if (params->tot_len > mtu) {
6130 params->mtu_result = mtu; /* union with tot_len */
6131 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6132 }
6133 }
6134
6135 if (res.nh->fib_nh_lws)
6136 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6137
6138 if (res.nh->fib_nh_gw_family)
6139 *dst = res.nh->fib_nh_gw6;
6140
6141 dev = res.nh->fib_nh_dev;
6142 params->rt_metric = res.f6i->fib6_metric;
6143 params->ifindex = dev->ifindex;
6144
6145 if (flags & BPF_FIB_LOOKUP_SRC) {
6146 if (res.f6i->fib6_prefsrc.plen) {
6147 *src = res.f6i->fib6_prefsrc.addr;
6148 } else {
6149 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6150 &fl6.daddr, 0,
6151 src);
6152 if (err)
6153 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6154 }
6155 }
6156
6157 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6158 goto set_fwd_params;
6159
6160 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6161 * not needed here.
6162 */
6163 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6164 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6165 return BPF_FIB_LKUP_RET_NO_NEIGH;
6166 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6167 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6168
6169 set_fwd_params:
6170 return bpf_fib_set_fwd_params(params, mtu);
6171 }
6172 #endif
6173
6174 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6175 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6176 BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6177
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6178 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6179 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6180 {
6181 if (plen < sizeof(*params))
6182 return -EINVAL;
6183
6184 if (flags & ~BPF_FIB_LOOKUP_MASK)
6185 return -EINVAL;
6186
6187 switch (params->family) {
6188 #if IS_ENABLED(CONFIG_INET)
6189 case AF_INET:
6190 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6191 flags, true);
6192 #endif
6193 #if IS_ENABLED(CONFIG_IPV6)
6194 case AF_INET6:
6195 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6196 flags, true);
6197 #endif
6198 }
6199 return -EAFNOSUPPORT;
6200 }
6201
6202 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6203 .func = bpf_xdp_fib_lookup,
6204 .gpl_only = true,
6205 .ret_type = RET_INTEGER,
6206 .arg1_type = ARG_PTR_TO_CTX,
6207 .arg2_type = ARG_PTR_TO_MEM,
6208 .arg3_type = ARG_CONST_SIZE,
6209 .arg4_type = ARG_ANYTHING,
6210 };
6211
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6212 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6213 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6214 {
6215 struct net *net = dev_net(skb->dev);
6216 int rc = -EAFNOSUPPORT;
6217 bool check_mtu = false;
6218
6219 if (plen < sizeof(*params))
6220 return -EINVAL;
6221
6222 if (flags & ~BPF_FIB_LOOKUP_MASK)
6223 return -EINVAL;
6224
6225 if (params->tot_len)
6226 check_mtu = true;
6227
6228 switch (params->family) {
6229 #if IS_ENABLED(CONFIG_INET)
6230 case AF_INET:
6231 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6232 break;
6233 #endif
6234 #if IS_ENABLED(CONFIG_IPV6)
6235 case AF_INET6:
6236 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6237 break;
6238 #endif
6239 }
6240
6241 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6242 struct net_device *dev;
6243
6244 /* When tot_len isn't provided by user, check skb
6245 * against MTU of FIB lookup resulting net_device
6246 */
6247 dev = dev_get_by_index_rcu(net, params->ifindex);
6248 if (!is_skb_forwardable(dev, skb))
6249 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6250
6251 params->mtu_result = dev->mtu; /* union with tot_len */
6252 }
6253
6254 return rc;
6255 }
6256
6257 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6258 .func = bpf_skb_fib_lookup,
6259 .gpl_only = true,
6260 .ret_type = RET_INTEGER,
6261 .arg1_type = ARG_PTR_TO_CTX,
6262 .arg2_type = ARG_PTR_TO_MEM,
6263 .arg3_type = ARG_CONST_SIZE,
6264 .arg4_type = ARG_ANYTHING,
6265 };
6266
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6267 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6268 u32 ifindex)
6269 {
6270 struct net *netns = dev_net(dev_curr);
6271
6272 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6273 if (ifindex == 0)
6274 return dev_curr;
6275
6276 return dev_get_by_index_rcu(netns, ifindex);
6277 }
6278
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6279 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6280 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6281 {
6282 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6283 struct net_device *dev = skb->dev;
6284 int mtu, dev_len, skb_len;
6285
6286 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6287 return -EINVAL;
6288 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6289 return -EINVAL;
6290
6291 dev = __dev_via_ifindex(dev, ifindex);
6292 if (unlikely(!dev))
6293 return -ENODEV;
6294
6295 mtu = READ_ONCE(dev->mtu);
6296 dev_len = mtu + dev->hard_header_len;
6297
6298 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6299 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6300
6301 skb_len += len_diff; /* minus result pass check */
6302 if (skb_len <= dev_len) {
6303 ret = BPF_MTU_CHK_RET_SUCCESS;
6304 goto out;
6305 }
6306 /* At this point, skb->len exceed MTU, but as it include length of all
6307 * segments, it can still be below MTU. The SKB can possibly get
6308 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6309 * must choose if segs are to be MTU checked.
6310 */
6311 if (skb_is_gso(skb)) {
6312 ret = BPF_MTU_CHK_RET_SUCCESS;
6313 if (flags & BPF_MTU_CHK_SEGS &&
6314 !skb_gso_validate_network_len(skb, mtu))
6315 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6316 }
6317 out:
6318 *mtu_len = mtu;
6319 return ret;
6320 }
6321
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6322 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6323 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6324 {
6325 struct net_device *dev = xdp->rxq->dev;
6326 int xdp_len = xdp->data_end - xdp->data;
6327 int ret = BPF_MTU_CHK_RET_SUCCESS;
6328 int mtu, dev_len;
6329
6330 /* XDP variant doesn't support multi-buffer segment check (yet) */
6331 if (unlikely(flags))
6332 return -EINVAL;
6333
6334 dev = __dev_via_ifindex(dev, ifindex);
6335 if (unlikely(!dev))
6336 return -ENODEV;
6337
6338 mtu = READ_ONCE(dev->mtu);
6339 dev_len = mtu + dev->hard_header_len;
6340
6341 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6342 if (*mtu_len)
6343 xdp_len = *mtu_len + dev->hard_header_len;
6344
6345 xdp_len += len_diff; /* minus result pass check */
6346 if (xdp_len > dev_len)
6347 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6348
6349 *mtu_len = mtu;
6350 return ret;
6351 }
6352
6353 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6354 .func = bpf_skb_check_mtu,
6355 .gpl_only = true,
6356 .ret_type = RET_INTEGER,
6357 .arg1_type = ARG_PTR_TO_CTX,
6358 .arg2_type = ARG_ANYTHING,
6359 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6360 .arg3_size = sizeof(u32),
6361 .arg4_type = ARG_ANYTHING,
6362 .arg5_type = ARG_ANYTHING,
6363 };
6364
6365 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6366 .func = bpf_xdp_check_mtu,
6367 .gpl_only = true,
6368 .ret_type = RET_INTEGER,
6369 .arg1_type = ARG_PTR_TO_CTX,
6370 .arg2_type = ARG_ANYTHING,
6371 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6372 .arg3_size = sizeof(u32),
6373 .arg4_type = ARG_ANYTHING,
6374 .arg5_type = ARG_ANYTHING,
6375 };
6376
6377 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6378 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6379 {
6380 int err;
6381 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6382
6383 if (!seg6_validate_srh(srh, len, false))
6384 return -EINVAL;
6385
6386 switch (type) {
6387 case BPF_LWT_ENCAP_SEG6_INLINE:
6388 if (skb->protocol != htons(ETH_P_IPV6))
6389 return -EBADMSG;
6390
6391 err = seg6_do_srh_inline(skb, srh);
6392 break;
6393 case BPF_LWT_ENCAP_SEG6:
6394 skb_reset_inner_headers(skb);
6395 skb->encapsulation = 1;
6396 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6397 break;
6398 default:
6399 return -EINVAL;
6400 }
6401
6402 bpf_compute_data_pointers(skb);
6403 if (err)
6404 return err;
6405
6406 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6407
6408 return seg6_lookup_nexthop(skb, NULL, 0);
6409 }
6410 #endif /* CONFIG_IPV6_SEG6_BPF */
6411
6412 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6413 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6414 bool ingress)
6415 {
6416 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6417 }
6418 #endif
6419
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6420 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6421 u32, len)
6422 {
6423 switch (type) {
6424 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6425 case BPF_LWT_ENCAP_SEG6:
6426 case BPF_LWT_ENCAP_SEG6_INLINE:
6427 return bpf_push_seg6_encap(skb, type, hdr, len);
6428 #endif
6429 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6430 case BPF_LWT_ENCAP_IP:
6431 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6432 #endif
6433 default:
6434 return -EINVAL;
6435 }
6436 }
6437
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6438 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6439 void *, hdr, u32, len)
6440 {
6441 switch (type) {
6442 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6443 case BPF_LWT_ENCAP_IP:
6444 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6445 #endif
6446 default:
6447 return -EINVAL;
6448 }
6449 }
6450
6451 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6452 .func = bpf_lwt_in_push_encap,
6453 .gpl_only = false,
6454 .ret_type = RET_INTEGER,
6455 .arg1_type = ARG_PTR_TO_CTX,
6456 .arg2_type = ARG_ANYTHING,
6457 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6458 .arg4_type = ARG_CONST_SIZE
6459 };
6460
6461 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6462 .func = bpf_lwt_xmit_push_encap,
6463 .gpl_only = false,
6464 .ret_type = RET_INTEGER,
6465 .arg1_type = ARG_PTR_TO_CTX,
6466 .arg2_type = ARG_ANYTHING,
6467 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6468 .arg4_type = ARG_CONST_SIZE
6469 };
6470
6471 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6472 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6473 const void *, from, u32, len)
6474 {
6475 struct seg6_bpf_srh_state *srh_state =
6476 this_cpu_ptr(&seg6_bpf_srh_states);
6477 struct ipv6_sr_hdr *srh = srh_state->srh;
6478 void *srh_tlvs, *srh_end, *ptr;
6479 int srhoff = 0;
6480
6481 lockdep_assert_held(&srh_state->bh_lock);
6482 if (srh == NULL)
6483 return -EINVAL;
6484
6485 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6486 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6487
6488 ptr = skb->data + offset;
6489 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6490 srh_state->valid = false;
6491 else if (ptr < (void *)&srh->flags ||
6492 ptr + len > (void *)&srh->segments)
6493 return -EFAULT;
6494
6495 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6496 return -EFAULT;
6497 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6498 return -EINVAL;
6499 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6500
6501 memcpy(skb->data + offset, from, len);
6502 return 0;
6503 }
6504
6505 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6506 .func = bpf_lwt_seg6_store_bytes,
6507 .gpl_only = false,
6508 .ret_type = RET_INTEGER,
6509 .arg1_type = ARG_PTR_TO_CTX,
6510 .arg2_type = ARG_ANYTHING,
6511 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6512 .arg4_type = ARG_CONST_SIZE
6513 };
6514
bpf_update_srh_state(struct sk_buff * skb)6515 static void bpf_update_srh_state(struct sk_buff *skb)
6516 {
6517 struct seg6_bpf_srh_state *srh_state =
6518 this_cpu_ptr(&seg6_bpf_srh_states);
6519 int srhoff = 0;
6520
6521 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6522 srh_state->srh = NULL;
6523 } else {
6524 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6525 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6526 srh_state->valid = true;
6527 }
6528 }
6529
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6530 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6531 u32, action, void *, param, u32, param_len)
6532 {
6533 struct seg6_bpf_srh_state *srh_state =
6534 this_cpu_ptr(&seg6_bpf_srh_states);
6535 int hdroff = 0;
6536 int err;
6537
6538 lockdep_assert_held(&srh_state->bh_lock);
6539 switch (action) {
6540 case SEG6_LOCAL_ACTION_END_X:
6541 if (!seg6_bpf_has_valid_srh(skb))
6542 return -EBADMSG;
6543 if (param_len != sizeof(struct in6_addr))
6544 return -EINVAL;
6545 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6546 case SEG6_LOCAL_ACTION_END_T:
6547 if (!seg6_bpf_has_valid_srh(skb))
6548 return -EBADMSG;
6549 if (param_len != sizeof(int))
6550 return -EINVAL;
6551 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6552 case SEG6_LOCAL_ACTION_END_DT6:
6553 if (!seg6_bpf_has_valid_srh(skb))
6554 return -EBADMSG;
6555 if (param_len != sizeof(int))
6556 return -EINVAL;
6557
6558 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6559 return -EBADMSG;
6560 if (!pskb_pull(skb, hdroff))
6561 return -EBADMSG;
6562
6563 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6564 skb_reset_network_header(skb);
6565 skb_reset_transport_header(skb);
6566 skb->encapsulation = 0;
6567
6568 bpf_compute_data_pointers(skb);
6569 bpf_update_srh_state(skb);
6570 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6571 case SEG6_LOCAL_ACTION_END_B6:
6572 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6573 return -EBADMSG;
6574 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6575 param, param_len);
6576 if (!err)
6577 bpf_update_srh_state(skb);
6578
6579 return err;
6580 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6581 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6582 return -EBADMSG;
6583 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6584 param, param_len);
6585 if (!err)
6586 bpf_update_srh_state(skb);
6587
6588 return err;
6589 default:
6590 return -EINVAL;
6591 }
6592 }
6593
6594 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6595 .func = bpf_lwt_seg6_action,
6596 .gpl_only = false,
6597 .ret_type = RET_INTEGER,
6598 .arg1_type = ARG_PTR_TO_CTX,
6599 .arg2_type = ARG_ANYTHING,
6600 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6601 .arg4_type = ARG_CONST_SIZE
6602 };
6603
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6604 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6605 s32, len)
6606 {
6607 struct seg6_bpf_srh_state *srh_state =
6608 this_cpu_ptr(&seg6_bpf_srh_states);
6609 struct ipv6_sr_hdr *srh = srh_state->srh;
6610 void *srh_end, *srh_tlvs, *ptr;
6611 struct ipv6hdr *hdr;
6612 int srhoff = 0;
6613 int ret;
6614
6615 lockdep_assert_held(&srh_state->bh_lock);
6616 if (unlikely(srh == NULL))
6617 return -EINVAL;
6618
6619 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6620 ((srh->first_segment + 1) << 4));
6621 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6622 srh_state->hdrlen);
6623 ptr = skb->data + offset;
6624
6625 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6626 return -EFAULT;
6627 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6628 return -EFAULT;
6629
6630 if (len > 0) {
6631 ret = skb_cow_head(skb, len);
6632 if (unlikely(ret < 0))
6633 return ret;
6634
6635 ret = bpf_skb_net_hdr_push(skb, offset, len);
6636 } else {
6637 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6638 }
6639
6640 bpf_compute_data_pointers(skb);
6641 if (unlikely(ret < 0))
6642 return ret;
6643
6644 hdr = (struct ipv6hdr *)skb->data;
6645 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6646
6647 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6648 return -EINVAL;
6649 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6650 srh_state->hdrlen += len;
6651 srh_state->valid = false;
6652 return 0;
6653 }
6654
6655 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6656 .func = bpf_lwt_seg6_adjust_srh,
6657 .gpl_only = false,
6658 .ret_type = RET_INTEGER,
6659 .arg1_type = ARG_PTR_TO_CTX,
6660 .arg2_type = ARG_ANYTHING,
6661 .arg3_type = ARG_ANYTHING,
6662 };
6663 #endif /* CONFIG_IPV6_SEG6_BPF */
6664
6665 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6666 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6667 int dif, int sdif, u8 family, u8 proto)
6668 {
6669 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6670 bool refcounted = false;
6671 struct sock *sk = NULL;
6672
6673 if (family == AF_INET) {
6674 __be32 src4 = tuple->ipv4.saddr;
6675 __be32 dst4 = tuple->ipv4.daddr;
6676
6677 if (proto == IPPROTO_TCP)
6678 sk = __inet_lookup(net, hinfo, NULL, 0,
6679 src4, tuple->ipv4.sport,
6680 dst4, tuple->ipv4.dport,
6681 dif, sdif, &refcounted);
6682 else
6683 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6684 dst4, tuple->ipv4.dport,
6685 dif, sdif, net->ipv4.udp_table, NULL);
6686 #if IS_ENABLED(CONFIG_IPV6)
6687 } else {
6688 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6689 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6690
6691 if (proto == IPPROTO_TCP)
6692 sk = __inet6_lookup(net, hinfo, NULL, 0,
6693 src6, tuple->ipv6.sport,
6694 dst6, ntohs(tuple->ipv6.dport),
6695 dif, sdif, &refcounted);
6696 else if (likely(ipv6_bpf_stub))
6697 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6698 src6, tuple->ipv6.sport,
6699 dst6, tuple->ipv6.dport,
6700 dif, sdif,
6701 net->ipv4.udp_table, NULL);
6702 #endif
6703 }
6704
6705 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6706 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6707 sk = NULL;
6708 }
6709 return sk;
6710 }
6711
6712 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6713 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6714 */
6715 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6716 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6717 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6718 u64 flags, int sdif)
6719 {
6720 struct sock *sk = NULL;
6721 struct net *net;
6722 u8 family;
6723
6724 if (len == sizeof(tuple->ipv4))
6725 family = AF_INET;
6726 else if (len == sizeof(tuple->ipv6))
6727 family = AF_INET6;
6728 else
6729 return NULL;
6730
6731 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6732 goto out;
6733
6734 if (sdif < 0) {
6735 if (family == AF_INET)
6736 sdif = inet_sdif(skb);
6737 else
6738 sdif = inet6_sdif(skb);
6739 }
6740
6741 if ((s32)netns_id < 0) {
6742 net = caller_net;
6743 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6744 } else {
6745 net = get_net_ns_by_id(caller_net, netns_id);
6746 if (unlikely(!net))
6747 goto out;
6748 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6749 put_net(net);
6750 }
6751
6752 out:
6753 return sk;
6754 }
6755
6756 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6757 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6758 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6759 u64 flags, int sdif)
6760 {
6761 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6762 ifindex, proto, netns_id, flags,
6763 sdif);
6764
6765 if (sk) {
6766 struct sock *sk2 = sk_to_full_sk(sk);
6767
6768 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6769 * sock refcnt is decremented to prevent a request_sock leak.
6770 */
6771 if (!sk_fullsock(sk2))
6772 sk2 = NULL;
6773 if (sk2 != sk) {
6774 sock_gen_put(sk);
6775 /* Ensure there is no need to bump sk2 refcnt */
6776 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6777 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6778 return NULL;
6779 }
6780 sk = sk2;
6781 }
6782 }
6783
6784 return sk;
6785 }
6786
6787 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6788 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6789 u8 proto, u64 netns_id, u64 flags)
6790 {
6791 struct net *caller_net;
6792 int ifindex;
6793
6794 if (skb->dev) {
6795 caller_net = dev_net(skb->dev);
6796 ifindex = skb->dev->ifindex;
6797 } else {
6798 caller_net = sock_net(skb->sk);
6799 ifindex = 0;
6800 }
6801
6802 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6803 netns_id, flags, -1);
6804 }
6805
6806 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6807 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6808 u8 proto, u64 netns_id, u64 flags)
6809 {
6810 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6811 flags);
6812
6813 if (sk) {
6814 struct sock *sk2 = sk_to_full_sk(sk);
6815
6816 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6817 * sock refcnt is decremented to prevent a request_sock leak.
6818 */
6819 if (!sk_fullsock(sk2))
6820 sk2 = NULL;
6821 if (sk2 != sk) {
6822 sock_gen_put(sk);
6823 /* Ensure there is no need to bump sk2 refcnt */
6824 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6825 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6826 return NULL;
6827 }
6828 sk = sk2;
6829 }
6830 }
6831
6832 return sk;
6833 }
6834
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6835 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6836 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6837 {
6838 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6839 netns_id, flags);
6840 }
6841
6842 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6843 .func = bpf_skc_lookup_tcp,
6844 .gpl_only = false,
6845 .pkt_access = true,
6846 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6847 .arg1_type = ARG_PTR_TO_CTX,
6848 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6849 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6850 .arg4_type = ARG_ANYTHING,
6851 .arg5_type = ARG_ANYTHING,
6852 };
6853
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6854 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6855 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6856 {
6857 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6858 netns_id, flags);
6859 }
6860
6861 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6862 .func = bpf_sk_lookup_tcp,
6863 .gpl_only = false,
6864 .pkt_access = true,
6865 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6866 .arg1_type = ARG_PTR_TO_CTX,
6867 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6868 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6869 .arg4_type = ARG_ANYTHING,
6870 .arg5_type = ARG_ANYTHING,
6871 };
6872
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6873 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6874 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6875 {
6876 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6877 netns_id, flags);
6878 }
6879
6880 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6881 .func = bpf_sk_lookup_udp,
6882 .gpl_only = false,
6883 .pkt_access = true,
6884 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6885 .arg1_type = ARG_PTR_TO_CTX,
6886 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6887 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6888 .arg4_type = ARG_ANYTHING,
6889 .arg5_type = ARG_ANYTHING,
6890 };
6891
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6892 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6893 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6894 {
6895 struct net_device *dev = skb->dev;
6896 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6897 struct net *caller_net = dev_net(dev);
6898
6899 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6900 ifindex, IPPROTO_TCP, netns_id,
6901 flags, sdif);
6902 }
6903
6904 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6905 .func = bpf_tc_skc_lookup_tcp,
6906 .gpl_only = false,
6907 .pkt_access = true,
6908 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6909 .arg1_type = ARG_PTR_TO_CTX,
6910 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6911 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6912 .arg4_type = ARG_ANYTHING,
6913 .arg5_type = ARG_ANYTHING,
6914 };
6915
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6916 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6917 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6918 {
6919 struct net_device *dev = skb->dev;
6920 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6921 struct net *caller_net = dev_net(dev);
6922
6923 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6924 ifindex, IPPROTO_TCP, netns_id,
6925 flags, sdif);
6926 }
6927
6928 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6929 .func = bpf_tc_sk_lookup_tcp,
6930 .gpl_only = false,
6931 .pkt_access = true,
6932 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6933 .arg1_type = ARG_PTR_TO_CTX,
6934 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6935 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6936 .arg4_type = ARG_ANYTHING,
6937 .arg5_type = ARG_ANYTHING,
6938 };
6939
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6940 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6941 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6942 {
6943 struct net_device *dev = skb->dev;
6944 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6945 struct net *caller_net = dev_net(dev);
6946
6947 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6948 ifindex, IPPROTO_UDP, netns_id,
6949 flags, sdif);
6950 }
6951
6952 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6953 .func = bpf_tc_sk_lookup_udp,
6954 .gpl_only = false,
6955 .pkt_access = true,
6956 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6957 .arg1_type = ARG_PTR_TO_CTX,
6958 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6959 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6960 .arg4_type = ARG_ANYTHING,
6961 .arg5_type = ARG_ANYTHING,
6962 };
6963
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6964 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6965 {
6966 if (sk && sk_is_refcounted(sk))
6967 sock_gen_put(sk);
6968 return 0;
6969 }
6970
6971 static const struct bpf_func_proto bpf_sk_release_proto = {
6972 .func = bpf_sk_release,
6973 .gpl_only = false,
6974 .ret_type = RET_INTEGER,
6975 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6976 };
6977
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6978 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6979 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6980 {
6981 struct net_device *dev = ctx->rxq->dev;
6982 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6983 struct net *caller_net = dev_net(dev);
6984
6985 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6986 ifindex, IPPROTO_UDP, netns_id,
6987 flags, sdif);
6988 }
6989
6990 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6991 .func = bpf_xdp_sk_lookup_udp,
6992 .gpl_only = false,
6993 .pkt_access = true,
6994 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6995 .arg1_type = ARG_PTR_TO_CTX,
6996 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6997 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
6998 .arg4_type = ARG_ANYTHING,
6999 .arg5_type = ARG_ANYTHING,
7000 };
7001
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7002 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7003 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7004 {
7005 struct net_device *dev = ctx->rxq->dev;
7006 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7007 struct net *caller_net = dev_net(dev);
7008
7009 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7010 ifindex, IPPROTO_TCP, netns_id,
7011 flags, sdif);
7012 }
7013
7014 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7015 .func = bpf_xdp_skc_lookup_tcp,
7016 .gpl_only = false,
7017 .pkt_access = true,
7018 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7019 .arg1_type = ARG_PTR_TO_CTX,
7020 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7021 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7022 .arg4_type = ARG_ANYTHING,
7023 .arg5_type = ARG_ANYTHING,
7024 };
7025
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7026 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7027 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7028 {
7029 struct net_device *dev = ctx->rxq->dev;
7030 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7031 struct net *caller_net = dev_net(dev);
7032
7033 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7034 ifindex, IPPROTO_TCP, netns_id,
7035 flags, sdif);
7036 }
7037
7038 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7039 .func = bpf_xdp_sk_lookup_tcp,
7040 .gpl_only = false,
7041 .pkt_access = true,
7042 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7043 .arg1_type = ARG_PTR_TO_CTX,
7044 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7045 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7046 .arg4_type = ARG_ANYTHING,
7047 .arg5_type = ARG_ANYTHING,
7048 };
7049
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7050 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7051 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7052 {
7053 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7054 sock_net(ctx->sk), 0,
7055 IPPROTO_TCP, netns_id, flags,
7056 -1);
7057 }
7058
7059 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7060 .func = bpf_sock_addr_skc_lookup_tcp,
7061 .gpl_only = false,
7062 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7063 .arg1_type = ARG_PTR_TO_CTX,
7064 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7065 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7066 .arg4_type = ARG_ANYTHING,
7067 .arg5_type = ARG_ANYTHING,
7068 };
7069
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7070 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7071 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7072 {
7073 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7074 sock_net(ctx->sk), 0, IPPROTO_TCP,
7075 netns_id, flags, -1);
7076 }
7077
7078 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7079 .func = bpf_sock_addr_sk_lookup_tcp,
7080 .gpl_only = false,
7081 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7082 .arg1_type = ARG_PTR_TO_CTX,
7083 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7084 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7085 .arg4_type = ARG_ANYTHING,
7086 .arg5_type = ARG_ANYTHING,
7087 };
7088
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7089 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7090 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7091 {
7092 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7093 sock_net(ctx->sk), 0, IPPROTO_UDP,
7094 netns_id, flags, -1);
7095 }
7096
7097 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7098 .func = bpf_sock_addr_sk_lookup_udp,
7099 .gpl_only = false,
7100 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7101 .arg1_type = ARG_PTR_TO_CTX,
7102 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7103 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7104 .arg4_type = ARG_ANYTHING,
7105 .arg5_type = ARG_ANYTHING,
7106 };
7107
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7108 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7109 struct bpf_insn_access_aux *info)
7110 {
7111 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7112 icsk_retransmits))
7113 return false;
7114
7115 if (off % size != 0)
7116 return false;
7117
7118 switch (off) {
7119 case offsetof(struct bpf_tcp_sock, bytes_received):
7120 case offsetof(struct bpf_tcp_sock, bytes_acked):
7121 return size == sizeof(__u64);
7122 default:
7123 return size == sizeof(__u32);
7124 }
7125 }
7126
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7127 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7128 const struct bpf_insn *si,
7129 struct bpf_insn *insn_buf,
7130 struct bpf_prog *prog, u32 *target_size)
7131 {
7132 struct bpf_insn *insn = insn_buf;
7133
7134 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7135 do { \
7136 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7137 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7138 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7139 si->dst_reg, si->src_reg, \
7140 offsetof(struct tcp_sock, FIELD)); \
7141 } while (0)
7142
7143 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
7144 do { \
7145 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7146 FIELD) > \
7147 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7148 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7149 struct inet_connection_sock, \
7150 FIELD), \
7151 si->dst_reg, si->src_reg, \
7152 offsetof( \
7153 struct inet_connection_sock, \
7154 FIELD)); \
7155 } while (0)
7156
7157 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7158
7159 switch (si->off) {
7160 case offsetof(struct bpf_tcp_sock, rtt_min):
7161 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7162 sizeof(struct minmax));
7163 BUILD_BUG_ON(sizeof(struct minmax) <
7164 sizeof(struct minmax_sample));
7165
7166 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7167 offsetof(struct tcp_sock, rtt_min) +
7168 offsetof(struct minmax_sample, v));
7169 break;
7170 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7171 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7172 break;
7173 case offsetof(struct bpf_tcp_sock, srtt_us):
7174 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7175 break;
7176 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7177 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7178 break;
7179 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7180 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7181 break;
7182 case offsetof(struct bpf_tcp_sock, snd_nxt):
7183 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7184 break;
7185 case offsetof(struct bpf_tcp_sock, snd_una):
7186 BPF_TCP_SOCK_GET_COMMON(snd_una);
7187 break;
7188 case offsetof(struct bpf_tcp_sock, mss_cache):
7189 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7190 break;
7191 case offsetof(struct bpf_tcp_sock, ecn_flags):
7192 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7193 break;
7194 case offsetof(struct bpf_tcp_sock, rate_delivered):
7195 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7196 break;
7197 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7198 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7199 break;
7200 case offsetof(struct bpf_tcp_sock, packets_out):
7201 BPF_TCP_SOCK_GET_COMMON(packets_out);
7202 break;
7203 case offsetof(struct bpf_tcp_sock, retrans_out):
7204 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7205 break;
7206 case offsetof(struct bpf_tcp_sock, total_retrans):
7207 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7208 break;
7209 case offsetof(struct bpf_tcp_sock, segs_in):
7210 BPF_TCP_SOCK_GET_COMMON(segs_in);
7211 break;
7212 case offsetof(struct bpf_tcp_sock, data_segs_in):
7213 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7214 break;
7215 case offsetof(struct bpf_tcp_sock, segs_out):
7216 BPF_TCP_SOCK_GET_COMMON(segs_out);
7217 break;
7218 case offsetof(struct bpf_tcp_sock, data_segs_out):
7219 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7220 break;
7221 case offsetof(struct bpf_tcp_sock, lost_out):
7222 BPF_TCP_SOCK_GET_COMMON(lost_out);
7223 break;
7224 case offsetof(struct bpf_tcp_sock, sacked_out):
7225 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7226 break;
7227 case offsetof(struct bpf_tcp_sock, bytes_received):
7228 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7229 break;
7230 case offsetof(struct bpf_tcp_sock, bytes_acked):
7231 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7232 break;
7233 case offsetof(struct bpf_tcp_sock, dsack_dups):
7234 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7235 break;
7236 case offsetof(struct bpf_tcp_sock, delivered):
7237 BPF_TCP_SOCK_GET_COMMON(delivered);
7238 break;
7239 case offsetof(struct bpf_tcp_sock, delivered_ce):
7240 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7241 break;
7242 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7243 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7244 break;
7245 }
7246
7247 return insn - insn_buf;
7248 }
7249
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7250 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7251 {
7252 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7253 return (unsigned long)sk;
7254
7255 return (unsigned long)NULL;
7256 }
7257
7258 const struct bpf_func_proto bpf_tcp_sock_proto = {
7259 .func = bpf_tcp_sock,
7260 .gpl_only = false,
7261 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7262 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7263 };
7264
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7265 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7266 {
7267 sk = sk_to_full_sk(sk);
7268
7269 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7270 return (unsigned long)sk;
7271
7272 return (unsigned long)NULL;
7273 }
7274
7275 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7276 .func = bpf_get_listener_sock,
7277 .gpl_only = false,
7278 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7279 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7280 };
7281
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7282 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7283 {
7284 unsigned int iphdr_len;
7285
7286 switch (skb_protocol(skb, true)) {
7287 case cpu_to_be16(ETH_P_IP):
7288 iphdr_len = sizeof(struct iphdr);
7289 break;
7290 case cpu_to_be16(ETH_P_IPV6):
7291 iphdr_len = sizeof(struct ipv6hdr);
7292 break;
7293 default:
7294 return 0;
7295 }
7296
7297 if (skb_headlen(skb) < iphdr_len)
7298 return 0;
7299
7300 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7301 return 0;
7302
7303 return INET_ECN_set_ce(skb);
7304 }
7305
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7306 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7307 struct bpf_insn_access_aux *info)
7308 {
7309 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7310 return false;
7311
7312 if (off % size != 0)
7313 return false;
7314
7315 switch (off) {
7316 default:
7317 return size == sizeof(__u32);
7318 }
7319 }
7320
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7321 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7322 const struct bpf_insn *si,
7323 struct bpf_insn *insn_buf,
7324 struct bpf_prog *prog, u32 *target_size)
7325 {
7326 struct bpf_insn *insn = insn_buf;
7327
7328 #define BPF_XDP_SOCK_GET(FIELD) \
7329 do { \
7330 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7331 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7332 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7333 si->dst_reg, si->src_reg, \
7334 offsetof(struct xdp_sock, FIELD)); \
7335 } while (0)
7336
7337 switch (si->off) {
7338 case offsetof(struct bpf_xdp_sock, queue_id):
7339 BPF_XDP_SOCK_GET(queue_id);
7340 break;
7341 }
7342
7343 return insn - insn_buf;
7344 }
7345
7346 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7347 .func = bpf_skb_ecn_set_ce,
7348 .gpl_only = false,
7349 .ret_type = RET_INTEGER,
7350 .arg1_type = ARG_PTR_TO_CTX,
7351 };
7352
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7353 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7354 struct tcphdr *, th, u32, th_len)
7355 {
7356 #ifdef CONFIG_SYN_COOKIES
7357 int ret;
7358
7359 if (unlikely(!sk || th_len < sizeof(*th)))
7360 return -EINVAL;
7361
7362 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7363 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7364 return -EINVAL;
7365
7366 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7367 return -EINVAL;
7368
7369 if (!th->ack || th->rst || th->syn)
7370 return -ENOENT;
7371
7372 if (unlikely(iph_len < sizeof(struct iphdr)))
7373 return -EINVAL;
7374
7375 if (tcp_synq_no_recent_overflow(sk))
7376 return -ENOENT;
7377
7378 /* Both struct iphdr and struct ipv6hdr have the version field at the
7379 * same offset so we can cast to the shorter header (struct iphdr).
7380 */
7381 switch (((struct iphdr *)iph)->version) {
7382 case 4:
7383 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7384 return -EINVAL;
7385
7386 ret = __cookie_v4_check((struct iphdr *)iph, th);
7387 break;
7388
7389 #if IS_BUILTIN(CONFIG_IPV6)
7390 case 6:
7391 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7392 return -EINVAL;
7393
7394 if (sk->sk_family != AF_INET6)
7395 return -EINVAL;
7396
7397 ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7398 break;
7399 #endif /* CONFIG_IPV6 */
7400
7401 default:
7402 return -EPROTONOSUPPORT;
7403 }
7404
7405 if (ret > 0)
7406 return 0;
7407
7408 return -ENOENT;
7409 #else
7410 return -ENOTSUPP;
7411 #endif
7412 }
7413
7414 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7415 .func = bpf_tcp_check_syncookie,
7416 .gpl_only = true,
7417 .pkt_access = true,
7418 .ret_type = RET_INTEGER,
7419 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7420 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7421 .arg3_type = ARG_CONST_SIZE,
7422 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7423 .arg5_type = ARG_CONST_SIZE,
7424 };
7425
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7426 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7427 struct tcphdr *, th, u32, th_len)
7428 {
7429 #ifdef CONFIG_SYN_COOKIES
7430 u32 cookie;
7431 u16 mss;
7432
7433 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7434 return -EINVAL;
7435
7436 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7437 return -EINVAL;
7438
7439 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7440 return -ENOENT;
7441
7442 if (!th->syn || th->ack || th->fin || th->rst)
7443 return -EINVAL;
7444
7445 if (unlikely(iph_len < sizeof(struct iphdr)))
7446 return -EINVAL;
7447
7448 /* Both struct iphdr and struct ipv6hdr have the version field at the
7449 * same offset so we can cast to the shorter header (struct iphdr).
7450 */
7451 switch (((struct iphdr *)iph)->version) {
7452 case 4:
7453 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7454 return -EINVAL;
7455
7456 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7457 break;
7458
7459 #if IS_BUILTIN(CONFIG_IPV6)
7460 case 6:
7461 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7462 return -EINVAL;
7463
7464 if (sk->sk_family != AF_INET6)
7465 return -EINVAL;
7466
7467 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7468 break;
7469 #endif /* CONFIG_IPV6 */
7470
7471 default:
7472 return -EPROTONOSUPPORT;
7473 }
7474 if (mss == 0)
7475 return -ENOENT;
7476
7477 return cookie | ((u64)mss << 32);
7478 #else
7479 return -EOPNOTSUPP;
7480 #endif /* CONFIG_SYN_COOKIES */
7481 }
7482
7483 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7484 .func = bpf_tcp_gen_syncookie,
7485 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7486 .pkt_access = true,
7487 .ret_type = RET_INTEGER,
7488 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7489 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7490 .arg3_type = ARG_CONST_SIZE,
7491 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7492 .arg5_type = ARG_CONST_SIZE,
7493 };
7494
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7495 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7496 {
7497 if (!sk || flags != 0)
7498 return -EINVAL;
7499 if (!skb_at_tc_ingress(skb))
7500 return -EOPNOTSUPP;
7501 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7502 return -ENETUNREACH;
7503 if (sk_unhashed(sk))
7504 return -EOPNOTSUPP;
7505 if (sk_is_refcounted(sk) &&
7506 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7507 return -ENOENT;
7508
7509 skb_orphan(skb);
7510 skb->sk = sk;
7511 skb->destructor = sock_pfree;
7512
7513 return 0;
7514 }
7515
7516 static const struct bpf_func_proto bpf_sk_assign_proto = {
7517 .func = bpf_sk_assign,
7518 .gpl_only = false,
7519 .ret_type = RET_INTEGER,
7520 .arg1_type = ARG_PTR_TO_CTX,
7521 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7522 .arg3_type = ARG_ANYTHING,
7523 };
7524
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7525 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7526 u8 search_kind, const u8 *magic,
7527 u8 magic_len, bool *eol)
7528 {
7529 u8 kind, kind_len;
7530
7531 *eol = false;
7532
7533 while (op < opend) {
7534 kind = op[0];
7535
7536 if (kind == TCPOPT_EOL) {
7537 *eol = true;
7538 return ERR_PTR(-ENOMSG);
7539 } else if (kind == TCPOPT_NOP) {
7540 op++;
7541 continue;
7542 }
7543
7544 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7545 /* Something is wrong in the received header.
7546 * Follow the TCP stack's tcp_parse_options()
7547 * and just bail here.
7548 */
7549 return ERR_PTR(-EFAULT);
7550
7551 kind_len = op[1];
7552 if (search_kind == kind) {
7553 if (!magic_len)
7554 return op;
7555
7556 if (magic_len > kind_len - 2)
7557 return ERR_PTR(-ENOMSG);
7558
7559 if (!memcmp(&op[2], magic, magic_len))
7560 return op;
7561 }
7562
7563 op += kind_len;
7564 }
7565
7566 return ERR_PTR(-ENOMSG);
7567 }
7568
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7569 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7570 void *, search_res, u32, len, u64, flags)
7571 {
7572 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7573 const u8 *op, *opend, *magic, *search = search_res;
7574 u8 search_kind, search_len, copy_len, magic_len;
7575 int ret;
7576
7577 /* 2 byte is the minimal option len except TCPOPT_NOP and
7578 * TCPOPT_EOL which are useless for the bpf prog to learn
7579 * and this helper disallow loading them also.
7580 */
7581 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7582 return -EINVAL;
7583
7584 search_kind = search[0];
7585 search_len = search[1];
7586
7587 if (search_len > len || search_kind == TCPOPT_NOP ||
7588 search_kind == TCPOPT_EOL)
7589 return -EINVAL;
7590
7591 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7592 /* 16 or 32 bit magic. +2 for kind and kind length */
7593 if (search_len != 4 && search_len != 6)
7594 return -EINVAL;
7595 magic = &search[2];
7596 magic_len = search_len - 2;
7597 } else {
7598 if (search_len)
7599 return -EINVAL;
7600 magic = NULL;
7601 magic_len = 0;
7602 }
7603
7604 if (load_syn) {
7605 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7606 if (ret < 0)
7607 return ret;
7608
7609 opend = op + ret;
7610 op += sizeof(struct tcphdr);
7611 } else {
7612 if (!bpf_sock->skb ||
7613 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7614 /* This bpf_sock->op cannot call this helper */
7615 return -EPERM;
7616
7617 opend = bpf_sock->skb_data_end;
7618 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7619 }
7620
7621 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7622 &eol);
7623 if (IS_ERR(op))
7624 return PTR_ERR(op);
7625
7626 copy_len = op[1];
7627 ret = copy_len;
7628 if (copy_len > len) {
7629 ret = -ENOSPC;
7630 copy_len = len;
7631 }
7632
7633 memcpy(search_res, op, copy_len);
7634 return ret;
7635 }
7636
7637 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7638 .func = bpf_sock_ops_load_hdr_opt,
7639 .gpl_only = false,
7640 .ret_type = RET_INTEGER,
7641 .arg1_type = ARG_PTR_TO_CTX,
7642 .arg2_type = ARG_PTR_TO_MEM,
7643 .arg3_type = ARG_CONST_SIZE,
7644 .arg4_type = ARG_ANYTHING,
7645 };
7646
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7647 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7648 const void *, from, u32, len, u64, flags)
7649 {
7650 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7651 const u8 *op, *new_op, *magic = NULL;
7652 struct sk_buff *skb;
7653 bool eol;
7654
7655 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7656 return -EPERM;
7657
7658 if (len < 2 || flags)
7659 return -EINVAL;
7660
7661 new_op = from;
7662 new_kind = new_op[0];
7663 new_kind_len = new_op[1];
7664
7665 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7666 new_kind == TCPOPT_EOL)
7667 return -EINVAL;
7668
7669 if (new_kind_len > bpf_sock->remaining_opt_len)
7670 return -ENOSPC;
7671
7672 /* 253 is another experimental kind */
7673 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7674 if (new_kind_len < 4)
7675 return -EINVAL;
7676 /* Match for the 2 byte magic also.
7677 * RFC 6994: the magic could be 2 or 4 bytes.
7678 * Hence, matching by 2 byte only is on the
7679 * conservative side but it is the right
7680 * thing to do for the 'search-for-duplication'
7681 * purpose.
7682 */
7683 magic = &new_op[2];
7684 magic_len = 2;
7685 }
7686
7687 /* Check for duplication */
7688 skb = bpf_sock->skb;
7689 op = skb->data + sizeof(struct tcphdr);
7690 opend = bpf_sock->skb_data_end;
7691
7692 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7693 &eol);
7694 if (!IS_ERR(op))
7695 return -EEXIST;
7696
7697 if (PTR_ERR(op) != -ENOMSG)
7698 return PTR_ERR(op);
7699
7700 if (eol)
7701 /* The option has been ended. Treat it as no more
7702 * header option can be written.
7703 */
7704 return -ENOSPC;
7705
7706 /* No duplication found. Store the header option. */
7707 memcpy(opend, from, new_kind_len);
7708
7709 bpf_sock->remaining_opt_len -= new_kind_len;
7710 bpf_sock->skb_data_end += new_kind_len;
7711
7712 return 0;
7713 }
7714
7715 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7716 .func = bpf_sock_ops_store_hdr_opt,
7717 .gpl_only = false,
7718 .ret_type = RET_INTEGER,
7719 .arg1_type = ARG_PTR_TO_CTX,
7720 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7721 .arg3_type = ARG_CONST_SIZE,
7722 .arg4_type = ARG_ANYTHING,
7723 };
7724
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7725 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7726 u32, len, u64, flags)
7727 {
7728 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7729 return -EPERM;
7730
7731 if (flags || len < 2)
7732 return -EINVAL;
7733
7734 if (len > bpf_sock->remaining_opt_len)
7735 return -ENOSPC;
7736
7737 bpf_sock->remaining_opt_len -= len;
7738
7739 return 0;
7740 }
7741
7742 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7743 .func = bpf_sock_ops_reserve_hdr_opt,
7744 .gpl_only = false,
7745 .ret_type = RET_INTEGER,
7746 .arg1_type = ARG_PTR_TO_CTX,
7747 .arg2_type = ARG_ANYTHING,
7748 .arg3_type = ARG_ANYTHING,
7749 };
7750
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7751 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7752 u64, tstamp, u32, tstamp_type)
7753 {
7754 /* skb_clear_delivery_time() is done for inet protocol */
7755 if (skb->protocol != htons(ETH_P_IP) &&
7756 skb->protocol != htons(ETH_P_IPV6))
7757 return -EOPNOTSUPP;
7758
7759 switch (tstamp_type) {
7760 case BPF_SKB_CLOCK_REALTIME:
7761 skb->tstamp = tstamp;
7762 skb->tstamp_type = SKB_CLOCK_REALTIME;
7763 break;
7764 case BPF_SKB_CLOCK_MONOTONIC:
7765 if (!tstamp)
7766 return -EINVAL;
7767 skb->tstamp = tstamp;
7768 skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7769 break;
7770 case BPF_SKB_CLOCK_TAI:
7771 if (!tstamp)
7772 return -EINVAL;
7773 skb->tstamp = tstamp;
7774 skb->tstamp_type = SKB_CLOCK_TAI;
7775 break;
7776 default:
7777 return -EINVAL;
7778 }
7779
7780 return 0;
7781 }
7782
7783 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7784 .func = bpf_skb_set_tstamp,
7785 .gpl_only = false,
7786 .ret_type = RET_INTEGER,
7787 .arg1_type = ARG_PTR_TO_CTX,
7788 .arg2_type = ARG_ANYTHING,
7789 .arg3_type = ARG_ANYTHING,
7790 };
7791
7792 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7793 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7794 struct tcphdr *, th, u32, th_len)
7795 {
7796 u32 cookie;
7797 u16 mss;
7798
7799 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7800 return -EINVAL;
7801
7802 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7803 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7804
7805 return cookie | ((u64)mss << 32);
7806 }
7807
7808 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7809 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7810 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7811 .pkt_access = true,
7812 .ret_type = RET_INTEGER,
7813 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7814 .arg1_size = sizeof(struct iphdr),
7815 .arg2_type = ARG_PTR_TO_MEM,
7816 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7817 };
7818
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7819 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7820 struct tcphdr *, th, u32, th_len)
7821 {
7822 #if IS_BUILTIN(CONFIG_IPV6)
7823 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7824 sizeof(struct ipv6hdr);
7825 u32 cookie;
7826 u16 mss;
7827
7828 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7829 return -EINVAL;
7830
7831 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7832 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7833
7834 return cookie | ((u64)mss << 32);
7835 #else
7836 return -EPROTONOSUPPORT;
7837 #endif
7838 }
7839
7840 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7841 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7842 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7843 .pkt_access = true,
7844 .ret_type = RET_INTEGER,
7845 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7846 .arg1_size = sizeof(struct ipv6hdr),
7847 .arg2_type = ARG_PTR_TO_MEM,
7848 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7849 };
7850
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7851 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7852 struct tcphdr *, th)
7853 {
7854 if (__cookie_v4_check(iph, th) > 0)
7855 return 0;
7856
7857 return -EACCES;
7858 }
7859
7860 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7861 .func = bpf_tcp_raw_check_syncookie_ipv4,
7862 .gpl_only = true, /* __cookie_v4_check is GPL */
7863 .pkt_access = true,
7864 .ret_type = RET_INTEGER,
7865 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7866 .arg1_size = sizeof(struct iphdr),
7867 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7868 .arg2_size = sizeof(struct tcphdr),
7869 };
7870
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7871 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7872 struct tcphdr *, th)
7873 {
7874 #if IS_BUILTIN(CONFIG_IPV6)
7875 if (__cookie_v6_check(iph, th) > 0)
7876 return 0;
7877
7878 return -EACCES;
7879 #else
7880 return -EPROTONOSUPPORT;
7881 #endif
7882 }
7883
7884 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7885 .func = bpf_tcp_raw_check_syncookie_ipv6,
7886 .gpl_only = true, /* __cookie_v6_check is GPL */
7887 .pkt_access = true,
7888 .ret_type = RET_INTEGER,
7889 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7890 .arg1_size = sizeof(struct ipv6hdr),
7891 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7892 .arg2_size = sizeof(struct tcphdr),
7893 };
7894 #endif /* CONFIG_SYN_COOKIES */
7895
7896 #endif /* CONFIG_INET */
7897
bpf_helper_changes_pkt_data(void * func)7898 bool bpf_helper_changes_pkt_data(void *func)
7899 {
7900 if (func == bpf_skb_vlan_push ||
7901 func == bpf_skb_vlan_pop ||
7902 func == bpf_skb_store_bytes ||
7903 func == bpf_skb_change_proto ||
7904 func == bpf_skb_change_head ||
7905 func == sk_skb_change_head ||
7906 func == bpf_skb_change_tail ||
7907 func == sk_skb_change_tail ||
7908 func == bpf_skb_adjust_room ||
7909 func == sk_skb_adjust_room ||
7910 func == bpf_skb_pull_data ||
7911 func == sk_skb_pull_data ||
7912 func == bpf_clone_redirect ||
7913 func == bpf_l3_csum_replace ||
7914 func == bpf_l4_csum_replace ||
7915 func == bpf_xdp_adjust_head ||
7916 func == bpf_xdp_adjust_meta ||
7917 func == bpf_msg_pull_data ||
7918 func == bpf_msg_push_data ||
7919 func == bpf_msg_pop_data ||
7920 func == bpf_xdp_adjust_tail ||
7921 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7922 func == bpf_lwt_seg6_store_bytes ||
7923 func == bpf_lwt_seg6_adjust_srh ||
7924 func == bpf_lwt_seg6_action ||
7925 #endif
7926 #ifdef CONFIG_INET
7927 func == bpf_sock_ops_store_hdr_opt ||
7928 #endif
7929 func == bpf_lwt_in_push_encap ||
7930 func == bpf_lwt_xmit_push_encap)
7931 return true;
7932
7933 return false;
7934 }
7935
7936 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7937 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7938
7939 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7940 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7941 {
7942 const struct bpf_func_proto *func_proto;
7943
7944 func_proto = cgroup_common_func_proto(func_id, prog);
7945 if (func_proto)
7946 return func_proto;
7947
7948 func_proto = cgroup_current_func_proto(func_id, prog);
7949 if (func_proto)
7950 return func_proto;
7951
7952 switch (func_id) {
7953 case BPF_FUNC_get_socket_cookie:
7954 return &bpf_get_socket_cookie_sock_proto;
7955 case BPF_FUNC_get_netns_cookie:
7956 return &bpf_get_netns_cookie_sock_proto;
7957 case BPF_FUNC_perf_event_output:
7958 return &bpf_event_output_data_proto;
7959 case BPF_FUNC_sk_storage_get:
7960 return &bpf_sk_storage_get_cg_sock_proto;
7961 case BPF_FUNC_ktime_get_coarse_ns:
7962 return &bpf_ktime_get_coarse_ns_proto;
7963 default:
7964 return bpf_base_func_proto(func_id, prog);
7965 }
7966 }
7967
7968 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7969 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7970 {
7971 const struct bpf_func_proto *func_proto;
7972
7973 func_proto = cgroup_common_func_proto(func_id, prog);
7974 if (func_proto)
7975 return func_proto;
7976
7977 func_proto = cgroup_current_func_proto(func_id, prog);
7978 if (func_proto)
7979 return func_proto;
7980
7981 switch (func_id) {
7982 case BPF_FUNC_bind:
7983 switch (prog->expected_attach_type) {
7984 case BPF_CGROUP_INET4_CONNECT:
7985 case BPF_CGROUP_INET6_CONNECT:
7986 return &bpf_bind_proto;
7987 default:
7988 return NULL;
7989 }
7990 case BPF_FUNC_get_socket_cookie:
7991 return &bpf_get_socket_cookie_sock_addr_proto;
7992 case BPF_FUNC_get_netns_cookie:
7993 return &bpf_get_netns_cookie_sock_addr_proto;
7994 case BPF_FUNC_perf_event_output:
7995 return &bpf_event_output_data_proto;
7996 #ifdef CONFIG_INET
7997 case BPF_FUNC_sk_lookup_tcp:
7998 return &bpf_sock_addr_sk_lookup_tcp_proto;
7999 case BPF_FUNC_sk_lookup_udp:
8000 return &bpf_sock_addr_sk_lookup_udp_proto;
8001 case BPF_FUNC_sk_release:
8002 return &bpf_sk_release_proto;
8003 case BPF_FUNC_skc_lookup_tcp:
8004 return &bpf_sock_addr_skc_lookup_tcp_proto;
8005 #endif /* CONFIG_INET */
8006 case BPF_FUNC_sk_storage_get:
8007 return &bpf_sk_storage_get_proto;
8008 case BPF_FUNC_sk_storage_delete:
8009 return &bpf_sk_storage_delete_proto;
8010 case BPF_FUNC_setsockopt:
8011 switch (prog->expected_attach_type) {
8012 case BPF_CGROUP_INET4_BIND:
8013 case BPF_CGROUP_INET6_BIND:
8014 case BPF_CGROUP_INET4_CONNECT:
8015 case BPF_CGROUP_INET6_CONNECT:
8016 case BPF_CGROUP_UNIX_CONNECT:
8017 case BPF_CGROUP_UDP4_RECVMSG:
8018 case BPF_CGROUP_UDP6_RECVMSG:
8019 case BPF_CGROUP_UNIX_RECVMSG:
8020 case BPF_CGROUP_UDP4_SENDMSG:
8021 case BPF_CGROUP_UDP6_SENDMSG:
8022 case BPF_CGROUP_UNIX_SENDMSG:
8023 case BPF_CGROUP_INET4_GETPEERNAME:
8024 case BPF_CGROUP_INET6_GETPEERNAME:
8025 case BPF_CGROUP_UNIX_GETPEERNAME:
8026 case BPF_CGROUP_INET4_GETSOCKNAME:
8027 case BPF_CGROUP_INET6_GETSOCKNAME:
8028 case BPF_CGROUP_UNIX_GETSOCKNAME:
8029 return &bpf_sock_addr_setsockopt_proto;
8030 default:
8031 return NULL;
8032 }
8033 case BPF_FUNC_getsockopt:
8034 switch (prog->expected_attach_type) {
8035 case BPF_CGROUP_INET4_BIND:
8036 case BPF_CGROUP_INET6_BIND:
8037 case BPF_CGROUP_INET4_CONNECT:
8038 case BPF_CGROUP_INET6_CONNECT:
8039 case BPF_CGROUP_UNIX_CONNECT:
8040 case BPF_CGROUP_UDP4_RECVMSG:
8041 case BPF_CGROUP_UDP6_RECVMSG:
8042 case BPF_CGROUP_UNIX_RECVMSG:
8043 case BPF_CGROUP_UDP4_SENDMSG:
8044 case BPF_CGROUP_UDP6_SENDMSG:
8045 case BPF_CGROUP_UNIX_SENDMSG:
8046 case BPF_CGROUP_INET4_GETPEERNAME:
8047 case BPF_CGROUP_INET6_GETPEERNAME:
8048 case BPF_CGROUP_UNIX_GETPEERNAME:
8049 case BPF_CGROUP_INET4_GETSOCKNAME:
8050 case BPF_CGROUP_INET6_GETSOCKNAME:
8051 case BPF_CGROUP_UNIX_GETSOCKNAME:
8052 return &bpf_sock_addr_getsockopt_proto;
8053 default:
8054 return NULL;
8055 }
8056 default:
8057 return bpf_sk_base_func_proto(func_id, prog);
8058 }
8059 }
8060
8061 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8062 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8063 {
8064 switch (func_id) {
8065 case BPF_FUNC_skb_load_bytes:
8066 return &bpf_skb_load_bytes_proto;
8067 case BPF_FUNC_skb_load_bytes_relative:
8068 return &bpf_skb_load_bytes_relative_proto;
8069 case BPF_FUNC_get_socket_cookie:
8070 return &bpf_get_socket_cookie_proto;
8071 case BPF_FUNC_get_socket_uid:
8072 return &bpf_get_socket_uid_proto;
8073 case BPF_FUNC_perf_event_output:
8074 return &bpf_skb_event_output_proto;
8075 default:
8076 return bpf_sk_base_func_proto(func_id, prog);
8077 }
8078 }
8079
8080 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8081 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8082
8083 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8084 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8085 {
8086 const struct bpf_func_proto *func_proto;
8087
8088 func_proto = cgroup_common_func_proto(func_id, prog);
8089 if (func_proto)
8090 return func_proto;
8091
8092 switch (func_id) {
8093 case BPF_FUNC_sk_fullsock:
8094 return &bpf_sk_fullsock_proto;
8095 case BPF_FUNC_sk_storage_get:
8096 return &bpf_sk_storage_get_proto;
8097 case BPF_FUNC_sk_storage_delete:
8098 return &bpf_sk_storage_delete_proto;
8099 case BPF_FUNC_perf_event_output:
8100 return &bpf_skb_event_output_proto;
8101 #ifdef CONFIG_SOCK_CGROUP_DATA
8102 case BPF_FUNC_skb_cgroup_id:
8103 return &bpf_skb_cgroup_id_proto;
8104 case BPF_FUNC_skb_ancestor_cgroup_id:
8105 return &bpf_skb_ancestor_cgroup_id_proto;
8106 case BPF_FUNC_sk_cgroup_id:
8107 return &bpf_sk_cgroup_id_proto;
8108 case BPF_FUNC_sk_ancestor_cgroup_id:
8109 return &bpf_sk_ancestor_cgroup_id_proto;
8110 #endif
8111 #ifdef CONFIG_INET
8112 case BPF_FUNC_sk_lookup_tcp:
8113 return &bpf_sk_lookup_tcp_proto;
8114 case BPF_FUNC_sk_lookup_udp:
8115 return &bpf_sk_lookup_udp_proto;
8116 case BPF_FUNC_sk_release:
8117 return &bpf_sk_release_proto;
8118 case BPF_FUNC_skc_lookup_tcp:
8119 return &bpf_skc_lookup_tcp_proto;
8120 case BPF_FUNC_tcp_sock:
8121 return &bpf_tcp_sock_proto;
8122 case BPF_FUNC_get_listener_sock:
8123 return &bpf_get_listener_sock_proto;
8124 case BPF_FUNC_skb_ecn_set_ce:
8125 return &bpf_skb_ecn_set_ce_proto;
8126 #endif
8127 default:
8128 return sk_filter_func_proto(func_id, prog);
8129 }
8130 }
8131
8132 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8133 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8134 {
8135 switch (func_id) {
8136 case BPF_FUNC_skb_store_bytes:
8137 return &bpf_skb_store_bytes_proto;
8138 case BPF_FUNC_skb_load_bytes:
8139 return &bpf_skb_load_bytes_proto;
8140 case BPF_FUNC_skb_load_bytes_relative:
8141 return &bpf_skb_load_bytes_relative_proto;
8142 case BPF_FUNC_skb_pull_data:
8143 return &bpf_skb_pull_data_proto;
8144 case BPF_FUNC_csum_diff:
8145 return &bpf_csum_diff_proto;
8146 case BPF_FUNC_csum_update:
8147 return &bpf_csum_update_proto;
8148 case BPF_FUNC_csum_level:
8149 return &bpf_csum_level_proto;
8150 case BPF_FUNC_l3_csum_replace:
8151 return &bpf_l3_csum_replace_proto;
8152 case BPF_FUNC_l4_csum_replace:
8153 return &bpf_l4_csum_replace_proto;
8154 case BPF_FUNC_clone_redirect:
8155 return &bpf_clone_redirect_proto;
8156 case BPF_FUNC_get_cgroup_classid:
8157 return &bpf_get_cgroup_classid_proto;
8158 case BPF_FUNC_skb_vlan_push:
8159 return &bpf_skb_vlan_push_proto;
8160 case BPF_FUNC_skb_vlan_pop:
8161 return &bpf_skb_vlan_pop_proto;
8162 case BPF_FUNC_skb_change_proto:
8163 return &bpf_skb_change_proto_proto;
8164 case BPF_FUNC_skb_change_type:
8165 return &bpf_skb_change_type_proto;
8166 case BPF_FUNC_skb_adjust_room:
8167 return &bpf_skb_adjust_room_proto;
8168 case BPF_FUNC_skb_change_tail:
8169 return &bpf_skb_change_tail_proto;
8170 case BPF_FUNC_skb_change_head:
8171 return &bpf_skb_change_head_proto;
8172 case BPF_FUNC_skb_get_tunnel_key:
8173 return &bpf_skb_get_tunnel_key_proto;
8174 case BPF_FUNC_skb_set_tunnel_key:
8175 return bpf_get_skb_set_tunnel_proto(func_id);
8176 case BPF_FUNC_skb_get_tunnel_opt:
8177 return &bpf_skb_get_tunnel_opt_proto;
8178 case BPF_FUNC_skb_set_tunnel_opt:
8179 return bpf_get_skb_set_tunnel_proto(func_id);
8180 case BPF_FUNC_redirect:
8181 return &bpf_redirect_proto;
8182 case BPF_FUNC_redirect_neigh:
8183 return &bpf_redirect_neigh_proto;
8184 case BPF_FUNC_redirect_peer:
8185 return &bpf_redirect_peer_proto;
8186 case BPF_FUNC_get_route_realm:
8187 return &bpf_get_route_realm_proto;
8188 case BPF_FUNC_get_hash_recalc:
8189 return &bpf_get_hash_recalc_proto;
8190 case BPF_FUNC_set_hash_invalid:
8191 return &bpf_set_hash_invalid_proto;
8192 case BPF_FUNC_set_hash:
8193 return &bpf_set_hash_proto;
8194 case BPF_FUNC_perf_event_output:
8195 return &bpf_skb_event_output_proto;
8196 case BPF_FUNC_get_smp_processor_id:
8197 return &bpf_get_smp_processor_id_proto;
8198 case BPF_FUNC_skb_under_cgroup:
8199 return &bpf_skb_under_cgroup_proto;
8200 case BPF_FUNC_get_socket_cookie:
8201 return &bpf_get_socket_cookie_proto;
8202 case BPF_FUNC_get_socket_uid:
8203 return &bpf_get_socket_uid_proto;
8204 case BPF_FUNC_fib_lookup:
8205 return &bpf_skb_fib_lookup_proto;
8206 case BPF_FUNC_check_mtu:
8207 return &bpf_skb_check_mtu_proto;
8208 case BPF_FUNC_sk_fullsock:
8209 return &bpf_sk_fullsock_proto;
8210 case BPF_FUNC_sk_storage_get:
8211 return &bpf_sk_storage_get_proto;
8212 case BPF_FUNC_sk_storage_delete:
8213 return &bpf_sk_storage_delete_proto;
8214 #ifdef CONFIG_XFRM
8215 case BPF_FUNC_skb_get_xfrm_state:
8216 return &bpf_skb_get_xfrm_state_proto;
8217 #endif
8218 #ifdef CONFIG_CGROUP_NET_CLASSID
8219 case BPF_FUNC_skb_cgroup_classid:
8220 return &bpf_skb_cgroup_classid_proto;
8221 #endif
8222 #ifdef CONFIG_SOCK_CGROUP_DATA
8223 case BPF_FUNC_skb_cgroup_id:
8224 return &bpf_skb_cgroup_id_proto;
8225 case BPF_FUNC_skb_ancestor_cgroup_id:
8226 return &bpf_skb_ancestor_cgroup_id_proto;
8227 #endif
8228 #ifdef CONFIG_INET
8229 case BPF_FUNC_sk_lookup_tcp:
8230 return &bpf_tc_sk_lookup_tcp_proto;
8231 case BPF_FUNC_sk_lookup_udp:
8232 return &bpf_tc_sk_lookup_udp_proto;
8233 case BPF_FUNC_sk_release:
8234 return &bpf_sk_release_proto;
8235 case BPF_FUNC_tcp_sock:
8236 return &bpf_tcp_sock_proto;
8237 case BPF_FUNC_get_listener_sock:
8238 return &bpf_get_listener_sock_proto;
8239 case BPF_FUNC_skc_lookup_tcp:
8240 return &bpf_tc_skc_lookup_tcp_proto;
8241 case BPF_FUNC_tcp_check_syncookie:
8242 return &bpf_tcp_check_syncookie_proto;
8243 case BPF_FUNC_skb_ecn_set_ce:
8244 return &bpf_skb_ecn_set_ce_proto;
8245 case BPF_FUNC_tcp_gen_syncookie:
8246 return &bpf_tcp_gen_syncookie_proto;
8247 case BPF_FUNC_sk_assign:
8248 return &bpf_sk_assign_proto;
8249 case BPF_FUNC_skb_set_tstamp:
8250 return &bpf_skb_set_tstamp_proto;
8251 #ifdef CONFIG_SYN_COOKIES
8252 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8253 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8254 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8255 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8256 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8257 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8258 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8259 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8260 #endif
8261 #endif
8262 default:
8263 return bpf_sk_base_func_proto(func_id, prog);
8264 }
8265 }
8266
8267 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8268 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8269 {
8270 switch (func_id) {
8271 case BPF_FUNC_perf_event_output:
8272 return &bpf_xdp_event_output_proto;
8273 case BPF_FUNC_get_smp_processor_id:
8274 return &bpf_get_smp_processor_id_proto;
8275 case BPF_FUNC_csum_diff:
8276 return &bpf_csum_diff_proto;
8277 case BPF_FUNC_xdp_adjust_head:
8278 return &bpf_xdp_adjust_head_proto;
8279 case BPF_FUNC_xdp_adjust_meta:
8280 return &bpf_xdp_adjust_meta_proto;
8281 case BPF_FUNC_redirect:
8282 return &bpf_xdp_redirect_proto;
8283 case BPF_FUNC_redirect_map:
8284 return &bpf_xdp_redirect_map_proto;
8285 case BPF_FUNC_xdp_adjust_tail:
8286 return &bpf_xdp_adjust_tail_proto;
8287 case BPF_FUNC_xdp_get_buff_len:
8288 return &bpf_xdp_get_buff_len_proto;
8289 case BPF_FUNC_xdp_load_bytes:
8290 return &bpf_xdp_load_bytes_proto;
8291 case BPF_FUNC_xdp_store_bytes:
8292 return &bpf_xdp_store_bytes_proto;
8293 case BPF_FUNC_fib_lookup:
8294 return &bpf_xdp_fib_lookup_proto;
8295 case BPF_FUNC_check_mtu:
8296 return &bpf_xdp_check_mtu_proto;
8297 #ifdef CONFIG_INET
8298 case BPF_FUNC_sk_lookup_udp:
8299 return &bpf_xdp_sk_lookup_udp_proto;
8300 case BPF_FUNC_sk_lookup_tcp:
8301 return &bpf_xdp_sk_lookup_tcp_proto;
8302 case BPF_FUNC_sk_release:
8303 return &bpf_sk_release_proto;
8304 case BPF_FUNC_skc_lookup_tcp:
8305 return &bpf_xdp_skc_lookup_tcp_proto;
8306 case BPF_FUNC_tcp_check_syncookie:
8307 return &bpf_tcp_check_syncookie_proto;
8308 case BPF_FUNC_tcp_gen_syncookie:
8309 return &bpf_tcp_gen_syncookie_proto;
8310 #ifdef CONFIG_SYN_COOKIES
8311 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8312 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8313 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8314 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8315 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8316 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8317 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8318 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8319 #endif
8320 #endif
8321 default:
8322 return bpf_sk_base_func_proto(func_id, prog);
8323 }
8324
8325 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8326 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8327 * kfuncs are defined in two different modules, and we want to be able
8328 * to use them interchangeably with the same BTF type ID. Because modules
8329 * can't de-duplicate BTF IDs between each other, we need the type to be
8330 * referenced in the vmlinux BTF or the verifier will get confused about
8331 * the different types. So we add this dummy type reference which will
8332 * be included in vmlinux BTF, allowing both modules to refer to the
8333 * same type ID.
8334 */
8335 BTF_TYPE_EMIT(struct nf_conn___init);
8336 #endif
8337 }
8338
8339 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8340 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8341
8342 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8343 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8344 {
8345 const struct bpf_func_proto *func_proto;
8346
8347 func_proto = cgroup_common_func_proto(func_id, prog);
8348 if (func_proto)
8349 return func_proto;
8350
8351 switch (func_id) {
8352 case BPF_FUNC_setsockopt:
8353 return &bpf_sock_ops_setsockopt_proto;
8354 case BPF_FUNC_getsockopt:
8355 return &bpf_sock_ops_getsockopt_proto;
8356 case BPF_FUNC_sock_ops_cb_flags_set:
8357 return &bpf_sock_ops_cb_flags_set_proto;
8358 case BPF_FUNC_sock_map_update:
8359 return &bpf_sock_map_update_proto;
8360 case BPF_FUNC_sock_hash_update:
8361 return &bpf_sock_hash_update_proto;
8362 case BPF_FUNC_get_socket_cookie:
8363 return &bpf_get_socket_cookie_sock_ops_proto;
8364 case BPF_FUNC_perf_event_output:
8365 return &bpf_event_output_data_proto;
8366 case BPF_FUNC_sk_storage_get:
8367 return &bpf_sk_storage_get_proto;
8368 case BPF_FUNC_sk_storage_delete:
8369 return &bpf_sk_storage_delete_proto;
8370 case BPF_FUNC_get_netns_cookie:
8371 return &bpf_get_netns_cookie_sock_ops_proto;
8372 #ifdef CONFIG_INET
8373 case BPF_FUNC_load_hdr_opt:
8374 return &bpf_sock_ops_load_hdr_opt_proto;
8375 case BPF_FUNC_store_hdr_opt:
8376 return &bpf_sock_ops_store_hdr_opt_proto;
8377 case BPF_FUNC_reserve_hdr_opt:
8378 return &bpf_sock_ops_reserve_hdr_opt_proto;
8379 case BPF_FUNC_tcp_sock:
8380 return &bpf_tcp_sock_proto;
8381 #endif /* CONFIG_INET */
8382 default:
8383 return bpf_sk_base_func_proto(func_id, prog);
8384 }
8385 }
8386
8387 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8388 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8389
8390 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8391 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8392 {
8393 switch (func_id) {
8394 case BPF_FUNC_msg_redirect_map:
8395 return &bpf_msg_redirect_map_proto;
8396 case BPF_FUNC_msg_redirect_hash:
8397 return &bpf_msg_redirect_hash_proto;
8398 case BPF_FUNC_msg_apply_bytes:
8399 return &bpf_msg_apply_bytes_proto;
8400 case BPF_FUNC_msg_cork_bytes:
8401 return &bpf_msg_cork_bytes_proto;
8402 case BPF_FUNC_msg_pull_data:
8403 return &bpf_msg_pull_data_proto;
8404 case BPF_FUNC_msg_push_data:
8405 return &bpf_msg_push_data_proto;
8406 case BPF_FUNC_msg_pop_data:
8407 return &bpf_msg_pop_data_proto;
8408 case BPF_FUNC_perf_event_output:
8409 return &bpf_event_output_data_proto;
8410 case BPF_FUNC_get_current_uid_gid:
8411 return &bpf_get_current_uid_gid_proto;
8412 case BPF_FUNC_sk_storage_get:
8413 return &bpf_sk_storage_get_proto;
8414 case BPF_FUNC_sk_storage_delete:
8415 return &bpf_sk_storage_delete_proto;
8416 case BPF_FUNC_get_netns_cookie:
8417 return &bpf_get_netns_cookie_sk_msg_proto;
8418 #ifdef CONFIG_CGROUP_NET_CLASSID
8419 case BPF_FUNC_get_cgroup_classid:
8420 return &bpf_get_cgroup_classid_curr_proto;
8421 #endif
8422 default:
8423 return bpf_sk_base_func_proto(func_id, prog);
8424 }
8425 }
8426
8427 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8428 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8429
8430 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8431 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8432 {
8433 switch (func_id) {
8434 case BPF_FUNC_skb_store_bytes:
8435 return &bpf_skb_store_bytes_proto;
8436 case BPF_FUNC_skb_load_bytes:
8437 return &bpf_skb_load_bytes_proto;
8438 case BPF_FUNC_skb_pull_data:
8439 return &sk_skb_pull_data_proto;
8440 case BPF_FUNC_skb_change_tail:
8441 return &sk_skb_change_tail_proto;
8442 case BPF_FUNC_skb_change_head:
8443 return &sk_skb_change_head_proto;
8444 case BPF_FUNC_skb_adjust_room:
8445 return &sk_skb_adjust_room_proto;
8446 case BPF_FUNC_get_socket_cookie:
8447 return &bpf_get_socket_cookie_proto;
8448 case BPF_FUNC_get_socket_uid:
8449 return &bpf_get_socket_uid_proto;
8450 case BPF_FUNC_sk_redirect_map:
8451 return &bpf_sk_redirect_map_proto;
8452 case BPF_FUNC_sk_redirect_hash:
8453 return &bpf_sk_redirect_hash_proto;
8454 case BPF_FUNC_perf_event_output:
8455 return &bpf_skb_event_output_proto;
8456 #ifdef CONFIG_INET
8457 case BPF_FUNC_sk_lookup_tcp:
8458 return &bpf_sk_lookup_tcp_proto;
8459 case BPF_FUNC_sk_lookup_udp:
8460 return &bpf_sk_lookup_udp_proto;
8461 case BPF_FUNC_sk_release:
8462 return &bpf_sk_release_proto;
8463 case BPF_FUNC_skc_lookup_tcp:
8464 return &bpf_skc_lookup_tcp_proto;
8465 #endif
8466 default:
8467 return bpf_sk_base_func_proto(func_id, prog);
8468 }
8469 }
8470
8471 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8472 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8473 {
8474 switch (func_id) {
8475 case BPF_FUNC_skb_load_bytes:
8476 return &bpf_flow_dissector_load_bytes_proto;
8477 default:
8478 return bpf_sk_base_func_proto(func_id, prog);
8479 }
8480 }
8481
8482 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8483 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8484 {
8485 switch (func_id) {
8486 case BPF_FUNC_skb_load_bytes:
8487 return &bpf_skb_load_bytes_proto;
8488 case BPF_FUNC_skb_pull_data:
8489 return &bpf_skb_pull_data_proto;
8490 case BPF_FUNC_csum_diff:
8491 return &bpf_csum_diff_proto;
8492 case BPF_FUNC_get_cgroup_classid:
8493 return &bpf_get_cgroup_classid_proto;
8494 case BPF_FUNC_get_route_realm:
8495 return &bpf_get_route_realm_proto;
8496 case BPF_FUNC_get_hash_recalc:
8497 return &bpf_get_hash_recalc_proto;
8498 case BPF_FUNC_perf_event_output:
8499 return &bpf_skb_event_output_proto;
8500 case BPF_FUNC_get_smp_processor_id:
8501 return &bpf_get_smp_processor_id_proto;
8502 case BPF_FUNC_skb_under_cgroup:
8503 return &bpf_skb_under_cgroup_proto;
8504 default:
8505 return bpf_sk_base_func_proto(func_id, prog);
8506 }
8507 }
8508
8509 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8510 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8511 {
8512 switch (func_id) {
8513 case BPF_FUNC_lwt_push_encap:
8514 return &bpf_lwt_in_push_encap_proto;
8515 default:
8516 return lwt_out_func_proto(func_id, prog);
8517 }
8518 }
8519
8520 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8521 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8522 {
8523 switch (func_id) {
8524 case BPF_FUNC_skb_get_tunnel_key:
8525 return &bpf_skb_get_tunnel_key_proto;
8526 case BPF_FUNC_skb_set_tunnel_key:
8527 return bpf_get_skb_set_tunnel_proto(func_id);
8528 case BPF_FUNC_skb_get_tunnel_opt:
8529 return &bpf_skb_get_tunnel_opt_proto;
8530 case BPF_FUNC_skb_set_tunnel_opt:
8531 return bpf_get_skb_set_tunnel_proto(func_id);
8532 case BPF_FUNC_redirect:
8533 return &bpf_redirect_proto;
8534 case BPF_FUNC_clone_redirect:
8535 return &bpf_clone_redirect_proto;
8536 case BPF_FUNC_skb_change_tail:
8537 return &bpf_skb_change_tail_proto;
8538 case BPF_FUNC_skb_change_head:
8539 return &bpf_skb_change_head_proto;
8540 case BPF_FUNC_skb_store_bytes:
8541 return &bpf_skb_store_bytes_proto;
8542 case BPF_FUNC_csum_update:
8543 return &bpf_csum_update_proto;
8544 case BPF_FUNC_csum_level:
8545 return &bpf_csum_level_proto;
8546 case BPF_FUNC_l3_csum_replace:
8547 return &bpf_l3_csum_replace_proto;
8548 case BPF_FUNC_l4_csum_replace:
8549 return &bpf_l4_csum_replace_proto;
8550 case BPF_FUNC_set_hash_invalid:
8551 return &bpf_set_hash_invalid_proto;
8552 case BPF_FUNC_lwt_push_encap:
8553 return &bpf_lwt_xmit_push_encap_proto;
8554 default:
8555 return lwt_out_func_proto(func_id, prog);
8556 }
8557 }
8558
8559 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8560 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8561 {
8562 switch (func_id) {
8563 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8564 case BPF_FUNC_lwt_seg6_store_bytes:
8565 return &bpf_lwt_seg6_store_bytes_proto;
8566 case BPF_FUNC_lwt_seg6_action:
8567 return &bpf_lwt_seg6_action_proto;
8568 case BPF_FUNC_lwt_seg6_adjust_srh:
8569 return &bpf_lwt_seg6_adjust_srh_proto;
8570 #endif
8571 default:
8572 return lwt_out_func_proto(func_id, prog);
8573 }
8574 }
8575
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8576 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8577 const struct bpf_prog *prog,
8578 struct bpf_insn_access_aux *info)
8579 {
8580 const int size_default = sizeof(__u32);
8581
8582 if (off < 0 || off >= sizeof(struct __sk_buff))
8583 return false;
8584
8585 /* The verifier guarantees that size > 0. */
8586 if (off % size != 0)
8587 return false;
8588
8589 switch (off) {
8590 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8591 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8592 return false;
8593 break;
8594 case bpf_ctx_range(struct __sk_buff, data):
8595 case bpf_ctx_range(struct __sk_buff, data_meta):
8596 case bpf_ctx_range(struct __sk_buff, data_end):
8597 if (info->is_ldsx || size != size_default)
8598 return false;
8599 break;
8600 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8601 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8602 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8603 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8604 if (size != size_default)
8605 return false;
8606 break;
8607 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8608 return false;
8609 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8610 if (type == BPF_WRITE || size != sizeof(__u64))
8611 return false;
8612 break;
8613 case bpf_ctx_range(struct __sk_buff, tstamp):
8614 if (size != sizeof(__u64))
8615 return false;
8616 break;
8617 case offsetof(struct __sk_buff, sk):
8618 if (type == BPF_WRITE || size != sizeof(__u64))
8619 return false;
8620 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8621 break;
8622 case offsetof(struct __sk_buff, tstamp_type):
8623 return false;
8624 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8625 /* Explicitly prohibit access to padding in __sk_buff. */
8626 return false;
8627 default:
8628 /* Only narrow read access allowed for now. */
8629 if (type == BPF_WRITE) {
8630 if (size != size_default)
8631 return false;
8632 } else {
8633 bpf_ctx_record_field_size(info, size_default);
8634 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8635 return false;
8636 }
8637 }
8638
8639 return true;
8640 }
8641
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8642 static bool sk_filter_is_valid_access(int off, int size,
8643 enum bpf_access_type type,
8644 const struct bpf_prog *prog,
8645 struct bpf_insn_access_aux *info)
8646 {
8647 switch (off) {
8648 case bpf_ctx_range(struct __sk_buff, tc_classid):
8649 case bpf_ctx_range(struct __sk_buff, data):
8650 case bpf_ctx_range(struct __sk_buff, data_meta):
8651 case bpf_ctx_range(struct __sk_buff, data_end):
8652 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8653 case bpf_ctx_range(struct __sk_buff, tstamp):
8654 case bpf_ctx_range(struct __sk_buff, wire_len):
8655 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8656 return false;
8657 }
8658
8659 if (type == BPF_WRITE) {
8660 switch (off) {
8661 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8662 break;
8663 default:
8664 return false;
8665 }
8666 }
8667
8668 return bpf_skb_is_valid_access(off, size, type, prog, info);
8669 }
8670
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8671 static bool cg_skb_is_valid_access(int off, int size,
8672 enum bpf_access_type type,
8673 const struct bpf_prog *prog,
8674 struct bpf_insn_access_aux *info)
8675 {
8676 switch (off) {
8677 case bpf_ctx_range(struct __sk_buff, tc_classid):
8678 case bpf_ctx_range(struct __sk_buff, data_meta):
8679 case bpf_ctx_range(struct __sk_buff, wire_len):
8680 return false;
8681 case bpf_ctx_range(struct __sk_buff, data):
8682 case bpf_ctx_range(struct __sk_buff, data_end):
8683 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8684 return false;
8685 break;
8686 }
8687
8688 if (type == BPF_WRITE) {
8689 switch (off) {
8690 case bpf_ctx_range(struct __sk_buff, mark):
8691 case bpf_ctx_range(struct __sk_buff, priority):
8692 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8693 break;
8694 case bpf_ctx_range(struct __sk_buff, tstamp):
8695 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8696 return false;
8697 break;
8698 default:
8699 return false;
8700 }
8701 }
8702
8703 switch (off) {
8704 case bpf_ctx_range(struct __sk_buff, data):
8705 info->reg_type = PTR_TO_PACKET;
8706 break;
8707 case bpf_ctx_range(struct __sk_buff, data_end):
8708 info->reg_type = PTR_TO_PACKET_END;
8709 break;
8710 }
8711
8712 return bpf_skb_is_valid_access(off, size, type, prog, info);
8713 }
8714
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8715 static bool lwt_is_valid_access(int off, int size,
8716 enum bpf_access_type type,
8717 const struct bpf_prog *prog,
8718 struct bpf_insn_access_aux *info)
8719 {
8720 switch (off) {
8721 case bpf_ctx_range(struct __sk_buff, tc_classid):
8722 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8723 case bpf_ctx_range(struct __sk_buff, data_meta):
8724 case bpf_ctx_range(struct __sk_buff, tstamp):
8725 case bpf_ctx_range(struct __sk_buff, wire_len):
8726 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8727 return false;
8728 }
8729
8730 if (type == BPF_WRITE) {
8731 switch (off) {
8732 case bpf_ctx_range(struct __sk_buff, mark):
8733 case bpf_ctx_range(struct __sk_buff, priority):
8734 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8735 break;
8736 default:
8737 return false;
8738 }
8739 }
8740
8741 switch (off) {
8742 case bpf_ctx_range(struct __sk_buff, data):
8743 info->reg_type = PTR_TO_PACKET;
8744 break;
8745 case bpf_ctx_range(struct __sk_buff, data_end):
8746 info->reg_type = PTR_TO_PACKET_END;
8747 break;
8748 }
8749
8750 return bpf_skb_is_valid_access(off, size, type, prog, info);
8751 }
8752
8753 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8754 static bool __sock_filter_check_attach_type(int off,
8755 enum bpf_access_type access_type,
8756 enum bpf_attach_type attach_type)
8757 {
8758 switch (off) {
8759 case offsetof(struct bpf_sock, bound_dev_if):
8760 case offsetof(struct bpf_sock, mark):
8761 case offsetof(struct bpf_sock, priority):
8762 switch (attach_type) {
8763 case BPF_CGROUP_INET_SOCK_CREATE:
8764 case BPF_CGROUP_INET_SOCK_RELEASE:
8765 goto full_access;
8766 default:
8767 return false;
8768 }
8769 case bpf_ctx_range(struct bpf_sock, src_ip4):
8770 switch (attach_type) {
8771 case BPF_CGROUP_INET4_POST_BIND:
8772 goto read_only;
8773 default:
8774 return false;
8775 }
8776 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8777 switch (attach_type) {
8778 case BPF_CGROUP_INET6_POST_BIND:
8779 goto read_only;
8780 default:
8781 return false;
8782 }
8783 case bpf_ctx_range(struct bpf_sock, src_port):
8784 switch (attach_type) {
8785 case BPF_CGROUP_INET4_POST_BIND:
8786 case BPF_CGROUP_INET6_POST_BIND:
8787 goto read_only;
8788 default:
8789 return false;
8790 }
8791 }
8792 read_only:
8793 return access_type == BPF_READ;
8794 full_access:
8795 return true;
8796 }
8797
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8798 bool bpf_sock_common_is_valid_access(int off, int size,
8799 enum bpf_access_type type,
8800 struct bpf_insn_access_aux *info)
8801 {
8802 switch (off) {
8803 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8804 return false;
8805 default:
8806 return bpf_sock_is_valid_access(off, size, type, info);
8807 }
8808 }
8809
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8810 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8811 struct bpf_insn_access_aux *info)
8812 {
8813 const int size_default = sizeof(__u32);
8814 int field_size;
8815
8816 if (off < 0 || off >= sizeof(struct bpf_sock))
8817 return false;
8818 if (off % size != 0)
8819 return false;
8820
8821 switch (off) {
8822 case offsetof(struct bpf_sock, state):
8823 case offsetof(struct bpf_sock, family):
8824 case offsetof(struct bpf_sock, type):
8825 case offsetof(struct bpf_sock, protocol):
8826 case offsetof(struct bpf_sock, src_port):
8827 case offsetof(struct bpf_sock, rx_queue_mapping):
8828 case bpf_ctx_range(struct bpf_sock, src_ip4):
8829 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8830 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8831 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8832 bpf_ctx_record_field_size(info, size_default);
8833 return bpf_ctx_narrow_access_ok(off, size, size_default);
8834 case bpf_ctx_range(struct bpf_sock, dst_port):
8835 field_size = size == size_default ?
8836 size_default : sizeof_field(struct bpf_sock, dst_port);
8837 bpf_ctx_record_field_size(info, field_size);
8838 return bpf_ctx_narrow_access_ok(off, size, field_size);
8839 case offsetofend(struct bpf_sock, dst_port) ...
8840 offsetof(struct bpf_sock, dst_ip4) - 1:
8841 return false;
8842 }
8843
8844 return size == size_default;
8845 }
8846
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8847 static bool sock_filter_is_valid_access(int off, int size,
8848 enum bpf_access_type type,
8849 const struct bpf_prog *prog,
8850 struct bpf_insn_access_aux *info)
8851 {
8852 if (!bpf_sock_is_valid_access(off, size, type, info))
8853 return false;
8854 return __sock_filter_check_attach_type(off, type,
8855 prog->expected_attach_type);
8856 }
8857
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8858 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8859 const struct bpf_prog *prog)
8860 {
8861 /* Neither direct read nor direct write requires any preliminary
8862 * action.
8863 */
8864 return 0;
8865 }
8866
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8867 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8868 const struct bpf_prog *prog, int drop_verdict)
8869 {
8870 struct bpf_insn *insn = insn_buf;
8871
8872 if (!direct_write)
8873 return 0;
8874
8875 /* if (!skb->cloned)
8876 * goto start;
8877 *
8878 * (Fast-path, otherwise approximation that we might be
8879 * a clone, do the rest in helper.)
8880 */
8881 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8882 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8883 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8884
8885 /* ret = bpf_skb_pull_data(skb, 0); */
8886 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8887 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8888 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8889 BPF_FUNC_skb_pull_data);
8890 /* if (!ret)
8891 * goto restore;
8892 * return TC_ACT_SHOT;
8893 */
8894 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8895 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8896 *insn++ = BPF_EXIT_INSN();
8897
8898 /* restore: */
8899 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8900 /* start: */
8901 *insn++ = prog->insnsi[0];
8902
8903 return insn - insn_buf;
8904 }
8905
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8906 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8907 struct bpf_insn *insn_buf)
8908 {
8909 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8910 struct bpf_insn *insn = insn_buf;
8911
8912 if (!indirect) {
8913 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8914 } else {
8915 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8916 if (orig->imm)
8917 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8918 }
8919 /* We're guaranteed here that CTX is in R6. */
8920 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8921
8922 switch (BPF_SIZE(orig->code)) {
8923 case BPF_B:
8924 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8925 break;
8926 case BPF_H:
8927 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8928 break;
8929 case BPF_W:
8930 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8931 break;
8932 }
8933
8934 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8935 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8936 *insn++ = BPF_EXIT_INSN();
8937
8938 return insn - insn_buf;
8939 }
8940
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8941 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8942 const struct bpf_prog *prog)
8943 {
8944 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8945 }
8946
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8947 static bool tc_cls_act_is_valid_access(int off, int size,
8948 enum bpf_access_type type,
8949 const struct bpf_prog *prog,
8950 struct bpf_insn_access_aux *info)
8951 {
8952 if (type == BPF_WRITE) {
8953 switch (off) {
8954 case bpf_ctx_range(struct __sk_buff, mark):
8955 case bpf_ctx_range(struct __sk_buff, tc_index):
8956 case bpf_ctx_range(struct __sk_buff, priority):
8957 case bpf_ctx_range(struct __sk_buff, tc_classid):
8958 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8959 case bpf_ctx_range(struct __sk_buff, tstamp):
8960 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8961 break;
8962 default:
8963 return false;
8964 }
8965 }
8966
8967 switch (off) {
8968 case bpf_ctx_range(struct __sk_buff, data):
8969 info->reg_type = PTR_TO_PACKET;
8970 break;
8971 case bpf_ctx_range(struct __sk_buff, data_meta):
8972 info->reg_type = PTR_TO_PACKET_META;
8973 break;
8974 case bpf_ctx_range(struct __sk_buff, data_end):
8975 info->reg_type = PTR_TO_PACKET_END;
8976 break;
8977 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8978 return false;
8979 case offsetof(struct __sk_buff, tstamp_type):
8980 /* The convert_ctx_access() on reading and writing
8981 * __sk_buff->tstamp depends on whether the bpf prog
8982 * has used __sk_buff->tstamp_type or not.
8983 * Thus, we need to set prog->tstamp_type_access
8984 * earlier during is_valid_access() here.
8985 */
8986 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8987 return size == sizeof(__u8);
8988 }
8989
8990 return bpf_skb_is_valid_access(off, size, type, prog, info);
8991 }
8992
8993 DEFINE_MUTEX(nf_conn_btf_access_lock);
8994 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8995
8996 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8997 const struct bpf_reg_state *reg,
8998 int off, int size);
8999 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9000
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9001 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9002 const struct bpf_reg_state *reg,
9003 int off, int size)
9004 {
9005 int ret = -EACCES;
9006
9007 mutex_lock(&nf_conn_btf_access_lock);
9008 if (nfct_btf_struct_access)
9009 ret = nfct_btf_struct_access(log, reg, off, size);
9010 mutex_unlock(&nf_conn_btf_access_lock);
9011
9012 return ret;
9013 }
9014
__is_valid_xdp_access(int off,int size)9015 static bool __is_valid_xdp_access(int off, int size)
9016 {
9017 if (off < 0 || off >= sizeof(struct xdp_md))
9018 return false;
9019 if (off % size != 0)
9020 return false;
9021 if (size != sizeof(__u32))
9022 return false;
9023
9024 return true;
9025 }
9026
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9027 static bool xdp_is_valid_access(int off, int size,
9028 enum bpf_access_type type,
9029 const struct bpf_prog *prog,
9030 struct bpf_insn_access_aux *info)
9031 {
9032 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9033 switch (off) {
9034 case offsetof(struct xdp_md, egress_ifindex):
9035 return false;
9036 }
9037 }
9038
9039 if (type == BPF_WRITE) {
9040 if (bpf_prog_is_offloaded(prog->aux)) {
9041 switch (off) {
9042 case offsetof(struct xdp_md, rx_queue_index):
9043 return __is_valid_xdp_access(off, size);
9044 }
9045 }
9046 return false;
9047 } else {
9048 switch (off) {
9049 case offsetof(struct xdp_md, data_meta):
9050 case offsetof(struct xdp_md, data):
9051 case offsetof(struct xdp_md, data_end):
9052 if (info->is_ldsx)
9053 return false;
9054 }
9055 }
9056
9057 switch (off) {
9058 case offsetof(struct xdp_md, data):
9059 info->reg_type = PTR_TO_PACKET;
9060 break;
9061 case offsetof(struct xdp_md, data_meta):
9062 info->reg_type = PTR_TO_PACKET_META;
9063 break;
9064 case offsetof(struct xdp_md, data_end):
9065 info->reg_type = PTR_TO_PACKET_END;
9066 break;
9067 }
9068
9069 return __is_valid_xdp_access(off, size);
9070 }
9071
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)9072 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
9073 {
9074 const u32 act_max = XDP_REDIRECT;
9075
9076 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9077 act > act_max ? "Illegal" : "Driver unsupported",
9078 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9079 }
9080 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9081
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9082 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9083 const struct bpf_reg_state *reg,
9084 int off, int size)
9085 {
9086 int ret = -EACCES;
9087
9088 mutex_lock(&nf_conn_btf_access_lock);
9089 if (nfct_btf_struct_access)
9090 ret = nfct_btf_struct_access(log, reg, off, size);
9091 mutex_unlock(&nf_conn_btf_access_lock);
9092
9093 return ret;
9094 }
9095
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9096 static bool sock_addr_is_valid_access(int off, int size,
9097 enum bpf_access_type type,
9098 const struct bpf_prog *prog,
9099 struct bpf_insn_access_aux *info)
9100 {
9101 const int size_default = sizeof(__u32);
9102
9103 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9104 return false;
9105 if (off % size != 0)
9106 return false;
9107
9108 /* Disallow access to fields not belonging to the attach type's address
9109 * family.
9110 */
9111 switch (off) {
9112 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9113 switch (prog->expected_attach_type) {
9114 case BPF_CGROUP_INET4_BIND:
9115 case BPF_CGROUP_INET4_CONNECT:
9116 case BPF_CGROUP_INET4_GETPEERNAME:
9117 case BPF_CGROUP_INET4_GETSOCKNAME:
9118 case BPF_CGROUP_UDP4_SENDMSG:
9119 case BPF_CGROUP_UDP4_RECVMSG:
9120 break;
9121 default:
9122 return false;
9123 }
9124 break;
9125 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9126 switch (prog->expected_attach_type) {
9127 case BPF_CGROUP_INET6_BIND:
9128 case BPF_CGROUP_INET6_CONNECT:
9129 case BPF_CGROUP_INET6_GETPEERNAME:
9130 case BPF_CGROUP_INET6_GETSOCKNAME:
9131 case BPF_CGROUP_UDP6_SENDMSG:
9132 case BPF_CGROUP_UDP6_RECVMSG:
9133 break;
9134 default:
9135 return false;
9136 }
9137 break;
9138 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9139 switch (prog->expected_attach_type) {
9140 case BPF_CGROUP_UDP4_SENDMSG:
9141 break;
9142 default:
9143 return false;
9144 }
9145 break;
9146 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9147 msg_src_ip6[3]):
9148 switch (prog->expected_attach_type) {
9149 case BPF_CGROUP_UDP6_SENDMSG:
9150 break;
9151 default:
9152 return false;
9153 }
9154 break;
9155 }
9156
9157 switch (off) {
9158 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9159 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9160 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9161 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9162 msg_src_ip6[3]):
9163 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9164 if (type == BPF_READ) {
9165 bpf_ctx_record_field_size(info, size_default);
9166
9167 if (bpf_ctx_wide_access_ok(off, size,
9168 struct bpf_sock_addr,
9169 user_ip6))
9170 return true;
9171
9172 if (bpf_ctx_wide_access_ok(off, size,
9173 struct bpf_sock_addr,
9174 msg_src_ip6))
9175 return true;
9176
9177 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9178 return false;
9179 } else {
9180 if (bpf_ctx_wide_access_ok(off, size,
9181 struct bpf_sock_addr,
9182 user_ip6))
9183 return true;
9184
9185 if (bpf_ctx_wide_access_ok(off, size,
9186 struct bpf_sock_addr,
9187 msg_src_ip6))
9188 return true;
9189
9190 if (size != size_default)
9191 return false;
9192 }
9193 break;
9194 case offsetof(struct bpf_sock_addr, sk):
9195 if (type != BPF_READ)
9196 return false;
9197 if (size != sizeof(__u64))
9198 return false;
9199 info->reg_type = PTR_TO_SOCKET;
9200 break;
9201 default:
9202 if (type == BPF_READ) {
9203 if (size != size_default)
9204 return false;
9205 } else {
9206 return false;
9207 }
9208 }
9209
9210 return true;
9211 }
9212
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9213 static bool sock_ops_is_valid_access(int off, int size,
9214 enum bpf_access_type type,
9215 const struct bpf_prog *prog,
9216 struct bpf_insn_access_aux *info)
9217 {
9218 const int size_default = sizeof(__u32);
9219
9220 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9221 return false;
9222
9223 /* The verifier guarantees that size > 0. */
9224 if (off % size != 0)
9225 return false;
9226
9227 if (type == BPF_WRITE) {
9228 switch (off) {
9229 case offsetof(struct bpf_sock_ops, reply):
9230 case offsetof(struct bpf_sock_ops, sk_txhash):
9231 if (size != size_default)
9232 return false;
9233 break;
9234 default:
9235 return false;
9236 }
9237 } else {
9238 switch (off) {
9239 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9240 bytes_acked):
9241 if (size != sizeof(__u64))
9242 return false;
9243 break;
9244 case offsetof(struct bpf_sock_ops, sk):
9245 if (size != sizeof(__u64))
9246 return false;
9247 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9248 break;
9249 case offsetof(struct bpf_sock_ops, skb_data):
9250 if (size != sizeof(__u64))
9251 return false;
9252 info->reg_type = PTR_TO_PACKET;
9253 break;
9254 case offsetof(struct bpf_sock_ops, skb_data_end):
9255 if (size != sizeof(__u64))
9256 return false;
9257 info->reg_type = PTR_TO_PACKET_END;
9258 break;
9259 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9260 bpf_ctx_record_field_size(info, size_default);
9261 return bpf_ctx_narrow_access_ok(off, size,
9262 size_default);
9263 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9264 if (size != sizeof(__u64))
9265 return false;
9266 break;
9267 default:
9268 if (size != size_default)
9269 return false;
9270 break;
9271 }
9272 }
9273
9274 return true;
9275 }
9276
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9277 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9278 const struct bpf_prog *prog)
9279 {
9280 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9281 }
9282
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9283 static bool sk_skb_is_valid_access(int off, int size,
9284 enum bpf_access_type type,
9285 const struct bpf_prog *prog,
9286 struct bpf_insn_access_aux *info)
9287 {
9288 switch (off) {
9289 case bpf_ctx_range(struct __sk_buff, tc_classid):
9290 case bpf_ctx_range(struct __sk_buff, data_meta):
9291 case bpf_ctx_range(struct __sk_buff, tstamp):
9292 case bpf_ctx_range(struct __sk_buff, wire_len):
9293 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9294 return false;
9295 }
9296
9297 if (type == BPF_WRITE) {
9298 switch (off) {
9299 case bpf_ctx_range(struct __sk_buff, tc_index):
9300 case bpf_ctx_range(struct __sk_buff, priority):
9301 break;
9302 default:
9303 return false;
9304 }
9305 }
9306
9307 switch (off) {
9308 case bpf_ctx_range(struct __sk_buff, mark):
9309 return false;
9310 case bpf_ctx_range(struct __sk_buff, data):
9311 info->reg_type = PTR_TO_PACKET;
9312 break;
9313 case bpf_ctx_range(struct __sk_buff, data_end):
9314 info->reg_type = PTR_TO_PACKET_END;
9315 break;
9316 }
9317
9318 return bpf_skb_is_valid_access(off, size, type, prog, info);
9319 }
9320
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9321 static bool sk_msg_is_valid_access(int off, int size,
9322 enum bpf_access_type type,
9323 const struct bpf_prog *prog,
9324 struct bpf_insn_access_aux *info)
9325 {
9326 if (type == BPF_WRITE)
9327 return false;
9328
9329 if (off % size != 0)
9330 return false;
9331
9332 switch (off) {
9333 case offsetof(struct sk_msg_md, data):
9334 info->reg_type = PTR_TO_PACKET;
9335 if (size != sizeof(__u64))
9336 return false;
9337 break;
9338 case offsetof(struct sk_msg_md, data_end):
9339 info->reg_type = PTR_TO_PACKET_END;
9340 if (size != sizeof(__u64))
9341 return false;
9342 break;
9343 case offsetof(struct sk_msg_md, sk):
9344 if (size != sizeof(__u64))
9345 return false;
9346 info->reg_type = PTR_TO_SOCKET;
9347 break;
9348 case bpf_ctx_range(struct sk_msg_md, family):
9349 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9350 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9351 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9352 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9353 case bpf_ctx_range(struct sk_msg_md, remote_port):
9354 case bpf_ctx_range(struct sk_msg_md, local_port):
9355 case bpf_ctx_range(struct sk_msg_md, size):
9356 if (size != sizeof(__u32))
9357 return false;
9358 break;
9359 default:
9360 return false;
9361 }
9362 return true;
9363 }
9364
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9365 static bool flow_dissector_is_valid_access(int off, int size,
9366 enum bpf_access_type type,
9367 const struct bpf_prog *prog,
9368 struct bpf_insn_access_aux *info)
9369 {
9370 const int size_default = sizeof(__u32);
9371
9372 if (off < 0 || off >= sizeof(struct __sk_buff))
9373 return false;
9374
9375 if (type == BPF_WRITE)
9376 return false;
9377
9378 switch (off) {
9379 case bpf_ctx_range(struct __sk_buff, data):
9380 if (info->is_ldsx || size != size_default)
9381 return false;
9382 info->reg_type = PTR_TO_PACKET;
9383 return true;
9384 case bpf_ctx_range(struct __sk_buff, data_end):
9385 if (info->is_ldsx || size != size_default)
9386 return false;
9387 info->reg_type = PTR_TO_PACKET_END;
9388 return true;
9389 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9390 if (size != sizeof(__u64))
9391 return false;
9392 info->reg_type = PTR_TO_FLOW_KEYS;
9393 return true;
9394 default:
9395 return false;
9396 }
9397 }
9398
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9399 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9400 const struct bpf_insn *si,
9401 struct bpf_insn *insn_buf,
9402 struct bpf_prog *prog,
9403 u32 *target_size)
9404
9405 {
9406 struct bpf_insn *insn = insn_buf;
9407
9408 switch (si->off) {
9409 case offsetof(struct __sk_buff, data):
9410 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9411 si->dst_reg, si->src_reg,
9412 offsetof(struct bpf_flow_dissector, data));
9413 break;
9414
9415 case offsetof(struct __sk_buff, data_end):
9416 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9417 si->dst_reg, si->src_reg,
9418 offsetof(struct bpf_flow_dissector, data_end));
9419 break;
9420
9421 case offsetof(struct __sk_buff, flow_keys):
9422 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9423 si->dst_reg, si->src_reg,
9424 offsetof(struct bpf_flow_dissector, flow_keys));
9425 break;
9426 }
9427
9428 return insn - insn_buf;
9429 }
9430
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9431 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9432 struct bpf_insn *insn)
9433 {
9434 __u8 value_reg = si->dst_reg;
9435 __u8 skb_reg = si->src_reg;
9436 BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9437 BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9438 BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9439 BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9440 *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9441 *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9442 #ifdef __BIG_ENDIAN_BITFIELD
9443 *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9444 #else
9445 BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9446 #endif
9447
9448 return insn;
9449 }
9450
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9451 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9452 struct bpf_insn *insn)
9453 {
9454 /* si->dst_reg = skb_shinfo(SKB); */
9455 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9456 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9457 BPF_REG_AX, skb_reg,
9458 offsetof(struct sk_buff, end));
9459 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9460 dst_reg, skb_reg,
9461 offsetof(struct sk_buff, head));
9462 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9463 #else
9464 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9465 dst_reg, skb_reg,
9466 offsetof(struct sk_buff, end));
9467 #endif
9468
9469 return insn;
9470 }
9471
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9472 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9473 const struct bpf_insn *si,
9474 struct bpf_insn *insn)
9475 {
9476 __u8 value_reg = si->dst_reg;
9477 __u8 skb_reg = si->src_reg;
9478
9479 #ifdef CONFIG_NET_XGRESS
9480 /* If the tstamp_type is read,
9481 * the bpf prog is aware the tstamp could have delivery time.
9482 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9483 */
9484 if (!prog->tstamp_type_access) {
9485 /* AX is needed because src_reg and dst_reg could be the same */
9486 __u8 tmp_reg = BPF_REG_AX;
9487
9488 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9489 /* check if ingress mask bits is set */
9490 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9491 *insn++ = BPF_JMP_A(4);
9492 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9493 *insn++ = BPF_JMP_A(2);
9494 /* skb->tc_at_ingress && skb->tstamp_type,
9495 * read 0 as the (rcv) timestamp.
9496 */
9497 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9498 *insn++ = BPF_JMP_A(1);
9499 }
9500 #endif
9501
9502 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9503 offsetof(struct sk_buff, tstamp));
9504 return insn;
9505 }
9506
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9507 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9508 const struct bpf_insn *si,
9509 struct bpf_insn *insn)
9510 {
9511 __u8 value_reg = si->src_reg;
9512 __u8 skb_reg = si->dst_reg;
9513
9514 #ifdef CONFIG_NET_XGRESS
9515 /* If the tstamp_type is read,
9516 * the bpf prog is aware the tstamp could have delivery time.
9517 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9518 * Otherwise, writing at ingress will have to clear the
9519 * skb->tstamp_type bit also.
9520 */
9521 if (!prog->tstamp_type_access) {
9522 __u8 tmp_reg = BPF_REG_AX;
9523
9524 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9525 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9526 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9527 /* goto <store> */
9528 *insn++ = BPF_JMP_A(2);
9529 /* <clear>: skb->tstamp_type */
9530 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9531 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9532 }
9533 #endif
9534
9535 /* <store>: skb->tstamp = tstamp */
9536 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9537 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9538 return insn;
9539 }
9540
9541 #define BPF_EMIT_STORE(size, si, off) \
9542 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9543 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9544
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9545 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9546 const struct bpf_insn *si,
9547 struct bpf_insn *insn_buf,
9548 struct bpf_prog *prog, u32 *target_size)
9549 {
9550 struct bpf_insn *insn = insn_buf;
9551 int off;
9552
9553 switch (si->off) {
9554 case offsetof(struct __sk_buff, len):
9555 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9556 bpf_target_off(struct sk_buff, len, 4,
9557 target_size));
9558 break;
9559
9560 case offsetof(struct __sk_buff, protocol):
9561 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9562 bpf_target_off(struct sk_buff, protocol, 2,
9563 target_size));
9564 break;
9565
9566 case offsetof(struct __sk_buff, vlan_proto):
9567 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9568 bpf_target_off(struct sk_buff, vlan_proto, 2,
9569 target_size));
9570 break;
9571
9572 case offsetof(struct __sk_buff, priority):
9573 if (type == BPF_WRITE)
9574 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9575 bpf_target_off(struct sk_buff, priority, 4,
9576 target_size));
9577 else
9578 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9579 bpf_target_off(struct sk_buff, priority, 4,
9580 target_size));
9581 break;
9582
9583 case offsetof(struct __sk_buff, ingress_ifindex):
9584 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9585 bpf_target_off(struct sk_buff, skb_iif, 4,
9586 target_size));
9587 break;
9588
9589 case offsetof(struct __sk_buff, ifindex):
9590 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9591 si->dst_reg, si->src_reg,
9592 offsetof(struct sk_buff, dev));
9593 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9594 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9595 bpf_target_off(struct net_device, ifindex, 4,
9596 target_size));
9597 break;
9598
9599 case offsetof(struct __sk_buff, hash):
9600 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9601 bpf_target_off(struct sk_buff, hash, 4,
9602 target_size));
9603 break;
9604
9605 case offsetof(struct __sk_buff, mark):
9606 if (type == BPF_WRITE)
9607 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9608 bpf_target_off(struct sk_buff, mark, 4,
9609 target_size));
9610 else
9611 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9612 bpf_target_off(struct sk_buff, mark, 4,
9613 target_size));
9614 break;
9615
9616 case offsetof(struct __sk_buff, pkt_type):
9617 *target_size = 1;
9618 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9619 PKT_TYPE_OFFSET);
9620 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9621 #ifdef __BIG_ENDIAN_BITFIELD
9622 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9623 #endif
9624 break;
9625
9626 case offsetof(struct __sk_buff, queue_mapping):
9627 if (type == BPF_WRITE) {
9628 u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9629
9630 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9631 *insn++ = BPF_JMP_A(0); /* noop */
9632 break;
9633 }
9634
9635 if (BPF_CLASS(si->code) == BPF_STX)
9636 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9637 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9638 } else {
9639 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9640 bpf_target_off(struct sk_buff,
9641 queue_mapping,
9642 2, target_size));
9643 }
9644 break;
9645
9646 case offsetof(struct __sk_buff, vlan_present):
9647 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9648 bpf_target_off(struct sk_buff,
9649 vlan_all, 4, target_size));
9650 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9651 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9652 break;
9653
9654 case offsetof(struct __sk_buff, vlan_tci):
9655 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9656 bpf_target_off(struct sk_buff, vlan_tci, 2,
9657 target_size));
9658 break;
9659
9660 case offsetof(struct __sk_buff, cb[0]) ...
9661 offsetofend(struct __sk_buff, cb[4]) - 1:
9662 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9663 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9664 offsetof(struct qdisc_skb_cb, data)) %
9665 sizeof(__u64));
9666
9667 prog->cb_access = 1;
9668 off = si->off;
9669 off -= offsetof(struct __sk_buff, cb[0]);
9670 off += offsetof(struct sk_buff, cb);
9671 off += offsetof(struct qdisc_skb_cb, data);
9672 if (type == BPF_WRITE)
9673 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9674 else
9675 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9676 si->src_reg, off);
9677 break;
9678
9679 case offsetof(struct __sk_buff, tc_classid):
9680 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9681
9682 off = si->off;
9683 off -= offsetof(struct __sk_buff, tc_classid);
9684 off += offsetof(struct sk_buff, cb);
9685 off += offsetof(struct qdisc_skb_cb, tc_classid);
9686 *target_size = 2;
9687 if (type == BPF_WRITE)
9688 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9689 else
9690 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9691 si->src_reg, off);
9692 break;
9693
9694 case offsetof(struct __sk_buff, data):
9695 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9696 si->dst_reg, si->src_reg,
9697 offsetof(struct sk_buff, data));
9698 break;
9699
9700 case offsetof(struct __sk_buff, data_meta):
9701 off = si->off;
9702 off -= offsetof(struct __sk_buff, data_meta);
9703 off += offsetof(struct sk_buff, cb);
9704 off += offsetof(struct bpf_skb_data_end, data_meta);
9705 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9706 si->src_reg, off);
9707 break;
9708
9709 case offsetof(struct __sk_buff, data_end):
9710 off = si->off;
9711 off -= offsetof(struct __sk_buff, data_end);
9712 off += offsetof(struct sk_buff, cb);
9713 off += offsetof(struct bpf_skb_data_end, data_end);
9714 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9715 si->src_reg, off);
9716 break;
9717
9718 case offsetof(struct __sk_buff, tc_index):
9719 #ifdef CONFIG_NET_SCHED
9720 if (type == BPF_WRITE)
9721 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9722 bpf_target_off(struct sk_buff, tc_index, 2,
9723 target_size));
9724 else
9725 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9726 bpf_target_off(struct sk_buff, tc_index, 2,
9727 target_size));
9728 #else
9729 *target_size = 2;
9730 if (type == BPF_WRITE)
9731 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9732 else
9733 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9734 #endif
9735 break;
9736
9737 case offsetof(struct __sk_buff, napi_id):
9738 #if defined(CONFIG_NET_RX_BUSY_POLL)
9739 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9740 bpf_target_off(struct sk_buff, napi_id, 4,
9741 target_size));
9742 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9743 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9744 #else
9745 *target_size = 4;
9746 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9747 #endif
9748 break;
9749 case offsetof(struct __sk_buff, family):
9750 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9751
9752 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9753 si->dst_reg, si->src_reg,
9754 offsetof(struct sk_buff, sk));
9755 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9756 bpf_target_off(struct sock_common,
9757 skc_family,
9758 2, target_size));
9759 break;
9760 case offsetof(struct __sk_buff, remote_ip4):
9761 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9762
9763 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9764 si->dst_reg, si->src_reg,
9765 offsetof(struct sk_buff, sk));
9766 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9767 bpf_target_off(struct sock_common,
9768 skc_daddr,
9769 4, target_size));
9770 break;
9771 case offsetof(struct __sk_buff, local_ip4):
9772 BUILD_BUG_ON(sizeof_field(struct sock_common,
9773 skc_rcv_saddr) != 4);
9774
9775 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9776 si->dst_reg, si->src_reg,
9777 offsetof(struct sk_buff, sk));
9778 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9779 bpf_target_off(struct sock_common,
9780 skc_rcv_saddr,
9781 4, target_size));
9782 break;
9783 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9784 offsetof(struct __sk_buff, remote_ip6[3]):
9785 #if IS_ENABLED(CONFIG_IPV6)
9786 BUILD_BUG_ON(sizeof_field(struct sock_common,
9787 skc_v6_daddr.s6_addr32[0]) != 4);
9788
9789 off = si->off;
9790 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9791
9792 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9793 si->dst_reg, si->src_reg,
9794 offsetof(struct sk_buff, sk));
9795 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9796 offsetof(struct sock_common,
9797 skc_v6_daddr.s6_addr32[0]) +
9798 off);
9799 #else
9800 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9801 #endif
9802 break;
9803 case offsetof(struct __sk_buff, local_ip6[0]) ...
9804 offsetof(struct __sk_buff, local_ip6[3]):
9805 #if IS_ENABLED(CONFIG_IPV6)
9806 BUILD_BUG_ON(sizeof_field(struct sock_common,
9807 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9808
9809 off = si->off;
9810 off -= offsetof(struct __sk_buff, local_ip6[0]);
9811
9812 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9813 si->dst_reg, si->src_reg,
9814 offsetof(struct sk_buff, sk));
9815 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9816 offsetof(struct sock_common,
9817 skc_v6_rcv_saddr.s6_addr32[0]) +
9818 off);
9819 #else
9820 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9821 #endif
9822 break;
9823
9824 case offsetof(struct __sk_buff, remote_port):
9825 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9826
9827 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9828 si->dst_reg, si->src_reg,
9829 offsetof(struct sk_buff, sk));
9830 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9831 bpf_target_off(struct sock_common,
9832 skc_dport,
9833 2, target_size));
9834 #ifndef __BIG_ENDIAN_BITFIELD
9835 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9836 #endif
9837 break;
9838
9839 case offsetof(struct __sk_buff, local_port):
9840 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9841
9842 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9843 si->dst_reg, si->src_reg,
9844 offsetof(struct sk_buff, sk));
9845 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9846 bpf_target_off(struct sock_common,
9847 skc_num, 2, target_size));
9848 break;
9849
9850 case offsetof(struct __sk_buff, tstamp):
9851 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9852
9853 if (type == BPF_WRITE)
9854 insn = bpf_convert_tstamp_write(prog, si, insn);
9855 else
9856 insn = bpf_convert_tstamp_read(prog, si, insn);
9857 break;
9858
9859 case offsetof(struct __sk_buff, tstamp_type):
9860 insn = bpf_convert_tstamp_type_read(si, insn);
9861 break;
9862
9863 case offsetof(struct __sk_buff, gso_segs):
9864 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9865 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9866 si->dst_reg, si->dst_reg,
9867 bpf_target_off(struct skb_shared_info,
9868 gso_segs, 2,
9869 target_size));
9870 break;
9871 case offsetof(struct __sk_buff, gso_size):
9872 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9873 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9874 si->dst_reg, si->dst_reg,
9875 bpf_target_off(struct skb_shared_info,
9876 gso_size, 2,
9877 target_size));
9878 break;
9879 case offsetof(struct __sk_buff, wire_len):
9880 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9881
9882 off = si->off;
9883 off -= offsetof(struct __sk_buff, wire_len);
9884 off += offsetof(struct sk_buff, cb);
9885 off += offsetof(struct qdisc_skb_cb, pkt_len);
9886 *target_size = 4;
9887 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9888 break;
9889
9890 case offsetof(struct __sk_buff, sk):
9891 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9892 si->dst_reg, si->src_reg,
9893 offsetof(struct sk_buff, sk));
9894 break;
9895 case offsetof(struct __sk_buff, hwtstamp):
9896 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9897 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9898
9899 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9900 *insn++ = BPF_LDX_MEM(BPF_DW,
9901 si->dst_reg, si->dst_reg,
9902 bpf_target_off(struct skb_shared_info,
9903 hwtstamps, 8,
9904 target_size));
9905 break;
9906 }
9907
9908 return insn - insn_buf;
9909 }
9910
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9911 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9912 const struct bpf_insn *si,
9913 struct bpf_insn *insn_buf,
9914 struct bpf_prog *prog, u32 *target_size)
9915 {
9916 struct bpf_insn *insn = insn_buf;
9917 int off;
9918
9919 switch (si->off) {
9920 case offsetof(struct bpf_sock, bound_dev_if):
9921 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9922
9923 if (type == BPF_WRITE)
9924 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9925 offsetof(struct sock, sk_bound_dev_if));
9926 else
9927 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9928 offsetof(struct sock, sk_bound_dev_if));
9929 break;
9930
9931 case offsetof(struct bpf_sock, mark):
9932 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9933
9934 if (type == BPF_WRITE)
9935 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9936 offsetof(struct sock, sk_mark));
9937 else
9938 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9939 offsetof(struct sock, sk_mark));
9940 break;
9941
9942 case offsetof(struct bpf_sock, priority):
9943 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9944
9945 if (type == BPF_WRITE)
9946 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9947 offsetof(struct sock, sk_priority));
9948 else
9949 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9950 offsetof(struct sock, sk_priority));
9951 break;
9952
9953 case offsetof(struct bpf_sock, family):
9954 *insn++ = BPF_LDX_MEM(
9955 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9956 si->dst_reg, si->src_reg,
9957 bpf_target_off(struct sock_common,
9958 skc_family,
9959 sizeof_field(struct sock_common,
9960 skc_family),
9961 target_size));
9962 break;
9963
9964 case offsetof(struct bpf_sock, type):
9965 *insn++ = BPF_LDX_MEM(
9966 BPF_FIELD_SIZEOF(struct sock, sk_type),
9967 si->dst_reg, si->src_reg,
9968 bpf_target_off(struct sock, sk_type,
9969 sizeof_field(struct sock, sk_type),
9970 target_size));
9971 break;
9972
9973 case offsetof(struct bpf_sock, protocol):
9974 *insn++ = BPF_LDX_MEM(
9975 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9976 si->dst_reg, si->src_reg,
9977 bpf_target_off(struct sock, sk_protocol,
9978 sizeof_field(struct sock, sk_protocol),
9979 target_size));
9980 break;
9981
9982 case offsetof(struct bpf_sock, src_ip4):
9983 *insn++ = BPF_LDX_MEM(
9984 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9985 bpf_target_off(struct sock_common, skc_rcv_saddr,
9986 sizeof_field(struct sock_common,
9987 skc_rcv_saddr),
9988 target_size));
9989 break;
9990
9991 case offsetof(struct bpf_sock, dst_ip4):
9992 *insn++ = BPF_LDX_MEM(
9993 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9994 bpf_target_off(struct sock_common, skc_daddr,
9995 sizeof_field(struct sock_common,
9996 skc_daddr),
9997 target_size));
9998 break;
9999
10000 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10001 #if IS_ENABLED(CONFIG_IPV6)
10002 off = si->off;
10003 off -= offsetof(struct bpf_sock, src_ip6[0]);
10004 *insn++ = BPF_LDX_MEM(
10005 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10006 bpf_target_off(
10007 struct sock_common,
10008 skc_v6_rcv_saddr.s6_addr32[0],
10009 sizeof_field(struct sock_common,
10010 skc_v6_rcv_saddr.s6_addr32[0]),
10011 target_size) + off);
10012 #else
10013 (void)off;
10014 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10015 #endif
10016 break;
10017
10018 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10019 #if IS_ENABLED(CONFIG_IPV6)
10020 off = si->off;
10021 off -= offsetof(struct bpf_sock, dst_ip6[0]);
10022 *insn++ = BPF_LDX_MEM(
10023 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10024 bpf_target_off(struct sock_common,
10025 skc_v6_daddr.s6_addr32[0],
10026 sizeof_field(struct sock_common,
10027 skc_v6_daddr.s6_addr32[0]),
10028 target_size) + off);
10029 #else
10030 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10031 *target_size = 4;
10032 #endif
10033 break;
10034
10035 case offsetof(struct bpf_sock, src_port):
10036 *insn++ = BPF_LDX_MEM(
10037 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10038 si->dst_reg, si->src_reg,
10039 bpf_target_off(struct sock_common, skc_num,
10040 sizeof_field(struct sock_common,
10041 skc_num),
10042 target_size));
10043 break;
10044
10045 case offsetof(struct bpf_sock, dst_port):
10046 *insn++ = BPF_LDX_MEM(
10047 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10048 si->dst_reg, si->src_reg,
10049 bpf_target_off(struct sock_common, skc_dport,
10050 sizeof_field(struct sock_common,
10051 skc_dport),
10052 target_size));
10053 break;
10054
10055 case offsetof(struct bpf_sock, state):
10056 *insn++ = BPF_LDX_MEM(
10057 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10058 si->dst_reg, si->src_reg,
10059 bpf_target_off(struct sock_common, skc_state,
10060 sizeof_field(struct sock_common,
10061 skc_state),
10062 target_size));
10063 break;
10064 case offsetof(struct bpf_sock, rx_queue_mapping):
10065 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10066 *insn++ = BPF_LDX_MEM(
10067 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10068 si->dst_reg, si->src_reg,
10069 bpf_target_off(struct sock, sk_rx_queue_mapping,
10070 sizeof_field(struct sock,
10071 sk_rx_queue_mapping),
10072 target_size));
10073 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10074 1);
10075 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10076 #else
10077 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10078 *target_size = 2;
10079 #endif
10080 break;
10081 }
10082
10083 return insn - insn_buf;
10084 }
10085
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10086 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10087 const struct bpf_insn *si,
10088 struct bpf_insn *insn_buf,
10089 struct bpf_prog *prog, u32 *target_size)
10090 {
10091 struct bpf_insn *insn = insn_buf;
10092
10093 switch (si->off) {
10094 case offsetof(struct __sk_buff, ifindex):
10095 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10096 si->dst_reg, si->src_reg,
10097 offsetof(struct sk_buff, dev));
10098 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10099 bpf_target_off(struct net_device, ifindex, 4,
10100 target_size));
10101 break;
10102 default:
10103 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10104 target_size);
10105 }
10106
10107 return insn - insn_buf;
10108 }
10109
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10110 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10111 const struct bpf_insn *si,
10112 struct bpf_insn *insn_buf,
10113 struct bpf_prog *prog, u32 *target_size)
10114 {
10115 struct bpf_insn *insn = insn_buf;
10116
10117 switch (si->off) {
10118 case offsetof(struct xdp_md, data):
10119 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10120 si->dst_reg, si->src_reg,
10121 offsetof(struct xdp_buff, data));
10122 break;
10123 case offsetof(struct xdp_md, data_meta):
10124 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10125 si->dst_reg, si->src_reg,
10126 offsetof(struct xdp_buff, data_meta));
10127 break;
10128 case offsetof(struct xdp_md, data_end):
10129 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10130 si->dst_reg, si->src_reg,
10131 offsetof(struct xdp_buff, data_end));
10132 break;
10133 case offsetof(struct xdp_md, ingress_ifindex):
10134 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10135 si->dst_reg, si->src_reg,
10136 offsetof(struct xdp_buff, rxq));
10137 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10138 si->dst_reg, si->dst_reg,
10139 offsetof(struct xdp_rxq_info, dev));
10140 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10141 offsetof(struct net_device, ifindex));
10142 break;
10143 case offsetof(struct xdp_md, rx_queue_index):
10144 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10145 si->dst_reg, si->src_reg,
10146 offsetof(struct xdp_buff, rxq));
10147 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10148 offsetof(struct xdp_rxq_info,
10149 queue_index));
10150 break;
10151 case offsetof(struct xdp_md, egress_ifindex):
10152 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10153 si->dst_reg, si->src_reg,
10154 offsetof(struct xdp_buff, txq));
10155 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10156 si->dst_reg, si->dst_reg,
10157 offsetof(struct xdp_txq_info, dev));
10158 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10159 offsetof(struct net_device, ifindex));
10160 break;
10161 }
10162
10163 return insn - insn_buf;
10164 }
10165
10166 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10167 * context Structure, F is Field in context structure that contains a pointer
10168 * to Nested Structure of type NS that has the field NF.
10169 *
10170 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10171 * sure that SIZE is not greater than actual size of S.F.NF.
10172 *
10173 * If offset OFF is provided, the load happens from that offset relative to
10174 * offset of NF.
10175 */
10176 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10177 do { \
10178 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10179 si->src_reg, offsetof(S, F)); \
10180 *insn++ = BPF_LDX_MEM( \
10181 SIZE, si->dst_reg, si->dst_reg, \
10182 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10183 target_size) \
10184 + OFF); \
10185 } while (0)
10186
10187 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10188 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10189 BPF_FIELD_SIZEOF(NS, NF), 0)
10190
10191 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10192 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10193 *
10194 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10195 * "register" since two registers available in convert_ctx_access are not
10196 * enough: we can't override neither SRC, since it contains value to store, nor
10197 * DST since it contains pointer to context that may be used by later
10198 * instructions. But we need a temporary place to save pointer to nested
10199 * structure whose field we want to store to.
10200 */
10201 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10202 do { \
10203 int tmp_reg = BPF_REG_9; \
10204 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10205 --tmp_reg; \
10206 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10207 --tmp_reg; \
10208 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10209 offsetof(S, TF)); \
10210 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10211 si->dst_reg, offsetof(S, F)); \
10212 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10213 tmp_reg, si->src_reg, \
10214 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10215 target_size) \
10216 + OFF, \
10217 si->imm); \
10218 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10219 offsetof(S, TF)); \
10220 } while (0)
10221
10222 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10223 TF) \
10224 do { \
10225 if (type == BPF_WRITE) { \
10226 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10227 OFF, TF); \
10228 } else { \
10229 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10230 S, NS, F, NF, SIZE, OFF); \
10231 } \
10232 } while (0)
10233
10234 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
10235 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
10236 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10237
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10238 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10239 const struct bpf_insn *si,
10240 struct bpf_insn *insn_buf,
10241 struct bpf_prog *prog, u32 *target_size)
10242 {
10243 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10244 struct bpf_insn *insn = insn_buf;
10245
10246 switch (si->off) {
10247 case offsetof(struct bpf_sock_addr, user_family):
10248 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10249 struct sockaddr, uaddr, sa_family);
10250 break;
10251
10252 case offsetof(struct bpf_sock_addr, user_ip4):
10253 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10254 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10255 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10256 break;
10257
10258 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10259 off = si->off;
10260 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10261 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10262 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10263 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10264 tmp_reg);
10265 break;
10266
10267 case offsetof(struct bpf_sock_addr, user_port):
10268 /* To get port we need to know sa_family first and then treat
10269 * sockaddr as either sockaddr_in or sockaddr_in6.
10270 * Though we can simplify since port field has same offset and
10271 * size in both structures.
10272 * Here we check this invariant and use just one of the
10273 * structures if it's true.
10274 */
10275 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10276 offsetof(struct sockaddr_in6, sin6_port));
10277 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10278 sizeof_field(struct sockaddr_in6, sin6_port));
10279 /* Account for sin6_port being smaller than user_port. */
10280 port_size = min(port_size, BPF_LDST_BYTES(si));
10281 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10282 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10283 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10284 break;
10285
10286 case offsetof(struct bpf_sock_addr, family):
10287 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10288 struct sock, sk, sk_family);
10289 break;
10290
10291 case offsetof(struct bpf_sock_addr, type):
10292 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10293 struct sock, sk, sk_type);
10294 break;
10295
10296 case offsetof(struct bpf_sock_addr, protocol):
10297 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10298 struct sock, sk, sk_protocol);
10299 break;
10300
10301 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10302 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10303 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10304 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10305 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10306 break;
10307
10308 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10309 msg_src_ip6[3]):
10310 off = si->off;
10311 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10312 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10313 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10314 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10315 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10316 break;
10317 case offsetof(struct bpf_sock_addr, sk):
10318 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10319 si->dst_reg, si->src_reg,
10320 offsetof(struct bpf_sock_addr_kern, sk));
10321 break;
10322 }
10323
10324 return insn - insn_buf;
10325 }
10326
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10327 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10328 const struct bpf_insn *si,
10329 struct bpf_insn *insn_buf,
10330 struct bpf_prog *prog,
10331 u32 *target_size)
10332 {
10333 struct bpf_insn *insn = insn_buf;
10334 int off;
10335
10336 /* Helper macro for adding read access to tcp_sock or sock fields. */
10337 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10338 do { \
10339 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10340 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10341 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10342 if (si->dst_reg == reg || si->src_reg == reg) \
10343 reg--; \
10344 if (si->dst_reg == reg || si->src_reg == reg) \
10345 reg--; \
10346 if (si->dst_reg == si->src_reg) { \
10347 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10348 offsetof(struct bpf_sock_ops_kern, \
10349 temp)); \
10350 fullsock_reg = reg; \
10351 jmp += 2; \
10352 } \
10353 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10354 struct bpf_sock_ops_kern, \
10355 is_fullsock), \
10356 fullsock_reg, si->src_reg, \
10357 offsetof(struct bpf_sock_ops_kern, \
10358 is_fullsock)); \
10359 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10360 if (si->dst_reg == si->src_reg) \
10361 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10362 offsetof(struct bpf_sock_ops_kern, \
10363 temp)); \
10364 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10365 struct bpf_sock_ops_kern, sk),\
10366 si->dst_reg, si->src_reg, \
10367 offsetof(struct bpf_sock_ops_kern, sk));\
10368 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10369 OBJ_FIELD), \
10370 si->dst_reg, si->dst_reg, \
10371 offsetof(OBJ, OBJ_FIELD)); \
10372 if (si->dst_reg == si->src_reg) { \
10373 *insn++ = BPF_JMP_A(1); \
10374 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10375 offsetof(struct bpf_sock_ops_kern, \
10376 temp)); \
10377 } \
10378 } while (0)
10379
10380 #define SOCK_OPS_GET_SK() \
10381 do { \
10382 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10383 if (si->dst_reg == reg || si->src_reg == reg) \
10384 reg--; \
10385 if (si->dst_reg == reg || si->src_reg == reg) \
10386 reg--; \
10387 if (si->dst_reg == si->src_reg) { \
10388 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10389 offsetof(struct bpf_sock_ops_kern, \
10390 temp)); \
10391 fullsock_reg = reg; \
10392 jmp += 2; \
10393 } \
10394 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10395 struct bpf_sock_ops_kern, \
10396 is_fullsock), \
10397 fullsock_reg, si->src_reg, \
10398 offsetof(struct bpf_sock_ops_kern, \
10399 is_fullsock)); \
10400 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10401 if (si->dst_reg == si->src_reg) \
10402 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10403 offsetof(struct bpf_sock_ops_kern, \
10404 temp)); \
10405 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10406 struct bpf_sock_ops_kern, sk),\
10407 si->dst_reg, si->src_reg, \
10408 offsetof(struct bpf_sock_ops_kern, sk));\
10409 if (si->dst_reg == si->src_reg) { \
10410 *insn++ = BPF_JMP_A(1); \
10411 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10412 offsetof(struct bpf_sock_ops_kern, \
10413 temp)); \
10414 } \
10415 } while (0)
10416
10417 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10418 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10419
10420 /* Helper macro for adding write access to tcp_sock or sock fields.
10421 * The macro is called with two registers, dst_reg which contains a pointer
10422 * to ctx (context) and src_reg which contains the value that should be
10423 * stored. However, we need an additional register since we cannot overwrite
10424 * dst_reg because it may be used later in the program.
10425 * Instead we "borrow" one of the other register. We first save its value
10426 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10427 * it at the end of the macro.
10428 */
10429 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10430 do { \
10431 int reg = BPF_REG_9; \
10432 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10433 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10434 if (si->dst_reg == reg || si->src_reg == reg) \
10435 reg--; \
10436 if (si->dst_reg == reg || si->src_reg == reg) \
10437 reg--; \
10438 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10439 offsetof(struct bpf_sock_ops_kern, \
10440 temp)); \
10441 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10442 struct bpf_sock_ops_kern, \
10443 is_fullsock), \
10444 reg, si->dst_reg, \
10445 offsetof(struct bpf_sock_ops_kern, \
10446 is_fullsock)); \
10447 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10448 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10449 struct bpf_sock_ops_kern, sk),\
10450 reg, si->dst_reg, \
10451 offsetof(struct bpf_sock_ops_kern, sk));\
10452 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10453 BPF_MEM | BPF_CLASS(si->code), \
10454 reg, si->src_reg, \
10455 offsetof(OBJ, OBJ_FIELD), \
10456 si->imm); \
10457 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10458 offsetof(struct bpf_sock_ops_kern, \
10459 temp)); \
10460 } while (0)
10461
10462 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10463 do { \
10464 if (TYPE == BPF_WRITE) \
10465 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10466 else \
10467 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10468 } while (0)
10469
10470 switch (si->off) {
10471 case offsetof(struct bpf_sock_ops, op):
10472 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10473 op),
10474 si->dst_reg, si->src_reg,
10475 offsetof(struct bpf_sock_ops_kern, op));
10476 break;
10477
10478 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10479 offsetof(struct bpf_sock_ops, replylong[3]):
10480 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10481 sizeof_field(struct bpf_sock_ops_kern, reply));
10482 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10483 sizeof_field(struct bpf_sock_ops_kern, replylong));
10484 off = si->off;
10485 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10486 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10487 if (type == BPF_WRITE)
10488 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10489 else
10490 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10491 off);
10492 break;
10493
10494 case offsetof(struct bpf_sock_ops, family):
10495 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10496
10497 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10498 struct bpf_sock_ops_kern, sk),
10499 si->dst_reg, si->src_reg,
10500 offsetof(struct bpf_sock_ops_kern, sk));
10501 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10502 offsetof(struct sock_common, skc_family));
10503 break;
10504
10505 case offsetof(struct bpf_sock_ops, remote_ip4):
10506 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10507
10508 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10509 struct bpf_sock_ops_kern, sk),
10510 si->dst_reg, si->src_reg,
10511 offsetof(struct bpf_sock_ops_kern, sk));
10512 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10513 offsetof(struct sock_common, skc_daddr));
10514 break;
10515
10516 case offsetof(struct bpf_sock_ops, local_ip4):
10517 BUILD_BUG_ON(sizeof_field(struct sock_common,
10518 skc_rcv_saddr) != 4);
10519
10520 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10521 struct bpf_sock_ops_kern, sk),
10522 si->dst_reg, si->src_reg,
10523 offsetof(struct bpf_sock_ops_kern, sk));
10524 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10525 offsetof(struct sock_common,
10526 skc_rcv_saddr));
10527 break;
10528
10529 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10530 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10531 #if IS_ENABLED(CONFIG_IPV6)
10532 BUILD_BUG_ON(sizeof_field(struct sock_common,
10533 skc_v6_daddr.s6_addr32[0]) != 4);
10534
10535 off = si->off;
10536 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10537 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10538 struct bpf_sock_ops_kern, sk),
10539 si->dst_reg, si->src_reg,
10540 offsetof(struct bpf_sock_ops_kern, sk));
10541 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10542 offsetof(struct sock_common,
10543 skc_v6_daddr.s6_addr32[0]) +
10544 off);
10545 #else
10546 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10547 #endif
10548 break;
10549
10550 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10551 offsetof(struct bpf_sock_ops, local_ip6[3]):
10552 #if IS_ENABLED(CONFIG_IPV6)
10553 BUILD_BUG_ON(sizeof_field(struct sock_common,
10554 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10555
10556 off = si->off;
10557 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10558 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10559 struct bpf_sock_ops_kern, sk),
10560 si->dst_reg, si->src_reg,
10561 offsetof(struct bpf_sock_ops_kern, sk));
10562 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10563 offsetof(struct sock_common,
10564 skc_v6_rcv_saddr.s6_addr32[0]) +
10565 off);
10566 #else
10567 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10568 #endif
10569 break;
10570
10571 case offsetof(struct bpf_sock_ops, remote_port):
10572 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10573
10574 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10575 struct bpf_sock_ops_kern, sk),
10576 si->dst_reg, si->src_reg,
10577 offsetof(struct bpf_sock_ops_kern, sk));
10578 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10579 offsetof(struct sock_common, skc_dport));
10580 #ifndef __BIG_ENDIAN_BITFIELD
10581 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10582 #endif
10583 break;
10584
10585 case offsetof(struct bpf_sock_ops, local_port):
10586 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10587
10588 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10589 struct bpf_sock_ops_kern, sk),
10590 si->dst_reg, si->src_reg,
10591 offsetof(struct bpf_sock_ops_kern, sk));
10592 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10593 offsetof(struct sock_common, skc_num));
10594 break;
10595
10596 case offsetof(struct bpf_sock_ops, is_fullsock):
10597 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10598 struct bpf_sock_ops_kern,
10599 is_fullsock),
10600 si->dst_reg, si->src_reg,
10601 offsetof(struct bpf_sock_ops_kern,
10602 is_fullsock));
10603 break;
10604
10605 case offsetof(struct bpf_sock_ops, state):
10606 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10607
10608 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10609 struct bpf_sock_ops_kern, sk),
10610 si->dst_reg, si->src_reg,
10611 offsetof(struct bpf_sock_ops_kern, sk));
10612 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10613 offsetof(struct sock_common, skc_state));
10614 break;
10615
10616 case offsetof(struct bpf_sock_ops, rtt_min):
10617 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10618 sizeof(struct minmax));
10619 BUILD_BUG_ON(sizeof(struct minmax) <
10620 sizeof(struct minmax_sample));
10621
10622 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10623 struct bpf_sock_ops_kern, sk),
10624 si->dst_reg, si->src_reg,
10625 offsetof(struct bpf_sock_ops_kern, sk));
10626 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10627 offsetof(struct tcp_sock, rtt_min) +
10628 sizeof_field(struct minmax_sample, t));
10629 break;
10630
10631 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10632 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10633 struct tcp_sock);
10634 break;
10635
10636 case offsetof(struct bpf_sock_ops, sk_txhash):
10637 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10638 struct sock, type);
10639 break;
10640 case offsetof(struct bpf_sock_ops, snd_cwnd):
10641 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10642 break;
10643 case offsetof(struct bpf_sock_ops, srtt_us):
10644 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10645 break;
10646 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10647 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10648 break;
10649 case offsetof(struct bpf_sock_ops, rcv_nxt):
10650 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10651 break;
10652 case offsetof(struct bpf_sock_ops, snd_nxt):
10653 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10654 break;
10655 case offsetof(struct bpf_sock_ops, snd_una):
10656 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10657 break;
10658 case offsetof(struct bpf_sock_ops, mss_cache):
10659 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10660 break;
10661 case offsetof(struct bpf_sock_ops, ecn_flags):
10662 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10663 break;
10664 case offsetof(struct bpf_sock_ops, rate_delivered):
10665 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10666 break;
10667 case offsetof(struct bpf_sock_ops, rate_interval_us):
10668 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10669 break;
10670 case offsetof(struct bpf_sock_ops, packets_out):
10671 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10672 break;
10673 case offsetof(struct bpf_sock_ops, retrans_out):
10674 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10675 break;
10676 case offsetof(struct bpf_sock_ops, total_retrans):
10677 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10678 break;
10679 case offsetof(struct bpf_sock_ops, segs_in):
10680 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10681 break;
10682 case offsetof(struct bpf_sock_ops, data_segs_in):
10683 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10684 break;
10685 case offsetof(struct bpf_sock_ops, segs_out):
10686 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10687 break;
10688 case offsetof(struct bpf_sock_ops, data_segs_out):
10689 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10690 break;
10691 case offsetof(struct bpf_sock_ops, lost_out):
10692 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10693 break;
10694 case offsetof(struct bpf_sock_ops, sacked_out):
10695 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10696 break;
10697 case offsetof(struct bpf_sock_ops, bytes_received):
10698 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10699 break;
10700 case offsetof(struct bpf_sock_ops, bytes_acked):
10701 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10702 break;
10703 case offsetof(struct bpf_sock_ops, sk):
10704 SOCK_OPS_GET_SK();
10705 break;
10706 case offsetof(struct bpf_sock_ops, skb_data_end):
10707 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10708 skb_data_end),
10709 si->dst_reg, si->src_reg,
10710 offsetof(struct bpf_sock_ops_kern,
10711 skb_data_end));
10712 break;
10713 case offsetof(struct bpf_sock_ops, skb_data):
10714 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10715 skb),
10716 si->dst_reg, si->src_reg,
10717 offsetof(struct bpf_sock_ops_kern,
10718 skb));
10719 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10720 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10721 si->dst_reg, si->dst_reg,
10722 offsetof(struct sk_buff, data));
10723 break;
10724 case offsetof(struct bpf_sock_ops, skb_len):
10725 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10726 skb),
10727 si->dst_reg, si->src_reg,
10728 offsetof(struct bpf_sock_ops_kern,
10729 skb));
10730 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10731 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10732 si->dst_reg, si->dst_reg,
10733 offsetof(struct sk_buff, len));
10734 break;
10735 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10736 off = offsetof(struct sk_buff, cb);
10737 off += offsetof(struct tcp_skb_cb, tcp_flags);
10738 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10739 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10740 skb),
10741 si->dst_reg, si->src_reg,
10742 offsetof(struct bpf_sock_ops_kern,
10743 skb));
10744 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10745 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10746 tcp_flags),
10747 si->dst_reg, si->dst_reg, off);
10748 break;
10749 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10750 struct bpf_insn *jmp_on_null_skb;
10751
10752 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10753 skb),
10754 si->dst_reg, si->src_reg,
10755 offsetof(struct bpf_sock_ops_kern,
10756 skb));
10757 /* Reserve one insn to test skb == NULL */
10758 jmp_on_null_skb = insn++;
10759 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10760 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10761 bpf_target_off(struct skb_shared_info,
10762 hwtstamps, 8,
10763 target_size));
10764 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10765 insn - jmp_on_null_skb - 1);
10766 break;
10767 }
10768 }
10769 return insn - insn_buf;
10770 }
10771
10772 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10773 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10774 struct bpf_insn *insn)
10775 {
10776 int reg;
10777 int temp_reg_off = offsetof(struct sk_buff, cb) +
10778 offsetof(struct sk_skb_cb, temp_reg);
10779
10780 if (si->src_reg == si->dst_reg) {
10781 /* We need an extra register, choose and save a register. */
10782 reg = BPF_REG_9;
10783 if (si->src_reg == reg || si->dst_reg == reg)
10784 reg--;
10785 if (si->src_reg == reg || si->dst_reg == reg)
10786 reg--;
10787 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10788 } else {
10789 reg = si->dst_reg;
10790 }
10791
10792 /* reg = skb->data */
10793 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10794 reg, si->src_reg,
10795 offsetof(struct sk_buff, data));
10796 /* AX = skb->len */
10797 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10798 BPF_REG_AX, si->src_reg,
10799 offsetof(struct sk_buff, len));
10800 /* reg = skb->data + skb->len */
10801 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10802 /* AX = skb->data_len */
10803 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10804 BPF_REG_AX, si->src_reg,
10805 offsetof(struct sk_buff, data_len));
10806
10807 /* reg = skb->data + skb->len - skb->data_len */
10808 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10809
10810 if (si->src_reg == si->dst_reg) {
10811 /* Restore the saved register */
10812 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10813 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10814 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10815 }
10816
10817 return insn;
10818 }
10819
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10820 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10821 const struct bpf_insn *si,
10822 struct bpf_insn *insn_buf,
10823 struct bpf_prog *prog, u32 *target_size)
10824 {
10825 struct bpf_insn *insn = insn_buf;
10826 int off;
10827
10828 switch (si->off) {
10829 case offsetof(struct __sk_buff, data_end):
10830 insn = bpf_convert_data_end_access(si, insn);
10831 break;
10832 case offsetof(struct __sk_buff, cb[0]) ...
10833 offsetofend(struct __sk_buff, cb[4]) - 1:
10834 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10835 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10836 offsetof(struct sk_skb_cb, data)) %
10837 sizeof(__u64));
10838
10839 prog->cb_access = 1;
10840 off = si->off;
10841 off -= offsetof(struct __sk_buff, cb[0]);
10842 off += offsetof(struct sk_buff, cb);
10843 off += offsetof(struct sk_skb_cb, data);
10844 if (type == BPF_WRITE)
10845 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10846 else
10847 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10848 si->src_reg, off);
10849 break;
10850
10851
10852 default:
10853 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10854 target_size);
10855 }
10856
10857 return insn - insn_buf;
10858 }
10859
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10860 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10861 const struct bpf_insn *si,
10862 struct bpf_insn *insn_buf,
10863 struct bpf_prog *prog, u32 *target_size)
10864 {
10865 struct bpf_insn *insn = insn_buf;
10866 #if IS_ENABLED(CONFIG_IPV6)
10867 int off;
10868 #endif
10869
10870 /* convert ctx uses the fact sg element is first in struct */
10871 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10872
10873 switch (si->off) {
10874 case offsetof(struct sk_msg_md, data):
10875 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10876 si->dst_reg, si->src_reg,
10877 offsetof(struct sk_msg, data));
10878 break;
10879 case offsetof(struct sk_msg_md, data_end):
10880 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10881 si->dst_reg, si->src_reg,
10882 offsetof(struct sk_msg, data_end));
10883 break;
10884 case offsetof(struct sk_msg_md, family):
10885 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10886
10887 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10888 struct sk_msg, sk),
10889 si->dst_reg, si->src_reg,
10890 offsetof(struct sk_msg, sk));
10891 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10892 offsetof(struct sock_common, skc_family));
10893 break;
10894
10895 case offsetof(struct sk_msg_md, remote_ip4):
10896 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10897
10898 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10899 struct sk_msg, sk),
10900 si->dst_reg, si->src_reg,
10901 offsetof(struct sk_msg, sk));
10902 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10903 offsetof(struct sock_common, skc_daddr));
10904 break;
10905
10906 case offsetof(struct sk_msg_md, local_ip4):
10907 BUILD_BUG_ON(sizeof_field(struct sock_common,
10908 skc_rcv_saddr) != 4);
10909
10910 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10911 struct sk_msg, sk),
10912 si->dst_reg, si->src_reg,
10913 offsetof(struct sk_msg, sk));
10914 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10915 offsetof(struct sock_common,
10916 skc_rcv_saddr));
10917 break;
10918
10919 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10920 offsetof(struct sk_msg_md, remote_ip6[3]):
10921 #if IS_ENABLED(CONFIG_IPV6)
10922 BUILD_BUG_ON(sizeof_field(struct sock_common,
10923 skc_v6_daddr.s6_addr32[0]) != 4);
10924
10925 off = si->off;
10926 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10927 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10928 struct sk_msg, sk),
10929 si->dst_reg, si->src_reg,
10930 offsetof(struct sk_msg, sk));
10931 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10932 offsetof(struct sock_common,
10933 skc_v6_daddr.s6_addr32[0]) +
10934 off);
10935 #else
10936 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10937 #endif
10938 break;
10939
10940 case offsetof(struct sk_msg_md, local_ip6[0]) ...
10941 offsetof(struct sk_msg_md, local_ip6[3]):
10942 #if IS_ENABLED(CONFIG_IPV6)
10943 BUILD_BUG_ON(sizeof_field(struct sock_common,
10944 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10945
10946 off = si->off;
10947 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10948 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10949 struct sk_msg, sk),
10950 si->dst_reg, si->src_reg,
10951 offsetof(struct sk_msg, sk));
10952 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10953 offsetof(struct sock_common,
10954 skc_v6_rcv_saddr.s6_addr32[0]) +
10955 off);
10956 #else
10957 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10958 #endif
10959 break;
10960
10961 case offsetof(struct sk_msg_md, remote_port):
10962 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10963
10964 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10965 struct sk_msg, sk),
10966 si->dst_reg, si->src_reg,
10967 offsetof(struct sk_msg, sk));
10968 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10969 offsetof(struct sock_common, skc_dport));
10970 #ifndef __BIG_ENDIAN_BITFIELD
10971 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10972 #endif
10973 break;
10974
10975 case offsetof(struct sk_msg_md, local_port):
10976 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10977
10978 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10979 struct sk_msg, sk),
10980 si->dst_reg, si->src_reg,
10981 offsetof(struct sk_msg, sk));
10982 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10983 offsetof(struct sock_common, skc_num));
10984 break;
10985
10986 case offsetof(struct sk_msg_md, size):
10987 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10988 si->dst_reg, si->src_reg,
10989 offsetof(struct sk_msg_sg, size));
10990 break;
10991
10992 case offsetof(struct sk_msg_md, sk):
10993 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10994 si->dst_reg, si->src_reg,
10995 offsetof(struct sk_msg, sk));
10996 break;
10997 }
10998
10999 return insn - insn_buf;
11000 }
11001
11002 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11003 .get_func_proto = sk_filter_func_proto,
11004 .is_valid_access = sk_filter_is_valid_access,
11005 .convert_ctx_access = bpf_convert_ctx_access,
11006 .gen_ld_abs = bpf_gen_ld_abs,
11007 };
11008
11009 const struct bpf_prog_ops sk_filter_prog_ops = {
11010 .test_run = bpf_prog_test_run_skb,
11011 };
11012
11013 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11014 .get_func_proto = tc_cls_act_func_proto,
11015 .is_valid_access = tc_cls_act_is_valid_access,
11016 .convert_ctx_access = tc_cls_act_convert_ctx_access,
11017 .gen_prologue = tc_cls_act_prologue,
11018 .gen_ld_abs = bpf_gen_ld_abs,
11019 .btf_struct_access = tc_cls_act_btf_struct_access,
11020 };
11021
11022 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11023 .test_run = bpf_prog_test_run_skb,
11024 };
11025
11026 const struct bpf_verifier_ops xdp_verifier_ops = {
11027 .get_func_proto = xdp_func_proto,
11028 .is_valid_access = xdp_is_valid_access,
11029 .convert_ctx_access = xdp_convert_ctx_access,
11030 .gen_prologue = bpf_noop_prologue,
11031 .btf_struct_access = xdp_btf_struct_access,
11032 };
11033
11034 const struct bpf_prog_ops xdp_prog_ops = {
11035 .test_run = bpf_prog_test_run_xdp,
11036 };
11037
11038 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11039 .get_func_proto = cg_skb_func_proto,
11040 .is_valid_access = cg_skb_is_valid_access,
11041 .convert_ctx_access = bpf_convert_ctx_access,
11042 };
11043
11044 const struct bpf_prog_ops cg_skb_prog_ops = {
11045 .test_run = bpf_prog_test_run_skb,
11046 };
11047
11048 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11049 .get_func_proto = lwt_in_func_proto,
11050 .is_valid_access = lwt_is_valid_access,
11051 .convert_ctx_access = bpf_convert_ctx_access,
11052 };
11053
11054 const struct bpf_prog_ops lwt_in_prog_ops = {
11055 .test_run = bpf_prog_test_run_skb,
11056 };
11057
11058 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11059 .get_func_proto = lwt_out_func_proto,
11060 .is_valid_access = lwt_is_valid_access,
11061 .convert_ctx_access = bpf_convert_ctx_access,
11062 };
11063
11064 const struct bpf_prog_ops lwt_out_prog_ops = {
11065 .test_run = bpf_prog_test_run_skb,
11066 };
11067
11068 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11069 .get_func_proto = lwt_xmit_func_proto,
11070 .is_valid_access = lwt_is_valid_access,
11071 .convert_ctx_access = bpf_convert_ctx_access,
11072 .gen_prologue = tc_cls_act_prologue,
11073 };
11074
11075 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11076 .test_run = bpf_prog_test_run_skb,
11077 };
11078
11079 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11080 .get_func_proto = lwt_seg6local_func_proto,
11081 .is_valid_access = lwt_is_valid_access,
11082 .convert_ctx_access = bpf_convert_ctx_access,
11083 };
11084
11085 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11086 };
11087
11088 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11089 .get_func_proto = sock_filter_func_proto,
11090 .is_valid_access = sock_filter_is_valid_access,
11091 .convert_ctx_access = bpf_sock_convert_ctx_access,
11092 };
11093
11094 const struct bpf_prog_ops cg_sock_prog_ops = {
11095 };
11096
11097 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11098 .get_func_proto = sock_addr_func_proto,
11099 .is_valid_access = sock_addr_is_valid_access,
11100 .convert_ctx_access = sock_addr_convert_ctx_access,
11101 };
11102
11103 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11104 };
11105
11106 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11107 .get_func_proto = sock_ops_func_proto,
11108 .is_valid_access = sock_ops_is_valid_access,
11109 .convert_ctx_access = sock_ops_convert_ctx_access,
11110 };
11111
11112 const struct bpf_prog_ops sock_ops_prog_ops = {
11113 };
11114
11115 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11116 .get_func_proto = sk_skb_func_proto,
11117 .is_valid_access = sk_skb_is_valid_access,
11118 .convert_ctx_access = sk_skb_convert_ctx_access,
11119 .gen_prologue = sk_skb_prologue,
11120 };
11121
11122 const struct bpf_prog_ops sk_skb_prog_ops = {
11123 };
11124
11125 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11126 .get_func_proto = sk_msg_func_proto,
11127 .is_valid_access = sk_msg_is_valid_access,
11128 .convert_ctx_access = sk_msg_convert_ctx_access,
11129 .gen_prologue = bpf_noop_prologue,
11130 };
11131
11132 const struct bpf_prog_ops sk_msg_prog_ops = {
11133 };
11134
11135 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11136 .get_func_proto = flow_dissector_func_proto,
11137 .is_valid_access = flow_dissector_is_valid_access,
11138 .convert_ctx_access = flow_dissector_convert_ctx_access,
11139 };
11140
11141 const struct bpf_prog_ops flow_dissector_prog_ops = {
11142 .test_run = bpf_prog_test_run_flow_dissector,
11143 };
11144
sk_detach_filter(struct sock * sk)11145 int sk_detach_filter(struct sock *sk)
11146 {
11147 int ret = -ENOENT;
11148 struct sk_filter *filter;
11149
11150 if (sock_flag(sk, SOCK_FILTER_LOCKED))
11151 return -EPERM;
11152
11153 filter = rcu_dereference_protected(sk->sk_filter,
11154 lockdep_sock_is_held(sk));
11155 if (filter) {
11156 RCU_INIT_POINTER(sk->sk_filter, NULL);
11157 sk_filter_uncharge(sk, filter);
11158 ret = 0;
11159 }
11160
11161 return ret;
11162 }
11163 EXPORT_SYMBOL_GPL(sk_detach_filter);
11164
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11165 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11166 {
11167 struct sock_fprog_kern *fprog;
11168 struct sk_filter *filter;
11169 int ret = 0;
11170
11171 sockopt_lock_sock(sk);
11172 filter = rcu_dereference_protected(sk->sk_filter,
11173 lockdep_sock_is_held(sk));
11174 if (!filter)
11175 goto out;
11176
11177 /* We're copying the filter that has been originally attached,
11178 * so no conversion/decode needed anymore. eBPF programs that
11179 * have no original program cannot be dumped through this.
11180 */
11181 ret = -EACCES;
11182 fprog = filter->prog->orig_prog;
11183 if (!fprog)
11184 goto out;
11185
11186 ret = fprog->len;
11187 if (!len)
11188 /* User space only enquires number of filter blocks. */
11189 goto out;
11190
11191 ret = -EINVAL;
11192 if (len < fprog->len)
11193 goto out;
11194
11195 ret = -EFAULT;
11196 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11197 goto out;
11198
11199 /* Instead of bytes, the API requests to return the number
11200 * of filter blocks.
11201 */
11202 ret = fprog->len;
11203 out:
11204 sockopt_release_sock(sk);
11205 return ret;
11206 }
11207
11208 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11209 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11210 struct sock_reuseport *reuse,
11211 struct sock *sk, struct sk_buff *skb,
11212 struct sock *migrating_sk,
11213 u32 hash)
11214 {
11215 reuse_kern->skb = skb;
11216 reuse_kern->sk = sk;
11217 reuse_kern->selected_sk = NULL;
11218 reuse_kern->migrating_sk = migrating_sk;
11219 reuse_kern->data_end = skb->data + skb_headlen(skb);
11220 reuse_kern->hash = hash;
11221 reuse_kern->reuseport_id = reuse->reuseport_id;
11222 reuse_kern->bind_inany = reuse->bind_inany;
11223 }
11224
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11225 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11226 struct bpf_prog *prog, struct sk_buff *skb,
11227 struct sock *migrating_sk,
11228 u32 hash)
11229 {
11230 struct sk_reuseport_kern reuse_kern;
11231 enum sk_action action;
11232
11233 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11234 action = bpf_prog_run(prog, &reuse_kern);
11235
11236 if (action == SK_PASS)
11237 return reuse_kern.selected_sk;
11238 else
11239 return ERR_PTR(-ECONNREFUSED);
11240 }
11241
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11242 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11243 struct bpf_map *, map, void *, key, u32, flags)
11244 {
11245 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11246 struct sock_reuseport *reuse;
11247 struct sock *selected_sk;
11248
11249 selected_sk = map->ops->map_lookup_elem(map, key);
11250 if (!selected_sk)
11251 return -ENOENT;
11252
11253 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11254 if (!reuse) {
11255 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11256 if (sk_is_refcounted(selected_sk))
11257 sock_put(selected_sk);
11258
11259 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11260 * The only (!reuse) case here is - the sk has already been
11261 * unhashed (e.g. by close()), so treat it as -ENOENT.
11262 *
11263 * Other maps (e.g. sock_map) do not provide this guarantee and
11264 * the sk may never be in the reuseport group to begin with.
11265 */
11266 return is_sockarray ? -ENOENT : -EINVAL;
11267 }
11268
11269 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11270 struct sock *sk = reuse_kern->sk;
11271
11272 if (sk->sk_protocol != selected_sk->sk_protocol)
11273 return -EPROTOTYPE;
11274 else if (sk->sk_family != selected_sk->sk_family)
11275 return -EAFNOSUPPORT;
11276
11277 /* Catch all. Likely bound to a different sockaddr. */
11278 return -EBADFD;
11279 }
11280
11281 reuse_kern->selected_sk = selected_sk;
11282
11283 return 0;
11284 }
11285
11286 static const struct bpf_func_proto sk_select_reuseport_proto = {
11287 .func = sk_select_reuseport,
11288 .gpl_only = false,
11289 .ret_type = RET_INTEGER,
11290 .arg1_type = ARG_PTR_TO_CTX,
11291 .arg2_type = ARG_CONST_MAP_PTR,
11292 .arg3_type = ARG_PTR_TO_MAP_KEY,
11293 .arg4_type = ARG_ANYTHING,
11294 };
11295
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11296 BPF_CALL_4(sk_reuseport_load_bytes,
11297 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11298 void *, to, u32, len)
11299 {
11300 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11301 }
11302
11303 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11304 .func = sk_reuseport_load_bytes,
11305 .gpl_only = false,
11306 .ret_type = RET_INTEGER,
11307 .arg1_type = ARG_PTR_TO_CTX,
11308 .arg2_type = ARG_ANYTHING,
11309 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11310 .arg4_type = ARG_CONST_SIZE,
11311 };
11312
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11313 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11314 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11315 void *, to, u32, len, u32, start_header)
11316 {
11317 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11318 len, start_header);
11319 }
11320
11321 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11322 .func = sk_reuseport_load_bytes_relative,
11323 .gpl_only = false,
11324 .ret_type = RET_INTEGER,
11325 .arg1_type = ARG_PTR_TO_CTX,
11326 .arg2_type = ARG_ANYTHING,
11327 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11328 .arg4_type = ARG_CONST_SIZE,
11329 .arg5_type = ARG_ANYTHING,
11330 };
11331
11332 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11333 sk_reuseport_func_proto(enum bpf_func_id func_id,
11334 const struct bpf_prog *prog)
11335 {
11336 switch (func_id) {
11337 case BPF_FUNC_sk_select_reuseport:
11338 return &sk_select_reuseport_proto;
11339 case BPF_FUNC_skb_load_bytes:
11340 return &sk_reuseport_load_bytes_proto;
11341 case BPF_FUNC_skb_load_bytes_relative:
11342 return &sk_reuseport_load_bytes_relative_proto;
11343 case BPF_FUNC_get_socket_cookie:
11344 return &bpf_get_socket_ptr_cookie_proto;
11345 case BPF_FUNC_ktime_get_coarse_ns:
11346 return &bpf_ktime_get_coarse_ns_proto;
11347 default:
11348 return bpf_base_func_proto(func_id, prog);
11349 }
11350 }
11351
11352 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11353 sk_reuseport_is_valid_access(int off, int size,
11354 enum bpf_access_type type,
11355 const struct bpf_prog *prog,
11356 struct bpf_insn_access_aux *info)
11357 {
11358 const u32 size_default = sizeof(__u32);
11359
11360 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11361 off % size || type != BPF_READ)
11362 return false;
11363
11364 switch (off) {
11365 case offsetof(struct sk_reuseport_md, data):
11366 info->reg_type = PTR_TO_PACKET;
11367 return size == sizeof(__u64);
11368
11369 case offsetof(struct sk_reuseport_md, data_end):
11370 info->reg_type = PTR_TO_PACKET_END;
11371 return size == sizeof(__u64);
11372
11373 case offsetof(struct sk_reuseport_md, hash):
11374 return size == size_default;
11375
11376 case offsetof(struct sk_reuseport_md, sk):
11377 info->reg_type = PTR_TO_SOCKET;
11378 return size == sizeof(__u64);
11379
11380 case offsetof(struct sk_reuseport_md, migrating_sk):
11381 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11382 return size == sizeof(__u64);
11383
11384 /* Fields that allow narrowing */
11385 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11386 if (size < sizeof_field(struct sk_buff, protocol))
11387 return false;
11388 fallthrough;
11389 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11390 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11391 case bpf_ctx_range(struct sk_reuseport_md, len):
11392 bpf_ctx_record_field_size(info, size_default);
11393 return bpf_ctx_narrow_access_ok(off, size, size_default);
11394
11395 default:
11396 return false;
11397 }
11398 }
11399
11400 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11401 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11402 si->dst_reg, si->src_reg, \
11403 bpf_target_off(struct sk_reuseport_kern, F, \
11404 sizeof_field(struct sk_reuseport_kern, F), \
11405 target_size)); \
11406 })
11407
11408 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11409 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11410 struct sk_buff, \
11411 skb, \
11412 SKB_FIELD)
11413
11414 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11415 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11416 struct sock, \
11417 sk, \
11418 SK_FIELD)
11419
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11420 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11421 const struct bpf_insn *si,
11422 struct bpf_insn *insn_buf,
11423 struct bpf_prog *prog,
11424 u32 *target_size)
11425 {
11426 struct bpf_insn *insn = insn_buf;
11427
11428 switch (si->off) {
11429 case offsetof(struct sk_reuseport_md, data):
11430 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11431 break;
11432
11433 case offsetof(struct sk_reuseport_md, len):
11434 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11435 break;
11436
11437 case offsetof(struct sk_reuseport_md, eth_protocol):
11438 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11439 break;
11440
11441 case offsetof(struct sk_reuseport_md, ip_protocol):
11442 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11443 break;
11444
11445 case offsetof(struct sk_reuseport_md, data_end):
11446 SK_REUSEPORT_LOAD_FIELD(data_end);
11447 break;
11448
11449 case offsetof(struct sk_reuseport_md, hash):
11450 SK_REUSEPORT_LOAD_FIELD(hash);
11451 break;
11452
11453 case offsetof(struct sk_reuseport_md, bind_inany):
11454 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11455 break;
11456
11457 case offsetof(struct sk_reuseport_md, sk):
11458 SK_REUSEPORT_LOAD_FIELD(sk);
11459 break;
11460
11461 case offsetof(struct sk_reuseport_md, migrating_sk):
11462 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11463 break;
11464 }
11465
11466 return insn - insn_buf;
11467 }
11468
11469 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11470 .get_func_proto = sk_reuseport_func_proto,
11471 .is_valid_access = sk_reuseport_is_valid_access,
11472 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11473 };
11474
11475 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11476 };
11477
11478 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11479 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11480
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11481 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11482 struct sock *, sk, u64, flags)
11483 {
11484 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11485 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11486 return -EINVAL;
11487 if (unlikely(sk && sk_is_refcounted(sk)))
11488 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11489 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11490 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11491 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11492 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11493
11494 /* Check if socket is suitable for packet L3/L4 protocol */
11495 if (sk && sk->sk_protocol != ctx->protocol)
11496 return -EPROTOTYPE;
11497 if (sk && sk->sk_family != ctx->family &&
11498 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11499 return -EAFNOSUPPORT;
11500
11501 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11502 return -EEXIST;
11503
11504 /* Select socket as lookup result */
11505 ctx->selected_sk = sk;
11506 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11507 return 0;
11508 }
11509
11510 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11511 .func = bpf_sk_lookup_assign,
11512 .gpl_only = false,
11513 .ret_type = RET_INTEGER,
11514 .arg1_type = ARG_PTR_TO_CTX,
11515 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11516 .arg3_type = ARG_ANYTHING,
11517 };
11518
11519 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11520 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11521 {
11522 switch (func_id) {
11523 case BPF_FUNC_perf_event_output:
11524 return &bpf_event_output_data_proto;
11525 case BPF_FUNC_sk_assign:
11526 return &bpf_sk_lookup_assign_proto;
11527 case BPF_FUNC_sk_release:
11528 return &bpf_sk_release_proto;
11529 default:
11530 return bpf_sk_base_func_proto(func_id, prog);
11531 }
11532 }
11533
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11534 static bool sk_lookup_is_valid_access(int off, int size,
11535 enum bpf_access_type type,
11536 const struct bpf_prog *prog,
11537 struct bpf_insn_access_aux *info)
11538 {
11539 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11540 return false;
11541 if (off % size != 0)
11542 return false;
11543 if (type != BPF_READ)
11544 return false;
11545
11546 switch (off) {
11547 case offsetof(struct bpf_sk_lookup, sk):
11548 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11549 return size == sizeof(__u64);
11550
11551 case bpf_ctx_range(struct bpf_sk_lookup, family):
11552 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11553 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11554 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11555 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11556 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11557 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11558 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11559 bpf_ctx_record_field_size(info, sizeof(__u32));
11560 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11561
11562 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11563 /* Allow 4-byte access to 2-byte field for backward compatibility */
11564 if (size == sizeof(__u32))
11565 return true;
11566 bpf_ctx_record_field_size(info, sizeof(__be16));
11567 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11568
11569 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11570 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11571 /* Allow access to zero padding for backward compatibility */
11572 bpf_ctx_record_field_size(info, sizeof(__u16));
11573 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11574
11575 default:
11576 return false;
11577 }
11578 }
11579
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11580 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11581 const struct bpf_insn *si,
11582 struct bpf_insn *insn_buf,
11583 struct bpf_prog *prog,
11584 u32 *target_size)
11585 {
11586 struct bpf_insn *insn = insn_buf;
11587
11588 switch (si->off) {
11589 case offsetof(struct bpf_sk_lookup, sk):
11590 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11591 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11592 break;
11593
11594 case offsetof(struct bpf_sk_lookup, family):
11595 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11596 bpf_target_off(struct bpf_sk_lookup_kern,
11597 family, 2, target_size));
11598 break;
11599
11600 case offsetof(struct bpf_sk_lookup, protocol):
11601 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11602 bpf_target_off(struct bpf_sk_lookup_kern,
11603 protocol, 2, target_size));
11604 break;
11605
11606 case offsetof(struct bpf_sk_lookup, remote_ip4):
11607 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11608 bpf_target_off(struct bpf_sk_lookup_kern,
11609 v4.saddr, 4, target_size));
11610 break;
11611
11612 case offsetof(struct bpf_sk_lookup, local_ip4):
11613 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11614 bpf_target_off(struct bpf_sk_lookup_kern,
11615 v4.daddr, 4, target_size));
11616 break;
11617
11618 case bpf_ctx_range_till(struct bpf_sk_lookup,
11619 remote_ip6[0], remote_ip6[3]): {
11620 #if IS_ENABLED(CONFIG_IPV6)
11621 int off = si->off;
11622
11623 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11624 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11625 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11626 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11627 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11628 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11629 #else
11630 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11631 #endif
11632 break;
11633 }
11634 case bpf_ctx_range_till(struct bpf_sk_lookup,
11635 local_ip6[0], local_ip6[3]): {
11636 #if IS_ENABLED(CONFIG_IPV6)
11637 int off = si->off;
11638
11639 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11640 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11641 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11642 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11643 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11644 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11645 #else
11646 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11647 #endif
11648 break;
11649 }
11650 case offsetof(struct bpf_sk_lookup, remote_port):
11651 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11652 bpf_target_off(struct bpf_sk_lookup_kern,
11653 sport, 2, target_size));
11654 break;
11655
11656 case offsetofend(struct bpf_sk_lookup, remote_port):
11657 *target_size = 2;
11658 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11659 break;
11660
11661 case offsetof(struct bpf_sk_lookup, local_port):
11662 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11663 bpf_target_off(struct bpf_sk_lookup_kern,
11664 dport, 2, target_size));
11665 break;
11666
11667 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11668 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11669 bpf_target_off(struct bpf_sk_lookup_kern,
11670 ingress_ifindex, 4, target_size));
11671 break;
11672 }
11673
11674 return insn - insn_buf;
11675 }
11676
11677 const struct bpf_prog_ops sk_lookup_prog_ops = {
11678 .test_run = bpf_prog_test_run_sk_lookup,
11679 };
11680
11681 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11682 .get_func_proto = sk_lookup_func_proto,
11683 .is_valid_access = sk_lookup_is_valid_access,
11684 .convert_ctx_access = sk_lookup_convert_ctx_access,
11685 };
11686
11687 #endif /* CONFIG_INET */
11688
DEFINE_BPF_DISPATCHER(xdp)11689 DEFINE_BPF_DISPATCHER(xdp)
11690
11691 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11692 {
11693 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11694 }
11695
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11696 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11697 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11698 BTF_SOCK_TYPE_xxx
11699 #undef BTF_SOCK_TYPE
11700
11701 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11702 {
11703 /* tcp6_sock type is not generated in dwarf and hence btf,
11704 * trigger an explicit type generation here.
11705 */
11706 BTF_TYPE_EMIT(struct tcp6_sock);
11707 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11708 sk->sk_family == AF_INET6)
11709 return (unsigned long)sk;
11710
11711 return (unsigned long)NULL;
11712 }
11713
11714 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11715 .func = bpf_skc_to_tcp6_sock,
11716 .gpl_only = false,
11717 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11718 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11719 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11720 };
11721
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11722 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11723 {
11724 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11725 return (unsigned long)sk;
11726
11727 return (unsigned long)NULL;
11728 }
11729
11730 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11731 .func = bpf_skc_to_tcp_sock,
11732 .gpl_only = false,
11733 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11734 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11735 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11736 };
11737
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11738 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11739 {
11740 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11741 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11742 */
11743 BTF_TYPE_EMIT(struct inet_timewait_sock);
11744 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11745
11746 #ifdef CONFIG_INET
11747 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11748 return (unsigned long)sk;
11749 #endif
11750
11751 #if IS_BUILTIN(CONFIG_IPV6)
11752 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11753 return (unsigned long)sk;
11754 #endif
11755
11756 return (unsigned long)NULL;
11757 }
11758
11759 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11760 .func = bpf_skc_to_tcp_timewait_sock,
11761 .gpl_only = false,
11762 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11763 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11764 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11765 };
11766
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11767 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11768 {
11769 #ifdef CONFIG_INET
11770 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11771 return (unsigned long)sk;
11772 #endif
11773
11774 #if IS_BUILTIN(CONFIG_IPV6)
11775 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11776 return (unsigned long)sk;
11777 #endif
11778
11779 return (unsigned long)NULL;
11780 }
11781
11782 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11783 .func = bpf_skc_to_tcp_request_sock,
11784 .gpl_only = false,
11785 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11786 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11787 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11788 };
11789
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11790 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11791 {
11792 /* udp6_sock type is not generated in dwarf and hence btf,
11793 * trigger an explicit type generation here.
11794 */
11795 BTF_TYPE_EMIT(struct udp6_sock);
11796 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11797 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11798 return (unsigned long)sk;
11799
11800 return (unsigned long)NULL;
11801 }
11802
11803 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11804 .func = bpf_skc_to_udp6_sock,
11805 .gpl_only = false,
11806 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11807 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11808 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11809 };
11810
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11811 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11812 {
11813 /* unix_sock type is not generated in dwarf and hence btf,
11814 * trigger an explicit type generation here.
11815 */
11816 BTF_TYPE_EMIT(struct unix_sock);
11817 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11818 return (unsigned long)sk;
11819
11820 return (unsigned long)NULL;
11821 }
11822
11823 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11824 .func = bpf_skc_to_unix_sock,
11825 .gpl_only = false,
11826 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11827 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11828 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11829 };
11830
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11831 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11832 {
11833 BTF_TYPE_EMIT(struct mptcp_sock);
11834 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11835 }
11836
11837 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11838 .func = bpf_skc_to_mptcp_sock,
11839 .gpl_only = false,
11840 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11841 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11842 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11843 };
11844
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11845 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11846 {
11847 return (unsigned long)sock_from_file(file);
11848 }
11849
11850 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11851 BTF_ID(struct, socket)
11852 BTF_ID(struct, file)
11853
11854 const struct bpf_func_proto bpf_sock_from_file_proto = {
11855 .func = bpf_sock_from_file,
11856 .gpl_only = false,
11857 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11858 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11859 .arg1_type = ARG_PTR_TO_BTF_ID,
11860 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11861 };
11862
11863 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11864 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11865 {
11866 const struct bpf_func_proto *func;
11867
11868 switch (func_id) {
11869 case BPF_FUNC_skc_to_tcp6_sock:
11870 func = &bpf_skc_to_tcp6_sock_proto;
11871 break;
11872 case BPF_FUNC_skc_to_tcp_sock:
11873 func = &bpf_skc_to_tcp_sock_proto;
11874 break;
11875 case BPF_FUNC_skc_to_tcp_timewait_sock:
11876 func = &bpf_skc_to_tcp_timewait_sock_proto;
11877 break;
11878 case BPF_FUNC_skc_to_tcp_request_sock:
11879 func = &bpf_skc_to_tcp_request_sock_proto;
11880 break;
11881 case BPF_FUNC_skc_to_udp6_sock:
11882 func = &bpf_skc_to_udp6_sock_proto;
11883 break;
11884 case BPF_FUNC_skc_to_unix_sock:
11885 func = &bpf_skc_to_unix_sock_proto;
11886 break;
11887 case BPF_FUNC_skc_to_mptcp_sock:
11888 func = &bpf_skc_to_mptcp_sock_proto;
11889 break;
11890 case BPF_FUNC_ktime_get_coarse_ns:
11891 return &bpf_ktime_get_coarse_ns_proto;
11892 default:
11893 return bpf_base_func_proto(func_id, prog);
11894 }
11895
11896 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11897 return NULL;
11898
11899 return func;
11900 }
11901
11902 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)11903 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11904 struct bpf_dynptr *ptr__uninit)
11905 {
11906 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11907 struct sk_buff *skb = (struct sk_buff *)s;
11908
11909 if (flags) {
11910 bpf_dynptr_set_null(ptr);
11911 return -EINVAL;
11912 }
11913
11914 bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11915
11916 return 0;
11917 }
11918
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)11919 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
11920 struct bpf_dynptr *ptr__uninit)
11921 {
11922 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11923 struct xdp_buff *xdp = (struct xdp_buff *)x;
11924
11925 if (flags) {
11926 bpf_dynptr_set_null(ptr);
11927 return -EINVAL;
11928 }
11929
11930 bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11931
11932 return 0;
11933 }
11934
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)11935 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11936 const u8 *sun_path, u32 sun_path__sz)
11937 {
11938 struct sockaddr_un *un;
11939
11940 if (sa_kern->sk->sk_family != AF_UNIX)
11941 return -EINVAL;
11942
11943 /* We do not allow changing the address to unnamed or larger than the
11944 * maximum allowed address size for a unix sockaddr.
11945 */
11946 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11947 return -EINVAL;
11948
11949 un = (struct sockaddr_un *)sa_kern->uaddr;
11950 memcpy(un->sun_path, sun_path, sun_path__sz);
11951 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11952
11953 return 0;
11954 }
11955
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)11956 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
11957 struct bpf_tcp_req_attrs *attrs, int attrs__sz)
11958 {
11959 #if IS_ENABLED(CONFIG_SYN_COOKIES)
11960 struct sk_buff *skb = (struct sk_buff *)s;
11961 const struct request_sock_ops *ops;
11962 struct inet_request_sock *ireq;
11963 struct tcp_request_sock *treq;
11964 struct request_sock *req;
11965 struct net *net;
11966 __u16 min_mss;
11967 u32 tsoff = 0;
11968
11969 if (attrs__sz != sizeof(*attrs) ||
11970 attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
11971 return -EINVAL;
11972
11973 if (!skb_at_tc_ingress(skb))
11974 return -EINVAL;
11975
11976 net = dev_net(skb->dev);
11977 if (net != sock_net(sk))
11978 return -ENETUNREACH;
11979
11980 switch (skb->protocol) {
11981 case htons(ETH_P_IP):
11982 ops = &tcp_request_sock_ops;
11983 min_mss = 536;
11984 break;
11985 #if IS_BUILTIN(CONFIG_IPV6)
11986 case htons(ETH_P_IPV6):
11987 ops = &tcp6_request_sock_ops;
11988 min_mss = IPV6_MIN_MTU - 60;
11989 break;
11990 #endif
11991 default:
11992 return -EINVAL;
11993 }
11994
11995 if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
11996 sk_is_mptcp(sk))
11997 return -EINVAL;
11998
11999 if (attrs->mss < min_mss)
12000 return -EINVAL;
12001
12002 if (attrs->wscale_ok) {
12003 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12004 return -EINVAL;
12005
12006 if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12007 attrs->rcv_wscale > TCP_MAX_WSCALE)
12008 return -EINVAL;
12009 }
12010
12011 if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12012 return -EINVAL;
12013
12014 if (attrs->tstamp_ok) {
12015 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12016 return -EINVAL;
12017
12018 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12019 }
12020
12021 req = inet_reqsk_alloc(ops, sk, false);
12022 if (!req)
12023 return -ENOMEM;
12024
12025 ireq = inet_rsk(req);
12026 treq = tcp_rsk(req);
12027
12028 req->rsk_listener = sk;
12029 req->syncookie = 1;
12030 req->mss = attrs->mss;
12031 req->ts_recent = attrs->rcv_tsval;
12032
12033 ireq->snd_wscale = attrs->snd_wscale;
12034 ireq->rcv_wscale = attrs->rcv_wscale;
12035 ireq->tstamp_ok = !!attrs->tstamp_ok;
12036 ireq->sack_ok = !!attrs->sack_ok;
12037 ireq->wscale_ok = !!attrs->wscale_ok;
12038 ireq->ecn_ok = !!attrs->ecn_ok;
12039
12040 treq->req_usec_ts = !!attrs->usec_ts_ok;
12041 treq->ts_off = tsoff;
12042
12043 skb_orphan(skb);
12044 skb->sk = req_to_sk(req);
12045 skb->destructor = sock_pfree;
12046
12047 return 0;
12048 #else
12049 return -EOPNOTSUPP;
12050 #endif
12051 }
12052
12053 __bpf_kfunc_end_defs();
12054
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12055 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12056 struct bpf_dynptr *ptr__uninit)
12057 {
12058 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12059 int err;
12060
12061 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12062 if (err)
12063 return err;
12064
12065 bpf_dynptr_set_rdonly(ptr);
12066
12067 return 0;
12068 }
12069
12070 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12071 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12072 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12073
12074 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12075 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12076 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12077
12078 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12079 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12080 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12081
12082 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12083 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12084 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12085
12086 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12087 .owner = THIS_MODULE,
12088 .set = &bpf_kfunc_check_set_skb,
12089 };
12090
12091 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12092 .owner = THIS_MODULE,
12093 .set = &bpf_kfunc_check_set_xdp,
12094 };
12095
12096 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12097 .owner = THIS_MODULE,
12098 .set = &bpf_kfunc_check_set_sock_addr,
12099 };
12100
12101 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12102 .owner = THIS_MODULE,
12103 .set = &bpf_kfunc_check_set_tcp_reqsk,
12104 };
12105
bpf_kfunc_init(void)12106 static int __init bpf_kfunc_init(void)
12107 {
12108 int ret;
12109
12110 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12111 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12112 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12113 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12114 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12115 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12116 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12117 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12118 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12119 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12120 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12121 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12122 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12123 &bpf_kfunc_set_sock_addr);
12124 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12125 }
12126 late_initcall(bpf_kfunc_init);
12127
12128 __bpf_kfunc_start_defs();
12129
12130 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12131 *
12132 * The function expects a non-NULL pointer to a socket, and invokes the
12133 * protocol specific socket destroy handlers.
12134 *
12135 * The helper can only be called from BPF contexts that have acquired the socket
12136 * locks.
12137 *
12138 * Parameters:
12139 * @sock: Pointer to socket to be destroyed
12140 *
12141 * Return:
12142 * On error, may return EPROTONOSUPPORT, EINVAL.
12143 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12144 * 0 otherwise
12145 */
bpf_sock_destroy(struct sock_common * sock)12146 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12147 {
12148 struct sock *sk = (struct sock *)sock;
12149
12150 /* The locking semantics that allow for synchronous execution of the
12151 * destroy handlers are only supported for TCP and UDP.
12152 * Supporting protocols will need to acquire sock lock in the BPF context
12153 * prior to invoking this kfunc.
12154 */
12155 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12156 sk->sk_protocol != IPPROTO_UDP))
12157 return -EOPNOTSUPP;
12158
12159 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12160 }
12161
12162 __bpf_kfunc_end_defs();
12163
12164 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12165 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12166 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12167
12168 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12169 {
12170 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12171 prog->expected_attach_type != BPF_TRACE_ITER)
12172 return -EACCES;
12173 return 0;
12174 }
12175
12176 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12177 .owner = THIS_MODULE,
12178 .set = &bpf_sk_iter_kfunc_ids,
12179 .filter = tracing_iter_filter,
12180 };
12181
init_subsystem(void)12182 static int init_subsystem(void)
12183 {
12184 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12185 }
12186 late_initcall(init_subsystem);
12187