1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 64 65 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 66 67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 68 * compilation if user enables corresponding warning. Disable it explicitly. 69 */ 70 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 71 72 #define __printf(a, b) __attribute__((format(printf, a, b))) 73 74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 76 static int map_set_def_max_entries(struct bpf_map *map); 77 78 static const char * const attach_type_name[] = { 79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 84 [BPF_CGROUP_DEVICE] = "cgroup_device", 85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 111 [BPF_LIRC_MODE2] = "lirc_mode2", 112 [BPF_FLOW_DISSECTOR] = "flow_dissector", 113 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 114 [BPF_TRACE_FENTRY] = "trace_fentry", 115 [BPF_TRACE_FEXIT] = "trace_fexit", 116 [BPF_MODIFY_RETURN] = "modify_return", 117 [BPF_LSM_MAC] = "lsm_mac", 118 [BPF_LSM_CGROUP] = "lsm_cgroup", 119 [BPF_SK_LOOKUP] = "sk_lookup", 120 [BPF_TRACE_ITER] = "trace_iter", 121 [BPF_XDP_DEVMAP] = "xdp_devmap", 122 [BPF_XDP_CPUMAP] = "xdp_cpumap", 123 [BPF_XDP] = "xdp", 124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 126 [BPF_PERF_EVENT] = "perf_event", 127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 128 [BPF_STRUCT_OPS] = "struct_ops", 129 [BPF_NETFILTER] = "netfilter", 130 [BPF_TCX_INGRESS] = "tcx_ingress", 131 [BPF_TCX_EGRESS] = "tcx_egress", 132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 133 [BPF_NETKIT_PRIMARY] = "netkit_primary", 134 [BPF_NETKIT_PEER] = "netkit_peer", 135 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 136 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 137 }; 138 139 static const char * const link_type_name[] = { 140 [BPF_LINK_TYPE_UNSPEC] = "unspec", 141 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 142 [BPF_LINK_TYPE_TRACING] = "tracing", 143 [BPF_LINK_TYPE_CGROUP] = "cgroup", 144 [BPF_LINK_TYPE_ITER] = "iter", 145 [BPF_LINK_TYPE_NETNS] = "netns", 146 [BPF_LINK_TYPE_XDP] = "xdp", 147 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 148 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 149 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 150 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 151 [BPF_LINK_TYPE_TCX] = "tcx", 152 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 153 [BPF_LINK_TYPE_NETKIT] = "netkit", 154 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 155 }; 156 157 static const char * const map_type_name[] = { 158 [BPF_MAP_TYPE_UNSPEC] = "unspec", 159 [BPF_MAP_TYPE_HASH] = "hash", 160 [BPF_MAP_TYPE_ARRAY] = "array", 161 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 162 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 163 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 164 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 165 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 166 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 167 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 168 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 169 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 170 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 171 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 172 [BPF_MAP_TYPE_DEVMAP] = "devmap", 173 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 174 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 175 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 176 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 177 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 178 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 179 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 180 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 181 [BPF_MAP_TYPE_QUEUE] = "queue", 182 [BPF_MAP_TYPE_STACK] = "stack", 183 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 184 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 185 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 186 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 187 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 188 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 189 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 190 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 191 [BPF_MAP_TYPE_ARENA] = "arena", 192 }; 193 194 static const char * const prog_type_name[] = { 195 [BPF_PROG_TYPE_UNSPEC] = "unspec", 196 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 197 [BPF_PROG_TYPE_KPROBE] = "kprobe", 198 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 199 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 200 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 201 [BPF_PROG_TYPE_XDP] = "xdp", 202 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 203 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 204 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 205 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 206 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 207 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 208 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 209 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 210 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 211 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 212 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 213 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 214 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 215 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 216 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 217 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 218 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 219 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 220 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 221 [BPF_PROG_TYPE_TRACING] = "tracing", 222 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 223 [BPF_PROG_TYPE_EXT] = "ext", 224 [BPF_PROG_TYPE_LSM] = "lsm", 225 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 226 [BPF_PROG_TYPE_SYSCALL] = "syscall", 227 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 228 }; 229 __base_pr(enum libbpf_print_level level,const char * format,va_list args)230 static int __base_pr(enum libbpf_print_level level, const char *format, 231 va_list args) 232 { 233 const char *env_var = "LIBBPF_LOG_LEVEL"; 234 static enum libbpf_print_level min_level = LIBBPF_INFO; 235 static bool initialized; 236 237 if (!initialized) { 238 char *verbosity; 239 240 initialized = true; 241 verbosity = getenv(env_var); 242 if (verbosity) { 243 if (strcasecmp(verbosity, "warn") == 0) 244 min_level = LIBBPF_WARN; 245 else if (strcasecmp(verbosity, "debug") == 0) 246 min_level = LIBBPF_DEBUG; 247 else if (strcasecmp(verbosity, "info") == 0) 248 min_level = LIBBPF_INFO; 249 else 250 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 251 env_var, verbosity); 252 } 253 } 254 255 /* if too verbose, skip logging */ 256 if (level > min_level) 257 return 0; 258 259 return vfprintf(stderr, format, args); 260 } 261 262 static libbpf_print_fn_t __libbpf_pr = __base_pr; 263 libbpf_set_print(libbpf_print_fn_t fn)264 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 265 { 266 libbpf_print_fn_t old_print_fn; 267 268 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 269 270 return old_print_fn; 271 } 272 273 __printf(2, 3) libbpf_print(enum libbpf_print_level level,const char * format,...)274 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 275 { 276 va_list args; 277 int old_errno; 278 libbpf_print_fn_t print_fn; 279 280 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 281 if (!print_fn) 282 return; 283 284 old_errno = errno; 285 286 va_start(args, format); 287 __libbpf_pr(level, format, args); 288 va_end(args); 289 290 errno = old_errno; 291 } 292 pr_perm_msg(int err)293 static void pr_perm_msg(int err) 294 { 295 struct rlimit limit; 296 char buf[100]; 297 298 if (err != -EPERM || geteuid() != 0) 299 return; 300 301 err = getrlimit(RLIMIT_MEMLOCK, &limit); 302 if (err) 303 return; 304 305 if (limit.rlim_cur == RLIM_INFINITY) 306 return; 307 308 if (limit.rlim_cur < 1024) 309 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 310 else if (limit.rlim_cur < 1024*1024) 311 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 312 else 313 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 314 315 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 316 buf); 317 } 318 319 #define STRERR_BUFSIZE 128 320 321 /* Copied from tools/perf/util/util.h */ 322 #ifndef zfree 323 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 324 #endif 325 326 #ifndef zclose 327 # define zclose(fd) ({ \ 328 int ___err = 0; \ 329 if ((fd) >= 0) \ 330 ___err = close((fd)); \ 331 fd = -1; \ 332 ___err; }) 333 #endif 334 ptr_to_u64(const void * ptr)335 static inline __u64 ptr_to_u64(const void *ptr) 336 { 337 return (__u64) (unsigned long) ptr; 338 } 339 libbpf_set_strict_mode(enum libbpf_strict_mode mode)340 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 341 { 342 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 343 return 0; 344 } 345 libbpf_major_version(void)346 __u32 libbpf_major_version(void) 347 { 348 return LIBBPF_MAJOR_VERSION; 349 } 350 libbpf_minor_version(void)351 __u32 libbpf_minor_version(void) 352 { 353 return LIBBPF_MINOR_VERSION; 354 } 355 libbpf_version_string(void)356 const char *libbpf_version_string(void) 357 { 358 #define __S(X) #X 359 #define _S(X) __S(X) 360 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 361 #undef _S 362 #undef __S 363 } 364 365 enum reloc_type { 366 RELO_LD64, 367 RELO_CALL, 368 RELO_DATA, 369 RELO_EXTERN_LD64, 370 RELO_EXTERN_CALL, 371 RELO_SUBPROG_ADDR, 372 RELO_CORE, 373 }; 374 375 struct reloc_desc { 376 enum reloc_type type; 377 int insn_idx; 378 union { 379 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 380 struct { 381 int map_idx; 382 int sym_off; 383 int ext_idx; 384 }; 385 }; 386 }; 387 388 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 389 enum sec_def_flags { 390 SEC_NONE = 0, 391 /* expected_attach_type is optional, if kernel doesn't support that */ 392 SEC_EXP_ATTACH_OPT = 1, 393 /* legacy, only used by libbpf_get_type_names() and 394 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 395 * This used to be associated with cgroup (and few other) BPF programs 396 * that were attachable through BPF_PROG_ATTACH command. Pretty 397 * meaningless nowadays, though. 398 */ 399 SEC_ATTACHABLE = 2, 400 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 401 /* attachment target is specified through BTF ID in either kernel or 402 * other BPF program's BTF object 403 */ 404 SEC_ATTACH_BTF = 4, 405 /* BPF program type allows sleeping/blocking in kernel */ 406 SEC_SLEEPABLE = 8, 407 /* BPF program support non-linear XDP buffer */ 408 SEC_XDP_FRAGS = 16, 409 /* Setup proper attach type for usdt probes. */ 410 SEC_USDT = 32, 411 }; 412 413 struct bpf_sec_def { 414 char *sec; 415 enum bpf_prog_type prog_type; 416 enum bpf_attach_type expected_attach_type; 417 long cookie; 418 int handler_id; 419 420 libbpf_prog_setup_fn_t prog_setup_fn; 421 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 422 libbpf_prog_attach_fn_t prog_attach_fn; 423 }; 424 425 /* 426 * bpf_prog should be a better name but it has been used in 427 * linux/filter.h. 428 */ 429 struct bpf_program { 430 char *name; 431 char *sec_name; 432 size_t sec_idx; 433 const struct bpf_sec_def *sec_def; 434 /* this program's instruction offset (in number of instructions) 435 * within its containing ELF section 436 */ 437 size_t sec_insn_off; 438 /* number of original instructions in ELF section belonging to this 439 * program, not taking into account subprogram instructions possible 440 * appended later during relocation 441 */ 442 size_t sec_insn_cnt; 443 /* Offset (in number of instructions) of the start of instruction 444 * belonging to this BPF program within its containing main BPF 445 * program. For the entry-point (main) BPF program, this is always 446 * zero. For a sub-program, this gets reset before each of main BPF 447 * programs are processed and relocated and is used to determined 448 * whether sub-program was already appended to the main program, and 449 * if yes, at which instruction offset. 450 */ 451 size_t sub_insn_off; 452 453 /* instructions that belong to BPF program; insns[0] is located at 454 * sec_insn_off instruction within its ELF section in ELF file, so 455 * when mapping ELF file instruction index to the local instruction, 456 * one needs to subtract sec_insn_off; and vice versa. 457 */ 458 struct bpf_insn *insns; 459 /* actual number of instruction in this BPF program's image; for 460 * entry-point BPF programs this includes the size of main program 461 * itself plus all the used sub-programs, appended at the end 462 */ 463 size_t insns_cnt; 464 465 struct reloc_desc *reloc_desc; 466 int nr_reloc; 467 468 /* BPF verifier log settings */ 469 char *log_buf; 470 size_t log_size; 471 __u32 log_level; 472 473 struct bpf_object *obj; 474 475 int fd; 476 bool autoload; 477 bool autoattach; 478 bool sym_global; 479 bool mark_btf_static; 480 enum bpf_prog_type type; 481 enum bpf_attach_type expected_attach_type; 482 int exception_cb_idx; 483 484 int prog_ifindex; 485 __u32 attach_btf_obj_fd; 486 __u32 attach_btf_id; 487 __u32 attach_prog_fd; 488 489 void *func_info; 490 __u32 func_info_rec_size; 491 __u32 func_info_cnt; 492 493 void *line_info; 494 __u32 line_info_rec_size; 495 __u32 line_info_cnt; 496 __u32 prog_flags; 497 }; 498 499 struct bpf_struct_ops { 500 struct bpf_program **progs; 501 __u32 *kern_func_off; 502 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 503 void *data; 504 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 505 * btf_vmlinux's format. 506 * struct bpf_struct_ops_tcp_congestion_ops { 507 * [... some other kernel fields ...] 508 * struct tcp_congestion_ops data; 509 * } 510 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 511 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 512 * from "data". 513 */ 514 void *kern_vdata; 515 __u32 type_id; 516 }; 517 518 #define DATA_SEC ".data" 519 #define BSS_SEC ".bss" 520 #define RODATA_SEC ".rodata" 521 #define KCONFIG_SEC ".kconfig" 522 #define KSYMS_SEC ".ksyms" 523 #define STRUCT_OPS_SEC ".struct_ops" 524 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 525 #define ARENA_SEC ".addr_space.1" 526 527 enum libbpf_map_type { 528 LIBBPF_MAP_UNSPEC, 529 LIBBPF_MAP_DATA, 530 LIBBPF_MAP_BSS, 531 LIBBPF_MAP_RODATA, 532 LIBBPF_MAP_KCONFIG, 533 }; 534 535 struct bpf_map_def { 536 unsigned int type; 537 unsigned int key_size; 538 unsigned int value_size; 539 unsigned int max_entries; 540 unsigned int map_flags; 541 }; 542 543 struct bpf_map { 544 struct bpf_object *obj; 545 char *name; 546 /* real_name is defined for special internal maps (.rodata*, 547 * .data*, .bss, .kconfig) and preserves their original ELF section 548 * name. This is important to be able to find corresponding BTF 549 * DATASEC information. 550 */ 551 char *real_name; 552 int fd; 553 int sec_idx; 554 size_t sec_offset; 555 int map_ifindex; 556 int inner_map_fd; 557 struct bpf_map_def def; 558 __u32 numa_node; 559 __u32 btf_var_idx; 560 int mod_btf_fd; 561 __u32 btf_key_type_id; 562 __u32 btf_value_type_id; 563 __u32 btf_vmlinux_value_type_id; 564 enum libbpf_map_type libbpf_type; 565 void *mmaped; 566 struct bpf_struct_ops *st_ops; 567 struct bpf_map *inner_map; 568 void **init_slots; 569 int init_slots_sz; 570 char *pin_path; 571 bool pinned; 572 bool reused; 573 bool autocreate; 574 bool autoattach; 575 __u64 map_extra; 576 }; 577 578 enum extern_type { 579 EXT_UNKNOWN, 580 EXT_KCFG, 581 EXT_KSYM, 582 }; 583 584 enum kcfg_type { 585 KCFG_UNKNOWN, 586 KCFG_CHAR, 587 KCFG_BOOL, 588 KCFG_INT, 589 KCFG_TRISTATE, 590 KCFG_CHAR_ARR, 591 }; 592 593 struct extern_desc { 594 enum extern_type type; 595 int sym_idx; 596 int btf_id; 597 int sec_btf_id; 598 const char *name; 599 char *essent_name; 600 bool is_set; 601 bool is_weak; 602 union { 603 struct { 604 enum kcfg_type type; 605 int sz; 606 int align; 607 int data_off; 608 bool is_signed; 609 } kcfg; 610 struct { 611 unsigned long long addr; 612 613 /* target btf_id of the corresponding kernel var. */ 614 int kernel_btf_obj_fd; 615 int kernel_btf_id; 616 617 /* local btf_id of the ksym extern's type. */ 618 __u32 type_id; 619 /* BTF fd index to be patched in for insn->off, this is 620 * 0 for vmlinux BTF, index in obj->fd_array for module 621 * BTF 622 */ 623 __s16 btf_fd_idx; 624 } ksym; 625 }; 626 }; 627 628 struct module_btf { 629 struct btf *btf; 630 char *name; 631 __u32 id; 632 int fd; 633 int fd_array_idx; 634 }; 635 636 enum sec_type { 637 SEC_UNUSED = 0, 638 SEC_RELO, 639 SEC_BSS, 640 SEC_DATA, 641 SEC_RODATA, 642 SEC_ST_OPS, 643 }; 644 645 struct elf_sec_desc { 646 enum sec_type sec_type; 647 Elf64_Shdr *shdr; 648 Elf_Data *data; 649 }; 650 651 struct elf_state { 652 int fd; 653 const void *obj_buf; 654 size_t obj_buf_sz; 655 Elf *elf; 656 Elf64_Ehdr *ehdr; 657 Elf_Data *symbols; 658 Elf_Data *arena_data; 659 size_t shstrndx; /* section index for section name strings */ 660 size_t strtabidx; 661 struct elf_sec_desc *secs; 662 size_t sec_cnt; 663 int btf_maps_shndx; 664 __u32 btf_maps_sec_btf_id; 665 int text_shndx; 666 int symbols_shndx; 667 bool has_st_ops; 668 int arena_data_shndx; 669 }; 670 671 struct usdt_manager; 672 673 struct bpf_object { 674 char name[BPF_OBJ_NAME_LEN]; 675 char license[64]; 676 __u32 kern_version; 677 678 struct bpf_program *programs; 679 size_t nr_programs; 680 struct bpf_map *maps; 681 size_t nr_maps; 682 size_t maps_cap; 683 684 char *kconfig; 685 struct extern_desc *externs; 686 int nr_extern; 687 int kconfig_map_idx; 688 689 bool loaded; 690 bool has_subcalls; 691 bool has_rodata; 692 693 struct bpf_gen *gen_loader; 694 695 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 696 struct elf_state efile; 697 698 unsigned char byteorder; 699 700 struct btf *btf; 701 struct btf_ext *btf_ext; 702 703 /* Parse and load BTF vmlinux if any of the programs in the object need 704 * it at load time. 705 */ 706 struct btf *btf_vmlinux; 707 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 708 * override for vmlinux BTF. 709 */ 710 char *btf_custom_path; 711 /* vmlinux BTF override for CO-RE relocations */ 712 struct btf *btf_vmlinux_override; 713 /* Lazily initialized kernel module BTFs */ 714 struct module_btf *btf_modules; 715 bool btf_modules_loaded; 716 size_t btf_module_cnt; 717 size_t btf_module_cap; 718 719 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 720 char *log_buf; 721 size_t log_size; 722 __u32 log_level; 723 724 int *fd_array; 725 size_t fd_array_cap; 726 size_t fd_array_cnt; 727 728 struct usdt_manager *usdt_man; 729 730 struct bpf_map *arena_map; 731 void *arena_data; 732 size_t arena_data_sz; 733 734 struct kern_feature_cache *feat_cache; 735 char *token_path; 736 int token_fd; 737 738 char path[]; 739 }; 740 741 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 742 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 743 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 744 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 745 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 746 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 747 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 748 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 749 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 750 bpf_program__unload(struct bpf_program * prog)751 void bpf_program__unload(struct bpf_program *prog) 752 { 753 if (!prog) 754 return; 755 756 zclose(prog->fd); 757 758 zfree(&prog->func_info); 759 zfree(&prog->line_info); 760 } 761 bpf_program__exit(struct bpf_program * prog)762 static void bpf_program__exit(struct bpf_program *prog) 763 { 764 if (!prog) 765 return; 766 767 bpf_program__unload(prog); 768 zfree(&prog->name); 769 zfree(&prog->sec_name); 770 zfree(&prog->insns); 771 zfree(&prog->reloc_desc); 772 773 prog->nr_reloc = 0; 774 prog->insns_cnt = 0; 775 prog->sec_idx = -1; 776 } 777 insn_is_subprog_call(const struct bpf_insn * insn)778 static bool insn_is_subprog_call(const struct bpf_insn *insn) 779 { 780 return BPF_CLASS(insn->code) == BPF_JMP && 781 BPF_OP(insn->code) == BPF_CALL && 782 BPF_SRC(insn->code) == BPF_K && 783 insn->src_reg == BPF_PSEUDO_CALL && 784 insn->dst_reg == 0 && 785 insn->off == 0; 786 } 787 is_call_insn(const struct bpf_insn * insn)788 static bool is_call_insn(const struct bpf_insn *insn) 789 { 790 return insn->code == (BPF_JMP | BPF_CALL); 791 } 792 insn_is_pseudo_func(struct bpf_insn * insn)793 static bool insn_is_pseudo_func(struct bpf_insn *insn) 794 { 795 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 796 } 797 798 static int bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)799 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 800 const char *name, size_t sec_idx, const char *sec_name, 801 size_t sec_off, void *insn_data, size_t insn_data_sz) 802 { 803 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 804 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 805 sec_name, name, sec_off, insn_data_sz); 806 return -EINVAL; 807 } 808 809 memset(prog, 0, sizeof(*prog)); 810 prog->obj = obj; 811 812 prog->sec_idx = sec_idx; 813 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 814 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 815 /* insns_cnt can later be increased by appending used subprograms */ 816 prog->insns_cnt = prog->sec_insn_cnt; 817 818 prog->type = BPF_PROG_TYPE_UNSPEC; 819 prog->fd = -1; 820 prog->exception_cb_idx = -1; 821 822 /* libbpf's convention for SEC("?abc...") is that it's just like 823 * SEC("abc...") but the corresponding bpf_program starts out with 824 * autoload set to false. 825 */ 826 if (sec_name[0] == '?') { 827 prog->autoload = false; 828 /* from now on forget there was ? in section name */ 829 sec_name++; 830 } else { 831 prog->autoload = true; 832 } 833 834 prog->autoattach = true; 835 836 /* inherit object's log_level */ 837 prog->log_level = obj->log_level; 838 839 prog->sec_name = strdup(sec_name); 840 if (!prog->sec_name) 841 goto errout; 842 843 prog->name = strdup(name); 844 if (!prog->name) 845 goto errout; 846 847 prog->insns = malloc(insn_data_sz); 848 if (!prog->insns) 849 goto errout; 850 memcpy(prog->insns, insn_data, insn_data_sz); 851 852 return 0; 853 errout: 854 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 855 bpf_program__exit(prog); 856 return -ENOMEM; 857 } 858 859 static int bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)860 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 861 const char *sec_name, int sec_idx) 862 { 863 Elf_Data *symbols = obj->efile.symbols; 864 struct bpf_program *prog, *progs; 865 void *data = sec_data->d_buf; 866 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 867 int nr_progs, err, i; 868 const char *name; 869 Elf64_Sym *sym; 870 871 progs = obj->programs; 872 nr_progs = obj->nr_programs; 873 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 874 875 for (i = 0; i < nr_syms; i++) { 876 sym = elf_sym_by_idx(obj, i); 877 878 if (sym->st_shndx != sec_idx) 879 continue; 880 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 881 continue; 882 883 prog_sz = sym->st_size; 884 sec_off = sym->st_value; 885 886 name = elf_sym_str(obj, sym->st_name); 887 if (!name) { 888 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 889 sec_name, sec_off); 890 return -LIBBPF_ERRNO__FORMAT; 891 } 892 893 if (sec_off + prog_sz > sec_sz) { 894 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 895 sec_name, sec_off); 896 return -LIBBPF_ERRNO__FORMAT; 897 } 898 899 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 900 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 901 return -ENOTSUP; 902 } 903 904 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 905 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 906 907 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 908 if (!progs) { 909 /* 910 * In this case the original obj->programs 911 * is still valid, so don't need special treat for 912 * bpf_close_object(). 913 */ 914 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 915 sec_name, name); 916 return -ENOMEM; 917 } 918 obj->programs = progs; 919 920 prog = &progs[nr_progs]; 921 922 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 923 sec_off, data + sec_off, prog_sz); 924 if (err) 925 return err; 926 927 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 928 prog->sym_global = true; 929 930 /* if function is a global/weak symbol, but has restricted 931 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 932 * as static to enable more permissive BPF verification mode 933 * with more outside context available to BPF verifier 934 */ 935 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 936 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 937 prog->mark_btf_static = true; 938 939 nr_progs++; 940 obj->nr_programs = nr_progs; 941 } 942 943 return 0; 944 } 945 bpf_object_bswap_progs(struct bpf_object * obj)946 static void bpf_object_bswap_progs(struct bpf_object *obj) 947 { 948 struct bpf_program *prog = obj->programs; 949 struct bpf_insn *insn; 950 int p, i; 951 952 for (p = 0; p < obj->nr_programs; p++, prog++) { 953 insn = prog->insns; 954 for (i = 0; i < prog->insns_cnt; i++, insn++) 955 bpf_insn_bswap(insn); 956 } 957 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 958 } 959 960 static const struct btf_member * find_member_by_offset(const struct btf_type * t,__u32 bit_offset)961 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 962 { 963 struct btf_member *m; 964 int i; 965 966 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 967 if (btf_member_bit_offset(t, i) == bit_offset) 968 return m; 969 } 970 971 return NULL; 972 } 973 974 static const struct btf_member * find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)975 find_member_by_name(const struct btf *btf, const struct btf_type *t, 976 const char *name) 977 { 978 struct btf_member *m; 979 int i; 980 981 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 982 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 983 return m; 984 } 985 986 return NULL; 987 } 988 989 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 990 __u16 kind, struct btf **res_btf, 991 struct module_btf **res_mod_btf); 992 993 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 994 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 995 const char *name, __u32 kind); 996 997 static int find_struct_ops_kern_types(struct bpf_object * obj,const char * tname_raw,struct module_btf ** mod_btf,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)998 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 999 struct module_btf **mod_btf, 1000 const struct btf_type **type, __u32 *type_id, 1001 const struct btf_type **vtype, __u32 *vtype_id, 1002 const struct btf_member **data_member) 1003 { 1004 const struct btf_type *kern_type, *kern_vtype; 1005 const struct btf_member *kern_data_member; 1006 struct btf *btf = NULL; 1007 __s32 kern_vtype_id, kern_type_id; 1008 char tname[256]; 1009 __u32 i; 1010 1011 snprintf(tname, sizeof(tname), "%.*s", 1012 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1013 1014 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1015 &btf, mod_btf); 1016 if (kern_type_id < 0) { 1017 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1018 tname); 1019 return kern_type_id; 1020 } 1021 kern_type = btf__type_by_id(btf, kern_type_id); 1022 1023 /* Find the corresponding "map_value" type that will be used 1024 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1025 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1026 * btf_vmlinux. 1027 */ 1028 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1029 tname, BTF_KIND_STRUCT); 1030 if (kern_vtype_id < 0) { 1031 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1032 STRUCT_OPS_VALUE_PREFIX, tname); 1033 return kern_vtype_id; 1034 } 1035 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1036 1037 /* Find "struct tcp_congestion_ops" from 1038 * struct bpf_struct_ops_tcp_congestion_ops { 1039 * [ ... ] 1040 * struct tcp_congestion_ops data; 1041 * } 1042 */ 1043 kern_data_member = btf_members(kern_vtype); 1044 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1045 if (kern_data_member->type == kern_type_id) 1046 break; 1047 } 1048 if (i == btf_vlen(kern_vtype)) { 1049 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1050 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1051 return -EINVAL; 1052 } 1053 1054 *type = kern_type; 1055 *type_id = kern_type_id; 1056 *vtype = kern_vtype; 1057 *vtype_id = kern_vtype_id; 1058 *data_member = kern_data_member; 1059 1060 return 0; 1061 } 1062 bpf_map__is_struct_ops(const struct bpf_map * map)1063 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1064 { 1065 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1066 } 1067 is_valid_st_ops_program(struct bpf_object * obj,const struct bpf_program * prog)1068 static bool is_valid_st_ops_program(struct bpf_object *obj, 1069 const struct bpf_program *prog) 1070 { 1071 int i; 1072 1073 for (i = 0; i < obj->nr_programs; i++) { 1074 if (&obj->programs[i] == prog) 1075 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1076 } 1077 1078 return false; 1079 } 1080 1081 /* For each struct_ops program P, referenced from some struct_ops map M, 1082 * enable P.autoload if there are Ms for which M.autocreate is true, 1083 * disable P.autoload if for all Ms M.autocreate is false. 1084 * Don't change P.autoload for programs that are not referenced from any maps. 1085 */ bpf_object_adjust_struct_ops_autoload(struct bpf_object * obj)1086 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1087 { 1088 struct bpf_program *prog, *slot_prog; 1089 struct bpf_map *map; 1090 int i, j, k, vlen; 1091 1092 for (i = 0; i < obj->nr_programs; ++i) { 1093 int should_load = false; 1094 int use_cnt = 0; 1095 1096 prog = &obj->programs[i]; 1097 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1098 continue; 1099 1100 for (j = 0; j < obj->nr_maps; ++j) { 1101 const struct btf_type *type; 1102 1103 map = &obj->maps[j]; 1104 if (!bpf_map__is_struct_ops(map)) 1105 continue; 1106 1107 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1108 vlen = btf_vlen(type); 1109 for (k = 0; k < vlen; ++k) { 1110 slot_prog = map->st_ops->progs[k]; 1111 if (prog != slot_prog) 1112 continue; 1113 1114 use_cnt++; 1115 if (map->autocreate) 1116 should_load = true; 1117 } 1118 } 1119 if (use_cnt) 1120 prog->autoload = should_load; 1121 } 1122 1123 return 0; 1124 } 1125 1126 /* Init the map's fields that depend on kern_btf */ bpf_map__init_kern_struct_ops(struct bpf_map * map)1127 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1128 { 1129 const struct btf_member *member, *kern_member, *kern_data_member; 1130 const struct btf_type *type, *kern_type, *kern_vtype; 1131 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1132 struct bpf_object *obj = map->obj; 1133 const struct btf *btf = obj->btf; 1134 struct bpf_struct_ops *st_ops; 1135 const struct btf *kern_btf; 1136 struct module_btf *mod_btf = NULL; 1137 void *data, *kern_data; 1138 const char *tname; 1139 int err; 1140 1141 st_ops = map->st_ops; 1142 type = btf__type_by_id(btf, st_ops->type_id); 1143 tname = btf__name_by_offset(btf, type->name_off); 1144 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1145 &kern_type, &kern_type_id, 1146 &kern_vtype, &kern_vtype_id, 1147 &kern_data_member); 1148 if (err) 1149 return err; 1150 1151 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1152 1153 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1154 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1155 1156 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1157 map->def.value_size = kern_vtype->size; 1158 map->btf_vmlinux_value_type_id = kern_vtype_id; 1159 1160 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1161 if (!st_ops->kern_vdata) 1162 return -ENOMEM; 1163 1164 data = st_ops->data; 1165 kern_data_off = kern_data_member->offset / 8; 1166 kern_data = st_ops->kern_vdata + kern_data_off; 1167 1168 member = btf_members(type); 1169 for (i = 0; i < btf_vlen(type); i++, member++) { 1170 const struct btf_type *mtype, *kern_mtype; 1171 __u32 mtype_id, kern_mtype_id; 1172 void *mdata, *kern_mdata; 1173 struct bpf_program *prog; 1174 __s64 msize, kern_msize; 1175 __u32 moff, kern_moff; 1176 __u32 kern_member_idx; 1177 const char *mname; 1178 1179 mname = btf__name_by_offset(btf, member->name_off); 1180 moff = member->offset / 8; 1181 mdata = data + moff; 1182 msize = btf__resolve_size(btf, member->type); 1183 if (msize < 0) { 1184 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1185 map->name, mname); 1186 return msize; 1187 } 1188 1189 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1190 if (!kern_member) { 1191 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1192 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1193 map->name, mname); 1194 return -ENOTSUP; 1195 } 1196 1197 if (st_ops->progs[i]) { 1198 /* If we had declaratively set struct_ops callback, we need to 1199 * force its autoload to false, because it doesn't have 1200 * a chance of succeeding from POV of the current struct_ops map. 1201 * If this program is still referenced somewhere else, though, 1202 * then bpf_object_adjust_struct_ops_autoload() will update its 1203 * autoload accordingly. 1204 */ 1205 st_ops->progs[i]->autoload = false; 1206 st_ops->progs[i] = NULL; 1207 } 1208 1209 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1210 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1211 map->name, mname); 1212 continue; 1213 } 1214 1215 kern_member_idx = kern_member - btf_members(kern_type); 1216 if (btf_member_bitfield_size(type, i) || 1217 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1218 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1219 map->name, mname); 1220 return -ENOTSUP; 1221 } 1222 1223 kern_moff = kern_member->offset / 8; 1224 kern_mdata = kern_data + kern_moff; 1225 1226 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1227 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1228 &kern_mtype_id); 1229 if (BTF_INFO_KIND(mtype->info) != 1230 BTF_INFO_KIND(kern_mtype->info)) { 1231 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1232 map->name, mname, BTF_INFO_KIND(mtype->info), 1233 BTF_INFO_KIND(kern_mtype->info)); 1234 return -ENOTSUP; 1235 } 1236 1237 if (btf_is_ptr(mtype)) { 1238 prog = *(void **)mdata; 1239 /* just like for !kern_member case above, reset declaratively 1240 * set (at compile time) program's autload to false, 1241 * if user replaced it with another program or NULL 1242 */ 1243 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1244 st_ops->progs[i]->autoload = false; 1245 1246 /* Update the value from the shadow type */ 1247 st_ops->progs[i] = prog; 1248 if (!prog) 1249 continue; 1250 1251 if (!is_valid_st_ops_program(obj, prog)) { 1252 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1253 map->name, mname); 1254 return -ENOTSUP; 1255 } 1256 1257 kern_mtype = skip_mods_and_typedefs(kern_btf, 1258 kern_mtype->type, 1259 &kern_mtype_id); 1260 1261 /* mtype->type must be a func_proto which was 1262 * guaranteed in bpf_object__collect_st_ops_relos(), 1263 * so only check kern_mtype for func_proto here. 1264 */ 1265 if (!btf_is_func_proto(kern_mtype)) { 1266 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1267 map->name, mname); 1268 return -ENOTSUP; 1269 } 1270 1271 if (mod_btf) 1272 prog->attach_btf_obj_fd = mod_btf->fd; 1273 1274 /* if we haven't yet processed this BPF program, record proper 1275 * attach_btf_id and member_idx 1276 */ 1277 if (!prog->attach_btf_id) { 1278 prog->attach_btf_id = kern_type_id; 1279 prog->expected_attach_type = kern_member_idx; 1280 } 1281 1282 /* struct_ops BPF prog can be re-used between multiple 1283 * .struct_ops & .struct_ops.link as long as it's the 1284 * same struct_ops struct definition and the same 1285 * function pointer field 1286 */ 1287 if (prog->attach_btf_id != kern_type_id) { 1288 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1289 map->name, mname, prog->name, prog->sec_name, prog->type, 1290 prog->attach_btf_id, kern_type_id); 1291 return -EINVAL; 1292 } 1293 if (prog->expected_attach_type != kern_member_idx) { 1294 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1295 map->name, mname, prog->name, prog->sec_name, prog->type, 1296 prog->expected_attach_type, kern_member_idx); 1297 return -EINVAL; 1298 } 1299 1300 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1301 1302 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1303 map->name, mname, prog->name, moff, 1304 kern_moff); 1305 1306 continue; 1307 } 1308 1309 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1310 if (kern_msize < 0 || msize != kern_msize) { 1311 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1312 map->name, mname, (ssize_t)msize, 1313 (ssize_t)kern_msize); 1314 return -ENOTSUP; 1315 } 1316 1317 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1318 map->name, mname, (unsigned int)msize, 1319 moff, kern_moff); 1320 memcpy(kern_mdata, mdata, msize); 1321 } 1322 1323 return 0; 1324 } 1325 bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1326 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1327 { 1328 struct bpf_map *map; 1329 size_t i; 1330 int err; 1331 1332 for (i = 0; i < obj->nr_maps; i++) { 1333 map = &obj->maps[i]; 1334 1335 if (!bpf_map__is_struct_ops(map)) 1336 continue; 1337 1338 if (!map->autocreate) 1339 continue; 1340 1341 err = bpf_map__init_kern_struct_ops(map); 1342 if (err) 1343 return err; 1344 } 1345 1346 return 0; 1347 } 1348 init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data)1349 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1350 int shndx, Elf_Data *data) 1351 { 1352 const struct btf_type *type, *datasec; 1353 const struct btf_var_secinfo *vsi; 1354 struct bpf_struct_ops *st_ops; 1355 const char *tname, *var_name; 1356 __s32 type_id, datasec_id; 1357 const struct btf *btf; 1358 struct bpf_map *map; 1359 __u32 i; 1360 1361 if (shndx == -1) 1362 return 0; 1363 1364 btf = obj->btf; 1365 datasec_id = btf__find_by_name_kind(btf, sec_name, 1366 BTF_KIND_DATASEC); 1367 if (datasec_id < 0) { 1368 pr_warn("struct_ops init: DATASEC %s not found\n", 1369 sec_name); 1370 return -EINVAL; 1371 } 1372 1373 datasec = btf__type_by_id(btf, datasec_id); 1374 vsi = btf_var_secinfos(datasec); 1375 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1376 type = btf__type_by_id(obj->btf, vsi->type); 1377 var_name = btf__name_by_offset(obj->btf, type->name_off); 1378 1379 type_id = btf__resolve_type(obj->btf, vsi->type); 1380 if (type_id < 0) { 1381 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1382 vsi->type, sec_name); 1383 return -EINVAL; 1384 } 1385 1386 type = btf__type_by_id(obj->btf, type_id); 1387 tname = btf__name_by_offset(obj->btf, type->name_off); 1388 if (!tname[0]) { 1389 pr_warn("struct_ops init: anonymous type is not supported\n"); 1390 return -ENOTSUP; 1391 } 1392 if (!btf_is_struct(type)) { 1393 pr_warn("struct_ops init: %s is not a struct\n", tname); 1394 return -EINVAL; 1395 } 1396 1397 map = bpf_object__add_map(obj); 1398 if (IS_ERR(map)) 1399 return PTR_ERR(map); 1400 1401 map->sec_idx = shndx; 1402 map->sec_offset = vsi->offset; 1403 map->name = strdup(var_name); 1404 if (!map->name) 1405 return -ENOMEM; 1406 map->btf_value_type_id = type_id; 1407 1408 /* Follow same convention as for programs autoload: 1409 * SEC("?.struct_ops") means map is not created by default. 1410 */ 1411 if (sec_name[0] == '?') { 1412 map->autocreate = false; 1413 /* from now on forget there was ? in section name */ 1414 sec_name++; 1415 } 1416 1417 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1418 map->def.key_size = sizeof(int); 1419 map->def.value_size = type->size; 1420 map->def.max_entries = 1; 1421 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1422 map->autoattach = true; 1423 1424 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1425 if (!map->st_ops) 1426 return -ENOMEM; 1427 st_ops = map->st_ops; 1428 st_ops->data = malloc(type->size); 1429 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1430 st_ops->kern_func_off = malloc(btf_vlen(type) * 1431 sizeof(*st_ops->kern_func_off)); 1432 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1433 return -ENOMEM; 1434 1435 if (vsi->offset + type->size > data->d_size) { 1436 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1437 var_name, sec_name); 1438 return -EINVAL; 1439 } 1440 1441 memcpy(st_ops->data, 1442 data->d_buf + vsi->offset, 1443 type->size); 1444 st_ops->type_id = type_id; 1445 1446 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1447 tname, type_id, var_name, vsi->offset); 1448 } 1449 1450 return 0; 1451 } 1452 bpf_object_init_struct_ops(struct bpf_object * obj)1453 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1454 { 1455 const char *sec_name; 1456 int sec_idx, err; 1457 1458 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1459 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1460 1461 if (desc->sec_type != SEC_ST_OPS) 1462 continue; 1463 1464 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1465 if (!sec_name) 1466 return -LIBBPF_ERRNO__FORMAT; 1467 1468 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1469 if (err) 1470 return err; 1471 } 1472 1473 return 0; 1474 } 1475 bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1476 static struct bpf_object *bpf_object__new(const char *path, 1477 const void *obj_buf, 1478 size_t obj_buf_sz, 1479 const char *obj_name) 1480 { 1481 struct bpf_object *obj; 1482 char *end; 1483 1484 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1485 if (!obj) { 1486 pr_warn("alloc memory failed for %s\n", path); 1487 return ERR_PTR(-ENOMEM); 1488 } 1489 1490 strcpy(obj->path, path); 1491 if (obj_name) { 1492 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1493 } else { 1494 /* Using basename() GNU version which doesn't modify arg. */ 1495 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1496 end = strchr(obj->name, '.'); 1497 if (end) 1498 *end = 0; 1499 } 1500 1501 obj->efile.fd = -1; 1502 /* 1503 * Caller of this function should also call 1504 * bpf_object__elf_finish() after data collection to return 1505 * obj_buf to user. If not, we should duplicate the buffer to 1506 * avoid user freeing them before elf finish. 1507 */ 1508 obj->efile.obj_buf = obj_buf; 1509 obj->efile.obj_buf_sz = obj_buf_sz; 1510 obj->efile.btf_maps_shndx = -1; 1511 obj->kconfig_map_idx = -1; 1512 1513 obj->kern_version = get_kernel_version(); 1514 obj->loaded = false; 1515 1516 return obj; 1517 } 1518 bpf_object__elf_finish(struct bpf_object * obj)1519 static void bpf_object__elf_finish(struct bpf_object *obj) 1520 { 1521 if (!obj->efile.elf) 1522 return; 1523 1524 elf_end(obj->efile.elf); 1525 obj->efile.elf = NULL; 1526 obj->efile.ehdr = NULL; 1527 obj->efile.symbols = NULL; 1528 obj->efile.arena_data = NULL; 1529 1530 zfree(&obj->efile.secs); 1531 obj->efile.sec_cnt = 0; 1532 zclose(obj->efile.fd); 1533 obj->efile.obj_buf = NULL; 1534 obj->efile.obj_buf_sz = 0; 1535 } 1536 bpf_object__elf_init(struct bpf_object * obj)1537 static int bpf_object__elf_init(struct bpf_object *obj) 1538 { 1539 Elf64_Ehdr *ehdr; 1540 int err = 0; 1541 Elf *elf; 1542 1543 if (obj->efile.elf) { 1544 pr_warn("elf: init internal error\n"); 1545 return -LIBBPF_ERRNO__LIBELF; 1546 } 1547 1548 if (obj->efile.obj_buf_sz > 0) { 1549 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1550 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1551 } else { 1552 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1553 if (obj->efile.fd < 0) { 1554 err = -errno; 1555 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1556 return err; 1557 } 1558 1559 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1560 } 1561 1562 if (!elf) { 1563 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1564 err = -LIBBPF_ERRNO__LIBELF; 1565 goto errout; 1566 } 1567 1568 obj->efile.elf = elf; 1569 1570 if (elf_kind(elf) != ELF_K_ELF) { 1571 err = -LIBBPF_ERRNO__FORMAT; 1572 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1573 goto errout; 1574 } 1575 1576 if (gelf_getclass(elf) != ELFCLASS64) { 1577 err = -LIBBPF_ERRNO__FORMAT; 1578 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1579 goto errout; 1580 } 1581 1582 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1583 if (!obj->efile.ehdr) { 1584 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1585 err = -LIBBPF_ERRNO__FORMAT; 1586 goto errout; 1587 } 1588 1589 /* Validate ELF object endianness... */ 1590 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1591 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1592 err = -LIBBPF_ERRNO__ENDIAN; 1593 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1594 goto errout; 1595 } 1596 /* and save after bpf_object_open() frees ELF data */ 1597 obj->byteorder = ehdr->e_ident[EI_DATA]; 1598 1599 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1600 pr_warn("elf: failed to get section names section index for %s: %s\n", 1601 obj->path, elf_errmsg(-1)); 1602 err = -LIBBPF_ERRNO__FORMAT; 1603 goto errout; 1604 } 1605 1606 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1607 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1608 pr_warn("elf: failed to get section names strings from %s: %s\n", 1609 obj->path, elf_errmsg(-1)); 1610 err = -LIBBPF_ERRNO__FORMAT; 1611 goto errout; 1612 } 1613 1614 /* Old LLVM set e_machine to EM_NONE */ 1615 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1616 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1617 err = -LIBBPF_ERRNO__FORMAT; 1618 goto errout; 1619 } 1620 1621 return 0; 1622 errout: 1623 bpf_object__elf_finish(obj); 1624 return err; 1625 } 1626 is_native_endianness(struct bpf_object * obj)1627 static bool is_native_endianness(struct bpf_object *obj) 1628 { 1629 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1630 return obj->byteorder == ELFDATA2LSB; 1631 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1632 return obj->byteorder == ELFDATA2MSB; 1633 #else 1634 # error "Unrecognized __BYTE_ORDER__" 1635 #endif 1636 } 1637 1638 static int bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1639 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1640 { 1641 if (!data) { 1642 pr_warn("invalid license section in %s\n", obj->path); 1643 return -LIBBPF_ERRNO__FORMAT; 1644 } 1645 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1646 * go over allowed ELF data section buffer 1647 */ 1648 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1649 pr_debug("license of %s is %s\n", obj->path, obj->license); 1650 return 0; 1651 } 1652 1653 static int bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1654 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1655 { 1656 __u32 kver; 1657 1658 if (!data || size != sizeof(kver)) { 1659 pr_warn("invalid kver section in %s\n", obj->path); 1660 return -LIBBPF_ERRNO__FORMAT; 1661 } 1662 memcpy(&kver, data, sizeof(kver)); 1663 obj->kern_version = kver; 1664 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1665 return 0; 1666 } 1667 bpf_map_type__is_map_in_map(enum bpf_map_type type)1668 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1669 { 1670 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1671 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1672 return true; 1673 return false; 1674 } 1675 find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1676 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1677 { 1678 Elf_Data *data; 1679 Elf_Scn *scn; 1680 1681 if (!name) 1682 return -EINVAL; 1683 1684 scn = elf_sec_by_name(obj, name); 1685 data = elf_sec_data(obj, scn); 1686 if (data) { 1687 *size = data->d_size; 1688 return 0; /* found it */ 1689 } 1690 1691 return -ENOENT; 1692 } 1693 find_elf_var_sym(const struct bpf_object * obj,const char * name)1694 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1695 { 1696 Elf_Data *symbols = obj->efile.symbols; 1697 const char *sname; 1698 size_t si; 1699 1700 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1701 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1702 1703 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1704 continue; 1705 1706 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1707 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1708 continue; 1709 1710 sname = elf_sym_str(obj, sym->st_name); 1711 if (!sname) { 1712 pr_warn("failed to get sym name string for var %s\n", name); 1713 return ERR_PTR(-EIO); 1714 } 1715 if (strcmp(name, sname) == 0) 1716 return sym; 1717 } 1718 1719 return ERR_PTR(-ENOENT); 1720 } 1721 1722 /* Some versions of Android don't provide memfd_create() in their libc 1723 * implementation, so avoid complications and just go straight to Linux 1724 * syscall. 1725 */ sys_memfd_create(const char * name,unsigned flags)1726 static int sys_memfd_create(const char *name, unsigned flags) 1727 { 1728 return syscall(__NR_memfd_create, name, flags); 1729 } 1730 1731 #ifndef MFD_CLOEXEC 1732 #define MFD_CLOEXEC 0x0001U 1733 #endif 1734 #ifndef MFD_NOEXEC_SEAL 1735 #define MFD_NOEXEC_SEAL 0x0008U 1736 #endif 1737 create_placeholder_fd(void)1738 static int create_placeholder_fd(void) 1739 { 1740 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1741 const char *name = "libbpf-placeholder-fd"; 1742 int fd; 1743 1744 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1745 if (fd >= 0) 1746 return fd; 1747 else if (errno != EINVAL) 1748 return -errno; 1749 1750 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1751 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1752 if (fd < 0) 1753 return -errno; 1754 return fd; 1755 } 1756 bpf_object__add_map(struct bpf_object * obj)1757 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1758 { 1759 struct bpf_map *map; 1760 int err; 1761 1762 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1763 sizeof(*obj->maps), obj->nr_maps + 1); 1764 if (err) 1765 return ERR_PTR(err); 1766 1767 map = &obj->maps[obj->nr_maps++]; 1768 map->obj = obj; 1769 /* Preallocate map FD without actually creating BPF map just yet. 1770 * These map FD "placeholders" will be reused later without changing 1771 * FD value when map is actually created in the kernel. 1772 * 1773 * This is useful to be able to perform BPF program relocations 1774 * without having to create BPF maps before that step. This allows us 1775 * to finalize and load BTF very late in BPF object's loading phase, 1776 * right before BPF maps have to be created and BPF programs have to 1777 * be loaded. By having these map FD placeholders we can perform all 1778 * the sanitizations, relocations, and any other adjustments before we 1779 * start creating actual BPF kernel objects (BTF, maps, progs). 1780 */ 1781 map->fd = create_placeholder_fd(); 1782 if (map->fd < 0) 1783 return ERR_PTR(map->fd); 1784 map->inner_map_fd = -1; 1785 map->autocreate = true; 1786 1787 return map; 1788 } 1789 array_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1790 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1791 { 1792 const long page_sz = sysconf(_SC_PAGE_SIZE); 1793 size_t map_sz; 1794 1795 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1796 map_sz = roundup(map_sz, page_sz); 1797 return map_sz; 1798 } 1799 bpf_map_mmap_sz(const struct bpf_map * map)1800 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1801 { 1802 const long page_sz = sysconf(_SC_PAGE_SIZE); 1803 1804 switch (map->def.type) { 1805 case BPF_MAP_TYPE_ARRAY: 1806 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1807 case BPF_MAP_TYPE_ARENA: 1808 return page_sz * map->def.max_entries; 1809 default: 1810 return 0; /* not supported */ 1811 } 1812 } 1813 bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1814 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1815 { 1816 void *mmaped; 1817 1818 if (!map->mmaped) 1819 return -EINVAL; 1820 1821 if (old_sz == new_sz) 1822 return 0; 1823 1824 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1825 if (mmaped == MAP_FAILED) 1826 return -errno; 1827 1828 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1829 munmap(map->mmaped, old_sz); 1830 map->mmaped = mmaped; 1831 return 0; 1832 } 1833 internal_map_name(struct bpf_object * obj,const char * real_name)1834 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1835 { 1836 char map_name[BPF_OBJ_NAME_LEN], *p; 1837 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1838 1839 /* This is one of the more confusing parts of libbpf for various 1840 * reasons, some of which are historical. The original idea for naming 1841 * internal names was to include as much of BPF object name prefix as 1842 * possible, so that it can be distinguished from similar internal 1843 * maps of a different BPF object. 1844 * As an example, let's say we have bpf_object named 'my_object_name' 1845 * and internal map corresponding to '.rodata' ELF section. The final 1846 * map name advertised to user and to the kernel will be 1847 * 'my_objec.rodata', taking first 8 characters of object name and 1848 * entire 7 characters of '.rodata'. 1849 * Somewhat confusingly, if internal map ELF section name is shorter 1850 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1851 * for the suffix, even though we only have 4 actual characters, and 1852 * resulting map will be called 'my_objec.bss', not even using all 15 1853 * characters allowed by the kernel. Oh well, at least the truncated 1854 * object name is somewhat consistent in this case. But if the map 1855 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1856 * (8 chars) and thus will be left with only first 7 characters of the 1857 * object name ('my_obje'). Happy guessing, user, that the final map 1858 * name will be "my_obje.kconfig". 1859 * Now, with libbpf starting to support arbitrarily named .rodata.* 1860 * and .data.* data sections, it's possible that ELF section name is 1861 * longer than allowed 15 chars, so we now need to be careful to take 1862 * only up to 15 first characters of ELF name, taking no BPF object 1863 * name characters at all. So '.rodata.abracadabra' will result in 1864 * '.rodata.abracad' kernel and user-visible name. 1865 * We need to keep this convoluted logic intact for .data, .bss and 1866 * .rodata maps, but for new custom .data.custom and .rodata.custom 1867 * maps we use their ELF names as is, not prepending bpf_object name 1868 * in front. We still need to truncate them to 15 characters for the 1869 * kernel. Full name can be recovered for such maps by using DATASEC 1870 * BTF type associated with such map's value type, though. 1871 */ 1872 if (sfx_len >= BPF_OBJ_NAME_LEN) 1873 sfx_len = BPF_OBJ_NAME_LEN - 1; 1874 1875 /* if there are two or more dots in map name, it's a custom dot map */ 1876 if (strchr(real_name + 1, '.') != NULL) 1877 pfx_len = 0; 1878 else 1879 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1880 1881 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1882 sfx_len, real_name); 1883 1884 /* sanities map name to characters allowed by kernel */ 1885 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1886 if (!isalnum(*p) && *p != '_' && *p != '.') 1887 *p = '_'; 1888 1889 return strdup(map_name); 1890 } 1891 1892 static int 1893 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1894 1895 /* Internal BPF map is mmap()'able only if at least one of corresponding 1896 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1897 * variable and it's not marked as __hidden (which turns it into, effectively, 1898 * a STATIC variable). 1899 */ map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1900 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1901 { 1902 const struct btf_type *t, *vt; 1903 struct btf_var_secinfo *vsi; 1904 int i, n; 1905 1906 if (!map->btf_value_type_id) 1907 return false; 1908 1909 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1910 if (!btf_is_datasec(t)) 1911 return false; 1912 1913 vsi = btf_var_secinfos(t); 1914 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1915 vt = btf__type_by_id(obj->btf, vsi->type); 1916 if (!btf_is_var(vt)) 1917 continue; 1918 1919 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1920 return true; 1921 } 1922 1923 return false; 1924 } 1925 1926 static int bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1927 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1928 const char *real_name, int sec_idx, void *data, size_t data_sz) 1929 { 1930 struct bpf_map_def *def; 1931 struct bpf_map *map; 1932 size_t mmap_sz; 1933 int err; 1934 1935 map = bpf_object__add_map(obj); 1936 if (IS_ERR(map)) 1937 return PTR_ERR(map); 1938 1939 map->libbpf_type = type; 1940 map->sec_idx = sec_idx; 1941 map->sec_offset = 0; 1942 map->real_name = strdup(real_name); 1943 map->name = internal_map_name(obj, real_name); 1944 if (!map->real_name || !map->name) { 1945 zfree(&map->real_name); 1946 zfree(&map->name); 1947 return -ENOMEM; 1948 } 1949 1950 def = &map->def; 1951 def->type = BPF_MAP_TYPE_ARRAY; 1952 def->key_size = sizeof(int); 1953 def->value_size = data_sz; 1954 def->max_entries = 1; 1955 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1956 ? BPF_F_RDONLY_PROG : 0; 1957 1958 /* failures are fine because of maps like .rodata.str1.1 */ 1959 (void) map_fill_btf_type_info(obj, map); 1960 1961 if (map_is_mmapable(obj, map)) 1962 def->map_flags |= BPF_F_MMAPABLE; 1963 1964 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1965 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1966 1967 mmap_sz = bpf_map_mmap_sz(map); 1968 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1969 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1970 if (map->mmaped == MAP_FAILED) { 1971 err = -errno; 1972 map->mmaped = NULL; 1973 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1974 zfree(&map->real_name); 1975 zfree(&map->name); 1976 return err; 1977 } 1978 1979 if (data) 1980 memcpy(map->mmaped, data, data_sz); 1981 1982 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1983 return 0; 1984 } 1985 bpf_object__init_global_data_maps(struct bpf_object * obj)1986 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1987 { 1988 struct elf_sec_desc *sec_desc; 1989 const char *sec_name; 1990 int err = 0, sec_idx; 1991 1992 /* 1993 * Populate obj->maps with libbpf internal maps. 1994 */ 1995 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1996 sec_desc = &obj->efile.secs[sec_idx]; 1997 1998 /* Skip recognized sections with size 0. */ 1999 if (!sec_desc->data || sec_desc->data->d_size == 0) 2000 continue; 2001 2002 switch (sec_desc->sec_type) { 2003 case SEC_DATA: 2004 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2005 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2006 sec_name, sec_idx, 2007 sec_desc->data->d_buf, 2008 sec_desc->data->d_size); 2009 break; 2010 case SEC_RODATA: 2011 obj->has_rodata = true; 2012 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2013 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2014 sec_name, sec_idx, 2015 sec_desc->data->d_buf, 2016 sec_desc->data->d_size); 2017 break; 2018 case SEC_BSS: 2019 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2020 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2021 sec_name, sec_idx, 2022 NULL, 2023 sec_desc->data->d_size); 2024 break; 2025 default: 2026 /* skip */ 2027 break; 2028 } 2029 if (err) 2030 return err; 2031 } 2032 return 0; 2033 } 2034 2035 find_extern_by_name(const struct bpf_object * obj,const void * name)2036 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2037 const void *name) 2038 { 2039 int i; 2040 2041 for (i = 0; i < obj->nr_extern; i++) { 2042 if (strcmp(obj->externs[i].name, name) == 0) 2043 return &obj->externs[i]; 2044 } 2045 return NULL; 2046 } 2047 find_extern_by_name_with_len(const struct bpf_object * obj,const void * name,int len)2048 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2049 const void *name, int len) 2050 { 2051 const char *ext_name; 2052 int i; 2053 2054 for (i = 0; i < obj->nr_extern; i++) { 2055 ext_name = obj->externs[i].name; 2056 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2057 return &obj->externs[i]; 2058 } 2059 return NULL; 2060 } 2061 set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)2062 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2063 char value) 2064 { 2065 switch (ext->kcfg.type) { 2066 case KCFG_BOOL: 2067 if (value == 'm') { 2068 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2069 ext->name, value); 2070 return -EINVAL; 2071 } 2072 *(bool *)ext_val = value == 'y' ? true : false; 2073 break; 2074 case KCFG_TRISTATE: 2075 if (value == 'y') 2076 *(enum libbpf_tristate *)ext_val = TRI_YES; 2077 else if (value == 'm') 2078 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2079 else /* value == 'n' */ 2080 *(enum libbpf_tristate *)ext_val = TRI_NO; 2081 break; 2082 case KCFG_CHAR: 2083 *(char *)ext_val = value; 2084 break; 2085 case KCFG_UNKNOWN: 2086 case KCFG_INT: 2087 case KCFG_CHAR_ARR: 2088 default: 2089 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2090 ext->name, value); 2091 return -EINVAL; 2092 } 2093 ext->is_set = true; 2094 return 0; 2095 } 2096 set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)2097 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2098 const char *value) 2099 { 2100 size_t len; 2101 2102 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2103 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2104 ext->name, value); 2105 return -EINVAL; 2106 } 2107 2108 len = strlen(value); 2109 if (value[len - 1] != '"') { 2110 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2111 ext->name, value); 2112 return -EINVAL; 2113 } 2114 2115 /* strip quotes */ 2116 len -= 2; 2117 if (len >= ext->kcfg.sz) { 2118 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2119 ext->name, value, len, ext->kcfg.sz - 1); 2120 len = ext->kcfg.sz - 1; 2121 } 2122 memcpy(ext_val, value + 1, len); 2123 ext_val[len] = '\0'; 2124 ext->is_set = true; 2125 return 0; 2126 } 2127 parse_u64(const char * value,__u64 * res)2128 static int parse_u64(const char *value, __u64 *res) 2129 { 2130 char *value_end; 2131 int err; 2132 2133 errno = 0; 2134 *res = strtoull(value, &value_end, 0); 2135 if (errno) { 2136 err = -errno; 2137 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2138 return err; 2139 } 2140 if (*value_end) { 2141 pr_warn("failed to parse '%s' as integer completely\n", value); 2142 return -EINVAL; 2143 } 2144 return 0; 2145 } 2146 is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)2147 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2148 { 2149 int bit_sz = ext->kcfg.sz * 8; 2150 2151 if (ext->kcfg.sz == 8) 2152 return true; 2153 2154 /* Validate that value stored in u64 fits in integer of `ext->sz` 2155 * bytes size without any loss of information. If the target integer 2156 * is signed, we rely on the following limits of integer type of 2157 * Y bits and subsequent transformation: 2158 * 2159 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2160 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2161 * 0 <= X + 2^(Y-1) < 2^Y 2162 * 2163 * For unsigned target integer, check that all the (64 - Y) bits are 2164 * zero. 2165 */ 2166 if (ext->kcfg.is_signed) 2167 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2168 else 2169 return (v >> bit_sz) == 0; 2170 } 2171 set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)2172 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2173 __u64 value) 2174 { 2175 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2176 ext->kcfg.type != KCFG_BOOL) { 2177 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2178 ext->name, (unsigned long long)value); 2179 return -EINVAL; 2180 } 2181 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2182 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2183 ext->name, (unsigned long long)value); 2184 return -EINVAL; 2185 2186 } 2187 if (!is_kcfg_value_in_range(ext, value)) { 2188 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2189 ext->name, (unsigned long long)value, ext->kcfg.sz); 2190 return -ERANGE; 2191 } 2192 switch (ext->kcfg.sz) { 2193 case 1: 2194 *(__u8 *)ext_val = value; 2195 break; 2196 case 2: 2197 *(__u16 *)ext_val = value; 2198 break; 2199 case 4: 2200 *(__u32 *)ext_val = value; 2201 break; 2202 case 8: 2203 *(__u64 *)ext_val = value; 2204 break; 2205 default: 2206 return -EINVAL; 2207 } 2208 ext->is_set = true; 2209 return 0; 2210 } 2211 bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)2212 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2213 char *buf, void *data) 2214 { 2215 struct extern_desc *ext; 2216 char *sep, *value; 2217 int len, err = 0; 2218 void *ext_val; 2219 __u64 num; 2220 2221 if (!str_has_pfx(buf, "CONFIG_")) 2222 return 0; 2223 2224 sep = strchr(buf, '='); 2225 if (!sep) { 2226 pr_warn("failed to parse '%s': no separator\n", buf); 2227 return -EINVAL; 2228 } 2229 2230 /* Trim ending '\n' */ 2231 len = strlen(buf); 2232 if (buf[len - 1] == '\n') 2233 buf[len - 1] = '\0'; 2234 /* Split on '=' and ensure that a value is present. */ 2235 *sep = '\0'; 2236 if (!sep[1]) { 2237 *sep = '='; 2238 pr_warn("failed to parse '%s': no value\n", buf); 2239 return -EINVAL; 2240 } 2241 2242 ext = find_extern_by_name(obj, buf); 2243 if (!ext || ext->is_set) 2244 return 0; 2245 2246 ext_val = data + ext->kcfg.data_off; 2247 value = sep + 1; 2248 2249 switch (*value) { 2250 case 'y': case 'n': case 'm': 2251 err = set_kcfg_value_tri(ext, ext_val, *value); 2252 break; 2253 case '"': 2254 err = set_kcfg_value_str(ext, ext_val, value); 2255 break; 2256 default: 2257 /* assume integer */ 2258 err = parse_u64(value, &num); 2259 if (err) { 2260 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2261 return err; 2262 } 2263 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2264 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2265 return -EINVAL; 2266 } 2267 err = set_kcfg_value_num(ext, ext_val, num); 2268 break; 2269 } 2270 if (err) 2271 return err; 2272 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2273 return 0; 2274 } 2275 bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)2276 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2277 { 2278 char buf[PATH_MAX]; 2279 struct utsname uts; 2280 int len, err = 0; 2281 gzFile file; 2282 2283 uname(&uts); 2284 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2285 if (len < 0) 2286 return -EINVAL; 2287 else if (len >= PATH_MAX) 2288 return -ENAMETOOLONG; 2289 2290 /* gzopen also accepts uncompressed files. */ 2291 file = gzopen(buf, "re"); 2292 if (!file) 2293 file = gzopen("/proc/config.gz", "re"); 2294 2295 if (!file) { 2296 pr_warn("failed to open system Kconfig\n"); 2297 return -ENOENT; 2298 } 2299 2300 while (gzgets(file, buf, sizeof(buf))) { 2301 err = bpf_object__process_kconfig_line(obj, buf, data); 2302 if (err) { 2303 pr_warn("error parsing system Kconfig line '%s': %s\n", 2304 buf, errstr(err)); 2305 goto out; 2306 } 2307 } 2308 2309 out: 2310 gzclose(file); 2311 return err; 2312 } 2313 bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2314 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2315 const char *config, void *data) 2316 { 2317 char buf[PATH_MAX]; 2318 int err = 0; 2319 FILE *file; 2320 2321 file = fmemopen((void *)config, strlen(config), "r"); 2322 if (!file) { 2323 err = -errno; 2324 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2325 return err; 2326 } 2327 2328 while (fgets(buf, sizeof(buf), file)) { 2329 err = bpf_object__process_kconfig_line(obj, buf, data); 2330 if (err) { 2331 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2332 buf, errstr(err)); 2333 break; 2334 } 2335 } 2336 2337 fclose(file); 2338 return err; 2339 } 2340 bpf_object__init_kconfig_map(struct bpf_object * obj)2341 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2342 { 2343 struct extern_desc *last_ext = NULL, *ext; 2344 size_t map_sz; 2345 int i, err; 2346 2347 for (i = 0; i < obj->nr_extern; i++) { 2348 ext = &obj->externs[i]; 2349 if (ext->type == EXT_KCFG) 2350 last_ext = ext; 2351 } 2352 2353 if (!last_ext) 2354 return 0; 2355 2356 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2357 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2358 ".kconfig", obj->efile.symbols_shndx, 2359 NULL, map_sz); 2360 if (err) 2361 return err; 2362 2363 obj->kconfig_map_idx = obj->nr_maps - 1; 2364 2365 return 0; 2366 } 2367 2368 const struct btf_type * skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2369 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2370 { 2371 const struct btf_type *t = btf__type_by_id(btf, id); 2372 2373 if (res_id) 2374 *res_id = id; 2375 2376 while (btf_is_mod(t) || btf_is_typedef(t)) { 2377 if (res_id) 2378 *res_id = t->type; 2379 t = btf__type_by_id(btf, t->type); 2380 } 2381 2382 return t; 2383 } 2384 2385 static const struct btf_type * resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2386 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2387 { 2388 const struct btf_type *t; 2389 2390 t = skip_mods_and_typedefs(btf, id, NULL); 2391 if (!btf_is_ptr(t)) 2392 return NULL; 2393 2394 t = skip_mods_and_typedefs(btf, t->type, res_id); 2395 2396 return btf_is_func_proto(t) ? t : NULL; 2397 } 2398 __btf_kind_str(__u16 kind)2399 static const char *__btf_kind_str(__u16 kind) 2400 { 2401 switch (kind) { 2402 case BTF_KIND_UNKN: return "void"; 2403 case BTF_KIND_INT: return "int"; 2404 case BTF_KIND_PTR: return "ptr"; 2405 case BTF_KIND_ARRAY: return "array"; 2406 case BTF_KIND_STRUCT: return "struct"; 2407 case BTF_KIND_UNION: return "union"; 2408 case BTF_KIND_ENUM: return "enum"; 2409 case BTF_KIND_FWD: return "fwd"; 2410 case BTF_KIND_TYPEDEF: return "typedef"; 2411 case BTF_KIND_VOLATILE: return "volatile"; 2412 case BTF_KIND_CONST: return "const"; 2413 case BTF_KIND_RESTRICT: return "restrict"; 2414 case BTF_KIND_FUNC: return "func"; 2415 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2416 case BTF_KIND_VAR: return "var"; 2417 case BTF_KIND_DATASEC: return "datasec"; 2418 case BTF_KIND_FLOAT: return "float"; 2419 case BTF_KIND_DECL_TAG: return "decl_tag"; 2420 case BTF_KIND_TYPE_TAG: return "type_tag"; 2421 case BTF_KIND_ENUM64: return "enum64"; 2422 default: return "unknown"; 2423 } 2424 } 2425 btf_kind_str(const struct btf_type * t)2426 const char *btf_kind_str(const struct btf_type *t) 2427 { 2428 return __btf_kind_str(btf_kind(t)); 2429 } 2430 2431 /* 2432 * Fetch integer attribute of BTF map definition. Such attributes are 2433 * represented using a pointer to an array, in which dimensionality of array 2434 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2435 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2436 * type definition, while using only sizeof(void *) space in ELF data section. 2437 */ get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2438 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2439 const struct btf_member *m, __u32 *res) 2440 { 2441 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2442 const char *name = btf__name_by_offset(btf, m->name_off); 2443 const struct btf_array *arr_info; 2444 const struct btf_type *arr_t; 2445 2446 if (!btf_is_ptr(t)) { 2447 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2448 map_name, name, btf_kind_str(t)); 2449 return false; 2450 } 2451 2452 arr_t = btf__type_by_id(btf, t->type); 2453 if (!arr_t) { 2454 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2455 map_name, name, t->type); 2456 return false; 2457 } 2458 if (!btf_is_array(arr_t)) { 2459 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2460 map_name, name, btf_kind_str(arr_t)); 2461 return false; 2462 } 2463 arr_info = btf_array(arr_t); 2464 *res = arr_info->nelems; 2465 return true; 2466 } 2467 get_map_field_long(const char * map_name,const struct btf * btf,const struct btf_member * m,__u64 * res)2468 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2469 const struct btf_member *m, __u64 *res) 2470 { 2471 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2472 const char *name = btf__name_by_offset(btf, m->name_off); 2473 2474 if (btf_is_ptr(t)) { 2475 __u32 res32; 2476 bool ret; 2477 2478 ret = get_map_field_int(map_name, btf, m, &res32); 2479 if (ret) 2480 *res = (__u64)res32; 2481 return ret; 2482 } 2483 2484 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2485 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2486 map_name, name, btf_kind_str(t)); 2487 return false; 2488 } 2489 2490 if (btf_vlen(t) != 1) { 2491 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2492 map_name, name); 2493 return false; 2494 } 2495 2496 if (btf_is_enum(t)) { 2497 const struct btf_enum *e = btf_enum(t); 2498 2499 *res = e->val; 2500 } else { 2501 const struct btf_enum64 *e = btf_enum64(t); 2502 2503 *res = btf_enum64_value(e); 2504 } 2505 return true; 2506 } 2507 pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2508 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2509 { 2510 int len; 2511 2512 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2513 if (len < 0) 2514 return -EINVAL; 2515 if (len >= buf_sz) 2516 return -ENAMETOOLONG; 2517 2518 return 0; 2519 } 2520 build_map_pin_path(struct bpf_map * map,const char * path)2521 static int build_map_pin_path(struct bpf_map *map, const char *path) 2522 { 2523 char buf[PATH_MAX]; 2524 int err; 2525 2526 if (!path) 2527 path = BPF_FS_DEFAULT_PATH; 2528 2529 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2530 if (err) 2531 return err; 2532 2533 return bpf_map__set_pin_path(map, buf); 2534 } 2535 2536 /* should match definition in bpf_helpers.h */ 2537 enum libbpf_pin_type { 2538 LIBBPF_PIN_NONE, 2539 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2540 LIBBPF_PIN_BY_NAME, 2541 }; 2542 parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2543 int parse_btf_map_def(const char *map_name, struct btf *btf, 2544 const struct btf_type *def_t, bool strict, 2545 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2546 { 2547 const struct btf_type *t; 2548 const struct btf_member *m; 2549 bool is_inner = inner_def == NULL; 2550 int vlen, i; 2551 2552 vlen = btf_vlen(def_t); 2553 m = btf_members(def_t); 2554 for (i = 0; i < vlen; i++, m++) { 2555 const char *name = btf__name_by_offset(btf, m->name_off); 2556 2557 if (!name) { 2558 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2559 return -EINVAL; 2560 } 2561 if (strcmp(name, "type") == 0) { 2562 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2563 return -EINVAL; 2564 map_def->parts |= MAP_DEF_MAP_TYPE; 2565 } else if (strcmp(name, "max_entries") == 0) { 2566 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2567 return -EINVAL; 2568 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2569 } else if (strcmp(name, "map_flags") == 0) { 2570 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2571 return -EINVAL; 2572 map_def->parts |= MAP_DEF_MAP_FLAGS; 2573 } else if (strcmp(name, "numa_node") == 0) { 2574 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2575 return -EINVAL; 2576 map_def->parts |= MAP_DEF_NUMA_NODE; 2577 } else if (strcmp(name, "key_size") == 0) { 2578 __u32 sz; 2579 2580 if (!get_map_field_int(map_name, btf, m, &sz)) 2581 return -EINVAL; 2582 if (map_def->key_size && map_def->key_size != sz) { 2583 pr_warn("map '%s': conflicting key size %u != %u.\n", 2584 map_name, map_def->key_size, sz); 2585 return -EINVAL; 2586 } 2587 map_def->key_size = sz; 2588 map_def->parts |= MAP_DEF_KEY_SIZE; 2589 } else if (strcmp(name, "key") == 0) { 2590 __s64 sz; 2591 2592 t = btf__type_by_id(btf, m->type); 2593 if (!t) { 2594 pr_warn("map '%s': key type [%d] not found.\n", 2595 map_name, m->type); 2596 return -EINVAL; 2597 } 2598 if (!btf_is_ptr(t)) { 2599 pr_warn("map '%s': key spec is not PTR: %s.\n", 2600 map_name, btf_kind_str(t)); 2601 return -EINVAL; 2602 } 2603 sz = btf__resolve_size(btf, t->type); 2604 if (sz < 0) { 2605 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2606 map_name, t->type, (ssize_t)sz); 2607 return sz; 2608 } 2609 if (map_def->key_size && map_def->key_size != sz) { 2610 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2611 map_name, map_def->key_size, (ssize_t)sz); 2612 return -EINVAL; 2613 } 2614 map_def->key_size = sz; 2615 map_def->key_type_id = t->type; 2616 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2617 } else if (strcmp(name, "value_size") == 0) { 2618 __u32 sz; 2619 2620 if (!get_map_field_int(map_name, btf, m, &sz)) 2621 return -EINVAL; 2622 if (map_def->value_size && map_def->value_size != sz) { 2623 pr_warn("map '%s': conflicting value size %u != %u.\n", 2624 map_name, map_def->value_size, sz); 2625 return -EINVAL; 2626 } 2627 map_def->value_size = sz; 2628 map_def->parts |= MAP_DEF_VALUE_SIZE; 2629 } else if (strcmp(name, "value") == 0) { 2630 __s64 sz; 2631 2632 t = btf__type_by_id(btf, m->type); 2633 if (!t) { 2634 pr_warn("map '%s': value type [%d] not found.\n", 2635 map_name, m->type); 2636 return -EINVAL; 2637 } 2638 if (!btf_is_ptr(t)) { 2639 pr_warn("map '%s': value spec is not PTR: %s.\n", 2640 map_name, btf_kind_str(t)); 2641 return -EINVAL; 2642 } 2643 sz = btf__resolve_size(btf, t->type); 2644 if (sz < 0) { 2645 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2646 map_name, t->type, (ssize_t)sz); 2647 return sz; 2648 } 2649 if (map_def->value_size && map_def->value_size != sz) { 2650 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2651 map_name, map_def->value_size, (ssize_t)sz); 2652 return -EINVAL; 2653 } 2654 map_def->value_size = sz; 2655 map_def->value_type_id = t->type; 2656 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2657 } 2658 else if (strcmp(name, "values") == 0) { 2659 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2660 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2661 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2662 char inner_map_name[128]; 2663 int err; 2664 2665 if (is_inner) { 2666 pr_warn("map '%s': multi-level inner maps not supported.\n", 2667 map_name); 2668 return -ENOTSUP; 2669 } 2670 if (i != vlen - 1) { 2671 pr_warn("map '%s': '%s' member should be last.\n", 2672 map_name, name); 2673 return -EINVAL; 2674 } 2675 if (!is_map_in_map && !is_prog_array) { 2676 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2677 map_name); 2678 return -ENOTSUP; 2679 } 2680 if (map_def->value_size && map_def->value_size != 4) { 2681 pr_warn("map '%s': conflicting value size %u != 4.\n", 2682 map_name, map_def->value_size); 2683 return -EINVAL; 2684 } 2685 map_def->value_size = 4; 2686 t = btf__type_by_id(btf, m->type); 2687 if (!t) { 2688 pr_warn("map '%s': %s type [%d] not found.\n", 2689 map_name, desc, m->type); 2690 return -EINVAL; 2691 } 2692 if (!btf_is_array(t) || btf_array(t)->nelems) { 2693 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2694 map_name, desc); 2695 return -EINVAL; 2696 } 2697 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2698 if (!btf_is_ptr(t)) { 2699 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2700 map_name, desc, btf_kind_str(t)); 2701 return -EINVAL; 2702 } 2703 t = skip_mods_and_typedefs(btf, t->type, NULL); 2704 if (is_prog_array) { 2705 if (!btf_is_func_proto(t)) { 2706 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2707 map_name, btf_kind_str(t)); 2708 return -EINVAL; 2709 } 2710 continue; 2711 } 2712 if (!btf_is_struct(t)) { 2713 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2714 map_name, btf_kind_str(t)); 2715 return -EINVAL; 2716 } 2717 2718 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2719 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2720 if (err) 2721 return err; 2722 2723 map_def->parts |= MAP_DEF_INNER_MAP; 2724 } else if (strcmp(name, "pinning") == 0) { 2725 __u32 val; 2726 2727 if (is_inner) { 2728 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2729 return -EINVAL; 2730 } 2731 if (!get_map_field_int(map_name, btf, m, &val)) 2732 return -EINVAL; 2733 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2734 pr_warn("map '%s': invalid pinning value %u.\n", 2735 map_name, val); 2736 return -EINVAL; 2737 } 2738 map_def->pinning = val; 2739 map_def->parts |= MAP_DEF_PINNING; 2740 } else if (strcmp(name, "map_extra") == 0) { 2741 __u64 map_extra; 2742 2743 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2744 return -EINVAL; 2745 map_def->map_extra = map_extra; 2746 map_def->parts |= MAP_DEF_MAP_EXTRA; 2747 } else { 2748 if (strict) { 2749 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2750 return -ENOTSUP; 2751 } 2752 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2753 } 2754 } 2755 2756 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2757 pr_warn("map '%s': map type isn't specified.\n", map_name); 2758 return -EINVAL; 2759 } 2760 2761 return 0; 2762 } 2763 adjust_ringbuf_sz(size_t sz)2764 static size_t adjust_ringbuf_sz(size_t sz) 2765 { 2766 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2767 __u32 mul; 2768 2769 /* if user forgot to set any size, make sure they see error */ 2770 if (sz == 0) 2771 return 0; 2772 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2773 * a power-of-2 multiple of kernel's page size. If user diligently 2774 * satisified these conditions, pass the size through. 2775 */ 2776 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2777 return sz; 2778 2779 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2780 * user-set size to satisfy both user size request and kernel 2781 * requirements and substitute correct max_entries for map creation. 2782 */ 2783 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2784 if (mul * page_sz > sz) 2785 return mul * page_sz; 2786 } 2787 2788 /* if it's impossible to satisfy the conditions (i.e., user size is 2789 * very close to UINT_MAX but is not a power-of-2 multiple of 2790 * page_size) then just return original size and let kernel reject it 2791 */ 2792 return sz; 2793 } 2794 map_is_ringbuf(const struct bpf_map * map)2795 static bool map_is_ringbuf(const struct bpf_map *map) 2796 { 2797 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2798 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2799 } 2800 fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2801 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2802 { 2803 map->def.type = def->map_type; 2804 map->def.key_size = def->key_size; 2805 map->def.value_size = def->value_size; 2806 map->def.max_entries = def->max_entries; 2807 map->def.map_flags = def->map_flags; 2808 map->map_extra = def->map_extra; 2809 2810 map->numa_node = def->numa_node; 2811 map->btf_key_type_id = def->key_type_id; 2812 map->btf_value_type_id = def->value_type_id; 2813 2814 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2815 if (map_is_ringbuf(map)) 2816 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2817 2818 if (def->parts & MAP_DEF_MAP_TYPE) 2819 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2820 2821 if (def->parts & MAP_DEF_KEY_TYPE) 2822 pr_debug("map '%s': found key [%u], sz = %u.\n", 2823 map->name, def->key_type_id, def->key_size); 2824 else if (def->parts & MAP_DEF_KEY_SIZE) 2825 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2826 2827 if (def->parts & MAP_DEF_VALUE_TYPE) 2828 pr_debug("map '%s': found value [%u], sz = %u.\n", 2829 map->name, def->value_type_id, def->value_size); 2830 else if (def->parts & MAP_DEF_VALUE_SIZE) 2831 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2832 2833 if (def->parts & MAP_DEF_MAX_ENTRIES) 2834 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2835 if (def->parts & MAP_DEF_MAP_FLAGS) 2836 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2837 if (def->parts & MAP_DEF_MAP_EXTRA) 2838 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2839 (unsigned long long)def->map_extra); 2840 if (def->parts & MAP_DEF_PINNING) 2841 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2842 if (def->parts & MAP_DEF_NUMA_NODE) 2843 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2844 2845 if (def->parts & MAP_DEF_INNER_MAP) 2846 pr_debug("map '%s': found inner map definition.\n", map->name); 2847 } 2848 btf_var_linkage_str(__u32 linkage)2849 static const char *btf_var_linkage_str(__u32 linkage) 2850 { 2851 switch (linkage) { 2852 case BTF_VAR_STATIC: return "static"; 2853 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2854 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2855 default: return "unknown"; 2856 } 2857 } 2858 bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2859 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2860 const struct btf_type *sec, 2861 int var_idx, int sec_idx, 2862 const Elf_Data *data, bool strict, 2863 const char *pin_root_path) 2864 { 2865 struct btf_map_def map_def = {}, inner_def = {}; 2866 const struct btf_type *var, *def; 2867 const struct btf_var_secinfo *vi; 2868 const struct btf_var *var_extra; 2869 const char *map_name; 2870 struct bpf_map *map; 2871 int err; 2872 2873 vi = btf_var_secinfos(sec) + var_idx; 2874 var = btf__type_by_id(obj->btf, vi->type); 2875 var_extra = btf_var(var); 2876 map_name = btf__name_by_offset(obj->btf, var->name_off); 2877 2878 if (map_name == NULL || map_name[0] == '\0') { 2879 pr_warn("map #%d: empty name.\n", var_idx); 2880 return -EINVAL; 2881 } 2882 if ((__u64)vi->offset + vi->size > data->d_size) { 2883 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2884 return -EINVAL; 2885 } 2886 if (!btf_is_var(var)) { 2887 pr_warn("map '%s': unexpected var kind %s.\n", 2888 map_name, btf_kind_str(var)); 2889 return -EINVAL; 2890 } 2891 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2892 pr_warn("map '%s': unsupported map linkage %s.\n", 2893 map_name, btf_var_linkage_str(var_extra->linkage)); 2894 return -EOPNOTSUPP; 2895 } 2896 2897 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2898 if (!btf_is_struct(def)) { 2899 pr_warn("map '%s': unexpected def kind %s.\n", 2900 map_name, btf_kind_str(var)); 2901 return -EINVAL; 2902 } 2903 if (def->size > vi->size) { 2904 pr_warn("map '%s': invalid def size.\n", map_name); 2905 return -EINVAL; 2906 } 2907 2908 map = bpf_object__add_map(obj); 2909 if (IS_ERR(map)) 2910 return PTR_ERR(map); 2911 map->name = strdup(map_name); 2912 if (!map->name) { 2913 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2914 return -ENOMEM; 2915 } 2916 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2917 map->def.type = BPF_MAP_TYPE_UNSPEC; 2918 map->sec_idx = sec_idx; 2919 map->sec_offset = vi->offset; 2920 map->btf_var_idx = var_idx; 2921 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2922 map_name, map->sec_idx, map->sec_offset); 2923 2924 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2925 if (err) 2926 return err; 2927 2928 fill_map_from_def(map, &map_def); 2929 2930 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2931 err = build_map_pin_path(map, pin_root_path); 2932 if (err) { 2933 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2934 return err; 2935 } 2936 } 2937 2938 if (map_def.parts & MAP_DEF_INNER_MAP) { 2939 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2940 if (!map->inner_map) 2941 return -ENOMEM; 2942 map->inner_map->fd = create_placeholder_fd(); 2943 if (map->inner_map->fd < 0) 2944 return map->inner_map->fd; 2945 map->inner_map->sec_idx = sec_idx; 2946 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2947 if (!map->inner_map->name) 2948 return -ENOMEM; 2949 sprintf(map->inner_map->name, "%s.inner", map_name); 2950 2951 fill_map_from_def(map->inner_map, &inner_def); 2952 } 2953 2954 err = map_fill_btf_type_info(obj, map); 2955 if (err) 2956 return err; 2957 2958 return 0; 2959 } 2960 init_arena_map_data(struct bpf_object * obj,struct bpf_map * map,const char * sec_name,int sec_idx,void * data,size_t data_sz)2961 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2962 const char *sec_name, int sec_idx, 2963 void *data, size_t data_sz) 2964 { 2965 const long page_sz = sysconf(_SC_PAGE_SIZE); 2966 size_t mmap_sz; 2967 2968 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2969 if (roundup(data_sz, page_sz) > mmap_sz) { 2970 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2971 sec_name, mmap_sz, data_sz); 2972 return -E2BIG; 2973 } 2974 2975 obj->arena_data = malloc(data_sz); 2976 if (!obj->arena_data) 2977 return -ENOMEM; 2978 memcpy(obj->arena_data, data, data_sz); 2979 obj->arena_data_sz = data_sz; 2980 2981 /* make bpf_map__init_value() work for ARENA maps */ 2982 map->mmaped = obj->arena_data; 2983 2984 return 0; 2985 } 2986 bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2987 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2988 const char *pin_root_path) 2989 { 2990 const struct btf_type *sec = NULL; 2991 int nr_types, i, vlen, err; 2992 const struct btf_type *t; 2993 const char *name; 2994 Elf_Data *data; 2995 Elf_Scn *scn; 2996 2997 if (obj->efile.btf_maps_shndx < 0) 2998 return 0; 2999 3000 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 3001 data = elf_sec_data(obj, scn); 3002 if (!scn || !data) { 3003 pr_warn("elf: failed to get %s map definitions for %s\n", 3004 MAPS_ELF_SEC, obj->path); 3005 return -EINVAL; 3006 } 3007 3008 nr_types = btf__type_cnt(obj->btf); 3009 for (i = 1; i < nr_types; i++) { 3010 t = btf__type_by_id(obj->btf, i); 3011 if (!btf_is_datasec(t)) 3012 continue; 3013 name = btf__name_by_offset(obj->btf, t->name_off); 3014 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3015 sec = t; 3016 obj->efile.btf_maps_sec_btf_id = i; 3017 break; 3018 } 3019 } 3020 3021 if (!sec) { 3022 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3023 return -ENOENT; 3024 } 3025 3026 vlen = btf_vlen(sec); 3027 for (i = 0; i < vlen; i++) { 3028 err = bpf_object__init_user_btf_map(obj, sec, i, 3029 obj->efile.btf_maps_shndx, 3030 data, strict, 3031 pin_root_path); 3032 if (err) 3033 return err; 3034 } 3035 3036 for (i = 0; i < obj->nr_maps; i++) { 3037 struct bpf_map *map = &obj->maps[i]; 3038 3039 if (map->def.type != BPF_MAP_TYPE_ARENA) 3040 continue; 3041 3042 if (obj->arena_map) { 3043 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3044 map->name, obj->arena_map->name); 3045 return -EINVAL; 3046 } 3047 obj->arena_map = map; 3048 3049 if (obj->efile.arena_data) { 3050 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3051 obj->efile.arena_data->d_buf, 3052 obj->efile.arena_data->d_size); 3053 if (err) 3054 return err; 3055 } 3056 } 3057 if (obj->efile.arena_data && !obj->arena_map) { 3058 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3059 ARENA_SEC); 3060 return -ENOENT; 3061 } 3062 3063 return 0; 3064 } 3065 bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)3066 static int bpf_object__init_maps(struct bpf_object *obj, 3067 const struct bpf_object_open_opts *opts) 3068 { 3069 const char *pin_root_path; 3070 bool strict; 3071 int err = 0; 3072 3073 strict = !OPTS_GET(opts, relaxed_maps, false); 3074 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3075 3076 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3077 err = err ?: bpf_object__init_global_data_maps(obj); 3078 err = err ?: bpf_object__init_kconfig_map(obj); 3079 err = err ?: bpf_object_init_struct_ops(obj); 3080 3081 return err; 3082 } 3083 section_have_execinstr(struct bpf_object * obj,int idx)3084 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3085 { 3086 Elf64_Shdr *sh; 3087 3088 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3089 if (!sh) 3090 return false; 3091 3092 return sh->sh_flags & SHF_EXECINSTR; 3093 } 3094 starts_with_qmark(const char * s)3095 static bool starts_with_qmark(const char *s) 3096 { 3097 return s && s[0] == '?'; 3098 } 3099 btf_needs_sanitization(struct bpf_object * obj)3100 static bool btf_needs_sanitization(struct bpf_object *obj) 3101 { 3102 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3103 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3104 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3105 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3106 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3107 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3108 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3109 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3110 3111 return !has_func || !has_datasec || !has_func_global || !has_float || 3112 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3113 } 3114 bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)3115 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3116 { 3117 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3118 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3119 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3120 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3121 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3122 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3123 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3124 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3125 int enum64_placeholder_id = 0; 3126 struct btf_type *t; 3127 int i, j, vlen; 3128 3129 for (i = 1; i < btf__type_cnt(btf); i++) { 3130 t = (struct btf_type *)btf__type_by_id(btf, i); 3131 3132 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3133 /* replace VAR/DECL_TAG with INT */ 3134 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3135 /* 3136 * using size = 1 is the safest choice, 4 will be too 3137 * big and cause kernel BTF validation failure if 3138 * original variable took less than 4 bytes 3139 */ 3140 t->size = 1; 3141 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3142 } else if (!has_datasec && btf_is_datasec(t)) { 3143 /* replace DATASEC with STRUCT */ 3144 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3145 struct btf_member *m = btf_members(t); 3146 struct btf_type *vt; 3147 char *name; 3148 3149 name = (char *)btf__name_by_offset(btf, t->name_off); 3150 while (*name) { 3151 if (*name == '.' || *name == '?') 3152 *name = '_'; 3153 name++; 3154 } 3155 3156 vlen = btf_vlen(t); 3157 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3158 for (j = 0; j < vlen; j++, v++, m++) { 3159 /* order of field assignments is important */ 3160 m->offset = v->offset * 8; 3161 m->type = v->type; 3162 /* preserve variable name as member name */ 3163 vt = (void *)btf__type_by_id(btf, v->type); 3164 m->name_off = vt->name_off; 3165 } 3166 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3167 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3168 /* replace '?' prefix with '_' for DATASEC names */ 3169 char *name; 3170 3171 name = (char *)btf__name_by_offset(btf, t->name_off); 3172 if (name[0] == '?') 3173 name[0] = '_'; 3174 } else if (!has_func && btf_is_func_proto(t)) { 3175 /* replace FUNC_PROTO with ENUM */ 3176 vlen = btf_vlen(t); 3177 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3178 t->size = sizeof(__u32); /* kernel enforced */ 3179 } else if (!has_func && btf_is_func(t)) { 3180 /* replace FUNC with TYPEDEF */ 3181 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3182 } else if (!has_func_global && btf_is_func(t)) { 3183 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3184 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3185 } else if (!has_float && btf_is_float(t)) { 3186 /* replace FLOAT with an equally-sized empty STRUCT; 3187 * since C compilers do not accept e.g. "float" as a 3188 * valid struct name, make it anonymous 3189 */ 3190 t->name_off = 0; 3191 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3192 } else if (!has_type_tag && btf_is_type_tag(t)) { 3193 /* replace TYPE_TAG with a CONST */ 3194 t->name_off = 0; 3195 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3196 } else if (!has_enum64 && btf_is_enum(t)) { 3197 /* clear the kflag */ 3198 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3199 } else if (!has_enum64 && btf_is_enum64(t)) { 3200 /* replace ENUM64 with a union */ 3201 struct btf_member *m; 3202 3203 if (enum64_placeholder_id == 0) { 3204 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3205 if (enum64_placeholder_id < 0) 3206 return enum64_placeholder_id; 3207 3208 t = (struct btf_type *)btf__type_by_id(btf, i); 3209 } 3210 3211 m = btf_members(t); 3212 vlen = btf_vlen(t); 3213 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3214 for (j = 0; j < vlen; j++, m++) { 3215 m->type = enum64_placeholder_id; 3216 m->offset = 0; 3217 } 3218 } 3219 } 3220 3221 return 0; 3222 } 3223 libbpf_needs_btf(const struct bpf_object * obj)3224 static bool libbpf_needs_btf(const struct bpf_object *obj) 3225 { 3226 return obj->efile.btf_maps_shndx >= 0 || 3227 obj->efile.has_st_ops || 3228 obj->nr_extern > 0; 3229 } 3230 kernel_needs_btf(const struct bpf_object * obj)3231 static bool kernel_needs_btf(const struct bpf_object *obj) 3232 { 3233 return obj->efile.has_st_ops; 3234 } 3235 bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)3236 static int bpf_object__init_btf(struct bpf_object *obj, 3237 Elf_Data *btf_data, 3238 Elf_Data *btf_ext_data) 3239 { 3240 int err = -ENOENT; 3241 3242 if (btf_data) { 3243 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3244 err = libbpf_get_error(obj->btf); 3245 if (err) { 3246 obj->btf = NULL; 3247 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3248 goto out; 3249 } 3250 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3251 btf__set_pointer_size(obj->btf, 8); 3252 } 3253 if (btf_ext_data) { 3254 struct btf_ext_info *ext_segs[3]; 3255 int seg_num, sec_num; 3256 3257 if (!obj->btf) { 3258 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3259 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3260 goto out; 3261 } 3262 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3263 err = libbpf_get_error(obj->btf_ext); 3264 if (err) { 3265 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3266 BTF_EXT_ELF_SEC, errstr(err)); 3267 obj->btf_ext = NULL; 3268 goto out; 3269 } 3270 3271 /* setup .BTF.ext to ELF section mapping */ 3272 ext_segs[0] = &obj->btf_ext->func_info; 3273 ext_segs[1] = &obj->btf_ext->line_info; 3274 ext_segs[2] = &obj->btf_ext->core_relo_info; 3275 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3276 struct btf_ext_info *seg = ext_segs[seg_num]; 3277 const struct btf_ext_info_sec *sec; 3278 const char *sec_name; 3279 Elf_Scn *scn; 3280 3281 if (seg->sec_cnt == 0) 3282 continue; 3283 3284 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3285 if (!seg->sec_idxs) { 3286 err = -ENOMEM; 3287 goto out; 3288 } 3289 3290 sec_num = 0; 3291 for_each_btf_ext_sec(seg, sec) { 3292 /* preventively increment index to avoid doing 3293 * this before every continue below 3294 */ 3295 sec_num++; 3296 3297 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3298 if (str_is_empty(sec_name)) 3299 continue; 3300 scn = elf_sec_by_name(obj, sec_name); 3301 if (!scn) 3302 continue; 3303 3304 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3305 } 3306 } 3307 } 3308 out: 3309 if (err && libbpf_needs_btf(obj)) { 3310 pr_warn("BTF is required, but is missing or corrupted.\n"); 3311 return err; 3312 } 3313 return 0; 3314 } 3315 compare_vsi_off(const void * _a,const void * _b)3316 static int compare_vsi_off(const void *_a, const void *_b) 3317 { 3318 const struct btf_var_secinfo *a = _a; 3319 const struct btf_var_secinfo *b = _b; 3320 3321 return a->offset - b->offset; 3322 } 3323 btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)3324 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3325 struct btf_type *t) 3326 { 3327 __u32 size = 0, i, vars = btf_vlen(t); 3328 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3329 struct btf_var_secinfo *vsi; 3330 bool fixup_offsets = false; 3331 int err; 3332 3333 if (!sec_name) { 3334 pr_debug("No name found in string section for DATASEC kind.\n"); 3335 return -ENOENT; 3336 } 3337 3338 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3339 * variable offsets set at the previous step. Further, not every 3340 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3341 * all fixups altogether for such sections and go straight to sorting 3342 * VARs within their DATASEC. 3343 */ 3344 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3345 goto sort_vars; 3346 3347 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3348 * fix this up. But BPF static linker already fixes this up and fills 3349 * all the sizes and offsets during static linking. So this step has 3350 * to be optional. But the STV_HIDDEN handling is non-optional for any 3351 * non-extern DATASEC, so the variable fixup loop below handles both 3352 * functions at the same time, paying the cost of BTF VAR <-> ELF 3353 * symbol matching just once. 3354 */ 3355 if (t->size == 0) { 3356 err = find_elf_sec_sz(obj, sec_name, &size); 3357 if (err || !size) { 3358 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3359 sec_name, size, errstr(err)); 3360 return -ENOENT; 3361 } 3362 3363 t->size = size; 3364 fixup_offsets = true; 3365 } 3366 3367 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3368 const struct btf_type *t_var; 3369 struct btf_var *var; 3370 const char *var_name; 3371 Elf64_Sym *sym; 3372 3373 t_var = btf__type_by_id(btf, vsi->type); 3374 if (!t_var || !btf_is_var(t_var)) { 3375 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3376 return -EINVAL; 3377 } 3378 3379 var = btf_var(t_var); 3380 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3381 continue; 3382 3383 var_name = btf__name_by_offset(btf, t_var->name_off); 3384 if (!var_name) { 3385 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3386 sec_name, i); 3387 return -ENOENT; 3388 } 3389 3390 sym = find_elf_var_sym(obj, var_name); 3391 if (IS_ERR(sym)) { 3392 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3393 sec_name, var_name); 3394 return -ENOENT; 3395 } 3396 3397 if (fixup_offsets) 3398 vsi->offset = sym->st_value; 3399 3400 /* if variable is a global/weak symbol, but has restricted 3401 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3402 * as static. This follows similar logic for functions (BPF 3403 * subprogs) and influences libbpf's further decisions about 3404 * whether to make global data BPF array maps as 3405 * BPF_F_MMAPABLE. 3406 */ 3407 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3408 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3409 var->linkage = BTF_VAR_STATIC; 3410 } 3411 3412 sort_vars: 3413 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3414 return 0; 3415 } 3416 bpf_object_fixup_btf(struct bpf_object * obj)3417 static int bpf_object_fixup_btf(struct bpf_object *obj) 3418 { 3419 int i, n, err = 0; 3420 3421 if (!obj->btf) 3422 return 0; 3423 3424 n = btf__type_cnt(obj->btf); 3425 for (i = 1; i < n; i++) { 3426 struct btf_type *t = btf_type_by_id(obj->btf, i); 3427 3428 /* Loader needs to fix up some of the things compiler 3429 * couldn't get its hands on while emitting BTF. This 3430 * is section size and global variable offset. We use 3431 * the info from the ELF itself for this purpose. 3432 */ 3433 if (btf_is_datasec(t)) { 3434 err = btf_fixup_datasec(obj, obj->btf, t); 3435 if (err) 3436 return err; 3437 } 3438 } 3439 3440 return 0; 3441 } 3442 prog_needs_vmlinux_btf(struct bpf_program * prog)3443 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3444 { 3445 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3446 prog->type == BPF_PROG_TYPE_LSM) 3447 return true; 3448 3449 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3450 * also need vmlinux BTF 3451 */ 3452 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3453 return true; 3454 3455 return false; 3456 } 3457 map_needs_vmlinux_btf(struct bpf_map * map)3458 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3459 { 3460 return bpf_map__is_struct_ops(map); 3461 } 3462 obj_needs_vmlinux_btf(const struct bpf_object * obj)3463 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3464 { 3465 struct bpf_program *prog; 3466 struct bpf_map *map; 3467 int i; 3468 3469 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3470 * is not specified 3471 */ 3472 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3473 return true; 3474 3475 /* Support for typed ksyms needs kernel BTF */ 3476 for (i = 0; i < obj->nr_extern; i++) { 3477 const struct extern_desc *ext; 3478 3479 ext = &obj->externs[i]; 3480 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3481 return true; 3482 } 3483 3484 bpf_object__for_each_program(prog, obj) { 3485 if (!prog->autoload) 3486 continue; 3487 if (prog_needs_vmlinux_btf(prog)) 3488 return true; 3489 } 3490 3491 bpf_object__for_each_map(map, obj) { 3492 if (map_needs_vmlinux_btf(map)) 3493 return true; 3494 } 3495 3496 return false; 3497 } 3498 bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3499 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3500 { 3501 int err; 3502 3503 /* btf_vmlinux could be loaded earlier */ 3504 if (obj->btf_vmlinux || obj->gen_loader) 3505 return 0; 3506 3507 if (!force && !obj_needs_vmlinux_btf(obj)) 3508 return 0; 3509 3510 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3511 err = libbpf_get_error(obj->btf_vmlinux); 3512 if (err) { 3513 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3514 obj->btf_vmlinux = NULL; 3515 return err; 3516 } 3517 return 0; 3518 } 3519 bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3520 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3521 { 3522 struct btf *kern_btf = obj->btf; 3523 bool btf_mandatory, sanitize; 3524 int i, err = 0; 3525 3526 if (!obj->btf) 3527 return 0; 3528 3529 if (!kernel_supports(obj, FEAT_BTF)) { 3530 if (kernel_needs_btf(obj)) { 3531 err = -EOPNOTSUPP; 3532 goto report; 3533 } 3534 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3535 return 0; 3536 } 3537 3538 /* Even though some subprogs are global/weak, user might prefer more 3539 * permissive BPF verification process that BPF verifier performs for 3540 * static functions, taking into account more context from the caller 3541 * functions. In such case, they need to mark such subprogs with 3542 * __attribute__((visibility("hidden"))) and libbpf will adjust 3543 * corresponding FUNC BTF type to be marked as static and trigger more 3544 * involved BPF verification process. 3545 */ 3546 for (i = 0; i < obj->nr_programs; i++) { 3547 struct bpf_program *prog = &obj->programs[i]; 3548 struct btf_type *t; 3549 const char *name; 3550 int j, n; 3551 3552 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3553 continue; 3554 3555 n = btf__type_cnt(obj->btf); 3556 for (j = 1; j < n; j++) { 3557 t = btf_type_by_id(obj->btf, j); 3558 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3559 continue; 3560 3561 name = btf__str_by_offset(obj->btf, t->name_off); 3562 if (strcmp(name, prog->name) != 0) 3563 continue; 3564 3565 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3566 break; 3567 } 3568 } 3569 3570 sanitize = btf_needs_sanitization(obj); 3571 if (sanitize) { 3572 const void *raw_data; 3573 __u32 sz; 3574 3575 /* clone BTF to sanitize a copy and leave the original intact */ 3576 raw_data = btf__raw_data(obj->btf, &sz); 3577 kern_btf = btf__new(raw_data, sz); 3578 err = libbpf_get_error(kern_btf); 3579 if (err) 3580 return err; 3581 3582 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3583 btf__set_pointer_size(obj->btf, 8); 3584 err = bpf_object__sanitize_btf(obj, kern_btf); 3585 if (err) 3586 return err; 3587 } 3588 3589 if (obj->gen_loader) { 3590 __u32 raw_size = 0; 3591 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3592 3593 if (!raw_data) 3594 return -ENOMEM; 3595 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3596 /* Pretend to have valid FD to pass various fd >= 0 checks. 3597 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3598 */ 3599 btf__set_fd(kern_btf, 0); 3600 } else { 3601 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3602 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3603 obj->log_level ? 1 : 0, obj->token_fd); 3604 } 3605 if (sanitize) { 3606 if (!err) { 3607 /* move fd to libbpf's BTF */ 3608 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3609 btf__set_fd(kern_btf, -1); 3610 } 3611 btf__free(kern_btf); 3612 } 3613 report: 3614 if (err) { 3615 btf_mandatory = kernel_needs_btf(obj); 3616 if (btf_mandatory) { 3617 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3618 errstr(err)); 3619 } else { 3620 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3621 errstr(err)); 3622 err = 0; 3623 } 3624 } 3625 return err; 3626 } 3627 elf_sym_str(const struct bpf_object * obj,size_t off)3628 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3629 { 3630 const char *name; 3631 3632 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3633 if (!name) { 3634 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3635 off, obj->path, elf_errmsg(-1)); 3636 return NULL; 3637 } 3638 3639 return name; 3640 } 3641 elf_sec_str(const struct bpf_object * obj,size_t off)3642 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3643 { 3644 const char *name; 3645 3646 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3647 if (!name) { 3648 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3649 off, obj->path, elf_errmsg(-1)); 3650 return NULL; 3651 } 3652 3653 return name; 3654 } 3655 elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3656 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3657 { 3658 Elf_Scn *scn; 3659 3660 scn = elf_getscn(obj->efile.elf, idx); 3661 if (!scn) { 3662 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3663 idx, obj->path, elf_errmsg(-1)); 3664 return NULL; 3665 } 3666 return scn; 3667 } 3668 elf_sec_by_name(const struct bpf_object * obj,const char * name)3669 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3670 { 3671 Elf_Scn *scn = NULL; 3672 Elf *elf = obj->efile.elf; 3673 const char *sec_name; 3674 3675 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3676 sec_name = elf_sec_name(obj, scn); 3677 if (!sec_name) 3678 return NULL; 3679 3680 if (strcmp(sec_name, name) != 0) 3681 continue; 3682 3683 return scn; 3684 } 3685 return NULL; 3686 } 3687 elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3688 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3689 { 3690 Elf64_Shdr *shdr; 3691 3692 if (!scn) 3693 return NULL; 3694 3695 shdr = elf64_getshdr(scn); 3696 if (!shdr) { 3697 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3698 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3699 return NULL; 3700 } 3701 3702 return shdr; 3703 } 3704 elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3705 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3706 { 3707 const char *name; 3708 Elf64_Shdr *sh; 3709 3710 if (!scn) 3711 return NULL; 3712 3713 sh = elf_sec_hdr(obj, scn); 3714 if (!sh) 3715 return NULL; 3716 3717 name = elf_sec_str(obj, sh->sh_name); 3718 if (!name) { 3719 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3720 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3721 return NULL; 3722 } 3723 3724 return name; 3725 } 3726 elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3727 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3728 { 3729 Elf_Data *data; 3730 3731 if (!scn) 3732 return NULL; 3733 3734 data = elf_getdata(scn, 0); 3735 if (!data) { 3736 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3737 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3738 obj->path, elf_errmsg(-1)); 3739 return NULL; 3740 } 3741 3742 return data; 3743 } 3744 elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3745 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3746 { 3747 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3748 return NULL; 3749 3750 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3751 } 3752 elf_rel_by_idx(Elf_Data * data,size_t idx)3753 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3754 { 3755 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3756 return NULL; 3757 3758 return (Elf64_Rel *)data->d_buf + idx; 3759 } 3760 is_sec_name_dwarf(const char * name)3761 static bool is_sec_name_dwarf(const char *name) 3762 { 3763 /* approximation, but the actual list is too long */ 3764 return str_has_pfx(name, ".debug_"); 3765 } 3766 ignore_elf_section(Elf64_Shdr * hdr,const char * name)3767 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3768 { 3769 /* no special handling of .strtab */ 3770 if (hdr->sh_type == SHT_STRTAB) 3771 return true; 3772 3773 /* ignore .llvm_addrsig section as well */ 3774 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3775 return true; 3776 3777 /* no subprograms will lead to an empty .text section, ignore it */ 3778 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3779 strcmp(name, ".text") == 0) 3780 return true; 3781 3782 /* DWARF sections */ 3783 if (is_sec_name_dwarf(name)) 3784 return true; 3785 3786 if (str_has_pfx(name, ".rel")) { 3787 name += sizeof(".rel") - 1; 3788 /* DWARF section relocations */ 3789 if (is_sec_name_dwarf(name)) 3790 return true; 3791 3792 /* .BTF and .BTF.ext don't need relocations */ 3793 if (strcmp(name, BTF_ELF_SEC) == 0 || 3794 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3795 return true; 3796 } 3797 3798 return false; 3799 } 3800 cmp_progs(const void * _a,const void * _b)3801 static int cmp_progs(const void *_a, const void *_b) 3802 { 3803 const struct bpf_program *a = _a; 3804 const struct bpf_program *b = _b; 3805 3806 if (a->sec_idx != b->sec_idx) 3807 return a->sec_idx < b->sec_idx ? -1 : 1; 3808 3809 /* sec_insn_off can't be the same within the section */ 3810 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3811 } 3812 bpf_object__elf_collect(struct bpf_object * obj)3813 static int bpf_object__elf_collect(struct bpf_object *obj) 3814 { 3815 struct elf_sec_desc *sec_desc; 3816 Elf *elf = obj->efile.elf; 3817 Elf_Data *btf_ext_data = NULL; 3818 Elf_Data *btf_data = NULL; 3819 int idx = 0, err = 0; 3820 const char *name; 3821 Elf_Data *data; 3822 Elf_Scn *scn; 3823 Elf64_Shdr *sh; 3824 3825 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3826 * section. Since section count retrieved by elf_getshdrnum() does 3827 * include sec #0, it is already the necessary size of an array to keep 3828 * all the sections. 3829 */ 3830 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3831 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3832 obj->path, elf_errmsg(-1)); 3833 return -LIBBPF_ERRNO__FORMAT; 3834 } 3835 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3836 if (!obj->efile.secs) 3837 return -ENOMEM; 3838 3839 /* a bunch of ELF parsing functionality depends on processing symbols, 3840 * so do the first pass and find the symbol table 3841 */ 3842 scn = NULL; 3843 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3844 sh = elf_sec_hdr(obj, scn); 3845 if (!sh) 3846 return -LIBBPF_ERRNO__FORMAT; 3847 3848 if (sh->sh_type == SHT_SYMTAB) { 3849 if (obj->efile.symbols) { 3850 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3851 return -LIBBPF_ERRNO__FORMAT; 3852 } 3853 3854 data = elf_sec_data(obj, scn); 3855 if (!data) 3856 return -LIBBPF_ERRNO__FORMAT; 3857 3858 idx = elf_ndxscn(scn); 3859 3860 obj->efile.symbols = data; 3861 obj->efile.symbols_shndx = idx; 3862 obj->efile.strtabidx = sh->sh_link; 3863 } 3864 } 3865 3866 if (!obj->efile.symbols) { 3867 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3868 obj->path); 3869 return -ENOENT; 3870 } 3871 3872 scn = NULL; 3873 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3874 idx = elf_ndxscn(scn); 3875 sec_desc = &obj->efile.secs[idx]; 3876 3877 sh = elf_sec_hdr(obj, scn); 3878 if (!sh) 3879 return -LIBBPF_ERRNO__FORMAT; 3880 3881 name = elf_sec_str(obj, sh->sh_name); 3882 if (!name) 3883 return -LIBBPF_ERRNO__FORMAT; 3884 3885 if (ignore_elf_section(sh, name)) 3886 continue; 3887 3888 data = elf_sec_data(obj, scn); 3889 if (!data) 3890 return -LIBBPF_ERRNO__FORMAT; 3891 3892 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3893 idx, name, (unsigned long)data->d_size, 3894 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3895 (int)sh->sh_type); 3896 3897 if (strcmp(name, "license") == 0) { 3898 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3899 if (err) 3900 return err; 3901 } else if (strcmp(name, "version") == 0) { 3902 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3903 if (err) 3904 return err; 3905 } else if (strcmp(name, "maps") == 0) { 3906 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3907 return -ENOTSUP; 3908 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3909 obj->efile.btf_maps_shndx = idx; 3910 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3911 if (sh->sh_type != SHT_PROGBITS) 3912 return -LIBBPF_ERRNO__FORMAT; 3913 btf_data = data; 3914 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3915 if (sh->sh_type != SHT_PROGBITS) 3916 return -LIBBPF_ERRNO__FORMAT; 3917 btf_ext_data = data; 3918 } else if (sh->sh_type == SHT_SYMTAB) { 3919 /* already processed during the first pass above */ 3920 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3921 if (sh->sh_flags & SHF_EXECINSTR) { 3922 if (strcmp(name, ".text") == 0) 3923 obj->efile.text_shndx = idx; 3924 err = bpf_object__add_programs(obj, data, name, idx); 3925 if (err) 3926 return err; 3927 } else if (strcmp(name, DATA_SEC) == 0 || 3928 str_has_pfx(name, DATA_SEC ".")) { 3929 sec_desc->sec_type = SEC_DATA; 3930 sec_desc->shdr = sh; 3931 sec_desc->data = data; 3932 } else if (strcmp(name, RODATA_SEC) == 0 || 3933 str_has_pfx(name, RODATA_SEC ".")) { 3934 sec_desc->sec_type = SEC_RODATA; 3935 sec_desc->shdr = sh; 3936 sec_desc->data = data; 3937 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3938 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3939 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3940 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3941 sec_desc->sec_type = SEC_ST_OPS; 3942 sec_desc->shdr = sh; 3943 sec_desc->data = data; 3944 obj->efile.has_st_ops = true; 3945 } else if (strcmp(name, ARENA_SEC) == 0) { 3946 obj->efile.arena_data = data; 3947 obj->efile.arena_data_shndx = idx; 3948 } else { 3949 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3950 idx, name); 3951 } 3952 } else if (sh->sh_type == SHT_REL) { 3953 int targ_sec_idx = sh->sh_info; /* points to other section */ 3954 3955 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3956 targ_sec_idx >= obj->efile.sec_cnt) 3957 return -LIBBPF_ERRNO__FORMAT; 3958 3959 /* Only do relo for section with exec instructions */ 3960 if (!section_have_execinstr(obj, targ_sec_idx) && 3961 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3962 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3963 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3964 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3965 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3966 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3967 idx, name, targ_sec_idx, 3968 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3969 continue; 3970 } 3971 3972 sec_desc->sec_type = SEC_RELO; 3973 sec_desc->shdr = sh; 3974 sec_desc->data = data; 3975 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3976 str_has_pfx(name, BSS_SEC "."))) { 3977 sec_desc->sec_type = SEC_BSS; 3978 sec_desc->shdr = sh; 3979 sec_desc->data = data; 3980 } else { 3981 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3982 (size_t)sh->sh_size); 3983 } 3984 } 3985 3986 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3987 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3988 return -LIBBPF_ERRNO__FORMAT; 3989 } 3990 3991 /* change BPF program insns to native endianness for introspection */ 3992 if (!is_native_endianness(obj)) 3993 bpf_object_bswap_progs(obj); 3994 3995 /* sort BPF programs by section name and in-section instruction offset 3996 * for faster search 3997 */ 3998 if (obj->nr_programs) 3999 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 4000 4001 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 4002 } 4003 sym_is_extern(const Elf64_Sym * sym)4004 static bool sym_is_extern(const Elf64_Sym *sym) 4005 { 4006 int bind = ELF64_ST_BIND(sym->st_info); 4007 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4008 return sym->st_shndx == SHN_UNDEF && 4009 (bind == STB_GLOBAL || bind == STB_WEAK) && 4010 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4011 } 4012 sym_is_subprog(const Elf64_Sym * sym,int text_shndx)4013 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4014 { 4015 int bind = ELF64_ST_BIND(sym->st_info); 4016 int type = ELF64_ST_TYPE(sym->st_info); 4017 4018 /* in .text section */ 4019 if (sym->st_shndx != text_shndx) 4020 return false; 4021 4022 /* local function */ 4023 if (bind == STB_LOCAL && type == STT_SECTION) 4024 return true; 4025 4026 /* global function */ 4027 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4028 } 4029 find_extern_btf_id(const struct btf * btf,const char * ext_name)4030 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4031 { 4032 const struct btf_type *t; 4033 const char *tname; 4034 int i, n; 4035 4036 if (!btf) 4037 return -ESRCH; 4038 4039 n = btf__type_cnt(btf); 4040 for (i = 1; i < n; i++) { 4041 t = btf__type_by_id(btf, i); 4042 4043 if (!btf_is_var(t) && !btf_is_func(t)) 4044 continue; 4045 4046 tname = btf__name_by_offset(btf, t->name_off); 4047 if (strcmp(tname, ext_name)) 4048 continue; 4049 4050 if (btf_is_var(t) && 4051 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4052 return -EINVAL; 4053 4054 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4055 return -EINVAL; 4056 4057 return i; 4058 } 4059 4060 return -ENOENT; 4061 } 4062 find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)4063 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4064 const struct btf_var_secinfo *vs; 4065 const struct btf_type *t; 4066 int i, j, n; 4067 4068 if (!btf) 4069 return -ESRCH; 4070 4071 n = btf__type_cnt(btf); 4072 for (i = 1; i < n; i++) { 4073 t = btf__type_by_id(btf, i); 4074 4075 if (!btf_is_datasec(t)) 4076 continue; 4077 4078 vs = btf_var_secinfos(t); 4079 for (j = 0; j < btf_vlen(t); j++, vs++) { 4080 if (vs->type == ext_btf_id) 4081 return i; 4082 } 4083 } 4084 4085 return -ENOENT; 4086 } 4087 find_kcfg_type(const struct btf * btf,int id,bool * is_signed)4088 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4089 bool *is_signed) 4090 { 4091 const struct btf_type *t; 4092 const char *name; 4093 4094 t = skip_mods_and_typedefs(btf, id, NULL); 4095 name = btf__name_by_offset(btf, t->name_off); 4096 4097 if (is_signed) 4098 *is_signed = false; 4099 switch (btf_kind(t)) { 4100 case BTF_KIND_INT: { 4101 int enc = btf_int_encoding(t); 4102 4103 if (enc & BTF_INT_BOOL) 4104 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4105 if (is_signed) 4106 *is_signed = enc & BTF_INT_SIGNED; 4107 if (t->size == 1) 4108 return KCFG_CHAR; 4109 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4110 return KCFG_UNKNOWN; 4111 return KCFG_INT; 4112 } 4113 case BTF_KIND_ENUM: 4114 if (t->size != 4) 4115 return KCFG_UNKNOWN; 4116 if (strcmp(name, "libbpf_tristate")) 4117 return KCFG_UNKNOWN; 4118 return KCFG_TRISTATE; 4119 case BTF_KIND_ENUM64: 4120 if (strcmp(name, "libbpf_tristate")) 4121 return KCFG_UNKNOWN; 4122 return KCFG_TRISTATE; 4123 case BTF_KIND_ARRAY: 4124 if (btf_array(t)->nelems == 0) 4125 return KCFG_UNKNOWN; 4126 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4127 return KCFG_UNKNOWN; 4128 return KCFG_CHAR_ARR; 4129 default: 4130 return KCFG_UNKNOWN; 4131 } 4132 } 4133 cmp_externs(const void * _a,const void * _b)4134 static int cmp_externs(const void *_a, const void *_b) 4135 { 4136 const struct extern_desc *a = _a; 4137 const struct extern_desc *b = _b; 4138 4139 if (a->type != b->type) 4140 return a->type < b->type ? -1 : 1; 4141 4142 if (a->type == EXT_KCFG) { 4143 /* descending order by alignment requirements */ 4144 if (a->kcfg.align != b->kcfg.align) 4145 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4146 /* ascending order by size, within same alignment class */ 4147 if (a->kcfg.sz != b->kcfg.sz) 4148 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4149 } 4150 4151 /* resolve ties by name */ 4152 return strcmp(a->name, b->name); 4153 } 4154 find_int_btf_id(const struct btf * btf)4155 static int find_int_btf_id(const struct btf *btf) 4156 { 4157 const struct btf_type *t; 4158 int i, n; 4159 4160 n = btf__type_cnt(btf); 4161 for (i = 1; i < n; i++) { 4162 t = btf__type_by_id(btf, i); 4163 4164 if (btf_is_int(t) && btf_int_bits(t) == 32) 4165 return i; 4166 } 4167 4168 return 0; 4169 } 4170 add_dummy_ksym_var(struct btf * btf)4171 static int add_dummy_ksym_var(struct btf *btf) 4172 { 4173 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4174 const struct btf_var_secinfo *vs; 4175 const struct btf_type *sec; 4176 4177 if (!btf) 4178 return 0; 4179 4180 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4181 BTF_KIND_DATASEC); 4182 if (sec_btf_id < 0) 4183 return 0; 4184 4185 sec = btf__type_by_id(btf, sec_btf_id); 4186 vs = btf_var_secinfos(sec); 4187 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4188 const struct btf_type *vt; 4189 4190 vt = btf__type_by_id(btf, vs->type); 4191 if (btf_is_func(vt)) 4192 break; 4193 } 4194 4195 /* No func in ksyms sec. No need to add dummy var. */ 4196 if (i == btf_vlen(sec)) 4197 return 0; 4198 4199 int_btf_id = find_int_btf_id(btf); 4200 dummy_var_btf_id = btf__add_var(btf, 4201 "dummy_ksym", 4202 BTF_VAR_GLOBAL_ALLOCATED, 4203 int_btf_id); 4204 if (dummy_var_btf_id < 0) 4205 pr_warn("cannot create a dummy_ksym var\n"); 4206 4207 return dummy_var_btf_id; 4208 } 4209 bpf_object__collect_externs(struct bpf_object * obj)4210 static int bpf_object__collect_externs(struct bpf_object *obj) 4211 { 4212 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4213 const struct btf_type *t; 4214 struct extern_desc *ext; 4215 int i, n, off, dummy_var_btf_id; 4216 const char *ext_name, *sec_name; 4217 size_t ext_essent_len; 4218 Elf_Scn *scn; 4219 Elf64_Shdr *sh; 4220 4221 if (!obj->efile.symbols) 4222 return 0; 4223 4224 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4225 sh = elf_sec_hdr(obj, scn); 4226 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4227 return -LIBBPF_ERRNO__FORMAT; 4228 4229 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4230 if (dummy_var_btf_id < 0) 4231 return dummy_var_btf_id; 4232 4233 n = sh->sh_size / sh->sh_entsize; 4234 pr_debug("looking for externs among %d symbols...\n", n); 4235 4236 for (i = 0; i < n; i++) { 4237 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4238 4239 if (!sym) 4240 return -LIBBPF_ERRNO__FORMAT; 4241 if (!sym_is_extern(sym)) 4242 continue; 4243 ext_name = elf_sym_str(obj, sym->st_name); 4244 if (!ext_name || !ext_name[0]) 4245 continue; 4246 4247 ext = obj->externs; 4248 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4249 if (!ext) 4250 return -ENOMEM; 4251 obj->externs = ext; 4252 ext = &ext[obj->nr_extern]; 4253 memset(ext, 0, sizeof(*ext)); 4254 obj->nr_extern++; 4255 4256 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4257 if (ext->btf_id <= 0) { 4258 pr_warn("failed to find BTF for extern '%s': %d\n", 4259 ext_name, ext->btf_id); 4260 return ext->btf_id; 4261 } 4262 t = btf__type_by_id(obj->btf, ext->btf_id); 4263 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4264 ext->sym_idx = i; 4265 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4266 4267 ext_essent_len = bpf_core_essential_name_len(ext->name); 4268 ext->essent_name = NULL; 4269 if (ext_essent_len != strlen(ext->name)) { 4270 ext->essent_name = strndup(ext->name, ext_essent_len); 4271 if (!ext->essent_name) 4272 return -ENOMEM; 4273 } 4274 4275 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4276 if (ext->sec_btf_id <= 0) { 4277 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4278 ext_name, ext->btf_id, ext->sec_btf_id); 4279 return ext->sec_btf_id; 4280 } 4281 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4282 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4283 4284 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4285 if (btf_is_func(t)) { 4286 pr_warn("extern function %s is unsupported under %s section\n", 4287 ext->name, KCONFIG_SEC); 4288 return -ENOTSUP; 4289 } 4290 kcfg_sec = sec; 4291 ext->type = EXT_KCFG; 4292 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4293 if (ext->kcfg.sz <= 0) { 4294 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4295 ext_name, ext->kcfg.sz); 4296 return ext->kcfg.sz; 4297 } 4298 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4299 if (ext->kcfg.align <= 0) { 4300 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4301 ext_name, ext->kcfg.align); 4302 return -EINVAL; 4303 } 4304 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4305 &ext->kcfg.is_signed); 4306 if (ext->kcfg.type == KCFG_UNKNOWN) { 4307 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4308 return -ENOTSUP; 4309 } 4310 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4311 ksym_sec = sec; 4312 ext->type = EXT_KSYM; 4313 skip_mods_and_typedefs(obj->btf, t->type, 4314 &ext->ksym.type_id); 4315 } else { 4316 pr_warn("unrecognized extern section '%s'\n", sec_name); 4317 return -ENOTSUP; 4318 } 4319 } 4320 pr_debug("collected %d externs total\n", obj->nr_extern); 4321 4322 if (!obj->nr_extern) 4323 return 0; 4324 4325 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4326 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4327 4328 /* for .ksyms section, we need to turn all externs into allocated 4329 * variables in BTF to pass kernel verification; we do this by 4330 * pretending that each extern is a 8-byte variable 4331 */ 4332 if (ksym_sec) { 4333 /* find existing 4-byte integer type in BTF to use for fake 4334 * extern variables in DATASEC 4335 */ 4336 int int_btf_id = find_int_btf_id(obj->btf); 4337 /* For extern function, a dummy_var added earlier 4338 * will be used to replace the vs->type and 4339 * its name string will be used to refill 4340 * the missing param's name. 4341 */ 4342 const struct btf_type *dummy_var; 4343 4344 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4345 for (i = 0; i < obj->nr_extern; i++) { 4346 ext = &obj->externs[i]; 4347 if (ext->type != EXT_KSYM) 4348 continue; 4349 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4350 i, ext->sym_idx, ext->name); 4351 } 4352 4353 sec = ksym_sec; 4354 n = btf_vlen(sec); 4355 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4356 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4357 struct btf_type *vt; 4358 4359 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4360 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4361 ext = find_extern_by_name(obj, ext_name); 4362 if (!ext) { 4363 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4364 btf_kind_str(vt), ext_name); 4365 return -ESRCH; 4366 } 4367 if (btf_is_func(vt)) { 4368 const struct btf_type *func_proto; 4369 struct btf_param *param; 4370 int j; 4371 4372 func_proto = btf__type_by_id(obj->btf, 4373 vt->type); 4374 param = btf_params(func_proto); 4375 /* Reuse the dummy_var string if the 4376 * func proto does not have param name. 4377 */ 4378 for (j = 0; j < btf_vlen(func_proto); j++) 4379 if (param[j].type && !param[j].name_off) 4380 param[j].name_off = 4381 dummy_var->name_off; 4382 vs->type = dummy_var_btf_id; 4383 vt->info &= ~0xffff; 4384 vt->info |= BTF_FUNC_GLOBAL; 4385 } else { 4386 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4387 vt->type = int_btf_id; 4388 } 4389 vs->offset = off; 4390 vs->size = sizeof(int); 4391 } 4392 sec->size = off; 4393 } 4394 4395 if (kcfg_sec) { 4396 sec = kcfg_sec; 4397 /* for kcfg externs calculate their offsets within a .kconfig map */ 4398 off = 0; 4399 for (i = 0; i < obj->nr_extern; i++) { 4400 ext = &obj->externs[i]; 4401 if (ext->type != EXT_KCFG) 4402 continue; 4403 4404 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4405 off = ext->kcfg.data_off + ext->kcfg.sz; 4406 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4407 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4408 } 4409 sec->size = off; 4410 n = btf_vlen(sec); 4411 for (i = 0; i < n; i++) { 4412 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4413 4414 t = btf__type_by_id(obj->btf, vs->type); 4415 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4416 ext = find_extern_by_name(obj, ext_name); 4417 if (!ext) { 4418 pr_warn("failed to find extern definition for BTF var '%s'\n", 4419 ext_name); 4420 return -ESRCH; 4421 } 4422 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4423 vs->offset = ext->kcfg.data_off; 4424 } 4425 } 4426 return 0; 4427 } 4428 prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)4429 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4430 { 4431 return prog->sec_idx == obj->efile.text_shndx; 4432 } 4433 4434 struct bpf_program * bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)4435 bpf_object__find_program_by_name(const struct bpf_object *obj, 4436 const char *name) 4437 { 4438 struct bpf_program *prog; 4439 4440 bpf_object__for_each_program(prog, obj) { 4441 if (prog_is_subprog(obj, prog)) 4442 continue; 4443 if (!strcmp(prog->name, name)) 4444 return prog; 4445 } 4446 return errno = ENOENT, NULL; 4447 } 4448 bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4449 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4450 int shndx) 4451 { 4452 switch (obj->efile.secs[shndx].sec_type) { 4453 case SEC_BSS: 4454 case SEC_DATA: 4455 case SEC_RODATA: 4456 return true; 4457 default: 4458 return false; 4459 } 4460 } 4461 bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4462 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4463 int shndx) 4464 { 4465 return shndx == obj->efile.btf_maps_shndx; 4466 } 4467 4468 static enum libbpf_map_type bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4469 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4470 { 4471 if (shndx == obj->efile.symbols_shndx) 4472 return LIBBPF_MAP_KCONFIG; 4473 4474 switch (obj->efile.secs[shndx].sec_type) { 4475 case SEC_BSS: 4476 return LIBBPF_MAP_BSS; 4477 case SEC_DATA: 4478 return LIBBPF_MAP_DATA; 4479 case SEC_RODATA: 4480 return LIBBPF_MAP_RODATA; 4481 default: 4482 return LIBBPF_MAP_UNSPEC; 4483 } 4484 } 4485 bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4486 static int bpf_program__record_reloc(struct bpf_program *prog, 4487 struct reloc_desc *reloc_desc, 4488 __u32 insn_idx, const char *sym_name, 4489 const Elf64_Sym *sym, const Elf64_Rel *rel) 4490 { 4491 struct bpf_insn *insn = &prog->insns[insn_idx]; 4492 size_t map_idx, nr_maps = prog->obj->nr_maps; 4493 struct bpf_object *obj = prog->obj; 4494 __u32 shdr_idx = sym->st_shndx; 4495 enum libbpf_map_type type; 4496 const char *sym_sec_name; 4497 struct bpf_map *map; 4498 4499 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4500 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4501 prog->name, sym_name, insn_idx, insn->code); 4502 return -LIBBPF_ERRNO__RELOC; 4503 } 4504 4505 if (sym_is_extern(sym)) { 4506 int sym_idx = ELF64_R_SYM(rel->r_info); 4507 int i, n = obj->nr_extern; 4508 struct extern_desc *ext; 4509 4510 for (i = 0; i < n; i++) { 4511 ext = &obj->externs[i]; 4512 if (ext->sym_idx == sym_idx) 4513 break; 4514 } 4515 if (i >= n) { 4516 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4517 prog->name, sym_name, sym_idx); 4518 return -LIBBPF_ERRNO__RELOC; 4519 } 4520 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4521 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4522 if (insn->code == (BPF_JMP | BPF_CALL)) 4523 reloc_desc->type = RELO_EXTERN_CALL; 4524 else 4525 reloc_desc->type = RELO_EXTERN_LD64; 4526 reloc_desc->insn_idx = insn_idx; 4527 reloc_desc->ext_idx = i; 4528 return 0; 4529 } 4530 4531 /* sub-program call relocation */ 4532 if (is_call_insn(insn)) { 4533 if (insn->src_reg != BPF_PSEUDO_CALL) { 4534 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4535 return -LIBBPF_ERRNO__RELOC; 4536 } 4537 /* text_shndx can be 0, if no default "main" program exists */ 4538 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4539 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4540 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4541 prog->name, sym_name, sym_sec_name); 4542 return -LIBBPF_ERRNO__RELOC; 4543 } 4544 if (sym->st_value % BPF_INSN_SZ) { 4545 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4546 prog->name, sym_name, (size_t)sym->st_value); 4547 return -LIBBPF_ERRNO__RELOC; 4548 } 4549 reloc_desc->type = RELO_CALL; 4550 reloc_desc->insn_idx = insn_idx; 4551 reloc_desc->sym_off = sym->st_value; 4552 return 0; 4553 } 4554 4555 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4556 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4557 prog->name, sym_name, shdr_idx); 4558 return -LIBBPF_ERRNO__RELOC; 4559 } 4560 4561 /* loading subprog addresses */ 4562 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4563 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4564 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4565 */ 4566 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4567 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4568 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4569 return -LIBBPF_ERRNO__RELOC; 4570 } 4571 4572 reloc_desc->type = RELO_SUBPROG_ADDR; 4573 reloc_desc->insn_idx = insn_idx; 4574 reloc_desc->sym_off = sym->st_value; 4575 return 0; 4576 } 4577 4578 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4579 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4580 4581 /* arena data relocation */ 4582 if (shdr_idx == obj->efile.arena_data_shndx) { 4583 reloc_desc->type = RELO_DATA; 4584 reloc_desc->insn_idx = insn_idx; 4585 reloc_desc->map_idx = obj->arena_map - obj->maps; 4586 reloc_desc->sym_off = sym->st_value; 4587 return 0; 4588 } 4589 4590 /* generic map reference relocation */ 4591 if (type == LIBBPF_MAP_UNSPEC) { 4592 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4593 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4594 prog->name, sym_name, sym_sec_name); 4595 return -LIBBPF_ERRNO__RELOC; 4596 } 4597 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4598 map = &obj->maps[map_idx]; 4599 if (map->libbpf_type != type || 4600 map->sec_idx != sym->st_shndx || 4601 map->sec_offset != sym->st_value) 4602 continue; 4603 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4604 prog->name, map_idx, map->name, map->sec_idx, 4605 map->sec_offset, insn_idx); 4606 break; 4607 } 4608 if (map_idx >= nr_maps) { 4609 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4610 prog->name, sym_sec_name, (size_t)sym->st_value); 4611 return -LIBBPF_ERRNO__RELOC; 4612 } 4613 reloc_desc->type = RELO_LD64; 4614 reloc_desc->insn_idx = insn_idx; 4615 reloc_desc->map_idx = map_idx; 4616 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4617 return 0; 4618 } 4619 4620 /* global data map relocation */ 4621 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4622 pr_warn("prog '%s': bad data relo against section '%s'\n", 4623 prog->name, sym_sec_name); 4624 return -LIBBPF_ERRNO__RELOC; 4625 } 4626 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4627 map = &obj->maps[map_idx]; 4628 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4629 continue; 4630 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4631 prog->name, map_idx, map->name, map->sec_idx, 4632 map->sec_offset, insn_idx); 4633 break; 4634 } 4635 if (map_idx >= nr_maps) { 4636 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4637 prog->name, sym_sec_name); 4638 return -LIBBPF_ERRNO__RELOC; 4639 } 4640 4641 reloc_desc->type = RELO_DATA; 4642 reloc_desc->insn_idx = insn_idx; 4643 reloc_desc->map_idx = map_idx; 4644 reloc_desc->sym_off = sym->st_value; 4645 return 0; 4646 } 4647 prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4648 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4649 { 4650 return insn_idx >= prog->sec_insn_off && 4651 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4652 } 4653 find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4654 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4655 size_t sec_idx, size_t insn_idx) 4656 { 4657 int l = 0, r = obj->nr_programs - 1, m; 4658 struct bpf_program *prog; 4659 4660 if (!obj->nr_programs) 4661 return NULL; 4662 4663 while (l < r) { 4664 m = l + (r - l + 1) / 2; 4665 prog = &obj->programs[m]; 4666 4667 if (prog->sec_idx < sec_idx || 4668 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4669 l = m; 4670 else 4671 r = m - 1; 4672 } 4673 /* matching program could be at index l, but it still might be the 4674 * wrong one, so we need to double check conditions for the last time 4675 */ 4676 prog = &obj->programs[l]; 4677 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4678 return prog; 4679 return NULL; 4680 } 4681 4682 static int bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4683 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4684 { 4685 const char *relo_sec_name, *sec_name; 4686 size_t sec_idx = shdr->sh_info, sym_idx; 4687 struct bpf_program *prog; 4688 struct reloc_desc *relos; 4689 int err, i, nrels; 4690 const char *sym_name; 4691 __u32 insn_idx; 4692 Elf_Scn *scn; 4693 Elf_Data *scn_data; 4694 Elf64_Sym *sym; 4695 Elf64_Rel *rel; 4696 4697 if (sec_idx >= obj->efile.sec_cnt) 4698 return -EINVAL; 4699 4700 scn = elf_sec_by_idx(obj, sec_idx); 4701 scn_data = elf_sec_data(obj, scn); 4702 if (!scn_data) 4703 return -LIBBPF_ERRNO__FORMAT; 4704 4705 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4706 sec_name = elf_sec_name(obj, scn); 4707 if (!relo_sec_name || !sec_name) 4708 return -EINVAL; 4709 4710 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4711 relo_sec_name, sec_idx, sec_name); 4712 nrels = shdr->sh_size / shdr->sh_entsize; 4713 4714 for (i = 0; i < nrels; i++) { 4715 rel = elf_rel_by_idx(data, i); 4716 if (!rel) { 4717 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4718 return -LIBBPF_ERRNO__FORMAT; 4719 } 4720 4721 sym_idx = ELF64_R_SYM(rel->r_info); 4722 sym = elf_sym_by_idx(obj, sym_idx); 4723 if (!sym) { 4724 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4725 relo_sec_name, sym_idx, i); 4726 return -LIBBPF_ERRNO__FORMAT; 4727 } 4728 4729 if (sym->st_shndx >= obj->efile.sec_cnt) { 4730 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4731 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4732 return -LIBBPF_ERRNO__FORMAT; 4733 } 4734 4735 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4736 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4737 relo_sec_name, (size_t)rel->r_offset, i); 4738 return -LIBBPF_ERRNO__FORMAT; 4739 } 4740 4741 insn_idx = rel->r_offset / BPF_INSN_SZ; 4742 /* relocations against static functions are recorded as 4743 * relocations against the section that contains a function; 4744 * in such case, symbol will be STT_SECTION and sym.st_name 4745 * will point to empty string (0), so fetch section name 4746 * instead 4747 */ 4748 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4749 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4750 else 4751 sym_name = elf_sym_str(obj, sym->st_name); 4752 sym_name = sym_name ?: "<?"; 4753 4754 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4755 relo_sec_name, i, insn_idx, sym_name); 4756 4757 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4758 if (!prog) { 4759 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4760 relo_sec_name, i, sec_name, insn_idx); 4761 continue; 4762 } 4763 4764 relos = libbpf_reallocarray(prog->reloc_desc, 4765 prog->nr_reloc + 1, sizeof(*relos)); 4766 if (!relos) 4767 return -ENOMEM; 4768 prog->reloc_desc = relos; 4769 4770 /* adjust insn_idx to local BPF program frame of reference */ 4771 insn_idx -= prog->sec_insn_off; 4772 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4773 insn_idx, sym_name, sym, rel); 4774 if (err) 4775 return err; 4776 4777 prog->nr_reloc++; 4778 } 4779 return 0; 4780 } 4781 map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4782 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4783 { 4784 int id; 4785 4786 if (!obj->btf) 4787 return -ENOENT; 4788 4789 /* if it's BTF-defined map, we don't need to search for type IDs. 4790 * For struct_ops map, it does not need btf_key_type_id and 4791 * btf_value_type_id. 4792 */ 4793 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4794 return 0; 4795 4796 /* 4797 * LLVM annotates global data differently in BTF, that is, 4798 * only as '.data', '.bss' or '.rodata'. 4799 */ 4800 if (!bpf_map__is_internal(map)) 4801 return -ENOENT; 4802 4803 id = btf__find_by_name(obj->btf, map->real_name); 4804 if (id < 0) 4805 return id; 4806 4807 map->btf_key_type_id = 0; 4808 map->btf_value_type_id = id; 4809 return 0; 4810 } 4811 bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4812 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4813 { 4814 char file[PATH_MAX], buff[4096]; 4815 FILE *fp; 4816 __u32 val; 4817 int err; 4818 4819 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4820 memset(info, 0, sizeof(*info)); 4821 4822 fp = fopen(file, "re"); 4823 if (!fp) { 4824 err = -errno; 4825 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4826 errstr(err)); 4827 return err; 4828 } 4829 4830 while (fgets(buff, sizeof(buff), fp)) { 4831 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4832 info->type = val; 4833 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4834 info->key_size = val; 4835 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4836 info->value_size = val; 4837 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4838 info->max_entries = val; 4839 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4840 info->map_flags = val; 4841 } 4842 4843 fclose(fp); 4844 4845 return 0; 4846 } 4847 bpf_map__autocreate(const struct bpf_map * map)4848 bool bpf_map__autocreate(const struct bpf_map *map) 4849 { 4850 return map->autocreate; 4851 } 4852 bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4853 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4854 { 4855 if (map->obj->loaded) 4856 return libbpf_err(-EBUSY); 4857 4858 map->autocreate = autocreate; 4859 return 0; 4860 } 4861 bpf_map__set_autoattach(struct bpf_map * map,bool autoattach)4862 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4863 { 4864 if (!bpf_map__is_struct_ops(map)) 4865 return libbpf_err(-EINVAL); 4866 4867 map->autoattach = autoattach; 4868 return 0; 4869 } 4870 bpf_map__autoattach(const struct bpf_map * map)4871 bool bpf_map__autoattach(const struct bpf_map *map) 4872 { 4873 return map->autoattach; 4874 } 4875 bpf_map__reuse_fd(struct bpf_map * map,int fd)4876 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4877 { 4878 struct bpf_map_info info; 4879 __u32 len = sizeof(info), name_len; 4880 int new_fd, err; 4881 char *new_name; 4882 4883 memset(&info, 0, len); 4884 err = bpf_map_get_info_by_fd(fd, &info, &len); 4885 if (err && errno == EINVAL) 4886 err = bpf_get_map_info_from_fdinfo(fd, &info); 4887 if (err) 4888 return libbpf_err(err); 4889 4890 name_len = strlen(info.name); 4891 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4892 new_name = strdup(map->name); 4893 else 4894 new_name = strdup(info.name); 4895 4896 if (!new_name) 4897 return libbpf_err(-errno); 4898 4899 /* 4900 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4901 * This is similar to what we do in ensure_good_fd(), but without 4902 * closing original FD. 4903 */ 4904 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4905 if (new_fd < 0) { 4906 err = -errno; 4907 goto err_free_new_name; 4908 } 4909 4910 err = reuse_fd(map->fd, new_fd); 4911 if (err) 4912 goto err_free_new_name; 4913 4914 free(map->name); 4915 4916 map->name = new_name; 4917 map->def.type = info.type; 4918 map->def.key_size = info.key_size; 4919 map->def.value_size = info.value_size; 4920 map->def.max_entries = info.max_entries; 4921 map->def.map_flags = info.map_flags; 4922 map->btf_key_type_id = info.btf_key_type_id; 4923 map->btf_value_type_id = info.btf_value_type_id; 4924 map->reused = true; 4925 map->map_extra = info.map_extra; 4926 4927 return 0; 4928 4929 err_free_new_name: 4930 free(new_name); 4931 return libbpf_err(err); 4932 } 4933 bpf_map__max_entries(const struct bpf_map * map)4934 __u32 bpf_map__max_entries(const struct bpf_map *map) 4935 { 4936 return map->def.max_entries; 4937 } 4938 bpf_map__inner_map(struct bpf_map * map)4939 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4940 { 4941 if (!bpf_map_type__is_map_in_map(map->def.type)) 4942 return errno = EINVAL, NULL; 4943 4944 return map->inner_map; 4945 } 4946 bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4947 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4948 { 4949 if (map->obj->loaded) 4950 return libbpf_err(-EBUSY); 4951 4952 map->def.max_entries = max_entries; 4953 4954 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4955 if (map_is_ringbuf(map)) 4956 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4957 4958 return 0; 4959 } 4960 bpf_object_prepare_token(struct bpf_object * obj)4961 static int bpf_object_prepare_token(struct bpf_object *obj) 4962 { 4963 const char *bpffs_path; 4964 int bpffs_fd = -1, token_fd, err; 4965 bool mandatory; 4966 enum libbpf_print_level level; 4967 4968 /* token is explicitly prevented */ 4969 if (obj->token_path && obj->token_path[0] == '\0') { 4970 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4971 return 0; 4972 } 4973 4974 mandatory = obj->token_path != NULL; 4975 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4976 4977 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4978 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4979 if (bpffs_fd < 0) { 4980 err = -errno; 4981 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 4982 obj->name, errstr(err), bpffs_path, 4983 mandatory ? "" : ", skipping optional step..."); 4984 return mandatory ? err : 0; 4985 } 4986 4987 token_fd = bpf_token_create(bpffs_fd, 0); 4988 close(bpffs_fd); 4989 if (token_fd < 0) { 4990 if (!mandatory && token_fd == -ENOENT) { 4991 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4992 obj->name, bpffs_path); 4993 return 0; 4994 } 4995 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 4996 obj->name, token_fd, bpffs_path, 4997 mandatory ? "" : ", skipping optional step..."); 4998 return mandatory ? token_fd : 0; 4999 } 5000 5001 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5002 if (!obj->feat_cache) { 5003 close(token_fd); 5004 return -ENOMEM; 5005 } 5006 5007 obj->token_fd = token_fd; 5008 obj->feat_cache->token_fd = token_fd; 5009 5010 return 0; 5011 } 5012 5013 static int bpf_object__probe_loading(struct bpf_object * obj)5014 bpf_object__probe_loading(struct bpf_object *obj) 5015 { 5016 struct bpf_insn insns[] = { 5017 BPF_MOV64_IMM(BPF_REG_0, 0), 5018 BPF_EXIT_INSN(), 5019 }; 5020 int ret, insn_cnt = ARRAY_SIZE(insns); 5021 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5022 .token_fd = obj->token_fd, 5023 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5024 ); 5025 5026 if (obj->gen_loader) 5027 return 0; 5028 5029 ret = bump_rlimit_memlock(); 5030 if (ret) 5031 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5032 errstr(ret)); 5033 5034 /* make sure basic loading works */ 5035 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5036 if (ret < 0) 5037 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5038 if (ret < 0) { 5039 ret = errno; 5040 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5041 __func__, errstr(ret)); 5042 return -ret; 5043 } 5044 close(ret); 5045 5046 return 0; 5047 } 5048 kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)5049 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5050 { 5051 if (obj->gen_loader) 5052 /* To generate loader program assume the latest kernel 5053 * to avoid doing extra prog_load, map_create syscalls. 5054 */ 5055 return true; 5056 5057 if (obj->token_fd) 5058 return feat_supported(obj->feat_cache, feat_id); 5059 5060 return feat_supported(NULL, feat_id); 5061 } 5062 map_is_reuse_compat(const struct bpf_map * map,int map_fd)5063 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5064 { 5065 struct bpf_map_info map_info; 5066 __u32 map_info_len = sizeof(map_info); 5067 int err; 5068 5069 memset(&map_info, 0, map_info_len); 5070 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5071 if (err && errno == EINVAL) 5072 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5073 if (err) { 5074 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5075 errstr(err)); 5076 return false; 5077 } 5078 5079 return (map_info.type == map->def.type && 5080 map_info.key_size == map->def.key_size && 5081 map_info.value_size == map->def.value_size && 5082 map_info.max_entries == map->def.max_entries && 5083 map_info.map_flags == map->def.map_flags && 5084 map_info.map_extra == map->map_extra); 5085 } 5086 5087 static int bpf_object__reuse_map(struct bpf_map * map)5088 bpf_object__reuse_map(struct bpf_map *map) 5089 { 5090 int err, pin_fd; 5091 5092 pin_fd = bpf_obj_get(map->pin_path); 5093 if (pin_fd < 0) { 5094 err = -errno; 5095 if (err == -ENOENT) { 5096 pr_debug("found no pinned map to reuse at '%s'\n", 5097 map->pin_path); 5098 return 0; 5099 } 5100 5101 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5102 map->pin_path, errstr(err)); 5103 return err; 5104 } 5105 5106 if (!map_is_reuse_compat(map, pin_fd)) { 5107 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5108 map->pin_path); 5109 close(pin_fd); 5110 return -EINVAL; 5111 } 5112 5113 err = bpf_map__reuse_fd(map, pin_fd); 5114 close(pin_fd); 5115 if (err) 5116 return err; 5117 5118 map->pinned = true; 5119 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5120 5121 return 0; 5122 } 5123 5124 static int bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5125 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5126 { 5127 enum libbpf_map_type map_type = map->libbpf_type; 5128 int err, zero = 0; 5129 size_t mmap_sz; 5130 5131 if (obj->gen_loader) { 5132 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5133 map->mmaped, map->def.value_size); 5134 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5135 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5136 return 0; 5137 } 5138 5139 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5140 if (err) { 5141 err = -errno; 5142 pr_warn("map '%s': failed to set initial contents: %s\n", 5143 bpf_map__name(map), errstr(err)); 5144 return err; 5145 } 5146 5147 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5148 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5149 err = bpf_map_freeze(map->fd); 5150 if (err) { 5151 err = -errno; 5152 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5153 bpf_map__name(map), errstr(err)); 5154 return err; 5155 } 5156 } 5157 5158 /* Remap anonymous mmap()-ed "map initialization image" as 5159 * a BPF map-backed mmap()-ed memory, but preserving the same 5160 * memory address. This will cause kernel to change process' 5161 * page table to point to a different piece of kernel memory, 5162 * but from userspace point of view memory address (and its 5163 * contents, being identical at this point) will stay the 5164 * same. This mapping will be released by bpf_object__close() 5165 * as per normal clean up procedure. 5166 */ 5167 mmap_sz = bpf_map_mmap_sz(map); 5168 if (map->def.map_flags & BPF_F_MMAPABLE) { 5169 void *mmaped; 5170 int prot; 5171 5172 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5173 prot = PROT_READ; 5174 else 5175 prot = PROT_READ | PROT_WRITE; 5176 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5177 if (mmaped == MAP_FAILED) { 5178 err = -errno; 5179 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5180 bpf_map__name(map), errstr(err)); 5181 return err; 5182 } 5183 map->mmaped = mmaped; 5184 } else if (map->mmaped) { 5185 munmap(map->mmaped, mmap_sz); 5186 map->mmaped = NULL; 5187 } 5188 5189 return 0; 5190 } 5191 5192 static void bpf_map__destroy(struct bpf_map *map); 5193 map_is_created(const struct bpf_map * map)5194 static bool map_is_created(const struct bpf_map *map) 5195 { 5196 return map->obj->loaded || map->reused; 5197 } 5198 bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5199 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5200 { 5201 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5202 struct bpf_map_def *def = &map->def; 5203 const char *map_name = NULL; 5204 int err = 0, map_fd; 5205 5206 if (kernel_supports(obj, FEAT_PROG_NAME)) 5207 map_name = map->name; 5208 create_attr.map_ifindex = map->map_ifindex; 5209 create_attr.map_flags = def->map_flags; 5210 create_attr.numa_node = map->numa_node; 5211 create_attr.map_extra = map->map_extra; 5212 create_attr.token_fd = obj->token_fd; 5213 if (obj->token_fd) 5214 create_attr.map_flags |= BPF_F_TOKEN_FD; 5215 5216 if (bpf_map__is_struct_ops(map)) { 5217 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5218 if (map->mod_btf_fd >= 0) { 5219 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5220 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5221 } 5222 } 5223 5224 if (obj->btf && btf__fd(obj->btf) >= 0) { 5225 create_attr.btf_fd = btf__fd(obj->btf); 5226 create_attr.btf_key_type_id = map->btf_key_type_id; 5227 create_attr.btf_value_type_id = map->btf_value_type_id; 5228 } 5229 5230 if (bpf_map_type__is_map_in_map(def->type)) { 5231 if (map->inner_map) { 5232 err = map_set_def_max_entries(map->inner_map); 5233 if (err) 5234 return err; 5235 err = bpf_object__create_map(obj, map->inner_map, true); 5236 if (err) { 5237 pr_warn("map '%s': failed to create inner map: %s\n", 5238 map->name, errstr(err)); 5239 return err; 5240 } 5241 map->inner_map_fd = map->inner_map->fd; 5242 } 5243 if (map->inner_map_fd >= 0) 5244 create_attr.inner_map_fd = map->inner_map_fd; 5245 } 5246 5247 switch (def->type) { 5248 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5249 case BPF_MAP_TYPE_CGROUP_ARRAY: 5250 case BPF_MAP_TYPE_STACK_TRACE: 5251 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5252 case BPF_MAP_TYPE_HASH_OF_MAPS: 5253 case BPF_MAP_TYPE_DEVMAP: 5254 case BPF_MAP_TYPE_DEVMAP_HASH: 5255 case BPF_MAP_TYPE_CPUMAP: 5256 case BPF_MAP_TYPE_XSKMAP: 5257 case BPF_MAP_TYPE_SOCKMAP: 5258 case BPF_MAP_TYPE_SOCKHASH: 5259 case BPF_MAP_TYPE_QUEUE: 5260 case BPF_MAP_TYPE_STACK: 5261 case BPF_MAP_TYPE_ARENA: 5262 create_attr.btf_fd = 0; 5263 create_attr.btf_key_type_id = 0; 5264 create_attr.btf_value_type_id = 0; 5265 map->btf_key_type_id = 0; 5266 map->btf_value_type_id = 0; 5267 break; 5268 case BPF_MAP_TYPE_STRUCT_OPS: 5269 create_attr.btf_value_type_id = 0; 5270 break; 5271 default: 5272 break; 5273 } 5274 5275 if (obj->gen_loader) { 5276 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5277 def->key_size, def->value_size, def->max_entries, 5278 &create_attr, is_inner ? -1 : map - obj->maps); 5279 /* We keep pretenting we have valid FD to pass various fd >= 0 5280 * checks by just keeping original placeholder FDs in place. 5281 * See bpf_object__add_map() comment. 5282 * This placeholder fd will not be used with any syscall and 5283 * will be reset to -1 eventually. 5284 */ 5285 map_fd = map->fd; 5286 } else { 5287 map_fd = bpf_map_create(def->type, map_name, 5288 def->key_size, def->value_size, 5289 def->max_entries, &create_attr); 5290 } 5291 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5292 err = -errno; 5293 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5294 map->name, errstr(err)); 5295 create_attr.btf_fd = 0; 5296 create_attr.btf_key_type_id = 0; 5297 create_attr.btf_value_type_id = 0; 5298 map->btf_key_type_id = 0; 5299 map->btf_value_type_id = 0; 5300 map_fd = bpf_map_create(def->type, map_name, 5301 def->key_size, def->value_size, 5302 def->max_entries, &create_attr); 5303 } 5304 5305 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5306 if (obj->gen_loader) 5307 map->inner_map->fd = -1; 5308 bpf_map__destroy(map->inner_map); 5309 zfree(&map->inner_map); 5310 } 5311 5312 if (map_fd < 0) 5313 return map_fd; 5314 5315 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5316 if (map->fd == map_fd) 5317 return 0; 5318 5319 /* Keep placeholder FD value but now point it to the BPF map object. 5320 * This way everything that relied on this map's FD (e.g., relocated 5321 * ldimm64 instructions) will stay valid and won't need adjustments. 5322 * map->fd stays valid but now point to what map_fd points to. 5323 */ 5324 return reuse_fd(map->fd, map_fd); 5325 } 5326 init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5327 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5328 { 5329 const struct bpf_map *targ_map; 5330 unsigned int i; 5331 int fd, err = 0; 5332 5333 for (i = 0; i < map->init_slots_sz; i++) { 5334 if (!map->init_slots[i]) 5335 continue; 5336 5337 targ_map = map->init_slots[i]; 5338 fd = targ_map->fd; 5339 5340 if (obj->gen_loader) { 5341 bpf_gen__populate_outer_map(obj->gen_loader, 5342 map - obj->maps, i, 5343 targ_map - obj->maps); 5344 } else { 5345 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5346 } 5347 if (err) { 5348 err = -errno; 5349 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5350 map->name, i, targ_map->name, fd, errstr(err)); 5351 return err; 5352 } 5353 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5354 map->name, i, targ_map->name, fd); 5355 } 5356 5357 zfree(&map->init_slots); 5358 map->init_slots_sz = 0; 5359 5360 return 0; 5361 } 5362 init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5363 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5364 { 5365 const struct bpf_program *targ_prog; 5366 unsigned int i; 5367 int fd, err; 5368 5369 if (obj->gen_loader) 5370 return -ENOTSUP; 5371 5372 for (i = 0; i < map->init_slots_sz; i++) { 5373 if (!map->init_slots[i]) 5374 continue; 5375 5376 targ_prog = map->init_slots[i]; 5377 fd = bpf_program__fd(targ_prog); 5378 5379 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5380 if (err) { 5381 err = -errno; 5382 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5383 map->name, i, targ_prog->name, fd, errstr(err)); 5384 return err; 5385 } 5386 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5387 map->name, i, targ_prog->name, fd); 5388 } 5389 5390 zfree(&map->init_slots); 5391 map->init_slots_sz = 0; 5392 5393 return 0; 5394 } 5395 bpf_object_init_prog_arrays(struct bpf_object * obj)5396 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5397 { 5398 struct bpf_map *map; 5399 int i, err; 5400 5401 for (i = 0; i < obj->nr_maps; i++) { 5402 map = &obj->maps[i]; 5403 5404 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5405 continue; 5406 5407 err = init_prog_array_slots(obj, map); 5408 if (err < 0) 5409 return err; 5410 } 5411 return 0; 5412 } 5413 map_set_def_max_entries(struct bpf_map * map)5414 static int map_set_def_max_entries(struct bpf_map *map) 5415 { 5416 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5417 int nr_cpus; 5418 5419 nr_cpus = libbpf_num_possible_cpus(); 5420 if (nr_cpus < 0) { 5421 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5422 map->name, nr_cpus); 5423 return nr_cpus; 5424 } 5425 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5426 map->def.max_entries = nr_cpus; 5427 } 5428 5429 return 0; 5430 } 5431 5432 static int bpf_object__create_maps(struct bpf_object * obj)5433 bpf_object__create_maps(struct bpf_object *obj) 5434 { 5435 struct bpf_map *map; 5436 unsigned int i, j; 5437 int err; 5438 bool retried; 5439 5440 for (i = 0; i < obj->nr_maps; i++) { 5441 map = &obj->maps[i]; 5442 5443 /* To support old kernels, we skip creating global data maps 5444 * (.rodata, .data, .kconfig, etc); later on, during program 5445 * loading, if we detect that at least one of the to-be-loaded 5446 * programs is referencing any global data map, we'll error 5447 * out with program name and relocation index logged. 5448 * This approach allows to accommodate Clang emitting 5449 * unnecessary .rodata.str1.1 sections for string literals, 5450 * but also it allows to have CO-RE applications that use 5451 * global variables in some of BPF programs, but not others. 5452 * If those global variable-using programs are not loaded at 5453 * runtime due to bpf_program__set_autoload(prog, false), 5454 * bpf_object loading will succeed just fine even on old 5455 * kernels. 5456 */ 5457 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5458 map->autocreate = false; 5459 5460 if (!map->autocreate) { 5461 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5462 continue; 5463 } 5464 5465 err = map_set_def_max_entries(map); 5466 if (err) 5467 goto err_out; 5468 5469 retried = false; 5470 retry: 5471 if (map->pin_path) { 5472 err = bpf_object__reuse_map(map); 5473 if (err) { 5474 pr_warn("map '%s': error reusing pinned map\n", 5475 map->name); 5476 goto err_out; 5477 } 5478 if (retried && map->fd < 0) { 5479 pr_warn("map '%s': cannot find pinned map\n", 5480 map->name); 5481 err = -ENOENT; 5482 goto err_out; 5483 } 5484 } 5485 5486 if (map->reused) { 5487 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5488 map->name, map->fd); 5489 } else { 5490 err = bpf_object__create_map(obj, map, false); 5491 if (err) 5492 goto err_out; 5493 5494 pr_debug("map '%s': created successfully, fd=%d\n", 5495 map->name, map->fd); 5496 5497 if (bpf_map__is_internal(map)) { 5498 err = bpf_object__populate_internal_map(obj, map); 5499 if (err < 0) 5500 goto err_out; 5501 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5502 map->mmaped = mmap((void *)(long)map->map_extra, 5503 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5504 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5505 map->fd, 0); 5506 if (map->mmaped == MAP_FAILED) { 5507 err = -errno; 5508 map->mmaped = NULL; 5509 pr_warn("map '%s': failed to mmap arena: %s\n", 5510 map->name, errstr(err)); 5511 return err; 5512 } 5513 if (obj->arena_data) { 5514 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5515 zfree(&obj->arena_data); 5516 } 5517 } 5518 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5519 err = init_map_in_map_slots(obj, map); 5520 if (err < 0) 5521 goto err_out; 5522 } 5523 } 5524 5525 if (map->pin_path && !map->pinned) { 5526 err = bpf_map__pin(map, NULL); 5527 if (err) { 5528 if (!retried && err == -EEXIST) { 5529 retried = true; 5530 goto retry; 5531 } 5532 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5533 map->name, map->pin_path, errstr(err)); 5534 goto err_out; 5535 } 5536 } 5537 } 5538 5539 return 0; 5540 5541 err_out: 5542 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5543 pr_perm_msg(err); 5544 for (j = 0; j < i; j++) 5545 zclose(obj->maps[j].fd); 5546 return err; 5547 } 5548 bpf_core_is_flavor_sep(const char * s)5549 static bool bpf_core_is_flavor_sep(const char *s) 5550 { 5551 /* check X___Y name pattern, where X and Y are not underscores */ 5552 return s[0] != '_' && /* X */ 5553 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5554 s[4] != '_'; /* Y */ 5555 } 5556 5557 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5558 * before last triple underscore. Struct name part after last triple 5559 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5560 */ bpf_core_essential_name_len(const char * name)5561 size_t bpf_core_essential_name_len(const char *name) 5562 { 5563 size_t n = strlen(name); 5564 int i; 5565 5566 for (i = n - 5; i >= 0; i--) { 5567 if (bpf_core_is_flavor_sep(name + i)) 5568 return i + 1; 5569 } 5570 return n; 5571 } 5572 bpf_core_free_cands(struct bpf_core_cand_list * cands)5573 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5574 { 5575 if (!cands) 5576 return; 5577 5578 free(cands->cands); 5579 free(cands); 5580 } 5581 bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5582 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5583 size_t local_essent_len, 5584 const struct btf *targ_btf, 5585 const char *targ_btf_name, 5586 int targ_start_id, 5587 struct bpf_core_cand_list *cands) 5588 { 5589 struct bpf_core_cand *new_cands, *cand; 5590 const struct btf_type *t, *local_t; 5591 const char *targ_name, *local_name; 5592 size_t targ_essent_len; 5593 int n, i; 5594 5595 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5596 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5597 5598 n = btf__type_cnt(targ_btf); 5599 for (i = targ_start_id; i < n; i++) { 5600 t = btf__type_by_id(targ_btf, i); 5601 if (!btf_kind_core_compat(t, local_t)) 5602 continue; 5603 5604 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5605 if (str_is_empty(targ_name)) 5606 continue; 5607 5608 targ_essent_len = bpf_core_essential_name_len(targ_name); 5609 if (targ_essent_len != local_essent_len) 5610 continue; 5611 5612 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5613 continue; 5614 5615 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5616 local_cand->id, btf_kind_str(local_t), 5617 local_name, i, btf_kind_str(t), targ_name, 5618 targ_btf_name); 5619 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5620 sizeof(*cands->cands)); 5621 if (!new_cands) 5622 return -ENOMEM; 5623 5624 cand = &new_cands[cands->len]; 5625 cand->btf = targ_btf; 5626 cand->id = i; 5627 5628 cands->cands = new_cands; 5629 cands->len++; 5630 } 5631 return 0; 5632 } 5633 load_module_btfs(struct bpf_object * obj)5634 static int load_module_btfs(struct bpf_object *obj) 5635 { 5636 struct bpf_btf_info info; 5637 struct module_btf *mod_btf; 5638 struct btf *btf; 5639 char name[64]; 5640 __u32 id = 0, len; 5641 int err, fd; 5642 5643 if (obj->btf_modules_loaded) 5644 return 0; 5645 5646 if (obj->gen_loader) 5647 return 0; 5648 5649 /* don't do this again, even if we find no module BTFs */ 5650 obj->btf_modules_loaded = true; 5651 5652 /* kernel too old to support module BTFs */ 5653 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5654 return 0; 5655 5656 while (true) { 5657 err = bpf_btf_get_next_id(id, &id); 5658 if (err && errno == ENOENT) 5659 return 0; 5660 if (err && errno == EPERM) { 5661 pr_debug("skipping module BTFs loading, missing privileges\n"); 5662 return 0; 5663 } 5664 if (err) { 5665 err = -errno; 5666 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5667 return err; 5668 } 5669 5670 fd = bpf_btf_get_fd_by_id(id); 5671 if (fd < 0) { 5672 if (errno == ENOENT) 5673 continue; /* expected race: BTF was unloaded */ 5674 err = -errno; 5675 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5676 return err; 5677 } 5678 5679 len = sizeof(info); 5680 memset(&info, 0, sizeof(info)); 5681 info.name = ptr_to_u64(name); 5682 info.name_len = sizeof(name); 5683 5684 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5685 if (err) { 5686 err = -errno; 5687 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5688 goto err_out; 5689 } 5690 5691 /* ignore non-module BTFs */ 5692 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5693 close(fd); 5694 continue; 5695 } 5696 5697 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5698 err = libbpf_get_error(btf); 5699 if (err) { 5700 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5701 name, id, errstr(err)); 5702 goto err_out; 5703 } 5704 5705 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5706 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5707 if (err) 5708 goto err_out; 5709 5710 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5711 5712 mod_btf->btf = btf; 5713 mod_btf->id = id; 5714 mod_btf->fd = fd; 5715 mod_btf->name = strdup(name); 5716 if (!mod_btf->name) { 5717 err = -ENOMEM; 5718 goto err_out; 5719 } 5720 continue; 5721 5722 err_out: 5723 close(fd); 5724 return err; 5725 } 5726 5727 return 0; 5728 } 5729 5730 static struct bpf_core_cand_list * bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5731 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5732 { 5733 struct bpf_core_cand local_cand = {}; 5734 struct bpf_core_cand_list *cands; 5735 const struct btf *main_btf; 5736 const struct btf_type *local_t; 5737 const char *local_name; 5738 size_t local_essent_len; 5739 int err, i; 5740 5741 local_cand.btf = local_btf; 5742 local_cand.id = local_type_id; 5743 local_t = btf__type_by_id(local_btf, local_type_id); 5744 if (!local_t) 5745 return ERR_PTR(-EINVAL); 5746 5747 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5748 if (str_is_empty(local_name)) 5749 return ERR_PTR(-EINVAL); 5750 local_essent_len = bpf_core_essential_name_len(local_name); 5751 5752 cands = calloc(1, sizeof(*cands)); 5753 if (!cands) 5754 return ERR_PTR(-ENOMEM); 5755 5756 /* Attempt to find target candidates in vmlinux BTF first */ 5757 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5758 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5759 if (err) 5760 goto err_out; 5761 5762 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5763 if (cands->len) 5764 return cands; 5765 5766 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5767 if (obj->btf_vmlinux_override) 5768 return cands; 5769 5770 /* now look through module BTFs, trying to still find candidates */ 5771 err = load_module_btfs(obj); 5772 if (err) 5773 goto err_out; 5774 5775 for (i = 0; i < obj->btf_module_cnt; i++) { 5776 err = bpf_core_add_cands(&local_cand, local_essent_len, 5777 obj->btf_modules[i].btf, 5778 obj->btf_modules[i].name, 5779 btf__type_cnt(obj->btf_vmlinux), 5780 cands); 5781 if (err) 5782 goto err_out; 5783 } 5784 5785 return cands; 5786 err_out: 5787 bpf_core_free_cands(cands); 5788 return ERR_PTR(err); 5789 } 5790 5791 /* Check local and target types for compatibility. This check is used for 5792 * type-based CO-RE relocations and follow slightly different rules than 5793 * field-based relocations. This function assumes that root types were already 5794 * checked for name match. Beyond that initial root-level name check, names 5795 * are completely ignored. Compatibility rules are as follows: 5796 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5797 * kind should match for local and target types (i.e., STRUCT is not 5798 * compatible with UNION); 5799 * - for ENUMs, the size is ignored; 5800 * - for INT, size and signedness are ignored; 5801 * - for ARRAY, dimensionality is ignored, element types are checked for 5802 * compatibility recursively; 5803 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5804 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5805 * - FUNC_PROTOs are compatible if they have compatible signature: same 5806 * number of input args and compatible return and argument types. 5807 * These rules are not set in stone and probably will be adjusted as we get 5808 * more experience with using BPF CO-RE relocations. 5809 */ bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5810 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5811 const struct btf *targ_btf, __u32 targ_id) 5812 { 5813 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5814 } 5815 bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5816 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5817 const struct btf *targ_btf, __u32 targ_id) 5818 { 5819 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5820 } 5821 bpf_core_hash_fn(const long key,void * ctx)5822 static size_t bpf_core_hash_fn(const long key, void *ctx) 5823 { 5824 return key; 5825 } 5826 bpf_core_equal_fn(const long k1,const long k2,void * ctx)5827 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5828 { 5829 return k1 == k2; 5830 } 5831 record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5832 static int record_relo_core(struct bpf_program *prog, 5833 const struct bpf_core_relo *core_relo, int insn_idx) 5834 { 5835 struct reloc_desc *relos, *relo; 5836 5837 relos = libbpf_reallocarray(prog->reloc_desc, 5838 prog->nr_reloc + 1, sizeof(*relos)); 5839 if (!relos) 5840 return -ENOMEM; 5841 relo = &relos[prog->nr_reloc]; 5842 relo->type = RELO_CORE; 5843 relo->insn_idx = insn_idx; 5844 relo->core_relo = core_relo; 5845 prog->reloc_desc = relos; 5846 prog->nr_reloc++; 5847 return 0; 5848 } 5849 find_relo_core(struct bpf_program * prog,int insn_idx)5850 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5851 { 5852 struct reloc_desc *relo; 5853 int i; 5854 5855 for (i = 0; i < prog->nr_reloc; i++) { 5856 relo = &prog->reloc_desc[i]; 5857 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5858 continue; 5859 5860 return relo->core_relo; 5861 } 5862 5863 return NULL; 5864 } 5865 bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5866 static int bpf_core_resolve_relo(struct bpf_program *prog, 5867 const struct bpf_core_relo *relo, 5868 int relo_idx, 5869 const struct btf *local_btf, 5870 struct hashmap *cand_cache, 5871 struct bpf_core_relo_res *targ_res) 5872 { 5873 struct bpf_core_spec specs_scratch[3] = {}; 5874 struct bpf_core_cand_list *cands = NULL; 5875 const char *prog_name = prog->name; 5876 const struct btf_type *local_type; 5877 const char *local_name; 5878 __u32 local_id = relo->type_id; 5879 int err; 5880 5881 local_type = btf__type_by_id(local_btf, local_id); 5882 if (!local_type) 5883 return -EINVAL; 5884 5885 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5886 if (!local_name) 5887 return -EINVAL; 5888 5889 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5890 !hashmap__find(cand_cache, local_id, &cands)) { 5891 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5892 if (IS_ERR(cands)) { 5893 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5894 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5895 local_name, PTR_ERR(cands)); 5896 return PTR_ERR(cands); 5897 } 5898 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5899 if (err) { 5900 bpf_core_free_cands(cands); 5901 return err; 5902 } 5903 } 5904 5905 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5906 targ_res); 5907 } 5908 5909 static int bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5910 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5911 { 5912 const struct btf_ext_info_sec *sec; 5913 struct bpf_core_relo_res targ_res; 5914 const struct bpf_core_relo *rec; 5915 const struct btf_ext_info *seg; 5916 struct hashmap_entry *entry; 5917 struct hashmap *cand_cache = NULL; 5918 struct bpf_program *prog; 5919 struct bpf_insn *insn; 5920 const char *sec_name; 5921 int i, err = 0, insn_idx, sec_idx, sec_num; 5922 5923 if (obj->btf_ext->core_relo_info.len == 0) 5924 return 0; 5925 5926 if (targ_btf_path) { 5927 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5928 err = libbpf_get_error(obj->btf_vmlinux_override); 5929 if (err) { 5930 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 5931 return err; 5932 } 5933 } 5934 5935 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5936 if (IS_ERR(cand_cache)) { 5937 err = PTR_ERR(cand_cache); 5938 goto out; 5939 } 5940 5941 seg = &obj->btf_ext->core_relo_info; 5942 sec_num = 0; 5943 for_each_btf_ext_sec(seg, sec) { 5944 sec_idx = seg->sec_idxs[sec_num]; 5945 sec_num++; 5946 5947 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5948 if (str_is_empty(sec_name)) { 5949 err = -EINVAL; 5950 goto out; 5951 } 5952 5953 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5954 5955 for_each_btf_ext_rec(seg, sec, i, rec) { 5956 if (rec->insn_off % BPF_INSN_SZ) 5957 return -EINVAL; 5958 insn_idx = rec->insn_off / BPF_INSN_SZ; 5959 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5960 if (!prog) { 5961 /* When __weak subprog is "overridden" by another instance 5962 * of the subprog from a different object file, linker still 5963 * appends all the .BTF.ext info that used to belong to that 5964 * eliminated subprogram. 5965 * This is similar to what x86-64 linker does for relocations. 5966 * So just ignore such relocations just like we ignore 5967 * subprog instructions when discovering subprograms. 5968 */ 5969 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5970 sec_name, i, insn_idx); 5971 continue; 5972 } 5973 /* no need to apply CO-RE relocation if the program is 5974 * not going to be loaded 5975 */ 5976 if (!prog->autoload) 5977 continue; 5978 5979 /* adjust insn_idx from section frame of reference to the local 5980 * program's frame of reference; (sub-)program code is not yet 5981 * relocated, so it's enough to just subtract in-section offset 5982 */ 5983 insn_idx = insn_idx - prog->sec_insn_off; 5984 if (insn_idx >= prog->insns_cnt) 5985 return -EINVAL; 5986 insn = &prog->insns[insn_idx]; 5987 5988 err = record_relo_core(prog, rec, insn_idx); 5989 if (err) { 5990 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 5991 prog->name, i, errstr(err)); 5992 goto out; 5993 } 5994 5995 if (prog->obj->gen_loader) 5996 continue; 5997 5998 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5999 if (err) { 6000 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6001 prog->name, i, errstr(err)); 6002 goto out; 6003 } 6004 6005 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6006 if (err) { 6007 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6008 prog->name, i, insn_idx, errstr(err)); 6009 goto out; 6010 } 6011 } 6012 } 6013 6014 out: 6015 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6016 btf__free(obj->btf_vmlinux_override); 6017 obj->btf_vmlinux_override = NULL; 6018 6019 if (!IS_ERR_OR_NULL(cand_cache)) { 6020 hashmap__for_each_entry(cand_cache, entry, i) { 6021 bpf_core_free_cands(entry->pvalue); 6022 } 6023 hashmap__free(cand_cache); 6024 } 6025 return err; 6026 } 6027 6028 /* base map load ldimm64 special constant, used also for log fixup logic */ 6029 #define POISON_LDIMM64_MAP_BASE 2001000000 6030 #define POISON_LDIMM64_MAP_PFX "200100" 6031 poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)6032 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6033 int insn_idx, struct bpf_insn *insn, 6034 int map_idx, const struct bpf_map *map) 6035 { 6036 int i; 6037 6038 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6039 prog->name, relo_idx, insn_idx, map_idx, map->name); 6040 6041 /* we turn single ldimm64 into two identical invalid calls */ 6042 for (i = 0; i < 2; i++) { 6043 insn->code = BPF_JMP | BPF_CALL; 6044 insn->dst_reg = 0; 6045 insn->src_reg = 0; 6046 insn->off = 0; 6047 /* if this instruction is reachable (not a dead code), 6048 * verifier will complain with something like: 6049 * invalid func unknown#2001000123 6050 * where lower 123 is map index into obj->maps[] array 6051 */ 6052 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6053 6054 insn++; 6055 } 6056 } 6057 6058 /* unresolved kfunc call special constant, used also for log fixup logic */ 6059 #define POISON_CALL_KFUNC_BASE 2002000000 6060 #define POISON_CALL_KFUNC_PFX "2002" 6061 poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)6062 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6063 int insn_idx, struct bpf_insn *insn, 6064 int ext_idx, const struct extern_desc *ext) 6065 { 6066 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6067 prog->name, relo_idx, insn_idx, ext->name); 6068 6069 /* we turn kfunc call into invalid helper call with identifiable constant */ 6070 insn->code = BPF_JMP | BPF_CALL; 6071 insn->dst_reg = 0; 6072 insn->src_reg = 0; 6073 insn->off = 0; 6074 /* if this instruction is reachable (not a dead code), 6075 * verifier will complain with something like: 6076 * invalid func unknown#2001000123 6077 * where lower 123 is extern index into obj->externs[] array 6078 */ 6079 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6080 } 6081 6082 /* Relocate data references within program code: 6083 * - map references; 6084 * - global variable references; 6085 * - extern references. 6086 */ 6087 static int bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)6088 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6089 { 6090 int i; 6091 6092 for (i = 0; i < prog->nr_reloc; i++) { 6093 struct reloc_desc *relo = &prog->reloc_desc[i]; 6094 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6095 const struct bpf_map *map; 6096 struct extern_desc *ext; 6097 6098 switch (relo->type) { 6099 case RELO_LD64: 6100 map = &obj->maps[relo->map_idx]; 6101 if (obj->gen_loader) { 6102 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6103 insn[0].imm = relo->map_idx; 6104 } else if (map->autocreate) { 6105 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6106 insn[0].imm = map->fd; 6107 } else { 6108 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6109 relo->map_idx, map); 6110 } 6111 break; 6112 case RELO_DATA: 6113 map = &obj->maps[relo->map_idx]; 6114 insn[1].imm = insn[0].imm + relo->sym_off; 6115 if (obj->gen_loader) { 6116 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6117 insn[0].imm = relo->map_idx; 6118 } else if (map->autocreate) { 6119 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6120 insn[0].imm = map->fd; 6121 } else { 6122 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6123 relo->map_idx, map); 6124 } 6125 break; 6126 case RELO_EXTERN_LD64: 6127 ext = &obj->externs[relo->ext_idx]; 6128 if (ext->type == EXT_KCFG) { 6129 if (obj->gen_loader) { 6130 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6131 insn[0].imm = obj->kconfig_map_idx; 6132 } else { 6133 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6134 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6135 } 6136 insn[1].imm = ext->kcfg.data_off; 6137 } else /* EXT_KSYM */ { 6138 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6139 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6140 insn[0].imm = ext->ksym.kernel_btf_id; 6141 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6142 } else { /* typeless ksyms or unresolved typed ksyms */ 6143 insn[0].imm = (__u32)ext->ksym.addr; 6144 insn[1].imm = ext->ksym.addr >> 32; 6145 } 6146 } 6147 break; 6148 case RELO_EXTERN_CALL: 6149 ext = &obj->externs[relo->ext_idx]; 6150 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6151 if (ext->is_set) { 6152 insn[0].imm = ext->ksym.kernel_btf_id; 6153 insn[0].off = ext->ksym.btf_fd_idx; 6154 } else { /* unresolved weak kfunc call */ 6155 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6156 relo->ext_idx, ext); 6157 } 6158 break; 6159 case RELO_SUBPROG_ADDR: 6160 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6161 pr_warn("prog '%s': relo #%d: bad insn\n", 6162 prog->name, i); 6163 return -EINVAL; 6164 } 6165 /* handled already */ 6166 break; 6167 case RELO_CALL: 6168 /* handled already */ 6169 break; 6170 case RELO_CORE: 6171 /* will be handled by bpf_program_record_relos() */ 6172 break; 6173 default: 6174 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6175 prog->name, i, relo->type); 6176 return -EINVAL; 6177 } 6178 } 6179 6180 return 0; 6181 } 6182 adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6183 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6184 const struct bpf_program *prog, 6185 const struct btf_ext_info *ext_info, 6186 void **prog_info, __u32 *prog_rec_cnt, 6187 __u32 *prog_rec_sz) 6188 { 6189 void *copy_start = NULL, *copy_end = NULL; 6190 void *rec, *rec_end, *new_prog_info; 6191 const struct btf_ext_info_sec *sec; 6192 size_t old_sz, new_sz; 6193 int i, sec_num, sec_idx, off_adj; 6194 6195 sec_num = 0; 6196 for_each_btf_ext_sec(ext_info, sec) { 6197 sec_idx = ext_info->sec_idxs[sec_num]; 6198 sec_num++; 6199 if (prog->sec_idx != sec_idx) 6200 continue; 6201 6202 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6203 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6204 6205 if (insn_off < prog->sec_insn_off) 6206 continue; 6207 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6208 break; 6209 6210 if (!copy_start) 6211 copy_start = rec; 6212 copy_end = rec + ext_info->rec_size; 6213 } 6214 6215 if (!copy_start) 6216 return -ENOENT; 6217 6218 /* append func/line info of a given (sub-)program to the main 6219 * program func/line info 6220 */ 6221 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6222 new_sz = old_sz + (copy_end - copy_start); 6223 new_prog_info = realloc(*prog_info, new_sz); 6224 if (!new_prog_info) 6225 return -ENOMEM; 6226 *prog_info = new_prog_info; 6227 *prog_rec_cnt = new_sz / ext_info->rec_size; 6228 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6229 6230 /* Kernel instruction offsets are in units of 8-byte 6231 * instructions, while .BTF.ext instruction offsets generated 6232 * by Clang are in units of bytes. So convert Clang offsets 6233 * into kernel offsets and adjust offset according to program 6234 * relocated position. 6235 */ 6236 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6237 rec = new_prog_info + old_sz; 6238 rec_end = new_prog_info + new_sz; 6239 for (; rec < rec_end; rec += ext_info->rec_size) { 6240 __u32 *insn_off = rec; 6241 6242 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6243 } 6244 *prog_rec_sz = ext_info->rec_size; 6245 return 0; 6246 } 6247 6248 return -ENOENT; 6249 } 6250 6251 static int reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6252 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6253 struct bpf_program *main_prog, 6254 const struct bpf_program *prog) 6255 { 6256 int err; 6257 6258 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6259 * support func/line info 6260 */ 6261 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6262 return 0; 6263 6264 /* only attempt func info relocation if main program's func_info 6265 * relocation was successful 6266 */ 6267 if (main_prog != prog && !main_prog->func_info) 6268 goto line_info; 6269 6270 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6271 &main_prog->func_info, 6272 &main_prog->func_info_cnt, 6273 &main_prog->func_info_rec_size); 6274 if (err) { 6275 if (err != -ENOENT) { 6276 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6277 prog->name, errstr(err)); 6278 return err; 6279 } 6280 if (main_prog->func_info) { 6281 /* 6282 * Some info has already been found but has problem 6283 * in the last btf_ext reloc. Must have to error out. 6284 */ 6285 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6286 return err; 6287 } 6288 /* Have problem loading the very first info. Ignore the rest. */ 6289 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6290 prog->name); 6291 } 6292 6293 line_info: 6294 /* don't relocate line info if main program's relocation failed */ 6295 if (main_prog != prog && !main_prog->line_info) 6296 return 0; 6297 6298 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6299 &main_prog->line_info, 6300 &main_prog->line_info_cnt, 6301 &main_prog->line_info_rec_size); 6302 if (err) { 6303 if (err != -ENOENT) { 6304 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6305 prog->name, errstr(err)); 6306 return err; 6307 } 6308 if (main_prog->line_info) { 6309 /* 6310 * Some info has already been found but has problem 6311 * in the last btf_ext reloc. Must have to error out. 6312 */ 6313 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6314 return err; 6315 } 6316 /* Have problem loading the very first info. Ignore the rest. */ 6317 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6318 prog->name); 6319 } 6320 return 0; 6321 } 6322 cmp_relo_by_insn_idx(const void * key,const void * elem)6323 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6324 { 6325 size_t insn_idx = *(const size_t *)key; 6326 const struct reloc_desc *relo = elem; 6327 6328 if (insn_idx == relo->insn_idx) 6329 return 0; 6330 return insn_idx < relo->insn_idx ? -1 : 1; 6331 } 6332 find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6333 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6334 { 6335 if (!prog->nr_reloc) 6336 return NULL; 6337 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6338 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6339 } 6340 append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6341 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6342 { 6343 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6344 struct reloc_desc *relos; 6345 int i; 6346 6347 if (main_prog == subprog) 6348 return 0; 6349 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6350 /* if new count is zero, reallocarray can return a valid NULL result; 6351 * in this case the previous pointer will be freed, so we *have to* 6352 * reassign old pointer to the new value (even if it's NULL) 6353 */ 6354 if (!relos && new_cnt) 6355 return -ENOMEM; 6356 if (subprog->nr_reloc) 6357 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6358 sizeof(*relos) * subprog->nr_reloc); 6359 6360 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6361 relos[i].insn_idx += subprog->sub_insn_off; 6362 /* After insn_idx adjustment the 'relos' array is still sorted 6363 * by insn_idx and doesn't break bsearch. 6364 */ 6365 main_prog->reloc_desc = relos; 6366 main_prog->nr_reloc = new_cnt; 6367 return 0; 6368 } 6369 6370 static int bpf_object__append_subprog_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * subprog)6371 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6372 struct bpf_program *subprog) 6373 { 6374 struct bpf_insn *insns; 6375 size_t new_cnt; 6376 int err; 6377 6378 subprog->sub_insn_off = main_prog->insns_cnt; 6379 6380 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6381 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6382 if (!insns) { 6383 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6384 return -ENOMEM; 6385 } 6386 main_prog->insns = insns; 6387 main_prog->insns_cnt = new_cnt; 6388 6389 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6390 subprog->insns_cnt * sizeof(*insns)); 6391 6392 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6393 main_prog->name, subprog->insns_cnt, subprog->name); 6394 6395 /* The subprog insns are now appended. Append its relos too. */ 6396 err = append_subprog_relos(main_prog, subprog); 6397 if (err) 6398 return err; 6399 return 0; 6400 } 6401 6402 static int bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6403 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6404 struct bpf_program *prog) 6405 { 6406 size_t sub_insn_idx, insn_idx; 6407 struct bpf_program *subprog; 6408 struct reloc_desc *relo; 6409 struct bpf_insn *insn; 6410 int err; 6411 6412 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6413 if (err) 6414 return err; 6415 6416 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6417 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6418 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6419 continue; 6420 6421 relo = find_prog_insn_relo(prog, insn_idx); 6422 if (relo && relo->type == RELO_EXTERN_CALL) 6423 /* kfunc relocations will be handled later 6424 * in bpf_object__relocate_data() 6425 */ 6426 continue; 6427 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6428 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6429 prog->name, insn_idx, relo->type); 6430 return -LIBBPF_ERRNO__RELOC; 6431 } 6432 if (relo) { 6433 /* sub-program instruction index is a combination of 6434 * an offset of a symbol pointed to by relocation and 6435 * call instruction's imm field; for global functions, 6436 * call always has imm = -1, but for static functions 6437 * relocation is against STT_SECTION and insn->imm 6438 * points to a start of a static function 6439 * 6440 * for subprog addr relocation, the relo->sym_off + insn->imm is 6441 * the byte offset in the corresponding section. 6442 */ 6443 if (relo->type == RELO_CALL) 6444 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6445 else 6446 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6447 } else if (insn_is_pseudo_func(insn)) { 6448 /* 6449 * RELO_SUBPROG_ADDR relo is always emitted even if both 6450 * functions are in the same section, so it shouldn't reach here. 6451 */ 6452 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6453 prog->name, insn_idx); 6454 return -LIBBPF_ERRNO__RELOC; 6455 } else { 6456 /* if subprogram call is to a static function within 6457 * the same ELF section, there won't be any relocation 6458 * emitted, but it also means there is no additional 6459 * offset necessary, insns->imm is relative to 6460 * instruction's original position within the section 6461 */ 6462 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6463 } 6464 6465 /* we enforce that sub-programs should be in .text section */ 6466 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6467 if (!subprog) { 6468 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6469 prog->name); 6470 return -LIBBPF_ERRNO__RELOC; 6471 } 6472 6473 /* if it's the first call instruction calling into this 6474 * subprogram (meaning this subprog hasn't been processed 6475 * yet) within the context of current main program: 6476 * - append it at the end of main program's instructions blog; 6477 * - process is recursively, while current program is put on hold; 6478 * - if that subprogram calls some other not yet processes 6479 * subprogram, same thing will happen recursively until 6480 * there are no more unprocesses subprograms left to append 6481 * and relocate. 6482 */ 6483 if (subprog->sub_insn_off == 0) { 6484 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6485 if (err) 6486 return err; 6487 err = bpf_object__reloc_code(obj, main_prog, subprog); 6488 if (err) 6489 return err; 6490 } 6491 6492 /* main_prog->insns memory could have been re-allocated, so 6493 * calculate pointer again 6494 */ 6495 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6496 /* calculate correct instruction position within current main 6497 * prog; each main prog can have a different set of 6498 * subprograms appended (potentially in different order as 6499 * well), so position of any subprog can be different for 6500 * different main programs 6501 */ 6502 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6503 6504 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6505 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6506 } 6507 6508 return 0; 6509 } 6510 6511 /* 6512 * Relocate sub-program calls. 6513 * 6514 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6515 * main prog) is processed separately. For each subprog (non-entry functions, 6516 * that can be called from either entry progs or other subprogs) gets their 6517 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6518 * hasn't been yet appended and relocated within current main prog. Once its 6519 * relocated, sub_insn_off will point at the position within current main prog 6520 * where given subprog was appended. This will further be used to relocate all 6521 * the call instructions jumping into this subprog. 6522 * 6523 * We start with main program and process all call instructions. If the call 6524 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6525 * is zero), subprog instructions are appended at the end of main program's 6526 * instruction array. Then main program is "put on hold" while we recursively 6527 * process newly appended subprogram. If that subprogram calls into another 6528 * subprogram that hasn't been appended, new subprogram is appended again to 6529 * the *main* prog's instructions (subprog's instructions are always left 6530 * untouched, as they need to be in unmodified state for subsequent main progs 6531 * and subprog instructions are always sent only as part of a main prog) and 6532 * the process continues recursively. Once all the subprogs called from a main 6533 * prog or any of its subprogs are appended (and relocated), all their 6534 * positions within finalized instructions array are known, so it's easy to 6535 * rewrite call instructions with correct relative offsets, corresponding to 6536 * desired target subprog. 6537 * 6538 * Its important to realize that some subprogs might not be called from some 6539 * main prog and any of its called/used subprogs. Those will keep their 6540 * subprog->sub_insn_off as zero at all times and won't be appended to current 6541 * main prog and won't be relocated within the context of current main prog. 6542 * They might still be used from other main progs later. 6543 * 6544 * Visually this process can be shown as below. Suppose we have two main 6545 * programs mainA and mainB and BPF object contains three subprogs: subA, 6546 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6547 * subC both call subB: 6548 * 6549 * +--------+ +-------+ 6550 * | v v | 6551 * +--+---+ +--+-+-+ +---+--+ 6552 * | subA | | subB | | subC | 6553 * +--+---+ +------+ +---+--+ 6554 * ^ ^ 6555 * | | 6556 * +---+-------+ +------+----+ 6557 * | mainA | | mainB | 6558 * +-----------+ +-----------+ 6559 * 6560 * We'll start relocating mainA, will find subA, append it and start 6561 * processing sub A recursively: 6562 * 6563 * +-----------+------+ 6564 * | mainA | subA | 6565 * +-----------+------+ 6566 * 6567 * At this point we notice that subB is used from subA, so we append it and 6568 * relocate (there are no further subcalls from subB): 6569 * 6570 * +-----------+------+------+ 6571 * | mainA | subA | subB | 6572 * +-----------+------+------+ 6573 * 6574 * At this point, we relocate subA calls, then go one level up and finish with 6575 * relocatin mainA calls. mainA is done. 6576 * 6577 * For mainB process is similar but results in different order. We start with 6578 * mainB and skip subA and subB, as mainB never calls them (at least 6579 * directly), but we see subC is needed, so we append and start processing it: 6580 * 6581 * +-----------+------+ 6582 * | mainB | subC | 6583 * +-----------+------+ 6584 * Now we see subC needs subB, so we go back to it, append and relocate it: 6585 * 6586 * +-----------+------+------+ 6587 * | mainB | subC | subB | 6588 * +-----------+------+------+ 6589 * 6590 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6591 */ 6592 static int bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6593 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6594 { 6595 struct bpf_program *subprog; 6596 int i, err; 6597 6598 /* mark all subprogs as not relocated (yet) within the context of 6599 * current main program 6600 */ 6601 for (i = 0; i < obj->nr_programs; i++) { 6602 subprog = &obj->programs[i]; 6603 if (!prog_is_subprog(obj, subprog)) 6604 continue; 6605 6606 subprog->sub_insn_off = 0; 6607 } 6608 6609 err = bpf_object__reloc_code(obj, prog, prog); 6610 if (err) 6611 return err; 6612 6613 return 0; 6614 } 6615 6616 static void bpf_object__free_relocs(struct bpf_object * obj)6617 bpf_object__free_relocs(struct bpf_object *obj) 6618 { 6619 struct bpf_program *prog; 6620 int i; 6621 6622 /* free up relocation descriptors */ 6623 for (i = 0; i < obj->nr_programs; i++) { 6624 prog = &obj->programs[i]; 6625 zfree(&prog->reloc_desc); 6626 prog->nr_reloc = 0; 6627 } 6628 } 6629 cmp_relocs(const void * _a,const void * _b)6630 static int cmp_relocs(const void *_a, const void *_b) 6631 { 6632 const struct reloc_desc *a = _a; 6633 const struct reloc_desc *b = _b; 6634 6635 if (a->insn_idx != b->insn_idx) 6636 return a->insn_idx < b->insn_idx ? -1 : 1; 6637 6638 /* no two relocations should have the same insn_idx, but ... */ 6639 if (a->type != b->type) 6640 return a->type < b->type ? -1 : 1; 6641 6642 return 0; 6643 } 6644 bpf_object__sort_relos(struct bpf_object * obj)6645 static void bpf_object__sort_relos(struct bpf_object *obj) 6646 { 6647 int i; 6648 6649 for (i = 0; i < obj->nr_programs; i++) { 6650 struct bpf_program *p = &obj->programs[i]; 6651 6652 if (!p->nr_reloc) 6653 continue; 6654 6655 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6656 } 6657 } 6658 bpf_prog_assign_exc_cb(struct bpf_object * obj,struct bpf_program * prog)6659 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6660 { 6661 const char *str = "exception_callback:"; 6662 size_t pfx_len = strlen(str); 6663 int i, j, n; 6664 6665 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6666 return 0; 6667 6668 n = btf__type_cnt(obj->btf); 6669 for (i = 1; i < n; i++) { 6670 const char *name; 6671 struct btf_type *t; 6672 6673 t = btf_type_by_id(obj->btf, i); 6674 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6675 continue; 6676 6677 name = btf__str_by_offset(obj->btf, t->name_off); 6678 if (strncmp(name, str, pfx_len) != 0) 6679 continue; 6680 6681 t = btf_type_by_id(obj->btf, t->type); 6682 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6683 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6684 prog->name); 6685 return -EINVAL; 6686 } 6687 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6688 continue; 6689 /* Multiple callbacks are specified for the same prog, 6690 * the verifier will eventually return an error for this 6691 * case, hence simply skip appending a subprog. 6692 */ 6693 if (prog->exception_cb_idx >= 0) { 6694 prog->exception_cb_idx = -1; 6695 break; 6696 } 6697 6698 name += pfx_len; 6699 if (str_is_empty(name)) { 6700 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6701 prog->name); 6702 return -EINVAL; 6703 } 6704 6705 for (j = 0; j < obj->nr_programs; j++) { 6706 struct bpf_program *subprog = &obj->programs[j]; 6707 6708 if (!prog_is_subprog(obj, subprog)) 6709 continue; 6710 if (strcmp(name, subprog->name) != 0) 6711 continue; 6712 /* Enforce non-hidden, as from verifier point of 6713 * view it expects global functions, whereas the 6714 * mark_btf_static fixes up linkage as static. 6715 */ 6716 if (!subprog->sym_global || subprog->mark_btf_static) { 6717 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6718 prog->name, subprog->name); 6719 return -EINVAL; 6720 } 6721 /* Let's see if we already saw a static exception callback with the same name */ 6722 if (prog->exception_cb_idx >= 0) { 6723 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6724 prog->name, subprog->name); 6725 return -EINVAL; 6726 } 6727 prog->exception_cb_idx = j; 6728 break; 6729 } 6730 6731 if (prog->exception_cb_idx >= 0) 6732 continue; 6733 6734 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6735 return -ENOENT; 6736 } 6737 6738 return 0; 6739 } 6740 6741 static struct { 6742 enum bpf_prog_type prog_type; 6743 const char *ctx_name; 6744 } global_ctx_map[] = { 6745 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6746 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6747 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6748 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6749 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6750 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6751 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6752 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6753 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6754 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6755 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6756 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6757 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6758 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6759 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6760 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6761 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6762 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6763 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6764 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6765 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6766 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6767 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6768 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6769 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6770 /* all other program types don't have "named" context structs */ 6771 }; 6772 6773 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6774 * for below __builtin_types_compatible_p() checks; 6775 * with this approach we don't need any extra arch-specific #ifdef guards 6776 */ 6777 struct pt_regs; 6778 struct user_pt_regs; 6779 struct user_regs_struct; 6780 need_func_arg_type_fixup(const struct btf * btf,const struct bpf_program * prog,const char * subprog_name,int arg_idx,int arg_type_id,const char * ctx_name)6781 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6782 const char *subprog_name, int arg_idx, 6783 int arg_type_id, const char *ctx_name) 6784 { 6785 const struct btf_type *t; 6786 const char *tname; 6787 6788 /* check if existing parameter already matches verifier expectations */ 6789 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6790 if (!btf_is_ptr(t)) 6791 goto out_warn; 6792 6793 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6794 * and perf_event programs, so check this case early on and forget 6795 * about it for subsequent checks 6796 */ 6797 while (btf_is_mod(t)) 6798 t = btf__type_by_id(btf, t->type); 6799 if (btf_is_typedef(t) && 6800 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6801 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6802 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6803 return false; /* canonical type for kprobe/perf_event */ 6804 } 6805 6806 /* now we can ignore typedefs moving forward */ 6807 t = skip_mods_and_typedefs(btf, t->type, NULL); 6808 6809 /* if it's `void *`, definitely fix up BTF info */ 6810 if (btf_is_void(t)) 6811 return true; 6812 6813 /* if it's already proper canonical type, no need to fix up */ 6814 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6815 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6816 return false; 6817 6818 /* special cases */ 6819 switch (prog->type) { 6820 case BPF_PROG_TYPE_KPROBE: 6821 /* `struct pt_regs *` is expected, but we need to fix up */ 6822 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6823 return true; 6824 break; 6825 case BPF_PROG_TYPE_PERF_EVENT: 6826 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6827 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6828 return true; 6829 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6830 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6831 return true; 6832 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6833 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6834 return true; 6835 break; 6836 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6837 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6838 /* allow u64* as ctx */ 6839 if (btf_is_int(t) && t->size == 8) 6840 return true; 6841 break; 6842 default: 6843 break; 6844 } 6845 6846 out_warn: 6847 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6848 prog->name, subprog_name, arg_idx, ctx_name); 6849 return false; 6850 } 6851 clone_func_btf_info(struct btf * btf,int orig_fn_id,struct bpf_program * prog)6852 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6853 { 6854 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6855 int i, err, arg_cnt, fn_name_off, linkage; 6856 struct btf_type *fn_t, *fn_proto_t, *t; 6857 struct btf_param *p; 6858 6859 /* caller already validated FUNC -> FUNC_PROTO validity */ 6860 fn_t = btf_type_by_id(btf, orig_fn_id); 6861 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6862 6863 /* Note that each btf__add_xxx() operation invalidates 6864 * all btf_type and string pointers, so we need to be 6865 * very careful when cloning BTF types. BTF type 6866 * pointers have to be always refetched. And to avoid 6867 * problems with invalidated string pointers, we 6868 * add empty strings initially, then just fix up 6869 * name_off offsets in place. Offsets are stable for 6870 * existing strings, so that works out. 6871 */ 6872 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6873 linkage = btf_func_linkage(fn_t); 6874 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6875 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6876 arg_cnt = btf_vlen(fn_proto_t); 6877 6878 /* clone FUNC_PROTO and its params */ 6879 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6880 if (fn_proto_id < 0) 6881 return -EINVAL; 6882 6883 for (i = 0; i < arg_cnt; i++) { 6884 int name_off; 6885 6886 /* copy original parameter data */ 6887 t = btf_type_by_id(btf, orig_proto_id); 6888 p = &btf_params(t)[i]; 6889 name_off = p->name_off; 6890 6891 err = btf__add_func_param(btf, "", p->type); 6892 if (err) 6893 return err; 6894 6895 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6896 p = &btf_params(fn_proto_t)[i]; 6897 p->name_off = name_off; /* use remembered str offset */ 6898 } 6899 6900 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6901 * entry program's name as a placeholder, which we replace immediately 6902 * with original name_off 6903 */ 6904 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6905 if (fn_id < 0) 6906 return -EINVAL; 6907 6908 fn_t = btf_type_by_id(btf, fn_id); 6909 fn_t->name_off = fn_name_off; /* reuse original string */ 6910 6911 return fn_id; 6912 } 6913 6914 /* Check if main program or global subprog's function prototype has `arg:ctx` 6915 * argument tags, and, if necessary, substitute correct type to match what BPF 6916 * verifier would expect, taking into account specific program type. This 6917 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6918 * have a native support for it in the verifier, making user's life much 6919 * easier. 6920 */ bpf_program_fixup_func_info(struct bpf_object * obj,struct bpf_program * prog)6921 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6922 { 6923 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6924 struct bpf_func_info_min *func_rec; 6925 struct btf_type *fn_t, *fn_proto_t; 6926 struct btf *btf = obj->btf; 6927 const struct btf_type *t; 6928 struct btf_param *p; 6929 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6930 int i, n, arg_idx, arg_cnt, err, rec_idx; 6931 int *orig_ids; 6932 6933 /* no .BTF.ext, no problem */ 6934 if (!obj->btf_ext || !prog->func_info) 6935 return 0; 6936 6937 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6938 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6939 return 0; 6940 6941 /* some BPF program types just don't have named context structs, so 6942 * this fallback mechanism doesn't work for them 6943 */ 6944 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6945 if (global_ctx_map[i].prog_type != prog->type) 6946 continue; 6947 ctx_name = global_ctx_map[i].ctx_name; 6948 break; 6949 } 6950 if (!ctx_name) 6951 return 0; 6952 6953 /* remember original func BTF IDs to detect if we already cloned them */ 6954 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6955 if (!orig_ids) 6956 return -ENOMEM; 6957 for (i = 0; i < prog->func_info_cnt; i++) { 6958 func_rec = prog->func_info + prog->func_info_rec_size * i; 6959 orig_ids[i] = func_rec->type_id; 6960 } 6961 6962 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6963 * of our subprogs; if yes and subprog is global and needs adjustment, 6964 * clone and adjust FUNC -> FUNC_PROTO combo 6965 */ 6966 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6967 /* only DECL_TAG with "arg:ctx" value are interesting */ 6968 t = btf__type_by_id(btf, i); 6969 if (!btf_is_decl_tag(t)) 6970 continue; 6971 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6972 continue; 6973 6974 /* only global funcs need adjustment, if at all */ 6975 orig_fn_id = t->type; 6976 fn_t = btf_type_by_id(btf, orig_fn_id); 6977 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6978 continue; 6979 6980 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6981 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6982 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6983 continue; 6984 6985 /* find corresponding func_info record */ 6986 func_rec = NULL; 6987 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6988 if (orig_ids[rec_idx] == t->type) { 6989 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6990 break; 6991 } 6992 } 6993 /* current main program doesn't call into this subprog */ 6994 if (!func_rec) 6995 continue; 6996 6997 /* some more sanity checking of DECL_TAG */ 6998 arg_cnt = btf_vlen(fn_proto_t); 6999 arg_idx = btf_decl_tag(t)->component_idx; 7000 if (arg_idx < 0 || arg_idx >= arg_cnt) 7001 continue; 7002 7003 /* check if we should fix up argument type */ 7004 p = &btf_params(fn_proto_t)[arg_idx]; 7005 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7006 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7007 continue; 7008 7009 /* clone fn/fn_proto, unless we already did it for another arg */ 7010 if (func_rec->type_id == orig_fn_id) { 7011 int fn_id; 7012 7013 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7014 if (fn_id < 0) { 7015 err = fn_id; 7016 goto err_out; 7017 } 7018 7019 /* point func_info record to a cloned FUNC type */ 7020 func_rec->type_id = fn_id; 7021 } 7022 7023 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7024 * we do it just once per main BPF program, as all global 7025 * funcs share the same program type, so need only PTR -> 7026 * STRUCT type chain 7027 */ 7028 if (ptr_id == 0) { 7029 struct_id = btf__add_struct(btf, ctx_name, 0); 7030 ptr_id = btf__add_ptr(btf, struct_id); 7031 if (ptr_id < 0 || struct_id < 0) { 7032 err = -EINVAL; 7033 goto err_out; 7034 } 7035 } 7036 7037 /* for completeness, clone DECL_TAG and point it to cloned param */ 7038 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7039 if (tag_id < 0) { 7040 err = -EINVAL; 7041 goto err_out; 7042 } 7043 7044 /* all the BTF manipulations invalidated pointers, refetch them */ 7045 fn_t = btf_type_by_id(btf, func_rec->type_id); 7046 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7047 7048 /* fix up type ID pointed to by param */ 7049 p = &btf_params(fn_proto_t)[arg_idx]; 7050 p->type = ptr_id; 7051 } 7052 7053 free(orig_ids); 7054 return 0; 7055 err_out: 7056 free(orig_ids); 7057 return err; 7058 } 7059 bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)7060 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7061 { 7062 struct bpf_program *prog; 7063 size_t i, j; 7064 int err; 7065 7066 if (obj->btf_ext) { 7067 err = bpf_object__relocate_core(obj, targ_btf_path); 7068 if (err) { 7069 pr_warn("failed to perform CO-RE relocations: %s\n", 7070 errstr(err)); 7071 return err; 7072 } 7073 bpf_object__sort_relos(obj); 7074 } 7075 7076 /* Before relocating calls pre-process relocations and mark 7077 * few ld_imm64 instructions that points to subprogs. 7078 * Otherwise bpf_object__reloc_code() later would have to consider 7079 * all ld_imm64 insns as relocation candidates. That would 7080 * reduce relocation speed, since amount of find_prog_insn_relo() 7081 * would increase and most of them will fail to find a relo. 7082 */ 7083 for (i = 0; i < obj->nr_programs; i++) { 7084 prog = &obj->programs[i]; 7085 for (j = 0; j < prog->nr_reloc; j++) { 7086 struct reloc_desc *relo = &prog->reloc_desc[j]; 7087 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7088 7089 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7090 if (relo->type == RELO_SUBPROG_ADDR) 7091 insn[0].src_reg = BPF_PSEUDO_FUNC; 7092 } 7093 } 7094 7095 /* relocate subprogram calls and append used subprograms to main 7096 * programs; each copy of subprogram code needs to be relocated 7097 * differently for each main program, because its code location might 7098 * have changed. 7099 * Append subprog relos to main programs to allow data relos to be 7100 * processed after text is completely relocated. 7101 */ 7102 for (i = 0; i < obj->nr_programs; i++) { 7103 prog = &obj->programs[i]; 7104 /* sub-program's sub-calls are relocated within the context of 7105 * its main program only 7106 */ 7107 if (prog_is_subprog(obj, prog)) 7108 continue; 7109 if (!prog->autoload) 7110 continue; 7111 7112 err = bpf_object__relocate_calls(obj, prog); 7113 if (err) { 7114 pr_warn("prog '%s': failed to relocate calls: %s\n", 7115 prog->name, errstr(err)); 7116 return err; 7117 } 7118 7119 err = bpf_prog_assign_exc_cb(obj, prog); 7120 if (err) 7121 return err; 7122 /* Now, also append exception callback if it has not been done already. */ 7123 if (prog->exception_cb_idx >= 0) { 7124 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7125 7126 /* Calling exception callback directly is disallowed, which the 7127 * verifier will reject later. In case it was processed already, 7128 * we can skip this step, otherwise for all other valid cases we 7129 * have to append exception callback now. 7130 */ 7131 if (subprog->sub_insn_off == 0) { 7132 err = bpf_object__append_subprog_code(obj, prog, subprog); 7133 if (err) 7134 return err; 7135 err = bpf_object__reloc_code(obj, prog, subprog); 7136 if (err) 7137 return err; 7138 } 7139 } 7140 } 7141 for (i = 0; i < obj->nr_programs; i++) { 7142 prog = &obj->programs[i]; 7143 if (prog_is_subprog(obj, prog)) 7144 continue; 7145 if (!prog->autoload) 7146 continue; 7147 7148 /* Process data relos for main programs */ 7149 err = bpf_object__relocate_data(obj, prog); 7150 if (err) { 7151 pr_warn("prog '%s': failed to relocate data references: %s\n", 7152 prog->name, errstr(err)); 7153 return err; 7154 } 7155 7156 /* Fix up .BTF.ext information, if necessary */ 7157 err = bpf_program_fixup_func_info(obj, prog); 7158 if (err) { 7159 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7160 prog->name, errstr(err)); 7161 return err; 7162 } 7163 } 7164 7165 return 0; 7166 } 7167 7168 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7169 Elf64_Shdr *shdr, Elf_Data *data); 7170 bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)7171 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7172 Elf64_Shdr *shdr, Elf_Data *data) 7173 { 7174 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7175 int i, j, nrels, new_sz; 7176 const struct btf_var_secinfo *vi = NULL; 7177 const struct btf_type *sec, *var, *def; 7178 struct bpf_map *map = NULL, *targ_map = NULL; 7179 struct bpf_program *targ_prog = NULL; 7180 bool is_prog_array, is_map_in_map; 7181 const struct btf_member *member; 7182 const char *name, *mname, *type; 7183 unsigned int moff; 7184 Elf64_Sym *sym; 7185 Elf64_Rel *rel; 7186 void *tmp; 7187 7188 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7189 return -EINVAL; 7190 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7191 if (!sec) 7192 return -EINVAL; 7193 7194 nrels = shdr->sh_size / shdr->sh_entsize; 7195 for (i = 0; i < nrels; i++) { 7196 rel = elf_rel_by_idx(data, i); 7197 if (!rel) { 7198 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7199 return -LIBBPF_ERRNO__FORMAT; 7200 } 7201 7202 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7203 if (!sym) { 7204 pr_warn(".maps relo #%d: symbol %zx not found\n", 7205 i, (size_t)ELF64_R_SYM(rel->r_info)); 7206 return -LIBBPF_ERRNO__FORMAT; 7207 } 7208 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7209 7210 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7211 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7212 (size_t)rel->r_offset, sym->st_name, name); 7213 7214 for (j = 0; j < obj->nr_maps; j++) { 7215 map = &obj->maps[j]; 7216 if (map->sec_idx != obj->efile.btf_maps_shndx) 7217 continue; 7218 7219 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7220 if (vi->offset <= rel->r_offset && 7221 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7222 break; 7223 } 7224 if (j == obj->nr_maps) { 7225 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7226 i, name, (size_t)rel->r_offset); 7227 return -EINVAL; 7228 } 7229 7230 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7231 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7232 type = is_map_in_map ? "map" : "prog"; 7233 if (is_map_in_map) { 7234 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7235 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7236 i, name); 7237 return -LIBBPF_ERRNO__RELOC; 7238 } 7239 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7240 map->def.key_size != sizeof(int)) { 7241 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7242 i, map->name, sizeof(int)); 7243 return -EINVAL; 7244 } 7245 targ_map = bpf_object__find_map_by_name(obj, name); 7246 if (!targ_map) { 7247 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7248 i, name); 7249 return -ESRCH; 7250 } 7251 } else if (is_prog_array) { 7252 targ_prog = bpf_object__find_program_by_name(obj, name); 7253 if (!targ_prog) { 7254 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7255 i, name); 7256 return -ESRCH; 7257 } 7258 if (targ_prog->sec_idx != sym->st_shndx || 7259 targ_prog->sec_insn_off * 8 != sym->st_value || 7260 prog_is_subprog(obj, targ_prog)) { 7261 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7262 i, name); 7263 return -LIBBPF_ERRNO__RELOC; 7264 } 7265 } else { 7266 return -EINVAL; 7267 } 7268 7269 var = btf__type_by_id(obj->btf, vi->type); 7270 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7271 if (btf_vlen(def) == 0) 7272 return -EINVAL; 7273 member = btf_members(def) + btf_vlen(def) - 1; 7274 mname = btf__name_by_offset(obj->btf, member->name_off); 7275 if (strcmp(mname, "values")) 7276 return -EINVAL; 7277 7278 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7279 if (rel->r_offset - vi->offset < moff) 7280 return -EINVAL; 7281 7282 moff = rel->r_offset - vi->offset - moff; 7283 /* here we use BPF pointer size, which is always 64 bit, as we 7284 * are parsing ELF that was built for BPF target 7285 */ 7286 if (moff % bpf_ptr_sz) 7287 return -EINVAL; 7288 moff /= bpf_ptr_sz; 7289 if (moff >= map->init_slots_sz) { 7290 new_sz = moff + 1; 7291 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7292 if (!tmp) 7293 return -ENOMEM; 7294 map->init_slots = tmp; 7295 memset(map->init_slots + map->init_slots_sz, 0, 7296 (new_sz - map->init_slots_sz) * host_ptr_sz); 7297 map->init_slots_sz = new_sz; 7298 } 7299 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7300 7301 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7302 i, map->name, moff, type, name); 7303 } 7304 7305 return 0; 7306 } 7307 bpf_object__collect_relos(struct bpf_object * obj)7308 static int bpf_object__collect_relos(struct bpf_object *obj) 7309 { 7310 int i, err; 7311 7312 for (i = 0; i < obj->efile.sec_cnt; i++) { 7313 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7314 Elf64_Shdr *shdr; 7315 Elf_Data *data; 7316 int idx; 7317 7318 if (sec_desc->sec_type != SEC_RELO) 7319 continue; 7320 7321 shdr = sec_desc->shdr; 7322 data = sec_desc->data; 7323 idx = shdr->sh_info; 7324 7325 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7326 pr_warn("internal error at %d\n", __LINE__); 7327 return -LIBBPF_ERRNO__INTERNAL; 7328 } 7329 7330 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7331 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7332 else if (idx == obj->efile.btf_maps_shndx) 7333 err = bpf_object__collect_map_relos(obj, shdr, data); 7334 else 7335 err = bpf_object__collect_prog_relos(obj, shdr, data); 7336 if (err) 7337 return err; 7338 } 7339 7340 bpf_object__sort_relos(obj); 7341 return 0; 7342 } 7343 insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)7344 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7345 { 7346 if (BPF_CLASS(insn->code) == BPF_JMP && 7347 BPF_OP(insn->code) == BPF_CALL && 7348 BPF_SRC(insn->code) == BPF_K && 7349 insn->src_reg == 0 && 7350 insn->dst_reg == 0) { 7351 *func_id = insn->imm; 7352 return true; 7353 } 7354 return false; 7355 } 7356 bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)7357 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7358 { 7359 struct bpf_insn *insn = prog->insns; 7360 enum bpf_func_id func_id; 7361 int i; 7362 7363 if (obj->gen_loader) 7364 return 0; 7365 7366 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7367 if (!insn_is_helper_call(insn, &func_id)) 7368 continue; 7369 7370 /* on kernels that don't yet support 7371 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7372 * to bpf_probe_read() which works well for old kernels 7373 */ 7374 switch (func_id) { 7375 case BPF_FUNC_probe_read_kernel: 7376 case BPF_FUNC_probe_read_user: 7377 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7378 insn->imm = BPF_FUNC_probe_read; 7379 break; 7380 case BPF_FUNC_probe_read_kernel_str: 7381 case BPF_FUNC_probe_read_user_str: 7382 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7383 insn->imm = BPF_FUNC_probe_read_str; 7384 break; 7385 default: 7386 break; 7387 } 7388 } 7389 return 0; 7390 } 7391 7392 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7393 int *btf_obj_fd, int *btf_type_id); 7394 7395 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)7396 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7397 struct bpf_prog_load_opts *opts, long cookie) 7398 { 7399 enum sec_def_flags def = cookie; 7400 7401 /* old kernels might not support specifying expected_attach_type */ 7402 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7403 opts->expected_attach_type = 0; 7404 7405 if (def & SEC_SLEEPABLE) 7406 opts->prog_flags |= BPF_F_SLEEPABLE; 7407 7408 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7409 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7410 7411 /* special check for usdt to use uprobe_multi link */ 7412 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7413 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7414 * in prog, and expected_attach_type we set in kernel is from opts, so we 7415 * update both. 7416 */ 7417 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7418 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7419 } 7420 7421 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7422 int btf_obj_fd = 0, btf_type_id = 0, err; 7423 const char *attach_name; 7424 7425 attach_name = strchr(prog->sec_name, '/'); 7426 if (!attach_name) { 7427 /* if BPF program is annotated with just SEC("fentry") 7428 * (or similar) without declaratively specifying 7429 * target, then it is expected that target will be 7430 * specified with bpf_program__set_attach_target() at 7431 * runtime before BPF object load step. If not, then 7432 * there is nothing to load into the kernel as BPF 7433 * verifier won't be able to validate BPF program 7434 * correctness anyways. 7435 */ 7436 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7437 prog->name); 7438 return -EINVAL; 7439 } 7440 attach_name++; /* skip over / */ 7441 7442 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7443 if (err) 7444 return err; 7445 7446 /* cache resolved BTF FD and BTF type ID in the prog */ 7447 prog->attach_btf_obj_fd = btf_obj_fd; 7448 prog->attach_btf_id = btf_type_id; 7449 7450 /* but by now libbpf common logic is not utilizing 7451 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7452 * this callback is called after opts were populated by 7453 * libbpf, so this callback has to update opts explicitly here 7454 */ 7455 opts->attach_btf_obj_fd = btf_obj_fd; 7456 opts->attach_btf_id = btf_type_id; 7457 } 7458 return 0; 7459 } 7460 7461 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7462 bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)7463 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7464 struct bpf_insn *insns, int insns_cnt, 7465 const char *license, __u32 kern_version, int *prog_fd) 7466 { 7467 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7468 const char *prog_name = NULL; 7469 size_t log_buf_size = 0; 7470 char *log_buf = NULL, *tmp; 7471 bool own_log_buf = true; 7472 __u32 log_level = prog->log_level; 7473 int ret, err; 7474 7475 /* Be more helpful by rejecting programs that can't be validated early 7476 * with more meaningful and actionable error message. 7477 */ 7478 switch (prog->type) { 7479 case BPF_PROG_TYPE_UNSPEC: 7480 /* 7481 * The program type must be set. Most likely we couldn't find a proper 7482 * section definition at load time, and thus we didn't infer the type. 7483 */ 7484 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7485 prog->name, prog->sec_name); 7486 return -EINVAL; 7487 case BPF_PROG_TYPE_STRUCT_OPS: 7488 if (prog->attach_btf_id == 0) { 7489 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7490 prog->name); 7491 return -EINVAL; 7492 } 7493 break; 7494 default: 7495 break; 7496 } 7497 7498 if (!insns || !insns_cnt) 7499 return -EINVAL; 7500 7501 if (kernel_supports(obj, FEAT_PROG_NAME)) 7502 prog_name = prog->name; 7503 load_attr.attach_prog_fd = prog->attach_prog_fd; 7504 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7505 load_attr.attach_btf_id = prog->attach_btf_id; 7506 load_attr.kern_version = kern_version; 7507 load_attr.prog_ifindex = prog->prog_ifindex; 7508 load_attr.expected_attach_type = prog->expected_attach_type; 7509 7510 /* specify func_info/line_info only if kernel supports them */ 7511 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7512 load_attr.prog_btf_fd = btf__fd(obj->btf); 7513 load_attr.func_info = prog->func_info; 7514 load_attr.func_info_rec_size = prog->func_info_rec_size; 7515 load_attr.func_info_cnt = prog->func_info_cnt; 7516 load_attr.line_info = prog->line_info; 7517 load_attr.line_info_rec_size = prog->line_info_rec_size; 7518 load_attr.line_info_cnt = prog->line_info_cnt; 7519 } 7520 load_attr.log_level = log_level; 7521 load_attr.prog_flags = prog->prog_flags; 7522 load_attr.fd_array = obj->fd_array; 7523 7524 load_attr.token_fd = obj->token_fd; 7525 if (obj->token_fd) 7526 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7527 7528 /* adjust load_attr if sec_def provides custom preload callback */ 7529 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7530 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7531 if (err < 0) { 7532 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7533 prog->name, errstr(err)); 7534 return err; 7535 } 7536 insns = prog->insns; 7537 insns_cnt = prog->insns_cnt; 7538 } 7539 7540 if (obj->gen_loader) { 7541 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7542 license, insns, insns_cnt, &load_attr, 7543 prog - obj->programs); 7544 *prog_fd = -1; 7545 return 0; 7546 } 7547 7548 retry_load: 7549 /* if log_level is zero, we don't request logs initially even if 7550 * custom log_buf is specified; if the program load fails, then we'll 7551 * bump log_level to 1 and use either custom log_buf or we'll allocate 7552 * our own and retry the load to get details on what failed 7553 */ 7554 if (log_level) { 7555 if (prog->log_buf) { 7556 log_buf = prog->log_buf; 7557 log_buf_size = prog->log_size; 7558 own_log_buf = false; 7559 } else if (obj->log_buf) { 7560 log_buf = obj->log_buf; 7561 log_buf_size = obj->log_size; 7562 own_log_buf = false; 7563 } else { 7564 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7565 tmp = realloc(log_buf, log_buf_size); 7566 if (!tmp) { 7567 ret = -ENOMEM; 7568 goto out; 7569 } 7570 log_buf = tmp; 7571 log_buf[0] = '\0'; 7572 own_log_buf = true; 7573 } 7574 } 7575 7576 load_attr.log_buf = log_buf; 7577 load_attr.log_size = log_buf_size; 7578 load_attr.log_level = log_level; 7579 7580 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7581 if (ret >= 0) { 7582 if (log_level && own_log_buf) { 7583 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7584 prog->name, log_buf); 7585 } 7586 7587 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7588 struct bpf_map *map; 7589 int i; 7590 7591 for (i = 0; i < obj->nr_maps; i++) { 7592 map = &prog->obj->maps[i]; 7593 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7594 continue; 7595 7596 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7597 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7598 prog->name, map->real_name, errstr(errno)); 7599 /* Don't fail hard if can't bind rodata. */ 7600 } 7601 } 7602 } 7603 7604 *prog_fd = ret; 7605 ret = 0; 7606 goto out; 7607 } 7608 7609 if (log_level == 0) { 7610 log_level = 1; 7611 goto retry_load; 7612 } 7613 /* On ENOSPC, increase log buffer size and retry, unless custom 7614 * log_buf is specified. 7615 * Be careful to not overflow u32, though. Kernel's log buf size limit 7616 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7617 * multiply by 2 unless we are sure we'll fit within 32 bits. 7618 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7619 */ 7620 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7621 goto retry_load; 7622 7623 ret = -errno; 7624 7625 /* post-process verifier log to improve error descriptions */ 7626 fixup_verifier_log(prog, log_buf, log_buf_size); 7627 7628 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7629 pr_perm_msg(ret); 7630 7631 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7632 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7633 prog->name, log_buf); 7634 } 7635 7636 out: 7637 if (own_log_buf) 7638 free(log_buf); 7639 return ret; 7640 } 7641 find_prev_line(char * buf,char * cur)7642 static char *find_prev_line(char *buf, char *cur) 7643 { 7644 char *p; 7645 7646 if (cur == buf) /* end of a log buf */ 7647 return NULL; 7648 7649 p = cur - 1; 7650 while (p - 1 >= buf && *(p - 1) != '\n') 7651 p--; 7652 7653 return p; 7654 } 7655 patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7656 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7657 char *orig, size_t orig_sz, const char *patch) 7658 { 7659 /* size of the remaining log content to the right from the to-be-replaced part */ 7660 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7661 size_t patch_sz = strlen(patch); 7662 7663 if (patch_sz != orig_sz) { 7664 /* If patch line(s) are longer than original piece of verifier log, 7665 * shift log contents by (patch_sz - orig_sz) bytes to the right 7666 * starting from after to-be-replaced part of the log. 7667 * 7668 * If patch line(s) are shorter than original piece of verifier log, 7669 * shift log contents by (orig_sz - patch_sz) bytes to the left 7670 * starting from after to-be-replaced part of the log 7671 * 7672 * We need to be careful about not overflowing available 7673 * buf_sz capacity. If that's the case, we'll truncate the end 7674 * of the original log, as necessary. 7675 */ 7676 if (patch_sz > orig_sz) { 7677 if (orig + patch_sz >= buf + buf_sz) { 7678 /* patch is big enough to cover remaining space completely */ 7679 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7680 rem_sz = 0; 7681 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7682 /* patch causes part of remaining log to be truncated */ 7683 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7684 } 7685 } 7686 /* shift remaining log to the right by calculated amount */ 7687 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7688 } 7689 7690 memcpy(orig, patch, patch_sz); 7691 } 7692 fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7693 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7694 char *buf, size_t buf_sz, size_t log_sz, 7695 char *line1, char *line2, char *line3) 7696 { 7697 /* Expected log for failed and not properly guarded CO-RE relocation: 7698 * line1 -> 123: (85) call unknown#195896080 7699 * line2 -> invalid func unknown#195896080 7700 * line3 -> <anything else or end of buffer> 7701 * 7702 * "123" is the index of the instruction that was poisoned. We extract 7703 * instruction index to find corresponding CO-RE relocation and 7704 * replace this part of the log with more relevant information about 7705 * failed CO-RE relocation. 7706 */ 7707 const struct bpf_core_relo *relo; 7708 struct bpf_core_spec spec; 7709 char patch[512], spec_buf[256]; 7710 int insn_idx, err, spec_len; 7711 7712 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7713 return; 7714 7715 relo = find_relo_core(prog, insn_idx); 7716 if (!relo) 7717 return; 7718 7719 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7720 if (err) 7721 return; 7722 7723 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7724 snprintf(patch, sizeof(patch), 7725 "%d: <invalid CO-RE relocation>\n" 7726 "failed to resolve CO-RE relocation %s%s\n", 7727 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7728 7729 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7730 } 7731 fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7732 static void fixup_log_missing_map_load(struct bpf_program *prog, 7733 char *buf, size_t buf_sz, size_t log_sz, 7734 char *line1, char *line2, char *line3) 7735 { 7736 /* Expected log for failed and not properly guarded map reference: 7737 * line1 -> 123: (85) call unknown#2001000345 7738 * line2 -> invalid func unknown#2001000345 7739 * line3 -> <anything else or end of buffer> 7740 * 7741 * "123" is the index of the instruction that was poisoned. 7742 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7743 */ 7744 struct bpf_object *obj = prog->obj; 7745 const struct bpf_map *map; 7746 int insn_idx, map_idx; 7747 char patch[128]; 7748 7749 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7750 return; 7751 7752 map_idx -= POISON_LDIMM64_MAP_BASE; 7753 if (map_idx < 0 || map_idx >= obj->nr_maps) 7754 return; 7755 map = &obj->maps[map_idx]; 7756 7757 snprintf(patch, sizeof(patch), 7758 "%d: <invalid BPF map reference>\n" 7759 "BPF map '%s' is referenced but wasn't created\n", 7760 insn_idx, map->name); 7761 7762 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7763 } 7764 fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7765 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7766 char *buf, size_t buf_sz, size_t log_sz, 7767 char *line1, char *line2, char *line3) 7768 { 7769 /* Expected log for failed and not properly guarded kfunc call: 7770 * line1 -> 123: (85) call unknown#2002000345 7771 * line2 -> invalid func unknown#2002000345 7772 * line3 -> <anything else or end of buffer> 7773 * 7774 * "123" is the index of the instruction that was poisoned. 7775 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7776 */ 7777 struct bpf_object *obj = prog->obj; 7778 const struct extern_desc *ext; 7779 int insn_idx, ext_idx; 7780 char patch[128]; 7781 7782 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7783 return; 7784 7785 ext_idx -= POISON_CALL_KFUNC_BASE; 7786 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7787 return; 7788 ext = &obj->externs[ext_idx]; 7789 7790 snprintf(patch, sizeof(patch), 7791 "%d: <invalid kfunc call>\n" 7792 "kfunc '%s' is referenced but wasn't resolved\n", 7793 insn_idx, ext->name); 7794 7795 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7796 } 7797 fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7798 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7799 { 7800 /* look for familiar error patterns in last N lines of the log */ 7801 const size_t max_last_line_cnt = 10; 7802 char *prev_line, *cur_line, *next_line; 7803 size_t log_sz; 7804 int i; 7805 7806 if (!buf) 7807 return; 7808 7809 log_sz = strlen(buf) + 1; 7810 next_line = buf + log_sz - 1; 7811 7812 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7813 cur_line = find_prev_line(buf, next_line); 7814 if (!cur_line) 7815 return; 7816 7817 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7818 prev_line = find_prev_line(buf, cur_line); 7819 if (!prev_line) 7820 continue; 7821 7822 /* failed CO-RE relocation case */ 7823 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7824 prev_line, cur_line, next_line); 7825 return; 7826 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7827 prev_line = find_prev_line(buf, cur_line); 7828 if (!prev_line) 7829 continue; 7830 7831 /* reference to uncreated BPF map */ 7832 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7833 prev_line, cur_line, next_line); 7834 return; 7835 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7836 prev_line = find_prev_line(buf, cur_line); 7837 if (!prev_line) 7838 continue; 7839 7840 /* reference to unresolved kfunc */ 7841 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7842 prev_line, cur_line, next_line); 7843 return; 7844 } 7845 } 7846 } 7847 bpf_program_record_relos(struct bpf_program * prog)7848 static int bpf_program_record_relos(struct bpf_program *prog) 7849 { 7850 struct bpf_object *obj = prog->obj; 7851 int i; 7852 7853 for (i = 0; i < prog->nr_reloc; i++) { 7854 struct reloc_desc *relo = &prog->reloc_desc[i]; 7855 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7856 int kind; 7857 7858 switch (relo->type) { 7859 case RELO_EXTERN_LD64: 7860 if (ext->type != EXT_KSYM) 7861 continue; 7862 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7863 BTF_KIND_VAR : BTF_KIND_FUNC; 7864 bpf_gen__record_extern(obj->gen_loader, ext->name, 7865 ext->is_weak, !ext->ksym.type_id, 7866 true, kind, relo->insn_idx); 7867 break; 7868 case RELO_EXTERN_CALL: 7869 bpf_gen__record_extern(obj->gen_loader, ext->name, 7870 ext->is_weak, false, false, BTF_KIND_FUNC, 7871 relo->insn_idx); 7872 break; 7873 case RELO_CORE: { 7874 struct bpf_core_relo cr = { 7875 .insn_off = relo->insn_idx * 8, 7876 .type_id = relo->core_relo->type_id, 7877 .access_str_off = relo->core_relo->access_str_off, 7878 .kind = relo->core_relo->kind, 7879 }; 7880 7881 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7882 break; 7883 } 7884 default: 7885 continue; 7886 } 7887 } 7888 return 0; 7889 } 7890 7891 static int bpf_object__load_progs(struct bpf_object * obj,int log_level)7892 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7893 { 7894 struct bpf_program *prog; 7895 size_t i; 7896 int err; 7897 7898 for (i = 0; i < obj->nr_programs; i++) { 7899 prog = &obj->programs[i]; 7900 err = bpf_object__sanitize_prog(obj, prog); 7901 if (err) 7902 return err; 7903 } 7904 7905 for (i = 0; i < obj->nr_programs; i++) { 7906 prog = &obj->programs[i]; 7907 if (prog_is_subprog(obj, prog)) 7908 continue; 7909 if (!prog->autoload) { 7910 pr_debug("prog '%s': skipped loading\n", prog->name); 7911 continue; 7912 } 7913 prog->log_level |= log_level; 7914 7915 if (obj->gen_loader) 7916 bpf_program_record_relos(prog); 7917 7918 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7919 obj->license, obj->kern_version, &prog->fd); 7920 if (err) { 7921 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7922 return err; 7923 } 7924 } 7925 7926 bpf_object__free_relocs(obj); 7927 return 0; 7928 } 7929 7930 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7931 bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7932 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7933 { 7934 struct bpf_program *prog; 7935 int err; 7936 7937 bpf_object__for_each_program(prog, obj) { 7938 prog->sec_def = find_sec_def(prog->sec_name); 7939 if (!prog->sec_def) { 7940 /* couldn't guess, but user might manually specify */ 7941 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7942 prog->name, prog->sec_name); 7943 continue; 7944 } 7945 7946 prog->type = prog->sec_def->prog_type; 7947 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7948 7949 /* sec_def can have custom callback which should be called 7950 * after bpf_program is initialized to adjust its properties 7951 */ 7952 if (prog->sec_def->prog_setup_fn) { 7953 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7954 if (err < 0) { 7955 pr_warn("prog '%s': failed to initialize: %s\n", 7956 prog->name, errstr(err)); 7957 return err; 7958 } 7959 } 7960 } 7961 7962 return 0; 7963 } 7964 bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name,const struct bpf_object_open_opts * opts)7965 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7966 const char *obj_name, 7967 const struct bpf_object_open_opts *opts) 7968 { 7969 const char *kconfig, *btf_tmp_path, *token_path; 7970 struct bpf_object *obj; 7971 int err; 7972 char *log_buf; 7973 size_t log_size; 7974 __u32 log_level; 7975 7976 if (obj_buf && !obj_name) 7977 return ERR_PTR(-EINVAL); 7978 7979 if (elf_version(EV_CURRENT) == EV_NONE) { 7980 pr_warn("failed to init libelf for %s\n", 7981 path ? : "(mem buf)"); 7982 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7983 } 7984 7985 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7986 return ERR_PTR(-EINVAL); 7987 7988 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 7989 if (obj_buf) { 7990 path = obj_name; 7991 pr_debug("loading object '%s' from buffer\n", obj_name); 7992 } else { 7993 pr_debug("loading object from %s\n", path); 7994 } 7995 7996 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7997 log_size = OPTS_GET(opts, kernel_log_size, 0); 7998 log_level = OPTS_GET(opts, kernel_log_level, 0); 7999 if (log_size > UINT_MAX) 8000 return ERR_PTR(-EINVAL); 8001 if (log_size && !log_buf) 8002 return ERR_PTR(-EINVAL); 8003 8004 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8005 /* if user didn't specify bpf_token_path explicitly, check if 8006 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8007 * option 8008 */ 8009 if (!token_path) 8010 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8011 if (token_path && strlen(token_path) >= PATH_MAX) 8012 return ERR_PTR(-ENAMETOOLONG); 8013 8014 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8015 if (IS_ERR(obj)) 8016 return obj; 8017 8018 obj->log_buf = log_buf; 8019 obj->log_size = log_size; 8020 obj->log_level = log_level; 8021 8022 if (token_path) { 8023 obj->token_path = strdup(token_path); 8024 if (!obj->token_path) { 8025 err = -ENOMEM; 8026 goto out; 8027 } 8028 } 8029 8030 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8031 if (btf_tmp_path) { 8032 if (strlen(btf_tmp_path) >= PATH_MAX) { 8033 err = -ENAMETOOLONG; 8034 goto out; 8035 } 8036 obj->btf_custom_path = strdup(btf_tmp_path); 8037 if (!obj->btf_custom_path) { 8038 err = -ENOMEM; 8039 goto out; 8040 } 8041 } 8042 8043 kconfig = OPTS_GET(opts, kconfig, NULL); 8044 if (kconfig) { 8045 obj->kconfig = strdup(kconfig); 8046 if (!obj->kconfig) { 8047 err = -ENOMEM; 8048 goto out; 8049 } 8050 } 8051 8052 err = bpf_object__elf_init(obj); 8053 err = err ? : bpf_object__elf_collect(obj); 8054 err = err ? : bpf_object__collect_externs(obj); 8055 err = err ? : bpf_object_fixup_btf(obj); 8056 err = err ? : bpf_object__init_maps(obj, opts); 8057 err = err ? : bpf_object_init_progs(obj, opts); 8058 err = err ? : bpf_object__collect_relos(obj); 8059 if (err) 8060 goto out; 8061 8062 bpf_object__elf_finish(obj); 8063 8064 return obj; 8065 out: 8066 bpf_object__close(obj); 8067 return ERR_PTR(err); 8068 } 8069 8070 struct bpf_object * bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)8071 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8072 { 8073 if (!path) 8074 return libbpf_err_ptr(-EINVAL); 8075 8076 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8077 } 8078 bpf_object__open(const char * path)8079 struct bpf_object *bpf_object__open(const char *path) 8080 { 8081 return bpf_object__open_file(path, NULL); 8082 } 8083 8084 struct bpf_object * bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)8085 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8086 const struct bpf_object_open_opts *opts) 8087 { 8088 char tmp_name[64]; 8089 8090 if (!obj_buf || obj_buf_sz == 0) 8091 return libbpf_err_ptr(-EINVAL); 8092 8093 /* create a (quite useless) default "name" for this memory buffer object */ 8094 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8095 8096 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8097 } 8098 bpf_object_unload(struct bpf_object * obj)8099 static int bpf_object_unload(struct bpf_object *obj) 8100 { 8101 size_t i; 8102 8103 if (!obj) 8104 return libbpf_err(-EINVAL); 8105 8106 for (i = 0; i < obj->nr_maps; i++) { 8107 zclose(obj->maps[i].fd); 8108 if (obj->maps[i].st_ops) 8109 zfree(&obj->maps[i].st_ops->kern_vdata); 8110 } 8111 8112 for (i = 0; i < obj->nr_programs; i++) 8113 bpf_program__unload(&obj->programs[i]); 8114 8115 return 0; 8116 } 8117 bpf_object__sanitize_maps(struct bpf_object * obj)8118 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8119 { 8120 struct bpf_map *m; 8121 8122 bpf_object__for_each_map(m, obj) { 8123 if (!bpf_map__is_internal(m)) 8124 continue; 8125 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8126 m->def.map_flags &= ~BPF_F_MMAPABLE; 8127 } 8128 8129 return 0; 8130 } 8131 8132 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8133 const char *sym_name, void *ctx); 8134 libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)8135 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8136 { 8137 char sym_type, sym_name[500]; 8138 unsigned long long sym_addr; 8139 int ret, err = 0; 8140 FILE *f; 8141 8142 f = fopen("/proc/kallsyms", "re"); 8143 if (!f) { 8144 err = -errno; 8145 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8146 return err; 8147 } 8148 8149 while (true) { 8150 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8151 &sym_addr, &sym_type, sym_name); 8152 if (ret == EOF && feof(f)) 8153 break; 8154 if (ret != 3) { 8155 pr_warn("failed to read kallsyms entry: %d\n", ret); 8156 err = -EINVAL; 8157 break; 8158 } 8159 8160 err = cb(sym_addr, sym_type, sym_name, ctx); 8161 if (err) 8162 break; 8163 } 8164 8165 fclose(f); 8166 return err; 8167 } 8168 kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)8169 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8170 const char *sym_name, void *ctx) 8171 { 8172 struct bpf_object *obj = ctx; 8173 const struct btf_type *t; 8174 struct extern_desc *ext; 8175 char *res; 8176 8177 res = strstr(sym_name, ".llvm."); 8178 if (sym_type == 'd' && res) 8179 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8180 else 8181 ext = find_extern_by_name(obj, sym_name); 8182 if (!ext || ext->type != EXT_KSYM) 8183 return 0; 8184 8185 t = btf__type_by_id(obj->btf, ext->btf_id); 8186 if (!btf_is_var(t)) 8187 return 0; 8188 8189 if (ext->is_set && ext->ksym.addr != sym_addr) { 8190 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8191 sym_name, ext->ksym.addr, sym_addr); 8192 return -EINVAL; 8193 } 8194 if (!ext->is_set) { 8195 ext->is_set = true; 8196 ext->ksym.addr = sym_addr; 8197 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8198 } 8199 return 0; 8200 } 8201 bpf_object__read_kallsyms_file(struct bpf_object * obj)8202 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8203 { 8204 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8205 } 8206 find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)8207 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8208 __u16 kind, struct btf **res_btf, 8209 struct module_btf **res_mod_btf) 8210 { 8211 struct module_btf *mod_btf; 8212 struct btf *btf; 8213 int i, id, err; 8214 8215 btf = obj->btf_vmlinux; 8216 mod_btf = NULL; 8217 id = btf__find_by_name_kind(btf, ksym_name, kind); 8218 8219 if (id == -ENOENT) { 8220 err = load_module_btfs(obj); 8221 if (err) 8222 return err; 8223 8224 for (i = 0; i < obj->btf_module_cnt; i++) { 8225 /* we assume module_btf's BTF FD is always >0 */ 8226 mod_btf = &obj->btf_modules[i]; 8227 btf = mod_btf->btf; 8228 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8229 if (id != -ENOENT) 8230 break; 8231 } 8232 } 8233 if (id <= 0) 8234 return -ESRCH; 8235 8236 *res_btf = btf; 8237 *res_mod_btf = mod_btf; 8238 return id; 8239 } 8240 bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)8241 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8242 struct extern_desc *ext) 8243 { 8244 const struct btf_type *targ_var, *targ_type; 8245 __u32 targ_type_id, local_type_id; 8246 struct module_btf *mod_btf = NULL; 8247 const char *targ_var_name; 8248 struct btf *btf = NULL; 8249 int id, err; 8250 8251 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8252 if (id < 0) { 8253 if (id == -ESRCH && ext->is_weak) 8254 return 0; 8255 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8256 ext->name); 8257 return id; 8258 } 8259 8260 /* find local type_id */ 8261 local_type_id = ext->ksym.type_id; 8262 8263 /* find target type_id */ 8264 targ_var = btf__type_by_id(btf, id); 8265 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8266 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8267 8268 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8269 btf, targ_type_id); 8270 if (err <= 0) { 8271 const struct btf_type *local_type; 8272 const char *targ_name, *local_name; 8273 8274 local_type = btf__type_by_id(obj->btf, local_type_id); 8275 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8276 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8277 8278 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8279 ext->name, local_type_id, 8280 btf_kind_str(local_type), local_name, targ_type_id, 8281 btf_kind_str(targ_type), targ_name); 8282 return -EINVAL; 8283 } 8284 8285 ext->is_set = true; 8286 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8287 ext->ksym.kernel_btf_id = id; 8288 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8289 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8290 8291 return 0; 8292 } 8293 bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)8294 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8295 struct extern_desc *ext) 8296 { 8297 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8298 struct module_btf *mod_btf = NULL; 8299 const struct btf_type *kern_func; 8300 struct btf *kern_btf = NULL; 8301 int ret; 8302 8303 local_func_proto_id = ext->ksym.type_id; 8304 8305 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8306 &mod_btf); 8307 if (kfunc_id < 0) { 8308 if (kfunc_id == -ESRCH && ext->is_weak) 8309 return 0; 8310 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8311 ext->name); 8312 return kfunc_id; 8313 } 8314 8315 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8316 kfunc_proto_id = kern_func->type; 8317 8318 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8319 kern_btf, kfunc_proto_id); 8320 if (ret <= 0) { 8321 if (ext->is_weak) 8322 return 0; 8323 8324 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8325 ext->name, local_func_proto_id, 8326 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8327 return -EINVAL; 8328 } 8329 8330 /* set index for module BTF fd in fd_array, if unset */ 8331 if (mod_btf && !mod_btf->fd_array_idx) { 8332 /* insn->off is s16 */ 8333 if (obj->fd_array_cnt == INT16_MAX) { 8334 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8335 ext->name, mod_btf->fd_array_idx); 8336 return -E2BIG; 8337 } 8338 /* Cannot use index 0 for module BTF fd */ 8339 if (!obj->fd_array_cnt) 8340 obj->fd_array_cnt = 1; 8341 8342 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8343 obj->fd_array_cnt + 1); 8344 if (ret) 8345 return ret; 8346 mod_btf->fd_array_idx = obj->fd_array_cnt; 8347 /* we assume module BTF FD is always >0 */ 8348 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8349 } 8350 8351 ext->is_set = true; 8352 ext->ksym.kernel_btf_id = kfunc_id; 8353 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8354 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8355 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8356 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8357 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8358 */ 8359 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8360 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8361 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8362 8363 return 0; 8364 } 8365 bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)8366 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8367 { 8368 const struct btf_type *t; 8369 struct extern_desc *ext; 8370 int i, err; 8371 8372 for (i = 0; i < obj->nr_extern; i++) { 8373 ext = &obj->externs[i]; 8374 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8375 continue; 8376 8377 if (obj->gen_loader) { 8378 ext->is_set = true; 8379 ext->ksym.kernel_btf_obj_fd = 0; 8380 ext->ksym.kernel_btf_id = 0; 8381 continue; 8382 } 8383 t = btf__type_by_id(obj->btf, ext->btf_id); 8384 if (btf_is_var(t)) 8385 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8386 else 8387 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8388 if (err) 8389 return err; 8390 } 8391 return 0; 8392 } 8393 bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)8394 static int bpf_object__resolve_externs(struct bpf_object *obj, 8395 const char *extra_kconfig) 8396 { 8397 bool need_config = false, need_kallsyms = false; 8398 bool need_vmlinux_btf = false; 8399 struct extern_desc *ext; 8400 void *kcfg_data = NULL; 8401 int err, i; 8402 8403 if (obj->nr_extern == 0) 8404 return 0; 8405 8406 if (obj->kconfig_map_idx >= 0) 8407 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8408 8409 for (i = 0; i < obj->nr_extern; i++) { 8410 ext = &obj->externs[i]; 8411 8412 if (ext->type == EXT_KSYM) { 8413 if (ext->ksym.type_id) 8414 need_vmlinux_btf = true; 8415 else 8416 need_kallsyms = true; 8417 continue; 8418 } else if (ext->type == EXT_KCFG) { 8419 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8420 __u64 value = 0; 8421 8422 /* Kconfig externs need actual /proc/config.gz */ 8423 if (str_has_pfx(ext->name, "CONFIG_")) { 8424 need_config = true; 8425 continue; 8426 } 8427 8428 /* Virtual kcfg externs are customly handled by libbpf */ 8429 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8430 value = get_kernel_version(); 8431 if (!value) { 8432 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8433 return -EINVAL; 8434 } 8435 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8436 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8437 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8438 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8439 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8440 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8441 * __kconfig externs, where LINUX_ ones are virtual and filled out 8442 * customly by libbpf (their values don't come from Kconfig). 8443 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8444 * __weak, it defaults to zero value, just like for CONFIG_xxx 8445 * externs. 8446 */ 8447 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8448 return -EINVAL; 8449 } 8450 8451 err = set_kcfg_value_num(ext, ext_ptr, value); 8452 if (err) 8453 return err; 8454 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8455 ext->name, (long long)value); 8456 } else { 8457 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8458 return -EINVAL; 8459 } 8460 } 8461 if (need_config && extra_kconfig) { 8462 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8463 if (err) 8464 return -EINVAL; 8465 need_config = false; 8466 for (i = 0; i < obj->nr_extern; i++) { 8467 ext = &obj->externs[i]; 8468 if (ext->type == EXT_KCFG && !ext->is_set) { 8469 need_config = true; 8470 break; 8471 } 8472 } 8473 } 8474 if (need_config) { 8475 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8476 if (err) 8477 return -EINVAL; 8478 } 8479 if (need_kallsyms) { 8480 err = bpf_object__read_kallsyms_file(obj); 8481 if (err) 8482 return -EINVAL; 8483 } 8484 if (need_vmlinux_btf) { 8485 err = bpf_object__resolve_ksyms_btf_id(obj); 8486 if (err) 8487 return -EINVAL; 8488 } 8489 for (i = 0; i < obj->nr_extern; i++) { 8490 ext = &obj->externs[i]; 8491 8492 if (!ext->is_set && !ext->is_weak) { 8493 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8494 return -ESRCH; 8495 } else if (!ext->is_set) { 8496 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8497 ext->name); 8498 } 8499 } 8500 8501 return 0; 8502 } 8503 bpf_map_prepare_vdata(const struct bpf_map * map)8504 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8505 { 8506 const struct btf_type *type; 8507 struct bpf_struct_ops *st_ops; 8508 __u32 i; 8509 8510 st_ops = map->st_ops; 8511 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8512 for (i = 0; i < btf_vlen(type); i++) { 8513 struct bpf_program *prog = st_ops->progs[i]; 8514 void *kern_data; 8515 int prog_fd; 8516 8517 if (!prog) 8518 continue; 8519 8520 prog_fd = bpf_program__fd(prog); 8521 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8522 *(unsigned long *)kern_data = prog_fd; 8523 } 8524 } 8525 bpf_object_prepare_struct_ops(struct bpf_object * obj)8526 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8527 { 8528 struct bpf_map *map; 8529 int i; 8530 8531 for (i = 0; i < obj->nr_maps; i++) { 8532 map = &obj->maps[i]; 8533 8534 if (!bpf_map__is_struct_ops(map)) 8535 continue; 8536 8537 if (!map->autocreate) 8538 continue; 8539 8540 bpf_map_prepare_vdata(map); 8541 } 8542 8543 return 0; 8544 } 8545 bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)8546 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8547 { 8548 int err, i; 8549 8550 if (!obj) 8551 return libbpf_err(-EINVAL); 8552 8553 if (obj->loaded) { 8554 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8555 return libbpf_err(-EINVAL); 8556 } 8557 8558 /* Disallow kernel loading programs of non-native endianness but 8559 * permit cross-endian creation of "light skeleton". 8560 */ 8561 if (obj->gen_loader) { 8562 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8563 } else if (!is_native_endianness(obj)) { 8564 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8565 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8566 } 8567 8568 err = bpf_object_prepare_token(obj); 8569 err = err ? : bpf_object__probe_loading(obj); 8570 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8571 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8572 err = err ? : bpf_object__sanitize_maps(obj); 8573 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8574 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8575 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8576 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8577 err = err ? : bpf_object__create_maps(obj); 8578 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8579 err = err ? : bpf_object_init_prog_arrays(obj); 8580 err = err ? : bpf_object_prepare_struct_ops(obj); 8581 8582 if (obj->gen_loader) { 8583 /* reset FDs */ 8584 if (obj->btf) 8585 btf__set_fd(obj->btf, -1); 8586 if (!err) 8587 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8588 } 8589 8590 /* clean up fd_array */ 8591 zfree(&obj->fd_array); 8592 8593 /* clean up module BTFs */ 8594 for (i = 0; i < obj->btf_module_cnt; i++) { 8595 close(obj->btf_modules[i].fd); 8596 btf__free(obj->btf_modules[i].btf); 8597 free(obj->btf_modules[i].name); 8598 } 8599 free(obj->btf_modules); 8600 8601 /* clean up vmlinux BTF */ 8602 btf__free(obj->btf_vmlinux); 8603 obj->btf_vmlinux = NULL; 8604 8605 obj->loaded = true; /* doesn't matter if successfully or not */ 8606 8607 if (err) 8608 goto out; 8609 8610 return 0; 8611 out: 8612 /* unpin any maps that were auto-pinned during load */ 8613 for (i = 0; i < obj->nr_maps; i++) 8614 if (obj->maps[i].pinned && !obj->maps[i].reused) 8615 bpf_map__unpin(&obj->maps[i], NULL); 8616 8617 bpf_object_unload(obj); 8618 pr_warn("failed to load object '%s'\n", obj->path); 8619 return libbpf_err(err); 8620 } 8621 bpf_object__load(struct bpf_object * obj)8622 int bpf_object__load(struct bpf_object *obj) 8623 { 8624 return bpf_object_load(obj, 0, NULL); 8625 } 8626 make_parent_dir(const char * path)8627 static int make_parent_dir(const char *path) 8628 { 8629 char *dname, *dir; 8630 int err = 0; 8631 8632 dname = strdup(path); 8633 if (dname == NULL) 8634 return -ENOMEM; 8635 8636 dir = dirname(dname); 8637 if (mkdir(dir, 0700) && errno != EEXIST) 8638 err = -errno; 8639 8640 free(dname); 8641 if (err) { 8642 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8643 } 8644 return err; 8645 } 8646 check_path(const char * path)8647 static int check_path(const char *path) 8648 { 8649 struct statfs st_fs; 8650 char *dname, *dir; 8651 int err = 0; 8652 8653 if (path == NULL) 8654 return -EINVAL; 8655 8656 dname = strdup(path); 8657 if (dname == NULL) 8658 return -ENOMEM; 8659 8660 dir = dirname(dname); 8661 if (statfs(dir, &st_fs)) { 8662 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8663 err = -errno; 8664 } 8665 free(dname); 8666 8667 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8668 pr_warn("specified path %s is not on BPF FS\n", path); 8669 err = -EINVAL; 8670 } 8671 8672 return err; 8673 } 8674 bpf_program__pin(struct bpf_program * prog,const char * path)8675 int bpf_program__pin(struct bpf_program *prog, const char *path) 8676 { 8677 int err; 8678 8679 if (prog->fd < 0) { 8680 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8681 return libbpf_err(-EINVAL); 8682 } 8683 8684 err = make_parent_dir(path); 8685 if (err) 8686 return libbpf_err(err); 8687 8688 err = check_path(path); 8689 if (err) 8690 return libbpf_err(err); 8691 8692 if (bpf_obj_pin(prog->fd, path)) { 8693 err = -errno; 8694 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8695 return libbpf_err(err); 8696 } 8697 8698 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8699 return 0; 8700 } 8701 bpf_program__unpin(struct bpf_program * prog,const char * path)8702 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8703 { 8704 int err; 8705 8706 if (prog->fd < 0) { 8707 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8708 return libbpf_err(-EINVAL); 8709 } 8710 8711 err = check_path(path); 8712 if (err) 8713 return libbpf_err(err); 8714 8715 err = unlink(path); 8716 if (err) 8717 return libbpf_err(-errno); 8718 8719 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8720 return 0; 8721 } 8722 bpf_map__pin(struct bpf_map * map,const char * path)8723 int bpf_map__pin(struct bpf_map *map, const char *path) 8724 { 8725 int err; 8726 8727 if (map == NULL) { 8728 pr_warn("invalid map pointer\n"); 8729 return libbpf_err(-EINVAL); 8730 } 8731 8732 if (map->fd < 0) { 8733 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8734 return libbpf_err(-EINVAL); 8735 } 8736 8737 if (map->pin_path) { 8738 if (path && strcmp(path, map->pin_path)) { 8739 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8740 bpf_map__name(map), map->pin_path, path); 8741 return libbpf_err(-EINVAL); 8742 } else if (map->pinned) { 8743 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8744 bpf_map__name(map), map->pin_path); 8745 return 0; 8746 } 8747 } else { 8748 if (!path) { 8749 pr_warn("missing a path to pin map '%s' at\n", 8750 bpf_map__name(map)); 8751 return libbpf_err(-EINVAL); 8752 } else if (map->pinned) { 8753 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8754 return libbpf_err(-EEXIST); 8755 } 8756 8757 map->pin_path = strdup(path); 8758 if (!map->pin_path) { 8759 err = -errno; 8760 goto out_err; 8761 } 8762 } 8763 8764 err = make_parent_dir(map->pin_path); 8765 if (err) 8766 return libbpf_err(err); 8767 8768 err = check_path(map->pin_path); 8769 if (err) 8770 return libbpf_err(err); 8771 8772 if (bpf_obj_pin(map->fd, map->pin_path)) { 8773 err = -errno; 8774 goto out_err; 8775 } 8776 8777 map->pinned = true; 8778 pr_debug("pinned map '%s'\n", map->pin_path); 8779 8780 return 0; 8781 8782 out_err: 8783 pr_warn("failed to pin map: %s\n", errstr(err)); 8784 return libbpf_err(err); 8785 } 8786 bpf_map__unpin(struct bpf_map * map,const char * path)8787 int bpf_map__unpin(struct bpf_map *map, const char *path) 8788 { 8789 int err; 8790 8791 if (map == NULL) { 8792 pr_warn("invalid map pointer\n"); 8793 return libbpf_err(-EINVAL); 8794 } 8795 8796 if (map->pin_path) { 8797 if (path && strcmp(path, map->pin_path)) { 8798 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8799 bpf_map__name(map), map->pin_path, path); 8800 return libbpf_err(-EINVAL); 8801 } 8802 path = map->pin_path; 8803 } else if (!path) { 8804 pr_warn("no path to unpin map '%s' from\n", 8805 bpf_map__name(map)); 8806 return libbpf_err(-EINVAL); 8807 } 8808 8809 err = check_path(path); 8810 if (err) 8811 return libbpf_err(err); 8812 8813 err = unlink(path); 8814 if (err != 0) 8815 return libbpf_err(-errno); 8816 8817 map->pinned = false; 8818 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8819 8820 return 0; 8821 } 8822 bpf_map__set_pin_path(struct bpf_map * map,const char * path)8823 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8824 { 8825 char *new = NULL; 8826 8827 if (path) { 8828 new = strdup(path); 8829 if (!new) 8830 return libbpf_err(-errno); 8831 } 8832 8833 free(map->pin_path); 8834 map->pin_path = new; 8835 return 0; 8836 } 8837 8838 __alias(bpf_map__pin_path) 8839 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8840 bpf_map__pin_path(const struct bpf_map * map)8841 const char *bpf_map__pin_path(const struct bpf_map *map) 8842 { 8843 return map->pin_path; 8844 } 8845 bpf_map__is_pinned(const struct bpf_map * map)8846 bool bpf_map__is_pinned(const struct bpf_map *map) 8847 { 8848 return map->pinned; 8849 } 8850 sanitize_pin_path(char * s)8851 static void sanitize_pin_path(char *s) 8852 { 8853 /* bpffs disallows periods in path names */ 8854 while (*s) { 8855 if (*s == '.') 8856 *s = '_'; 8857 s++; 8858 } 8859 } 8860 bpf_object__pin_maps(struct bpf_object * obj,const char * path)8861 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8862 { 8863 struct bpf_map *map; 8864 int err; 8865 8866 if (!obj) 8867 return libbpf_err(-ENOENT); 8868 8869 if (!obj->loaded) { 8870 pr_warn("object not yet loaded; load it first\n"); 8871 return libbpf_err(-ENOENT); 8872 } 8873 8874 bpf_object__for_each_map(map, obj) { 8875 char *pin_path = NULL; 8876 char buf[PATH_MAX]; 8877 8878 if (!map->autocreate) 8879 continue; 8880 8881 if (path) { 8882 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8883 if (err) 8884 goto err_unpin_maps; 8885 sanitize_pin_path(buf); 8886 pin_path = buf; 8887 } else if (!map->pin_path) { 8888 continue; 8889 } 8890 8891 err = bpf_map__pin(map, pin_path); 8892 if (err) 8893 goto err_unpin_maps; 8894 } 8895 8896 return 0; 8897 8898 err_unpin_maps: 8899 while ((map = bpf_object__prev_map(obj, map))) { 8900 if (!map->pin_path) 8901 continue; 8902 8903 bpf_map__unpin(map, NULL); 8904 } 8905 8906 return libbpf_err(err); 8907 } 8908 bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8909 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8910 { 8911 struct bpf_map *map; 8912 int err; 8913 8914 if (!obj) 8915 return libbpf_err(-ENOENT); 8916 8917 bpf_object__for_each_map(map, obj) { 8918 char *pin_path = NULL; 8919 char buf[PATH_MAX]; 8920 8921 if (path) { 8922 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8923 if (err) 8924 return libbpf_err(err); 8925 sanitize_pin_path(buf); 8926 pin_path = buf; 8927 } else if (!map->pin_path) { 8928 continue; 8929 } 8930 8931 err = bpf_map__unpin(map, pin_path); 8932 if (err) 8933 return libbpf_err(err); 8934 } 8935 8936 return 0; 8937 } 8938 bpf_object__pin_programs(struct bpf_object * obj,const char * path)8939 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8940 { 8941 struct bpf_program *prog; 8942 char buf[PATH_MAX]; 8943 int err; 8944 8945 if (!obj) 8946 return libbpf_err(-ENOENT); 8947 8948 if (!obj->loaded) { 8949 pr_warn("object not yet loaded; load it first\n"); 8950 return libbpf_err(-ENOENT); 8951 } 8952 8953 bpf_object__for_each_program(prog, obj) { 8954 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8955 if (err) 8956 goto err_unpin_programs; 8957 8958 err = bpf_program__pin(prog, buf); 8959 if (err) 8960 goto err_unpin_programs; 8961 } 8962 8963 return 0; 8964 8965 err_unpin_programs: 8966 while ((prog = bpf_object__prev_program(obj, prog))) { 8967 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8968 continue; 8969 8970 bpf_program__unpin(prog, buf); 8971 } 8972 8973 return libbpf_err(err); 8974 } 8975 bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8976 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8977 { 8978 struct bpf_program *prog; 8979 int err; 8980 8981 if (!obj) 8982 return libbpf_err(-ENOENT); 8983 8984 bpf_object__for_each_program(prog, obj) { 8985 char buf[PATH_MAX]; 8986 8987 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8988 if (err) 8989 return libbpf_err(err); 8990 8991 err = bpf_program__unpin(prog, buf); 8992 if (err) 8993 return libbpf_err(err); 8994 } 8995 8996 return 0; 8997 } 8998 bpf_object__pin(struct bpf_object * obj,const char * path)8999 int bpf_object__pin(struct bpf_object *obj, const char *path) 9000 { 9001 int err; 9002 9003 err = bpf_object__pin_maps(obj, path); 9004 if (err) 9005 return libbpf_err(err); 9006 9007 err = bpf_object__pin_programs(obj, path); 9008 if (err) { 9009 bpf_object__unpin_maps(obj, path); 9010 return libbpf_err(err); 9011 } 9012 9013 return 0; 9014 } 9015 bpf_object__unpin(struct bpf_object * obj,const char * path)9016 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9017 { 9018 int err; 9019 9020 err = bpf_object__unpin_programs(obj, path); 9021 if (err) 9022 return libbpf_err(err); 9023 9024 err = bpf_object__unpin_maps(obj, path); 9025 if (err) 9026 return libbpf_err(err); 9027 9028 return 0; 9029 } 9030 bpf_map__destroy(struct bpf_map * map)9031 static void bpf_map__destroy(struct bpf_map *map) 9032 { 9033 if (map->inner_map) { 9034 bpf_map__destroy(map->inner_map); 9035 zfree(&map->inner_map); 9036 } 9037 9038 zfree(&map->init_slots); 9039 map->init_slots_sz = 0; 9040 9041 if (map->mmaped && map->mmaped != map->obj->arena_data) 9042 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9043 map->mmaped = NULL; 9044 9045 if (map->st_ops) { 9046 zfree(&map->st_ops->data); 9047 zfree(&map->st_ops->progs); 9048 zfree(&map->st_ops->kern_func_off); 9049 zfree(&map->st_ops); 9050 } 9051 9052 zfree(&map->name); 9053 zfree(&map->real_name); 9054 zfree(&map->pin_path); 9055 9056 if (map->fd >= 0) 9057 zclose(map->fd); 9058 } 9059 bpf_object__close(struct bpf_object * obj)9060 void bpf_object__close(struct bpf_object *obj) 9061 { 9062 size_t i; 9063 9064 if (IS_ERR_OR_NULL(obj)) 9065 return; 9066 9067 usdt_manager_free(obj->usdt_man); 9068 obj->usdt_man = NULL; 9069 9070 bpf_gen__free(obj->gen_loader); 9071 bpf_object__elf_finish(obj); 9072 bpf_object_unload(obj); 9073 btf__free(obj->btf); 9074 btf__free(obj->btf_vmlinux); 9075 btf_ext__free(obj->btf_ext); 9076 9077 for (i = 0; i < obj->nr_maps; i++) 9078 bpf_map__destroy(&obj->maps[i]); 9079 9080 zfree(&obj->btf_custom_path); 9081 zfree(&obj->kconfig); 9082 9083 for (i = 0; i < obj->nr_extern; i++) 9084 zfree(&obj->externs[i].essent_name); 9085 9086 zfree(&obj->externs); 9087 obj->nr_extern = 0; 9088 9089 zfree(&obj->maps); 9090 obj->nr_maps = 0; 9091 9092 if (obj->programs && obj->nr_programs) { 9093 for (i = 0; i < obj->nr_programs; i++) 9094 bpf_program__exit(&obj->programs[i]); 9095 } 9096 zfree(&obj->programs); 9097 9098 zfree(&obj->feat_cache); 9099 zfree(&obj->token_path); 9100 if (obj->token_fd > 0) 9101 close(obj->token_fd); 9102 9103 zfree(&obj->arena_data); 9104 9105 free(obj); 9106 } 9107 bpf_object__name(const struct bpf_object * obj)9108 const char *bpf_object__name(const struct bpf_object *obj) 9109 { 9110 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9111 } 9112 bpf_object__kversion(const struct bpf_object * obj)9113 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9114 { 9115 return obj ? obj->kern_version : 0; 9116 } 9117 bpf_object__token_fd(const struct bpf_object * obj)9118 int bpf_object__token_fd(const struct bpf_object *obj) 9119 { 9120 return obj->token_fd ?: -1; 9121 } 9122 bpf_object__btf(const struct bpf_object * obj)9123 struct btf *bpf_object__btf(const struct bpf_object *obj) 9124 { 9125 return obj ? obj->btf : NULL; 9126 } 9127 bpf_object__btf_fd(const struct bpf_object * obj)9128 int bpf_object__btf_fd(const struct bpf_object *obj) 9129 { 9130 return obj->btf ? btf__fd(obj->btf) : -1; 9131 } 9132 bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)9133 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9134 { 9135 if (obj->loaded) 9136 return libbpf_err(-EINVAL); 9137 9138 obj->kern_version = kern_version; 9139 9140 return 0; 9141 } 9142 bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)9143 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9144 { 9145 struct bpf_gen *gen; 9146 9147 if (!opts) 9148 return -EFAULT; 9149 if (!OPTS_VALID(opts, gen_loader_opts)) 9150 return -EINVAL; 9151 gen = calloc(sizeof(*gen), 1); 9152 if (!gen) 9153 return -ENOMEM; 9154 gen->opts = opts; 9155 gen->swapped_endian = !is_native_endianness(obj); 9156 obj->gen_loader = gen; 9157 return 0; 9158 } 9159 9160 static struct bpf_program * __bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)9161 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9162 bool forward) 9163 { 9164 size_t nr_programs = obj->nr_programs; 9165 ssize_t idx; 9166 9167 if (!nr_programs) 9168 return NULL; 9169 9170 if (!p) 9171 /* Iter from the beginning */ 9172 return forward ? &obj->programs[0] : 9173 &obj->programs[nr_programs - 1]; 9174 9175 if (p->obj != obj) { 9176 pr_warn("error: program handler doesn't match object\n"); 9177 return errno = EINVAL, NULL; 9178 } 9179 9180 idx = (p - obj->programs) + (forward ? 1 : -1); 9181 if (idx >= obj->nr_programs || idx < 0) 9182 return NULL; 9183 return &obj->programs[idx]; 9184 } 9185 9186 struct bpf_program * bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)9187 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9188 { 9189 struct bpf_program *prog = prev; 9190 9191 do { 9192 prog = __bpf_program__iter(prog, obj, true); 9193 } while (prog && prog_is_subprog(obj, prog)); 9194 9195 return prog; 9196 } 9197 9198 struct bpf_program * bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)9199 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9200 { 9201 struct bpf_program *prog = next; 9202 9203 do { 9204 prog = __bpf_program__iter(prog, obj, false); 9205 } while (prog && prog_is_subprog(obj, prog)); 9206 9207 return prog; 9208 } 9209 bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)9210 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9211 { 9212 prog->prog_ifindex = ifindex; 9213 } 9214 bpf_program__name(const struct bpf_program * prog)9215 const char *bpf_program__name(const struct bpf_program *prog) 9216 { 9217 return prog->name; 9218 } 9219 bpf_program__section_name(const struct bpf_program * prog)9220 const char *bpf_program__section_name(const struct bpf_program *prog) 9221 { 9222 return prog->sec_name; 9223 } 9224 bpf_program__autoload(const struct bpf_program * prog)9225 bool bpf_program__autoload(const struct bpf_program *prog) 9226 { 9227 return prog->autoload; 9228 } 9229 bpf_program__set_autoload(struct bpf_program * prog,bool autoload)9230 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9231 { 9232 if (prog->obj->loaded) 9233 return libbpf_err(-EINVAL); 9234 9235 prog->autoload = autoload; 9236 return 0; 9237 } 9238 bpf_program__autoattach(const struct bpf_program * prog)9239 bool bpf_program__autoattach(const struct bpf_program *prog) 9240 { 9241 return prog->autoattach; 9242 } 9243 bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)9244 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9245 { 9246 prog->autoattach = autoattach; 9247 } 9248 bpf_program__insns(const struct bpf_program * prog)9249 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9250 { 9251 return prog->insns; 9252 } 9253 bpf_program__insn_cnt(const struct bpf_program * prog)9254 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9255 { 9256 return prog->insns_cnt; 9257 } 9258 bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)9259 int bpf_program__set_insns(struct bpf_program *prog, 9260 struct bpf_insn *new_insns, size_t new_insn_cnt) 9261 { 9262 struct bpf_insn *insns; 9263 9264 if (prog->obj->loaded) 9265 return -EBUSY; 9266 9267 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9268 /* NULL is a valid return from reallocarray if the new count is zero */ 9269 if (!insns && new_insn_cnt) { 9270 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9271 return -ENOMEM; 9272 } 9273 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9274 9275 prog->insns = insns; 9276 prog->insns_cnt = new_insn_cnt; 9277 return 0; 9278 } 9279 bpf_program__fd(const struct bpf_program * prog)9280 int bpf_program__fd(const struct bpf_program *prog) 9281 { 9282 if (!prog) 9283 return libbpf_err(-EINVAL); 9284 9285 if (prog->fd < 0) 9286 return libbpf_err(-ENOENT); 9287 9288 return prog->fd; 9289 } 9290 9291 __alias(bpf_program__type) 9292 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9293 bpf_program__type(const struct bpf_program * prog)9294 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9295 { 9296 return prog->type; 9297 } 9298 9299 static size_t custom_sec_def_cnt; 9300 static struct bpf_sec_def *custom_sec_defs; 9301 static struct bpf_sec_def custom_fallback_def; 9302 static bool has_custom_fallback_def; 9303 static int last_custom_sec_def_handler_id; 9304 bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)9305 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9306 { 9307 if (prog->obj->loaded) 9308 return libbpf_err(-EBUSY); 9309 9310 /* if type is not changed, do nothing */ 9311 if (prog->type == type) 9312 return 0; 9313 9314 prog->type = type; 9315 9316 /* If a program type was changed, we need to reset associated SEC() 9317 * handler, as it will be invalid now. The only exception is a generic 9318 * fallback handler, which by definition is program type-agnostic and 9319 * is a catch-all custom handler, optionally set by the application, 9320 * so should be able to handle any type of BPF program. 9321 */ 9322 if (prog->sec_def != &custom_fallback_def) 9323 prog->sec_def = NULL; 9324 return 0; 9325 } 9326 9327 __alias(bpf_program__expected_attach_type) 9328 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9329 bpf_program__expected_attach_type(const struct bpf_program * prog)9330 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9331 { 9332 return prog->expected_attach_type; 9333 } 9334 bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)9335 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9336 enum bpf_attach_type type) 9337 { 9338 if (prog->obj->loaded) 9339 return libbpf_err(-EBUSY); 9340 9341 prog->expected_attach_type = type; 9342 return 0; 9343 } 9344 bpf_program__flags(const struct bpf_program * prog)9345 __u32 bpf_program__flags(const struct bpf_program *prog) 9346 { 9347 return prog->prog_flags; 9348 } 9349 bpf_program__set_flags(struct bpf_program * prog,__u32 flags)9350 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9351 { 9352 if (prog->obj->loaded) 9353 return libbpf_err(-EBUSY); 9354 9355 prog->prog_flags = flags; 9356 return 0; 9357 } 9358 bpf_program__log_level(const struct bpf_program * prog)9359 __u32 bpf_program__log_level(const struct bpf_program *prog) 9360 { 9361 return prog->log_level; 9362 } 9363 bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)9364 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9365 { 9366 if (prog->obj->loaded) 9367 return libbpf_err(-EBUSY); 9368 9369 prog->log_level = log_level; 9370 return 0; 9371 } 9372 bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)9373 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9374 { 9375 *log_size = prog->log_size; 9376 return prog->log_buf; 9377 } 9378 bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)9379 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9380 { 9381 if (log_size && !log_buf) 9382 return -EINVAL; 9383 if (prog->log_size > UINT_MAX) 9384 return -EINVAL; 9385 if (prog->obj->loaded) 9386 return -EBUSY; 9387 9388 prog->log_buf = log_buf; 9389 prog->log_size = log_size; 9390 return 0; 9391 } 9392 9393 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9394 .sec = (char *)sec_pfx, \ 9395 .prog_type = BPF_PROG_TYPE_##ptype, \ 9396 .expected_attach_type = atype, \ 9397 .cookie = (long)(flags), \ 9398 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9399 __VA_ARGS__ \ 9400 } 9401 9402 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9403 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9404 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9405 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9406 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9407 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9408 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9409 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9410 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9411 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9412 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9413 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9414 9415 static const struct bpf_sec_def section_defs[] = { 9416 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9417 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9418 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9419 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9420 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9421 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9422 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9423 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9424 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9425 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9426 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9427 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9428 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9429 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9430 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9431 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9432 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9433 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9434 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9435 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9436 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9437 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9438 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9439 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9440 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9441 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9442 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9443 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9444 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9445 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9446 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9447 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9448 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9449 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9450 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9451 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9452 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9453 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9454 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9455 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9456 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9457 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9458 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9459 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9460 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9461 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9462 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9463 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9464 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9465 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9466 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9467 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9468 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9469 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9470 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9471 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9472 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9473 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9474 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9475 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9476 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9477 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9478 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9479 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9480 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9481 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9482 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9483 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9484 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9485 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9486 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9487 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9488 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9489 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9490 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9491 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9492 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9493 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9494 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9495 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9496 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9497 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9498 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9499 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9500 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9501 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9502 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9503 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9504 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9505 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9506 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9507 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9508 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9509 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9510 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9511 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9512 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9513 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9514 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9515 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9516 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9517 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9518 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9519 }; 9520 libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9521 int libbpf_register_prog_handler(const char *sec, 9522 enum bpf_prog_type prog_type, 9523 enum bpf_attach_type exp_attach_type, 9524 const struct libbpf_prog_handler_opts *opts) 9525 { 9526 struct bpf_sec_def *sec_def; 9527 9528 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9529 return libbpf_err(-EINVAL); 9530 9531 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9532 return libbpf_err(-E2BIG); 9533 9534 if (sec) { 9535 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9536 sizeof(*sec_def)); 9537 if (!sec_def) 9538 return libbpf_err(-ENOMEM); 9539 9540 custom_sec_defs = sec_def; 9541 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9542 } else { 9543 if (has_custom_fallback_def) 9544 return libbpf_err(-EBUSY); 9545 9546 sec_def = &custom_fallback_def; 9547 } 9548 9549 sec_def->sec = sec ? strdup(sec) : NULL; 9550 if (sec && !sec_def->sec) 9551 return libbpf_err(-ENOMEM); 9552 9553 sec_def->prog_type = prog_type; 9554 sec_def->expected_attach_type = exp_attach_type; 9555 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9556 9557 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9558 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9559 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9560 9561 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9562 9563 if (sec) 9564 custom_sec_def_cnt++; 9565 else 9566 has_custom_fallback_def = true; 9567 9568 return sec_def->handler_id; 9569 } 9570 libbpf_unregister_prog_handler(int handler_id)9571 int libbpf_unregister_prog_handler(int handler_id) 9572 { 9573 struct bpf_sec_def *sec_defs; 9574 int i; 9575 9576 if (handler_id <= 0) 9577 return libbpf_err(-EINVAL); 9578 9579 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9580 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9581 has_custom_fallback_def = false; 9582 return 0; 9583 } 9584 9585 for (i = 0; i < custom_sec_def_cnt; i++) { 9586 if (custom_sec_defs[i].handler_id == handler_id) 9587 break; 9588 } 9589 9590 if (i == custom_sec_def_cnt) 9591 return libbpf_err(-ENOENT); 9592 9593 free(custom_sec_defs[i].sec); 9594 for (i = i + 1; i < custom_sec_def_cnt; i++) 9595 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9596 custom_sec_def_cnt--; 9597 9598 /* try to shrink the array, but it's ok if we couldn't */ 9599 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9600 /* if new count is zero, reallocarray can return a valid NULL result; 9601 * in this case the previous pointer will be freed, so we *have to* 9602 * reassign old pointer to the new value (even if it's NULL) 9603 */ 9604 if (sec_defs || custom_sec_def_cnt == 0) 9605 custom_sec_defs = sec_defs; 9606 9607 return 0; 9608 } 9609 sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)9610 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9611 { 9612 size_t len = strlen(sec_def->sec); 9613 9614 /* "type/" always has to have proper SEC("type/extras") form */ 9615 if (sec_def->sec[len - 1] == '/') { 9616 if (str_has_pfx(sec_name, sec_def->sec)) 9617 return true; 9618 return false; 9619 } 9620 9621 /* "type+" means it can be either exact SEC("type") or 9622 * well-formed SEC("type/extras") with proper '/' separator 9623 */ 9624 if (sec_def->sec[len - 1] == '+') { 9625 len--; 9626 /* not even a prefix */ 9627 if (strncmp(sec_name, sec_def->sec, len) != 0) 9628 return false; 9629 /* exact match or has '/' separator */ 9630 if (sec_name[len] == '\0' || sec_name[len] == '/') 9631 return true; 9632 return false; 9633 } 9634 9635 return strcmp(sec_name, sec_def->sec) == 0; 9636 } 9637 find_sec_def(const char * sec_name)9638 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9639 { 9640 const struct bpf_sec_def *sec_def; 9641 int i, n; 9642 9643 n = custom_sec_def_cnt; 9644 for (i = 0; i < n; i++) { 9645 sec_def = &custom_sec_defs[i]; 9646 if (sec_def_matches(sec_def, sec_name)) 9647 return sec_def; 9648 } 9649 9650 n = ARRAY_SIZE(section_defs); 9651 for (i = 0; i < n; i++) { 9652 sec_def = §ion_defs[i]; 9653 if (sec_def_matches(sec_def, sec_name)) 9654 return sec_def; 9655 } 9656 9657 if (has_custom_fallback_def) 9658 return &custom_fallback_def; 9659 9660 return NULL; 9661 } 9662 9663 #define MAX_TYPE_NAME_SIZE 32 9664 libbpf_get_type_names(bool attach_type)9665 static char *libbpf_get_type_names(bool attach_type) 9666 { 9667 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9668 char *buf; 9669 9670 buf = malloc(len); 9671 if (!buf) 9672 return NULL; 9673 9674 buf[0] = '\0'; 9675 /* Forge string buf with all available names */ 9676 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9677 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9678 9679 if (attach_type) { 9680 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9681 continue; 9682 9683 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9684 continue; 9685 } 9686 9687 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9688 free(buf); 9689 return NULL; 9690 } 9691 strcat(buf, " "); 9692 strcat(buf, section_defs[i].sec); 9693 } 9694 9695 return buf; 9696 } 9697 libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9698 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9699 enum bpf_attach_type *expected_attach_type) 9700 { 9701 const struct bpf_sec_def *sec_def; 9702 char *type_names; 9703 9704 if (!name) 9705 return libbpf_err(-EINVAL); 9706 9707 sec_def = find_sec_def(name); 9708 if (sec_def) { 9709 *prog_type = sec_def->prog_type; 9710 *expected_attach_type = sec_def->expected_attach_type; 9711 return 0; 9712 } 9713 9714 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9715 type_names = libbpf_get_type_names(false); 9716 if (type_names != NULL) { 9717 pr_debug("supported section(type) names are:%s\n", type_names); 9718 free(type_names); 9719 } 9720 9721 return libbpf_err(-ESRCH); 9722 } 9723 libbpf_bpf_attach_type_str(enum bpf_attach_type t)9724 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9725 { 9726 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9727 return NULL; 9728 9729 return attach_type_name[t]; 9730 } 9731 libbpf_bpf_link_type_str(enum bpf_link_type t)9732 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9733 { 9734 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9735 return NULL; 9736 9737 return link_type_name[t]; 9738 } 9739 libbpf_bpf_map_type_str(enum bpf_map_type t)9740 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9741 { 9742 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9743 return NULL; 9744 9745 return map_type_name[t]; 9746 } 9747 libbpf_bpf_prog_type_str(enum bpf_prog_type t)9748 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9749 { 9750 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9751 return NULL; 9752 9753 return prog_type_name[t]; 9754 } 9755 find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9756 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9757 int sec_idx, 9758 size_t offset) 9759 { 9760 struct bpf_map *map; 9761 size_t i; 9762 9763 for (i = 0; i < obj->nr_maps; i++) { 9764 map = &obj->maps[i]; 9765 if (!bpf_map__is_struct_ops(map)) 9766 continue; 9767 if (map->sec_idx == sec_idx && 9768 map->sec_offset <= offset && 9769 offset - map->sec_offset < map->def.value_size) 9770 return map; 9771 } 9772 9773 return NULL; 9774 } 9775 9776 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9777 * st_ops->data for shadow type. 9778 */ bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9779 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9780 Elf64_Shdr *shdr, Elf_Data *data) 9781 { 9782 const struct btf_type *type; 9783 const struct btf_member *member; 9784 struct bpf_struct_ops *st_ops; 9785 struct bpf_program *prog; 9786 unsigned int shdr_idx; 9787 const struct btf *btf; 9788 struct bpf_map *map; 9789 unsigned int moff, insn_idx; 9790 const char *name; 9791 __u32 member_idx; 9792 Elf64_Sym *sym; 9793 Elf64_Rel *rel; 9794 int i, nrels; 9795 9796 btf = obj->btf; 9797 nrels = shdr->sh_size / shdr->sh_entsize; 9798 for (i = 0; i < nrels; i++) { 9799 rel = elf_rel_by_idx(data, i); 9800 if (!rel) { 9801 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9802 return -LIBBPF_ERRNO__FORMAT; 9803 } 9804 9805 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9806 if (!sym) { 9807 pr_warn("struct_ops reloc: symbol %zx not found\n", 9808 (size_t)ELF64_R_SYM(rel->r_info)); 9809 return -LIBBPF_ERRNO__FORMAT; 9810 } 9811 9812 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9813 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9814 if (!map) { 9815 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9816 (size_t)rel->r_offset); 9817 return -EINVAL; 9818 } 9819 9820 moff = rel->r_offset - map->sec_offset; 9821 shdr_idx = sym->st_shndx; 9822 st_ops = map->st_ops; 9823 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9824 map->name, 9825 (long long)(rel->r_info >> 32), 9826 (long long)sym->st_value, 9827 shdr_idx, (size_t)rel->r_offset, 9828 map->sec_offset, sym->st_name, name); 9829 9830 if (shdr_idx >= SHN_LORESERVE) { 9831 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9832 map->name, (size_t)rel->r_offset, shdr_idx); 9833 return -LIBBPF_ERRNO__RELOC; 9834 } 9835 if (sym->st_value % BPF_INSN_SZ) { 9836 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9837 map->name, (unsigned long long)sym->st_value); 9838 return -LIBBPF_ERRNO__FORMAT; 9839 } 9840 insn_idx = sym->st_value / BPF_INSN_SZ; 9841 9842 type = btf__type_by_id(btf, st_ops->type_id); 9843 member = find_member_by_offset(type, moff * 8); 9844 if (!member) { 9845 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9846 map->name, moff); 9847 return -EINVAL; 9848 } 9849 member_idx = member - btf_members(type); 9850 name = btf__name_by_offset(btf, member->name_off); 9851 9852 if (!resolve_func_ptr(btf, member->type, NULL)) { 9853 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9854 map->name, name); 9855 return -EINVAL; 9856 } 9857 9858 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9859 if (!prog) { 9860 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9861 map->name, shdr_idx, name); 9862 return -EINVAL; 9863 } 9864 9865 /* prevent the use of BPF prog with invalid type */ 9866 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9867 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9868 map->name, prog->name); 9869 return -EINVAL; 9870 } 9871 9872 st_ops->progs[member_idx] = prog; 9873 9874 /* st_ops->data will be exposed to users, being returned by 9875 * bpf_map__initial_value() as a pointer to the shadow 9876 * type. All function pointers in the original struct type 9877 * should be converted to a pointer to struct bpf_program 9878 * in the shadow type. 9879 */ 9880 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9881 } 9882 9883 return 0; 9884 } 9885 9886 #define BTF_TRACE_PREFIX "btf_trace_" 9887 #define BTF_LSM_PREFIX "bpf_lsm_" 9888 #define BTF_ITER_PREFIX "bpf_iter_" 9889 #define BTF_MAX_NAME_SIZE 128 9890 btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9891 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9892 const char **prefix, int *kind) 9893 { 9894 switch (attach_type) { 9895 case BPF_TRACE_RAW_TP: 9896 *prefix = BTF_TRACE_PREFIX; 9897 *kind = BTF_KIND_TYPEDEF; 9898 break; 9899 case BPF_LSM_MAC: 9900 case BPF_LSM_CGROUP: 9901 *prefix = BTF_LSM_PREFIX; 9902 *kind = BTF_KIND_FUNC; 9903 break; 9904 case BPF_TRACE_ITER: 9905 *prefix = BTF_ITER_PREFIX; 9906 *kind = BTF_KIND_FUNC; 9907 break; 9908 default: 9909 *prefix = ""; 9910 *kind = BTF_KIND_FUNC; 9911 } 9912 } 9913 find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9914 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9915 const char *name, __u32 kind) 9916 { 9917 char btf_type_name[BTF_MAX_NAME_SIZE]; 9918 int ret; 9919 9920 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9921 "%s%s", prefix, name); 9922 /* snprintf returns the number of characters written excluding the 9923 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9924 * indicates truncation. 9925 */ 9926 if (ret < 0 || ret >= sizeof(btf_type_name)) 9927 return -ENAMETOOLONG; 9928 return btf__find_by_name_kind(btf, btf_type_name, kind); 9929 } 9930 find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9931 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9932 enum bpf_attach_type attach_type) 9933 { 9934 const char *prefix; 9935 int kind; 9936 9937 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9938 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9939 } 9940 libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9941 int libbpf_find_vmlinux_btf_id(const char *name, 9942 enum bpf_attach_type attach_type) 9943 { 9944 struct btf *btf; 9945 int err; 9946 9947 btf = btf__load_vmlinux_btf(); 9948 err = libbpf_get_error(btf); 9949 if (err) { 9950 pr_warn("vmlinux BTF is not found\n"); 9951 return libbpf_err(err); 9952 } 9953 9954 err = find_attach_btf_id(btf, name, attach_type); 9955 if (err <= 0) 9956 pr_warn("%s is not found in vmlinux BTF\n", name); 9957 9958 btf__free(btf); 9959 return libbpf_err(err); 9960 } 9961 libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9962 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9963 { 9964 struct bpf_prog_info info; 9965 __u32 info_len = sizeof(info); 9966 struct btf *btf; 9967 int err; 9968 9969 memset(&info, 0, info_len); 9970 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9971 if (err) { 9972 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 9973 attach_prog_fd, errstr(err)); 9974 return err; 9975 } 9976 9977 err = -EINVAL; 9978 if (!info.btf_id) { 9979 pr_warn("The target program doesn't have BTF\n"); 9980 goto out; 9981 } 9982 btf = btf__load_from_kernel_by_id(info.btf_id); 9983 err = libbpf_get_error(btf); 9984 if (err) { 9985 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 9986 goto out; 9987 } 9988 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9989 btf__free(btf); 9990 if (err <= 0) { 9991 pr_warn("%s is not found in prog's BTF\n", name); 9992 goto out; 9993 } 9994 out: 9995 return err; 9996 } 9997 find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9998 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9999 enum bpf_attach_type attach_type, 10000 int *btf_obj_fd, int *btf_type_id) 10001 { 10002 int ret, i, mod_len; 10003 const char *fn_name, *mod_name = NULL; 10004 10005 fn_name = strchr(attach_name, ':'); 10006 if (fn_name) { 10007 mod_name = attach_name; 10008 mod_len = fn_name - mod_name; 10009 fn_name++; 10010 } 10011 10012 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10013 ret = find_attach_btf_id(obj->btf_vmlinux, 10014 mod_name ? fn_name : attach_name, 10015 attach_type); 10016 if (ret > 0) { 10017 *btf_obj_fd = 0; /* vmlinux BTF */ 10018 *btf_type_id = ret; 10019 return 0; 10020 } 10021 if (ret != -ENOENT) 10022 return ret; 10023 } 10024 10025 ret = load_module_btfs(obj); 10026 if (ret) 10027 return ret; 10028 10029 for (i = 0; i < obj->btf_module_cnt; i++) { 10030 const struct module_btf *mod = &obj->btf_modules[i]; 10031 10032 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10033 continue; 10034 10035 ret = find_attach_btf_id(mod->btf, 10036 mod_name ? fn_name : attach_name, 10037 attach_type); 10038 if (ret > 0) { 10039 *btf_obj_fd = mod->fd; 10040 *btf_type_id = ret; 10041 return 0; 10042 } 10043 if (ret == -ENOENT) 10044 continue; 10045 10046 return ret; 10047 } 10048 10049 return -ESRCH; 10050 } 10051 libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)10052 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10053 int *btf_obj_fd, int *btf_type_id) 10054 { 10055 enum bpf_attach_type attach_type = prog->expected_attach_type; 10056 __u32 attach_prog_fd = prog->attach_prog_fd; 10057 int err = 0; 10058 10059 /* BPF program's BTF ID */ 10060 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10061 if (!attach_prog_fd) { 10062 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10063 return -EINVAL; 10064 } 10065 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 10066 if (err < 0) { 10067 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10068 prog->name, attach_prog_fd, attach_name, errstr(err)); 10069 return err; 10070 } 10071 *btf_obj_fd = 0; 10072 *btf_type_id = err; 10073 return 0; 10074 } 10075 10076 /* kernel/module BTF ID */ 10077 if (prog->obj->gen_loader) { 10078 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10079 *btf_obj_fd = 0; 10080 *btf_type_id = 1; 10081 } else { 10082 err = find_kernel_btf_id(prog->obj, attach_name, 10083 attach_type, btf_obj_fd, 10084 btf_type_id); 10085 } 10086 if (err) { 10087 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10088 prog->name, attach_name, errstr(err)); 10089 return err; 10090 } 10091 return 0; 10092 } 10093 libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)10094 int libbpf_attach_type_by_name(const char *name, 10095 enum bpf_attach_type *attach_type) 10096 { 10097 char *type_names; 10098 const struct bpf_sec_def *sec_def; 10099 10100 if (!name) 10101 return libbpf_err(-EINVAL); 10102 10103 sec_def = find_sec_def(name); 10104 if (!sec_def) { 10105 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10106 type_names = libbpf_get_type_names(true); 10107 if (type_names != NULL) { 10108 pr_debug("attachable section(type) names are:%s\n", type_names); 10109 free(type_names); 10110 } 10111 10112 return libbpf_err(-EINVAL); 10113 } 10114 10115 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10116 return libbpf_err(-EINVAL); 10117 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10118 return libbpf_err(-EINVAL); 10119 10120 *attach_type = sec_def->expected_attach_type; 10121 return 0; 10122 } 10123 bpf_map__fd(const struct bpf_map * map)10124 int bpf_map__fd(const struct bpf_map *map) 10125 { 10126 if (!map) 10127 return libbpf_err(-EINVAL); 10128 if (!map_is_created(map)) 10129 return -1; 10130 return map->fd; 10131 } 10132 map_uses_real_name(const struct bpf_map * map)10133 static bool map_uses_real_name(const struct bpf_map *map) 10134 { 10135 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10136 * their user-visible name differs from kernel-visible name. Users see 10137 * such map's corresponding ELF section name as a map name. 10138 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10139 * maps to know which name has to be returned to the user. 10140 */ 10141 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10142 return true; 10143 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10144 return true; 10145 return false; 10146 } 10147 bpf_map__name(const struct bpf_map * map)10148 const char *bpf_map__name(const struct bpf_map *map) 10149 { 10150 if (!map) 10151 return NULL; 10152 10153 if (map_uses_real_name(map)) 10154 return map->real_name; 10155 10156 return map->name; 10157 } 10158 bpf_map__type(const struct bpf_map * map)10159 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10160 { 10161 return map->def.type; 10162 } 10163 bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)10164 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10165 { 10166 if (map_is_created(map)) 10167 return libbpf_err(-EBUSY); 10168 map->def.type = type; 10169 return 0; 10170 } 10171 bpf_map__map_flags(const struct bpf_map * map)10172 __u32 bpf_map__map_flags(const struct bpf_map *map) 10173 { 10174 return map->def.map_flags; 10175 } 10176 bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)10177 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10178 { 10179 if (map_is_created(map)) 10180 return libbpf_err(-EBUSY); 10181 map->def.map_flags = flags; 10182 return 0; 10183 } 10184 bpf_map__map_extra(const struct bpf_map * map)10185 __u64 bpf_map__map_extra(const struct bpf_map *map) 10186 { 10187 return map->map_extra; 10188 } 10189 bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)10190 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10191 { 10192 if (map_is_created(map)) 10193 return libbpf_err(-EBUSY); 10194 map->map_extra = map_extra; 10195 return 0; 10196 } 10197 bpf_map__numa_node(const struct bpf_map * map)10198 __u32 bpf_map__numa_node(const struct bpf_map *map) 10199 { 10200 return map->numa_node; 10201 } 10202 bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)10203 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10204 { 10205 if (map_is_created(map)) 10206 return libbpf_err(-EBUSY); 10207 map->numa_node = numa_node; 10208 return 0; 10209 } 10210 bpf_map__key_size(const struct bpf_map * map)10211 __u32 bpf_map__key_size(const struct bpf_map *map) 10212 { 10213 return map->def.key_size; 10214 } 10215 bpf_map__set_key_size(struct bpf_map * map,__u32 size)10216 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10217 { 10218 if (map_is_created(map)) 10219 return libbpf_err(-EBUSY); 10220 map->def.key_size = size; 10221 return 0; 10222 } 10223 bpf_map__value_size(const struct bpf_map * map)10224 __u32 bpf_map__value_size(const struct bpf_map *map) 10225 { 10226 return map->def.value_size; 10227 } 10228 map_btf_datasec_resize(struct bpf_map * map,__u32 size)10229 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10230 { 10231 struct btf *btf; 10232 struct btf_type *datasec_type, *var_type; 10233 struct btf_var_secinfo *var; 10234 const struct btf_type *array_type; 10235 const struct btf_array *array; 10236 int vlen, element_sz, new_array_id; 10237 __u32 nr_elements; 10238 10239 /* check btf existence */ 10240 btf = bpf_object__btf(map->obj); 10241 if (!btf) 10242 return -ENOENT; 10243 10244 /* verify map is datasec */ 10245 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10246 if (!btf_is_datasec(datasec_type)) { 10247 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10248 bpf_map__name(map)); 10249 return -EINVAL; 10250 } 10251 10252 /* verify datasec has at least one var */ 10253 vlen = btf_vlen(datasec_type); 10254 if (vlen == 0) { 10255 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10256 bpf_map__name(map)); 10257 return -EINVAL; 10258 } 10259 10260 /* verify last var in the datasec is an array */ 10261 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10262 var_type = btf_type_by_id(btf, var->type); 10263 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10264 if (!btf_is_array(array_type)) { 10265 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10266 bpf_map__name(map)); 10267 return -EINVAL; 10268 } 10269 10270 /* verify request size aligns with array */ 10271 array = btf_array(array_type); 10272 element_sz = btf__resolve_size(btf, array->type); 10273 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10274 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10275 bpf_map__name(map), element_sz, size); 10276 return -EINVAL; 10277 } 10278 10279 /* create a new array based on the existing array, but with new length */ 10280 nr_elements = (size - var->offset) / element_sz; 10281 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10282 if (new_array_id < 0) 10283 return new_array_id; 10284 10285 /* adding a new btf type invalidates existing pointers to btf objects, 10286 * so refresh pointers before proceeding 10287 */ 10288 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10289 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10290 var_type = btf_type_by_id(btf, var->type); 10291 10292 /* finally update btf info */ 10293 datasec_type->size = size; 10294 var->size = size - var->offset; 10295 var_type->type = new_array_id; 10296 10297 return 0; 10298 } 10299 bpf_map__set_value_size(struct bpf_map * map,__u32 size)10300 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10301 { 10302 if (map->obj->loaded || map->reused) 10303 return libbpf_err(-EBUSY); 10304 10305 if (map->mmaped) { 10306 size_t mmap_old_sz, mmap_new_sz; 10307 int err; 10308 10309 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10310 return -EOPNOTSUPP; 10311 10312 mmap_old_sz = bpf_map_mmap_sz(map); 10313 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10314 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10315 if (err) { 10316 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10317 bpf_map__name(map), errstr(err)); 10318 return err; 10319 } 10320 err = map_btf_datasec_resize(map, size); 10321 if (err && err != -ENOENT) { 10322 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10323 bpf_map__name(map), errstr(err)); 10324 map->btf_value_type_id = 0; 10325 map->btf_key_type_id = 0; 10326 } 10327 } 10328 10329 map->def.value_size = size; 10330 return 0; 10331 } 10332 bpf_map__btf_key_type_id(const struct bpf_map * map)10333 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10334 { 10335 return map ? map->btf_key_type_id : 0; 10336 } 10337 bpf_map__btf_value_type_id(const struct bpf_map * map)10338 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10339 { 10340 return map ? map->btf_value_type_id : 0; 10341 } 10342 bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)10343 int bpf_map__set_initial_value(struct bpf_map *map, 10344 const void *data, size_t size) 10345 { 10346 size_t actual_sz; 10347 10348 if (map->obj->loaded || map->reused) 10349 return libbpf_err(-EBUSY); 10350 10351 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10352 return libbpf_err(-EINVAL); 10353 10354 if (map->def.type == BPF_MAP_TYPE_ARENA) 10355 actual_sz = map->obj->arena_data_sz; 10356 else 10357 actual_sz = map->def.value_size; 10358 if (size != actual_sz) 10359 return libbpf_err(-EINVAL); 10360 10361 memcpy(map->mmaped, data, size); 10362 return 0; 10363 } 10364 bpf_map__initial_value(const struct bpf_map * map,size_t * psize)10365 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10366 { 10367 if (bpf_map__is_struct_ops(map)) { 10368 if (psize) 10369 *psize = map->def.value_size; 10370 return map->st_ops->data; 10371 } 10372 10373 if (!map->mmaped) 10374 return NULL; 10375 10376 if (map->def.type == BPF_MAP_TYPE_ARENA) 10377 *psize = map->obj->arena_data_sz; 10378 else 10379 *psize = map->def.value_size; 10380 10381 return map->mmaped; 10382 } 10383 bpf_map__is_internal(const struct bpf_map * map)10384 bool bpf_map__is_internal(const struct bpf_map *map) 10385 { 10386 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10387 } 10388 bpf_map__ifindex(const struct bpf_map * map)10389 __u32 bpf_map__ifindex(const struct bpf_map *map) 10390 { 10391 return map->map_ifindex; 10392 } 10393 bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)10394 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10395 { 10396 if (map_is_created(map)) 10397 return libbpf_err(-EBUSY); 10398 map->map_ifindex = ifindex; 10399 return 0; 10400 } 10401 bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)10402 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10403 { 10404 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10405 pr_warn("error: unsupported map type\n"); 10406 return libbpf_err(-EINVAL); 10407 } 10408 if (map->inner_map_fd != -1) { 10409 pr_warn("error: inner_map_fd already specified\n"); 10410 return libbpf_err(-EINVAL); 10411 } 10412 if (map->inner_map) { 10413 bpf_map__destroy(map->inner_map); 10414 zfree(&map->inner_map); 10415 } 10416 map->inner_map_fd = fd; 10417 return 0; 10418 } 10419 10420 static struct bpf_map * __bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)10421 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10422 { 10423 ssize_t idx; 10424 struct bpf_map *s, *e; 10425 10426 if (!obj || !obj->maps) 10427 return errno = EINVAL, NULL; 10428 10429 s = obj->maps; 10430 e = obj->maps + obj->nr_maps; 10431 10432 if ((m < s) || (m >= e)) { 10433 pr_warn("error in %s: map handler doesn't belong to object\n", 10434 __func__); 10435 return errno = EINVAL, NULL; 10436 } 10437 10438 idx = (m - obj->maps) + i; 10439 if (idx >= obj->nr_maps || idx < 0) 10440 return NULL; 10441 return &obj->maps[idx]; 10442 } 10443 10444 struct bpf_map * bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)10445 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10446 { 10447 if (prev == NULL && obj != NULL) 10448 return obj->maps; 10449 10450 return __bpf_map__iter(prev, obj, 1); 10451 } 10452 10453 struct bpf_map * bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)10454 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10455 { 10456 if (next == NULL && obj != NULL) { 10457 if (!obj->nr_maps) 10458 return NULL; 10459 return obj->maps + obj->nr_maps - 1; 10460 } 10461 10462 return __bpf_map__iter(next, obj, -1); 10463 } 10464 10465 struct bpf_map * bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)10466 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10467 { 10468 struct bpf_map *pos; 10469 10470 bpf_object__for_each_map(pos, obj) { 10471 /* if it's a special internal map name (which always starts 10472 * with dot) then check if that special name matches the 10473 * real map name (ELF section name) 10474 */ 10475 if (name[0] == '.') { 10476 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10477 return pos; 10478 continue; 10479 } 10480 /* otherwise map name has to be an exact match */ 10481 if (map_uses_real_name(pos)) { 10482 if (strcmp(pos->real_name, name) == 0) 10483 return pos; 10484 continue; 10485 } 10486 if (strcmp(pos->name, name) == 0) 10487 return pos; 10488 } 10489 return errno = ENOENT, NULL; 10490 } 10491 10492 int bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)10493 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10494 { 10495 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10496 } 10497 validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)10498 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10499 size_t value_sz, bool check_value_sz) 10500 { 10501 if (!map_is_created(map)) /* map is not yet created */ 10502 return -ENOENT; 10503 10504 if (map->def.key_size != key_sz) { 10505 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10506 map->name, key_sz, map->def.key_size); 10507 return -EINVAL; 10508 } 10509 10510 if (map->fd < 0) { 10511 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10512 return -EINVAL; 10513 } 10514 10515 if (!check_value_sz) 10516 return 0; 10517 10518 switch (map->def.type) { 10519 case BPF_MAP_TYPE_PERCPU_ARRAY: 10520 case BPF_MAP_TYPE_PERCPU_HASH: 10521 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10522 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10523 int num_cpu = libbpf_num_possible_cpus(); 10524 size_t elem_sz = roundup(map->def.value_size, 8); 10525 10526 if (value_sz != num_cpu * elem_sz) { 10527 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10528 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10529 return -EINVAL; 10530 } 10531 break; 10532 } 10533 default: 10534 if (map->def.value_size != value_sz) { 10535 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10536 map->name, value_sz, map->def.value_size); 10537 return -EINVAL; 10538 } 10539 break; 10540 } 10541 return 0; 10542 } 10543 bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10544 int bpf_map__lookup_elem(const struct bpf_map *map, 10545 const void *key, size_t key_sz, 10546 void *value, size_t value_sz, __u64 flags) 10547 { 10548 int err; 10549 10550 err = validate_map_op(map, key_sz, value_sz, true); 10551 if (err) 10552 return libbpf_err(err); 10553 10554 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10555 } 10556 bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10557 int bpf_map__update_elem(const struct bpf_map *map, 10558 const void *key, size_t key_sz, 10559 const void *value, size_t value_sz, __u64 flags) 10560 { 10561 int err; 10562 10563 err = validate_map_op(map, key_sz, value_sz, true); 10564 if (err) 10565 return libbpf_err(err); 10566 10567 return bpf_map_update_elem(map->fd, key, value, flags); 10568 } 10569 bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10570 int bpf_map__delete_elem(const struct bpf_map *map, 10571 const void *key, size_t key_sz, __u64 flags) 10572 { 10573 int err; 10574 10575 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10576 if (err) 10577 return libbpf_err(err); 10578 10579 return bpf_map_delete_elem_flags(map->fd, key, flags); 10580 } 10581 bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10582 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10583 const void *key, size_t key_sz, 10584 void *value, size_t value_sz, __u64 flags) 10585 { 10586 int err; 10587 10588 err = validate_map_op(map, key_sz, value_sz, true); 10589 if (err) 10590 return libbpf_err(err); 10591 10592 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10593 } 10594 bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10595 int bpf_map__get_next_key(const struct bpf_map *map, 10596 const void *cur_key, void *next_key, size_t key_sz) 10597 { 10598 int err; 10599 10600 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10601 if (err) 10602 return libbpf_err(err); 10603 10604 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10605 } 10606 libbpf_get_error(const void * ptr)10607 long libbpf_get_error(const void *ptr) 10608 { 10609 if (!IS_ERR_OR_NULL(ptr)) 10610 return 0; 10611 10612 if (IS_ERR(ptr)) 10613 errno = -PTR_ERR(ptr); 10614 10615 /* If ptr == NULL, then errno should be already set by the failing 10616 * API, because libbpf never returns NULL on success and it now always 10617 * sets errno on error. So no extra errno handling for ptr == NULL 10618 * case. 10619 */ 10620 return -errno; 10621 } 10622 10623 /* Replace link's underlying BPF program with the new one */ bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10624 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10625 { 10626 int ret; 10627 int prog_fd = bpf_program__fd(prog); 10628 10629 if (prog_fd < 0) { 10630 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10631 prog->name); 10632 return libbpf_err(-EINVAL); 10633 } 10634 10635 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10636 return libbpf_err_errno(ret); 10637 } 10638 10639 /* Release "ownership" of underlying BPF resource (typically, BPF program 10640 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10641 * link, when destructed through bpf_link__destroy() call won't attempt to 10642 * detach/unregisted that BPF resource. This is useful in situations where, 10643 * say, attached BPF program has to outlive userspace program that attached it 10644 * in the system. Depending on type of BPF program, though, there might be 10645 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10646 * exit of userspace program doesn't trigger automatic detachment and clean up 10647 * inside the kernel. 10648 */ bpf_link__disconnect(struct bpf_link * link)10649 void bpf_link__disconnect(struct bpf_link *link) 10650 { 10651 link->disconnected = true; 10652 } 10653 bpf_link__destroy(struct bpf_link * link)10654 int bpf_link__destroy(struct bpf_link *link) 10655 { 10656 int err = 0; 10657 10658 if (IS_ERR_OR_NULL(link)) 10659 return 0; 10660 10661 if (!link->disconnected && link->detach) 10662 err = link->detach(link); 10663 if (link->pin_path) 10664 free(link->pin_path); 10665 if (link->dealloc) 10666 link->dealloc(link); 10667 else 10668 free(link); 10669 10670 return libbpf_err(err); 10671 } 10672 bpf_link__fd(const struct bpf_link * link)10673 int bpf_link__fd(const struct bpf_link *link) 10674 { 10675 return link->fd; 10676 } 10677 bpf_link__pin_path(const struct bpf_link * link)10678 const char *bpf_link__pin_path(const struct bpf_link *link) 10679 { 10680 return link->pin_path; 10681 } 10682 bpf_link__detach_fd(struct bpf_link * link)10683 static int bpf_link__detach_fd(struct bpf_link *link) 10684 { 10685 return libbpf_err_errno(close(link->fd)); 10686 } 10687 bpf_link__open(const char * path)10688 struct bpf_link *bpf_link__open(const char *path) 10689 { 10690 struct bpf_link *link; 10691 int fd; 10692 10693 fd = bpf_obj_get(path); 10694 if (fd < 0) { 10695 fd = -errno; 10696 pr_warn("failed to open link at %s: %d\n", path, fd); 10697 return libbpf_err_ptr(fd); 10698 } 10699 10700 link = calloc(1, sizeof(*link)); 10701 if (!link) { 10702 close(fd); 10703 return libbpf_err_ptr(-ENOMEM); 10704 } 10705 link->detach = &bpf_link__detach_fd; 10706 link->fd = fd; 10707 10708 link->pin_path = strdup(path); 10709 if (!link->pin_path) { 10710 bpf_link__destroy(link); 10711 return libbpf_err_ptr(-ENOMEM); 10712 } 10713 10714 return link; 10715 } 10716 bpf_link__detach(struct bpf_link * link)10717 int bpf_link__detach(struct bpf_link *link) 10718 { 10719 return bpf_link_detach(link->fd) ? -errno : 0; 10720 } 10721 bpf_link__pin(struct bpf_link * link,const char * path)10722 int bpf_link__pin(struct bpf_link *link, const char *path) 10723 { 10724 int err; 10725 10726 if (link->pin_path) 10727 return libbpf_err(-EBUSY); 10728 err = make_parent_dir(path); 10729 if (err) 10730 return libbpf_err(err); 10731 err = check_path(path); 10732 if (err) 10733 return libbpf_err(err); 10734 10735 link->pin_path = strdup(path); 10736 if (!link->pin_path) 10737 return libbpf_err(-ENOMEM); 10738 10739 if (bpf_obj_pin(link->fd, link->pin_path)) { 10740 err = -errno; 10741 zfree(&link->pin_path); 10742 return libbpf_err(err); 10743 } 10744 10745 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10746 return 0; 10747 } 10748 bpf_link__unpin(struct bpf_link * link)10749 int bpf_link__unpin(struct bpf_link *link) 10750 { 10751 int err; 10752 10753 if (!link->pin_path) 10754 return libbpf_err(-EINVAL); 10755 10756 err = unlink(link->pin_path); 10757 if (err != 0) 10758 return -errno; 10759 10760 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10761 zfree(&link->pin_path); 10762 return 0; 10763 } 10764 10765 struct bpf_link_perf { 10766 struct bpf_link link; 10767 int perf_event_fd; 10768 /* legacy kprobe support: keep track of probe identifier and type */ 10769 char *legacy_probe_name; 10770 bool legacy_is_kprobe; 10771 bool legacy_is_retprobe; 10772 }; 10773 10774 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10775 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10776 bpf_link_perf_detach(struct bpf_link * link)10777 static int bpf_link_perf_detach(struct bpf_link *link) 10778 { 10779 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10780 int err = 0; 10781 10782 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10783 err = -errno; 10784 10785 if (perf_link->perf_event_fd != link->fd) 10786 close(perf_link->perf_event_fd); 10787 close(link->fd); 10788 10789 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10790 if (perf_link->legacy_probe_name) { 10791 if (perf_link->legacy_is_kprobe) { 10792 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10793 perf_link->legacy_is_retprobe); 10794 } else { 10795 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10796 perf_link->legacy_is_retprobe); 10797 } 10798 } 10799 10800 return err; 10801 } 10802 bpf_link_perf_dealloc(struct bpf_link * link)10803 static void bpf_link_perf_dealloc(struct bpf_link *link) 10804 { 10805 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10806 10807 free(perf_link->legacy_probe_name); 10808 free(perf_link); 10809 } 10810 bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10811 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10812 const struct bpf_perf_event_opts *opts) 10813 { 10814 struct bpf_link_perf *link; 10815 int prog_fd, link_fd = -1, err; 10816 bool force_ioctl_attach; 10817 10818 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10819 return libbpf_err_ptr(-EINVAL); 10820 10821 if (pfd < 0) { 10822 pr_warn("prog '%s': invalid perf event FD %d\n", 10823 prog->name, pfd); 10824 return libbpf_err_ptr(-EINVAL); 10825 } 10826 prog_fd = bpf_program__fd(prog); 10827 if (prog_fd < 0) { 10828 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10829 prog->name); 10830 return libbpf_err_ptr(-EINVAL); 10831 } 10832 10833 link = calloc(1, sizeof(*link)); 10834 if (!link) 10835 return libbpf_err_ptr(-ENOMEM); 10836 link->link.detach = &bpf_link_perf_detach; 10837 link->link.dealloc = &bpf_link_perf_dealloc; 10838 link->perf_event_fd = pfd; 10839 10840 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10841 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10842 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10843 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10844 10845 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10846 if (link_fd < 0) { 10847 err = -errno; 10848 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 10849 prog->name, pfd, errstr(err)); 10850 goto err_out; 10851 } 10852 link->link.fd = link_fd; 10853 } else { 10854 if (OPTS_GET(opts, bpf_cookie, 0)) { 10855 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10856 err = -EOPNOTSUPP; 10857 goto err_out; 10858 } 10859 10860 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10861 err = -errno; 10862 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10863 prog->name, pfd, errstr(err)); 10864 if (err == -EPROTO) 10865 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10866 prog->name, pfd); 10867 goto err_out; 10868 } 10869 link->link.fd = pfd; 10870 } 10871 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10872 err = -errno; 10873 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10874 prog->name, pfd, errstr(err)); 10875 goto err_out; 10876 } 10877 10878 return &link->link; 10879 err_out: 10880 if (link_fd >= 0) 10881 close(link_fd); 10882 free(link); 10883 return libbpf_err_ptr(err); 10884 } 10885 bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10886 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10887 { 10888 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10889 } 10890 10891 /* 10892 * this function is expected to parse integer in the range of [0, 2^31-1] from 10893 * given file using scanf format string fmt. If actual parsed value is 10894 * negative, the result might be indistinguishable from error 10895 */ parse_uint_from_file(const char * file,const char * fmt)10896 static int parse_uint_from_file(const char *file, const char *fmt) 10897 { 10898 int err, ret; 10899 FILE *f; 10900 10901 f = fopen(file, "re"); 10902 if (!f) { 10903 err = -errno; 10904 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 10905 return err; 10906 } 10907 err = fscanf(f, fmt, &ret); 10908 if (err != 1) { 10909 err = err == EOF ? -EIO : -errno; 10910 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 10911 fclose(f); 10912 return err; 10913 } 10914 fclose(f); 10915 return ret; 10916 } 10917 determine_kprobe_perf_type(void)10918 static int determine_kprobe_perf_type(void) 10919 { 10920 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10921 10922 return parse_uint_from_file(file, "%d\n"); 10923 } 10924 determine_uprobe_perf_type(void)10925 static int determine_uprobe_perf_type(void) 10926 { 10927 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10928 10929 return parse_uint_from_file(file, "%d\n"); 10930 } 10931 determine_kprobe_retprobe_bit(void)10932 static int determine_kprobe_retprobe_bit(void) 10933 { 10934 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10935 10936 return parse_uint_from_file(file, "config:%d\n"); 10937 } 10938 determine_uprobe_retprobe_bit(void)10939 static int determine_uprobe_retprobe_bit(void) 10940 { 10941 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10942 10943 return parse_uint_from_file(file, "config:%d\n"); 10944 } 10945 10946 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10947 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10948 perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10949 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10950 uint64_t offset, int pid, size_t ref_ctr_off) 10951 { 10952 const size_t attr_sz = sizeof(struct perf_event_attr); 10953 struct perf_event_attr attr; 10954 int type, pfd; 10955 10956 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10957 return -EINVAL; 10958 10959 memset(&attr, 0, attr_sz); 10960 10961 type = uprobe ? determine_uprobe_perf_type() 10962 : determine_kprobe_perf_type(); 10963 if (type < 0) { 10964 pr_warn("failed to determine %s perf type: %s\n", 10965 uprobe ? "uprobe" : "kprobe", 10966 errstr(type)); 10967 return type; 10968 } 10969 if (retprobe) { 10970 int bit = uprobe ? determine_uprobe_retprobe_bit() 10971 : determine_kprobe_retprobe_bit(); 10972 10973 if (bit < 0) { 10974 pr_warn("failed to determine %s retprobe bit: %s\n", 10975 uprobe ? "uprobe" : "kprobe", 10976 errstr(bit)); 10977 return bit; 10978 } 10979 attr.config |= 1 << bit; 10980 } 10981 attr.size = attr_sz; 10982 attr.type = type; 10983 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10984 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10985 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10986 10987 /* pid filter is meaningful only for uprobes */ 10988 pfd = syscall(__NR_perf_event_open, &attr, 10989 pid < 0 ? -1 : pid /* pid */, 10990 pid == -1 ? 0 : -1 /* cpu */, 10991 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10992 return pfd >= 0 ? pfd : -errno; 10993 } 10994 append_to_file(const char * file,const char * fmt,...)10995 static int append_to_file(const char *file, const char *fmt, ...) 10996 { 10997 int fd, n, err = 0; 10998 va_list ap; 10999 char buf[1024]; 11000 11001 va_start(ap, fmt); 11002 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11003 va_end(ap); 11004 11005 if (n < 0 || n >= sizeof(buf)) 11006 return -EINVAL; 11007 11008 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11009 if (fd < 0) 11010 return -errno; 11011 11012 if (write(fd, buf, n) < 0) 11013 err = -errno; 11014 11015 close(fd); 11016 return err; 11017 } 11018 11019 #define DEBUGFS "/sys/kernel/debug/tracing" 11020 #define TRACEFS "/sys/kernel/tracing" 11021 use_debugfs(void)11022 static bool use_debugfs(void) 11023 { 11024 static int has_debugfs = -1; 11025 11026 if (has_debugfs < 0) 11027 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11028 11029 return has_debugfs == 1; 11030 } 11031 tracefs_path(void)11032 static const char *tracefs_path(void) 11033 { 11034 return use_debugfs() ? DEBUGFS : TRACEFS; 11035 } 11036 tracefs_kprobe_events(void)11037 static const char *tracefs_kprobe_events(void) 11038 { 11039 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11040 } 11041 tracefs_uprobe_events(void)11042 static const char *tracefs_uprobe_events(void) 11043 { 11044 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11045 } 11046 tracefs_available_filter_functions(void)11047 static const char *tracefs_available_filter_functions(void) 11048 { 11049 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11050 : TRACEFS"/available_filter_functions"; 11051 } 11052 tracefs_available_filter_functions_addrs(void)11053 static const char *tracefs_available_filter_functions_addrs(void) 11054 { 11055 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11056 : TRACEFS"/available_filter_functions_addrs"; 11057 } 11058 gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)11059 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 11060 const char *kfunc_name, size_t offset) 11061 { 11062 static int index = 0; 11063 int i; 11064 11065 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 11066 __sync_fetch_and_add(&index, 1)); 11067 11068 /* sanitize binary_path in the probe name */ 11069 for (i = 0; buf[i]; i++) { 11070 if (!isalnum(buf[i])) 11071 buf[i] = '_'; 11072 } 11073 } 11074 add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)11075 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11076 const char *kfunc_name, size_t offset) 11077 { 11078 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11079 retprobe ? 'r' : 'p', 11080 retprobe ? "kretprobes" : "kprobes", 11081 probe_name, kfunc_name, offset); 11082 } 11083 remove_kprobe_event_legacy(const char * probe_name,bool retprobe)11084 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11085 { 11086 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11087 retprobe ? "kretprobes" : "kprobes", probe_name); 11088 } 11089 determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)11090 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11091 { 11092 char file[256]; 11093 11094 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11095 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11096 11097 return parse_uint_from_file(file, "%d\n"); 11098 } 11099 perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)11100 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11101 const char *kfunc_name, size_t offset, int pid) 11102 { 11103 const size_t attr_sz = sizeof(struct perf_event_attr); 11104 struct perf_event_attr attr; 11105 int type, pfd, err; 11106 11107 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11108 if (err < 0) { 11109 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11110 kfunc_name, offset, 11111 errstr(err)); 11112 return err; 11113 } 11114 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11115 if (type < 0) { 11116 err = type; 11117 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11118 kfunc_name, offset, 11119 errstr(err)); 11120 goto err_clean_legacy; 11121 } 11122 11123 memset(&attr, 0, attr_sz); 11124 attr.size = attr_sz; 11125 attr.config = type; 11126 attr.type = PERF_TYPE_TRACEPOINT; 11127 11128 pfd = syscall(__NR_perf_event_open, &attr, 11129 pid < 0 ? -1 : pid, /* pid */ 11130 pid == -1 ? 0 : -1, /* cpu */ 11131 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11132 if (pfd < 0) { 11133 err = -errno; 11134 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11135 errstr(err)); 11136 goto err_clean_legacy; 11137 } 11138 return pfd; 11139 11140 err_clean_legacy: 11141 /* Clear the newly added legacy kprobe_event */ 11142 remove_kprobe_event_legacy(probe_name, retprobe); 11143 return err; 11144 } 11145 arch_specific_syscall_pfx(void)11146 static const char *arch_specific_syscall_pfx(void) 11147 { 11148 #if defined(__x86_64__) 11149 return "x64"; 11150 #elif defined(__i386__) 11151 return "ia32"; 11152 #elif defined(__s390x__) 11153 return "s390x"; 11154 #elif defined(__s390__) 11155 return "s390"; 11156 #elif defined(__arm__) 11157 return "arm"; 11158 #elif defined(__aarch64__) 11159 return "arm64"; 11160 #elif defined(__mips__) 11161 return "mips"; 11162 #elif defined(__riscv) 11163 return "riscv"; 11164 #elif defined(__powerpc__) 11165 return "powerpc"; 11166 #elif defined(__powerpc64__) 11167 return "powerpc64"; 11168 #else 11169 return NULL; 11170 #endif 11171 } 11172 probe_kern_syscall_wrapper(int token_fd)11173 int probe_kern_syscall_wrapper(int token_fd) 11174 { 11175 char syscall_name[64]; 11176 const char *ksys_pfx; 11177 11178 ksys_pfx = arch_specific_syscall_pfx(); 11179 if (!ksys_pfx) 11180 return 0; 11181 11182 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11183 11184 if (determine_kprobe_perf_type() >= 0) { 11185 int pfd; 11186 11187 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11188 if (pfd >= 0) 11189 close(pfd); 11190 11191 return pfd >= 0 ? 1 : 0; 11192 } else { /* legacy mode */ 11193 char probe_name[128]; 11194 11195 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11196 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11197 return 0; 11198 11199 (void)remove_kprobe_event_legacy(probe_name, false); 11200 return 1; 11201 } 11202 } 11203 11204 struct bpf_link * bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)11205 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11206 const char *func_name, 11207 const struct bpf_kprobe_opts *opts) 11208 { 11209 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11210 enum probe_attach_mode attach_mode; 11211 char *legacy_probe = NULL; 11212 struct bpf_link *link; 11213 size_t offset; 11214 bool retprobe, legacy; 11215 int pfd, err; 11216 11217 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11218 return libbpf_err_ptr(-EINVAL); 11219 11220 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11221 retprobe = OPTS_GET(opts, retprobe, false); 11222 offset = OPTS_GET(opts, offset, 0); 11223 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11224 11225 legacy = determine_kprobe_perf_type() < 0; 11226 switch (attach_mode) { 11227 case PROBE_ATTACH_MODE_LEGACY: 11228 legacy = true; 11229 pe_opts.force_ioctl_attach = true; 11230 break; 11231 case PROBE_ATTACH_MODE_PERF: 11232 if (legacy) 11233 return libbpf_err_ptr(-ENOTSUP); 11234 pe_opts.force_ioctl_attach = true; 11235 break; 11236 case PROBE_ATTACH_MODE_LINK: 11237 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11238 return libbpf_err_ptr(-ENOTSUP); 11239 break; 11240 case PROBE_ATTACH_MODE_DEFAULT: 11241 break; 11242 default: 11243 return libbpf_err_ptr(-EINVAL); 11244 } 11245 11246 if (!legacy) { 11247 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11248 func_name, offset, 11249 -1 /* pid */, 0 /* ref_ctr_off */); 11250 } else { 11251 char probe_name[256]; 11252 11253 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11254 func_name, offset); 11255 11256 legacy_probe = strdup(probe_name); 11257 if (!legacy_probe) 11258 return libbpf_err_ptr(-ENOMEM); 11259 11260 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11261 offset, -1 /* pid */); 11262 } 11263 if (pfd < 0) { 11264 err = -errno; 11265 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11266 prog->name, retprobe ? "kretprobe" : "kprobe", 11267 func_name, offset, 11268 errstr(err)); 11269 goto err_out; 11270 } 11271 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11272 err = libbpf_get_error(link); 11273 if (err) { 11274 close(pfd); 11275 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11276 prog->name, retprobe ? "kretprobe" : "kprobe", 11277 func_name, offset, 11278 errstr(err)); 11279 goto err_clean_legacy; 11280 } 11281 if (legacy) { 11282 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11283 11284 perf_link->legacy_probe_name = legacy_probe; 11285 perf_link->legacy_is_kprobe = true; 11286 perf_link->legacy_is_retprobe = retprobe; 11287 } 11288 11289 return link; 11290 11291 err_clean_legacy: 11292 if (legacy) 11293 remove_kprobe_event_legacy(legacy_probe, retprobe); 11294 err_out: 11295 free(legacy_probe); 11296 return libbpf_err_ptr(err); 11297 } 11298 bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)11299 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11300 bool retprobe, 11301 const char *func_name) 11302 { 11303 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11304 .retprobe = retprobe, 11305 ); 11306 11307 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11308 } 11309 bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)11310 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11311 const char *syscall_name, 11312 const struct bpf_ksyscall_opts *opts) 11313 { 11314 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11315 char func_name[128]; 11316 11317 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11318 return libbpf_err_ptr(-EINVAL); 11319 11320 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11321 /* arch_specific_syscall_pfx() should never return NULL here 11322 * because it is guarded by kernel_supports(). However, since 11323 * compiler does not know that we have an explicit conditional 11324 * as well. 11325 */ 11326 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11327 arch_specific_syscall_pfx() ? : "", syscall_name); 11328 } else { 11329 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11330 } 11331 11332 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11333 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11334 11335 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11336 } 11337 11338 /* Adapted from perf/util/string.c */ glob_match(const char * str,const char * pat)11339 bool glob_match(const char *str, const char *pat) 11340 { 11341 while (*str && *pat && *pat != '*') { 11342 if (*pat == '?') { /* Matches any single character */ 11343 str++; 11344 pat++; 11345 continue; 11346 } 11347 if (*str != *pat) 11348 return false; 11349 str++; 11350 pat++; 11351 } 11352 /* Check wild card */ 11353 if (*pat == '*') { 11354 while (*pat == '*') 11355 pat++; 11356 if (!*pat) /* Tail wild card matches all */ 11357 return true; 11358 while (*str) 11359 if (glob_match(str++, pat)) 11360 return true; 11361 } 11362 return !*str && !*pat; 11363 } 11364 11365 struct kprobe_multi_resolve { 11366 const char *pattern; 11367 unsigned long *addrs; 11368 size_t cap; 11369 size_t cnt; 11370 }; 11371 11372 struct avail_kallsyms_data { 11373 char **syms; 11374 size_t cnt; 11375 struct kprobe_multi_resolve *res; 11376 }; 11377 avail_func_cmp(const void * a,const void * b)11378 static int avail_func_cmp(const void *a, const void *b) 11379 { 11380 return strcmp(*(const char **)a, *(const char **)b); 11381 } 11382 avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)11383 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11384 const char *sym_name, void *ctx) 11385 { 11386 struct avail_kallsyms_data *data = ctx; 11387 struct kprobe_multi_resolve *res = data->res; 11388 int err; 11389 11390 if (!glob_match(sym_name, res->pattern)) 11391 return 0; 11392 11393 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11394 /* Some versions of kernel strip out .llvm.<hash> suffix from 11395 * function names reported in available_filter_functions, but 11396 * don't do so for kallsyms. While this is clearly a kernel 11397 * bug (fixed by [0]) we try to accommodate that in libbpf to 11398 * make multi-kprobe usability a bit better: if no match is 11399 * found, we will strip .llvm. suffix and try one more time. 11400 * 11401 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11402 */ 11403 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11404 11405 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11406 return 0; 11407 11408 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11409 * coercion differences and get proper `const char **` pointer 11410 * which avail_func_cmp() expects 11411 */ 11412 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11413 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11414 return 0; 11415 } 11416 11417 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11418 if (err) 11419 return err; 11420 11421 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11422 return 0; 11423 } 11424 libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)11425 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11426 { 11427 const char *available_functions_file = tracefs_available_filter_functions(); 11428 struct avail_kallsyms_data data; 11429 char sym_name[500]; 11430 FILE *f; 11431 int err = 0, ret, i; 11432 char **syms = NULL; 11433 size_t cap = 0, cnt = 0; 11434 11435 f = fopen(available_functions_file, "re"); 11436 if (!f) { 11437 err = -errno; 11438 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11439 return err; 11440 } 11441 11442 while (true) { 11443 char *name; 11444 11445 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11446 if (ret == EOF && feof(f)) 11447 break; 11448 11449 if (ret != 1) { 11450 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11451 err = -EINVAL; 11452 goto cleanup; 11453 } 11454 11455 if (!glob_match(sym_name, res->pattern)) 11456 continue; 11457 11458 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11459 if (err) 11460 goto cleanup; 11461 11462 name = strdup(sym_name); 11463 if (!name) { 11464 err = -errno; 11465 goto cleanup; 11466 } 11467 11468 syms[cnt++] = name; 11469 } 11470 11471 /* no entries found, bail out */ 11472 if (cnt == 0) { 11473 err = -ENOENT; 11474 goto cleanup; 11475 } 11476 11477 /* sort available functions */ 11478 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11479 11480 data.syms = syms; 11481 data.res = res; 11482 data.cnt = cnt; 11483 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11484 11485 if (res->cnt == 0) 11486 err = -ENOENT; 11487 11488 cleanup: 11489 for (i = 0; i < cnt; i++) 11490 free((char *)syms[i]); 11491 free(syms); 11492 11493 fclose(f); 11494 return err; 11495 } 11496 has_available_filter_functions_addrs(void)11497 static bool has_available_filter_functions_addrs(void) 11498 { 11499 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11500 } 11501 libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)11502 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11503 { 11504 const char *available_path = tracefs_available_filter_functions_addrs(); 11505 char sym_name[500]; 11506 FILE *f; 11507 int ret, err = 0; 11508 unsigned long long sym_addr; 11509 11510 f = fopen(available_path, "re"); 11511 if (!f) { 11512 err = -errno; 11513 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11514 return err; 11515 } 11516 11517 while (true) { 11518 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11519 if (ret == EOF && feof(f)) 11520 break; 11521 11522 if (ret != 2) { 11523 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11524 ret); 11525 err = -EINVAL; 11526 goto cleanup; 11527 } 11528 11529 if (!glob_match(sym_name, res->pattern)) 11530 continue; 11531 11532 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11533 sizeof(*res->addrs), res->cnt + 1); 11534 if (err) 11535 goto cleanup; 11536 11537 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11538 } 11539 11540 if (res->cnt == 0) 11541 err = -ENOENT; 11542 11543 cleanup: 11544 fclose(f); 11545 return err; 11546 } 11547 11548 struct bpf_link * bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)11549 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11550 const char *pattern, 11551 const struct bpf_kprobe_multi_opts *opts) 11552 { 11553 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11554 struct kprobe_multi_resolve res = { 11555 .pattern = pattern, 11556 }; 11557 enum bpf_attach_type attach_type; 11558 struct bpf_link *link = NULL; 11559 const unsigned long *addrs; 11560 int err, link_fd, prog_fd; 11561 bool retprobe, session, unique_match; 11562 const __u64 *cookies; 11563 const char **syms; 11564 size_t cnt; 11565 11566 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11567 return libbpf_err_ptr(-EINVAL); 11568 11569 prog_fd = bpf_program__fd(prog); 11570 if (prog_fd < 0) { 11571 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11572 prog->name); 11573 return libbpf_err_ptr(-EINVAL); 11574 } 11575 11576 syms = OPTS_GET(opts, syms, false); 11577 addrs = OPTS_GET(opts, addrs, false); 11578 cnt = OPTS_GET(opts, cnt, false); 11579 cookies = OPTS_GET(opts, cookies, false); 11580 unique_match = OPTS_GET(opts, unique_match, false); 11581 11582 if (!pattern && !addrs && !syms) 11583 return libbpf_err_ptr(-EINVAL); 11584 if (pattern && (addrs || syms || cookies || cnt)) 11585 return libbpf_err_ptr(-EINVAL); 11586 if (!pattern && !cnt) 11587 return libbpf_err_ptr(-EINVAL); 11588 if (!pattern && unique_match) 11589 return libbpf_err_ptr(-EINVAL); 11590 if (addrs && syms) 11591 return libbpf_err_ptr(-EINVAL); 11592 11593 if (pattern) { 11594 if (has_available_filter_functions_addrs()) 11595 err = libbpf_available_kprobes_parse(&res); 11596 else 11597 err = libbpf_available_kallsyms_parse(&res); 11598 if (err) 11599 goto error; 11600 11601 if (unique_match && res.cnt != 1) { 11602 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 11603 prog->name, pattern, res.cnt); 11604 err = -EINVAL; 11605 goto error; 11606 } 11607 11608 addrs = res.addrs; 11609 cnt = res.cnt; 11610 } 11611 11612 retprobe = OPTS_GET(opts, retprobe, false); 11613 session = OPTS_GET(opts, session, false); 11614 11615 if (retprobe && session) 11616 return libbpf_err_ptr(-EINVAL); 11617 11618 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11619 11620 lopts.kprobe_multi.syms = syms; 11621 lopts.kprobe_multi.addrs = addrs; 11622 lopts.kprobe_multi.cookies = cookies; 11623 lopts.kprobe_multi.cnt = cnt; 11624 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11625 11626 link = calloc(1, sizeof(*link)); 11627 if (!link) { 11628 err = -ENOMEM; 11629 goto error; 11630 } 11631 link->detach = &bpf_link__detach_fd; 11632 11633 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11634 if (link_fd < 0) { 11635 err = -errno; 11636 pr_warn("prog '%s': failed to attach: %s\n", 11637 prog->name, errstr(err)); 11638 goto error; 11639 } 11640 link->fd = link_fd; 11641 free(res.addrs); 11642 return link; 11643 11644 error: 11645 free(link); 11646 free(res.addrs); 11647 return libbpf_err_ptr(err); 11648 } 11649 attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11650 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11651 { 11652 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11653 unsigned long offset = 0; 11654 const char *func_name; 11655 char *func; 11656 int n; 11657 11658 *link = NULL; 11659 11660 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11661 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11662 return 0; 11663 11664 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11665 if (opts.retprobe) 11666 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11667 else 11668 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11669 11670 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11671 if (n < 1) { 11672 pr_warn("kprobe name is invalid: %s\n", func_name); 11673 return -EINVAL; 11674 } 11675 if (opts.retprobe && offset != 0) { 11676 free(func); 11677 pr_warn("kretprobes do not support offset specification\n"); 11678 return -EINVAL; 11679 } 11680 11681 opts.offset = offset; 11682 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11683 free(func); 11684 return libbpf_get_error(*link); 11685 } 11686 attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11687 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11688 { 11689 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11690 const char *syscall_name; 11691 11692 *link = NULL; 11693 11694 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11695 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11696 return 0; 11697 11698 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11699 if (opts.retprobe) 11700 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11701 else 11702 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11703 11704 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11705 return *link ? 0 : -errno; 11706 } 11707 attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11708 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11709 { 11710 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11711 const char *spec; 11712 char *pattern; 11713 int n; 11714 11715 *link = NULL; 11716 11717 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11718 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11719 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11720 return 0; 11721 11722 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11723 if (opts.retprobe) 11724 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11725 else 11726 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11727 11728 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11729 if (n < 1) { 11730 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11731 return -EINVAL; 11732 } 11733 11734 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11735 free(pattern); 11736 return libbpf_get_error(*link); 11737 } 11738 attach_kprobe_session(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11739 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11740 struct bpf_link **link) 11741 { 11742 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11743 const char *spec; 11744 char *pattern; 11745 int n; 11746 11747 *link = NULL; 11748 11749 /* no auto-attach for SEC("kprobe.session") */ 11750 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11751 return 0; 11752 11753 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11754 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11755 if (n < 1) { 11756 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11757 return -EINVAL; 11758 } 11759 11760 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11761 free(pattern); 11762 return *link ? 0 : -errno; 11763 } 11764 attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11765 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11766 { 11767 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11768 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11769 int n, ret = -EINVAL; 11770 11771 *link = NULL; 11772 11773 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11774 &probe_type, &binary_path, &func_name); 11775 switch (n) { 11776 case 1: 11777 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11778 ret = 0; 11779 break; 11780 case 3: 11781 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11782 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11783 11784 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11785 ret = libbpf_get_error(*link); 11786 break; 11787 default: 11788 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11789 prog->sec_name); 11790 break; 11791 } 11792 free(probe_type); 11793 free(binary_path); 11794 free(func_name); 11795 return ret; 11796 } 11797 gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11798 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11799 const char *binary_path, uint64_t offset) 11800 { 11801 int i; 11802 11803 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11804 11805 /* sanitize binary_path in the probe name */ 11806 for (i = 0; buf[i]; i++) { 11807 if (!isalnum(buf[i])) 11808 buf[i] = '_'; 11809 } 11810 } 11811 add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11812 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11813 const char *binary_path, size_t offset) 11814 { 11815 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11816 retprobe ? 'r' : 'p', 11817 retprobe ? "uretprobes" : "uprobes", 11818 probe_name, binary_path, offset); 11819 } 11820 remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11821 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11822 { 11823 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11824 retprobe ? "uretprobes" : "uprobes", probe_name); 11825 } 11826 determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11827 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11828 { 11829 char file[512]; 11830 11831 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11832 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11833 11834 return parse_uint_from_file(file, "%d\n"); 11835 } 11836 perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11837 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11838 const char *binary_path, size_t offset, int pid) 11839 { 11840 const size_t attr_sz = sizeof(struct perf_event_attr); 11841 struct perf_event_attr attr; 11842 int type, pfd, err; 11843 11844 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11845 if (err < 0) { 11846 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 11847 binary_path, (size_t)offset, errstr(err)); 11848 return err; 11849 } 11850 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11851 if (type < 0) { 11852 err = type; 11853 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 11854 binary_path, offset, errstr(err)); 11855 goto err_clean_legacy; 11856 } 11857 11858 memset(&attr, 0, attr_sz); 11859 attr.size = attr_sz; 11860 attr.config = type; 11861 attr.type = PERF_TYPE_TRACEPOINT; 11862 11863 pfd = syscall(__NR_perf_event_open, &attr, 11864 pid < 0 ? -1 : pid, /* pid */ 11865 pid == -1 ? 0 : -1, /* cpu */ 11866 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11867 if (pfd < 0) { 11868 err = -errno; 11869 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 11870 goto err_clean_legacy; 11871 } 11872 return pfd; 11873 11874 err_clean_legacy: 11875 /* Clear the newly added legacy uprobe_event */ 11876 remove_uprobe_event_legacy(probe_name, retprobe); 11877 return err; 11878 } 11879 11880 /* Find offset of function name in archive specified by path. Currently 11881 * supported are .zip files that do not compress their contents, as used on 11882 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11883 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11884 * library functions. 11885 * 11886 * An overview of the APK format specifically provided here: 11887 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11888 */ elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11889 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11890 const char *func_name) 11891 { 11892 struct zip_archive *archive; 11893 struct zip_entry entry; 11894 long ret; 11895 Elf *elf; 11896 11897 archive = zip_archive_open(archive_path); 11898 if (IS_ERR(archive)) { 11899 ret = PTR_ERR(archive); 11900 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11901 return ret; 11902 } 11903 11904 ret = zip_archive_find_entry(archive, file_name, &entry); 11905 if (ret) { 11906 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11907 archive_path, ret); 11908 goto out; 11909 } 11910 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11911 (unsigned long)entry.data_offset); 11912 11913 if (entry.compression) { 11914 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11915 archive_path); 11916 ret = -LIBBPF_ERRNO__FORMAT; 11917 goto out; 11918 } 11919 11920 elf = elf_memory((void *)entry.data, entry.data_length); 11921 if (!elf) { 11922 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11923 elf_errmsg(-1)); 11924 ret = -LIBBPF_ERRNO__LIBELF; 11925 goto out; 11926 } 11927 11928 ret = elf_find_func_offset(elf, file_name, func_name); 11929 if (ret > 0) { 11930 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11931 func_name, file_name, archive_path, entry.data_offset, ret, 11932 ret + entry.data_offset); 11933 ret += entry.data_offset; 11934 } 11935 elf_end(elf); 11936 11937 out: 11938 zip_archive_close(archive); 11939 return ret; 11940 } 11941 arch_specific_lib_paths(void)11942 static const char *arch_specific_lib_paths(void) 11943 { 11944 /* 11945 * Based on https://packages.debian.org/sid/libc6. 11946 * 11947 * Assume that the traced program is built for the same architecture 11948 * as libbpf, which should cover the vast majority of cases. 11949 */ 11950 #if defined(__x86_64__) 11951 return "/lib/x86_64-linux-gnu"; 11952 #elif defined(__i386__) 11953 return "/lib/i386-linux-gnu"; 11954 #elif defined(__s390x__) 11955 return "/lib/s390x-linux-gnu"; 11956 #elif defined(__s390__) 11957 return "/lib/s390-linux-gnu"; 11958 #elif defined(__arm__) && defined(__SOFTFP__) 11959 return "/lib/arm-linux-gnueabi"; 11960 #elif defined(__arm__) && !defined(__SOFTFP__) 11961 return "/lib/arm-linux-gnueabihf"; 11962 #elif defined(__aarch64__) 11963 return "/lib/aarch64-linux-gnu"; 11964 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11965 return "/lib/mips64el-linux-gnuabi64"; 11966 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11967 return "/lib/mipsel-linux-gnu"; 11968 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11969 return "/lib/powerpc64le-linux-gnu"; 11970 #elif defined(__sparc__) && defined(__arch64__) 11971 return "/lib/sparc64-linux-gnu"; 11972 #elif defined(__riscv) && __riscv_xlen == 64 11973 return "/lib/riscv64-linux-gnu"; 11974 #else 11975 return NULL; 11976 #endif 11977 } 11978 11979 /* Get full path to program/shared library. */ resolve_full_path(const char * file,char * result,size_t result_sz)11980 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11981 { 11982 const char *search_paths[3] = {}; 11983 int i, perm; 11984 11985 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11986 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11987 search_paths[1] = "/usr/lib64:/usr/lib"; 11988 search_paths[2] = arch_specific_lib_paths(); 11989 perm = R_OK; 11990 } else { 11991 search_paths[0] = getenv("PATH"); 11992 search_paths[1] = "/usr/bin:/usr/sbin"; 11993 perm = R_OK | X_OK; 11994 } 11995 11996 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11997 const char *s; 11998 11999 if (!search_paths[i]) 12000 continue; 12001 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12002 char *next_path; 12003 int seg_len; 12004 12005 if (s[0] == ':') 12006 s++; 12007 next_path = strchr(s, ':'); 12008 seg_len = next_path ? next_path - s : strlen(s); 12009 if (!seg_len) 12010 continue; 12011 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12012 /* ensure it has required permissions */ 12013 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12014 continue; 12015 pr_debug("resolved '%s' to '%s'\n", file, result); 12016 return 0; 12017 } 12018 } 12019 return -ENOENT; 12020 } 12021 12022 struct bpf_link * bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)12023 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12024 pid_t pid, 12025 const char *path, 12026 const char *func_pattern, 12027 const struct bpf_uprobe_multi_opts *opts) 12028 { 12029 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12030 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12031 unsigned long *resolved_offsets = NULL; 12032 enum bpf_attach_type attach_type; 12033 int err = 0, link_fd, prog_fd; 12034 struct bpf_link *link = NULL; 12035 char full_path[PATH_MAX]; 12036 bool retprobe, session; 12037 const __u64 *cookies; 12038 const char **syms; 12039 size_t cnt; 12040 12041 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12042 return libbpf_err_ptr(-EINVAL); 12043 12044 prog_fd = bpf_program__fd(prog); 12045 if (prog_fd < 0) { 12046 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12047 prog->name); 12048 return libbpf_err_ptr(-EINVAL); 12049 } 12050 12051 syms = OPTS_GET(opts, syms, NULL); 12052 offsets = OPTS_GET(opts, offsets, NULL); 12053 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12054 cookies = OPTS_GET(opts, cookies, NULL); 12055 cnt = OPTS_GET(opts, cnt, 0); 12056 retprobe = OPTS_GET(opts, retprobe, false); 12057 session = OPTS_GET(opts, session, false); 12058 12059 /* 12060 * User can specify 2 mutually exclusive set of inputs: 12061 * 12062 * 1) use only path/func_pattern/pid arguments 12063 * 12064 * 2) use path/pid with allowed combinations of: 12065 * syms/offsets/ref_ctr_offsets/cookies/cnt 12066 * 12067 * - syms and offsets are mutually exclusive 12068 * - ref_ctr_offsets and cookies are optional 12069 * 12070 * Any other usage results in error. 12071 */ 12072 12073 if (!path) 12074 return libbpf_err_ptr(-EINVAL); 12075 if (!func_pattern && cnt == 0) 12076 return libbpf_err_ptr(-EINVAL); 12077 12078 if (func_pattern) { 12079 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12080 return libbpf_err_ptr(-EINVAL); 12081 } else { 12082 if (!!syms == !!offsets) 12083 return libbpf_err_ptr(-EINVAL); 12084 } 12085 12086 if (retprobe && session) 12087 return libbpf_err_ptr(-EINVAL); 12088 12089 if (func_pattern) { 12090 if (!strchr(path, '/')) { 12091 err = resolve_full_path(path, full_path, sizeof(full_path)); 12092 if (err) { 12093 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12094 prog->name, path, errstr(err)); 12095 return libbpf_err_ptr(err); 12096 } 12097 path = full_path; 12098 } 12099 12100 err = elf_resolve_pattern_offsets(path, func_pattern, 12101 &resolved_offsets, &cnt); 12102 if (err < 0) 12103 return libbpf_err_ptr(err); 12104 offsets = resolved_offsets; 12105 } else if (syms) { 12106 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12107 if (err < 0) 12108 return libbpf_err_ptr(err); 12109 offsets = resolved_offsets; 12110 } 12111 12112 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12113 12114 lopts.uprobe_multi.path = path; 12115 lopts.uprobe_multi.offsets = offsets; 12116 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12117 lopts.uprobe_multi.cookies = cookies; 12118 lopts.uprobe_multi.cnt = cnt; 12119 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12120 12121 if (pid == 0) 12122 pid = getpid(); 12123 if (pid > 0) 12124 lopts.uprobe_multi.pid = pid; 12125 12126 link = calloc(1, sizeof(*link)); 12127 if (!link) { 12128 err = -ENOMEM; 12129 goto error; 12130 } 12131 link->detach = &bpf_link__detach_fd; 12132 12133 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12134 if (link_fd < 0) { 12135 err = -errno; 12136 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12137 prog->name, errstr(err)); 12138 goto error; 12139 } 12140 link->fd = link_fd; 12141 free(resolved_offsets); 12142 return link; 12143 12144 error: 12145 free(resolved_offsets); 12146 free(link); 12147 return libbpf_err_ptr(err); 12148 } 12149 12150 LIBBPF_API struct bpf_link * bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)12151 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12152 const char *binary_path, size_t func_offset, 12153 const struct bpf_uprobe_opts *opts) 12154 { 12155 const char *archive_path = NULL, *archive_sep = NULL; 12156 char *legacy_probe = NULL; 12157 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12158 enum probe_attach_mode attach_mode; 12159 char full_path[PATH_MAX]; 12160 struct bpf_link *link; 12161 size_t ref_ctr_off; 12162 int pfd, err; 12163 bool retprobe, legacy; 12164 const char *func_name; 12165 12166 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12167 return libbpf_err_ptr(-EINVAL); 12168 12169 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12170 retprobe = OPTS_GET(opts, retprobe, false); 12171 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12172 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12173 12174 if (!binary_path) 12175 return libbpf_err_ptr(-EINVAL); 12176 12177 /* Check if "binary_path" refers to an archive. */ 12178 archive_sep = strstr(binary_path, "!/"); 12179 if (archive_sep) { 12180 full_path[0] = '\0'; 12181 libbpf_strlcpy(full_path, binary_path, 12182 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12183 archive_path = full_path; 12184 binary_path = archive_sep + 2; 12185 } else if (!strchr(binary_path, '/')) { 12186 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12187 if (err) { 12188 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12189 prog->name, binary_path, errstr(err)); 12190 return libbpf_err_ptr(err); 12191 } 12192 binary_path = full_path; 12193 } 12194 func_name = OPTS_GET(opts, func_name, NULL); 12195 if (func_name) { 12196 long sym_off; 12197 12198 if (archive_path) { 12199 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12200 func_name); 12201 binary_path = archive_path; 12202 } else { 12203 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12204 } 12205 if (sym_off < 0) 12206 return libbpf_err_ptr(sym_off); 12207 func_offset += sym_off; 12208 } 12209 12210 legacy = determine_uprobe_perf_type() < 0; 12211 switch (attach_mode) { 12212 case PROBE_ATTACH_MODE_LEGACY: 12213 legacy = true; 12214 pe_opts.force_ioctl_attach = true; 12215 break; 12216 case PROBE_ATTACH_MODE_PERF: 12217 if (legacy) 12218 return libbpf_err_ptr(-ENOTSUP); 12219 pe_opts.force_ioctl_attach = true; 12220 break; 12221 case PROBE_ATTACH_MODE_LINK: 12222 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12223 return libbpf_err_ptr(-ENOTSUP); 12224 break; 12225 case PROBE_ATTACH_MODE_DEFAULT: 12226 break; 12227 default: 12228 return libbpf_err_ptr(-EINVAL); 12229 } 12230 12231 if (!legacy) { 12232 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12233 func_offset, pid, ref_ctr_off); 12234 } else { 12235 char probe_name[PATH_MAX + 64]; 12236 12237 if (ref_ctr_off) 12238 return libbpf_err_ptr(-EINVAL); 12239 12240 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 12241 binary_path, func_offset); 12242 12243 legacy_probe = strdup(probe_name); 12244 if (!legacy_probe) 12245 return libbpf_err_ptr(-ENOMEM); 12246 12247 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12248 binary_path, func_offset, pid); 12249 } 12250 if (pfd < 0) { 12251 err = -errno; 12252 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12253 prog->name, retprobe ? "uretprobe" : "uprobe", 12254 binary_path, func_offset, 12255 errstr(err)); 12256 goto err_out; 12257 } 12258 12259 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12260 err = libbpf_get_error(link); 12261 if (err) { 12262 close(pfd); 12263 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12264 prog->name, retprobe ? "uretprobe" : "uprobe", 12265 binary_path, func_offset, 12266 errstr(err)); 12267 goto err_clean_legacy; 12268 } 12269 if (legacy) { 12270 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12271 12272 perf_link->legacy_probe_name = legacy_probe; 12273 perf_link->legacy_is_kprobe = false; 12274 perf_link->legacy_is_retprobe = retprobe; 12275 } 12276 return link; 12277 12278 err_clean_legacy: 12279 if (legacy) 12280 remove_uprobe_event_legacy(legacy_probe, retprobe); 12281 err_out: 12282 free(legacy_probe); 12283 return libbpf_err_ptr(err); 12284 } 12285 12286 /* Format of u[ret]probe section definition supporting auto-attach: 12287 * u[ret]probe/binary:function[+offset] 12288 * 12289 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12290 * full binary path via bpf_program__attach_uprobe_opts. 12291 * 12292 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12293 * specified (and auto-attach is not possible) or the above format is specified for 12294 * auto-attach. 12295 */ attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12296 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12297 { 12298 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12299 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12300 int n, c, ret = -EINVAL; 12301 long offset = 0; 12302 12303 *link = NULL; 12304 12305 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12306 &probe_type, &binary_path, &func_name); 12307 switch (n) { 12308 case 1: 12309 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12310 ret = 0; 12311 break; 12312 case 2: 12313 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12314 prog->name, prog->sec_name); 12315 break; 12316 case 3: 12317 /* check if user specifies `+offset`, if yes, this should be 12318 * the last part of the string, make sure sscanf read to EOL 12319 */ 12320 func_off = strrchr(func_name, '+'); 12321 if (func_off) { 12322 n = sscanf(func_off, "+%li%n", &offset, &c); 12323 if (n == 1 && *(func_off + c) == '\0') 12324 func_off[0] = '\0'; 12325 else 12326 offset = 0; 12327 } 12328 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12329 strcmp(probe_type, "uretprobe.s") == 0; 12330 if (opts.retprobe && offset != 0) { 12331 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12332 prog->name); 12333 break; 12334 } 12335 opts.func_name = func_name; 12336 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12337 ret = libbpf_get_error(*link); 12338 break; 12339 default: 12340 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12341 prog->sec_name); 12342 break; 12343 } 12344 free(probe_type); 12345 free(binary_path); 12346 free(func_name); 12347 12348 return ret; 12349 } 12350 bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)12351 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12352 bool retprobe, pid_t pid, 12353 const char *binary_path, 12354 size_t func_offset) 12355 { 12356 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12357 12358 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12359 } 12360 bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)12361 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12362 pid_t pid, const char *binary_path, 12363 const char *usdt_provider, const char *usdt_name, 12364 const struct bpf_usdt_opts *opts) 12365 { 12366 char resolved_path[512]; 12367 struct bpf_object *obj = prog->obj; 12368 struct bpf_link *link; 12369 __u64 usdt_cookie; 12370 int err; 12371 12372 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12373 return libbpf_err_ptr(-EINVAL); 12374 12375 if (bpf_program__fd(prog) < 0) { 12376 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12377 prog->name); 12378 return libbpf_err_ptr(-EINVAL); 12379 } 12380 12381 if (!binary_path) 12382 return libbpf_err_ptr(-EINVAL); 12383 12384 if (!strchr(binary_path, '/')) { 12385 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12386 if (err) { 12387 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12388 prog->name, binary_path, errstr(err)); 12389 return libbpf_err_ptr(err); 12390 } 12391 binary_path = resolved_path; 12392 } 12393 12394 /* USDT manager is instantiated lazily on first USDT attach. It will 12395 * be destroyed together with BPF object in bpf_object__close(). 12396 */ 12397 if (IS_ERR(obj->usdt_man)) 12398 return libbpf_ptr(obj->usdt_man); 12399 if (!obj->usdt_man) { 12400 obj->usdt_man = usdt_manager_new(obj); 12401 if (IS_ERR(obj->usdt_man)) 12402 return libbpf_ptr(obj->usdt_man); 12403 } 12404 12405 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12406 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12407 usdt_provider, usdt_name, usdt_cookie); 12408 err = libbpf_get_error(link); 12409 if (err) 12410 return libbpf_err_ptr(err); 12411 return link; 12412 } 12413 attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12414 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12415 { 12416 char *path = NULL, *provider = NULL, *name = NULL; 12417 const char *sec_name; 12418 int n, err; 12419 12420 sec_name = bpf_program__section_name(prog); 12421 if (strcmp(sec_name, "usdt") == 0) { 12422 /* no auto-attach for just SEC("usdt") */ 12423 *link = NULL; 12424 return 0; 12425 } 12426 12427 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12428 if (n != 3) { 12429 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12430 sec_name); 12431 err = -EINVAL; 12432 } else { 12433 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12434 provider, name, NULL); 12435 err = libbpf_get_error(*link); 12436 } 12437 free(path); 12438 free(provider); 12439 free(name); 12440 return err; 12441 } 12442 determine_tracepoint_id(const char * tp_category,const char * tp_name)12443 static int determine_tracepoint_id(const char *tp_category, 12444 const char *tp_name) 12445 { 12446 char file[PATH_MAX]; 12447 int ret; 12448 12449 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12450 tracefs_path(), tp_category, tp_name); 12451 if (ret < 0) 12452 return -errno; 12453 if (ret >= sizeof(file)) { 12454 pr_debug("tracepoint %s/%s path is too long\n", 12455 tp_category, tp_name); 12456 return -E2BIG; 12457 } 12458 return parse_uint_from_file(file, "%d\n"); 12459 } 12460 perf_event_open_tracepoint(const char * tp_category,const char * tp_name)12461 static int perf_event_open_tracepoint(const char *tp_category, 12462 const char *tp_name) 12463 { 12464 const size_t attr_sz = sizeof(struct perf_event_attr); 12465 struct perf_event_attr attr; 12466 int tp_id, pfd, err; 12467 12468 tp_id = determine_tracepoint_id(tp_category, tp_name); 12469 if (tp_id < 0) { 12470 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12471 tp_category, tp_name, 12472 errstr(tp_id)); 12473 return tp_id; 12474 } 12475 12476 memset(&attr, 0, attr_sz); 12477 attr.type = PERF_TYPE_TRACEPOINT; 12478 attr.size = attr_sz; 12479 attr.config = tp_id; 12480 12481 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12482 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12483 if (pfd < 0) { 12484 err = -errno; 12485 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12486 tp_category, tp_name, 12487 errstr(err)); 12488 return err; 12489 } 12490 return pfd; 12491 } 12492 bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)12493 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12494 const char *tp_category, 12495 const char *tp_name, 12496 const struct bpf_tracepoint_opts *opts) 12497 { 12498 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12499 struct bpf_link *link; 12500 int pfd, err; 12501 12502 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12503 return libbpf_err_ptr(-EINVAL); 12504 12505 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12506 12507 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12508 if (pfd < 0) { 12509 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12510 prog->name, tp_category, tp_name, 12511 errstr(pfd)); 12512 return libbpf_err_ptr(pfd); 12513 } 12514 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12515 err = libbpf_get_error(link); 12516 if (err) { 12517 close(pfd); 12518 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12519 prog->name, tp_category, tp_name, 12520 errstr(err)); 12521 return libbpf_err_ptr(err); 12522 } 12523 return link; 12524 } 12525 bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)12526 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12527 const char *tp_category, 12528 const char *tp_name) 12529 { 12530 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12531 } 12532 attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12533 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12534 { 12535 char *sec_name, *tp_cat, *tp_name; 12536 12537 *link = NULL; 12538 12539 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12540 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12541 return 0; 12542 12543 sec_name = strdup(prog->sec_name); 12544 if (!sec_name) 12545 return -ENOMEM; 12546 12547 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12548 if (str_has_pfx(prog->sec_name, "tp/")) 12549 tp_cat = sec_name + sizeof("tp/") - 1; 12550 else 12551 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12552 tp_name = strchr(tp_cat, '/'); 12553 if (!tp_name) { 12554 free(sec_name); 12555 return -EINVAL; 12556 } 12557 *tp_name = '\0'; 12558 tp_name++; 12559 12560 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12561 free(sec_name); 12562 return libbpf_get_error(*link); 12563 } 12564 12565 struct bpf_link * bpf_program__attach_raw_tracepoint_opts(const struct bpf_program * prog,const char * tp_name,struct bpf_raw_tracepoint_opts * opts)12566 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12567 const char *tp_name, 12568 struct bpf_raw_tracepoint_opts *opts) 12569 { 12570 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12571 struct bpf_link *link; 12572 int prog_fd, pfd; 12573 12574 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12575 return libbpf_err_ptr(-EINVAL); 12576 12577 prog_fd = bpf_program__fd(prog); 12578 if (prog_fd < 0) { 12579 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12580 return libbpf_err_ptr(-EINVAL); 12581 } 12582 12583 link = calloc(1, sizeof(*link)); 12584 if (!link) 12585 return libbpf_err_ptr(-ENOMEM); 12586 link->detach = &bpf_link__detach_fd; 12587 12588 raw_opts.tp_name = tp_name; 12589 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12590 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12591 if (pfd < 0) { 12592 pfd = -errno; 12593 free(link); 12594 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12595 prog->name, tp_name, errstr(pfd)); 12596 return libbpf_err_ptr(pfd); 12597 } 12598 link->fd = pfd; 12599 return link; 12600 } 12601 bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)12602 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12603 const char *tp_name) 12604 { 12605 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12606 } 12607 attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12608 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12609 { 12610 static const char *const prefixes[] = { 12611 "raw_tp", 12612 "raw_tracepoint", 12613 "raw_tp.w", 12614 "raw_tracepoint.w", 12615 }; 12616 size_t i; 12617 const char *tp_name = NULL; 12618 12619 *link = NULL; 12620 12621 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12622 size_t pfx_len; 12623 12624 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12625 continue; 12626 12627 pfx_len = strlen(prefixes[i]); 12628 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12629 if (prog->sec_name[pfx_len] == '\0') 12630 return 0; 12631 12632 if (prog->sec_name[pfx_len] != '/') 12633 continue; 12634 12635 tp_name = prog->sec_name + pfx_len + 1; 12636 break; 12637 } 12638 12639 if (!tp_name) { 12640 pr_warn("prog '%s': invalid section name '%s'\n", 12641 prog->name, prog->sec_name); 12642 return -EINVAL; 12643 } 12644 12645 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12646 return libbpf_get_error(*link); 12647 } 12648 12649 /* Common logic for all BPF program types that attach to a btf_id */ bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12650 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12651 const struct bpf_trace_opts *opts) 12652 { 12653 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12654 struct bpf_link *link; 12655 int prog_fd, pfd; 12656 12657 if (!OPTS_VALID(opts, bpf_trace_opts)) 12658 return libbpf_err_ptr(-EINVAL); 12659 12660 prog_fd = bpf_program__fd(prog); 12661 if (prog_fd < 0) { 12662 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12663 return libbpf_err_ptr(-EINVAL); 12664 } 12665 12666 link = calloc(1, sizeof(*link)); 12667 if (!link) 12668 return libbpf_err_ptr(-ENOMEM); 12669 link->detach = &bpf_link__detach_fd; 12670 12671 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12672 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12673 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12674 if (pfd < 0) { 12675 pfd = -errno; 12676 free(link); 12677 pr_warn("prog '%s': failed to attach: %s\n", 12678 prog->name, errstr(pfd)); 12679 return libbpf_err_ptr(pfd); 12680 } 12681 link->fd = pfd; 12682 return link; 12683 } 12684 bpf_program__attach_trace(const struct bpf_program * prog)12685 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12686 { 12687 return bpf_program__attach_btf_id(prog, NULL); 12688 } 12689 bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12690 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12691 const struct bpf_trace_opts *opts) 12692 { 12693 return bpf_program__attach_btf_id(prog, opts); 12694 } 12695 bpf_program__attach_lsm(const struct bpf_program * prog)12696 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12697 { 12698 return bpf_program__attach_btf_id(prog, NULL); 12699 } 12700 attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12701 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12702 { 12703 *link = bpf_program__attach_trace(prog); 12704 return libbpf_get_error(*link); 12705 } 12706 attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12707 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12708 { 12709 *link = bpf_program__attach_lsm(prog); 12710 return libbpf_get_error(*link); 12711 } 12712 12713 static struct bpf_link * bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)12714 bpf_program_attach_fd(const struct bpf_program *prog, 12715 int target_fd, const char *target_name, 12716 const struct bpf_link_create_opts *opts) 12717 { 12718 enum bpf_attach_type attach_type; 12719 struct bpf_link *link; 12720 int prog_fd, link_fd; 12721 12722 prog_fd = bpf_program__fd(prog); 12723 if (prog_fd < 0) { 12724 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12725 return libbpf_err_ptr(-EINVAL); 12726 } 12727 12728 link = calloc(1, sizeof(*link)); 12729 if (!link) 12730 return libbpf_err_ptr(-ENOMEM); 12731 link->detach = &bpf_link__detach_fd; 12732 12733 attach_type = bpf_program__expected_attach_type(prog); 12734 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12735 if (link_fd < 0) { 12736 link_fd = -errno; 12737 free(link); 12738 pr_warn("prog '%s': failed to attach to %s: %s\n", 12739 prog->name, target_name, 12740 errstr(link_fd)); 12741 return libbpf_err_ptr(link_fd); 12742 } 12743 link->fd = link_fd; 12744 return link; 12745 } 12746 12747 struct bpf_link * bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)12748 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12749 { 12750 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12751 } 12752 12753 struct bpf_link * bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)12754 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12755 { 12756 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12757 } 12758 12759 struct bpf_link * bpf_program__attach_sockmap(const struct bpf_program * prog,int map_fd)12760 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12761 { 12762 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12763 } 12764 bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)12765 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12766 { 12767 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12768 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12769 } 12770 12771 struct bpf_link * bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)12772 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12773 const struct bpf_tcx_opts *opts) 12774 { 12775 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12776 __u32 relative_id; 12777 int relative_fd; 12778 12779 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12780 return libbpf_err_ptr(-EINVAL); 12781 12782 relative_id = OPTS_GET(opts, relative_id, 0); 12783 relative_fd = OPTS_GET(opts, relative_fd, 0); 12784 12785 /* validate we don't have unexpected combinations of non-zero fields */ 12786 if (!ifindex) { 12787 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12788 prog->name); 12789 return libbpf_err_ptr(-EINVAL); 12790 } 12791 if (relative_fd && relative_id) { 12792 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12793 prog->name); 12794 return libbpf_err_ptr(-EINVAL); 12795 } 12796 12797 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12798 link_create_opts.tcx.relative_fd = relative_fd; 12799 link_create_opts.tcx.relative_id = relative_id; 12800 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12801 12802 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12803 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12804 } 12805 12806 struct bpf_link * bpf_program__attach_netkit(const struct bpf_program * prog,int ifindex,const struct bpf_netkit_opts * opts)12807 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12808 const struct bpf_netkit_opts *opts) 12809 { 12810 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12811 __u32 relative_id; 12812 int relative_fd; 12813 12814 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12815 return libbpf_err_ptr(-EINVAL); 12816 12817 relative_id = OPTS_GET(opts, relative_id, 0); 12818 relative_fd = OPTS_GET(opts, relative_fd, 0); 12819 12820 /* validate we don't have unexpected combinations of non-zero fields */ 12821 if (!ifindex) { 12822 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12823 prog->name); 12824 return libbpf_err_ptr(-EINVAL); 12825 } 12826 if (relative_fd && relative_id) { 12827 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12828 prog->name); 12829 return libbpf_err_ptr(-EINVAL); 12830 } 12831 12832 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12833 link_create_opts.netkit.relative_fd = relative_fd; 12834 link_create_opts.netkit.relative_id = relative_id; 12835 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12836 12837 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12838 } 12839 bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12840 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12841 int target_fd, 12842 const char *attach_func_name) 12843 { 12844 int btf_id; 12845 12846 if (!!target_fd != !!attach_func_name) { 12847 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12848 prog->name); 12849 return libbpf_err_ptr(-EINVAL); 12850 } 12851 12852 if (prog->type != BPF_PROG_TYPE_EXT) { 12853 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 12854 prog->name); 12855 return libbpf_err_ptr(-EINVAL); 12856 } 12857 12858 if (target_fd) { 12859 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12860 12861 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12862 if (btf_id < 0) 12863 return libbpf_err_ptr(btf_id); 12864 12865 target_opts.target_btf_id = btf_id; 12866 12867 return bpf_program_attach_fd(prog, target_fd, "freplace", 12868 &target_opts); 12869 } else { 12870 /* no target, so use raw_tracepoint_open for compatibility 12871 * with old kernels 12872 */ 12873 return bpf_program__attach_trace(prog); 12874 } 12875 } 12876 12877 struct bpf_link * bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12878 bpf_program__attach_iter(const struct bpf_program *prog, 12879 const struct bpf_iter_attach_opts *opts) 12880 { 12881 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12882 struct bpf_link *link; 12883 int prog_fd, link_fd; 12884 __u32 target_fd = 0; 12885 12886 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12887 return libbpf_err_ptr(-EINVAL); 12888 12889 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12890 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12891 12892 prog_fd = bpf_program__fd(prog); 12893 if (prog_fd < 0) { 12894 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12895 return libbpf_err_ptr(-EINVAL); 12896 } 12897 12898 link = calloc(1, sizeof(*link)); 12899 if (!link) 12900 return libbpf_err_ptr(-ENOMEM); 12901 link->detach = &bpf_link__detach_fd; 12902 12903 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12904 &link_create_opts); 12905 if (link_fd < 0) { 12906 link_fd = -errno; 12907 free(link); 12908 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12909 prog->name, errstr(link_fd)); 12910 return libbpf_err_ptr(link_fd); 12911 } 12912 link->fd = link_fd; 12913 return link; 12914 } 12915 attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12916 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12917 { 12918 *link = bpf_program__attach_iter(prog, NULL); 12919 return libbpf_get_error(*link); 12920 } 12921 bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12922 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12923 const struct bpf_netfilter_opts *opts) 12924 { 12925 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12926 struct bpf_link *link; 12927 int prog_fd, link_fd; 12928 12929 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12930 return libbpf_err_ptr(-EINVAL); 12931 12932 prog_fd = bpf_program__fd(prog); 12933 if (prog_fd < 0) { 12934 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12935 return libbpf_err_ptr(-EINVAL); 12936 } 12937 12938 link = calloc(1, sizeof(*link)); 12939 if (!link) 12940 return libbpf_err_ptr(-ENOMEM); 12941 12942 link->detach = &bpf_link__detach_fd; 12943 12944 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12945 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12946 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12947 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12948 12949 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12950 if (link_fd < 0) { 12951 link_fd = -errno; 12952 free(link); 12953 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12954 prog->name, errstr(link_fd)); 12955 return libbpf_err_ptr(link_fd); 12956 } 12957 link->fd = link_fd; 12958 12959 return link; 12960 } 12961 bpf_program__attach(const struct bpf_program * prog)12962 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12963 { 12964 struct bpf_link *link = NULL; 12965 int err; 12966 12967 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12968 return libbpf_err_ptr(-EOPNOTSUPP); 12969 12970 if (bpf_program__fd(prog) < 0) { 12971 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12972 prog->name); 12973 return libbpf_err_ptr(-EINVAL); 12974 } 12975 12976 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12977 if (err) 12978 return libbpf_err_ptr(err); 12979 12980 /* When calling bpf_program__attach() explicitly, auto-attach support 12981 * is expected to work, so NULL returned link is considered an error. 12982 * This is different for skeleton's attach, see comment in 12983 * bpf_object__attach_skeleton(). 12984 */ 12985 if (!link) 12986 return libbpf_err_ptr(-EOPNOTSUPP); 12987 12988 return link; 12989 } 12990 12991 struct bpf_link_struct_ops { 12992 struct bpf_link link; 12993 int map_fd; 12994 }; 12995 bpf_link__detach_struct_ops(struct bpf_link * link)12996 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12997 { 12998 struct bpf_link_struct_ops *st_link; 12999 __u32 zero = 0; 13000 13001 st_link = container_of(link, struct bpf_link_struct_ops, link); 13002 13003 if (st_link->map_fd < 0) 13004 /* w/o a real link */ 13005 return bpf_map_delete_elem(link->fd, &zero); 13006 13007 return close(link->fd); 13008 } 13009 bpf_map__attach_struct_ops(const struct bpf_map * map)13010 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13011 { 13012 struct bpf_link_struct_ops *link; 13013 __u32 zero = 0; 13014 int err, fd; 13015 13016 if (!bpf_map__is_struct_ops(map)) { 13017 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13018 return libbpf_err_ptr(-EINVAL); 13019 } 13020 13021 if (map->fd < 0) { 13022 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13023 return libbpf_err_ptr(-EINVAL); 13024 } 13025 13026 link = calloc(1, sizeof(*link)); 13027 if (!link) 13028 return libbpf_err_ptr(-EINVAL); 13029 13030 /* kern_vdata should be prepared during the loading phase. */ 13031 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13032 /* It can be EBUSY if the map has been used to create or 13033 * update a link before. We don't allow updating the value of 13034 * a struct_ops once it is set. That ensures that the value 13035 * never changed. So, it is safe to skip EBUSY. 13036 */ 13037 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13038 free(link); 13039 return libbpf_err_ptr(err); 13040 } 13041 13042 link->link.detach = bpf_link__detach_struct_ops; 13043 13044 if (!(map->def.map_flags & BPF_F_LINK)) { 13045 /* w/o a real link */ 13046 link->link.fd = map->fd; 13047 link->map_fd = -1; 13048 return &link->link; 13049 } 13050 13051 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13052 if (fd < 0) { 13053 free(link); 13054 return libbpf_err_ptr(fd); 13055 } 13056 13057 link->link.fd = fd; 13058 link->map_fd = map->fd; 13059 13060 return &link->link; 13061 } 13062 13063 /* 13064 * Swap the back struct_ops of a link with a new struct_ops map. 13065 */ bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)13066 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13067 { 13068 struct bpf_link_struct_ops *st_ops_link; 13069 __u32 zero = 0; 13070 int err; 13071 13072 if (!bpf_map__is_struct_ops(map)) 13073 return -EINVAL; 13074 13075 if (map->fd < 0) { 13076 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13077 return -EINVAL; 13078 } 13079 13080 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13081 /* Ensure the type of a link is correct */ 13082 if (st_ops_link->map_fd < 0) 13083 return -EINVAL; 13084 13085 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13086 /* It can be EBUSY if the map has been used to create or 13087 * update a link before. We don't allow updating the value of 13088 * a struct_ops once it is set. That ensures that the value 13089 * never changed. So, it is safe to skip EBUSY. 13090 */ 13091 if (err && err != -EBUSY) 13092 return err; 13093 13094 err = bpf_link_update(link->fd, map->fd, NULL); 13095 if (err < 0) 13096 return err; 13097 13098 st_ops_link->map_fd = map->fd; 13099 13100 return 0; 13101 } 13102 13103 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13104 void *private_data); 13105 13106 static enum bpf_perf_event_ret perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)13107 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13108 void **copy_mem, size_t *copy_size, 13109 bpf_perf_event_print_t fn, void *private_data) 13110 { 13111 struct perf_event_mmap_page *header = mmap_mem; 13112 __u64 data_head = ring_buffer_read_head(header); 13113 __u64 data_tail = header->data_tail; 13114 void *base = ((__u8 *)header) + page_size; 13115 int ret = LIBBPF_PERF_EVENT_CONT; 13116 struct perf_event_header *ehdr; 13117 size_t ehdr_size; 13118 13119 while (data_head != data_tail) { 13120 ehdr = base + (data_tail & (mmap_size - 1)); 13121 ehdr_size = ehdr->size; 13122 13123 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13124 void *copy_start = ehdr; 13125 size_t len_first = base + mmap_size - copy_start; 13126 size_t len_secnd = ehdr_size - len_first; 13127 13128 if (*copy_size < ehdr_size) { 13129 free(*copy_mem); 13130 *copy_mem = malloc(ehdr_size); 13131 if (!*copy_mem) { 13132 *copy_size = 0; 13133 ret = LIBBPF_PERF_EVENT_ERROR; 13134 break; 13135 } 13136 *copy_size = ehdr_size; 13137 } 13138 13139 memcpy(*copy_mem, copy_start, len_first); 13140 memcpy(*copy_mem + len_first, base, len_secnd); 13141 ehdr = *copy_mem; 13142 } 13143 13144 ret = fn(ehdr, private_data); 13145 data_tail += ehdr_size; 13146 if (ret != LIBBPF_PERF_EVENT_CONT) 13147 break; 13148 } 13149 13150 ring_buffer_write_tail(header, data_tail); 13151 return libbpf_err(ret); 13152 } 13153 13154 struct perf_buffer; 13155 13156 struct perf_buffer_params { 13157 struct perf_event_attr *attr; 13158 /* if event_cb is specified, it takes precendence */ 13159 perf_buffer_event_fn event_cb; 13160 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13161 perf_buffer_sample_fn sample_cb; 13162 perf_buffer_lost_fn lost_cb; 13163 void *ctx; 13164 int cpu_cnt; 13165 int *cpus; 13166 int *map_keys; 13167 }; 13168 13169 struct perf_cpu_buf { 13170 struct perf_buffer *pb; 13171 void *base; /* mmap()'ed memory */ 13172 void *buf; /* for reconstructing segmented data */ 13173 size_t buf_size; 13174 int fd; 13175 int cpu; 13176 int map_key; 13177 }; 13178 13179 struct perf_buffer { 13180 perf_buffer_event_fn event_cb; 13181 perf_buffer_sample_fn sample_cb; 13182 perf_buffer_lost_fn lost_cb; 13183 void *ctx; /* passed into callbacks */ 13184 13185 size_t page_size; 13186 size_t mmap_size; 13187 struct perf_cpu_buf **cpu_bufs; 13188 struct epoll_event *events; 13189 int cpu_cnt; /* number of allocated CPU buffers */ 13190 int epoll_fd; /* perf event FD */ 13191 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13192 }; 13193 perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13194 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13195 struct perf_cpu_buf *cpu_buf) 13196 { 13197 if (!cpu_buf) 13198 return; 13199 if (cpu_buf->base && 13200 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13201 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13202 if (cpu_buf->fd >= 0) { 13203 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13204 close(cpu_buf->fd); 13205 } 13206 free(cpu_buf->buf); 13207 free(cpu_buf); 13208 } 13209 perf_buffer__free(struct perf_buffer * pb)13210 void perf_buffer__free(struct perf_buffer *pb) 13211 { 13212 int i; 13213 13214 if (IS_ERR_OR_NULL(pb)) 13215 return; 13216 if (pb->cpu_bufs) { 13217 for (i = 0; i < pb->cpu_cnt; i++) { 13218 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13219 13220 if (!cpu_buf) 13221 continue; 13222 13223 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13224 perf_buffer__free_cpu_buf(pb, cpu_buf); 13225 } 13226 free(pb->cpu_bufs); 13227 } 13228 if (pb->epoll_fd >= 0) 13229 close(pb->epoll_fd); 13230 free(pb->events); 13231 free(pb); 13232 } 13233 13234 static struct perf_cpu_buf * perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)13235 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13236 int cpu, int map_key) 13237 { 13238 struct perf_cpu_buf *cpu_buf; 13239 int err; 13240 13241 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13242 if (!cpu_buf) 13243 return ERR_PTR(-ENOMEM); 13244 13245 cpu_buf->pb = pb; 13246 cpu_buf->cpu = cpu; 13247 cpu_buf->map_key = map_key; 13248 13249 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13250 -1, PERF_FLAG_FD_CLOEXEC); 13251 if (cpu_buf->fd < 0) { 13252 err = -errno; 13253 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13254 cpu, errstr(err)); 13255 goto error; 13256 } 13257 13258 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13259 PROT_READ | PROT_WRITE, MAP_SHARED, 13260 cpu_buf->fd, 0); 13261 if (cpu_buf->base == MAP_FAILED) { 13262 cpu_buf->base = NULL; 13263 err = -errno; 13264 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13265 cpu, errstr(err)); 13266 goto error; 13267 } 13268 13269 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13270 err = -errno; 13271 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13272 cpu, errstr(err)); 13273 goto error; 13274 } 13275 13276 return cpu_buf; 13277 13278 error: 13279 perf_buffer__free_cpu_buf(pb, cpu_buf); 13280 return (struct perf_cpu_buf *)ERR_PTR(err); 13281 } 13282 13283 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13284 struct perf_buffer_params *p); 13285 perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)13286 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13287 perf_buffer_sample_fn sample_cb, 13288 perf_buffer_lost_fn lost_cb, 13289 void *ctx, 13290 const struct perf_buffer_opts *opts) 13291 { 13292 const size_t attr_sz = sizeof(struct perf_event_attr); 13293 struct perf_buffer_params p = {}; 13294 struct perf_event_attr attr; 13295 __u32 sample_period; 13296 13297 if (!OPTS_VALID(opts, perf_buffer_opts)) 13298 return libbpf_err_ptr(-EINVAL); 13299 13300 sample_period = OPTS_GET(opts, sample_period, 1); 13301 if (!sample_period) 13302 sample_period = 1; 13303 13304 memset(&attr, 0, attr_sz); 13305 attr.size = attr_sz; 13306 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13307 attr.type = PERF_TYPE_SOFTWARE; 13308 attr.sample_type = PERF_SAMPLE_RAW; 13309 attr.sample_period = sample_period; 13310 attr.wakeup_events = sample_period; 13311 13312 p.attr = &attr; 13313 p.sample_cb = sample_cb; 13314 p.lost_cb = lost_cb; 13315 p.ctx = ctx; 13316 13317 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13318 } 13319 perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)13320 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13321 struct perf_event_attr *attr, 13322 perf_buffer_event_fn event_cb, void *ctx, 13323 const struct perf_buffer_raw_opts *opts) 13324 { 13325 struct perf_buffer_params p = {}; 13326 13327 if (!attr) 13328 return libbpf_err_ptr(-EINVAL); 13329 13330 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13331 return libbpf_err_ptr(-EINVAL); 13332 13333 p.attr = attr; 13334 p.event_cb = event_cb; 13335 p.ctx = ctx; 13336 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13337 p.cpus = OPTS_GET(opts, cpus, NULL); 13338 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13339 13340 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13341 } 13342 __perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)13343 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13344 struct perf_buffer_params *p) 13345 { 13346 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13347 struct bpf_map_info map; 13348 struct perf_buffer *pb; 13349 bool *online = NULL; 13350 __u32 map_info_len; 13351 int err, i, j, n; 13352 13353 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13354 pr_warn("page count should be power of two, but is %zu\n", 13355 page_cnt); 13356 return ERR_PTR(-EINVAL); 13357 } 13358 13359 /* best-effort sanity checks */ 13360 memset(&map, 0, sizeof(map)); 13361 map_info_len = sizeof(map); 13362 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13363 if (err) { 13364 err = -errno; 13365 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13366 * -EBADFD, -EFAULT, or -E2BIG on real error 13367 */ 13368 if (err != -EINVAL) { 13369 pr_warn("failed to get map info for map FD %d: %s\n", 13370 map_fd, errstr(err)); 13371 return ERR_PTR(err); 13372 } 13373 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13374 map_fd); 13375 } else { 13376 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13377 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13378 map.name); 13379 return ERR_PTR(-EINVAL); 13380 } 13381 } 13382 13383 pb = calloc(1, sizeof(*pb)); 13384 if (!pb) 13385 return ERR_PTR(-ENOMEM); 13386 13387 pb->event_cb = p->event_cb; 13388 pb->sample_cb = p->sample_cb; 13389 pb->lost_cb = p->lost_cb; 13390 pb->ctx = p->ctx; 13391 13392 pb->page_size = getpagesize(); 13393 pb->mmap_size = pb->page_size * page_cnt; 13394 pb->map_fd = map_fd; 13395 13396 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13397 if (pb->epoll_fd < 0) { 13398 err = -errno; 13399 pr_warn("failed to create epoll instance: %s\n", 13400 errstr(err)); 13401 goto error; 13402 } 13403 13404 if (p->cpu_cnt > 0) { 13405 pb->cpu_cnt = p->cpu_cnt; 13406 } else { 13407 pb->cpu_cnt = libbpf_num_possible_cpus(); 13408 if (pb->cpu_cnt < 0) { 13409 err = pb->cpu_cnt; 13410 goto error; 13411 } 13412 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13413 pb->cpu_cnt = map.max_entries; 13414 } 13415 13416 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13417 if (!pb->events) { 13418 err = -ENOMEM; 13419 pr_warn("failed to allocate events: out of memory\n"); 13420 goto error; 13421 } 13422 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13423 if (!pb->cpu_bufs) { 13424 err = -ENOMEM; 13425 pr_warn("failed to allocate buffers: out of memory\n"); 13426 goto error; 13427 } 13428 13429 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13430 if (err) { 13431 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13432 goto error; 13433 } 13434 13435 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13436 struct perf_cpu_buf *cpu_buf; 13437 int cpu, map_key; 13438 13439 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13440 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13441 13442 /* in case user didn't explicitly requested particular CPUs to 13443 * be attached to, skip offline/not present CPUs 13444 */ 13445 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13446 continue; 13447 13448 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13449 if (IS_ERR(cpu_buf)) { 13450 err = PTR_ERR(cpu_buf); 13451 goto error; 13452 } 13453 13454 pb->cpu_bufs[j] = cpu_buf; 13455 13456 err = bpf_map_update_elem(pb->map_fd, &map_key, 13457 &cpu_buf->fd, 0); 13458 if (err) { 13459 err = -errno; 13460 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13461 cpu, map_key, cpu_buf->fd, 13462 errstr(err)); 13463 goto error; 13464 } 13465 13466 pb->events[j].events = EPOLLIN; 13467 pb->events[j].data.ptr = cpu_buf; 13468 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13469 &pb->events[j]) < 0) { 13470 err = -errno; 13471 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13472 cpu, cpu_buf->fd, 13473 errstr(err)); 13474 goto error; 13475 } 13476 j++; 13477 } 13478 pb->cpu_cnt = j; 13479 free(online); 13480 13481 return pb; 13482 13483 error: 13484 free(online); 13485 if (pb) 13486 perf_buffer__free(pb); 13487 return ERR_PTR(err); 13488 } 13489 13490 struct perf_sample_raw { 13491 struct perf_event_header header; 13492 uint32_t size; 13493 char data[]; 13494 }; 13495 13496 struct perf_sample_lost { 13497 struct perf_event_header header; 13498 uint64_t id; 13499 uint64_t lost; 13500 uint64_t sample_id; 13501 }; 13502 13503 static enum bpf_perf_event_ret perf_buffer__process_record(struct perf_event_header * e,void * ctx)13504 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13505 { 13506 struct perf_cpu_buf *cpu_buf = ctx; 13507 struct perf_buffer *pb = cpu_buf->pb; 13508 void *data = e; 13509 13510 /* user wants full control over parsing perf event */ 13511 if (pb->event_cb) 13512 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13513 13514 switch (e->type) { 13515 case PERF_RECORD_SAMPLE: { 13516 struct perf_sample_raw *s = data; 13517 13518 if (pb->sample_cb) 13519 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13520 break; 13521 } 13522 case PERF_RECORD_LOST: { 13523 struct perf_sample_lost *s = data; 13524 13525 if (pb->lost_cb) 13526 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13527 break; 13528 } 13529 default: 13530 pr_warn("unknown perf sample type %d\n", e->type); 13531 return LIBBPF_PERF_EVENT_ERROR; 13532 } 13533 return LIBBPF_PERF_EVENT_CONT; 13534 } 13535 perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13536 static int perf_buffer__process_records(struct perf_buffer *pb, 13537 struct perf_cpu_buf *cpu_buf) 13538 { 13539 enum bpf_perf_event_ret ret; 13540 13541 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13542 pb->page_size, &cpu_buf->buf, 13543 &cpu_buf->buf_size, 13544 perf_buffer__process_record, cpu_buf); 13545 if (ret != LIBBPF_PERF_EVENT_CONT) 13546 return ret; 13547 return 0; 13548 } 13549 perf_buffer__epoll_fd(const struct perf_buffer * pb)13550 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13551 { 13552 return pb->epoll_fd; 13553 } 13554 perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)13555 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13556 { 13557 int i, cnt, err; 13558 13559 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13560 if (cnt < 0) 13561 return -errno; 13562 13563 for (i = 0; i < cnt; i++) { 13564 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13565 13566 err = perf_buffer__process_records(pb, cpu_buf); 13567 if (err) { 13568 pr_warn("error while processing records: %s\n", errstr(err)); 13569 return libbpf_err(err); 13570 } 13571 } 13572 return cnt; 13573 } 13574 13575 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13576 * manager. 13577 */ perf_buffer__buffer_cnt(const struct perf_buffer * pb)13578 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13579 { 13580 return pb->cpu_cnt; 13581 } 13582 13583 /* 13584 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13585 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13586 * select()/poll()/epoll() Linux syscalls. 13587 */ perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)13588 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13589 { 13590 struct perf_cpu_buf *cpu_buf; 13591 13592 if (buf_idx >= pb->cpu_cnt) 13593 return libbpf_err(-EINVAL); 13594 13595 cpu_buf = pb->cpu_bufs[buf_idx]; 13596 if (!cpu_buf) 13597 return libbpf_err(-ENOENT); 13598 13599 return cpu_buf->fd; 13600 } 13601 perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)13602 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13603 { 13604 struct perf_cpu_buf *cpu_buf; 13605 13606 if (buf_idx >= pb->cpu_cnt) 13607 return libbpf_err(-EINVAL); 13608 13609 cpu_buf = pb->cpu_bufs[buf_idx]; 13610 if (!cpu_buf) 13611 return libbpf_err(-ENOENT); 13612 13613 *buf = cpu_buf->base; 13614 *buf_size = pb->mmap_size; 13615 return 0; 13616 } 13617 13618 /* 13619 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13620 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13621 * consume, do nothing and return success. 13622 * Returns: 13623 * - 0 on success; 13624 * - <0 on failure. 13625 */ perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)13626 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13627 { 13628 struct perf_cpu_buf *cpu_buf; 13629 13630 if (buf_idx >= pb->cpu_cnt) 13631 return libbpf_err(-EINVAL); 13632 13633 cpu_buf = pb->cpu_bufs[buf_idx]; 13634 if (!cpu_buf) 13635 return libbpf_err(-ENOENT); 13636 13637 return perf_buffer__process_records(pb, cpu_buf); 13638 } 13639 perf_buffer__consume(struct perf_buffer * pb)13640 int perf_buffer__consume(struct perf_buffer *pb) 13641 { 13642 int i, err; 13643 13644 for (i = 0; i < pb->cpu_cnt; i++) { 13645 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13646 13647 if (!cpu_buf) 13648 continue; 13649 13650 err = perf_buffer__process_records(pb, cpu_buf); 13651 if (err) { 13652 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13653 i, errstr(err)); 13654 return libbpf_err(err); 13655 } 13656 } 13657 return 0; 13658 } 13659 bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)13660 int bpf_program__set_attach_target(struct bpf_program *prog, 13661 int attach_prog_fd, 13662 const char *attach_func_name) 13663 { 13664 int btf_obj_fd = 0, btf_id = 0, err; 13665 13666 if (!prog || attach_prog_fd < 0) 13667 return libbpf_err(-EINVAL); 13668 13669 if (prog->obj->loaded) 13670 return libbpf_err(-EINVAL); 13671 13672 if (attach_prog_fd && !attach_func_name) { 13673 /* remember attach_prog_fd and let bpf_program__load() find 13674 * BTF ID during the program load 13675 */ 13676 prog->attach_prog_fd = attach_prog_fd; 13677 return 0; 13678 } 13679 13680 if (attach_prog_fd) { 13681 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13682 attach_prog_fd); 13683 if (btf_id < 0) 13684 return libbpf_err(btf_id); 13685 } else { 13686 if (!attach_func_name) 13687 return libbpf_err(-EINVAL); 13688 13689 /* load btf_vmlinux, if not yet */ 13690 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13691 if (err) 13692 return libbpf_err(err); 13693 err = find_kernel_btf_id(prog->obj, attach_func_name, 13694 prog->expected_attach_type, 13695 &btf_obj_fd, &btf_id); 13696 if (err) 13697 return libbpf_err(err); 13698 } 13699 13700 prog->attach_btf_id = btf_id; 13701 prog->attach_btf_obj_fd = btf_obj_fd; 13702 prog->attach_prog_fd = attach_prog_fd; 13703 return 0; 13704 } 13705 parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)13706 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13707 { 13708 int err = 0, n, len, start, end = -1; 13709 bool *tmp; 13710 13711 *mask = NULL; 13712 *mask_sz = 0; 13713 13714 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13715 while (*s) { 13716 if (*s == ',' || *s == '\n') { 13717 s++; 13718 continue; 13719 } 13720 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13721 if (n <= 0 || n > 2) { 13722 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13723 err = -EINVAL; 13724 goto cleanup; 13725 } else if (n == 1) { 13726 end = start; 13727 } 13728 if (start < 0 || start > end) { 13729 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13730 start, end, s); 13731 err = -EINVAL; 13732 goto cleanup; 13733 } 13734 tmp = realloc(*mask, end + 1); 13735 if (!tmp) { 13736 err = -ENOMEM; 13737 goto cleanup; 13738 } 13739 *mask = tmp; 13740 memset(tmp + *mask_sz, 0, start - *mask_sz); 13741 memset(tmp + start, 1, end - start + 1); 13742 *mask_sz = end + 1; 13743 s += len; 13744 } 13745 if (!*mask_sz) { 13746 pr_warn("Empty CPU range\n"); 13747 return -EINVAL; 13748 } 13749 return 0; 13750 cleanup: 13751 free(*mask); 13752 *mask = NULL; 13753 return err; 13754 } 13755 parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)13756 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13757 { 13758 int fd, err = 0, len; 13759 char buf[128]; 13760 13761 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13762 if (fd < 0) { 13763 err = -errno; 13764 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13765 return err; 13766 } 13767 len = read(fd, buf, sizeof(buf)); 13768 close(fd); 13769 if (len <= 0) { 13770 err = len ? -errno : -EINVAL; 13771 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13772 return err; 13773 } 13774 if (len >= sizeof(buf)) { 13775 pr_warn("CPU mask is too big in file %s\n", fcpu); 13776 return -E2BIG; 13777 } 13778 buf[len] = '\0'; 13779 13780 return parse_cpu_mask_str(buf, mask, mask_sz); 13781 } 13782 libbpf_num_possible_cpus(void)13783 int libbpf_num_possible_cpus(void) 13784 { 13785 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13786 static int cpus; 13787 int err, n, i, tmp_cpus; 13788 bool *mask; 13789 13790 tmp_cpus = READ_ONCE(cpus); 13791 if (tmp_cpus > 0) 13792 return tmp_cpus; 13793 13794 err = parse_cpu_mask_file(fcpu, &mask, &n); 13795 if (err) 13796 return libbpf_err(err); 13797 13798 tmp_cpus = 0; 13799 for (i = 0; i < n; i++) { 13800 if (mask[i]) 13801 tmp_cpus++; 13802 } 13803 free(mask); 13804 13805 WRITE_ONCE(cpus, tmp_cpus); 13806 return tmp_cpus; 13807 } 13808 populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt,size_t map_skel_sz)13809 static int populate_skeleton_maps(const struct bpf_object *obj, 13810 struct bpf_map_skeleton *maps, 13811 size_t map_cnt, size_t map_skel_sz) 13812 { 13813 int i; 13814 13815 for (i = 0; i < map_cnt; i++) { 13816 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13817 struct bpf_map **map = map_skel->map; 13818 const char *name = map_skel->name; 13819 void **mmaped = map_skel->mmaped; 13820 13821 *map = bpf_object__find_map_by_name(obj, name); 13822 if (!*map) { 13823 pr_warn("failed to find skeleton map '%s'\n", name); 13824 return -ESRCH; 13825 } 13826 13827 /* externs shouldn't be pre-setup from user code */ 13828 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13829 *mmaped = (*map)->mmaped; 13830 } 13831 return 0; 13832 } 13833 populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt,size_t prog_skel_sz)13834 static int populate_skeleton_progs(const struct bpf_object *obj, 13835 struct bpf_prog_skeleton *progs, 13836 size_t prog_cnt, size_t prog_skel_sz) 13837 { 13838 int i; 13839 13840 for (i = 0; i < prog_cnt; i++) { 13841 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13842 struct bpf_program **prog = prog_skel->prog; 13843 const char *name = prog_skel->name; 13844 13845 *prog = bpf_object__find_program_by_name(obj, name); 13846 if (!*prog) { 13847 pr_warn("failed to find skeleton program '%s'\n", name); 13848 return -ESRCH; 13849 } 13850 } 13851 return 0; 13852 } 13853 bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)13854 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13855 const struct bpf_object_open_opts *opts) 13856 { 13857 struct bpf_object *obj; 13858 int err; 13859 13860 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13861 if (IS_ERR(obj)) { 13862 err = PTR_ERR(obj); 13863 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 13864 s->name, errstr(err)); 13865 return libbpf_err(err); 13866 } 13867 13868 *s->obj = obj; 13869 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13870 if (err) { 13871 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 13872 return libbpf_err(err); 13873 } 13874 13875 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13876 if (err) { 13877 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 13878 return libbpf_err(err); 13879 } 13880 13881 return 0; 13882 } 13883 bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13884 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13885 { 13886 int err, len, var_idx, i; 13887 const char *var_name; 13888 const struct bpf_map *map; 13889 struct btf *btf; 13890 __u32 map_type_id; 13891 const struct btf_type *map_type, *var_type; 13892 const struct bpf_var_skeleton *var_skel; 13893 struct btf_var_secinfo *var; 13894 13895 if (!s->obj) 13896 return libbpf_err(-EINVAL); 13897 13898 btf = bpf_object__btf(s->obj); 13899 if (!btf) { 13900 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13901 bpf_object__name(s->obj)); 13902 return libbpf_err(-errno); 13903 } 13904 13905 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 13906 if (err) { 13907 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13908 return libbpf_err(err); 13909 } 13910 13911 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13912 if (err) { 13913 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13914 return libbpf_err(err); 13915 } 13916 13917 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13918 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 13919 map = *var_skel->map; 13920 map_type_id = bpf_map__btf_value_type_id(map); 13921 map_type = btf__type_by_id(btf, map_type_id); 13922 13923 if (!btf_is_datasec(map_type)) { 13924 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 13925 bpf_map__name(map), 13926 __btf_kind_str(btf_kind(map_type))); 13927 return libbpf_err(-EINVAL); 13928 } 13929 13930 len = btf_vlen(map_type); 13931 var = btf_var_secinfos(map_type); 13932 for (i = 0; i < len; i++, var++) { 13933 var_type = btf__type_by_id(btf, var->type); 13934 var_name = btf__name_by_offset(btf, var_type->name_off); 13935 if (strcmp(var_name, var_skel->name) == 0) { 13936 *var_skel->addr = map->mmaped + var->offset; 13937 break; 13938 } 13939 } 13940 } 13941 return 0; 13942 } 13943 bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13944 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13945 { 13946 if (!s) 13947 return; 13948 free(s->maps); 13949 free(s->progs); 13950 free(s->vars); 13951 free(s); 13952 } 13953 bpf_object__load_skeleton(struct bpf_object_skeleton * s)13954 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13955 { 13956 int i, err; 13957 13958 err = bpf_object__load(*s->obj); 13959 if (err) { 13960 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 13961 return libbpf_err(err); 13962 } 13963 13964 for (i = 0; i < s->map_cnt; i++) { 13965 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 13966 struct bpf_map *map = *map_skel->map; 13967 13968 if (!map_skel->mmaped) 13969 continue; 13970 13971 *map_skel->mmaped = map->mmaped; 13972 } 13973 13974 return 0; 13975 } 13976 bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13977 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13978 { 13979 int i, err; 13980 13981 for (i = 0; i < s->prog_cnt; i++) { 13982 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 13983 struct bpf_program *prog = *prog_skel->prog; 13984 struct bpf_link **link = prog_skel->link; 13985 13986 if (!prog->autoload || !prog->autoattach) 13987 continue; 13988 13989 /* auto-attaching not supported for this program */ 13990 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13991 continue; 13992 13993 /* if user already set the link manually, don't attempt auto-attach */ 13994 if (*link) 13995 continue; 13996 13997 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13998 if (err) { 13999 pr_warn("prog '%s': failed to auto-attach: %s\n", 14000 bpf_program__name(prog), errstr(err)); 14001 return libbpf_err(err); 14002 } 14003 14004 /* It's possible that for some SEC() definitions auto-attach 14005 * is supported in some cases (e.g., if definition completely 14006 * specifies target information), but is not in other cases. 14007 * SEC("uprobe") is one such case. If user specified target 14008 * binary and function name, such BPF program can be 14009 * auto-attached. But if not, it shouldn't trigger skeleton's 14010 * attach to fail. It should just be skipped. 14011 * attach_fn signals such case with returning 0 (no error) and 14012 * setting link to NULL. 14013 */ 14014 } 14015 14016 14017 for (i = 0; i < s->map_cnt; i++) { 14018 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14019 struct bpf_map *map = *map_skel->map; 14020 struct bpf_link **link; 14021 14022 if (!map->autocreate || !map->autoattach) 14023 continue; 14024 14025 /* only struct_ops maps can be attached */ 14026 if (!bpf_map__is_struct_ops(map)) 14027 continue; 14028 14029 /* skeleton is created with earlier version of bpftool, notify user */ 14030 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14031 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14032 bpf_map__name(map)); 14033 continue; 14034 } 14035 14036 link = map_skel->link; 14037 if (*link) 14038 continue; 14039 14040 *link = bpf_map__attach_struct_ops(map); 14041 if (!*link) { 14042 err = -errno; 14043 pr_warn("map '%s': failed to auto-attach: %s\n", 14044 bpf_map__name(map), errstr(err)); 14045 return libbpf_err(err); 14046 } 14047 } 14048 14049 return 0; 14050 } 14051 bpf_object__detach_skeleton(struct bpf_object_skeleton * s)14052 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14053 { 14054 int i; 14055 14056 for (i = 0; i < s->prog_cnt; i++) { 14057 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14058 struct bpf_link **link = prog_skel->link; 14059 14060 bpf_link__destroy(*link); 14061 *link = NULL; 14062 } 14063 14064 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14065 return; 14066 14067 for (i = 0; i < s->map_cnt; i++) { 14068 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14069 struct bpf_link **link = map_skel->link; 14070 14071 if (link) { 14072 bpf_link__destroy(*link); 14073 *link = NULL; 14074 } 14075 } 14076 } 14077 bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)14078 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14079 { 14080 if (!s) 14081 return; 14082 14083 bpf_object__detach_skeleton(s); 14084 if (s->obj) 14085 bpf_object__close(*s->obj); 14086 free(s->maps); 14087 free(s->progs); 14088 free(s); 14089 } 14090