xref: /linux/kernel/bpf/core.c (revision 015e7b0b0e8e51f7321ec2aafc1d7fc0a8a5536f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <crypto/sha1.h>
22 #include <linux/filter.h>
23 #include <linux/skbuff.h>
24 #include <linux/vmalloc.h>
25 #include <linux/prandom.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/overflow.h>
30 #include <linux/rbtree_latch.h>
31 #include <linux/kallsyms.h>
32 #include <linux/rcupdate.h>
33 #include <linux/perf_event.h>
34 #include <linux/extable.h>
35 #include <linux/log2.h>
36 #include <linux/bpf_verifier.h>
37 #include <linux/nodemask.h>
38 #include <linux/nospec.h>
39 #include <linux/bpf_mem_alloc.h>
40 #include <linux/memcontrol.h>
41 #include <linux/execmem.h>
42 #include <crypto/sha2.h>
43 
44 #include <asm/barrier.h>
45 #include <linux/unaligned.h>
46 
47 /* Registers */
48 #define BPF_R0	regs[BPF_REG_0]
49 #define BPF_R1	regs[BPF_REG_1]
50 #define BPF_R2	regs[BPF_REG_2]
51 #define BPF_R3	regs[BPF_REG_3]
52 #define BPF_R4	regs[BPF_REG_4]
53 #define BPF_R5	regs[BPF_REG_5]
54 #define BPF_R6	regs[BPF_REG_6]
55 #define BPF_R7	regs[BPF_REG_7]
56 #define BPF_R8	regs[BPF_REG_8]
57 #define BPF_R9	regs[BPF_REG_9]
58 #define BPF_R10	regs[BPF_REG_10]
59 
60 /* Named registers */
61 #define DST	regs[insn->dst_reg]
62 #define SRC	regs[insn->src_reg]
63 #define FP	regs[BPF_REG_FP]
64 #define AX	regs[BPF_REG_AX]
65 #define ARG1	regs[BPF_REG_ARG1]
66 #define CTX	regs[BPF_REG_CTX]
67 #define OFF	insn->off
68 #define IMM	insn->imm
69 
70 struct bpf_mem_alloc bpf_global_ma;
71 bool bpf_global_ma_set;
72 
73 /* No hurry in this branch
74  *
75  * Exported for the bpf jit load helper.
76  */
77 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
78 {
79 	u8 *ptr = NULL;
80 
81 	if (k >= SKF_NET_OFF) {
82 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
83 	} else if (k >= SKF_LL_OFF) {
84 		if (unlikely(!skb_mac_header_was_set(skb)))
85 			return NULL;
86 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
87 	}
88 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
89 		return ptr;
90 
91 	return NULL;
92 }
93 
94 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
95 enum page_size_enum {
96 	__PAGE_SIZE = PAGE_SIZE
97 };
98 
99 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
100 {
101 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
102 	struct bpf_prog_aux *aux;
103 	struct bpf_prog *fp;
104 
105 	size = round_up(size, __PAGE_SIZE);
106 	fp = __vmalloc(size, gfp_flags);
107 	if (fp == NULL)
108 		return NULL;
109 
110 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
111 	if (aux == NULL) {
112 		vfree(fp);
113 		return NULL;
114 	}
115 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
116 	if (!fp->active) {
117 		vfree(fp);
118 		kfree(aux);
119 		return NULL;
120 	}
121 
122 	fp->pages = size / PAGE_SIZE;
123 	fp->aux = aux;
124 	fp->aux->main_prog_aux = aux;
125 	fp->aux->prog = fp;
126 	fp->jit_requested = ebpf_jit_enabled();
127 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
128 #ifdef CONFIG_CGROUP_BPF
129 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
130 #endif
131 
132 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
133 #ifdef CONFIG_FINEIBT
134 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
135 #endif
136 	mutex_init(&fp->aux->used_maps_mutex);
137 	mutex_init(&fp->aux->ext_mutex);
138 	mutex_init(&fp->aux->dst_mutex);
139 
140 #ifdef CONFIG_BPF_SYSCALL
141 	bpf_prog_stream_init(fp);
142 #endif
143 
144 	return fp;
145 }
146 
147 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
148 {
149 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
150 	struct bpf_prog *prog;
151 	int cpu;
152 
153 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
154 	if (!prog)
155 		return NULL;
156 
157 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
158 	if (!prog->stats) {
159 		free_percpu(prog->active);
160 		kfree(prog->aux);
161 		vfree(prog);
162 		return NULL;
163 	}
164 
165 	for_each_possible_cpu(cpu) {
166 		struct bpf_prog_stats *pstats;
167 
168 		pstats = per_cpu_ptr(prog->stats, cpu);
169 		u64_stats_init(&pstats->syncp);
170 	}
171 	return prog;
172 }
173 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
174 
175 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
176 {
177 	if (!prog->aux->nr_linfo || !prog->jit_requested)
178 		return 0;
179 
180 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
181 					  sizeof(*prog->aux->jited_linfo),
182 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
183 	if (!prog->aux->jited_linfo)
184 		return -ENOMEM;
185 
186 	return 0;
187 }
188 
189 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
190 {
191 	if (prog->aux->jited_linfo &&
192 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
193 		kvfree(prog->aux->jited_linfo);
194 		prog->aux->jited_linfo = NULL;
195 	}
196 
197 	kfree(prog->aux->kfunc_tab);
198 	prog->aux->kfunc_tab = NULL;
199 }
200 
201 /* The jit engine is responsible to provide an array
202  * for insn_off to the jited_off mapping (insn_to_jit_off).
203  *
204  * The idx to this array is the insn_off.  Hence, the insn_off
205  * here is relative to the prog itself instead of the main prog.
206  * This array has one entry for each xlated bpf insn.
207  *
208  * jited_off is the byte off to the end of the jited insn.
209  *
210  * Hence, with
211  * insn_start:
212  *      The first bpf insn off of the prog.  The insn off
213  *      here is relative to the main prog.
214  *      e.g. if prog is a subprog, insn_start > 0
215  * linfo_idx:
216  *      The prog's idx to prog->aux->linfo and jited_linfo
217  *
218  * jited_linfo[linfo_idx] = prog->bpf_func
219  *
220  * For i > linfo_idx,
221  *
222  * jited_linfo[i] = prog->bpf_func +
223  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
224  */
225 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
226 			       const u32 *insn_to_jit_off)
227 {
228 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
229 	const struct bpf_line_info *linfo;
230 	void **jited_linfo;
231 
232 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
233 		/* Userspace did not provide linfo */
234 		return;
235 
236 	linfo_idx = prog->aux->linfo_idx;
237 	linfo = &prog->aux->linfo[linfo_idx];
238 	insn_start = linfo[0].insn_off;
239 	insn_end = insn_start + prog->len;
240 
241 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
242 	jited_linfo[0] = prog->bpf_func;
243 
244 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
245 
246 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
247 		/* The verifier ensures that linfo[i].insn_off is
248 		 * strictly increasing
249 		 */
250 		jited_linfo[i] = prog->bpf_func +
251 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
252 }
253 
254 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
255 				  gfp_t gfp_extra_flags)
256 {
257 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
258 	struct bpf_prog *fp;
259 	u32 pages;
260 
261 	size = round_up(size, PAGE_SIZE);
262 	pages = size / PAGE_SIZE;
263 	if (pages <= fp_old->pages)
264 		return fp_old;
265 
266 	fp = __vmalloc(size, gfp_flags);
267 	if (fp) {
268 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
269 		fp->pages = pages;
270 		fp->aux->prog = fp;
271 
272 		/* We keep fp->aux from fp_old around in the new
273 		 * reallocated structure.
274 		 */
275 		fp_old->aux = NULL;
276 		fp_old->stats = NULL;
277 		fp_old->active = NULL;
278 		__bpf_prog_free(fp_old);
279 	}
280 
281 	return fp;
282 }
283 
284 void __bpf_prog_free(struct bpf_prog *fp)
285 {
286 	if (fp->aux) {
287 		mutex_destroy(&fp->aux->used_maps_mutex);
288 		mutex_destroy(&fp->aux->dst_mutex);
289 		kfree(fp->aux->poke_tab);
290 		kfree(fp->aux);
291 	}
292 	free_percpu(fp->stats);
293 	free_percpu(fp->active);
294 	vfree(fp);
295 }
296 
297 int bpf_prog_calc_tag(struct bpf_prog *fp)
298 {
299 	size_t size = bpf_prog_insn_size(fp);
300 	struct bpf_insn *dst;
301 	bool was_ld_map;
302 	u32 i;
303 
304 	dst = vmalloc(size);
305 	if (!dst)
306 		return -ENOMEM;
307 
308 	/* We need to take out the map fd for the digest calculation
309 	 * since they are unstable from user space side.
310 	 */
311 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
312 		dst[i] = fp->insnsi[i];
313 		if (!was_ld_map &&
314 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
315 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
316 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
317 			was_ld_map = true;
318 			dst[i].imm = 0;
319 		} else if (was_ld_map &&
320 			   dst[i].code == 0 &&
321 			   dst[i].dst_reg == 0 &&
322 			   dst[i].src_reg == 0 &&
323 			   dst[i].off == 0) {
324 			was_ld_map = false;
325 			dst[i].imm = 0;
326 		} else {
327 			was_ld_map = false;
328 		}
329 	}
330 	sha256((u8 *)dst, size, fp->digest);
331 	vfree(dst);
332 	return 0;
333 }
334 
335 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
336 				s32 end_new, s32 curr, const bool probe_pass)
337 {
338 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
339 	s32 delta = end_new - end_old;
340 	s64 imm = insn->imm;
341 
342 	if (curr < pos && curr + imm + 1 >= end_old)
343 		imm += delta;
344 	else if (curr >= end_new && curr + imm + 1 < end_new)
345 		imm -= delta;
346 	if (imm < imm_min || imm > imm_max)
347 		return -ERANGE;
348 	if (!probe_pass)
349 		insn->imm = imm;
350 	return 0;
351 }
352 
353 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
354 				s32 end_new, s32 curr, const bool probe_pass)
355 {
356 	s64 off_min, off_max, off;
357 	s32 delta = end_new - end_old;
358 
359 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
360 		off = insn->imm;
361 		off_min = S32_MIN;
362 		off_max = S32_MAX;
363 	} else {
364 		off = insn->off;
365 		off_min = S16_MIN;
366 		off_max = S16_MAX;
367 	}
368 
369 	if (curr < pos && curr + off + 1 >= end_old)
370 		off += delta;
371 	else if (curr >= end_new && curr + off + 1 < end_new)
372 		off -= delta;
373 	if (off < off_min || off > off_max)
374 		return -ERANGE;
375 	if (!probe_pass) {
376 		if (insn->code == (BPF_JMP32 | BPF_JA))
377 			insn->imm = off;
378 		else
379 			insn->off = off;
380 	}
381 	return 0;
382 }
383 
384 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
385 			    s32 end_new, const bool probe_pass)
386 {
387 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
388 	struct bpf_insn *insn = prog->insnsi;
389 	int ret = 0;
390 
391 	for (i = 0; i < insn_cnt; i++, insn++) {
392 		u8 code;
393 
394 		/* In the probing pass we still operate on the original,
395 		 * unpatched image in order to check overflows before we
396 		 * do any other adjustments. Therefore skip the patchlet.
397 		 */
398 		if (probe_pass && i == pos) {
399 			i = end_new;
400 			insn = prog->insnsi + end_old;
401 		}
402 		if (bpf_pseudo_func(insn)) {
403 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
404 						   end_new, i, probe_pass);
405 			if (ret)
406 				return ret;
407 			continue;
408 		}
409 		code = insn->code;
410 		if ((BPF_CLASS(code) != BPF_JMP &&
411 		     BPF_CLASS(code) != BPF_JMP32) ||
412 		    BPF_OP(code) == BPF_EXIT)
413 			continue;
414 		/* Adjust offset of jmps if we cross patch boundaries. */
415 		if (BPF_OP(code) == BPF_CALL) {
416 			if (insn->src_reg != BPF_PSEUDO_CALL)
417 				continue;
418 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
419 						   end_new, i, probe_pass);
420 		} else {
421 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
422 						   end_new, i, probe_pass);
423 		}
424 		if (ret)
425 			break;
426 	}
427 
428 	return ret;
429 }
430 
431 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
432 {
433 	struct bpf_line_info *linfo;
434 	u32 i, nr_linfo;
435 
436 	nr_linfo = prog->aux->nr_linfo;
437 	if (!nr_linfo || !delta)
438 		return;
439 
440 	linfo = prog->aux->linfo;
441 
442 	for (i = 0; i < nr_linfo; i++)
443 		if (off < linfo[i].insn_off)
444 			break;
445 
446 	/* Push all off < linfo[i].insn_off by delta */
447 	for (; i < nr_linfo; i++)
448 		linfo[i].insn_off += delta;
449 }
450 
451 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
452 				       const struct bpf_insn *patch, u32 len)
453 {
454 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
455 	const u32 cnt_max = S16_MAX;
456 	struct bpf_prog *prog_adj;
457 	int err;
458 
459 	/* Since our patchlet doesn't expand the image, we're done. */
460 	if (insn_delta == 0) {
461 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
462 		return prog;
463 	}
464 
465 	insn_adj_cnt = prog->len + insn_delta;
466 
467 	/* Reject anything that would potentially let the insn->off
468 	 * target overflow when we have excessive program expansions.
469 	 * We need to probe here before we do any reallocation where
470 	 * we afterwards may not fail anymore.
471 	 */
472 	if (insn_adj_cnt > cnt_max &&
473 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
474 		return ERR_PTR(err);
475 
476 	/* Several new instructions need to be inserted. Make room
477 	 * for them. Likely, there's no need for a new allocation as
478 	 * last page could have large enough tailroom.
479 	 */
480 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
481 				    GFP_USER);
482 	if (!prog_adj)
483 		return ERR_PTR(-ENOMEM);
484 
485 	prog_adj->len = insn_adj_cnt;
486 
487 	/* Patching happens in 3 steps:
488 	 *
489 	 * 1) Move over tail of insnsi from next instruction onwards,
490 	 *    so we can patch the single target insn with one or more
491 	 *    new ones (patching is always from 1 to n insns, n > 0).
492 	 * 2) Inject new instructions at the target location.
493 	 * 3) Adjust branch offsets if necessary.
494 	 */
495 	insn_rest = insn_adj_cnt - off - len;
496 
497 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
498 		sizeof(*patch) * insn_rest);
499 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
500 
501 	/* We are guaranteed to not fail at this point, otherwise
502 	 * the ship has sailed to reverse to the original state. An
503 	 * overflow cannot happen at this point.
504 	 */
505 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
506 
507 	bpf_adj_linfo(prog_adj, off, insn_delta);
508 
509 	return prog_adj;
510 }
511 
512 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
513 {
514 	int err;
515 
516 	/* Branch offsets can't overflow when program is shrinking, no need
517 	 * to call bpf_adj_branches(..., true) here
518 	 */
519 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
520 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
521 	prog->len -= cnt;
522 
523 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
524 	WARN_ON_ONCE(err);
525 	return err;
526 }
527 
528 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
529 {
530 	int i;
531 
532 	for (i = 0; i < fp->aux->real_func_cnt; i++)
533 		bpf_prog_kallsyms_del(fp->aux->func[i]);
534 }
535 
536 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
537 {
538 	bpf_prog_kallsyms_del_subprogs(fp);
539 	bpf_prog_kallsyms_del(fp);
540 }
541 
542 #ifdef CONFIG_BPF_JIT
543 /* All BPF JIT sysctl knobs here. */
544 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
545 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
546 int bpf_jit_harden   __read_mostly;
547 long bpf_jit_limit   __read_mostly;
548 long bpf_jit_limit_max __read_mostly;
549 
550 static void
551 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
552 {
553 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
554 
555 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
556 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
557 }
558 
559 static void
560 bpf_prog_ksym_set_name(struct bpf_prog *prog)
561 {
562 	char *sym = prog->aux->ksym.name;
563 	const char *end = sym + KSYM_NAME_LEN;
564 	const struct btf_type *type;
565 	const char *func_name;
566 
567 	BUILD_BUG_ON(sizeof("bpf_prog_") +
568 		     sizeof(prog->tag) * 2 +
569 		     /* name has been null terminated.
570 		      * We should need +1 for the '_' preceding
571 		      * the name.  However, the null character
572 		      * is double counted between the name and the
573 		      * sizeof("bpf_prog_") above, so we omit
574 		      * the +1 here.
575 		      */
576 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
577 
578 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
579 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
580 
581 	/* prog->aux->name will be ignored if full btf name is available */
582 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
583 		type = btf_type_by_id(prog->aux->btf,
584 				      prog->aux->func_info[prog->aux->func_idx].type_id);
585 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
586 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
587 		return;
588 	}
589 
590 	if (prog->aux->name[0])
591 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
592 	else
593 		*sym = 0;
594 }
595 
596 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
597 {
598 	return container_of(n, struct bpf_ksym, tnode)->start;
599 }
600 
601 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
602 					  struct latch_tree_node *b)
603 {
604 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
605 }
606 
607 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
608 {
609 	unsigned long val = (unsigned long)key;
610 	const struct bpf_ksym *ksym;
611 
612 	ksym = container_of(n, struct bpf_ksym, tnode);
613 
614 	if (val < ksym->start)
615 		return -1;
616 	/* Ensure that we detect return addresses as part of the program, when
617 	 * the final instruction is a call for a program part of the stack
618 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
619 	 */
620 	if (val > ksym->end)
621 		return  1;
622 
623 	return 0;
624 }
625 
626 static const struct latch_tree_ops bpf_tree_ops = {
627 	.less	= bpf_tree_less,
628 	.comp	= bpf_tree_comp,
629 };
630 
631 static DEFINE_SPINLOCK(bpf_lock);
632 static LIST_HEAD(bpf_kallsyms);
633 static struct latch_tree_root bpf_tree __cacheline_aligned;
634 
635 void bpf_ksym_add(struct bpf_ksym *ksym)
636 {
637 	spin_lock_bh(&bpf_lock);
638 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
639 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
640 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
641 	spin_unlock_bh(&bpf_lock);
642 }
643 
644 static void __bpf_ksym_del(struct bpf_ksym *ksym)
645 {
646 	if (list_empty(&ksym->lnode))
647 		return;
648 
649 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
650 	list_del_rcu(&ksym->lnode);
651 }
652 
653 void bpf_ksym_del(struct bpf_ksym *ksym)
654 {
655 	spin_lock_bh(&bpf_lock);
656 	__bpf_ksym_del(ksym);
657 	spin_unlock_bh(&bpf_lock);
658 }
659 
660 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
661 {
662 	return fp->jited && !bpf_prog_was_classic(fp);
663 }
664 
665 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
666 {
667 	if (!bpf_prog_kallsyms_candidate(fp) ||
668 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
669 		return;
670 
671 	bpf_prog_ksym_set_addr(fp);
672 	bpf_prog_ksym_set_name(fp);
673 	fp->aux->ksym.prog = true;
674 
675 	bpf_ksym_add(&fp->aux->ksym);
676 
677 #ifdef CONFIG_FINEIBT
678 	/*
679 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
680 	 * and hence unwinder needs help.
681 	 */
682 	if (cfi_mode != CFI_FINEIBT)
683 		return;
684 
685 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
686 		 "__cfi_%s", fp->aux->ksym.name);
687 
688 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
689 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
690 
691 	bpf_ksym_add(&fp->aux->ksym_prefix);
692 #endif
693 }
694 
695 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
696 {
697 	if (!bpf_prog_kallsyms_candidate(fp))
698 		return;
699 
700 	bpf_ksym_del(&fp->aux->ksym);
701 #ifdef CONFIG_FINEIBT
702 	if (cfi_mode != CFI_FINEIBT)
703 		return;
704 	bpf_ksym_del(&fp->aux->ksym_prefix);
705 #endif
706 }
707 
708 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
709 {
710 	struct latch_tree_node *n;
711 
712 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
713 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
714 }
715 
716 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
717 				 unsigned long *off, char *sym)
718 {
719 	struct bpf_ksym *ksym;
720 	int ret = 0;
721 
722 	rcu_read_lock();
723 	ksym = bpf_ksym_find(addr);
724 	if (ksym) {
725 		unsigned long symbol_start = ksym->start;
726 		unsigned long symbol_end = ksym->end;
727 
728 		ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
729 
730 		if (size)
731 			*size = symbol_end - symbol_start;
732 		if (off)
733 			*off  = addr - symbol_start;
734 	}
735 	rcu_read_unlock();
736 
737 	return ret;
738 }
739 
740 bool is_bpf_text_address(unsigned long addr)
741 {
742 	bool ret;
743 
744 	rcu_read_lock();
745 	ret = bpf_ksym_find(addr) != NULL;
746 	rcu_read_unlock();
747 
748 	return ret;
749 }
750 
751 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
752 {
753 	struct bpf_ksym *ksym;
754 
755 	WARN_ON_ONCE(!rcu_read_lock_held());
756 	ksym = bpf_ksym_find(addr);
757 
758 	return ksym && ksym->prog ?
759 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
760 	       NULL;
761 }
762 
763 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
764 {
765 	const struct exception_table_entry *e = NULL;
766 	struct bpf_prog *prog;
767 
768 	rcu_read_lock();
769 	prog = bpf_prog_ksym_find(addr);
770 	if (!prog)
771 		goto out;
772 	if (!prog->aux->num_exentries)
773 		goto out;
774 
775 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
776 out:
777 	rcu_read_unlock();
778 	return e;
779 }
780 
781 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
782 		    char *sym)
783 {
784 	struct bpf_ksym *ksym;
785 	unsigned int it = 0;
786 	int ret = -ERANGE;
787 
788 	if (!bpf_jit_kallsyms_enabled())
789 		return ret;
790 
791 	rcu_read_lock();
792 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
793 		if (it++ != symnum)
794 			continue;
795 
796 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
797 
798 		*value = ksym->start;
799 		*type  = BPF_SYM_ELF_TYPE;
800 
801 		ret = 0;
802 		break;
803 	}
804 	rcu_read_unlock();
805 
806 	return ret;
807 }
808 
809 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
810 				struct bpf_jit_poke_descriptor *poke)
811 {
812 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
813 	static const u32 poke_tab_max = 1024;
814 	u32 slot = prog->aux->size_poke_tab;
815 	u32 size = slot + 1;
816 
817 	if (size > poke_tab_max)
818 		return -ENOSPC;
819 	if (poke->tailcall_target || poke->tailcall_target_stable ||
820 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
821 		return -EINVAL;
822 
823 	switch (poke->reason) {
824 	case BPF_POKE_REASON_TAIL_CALL:
825 		if (!poke->tail_call.map)
826 			return -EINVAL;
827 		break;
828 	default:
829 		return -EINVAL;
830 	}
831 
832 	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
833 	if (!tab)
834 		return -ENOMEM;
835 
836 	memcpy(&tab[slot], poke, sizeof(*poke));
837 	prog->aux->size_poke_tab = size;
838 	prog->aux->poke_tab = tab;
839 
840 	return slot;
841 }
842 
843 /*
844  * BPF program pack allocator.
845  *
846  * Most BPF programs are pretty small. Allocating a hole page for each
847  * program is sometime a waste. Many small bpf program also adds pressure
848  * to instruction TLB. To solve this issue, we introduce a BPF program pack
849  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
850  * to host BPF programs.
851  */
852 #define BPF_PROG_CHUNK_SHIFT	6
853 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
854 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
855 
856 struct bpf_prog_pack {
857 	struct list_head list;
858 	void *ptr;
859 	unsigned long bitmap[];
860 };
861 
862 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
863 {
864 	memset(area, 0, size);
865 }
866 
867 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
868 
869 static DEFINE_MUTEX(pack_mutex);
870 static LIST_HEAD(pack_list);
871 
872 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
873  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
874  */
875 #ifdef PMD_SIZE
876 /* PMD_SIZE is really big for some archs. It doesn't make sense to
877  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
878  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
879  * greater than or equal to 2MB.
880  */
881 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
882 #else
883 #define BPF_PROG_PACK_SIZE PAGE_SIZE
884 #endif
885 
886 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
887 
888 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
889 {
890 	struct bpf_prog_pack *pack;
891 	int err;
892 
893 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
894 		       GFP_KERNEL);
895 	if (!pack)
896 		return NULL;
897 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
898 	if (!pack->ptr)
899 		goto out;
900 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
901 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
902 
903 	set_vm_flush_reset_perms(pack->ptr);
904 	err = set_memory_rox((unsigned long)pack->ptr,
905 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
906 	if (err)
907 		goto out;
908 	list_add_tail(&pack->list, &pack_list);
909 	return pack;
910 
911 out:
912 	bpf_jit_free_exec(pack->ptr);
913 	kfree(pack);
914 	return NULL;
915 }
916 
917 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
918 {
919 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
920 	struct bpf_prog_pack *pack;
921 	unsigned long pos;
922 	void *ptr = NULL;
923 
924 	mutex_lock(&pack_mutex);
925 	if (size > BPF_PROG_PACK_SIZE) {
926 		size = round_up(size, PAGE_SIZE);
927 		ptr = bpf_jit_alloc_exec(size);
928 		if (ptr) {
929 			int err;
930 
931 			bpf_fill_ill_insns(ptr, size);
932 			set_vm_flush_reset_perms(ptr);
933 			err = set_memory_rox((unsigned long)ptr,
934 					     size / PAGE_SIZE);
935 			if (err) {
936 				bpf_jit_free_exec(ptr);
937 				ptr = NULL;
938 			}
939 		}
940 		goto out;
941 	}
942 	list_for_each_entry(pack, &pack_list, list) {
943 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
944 						 nbits, 0);
945 		if (pos < BPF_PROG_CHUNK_COUNT)
946 			goto found_free_area;
947 	}
948 
949 	pack = alloc_new_pack(bpf_fill_ill_insns);
950 	if (!pack)
951 		goto out;
952 
953 	pos = 0;
954 
955 found_free_area:
956 	bitmap_set(pack->bitmap, pos, nbits);
957 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
958 
959 out:
960 	mutex_unlock(&pack_mutex);
961 	return ptr;
962 }
963 
964 void bpf_prog_pack_free(void *ptr, u32 size)
965 {
966 	struct bpf_prog_pack *pack = NULL, *tmp;
967 	unsigned int nbits;
968 	unsigned long pos;
969 
970 	mutex_lock(&pack_mutex);
971 	if (size > BPF_PROG_PACK_SIZE) {
972 		bpf_jit_free_exec(ptr);
973 		goto out;
974 	}
975 
976 	list_for_each_entry(tmp, &pack_list, list) {
977 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
978 			pack = tmp;
979 			break;
980 		}
981 	}
982 
983 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
984 		goto out;
985 
986 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
987 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
988 
989 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
990 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
991 
992 	bitmap_clear(pack->bitmap, pos, nbits);
993 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
994 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
995 		list_del(&pack->list);
996 		bpf_jit_free_exec(pack->ptr);
997 		kfree(pack);
998 	}
999 out:
1000 	mutex_unlock(&pack_mutex);
1001 }
1002 
1003 static atomic_long_t bpf_jit_current;
1004 
1005 /* Can be overridden by an arch's JIT compiler if it has a custom,
1006  * dedicated BPF backend memory area, or if neither of the two
1007  * below apply.
1008  */
1009 u64 __weak bpf_jit_alloc_exec_limit(void)
1010 {
1011 #if defined(MODULES_VADDR)
1012 	return MODULES_END - MODULES_VADDR;
1013 #else
1014 	return VMALLOC_END - VMALLOC_START;
1015 #endif
1016 }
1017 
1018 static int __init bpf_jit_charge_init(void)
1019 {
1020 	/* Only used as heuristic here to derive limit. */
1021 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1022 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1023 					    PAGE_SIZE), LONG_MAX);
1024 	return 0;
1025 }
1026 pure_initcall(bpf_jit_charge_init);
1027 
1028 int bpf_jit_charge_modmem(u32 size)
1029 {
1030 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1031 		if (!bpf_capable()) {
1032 			atomic_long_sub(size, &bpf_jit_current);
1033 			return -EPERM;
1034 		}
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 void bpf_jit_uncharge_modmem(u32 size)
1041 {
1042 	atomic_long_sub(size, &bpf_jit_current);
1043 }
1044 
1045 void *__weak bpf_jit_alloc_exec(unsigned long size)
1046 {
1047 	return execmem_alloc(EXECMEM_BPF, size);
1048 }
1049 
1050 void __weak bpf_jit_free_exec(void *addr)
1051 {
1052 	execmem_free(addr);
1053 }
1054 
1055 struct bpf_binary_header *
1056 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1057 		     unsigned int alignment,
1058 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1059 {
1060 	struct bpf_binary_header *hdr;
1061 	u32 size, hole, start;
1062 
1063 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1064 		     alignment > BPF_IMAGE_ALIGNMENT);
1065 
1066 	/* Most of BPF filters are really small, but if some of them
1067 	 * fill a page, allow at least 128 extra bytes to insert a
1068 	 * random section of illegal instructions.
1069 	 */
1070 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1071 
1072 	if (bpf_jit_charge_modmem(size))
1073 		return NULL;
1074 	hdr = bpf_jit_alloc_exec(size);
1075 	if (!hdr) {
1076 		bpf_jit_uncharge_modmem(size);
1077 		return NULL;
1078 	}
1079 
1080 	/* Fill space with illegal/arch-dep instructions. */
1081 	bpf_fill_ill_insns(hdr, size);
1082 
1083 	hdr->size = size;
1084 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1085 		     PAGE_SIZE - sizeof(*hdr));
1086 	start = get_random_u32_below(hole) & ~(alignment - 1);
1087 
1088 	/* Leave a random number of instructions before BPF code. */
1089 	*image_ptr = &hdr->image[start];
1090 
1091 	return hdr;
1092 }
1093 
1094 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1095 {
1096 	u32 size = hdr->size;
1097 
1098 	bpf_jit_free_exec(hdr);
1099 	bpf_jit_uncharge_modmem(size);
1100 }
1101 
1102 /* Allocate jit binary from bpf_prog_pack allocator.
1103  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1104  * to the memory. To solve this problem, a RW buffer is also allocated at
1105  * as the same time. The JIT engine should calculate offsets based on the
1106  * RO memory address, but write JITed program to the RW buffer. Once the
1107  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1108  * the JITed program to the RO memory.
1109  */
1110 struct bpf_binary_header *
1111 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1112 			  unsigned int alignment,
1113 			  struct bpf_binary_header **rw_header,
1114 			  u8 **rw_image,
1115 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1116 {
1117 	struct bpf_binary_header *ro_header;
1118 	u32 size, hole, start;
1119 
1120 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1121 		     alignment > BPF_IMAGE_ALIGNMENT);
1122 
1123 	/* add 16 bytes for a random section of illegal instructions */
1124 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1125 
1126 	if (bpf_jit_charge_modmem(size))
1127 		return NULL;
1128 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1129 	if (!ro_header) {
1130 		bpf_jit_uncharge_modmem(size);
1131 		return NULL;
1132 	}
1133 
1134 	*rw_header = kvmalloc(size, GFP_KERNEL);
1135 	if (!*rw_header) {
1136 		bpf_prog_pack_free(ro_header, size);
1137 		bpf_jit_uncharge_modmem(size);
1138 		return NULL;
1139 	}
1140 
1141 	/* Fill space with illegal/arch-dep instructions. */
1142 	bpf_fill_ill_insns(*rw_header, size);
1143 	(*rw_header)->size = size;
1144 
1145 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1146 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1147 	start = get_random_u32_below(hole) & ~(alignment - 1);
1148 
1149 	*image_ptr = &ro_header->image[start];
1150 	*rw_image = &(*rw_header)->image[start];
1151 
1152 	return ro_header;
1153 }
1154 
1155 /* Copy JITed text from rw_header to its final location, the ro_header. */
1156 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1157 				 struct bpf_binary_header *rw_header)
1158 {
1159 	void *ptr;
1160 
1161 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1162 
1163 	kvfree(rw_header);
1164 
1165 	if (IS_ERR(ptr)) {
1166 		bpf_prog_pack_free(ro_header, ro_header->size);
1167 		return PTR_ERR(ptr);
1168 	}
1169 	return 0;
1170 }
1171 
1172 /* bpf_jit_binary_pack_free is called in two different scenarios:
1173  *   1) when the program is freed after;
1174  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1175  * For case 2), we need to free both the RO memory and the RW buffer.
1176  *
1177  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1178  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1179  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1180  * bpf_arch_text_copy (when jit fails).
1181  */
1182 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1183 			      struct bpf_binary_header *rw_header)
1184 {
1185 	u32 size = ro_header->size;
1186 
1187 	bpf_prog_pack_free(ro_header, size);
1188 	kvfree(rw_header);
1189 	bpf_jit_uncharge_modmem(size);
1190 }
1191 
1192 struct bpf_binary_header *
1193 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1194 {
1195 	unsigned long real_start = (unsigned long)fp->bpf_func;
1196 	unsigned long addr;
1197 
1198 	addr = real_start & BPF_PROG_CHUNK_MASK;
1199 	return (void *)addr;
1200 }
1201 
1202 static inline struct bpf_binary_header *
1203 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1204 {
1205 	unsigned long real_start = (unsigned long)fp->bpf_func;
1206 	unsigned long addr;
1207 
1208 	addr = real_start & PAGE_MASK;
1209 	return (void *)addr;
1210 }
1211 
1212 /* This symbol is only overridden by archs that have different
1213  * requirements than the usual eBPF JITs, f.e. when they only
1214  * implement cBPF JIT, do not set images read-only, etc.
1215  */
1216 void __weak bpf_jit_free(struct bpf_prog *fp)
1217 {
1218 	if (fp->jited) {
1219 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1220 
1221 		bpf_jit_binary_free(hdr);
1222 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1223 	}
1224 
1225 	bpf_prog_unlock_free(fp);
1226 }
1227 
1228 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1229 			  const struct bpf_insn *insn, bool extra_pass,
1230 			  u64 *func_addr, bool *func_addr_fixed)
1231 {
1232 	s16 off = insn->off;
1233 	s32 imm = insn->imm;
1234 	u8 *addr;
1235 	int err;
1236 
1237 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1238 	if (!*func_addr_fixed) {
1239 		/* Place-holder address till the last pass has collected
1240 		 * all addresses for JITed subprograms in which case we
1241 		 * can pick them up from prog->aux.
1242 		 */
1243 		if (!extra_pass)
1244 			addr = NULL;
1245 		else if (prog->aux->func &&
1246 			 off >= 0 && off < prog->aux->real_func_cnt)
1247 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1248 		else
1249 			return -EINVAL;
1250 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1251 		   bpf_jit_supports_far_kfunc_call()) {
1252 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1253 		if (err)
1254 			return err;
1255 	} else {
1256 		/* Address of a BPF helper call. Since part of the core
1257 		 * kernel, it's always at a fixed location. __bpf_call_base
1258 		 * and the helper with imm relative to it are both in core
1259 		 * kernel.
1260 		 */
1261 		addr = (u8 *)__bpf_call_base + imm;
1262 	}
1263 
1264 	*func_addr = (unsigned long)addr;
1265 	return 0;
1266 }
1267 
1268 const char *bpf_jit_get_prog_name(struct bpf_prog *prog)
1269 {
1270 	if (prog->aux->ksym.prog)
1271 		return prog->aux->ksym.name;
1272 	return prog->aux->name;
1273 }
1274 
1275 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1276 			      const struct bpf_insn *aux,
1277 			      struct bpf_insn *to_buff,
1278 			      bool emit_zext)
1279 {
1280 	struct bpf_insn *to = to_buff;
1281 	u32 imm_rnd = get_random_u32();
1282 	s16 off;
1283 
1284 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1285 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1286 
1287 	/* Constraints on AX register:
1288 	 *
1289 	 * AX register is inaccessible from user space. It is mapped in
1290 	 * all JITs, and used here for constant blinding rewrites. It is
1291 	 * typically "stateless" meaning its contents are only valid within
1292 	 * the executed instruction, but not across several instructions.
1293 	 * There are a few exceptions however which are further detailed
1294 	 * below.
1295 	 *
1296 	 * Constant blinding is only used by JITs, not in the interpreter.
1297 	 * The interpreter uses AX in some occasions as a local temporary
1298 	 * register e.g. in DIV or MOD instructions.
1299 	 *
1300 	 * In restricted circumstances, the verifier can also use the AX
1301 	 * register for rewrites as long as they do not interfere with
1302 	 * the above cases!
1303 	 */
1304 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1305 		goto out;
1306 
1307 	if (from->imm == 0 &&
1308 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1309 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1310 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1311 		goto out;
1312 	}
1313 
1314 	switch (from->code) {
1315 	case BPF_ALU | BPF_ADD | BPF_K:
1316 	case BPF_ALU | BPF_SUB | BPF_K:
1317 	case BPF_ALU | BPF_AND | BPF_K:
1318 	case BPF_ALU | BPF_OR  | BPF_K:
1319 	case BPF_ALU | BPF_XOR | BPF_K:
1320 	case BPF_ALU | BPF_MUL | BPF_K:
1321 	case BPF_ALU | BPF_MOV | BPF_K:
1322 	case BPF_ALU | BPF_DIV | BPF_K:
1323 	case BPF_ALU | BPF_MOD | BPF_K:
1324 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1325 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1326 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1327 		break;
1328 
1329 	case BPF_ALU64 | BPF_ADD | BPF_K:
1330 	case BPF_ALU64 | BPF_SUB | BPF_K:
1331 	case BPF_ALU64 | BPF_AND | BPF_K:
1332 	case BPF_ALU64 | BPF_OR  | BPF_K:
1333 	case BPF_ALU64 | BPF_XOR | BPF_K:
1334 	case BPF_ALU64 | BPF_MUL | BPF_K:
1335 	case BPF_ALU64 | BPF_MOV | BPF_K:
1336 	case BPF_ALU64 | BPF_DIV | BPF_K:
1337 	case BPF_ALU64 | BPF_MOD | BPF_K:
1338 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1339 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1340 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1341 		break;
1342 
1343 	case BPF_JMP | BPF_JEQ  | BPF_K:
1344 	case BPF_JMP | BPF_JNE  | BPF_K:
1345 	case BPF_JMP | BPF_JGT  | BPF_K:
1346 	case BPF_JMP | BPF_JLT  | BPF_K:
1347 	case BPF_JMP | BPF_JGE  | BPF_K:
1348 	case BPF_JMP | BPF_JLE  | BPF_K:
1349 	case BPF_JMP | BPF_JSGT | BPF_K:
1350 	case BPF_JMP | BPF_JSLT | BPF_K:
1351 	case BPF_JMP | BPF_JSGE | BPF_K:
1352 	case BPF_JMP | BPF_JSLE | BPF_K:
1353 	case BPF_JMP | BPF_JSET | BPF_K:
1354 		/* Accommodate for extra offset in case of a backjump. */
1355 		off = from->off;
1356 		if (off < 0)
1357 			off -= 2;
1358 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1359 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1360 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1361 		break;
1362 
1363 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1364 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1365 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1366 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1367 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1368 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1369 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1370 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1371 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1372 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1373 	case BPF_JMP32 | BPF_JSET | BPF_K:
1374 		/* Accommodate for extra offset in case of a backjump. */
1375 		off = from->off;
1376 		if (off < 0)
1377 			off -= 2;
1378 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1379 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1380 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1381 				      off);
1382 		break;
1383 
1384 	case BPF_LD | BPF_IMM | BPF_DW:
1385 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1386 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1387 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1388 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1389 		break;
1390 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1391 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1392 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1393 		if (emit_zext)
1394 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1395 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1396 		break;
1397 
1398 	case BPF_ST | BPF_MEM | BPF_DW:
1399 	case BPF_ST | BPF_MEM | BPF_W:
1400 	case BPF_ST | BPF_MEM | BPF_H:
1401 	case BPF_ST | BPF_MEM | BPF_B:
1402 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1403 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1404 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1405 		break;
1406 	}
1407 out:
1408 	return to - to_buff;
1409 }
1410 
1411 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1412 					      gfp_t gfp_extra_flags)
1413 {
1414 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1415 	struct bpf_prog *fp;
1416 
1417 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1418 	if (fp != NULL) {
1419 		/* aux->prog still points to the fp_other one, so
1420 		 * when promoting the clone to the real program,
1421 		 * this still needs to be adapted.
1422 		 */
1423 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1424 	}
1425 
1426 	return fp;
1427 }
1428 
1429 static void bpf_prog_clone_free(struct bpf_prog *fp)
1430 {
1431 	/* aux was stolen by the other clone, so we cannot free
1432 	 * it from this path! It will be freed eventually by the
1433 	 * other program on release.
1434 	 *
1435 	 * At this point, we don't need a deferred release since
1436 	 * clone is guaranteed to not be locked.
1437 	 */
1438 	fp->aux = NULL;
1439 	fp->stats = NULL;
1440 	fp->active = NULL;
1441 	__bpf_prog_free(fp);
1442 }
1443 
1444 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1445 {
1446 	/* We have to repoint aux->prog to self, as we don't
1447 	 * know whether fp here is the clone or the original.
1448 	 */
1449 	fp->aux->prog = fp;
1450 	bpf_prog_clone_free(fp_other);
1451 }
1452 
1453 static void adjust_insn_arrays(struct bpf_prog *prog, u32 off, u32 len)
1454 {
1455 #ifdef CONFIG_BPF_SYSCALL
1456 	struct bpf_map *map;
1457 	int i;
1458 
1459 	if (len <= 1)
1460 		return;
1461 
1462 	for (i = 0; i < prog->aux->used_map_cnt; i++) {
1463 		map = prog->aux->used_maps[i];
1464 		if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY)
1465 			bpf_insn_array_adjust(map, off, len);
1466 	}
1467 #endif
1468 }
1469 
1470 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1471 {
1472 	struct bpf_insn insn_buff[16], aux[2];
1473 	struct bpf_prog *clone, *tmp;
1474 	int insn_delta, insn_cnt;
1475 	struct bpf_insn *insn;
1476 	int i, rewritten;
1477 
1478 	if (!prog->blinding_requested || prog->blinded)
1479 		return prog;
1480 
1481 	clone = bpf_prog_clone_create(prog, GFP_USER);
1482 	if (!clone)
1483 		return ERR_PTR(-ENOMEM);
1484 
1485 	insn_cnt = clone->len;
1486 	insn = clone->insnsi;
1487 
1488 	for (i = 0; i < insn_cnt; i++, insn++) {
1489 		if (bpf_pseudo_func(insn)) {
1490 			/* ld_imm64 with an address of bpf subprog is not
1491 			 * a user controlled constant. Don't randomize it,
1492 			 * since it will conflict with jit_subprogs() logic.
1493 			 */
1494 			insn++;
1495 			i++;
1496 			continue;
1497 		}
1498 
1499 		/* We temporarily need to hold the original ld64 insn
1500 		 * so that we can still access the first part in the
1501 		 * second blinding run.
1502 		 */
1503 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1504 		    insn[1].code == 0)
1505 			memcpy(aux, insn, sizeof(aux));
1506 
1507 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1508 						clone->aux->verifier_zext);
1509 		if (!rewritten)
1510 			continue;
1511 
1512 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1513 		if (IS_ERR(tmp)) {
1514 			/* Patching may have repointed aux->prog during
1515 			 * realloc from the original one, so we need to
1516 			 * fix it up here on error.
1517 			 */
1518 			bpf_jit_prog_release_other(prog, clone);
1519 			return tmp;
1520 		}
1521 
1522 		clone = tmp;
1523 		insn_delta = rewritten - 1;
1524 
1525 		/* Instructions arrays must be updated using absolute xlated offsets */
1526 		adjust_insn_arrays(clone, prog->aux->subprog_start + i, rewritten);
1527 
1528 		/* Walk new program and skip insns we just inserted. */
1529 		insn = clone->insnsi + i + insn_delta;
1530 		insn_cnt += insn_delta;
1531 		i        += insn_delta;
1532 	}
1533 
1534 	clone->blinded = 1;
1535 	return clone;
1536 }
1537 #endif /* CONFIG_BPF_JIT */
1538 
1539 /* Base function for offset calculation. Needs to go into .text section,
1540  * therefore keeping it non-static as well; will also be used by JITs
1541  * anyway later on, so do not let the compiler omit it. This also needs
1542  * to go into kallsyms for correlation from e.g. bpftool, so naming
1543  * must not change.
1544  */
1545 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1546 {
1547 	return 0;
1548 }
1549 EXPORT_SYMBOL_GPL(__bpf_call_base);
1550 
1551 /* All UAPI available opcodes. */
1552 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1553 	/* 32 bit ALU operations. */		\
1554 	/*   Register based. */			\
1555 	INSN_3(ALU, ADD,  X),			\
1556 	INSN_3(ALU, SUB,  X),			\
1557 	INSN_3(ALU, AND,  X),			\
1558 	INSN_3(ALU, OR,   X),			\
1559 	INSN_3(ALU, LSH,  X),			\
1560 	INSN_3(ALU, RSH,  X),			\
1561 	INSN_3(ALU, XOR,  X),			\
1562 	INSN_3(ALU, MUL,  X),			\
1563 	INSN_3(ALU, MOV,  X),			\
1564 	INSN_3(ALU, ARSH, X),			\
1565 	INSN_3(ALU, DIV,  X),			\
1566 	INSN_3(ALU, MOD,  X),			\
1567 	INSN_2(ALU, NEG),			\
1568 	INSN_3(ALU, END, TO_BE),		\
1569 	INSN_3(ALU, END, TO_LE),		\
1570 	/*   Immediate based. */		\
1571 	INSN_3(ALU, ADD,  K),			\
1572 	INSN_3(ALU, SUB,  K),			\
1573 	INSN_3(ALU, AND,  K),			\
1574 	INSN_3(ALU, OR,   K),			\
1575 	INSN_3(ALU, LSH,  K),			\
1576 	INSN_3(ALU, RSH,  K),			\
1577 	INSN_3(ALU, XOR,  K),			\
1578 	INSN_3(ALU, MUL,  K),			\
1579 	INSN_3(ALU, MOV,  K),			\
1580 	INSN_3(ALU, ARSH, K),			\
1581 	INSN_3(ALU, DIV,  K),			\
1582 	INSN_3(ALU, MOD,  K),			\
1583 	/* 64 bit ALU operations. */		\
1584 	/*   Register based. */			\
1585 	INSN_3(ALU64, ADD,  X),			\
1586 	INSN_3(ALU64, SUB,  X),			\
1587 	INSN_3(ALU64, AND,  X),			\
1588 	INSN_3(ALU64, OR,   X),			\
1589 	INSN_3(ALU64, LSH,  X),			\
1590 	INSN_3(ALU64, RSH,  X),			\
1591 	INSN_3(ALU64, XOR,  X),			\
1592 	INSN_3(ALU64, MUL,  X),			\
1593 	INSN_3(ALU64, MOV,  X),			\
1594 	INSN_3(ALU64, ARSH, X),			\
1595 	INSN_3(ALU64, DIV,  X),			\
1596 	INSN_3(ALU64, MOD,  X),			\
1597 	INSN_2(ALU64, NEG),			\
1598 	INSN_3(ALU64, END, TO_LE),		\
1599 	/*   Immediate based. */		\
1600 	INSN_3(ALU64, ADD,  K),			\
1601 	INSN_3(ALU64, SUB,  K),			\
1602 	INSN_3(ALU64, AND,  K),			\
1603 	INSN_3(ALU64, OR,   K),			\
1604 	INSN_3(ALU64, LSH,  K),			\
1605 	INSN_3(ALU64, RSH,  K),			\
1606 	INSN_3(ALU64, XOR,  K),			\
1607 	INSN_3(ALU64, MUL,  K),			\
1608 	INSN_3(ALU64, MOV,  K),			\
1609 	INSN_3(ALU64, ARSH, K),			\
1610 	INSN_3(ALU64, DIV,  K),			\
1611 	INSN_3(ALU64, MOD,  K),			\
1612 	/* Call instruction. */			\
1613 	INSN_2(JMP, CALL),			\
1614 	/* Exit instruction. */			\
1615 	INSN_2(JMP, EXIT),			\
1616 	/* 32-bit Jump instructions. */		\
1617 	/*   Register based. */			\
1618 	INSN_3(JMP32, JEQ,  X),			\
1619 	INSN_3(JMP32, JNE,  X),			\
1620 	INSN_3(JMP32, JGT,  X),			\
1621 	INSN_3(JMP32, JLT,  X),			\
1622 	INSN_3(JMP32, JGE,  X),			\
1623 	INSN_3(JMP32, JLE,  X),			\
1624 	INSN_3(JMP32, JSGT, X),			\
1625 	INSN_3(JMP32, JSLT, X),			\
1626 	INSN_3(JMP32, JSGE, X),			\
1627 	INSN_3(JMP32, JSLE, X),			\
1628 	INSN_3(JMP32, JSET, X),			\
1629 	/*   Immediate based. */		\
1630 	INSN_3(JMP32, JEQ,  K),			\
1631 	INSN_3(JMP32, JNE,  K),			\
1632 	INSN_3(JMP32, JGT,  K),			\
1633 	INSN_3(JMP32, JLT,  K),			\
1634 	INSN_3(JMP32, JGE,  K),			\
1635 	INSN_3(JMP32, JLE,  K),			\
1636 	INSN_3(JMP32, JSGT, K),			\
1637 	INSN_3(JMP32, JSLT, K),			\
1638 	INSN_3(JMP32, JSGE, K),			\
1639 	INSN_3(JMP32, JSLE, K),			\
1640 	INSN_3(JMP32, JSET, K),			\
1641 	/* Jump instructions. */		\
1642 	/*   Register based. */			\
1643 	INSN_3(JMP, JEQ,  X),			\
1644 	INSN_3(JMP, JNE,  X),			\
1645 	INSN_3(JMP, JGT,  X),			\
1646 	INSN_3(JMP, JLT,  X),			\
1647 	INSN_3(JMP, JGE,  X),			\
1648 	INSN_3(JMP, JLE,  X),			\
1649 	INSN_3(JMP, JSGT, X),			\
1650 	INSN_3(JMP, JSLT, X),			\
1651 	INSN_3(JMP, JSGE, X),			\
1652 	INSN_3(JMP, JSLE, X),			\
1653 	INSN_3(JMP, JSET, X),			\
1654 	/*   Immediate based. */		\
1655 	INSN_3(JMP, JEQ,  K),			\
1656 	INSN_3(JMP, JNE,  K),			\
1657 	INSN_3(JMP, JGT,  K),			\
1658 	INSN_3(JMP, JLT,  K),			\
1659 	INSN_3(JMP, JGE,  K),			\
1660 	INSN_3(JMP, JLE,  K),			\
1661 	INSN_3(JMP, JSGT, K),			\
1662 	INSN_3(JMP, JSLT, K),			\
1663 	INSN_3(JMP, JSGE, K),			\
1664 	INSN_3(JMP, JSLE, K),			\
1665 	INSN_3(JMP, JSET, K),			\
1666 	INSN_2(JMP, JA),			\
1667 	INSN_2(JMP32, JA),			\
1668 	/* Atomic operations. */		\
1669 	INSN_3(STX, ATOMIC, B),			\
1670 	INSN_3(STX, ATOMIC, H),			\
1671 	INSN_3(STX, ATOMIC, W),			\
1672 	INSN_3(STX, ATOMIC, DW),		\
1673 	/* Store instructions. */		\
1674 	/*   Register based. */			\
1675 	INSN_3(STX, MEM,  B),			\
1676 	INSN_3(STX, MEM,  H),			\
1677 	INSN_3(STX, MEM,  W),			\
1678 	INSN_3(STX, MEM,  DW),			\
1679 	/*   Immediate based. */		\
1680 	INSN_3(ST, MEM, B),			\
1681 	INSN_3(ST, MEM, H),			\
1682 	INSN_3(ST, MEM, W),			\
1683 	INSN_3(ST, MEM, DW),			\
1684 	/* Load instructions. */		\
1685 	/*   Register based. */			\
1686 	INSN_3(LDX, MEM, B),			\
1687 	INSN_3(LDX, MEM, H),			\
1688 	INSN_3(LDX, MEM, W),			\
1689 	INSN_3(LDX, MEM, DW),			\
1690 	INSN_3(LDX, MEMSX, B),			\
1691 	INSN_3(LDX, MEMSX, H),			\
1692 	INSN_3(LDX, MEMSX, W),			\
1693 	/*   Immediate based. */		\
1694 	INSN_3(LD, IMM, DW)
1695 
1696 bool bpf_opcode_in_insntable(u8 code)
1697 {
1698 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1699 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1700 	static const bool public_insntable[256] = {
1701 		[0 ... 255] = false,
1702 		/* Now overwrite non-defaults ... */
1703 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1704 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1705 		[BPF_LD | BPF_ABS | BPF_B] = true,
1706 		[BPF_LD | BPF_ABS | BPF_H] = true,
1707 		[BPF_LD | BPF_ABS | BPF_W] = true,
1708 		[BPF_LD | BPF_IND | BPF_B] = true,
1709 		[BPF_LD | BPF_IND | BPF_H] = true,
1710 		[BPF_LD | BPF_IND | BPF_W] = true,
1711 		[BPF_JMP | BPF_JA | BPF_X] = true,
1712 		[BPF_JMP | BPF_JCOND] = true,
1713 	};
1714 #undef BPF_INSN_3_TBL
1715 #undef BPF_INSN_2_TBL
1716 	return public_insntable[code];
1717 }
1718 
1719 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1720 /**
1721  *	___bpf_prog_run - run eBPF program on a given context
1722  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1723  *	@insn: is the array of eBPF instructions
1724  *
1725  * Decode and execute eBPF instructions.
1726  *
1727  * Return: whatever value is in %BPF_R0 at program exit
1728  */
1729 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1730 {
1731 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1732 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1733 	static const void * const jumptable[256] __annotate_jump_table = {
1734 		[0 ... 255] = &&default_label,
1735 		/* Now overwrite non-defaults ... */
1736 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1737 		/* Non-UAPI available opcodes. */
1738 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1739 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1740 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1741 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1742 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1743 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1744 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1745 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1746 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1747 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1748 	};
1749 #undef BPF_INSN_3_LBL
1750 #undef BPF_INSN_2_LBL
1751 	u32 tail_call_cnt = 0;
1752 
1753 #define CONT	 ({ insn++; goto select_insn; })
1754 #define CONT_JMP ({ insn++; goto select_insn; })
1755 
1756 select_insn:
1757 	goto *jumptable[insn->code];
1758 
1759 	/* Explicitly mask the register-based shift amounts with 63 or 31
1760 	 * to avoid undefined behavior. Normally this won't affect the
1761 	 * generated code, for example, in case of native 64 bit archs such
1762 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1763 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1764 	 * the BPF shift operations to machine instructions which produce
1765 	 * implementation-defined results in such a case; the resulting
1766 	 * contents of the register may be arbitrary, but program behaviour
1767 	 * as a whole remains defined. In other words, in case of JIT backends,
1768 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1769 	 */
1770 	/* ALU (shifts) */
1771 #define SHT(OPCODE, OP)					\
1772 	ALU64_##OPCODE##_X:				\
1773 		DST = DST OP (SRC & 63);		\
1774 		CONT;					\
1775 	ALU_##OPCODE##_X:				\
1776 		DST = (u32) DST OP ((u32) SRC & 31);	\
1777 		CONT;					\
1778 	ALU64_##OPCODE##_K:				\
1779 		DST = DST OP IMM;			\
1780 		CONT;					\
1781 	ALU_##OPCODE##_K:				\
1782 		DST = (u32) DST OP (u32) IMM;		\
1783 		CONT;
1784 	/* ALU (rest) */
1785 #define ALU(OPCODE, OP)					\
1786 	ALU64_##OPCODE##_X:				\
1787 		DST = DST OP SRC;			\
1788 		CONT;					\
1789 	ALU_##OPCODE##_X:				\
1790 		DST = (u32) DST OP (u32) SRC;		\
1791 		CONT;					\
1792 	ALU64_##OPCODE##_K:				\
1793 		DST = DST OP IMM;			\
1794 		CONT;					\
1795 	ALU_##OPCODE##_K:				\
1796 		DST = (u32) DST OP (u32) IMM;		\
1797 		CONT;
1798 	ALU(ADD,  +)
1799 	ALU(SUB,  -)
1800 	ALU(AND,  &)
1801 	ALU(OR,   |)
1802 	ALU(XOR,  ^)
1803 	ALU(MUL,  *)
1804 	SHT(LSH, <<)
1805 	SHT(RSH, >>)
1806 #undef SHT
1807 #undef ALU
1808 	ALU_NEG:
1809 		DST = (u32) -DST;
1810 		CONT;
1811 	ALU64_NEG:
1812 		DST = -DST;
1813 		CONT;
1814 	ALU_MOV_X:
1815 		switch (OFF) {
1816 		case 0:
1817 			DST = (u32) SRC;
1818 			break;
1819 		case 8:
1820 			DST = (u32)(s8) SRC;
1821 			break;
1822 		case 16:
1823 			DST = (u32)(s16) SRC;
1824 			break;
1825 		}
1826 		CONT;
1827 	ALU_MOV_K:
1828 		DST = (u32) IMM;
1829 		CONT;
1830 	ALU64_MOV_X:
1831 		switch (OFF) {
1832 		case 0:
1833 			DST = SRC;
1834 			break;
1835 		case 8:
1836 			DST = (s8) SRC;
1837 			break;
1838 		case 16:
1839 			DST = (s16) SRC;
1840 			break;
1841 		case 32:
1842 			DST = (s32) SRC;
1843 			break;
1844 		}
1845 		CONT;
1846 	ALU64_MOV_K:
1847 		DST = IMM;
1848 		CONT;
1849 	LD_IMM_DW:
1850 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1851 		insn++;
1852 		CONT;
1853 	ALU_ARSH_X:
1854 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1855 		CONT;
1856 	ALU_ARSH_K:
1857 		DST = (u64) (u32) (((s32) DST) >> IMM);
1858 		CONT;
1859 	ALU64_ARSH_X:
1860 		(*(s64 *) &DST) >>= (SRC & 63);
1861 		CONT;
1862 	ALU64_ARSH_K:
1863 		(*(s64 *) &DST) >>= IMM;
1864 		CONT;
1865 	ALU64_MOD_X:
1866 		switch (OFF) {
1867 		case 0:
1868 			div64_u64_rem(DST, SRC, &AX);
1869 			DST = AX;
1870 			break;
1871 		case 1:
1872 			AX = div64_s64(DST, SRC);
1873 			DST = DST - AX * SRC;
1874 			break;
1875 		}
1876 		CONT;
1877 	ALU_MOD_X:
1878 		switch (OFF) {
1879 		case 0:
1880 			AX = (u32) DST;
1881 			DST = do_div(AX, (u32) SRC);
1882 			break;
1883 		case 1:
1884 			AX = abs((s32)DST);
1885 			AX = do_div(AX, abs((s32)SRC));
1886 			if ((s32)DST < 0)
1887 				DST = (u32)-AX;
1888 			else
1889 				DST = (u32)AX;
1890 			break;
1891 		}
1892 		CONT;
1893 	ALU64_MOD_K:
1894 		switch (OFF) {
1895 		case 0:
1896 			div64_u64_rem(DST, IMM, &AX);
1897 			DST = AX;
1898 			break;
1899 		case 1:
1900 			AX = div64_s64(DST, IMM);
1901 			DST = DST - AX * IMM;
1902 			break;
1903 		}
1904 		CONT;
1905 	ALU_MOD_K:
1906 		switch (OFF) {
1907 		case 0:
1908 			AX = (u32) DST;
1909 			DST = do_div(AX, (u32) IMM);
1910 			break;
1911 		case 1:
1912 			AX = abs((s32)DST);
1913 			AX = do_div(AX, abs((s32)IMM));
1914 			if ((s32)DST < 0)
1915 				DST = (u32)-AX;
1916 			else
1917 				DST = (u32)AX;
1918 			break;
1919 		}
1920 		CONT;
1921 	ALU64_DIV_X:
1922 		switch (OFF) {
1923 		case 0:
1924 			DST = div64_u64(DST, SRC);
1925 			break;
1926 		case 1:
1927 			DST = div64_s64(DST, SRC);
1928 			break;
1929 		}
1930 		CONT;
1931 	ALU_DIV_X:
1932 		switch (OFF) {
1933 		case 0:
1934 			AX = (u32) DST;
1935 			do_div(AX, (u32) SRC);
1936 			DST = (u32) AX;
1937 			break;
1938 		case 1:
1939 			AX = abs((s32)DST);
1940 			do_div(AX, abs((s32)SRC));
1941 			if (((s32)DST < 0) == ((s32)SRC < 0))
1942 				DST = (u32)AX;
1943 			else
1944 				DST = (u32)-AX;
1945 			break;
1946 		}
1947 		CONT;
1948 	ALU64_DIV_K:
1949 		switch (OFF) {
1950 		case 0:
1951 			DST = div64_u64(DST, IMM);
1952 			break;
1953 		case 1:
1954 			DST = div64_s64(DST, IMM);
1955 			break;
1956 		}
1957 		CONT;
1958 	ALU_DIV_K:
1959 		switch (OFF) {
1960 		case 0:
1961 			AX = (u32) DST;
1962 			do_div(AX, (u32) IMM);
1963 			DST = (u32) AX;
1964 			break;
1965 		case 1:
1966 			AX = abs((s32)DST);
1967 			do_div(AX, abs((s32)IMM));
1968 			if (((s32)DST < 0) == ((s32)IMM < 0))
1969 				DST = (u32)AX;
1970 			else
1971 				DST = (u32)-AX;
1972 			break;
1973 		}
1974 		CONT;
1975 	ALU_END_TO_BE:
1976 		switch (IMM) {
1977 		case 16:
1978 			DST = (__force u16) cpu_to_be16(DST);
1979 			break;
1980 		case 32:
1981 			DST = (__force u32) cpu_to_be32(DST);
1982 			break;
1983 		case 64:
1984 			DST = (__force u64) cpu_to_be64(DST);
1985 			break;
1986 		}
1987 		CONT;
1988 	ALU_END_TO_LE:
1989 		switch (IMM) {
1990 		case 16:
1991 			DST = (__force u16) cpu_to_le16(DST);
1992 			break;
1993 		case 32:
1994 			DST = (__force u32) cpu_to_le32(DST);
1995 			break;
1996 		case 64:
1997 			DST = (__force u64) cpu_to_le64(DST);
1998 			break;
1999 		}
2000 		CONT;
2001 	ALU64_END_TO_LE:
2002 		switch (IMM) {
2003 		case 16:
2004 			DST = (__force u16) __swab16(DST);
2005 			break;
2006 		case 32:
2007 			DST = (__force u32) __swab32(DST);
2008 			break;
2009 		case 64:
2010 			DST = (__force u64) __swab64(DST);
2011 			break;
2012 		}
2013 		CONT;
2014 
2015 	/* CALL */
2016 	JMP_CALL:
2017 		/* Function call scratches BPF_R1-BPF_R5 registers,
2018 		 * preserves BPF_R6-BPF_R9, and stores return value
2019 		 * into BPF_R0.
2020 		 */
2021 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2022 						       BPF_R4, BPF_R5);
2023 		CONT;
2024 
2025 	JMP_CALL_ARGS:
2026 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2027 							    BPF_R3, BPF_R4,
2028 							    BPF_R5,
2029 							    insn + insn->off + 1);
2030 		CONT;
2031 
2032 	JMP_TAIL_CALL: {
2033 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2034 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2035 		struct bpf_prog *prog;
2036 		u32 index = BPF_R3;
2037 
2038 		if (unlikely(index >= array->map.max_entries))
2039 			goto out;
2040 
2041 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2042 			goto out;
2043 
2044 		tail_call_cnt++;
2045 
2046 		prog = READ_ONCE(array->ptrs[index]);
2047 		if (!prog)
2048 			goto out;
2049 
2050 		/* ARG1 at this point is guaranteed to point to CTX from
2051 		 * the verifier side due to the fact that the tail call is
2052 		 * handled like a helper, that is, bpf_tail_call_proto,
2053 		 * where arg1_type is ARG_PTR_TO_CTX.
2054 		 */
2055 		insn = prog->insnsi;
2056 		goto select_insn;
2057 out:
2058 		CONT;
2059 	}
2060 	JMP_JA:
2061 		insn += insn->off;
2062 		CONT;
2063 	JMP32_JA:
2064 		insn += insn->imm;
2065 		CONT;
2066 	JMP_EXIT:
2067 		return BPF_R0;
2068 	/* JMP */
2069 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2070 	JMP_##OPCODE##_X:					\
2071 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2072 			insn += insn->off;			\
2073 			CONT_JMP;				\
2074 		}						\
2075 		CONT;						\
2076 	JMP32_##OPCODE##_X:					\
2077 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2078 			insn += insn->off;			\
2079 			CONT_JMP;				\
2080 		}						\
2081 		CONT;						\
2082 	JMP_##OPCODE##_K:					\
2083 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2084 			insn += insn->off;			\
2085 			CONT_JMP;				\
2086 		}						\
2087 		CONT;						\
2088 	JMP32_##OPCODE##_K:					\
2089 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2090 			insn += insn->off;			\
2091 			CONT_JMP;				\
2092 		}						\
2093 		CONT;
2094 	COND_JMP(u, JEQ, ==)
2095 	COND_JMP(u, JNE, !=)
2096 	COND_JMP(u, JGT, >)
2097 	COND_JMP(u, JLT, <)
2098 	COND_JMP(u, JGE, >=)
2099 	COND_JMP(u, JLE, <=)
2100 	COND_JMP(u, JSET, &)
2101 	COND_JMP(s, JSGT, >)
2102 	COND_JMP(s, JSLT, <)
2103 	COND_JMP(s, JSGE, >=)
2104 	COND_JMP(s, JSLE, <=)
2105 #undef COND_JMP
2106 	/* ST, STX and LDX*/
2107 	ST_NOSPEC:
2108 		/* Speculation barrier for mitigating Speculative Store Bypass,
2109 		 * Bounds-Check Bypass and Type Confusion. In case of arm64, we
2110 		 * rely on the firmware mitigation as controlled via the ssbd
2111 		 * kernel parameter. Whenever the mitigation is enabled, it
2112 		 * works for all of the kernel code with no need to provide any
2113 		 * additional instructions here. In case of x86, we use 'lfence'
2114 		 * insn for mitigation. We reuse preexisting logic from Spectre
2115 		 * v1 mitigation that happens to produce the required code on
2116 		 * x86 for v4 as well.
2117 		 */
2118 		barrier_nospec();
2119 		CONT;
2120 #define LDST(SIZEOP, SIZE)						\
2121 	STX_MEM_##SIZEOP:						\
2122 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2123 		CONT;							\
2124 	ST_MEM_##SIZEOP:						\
2125 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2126 		CONT;							\
2127 	LDX_MEM_##SIZEOP:						\
2128 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2129 		CONT;							\
2130 	LDX_PROBE_MEM_##SIZEOP:						\
2131 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2132 			      (const void *)(long) (SRC + insn->off));	\
2133 		DST = *((SIZE *)&DST);					\
2134 		CONT;
2135 
2136 	LDST(B,   u8)
2137 	LDST(H,  u16)
2138 	LDST(W,  u32)
2139 	LDST(DW, u64)
2140 #undef LDST
2141 
2142 #define LDSX(SIZEOP, SIZE)						\
2143 	LDX_MEMSX_##SIZEOP:						\
2144 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2145 		CONT;							\
2146 	LDX_PROBE_MEMSX_##SIZEOP:					\
2147 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2148 				      (const void *)(long) (SRC + insn->off));	\
2149 		DST = *((SIZE *)&DST);					\
2150 		CONT;
2151 
2152 	LDSX(B,   s8)
2153 	LDSX(H,  s16)
2154 	LDSX(W,  s32)
2155 #undef LDSX
2156 
2157 #define ATOMIC_ALU_OP(BOP, KOP)						\
2158 		case BOP:						\
2159 			if (BPF_SIZE(insn->code) == BPF_W)		\
2160 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2161 					     (DST + insn->off));	\
2162 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2163 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2164 					       (DST + insn->off));	\
2165 			else						\
2166 				goto default_label;			\
2167 			break;						\
2168 		case BOP | BPF_FETCH:					\
2169 			if (BPF_SIZE(insn->code) == BPF_W)		\
2170 				SRC = (u32) atomic_fetch_##KOP(		\
2171 					(u32) SRC,			\
2172 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2173 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2174 				SRC = (u64) atomic64_fetch_##KOP(	\
2175 					(u64) SRC,			\
2176 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2177 			else						\
2178 				goto default_label;			\
2179 			break;
2180 
2181 	STX_ATOMIC_DW:
2182 	STX_ATOMIC_W:
2183 	STX_ATOMIC_H:
2184 	STX_ATOMIC_B:
2185 		switch (IMM) {
2186 		/* Atomic read-modify-write instructions support only W and DW
2187 		 * size modifiers.
2188 		 */
2189 		ATOMIC_ALU_OP(BPF_ADD, add)
2190 		ATOMIC_ALU_OP(BPF_AND, and)
2191 		ATOMIC_ALU_OP(BPF_OR, or)
2192 		ATOMIC_ALU_OP(BPF_XOR, xor)
2193 #undef ATOMIC_ALU_OP
2194 
2195 		case BPF_XCHG:
2196 			if (BPF_SIZE(insn->code) == BPF_W)
2197 				SRC = (u32) atomic_xchg(
2198 					(atomic_t *)(unsigned long) (DST + insn->off),
2199 					(u32) SRC);
2200 			else if (BPF_SIZE(insn->code) == BPF_DW)
2201 				SRC = (u64) atomic64_xchg(
2202 					(atomic64_t *)(unsigned long) (DST + insn->off),
2203 					(u64) SRC);
2204 			else
2205 				goto default_label;
2206 			break;
2207 		case BPF_CMPXCHG:
2208 			if (BPF_SIZE(insn->code) == BPF_W)
2209 				BPF_R0 = (u32) atomic_cmpxchg(
2210 					(atomic_t *)(unsigned long) (DST + insn->off),
2211 					(u32) BPF_R0, (u32) SRC);
2212 			else if (BPF_SIZE(insn->code) == BPF_DW)
2213 				BPF_R0 = (u64) atomic64_cmpxchg(
2214 					(atomic64_t *)(unsigned long) (DST + insn->off),
2215 					(u64) BPF_R0, (u64) SRC);
2216 			else
2217 				goto default_label;
2218 			break;
2219 		/* Atomic load and store instructions support all size
2220 		 * modifiers.
2221 		 */
2222 		case BPF_LOAD_ACQ:
2223 			switch (BPF_SIZE(insn->code)) {
2224 #define LOAD_ACQUIRE(SIZEOP, SIZE)				\
2225 			case BPF_##SIZEOP:			\
2226 				DST = (SIZE)smp_load_acquire(	\
2227 					(SIZE *)(unsigned long)(SRC + insn->off));	\
2228 				break;
2229 			LOAD_ACQUIRE(B,   u8)
2230 			LOAD_ACQUIRE(H,  u16)
2231 			LOAD_ACQUIRE(W,  u32)
2232 #ifdef CONFIG_64BIT
2233 			LOAD_ACQUIRE(DW, u64)
2234 #endif
2235 #undef LOAD_ACQUIRE
2236 			default:
2237 				goto default_label;
2238 			}
2239 			break;
2240 		case BPF_STORE_REL:
2241 			switch (BPF_SIZE(insn->code)) {
2242 #define STORE_RELEASE(SIZEOP, SIZE)			\
2243 			case BPF_##SIZEOP:		\
2244 				smp_store_release(	\
2245 					(SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC);	\
2246 				break;
2247 			STORE_RELEASE(B,   u8)
2248 			STORE_RELEASE(H,  u16)
2249 			STORE_RELEASE(W,  u32)
2250 #ifdef CONFIG_64BIT
2251 			STORE_RELEASE(DW, u64)
2252 #endif
2253 #undef STORE_RELEASE
2254 			default:
2255 				goto default_label;
2256 			}
2257 			break;
2258 
2259 		default:
2260 			goto default_label;
2261 		}
2262 		CONT;
2263 
2264 	default_label:
2265 		/* If we ever reach this, we have a bug somewhere. Die hard here
2266 		 * instead of just returning 0; we could be somewhere in a subprog,
2267 		 * so execution could continue otherwise which we do /not/ want.
2268 		 *
2269 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2270 		 */
2271 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2272 			insn->code, insn->imm);
2273 		BUG_ON(1);
2274 		return 0;
2275 }
2276 
2277 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2278 #define DEFINE_BPF_PROG_RUN(stack_size) \
2279 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2280 { \
2281 	u64 stack[stack_size / sizeof(u64)]; \
2282 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2283 \
2284 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2285 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2286 	ARG1 = (u64) (unsigned long) ctx; \
2287 	return ___bpf_prog_run(regs, insn); \
2288 }
2289 
2290 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2291 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2292 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2293 				      const struct bpf_insn *insn) \
2294 { \
2295 	u64 stack[stack_size / sizeof(u64)]; \
2296 	u64 regs[MAX_BPF_EXT_REG]; \
2297 \
2298 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2299 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2300 	BPF_R1 = r1; \
2301 	BPF_R2 = r2; \
2302 	BPF_R3 = r3; \
2303 	BPF_R4 = r4; \
2304 	BPF_R5 = r5; \
2305 	return ___bpf_prog_run(regs, insn); \
2306 }
2307 
2308 #define EVAL1(FN, X) FN(X)
2309 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2310 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2311 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2312 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2313 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2314 
2315 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2316 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2317 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2318 
2319 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2320 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2321 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2322 
2323 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2324 
2325 static unsigned int (*interpreters[])(const void *ctx,
2326 				      const struct bpf_insn *insn) = {
2327 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2328 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2329 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2330 };
2331 #undef PROG_NAME_LIST
2332 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2333 static __maybe_unused
2334 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2335 			   const struct bpf_insn *insn) = {
2336 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2337 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2338 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2339 };
2340 #undef PROG_NAME_LIST
2341 
2342 #ifdef CONFIG_BPF_SYSCALL
2343 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2344 {
2345 	stack_depth = max_t(u32, stack_depth, 1);
2346 	insn->off = (s16) insn->imm;
2347 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2348 		__bpf_call_base_args;
2349 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2350 }
2351 #endif
2352 #endif
2353 
2354 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2355 					 const struct bpf_insn *insn)
2356 {
2357 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2358 	 * is not working properly, so warn about it!
2359 	 */
2360 	WARN_ON_ONCE(1);
2361 	return 0;
2362 }
2363 
2364 static bool __bpf_prog_map_compatible(struct bpf_map *map,
2365 				      const struct bpf_prog *fp)
2366 {
2367 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2368 	struct bpf_prog_aux *aux = fp->aux;
2369 	enum bpf_cgroup_storage_type i;
2370 	bool ret = false;
2371 	u64 cookie;
2372 
2373 	if (fp->kprobe_override)
2374 		return ret;
2375 
2376 	spin_lock(&map->owner_lock);
2377 	/* There's no owner yet where we could check for compatibility. */
2378 	if (!map->owner) {
2379 		map->owner = bpf_map_owner_alloc(map);
2380 		if (!map->owner)
2381 			goto err;
2382 		map->owner->type  = prog_type;
2383 		map->owner->jited = fp->jited;
2384 		map->owner->xdp_has_frags = aux->xdp_has_frags;
2385 		map->owner->expected_attach_type = fp->expected_attach_type;
2386 		map->owner->attach_func_proto = aux->attach_func_proto;
2387 		for_each_cgroup_storage_type(i) {
2388 			map->owner->storage_cookie[i] =
2389 				aux->cgroup_storage[i] ?
2390 				aux->cgroup_storage[i]->cookie : 0;
2391 		}
2392 		ret = true;
2393 	} else {
2394 		ret = map->owner->type  == prog_type &&
2395 		      map->owner->jited == fp->jited &&
2396 		      map->owner->xdp_has_frags == aux->xdp_has_frags;
2397 		if (ret &&
2398 		    map->map_type == BPF_MAP_TYPE_PROG_ARRAY &&
2399 		    map->owner->expected_attach_type != fp->expected_attach_type)
2400 			ret = false;
2401 		for_each_cgroup_storage_type(i) {
2402 			if (!ret)
2403 				break;
2404 			cookie = aux->cgroup_storage[i] ?
2405 				 aux->cgroup_storage[i]->cookie : 0;
2406 			ret = map->owner->storage_cookie[i] == cookie ||
2407 			      !cookie;
2408 		}
2409 		if (ret &&
2410 		    map->owner->attach_func_proto != aux->attach_func_proto) {
2411 			switch (prog_type) {
2412 			case BPF_PROG_TYPE_TRACING:
2413 			case BPF_PROG_TYPE_LSM:
2414 			case BPF_PROG_TYPE_EXT:
2415 			case BPF_PROG_TYPE_STRUCT_OPS:
2416 				ret = false;
2417 				break;
2418 			default:
2419 				break;
2420 			}
2421 		}
2422 	}
2423 err:
2424 	spin_unlock(&map->owner_lock);
2425 	return ret;
2426 }
2427 
2428 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp)
2429 {
2430 	/* XDP programs inserted into maps are not guaranteed to run on
2431 	 * a particular netdev (and can run outside driver context entirely
2432 	 * in the case of devmap and cpumap). Until device checks
2433 	 * are implemented, prohibit adding dev-bound programs to program maps.
2434 	 */
2435 	if (bpf_prog_is_dev_bound(fp->aux))
2436 		return false;
2437 
2438 	return __bpf_prog_map_compatible(map, fp);
2439 }
2440 
2441 static int bpf_check_tail_call(const struct bpf_prog *fp)
2442 {
2443 	struct bpf_prog_aux *aux = fp->aux;
2444 	int i, ret = 0;
2445 
2446 	mutex_lock(&aux->used_maps_mutex);
2447 	for (i = 0; i < aux->used_map_cnt; i++) {
2448 		struct bpf_map *map = aux->used_maps[i];
2449 
2450 		if (!map_type_contains_progs(map))
2451 			continue;
2452 
2453 		if (!__bpf_prog_map_compatible(map, fp)) {
2454 			ret = -EINVAL;
2455 			goto out;
2456 		}
2457 	}
2458 
2459 out:
2460 	mutex_unlock(&aux->used_maps_mutex);
2461 	return ret;
2462 }
2463 
2464 static bool bpf_prog_select_interpreter(struct bpf_prog *fp)
2465 {
2466 	bool select_interpreter = false;
2467 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2468 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2469 	u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2470 
2471 	/* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2472 	 * But for non-JITed programs, we don't need bpf_func, so no bounds
2473 	 * check needed.
2474 	 */
2475 	if (idx < ARRAY_SIZE(interpreters)) {
2476 		fp->bpf_func = interpreters[idx];
2477 		select_interpreter = true;
2478 	} else {
2479 		fp->bpf_func = __bpf_prog_ret0_warn;
2480 	}
2481 #else
2482 	fp->bpf_func = __bpf_prog_ret0_warn;
2483 #endif
2484 	return select_interpreter;
2485 }
2486 
2487 /**
2488  *	bpf_prog_select_runtime - select exec runtime for BPF program
2489  *	@fp: bpf_prog populated with BPF program
2490  *	@err: pointer to error variable
2491  *
2492  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2493  * The BPF program will be executed via bpf_prog_run() function.
2494  *
2495  * Return: the &fp argument along with &err set to 0 for success or
2496  * a negative errno code on failure
2497  */
2498 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2499 {
2500 	/* In case of BPF to BPF calls, verifier did all the prep
2501 	 * work with regards to JITing, etc.
2502 	 */
2503 	bool jit_needed = false;
2504 
2505 	if (fp->bpf_func)
2506 		goto finalize;
2507 
2508 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2509 	    bpf_prog_has_kfunc_call(fp))
2510 		jit_needed = true;
2511 
2512 	if (!bpf_prog_select_interpreter(fp))
2513 		jit_needed = true;
2514 
2515 	/* eBPF JITs can rewrite the program in case constant
2516 	 * blinding is active. However, in case of error during
2517 	 * blinding, bpf_int_jit_compile() must always return a
2518 	 * valid program, which in this case would simply not
2519 	 * be JITed, but falls back to the interpreter.
2520 	 */
2521 	if (!bpf_prog_is_offloaded(fp->aux)) {
2522 		*err = bpf_prog_alloc_jited_linfo(fp);
2523 		if (*err)
2524 			return fp;
2525 
2526 		fp = bpf_int_jit_compile(fp);
2527 		bpf_prog_jit_attempt_done(fp);
2528 		if (!fp->jited && jit_needed) {
2529 			*err = -ENOTSUPP;
2530 			return fp;
2531 		}
2532 	} else {
2533 		*err = bpf_prog_offload_compile(fp);
2534 		if (*err)
2535 			return fp;
2536 	}
2537 
2538 finalize:
2539 	*err = bpf_prog_lock_ro(fp);
2540 	if (*err)
2541 		return fp;
2542 
2543 	/* The tail call compatibility check can only be done at
2544 	 * this late stage as we need to determine, if we deal
2545 	 * with JITed or non JITed program concatenations and not
2546 	 * all eBPF JITs might immediately support all features.
2547 	 */
2548 	*err = bpf_check_tail_call(fp);
2549 
2550 	return fp;
2551 }
2552 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2553 
2554 static unsigned int __bpf_prog_ret1(const void *ctx,
2555 				    const struct bpf_insn *insn)
2556 {
2557 	return 1;
2558 }
2559 
2560 static struct bpf_prog_dummy {
2561 	struct bpf_prog prog;
2562 } dummy_bpf_prog = {
2563 	.prog = {
2564 		.bpf_func = __bpf_prog_ret1,
2565 	},
2566 };
2567 
2568 struct bpf_empty_prog_array bpf_empty_prog_array = {
2569 	.null_prog = NULL,
2570 };
2571 EXPORT_SYMBOL(bpf_empty_prog_array);
2572 
2573 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2574 {
2575 	struct bpf_prog_array *p;
2576 
2577 	if (prog_cnt)
2578 		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2579 	else
2580 		p = &bpf_empty_prog_array.hdr;
2581 
2582 	return p;
2583 }
2584 
2585 void bpf_prog_array_free(struct bpf_prog_array *progs)
2586 {
2587 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2588 		return;
2589 	kfree_rcu(progs, rcu);
2590 }
2591 
2592 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2593 {
2594 	struct bpf_prog_array *progs;
2595 
2596 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2597 	 * no need to call kfree_rcu(), just call kfree() directly.
2598 	 */
2599 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2600 	if (rcu_trace_implies_rcu_gp())
2601 		kfree(progs);
2602 	else
2603 		kfree_rcu(progs, rcu);
2604 }
2605 
2606 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2607 {
2608 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2609 		return;
2610 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2611 }
2612 
2613 int bpf_prog_array_length(struct bpf_prog_array *array)
2614 {
2615 	struct bpf_prog_array_item *item;
2616 	u32 cnt = 0;
2617 
2618 	for (item = array->items; item->prog; item++)
2619 		if (item->prog != &dummy_bpf_prog.prog)
2620 			cnt++;
2621 	return cnt;
2622 }
2623 
2624 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2625 {
2626 	struct bpf_prog_array_item *item;
2627 
2628 	for (item = array->items; item->prog; item++)
2629 		if (item->prog != &dummy_bpf_prog.prog)
2630 			return false;
2631 	return true;
2632 }
2633 
2634 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2635 				     u32 *prog_ids,
2636 				     u32 request_cnt)
2637 {
2638 	struct bpf_prog_array_item *item;
2639 	int i = 0;
2640 
2641 	for (item = array->items; item->prog; item++) {
2642 		if (item->prog == &dummy_bpf_prog.prog)
2643 			continue;
2644 		prog_ids[i] = item->prog->aux->id;
2645 		if (++i == request_cnt) {
2646 			item++;
2647 			break;
2648 		}
2649 	}
2650 
2651 	return !!(item->prog);
2652 }
2653 
2654 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2655 				__u32 __user *prog_ids, u32 cnt)
2656 {
2657 	unsigned long err = 0;
2658 	bool nospc;
2659 	u32 *ids;
2660 
2661 	/* users of this function are doing:
2662 	 * cnt = bpf_prog_array_length();
2663 	 * if (cnt > 0)
2664 	 *     bpf_prog_array_copy_to_user(..., cnt);
2665 	 * so below kcalloc doesn't need extra cnt > 0 check.
2666 	 */
2667 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2668 	if (!ids)
2669 		return -ENOMEM;
2670 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2671 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2672 	kfree(ids);
2673 	if (err)
2674 		return -EFAULT;
2675 	if (nospc)
2676 		return -ENOSPC;
2677 	return 0;
2678 }
2679 
2680 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2681 				struct bpf_prog *old_prog)
2682 {
2683 	struct bpf_prog_array_item *item;
2684 
2685 	for (item = array->items; item->prog; item++)
2686 		if (item->prog == old_prog) {
2687 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2688 			break;
2689 		}
2690 }
2691 
2692 /**
2693  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2694  *                                   index into the program array with
2695  *                                   a dummy no-op program.
2696  * @array: a bpf_prog_array
2697  * @index: the index of the program to replace
2698  *
2699  * Skips over dummy programs, by not counting them, when calculating
2700  * the position of the program to replace.
2701  *
2702  * Return:
2703  * * 0		- Success
2704  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2705  * * -ENOENT	- Index out of range
2706  */
2707 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2708 {
2709 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2710 }
2711 
2712 /**
2713  * bpf_prog_array_update_at() - Updates the program at the given index
2714  *                              into the program array.
2715  * @array: a bpf_prog_array
2716  * @index: the index of the program to update
2717  * @prog: the program to insert into the array
2718  *
2719  * Skips over dummy programs, by not counting them, when calculating
2720  * the position of the program to update.
2721  *
2722  * Return:
2723  * * 0		- Success
2724  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2725  * * -ENOENT	- Index out of range
2726  */
2727 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2728 			     struct bpf_prog *prog)
2729 {
2730 	struct bpf_prog_array_item *item;
2731 
2732 	if (unlikely(index < 0))
2733 		return -EINVAL;
2734 
2735 	for (item = array->items; item->prog; item++) {
2736 		if (item->prog == &dummy_bpf_prog.prog)
2737 			continue;
2738 		if (!index) {
2739 			WRITE_ONCE(item->prog, prog);
2740 			return 0;
2741 		}
2742 		index--;
2743 	}
2744 	return -ENOENT;
2745 }
2746 
2747 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2748 			struct bpf_prog *exclude_prog,
2749 			struct bpf_prog *include_prog,
2750 			u64 bpf_cookie,
2751 			struct bpf_prog_array **new_array)
2752 {
2753 	int new_prog_cnt, carry_prog_cnt = 0;
2754 	struct bpf_prog_array_item *existing, *new;
2755 	struct bpf_prog_array *array;
2756 	bool found_exclude = false;
2757 
2758 	/* Figure out how many existing progs we need to carry over to
2759 	 * the new array.
2760 	 */
2761 	if (old_array) {
2762 		existing = old_array->items;
2763 		for (; existing->prog; existing++) {
2764 			if (existing->prog == exclude_prog) {
2765 				found_exclude = true;
2766 				continue;
2767 			}
2768 			if (existing->prog != &dummy_bpf_prog.prog)
2769 				carry_prog_cnt++;
2770 			if (existing->prog == include_prog)
2771 				return -EEXIST;
2772 		}
2773 	}
2774 
2775 	if (exclude_prog && !found_exclude)
2776 		return -ENOENT;
2777 
2778 	/* How many progs (not NULL) will be in the new array? */
2779 	new_prog_cnt = carry_prog_cnt;
2780 	if (include_prog)
2781 		new_prog_cnt += 1;
2782 
2783 	/* Do we have any prog (not NULL) in the new array? */
2784 	if (!new_prog_cnt) {
2785 		*new_array = NULL;
2786 		return 0;
2787 	}
2788 
2789 	/* +1 as the end of prog_array is marked with NULL */
2790 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2791 	if (!array)
2792 		return -ENOMEM;
2793 	new = array->items;
2794 
2795 	/* Fill in the new prog array */
2796 	if (carry_prog_cnt) {
2797 		existing = old_array->items;
2798 		for (; existing->prog; existing++) {
2799 			if (existing->prog == exclude_prog ||
2800 			    existing->prog == &dummy_bpf_prog.prog)
2801 				continue;
2802 
2803 			new->prog = existing->prog;
2804 			new->bpf_cookie = existing->bpf_cookie;
2805 			new++;
2806 		}
2807 	}
2808 	if (include_prog) {
2809 		new->prog = include_prog;
2810 		new->bpf_cookie = bpf_cookie;
2811 		new++;
2812 	}
2813 	new->prog = NULL;
2814 	*new_array = array;
2815 	return 0;
2816 }
2817 
2818 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2819 			     u32 *prog_ids, u32 request_cnt,
2820 			     u32 *prog_cnt)
2821 {
2822 	u32 cnt = 0;
2823 
2824 	if (array)
2825 		cnt = bpf_prog_array_length(array);
2826 
2827 	*prog_cnt = cnt;
2828 
2829 	/* return early if user requested only program count or nothing to copy */
2830 	if (!request_cnt || !cnt)
2831 		return 0;
2832 
2833 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2834 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2835 								     : 0;
2836 }
2837 
2838 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2839 			  struct bpf_map **used_maps, u32 len)
2840 {
2841 	struct bpf_map *map;
2842 	bool sleepable;
2843 	u32 i;
2844 
2845 	sleepable = aux->prog->sleepable;
2846 	for (i = 0; i < len; i++) {
2847 		map = used_maps[i];
2848 		if (map->ops->map_poke_untrack)
2849 			map->ops->map_poke_untrack(map, aux);
2850 		if (sleepable)
2851 			atomic64_dec(&map->sleepable_refcnt);
2852 		bpf_map_put(map);
2853 	}
2854 }
2855 
2856 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2857 {
2858 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2859 	kfree(aux->used_maps);
2860 }
2861 
2862 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2863 {
2864 #ifdef CONFIG_BPF_SYSCALL
2865 	struct btf_mod_pair *btf_mod;
2866 	u32 i;
2867 
2868 	for (i = 0; i < len; i++) {
2869 		btf_mod = &used_btfs[i];
2870 		if (btf_mod->module)
2871 			module_put(btf_mod->module);
2872 		btf_put(btf_mod->btf);
2873 	}
2874 #endif
2875 }
2876 
2877 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2878 {
2879 	__bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2880 	kfree(aux->used_btfs);
2881 }
2882 
2883 static void bpf_prog_free_deferred(struct work_struct *work)
2884 {
2885 	struct bpf_prog_aux *aux;
2886 	int i;
2887 
2888 	aux = container_of(work, struct bpf_prog_aux, work);
2889 #ifdef CONFIG_BPF_SYSCALL
2890 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2891 	bpf_prog_stream_free(aux->prog);
2892 #endif
2893 #ifdef CONFIG_CGROUP_BPF
2894 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2895 		bpf_cgroup_atype_put(aux->cgroup_atype);
2896 #endif
2897 	bpf_free_used_maps(aux);
2898 	bpf_free_used_btfs(aux);
2899 	if (bpf_prog_is_dev_bound(aux))
2900 		bpf_prog_dev_bound_destroy(aux->prog);
2901 #ifdef CONFIG_PERF_EVENTS
2902 	if (aux->prog->has_callchain_buf)
2903 		put_callchain_buffers();
2904 #endif
2905 	if (aux->dst_trampoline)
2906 		bpf_trampoline_put(aux->dst_trampoline);
2907 	for (i = 0; i < aux->real_func_cnt; i++) {
2908 		/* We can just unlink the subprog poke descriptor table as
2909 		 * it was originally linked to the main program and is also
2910 		 * released along with it.
2911 		 */
2912 		aux->func[i]->aux->poke_tab = NULL;
2913 		bpf_jit_free(aux->func[i]);
2914 	}
2915 	if (aux->real_func_cnt) {
2916 		kfree(aux->func);
2917 		bpf_prog_unlock_free(aux->prog);
2918 	} else {
2919 		bpf_jit_free(aux->prog);
2920 	}
2921 }
2922 
2923 void bpf_prog_free(struct bpf_prog *fp)
2924 {
2925 	struct bpf_prog_aux *aux = fp->aux;
2926 
2927 	if (aux->dst_prog)
2928 		bpf_prog_put(aux->dst_prog);
2929 	bpf_token_put(aux->token);
2930 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2931 	schedule_work(&aux->work);
2932 }
2933 EXPORT_SYMBOL_GPL(bpf_prog_free);
2934 
2935 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2936 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2937 
2938 void bpf_user_rnd_init_once(void)
2939 {
2940 	prandom_init_once(&bpf_user_rnd_state);
2941 }
2942 
2943 BPF_CALL_0(bpf_user_rnd_u32)
2944 {
2945 	/* Should someone ever have the rather unwise idea to use some
2946 	 * of the registers passed into this function, then note that
2947 	 * this function is called from native eBPF and classic-to-eBPF
2948 	 * transformations. Register assignments from both sides are
2949 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2950 	 */
2951 	struct rnd_state *state;
2952 	u32 res;
2953 
2954 	state = &get_cpu_var(bpf_user_rnd_state);
2955 	res = prandom_u32_state(state);
2956 	put_cpu_var(bpf_user_rnd_state);
2957 
2958 	return res;
2959 }
2960 
2961 BPF_CALL_0(bpf_get_raw_cpu_id)
2962 {
2963 	return raw_smp_processor_id();
2964 }
2965 
2966 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2967 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2968 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2969 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2970 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2971 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2972 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2973 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2974 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2975 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2976 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2977 
2978 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2979 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2980 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2981 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2982 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2983 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2984 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2985 
2986 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2987 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2988 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2989 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2990 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2991 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2992 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2993 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2994 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2995 const struct bpf_func_proto bpf_set_retval_proto __weak;
2996 const struct bpf_func_proto bpf_get_retval_proto __weak;
2997 
2998 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2999 {
3000 	return NULL;
3001 }
3002 
3003 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
3004 {
3005 	return NULL;
3006 }
3007 
3008 const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void)
3009 {
3010 	return NULL;
3011 }
3012 
3013 u64 __weak
3014 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
3015 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
3016 {
3017 	return -ENOTSUPP;
3018 }
3019 EXPORT_SYMBOL_GPL(bpf_event_output);
3020 
3021 /* Always built-in helper functions. */
3022 const struct bpf_func_proto bpf_tail_call_proto = {
3023 	/* func is unused for tail_call, we set it to pass the
3024 	 * get_helper_proto check
3025 	 */
3026 	.func		= BPF_PTR_POISON,
3027 	.gpl_only	= false,
3028 	.ret_type	= RET_VOID,
3029 	.arg1_type	= ARG_PTR_TO_CTX,
3030 	.arg2_type	= ARG_CONST_MAP_PTR,
3031 	.arg3_type	= ARG_ANYTHING,
3032 };
3033 
3034 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
3035  * It is encouraged to implement bpf_int_jit_compile() instead, so that
3036  * eBPF and implicitly also cBPF can get JITed!
3037  */
3038 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3039 {
3040 	return prog;
3041 }
3042 
3043 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
3044  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
3045  */
3046 void __weak bpf_jit_compile(struct bpf_prog *prog)
3047 {
3048 }
3049 
3050 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
3051 {
3052 	return false;
3053 }
3054 
3055 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
3056  * analysis code and wants explicit zero extension inserted by verifier.
3057  * Otherwise, return FALSE.
3058  *
3059  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
3060  * you don't override this. JITs that don't want these extra insns can detect
3061  * them using insn_is_zext.
3062  */
3063 bool __weak bpf_jit_needs_zext(void)
3064 {
3065 	return false;
3066 }
3067 
3068 /* By default, enable the verifier's mitigations against Spectre v1 and v4 for
3069  * all archs. The value returned must not change at runtime as there is
3070  * currently no support for reloading programs that were loaded without
3071  * mitigations.
3072  */
3073 bool __weak bpf_jit_bypass_spec_v1(void)
3074 {
3075 	return false;
3076 }
3077 
3078 bool __weak bpf_jit_bypass_spec_v4(void)
3079 {
3080 	return false;
3081 }
3082 
3083 /* Return true if the JIT inlines the call to the helper corresponding to
3084  * the imm.
3085  *
3086  * The verifier will not patch the insn->imm for the call to the helper if
3087  * this returns true.
3088  */
3089 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3090 {
3091 	return false;
3092 }
3093 
3094 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
3095 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3096 {
3097 	return false;
3098 }
3099 
3100 bool __weak bpf_jit_supports_percpu_insn(void)
3101 {
3102 	return false;
3103 }
3104 
3105 bool __weak bpf_jit_supports_kfunc_call(void)
3106 {
3107 	return false;
3108 }
3109 
3110 bool __weak bpf_jit_supports_far_kfunc_call(void)
3111 {
3112 	return false;
3113 }
3114 
3115 bool __weak bpf_jit_supports_arena(void)
3116 {
3117 	return false;
3118 }
3119 
3120 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3121 {
3122 	return false;
3123 }
3124 
3125 u64 __weak bpf_arch_uaddress_limit(void)
3126 {
3127 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3128 	return TASK_SIZE;
3129 #else
3130 	return 0;
3131 #endif
3132 }
3133 
3134 /* Return TRUE if the JIT backend satisfies the following two conditions:
3135  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3136  * 2) Under the specific arch, the implementation of xchg() is the same
3137  *    as atomic_xchg() on pointer-sized words.
3138  */
3139 bool __weak bpf_jit_supports_ptr_xchg(void)
3140 {
3141 	return false;
3142 }
3143 
3144 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3145  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3146  */
3147 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3148 			 int len)
3149 {
3150 	return -EFAULT;
3151 }
3152 
3153 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
3154 			      enum bpf_text_poke_type new_t, void *old_addr,
3155 			      void *new_addr)
3156 {
3157 	return -ENOTSUPP;
3158 }
3159 
3160 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3161 {
3162 	return ERR_PTR(-ENOTSUPP);
3163 }
3164 
3165 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3166 {
3167 	return -ENOTSUPP;
3168 }
3169 
3170 bool __weak bpf_jit_supports_exceptions(void)
3171 {
3172 	return false;
3173 }
3174 
3175 bool __weak bpf_jit_supports_private_stack(void)
3176 {
3177 	return false;
3178 }
3179 
3180 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3181 {
3182 }
3183 
3184 bool __weak bpf_jit_supports_timed_may_goto(void)
3185 {
3186 	return false;
3187 }
3188 
3189 u64 __weak arch_bpf_timed_may_goto(void)
3190 {
3191 	return 0;
3192 }
3193 
3194 static noinline void bpf_prog_report_may_goto_violation(void)
3195 {
3196 #ifdef CONFIG_BPF_SYSCALL
3197 	struct bpf_stream_stage ss;
3198 	struct bpf_prog *prog;
3199 
3200 	prog = bpf_prog_find_from_stack();
3201 	if (!prog)
3202 		return;
3203 	bpf_stream_stage(ss, prog, BPF_STDERR, ({
3204 		bpf_stream_printk(ss, "ERROR: Timeout detected for may_goto instruction\n");
3205 		bpf_stream_dump_stack(ss);
3206 	}));
3207 #endif
3208 }
3209 
3210 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p)
3211 {
3212 	u64 time = ktime_get_mono_fast_ns();
3213 
3214 	/* Populate the timestamp for this stack frame, and refresh count. */
3215 	if (!p->timestamp) {
3216 		p->timestamp = time;
3217 		return BPF_MAX_TIMED_LOOPS;
3218 	}
3219 	/* Check if we've exhausted our time slice, and zero count. */
3220 	if (unlikely(time - p->timestamp >= (NSEC_PER_SEC / 4))) {
3221 		bpf_prog_report_may_goto_violation();
3222 		return 0;
3223 	}
3224 	/* Refresh the count for the stack frame. */
3225 	return BPF_MAX_TIMED_LOOPS;
3226 }
3227 
3228 /* for configs without MMU or 32-bit */
3229 __weak const struct bpf_map_ops arena_map_ops;
3230 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3231 {
3232 	return 0;
3233 }
3234 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3235 {
3236 	return 0;
3237 }
3238 
3239 #ifdef CONFIG_BPF_SYSCALL
3240 static int __init bpf_global_ma_init(void)
3241 {
3242 	int ret;
3243 
3244 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3245 	bpf_global_ma_set = !ret;
3246 	return ret;
3247 }
3248 late_initcall(bpf_global_ma_init);
3249 #endif
3250 
3251 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3252 EXPORT_SYMBOL(bpf_stats_enabled_key);
3253 
3254 /* All definitions of tracepoints related to BPF. */
3255 #define CREATE_TRACE_POINTS
3256 #include <linux/bpf_trace.h>
3257 
3258 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3259 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3260 
3261 #ifdef CONFIG_BPF_SYSCALL
3262 
3263 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3264 			   const char **linep, int *nump)
3265 {
3266 	int idx = -1, insn_start, insn_end, len;
3267 	struct bpf_line_info *linfo;
3268 	void **jited_linfo;
3269 	struct btf *btf;
3270 	int nr_linfo;
3271 
3272 	btf = prog->aux->btf;
3273 	linfo = prog->aux->linfo;
3274 	jited_linfo = prog->aux->jited_linfo;
3275 
3276 	if (!btf || !linfo || !jited_linfo)
3277 		return -EINVAL;
3278 	len = prog->aux->func ? prog->aux->func[prog->aux->func_idx]->len : prog->len;
3279 
3280 	linfo = &prog->aux->linfo[prog->aux->linfo_idx];
3281 	jited_linfo = &prog->aux->jited_linfo[prog->aux->linfo_idx];
3282 
3283 	insn_start = linfo[0].insn_off;
3284 	insn_end = insn_start + len;
3285 	nr_linfo = prog->aux->nr_linfo - prog->aux->linfo_idx;
3286 
3287 	for (int i = 0; i < nr_linfo &&
3288 	     linfo[i].insn_off >= insn_start && linfo[i].insn_off < insn_end; i++) {
3289 		if (jited_linfo[i] >= (void *)ip)
3290 			break;
3291 		idx = i;
3292 	}
3293 
3294 	if (idx == -1)
3295 		return -ENOENT;
3296 
3297 	/* Get base component of the file path. */
3298 	*filep = btf_name_by_offset(btf, linfo[idx].file_name_off);
3299 	*filep = kbasename(*filep);
3300 	/* Obtain the source line, and strip whitespace in prefix. */
3301 	*linep = btf_name_by_offset(btf, linfo[idx].line_off);
3302 	while (isspace(**linep))
3303 		*linep += 1;
3304 	*nump = BPF_LINE_INFO_LINE_NUM(linfo[idx].line_col);
3305 	return 0;
3306 }
3307 
3308 struct walk_stack_ctx {
3309 	struct bpf_prog *prog;
3310 };
3311 
3312 static bool find_from_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp)
3313 {
3314 	struct walk_stack_ctx *ctxp = cookie;
3315 	struct bpf_prog *prog;
3316 
3317 	/*
3318 	 * The RCU read lock is held to safely traverse the latch tree, but we
3319 	 * don't need its protection when accessing the prog, since it has an
3320 	 * active stack frame on the current stack trace, and won't disappear.
3321 	 */
3322 	rcu_read_lock();
3323 	prog = bpf_prog_ksym_find(ip);
3324 	rcu_read_unlock();
3325 	if (!prog)
3326 		return true;
3327 	/* Make sure we return the main prog if we found a subprog */
3328 	ctxp->prog = prog->aux->main_prog_aux->prog;
3329 	return false;
3330 }
3331 
3332 struct bpf_prog *bpf_prog_find_from_stack(void)
3333 {
3334 	struct walk_stack_ctx ctx = {};
3335 
3336 	arch_bpf_stack_walk(find_from_stack_cb, &ctx);
3337 	return ctx.prog;
3338 }
3339 
3340 #endif
3341