xref: /linux/kernel/trace/bpf_trace.c (revision 27d89baa6da8e5e546585c53a959176d1302d46e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/namei.h>
26 
27 #include <net/bpf_sk_storage.h>
28 
29 #include <uapi/linux/bpf.h>
30 #include <uapi/linux/btf.h>
31 
32 #include <asm/tlb.h>
33 
34 #include "trace_probe.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include "bpf_trace.h"
39 
40 #define bpf_event_rcu_dereference(p)					\
41 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
42 
43 #define MAX_UPROBE_MULTI_CNT (1U << 20)
44 #define MAX_KPROBE_MULTI_CNT (1U << 20)
45 
46 #ifdef CONFIG_MODULES
47 struct bpf_trace_module {
48 	struct module *module;
49 	struct list_head list;
50 };
51 
52 static LIST_HEAD(bpf_trace_modules);
53 static DEFINE_MUTEX(bpf_module_mutex);
54 
55 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
56 {
57 	struct bpf_raw_event_map *btp, *ret = NULL;
58 	struct bpf_trace_module *btm;
59 	unsigned int i;
60 
61 	mutex_lock(&bpf_module_mutex);
62 	list_for_each_entry(btm, &bpf_trace_modules, list) {
63 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
64 			btp = &btm->module->bpf_raw_events[i];
65 			if (!strcmp(btp->tp->name, name)) {
66 				if (try_module_get(btm->module))
67 					ret = btp;
68 				goto out;
69 			}
70 		}
71 	}
72 out:
73 	mutex_unlock(&bpf_module_mutex);
74 	return ret;
75 }
76 #else
77 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
78 {
79 	return NULL;
80 }
81 #endif /* CONFIG_MODULES */
82 
83 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
84 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 
86 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
87 				  u64 flags, const struct btf **btf,
88 				  s32 *btf_id);
89 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
90 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
91 
92 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
93 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
94 
95 /**
96  * trace_call_bpf - invoke BPF program
97  * @call: tracepoint event
98  * @ctx: opaque context pointer
99  *
100  * kprobe handlers execute BPF programs via this helper.
101  * Can be used from static tracepoints in the future.
102  *
103  * Return: BPF programs always return an integer which is interpreted by
104  * kprobe handler as:
105  * 0 - return from kprobe (event is filtered out)
106  * 1 - store kprobe event into ring buffer
107  * Other values are reserved and currently alias to 1
108  */
109 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
110 {
111 	unsigned int ret;
112 
113 	cant_sleep();
114 
115 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
116 		/*
117 		 * since some bpf program is already running on this cpu,
118 		 * don't call into another bpf program (same or different)
119 		 * and don't send kprobe event into ring-buffer,
120 		 * so return zero here
121 		 */
122 		rcu_read_lock();
123 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
124 		rcu_read_unlock();
125 		ret = 0;
126 		goto out;
127 	}
128 
129 	/*
130 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
131 	 * to all call sites, we did a bpf_prog_array_valid() there to check
132 	 * whether call->prog_array is empty or not, which is
133 	 * a heuristic to speed up execution.
134 	 *
135 	 * If bpf_prog_array_valid() fetched prog_array was
136 	 * non-NULL, we go into trace_call_bpf() and do the actual
137 	 * proper rcu_dereference() under RCU lock.
138 	 * If it turns out that prog_array is NULL then, we bail out.
139 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
140 	 * was NULL, you'll skip the prog_array with the risk of missing
141 	 * out of events when it was updated in between this and the
142 	 * rcu_dereference() which is accepted risk.
143 	 */
144 	rcu_read_lock();
145 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
146 				 ctx, bpf_prog_run);
147 	rcu_read_unlock();
148 
149  out:
150 	__this_cpu_dec(bpf_prog_active);
151 
152 	return ret;
153 }
154 
155 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
156 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
157 {
158 	regs_set_return_value(regs, rc);
159 	override_function_with_return(regs);
160 	return 0;
161 }
162 
163 static const struct bpf_func_proto bpf_override_return_proto = {
164 	.func		= bpf_override_return,
165 	.gpl_only	= true,
166 	.ret_type	= RET_INTEGER,
167 	.arg1_type	= ARG_PTR_TO_CTX,
168 	.arg2_type	= ARG_ANYTHING,
169 };
170 #endif
171 
172 static __always_inline int
173 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
174 {
175 	int ret;
176 
177 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
178 	if (unlikely(ret < 0))
179 		memset(dst, 0, size);
180 	return ret;
181 }
182 
183 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
184 	   const void __user *, unsafe_ptr)
185 {
186 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
187 }
188 
189 const struct bpf_func_proto bpf_probe_read_user_proto = {
190 	.func		= bpf_probe_read_user,
191 	.gpl_only	= true,
192 	.ret_type	= RET_INTEGER,
193 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
194 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
195 	.arg3_type	= ARG_ANYTHING,
196 };
197 
198 static __always_inline int
199 bpf_probe_read_user_str_common(void *dst, u32 size,
200 			       const void __user *unsafe_ptr)
201 {
202 	int ret;
203 
204 	/*
205 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
206 	 * terminator into `dst`.
207 	 *
208 	 * strncpy_from_user() does long-sized strides in the fast path. If the
209 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
210 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
211 	 * and keys a hash map with it, then semantically identical strings can
212 	 * occupy multiple entries in the map.
213 	 */
214 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
215 	if (unlikely(ret < 0))
216 		memset(dst, 0, size);
217 	return ret;
218 }
219 
220 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
221 	   const void __user *, unsafe_ptr)
222 {
223 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
224 }
225 
226 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
227 	.func		= bpf_probe_read_user_str,
228 	.gpl_only	= true,
229 	.ret_type	= RET_INTEGER,
230 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
231 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
232 	.arg3_type	= ARG_ANYTHING,
233 };
234 
235 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
236 	   const void *, unsafe_ptr)
237 {
238 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
239 }
240 
241 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
242 	.func		= bpf_probe_read_kernel,
243 	.gpl_only	= true,
244 	.ret_type	= RET_INTEGER,
245 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
246 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
247 	.arg3_type	= ARG_ANYTHING,
248 };
249 
250 static __always_inline int
251 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
252 {
253 	int ret;
254 
255 	/*
256 	 * The strncpy_from_kernel_nofault() call will likely not fill the
257 	 * entire buffer, but that's okay in this circumstance as we're probing
258 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
259 	 * as well probe the stack. Thus, memory is explicitly cleared
260 	 * only in error case, so that improper users ignoring return
261 	 * code altogether don't copy garbage; otherwise length of string
262 	 * is returned that can be used for bpf_perf_event_output() et al.
263 	 */
264 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
265 	if (unlikely(ret < 0))
266 		memset(dst, 0, size);
267 	return ret;
268 }
269 
270 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
271 	   const void *, unsafe_ptr)
272 {
273 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
274 }
275 
276 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
277 	.func		= bpf_probe_read_kernel_str,
278 	.gpl_only	= true,
279 	.ret_type	= RET_INTEGER,
280 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
281 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
282 	.arg3_type	= ARG_ANYTHING,
283 };
284 
285 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
286 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
287 	   const void *, unsafe_ptr)
288 {
289 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
290 		return bpf_probe_read_user_common(dst, size,
291 				(__force void __user *)unsafe_ptr);
292 	}
293 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
294 }
295 
296 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
297 	.func		= bpf_probe_read_compat,
298 	.gpl_only	= true,
299 	.ret_type	= RET_INTEGER,
300 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
301 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
302 	.arg3_type	= ARG_ANYTHING,
303 };
304 
305 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
306 	   const void *, unsafe_ptr)
307 {
308 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
309 		return bpf_probe_read_user_str_common(dst, size,
310 				(__force void __user *)unsafe_ptr);
311 	}
312 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
313 }
314 
315 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
316 	.func		= bpf_probe_read_compat_str,
317 	.gpl_only	= true,
318 	.ret_type	= RET_INTEGER,
319 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
320 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
321 	.arg3_type	= ARG_ANYTHING,
322 };
323 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
324 
325 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
326 	   u32, size)
327 {
328 	/*
329 	 * Ensure we're in user context which is safe for the helper to
330 	 * run. This helper has no business in a kthread.
331 	 *
332 	 * access_ok() should prevent writing to non-user memory, but in
333 	 * some situations (nommu, temporary switch, etc) access_ok() does
334 	 * not provide enough validation, hence the check on KERNEL_DS.
335 	 *
336 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
337 	 * state, when the task or mm are switched. This is specifically
338 	 * required to prevent the use of temporary mm.
339 	 */
340 
341 	if (unlikely(in_interrupt() ||
342 		     current->flags & (PF_KTHREAD | PF_EXITING)))
343 		return -EPERM;
344 	if (unlikely(!nmi_uaccess_okay()))
345 		return -EPERM;
346 
347 	return copy_to_user_nofault(unsafe_ptr, src, size);
348 }
349 
350 static const struct bpf_func_proto bpf_probe_write_user_proto = {
351 	.func		= bpf_probe_write_user,
352 	.gpl_only	= true,
353 	.ret_type	= RET_INTEGER,
354 	.arg1_type	= ARG_ANYTHING,
355 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
356 	.arg3_type	= ARG_CONST_SIZE,
357 };
358 
359 #define MAX_TRACE_PRINTK_VARARGS	3
360 #define BPF_TRACE_PRINTK_SIZE		1024
361 
362 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
363 	   u64, arg2, u64, arg3)
364 {
365 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
366 	struct bpf_bprintf_data data = {
367 		.get_bin_args	= true,
368 		.get_buf	= true,
369 	};
370 	int ret;
371 
372 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
373 				  MAX_TRACE_PRINTK_VARARGS, &data);
374 	if (ret < 0)
375 		return ret;
376 
377 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
378 
379 	trace_bpf_trace_printk(data.buf);
380 
381 	bpf_bprintf_cleanup(&data);
382 
383 	return ret;
384 }
385 
386 static const struct bpf_func_proto bpf_trace_printk_proto = {
387 	.func		= bpf_trace_printk,
388 	.gpl_only	= true,
389 	.ret_type	= RET_INTEGER,
390 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
391 	.arg2_type	= ARG_CONST_SIZE,
392 };
393 
394 static void __set_printk_clr_event(struct work_struct *work)
395 {
396 	/*
397 	 * This program might be calling bpf_trace_printk,
398 	 * so enable the associated bpf_trace/bpf_trace_printk event.
399 	 * Repeat this each time as it is possible a user has
400 	 * disabled bpf_trace_printk events.  By loading a program
401 	 * calling bpf_trace_printk() however the user has expressed
402 	 * the intent to see such events.
403 	 */
404 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
405 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
406 }
407 static DECLARE_WORK(set_printk_work, __set_printk_clr_event);
408 
409 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
410 {
411 	schedule_work(&set_printk_work);
412 	return &bpf_trace_printk_proto;
413 }
414 
415 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
416 	   u32, data_len)
417 {
418 	struct bpf_bprintf_data data = {
419 		.get_bin_args	= true,
420 		.get_buf	= true,
421 	};
422 	int ret, num_args;
423 
424 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
425 	    (data_len && !args))
426 		return -EINVAL;
427 	num_args = data_len / 8;
428 
429 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
430 	if (ret < 0)
431 		return ret;
432 
433 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
434 
435 	trace_bpf_trace_printk(data.buf);
436 
437 	bpf_bprintf_cleanup(&data);
438 
439 	return ret;
440 }
441 
442 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
443 	.func		= bpf_trace_vprintk,
444 	.gpl_only	= true,
445 	.ret_type	= RET_INTEGER,
446 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
447 	.arg2_type	= ARG_CONST_SIZE,
448 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
449 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
450 };
451 
452 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
453 {
454 	schedule_work(&set_printk_work);
455 	return &bpf_trace_vprintk_proto;
456 }
457 
458 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
459 	   const void *, args, u32, data_len)
460 {
461 	struct bpf_bprintf_data data = {
462 		.get_bin_args	= true,
463 	};
464 	int err, num_args;
465 
466 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
467 	    (data_len && !args))
468 		return -EINVAL;
469 	num_args = data_len / 8;
470 
471 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
472 	if (err < 0)
473 		return err;
474 
475 	seq_bprintf(m, fmt, data.bin_args);
476 
477 	bpf_bprintf_cleanup(&data);
478 
479 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
480 }
481 
482 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
483 
484 static const struct bpf_func_proto bpf_seq_printf_proto = {
485 	.func		= bpf_seq_printf,
486 	.gpl_only	= true,
487 	.ret_type	= RET_INTEGER,
488 	.arg1_type	= ARG_PTR_TO_BTF_ID,
489 	.arg1_btf_id	= &btf_seq_file_ids[0],
490 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
491 	.arg3_type	= ARG_CONST_SIZE,
492 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
493 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
494 };
495 
496 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
497 {
498 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
499 }
500 
501 static const struct bpf_func_proto bpf_seq_write_proto = {
502 	.func		= bpf_seq_write,
503 	.gpl_only	= true,
504 	.ret_type	= RET_INTEGER,
505 	.arg1_type	= ARG_PTR_TO_BTF_ID,
506 	.arg1_btf_id	= &btf_seq_file_ids[0],
507 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
508 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
509 };
510 
511 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
512 	   u32, btf_ptr_size, u64, flags)
513 {
514 	const struct btf *btf;
515 	s32 btf_id;
516 	int ret;
517 
518 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
519 	if (ret)
520 		return ret;
521 
522 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
523 }
524 
525 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
526 	.func		= bpf_seq_printf_btf,
527 	.gpl_only	= true,
528 	.ret_type	= RET_INTEGER,
529 	.arg1_type	= ARG_PTR_TO_BTF_ID,
530 	.arg1_btf_id	= &btf_seq_file_ids[0],
531 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
532 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
533 	.arg4_type	= ARG_ANYTHING,
534 };
535 
536 static __always_inline int
537 get_map_perf_counter(struct bpf_map *map, u64 flags,
538 		     u64 *value, u64 *enabled, u64 *running)
539 {
540 	struct bpf_array *array = container_of(map, struct bpf_array, map);
541 	unsigned int cpu = smp_processor_id();
542 	u64 index = flags & BPF_F_INDEX_MASK;
543 	struct bpf_event_entry *ee;
544 
545 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
546 		return -EINVAL;
547 	if (index == BPF_F_CURRENT_CPU)
548 		index = cpu;
549 	if (unlikely(index >= array->map.max_entries))
550 		return -E2BIG;
551 
552 	ee = READ_ONCE(array->ptrs[index]);
553 	if (!ee)
554 		return -ENOENT;
555 
556 	return perf_event_read_local(ee->event, value, enabled, running);
557 }
558 
559 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
560 {
561 	u64 value = 0;
562 	int err;
563 
564 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
565 	/*
566 	 * this api is ugly since we miss [-22..-2] range of valid
567 	 * counter values, but that's uapi
568 	 */
569 	if (err)
570 		return err;
571 	return value;
572 }
573 
574 const struct bpf_func_proto bpf_perf_event_read_proto = {
575 	.func		= bpf_perf_event_read,
576 	.gpl_only	= true,
577 	.ret_type	= RET_INTEGER,
578 	.arg1_type	= ARG_CONST_MAP_PTR,
579 	.arg2_type	= ARG_ANYTHING,
580 };
581 
582 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
583 	   struct bpf_perf_event_value *, buf, u32, size)
584 {
585 	int err = -EINVAL;
586 
587 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
588 		goto clear;
589 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
590 				   &buf->running);
591 	if (unlikely(err))
592 		goto clear;
593 	return 0;
594 clear:
595 	memset(buf, 0, size);
596 	return err;
597 }
598 
599 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
600 	.func		= bpf_perf_event_read_value,
601 	.gpl_only	= true,
602 	.ret_type	= RET_INTEGER,
603 	.arg1_type	= ARG_CONST_MAP_PTR,
604 	.arg2_type	= ARG_ANYTHING,
605 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
606 	.arg4_type	= ARG_CONST_SIZE,
607 };
608 
609 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void)
610 {
611 	return &bpf_perf_event_read_value_proto;
612 }
613 
614 static __always_inline u64
615 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
616 			u64 flags, struct perf_raw_record *raw,
617 			struct perf_sample_data *sd)
618 {
619 	struct bpf_array *array = container_of(map, struct bpf_array, map);
620 	unsigned int cpu = smp_processor_id();
621 	u64 index = flags & BPF_F_INDEX_MASK;
622 	struct bpf_event_entry *ee;
623 	struct perf_event *event;
624 
625 	if (index == BPF_F_CURRENT_CPU)
626 		index = cpu;
627 	if (unlikely(index >= array->map.max_entries))
628 		return -E2BIG;
629 
630 	ee = READ_ONCE(array->ptrs[index]);
631 	if (!ee)
632 		return -ENOENT;
633 
634 	event = ee->event;
635 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
636 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
637 		return -EINVAL;
638 
639 	if (unlikely(event->oncpu != cpu))
640 		return -EOPNOTSUPP;
641 
642 	perf_sample_save_raw_data(sd, event, raw);
643 
644 	return perf_event_output(event, sd, regs);
645 }
646 
647 /*
648  * Support executing tracepoints in normal, irq, and nmi context that each call
649  * bpf_perf_event_output
650  */
651 struct bpf_trace_sample_data {
652 	struct perf_sample_data sds[3];
653 };
654 
655 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
656 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
657 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
658 	   u64, flags, void *, data, u64, size)
659 {
660 	struct bpf_trace_sample_data *sds;
661 	struct perf_raw_record raw = {
662 		.frag = {
663 			.size = size,
664 			.data = data,
665 		},
666 	};
667 	struct perf_sample_data *sd;
668 	int nest_level, err;
669 
670 	preempt_disable();
671 	sds = this_cpu_ptr(&bpf_trace_sds);
672 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
673 
674 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
675 		err = -EBUSY;
676 		goto out;
677 	}
678 
679 	sd = &sds->sds[nest_level - 1];
680 
681 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
682 		err = -EINVAL;
683 		goto out;
684 	}
685 
686 	perf_sample_data_init(sd, 0, 0);
687 
688 	err = __bpf_perf_event_output(regs, map, flags, &raw, sd);
689 out:
690 	this_cpu_dec(bpf_trace_nest_level);
691 	preempt_enable();
692 	return err;
693 }
694 
695 static const struct bpf_func_proto bpf_perf_event_output_proto = {
696 	.func		= bpf_perf_event_output,
697 	.gpl_only	= true,
698 	.ret_type	= RET_INTEGER,
699 	.arg1_type	= ARG_PTR_TO_CTX,
700 	.arg2_type	= ARG_CONST_MAP_PTR,
701 	.arg3_type	= ARG_ANYTHING,
702 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
703 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
704 };
705 
706 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
707 struct bpf_nested_pt_regs {
708 	struct pt_regs regs[3];
709 };
710 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
711 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
712 
713 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
714 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
715 {
716 	struct perf_raw_frag frag = {
717 		.copy		= ctx_copy,
718 		.size		= ctx_size,
719 		.data		= ctx,
720 	};
721 	struct perf_raw_record raw = {
722 		.frag = {
723 			{
724 				.next	= ctx_size ? &frag : NULL,
725 			},
726 			.size	= meta_size,
727 			.data	= meta,
728 		},
729 	};
730 	struct perf_sample_data *sd;
731 	struct pt_regs *regs;
732 	int nest_level;
733 	u64 ret;
734 
735 	preempt_disable();
736 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
737 
738 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
739 		ret = -EBUSY;
740 		goto out;
741 	}
742 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
743 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
744 
745 	perf_fetch_caller_regs(regs);
746 	perf_sample_data_init(sd, 0, 0);
747 
748 	ret = __bpf_perf_event_output(regs, map, flags, &raw, sd);
749 out:
750 	this_cpu_dec(bpf_event_output_nest_level);
751 	preempt_enable();
752 	return ret;
753 }
754 
755 BPF_CALL_0(bpf_get_current_task)
756 {
757 	return (long) current;
758 }
759 
760 const struct bpf_func_proto bpf_get_current_task_proto = {
761 	.func		= bpf_get_current_task,
762 	.gpl_only	= true,
763 	.ret_type	= RET_INTEGER,
764 };
765 
766 BPF_CALL_0(bpf_get_current_task_btf)
767 {
768 	return (unsigned long) current;
769 }
770 
771 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
772 	.func		= bpf_get_current_task_btf,
773 	.gpl_only	= true,
774 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
775 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
776 };
777 
778 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
779 {
780 	return (unsigned long) task_pt_regs(task);
781 }
782 
783 BTF_ID_LIST_SINGLE(bpf_task_pt_regs_ids, struct, pt_regs)
784 
785 const struct bpf_func_proto bpf_task_pt_regs_proto = {
786 	.func		= bpf_task_pt_regs,
787 	.gpl_only	= true,
788 	.arg1_type	= ARG_PTR_TO_BTF_ID,
789 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
790 	.ret_type	= RET_PTR_TO_BTF_ID,
791 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
792 };
793 
794 struct send_signal_irq_work {
795 	struct irq_work irq_work;
796 	struct task_struct *task;
797 	u32 sig;
798 	enum pid_type type;
799 	bool has_siginfo;
800 	struct kernel_siginfo info;
801 };
802 
803 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
804 
805 static void do_bpf_send_signal(struct irq_work *entry)
806 {
807 	struct send_signal_irq_work *work;
808 	struct kernel_siginfo *siginfo;
809 
810 	work = container_of(entry, struct send_signal_irq_work, irq_work);
811 	siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
812 
813 	group_send_sig_info(work->sig, siginfo, work->task, work->type);
814 	put_task_struct(work->task);
815 }
816 
817 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
818 {
819 	struct send_signal_irq_work *work = NULL;
820 	struct kernel_siginfo info;
821 	struct kernel_siginfo *siginfo;
822 
823 	if (!task) {
824 		task = current;
825 		siginfo = SEND_SIG_PRIV;
826 	} else {
827 		clear_siginfo(&info);
828 		info.si_signo = sig;
829 		info.si_errno = 0;
830 		info.si_code = SI_KERNEL;
831 		info.si_pid = 0;
832 		info.si_uid = 0;
833 		info.si_value.sival_ptr = (void __user __force *)(unsigned long)value;
834 		siginfo = &info;
835 	}
836 
837 	/* Similar to bpf_probe_write_user, task needs to be
838 	 * in a sound condition and kernel memory access be
839 	 * permitted in order to send signal to the current
840 	 * task.
841 	 */
842 	if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
843 		return -EPERM;
844 	if (unlikely(!nmi_uaccess_okay()))
845 		return -EPERM;
846 	/* Task should not be pid=1 to avoid kernel panic. */
847 	if (unlikely(is_global_init(task)))
848 		return -EPERM;
849 
850 	if (preempt_count() != 0 || irqs_disabled()) {
851 		/* Do an early check on signal validity. Otherwise,
852 		 * the error is lost in deferred irq_work.
853 		 */
854 		if (unlikely(!valid_signal(sig)))
855 			return -EINVAL;
856 
857 		work = this_cpu_ptr(&send_signal_work);
858 		if (irq_work_is_busy(&work->irq_work))
859 			return -EBUSY;
860 
861 		/* Add the current task, which is the target of sending signal,
862 		 * to the irq_work. The current task may change when queued
863 		 * irq works get executed.
864 		 */
865 		work->task = get_task_struct(task);
866 		work->has_siginfo = siginfo == &info;
867 		if (work->has_siginfo)
868 			copy_siginfo(&work->info, &info);
869 		work->sig = sig;
870 		work->type = type;
871 		irq_work_queue(&work->irq_work);
872 		return 0;
873 	}
874 
875 	return group_send_sig_info(sig, siginfo, task, type);
876 }
877 
878 BPF_CALL_1(bpf_send_signal, u32, sig)
879 {
880 	return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
881 }
882 
883 const struct bpf_func_proto bpf_send_signal_proto = {
884 	.func		= bpf_send_signal,
885 	.gpl_only	= false,
886 	.ret_type	= RET_INTEGER,
887 	.arg1_type	= ARG_ANYTHING,
888 };
889 
890 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
891 {
892 	return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
893 }
894 
895 const struct bpf_func_proto bpf_send_signal_thread_proto = {
896 	.func		= bpf_send_signal_thread,
897 	.gpl_only	= false,
898 	.ret_type	= RET_INTEGER,
899 	.arg1_type	= ARG_ANYTHING,
900 };
901 
902 BPF_CALL_3(bpf_d_path, const struct path *, path, char *, buf, u32, sz)
903 {
904 	struct path copy;
905 	long len;
906 	char *p;
907 
908 	if (!sz)
909 		return 0;
910 
911 	/*
912 	 * The path pointer is verified as trusted and safe to use,
913 	 * but let's double check it's valid anyway to workaround
914 	 * potentially broken verifier.
915 	 */
916 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
917 	if (len < 0)
918 		return len;
919 
920 	p = d_path(&copy, buf, sz);
921 	if (IS_ERR(p)) {
922 		len = PTR_ERR(p);
923 	} else {
924 		len = buf + sz - p;
925 		memmove(buf, p, len);
926 	}
927 
928 	return len;
929 }
930 
931 BTF_SET_START(btf_allowlist_d_path)
932 #ifdef CONFIG_SECURITY
933 BTF_ID(func, security_file_permission)
934 BTF_ID(func, security_inode_getattr)
935 BTF_ID(func, security_file_open)
936 #endif
937 #ifdef CONFIG_SECURITY_PATH
938 BTF_ID(func, security_path_truncate)
939 #endif
940 BTF_ID(func, vfs_truncate)
941 BTF_ID(func, vfs_fallocate)
942 BTF_ID(func, dentry_open)
943 BTF_ID(func, vfs_getattr)
944 BTF_ID(func, filp_close)
945 BTF_SET_END(btf_allowlist_d_path)
946 
947 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
948 {
949 	if (prog->type == BPF_PROG_TYPE_TRACING &&
950 	    prog->expected_attach_type == BPF_TRACE_ITER)
951 		return true;
952 
953 	if (prog->type == BPF_PROG_TYPE_LSM)
954 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
955 
956 	return btf_id_set_contains(&btf_allowlist_d_path,
957 				   prog->aux->attach_btf_id);
958 }
959 
960 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
961 
962 static const struct bpf_func_proto bpf_d_path_proto = {
963 	.func		= bpf_d_path,
964 	.gpl_only	= false,
965 	.ret_type	= RET_INTEGER,
966 	.arg1_type	= ARG_PTR_TO_BTF_ID,
967 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
968 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
969 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
970 	.allowed	= bpf_d_path_allowed,
971 };
972 
973 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
974 			 BTF_F_PTR_RAW | BTF_F_ZERO)
975 
976 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
977 				  u64 flags, const struct btf **btf,
978 				  s32 *btf_id)
979 {
980 	const struct btf_type *t;
981 
982 	if (unlikely(flags & ~(BTF_F_ALL)))
983 		return -EINVAL;
984 
985 	if (btf_ptr_size != sizeof(struct btf_ptr))
986 		return -EINVAL;
987 
988 	*btf = bpf_get_btf_vmlinux();
989 
990 	if (IS_ERR_OR_NULL(*btf))
991 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
992 
993 	if (ptr->type_id > 0)
994 		*btf_id = ptr->type_id;
995 	else
996 		return -EINVAL;
997 
998 	if (*btf_id > 0)
999 		t = btf_type_by_id(*btf, *btf_id);
1000 	if (*btf_id <= 0 || !t)
1001 		return -ENOENT;
1002 
1003 	return 0;
1004 }
1005 
1006 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1007 	   u32, btf_ptr_size, u64, flags)
1008 {
1009 	const struct btf *btf;
1010 	s32 btf_id;
1011 	int ret;
1012 
1013 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1014 	if (ret)
1015 		return ret;
1016 
1017 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1018 				      flags);
1019 }
1020 
1021 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1022 	.func		= bpf_snprintf_btf,
1023 	.gpl_only	= false,
1024 	.ret_type	= RET_INTEGER,
1025 	.arg1_type	= ARG_PTR_TO_MEM | MEM_WRITE,
1026 	.arg2_type	= ARG_CONST_SIZE,
1027 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1028 	.arg4_type	= ARG_CONST_SIZE,
1029 	.arg5_type	= ARG_ANYTHING,
1030 };
1031 
1032 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1033 {
1034 	/* This helper call is inlined by verifier. */
1035 	return ((u64 *)ctx)[-2];
1036 }
1037 
1038 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1039 	.func		= bpf_get_func_ip_tracing,
1040 	.gpl_only	= true,
1041 	.ret_type	= RET_INTEGER,
1042 	.arg1_type	= ARG_PTR_TO_CTX,
1043 };
1044 
1045 static inline unsigned long get_entry_ip(unsigned long fentry_ip)
1046 {
1047 #ifdef CONFIG_X86_KERNEL_IBT
1048 	if (is_endbr((void *)(fentry_ip - ENDBR_INSN_SIZE)))
1049 		fentry_ip -= ENDBR_INSN_SIZE;
1050 #endif
1051 	return fentry_ip;
1052 }
1053 
1054 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1055 {
1056 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1057 	struct kprobe *kp;
1058 
1059 #ifdef CONFIG_UPROBES
1060 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1061 	if (run_ctx->is_uprobe)
1062 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1063 #endif
1064 
1065 	kp = kprobe_running();
1066 
1067 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1068 		return 0;
1069 
1070 	return get_entry_ip((uintptr_t)kp->addr);
1071 }
1072 
1073 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1074 	.func		= bpf_get_func_ip_kprobe,
1075 	.gpl_only	= true,
1076 	.ret_type	= RET_INTEGER,
1077 	.arg1_type	= ARG_PTR_TO_CTX,
1078 };
1079 
1080 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1081 {
1082 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1083 }
1084 
1085 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1086 	.func		= bpf_get_func_ip_kprobe_multi,
1087 	.gpl_only	= false,
1088 	.ret_type	= RET_INTEGER,
1089 	.arg1_type	= ARG_PTR_TO_CTX,
1090 };
1091 
1092 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1093 {
1094 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1095 }
1096 
1097 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1098 	.func		= bpf_get_attach_cookie_kprobe_multi,
1099 	.gpl_only	= false,
1100 	.ret_type	= RET_INTEGER,
1101 	.arg1_type	= ARG_PTR_TO_CTX,
1102 };
1103 
1104 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1105 {
1106 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1107 }
1108 
1109 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1110 	.func		= bpf_get_func_ip_uprobe_multi,
1111 	.gpl_only	= false,
1112 	.ret_type	= RET_INTEGER,
1113 	.arg1_type	= ARG_PTR_TO_CTX,
1114 };
1115 
1116 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1117 {
1118 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1119 }
1120 
1121 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1122 	.func		= bpf_get_attach_cookie_uprobe_multi,
1123 	.gpl_only	= false,
1124 	.ret_type	= RET_INTEGER,
1125 	.arg1_type	= ARG_PTR_TO_CTX,
1126 };
1127 
1128 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1129 {
1130 	struct bpf_trace_run_ctx *run_ctx;
1131 
1132 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1133 	return run_ctx->bpf_cookie;
1134 }
1135 
1136 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1137 	.func		= bpf_get_attach_cookie_trace,
1138 	.gpl_only	= false,
1139 	.ret_type	= RET_INTEGER,
1140 	.arg1_type	= ARG_PTR_TO_CTX,
1141 };
1142 
1143 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1144 {
1145 	return ctx->event->bpf_cookie;
1146 }
1147 
1148 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1149 	.func		= bpf_get_attach_cookie_pe,
1150 	.gpl_only	= false,
1151 	.ret_type	= RET_INTEGER,
1152 	.arg1_type	= ARG_PTR_TO_CTX,
1153 };
1154 
1155 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1156 {
1157 	struct bpf_trace_run_ctx *run_ctx;
1158 
1159 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1160 	return run_ctx->bpf_cookie;
1161 }
1162 
1163 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1164 	.func		= bpf_get_attach_cookie_tracing,
1165 	.gpl_only	= false,
1166 	.ret_type	= RET_INTEGER,
1167 	.arg1_type	= ARG_PTR_TO_CTX,
1168 };
1169 
1170 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1171 {
1172 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1173 	u32 entry_cnt = size / br_entry_size;
1174 
1175 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1176 
1177 	if (unlikely(flags))
1178 		return -EINVAL;
1179 
1180 	if (!entry_cnt)
1181 		return -ENOENT;
1182 
1183 	return entry_cnt * br_entry_size;
1184 }
1185 
1186 const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1187 	.func		= bpf_get_branch_snapshot,
1188 	.gpl_only	= true,
1189 	.ret_type	= RET_INTEGER,
1190 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1191 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1192 };
1193 
1194 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1195 {
1196 	/* This helper call is inlined by verifier. */
1197 	u64 nr_args = ((u64 *)ctx)[-1] & 0xFF;
1198 
1199 	if ((u64) n >= nr_args)
1200 		return -EINVAL;
1201 	*value = ((u64 *)ctx)[n];
1202 	return 0;
1203 }
1204 
1205 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1206 	.func		= get_func_arg,
1207 	.ret_type	= RET_INTEGER,
1208 	.arg1_type	= ARG_PTR_TO_CTX,
1209 	.arg2_type	= ARG_ANYTHING,
1210 	.arg3_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1211 	.arg3_size	= sizeof(u64),
1212 };
1213 
1214 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1215 {
1216 	/* This helper call is inlined by verifier. */
1217 	u64 nr_args = ((u64 *)ctx)[-1] & 0xFF;
1218 
1219 	*value = ((u64 *)ctx)[nr_args];
1220 	return 0;
1221 }
1222 
1223 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1224 	.func		= get_func_ret,
1225 	.ret_type	= RET_INTEGER,
1226 	.arg1_type	= ARG_PTR_TO_CTX,
1227 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1228 	.arg2_size	= sizeof(u64),
1229 };
1230 
1231 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1232 {
1233 	/* This helper call is inlined by verifier. */
1234 	return ((u64 *)ctx)[-1] & 0xFF;
1235 }
1236 
1237 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1238 	.func		= get_func_arg_cnt,
1239 	.ret_type	= RET_INTEGER,
1240 	.arg1_type	= ARG_PTR_TO_CTX,
1241 };
1242 
1243 static const struct bpf_func_proto *
1244 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1245 {
1246 	const struct bpf_func_proto *func_proto;
1247 
1248 	switch (func_id) {
1249 	case BPF_FUNC_get_smp_processor_id:
1250 		return &bpf_get_smp_processor_id_proto;
1251 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1252 	case BPF_FUNC_probe_read:
1253 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1254 		       NULL : &bpf_probe_read_compat_proto;
1255 	case BPF_FUNC_probe_read_str:
1256 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1257 		       NULL : &bpf_probe_read_compat_str_proto;
1258 #endif
1259 	case BPF_FUNC_get_func_ip:
1260 		return &bpf_get_func_ip_proto_tracing;
1261 	default:
1262 		break;
1263 	}
1264 
1265 	func_proto = bpf_base_func_proto(func_id, prog);
1266 	if (func_proto)
1267 		return func_proto;
1268 
1269 	if (!bpf_token_capable(prog->aux->token, CAP_SYS_ADMIN))
1270 		return NULL;
1271 
1272 	switch (func_id) {
1273 	case BPF_FUNC_probe_write_user:
1274 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1275 		       NULL : &bpf_probe_write_user_proto;
1276 	default:
1277 		return NULL;
1278 	}
1279 }
1280 
1281 static bool is_kprobe_multi(const struct bpf_prog *prog)
1282 {
1283 	return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1284 	       prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1285 }
1286 
1287 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1288 {
1289 	return prog->type == BPF_PROG_TYPE_KPROBE &&
1290 	       prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1291 }
1292 
1293 static inline bool is_uprobe_multi(const struct bpf_prog *prog)
1294 {
1295 	return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
1296 	       prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1297 }
1298 
1299 static inline bool is_uprobe_session(const struct bpf_prog *prog)
1300 {
1301 	return prog->type == BPF_PROG_TYPE_KPROBE &&
1302 	       prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1303 }
1304 
1305 static inline bool is_trace_fsession(const struct bpf_prog *prog)
1306 {
1307 	return prog->type == BPF_PROG_TYPE_TRACING &&
1308 	       prog->expected_attach_type == BPF_TRACE_FSESSION;
1309 }
1310 
1311 static const struct bpf_func_proto *
1312 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1313 {
1314 	switch (func_id) {
1315 	case BPF_FUNC_perf_event_output:
1316 		return &bpf_perf_event_output_proto;
1317 	case BPF_FUNC_get_stackid:
1318 		return &bpf_get_stackid_proto;
1319 	case BPF_FUNC_get_stack:
1320 		return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1321 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1322 	case BPF_FUNC_override_return:
1323 		return &bpf_override_return_proto;
1324 #endif
1325 	case BPF_FUNC_get_func_ip:
1326 		if (is_kprobe_multi(prog))
1327 			return &bpf_get_func_ip_proto_kprobe_multi;
1328 		if (is_uprobe_multi(prog))
1329 			return &bpf_get_func_ip_proto_uprobe_multi;
1330 		return &bpf_get_func_ip_proto_kprobe;
1331 	case BPF_FUNC_get_attach_cookie:
1332 		if (is_kprobe_multi(prog))
1333 			return &bpf_get_attach_cookie_proto_kmulti;
1334 		if (is_uprobe_multi(prog))
1335 			return &bpf_get_attach_cookie_proto_umulti;
1336 		return &bpf_get_attach_cookie_proto_trace;
1337 	default:
1338 		return bpf_tracing_func_proto(func_id, prog);
1339 	}
1340 }
1341 
1342 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1343 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1344 					const struct bpf_prog *prog,
1345 					struct bpf_insn_access_aux *info)
1346 {
1347 	if (off < 0 || off >= sizeof(struct pt_regs))
1348 		return false;
1349 	if (off % size != 0)
1350 		return false;
1351 	/*
1352 	 * Assertion for 32 bit to make sure last 8 byte access
1353 	 * (BPF_DW) to the last 4 byte member is disallowed.
1354 	 */
1355 	if (off + size > sizeof(struct pt_regs))
1356 		return false;
1357 
1358 	if (type == BPF_WRITE)
1359 		prog->aux->kprobe_write_ctx = true;
1360 
1361 	return true;
1362 }
1363 
1364 const struct bpf_verifier_ops kprobe_verifier_ops = {
1365 	.get_func_proto  = kprobe_prog_func_proto,
1366 	.is_valid_access = kprobe_prog_is_valid_access,
1367 };
1368 
1369 const struct bpf_prog_ops kprobe_prog_ops = {
1370 };
1371 
1372 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1373 	   u64, flags, void *, data, u64, size)
1374 {
1375 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1376 
1377 	/*
1378 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1379 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1380 	 * from there and call the same bpf_perf_event_output() helper inline.
1381 	 */
1382 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1383 }
1384 
1385 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1386 	.func		= bpf_perf_event_output_tp,
1387 	.gpl_only	= true,
1388 	.ret_type	= RET_INTEGER,
1389 	.arg1_type	= ARG_PTR_TO_CTX,
1390 	.arg2_type	= ARG_CONST_MAP_PTR,
1391 	.arg3_type	= ARG_ANYTHING,
1392 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1393 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1394 };
1395 
1396 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1397 	   u64, flags)
1398 {
1399 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1400 
1401 	/*
1402 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1403 	 * the other helper's function body cannot be inlined due to being
1404 	 * external, thus we need to call raw helper function.
1405 	 */
1406 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1407 			       flags, 0, 0);
1408 }
1409 
1410 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1411 	.func		= bpf_get_stackid_tp,
1412 	.gpl_only	= true,
1413 	.ret_type	= RET_INTEGER,
1414 	.arg1_type	= ARG_PTR_TO_CTX,
1415 	.arg2_type	= ARG_CONST_MAP_PTR,
1416 	.arg3_type	= ARG_ANYTHING,
1417 };
1418 
1419 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1420 	   u64, flags)
1421 {
1422 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1423 
1424 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1425 			     (unsigned long) size, flags, 0);
1426 }
1427 
1428 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1429 	.func		= bpf_get_stack_tp,
1430 	.gpl_only	= true,
1431 	.ret_type	= RET_INTEGER,
1432 	.arg1_type	= ARG_PTR_TO_CTX,
1433 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1434 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1435 	.arg4_type	= ARG_ANYTHING,
1436 };
1437 
1438 static const struct bpf_func_proto *
1439 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1440 {
1441 	switch (func_id) {
1442 	case BPF_FUNC_perf_event_output:
1443 		return &bpf_perf_event_output_proto_tp;
1444 	case BPF_FUNC_get_stackid:
1445 		return &bpf_get_stackid_proto_tp;
1446 	case BPF_FUNC_get_stack:
1447 		return &bpf_get_stack_proto_tp;
1448 	case BPF_FUNC_get_attach_cookie:
1449 		return &bpf_get_attach_cookie_proto_trace;
1450 	default:
1451 		return bpf_tracing_func_proto(func_id, prog);
1452 	}
1453 }
1454 
1455 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1456 				    const struct bpf_prog *prog,
1457 				    struct bpf_insn_access_aux *info)
1458 {
1459 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1460 		return false;
1461 	if (type != BPF_READ)
1462 		return false;
1463 	if (off % size != 0)
1464 		return false;
1465 
1466 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1467 	return true;
1468 }
1469 
1470 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1471 	.get_func_proto  = tp_prog_func_proto,
1472 	.is_valid_access = tp_prog_is_valid_access,
1473 };
1474 
1475 const struct bpf_prog_ops tracepoint_prog_ops = {
1476 };
1477 
1478 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1479 	   struct bpf_perf_event_value *, buf, u32, size)
1480 {
1481 	int err = -EINVAL;
1482 
1483 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1484 		goto clear;
1485 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1486 				    &buf->running);
1487 	if (unlikely(err))
1488 		goto clear;
1489 	return 0;
1490 clear:
1491 	memset(buf, 0, size);
1492 	return err;
1493 }
1494 
1495 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1496          .func           = bpf_perf_prog_read_value,
1497          .gpl_only       = true,
1498          .ret_type       = RET_INTEGER,
1499          .arg1_type      = ARG_PTR_TO_CTX,
1500          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1501          .arg3_type      = ARG_CONST_SIZE,
1502 };
1503 
1504 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1505 	   void *, buf, u32, size, u64, flags)
1506 {
1507 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1508 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1509 	u32 to_copy;
1510 
1511 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1512 		return -EINVAL;
1513 
1514 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1515 		return -ENOENT;
1516 
1517 	if (unlikely(!br_stack))
1518 		return -ENOENT;
1519 
1520 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1521 		return br_stack->nr * br_entry_size;
1522 
1523 	if (!buf || (size % br_entry_size != 0))
1524 		return -EINVAL;
1525 
1526 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1527 	memcpy(buf, br_stack->entries, to_copy);
1528 
1529 	return to_copy;
1530 }
1531 
1532 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1533 	.func           = bpf_read_branch_records,
1534 	.gpl_only       = true,
1535 	.ret_type       = RET_INTEGER,
1536 	.arg1_type      = ARG_PTR_TO_CTX,
1537 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL | MEM_WRITE,
1538 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1539 	.arg4_type      = ARG_ANYTHING,
1540 };
1541 
1542 static const struct bpf_func_proto *
1543 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1544 {
1545 	switch (func_id) {
1546 	case BPF_FUNC_perf_event_output:
1547 		return &bpf_perf_event_output_proto_tp;
1548 	case BPF_FUNC_get_stackid:
1549 		return &bpf_get_stackid_proto_pe;
1550 	case BPF_FUNC_get_stack:
1551 		return &bpf_get_stack_proto_pe;
1552 	case BPF_FUNC_perf_prog_read_value:
1553 		return &bpf_perf_prog_read_value_proto;
1554 	case BPF_FUNC_read_branch_records:
1555 		return &bpf_read_branch_records_proto;
1556 	case BPF_FUNC_get_attach_cookie:
1557 		return &bpf_get_attach_cookie_proto_pe;
1558 	default:
1559 		return bpf_tracing_func_proto(func_id, prog);
1560 	}
1561 }
1562 
1563 /*
1564  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1565  * to avoid potential recursive reuse issue when/if tracepoints are added
1566  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1567  *
1568  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1569  * in normal, irq, and nmi context.
1570  */
1571 struct bpf_raw_tp_regs {
1572 	struct pt_regs regs[3];
1573 };
1574 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1575 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1576 static struct pt_regs *get_bpf_raw_tp_regs(void)
1577 {
1578 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1579 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1580 
1581 	if (nest_level > ARRAY_SIZE(tp_regs->regs)) {
1582 		this_cpu_dec(bpf_raw_tp_nest_level);
1583 		return ERR_PTR(-EBUSY);
1584 	}
1585 
1586 	return &tp_regs->regs[nest_level - 1];
1587 }
1588 
1589 static void put_bpf_raw_tp_regs(void)
1590 {
1591 	this_cpu_dec(bpf_raw_tp_nest_level);
1592 }
1593 
1594 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1595 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1596 {
1597 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1598 	int ret;
1599 
1600 	if (IS_ERR(regs))
1601 		return PTR_ERR(regs);
1602 
1603 	perf_fetch_caller_regs(regs);
1604 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1605 
1606 	put_bpf_raw_tp_regs();
1607 	return ret;
1608 }
1609 
1610 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1611 	.func		= bpf_perf_event_output_raw_tp,
1612 	.gpl_only	= true,
1613 	.ret_type	= RET_INTEGER,
1614 	.arg1_type	= ARG_PTR_TO_CTX,
1615 	.arg2_type	= ARG_CONST_MAP_PTR,
1616 	.arg3_type	= ARG_ANYTHING,
1617 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1618 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1619 };
1620 
1621 extern const struct bpf_func_proto bpf_skb_output_proto;
1622 extern const struct bpf_func_proto bpf_xdp_output_proto;
1623 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1624 
1625 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1626 	   struct bpf_map *, map, u64, flags)
1627 {
1628 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1629 	int ret;
1630 
1631 	if (IS_ERR(regs))
1632 		return PTR_ERR(regs);
1633 
1634 	perf_fetch_caller_regs(regs);
1635 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1636 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1637 			      flags, 0, 0);
1638 	put_bpf_raw_tp_regs();
1639 	return ret;
1640 }
1641 
1642 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1643 	.func		= bpf_get_stackid_raw_tp,
1644 	.gpl_only	= true,
1645 	.ret_type	= RET_INTEGER,
1646 	.arg1_type	= ARG_PTR_TO_CTX,
1647 	.arg2_type	= ARG_CONST_MAP_PTR,
1648 	.arg3_type	= ARG_ANYTHING,
1649 };
1650 
1651 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1652 	   void *, buf, u32, size, u64, flags)
1653 {
1654 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1655 	int ret;
1656 
1657 	if (IS_ERR(regs))
1658 		return PTR_ERR(regs);
1659 
1660 	perf_fetch_caller_regs(regs);
1661 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1662 			    (unsigned long) size, flags, 0);
1663 	put_bpf_raw_tp_regs();
1664 	return ret;
1665 }
1666 
1667 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1668 	.func		= bpf_get_stack_raw_tp,
1669 	.gpl_only	= true,
1670 	.ret_type	= RET_INTEGER,
1671 	.arg1_type	= ARG_PTR_TO_CTX,
1672 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1673 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1674 	.arg4_type	= ARG_ANYTHING,
1675 };
1676 
1677 static const struct bpf_func_proto *
1678 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1679 {
1680 	switch (func_id) {
1681 	case BPF_FUNC_perf_event_output:
1682 		return &bpf_perf_event_output_proto_raw_tp;
1683 	case BPF_FUNC_get_stackid:
1684 		return &bpf_get_stackid_proto_raw_tp;
1685 	case BPF_FUNC_get_stack:
1686 		return &bpf_get_stack_proto_raw_tp;
1687 	case BPF_FUNC_get_attach_cookie:
1688 		return &bpf_get_attach_cookie_proto_tracing;
1689 	default:
1690 		return bpf_tracing_func_proto(func_id, prog);
1691 	}
1692 }
1693 
1694 const struct bpf_func_proto *
1695 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1696 {
1697 	const struct bpf_func_proto *fn;
1698 
1699 	switch (func_id) {
1700 #ifdef CONFIG_NET
1701 	case BPF_FUNC_skb_output:
1702 		return &bpf_skb_output_proto;
1703 	case BPF_FUNC_xdp_output:
1704 		return &bpf_xdp_output_proto;
1705 	case BPF_FUNC_skc_to_tcp6_sock:
1706 		return &bpf_skc_to_tcp6_sock_proto;
1707 	case BPF_FUNC_skc_to_tcp_sock:
1708 		return &bpf_skc_to_tcp_sock_proto;
1709 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1710 		return &bpf_skc_to_tcp_timewait_sock_proto;
1711 	case BPF_FUNC_skc_to_tcp_request_sock:
1712 		return &bpf_skc_to_tcp_request_sock_proto;
1713 	case BPF_FUNC_skc_to_udp6_sock:
1714 		return &bpf_skc_to_udp6_sock_proto;
1715 	case BPF_FUNC_skc_to_unix_sock:
1716 		return &bpf_skc_to_unix_sock_proto;
1717 	case BPF_FUNC_skc_to_mptcp_sock:
1718 		return &bpf_skc_to_mptcp_sock_proto;
1719 	case BPF_FUNC_sk_storage_get:
1720 		return &bpf_sk_storage_get_tracing_proto;
1721 	case BPF_FUNC_sk_storage_delete:
1722 		return &bpf_sk_storage_delete_tracing_proto;
1723 	case BPF_FUNC_sock_from_file:
1724 		return &bpf_sock_from_file_proto;
1725 	case BPF_FUNC_get_socket_cookie:
1726 		return &bpf_get_socket_ptr_cookie_proto;
1727 	case BPF_FUNC_xdp_get_buff_len:
1728 		return &bpf_xdp_get_buff_len_trace_proto;
1729 #endif
1730 	case BPF_FUNC_seq_printf:
1731 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1732 		       &bpf_seq_printf_proto :
1733 		       NULL;
1734 	case BPF_FUNC_seq_write:
1735 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1736 		       &bpf_seq_write_proto :
1737 		       NULL;
1738 	case BPF_FUNC_seq_printf_btf:
1739 		return prog->expected_attach_type == BPF_TRACE_ITER ?
1740 		       &bpf_seq_printf_btf_proto :
1741 		       NULL;
1742 	case BPF_FUNC_d_path:
1743 		return &bpf_d_path_proto;
1744 	case BPF_FUNC_get_func_arg:
1745 		if (bpf_prog_has_trampoline(prog) ||
1746 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
1747 			return &bpf_get_func_arg_proto;
1748 		return NULL;
1749 	case BPF_FUNC_get_func_ret:
1750 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1751 	case BPF_FUNC_get_func_arg_cnt:
1752 		if (bpf_prog_has_trampoline(prog) ||
1753 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
1754 			return &bpf_get_func_arg_cnt_proto;
1755 		return NULL;
1756 	case BPF_FUNC_get_attach_cookie:
1757 		if (prog->type == BPF_PROG_TYPE_TRACING &&
1758 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
1759 			return &bpf_get_attach_cookie_proto_tracing;
1760 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1761 	default:
1762 		fn = raw_tp_prog_func_proto(func_id, prog);
1763 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1764 			fn = bpf_iter_get_func_proto(func_id, prog);
1765 		return fn;
1766 	}
1767 }
1768 
1769 static bool raw_tp_prog_is_valid_access(int off, int size,
1770 					enum bpf_access_type type,
1771 					const struct bpf_prog *prog,
1772 					struct bpf_insn_access_aux *info)
1773 {
1774 	return bpf_tracing_ctx_access(off, size, type);
1775 }
1776 
1777 static bool tracing_prog_is_valid_access(int off, int size,
1778 					 enum bpf_access_type type,
1779 					 const struct bpf_prog *prog,
1780 					 struct bpf_insn_access_aux *info)
1781 {
1782 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1783 }
1784 
1785 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1786 				     const union bpf_attr *kattr,
1787 				     union bpf_attr __user *uattr)
1788 {
1789 	return -ENOTSUPP;
1790 }
1791 
1792 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1793 	.get_func_proto  = raw_tp_prog_func_proto,
1794 	.is_valid_access = raw_tp_prog_is_valid_access,
1795 };
1796 
1797 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1798 #ifdef CONFIG_NET
1799 	.test_run = bpf_prog_test_run_raw_tp,
1800 #endif
1801 };
1802 
1803 const struct bpf_verifier_ops tracing_verifier_ops = {
1804 	.get_func_proto  = tracing_prog_func_proto,
1805 	.is_valid_access = tracing_prog_is_valid_access,
1806 };
1807 
1808 const struct bpf_prog_ops tracing_prog_ops = {
1809 	.test_run = bpf_prog_test_run_tracing,
1810 };
1811 
1812 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1813 						 enum bpf_access_type type,
1814 						 const struct bpf_prog *prog,
1815 						 struct bpf_insn_access_aux *info)
1816 {
1817 	if (off == 0) {
1818 		if (size != sizeof(u64) || type != BPF_READ)
1819 			return false;
1820 		info->reg_type = PTR_TO_TP_BUFFER;
1821 	}
1822 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1823 }
1824 
1825 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1826 	.get_func_proto  = raw_tp_prog_func_proto,
1827 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1828 };
1829 
1830 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1831 };
1832 
1833 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1834 				    const struct bpf_prog *prog,
1835 				    struct bpf_insn_access_aux *info)
1836 {
1837 	const int size_u64 = sizeof(u64);
1838 
1839 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1840 		return false;
1841 	if (type != BPF_READ)
1842 		return false;
1843 	if (off % size != 0) {
1844 		if (sizeof(unsigned long) != 4)
1845 			return false;
1846 		if (size != 8)
1847 			return false;
1848 		if (off % size != 4)
1849 			return false;
1850 	}
1851 
1852 	switch (off) {
1853 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1854 		bpf_ctx_record_field_size(info, size_u64);
1855 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1856 			return false;
1857 		break;
1858 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1859 		bpf_ctx_record_field_size(info, size_u64);
1860 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1861 			return false;
1862 		break;
1863 	default:
1864 		if (size != sizeof(long))
1865 			return false;
1866 	}
1867 
1868 	return true;
1869 }
1870 
1871 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1872 				      const struct bpf_insn *si,
1873 				      struct bpf_insn *insn_buf,
1874 				      struct bpf_prog *prog, u32 *target_size)
1875 {
1876 	struct bpf_insn *insn = insn_buf;
1877 
1878 	switch (si->off) {
1879 	case offsetof(struct bpf_perf_event_data, sample_period):
1880 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1881 						       data), si->dst_reg, si->src_reg,
1882 				      offsetof(struct bpf_perf_event_data_kern, data));
1883 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1884 				      bpf_target_off(struct perf_sample_data, period, 8,
1885 						     target_size));
1886 		break;
1887 	case offsetof(struct bpf_perf_event_data, addr):
1888 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1889 						       data), si->dst_reg, si->src_reg,
1890 				      offsetof(struct bpf_perf_event_data_kern, data));
1891 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1892 				      bpf_target_off(struct perf_sample_data, addr, 8,
1893 						     target_size));
1894 		break;
1895 	default:
1896 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1897 						       regs), si->dst_reg, si->src_reg,
1898 				      offsetof(struct bpf_perf_event_data_kern, regs));
1899 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1900 				      si->off);
1901 		break;
1902 	}
1903 
1904 	return insn - insn_buf;
1905 }
1906 
1907 const struct bpf_verifier_ops perf_event_verifier_ops = {
1908 	.get_func_proto		= pe_prog_func_proto,
1909 	.is_valid_access	= pe_prog_is_valid_access,
1910 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1911 };
1912 
1913 const struct bpf_prog_ops perf_event_prog_ops = {
1914 };
1915 
1916 static DEFINE_MUTEX(bpf_event_mutex);
1917 
1918 #define BPF_TRACE_MAX_PROGS 64
1919 
1920 int perf_event_attach_bpf_prog(struct perf_event *event,
1921 			       struct bpf_prog *prog,
1922 			       u64 bpf_cookie)
1923 {
1924 	struct bpf_prog_array *old_array;
1925 	struct bpf_prog_array *new_array;
1926 	int ret = -EEXIST;
1927 
1928 	/*
1929 	 * Kprobe override only works if they are on the function entry,
1930 	 * and only if they are on the opt-in list.
1931 	 */
1932 	if (prog->kprobe_override &&
1933 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1934 	     !trace_kprobe_error_injectable(event->tp_event)))
1935 		return -EINVAL;
1936 
1937 	mutex_lock(&bpf_event_mutex);
1938 
1939 	if (event->prog)
1940 		goto unlock;
1941 
1942 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1943 	if (old_array &&
1944 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1945 		ret = -E2BIG;
1946 		goto unlock;
1947 	}
1948 
1949 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
1950 	if (ret < 0)
1951 		goto unlock;
1952 
1953 	/* set the new array to event->tp_event and set event->prog */
1954 	event->prog = prog;
1955 	event->bpf_cookie = bpf_cookie;
1956 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1957 	bpf_prog_array_free_sleepable(old_array);
1958 
1959 unlock:
1960 	mutex_unlock(&bpf_event_mutex);
1961 	return ret;
1962 }
1963 
1964 void perf_event_detach_bpf_prog(struct perf_event *event)
1965 {
1966 	struct bpf_prog_array *old_array;
1967 	struct bpf_prog_array *new_array;
1968 	struct bpf_prog *prog = NULL;
1969 	int ret;
1970 
1971 	mutex_lock(&bpf_event_mutex);
1972 
1973 	if (!event->prog)
1974 		goto unlock;
1975 
1976 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1977 	if (!old_array)
1978 		goto put;
1979 
1980 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
1981 	if (ret < 0) {
1982 		bpf_prog_array_delete_safe(old_array, event->prog);
1983 	} else {
1984 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1985 		bpf_prog_array_free_sleepable(old_array);
1986 	}
1987 
1988 put:
1989 	prog = event->prog;
1990 	event->prog = NULL;
1991 
1992 unlock:
1993 	mutex_unlock(&bpf_event_mutex);
1994 
1995 	if (prog) {
1996 		/*
1997 		 * It could be that the bpf_prog is not sleepable (and will be freed
1998 		 * via normal RCU), but is called from a point that supports sleepable
1999 		 * programs and uses tasks-trace-RCU.
2000 		 */
2001 		synchronize_rcu_tasks_trace();
2002 
2003 		bpf_prog_put(prog);
2004 	}
2005 }
2006 
2007 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2008 {
2009 	struct perf_event_query_bpf __user *uquery = info;
2010 	struct perf_event_query_bpf query = {};
2011 	struct bpf_prog_array *progs;
2012 	u32 *ids, prog_cnt, ids_len;
2013 	int ret;
2014 
2015 	if (!perfmon_capable())
2016 		return -EPERM;
2017 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2018 		return -EINVAL;
2019 	if (copy_from_user(&query, uquery, sizeof(query)))
2020 		return -EFAULT;
2021 
2022 	ids_len = query.ids_len;
2023 	if (ids_len > BPF_TRACE_MAX_PROGS)
2024 		return -E2BIG;
2025 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2026 	if (!ids)
2027 		return -ENOMEM;
2028 	/*
2029 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2030 	 * is required when user only wants to check for uquery->prog_cnt.
2031 	 * There is no need to check for it since the case is handled
2032 	 * gracefully in bpf_prog_array_copy_info.
2033 	 */
2034 
2035 	mutex_lock(&bpf_event_mutex);
2036 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2037 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2038 	mutex_unlock(&bpf_event_mutex);
2039 
2040 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2041 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2042 		ret = -EFAULT;
2043 
2044 	kfree(ids);
2045 	return ret;
2046 }
2047 
2048 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2049 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2050 
2051 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2052 {
2053 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2054 
2055 	for (; btp < __stop__bpf_raw_tp; btp++) {
2056 		if (!strcmp(btp->tp->name, name))
2057 			return btp;
2058 	}
2059 
2060 	return bpf_get_raw_tracepoint_module(name);
2061 }
2062 
2063 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2064 {
2065 	struct module *mod;
2066 
2067 	guard(rcu)();
2068 	mod = __module_address((unsigned long)btp);
2069 	module_put(mod);
2070 }
2071 
2072 static __always_inline
2073 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2074 {
2075 	struct bpf_prog *prog = link->link.prog;
2076 	struct bpf_run_ctx *old_run_ctx;
2077 	struct bpf_trace_run_ctx run_ctx;
2078 
2079 	cant_sleep();
2080 	if (unlikely(!bpf_prog_get_recursion_context(prog))) {
2081 		bpf_prog_inc_misses_counter(prog);
2082 		goto out;
2083 	}
2084 
2085 	run_ctx.bpf_cookie = link->cookie;
2086 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2087 
2088 	rcu_read_lock();
2089 	(void) bpf_prog_run(prog, args);
2090 	rcu_read_unlock();
2091 
2092 	bpf_reset_run_ctx(old_run_ctx);
2093 out:
2094 	bpf_prog_put_recursion_context(prog);
2095 }
2096 
2097 #define UNPACK(...)			__VA_ARGS__
2098 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2099 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2100 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2101 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2102 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2103 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2104 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2105 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2106 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2107 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2108 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2109 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2110 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2111 
2112 #define SARG(X)		u64 arg##X
2113 #define COPY(X)		args[X] = arg##X
2114 
2115 #define __DL_COM	(,)
2116 #define __DL_SEM	(;)
2117 
2118 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2119 
2120 #define BPF_TRACE_DEFN_x(x)						\
2121 	void bpf_trace_run##x(struct bpf_raw_tp_link *link,		\
2122 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2123 	{								\
2124 		u64 args[x];						\
2125 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2126 		__bpf_trace_run(link, args);				\
2127 	}								\
2128 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2129 BPF_TRACE_DEFN_x(1);
2130 BPF_TRACE_DEFN_x(2);
2131 BPF_TRACE_DEFN_x(3);
2132 BPF_TRACE_DEFN_x(4);
2133 BPF_TRACE_DEFN_x(5);
2134 BPF_TRACE_DEFN_x(6);
2135 BPF_TRACE_DEFN_x(7);
2136 BPF_TRACE_DEFN_x(8);
2137 BPF_TRACE_DEFN_x(9);
2138 BPF_TRACE_DEFN_x(10);
2139 BPF_TRACE_DEFN_x(11);
2140 BPF_TRACE_DEFN_x(12);
2141 
2142 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2143 {
2144 	struct tracepoint *tp = btp->tp;
2145 	struct bpf_prog *prog = link->link.prog;
2146 
2147 	/*
2148 	 * check that program doesn't access arguments beyond what's
2149 	 * available in this tracepoint
2150 	 */
2151 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2152 		return -EINVAL;
2153 
2154 	if (prog->aux->max_tp_access > btp->writable_size)
2155 		return -EINVAL;
2156 
2157 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2158 }
2159 
2160 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2161 {
2162 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2163 }
2164 
2165 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2166 			    u32 *fd_type, const char **buf,
2167 			    u64 *probe_offset, u64 *probe_addr,
2168 			    unsigned long *missed)
2169 {
2170 	bool is_tracepoint, is_syscall_tp;
2171 	struct bpf_prog *prog;
2172 	int flags, err = 0;
2173 
2174 	prog = event->prog;
2175 	if (!prog)
2176 		return -ENOENT;
2177 
2178 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2179 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2180 		return -EOPNOTSUPP;
2181 
2182 	*prog_id = prog->aux->id;
2183 	flags = event->tp_event->flags;
2184 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2185 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2186 
2187 	if (is_tracepoint || is_syscall_tp) {
2188 		*buf = is_tracepoint ? event->tp_event->tp->name
2189 				     : event->tp_event->name;
2190 		/* We allow NULL pointer for tracepoint */
2191 		if (fd_type)
2192 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2193 		if (probe_offset)
2194 			*probe_offset = 0x0;
2195 		if (probe_addr)
2196 			*probe_addr = 0x0;
2197 	} else {
2198 		/* kprobe/uprobe */
2199 		err = -EOPNOTSUPP;
2200 #ifdef CONFIG_KPROBE_EVENTS
2201 		if (flags & TRACE_EVENT_FL_KPROBE)
2202 			err = bpf_get_kprobe_info(event, fd_type, buf,
2203 						  probe_offset, probe_addr, missed,
2204 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2205 #endif
2206 #ifdef CONFIG_UPROBE_EVENTS
2207 		if (flags & TRACE_EVENT_FL_UPROBE)
2208 			err = bpf_get_uprobe_info(event, fd_type, buf,
2209 						  probe_offset, probe_addr,
2210 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2211 #endif
2212 	}
2213 
2214 	return err;
2215 }
2216 
2217 static int __init send_signal_irq_work_init(void)
2218 {
2219 	int cpu;
2220 	struct send_signal_irq_work *work;
2221 
2222 	for_each_possible_cpu(cpu) {
2223 		work = per_cpu_ptr(&send_signal_work, cpu);
2224 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2225 	}
2226 	return 0;
2227 }
2228 
2229 subsys_initcall(send_signal_irq_work_init);
2230 
2231 #ifdef CONFIG_MODULES
2232 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2233 			    void *module)
2234 {
2235 	struct bpf_trace_module *btm, *tmp;
2236 	struct module *mod = module;
2237 	int ret = 0;
2238 
2239 	if (mod->num_bpf_raw_events == 0 ||
2240 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2241 		goto out;
2242 
2243 	mutex_lock(&bpf_module_mutex);
2244 
2245 	switch (op) {
2246 	case MODULE_STATE_COMING:
2247 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2248 		if (btm) {
2249 			btm->module = module;
2250 			list_add(&btm->list, &bpf_trace_modules);
2251 		} else {
2252 			ret = -ENOMEM;
2253 		}
2254 		break;
2255 	case MODULE_STATE_GOING:
2256 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2257 			if (btm->module == module) {
2258 				list_del(&btm->list);
2259 				kfree(btm);
2260 				break;
2261 			}
2262 		}
2263 		break;
2264 	}
2265 
2266 	mutex_unlock(&bpf_module_mutex);
2267 
2268 out:
2269 	return notifier_from_errno(ret);
2270 }
2271 
2272 static struct notifier_block bpf_module_nb = {
2273 	.notifier_call = bpf_event_notify,
2274 };
2275 
2276 static int __init bpf_event_init(void)
2277 {
2278 	register_module_notifier(&bpf_module_nb);
2279 	return 0;
2280 }
2281 
2282 fs_initcall(bpf_event_init);
2283 #endif /* CONFIG_MODULES */
2284 
2285 struct bpf_session_run_ctx {
2286 	struct bpf_run_ctx run_ctx;
2287 	bool is_return;
2288 	void *data;
2289 };
2290 
2291 #ifdef CONFIG_FPROBE
2292 struct bpf_kprobe_multi_link {
2293 	struct bpf_link link;
2294 	struct fprobe fp;
2295 	unsigned long *addrs;
2296 	u64 *cookies;
2297 	u32 cnt;
2298 	u32 mods_cnt;
2299 	struct module **mods;
2300 };
2301 
2302 struct bpf_kprobe_multi_run_ctx {
2303 	struct bpf_session_run_ctx session_ctx;
2304 	struct bpf_kprobe_multi_link *link;
2305 	unsigned long entry_ip;
2306 };
2307 
2308 struct user_syms {
2309 	const char **syms;
2310 	char *buf;
2311 };
2312 
2313 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS
2314 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs);
2315 #define bpf_kprobe_multi_pt_regs_ptr()	this_cpu_ptr(&bpf_kprobe_multi_pt_regs)
2316 #else
2317 #define bpf_kprobe_multi_pt_regs_ptr()	(NULL)
2318 #endif
2319 
2320 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip)
2321 {
2322 	unsigned long ip = ftrace_get_symaddr(fentry_ip);
2323 
2324 	return ip ? : fentry_ip;
2325 }
2326 
2327 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2328 {
2329 	unsigned long __user usymbol;
2330 	const char **syms = NULL;
2331 	char *buf = NULL, *p;
2332 	int err = -ENOMEM;
2333 	unsigned int i;
2334 
2335 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2336 	if (!syms)
2337 		goto error;
2338 
2339 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2340 	if (!buf)
2341 		goto error;
2342 
2343 	for (p = buf, i = 0; i < cnt; i++) {
2344 		if (__get_user(usymbol, usyms + i)) {
2345 			err = -EFAULT;
2346 			goto error;
2347 		}
2348 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2349 		if (err == KSYM_NAME_LEN)
2350 			err = -E2BIG;
2351 		if (err < 0)
2352 			goto error;
2353 		syms[i] = p;
2354 		p += err + 1;
2355 	}
2356 
2357 	us->syms = syms;
2358 	us->buf = buf;
2359 	return 0;
2360 
2361 error:
2362 	if (err) {
2363 		kvfree(syms);
2364 		kvfree(buf);
2365 	}
2366 	return err;
2367 }
2368 
2369 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2370 {
2371 	u32 i;
2372 
2373 	for (i = 0; i < cnt; i++)
2374 		module_put(mods[i]);
2375 }
2376 
2377 static void free_user_syms(struct user_syms *us)
2378 {
2379 	kvfree(us->syms);
2380 	kvfree(us->buf);
2381 }
2382 
2383 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2384 {
2385 	struct bpf_kprobe_multi_link *kmulti_link;
2386 
2387 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2388 	unregister_fprobe(&kmulti_link->fp);
2389 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2390 }
2391 
2392 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2393 {
2394 	struct bpf_kprobe_multi_link *kmulti_link;
2395 
2396 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2397 	kvfree(kmulti_link->addrs);
2398 	kvfree(kmulti_link->cookies);
2399 	kfree(kmulti_link->mods);
2400 	kfree(kmulti_link);
2401 }
2402 
2403 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2404 						struct bpf_link_info *info)
2405 {
2406 	u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2407 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2408 	struct bpf_kprobe_multi_link *kmulti_link;
2409 	u32 ucount = info->kprobe_multi.count;
2410 	int err = 0, i;
2411 
2412 	if (!uaddrs ^ !ucount)
2413 		return -EINVAL;
2414 	if (ucookies && !ucount)
2415 		return -EINVAL;
2416 
2417 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2418 	info->kprobe_multi.count = kmulti_link->cnt;
2419 	info->kprobe_multi.flags = kmulti_link->link.flags;
2420 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2421 
2422 	if (!uaddrs)
2423 		return 0;
2424 	if (ucount < kmulti_link->cnt)
2425 		err = -ENOSPC;
2426 	else
2427 		ucount = kmulti_link->cnt;
2428 
2429 	if (ucookies) {
2430 		if (kmulti_link->cookies) {
2431 			if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2432 				return -EFAULT;
2433 		} else {
2434 			for (i = 0; i < ucount; i++) {
2435 				if (put_user(0, ucookies + i))
2436 					return -EFAULT;
2437 			}
2438 		}
2439 	}
2440 
2441 	if (kallsyms_show_value(current_cred())) {
2442 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2443 			return -EFAULT;
2444 	} else {
2445 		for (i = 0; i < ucount; i++) {
2446 			if (put_user(0, uaddrs + i))
2447 				return -EFAULT;
2448 		}
2449 	}
2450 	return err;
2451 }
2452 
2453 #ifdef CONFIG_PROC_FS
2454 static void bpf_kprobe_multi_show_fdinfo(const struct bpf_link *link,
2455 					 struct seq_file *seq)
2456 {
2457 	struct bpf_kprobe_multi_link *kmulti_link;
2458 
2459 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2460 
2461 	seq_printf(seq,
2462 		   "kprobe_cnt:\t%u\n"
2463 		   "missed:\t%lu\n",
2464 		   kmulti_link->cnt,
2465 		   kmulti_link->fp.nmissed);
2466 
2467 	seq_printf(seq, "%s\t %s\n", "cookie", "func");
2468 	for (int i = 0; i < kmulti_link->cnt; i++) {
2469 		seq_printf(seq,
2470 			   "%llu\t %pS\n",
2471 			   kmulti_link->cookies[i],
2472 			   (void *)kmulti_link->addrs[i]);
2473 	}
2474 }
2475 #endif
2476 
2477 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2478 	.release = bpf_kprobe_multi_link_release,
2479 	.dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2480 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2481 #ifdef CONFIG_PROC_FS
2482 	.show_fdinfo = bpf_kprobe_multi_show_fdinfo,
2483 #endif
2484 };
2485 
2486 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2487 {
2488 	const struct bpf_kprobe_multi_link *link = priv;
2489 	unsigned long *addr_a = a, *addr_b = b;
2490 	u64 *cookie_a, *cookie_b;
2491 
2492 	cookie_a = link->cookies + (addr_a - link->addrs);
2493 	cookie_b = link->cookies + (addr_b - link->addrs);
2494 
2495 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2496 	swap(*addr_a, *addr_b);
2497 	swap(*cookie_a, *cookie_b);
2498 }
2499 
2500 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2501 {
2502 	const unsigned long *addr_a = a, *addr_b = b;
2503 
2504 	if (*addr_a == *addr_b)
2505 		return 0;
2506 	return *addr_a < *addr_b ? -1 : 1;
2507 }
2508 
2509 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2510 {
2511 	return bpf_kprobe_multi_addrs_cmp(a, b);
2512 }
2513 
2514 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2515 {
2516 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2517 	struct bpf_kprobe_multi_link *link;
2518 	u64 *cookie, entry_ip;
2519 	unsigned long *addr;
2520 
2521 	if (WARN_ON_ONCE(!ctx))
2522 		return 0;
2523 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2524 			       session_ctx.run_ctx);
2525 	link = run_ctx->link;
2526 	if (!link->cookies)
2527 		return 0;
2528 	entry_ip = run_ctx->entry_ip;
2529 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2530 		       bpf_kprobe_multi_addrs_cmp);
2531 	if (!addr)
2532 		return 0;
2533 	cookie = link->cookies + (addr - link->addrs);
2534 	return *cookie;
2535 }
2536 
2537 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2538 {
2539 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2540 
2541 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2542 			       session_ctx.run_ctx);
2543 	return run_ctx->entry_ip;
2544 }
2545 
2546 static __always_inline int
2547 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2548 			   unsigned long entry_ip, struct ftrace_regs *fregs,
2549 			   bool is_return, void *data)
2550 {
2551 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2552 		.session_ctx = {
2553 			.is_return = is_return,
2554 			.data = data,
2555 		},
2556 		.link = link,
2557 		.entry_ip = entry_ip,
2558 	};
2559 	struct bpf_run_ctx *old_run_ctx;
2560 	struct pt_regs *regs;
2561 	int err;
2562 
2563 	/*
2564 	 * graph tracer framework ensures we won't migrate, so there is no need
2565 	 * to use migrate_disable for bpf_prog_run again. The check here just for
2566 	 * __this_cpu_inc_return.
2567 	 */
2568 	cant_sleep();
2569 
2570 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2571 		bpf_prog_inc_misses_counter(link->link.prog);
2572 		err = 1;
2573 		goto out;
2574 	}
2575 
2576 	rcu_read_lock();
2577 	regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr());
2578 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2579 	err = bpf_prog_run(link->link.prog, regs);
2580 	bpf_reset_run_ctx(old_run_ctx);
2581 	ftrace_partial_regs_update(fregs, bpf_kprobe_multi_pt_regs_ptr());
2582 	rcu_read_unlock();
2583 
2584  out:
2585 	__this_cpu_dec(bpf_prog_active);
2586 	return err;
2587 }
2588 
2589 static int
2590 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2591 			  unsigned long ret_ip, struct ftrace_regs *fregs,
2592 			  void *data)
2593 {
2594 	struct bpf_kprobe_multi_link *link;
2595 	int err;
2596 
2597 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2598 	err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2599 					 fregs, false, data);
2600 	return is_kprobe_session(link->link.prog) ? err : 0;
2601 }
2602 
2603 static void
2604 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2605 			       unsigned long ret_ip, struct ftrace_regs *fregs,
2606 			       void *data)
2607 {
2608 	struct bpf_kprobe_multi_link *link;
2609 
2610 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2611 	kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2612 				   fregs, true, data);
2613 }
2614 
2615 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2616 {
2617 	const char **str_a = (const char **) a;
2618 	const char **str_b = (const char **) b;
2619 
2620 	return strcmp(*str_a, *str_b);
2621 }
2622 
2623 struct multi_symbols_sort {
2624 	const char **funcs;
2625 	u64 *cookies;
2626 };
2627 
2628 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2629 {
2630 	const struct multi_symbols_sort *data = priv;
2631 	const char **name_a = a, **name_b = b;
2632 
2633 	swap(*name_a, *name_b);
2634 
2635 	/* If defined, swap also related cookies. */
2636 	if (data->cookies) {
2637 		u64 *cookie_a, *cookie_b;
2638 
2639 		cookie_a = data->cookies + (name_a - data->funcs);
2640 		cookie_b = data->cookies + (name_b - data->funcs);
2641 		swap(*cookie_a, *cookie_b);
2642 	}
2643 }
2644 
2645 struct modules_array {
2646 	struct module **mods;
2647 	int mods_cnt;
2648 	int mods_cap;
2649 };
2650 
2651 static int add_module(struct modules_array *arr, struct module *mod)
2652 {
2653 	struct module **mods;
2654 
2655 	if (arr->mods_cnt == arr->mods_cap) {
2656 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2657 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2658 		if (!mods)
2659 			return -ENOMEM;
2660 		arr->mods = mods;
2661 	}
2662 
2663 	arr->mods[arr->mods_cnt] = mod;
2664 	arr->mods_cnt++;
2665 	return 0;
2666 }
2667 
2668 static bool has_module(struct modules_array *arr, struct module *mod)
2669 {
2670 	int i;
2671 
2672 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2673 		if (arr->mods[i] == mod)
2674 			return true;
2675 	}
2676 	return false;
2677 }
2678 
2679 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2680 {
2681 	struct modules_array arr = {};
2682 	u32 i, err = 0;
2683 
2684 	for (i = 0; i < addrs_cnt; i++) {
2685 		bool skip_add = false;
2686 		struct module *mod;
2687 
2688 		scoped_guard(rcu) {
2689 			mod = __module_address(addrs[i]);
2690 			/* Either no module or it's already stored  */
2691 			if (!mod || has_module(&arr, mod)) {
2692 				skip_add = true;
2693 				break; /* scoped_guard */
2694 			}
2695 			if (!try_module_get(mod))
2696 				err = -EINVAL;
2697 		}
2698 		if (skip_add)
2699 			continue;
2700 		if (err)
2701 			break;
2702 		err = add_module(&arr, mod);
2703 		if (err) {
2704 			module_put(mod);
2705 			break;
2706 		}
2707 	}
2708 
2709 	/* We return either err < 0 in case of error, ... */
2710 	if (err) {
2711 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2712 		kfree(arr.mods);
2713 		return err;
2714 	}
2715 
2716 	/* or number of modules found if everything is ok. */
2717 	*mods = arr.mods;
2718 	return arr.mods_cnt;
2719 }
2720 
2721 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2722 {
2723 	u32 i;
2724 
2725 	for (i = 0; i < cnt; i++) {
2726 		if (!within_error_injection_list(addrs[i]))
2727 			return -EINVAL;
2728 	}
2729 	return 0;
2730 }
2731 
2732 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2733 {
2734 	struct bpf_kprobe_multi_link *link = NULL;
2735 	struct bpf_link_primer link_primer;
2736 	void __user *ucookies;
2737 	unsigned long *addrs;
2738 	u32 flags, cnt, size;
2739 	void __user *uaddrs;
2740 	u64 *cookies = NULL;
2741 	void __user *usyms;
2742 	int err;
2743 
2744 	/* no support for 32bit archs yet */
2745 	if (sizeof(u64) != sizeof(void *))
2746 		return -EOPNOTSUPP;
2747 
2748 	if (attr->link_create.flags)
2749 		return -EINVAL;
2750 
2751 	if (!is_kprobe_multi(prog))
2752 		return -EINVAL;
2753 
2754 	/* Writing to context is not allowed for kprobes. */
2755 	if (prog->aux->kprobe_write_ctx)
2756 		return -EINVAL;
2757 
2758 	flags = attr->link_create.kprobe_multi.flags;
2759 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2760 		return -EINVAL;
2761 
2762 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2763 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2764 	if (!!uaddrs == !!usyms)
2765 		return -EINVAL;
2766 
2767 	cnt = attr->link_create.kprobe_multi.cnt;
2768 	if (!cnt)
2769 		return -EINVAL;
2770 	if (cnt > MAX_KPROBE_MULTI_CNT)
2771 		return -E2BIG;
2772 
2773 	size = cnt * sizeof(*addrs);
2774 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2775 	if (!addrs)
2776 		return -ENOMEM;
2777 
2778 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2779 	if (ucookies) {
2780 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2781 		if (!cookies) {
2782 			err = -ENOMEM;
2783 			goto error;
2784 		}
2785 		if (copy_from_user(cookies, ucookies, size)) {
2786 			err = -EFAULT;
2787 			goto error;
2788 		}
2789 	}
2790 
2791 	if (uaddrs) {
2792 		if (copy_from_user(addrs, uaddrs, size)) {
2793 			err = -EFAULT;
2794 			goto error;
2795 		}
2796 	} else {
2797 		struct multi_symbols_sort data = {
2798 			.cookies = cookies,
2799 		};
2800 		struct user_syms us;
2801 
2802 		err = copy_user_syms(&us, usyms, cnt);
2803 		if (err)
2804 			goto error;
2805 
2806 		if (cookies)
2807 			data.funcs = us.syms;
2808 
2809 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2810 		       symbols_swap_r, &data);
2811 
2812 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2813 		free_user_syms(&us);
2814 		if (err)
2815 			goto error;
2816 	}
2817 
2818 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
2819 		err = -EINVAL;
2820 		goto error;
2821 	}
2822 
2823 	link = kzalloc(sizeof(*link), GFP_KERNEL);
2824 	if (!link) {
2825 		err = -ENOMEM;
2826 		goto error;
2827 	}
2828 
2829 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2830 		      &bpf_kprobe_multi_link_lops, prog, attr->link_create.attach_type);
2831 
2832 	err = bpf_link_prime(&link->link, &link_primer);
2833 	if (err)
2834 		goto error;
2835 
2836 	if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
2837 		link->fp.entry_handler = kprobe_multi_link_handler;
2838 	if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
2839 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
2840 	if (is_kprobe_session(prog))
2841 		link->fp.entry_data_size = sizeof(u64);
2842 
2843 	link->addrs = addrs;
2844 	link->cookies = cookies;
2845 	link->cnt = cnt;
2846 	link->link.flags = flags;
2847 
2848 	if (cookies) {
2849 		/*
2850 		 * Sorting addresses will trigger sorting cookies as well
2851 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
2852 		 * find cookie based on the address in bpf_get_attach_cookie
2853 		 * helper.
2854 		 */
2855 		sort_r(addrs, cnt, sizeof(*addrs),
2856 		       bpf_kprobe_multi_cookie_cmp,
2857 		       bpf_kprobe_multi_cookie_swap,
2858 		       link);
2859 	}
2860 
2861 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
2862 	if (err < 0) {
2863 		bpf_link_cleanup(&link_primer);
2864 		return err;
2865 	}
2866 	link->mods_cnt = err;
2867 
2868 	err = register_fprobe_ips(&link->fp, addrs, cnt);
2869 	if (err) {
2870 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
2871 		bpf_link_cleanup(&link_primer);
2872 		return err;
2873 	}
2874 
2875 	return bpf_link_settle(&link_primer);
2876 
2877 error:
2878 	kfree(link);
2879 	kvfree(addrs);
2880 	kvfree(cookies);
2881 	return err;
2882 }
2883 #else /* !CONFIG_FPROBE */
2884 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2885 {
2886 	return -EOPNOTSUPP;
2887 }
2888 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2889 {
2890 	return 0;
2891 }
2892 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2893 {
2894 	return 0;
2895 }
2896 #endif
2897 
2898 #ifdef CONFIG_UPROBES
2899 struct bpf_uprobe_multi_link;
2900 
2901 struct bpf_uprobe {
2902 	struct bpf_uprobe_multi_link *link;
2903 	loff_t offset;
2904 	unsigned long ref_ctr_offset;
2905 	u64 cookie;
2906 	struct uprobe *uprobe;
2907 	struct uprobe_consumer consumer;
2908 	bool session;
2909 };
2910 
2911 struct bpf_uprobe_multi_link {
2912 	struct path path;
2913 	struct bpf_link link;
2914 	u32 cnt;
2915 	struct bpf_uprobe *uprobes;
2916 	struct task_struct *task;
2917 };
2918 
2919 struct bpf_uprobe_multi_run_ctx {
2920 	struct bpf_session_run_ctx session_ctx;
2921 	unsigned long entry_ip;
2922 	struct bpf_uprobe *uprobe;
2923 };
2924 
2925 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
2926 {
2927 	u32 i;
2928 
2929 	for (i = 0; i < cnt; i++)
2930 		uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
2931 
2932 	if (cnt)
2933 		uprobe_unregister_sync();
2934 }
2935 
2936 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
2937 {
2938 	struct bpf_uprobe_multi_link *umulti_link;
2939 
2940 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
2941 	bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
2942 	if (umulti_link->task)
2943 		put_task_struct(umulti_link->task);
2944 	path_put(&umulti_link->path);
2945 }
2946 
2947 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
2948 {
2949 	struct bpf_uprobe_multi_link *umulti_link;
2950 
2951 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
2952 	kvfree(umulti_link->uprobes);
2953 	kfree(umulti_link);
2954 }
2955 
2956 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
2957 						struct bpf_link_info *info)
2958 {
2959 	u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
2960 	u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
2961 	u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
2962 	u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
2963 	u32 upath_size = info->uprobe_multi.path_size;
2964 	struct bpf_uprobe_multi_link *umulti_link;
2965 	u32 ucount = info->uprobe_multi.count;
2966 	int err = 0, i;
2967 	char *p, *buf;
2968 	long left = 0;
2969 
2970 	if (!upath ^ !upath_size)
2971 		return -EINVAL;
2972 
2973 	if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
2974 		return -EINVAL;
2975 
2976 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
2977 	info->uprobe_multi.count = umulti_link->cnt;
2978 	info->uprobe_multi.flags = umulti_link->link.flags;
2979 	info->uprobe_multi.pid = umulti_link->task ?
2980 				 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
2981 
2982 	upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
2983 	buf = kmalloc(upath_size, GFP_KERNEL);
2984 	if (!buf)
2985 		return -ENOMEM;
2986 	p = d_path(&umulti_link->path, buf, upath_size);
2987 	if (IS_ERR(p)) {
2988 		kfree(buf);
2989 		return PTR_ERR(p);
2990 	}
2991 	upath_size = buf + upath_size - p;
2992 
2993 	if (upath)
2994 		left = copy_to_user(upath, p, upath_size);
2995 	kfree(buf);
2996 	if (left)
2997 		return -EFAULT;
2998 	info->uprobe_multi.path_size = upath_size;
2999 
3000 	if (!uoffsets && !ucookies && !uref_ctr_offsets)
3001 		return 0;
3002 
3003 	if (ucount < umulti_link->cnt)
3004 		err = -ENOSPC;
3005 	else
3006 		ucount = umulti_link->cnt;
3007 
3008 	for (i = 0; i < ucount; i++) {
3009 		if (uoffsets &&
3010 		    put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3011 			return -EFAULT;
3012 		if (uref_ctr_offsets &&
3013 		    put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3014 			return -EFAULT;
3015 		if (ucookies &&
3016 		    put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3017 			return -EFAULT;
3018 	}
3019 
3020 	return err;
3021 }
3022 
3023 #ifdef CONFIG_PROC_FS
3024 static void bpf_uprobe_multi_show_fdinfo(const struct bpf_link *link,
3025 					 struct seq_file *seq)
3026 {
3027 	struct bpf_uprobe_multi_link *umulti_link;
3028 	char *p, *buf;
3029 	pid_t pid;
3030 
3031 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3032 
3033 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3034 	if (!buf)
3035 		return;
3036 
3037 	p = d_path(&umulti_link->path, buf, PATH_MAX);
3038 	if (IS_ERR(p)) {
3039 		kfree(buf);
3040 		return;
3041 	}
3042 
3043 	pid = umulti_link->task ?
3044 	      task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3045 	seq_printf(seq,
3046 		   "uprobe_cnt:\t%u\n"
3047 		   "pid:\t%u\n"
3048 		   "path:\t%s\n",
3049 		   umulti_link->cnt, pid, p);
3050 
3051 	seq_printf(seq, "%s\t %s\t %s\n", "cookie", "offset", "ref_ctr_offset");
3052 	for (int i = 0; i < umulti_link->cnt; i++) {
3053 		seq_printf(seq,
3054 			   "%llu\t %#llx\t %#lx\n",
3055 			   umulti_link->uprobes[i].cookie,
3056 			   umulti_link->uprobes[i].offset,
3057 			   umulti_link->uprobes[i].ref_ctr_offset);
3058 	}
3059 
3060 	kfree(buf);
3061 }
3062 #endif
3063 
3064 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3065 	.release = bpf_uprobe_multi_link_release,
3066 	.dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3067 	.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3068 #ifdef CONFIG_PROC_FS
3069 	.show_fdinfo = bpf_uprobe_multi_show_fdinfo,
3070 #endif
3071 };
3072 
3073 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3074 			   unsigned long entry_ip,
3075 			   struct pt_regs *regs,
3076 			   bool is_return, void *data)
3077 {
3078 	struct bpf_uprobe_multi_link *link = uprobe->link;
3079 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3080 		.session_ctx = {
3081 			.is_return = is_return,
3082 			.data = data,
3083 		},
3084 		.entry_ip = entry_ip,
3085 		.uprobe = uprobe,
3086 	};
3087 	struct bpf_prog *prog = link->link.prog;
3088 	bool sleepable = prog->sleepable;
3089 	struct bpf_run_ctx *old_run_ctx;
3090 	int err;
3091 
3092 	if (link->task && !same_thread_group(current, link->task))
3093 		return 0;
3094 
3095 	if (sleepable)
3096 		rcu_read_lock_trace();
3097 	else
3098 		rcu_read_lock();
3099 
3100 	migrate_disable();
3101 
3102 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
3103 	err = bpf_prog_run(link->link.prog, regs);
3104 	bpf_reset_run_ctx(old_run_ctx);
3105 
3106 	migrate_enable();
3107 
3108 	if (sleepable)
3109 		rcu_read_unlock_trace();
3110 	else
3111 		rcu_read_unlock();
3112 	return err;
3113 }
3114 
3115 static bool
3116 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3117 {
3118 	struct bpf_uprobe *uprobe;
3119 
3120 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3121 	return uprobe->link->task->mm == mm;
3122 }
3123 
3124 static int
3125 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
3126 			  __u64 *data)
3127 {
3128 	struct bpf_uprobe *uprobe;
3129 	int ret;
3130 
3131 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3132 	ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
3133 	if (uprobe->session)
3134 		return ret ? UPROBE_HANDLER_IGNORE : 0;
3135 	return 0;
3136 }
3137 
3138 static int
3139 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
3140 			      __u64 *data)
3141 {
3142 	struct bpf_uprobe *uprobe;
3143 
3144 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3145 	uprobe_prog_run(uprobe, func, regs, true, data);
3146 	return 0;
3147 }
3148 
3149 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3150 {
3151 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3152 
3153 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3154 			       session_ctx.run_ctx);
3155 	return run_ctx->entry_ip;
3156 }
3157 
3158 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3159 {
3160 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3161 
3162 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3163 			       session_ctx.run_ctx);
3164 	return run_ctx->uprobe->cookie;
3165 }
3166 
3167 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3168 {
3169 	struct bpf_uprobe_multi_link *link = NULL;
3170 	unsigned long __user *uref_ctr_offsets;
3171 	struct bpf_link_primer link_primer;
3172 	struct bpf_uprobe *uprobes = NULL;
3173 	struct task_struct *task = NULL;
3174 	unsigned long __user *uoffsets;
3175 	u64 __user *ucookies;
3176 	void __user *upath;
3177 	u32 flags, cnt, i;
3178 	struct path path;
3179 	char *name;
3180 	pid_t pid;
3181 	int err;
3182 
3183 	/* no support for 32bit archs yet */
3184 	if (sizeof(u64) != sizeof(void *))
3185 		return -EOPNOTSUPP;
3186 
3187 	if (attr->link_create.flags)
3188 		return -EINVAL;
3189 
3190 	if (!is_uprobe_multi(prog))
3191 		return -EINVAL;
3192 
3193 	flags = attr->link_create.uprobe_multi.flags;
3194 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3195 		return -EINVAL;
3196 
3197 	/*
3198 	 * path, offsets and cnt are mandatory,
3199 	 * ref_ctr_offsets and cookies are optional
3200 	 */
3201 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3202 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3203 	cnt = attr->link_create.uprobe_multi.cnt;
3204 	pid = attr->link_create.uprobe_multi.pid;
3205 
3206 	if (!upath || !uoffsets || !cnt || pid < 0)
3207 		return -EINVAL;
3208 	if (cnt > MAX_UPROBE_MULTI_CNT)
3209 		return -E2BIG;
3210 
3211 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3212 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3213 
3214 	name = strndup_user(upath, PATH_MAX);
3215 	if (IS_ERR(name)) {
3216 		err = PTR_ERR(name);
3217 		return err;
3218 	}
3219 
3220 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3221 	kfree(name);
3222 	if (err)
3223 		return err;
3224 
3225 	if (!d_is_reg(path.dentry)) {
3226 		err = -EBADF;
3227 		goto error_path_put;
3228 	}
3229 
3230 	if (pid) {
3231 		rcu_read_lock();
3232 		task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3233 		rcu_read_unlock();
3234 		if (!task) {
3235 			err = -ESRCH;
3236 			goto error_path_put;
3237 		}
3238 	}
3239 
3240 	err = -ENOMEM;
3241 
3242 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3243 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3244 
3245 	if (!uprobes || !link)
3246 		goto error_free;
3247 
3248 	for (i = 0; i < cnt; i++) {
3249 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3250 			err = -EFAULT;
3251 			goto error_free;
3252 		}
3253 		if (uprobes[i].offset < 0) {
3254 			err = -EINVAL;
3255 			goto error_free;
3256 		}
3257 		if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3258 			err = -EFAULT;
3259 			goto error_free;
3260 		}
3261 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3262 			err = -EFAULT;
3263 			goto error_free;
3264 		}
3265 
3266 		uprobes[i].link = link;
3267 
3268 		if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
3269 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3270 		if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
3271 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3272 		if (is_uprobe_session(prog))
3273 			uprobes[i].session = true;
3274 		if (pid)
3275 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3276 	}
3277 
3278 	link->cnt = cnt;
3279 	link->uprobes = uprobes;
3280 	link->path = path;
3281 	link->task = task;
3282 	link->link.flags = flags;
3283 
3284 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3285 		      &bpf_uprobe_multi_link_lops, prog, attr->link_create.attach_type);
3286 
3287 	for (i = 0; i < cnt; i++) {
3288 		uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3289 						    uprobes[i].offset,
3290 						    uprobes[i].ref_ctr_offset,
3291 						    &uprobes[i].consumer);
3292 		if (IS_ERR(uprobes[i].uprobe)) {
3293 			err = PTR_ERR(uprobes[i].uprobe);
3294 			link->cnt = i;
3295 			goto error_unregister;
3296 		}
3297 	}
3298 
3299 	err = bpf_link_prime(&link->link, &link_primer);
3300 	if (err)
3301 		goto error_unregister;
3302 
3303 	return bpf_link_settle(&link_primer);
3304 
3305 error_unregister:
3306 	bpf_uprobe_unregister(uprobes, link->cnt);
3307 
3308 error_free:
3309 	kvfree(uprobes);
3310 	kfree(link);
3311 	if (task)
3312 		put_task_struct(task);
3313 error_path_put:
3314 	path_put(&path);
3315 	return err;
3316 }
3317 #else /* !CONFIG_UPROBES */
3318 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3319 {
3320 	return -EOPNOTSUPP;
3321 }
3322 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3323 {
3324 	return 0;
3325 }
3326 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3327 {
3328 	return 0;
3329 }
3330 #endif /* CONFIG_UPROBES */
3331 
3332 __bpf_kfunc_start_defs();
3333 
3334 __bpf_kfunc bool bpf_session_is_return(void *ctx)
3335 {
3336 	struct bpf_session_run_ctx *session_ctx;
3337 
3338 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3339 	return session_ctx->is_return;
3340 }
3341 
3342 __bpf_kfunc __u64 *bpf_session_cookie(void *ctx)
3343 {
3344 	struct bpf_session_run_ctx *session_ctx;
3345 
3346 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3347 	return session_ctx->data;
3348 }
3349 
3350 __bpf_kfunc_end_defs();
3351 
3352 BTF_KFUNCS_START(session_kfunc_set_ids)
3353 BTF_ID_FLAGS(func, bpf_session_is_return)
3354 BTF_ID_FLAGS(func, bpf_session_cookie)
3355 BTF_KFUNCS_END(session_kfunc_set_ids)
3356 
3357 static int bpf_session_filter(const struct bpf_prog *prog, u32 kfunc_id)
3358 {
3359 	if (!btf_id_set8_contains(&session_kfunc_set_ids, kfunc_id))
3360 		return 0;
3361 
3362 	if (!is_kprobe_session(prog) && !is_uprobe_session(prog) && !is_trace_fsession(prog))
3363 		return -EACCES;
3364 
3365 	return 0;
3366 }
3367 
3368 static const struct btf_kfunc_id_set bpf_session_kfunc_set = {
3369 	.owner = THIS_MODULE,
3370 	.set = &session_kfunc_set_ids,
3371 	.filter = bpf_session_filter,
3372 };
3373 
3374 static int __init bpf_trace_kfuncs_init(void)
3375 {
3376 	int err = 0;
3377 
3378 	err = err ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_session_kfunc_set);
3379 	err = err ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_session_kfunc_set);
3380 
3381 	return err;
3382 }
3383 
3384 late_initcall(bpf_trace_kfuncs_init);
3385 
3386 typedef int (*copy_fn_t)(void *dst, const void *src, u32 size, struct task_struct *tsk);
3387 
3388 /*
3389  * The __always_inline is to make sure the compiler doesn't
3390  * generate indirect calls into callbacks, which is expensive,
3391  * on some kernel configurations. This allows compiler to put
3392  * direct calls into all the specific callback implementations
3393  * (copy_user_data_sleepable, copy_user_data_nofault, and so on)
3394  */
3395 static __always_inline int __bpf_dynptr_copy_str(struct bpf_dynptr *dptr, u64 doff, u64 size,
3396 						 const void *unsafe_src,
3397 						 copy_fn_t str_copy_fn,
3398 						 struct task_struct *tsk)
3399 {
3400 	struct bpf_dynptr_kern *dst;
3401 	u64 chunk_sz, off;
3402 	void *dst_slice;
3403 	int cnt, err;
3404 	char buf[256];
3405 
3406 	dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size);
3407 	if (likely(dst_slice))
3408 		return str_copy_fn(dst_slice, unsafe_src, size, tsk);
3409 
3410 	dst = (struct bpf_dynptr_kern *)dptr;
3411 	if (bpf_dynptr_check_off_len(dst, doff, size))
3412 		return -E2BIG;
3413 
3414 	for (off = 0; off < size; off += chunk_sz - 1) {
3415 		chunk_sz = min_t(u64, sizeof(buf), size - off);
3416 		/* Expect str_copy_fn to return count of copied bytes, including
3417 		 * zero terminator. Next iteration increment off by chunk_sz - 1 to
3418 		 * overwrite NUL.
3419 		 */
3420 		cnt = str_copy_fn(buf, unsafe_src + off, chunk_sz, tsk);
3421 		if (cnt < 0)
3422 			return cnt;
3423 		err = __bpf_dynptr_write(dst, doff + off, buf, cnt, 0);
3424 		if (err)
3425 			return err;
3426 		if (cnt < chunk_sz || chunk_sz == 1) /* we are done */
3427 			return off + cnt;
3428 	}
3429 	return off;
3430 }
3431 
3432 static __always_inline int __bpf_dynptr_copy(const struct bpf_dynptr *dptr, u64 doff,
3433 					     u64 size, const void *unsafe_src,
3434 					     copy_fn_t copy_fn, struct task_struct *tsk)
3435 {
3436 	struct bpf_dynptr_kern *dst;
3437 	void *dst_slice;
3438 	char buf[256];
3439 	u64 off, chunk_sz;
3440 	int err;
3441 
3442 	dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size);
3443 	if (likely(dst_slice))
3444 		return copy_fn(dst_slice, unsafe_src, size, tsk);
3445 
3446 	dst = (struct bpf_dynptr_kern *)dptr;
3447 	if (bpf_dynptr_check_off_len(dst, doff, size))
3448 		return -E2BIG;
3449 
3450 	for (off = 0; off < size; off += chunk_sz) {
3451 		chunk_sz = min_t(u64, sizeof(buf), size - off);
3452 		err = copy_fn(buf, unsafe_src + off, chunk_sz, tsk);
3453 		if (err)
3454 			return err;
3455 		err = __bpf_dynptr_write(dst, doff + off, buf, chunk_sz, 0);
3456 		if (err)
3457 			return err;
3458 	}
3459 	return 0;
3460 }
3461 
3462 static __always_inline int copy_user_data_nofault(void *dst, const void *unsafe_src,
3463 						  u32 size, struct task_struct *tsk)
3464 {
3465 	return copy_from_user_nofault(dst, (const void __user *)unsafe_src, size);
3466 }
3467 
3468 static __always_inline int copy_user_data_sleepable(void *dst, const void *unsafe_src,
3469 						    u32 size, struct task_struct *tsk)
3470 {
3471 	int ret;
3472 
3473 	if (!tsk) { /* Read from the current task */
3474 		ret = copy_from_user(dst, (const void __user *)unsafe_src, size);
3475 		if (ret)
3476 			return -EFAULT;
3477 		return 0;
3478 	}
3479 
3480 	ret = access_process_vm(tsk, (unsigned long)unsafe_src, dst, size, 0);
3481 	if (ret != size)
3482 		return -EFAULT;
3483 	return 0;
3484 }
3485 
3486 static __always_inline int copy_kernel_data_nofault(void *dst, const void *unsafe_src,
3487 						    u32 size, struct task_struct *tsk)
3488 {
3489 	return copy_from_kernel_nofault(dst, unsafe_src, size);
3490 }
3491 
3492 static __always_inline int copy_user_str_nofault(void *dst, const void *unsafe_src,
3493 						 u32 size, struct task_struct *tsk)
3494 {
3495 	return strncpy_from_user_nofault(dst, (const void __user *)unsafe_src, size);
3496 }
3497 
3498 static __always_inline int copy_user_str_sleepable(void *dst, const void *unsafe_src,
3499 						   u32 size, struct task_struct *tsk)
3500 {
3501 	int ret;
3502 
3503 	if (unlikely(size == 0))
3504 		return 0;
3505 
3506 	if (tsk) {
3507 		ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_src, dst, size, 0);
3508 	} else {
3509 		ret = strncpy_from_user(dst, (const void __user *)unsafe_src, size - 1);
3510 		/* strncpy_from_user does not guarantee NUL termination */
3511 		if (ret >= 0)
3512 			((char *)dst)[ret] = '\0';
3513 	}
3514 
3515 	if (ret < 0)
3516 		return ret;
3517 	return ret + 1;
3518 }
3519 
3520 static __always_inline int copy_kernel_str_nofault(void *dst, const void *unsafe_src,
3521 						   u32 size, struct task_struct *tsk)
3522 {
3523 	return strncpy_from_kernel_nofault(dst, unsafe_src, size);
3524 }
3525 
3526 __bpf_kfunc_start_defs();
3527 
3528 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3529 				     u64 value)
3530 {
3531 	if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3532 		return -EINVAL;
3533 
3534 	return bpf_send_signal_common(sig, type, task, value);
3535 }
3536 
3537 __bpf_kfunc int bpf_probe_read_user_dynptr(struct bpf_dynptr *dptr, u64 off,
3538 					   u64 size, const void __user *unsafe_ptr__ign)
3539 {
3540 	return __bpf_dynptr_copy(dptr, off, size, (const void __force *)unsafe_ptr__ign,
3541 				 copy_user_data_nofault, NULL);
3542 }
3543 
3544 __bpf_kfunc int bpf_probe_read_kernel_dynptr(struct bpf_dynptr *dptr, u64 off,
3545 					     u64 size, const void *unsafe_ptr__ign)
3546 {
3547 	return __bpf_dynptr_copy(dptr, off, size, unsafe_ptr__ign,
3548 				 copy_kernel_data_nofault, NULL);
3549 }
3550 
3551 __bpf_kfunc int bpf_probe_read_user_str_dynptr(struct bpf_dynptr *dptr, u64 off,
3552 					       u64 size, const void __user *unsafe_ptr__ign)
3553 {
3554 	return __bpf_dynptr_copy_str(dptr, off, size, (const void __force *)unsafe_ptr__ign,
3555 				     copy_user_str_nofault, NULL);
3556 }
3557 
3558 __bpf_kfunc int bpf_probe_read_kernel_str_dynptr(struct bpf_dynptr *dptr, u64 off,
3559 						 u64 size, const void *unsafe_ptr__ign)
3560 {
3561 	return __bpf_dynptr_copy_str(dptr, off, size, unsafe_ptr__ign,
3562 				     copy_kernel_str_nofault, NULL);
3563 }
3564 
3565 __bpf_kfunc int bpf_copy_from_user_dynptr(struct bpf_dynptr *dptr, u64 off,
3566 					  u64 size, const void __user *unsafe_ptr__ign)
3567 {
3568 	return __bpf_dynptr_copy(dptr, off, size, (const void __force *)unsafe_ptr__ign,
3569 				 copy_user_data_sleepable, NULL);
3570 }
3571 
3572 __bpf_kfunc int bpf_copy_from_user_str_dynptr(struct bpf_dynptr *dptr, u64 off,
3573 					      u64 size, const void __user *unsafe_ptr__ign)
3574 {
3575 	return __bpf_dynptr_copy_str(dptr, off, size, (const void __force *)unsafe_ptr__ign,
3576 				     copy_user_str_sleepable, NULL);
3577 }
3578 
3579 __bpf_kfunc int bpf_copy_from_user_task_dynptr(struct bpf_dynptr *dptr, u64 off,
3580 					       u64 size, const void __user *unsafe_ptr__ign,
3581 					       struct task_struct *tsk)
3582 {
3583 	return __bpf_dynptr_copy(dptr, off, size, (const void __force *)unsafe_ptr__ign,
3584 				 copy_user_data_sleepable, tsk);
3585 }
3586 
3587 __bpf_kfunc int bpf_copy_from_user_task_str_dynptr(struct bpf_dynptr *dptr, u64 off,
3588 						   u64 size, const void __user *unsafe_ptr__ign,
3589 						   struct task_struct *tsk)
3590 {
3591 	return __bpf_dynptr_copy_str(dptr, off, size, (const void __force *)unsafe_ptr__ign,
3592 				     copy_user_str_sleepable, tsk);
3593 }
3594 
3595 __bpf_kfunc_end_defs();
3596