1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <uapi/linux/btf.h>
21 #include <crypto/sha1.h>
22 #include <linux/filter.h>
23 #include <linux/skbuff.h>
24 #include <linux/vmalloc.h>
25 #include <linux/prandom.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/overflow.h>
30 #include <linux/rbtree_latch.h>
31 #include <linux/kallsyms.h>
32 #include <linux/rcupdate.h>
33 #include <linux/perf_event.h>
34 #include <linux/extable.h>
35 #include <linux/log2.h>
36 #include <linux/bpf_verifier.h>
37 #include <linux/nodemask.h>
38 #include <linux/nospec.h>
39 #include <linux/bpf_mem_alloc.h>
40 #include <linux/memcontrol.h>
41 #include <linux/execmem.h>
42 #include <crypto/sha2.h>
43
44 #include <asm/barrier.h>
45 #include <linux/unaligned.h>
46
47 /* Registers */
48 #define BPF_R0 regs[BPF_REG_0]
49 #define BPF_R1 regs[BPF_REG_1]
50 #define BPF_R2 regs[BPF_REG_2]
51 #define BPF_R3 regs[BPF_REG_3]
52 #define BPF_R4 regs[BPF_REG_4]
53 #define BPF_R5 regs[BPF_REG_5]
54 #define BPF_R6 regs[BPF_REG_6]
55 #define BPF_R7 regs[BPF_REG_7]
56 #define BPF_R8 regs[BPF_REG_8]
57 #define BPF_R9 regs[BPF_REG_9]
58 #define BPF_R10 regs[BPF_REG_10]
59
60 /* Named registers */
61 #define DST regs[insn->dst_reg]
62 #define SRC regs[insn->src_reg]
63 #define FP regs[BPF_REG_FP]
64 #define AX regs[BPF_REG_AX]
65 #define ARG1 regs[BPF_REG_ARG1]
66 #define CTX regs[BPF_REG_CTX]
67 #define OFF insn->off
68 #define IMM insn->imm
69
70 struct bpf_mem_alloc bpf_global_ma;
71 bool bpf_global_ma_set;
72
73 /* No hurry in this branch
74 *
75 * Exported for the bpf jit load helper.
76 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)77 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
78 {
79 u8 *ptr = NULL;
80
81 if (k >= SKF_NET_OFF) {
82 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
83 } else if (k >= SKF_LL_OFF) {
84 if (unlikely(!skb_mac_header_was_set(skb)))
85 return NULL;
86 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
87 }
88 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
89 return ptr;
90
91 return NULL;
92 }
93
94 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
95 enum page_size_enum {
96 __PAGE_SIZE = PAGE_SIZE
97 };
98
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)99 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
100 {
101 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
102 struct bpf_prog_aux *aux;
103 struct bpf_prog *fp;
104
105 size = round_up(size, __PAGE_SIZE);
106 fp = __vmalloc(size, gfp_flags);
107 if (fp == NULL)
108 return NULL;
109
110 aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
111 if (aux == NULL) {
112 vfree(fp);
113 return NULL;
114 }
115 fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
116 if (!fp->active) {
117 vfree(fp);
118 kfree(aux);
119 return NULL;
120 }
121
122 fp->pages = size / PAGE_SIZE;
123 fp->aux = aux;
124 fp->aux->main_prog_aux = aux;
125 fp->aux->prog = fp;
126 fp->jit_requested = ebpf_jit_enabled();
127 fp->blinding_requested = bpf_jit_blinding_enabled(fp);
128 #ifdef CONFIG_CGROUP_BPF
129 aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
130 #endif
131
132 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
133 #ifdef CONFIG_FINEIBT
134 INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
135 #endif
136 mutex_init(&fp->aux->used_maps_mutex);
137 mutex_init(&fp->aux->ext_mutex);
138 mutex_init(&fp->aux->dst_mutex);
139
140 #ifdef CONFIG_BPF_SYSCALL
141 bpf_prog_stream_init(fp);
142 #endif
143
144 return fp;
145 }
146
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)147 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
148 {
149 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
150 struct bpf_prog *prog;
151 int cpu;
152
153 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
154 if (!prog)
155 return NULL;
156
157 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
158 if (!prog->stats) {
159 free_percpu(prog->active);
160 kfree(prog->aux);
161 vfree(prog);
162 return NULL;
163 }
164
165 for_each_possible_cpu(cpu) {
166 struct bpf_prog_stats *pstats;
167
168 pstats = per_cpu_ptr(prog->stats, cpu);
169 u64_stats_init(&pstats->syncp);
170 }
171 return prog;
172 }
173 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
174
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)175 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
176 {
177 if (!prog->aux->nr_linfo || !prog->jit_requested)
178 return 0;
179
180 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
181 sizeof(*prog->aux->jited_linfo),
182 bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
183 if (!prog->aux->jited_linfo)
184 return -ENOMEM;
185
186 return 0;
187 }
188
bpf_prog_jit_attempt_done(struct bpf_prog * prog)189 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
190 {
191 if (prog->aux->jited_linfo &&
192 (!prog->jited || !prog->aux->jited_linfo[0])) {
193 kvfree(prog->aux->jited_linfo);
194 prog->aux->jited_linfo = NULL;
195 }
196
197 kfree(prog->aux->kfunc_tab);
198 prog->aux->kfunc_tab = NULL;
199 }
200
201 /* The jit engine is responsible to provide an array
202 * for insn_off to the jited_off mapping (insn_to_jit_off).
203 *
204 * The idx to this array is the insn_off. Hence, the insn_off
205 * here is relative to the prog itself instead of the main prog.
206 * This array has one entry for each xlated bpf insn.
207 *
208 * jited_off is the byte off to the end of the jited insn.
209 *
210 * Hence, with
211 * insn_start:
212 * The first bpf insn off of the prog. The insn off
213 * here is relative to the main prog.
214 * e.g. if prog is a subprog, insn_start > 0
215 * linfo_idx:
216 * The prog's idx to prog->aux->linfo and jited_linfo
217 *
218 * jited_linfo[linfo_idx] = prog->bpf_func
219 *
220 * For i > linfo_idx,
221 *
222 * jited_linfo[i] = prog->bpf_func +
223 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
224 */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)225 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
226 const u32 *insn_to_jit_off)
227 {
228 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
229 const struct bpf_line_info *linfo;
230 void **jited_linfo;
231
232 if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
233 /* Userspace did not provide linfo */
234 return;
235
236 linfo_idx = prog->aux->linfo_idx;
237 linfo = &prog->aux->linfo[linfo_idx];
238 insn_start = linfo[0].insn_off;
239 insn_end = insn_start + prog->len;
240
241 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
242 jited_linfo[0] = prog->bpf_func;
243
244 nr_linfo = prog->aux->nr_linfo - linfo_idx;
245
246 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
247 /* The verifier ensures that linfo[i].insn_off is
248 * strictly increasing
249 */
250 jited_linfo[i] = prog->bpf_func +
251 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
252 }
253
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)254 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
255 gfp_t gfp_extra_flags)
256 {
257 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
258 struct bpf_prog *fp;
259 u32 pages;
260
261 size = round_up(size, PAGE_SIZE);
262 pages = size / PAGE_SIZE;
263 if (pages <= fp_old->pages)
264 return fp_old;
265
266 fp = __vmalloc(size, gfp_flags);
267 if (fp) {
268 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
269 fp->pages = pages;
270 fp->aux->prog = fp;
271
272 /* We keep fp->aux from fp_old around in the new
273 * reallocated structure.
274 */
275 fp_old->aux = NULL;
276 fp_old->stats = NULL;
277 fp_old->active = NULL;
278 __bpf_prog_free(fp_old);
279 }
280
281 return fp;
282 }
283
__bpf_prog_free(struct bpf_prog * fp)284 void __bpf_prog_free(struct bpf_prog *fp)
285 {
286 if (fp->aux) {
287 mutex_destroy(&fp->aux->used_maps_mutex);
288 mutex_destroy(&fp->aux->dst_mutex);
289 kfree(fp->aux->poke_tab);
290 kfree(fp->aux);
291 }
292 free_percpu(fp->stats);
293 free_percpu(fp->active);
294 vfree(fp);
295 }
296
bpf_prog_calc_tag(struct bpf_prog * fp)297 int bpf_prog_calc_tag(struct bpf_prog *fp)
298 {
299 size_t size = bpf_prog_insn_size(fp);
300 struct bpf_insn *dst;
301 bool was_ld_map;
302 u32 i;
303
304 dst = vmalloc(size);
305 if (!dst)
306 return -ENOMEM;
307
308 /* We need to take out the map fd for the digest calculation
309 * since they are unstable from user space side.
310 */
311 for (i = 0, was_ld_map = false; i < fp->len; i++) {
312 dst[i] = fp->insnsi[i];
313 if (!was_ld_map &&
314 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
315 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
316 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
317 was_ld_map = true;
318 dst[i].imm = 0;
319 } else if (was_ld_map &&
320 dst[i].code == 0 &&
321 dst[i].dst_reg == 0 &&
322 dst[i].src_reg == 0 &&
323 dst[i].off == 0) {
324 was_ld_map = false;
325 dst[i].imm = 0;
326 } else {
327 was_ld_map = false;
328 }
329 }
330 sha256((u8 *)dst, size, fp->digest);
331 vfree(dst);
332 return 0;
333 }
334
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)335 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
336 s32 end_new, s32 curr, const bool probe_pass)
337 {
338 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
339 s32 delta = end_new - end_old;
340 s64 imm = insn->imm;
341
342 if (curr < pos && curr + imm + 1 >= end_old)
343 imm += delta;
344 else if (curr >= end_new && curr + imm + 1 < end_new)
345 imm -= delta;
346 if (imm < imm_min || imm > imm_max)
347 return -ERANGE;
348 if (!probe_pass)
349 insn->imm = imm;
350 return 0;
351 }
352
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)353 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
354 s32 end_new, s32 curr, const bool probe_pass)
355 {
356 s64 off_min, off_max, off;
357 s32 delta = end_new - end_old;
358
359 if (insn->code == (BPF_JMP32 | BPF_JA)) {
360 off = insn->imm;
361 off_min = S32_MIN;
362 off_max = S32_MAX;
363 } else {
364 off = insn->off;
365 off_min = S16_MIN;
366 off_max = S16_MAX;
367 }
368
369 if (curr < pos && curr + off + 1 >= end_old)
370 off += delta;
371 else if (curr >= end_new && curr + off + 1 < end_new)
372 off -= delta;
373 if (off < off_min || off > off_max)
374 return -ERANGE;
375 if (!probe_pass) {
376 if (insn->code == (BPF_JMP32 | BPF_JA))
377 insn->imm = off;
378 else
379 insn->off = off;
380 }
381 return 0;
382 }
383
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)384 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
385 s32 end_new, const bool probe_pass)
386 {
387 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
388 struct bpf_insn *insn = prog->insnsi;
389 int ret = 0;
390
391 for (i = 0; i < insn_cnt; i++, insn++) {
392 u8 code;
393
394 /* In the probing pass we still operate on the original,
395 * unpatched image in order to check overflows before we
396 * do any other adjustments. Therefore skip the patchlet.
397 */
398 if (probe_pass && i == pos) {
399 i = end_new;
400 insn = prog->insnsi + end_old;
401 }
402 if (bpf_pseudo_func(insn)) {
403 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
404 end_new, i, probe_pass);
405 if (ret)
406 return ret;
407 continue;
408 }
409 code = insn->code;
410 if ((BPF_CLASS(code) != BPF_JMP &&
411 BPF_CLASS(code) != BPF_JMP32) ||
412 BPF_OP(code) == BPF_EXIT)
413 continue;
414 /* Adjust offset of jmps if we cross patch boundaries. */
415 if (BPF_OP(code) == BPF_CALL) {
416 if (insn->src_reg != BPF_PSEUDO_CALL)
417 continue;
418 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
419 end_new, i, probe_pass);
420 } else {
421 ret = bpf_adj_delta_to_off(insn, pos, end_old,
422 end_new, i, probe_pass);
423 }
424 if (ret)
425 break;
426 }
427
428 return ret;
429 }
430
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)431 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
432 {
433 struct bpf_line_info *linfo;
434 u32 i, nr_linfo;
435
436 nr_linfo = prog->aux->nr_linfo;
437 if (!nr_linfo || !delta)
438 return;
439
440 linfo = prog->aux->linfo;
441
442 for (i = 0; i < nr_linfo; i++)
443 if (off < linfo[i].insn_off)
444 break;
445
446 /* Push all off < linfo[i].insn_off by delta */
447 for (; i < nr_linfo; i++)
448 linfo[i].insn_off += delta;
449 }
450
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)451 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
452 const struct bpf_insn *patch, u32 len)
453 {
454 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
455 const u32 cnt_max = S16_MAX;
456 struct bpf_prog *prog_adj;
457 int err;
458
459 /* Since our patchlet doesn't expand the image, we're done. */
460 if (insn_delta == 0) {
461 memcpy(prog->insnsi + off, patch, sizeof(*patch));
462 return prog;
463 }
464
465 insn_adj_cnt = prog->len + insn_delta;
466
467 /* Reject anything that would potentially let the insn->off
468 * target overflow when we have excessive program expansions.
469 * We need to probe here before we do any reallocation where
470 * we afterwards may not fail anymore.
471 */
472 if (insn_adj_cnt > cnt_max &&
473 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
474 return ERR_PTR(err);
475
476 /* Several new instructions need to be inserted. Make room
477 * for them. Likely, there's no need for a new allocation as
478 * last page could have large enough tailroom.
479 */
480 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
481 GFP_USER);
482 if (!prog_adj)
483 return ERR_PTR(-ENOMEM);
484
485 prog_adj->len = insn_adj_cnt;
486
487 /* Patching happens in 3 steps:
488 *
489 * 1) Move over tail of insnsi from next instruction onwards,
490 * so we can patch the single target insn with one or more
491 * new ones (patching is always from 1 to n insns, n > 0).
492 * 2) Inject new instructions at the target location.
493 * 3) Adjust branch offsets if necessary.
494 */
495 insn_rest = insn_adj_cnt - off - len;
496
497 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
498 sizeof(*patch) * insn_rest);
499 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
500
501 /* We are guaranteed to not fail at this point, otherwise
502 * the ship has sailed to reverse to the original state. An
503 * overflow cannot happen at this point.
504 */
505 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
506
507 bpf_adj_linfo(prog_adj, off, insn_delta);
508
509 return prog_adj;
510 }
511
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)512 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
513 {
514 int err;
515
516 /* Branch offsets can't overflow when program is shrinking, no need
517 * to call bpf_adj_branches(..., true) here
518 */
519 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
520 sizeof(struct bpf_insn) * (prog->len - off - cnt));
521 prog->len -= cnt;
522
523 err = bpf_adj_branches(prog, off, off + cnt, off, false);
524 WARN_ON_ONCE(err);
525 return err;
526 }
527
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)528 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
529 {
530 int i;
531
532 for (i = 0; i < fp->aux->real_func_cnt; i++)
533 bpf_prog_kallsyms_del(fp->aux->func[i]);
534 }
535
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)536 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
537 {
538 bpf_prog_kallsyms_del_subprogs(fp);
539 bpf_prog_kallsyms_del(fp);
540 }
541
542 #ifdef CONFIG_BPF_JIT
543 /* All BPF JIT sysctl knobs here. */
544 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
545 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
546 int bpf_jit_harden __read_mostly;
547 long bpf_jit_limit __read_mostly;
548 long bpf_jit_limit_max __read_mostly;
549
550 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)551 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
552 {
553 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
554
555 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
556 prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len;
557 }
558
559 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)560 bpf_prog_ksym_set_name(struct bpf_prog *prog)
561 {
562 char *sym = prog->aux->ksym.name;
563 const char *end = sym + KSYM_NAME_LEN;
564 const struct btf_type *type;
565 const char *func_name;
566
567 BUILD_BUG_ON(sizeof("bpf_prog_") +
568 sizeof(prog->tag) * 2 +
569 /* name has been null terminated.
570 * We should need +1 for the '_' preceding
571 * the name. However, the null character
572 * is double counted between the name and the
573 * sizeof("bpf_prog_") above, so we omit
574 * the +1 here.
575 */
576 sizeof(prog->aux->name) > KSYM_NAME_LEN);
577
578 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
579 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
580
581 /* prog->aux->name will be ignored if full btf name is available */
582 if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
583 type = btf_type_by_id(prog->aux->btf,
584 prog->aux->func_info[prog->aux->func_idx].type_id);
585 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
586 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
587 return;
588 }
589
590 if (prog->aux->name[0])
591 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
592 else
593 *sym = 0;
594 }
595
bpf_get_ksym_start(struct latch_tree_node * n)596 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
597 {
598 return container_of(n, struct bpf_ksym, tnode)->start;
599 }
600
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)601 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
602 struct latch_tree_node *b)
603 {
604 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
605 }
606
bpf_tree_comp(void * key,struct latch_tree_node * n)607 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
608 {
609 unsigned long val = (unsigned long)key;
610 const struct bpf_ksym *ksym;
611
612 ksym = container_of(n, struct bpf_ksym, tnode);
613
614 if (val < ksym->start)
615 return -1;
616 /* Ensure that we detect return addresses as part of the program, when
617 * the final instruction is a call for a program part of the stack
618 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
619 */
620 if (val > ksym->end)
621 return 1;
622
623 return 0;
624 }
625
626 static const struct latch_tree_ops bpf_tree_ops = {
627 .less = bpf_tree_less,
628 .comp = bpf_tree_comp,
629 };
630
631 static DEFINE_SPINLOCK(bpf_lock);
632 static LIST_HEAD(bpf_kallsyms);
633 static struct latch_tree_root bpf_tree __cacheline_aligned;
634
bpf_ksym_add(struct bpf_ksym * ksym)635 void bpf_ksym_add(struct bpf_ksym *ksym)
636 {
637 spin_lock_bh(&bpf_lock);
638 WARN_ON_ONCE(!list_empty(&ksym->lnode));
639 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
640 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
641 spin_unlock_bh(&bpf_lock);
642 }
643
__bpf_ksym_del(struct bpf_ksym * ksym)644 static void __bpf_ksym_del(struct bpf_ksym *ksym)
645 {
646 if (list_empty(&ksym->lnode))
647 return;
648
649 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
650 list_del_rcu(&ksym->lnode);
651 }
652
bpf_ksym_del(struct bpf_ksym * ksym)653 void bpf_ksym_del(struct bpf_ksym *ksym)
654 {
655 spin_lock_bh(&bpf_lock);
656 __bpf_ksym_del(ksym);
657 spin_unlock_bh(&bpf_lock);
658 }
659
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)660 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
661 {
662 return fp->jited && !bpf_prog_was_classic(fp);
663 }
664
bpf_prog_kallsyms_add(struct bpf_prog * fp)665 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
666 {
667 if (!bpf_prog_kallsyms_candidate(fp) ||
668 !bpf_token_capable(fp->aux->token, CAP_BPF))
669 return;
670
671 bpf_prog_ksym_set_addr(fp);
672 bpf_prog_ksym_set_name(fp);
673 fp->aux->ksym.prog = true;
674
675 bpf_ksym_add(&fp->aux->ksym);
676
677 #ifdef CONFIG_FINEIBT
678 /*
679 * When FineIBT, code in the __cfi_foo() symbols can get executed
680 * and hence unwinder needs help.
681 */
682 if (cfi_mode != CFI_FINEIBT)
683 return;
684
685 snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
686 "__cfi_%s", fp->aux->ksym.name);
687
688 fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
689 fp->aux->ksym_prefix.end = (unsigned long) fp->bpf_func;
690
691 bpf_ksym_add(&fp->aux->ksym_prefix);
692 #endif
693 }
694
bpf_prog_kallsyms_del(struct bpf_prog * fp)695 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
696 {
697 if (!bpf_prog_kallsyms_candidate(fp))
698 return;
699
700 bpf_ksym_del(&fp->aux->ksym);
701 #ifdef CONFIG_FINEIBT
702 if (cfi_mode != CFI_FINEIBT)
703 return;
704 bpf_ksym_del(&fp->aux->ksym_prefix);
705 #endif
706 }
707
bpf_ksym_find(unsigned long addr)708 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
709 {
710 struct latch_tree_node *n;
711
712 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
713 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
714 }
715
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)716 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
717 unsigned long *off, char *sym)
718 {
719 struct bpf_ksym *ksym;
720 int ret = 0;
721
722 rcu_read_lock();
723 ksym = bpf_ksym_find(addr);
724 if (ksym) {
725 unsigned long symbol_start = ksym->start;
726 unsigned long symbol_end = ksym->end;
727
728 ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
729
730 if (size)
731 *size = symbol_end - symbol_start;
732 if (off)
733 *off = addr - symbol_start;
734 }
735 rcu_read_unlock();
736
737 return ret;
738 }
739
is_bpf_text_address(unsigned long addr)740 bool is_bpf_text_address(unsigned long addr)
741 {
742 bool ret;
743
744 rcu_read_lock();
745 ret = bpf_ksym_find(addr) != NULL;
746 rcu_read_unlock();
747
748 return ret;
749 }
750
bpf_prog_ksym_find(unsigned long addr)751 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
752 {
753 struct bpf_ksym *ksym;
754
755 WARN_ON_ONCE(!rcu_read_lock_held());
756 ksym = bpf_ksym_find(addr);
757
758 return ksym && ksym->prog ?
759 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
760 NULL;
761 }
762
bpf_has_frame_pointer(unsigned long ip)763 bool bpf_has_frame_pointer(unsigned long ip)
764 {
765 struct bpf_ksym *ksym;
766 unsigned long offset;
767
768 guard(rcu)();
769
770 ksym = bpf_ksym_find(ip);
771 if (!ksym || !ksym->fp_start || !ksym->fp_end)
772 return false;
773
774 offset = ip - ksym->start;
775
776 return offset >= ksym->fp_start && offset < ksym->fp_end;
777 }
778
search_bpf_extables(unsigned long addr)779 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
780 {
781 const struct exception_table_entry *e = NULL;
782 struct bpf_prog *prog;
783
784 rcu_read_lock();
785 prog = bpf_prog_ksym_find(addr);
786 if (!prog)
787 goto out;
788 if (!prog->aux->num_exentries)
789 goto out;
790
791 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
792 out:
793 rcu_read_unlock();
794 return e;
795 }
796
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)797 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
798 char *sym)
799 {
800 struct bpf_ksym *ksym;
801 unsigned int it = 0;
802 int ret = -ERANGE;
803
804 if (!bpf_jit_kallsyms_enabled())
805 return ret;
806
807 rcu_read_lock();
808 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
809 if (it++ != symnum)
810 continue;
811
812 strscpy(sym, ksym->name, KSYM_NAME_LEN);
813
814 *value = ksym->start;
815 *type = BPF_SYM_ELF_TYPE;
816
817 ret = 0;
818 break;
819 }
820 rcu_read_unlock();
821
822 return ret;
823 }
824
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)825 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
826 struct bpf_jit_poke_descriptor *poke)
827 {
828 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
829 static const u32 poke_tab_max = 1024;
830 u32 slot = prog->aux->size_poke_tab;
831 u32 size = slot + 1;
832
833 if (size > poke_tab_max)
834 return -ENOSPC;
835 if (poke->tailcall_target || poke->tailcall_target_stable ||
836 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
837 return -EINVAL;
838
839 switch (poke->reason) {
840 case BPF_POKE_REASON_TAIL_CALL:
841 if (!poke->tail_call.map)
842 return -EINVAL;
843 break;
844 default:
845 return -EINVAL;
846 }
847
848 tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
849 if (!tab)
850 return -ENOMEM;
851
852 memcpy(&tab[slot], poke, sizeof(*poke));
853 prog->aux->size_poke_tab = size;
854 prog->aux->poke_tab = tab;
855
856 return slot;
857 }
858
859 /*
860 * BPF program pack allocator.
861 *
862 * Most BPF programs are pretty small. Allocating a hole page for each
863 * program is sometime a waste. Many small bpf program also adds pressure
864 * to instruction TLB. To solve this issue, we introduce a BPF program pack
865 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
866 * to host BPF programs.
867 */
868 #define BPF_PROG_CHUNK_SHIFT 6
869 #define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT)
870 #define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1))
871
872 struct bpf_prog_pack {
873 struct list_head list;
874 void *ptr;
875 unsigned long bitmap[];
876 };
877
bpf_jit_fill_hole_with_zero(void * area,unsigned int size)878 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
879 {
880 memset(area, 0, size);
881 }
882
883 #define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
884
885 static DEFINE_MUTEX(pack_mutex);
886 static LIST_HEAD(pack_list);
887
888 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
889 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
890 */
891 #ifdef PMD_SIZE
892 /* PMD_SIZE is really big for some archs. It doesn't make sense to
893 * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
894 * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
895 * greater than or equal to 2MB.
896 */
897 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
898 #else
899 #define BPF_PROG_PACK_SIZE PAGE_SIZE
900 #endif
901
902 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
903
alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)904 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
905 {
906 struct bpf_prog_pack *pack;
907 int err;
908
909 pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
910 GFP_KERNEL);
911 if (!pack)
912 return NULL;
913 pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
914 if (!pack->ptr)
915 goto out;
916 bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
917 bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
918
919 set_vm_flush_reset_perms(pack->ptr);
920 err = set_memory_rox((unsigned long)pack->ptr,
921 BPF_PROG_PACK_SIZE / PAGE_SIZE);
922 if (err)
923 goto out;
924 list_add_tail(&pack->list, &pack_list);
925 return pack;
926
927 out:
928 bpf_jit_free_exec(pack->ptr);
929 kfree(pack);
930 return NULL;
931 }
932
bpf_prog_pack_alloc(u32 size,bpf_jit_fill_hole_t bpf_fill_ill_insns)933 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
934 {
935 unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
936 struct bpf_prog_pack *pack;
937 unsigned long pos;
938 void *ptr = NULL;
939
940 mutex_lock(&pack_mutex);
941 if (size > BPF_PROG_PACK_SIZE) {
942 size = round_up(size, PAGE_SIZE);
943 ptr = bpf_jit_alloc_exec(size);
944 if (ptr) {
945 int err;
946
947 bpf_fill_ill_insns(ptr, size);
948 set_vm_flush_reset_perms(ptr);
949 err = set_memory_rox((unsigned long)ptr,
950 size / PAGE_SIZE);
951 if (err) {
952 bpf_jit_free_exec(ptr);
953 ptr = NULL;
954 }
955 }
956 goto out;
957 }
958 list_for_each_entry(pack, &pack_list, list) {
959 pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
960 nbits, 0);
961 if (pos < BPF_PROG_CHUNK_COUNT)
962 goto found_free_area;
963 }
964
965 pack = alloc_new_pack(bpf_fill_ill_insns);
966 if (!pack)
967 goto out;
968
969 pos = 0;
970
971 found_free_area:
972 bitmap_set(pack->bitmap, pos, nbits);
973 ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
974
975 out:
976 mutex_unlock(&pack_mutex);
977 return ptr;
978 }
979
bpf_prog_pack_free(void * ptr,u32 size)980 void bpf_prog_pack_free(void *ptr, u32 size)
981 {
982 struct bpf_prog_pack *pack = NULL, *tmp;
983 unsigned int nbits;
984 unsigned long pos;
985
986 mutex_lock(&pack_mutex);
987 if (size > BPF_PROG_PACK_SIZE) {
988 bpf_jit_free_exec(ptr);
989 goto out;
990 }
991
992 list_for_each_entry(tmp, &pack_list, list) {
993 if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
994 pack = tmp;
995 break;
996 }
997 }
998
999 if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1000 goto out;
1001
1002 nbits = BPF_PROG_SIZE_TO_NBITS(size);
1003 pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1004
1005 WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1006 "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1007
1008 bitmap_clear(pack->bitmap, pos, nbits);
1009 if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1010 BPF_PROG_CHUNK_COUNT, 0) == 0) {
1011 list_del(&pack->list);
1012 bpf_jit_free_exec(pack->ptr);
1013 kfree(pack);
1014 }
1015 out:
1016 mutex_unlock(&pack_mutex);
1017 }
1018
1019 static atomic_long_t bpf_jit_current;
1020
1021 /* Can be overridden by an arch's JIT compiler if it has a custom,
1022 * dedicated BPF backend memory area, or if neither of the two
1023 * below apply.
1024 */
bpf_jit_alloc_exec_limit(void)1025 u64 __weak bpf_jit_alloc_exec_limit(void)
1026 {
1027 #if defined(MODULES_VADDR)
1028 return MODULES_END - MODULES_VADDR;
1029 #else
1030 return VMALLOC_END - VMALLOC_START;
1031 #endif
1032 }
1033
bpf_jit_charge_init(void)1034 static int __init bpf_jit_charge_init(void)
1035 {
1036 /* Only used as heuristic here to derive limit. */
1037 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1038 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1039 PAGE_SIZE), LONG_MAX);
1040 return 0;
1041 }
1042 pure_initcall(bpf_jit_charge_init);
1043
bpf_jit_charge_modmem(u32 size)1044 int bpf_jit_charge_modmem(u32 size)
1045 {
1046 if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1047 if (!bpf_capable()) {
1048 atomic_long_sub(size, &bpf_jit_current);
1049 return -EPERM;
1050 }
1051 }
1052
1053 return 0;
1054 }
1055
bpf_jit_uncharge_modmem(u32 size)1056 void bpf_jit_uncharge_modmem(u32 size)
1057 {
1058 atomic_long_sub(size, &bpf_jit_current);
1059 }
1060
bpf_jit_alloc_exec(unsigned long size)1061 void *__weak bpf_jit_alloc_exec(unsigned long size)
1062 {
1063 return execmem_alloc(EXECMEM_BPF, size);
1064 }
1065
bpf_jit_free_exec(void * addr)1066 void __weak bpf_jit_free_exec(void *addr)
1067 {
1068 execmem_free(addr);
1069 }
1070
1071 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)1072 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1073 unsigned int alignment,
1074 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1075 {
1076 struct bpf_binary_header *hdr;
1077 u32 size, hole, start;
1078
1079 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1080 alignment > BPF_IMAGE_ALIGNMENT);
1081
1082 /* Most of BPF filters are really small, but if some of them
1083 * fill a page, allow at least 128 extra bytes to insert a
1084 * random section of illegal instructions.
1085 */
1086 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1087
1088 if (bpf_jit_charge_modmem(size))
1089 return NULL;
1090 hdr = bpf_jit_alloc_exec(size);
1091 if (!hdr) {
1092 bpf_jit_uncharge_modmem(size);
1093 return NULL;
1094 }
1095
1096 /* Fill space with illegal/arch-dep instructions. */
1097 bpf_fill_ill_insns(hdr, size);
1098
1099 hdr->size = size;
1100 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1101 PAGE_SIZE - sizeof(*hdr));
1102 start = get_random_u32_below(hole) & ~(alignment - 1);
1103
1104 /* Leave a random number of instructions before BPF code. */
1105 *image_ptr = &hdr->image[start];
1106
1107 return hdr;
1108 }
1109
bpf_jit_binary_free(struct bpf_binary_header * hdr)1110 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1111 {
1112 u32 size = hdr->size;
1113
1114 bpf_jit_free_exec(hdr);
1115 bpf_jit_uncharge_modmem(size);
1116 }
1117
1118 /* Allocate jit binary from bpf_prog_pack allocator.
1119 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1120 * to the memory. To solve this problem, a RW buffer is also allocated at
1121 * as the same time. The JIT engine should calculate offsets based on the
1122 * RO memory address, but write JITed program to the RW buffer. Once the
1123 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1124 * the JITed program to the RO memory.
1125 */
1126 struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,struct bpf_binary_header ** rw_header,u8 ** rw_image,bpf_jit_fill_hole_t bpf_fill_ill_insns)1127 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1128 unsigned int alignment,
1129 struct bpf_binary_header **rw_header,
1130 u8 **rw_image,
1131 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1132 {
1133 struct bpf_binary_header *ro_header;
1134 u32 size, hole, start;
1135
1136 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1137 alignment > BPF_IMAGE_ALIGNMENT);
1138
1139 /* add 16 bytes for a random section of illegal instructions */
1140 size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1141
1142 if (bpf_jit_charge_modmem(size))
1143 return NULL;
1144 ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1145 if (!ro_header) {
1146 bpf_jit_uncharge_modmem(size);
1147 return NULL;
1148 }
1149
1150 *rw_header = kvmalloc(size, GFP_KERNEL);
1151 if (!*rw_header) {
1152 bpf_prog_pack_free(ro_header, size);
1153 bpf_jit_uncharge_modmem(size);
1154 return NULL;
1155 }
1156
1157 /* Fill space with illegal/arch-dep instructions. */
1158 bpf_fill_ill_insns(*rw_header, size);
1159 (*rw_header)->size = size;
1160
1161 hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1162 BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1163 start = get_random_u32_below(hole) & ~(alignment - 1);
1164
1165 *image_ptr = &ro_header->image[start];
1166 *rw_image = &(*rw_header)->image[start];
1167
1168 return ro_header;
1169 }
1170
1171 /* Copy JITed text from rw_header to its final location, the ro_header. */
bpf_jit_binary_pack_finalize(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1172 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1173 struct bpf_binary_header *rw_header)
1174 {
1175 void *ptr;
1176
1177 ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1178
1179 kvfree(rw_header);
1180
1181 if (IS_ERR(ptr)) {
1182 bpf_prog_pack_free(ro_header, ro_header->size);
1183 return PTR_ERR(ptr);
1184 }
1185 return 0;
1186 }
1187
1188 /* bpf_jit_binary_pack_free is called in two different scenarios:
1189 * 1) when the program is freed after;
1190 * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1191 * For case 2), we need to free both the RO memory and the RW buffer.
1192 *
1193 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1194 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1195 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1196 * bpf_arch_text_copy (when jit fails).
1197 */
bpf_jit_binary_pack_free(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1198 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1199 struct bpf_binary_header *rw_header)
1200 {
1201 u32 size = ro_header->size;
1202
1203 bpf_prog_pack_free(ro_header, size);
1204 kvfree(rw_header);
1205 bpf_jit_uncharge_modmem(size);
1206 }
1207
1208 struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog * fp)1209 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1210 {
1211 unsigned long real_start = (unsigned long)fp->bpf_func;
1212 unsigned long addr;
1213
1214 addr = real_start & BPF_PROG_CHUNK_MASK;
1215 return (void *)addr;
1216 }
1217
1218 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)1219 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1220 {
1221 unsigned long real_start = (unsigned long)fp->bpf_func;
1222 unsigned long addr;
1223
1224 addr = real_start & PAGE_MASK;
1225 return (void *)addr;
1226 }
1227
1228 /* This symbol is only overridden by archs that have different
1229 * requirements than the usual eBPF JITs, f.e. when they only
1230 * implement cBPF JIT, do not set images read-only, etc.
1231 */
bpf_jit_free(struct bpf_prog * fp)1232 void __weak bpf_jit_free(struct bpf_prog *fp)
1233 {
1234 if (fp->jited) {
1235 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1236
1237 bpf_jit_binary_free(hdr);
1238 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1239 }
1240
1241 bpf_prog_unlock_free(fp);
1242 }
1243
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)1244 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1245 const struct bpf_insn *insn, bool extra_pass,
1246 u64 *func_addr, bool *func_addr_fixed)
1247 {
1248 s16 off = insn->off;
1249 s32 imm = insn->imm;
1250 u8 *addr;
1251 int err;
1252
1253 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1254 if (!*func_addr_fixed) {
1255 /* Place-holder address till the last pass has collected
1256 * all addresses for JITed subprograms in which case we
1257 * can pick them up from prog->aux.
1258 */
1259 if (!extra_pass)
1260 addr = NULL;
1261 else if (prog->aux->func &&
1262 off >= 0 && off < prog->aux->real_func_cnt)
1263 addr = (u8 *)prog->aux->func[off]->bpf_func;
1264 else
1265 return -EINVAL;
1266 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1267 bpf_jit_supports_far_kfunc_call()) {
1268 err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1269 if (err)
1270 return err;
1271 } else {
1272 /* Address of a BPF helper call. Since part of the core
1273 * kernel, it's always at a fixed location. __bpf_call_base
1274 * and the helper with imm relative to it are both in core
1275 * kernel.
1276 */
1277 addr = (u8 *)__bpf_call_base + imm;
1278 }
1279
1280 *func_addr = (unsigned long)addr;
1281 return 0;
1282 }
1283
bpf_jit_get_prog_name(struct bpf_prog * prog)1284 const char *bpf_jit_get_prog_name(struct bpf_prog *prog)
1285 {
1286 if (prog->aux->ksym.prog)
1287 return prog->aux->ksym.name;
1288 return prog->aux->name;
1289 }
1290
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)1291 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1292 const struct bpf_insn *aux,
1293 struct bpf_insn *to_buff,
1294 bool emit_zext)
1295 {
1296 struct bpf_insn *to = to_buff;
1297 u32 imm_rnd = get_random_u32();
1298 s16 off;
1299
1300 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
1301 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1302
1303 /* Constraints on AX register:
1304 *
1305 * AX register is inaccessible from user space. It is mapped in
1306 * all JITs, and used here for constant blinding rewrites. It is
1307 * typically "stateless" meaning its contents are only valid within
1308 * the executed instruction, but not across several instructions.
1309 * There are a few exceptions however which are further detailed
1310 * below.
1311 *
1312 * Constant blinding is only used by JITs, not in the interpreter.
1313 * The interpreter uses AX in some occasions as a local temporary
1314 * register e.g. in DIV or MOD instructions.
1315 *
1316 * In restricted circumstances, the verifier can also use the AX
1317 * register for rewrites as long as they do not interfere with
1318 * the above cases!
1319 */
1320 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1321 goto out;
1322
1323 if (from->imm == 0 &&
1324 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
1325 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1326 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1327 goto out;
1328 }
1329
1330 switch (from->code) {
1331 case BPF_ALU | BPF_ADD | BPF_K:
1332 case BPF_ALU | BPF_SUB | BPF_K:
1333 case BPF_ALU | BPF_AND | BPF_K:
1334 case BPF_ALU | BPF_OR | BPF_K:
1335 case BPF_ALU | BPF_XOR | BPF_K:
1336 case BPF_ALU | BPF_MUL | BPF_K:
1337 case BPF_ALU | BPF_MOV | BPF_K:
1338 case BPF_ALU | BPF_DIV | BPF_K:
1339 case BPF_ALU | BPF_MOD | BPF_K:
1340 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1341 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1342 *to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1343 break;
1344
1345 case BPF_ALU64 | BPF_ADD | BPF_K:
1346 case BPF_ALU64 | BPF_SUB | BPF_K:
1347 case BPF_ALU64 | BPF_AND | BPF_K:
1348 case BPF_ALU64 | BPF_OR | BPF_K:
1349 case BPF_ALU64 | BPF_XOR | BPF_K:
1350 case BPF_ALU64 | BPF_MUL | BPF_K:
1351 case BPF_ALU64 | BPF_MOV | BPF_K:
1352 case BPF_ALU64 | BPF_DIV | BPF_K:
1353 case BPF_ALU64 | BPF_MOD | BPF_K:
1354 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1355 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1356 *to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1357 break;
1358
1359 case BPF_JMP | BPF_JEQ | BPF_K:
1360 case BPF_JMP | BPF_JNE | BPF_K:
1361 case BPF_JMP | BPF_JGT | BPF_K:
1362 case BPF_JMP | BPF_JLT | BPF_K:
1363 case BPF_JMP | BPF_JGE | BPF_K:
1364 case BPF_JMP | BPF_JLE | BPF_K:
1365 case BPF_JMP | BPF_JSGT | BPF_K:
1366 case BPF_JMP | BPF_JSLT | BPF_K:
1367 case BPF_JMP | BPF_JSGE | BPF_K:
1368 case BPF_JMP | BPF_JSLE | BPF_K:
1369 case BPF_JMP | BPF_JSET | BPF_K:
1370 /* Accommodate for extra offset in case of a backjump. */
1371 off = from->off;
1372 if (off < 0)
1373 off -= 2;
1374 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1375 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1376 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1377 break;
1378
1379 case BPF_JMP32 | BPF_JEQ | BPF_K:
1380 case BPF_JMP32 | BPF_JNE | BPF_K:
1381 case BPF_JMP32 | BPF_JGT | BPF_K:
1382 case BPF_JMP32 | BPF_JLT | BPF_K:
1383 case BPF_JMP32 | BPF_JGE | BPF_K:
1384 case BPF_JMP32 | BPF_JLE | BPF_K:
1385 case BPF_JMP32 | BPF_JSGT | BPF_K:
1386 case BPF_JMP32 | BPF_JSLT | BPF_K:
1387 case BPF_JMP32 | BPF_JSGE | BPF_K:
1388 case BPF_JMP32 | BPF_JSLE | BPF_K:
1389 case BPF_JMP32 | BPF_JSET | BPF_K:
1390 /* Accommodate for extra offset in case of a backjump. */
1391 off = from->off;
1392 if (off < 0)
1393 off -= 2;
1394 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1395 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1396 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1397 off);
1398 break;
1399
1400 case BPF_LD | BPF_IMM | BPF_DW:
1401 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1402 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1403 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1404 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1405 break;
1406 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1407 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1408 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1409 if (emit_zext)
1410 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1411 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1412 break;
1413
1414 case BPF_ST | BPF_MEM | BPF_DW:
1415 case BPF_ST | BPF_MEM | BPF_W:
1416 case BPF_ST | BPF_MEM | BPF_H:
1417 case BPF_ST | BPF_MEM | BPF_B:
1418 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1419 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1420 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1421 break;
1422 }
1423 out:
1424 return to - to_buff;
1425 }
1426
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1427 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1428 gfp_t gfp_extra_flags)
1429 {
1430 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1431 struct bpf_prog *fp;
1432
1433 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1434 if (fp != NULL) {
1435 /* aux->prog still points to the fp_other one, so
1436 * when promoting the clone to the real program,
1437 * this still needs to be adapted.
1438 */
1439 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1440 }
1441
1442 return fp;
1443 }
1444
bpf_prog_clone_free(struct bpf_prog * fp)1445 static void bpf_prog_clone_free(struct bpf_prog *fp)
1446 {
1447 /* aux was stolen by the other clone, so we cannot free
1448 * it from this path! It will be freed eventually by the
1449 * other program on release.
1450 *
1451 * At this point, we don't need a deferred release since
1452 * clone is guaranteed to not be locked.
1453 */
1454 fp->aux = NULL;
1455 fp->stats = NULL;
1456 fp->active = NULL;
1457 __bpf_prog_free(fp);
1458 }
1459
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1460 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1461 {
1462 /* We have to repoint aux->prog to self, as we don't
1463 * know whether fp here is the clone or the original.
1464 */
1465 fp->aux->prog = fp;
1466 bpf_prog_clone_free(fp_other);
1467 }
1468
adjust_insn_arrays(struct bpf_prog * prog,u32 off,u32 len)1469 static void adjust_insn_arrays(struct bpf_prog *prog, u32 off, u32 len)
1470 {
1471 #ifdef CONFIG_BPF_SYSCALL
1472 struct bpf_map *map;
1473 int i;
1474
1475 if (len <= 1)
1476 return;
1477
1478 for (i = 0; i < prog->aux->used_map_cnt; i++) {
1479 map = prog->aux->used_maps[i];
1480 if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY)
1481 bpf_insn_array_adjust(map, off, len);
1482 }
1483 #endif
1484 }
1485
bpf_jit_blind_constants(struct bpf_prog * prog)1486 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1487 {
1488 struct bpf_insn insn_buff[16], aux[2];
1489 struct bpf_prog *clone, *tmp;
1490 int insn_delta, insn_cnt;
1491 struct bpf_insn *insn;
1492 int i, rewritten;
1493
1494 if (!prog->blinding_requested || prog->blinded)
1495 return prog;
1496
1497 clone = bpf_prog_clone_create(prog, GFP_USER);
1498 if (!clone)
1499 return ERR_PTR(-ENOMEM);
1500
1501 insn_cnt = clone->len;
1502 insn = clone->insnsi;
1503
1504 for (i = 0; i < insn_cnt; i++, insn++) {
1505 if (bpf_pseudo_func(insn)) {
1506 /* ld_imm64 with an address of bpf subprog is not
1507 * a user controlled constant. Don't randomize it,
1508 * since it will conflict with jit_subprogs() logic.
1509 */
1510 insn++;
1511 i++;
1512 continue;
1513 }
1514
1515 /* We temporarily need to hold the original ld64 insn
1516 * so that we can still access the first part in the
1517 * second blinding run.
1518 */
1519 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1520 insn[1].code == 0)
1521 memcpy(aux, insn, sizeof(aux));
1522
1523 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1524 clone->aux->verifier_zext);
1525 if (!rewritten)
1526 continue;
1527
1528 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1529 if (IS_ERR(tmp)) {
1530 /* Patching may have repointed aux->prog during
1531 * realloc from the original one, so we need to
1532 * fix it up here on error.
1533 */
1534 bpf_jit_prog_release_other(prog, clone);
1535 return tmp;
1536 }
1537
1538 clone = tmp;
1539 insn_delta = rewritten - 1;
1540
1541 /* Instructions arrays must be updated using absolute xlated offsets */
1542 adjust_insn_arrays(clone, prog->aux->subprog_start + i, rewritten);
1543
1544 /* Walk new program and skip insns we just inserted. */
1545 insn = clone->insnsi + i + insn_delta;
1546 insn_cnt += insn_delta;
1547 i += insn_delta;
1548 }
1549
1550 clone->blinded = 1;
1551 return clone;
1552 }
1553 #endif /* CONFIG_BPF_JIT */
1554
1555 /* Base function for offset calculation. Needs to go into .text section,
1556 * therefore keeping it non-static as well; will also be used by JITs
1557 * anyway later on, so do not let the compiler omit it. This also needs
1558 * to go into kallsyms for correlation from e.g. bpftool, so naming
1559 * must not change.
1560 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1561 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1562 {
1563 return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(__bpf_call_base);
1566
1567 /* All UAPI available opcodes. */
1568 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1569 /* 32 bit ALU operations. */ \
1570 /* Register based. */ \
1571 INSN_3(ALU, ADD, X), \
1572 INSN_3(ALU, SUB, X), \
1573 INSN_3(ALU, AND, X), \
1574 INSN_3(ALU, OR, X), \
1575 INSN_3(ALU, LSH, X), \
1576 INSN_3(ALU, RSH, X), \
1577 INSN_3(ALU, XOR, X), \
1578 INSN_3(ALU, MUL, X), \
1579 INSN_3(ALU, MOV, X), \
1580 INSN_3(ALU, ARSH, X), \
1581 INSN_3(ALU, DIV, X), \
1582 INSN_3(ALU, MOD, X), \
1583 INSN_2(ALU, NEG), \
1584 INSN_3(ALU, END, TO_BE), \
1585 INSN_3(ALU, END, TO_LE), \
1586 /* Immediate based. */ \
1587 INSN_3(ALU, ADD, K), \
1588 INSN_3(ALU, SUB, K), \
1589 INSN_3(ALU, AND, K), \
1590 INSN_3(ALU, OR, K), \
1591 INSN_3(ALU, LSH, K), \
1592 INSN_3(ALU, RSH, K), \
1593 INSN_3(ALU, XOR, K), \
1594 INSN_3(ALU, MUL, K), \
1595 INSN_3(ALU, MOV, K), \
1596 INSN_3(ALU, ARSH, K), \
1597 INSN_3(ALU, DIV, K), \
1598 INSN_3(ALU, MOD, K), \
1599 /* 64 bit ALU operations. */ \
1600 /* Register based. */ \
1601 INSN_3(ALU64, ADD, X), \
1602 INSN_3(ALU64, SUB, X), \
1603 INSN_3(ALU64, AND, X), \
1604 INSN_3(ALU64, OR, X), \
1605 INSN_3(ALU64, LSH, X), \
1606 INSN_3(ALU64, RSH, X), \
1607 INSN_3(ALU64, XOR, X), \
1608 INSN_3(ALU64, MUL, X), \
1609 INSN_3(ALU64, MOV, X), \
1610 INSN_3(ALU64, ARSH, X), \
1611 INSN_3(ALU64, DIV, X), \
1612 INSN_3(ALU64, MOD, X), \
1613 INSN_2(ALU64, NEG), \
1614 INSN_3(ALU64, END, TO_LE), \
1615 /* Immediate based. */ \
1616 INSN_3(ALU64, ADD, K), \
1617 INSN_3(ALU64, SUB, K), \
1618 INSN_3(ALU64, AND, K), \
1619 INSN_3(ALU64, OR, K), \
1620 INSN_3(ALU64, LSH, K), \
1621 INSN_3(ALU64, RSH, K), \
1622 INSN_3(ALU64, XOR, K), \
1623 INSN_3(ALU64, MUL, K), \
1624 INSN_3(ALU64, MOV, K), \
1625 INSN_3(ALU64, ARSH, K), \
1626 INSN_3(ALU64, DIV, K), \
1627 INSN_3(ALU64, MOD, K), \
1628 /* Call instruction. */ \
1629 INSN_2(JMP, CALL), \
1630 /* Exit instruction. */ \
1631 INSN_2(JMP, EXIT), \
1632 /* 32-bit Jump instructions. */ \
1633 /* Register based. */ \
1634 INSN_3(JMP32, JEQ, X), \
1635 INSN_3(JMP32, JNE, X), \
1636 INSN_3(JMP32, JGT, X), \
1637 INSN_3(JMP32, JLT, X), \
1638 INSN_3(JMP32, JGE, X), \
1639 INSN_3(JMP32, JLE, X), \
1640 INSN_3(JMP32, JSGT, X), \
1641 INSN_3(JMP32, JSLT, X), \
1642 INSN_3(JMP32, JSGE, X), \
1643 INSN_3(JMP32, JSLE, X), \
1644 INSN_3(JMP32, JSET, X), \
1645 /* Immediate based. */ \
1646 INSN_3(JMP32, JEQ, K), \
1647 INSN_3(JMP32, JNE, K), \
1648 INSN_3(JMP32, JGT, K), \
1649 INSN_3(JMP32, JLT, K), \
1650 INSN_3(JMP32, JGE, K), \
1651 INSN_3(JMP32, JLE, K), \
1652 INSN_3(JMP32, JSGT, K), \
1653 INSN_3(JMP32, JSLT, K), \
1654 INSN_3(JMP32, JSGE, K), \
1655 INSN_3(JMP32, JSLE, K), \
1656 INSN_3(JMP32, JSET, K), \
1657 /* Jump instructions. */ \
1658 /* Register based. */ \
1659 INSN_3(JMP, JEQ, X), \
1660 INSN_3(JMP, JNE, X), \
1661 INSN_3(JMP, JGT, X), \
1662 INSN_3(JMP, JLT, X), \
1663 INSN_3(JMP, JGE, X), \
1664 INSN_3(JMP, JLE, X), \
1665 INSN_3(JMP, JSGT, X), \
1666 INSN_3(JMP, JSLT, X), \
1667 INSN_3(JMP, JSGE, X), \
1668 INSN_3(JMP, JSLE, X), \
1669 INSN_3(JMP, JSET, X), \
1670 /* Immediate based. */ \
1671 INSN_3(JMP, JEQ, K), \
1672 INSN_3(JMP, JNE, K), \
1673 INSN_3(JMP, JGT, K), \
1674 INSN_3(JMP, JLT, K), \
1675 INSN_3(JMP, JGE, K), \
1676 INSN_3(JMP, JLE, K), \
1677 INSN_3(JMP, JSGT, K), \
1678 INSN_3(JMP, JSLT, K), \
1679 INSN_3(JMP, JSGE, K), \
1680 INSN_3(JMP, JSLE, K), \
1681 INSN_3(JMP, JSET, K), \
1682 INSN_2(JMP, JA), \
1683 INSN_2(JMP32, JA), \
1684 /* Atomic operations. */ \
1685 INSN_3(STX, ATOMIC, B), \
1686 INSN_3(STX, ATOMIC, H), \
1687 INSN_3(STX, ATOMIC, W), \
1688 INSN_3(STX, ATOMIC, DW), \
1689 /* Store instructions. */ \
1690 /* Register based. */ \
1691 INSN_3(STX, MEM, B), \
1692 INSN_3(STX, MEM, H), \
1693 INSN_3(STX, MEM, W), \
1694 INSN_3(STX, MEM, DW), \
1695 /* Immediate based. */ \
1696 INSN_3(ST, MEM, B), \
1697 INSN_3(ST, MEM, H), \
1698 INSN_3(ST, MEM, W), \
1699 INSN_3(ST, MEM, DW), \
1700 /* Load instructions. */ \
1701 /* Register based. */ \
1702 INSN_3(LDX, MEM, B), \
1703 INSN_3(LDX, MEM, H), \
1704 INSN_3(LDX, MEM, W), \
1705 INSN_3(LDX, MEM, DW), \
1706 INSN_3(LDX, MEMSX, B), \
1707 INSN_3(LDX, MEMSX, H), \
1708 INSN_3(LDX, MEMSX, W), \
1709 /* Immediate based. */ \
1710 INSN_3(LD, IMM, DW)
1711
bpf_opcode_in_insntable(u8 code)1712 bool bpf_opcode_in_insntable(u8 code)
1713 {
1714 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1715 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1716 static const bool public_insntable[256] = {
1717 [0 ... 255] = false,
1718 /* Now overwrite non-defaults ... */
1719 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1720 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1721 [BPF_LD | BPF_ABS | BPF_B] = true,
1722 [BPF_LD | BPF_ABS | BPF_H] = true,
1723 [BPF_LD | BPF_ABS | BPF_W] = true,
1724 [BPF_LD | BPF_IND | BPF_B] = true,
1725 [BPF_LD | BPF_IND | BPF_H] = true,
1726 [BPF_LD | BPF_IND | BPF_W] = true,
1727 [BPF_JMP | BPF_JA | BPF_X] = true,
1728 [BPF_JMP | BPF_JCOND] = true,
1729 };
1730 #undef BPF_INSN_3_TBL
1731 #undef BPF_INSN_2_TBL
1732 return public_insntable[code];
1733 }
1734
1735 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1736 /**
1737 * ___bpf_prog_run - run eBPF program on a given context
1738 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1739 * @insn: is the array of eBPF instructions
1740 *
1741 * Decode and execute eBPF instructions.
1742 *
1743 * Return: whatever value is in %BPF_R0 at program exit
1744 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1745 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1746 {
1747 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1748 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1749 static const void * const jumptable[256] __annotate_jump_table = {
1750 [0 ... 255] = &&default_label,
1751 /* Now overwrite non-defaults ... */
1752 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1753 /* Non-UAPI available opcodes. */
1754 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1755 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1756 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1757 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1758 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1759 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1760 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1761 [BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1762 [BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1763 [BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1764 };
1765 #undef BPF_INSN_3_LBL
1766 #undef BPF_INSN_2_LBL
1767 u32 tail_call_cnt = 0;
1768
1769 #define CONT ({ insn++; goto select_insn; })
1770 #define CONT_JMP ({ insn++; goto select_insn; })
1771
1772 select_insn:
1773 goto *jumptable[insn->code];
1774
1775 /* Explicitly mask the register-based shift amounts with 63 or 31
1776 * to avoid undefined behavior. Normally this won't affect the
1777 * generated code, for example, in case of native 64 bit archs such
1778 * as x86-64 or arm64, the compiler is optimizing the AND away for
1779 * the interpreter. In case of JITs, each of the JIT backends compiles
1780 * the BPF shift operations to machine instructions which produce
1781 * implementation-defined results in such a case; the resulting
1782 * contents of the register may be arbitrary, but program behaviour
1783 * as a whole remains defined. In other words, in case of JIT backends,
1784 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1785 */
1786 /* ALU (shifts) */
1787 #define SHT(OPCODE, OP) \
1788 ALU64_##OPCODE##_X: \
1789 DST = DST OP (SRC & 63); \
1790 CONT; \
1791 ALU_##OPCODE##_X: \
1792 DST = (u32) DST OP ((u32) SRC & 31); \
1793 CONT; \
1794 ALU64_##OPCODE##_K: \
1795 DST = DST OP IMM; \
1796 CONT; \
1797 ALU_##OPCODE##_K: \
1798 DST = (u32) DST OP (u32) IMM; \
1799 CONT;
1800 /* ALU (rest) */
1801 #define ALU(OPCODE, OP) \
1802 ALU64_##OPCODE##_X: \
1803 DST = DST OP SRC; \
1804 CONT; \
1805 ALU_##OPCODE##_X: \
1806 DST = (u32) DST OP (u32) SRC; \
1807 CONT; \
1808 ALU64_##OPCODE##_K: \
1809 DST = DST OP IMM; \
1810 CONT; \
1811 ALU_##OPCODE##_K: \
1812 DST = (u32) DST OP (u32) IMM; \
1813 CONT;
1814 ALU(ADD, +)
1815 ALU(SUB, -)
1816 ALU(AND, &)
1817 ALU(OR, |)
1818 ALU(XOR, ^)
1819 ALU(MUL, *)
1820 SHT(LSH, <<)
1821 SHT(RSH, >>)
1822 #undef SHT
1823 #undef ALU
1824 ALU_NEG:
1825 DST = (u32) -DST;
1826 CONT;
1827 ALU64_NEG:
1828 DST = -DST;
1829 CONT;
1830 ALU_MOV_X:
1831 switch (OFF) {
1832 case 0:
1833 DST = (u32) SRC;
1834 break;
1835 case 8:
1836 DST = (u32)(s8) SRC;
1837 break;
1838 case 16:
1839 DST = (u32)(s16) SRC;
1840 break;
1841 }
1842 CONT;
1843 ALU_MOV_K:
1844 DST = (u32) IMM;
1845 CONT;
1846 ALU64_MOV_X:
1847 switch (OFF) {
1848 case 0:
1849 DST = SRC;
1850 break;
1851 case 8:
1852 DST = (s8) SRC;
1853 break;
1854 case 16:
1855 DST = (s16) SRC;
1856 break;
1857 case 32:
1858 DST = (s32) SRC;
1859 break;
1860 }
1861 CONT;
1862 ALU64_MOV_K:
1863 DST = IMM;
1864 CONT;
1865 LD_IMM_DW:
1866 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1867 insn++;
1868 CONT;
1869 ALU_ARSH_X:
1870 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1871 CONT;
1872 ALU_ARSH_K:
1873 DST = (u64) (u32) (((s32) DST) >> IMM);
1874 CONT;
1875 ALU64_ARSH_X:
1876 (*(s64 *) &DST) >>= (SRC & 63);
1877 CONT;
1878 ALU64_ARSH_K:
1879 (*(s64 *) &DST) >>= IMM;
1880 CONT;
1881 ALU64_MOD_X:
1882 switch (OFF) {
1883 case 0:
1884 div64_u64_rem(DST, SRC, &AX);
1885 DST = AX;
1886 break;
1887 case 1:
1888 AX = div64_s64(DST, SRC);
1889 DST = DST - AX * SRC;
1890 break;
1891 }
1892 CONT;
1893 ALU_MOD_X:
1894 switch (OFF) {
1895 case 0:
1896 AX = (u32) DST;
1897 DST = do_div(AX, (u32) SRC);
1898 break;
1899 case 1:
1900 AX = abs((s32)DST);
1901 AX = do_div(AX, abs((s32)SRC));
1902 if ((s32)DST < 0)
1903 DST = (u32)-AX;
1904 else
1905 DST = (u32)AX;
1906 break;
1907 }
1908 CONT;
1909 ALU64_MOD_K:
1910 switch (OFF) {
1911 case 0:
1912 div64_u64_rem(DST, IMM, &AX);
1913 DST = AX;
1914 break;
1915 case 1:
1916 AX = div64_s64(DST, IMM);
1917 DST = DST - AX * IMM;
1918 break;
1919 }
1920 CONT;
1921 ALU_MOD_K:
1922 switch (OFF) {
1923 case 0:
1924 AX = (u32) DST;
1925 DST = do_div(AX, (u32) IMM);
1926 break;
1927 case 1:
1928 AX = abs((s32)DST);
1929 AX = do_div(AX, abs((s32)IMM));
1930 if ((s32)DST < 0)
1931 DST = (u32)-AX;
1932 else
1933 DST = (u32)AX;
1934 break;
1935 }
1936 CONT;
1937 ALU64_DIV_X:
1938 switch (OFF) {
1939 case 0:
1940 DST = div64_u64(DST, SRC);
1941 break;
1942 case 1:
1943 DST = div64_s64(DST, SRC);
1944 break;
1945 }
1946 CONT;
1947 ALU_DIV_X:
1948 switch (OFF) {
1949 case 0:
1950 AX = (u32) DST;
1951 do_div(AX, (u32) SRC);
1952 DST = (u32) AX;
1953 break;
1954 case 1:
1955 AX = abs((s32)DST);
1956 do_div(AX, abs((s32)SRC));
1957 if (((s32)DST < 0) == ((s32)SRC < 0))
1958 DST = (u32)AX;
1959 else
1960 DST = (u32)-AX;
1961 break;
1962 }
1963 CONT;
1964 ALU64_DIV_K:
1965 switch (OFF) {
1966 case 0:
1967 DST = div64_u64(DST, IMM);
1968 break;
1969 case 1:
1970 DST = div64_s64(DST, IMM);
1971 break;
1972 }
1973 CONT;
1974 ALU_DIV_K:
1975 switch (OFF) {
1976 case 0:
1977 AX = (u32) DST;
1978 do_div(AX, (u32) IMM);
1979 DST = (u32) AX;
1980 break;
1981 case 1:
1982 AX = abs((s32)DST);
1983 do_div(AX, abs((s32)IMM));
1984 if (((s32)DST < 0) == ((s32)IMM < 0))
1985 DST = (u32)AX;
1986 else
1987 DST = (u32)-AX;
1988 break;
1989 }
1990 CONT;
1991 ALU_END_TO_BE:
1992 switch (IMM) {
1993 case 16:
1994 DST = (__force u16) cpu_to_be16(DST);
1995 break;
1996 case 32:
1997 DST = (__force u32) cpu_to_be32(DST);
1998 break;
1999 case 64:
2000 DST = (__force u64) cpu_to_be64(DST);
2001 break;
2002 }
2003 CONT;
2004 ALU_END_TO_LE:
2005 switch (IMM) {
2006 case 16:
2007 DST = (__force u16) cpu_to_le16(DST);
2008 break;
2009 case 32:
2010 DST = (__force u32) cpu_to_le32(DST);
2011 break;
2012 case 64:
2013 DST = (__force u64) cpu_to_le64(DST);
2014 break;
2015 }
2016 CONT;
2017 ALU64_END_TO_LE:
2018 switch (IMM) {
2019 case 16:
2020 DST = (__force u16) __swab16(DST);
2021 break;
2022 case 32:
2023 DST = (__force u32) __swab32(DST);
2024 break;
2025 case 64:
2026 DST = (__force u64) __swab64(DST);
2027 break;
2028 }
2029 CONT;
2030
2031 /* CALL */
2032 JMP_CALL:
2033 /* Function call scratches BPF_R1-BPF_R5 registers,
2034 * preserves BPF_R6-BPF_R9, and stores return value
2035 * into BPF_R0.
2036 */
2037 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2038 BPF_R4, BPF_R5);
2039 CONT;
2040
2041 JMP_CALL_ARGS:
2042 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2043 BPF_R3, BPF_R4,
2044 BPF_R5,
2045 insn + insn->off + 1);
2046 CONT;
2047
2048 JMP_TAIL_CALL: {
2049 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2050 struct bpf_array *array = container_of(map, struct bpf_array, map);
2051 struct bpf_prog *prog;
2052 u32 index = BPF_R3;
2053
2054 if (unlikely(index >= array->map.max_entries))
2055 goto out;
2056
2057 if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2058 goto out;
2059
2060 tail_call_cnt++;
2061
2062 prog = READ_ONCE(array->ptrs[index]);
2063 if (!prog)
2064 goto out;
2065
2066 /* ARG1 at this point is guaranteed to point to CTX from
2067 * the verifier side due to the fact that the tail call is
2068 * handled like a helper, that is, bpf_tail_call_proto,
2069 * where arg1_type is ARG_PTR_TO_CTX.
2070 */
2071 insn = prog->insnsi;
2072 goto select_insn;
2073 out:
2074 CONT;
2075 }
2076 JMP_JA:
2077 insn += insn->off;
2078 CONT;
2079 JMP32_JA:
2080 insn += insn->imm;
2081 CONT;
2082 JMP_EXIT:
2083 return BPF_R0;
2084 /* JMP */
2085 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
2086 JMP_##OPCODE##_X: \
2087 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
2088 insn += insn->off; \
2089 CONT_JMP; \
2090 } \
2091 CONT; \
2092 JMP32_##OPCODE##_X: \
2093 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
2094 insn += insn->off; \
2095 CONT_JMP; \
2096 } \
2097 CONT; \
2098 JMP_##OPCODE##_K: \
2099 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
2100 insn += insn->off; \
2101 CONT_JMP; \
2102 } \
2103 CONT; \
2104 JMP32_##OPCODE##_K: \
2105 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
2106 insn += insn->off; \
2107 CONT_JMP; \
2108 } \
2109 CONT;
2110 COND_JMP(u, JEQ, ==)
2111 COND_JMP(u, JNE, !=)
2112 COND_JMP(u, JGT, >)
2113 COND_JMP(u, JLT, <)
2114 COND_JMP(u, JGE, >=)
2115 COND_JMP(u, JLE, <=)
2116 COND_JMP(u, JSET, &)
2117 COND_JMP(s, JSGT, >)
2118 COND_JMP(s, JSLT, <)
2119 COND_JMP(s, JSGE, >=)
2120 COND_JMP(s, JSLE, <=)
2121 #undef COND_JMP
2122 /* ST, STX and LDX*/
2123 ST_NOSPEC:
2124 /* Speculation barrier for mitigating Speculative Store Bypass,
2125 * Bounds-Check Bypass and Type Confusion. In case of arm64, we
2126 * rely on the firmware mitigation as controlled via the ssbd
2127 * kernel parameter. Whenever the mitigation is enabled, it
2128 * works for all of the kernel code with no need to provide any
2129 * additional instructions here. In case of x86, we use 'lfence'
2130 * insn for mitigation. We reuse preexisting logic from Spectre
2131 * v1 mitigation that happens to produce the required code on
2132 * x86 for v4 as well.
2133 */
2134 barrier_nospec();
2135 CONT;
2136 #define LDST(SIZEOP, SIZE) \
2137 STX_MEM_##SIZEOP: \
2138 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
2139 CONT; \
2140 ST_MEM_##SIZEOP: \
2141 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
2142 CONT; \
2143 LDX_MEM_##SIZEOP: \
2144 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
2145 CONT; \
2146 LDX_PROBE_MEM_##SIZEOP: \
2147 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \
2148 (const void *)(long) (SRC + insn->off)); \
2149 DST = *((SIZE *)&DST); \
2150 CONT;
2151
2152 LDST(B, u8)
2153 LDST(H, u16)
2154 LDST(W, u32)
2155 LDST(DW, u64)
2156 #undef LDST
2157
2158 #define LDSX(SIZEOP, SIZE) \
2159 LDX_MEMSX_##SIZEOP: \
2160 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
2161 CONT; \
2162 LDX_PROBE_MEMSX_##SIZEOP: \
2163 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \
2164 (const void *)(long) (SRC + insn->off)); \
2165 DST = *((SIZE *)&DST); \
2166 CONT;
2167
2168 LDSX(B, s8)
2169 LDSX(H, s16)
2170 LDSX(W, s32)
2171 #undef LDSX
2172
2173 #define ATOMIC_ALU_OP(BOP, KOP) \
2174 case BOP: \
2175 if (BPF_SIZE(insn->code) == BPF_W) \
2176 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2177 (DST + insn->off)); \
2178 else if (BPF_SIZE(insn->code) == BPF_DW) \
2179 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2180 (DST + insn->off)); \
2181 else \
2182 goto default_label; \
2183 break; \
2184 case BOP | BPF_FETCH: \
2185 if (BPF_SIZE(insn->code) == BPF_W) \
2186 SRC = (u32) atomic_fetch_##KOP( \
2187 (u32) SRC, \
2188 (atomic_t *)(unsigned long) (DST + insn->off)); \
2189 else if (BPF_SIZE(insn->code) == BPF_DW) \
2190 SRC = (u64) atomic64_fetch_##KOP( \
2191 (u64) SRC, \
2192 (atomic64_t *)(unsigned long) (DST + insn->off)); \
2193 else \
2194 goto default_label; \
2195 break;
2196
2197 STX_ATOMIC_DW:
2198 STX_ATOMIC_W:
2199 STX_ATOMIC_H:
2200 STX_ATOMIC_B:
2201 switch (IMM) {
2202 /* Atomic read-modify-write instructions support only W and DW
2203 * size modifiers.
2204 */
2205 ATOMIC_ALU_OP(BPF_ADD, add)
2206 ATOMIC_ALU_OP(BPF_AND, and)
2207 ATOMIC_ALU_OP(BPF_OR, or)
2208 ATOMIC_ALU_OP(BPF_XOR, xor)
2209 #undef ATOMIC_ALU_OP
2210
2211 case BPF_XCHG:
2212 if (BPF_SIZE(insn->code) == BPF_W)
2213 SRC = (u32) atomic_xchg(
2214 (atomic_t *)(unsigned long) (DST + insn->off),
2215 (u32) SRC);
2216 else if (BPF_SIZE(insn->code) == BPF_DW)
2217 SRC = (u64) atomic64_xchg(
2218 (atomic64_t *)(unsigned long) (DST + insn->off),
2219 (u64) SRC);
2220 else
2221 goto default_label;
2222 break;
2223 case BPF_CMPXCHG:
2224 if (BPF_SIZE(insn->code) == BPF_W)
2225 BPF_R0 = (u32) atomic_cmpxchg(
2226 (atomic_t *)(unsigned long) (DST + insn->off),
2227 (u32) BPF_R0, (u32) SRC);
2228 else if (BPF_SIZE(insn->code) == BPF_DW)
2229 BPF_R0 = (u64) atomic64_cmpxchg(
2230 (atomic64_t *)(unsigned long) (DST + insn->off),
2231 (u64) BPF_R0, (u64) SRC);
2232 else
2233 goto default_label;
2234 break;
2235 /* Atomic load and store instructions support all size
2236 * modifiers.
2237 */
2238 case BPF_LOAD_ACQ:
2239 switch (BPF_SIZE(insn->code)) {
2240 #define LOAD_ACQUIRE(SIZEOP, SIZE) \
2241 case BPF_##SIZEOP: \
2242 DST = (SIZE)smp_load_acquire( \
2243 (SIZE *)(unsigned long)(SRC + insn->off)); \
2244 break;
2245 LOAD_ACQUIRE(B, u8)
2246 LOAD_ACQUIRE(H, u16)
2247 LOAD_ACQUIRE(W, u32)
2248 #ifdef CONFIG_64BIT
2249 LOAD_ACQUIRE(DW, u64)
2250 #endif
2251 #undef LOAD_ACQUIRE
2252 default:
2253 goto default_label;
2254 }
2255 break;
2256 case BPF_STORE_REL:
2257 switch (BPF_SIZE(insn->code)) {
2258 #define STORE_RELEASE(SIZEOP, SIZE) \
2259 case BPF_##SIZEOP: \
2260 smp_store_release( \
2261 (SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC); \
2262 break;
2263 STORE_RELEASE(B, u8)
2264 STORE_RELEASE(H, u16)
2265 STORE_RELEASE(W, u32)
2266 #ifdef CONFIG_64BIT
2267 STORE_RELEASE(DW, u64)
2268 #endif
2269 #undef STORE_RELEASE
2270 default:
2271 goto default_label;
2272 }
2273 break;
2274
2275 default:
2276 goto default_label;
2277 }
2278 CONT;
2279
2280 default_label:
2281 /* If we ever reach this, we have a bug somewhere. Die hard here
2282 * instead of just returning 0; we could be somewhere in a subprog,
2283 * so execution could continue otherwise which we do /not/ want.
2284 *
2285 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2286 */
2287 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2288 insn->code, insn->imm);
2289 BUG_ON(1);
2290 return 0;
2291 }
2292
2293 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2294 #define DEFINE_BPF_PROG_RUN(stack_size) \
2295 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2296 { \
2297 u64 stack[stack_size / sizeof(u64)]; \
2298 u64 regs[MAX_BPF_EXT_REG] = {}; \
2299 \
2300 kmsan_unpoison_memory(stack, sizeof(stack)); \
2301 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2302 ARG1 = (u64) (unsigned long) ctx; \
2303 return ___bpf_prog_run(regs, insn); \
2304 }
2305
2306 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2307 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2308 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2309 const struct bpf_insn *insn) \
2310 { \
2311 u64 stack[stack_size / sizeof(u64)]; \
2312 u64 regs[MAX_BPF_EXT_REG]; \
2313 \
2314 kmsan_unpoison_memory(stack, sizeof(stack)); \
2315 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2316 BPF_R1 = r1; \
2317 BPF_R2 = r2; \
2318 BPF_R3 = r3; \
2319 BPF_R4 = r4; \
2320 BPF_R5 = r5; \
2321 return ___bpf_prog_run(regs, insn); \
2322 }
2323
2324 #define EVAL1(FN, X) FN(X)
2325 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2326 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2327 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2328 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2329 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2330
2331 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2332 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2333 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2334
2335 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2336 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2337 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2338
2339 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2340
2341 static unsigned int (*interpreters[])(const void *ctx,
2342 const struct bpf_insn *insn) = {
2343 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2344 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2345 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2346 };
2347 #undef PROG_NAME_LIST
2348 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2349 static __maybe_unused
2350 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2351 const struct bpf_insn *insn) = {
2352 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2353 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2354 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2355 };
2356 #undef PROG_NAME_LIST
2357
2358 #ifdef CONFIG_BPF_SYSCALL
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)2359 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2360 {
2361 stack_depth = max_t(u32, stack_depth, 1);
2362 insn->off = (s16) insn->imm;
2363 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2364 __bpf_call_base_args;
2365 insn->code = BPF_JMP | BPF_CALL_ARGS;
2366 }
2367 #endif
2368 #endif
2369
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)2370 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2371 const struct bpf_insn *insn)
2372 {
2373 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2374 * is not working properly, so warn about it!
2375 */
2376 WARN_ON_ONCE(1);
2377 return 0;
2378 }
2379
__bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2380 static bool __bpf_prog_map_compatible(struct bpf_map *map,
2381 const struct bpf_prog *fp)
2382 {
2383 enum bpf_prog_type prog_type = resolve_prog_type(fp);
2384 struct bpf_prog_aux *aux = fp->aux;
2385 enum bpf_cgroup_storage_type i;
2386 bool ret = false;
2387 u64 cookie;
2388
2389 if (fp->kprobe_override)
2390 return ret;
2391
2392 spin_lock(&map->owner_lock);
2393 /* There's no owner yet where we could check for compatibility. */
2394 if (!map->owner) {
2395 map->owner = bpf_map_owner_alloc(map);
2396 if (!map->owner)
2397 goto err;
2398 map->owner->type = prog_type;
2399 map->owner->jited = fp->jited;
2400 map->owner->xdp_has_frags = aux->xdp_has_frags;
2401 map->owner->expected_attach_type = fp->expected_attach_type;
2402 map->owner->attach_func_proto = aux->attach_func_proto;
2403 for_each_cgroup_storage_type(i) {
2404 map->owner->storage_cookie[i] =
2405 aux->cgroup_storage[i] ?
2406 aux->cgroup_storage[i]->cookie : 0;
2407 }
2408 ret = true;
2409 } else {
2410 ret = map->owner->type == prog_type &&
2411 map->owner->jited == fp->jited &&
2412 map->owner->xdp_has_frags == aux->xdp_has_frags;
2413 if (ret &&
2414 map->map_type == BPF_MAP_TYPE_PROG_ARRAY &&
2415 map->owner->expected_attach_type != fp->expected_attach_type)
2416 ret = false;
2417 for_each_cgroup_storage_type(i) {
2418 if (!ret)
2419 break;
2420 cookie = aux->cgroup_storage[i] ?
2421 aux->cgroup_storage[i]->cookie : 0;
2422 ret = map->owner->storage_cookie[i] == cookie ||
2423 !cookie;
2424 }
2425 if (ret &&
2426 map->owner->attach_func_proto != aux->attach_func_proto) {
2427 switch (prog_type) {
2428 case BPF_PROG_TYPE_TRACING:
2429 case BPF_PROG_TYPE_LSM:
2430 case BPF_PROG_TYPE_EXT:
2431 case BPF_PROG_TYPE_STRUCT_OPS:
2432 ret = false;
2433 break;
2434 default:
2435 break;
2436 }
2437 }
2438 }
2439 err:
2440 spin_unlock(&map->owner_lock);
2441 return ret;
2442 }
2443
bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2444 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp)
2445 {
2446 /* XDP programs inserted into maps are not guaranteed to run on
2447 * a particular netdev (and can run outside driver context entirely
2448 * in the case of devmap and cpumap). Until device checks
2449 * are implemented, prohibit adding dev-bound programs to program maps.
2450 */
2451 if (bpf_prog_is_dev_bound(fp->aux))
2452 return false;
2453
2454 return __bpf_prog_map_compatible(map, fp);
2455 }
2456
bpf_check_tail_call(const struct bpf_prog * fp)2457 static int bpf_check_tail_call(const struct bpf_prog *fp)
2458 {
2459 struct bpf_prog_aux *aux = fp->aux;
2460 int i, ret = 0;
2461
2462 mutex_lock(&aux->used_maps_mutex);
2463 for (i = 0; i < aux->used_map_cnt; i++) {
2464 struct bpf_map *map = aux->used_maps[i];
2465
2466 if (!map_type_contains_progs(map))
2467 continue;
2468
2469 if (!__bpf_prog_map_compatible(map, fp)) {
2470 ret = -EINVAL;
2471 goto out;
2472 }
2473 }
2474
2475 out:
2476 mutex_unlock(&aux->used_maps_mutex);
2477 return ret;
2478 }
2479
bpf_prog_select_interpreter(struct bpf_prog * fp)2480 static bool bpf_prog_select_interpreter(struct bpf_prog *fp)
2481 {
2482 bool select_interpreter = false;
2483 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2484 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2485 u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2486
2487 /* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2488 * But for non-JITed programs, we don't need bpf_func, so no bounds
2489 * check needed.
2490 */
2491 if (idx < ARRAY_SIZE(interpreters)) {
2492 fp->bpf_func = interpreters[idx];
2493 select_interpreter = true;
2494 } else {
2495 fp->bpf_func = __bpf_prog_ret0_warn;
2496 }
2497 #else
2498 fp->bpf_func = __bpf_prog_ret0_warn;
2499 #endif
2500 return select_interpreter;
2501 }
2502
2503 /**
2504 * bpf_prog_select_runtime - select exec runtime for BPF program
2505 * @fp: bpf_prog populated with BPF program
2506 * @err: pointer to error variable
2507 *
2508 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2509 * The BPF program will be executed via bpf_prog_run() function.
2510 *
2511 * Return: the &fp argument along with &err set to 0 for success or
2512 * a negative errno code on failure
2513 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)2514 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2515 {
2516 /* In case of BPF to BPF calls, verifier did all the prep
2517 * work with regards to JITing, etc.
2518 */
2519 bool jit_needed = false;
2520
2521 if (fp->bpf_func)
2522 goto finalize;
2523
2524 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2525 bpf_prog_has_kfunc_call(fp))
2526 jit_needed = true;
2527
2528 if (!bpf_prog_select_interpreter(fp))
2529 jit_needed = true;
2530
2531 /* eBPF JITs can rewrite the program in case constant
2532 * blinding is active. However, in case of error during
2533 * blinding, bpf_int_jit_compile() must always return a
2534 * valid program, which in this case would simply not
2535 * be JITed, but falls back to the interpreter.
2536 */
2537 if (!bpf_prog_is_offloaded(fp->aux)) {
2538 *err = bpf_prog_alloc_jited_linfo(fp);
2539 if (*err)
2540 return fp;
2541
2542 fp = bpf_int_jit_compile(fp);
2543 bpf_prog_jit_attempt_done(fp);
2544 if (!fp->jited && jit_needed) {
2545 *err = -ENOTSUPP;
2546 return fp;
2547 }
2548 } else {
2549 *err = bpf_prog_offload_compile(fp);
2550 if (*err)
2551 return fp;
2552 }
2553
2554 finalize:
2555 *err = bpf_prog_lock_ro(fp);
2556 if (*err)
2557 return fp;
2558
2559 /* The tail call compatibility check can only be done at
2560 * this late stage as we need to determine, if we deal
2561 * with JITed or non JITed program concatenations and not
2562 * all eBPF JITs might immediately support all features.
2563 */
2564 *err = bpf_check_tail_call(fp);
2565
2566 return fp;
2567 }
2568 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2569
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)2570 static unsigned int __bpf_prog_ret1(const void *ctx,
2571 const struct bpf_insn *insn)
2572 {
2573 return 1;
2574 }
2575
2576 static struct bpf_prog_dummy {
2577 struct bpf_prog prog;
2578 } dummy_bpf_prog = {
2579 .prog = {
2580 .bpf_func = __bpf_prog_ret1,
2581 },
2582 };
2583
2584 struct bpf_empty_prog_array bpf_empty_prog_array = {
2585 .null_prog = NULL,
2586 };
2587 EXPORT_SYMBOL(bpf_empty_prog_array);
2588
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)2589 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2590 {
2591 struct bpf_prog_array *p;
2592
2593 if (prog_cnt)
2594 p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2595 else
2596 p = &bpf_empty_prog_array.hdr;
2597
2598 return p;
2599 }
2600
bpf_prog_array_free(struct bpf_prog_array * progs)2601 void bpf_prog_array_free(struct bpf_prog_array *progs)
2602 {
2603 if (!progs || progs == &bpf_empty_prog_array.hdr)
2604 return;
2605 kfree_rcu(progs, rcu);
2606 }
2607
__bpf_prog_array_free_sleepable_cb(struct rcu_head * rcu)2608 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2609 {
2610 struct bpf_prog_array *progs;
2611
2612 /* If RCU Tasks Trace grace period implies RCU grace period, there is
2613 * no need to call kfree_rcu(), just call kfree() directly.
2614 */
2615 progs = container_of(rcu, struct bpf_prog_array, rcu);
2616 if (rcu_trace_implies_rcu_gp())
2617 kfree(progs);
2618 else
2619 kfree_rcu(progs, rcu);
2620 }
2621
bpf_prog_array_free_sleepable(struct bpf_prog_array * progs)2622 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2623 {
2624 if (!progs || progs == &bpf_empty_prog_array.hdr)
2625 return;
2626 call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2627 }
2628
bpf_prog_array_length(struct bpf_prog_array * array)2629 int bpf_prog_array_length(struct bpf_prog_array *array)
2630 {
2631 struct bpf_prog_array_item *item;
2632 u32 cnt = 0;
2633
2634 for (item = array->items; item->prog; item++)
2635 if (item->prog != &dummy_bpf_prog.prog)
2636 cnt++;
2637 return cnt;
2638 }
2639
bpf_prog_array_is_empty(struct bpf_prog_array * array)2640 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2641 {
2642 struct bpf_prog_array_item *item;
2643
2644 for (item = array->items; item->prog; item++)
2645 if (item->prog != &dummy_bpf_prog.prog)
2646 return false;
2647 return true;
2648 }
2649
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2650 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2651 u32 *prog_ids,
2652 u32 request_cnt)
2653 {
2654 struct bpf_prog_array_item *item;
2655 int i = 0;
2656
2657 for (item = array->items; item->prog; item++) {
2658 if (item->prog == &dummy_bpf_prog.prog)
2659 continue;
2660 prog_ids[i] = item->prog->aux->id;
2661 if (++i == request_cnt) {
2662 item++;
2663 break;
2664 }
2665 }
2666
2667 return !!(item->prog);
2668 }
2669
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2670 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2671 __u32 __user *prog_ids, u32 cnt)
2672 {
2673 unsigned long err = 0;
2674 bool nospc;
2675 u32 *ids;
2676
2677 /* users of this function are doing:
2678 * cnt = bpf_prog_array_length();
2679 * if (cnt > 0)
2680 * bpf_prog_array_copy_to_user(..., cnt);
2681 * so below kcalloc doesn't need extra cnt > 0 check.
2682 */
2683 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2684 if (!ids)
2685 return -ENOMEM;
2686 nospc = bpf_prog_array_copy_core(array, ids, cnt);
2687 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2688 kfree(ids);
2689 if (err)
2690 return -EFAULT;
2691 if (nospc)
2692 return -ENOSPC;
2693 return 0;
2694 }
2695
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2696 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2697 struct bpf_prog *old_prog)
2698 {
2699 struct bpf_prog_array_item *item;
2700
2701 for (item = array->items; item->prog; item++)
2702 if (item->prog == old_prog) {
2703 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2704 break;
2705 }
2706 }
2707
2708 /**
2709 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2710 * index into the program array with
2711 * a dummy no-op program.
2712 * @array: a bpf_prog_array
2713 * @index: the index of the program to replace
2714 *
2715 * Skips over dummy programs, by not counting them, when calculating
2716 * the position of the program to replace.
2717 *
2718 * Return:
2719 * * 0 - Success
2720 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2721 * * -ENOENT - Index out of range
2722 */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2723 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2724 {
2725 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2726 }
2727
2728 /**
2729 * bpf_prog_array_update_at() - Updates the program at the given index
2730 * into the program array.
2731 * @array: a bpf_prog_array
2732 * @index: the index of the program to update
2733 * @prog: the program to insert into the array
2734 *
2735 * Skips over dummy programs, by not counting them, when calculating
2736 * the position of the program to update.
2737 *
2738 * Return:
2739 * * 0 - Success
2740 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2741 * * -ENOENT - Index out of range
2742 */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2743 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2744 struct bpf_prog *prog)
2745 {
2746 struct bpf_prog_array_item *item;
2747
2748 if (unlikely(index < 0))
2749 return -EINVAL;
2750
2751 for (item = array->items; item->prog; item++) {
2752 if (item->prog == &dummy_bpf_prog.prog)
2753 continue;
2754 if (!index) {
2755 WRITE_ONCE(item->prog, prog);
2756 return 0;
2757 }
2758 index--;
2759 }
2760 return -ENOENT;
2761 }
2762
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2763 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2764 struct bpf_prog *exclude_prog,
2765 struct bpf_prog *include_prog,
2766 u64 bpf_cookie,
2767 struct bpf_prog_array **new_array)
2768 {
2769 int new_prog_cnt, carry_prog_cnt = 0;
2770 struct bpf_prog_array_item *existing, *new;
2771 struct bpf_prog_array *array;
2772 bool found_exclude = false;
2773
2774 /* Figure out how many existing progs we need to carry over to
2775 * the new array.
2776 */
2777 if (old_array) {
2778 existing = old_array->items;
2779 for (; existing->prog; existing++) {
2780 if (existing->prog == exclude_prog) {
2781 found_exclude = true;
2782 continue;
2783 }
2784 if (existing->prog != &dummy_bpf_prog.prog)
2785 carry_prog_cnt++;
2786 if (existing->prog == include_prog)
2787 return -EEXIST;
2788 }
2789 }
2790
2791 if (exclude_prog && !found_exclude)
2792 return -ENOENT;
2793
2794 /* How many progs (not NULL) will be in the new array? */
2795 new_prog_cnt = carry_prog_cnt;
2796 if (include_prog)
2797 new_prog_cnt += 1;
2798
2799 /* Do we have any prog (not NULL) in the new array? */
2800 if (!new_prog_cnt) {
2801 *new_array = NULL;
2802 return 0;
2803 }
2804
2805 /* +1 as the end of prog_array is marked with NULL */
2806 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2807 if (!array)
2808 return -ENOMEM;
2809 new = array->items;
2810
2811 /* Fill in the new prog array */
2812 if (carry_prog_cnt) {
2813 existing = old_array->items;
2814 for (; existing->prog; existing++) {
2815 if (existing->prog == exclude_prog ||
2816 existing->prog == &dummy_bpf_prog.prog)
2817 continue;
2818
2819 new->prog = existing->prog;
2820 new->bpf_cookie = existing->bpf_cookie;
2821 new++;
2822 }
2823 }
2824 if (include_prog) {
2825 new->prog = include_prog;
2826 new->bpf_cookie = bpf_cookie;
2827 new++;
2828 }
2829 new->prog = NULL;
2830 *new_array = array;
2831 return 0;
2832 }
2833
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2834 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2835 u32 *prog_ids, u32 request_cnt,
2836 u32 *prog_cnt)
2837 {
2838 u32 cnt = 0;
2839
2840 if (array)
2841 cnt = bpf_prog_array_length(array);
2842
2843 *prog_cnt = cnt;
2844
2845 /* return early if user requested only program count or nothing to copy */
2846 if (!request_cnt || !cnt)
2847 return 0;
2848
2849 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2850 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2851 : 0;
2852 }
2853
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2854 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2855 struct bpf_map **used_maps, u32 len)
2856 {
2857 struct bpf_map *map;
2858 bool sleepable;
2859 u32 i;
2860
2861 sleepable = aux->prog->sleepable;
2862 for (i = 0; i < len; i++) {
2863 map = used_maps[i];
2864 if (map->ops->map_poke_untrack)
2865 map->ops->map_poke_untrack(map, aux);
2866 if (sleepable)
2867 atomic64_dec(&map->sleepable_refcnt);
2868 bpf_map_put(map);
2869 }
2870 }
2871
bpf_free_used_maps(struct bpf_prog_aux * aux)2872 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2873 {
2874 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2875 kfree(aux->used_maps);
2876 }
2877
__bpf_free_used_btfs(struct btf_mod_pair * used_btfs,u32 len)2878 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2879 {
2880 #ifdef CONFIG_BPF_SYSCALL
2881 struct btf_mod_pair *btf_mod;
2882 u32 i;
2883
2884 for (i = 0; i < len; i++) {
2885 btf_mod = &used_btfs[i];
2886 if (btf_mod->module)
2887 module_put(btf_mod->module);
2888 btf_put(btf_mod->btf);
2889 }
2890 #endif
2891 }
2892
bpf_free_used_btfs(struct bpf_prog_aux * aux)2893 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2894 {
2895 __bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2896 kfree(aux->used_btfs);
2897 }
2898
bpf_prog_free_deferred(struct work_struct * work)2899 static void bpf_prog_free_deferred(struct work_struct *work)
2900 {
2901 struct bpf_prog_aux *aux;
2902 int i;
2903
2904 aux = container_of(work, struct bpf_prog_aux, work);
2905 #ifdef CONFIG_BPF_SYSCALL
2906 bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2907 bpf_prog_stream_free(aux->prog);
2908 #endif
2909 #ifdef CONFIG_CGROUP_BPF
2910 if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2911 bpf_cgroup_atype_put(aux->cgroup_atype);
2912 #endif
2913 bpf_free_used_maps(aux);
2914 bpf_free_used_btfs(aux);
2915 if (bpf_prog_is_dev_bound(aux))
2916 bpf_prog_dev_bound_destroy(aux->prog);
2917 #ifdef CONFIG_PERF_EVENTS
2918 if (aux->prog->has_callchain_buf)
2919 put_callchain_buffers();
2920 #endif
2921 if (aux->dst_trampoline)
2922 bpf_trampoline_put(aux->dst_trampoline);
2923 for (i = 0; i < aux->real_func_cnt; i++) {
2924 /* We can just unlink the subprog poke descriptor table as
2925 * it was originally linked to the main program and is also
2926 * released along with it.
2927 */
2928 aux->func[i]->aux->poke_tab = NULL;
2929 bpf_jit_free(aux->func[i]);
2930 }
2931 if (aux->real_func_cnt) {
2932 kfree(aux->func);
2933 bpf_prog_unlock_free(aux->prog);
2934 } else {
2935 bpf_jit_free(aux->prog);
2936 }
2937 }
2938
bpf_prog_free(struct bpf_prog * fp)2939 void bpf_prog_free(struct bpf_prog *fp)
2940 {
2941 struct bpf_prog_aux *aux = fp->aux;
2942
2943 if (aux->dst_prog)
2944 bpf_prog_put(aux->dst_prog);
2945 bpf_token_put(aux->token);
2946 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2947 schedule_work(&aux->work);
2948 }
2949 EXPORT_SYMBOL_GPL(bpf_prog_free);
2950
2951 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2952 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2953
bpf_user_rnd_init_once(void)2954 void bpf_user_rnd_init_once(void)
2955 {
2956 prandom_init_once(&bpf_user_rnd_state);
2957 }
2958
BPF_CALL_0(bpf_user_rnd_u32)2959 BPF_CALL_0(bpf_user_rnd_u32)
2960 {
2961 /* Should someone ever have the rather unwise idea to use some
2962 * of the registers passed into this function, then note that
2963 * this function is called from native eBPF and classic-to-eBPF
2964 * transformations. Register assignments from both sides are
2965 * different, f.e. classic always sets fn(ctx, A, X) here.
2966 */
2967 struct rnd_state *state;
2968 u32 res;
2969
2970 state = &get_cpu_var(bpf_user_rnd_state);
2971 res = prandom_u32_state(state);
2972 put_cpu_var(bpf_user_rnd_state);
2973
2974 return res;
2975 }
2976
BPF_CALL_0(bpf_get_raw_cpu_id)2977 BPF_CALL_0(bpf_get_raw_cpu_id)
2978 {
2979 return raw_smp_processor_id();
2980 }
2981
2982 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2983 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2984 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2985 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2986 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2987 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2988 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2989 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2990 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2991 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2992 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2993
2994 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2995 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2996 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2997 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2998 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2999 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
3000 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
3001
3002 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
3003 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
3004 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
3005 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
3006 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
3007 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
3008 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
3009 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
3010 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
3011 const struct bpf_func_proto bpf_set_retval_proto __weak;
3012 const struct bpf_func_proto bpf_get_retval_proto __weak;
3013
bpf_get_trace_printk_proto(void)3014 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
3015 {
3016 return NULL;
3017 }
3018
bpf_get_trace_vprintk_proto(void)3019 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
3020 {
3021 return NULL;
3022 }
3023
bpf_get_perf_event_read_value_proto(void)3024 const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void)
3025 {
3026 return NULL;
3027 }
3028
3029 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)3030 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
3031 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
3032 {
3033 return -ENOTSUPP;
3034 }
3035 EXPORT_SYMBOL_GPL(bpf_event_output);
3036
3037 /* Always built-in helper functions. */
3038 const struct bpf_func_proto bpf_tail_call_proto = {
3039 /* func is unused for tail_call, we set it to pass the
3040 * get_helper_proto check
3041 */
3042 .func = BPF_PTR_POISON,
3043 .gpl_only = false,
3044 .ret_type = RET_VOID,
3045 .arg1_type = ARG_PTR_TO_CTX,
3046 .arg2_type = ARG_CONST_MAP_PTR,
3047 .arg3_type = ARG_ANYTHING,
3048 };
3049
3050 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
3051 * It is encouraged to implement bpf_int_jit_compile() instead, so that
3052 * eBPF and implicitly also cBPF can get JITed!
3053 */
bpf_int_jit_compile(struct bpf_prog * prog)3054 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3055 {
3056 return prog;
3057 }
3058
3059 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
3060 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
3061 */
bpf_jit_compile(struct bpf_prog * prog)3062 void __weak bpf_jit_compile(struct bpf_prog *prog)
3063 {
3064 }
3065
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)3066 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
3067 {
3068 return false;
3069 }
3070
3071 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
3072 * analysis code and wants explicit zero extension inserted by verifier.
3073 * Otherwise, return FALSE.
3074 *
3075 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
3076 * you don't override this. JITs that don't want these extra insns can detect
3077 * them using insn_is_zext.
3078 */
bpf_jit_needs_zext(void)3079 bool __weak bpf_jit_needs_zext(void)
3080 {
3081 return false;
3082 }
3083
3084 /* By default, enable the verifier's mitigations against Spectre v1 and v4 for
3085 * all archs. The value returned must not change at runtime as there is
3086 * currently no support for reloading programs that were loaded without
3087 * mitigations.
3088 */
bpf_jit_bypass_spec_v1(void)3089 bool __weak bpf_jit_bypass_spec_v1(void)
3090 {
3091 return false;
3092 }
3093
bpf_jit_bypass_spec_v4(void)3094 bool __weak bpf_jit_bypass_spec_v4(void)
3095 {
3096 return false;
3097 }
3098
3099 /* Return true if the JIT inlines the call to the helper corresponding to
3100 * the imm.
3101 *
3102 * The verifier will not patch the insn->imm for the call to the helper if
3103 * this returns true.
3104 */
bpf_jit_inlines_helper_call(s32 imm)3105 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3106 {
3107 return false;
3108 }
3109
3110 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)3111 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3112 {
3113 return false;
3114 }
3115
bpf_jit_supports_percpu_insn(void)3116 bool __weak bpf_jit_supports_percpu_insn(void)
3117 {
3118 return false;
3119 }
3120
bpf_jit_supports_kfunc_call(void)3121 bool __weak bpf_jit_supports_kfunc_call(void)
3122 {
3123 return false;
3124 }
3125
bpf_jit_supports_far_kfunc_call(void)3126 bool __weak bpf_jit_supports_far_kfunc_call(void)
3127 {
3128 return false;
3129 }
3130
bpf_jit_supports_arena(void)3131 bool __weak bpf_jit_supports_arena(void)
3132 {
3133 return false;
3134 }
3135
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)3136 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3137 {
3138 return false;
3139 }
3140
bpf_arch_uaddress_limit(void)3141 u64 __weak bpf_arch_uaddress_limit(void)
3142 {
3143 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3144 return TASK_SIZE;
3145 #else
3146 return 0;
3147 #endif
3148 }
3149
3150 /* Return TRUE if the JIT backend satisfies the following two conditions:
3151 * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3152 * 2) Under the specific arch, the implementation of xchg() is the same
3153 * as atomic_xchg() on pointer-sized words.
3154 */
bpf_jit_supports_ptr_xchg(void)3155 bool __weak bpf_jit_supports_ptr_xchg(void)
3156 {
3157 return false;
3158 }
3159
3160 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3161 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3162 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)3163 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3164 int len)
3165 {
3166 return -EFAULT;
3167 }
3168
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type old_t,enum bpf_text_poke_type new_t,void * old_addr,void * new_addr)3169 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
3170 enum bpf_text_poke_type new_t, void *old_addr,
3171 void *new_addr)
3172 {
3173 return -ENOTSUPP;
3174 }
3175
bpf_arch_text_copy(void * dst,void * src,size_t len)3176 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3177 {
3178 return ERR_PTR(-ENOTSUPP);
3179 }
3180
bpf_arch_text_invalidate(void * dst,size_t len)3181 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3182 {
3183 return -ENOTSUPP;
3184 }
3185
bpf_jit_supports_exceptions(void)3186 bool __weak bpf_jit_supports_exceptions(void)
3187 {
3188 return false;
3189 }
3190
bpf_jit_supports_private_stack(void)3191 bool __weak bpf_jit_supports_private_stack(void)
3192 {
3193 return false;
3194 }
3195
arch_bpf_stack_walk(bool (* consume_fn)(void * cookie,u64 ip,u64 sp,u64 bp),void * cookie)3196 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3197 {
3198 }
3199
bpf_jit_supports_timed_may_goto(void)3200 bool __weak bpf_jit_supports_timed_may_goto(void)
3201 {
3202 return false;
3203 }
3204
arch_bpf_timed_may_goto(void)3205 u64 __weak arch_bpf_timed_may_goto(void)
3206 {
3207 return 0;
3208 }
3209
bpf_prog_report_may_goto_violation(void)3210 static noinline void bpf_prog_report_may_goto_violation(void)
3211 {
3212 #ifdef CONFIG_BPF_SYSCALL
3213 struct bpf_stream_stage ss;
3214 struct bpf_prog *prog;
3215
3216 prog = bpf_prog_find_from_stack();
3217 if (!prog)
3218 return;
3219 bpf_stream_stage(ss, prog, BPF_STDERR, ({
3220 bpf_stream_printk(ss, "ERROR: Timeout detected for may_goto instruction\n");
3221 bpf_stream_dump_stack(ss);
3222 }));
3223 #endif
3224 }
3225
bpf_check_timed_may_goto(struct bpf_timed_may_goto * p)3226 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p)
3227 {
3228 u64 time = ktime_get_mono_fast_ns();
3229
3230 /* Populate the timestamp for this stack frame, and refresh count. */
3231 if (!p->timestamp) {
3232 p->timestamp = time;
3233 return BPF_MAX_TIMED_LOOPS;
3234 }
3235 /* Check if we've exhausted our time slice, and zero count. */
3236 if (unlikely(time - p->timestamp >= (NSEC_PER_SEC / 4))) {
3237 bpf_prog_report_may_goto_violation();
3238 return 0;
3239 }
3240 /* Refresh the count for the stack frame. */
3241 return BPF_MAX_TIMED_LOOPS;
3242 }
3243
3244 /* for configs without MMU or 32-bit */
3245 __weak const struct bpf_map_ops arena_map_ops;
bpf_arena_get_user_vm_start(struct bpf_arena * arena)3246 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3247 {
3248 return 0;
3249 }
bpf_arena_get_kern_vm_start(struct bpf_arena * arena)3250 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3251 {
3252 return 0;
3253 }
3254
3255 #ifdef CONFIG_BPF_SYSCALL
bpf_global_ma_init(void)3256 static int __init bpf_global_ma_init(void)
3257 {
3258 int ret;
3259
3260 ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3261 bpf_global_ma_set = !ret;
3262 return ret;
3263 }
3264 late_initcall(bpf_global_ma_init);
3265 #endif
3266
3267 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3268 EXPORT_SYMBOL(bpf_stats_enabled_key);
3269
3270 /* All definitions of tracepoints related to BPF. */
3271 #define CREATE_TRACE_POINTS
3272 #include <linux/bpf_trace.h>
3273
3274 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3275 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3276
3277 #ifdef CONFIG_BPF_SYSCALL
3278
bpf_prog_get_file_line(struct bpf_prog * prog,unsigned long ip,const char ** filep,const char ** linep,int * nump)3279 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3280 const char **linep, int *nump)
3281 {
3282 int idx = -1, insn_start, insn_end, len;
3283 struct bpf_line_info *linfo;
3284 void **jited_linfo;
3285 struct btf *btf;
3286 int nr_linfo;
3287
3288 btf = prog->aux->btf;
3289 linfo = prog->aux->linfo;
3290 jited_linfo = prog->aux->jited_linfo;
3291
3292 if (!btf || !linfo || !jited_linfo)
3293 return -EINVAL;
3294 len = prog->aux->func ? prog->aux->func[prog->aux->func_idx]->len : prog->len;
3295
3296 linfo = &prog->aux->linfo[prog->aux->linfo_idx];
3297 jited_linfo = &prog->aux->jited_linfo[prog->aux->linfo_idx];
3298
3299 insn_start = linfo[0].insn_off;
3300 insn_end = insn_start + len;
3301 nr_linfo = prog->aux->nr_linfo - prog->aux->linfo_idx;
3302
3303 for (int i = 0; i < nr_linfo &&
3304 linfo[i].insn_off >= insn_start && linfo[i].insn_off < insn_end; i++) {
3305 if (jited_linfo[i] >= (void *)ip)
3306 break;
3307 idx = i;
3308 }
3309
3310 if (idx == -1)
3311 return -ENOENT;
3312
3313 /* Get base component of the file path. */
3314 *filep = btf_name_by_offset(btf, linfo[idx].file_name_off);
3315 *filep = kbasename(*filep);
3316 /* Obtain the source line, and strip whitespace in prefix. */
3317 *linep = btf_name_by_offset(btf, linfo[idx].line_off);
3318 while (isspace(**linep))
3319 *linep += 1;
3320 *nump = BPF_LINE_INFO_LINE_NUM(linfo[idx].line_col);
3321 return 0;
3322 }
3323
3324 struct walk_stack_ctx {
3325 struct bpf_prog *prog;
3326 };
3327
find_from_stack_cb(void * cookie,u64 ip,u64 sp,u64 bp)3328 static bool find_from_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp)
3329 {
3330 struct walk_stack_ctx *ctxp = cookie;
3331 struct bpf_prog *prog;
3332
3333 /*
3334 * The RCU read lock is held to safely traverse the latch tree, but we
3335 * don't need its protection when accessing the prog, since it has an
3336 * active stack frame on the current stack trace, and won't disappear.
3337 */
3338 rcu_read_lock();
3339 prog = bpf_prog_ksym_find(ip);
3340 rcu_read_unlock();
3341 if (!prog)
3342 return true;
3343 /* Make sure we return the main prog if we found a subprog */
3344 ctxp->prog = prog->aux->main_prog_aux->prog;
3345 return false;
3346 }
3347
bpf_prog_find_from_stack(void)3348 struct bpf_prog *bpf_prog_find_from_stack(void)
3349 {
3350 struct walk_stack_ctx ctx = {};
3351
3352 arch_bpf_stack_walk(find_from_stack_cb, &ctx);
3353 return ctx.prog;
3354 }
3355
3356 #endif
3357