1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC 0xcafe4a11
61 #endif
62
63 #define MAX_EVENT_NAME_LEN 64
64
65 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
66
67 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
68
69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
70 * compilation if user enables corresponding warning. Disable it explicitly.
71 */
72 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
73
74 #define __printf(a, b) __attribute__((format(printf, a, b)))
75
76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
77 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
78 static int map_set_def_max_entries(struct bpf_map *map);
79
80 static const char * const attach_type_name[] = {
81 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
82 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
83 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
84 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
85 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
86 [BPF_CGROUP_DEVICE] = "cgroup_device",
87 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
88 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
89 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
90 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
91 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect",
92 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
93 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
94 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
95 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
96 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
97 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
98 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
99 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
100 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
101 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
102 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
103 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
104 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
105 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
106 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
107 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
108 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
109 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
110 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
111 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
112 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
113 [BPF_LIRC_MODE2] = "lirc_mode2",
114 [BPF_FLOW_DISSECTOR] = "flow_dissector",
115 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
116 [BPF_TRACE_FENTRY] = "trace_fentry",
117 [BPF_TRACE_FEXIT] = "trace_fexit",
118 [BPF_MODIFY_RETURN] = "modify_return",
119 [BPF_LSM_MAC] = "lsm_mac",
120 [BPF_LSM_CGROUP] = "lsm_cgroup",
121 [BPF_SK_LOOKUP] = "sk_lookup",
122 [BPF_TRACE_ITER] = "trace_iter",
123 [BPF_XDP_DEVMAP] = "xdp_devmap",
124 [BPF_XDP_CPUMAP] = "xdp_cpumap",
125 [BPF_XDP] = "xdp",
126 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
127 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
128 [BPF_PERF_EVENT] = "perf_event",
129 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
130 [BPF_STRUCT_OPS] = "struct_ops",
131 [BPF_NETFILTER] = "netfilter",
132 [BPF_TCX_INGRESS] = "tcx_ingress",
133 [BPF_TCX_EGRESS] = "tcx_egress",
134 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
135 [BPF_NETKIT_PRIMARY] = "netkit_primary",
136 [BPF_NETKIT_PEER] = "netkit_peer",
137 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session",
138 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session",
139 };
140
141 static const char * const link_type_name[] = {
142 [BPF_LINK_TYPE_UNSPEC] = "unspec",
143 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
144 [BPF_LINK_TYPE_TRACING] = "tracing",
145 [BPF_LINK_TYPE_CGROUP] = "cgroup",
146 [BPF_LINK_TYPE_ITER] = "iter",
147 [BPF_LINK_TYPE_NETNS] = "netns",
148 [BPF_LINK_TYPE_XDP] = "xdp",
149 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
150 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
151 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
152 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
153 [BPF_LINK_TYPE_TCX] = "tcx",
154 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
155 [BPF_LINK_TYPE_NETKIT] = "netkit",
156 [BPF_LINK_TYPE_SOCKMAP] = "sockmap",
157 };
158
159 static const char * const map_type_name[] = {
160 [BPF_MAP_TYPE_UNSPEC] = "unspec",
161 [BPF_MAP_TYPE_HASH] = "hash",
162 [BPF_MAP_TYPE_ARRAY] = "array",
163 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
164 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
165 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
166 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
167 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
168 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
169 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
170 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
171 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
172 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
173 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
174 [BPF_MAP_TYPE_DEVMAP] = "devmap",
175 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
176 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
177 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
178 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
179 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
180 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
181 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
182 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
183 [BPF_MAP_TYPE_QUEUE] = "queue",
184 [BPF_MAP_TYPE_STACK] = "stack",
185 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
186 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
187 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
188 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
189 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
190 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
191 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
192 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
193 [BPF_MAP_TYPE_ARENA] = "arena",
194 };
195
196 static const char * const prog_type_name[] = {
197 [BPF_PROG_TYPE_UNSPEC] = "unspec",
198 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
199 [BPF_PROG_TYPE_KPROBE] = "kprobe",
200 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
201 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
202 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
203 [BPF_PROG_TYPE_XDP] = "xdp",
204 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
205 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
206 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
207 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
208 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
209 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
210 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
211 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
212 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
213 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
214 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
215 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
216 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
217 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
218 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
219 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
220 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
221 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
222 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
223 [BPF_PROG_TYPE_TRACING] = "tracing",
224 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
225 [BPF_PROG_TYPE_EXT] = "ext",
226 [BPF_PROG_TYPE_LSM] = "lsm",
227 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
228 [BPF_PROG_TYPE_SYSCALL] = "syscall",
229 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
230 };
231
__base_pr(enum libbpf_print_level level,const char * format,va_list args)232 static int __base_pr(enum libbpf_print_level level, const char *format,
233 va_list args)
234 {
235 const char *env_var = "LIBBPF_LOG_LEVEL";
236 static enum libbpf_print_level min_level = LIBBPF_INFO;
237 static bool initialized;
238
239 if (!initialized) {
240 char *verbosity;
241
242 initialized = true;
243 verbosity = getenv(env_var);
244 if (verbosity) {
245 if (strcasecmp(verbosity, "warn") == 0)
246 min_level = LIBBPF_WARN;
247 else if (strcasecmp(verbosity, "debug") == 0)
248 min_level = LIBBPF_DEBUG;
249 else if (strcasecmp(verbosity, "info") == 0)
250 min_level = LIBBPF_INFO;
251 else
252 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
253 env_var, verbosity);
254 }
255 }
256
257 /* if too verbose, skip logging */
258 if (level > min_level)
259 return 0;
260
261 return vfprintf(stderr, format, args);
262 }
263
264 static libbpf_print_fn_t __libbpf_pr = __base_pr;
265
libbpf_set_print(libbpf_print_fn_t fn)266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
267 {
268 libbpf_print_fn_t old_print_fn;
269
270 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
271
272 return old_print_fn;
273 }
274
275 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)276 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
277 {
278 va_list args;
279 int old_errno;
280 libbpf_print_fn_t print_fn;
281
282 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
283 if (!print_fn)
284 return;
285
286 old_errno = errno;
287
288 va_start(args, format);
289 print_fn(level, format, args);
290 va_end(args);
291
292 errno = old_errno;
293 }
294
pr_perm_msg(int err)295 static void pr_perm_msg(int err)
296 {
297 struct rlimit limit;
298 char buf[100];
299
300 if (err != -EPERM || geteuid() != 0)
301 return;
302
303 err = getrlimit(RLIMIT_MEMLOCK, &limit);
304 if (err)
305 return;
306
307 if (limit.rlim_cur == RLIM_INFINITY)
308 return;
309
310 if (limit.rlim_cur < 1024)
311 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
312 else if (limit.rlim_cur < 1024*1024)
313 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
314 else
315 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
316
317 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
318 buf);
319 }
320
321 #define STRERR_BUFSIZE 128
322
323 /* Copied from tools/perf/util/util.h */
324 #ifndef zfree
325 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
326 #endif
327
328 #ifndef zclose
329 # define zclose(fd) ({ \
330 int ___err = 0; \
331 if ((fd) >= 0) \
332 ___err = close((fd)); \
333 fd = -1; \
334 ___err; })
335 #endif
336
ptr_to_u64(const void * ptr)337 static inline __u64 ptr_to_u64(const void *ptr)
338 {
339 return (__u64) (unsigned long) ptr;
340 }
341
libbpf_set_strict_mode(enum libbpf_strict_mode mode)342 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
343 {
344 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
345 return 0;
346 }
347
libbpf_major_version(void)348 __u32 libbpf_major_version(void)
349 {
350 return LIBBPF_MAJOR_VERSION;
351 }
352
libbpf_minor_version(void)353 __u32 libbpf_minor_version(void)
354 {
355 return LIBBPF_MINOR_VERSION;
356 }
357
libbpf_version_string(void)358 const char *libbpf_version_string(void)
359 {
360 #define __S(X) #X
361 #define _S(X) __S(X)
362 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
363 #undef _S
364 #undef __S
365 }
366
367 enum reloc_type {
368 RELO_LD64,
369 RELO_CALL,
370 RELO_DATA,
371 RELO_EXTERN_LD64,
372 RELO_EXTERN_CALL,
373 RELO_SUBPROG_ADDR,
374 RELO_CORE,
375 };
376
377 struct reloc_desc {
378 enum reloc_type type;
379 int insn_idx;
380 union {
381 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
382 struct {
383 int map_idx;
384 int sym_off;
385 int ext_idx;
386 };
387 };
388 };
389
390 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
391 enum sec_def_flags {
392 SEC_NONE = 0,
393 /* expected_attach_type is optional, if kernel doesn't support that */
394 SEC_EXP_ATTACH_OPT = 1,
395 /* legacy, only used by libbpf_get_type_names() and
396 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
397 * This used to be associated with cgroup (and few other) BPF programs
398 * that were attachable through BPF_PROG_ATTACH command. Pretty
399 * meaningless nowadays, though.
400 */
401 SEC_ATTACHABLE = 2,
402 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
403 /* attachment target is specified through BTF ID in either kernel or
404 * other BPF program's BTF object
405 */
406 SEC_ATTACH_BTF = 4,
407 /* BPF program type allows sleeping/blocking in kernel */
408 SEC_SLEEPABLE = 8,
409 /* BPF program support non-linear XDP buffer */
410 SEC_XDP_FRAGS = 16,
411 /* Setup proper attach type for usdt probes. */
412 SEC_USDT = 32,
413 };
414
415 struct bpf_sec_def {
416 char *sec;
417 enum bpf_prog_type prog_type;
418 enum bpf_attach_type expected_attach_type;
419 long cookie;
420 int handler_id;
421
422 libbpf_prog_setup_fn_t prog_setup_fn;
423 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
424 libbpf_prog_attach_fn_t prog_attach_fn;
425 };
426
427 /*
428 * bpf_prog should be a better name but it has been used in
429 * linux/filter.h.
430 */
431 struct bpf_program {
432 char *name;
433 char *sec_name;
434 size_t sec_idx;
435 const struct bpf_sec_def *sec_def;
436 /* this program's instruction offset (in number of instructions)
437 * within its containing ELF section
438 */
439 size_t sec_insn_off;
440 /* number of original instructions in ELF section belonging to this
441 * program, not taking into account subprogram instructions possible
442 * appended later during relocation
443 */
444 size_t sec_insn_cnt;
445 /* Offset (in number of instructions) of the start of instruction
446 * belonging to this BPF program within its containing main BPF
447 * program. For the entry-point (main) BPF program, this is always
448 * zero. For a sub-program, this gets reset before each of main BPF
449 * programs are processed and relocated and is used to determined
450 * whether sub-program was already appended to the main program, and
451 * if yes, at which instruction offset.
452 */
453 size_t sub_insn_off;
454
455 /* instructions that belong to BPF program; insns[0] is located at
456 * sec_insn_off instruction within its ELF section in ELF file, so
457 * when mapping ELF file instruction index to the local instruction,
458 * one needs to subtract sec_insn_off; and vice versa.
459 */
460 struct bpf_insn *insns;
461 /* actual number of instruction in this BPF program's image; for
462 * entry-point BPF programs this includes the size of main program
463 * itself plus all the used sub-programs, appended at the end
464 */
465 size_t insns_cnt;
466
467 struct reloc_desc *reloc_desc;
468 int nr_reloc;
469
470 /* BPF verifier log settings */
471 char *log_buf;
472 size_t log_size;
473 __u32 log_level;
474
475 struct bpf_object *obj;
476
477 int fd;
478 bool autoload;
479 bool autoattach;
480 bool sym_global;
481 bool mark_btf_static;
482 enum bpf_prog_type type;
483 enum bpf_attach_type expected_attach_type;
484 int exception_cb_idx;
485
486 int prog_ifindex;
487 __u32 attach_btf_obj_fd;
488 __u32 attach_btf_id;
489 __u32 attach_prog_fd;
490
491 void *func_info;
492 __u32 func_info_rec_size;
493 __u32 func_info_cnt;
494
495 void *line_info;
496 __u32 line_info_rec_size;
497 __u32 line_info_cnt;
498 __u32 prog_flags;
499 };
500
501 struct bpf_struct_ops {
502 struct bpf_program **progs;
503 __u32 *kern_func_off;
504 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
505 void *data;
506 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
507 * btf_vmlinux's format.
508 * struct bpf_struct_ops_tcp_congestion_ops {
509 * [... some other kernel fields ...]
510 * struct tcp_congestion_ops data;
511 * }
512 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
513 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
514 * from "data".
515 */
516 void *kern_vdata;
517 __u32 type_id;
518 };
519
520 #define DATA_SEC ".data"
521 #define BSS_SEC ".bss"
522 #define RODATA_SEC ".rodata"
523 #define KCONFIG_SEC ".kconfig"
524 #define KSYMS_SEC ".ksyms"
525 #define STRUCT_OPS_SEC ".struct_ops"
526 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
527 #define ARENA_SEC ".addr_space.1"
528
529 enum libbpf_map_type {
530 LIBBPF_MAP_UNSPEC,
531 LIBBPF_MAP_DATA,
532 LIBBPF_MAP_BSS,
533 LIBBPF_MAP_RODATA,
534 LIBBPF_MAP_KCONFIG,
535 };
536
537 struct bpf_map_def {
538 unsigned int type;
539 unsigned int key_size;
540 unsigned int value_size;
541 unsigned int max_entries;
542 unsigned int map_flags;
543 };
544
545 struct bpf_map {
546 struct bpf_object *obj;
547 char *name;
548 /* real_name is defined for special internal maps (.rodata*,
549 * .data*, .bss, .kconfig) and preserves their original ELF section
550 * name. This is important to be able to find corresponding BTF
551 * DATASEC information.
552 */
553 char *real_name;
554 int fd;
555 int sec_idx;
556 size_t sec_offset;
557 int map_ifindex;
558 int inner_map_fd;
559 struct bpf_map_def def;
560 __u32 numa_node;
561 __u32 btf_var_idx;
562 int mod_btf_fd;
563 __u32 btf_key_type_id;
564 __u32 btf_value_type_id;
565 __u32 btf_vmlinux_value_type_id;
566 enum libbpf_map_type libbpf_type;
567 void *mmaped;
568 struct bpf_struct_ops *st_ops;
569 struct bpf_map *inner_map;
570 void **init_slots;
571 int init_slots_sz;
572 char *pin_path;
573 bool pinned;
574 bool reused;
575 bool autocreate;
576 bool autoattach;
577 __u64 map_extra;
578 };
579
580 enum extern_type {
581 EXT_UNKNOWN,
582 EXT_KCFG,
583 EXT_KSYM,
584 };
585
586 enum kcfg_type {
587 KCFG_UNKNOWN,
588 KCFG_CHAR,
589 KCFG_BOOL,
590 KCFG_INT,
591 KCFG_TRISTATE,
592 KCFG_CHAR_ARR,
593 };
594
595 struct extern_desc {
596 enum extern_type type;
597 int sym_idx;
598 int btf_id;
599 int sec_btf_id;
600 char *name;
601 char *essent_name;
602 bool is_set;
603 bool is_weak;
604 union {
605 struct {
606 enum kcfg_type type;
607 int sz;
608 int align;
609 int data_off;
610 bool is_signed;
611 } kcfg;
612 struct {
613 unsigned long long addr;
614
615 /* target btf_id of the corresponding kernel var. */
616 int kernel_btf_obj_fd;
617 int kernel_btf_id;
618
619 /* local btf_id of the ksym extern's type. */
620 __u32 type_id;
621 /* BTF fd index to be patched in for insn->off, this is
622 * 0 for vmlinux BTF, index in obj->fd_array for module
623 * BTF
624 */
625 __s16 btf_fd_idx;
626 } ksym;
627 };
628 };
629
630 struct module_btf {
631 struct btf *btf;
632 char *name;
633 __u32 id;
634 int fd;
635 int fd_array_idx;
636 };
637
638 enum sec_type {
639 SEC_UNUSED = 0,
640 SEC_RELO,
641 SEC_BSS,
642 SEC_DATA,
643 SEC_RODATA,
644 SEC_ST_OPS,
645 };
646
647 struct elf_sec_desc {
648 enum sec_type sec_type;
649 Elf64_Shdr *shdr;
650 Elf_Data *data;
651 };
652
653 struct elf_state {
654 int fd;
655 const void *obj_buf;
656 size_t obj_buf_sz;
657 Elf *elf;
658 Elf64_Ehdr *ehdr;
659 Elf_Data *symbols;
660 Elf_Data *arena_data;
661 size_t shstrndx; /* section index for section name strings */
662 size_t strtabidx;
663 struct elf_sec_desc *secs;
664 size_t sec_cnt;
665 int btf_maps_shndx;
666 __u32 btf_maps_sec_btf_id;
667 int text_shndx;
668 int symbols_shndx;
669 bool has_st_ops;
670 int arena_data_shndx;
671 };
672
673 struct usdt_manager;
674
675 enum bpf_object_state {
676 OBJ_OPEN,
677 OBJ_PREPARED,
678 OBJ_LOADED,
679 };
680
681 struct bpf_object {
682 char name[BPF_OBJ_NAME_LEN];
683 char license[64];
684 __u32 kern_version;
685
686 enum bpf_object_state state;
687 struct bpf_program *programs;
688 size_t nr_programs;
689 struct bpf_map *maps;
690 size_t nr_maps;
691 size_t maps_cap;
692
693 char *kconfig;
694 struct extern_desc *externs;
695 int nr_extern;
696 int kconfig_map_idx;
697
698 bool has_subcalls;
699 bool has_rodata;
700
701 struct bpf_gen *gen_loader;
702
703 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
704 struct elf_state efile;
705
706 unsigned char byteorder;
707
708 struct btf *btf;
709 struct btf_ext *btf_ext;
710
711 /* Parse and load BTF vmlinux if any of the programs in the object need
712 * it at load time.
713 */
714 struct btf *btf_vmlinux;
715 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
716 * override for vmlinux BTF.
717 */
718 char *btf_custom_path;
719 /* vmlinux BTF override for CO-RE relocations */
720 struct btf *btf_vmlinux_override;
721 /* Lazily initialized kernel module BTFs */
722 struct module_btf *btf_modules;
723 bool btf_modules_loaded;
724 size_t btf_module_cnt;
725 size_t btf_module_cap;
726
727 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
728 char *log_buf;
729 size_t log_size;
730 __u32 log_level;
731
732 int *fd_array;
733 size_t fd_array_cap;
734 size_t fd_array_cnt;
735
736 struct usdt_manager *usdt_man;
737
738 int arena_map_idx;
739 void *arena_data;
740 size_t arena_data_sz;
741
742 struct kern_feature_cache *feat_cache;
743 char *token_path;
744 int token_fd;
745
746 char path[];
747 };
748
749 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
750 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
751 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
752 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
753 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
754 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
756 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
757 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
758
bpf_program__unload(struct bpf_program * prog)759 void bpf_program__unload(struct bpf_program *prog)
760 {
761 if (!prog)
762 return;
763
764 zclose(prog->fd);
765
766 zfree(&prog->func_info);
767 zfree(&prog->line_info);
768 }
769
bpf_program__exit(struct bpf_program * prog)770 static void bpf_program__exit(struct bpf_program *prog)
771 {
772 if (!prog)
773 return;
774
775 bpf_program__unload(prog);
776 zfree(&prog->name);
777 zfree(&prog->sec_name);
778 zfree(&prog->insns);
779 zfree(&prog->reloc_desc);
780
781 prog->nr_reloc = 0;
782 prog->insns_cnt = 0;
783 prog->sec_idx = -1;
784 }
785
insn_is_subprog_call(const struct bpf_insn * insn)786 static bool insn_is_subprog_call(const struct bpf_insn *insn)
787 {
788 return BPF_CLASS(insn->code) == BPF_JMP &&
789 BPF_OP(insn->code) == BPF_CALL &&
790 BPF_SRC(insn->code) == BPF_K &&
791 insn->src_reg == BPF_PSEUDO_CALL &&
792 insn->dst_reg == 0 &&
793 insn->off == 0;
794 }
795
is_call_insn(const struct bpf_insn * insn)796 static bool is_call_insn(const struct bpf_insn *insn)
797 {
798 return insn->code == (BPF_JMP | BPF_CALL);
799 }
800
insn_is_pseudo_func(struct bpf_insn * insn)801 static bool insn_is_pseudo_func(struct bpf_insn *insn)
802 {
803 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
804 }
805
806 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)807 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
808 const char *name, size_t sec_idx, const char *sec_name,
809 size_t sec_off, void *insn_data, size_t insn_data_sz)
810 {
811 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
812 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
813 sec_name, name, sec_off, insn_data_sz);
814 return -EINVAL;
815 }
816
817 memset(prog, 0, sizeof(*prog));
818 prog->obj = obj;
819
820 prog->sec_idx = sec_idx;
821 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
822 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
823 /* insns_cnt can later be increased by appending used subprograms */
824 prog->insns_cnt = prog->sec_insn_cnt;
825
826 prog->type = BPF_PROG_TYPE_UNSPEC;
827 prog->fd = -1;
828 prog->exception_cb_idx = -1;
829
830 /* libbpf's convention for SEC("?abc...") is that it's just like
831 * SEC("abc...") but the corresponding bpf_program starts out with
832 * autoload set to false.
833 */
834 if (sec_name[0] == '?') {
835 prog->autoload = false;
836 /* from now on forget there was ? in section name */
837 sec_name++;
838 } else {
839 prog->autoload = true;
840 }
841
842 prog->autoattach = true;
843
844 /* inherit object's log_level */
845 prog->log_level = obj->log_level;
846
847 prog->sec_name = strdup(sec_name);
848 if (!prog->sec_name)
849 goto errout;
850
851 prog->name = strdup(name);
852 if (!prog->name)
853 goto errout;
854
855 prog->insns = malloc(insn_data_sz);
856 if (!prog->insns)
857 goto errout;
858 memcpy(prog->insns, insn_data, insn_data_sz);
859
860 return 0;
861 errout:
862 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
863 bpf_program__exit(prog);
864 return -ENOMEM;
865 }
866
867 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)868 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
869 const char *sec_name, int sec_idx)
870 {
871 Elf_Data *symbols = obj->efile.symbols;
872 struct bpf_program *prog, *progs;
873 void *data = sec_data->d_buf;
874 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
875 int nr_progs, err, i;
876 const char *name;
877 Elf64_Sym *sym;
878
879 progs = obj->programs;
880 nr_progs = obj->nr_programs;
881 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
882
883 for (i = 0; i < nr_syms; i++) {
884 sym = elf_sym_by_idx(obj, i);
885
886 if (sym->st_shndx != sec_idx)
887 continue;
888 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
889 continue;
890
891 prog_sz = sym->st_size;
892 sec_off = sym->st_value;
893
894 name = elf_sym_str(obj, sym->st_name);
895 if (!name) {
896 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
897 sec_name, sec_off);
898 return -LIBBPF_ERRNO__FORMAT;
899 }
900
901 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) {
902 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
903 sec_name, sec_off);
904 return -LIBBPF_ERRNO__FORMAT;
905 }
906
907 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
908 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
909 return -ENOTSUP;
910 }
911
912 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
913 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
914
915 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
916 if (!progs) {
917 /*
918 * In this case the original obj->programs
919 * is still valid, so don't need special treat for
920 * bpf_close_object().
921 */
922 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
923 sec_name, name);
924 return -ENOMEM;
925 }
926 obj->programs = progs;
927
928 prog = &progs[nr_progs];
929
930 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
931 sec_off, data + sec_off, prog_sz);
932 if (err)
933 return err;
934
935 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
936 prog->sym_global = true;
937
938 /* if function is a global/weak symbol, but has restricted
939 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
940 * as static to enable more permissive BPF verification mode
941 * with more outside context available to BPF verifier
942 */
943 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
944 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
945 prog->mark_btf_static = true;
946
947 nr_progs++;
948 obj->nr_programs = nr_progs;
949 }
950
951 return 0;
952 }
953
bpf_object_bswap_progs(struct bpf_object * obj)954 static void bpf_object_bswap_progs(struct bpf_object *obj)
955 {
956 struct bpf_program *prog = obj->programs;
957 struct bpf_insn *insn;
958 int p, i;
959
960 for (p = 0; p < obj->nr_programs; p++, prog++) {
961 insn = prog->insns;
962 for (i = 0; i < prog->insns_cnt; i++, insn++)
963 bpf_insn_bswap(insn);
964 }
965 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs);
966 }
967
968 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)969 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
970 {
971 struct btf_member *m;
972 int i;
973
974 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
975 if (btf_member_bit_offset(t, i) == bit_offset)
976 return m;
977 }
978
979 return NULL;
980 }
981
982 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)983 find_member_by_name(const struct btf *btf, const struct btf_type *t,
984 const char *name)
985 {
986 struct btf_member *m;
987 int i;
988
989 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
990 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
991 return m;
992 }
993
994 return NULL;
995 }
996
997 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
998 __u16 kind, struct btf **res_btf,
999 struct module_btf **res_mod_btf);
1000
1001 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
1002 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
1003 const char *name, __u32 kind);
1004
1005 static int
find_struct_ops_kern_types(struct bpf_object * obj,const char * tname_raw,struct module_btf ** mod_btf,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)1006 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
1007 struct module_btf **mod_btf,
1008 const struct btf_type **type, __u32 *type_id,
1009 const struct btf_type **vtype, __u32 *vtype_id,
1010 const struct btf_member **data_member)
1011 {
1012 const struct btf_type *kern_type, *kern_vtype;
1013 const struct btf_member *kern_data_member;
1014 struct btf *btf = NULL;
1015 __s32 kern_vtype_id, kern_type_id;
1016 char tname[256];
1017 __u32 i;
1018
1019 snprintf(tname, sizeof(tname), "%.*s",
1020 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
1021
1022 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
1023 &btf, mod_btf);
1024 if (kern_type_id < 0) {
1025 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
1026 tname);
1027 return kern_type_id;
1028 }
1029 kern_type = btf__type_by_id(btf, kern_type_id);
1030
1031 /* Find the corresponding "map_value" type that will be used
1032 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
1033 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
1034 * btf_vmlinux.
1035 */
1036 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
1037 tname, BTF_KIND_STRUCT);
1038 if (kern_vtype_id < 0) {
1039 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
1040 STRUCT_OPS_VALUE_PREFIX, tname);
1041 return kern_vtype_id;
1042 }
1043 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1044
1045 /* Find "struct tcp_congestion_ops" from
1046 * struct bpf_struct_ops_tcp_congestion_ops {
1047 * [ ... ]
1048 * struct tcp_congestion_ops data;
1049 * }
1050 */
1051 kern_data_member = btf_members(kern_vtype);
1052 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1053 if (kern_data_member->type == kern_type_id)
1054 break;
1055 }
1056 if (i == btf_vlen(kern_vtype)) {
1057 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1058 tname, STRUCT_OPS_VALUE_PREFIX, tname);
1059 return -EINVAL;
1060 }
1061
1062 *type = kern_type;
1063 *type_id = kern_type_id;
1064 *vtype = kern_vtype;
1065 *vtype_id = kern_vtype_id;
1066 *data_member = kern_data_member;
1067
1068 return 0;
1069 }
1070
bpf_map__is_struct_ops(const struct bpf_map * map)1071 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1072 {
1073 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1074 }
1075
is_valid_st_ops_program(struct bpf_object * obj,const struct bpf_program * prog)1076 static bool is_valid_st_ops_program(struct bpf_object *obj,
1077 const struct bpf_program *prog)
1078 {
1079 int i;
1080
1081 for (i = 0; i < obj->nr_programs; i++) {
1082 if (&obj->programs[i] == prog)
1083 return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1084 }
1085
1086 return false;
1087 }
1088
1089 /* For each struct_ops program P, referenced from some struct_ops map M,
1090 * enable P.autoload if there are Ms for which M.autocreate is true,
1091 * disable P.autoload if for all Ms M.autocreate is false.
1092 * Don't change P.autoload for programs that are not referenced from any maps.
1093 */
bpf_object_adjust_struct_ops_autoload(struct bpf_object * obj)1094 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1095 {
1096 struct bpf_program *prog, *slot_prog;
1097 struct bpf_map *map;
1098 int i, j, k, vlen;
1099
1100 for (i = 0; i < obj->nr_programs; ++i) {
1101 int should_load = false;
1102 int use_cnt = 0;
1103
1104 prog = &obj->programs[i];
1105 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1106 continue;
1107
1108 for (j = 0; j < obj->nr_maps; ++j) {
1109 const struct btf_type *type;
1110
1111 map = &obj->maps[j];
1112 if (!bpf_map__is_struct_ops(map))
1113 continue;
1114
1115 type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1116 vlen = btf_vlen(type);
1117 for (k = 0; k < vlen; ++k) {
1118 slot_prog = map->st_ops->progs[k];
1119 if (prog != slot_prog)
1120 continue;
1121
1122 use_cnt++;
1123 if (map->autocreate)
1124 should_load = true;
1125 }
1126 }
1127 if (use_cnt)
1128 prog->autoload = should_load;
1129 }
1130
1131 return 0;
1132 }
1133
1134 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map)1135 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1136 {
1137 const struct btf_member *member, *kern_member, *kern_data_member;
1138 const struct btf_type *type, *kern_type, *kern_vtype;
1139 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1140 struct bpf_object *obj = map->obj;
1141 const struct btf *btf = obj->btf;
1142 struct bpf_struct_ops *st_ops;
1143 const struct btf *kern_btf;
1144 struct module_btf *mod_btf = NULL;
1145 void *data, *kern_data;
1146 const char *tname;
1147 int err;
1148
1149 st_ops = map->st_ops;
1150 type = btf__type_by_id(btf, st_ops->type_id);
1151 tname = btf__name_by_offset(btf, type->name_off);
1152 err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1153 &kern_type, &kern_type_id,
1154 &kern_vtype, &kern_vtype_id,
1155 &kern_data_member);
1156 if (err)
1157 return err;
1158
1159 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1160
1161 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1162 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1163
1164 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1165 map->def.value_size = kern_vtype->size;
1166 map->btf_vmlinux_value_type_id = kern_vtype_id;
1167
1168 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1169 if (!st_ops->kern_vdata)
1170 return -ENOMEM;
1171
1172 data = st_ops->data;
1173 kern_data_off = kern_data_member->offset / 8;
1174 kern_data = st_ops->kern_vdata + kern_data_off;
1175
1176 member = btf_members(type);
1177 for (i = 0; i < btf_vlen(type); i++, member++) {
1178 const struct btf_type *mtype, *kern_mtype;
1179 __u32 mtype_id, kern_mtype_id;
1180 void *mdata, *kern_mdata;
1181 struct bpf_program *prog;
1182 __s64 msize, kern_msize;
1183 __u32 moff, kern_moff;
1184 __u32 kern_member_idx;
1185 const char *mname;
1186
1187 mname = btf__name_by_offset(btf, member->name_off);
1188 moff = member->offset / 8;
1189 mdata = data + moff;
1190 msize = btf__resolve_size(btf, member->type);
1191 if (msize < 0) {
1192 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1193 map->name, mname);
1194 return msize;
1195 }
1196
1197 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1198 if (!kern_member) {
1199 if (!libbpf_is_mem_zeroed(mdata, msize)) {
1200 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1201 map->name, mname);
1202 return -ENOTSUP;
1203 }
1204
1205 if (st_ops->progs[i]) {
1206 /* If we had declaratively set struct_ops callback, we need to
1207 * force its autoload to false, because it doesn't have
1208 * a chance of succeeding from POV of the current struct_ops map.
1209 * If this program is still referenced somewhere else, though,
1210 * then bpf_object_adjust_struct_ops_autoload() will update its
1211 * autoload accordingly.
1212 */
1213 st_ops->progs[i]->autoload = false;
1214 st_ops->progs[i] = NULL;
1215 }
1216
1217 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1218 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1219 map->name, mname);
1220 continue;
1221 }
1222
1223 kern_member_idx = kern_member - btf_members(kern_type);
1224 if (btf_member_bitfield_size(type, i) ||
1225 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1226 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1227 map->name, mname);
1228 return -ENOTSUP;
1229 }
1230
1231 kern_moff = kern_member->offset / 8;
1232 kern_mdata = kern_data + kern_moff;
1233
1234 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1235 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1236 &kern_mtype_id);
1237 if (BTF_INFO_KIND(mtype->info) !=
1238 BTF_INFO_KIND(kern_mtype->info)) {
1239 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1240 map->name, mname, BTF_INFO_KIND(mtype->info),
1241 BTF_INFO_KIND(kern_mtype->info));
1242 return -ENOTSUP;
1243 }
1244
1245 if (btf_is_ptr(mtype)) {
1246 prog = *(void **)mdata;
1247 /* just like for !kern_member case above, reset declaratively
1248 * set (at compile time) program's autload to false,
1249 * if user replaced it with another program or NULL
1250 */
1251 if (st_ops->progs[i] && st_ops->progs[i] != prog)
1252 st_ops->progs[i]->autoload = false;
1253
1254 /* Update the value from the shadow type */
1255 st_ops->progs[i] = prog;
1256 if (!prog)
1257 continue;
1258
1259 if (!is_valid_st_ops_program(obj, prog)) {
1260 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1261 map->name, mname);
1262 return -ENOTSUP;
1263 }
1264
1265 kern_mtype = skip_mods_and_typedefs(kern_btf,
1266 kern_mtype->type,
1267 &kern_mtype_id);
1268
1269 /* mtype->type must be a func_proto which was
1270 * guaranteed in bpf_object__collect_st_ops_relos(),
1271 * so only check kern_mtype for func_proto here.
1272 */
1273 if (!btf_is_func_proto(kern_mtype)) {
1274 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1275 map->name, mname);
1276 return -ENOTSUP;
1277 }
1278
1279 if (mod_btf)
1280 prog->attach_btf_obj_fd = mod_btf->fd;
1281
1282 /* if we haven't yet processed this BPF program, record proper
1283 * attach_btf_id and member_idx
1284 */
1285 if (!prog->attach_btf_id) {
1286 prog->attach_btf_id = kern_type_id;
1287 prog->expected_attach_type = kern_member_idx;
1288 }
1289
1290 /* struct_ops BPF prog can be re-used between multiple
1291 * .struct_ops & .struct_ops.link as long as it's the
1292 * same struct_ops struct definition and the same
1293 * function pointer field
1294 */
1295 if (prog->attach_btf_id != kern_type_id) {
1296 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1297 map->name, mname, prog->name, prog->sec_name, prog->type,
1298 prog->attach_btf_id, kern_type_id);
1299 return -EINVAL;
1300 }
1301 if (prog->expected_attach_type != kern_member_idx) {
1302 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1303 map->name, mname, prog->name, prog->sec_name, prog->type,
1304 prog->expected_attach_type, kern_member_idx);
1305 return -EINVAL;
1306 }
1307
1308 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1309
1310 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1311 map->name, mname, prog->name, moff,
1312 kern_moff);
1313
1314 continue;
1315 }
1316
1317 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1318 if (kern_msize < 0 || msize != kern_msize) {
1319 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1320 map->name, mname, (ssize_t)msize,
1321 (ssize_t)kern_msize);
1322 return -ENOTSUP;
1323 }
1324
1325 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1326 map->name, mname, (unsigned int)msize,
1327 moff, kern_moff);
1328 memcpy(kern_mdata, mdata, msize);
1329 }
1330
1331 return 0;
1332 }
1333
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1334 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1335 {
1336 struct bpf_map *map;
1337 size_t i;
1338 int err;
1339
1340 for (i = 0; i < obj->nr_maps; i++) {
1341 map = &obj->maps[i];
1342
1343 if (!bpf_map__is_struct_ops(map))
1344 continue;
1345
1346 if (!map->autocreate)
1347 continue;
1348
1349 err = bpf_map__init_kern_struct_ops(map);
1350 if (err)
1351 return err;
1352 }
1353
1354 return 0;
1355 }
1356
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data)1357 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1358 int shndx, Elf_Data *data)
1359 {
1360 const struct btf_type *type, *datasec;
1361 const struct btf_var_secinfo *vsi;
1362 struct bpf_struct_ops *st_ops;
1363 const char *tname, *var_name;
1364 __s32 type_id, datasec_id;
1365 const struct btf *btf;
1366 struct bpf_map *map;
1367 __u32 i;
1368
1369 if (shndx == -1)
1370 return 0;
1371
1372 btf = obj->btf;
1373 datasec_id = btf__find_by_name_kind(btf, sec_name,
1374 BTF_KIND_DATASEC);
1375 if (datasec_id < 0) {
1376 pr_warn("struct_ops init: DATASEC %s not found\n",
1377 sec_name);
1378 return -EINVAL;
1379 }
1380
1381 datasec = btf__type_by_id(btf, datasec_id);
1382 vsi = btf_var_secinfos(datasec);
1383 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1384 type = btf__type_by_id(obj->btf, vsi->type);
1385 var_name = btf__name_by_offset(obj->btf, type->name_off);
1386
1387 type_id = btf__resolve_type(obj->btf, vsi->type);
1388 if (type_id < 0) {
1389 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1390 vsi->type, sec_name);
1391 return -EINVAL;
1392 }
1393
1394 type = btf__type_by_id(obj->btf, type_id);
1395 tname = btf__name_by_offset(obj->btf, type->name_off);
1396 if (!tname[0]) {
1397 pr_warn("struct_ops init: anonymous type is not supported\n");
1398 return -ENOTSUP;
1399 }
1400 if (!btf_is_struct(type)) {
1401 pr_warn("struct_ops init: %s is not a struct\n", tname);
1402 return -EINVAL;
1403 }
1404
1405 map = bpf_object__add_map(obj);
1406 if (IS_ERR(map))
1407 return PTR_ERR(map);
1408
1409 map->sec_idx = shndx;
1410 map->sec_offset = vsi->offset;
1411 map->name = strdup(var_name);
1412 if (!map->name)
1413 return -ENOMEM;
1414 map->btf_value_type_id = type_id;
1415
1416 /* Follow same convention as for programs autoload:
1417 * SEC("?.struct_ops") means map is not created by default.
1418 */
1419 if (sec_name[0] == '?') {
1420 map->autocreate = false;
1421 /* from now on forget there was ? in section name */
1422 sec_name++;
1423 }
1424
1425 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1426 map->def.key_size = sizeof(int);
1427 map->def.value_size = type->size;
1428 map->def.max_entries = 1;
1429 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1430 map->autoattach = true;
1431
1432 map->st_ops = calloc(1, sizeof(*map->st_ops));
1433 if (!map->st_ops)
1434 return -ENOMEM;
1435 st_ops = map->st_ops;
1436 st_ops->data = malloc(type->size);
1437 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1438 st_ops->kern_func_off = malloc(btf_vlen(type) *
1439 sizeof(*st_ops->kern_func_off));
1440 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1441 return -ENOMEM;
1442
1443 if (vsi->offset + type->size > data->d_size) {
1444 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1445 var_name, sec_name);
1446 return -EINVAL;
1447 }
1448
1449 memcpy(st_ops->data,
1450 data->d_buf + vsi->offset,
1451 type->size);
1452 st_ops->type_id = type_id;
1453
1454 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1455 tname, type_id, var_name, vsi->offset);
1456 }
1457
1458 return 0;
1459 }
1460
bpf_object_init_struct_ops(struct bpf_object * obj)1461 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1462 {
1463 const char *sec_name;
1464 int sec_idx, err;
1465
1466 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1467 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1468
1469 if (desc->sec_type != SEC_ST_OPS)
1470 continue;
1471
1472 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1473 if (!sec_name)
1474 return -LIBBPF_ERRNO__FORMAT;
1475
1476 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1477 if (err)
1478 return err;
1479 }
1480
1481 return 0;
1482 }
1483
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1484 static struct bpf_object *bpf_object__new(const char *path,
1485 const void *obj_buf,
1486 size_t obj_buf_sz,
1487 const char *obj_name)
1488 {
1489 struct bpf_object *obj;
1490 char *end;
1491
1492 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1493 if (!obj) {
1494 pr_warn("alloc memory failed for %s\n", path);
1495 return ERR_PTR(-ENOMEM);
1496 }
1497
1498 strcpy(obj->path, path);
1499 if (obj_name) {
1500 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1501 } else {
1502 /* Using basename() GNU version which doesn't modify arg. */
1503 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1504 end = strchr(obj->name, '.');
1505 if (end)
1506 *end = 0;
1507 }
1508
1509 obj->efile.fd = -1;
1510 /*
1511 * Caller of this function should also call
1512 * bpf_object__elf_finish() after data collection to return
1513 * obj_buf to user. If not, we should duplicate the buffer to
1514 * avoid user freeing them before elf finish.
1515 */
1516 obj->efile.obj_buf = obj_buf;
1517 obj->efile.obj_buf_sz = obj_buf_sz;
1518 obj->efile.btf_maps_shndx = -1;
1519 obj->kconfig_map_idx = -1;
1520 obj->arena_map_idx = -1;
1521
1522 obj->kern_version = get_kernel_version();
1523 obj->state = OBJ_OPEN;
1524
1525 return obj;
1526 }
1527
bpf_object__elf_finish(struct bpf_object * obj)1528 static void bpf_object__elf_finish(struct bpf_object *obj)
1529 {
1530 if (!obj->efile.elf)
1531 return;
1532
1533 elf_end(obj->efile.elf);
1534 obj->efile.elf = NULL;
1535 obj->efile.ehdr = NULL;
1536 obj->efile.symbols = NULL;
1537 obj->efile.arena_data = NULL;
1538
1539 zfree(&obj->efile.secs);
1540 obj->efile.sec_cnt = 0;
1541 zclose(obj->efile.fd);
1542 obj->efile.obj_buf = NULL;
1543 obj->efile.obj_buf_sz = 0;
1544 }
1545
bpf_object__elf_init(struct bpf_object * obj)1546 static int bpf_object__elf_init(struct bpf_object *obj)
1547 {
1548 Elf64_Ehdr *ehdr;
1549 int err = 0;
1550 Elf *elf;
1551
1552 if (obj->efile.elf) {
1553 pr_warn("elf: init internal error\n");
1554 return -LIBBPF_ERRNO__LIBELF;
1555 }
1556
1557 if (obj->efile.obj_buf_sz > 0) {
1558 /* obj_buf should have been validated by bpf_object__open_mem(). */
1559 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1560 } else {
1561 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1562 if (obj->efile.fd < 0) {
1563 err = -errno;
1564 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err));
1565 return err;
1566 }
1567
1568 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1569 }
1570
1571 if (!elf) {
1572 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1573 err = -LIBBPF_ERRNO__LIBELF;
1574 goto errout;
1575 }
1576
1577 obj->efile.elf = elf;
1578
1579 if (elf_kind(elf) != ELF_K_ELF) {
1580 err = -LIBBPF_ERRNO__FORMAT;
1581 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1582 goto errout;
1583 }
1584
1585 if (gelf_getclass(elf) != ELFCLASS64) {
1586 err = -LIBBPF_ERRNO__FORMAT;
1587 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1588 goto errout;
1589 }
1590
1591 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1592 if (!obj->efile.ehdr) {
1593 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1594 err = -LIBBPF_ERRNO__FORMAT;
1595 goto errout;
1596 }
1597
1598 /* Validate ELF object endianness... */
1599 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
1600 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
1601 err = -LIBBPF_ERRNO__ENDIAN;
1602 pr_warn("elf: '%s' has unknown byte order\n", obj->path);
1603 goto errout;
1604 }
1605 /* and save after bpf_object_open() frees ELF data */
1606 obj->byteorder = ehdr->e_ident[EI_DATA];
1607
1608 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1609 pr_warn("elf: failed to get section names section index for %s: %s\n",
1610 obj->path, elf_errmsg(-1));
1611 err = -LIBBPF_ERRNO__FORMAT;
1612 goto errout;
1613 }
1614
1615 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1616 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1617 pr_warn("elf: failed to get section names strings from %s: %s\n",
1618 obj->path, elf_errmsg(-1));
1619 err = -LIBBPF_ERRNO__FORMAT;
1620 goto errout;
1621 }
1622
1623 /* Old LLVM set e_machine to EM_NONE */
1624 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1625 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1626 err = -LIBBPF_ERRNO__FORMAT;
1627 goto errout;
1628 }
1629
1630 return 0;
1631 errout:
1632 bpf_object__elf_finish(obj);
1633 return err;
1634 }
1635
is_native_endianness(struct bpf_object * obj)1636 static bool is_native_endianness(struct bpf_object *obj)
1637 {
1638 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1639 return obj->byteorder == ELFDATA2LSB;
1640 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1641 return obj->byteorder == ELFDATA2MSB;
1642 #else
1643 # error "Unrecognized __BYTE_ORDER__"
1644 #endif
1645 }
1646
1647 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1648 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1649 {
1650 if (!data) {
1651 pr_warn("invalid license section in %s\n", obj->path);
1652 return -LIBBPF_ERRNO__FORMAT;
1653 }
1654 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1655 * go over allowed ELF data section buffer
1656 */
1657 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1658 pr_debug("license of %s is %s\n", obj->path, obj->license);
1659 return 0;
1660 }
1661
1662 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1663 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1664 {
1665 __u32 kver;
1666
1667 if (!data || size != sizeof(kver)) {
1668 pr_warn("invalid kver section in %s\n", obj->path);
1669 return -LIBBPF_ERRNO__FORMAT;
1670 }
1671 memcpy(&kver, data, sizeof(kver));
1672 obj->kern_version = kver;
1673 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1674 return 0;
1675 }
1676
bpf_map_type__is_map_in_map(enum bpf_map_type type)1677 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1678 {
1679 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1680 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1681 return true;
1682 return false;
1683 }
1684
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1685 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1686 {
1687 Elf_Data *data;
1688 Elf_Scn *scn;
1689
1690 if (!name)
1691 return -EINVAL;
1692
1693 scn = elf_sec_by_name(obj, name);
1694 data = elf_sec_data(obj, scn);
1695 if (data) {
1696 *size = data->d_size;
1697 return 0; /* found it */
1698 }
1699
1700 return -ENOENT;
1701 }
1702
find_elf_var_sym(const struct bpf_object * obj,const char * name)1703 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1704 {
1705 Elf_Data *symbols = obj->efile.symbols;
1706 const char *sname;
1707 size_t si;
1708
1709 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1710 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1711
1712 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1713 continue;
1714
1715 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1716 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1717 continue;
1718
1719 sname = elf_sym_str(obj, sym->st_name);
1720 if (!sname) {
1721 pr_warn("failed to get sym name string for var %s\n", name);
1722 return ERR_PTR(-EIO);
1723 }
1724 if (strcmp(name, sname) == 0)
1725 return sym;
1726 }
1727
1728 return ERR_PTR(-ENOENT);
1729 }
1730
1731 #ifndef MFD_CLOEXEC
1732 #define MFD_CLOEXEC 0x0001U
1733 #endif
1734 #ifndef MFD_NOEXEC_SEAL
1735 #define MFD_NOEXEC_SEAL 0x0008U
1736 #endif
1737
create_placeholder_fd(void)1738 static int create_placeholder_fd(void)
1739 {
1740 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL;
1741 const char *name = "libbpf-placeholder-fd";
1742 int fd;
1743
1744 fd = ensure_good_fd(sys_memfd_create(name, flags));
1745 if (fd >= 0)
1746 return fd;
1747 else if (errno != EINVAL)
1748 return -errno;
1749
1750 /* Possibly running on kernel without MFD_NOEXEC_SEAL */
1751 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL));
1752 if (fd < 0)
1753 return -errno;
1754 return fd;
1755 }
1756
bpf_object__add_map(struct bpf_object * obj)1757 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1758 {
1759 struct bpf_map *map;
1760 int err;
1761
1762 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1763 sizeof(*obj->maps), obj->nr_maps + 1);
1764 if (err)
1765 return ERR_PTR(err);
1766
1767 map = &obj->maps[obj->nr_maps++];
1768 map->obj = obj;
1769 /* Preallocate map FD without actually creating BPF map just yet.
1770 * These map FD "placeholders" will be reused later without changing
1771 * FD value when map is actually created in the kernel.
1772 *
1773 * This is useful to be able to perform BPF program relocations
1774 * without having to create BPF maps before that step. This allows us
1775 * to finalize and load BTF very late in BPF object's loading phase,
1776 * right before BPF maps have to be created and BPF programs have to
1777 * be loaded. By having these map FD placeholders we can perform all
1778 * the sanitizations, relocations, and any other adjustments before we
1779 * start creating actual BPF kernel objects (BTF, maps, progs).
1780 */
1781 map->fd = create_placeholder_fd();
1782 if (map->fd < 0)
1783 return ERR_PTR(map->fd);
1784 map->inner_map_fd = -1;
1785 map->autocreate = true;
1786
1787 return map;
1788 }
1789
array_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1790 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1791 {
1792 const long page_sz = sysconf(_SC_PAGE_SIZE);
1793 size_t map_sz;
1794
1795 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1796 map_sz = roundup(map_sz, page_sz);
1797 return map_sz;
1798 }
1799
bpf_map_mmap_sz(const struct bpf_map * map)1800 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1801 {
1802 const long page_sz = sysconf(_SC_PAGE_SIZE);
1803
1804 switch (map->def.type) {
1805 case BPF_MAP_TYPE_ARRAY:
1806 return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1807 case BPF_MAP_TYPE_ARENA:
1808 return page_sz * map->def.max_entries;
1809 default:
1810 return 0; /* not supported */
1811 }
1812 }
1813
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1814 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1815 {
1816 void *mmaped;
1817
1818 if (!map->mmaped)
1819 return -EINVAL;
1820
1821 if (old_sz == new_sz)
1822 return 0;
1823
1824 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1825 if (mmaped == MAP_FAILED)
1826 return -errno;
1827
1828 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1829 munmap(map->mmaped, old_sz);
1830 map->mmaped = mmaped;
1831 return 0;
1832 }
1833
internal_map_name(struct bpf_object * obj,const char * real_name)1834 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1835 {
1836 char map_name[BPF_OBJ_NAME_LEN], *p;
1837 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1838
1839 /* This is one of the more confusing parts of libbpf for various
1840 * reasons, some of which are historical. The original idea for naming
1841 * internal names was to include as much of BPF object name prefix as
1842 * possible, so that it can be distinguished from similar internal
1843 * maps of a different BPF object.
1844 * As an example, let's say we have bpf_object named 'my_object_name'
1845 * and internal map corresponding to '.rodata' ELF section. The final
1846 * map name advertised to user and to the kernel will be
1847 * 'my_objec.rodata', taking first 8 characters of object name and
1848 * entire 7 characters of '.rodata'.
1849 * Somewhat confusingly, if internal map ELF section name is shorter
1850 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1851 * for the suffix, even though we only have 4 actual characters, and
1852 * resulting map will be called 'my_objec.bss', not even using all 15
1853 * characters allowed by the kernel. Oh well, at least the truncated
1854 * object name is somewhat consistent in this case. But if the map
1855 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1856 * (8 chars) and thus will be left with only first 7 characters of the
1857 * object name ('my_obje'). Happy guessing, user, that the final map
1858 * name will be "my_obje.kconfig".
1859 * Now, with libbpf starting to support arbitrarily named .rodata.*
1860 * and .data.* data sections, it's possible that ELF section name is
1861 * longer than allowed 15 chars, so we now need to be careful to take
1862 * only up to 15 first characters of ELF name, taking no BPF object
1863 * name characters at all. So '.rodata.abracadabra' will result in
1864 * '.rodata.abracad' kernel and user-visible name.
1865 * We need to keep this convoluted logic intact for .data, .bss and
1866 * .rodata maps, but for new custom .data.custom and .rodata.custom
1867 * maps we use their ELF names as is, not prepending bpf_object name
1868 * in front. We still need to truncate them to 15 characters for the
1869 * kernel. Full name can be recovered for such maps by using DATASEC
1870 * BTF type associated with such map's value type, though.
1871 */
1872 if (sfx_len >= BPF_OBJ_NAME_LEN)
1873 sfx_len = BPF_OBJ_NAME_LEN - 1;
1874
1875 /* if there are two or more dots in map name, it's a custom dot map */
1876 if (strchr(real_name + 1, '.') != NULL)
1877 pfx_len = 0;
1878 else
1879 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1880
1881 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1882 sfx_len, real_name);
1883
1884 /* sanities map name to characters allowed by kernel */
1885 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1886 if (!isalnum(*p) && *p != '_' && *p != '.')
1887 *p = '_';
1888
1889 return strdup(map_name);
1890 }
1891
1892 static int
1893 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1894
1895 /* Internal BPF map is mmap()'able only if at least one of corresponding
1896 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1897 * variable and it's not marked as __hidden (which turns it into, effectively,
1898 * a STATIC variable).
1899 */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1900 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1901 {
1902 const struct btf_type *t, *vt;
1903 struct btf_var_secinfo *vsi;
1904 int i, n;
1905
1906 if (!map->btf_value_type_id)
1907 return false;
1908
1909 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1910 if (!btf_is_datasec(t))
1911 return false;
1912
1913 vsi = btf_var_secinfos(t);
1914 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1915 vt = btf__type_by_id(obj->btf, vsi->type);
1916 if (!btf_is_var(vt))
1917 continue;
1918
1919 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1920 return true;
1921 }
1922
1923 return false;
1924 }
1925
1926 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1927 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1928 const char *real_name, int sec_idx, void *data, size_t data_sz)
1929 {
1930 struct bpf_map_def *def;
1931 struct bpf_map *map;
1932 size_t mmap_sz;
1933 int err;
1934
1935 map = bpf_object__add_map(obj);
1936 if (IS_ERR(map))
1937 return PTR_ERR(map);
1938
1939 map->libbpf_type = type;
1940 map->sec_idx = sec_idx;
1941 map->sec_offset = 0;
1942 map->real_name = strdup(real_name);
1943 map->name = internal_map_name(obj, real_name);
1944 if (!map->real_name || !map->name) {
1945 zfree(&map->real_name);
1946 zfree(&map->name);
1947 return -ENOMEM;
1948 }
1949
1950 def = &map->def;
1951 def->type = BPF_MAP_TYPE_ARRAY;
1952 def->key_size = sizeof(int);
1953 def->value_size = data_sz;
1954 def->max_entries = 1;
1955 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1956 ? BPF_F_RDONLY_PROG : 0;
1957
1958 /* failures are fine because of maps like .rodata.str1.1 */
1959 (void) map_fill_btf_type_info(obj, map);
1960
1961 if (map_is_mmapable(obj, map))
1962 def->map_flags |= BPF_F_MMAPABLE;
1963
1964 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1965 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1966
1967 mmap_sz = bpf_map_mmap_sz(map);
1968 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1969 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1970 if (map->mmaped == MAP_FAILED) {
1971 err = -errno;
1972 map->mmaped = NULL;
1973 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err));
1974 zfree(&map->real_name);
1975 zfree(&map->name);
1976 return err;
1977 }
1978
1979 if (data)
1980 memcpy(map->mmaped, data, data_sz);
1981
1982 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1983 return 0;
1984 }
1985
bpf_object__init_global_data_maps(struct bpf_object * obj)1986 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1987 {
1988 struct elf_sec_desc *sec_desc;
1989 const char *sec_name;
1990 int err = 0, sec_idx;
1991
1992 /*
1993 * Populate obj->maps with libbpf internal maps.
1994 */
1995 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1996 sec_desc = &obj->efile.secs[sec_idx];
1997
1998 /* Skip recognized sections with size 0. */
1999 if (!sec_desc->data || sec_desc->data->d_size == 0)
2000 continue;
2001
2002 switch (sec_desc->sec_type) {
2003 case SEC_DATA:
2004 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2005 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
2006 sec_name, sec_idx,
2007 sec_desc->data->d_buf,
2008 sec_desc->data->d_size);
2009 break;
2010 case SEC_RODATA:
2011 obj->has_rodata = true;
2012 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2013 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
2014 sec_name, sec_idx,
2015 sec_desc->data->d_buf,
2016 sec_desc->data->d_size);
2017 break;
2018 case SEC_BSS:
2019 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2020 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
2021 sec_name, sec_idx,
2022 NULL,
2023 sec_desc->data->d_size);
2024 break;
2025 default:
2026 /* skip */
2027 break;
2028 }
2029 if (err)
2030 return err;
2031 }
2032 return 0;
2033 }
2034
2035
find_extern_by_name(const struct bpf_object * obj,const void * name)2036 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2037 const void *name)
2038 {
2039 int i;
2040
2041 for (i = 0; i < obj->nr_extern; i++) {
2042 if (strcmp(obj->externs[i].name, name) == 0)
2043 return &obj->externs[i];
2044 }
2045 return NULL;
2046 }
2047
find_extern_by_name_with_len(const struct bpf_object * obj,const void * name,int len)2048 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2049 const void *name, int len)
2050 {
2051 const char *ext_name;
2052 int i;
2053
2054 for (i = 0; i < obj->nr_extern; i++) {
2055 ext_name = obj->externs[i].name;
2056 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2057 return &obj->externs[i];
2058 }
2059 return NULL;
2060 }
2061
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)2062 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2063 char value)
2064 {
2065 switch (ext->kcfg.type) {
2066 case KCFG_BOOL:
2067 if (value == 'm') {
2068 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2069 ext->name, value);
2070 return -EINVAL;
2071 }
2072 *(bool *)ext_val = value == 'y' ? true : false;
2073 break;
2074 case KCFG_TRISTATE:
2075 if (value == 'y')
2076 *(enum libbpf_tristate *)ext_val = TRI_YES;
2077 else if (value == 'm')
2078 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
2079 else /* value == 'n' */
2080 *(enum libbpf_tristate *)ext_val = TRI_NO;
2081 break;
2082 case KCFG_CHAR:
2083 *(char *)ext_val = value;
2084 break;
2085 case KCFG_UNKNOWN:
2086 case KCFG_INT:
2087 case KCFG_CHAR_ARR:
2088 default:
2089 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2090 ext->name, value);
2091 return -EINVAL;
2092 }
2093 ext->is_set = true;
2094 return 0;
2095 }
2096
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)2097 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2098 const char *value)
2099 {
2100 size_t len;
2101
2102 if (ext->kcfg.type != KCFG_CHAR_ARR) {
2103 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2104 ext->name, value);
2105 return -EINVAL;
2106 }
2107
2108 len = strlen(value);
2109 if (len < 2 || value[len - 1] != '"') {
2110 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2111 ext->name, value);
2112 return -EINVAL;
2113 }
2114
2115 /* strip quotes */
2116 len -= 2;
2117 if (len >= ext->kcfg.sz) {
2118 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2119 ext->name, value, len, ext->kcfg.sz - 1);
2120 len = ext->kcfg.sz - 1;
2121 }
2122 memcpy(ext_val, value + 1, len);
2123 ext_val[len] = '\0';
2124 ext->is_set = true;
2125 return 0;
2126 }
2127
parse_u64(const char * value,__u64 * res)2128 static int parse_u64(const char *value, __u64 *res)
2129 {
2130 char *value_end;
2131 int err;
2132
2133 errno = 0;
2134 *res = strtoull(value, &value_end, 0);
2135 if (errno) {
2136 err = -errno;
2137 pr_warn("failed to parse '%s': %s\n", value, errstr(err));
2138 return err;
2139 }
2140 if (*value_end) {
2141 pr_warn("failed to parse '%s' as integer completely\n", value);
2142 return -EINVAL;
2143 }
2144 return 0;
2145 }
2146
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)2147 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2148 {
2149 int bit_sz = ext->kcfg.sz * 8;
2150
2151 if (ext->kcfg.sz == 8)
2152 return true;
2153
2154 /* Validate that value stored in u64 fits in integer of `ext->sz`
2155 * bytes size without any loss of information. If the target integer
2156 * is signed, we rely on the following limits of integer type of
2157 * Y bits and subsequent transformation:
2158 *
2159 * -2^(Y-1) <= X <= 2^(Y-1) - 1
2160 * 0 <= X + 2^(Y-1) <= 2^Y - 1
2161 * 0 <= X + 2^(Y-1) < 2^Y
2162 *
2163 * For unsigned target integer, check that all the (64 - Y) bits are
2164 * zero.
2165 */
2166 if (ext->kcfg.is_signed)
2167 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2168 else
2169 return (v >> bit_sz) == 0;
2170 }
2171
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)2172 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2173 __u64 value)
2174 {
2175 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2176 ext->kcfg.type != KCFG_BOOL) {
2177 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2178 ext->name, (unsigned long long)value);
2179 return -EINVAL;
2180 }
2181 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2182 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2183 ext->name, (unsigned long long)value);
2184 return -EINVAL;
2185
2186 }
2187 if (!is_kcfg_value_in_range(ext, value)) {
2188 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2189 ext->name, (unsigned long long)value, ext->kcfg.sz);
2190 return -ERANGE;
2191 }
2192 switch (ext->kcfg.sz) {
2193 case 1:
2194 *(__u8 *)ext_val = value;
2195 break;
2196 case 2:
2197 *(__u16 *)ext_val = value;
2198 break;
2199 case 4:
2200 *(__u32 *)ext_val = value;
2201 break;
2202 case 8:
2203 *(__u64 *)ext_val = value;
2204 break;
2205 default:
2206 return -EINVAL;
2207 }
2208 ext->is_set = true;
2209 return 0;
2210 }
2211
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)2212 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2213 char *buf, void *data)
2214 {
2215 struct extern_desc *ext;
2216 char *sep, *value;
2217 int len, err = 0;
2218 void *ext_val;
2219 __u64 num;
2220
2221 if (!str_has_pfx(buf, "CONFIG_"))
2222 return 0;
2223
2224 sep = strchr(buf, '=');
2225 if (!sep) {
2226 pr_warn("failed to parse '%s': no separator\n", buf);
2227 return -EINVAL;
2228 }
2229
2230 /* Trim ending '\n' */
2231 len = strlen(buf);
2232 if (buf[len - 1] == '\n')
2233 buf[len - 1] = '\0';
2234 /* Split on '=' and ensure that a value is present. */
2235 *sep = '\0';
2236 if (!sep[1]) {
2237 *sep = '=';
2238 pr_warn("failed to parse '%s': no value\n", buf);
2239 return -EINVAL;
2240 }
2241
2242 ext = find_extern_by_name(obj, buf);
2243 if (!ext || ext->is_set)
2244 return 0;
2245
2246 ext_val = data + ext->kcfg.data_off;
2247 value = sep + 1;
2248
2249 switch (*value) {
2250 case 'y': case 'n': case 'm':
2251 err = set_kcfg_value_tri(ext, ext_val, *value);
2252 break;
2253 case '"':
2254 err = set_kcfg_value_str(ext, ext_val, value);
2255 break;
2256 default:
2257 /* assume integer */
2258 err = parse_u64(value, &num);
2259 if (err) {
2260 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2261 return err;
2262 }
2263 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2264 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2265 return -EINVAL;
2266 }
2267 err = set_kcfg_value_num(ext, ext_val, num);
2268 break;
2269 }
2270 if (err)
2271 return err;
2272 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2273 return 0;
2274 }
2275
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)2276 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2277 {
2278 char buf[PATH_MAX];
2279 struct utsname uts;
2280 int len, err = 0;
2281 gzFile file;
2282
2283 uname(&uts);
2284 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2285 if (len < 0)
2286 return -EINVAL;
2287 else if (len >= PATH_MAX)
2288 return -ENAMETOOLONG;
2289
2290 /* gzopen also accepts uncompressed files. */
2291 file = gzopen(buf, "re");
2292 if (!file)
2293 file = gzopen("/proc/config.gz", "re");
2294
2295 if (!file) {
2296 pr_warn("failed to open system Kconfig\n");
2297 return -ENOENT;
2298 }
2299
2300 while (gzgets(file, buf, sizeof(buf))) {
2301 err = bpf_object__process_kconfig_line(obj, buf, data);
2302 if (err) {
2303 pr_warn("error parsing system Kconfig line '%s': %s\n",
2304 buf, errstr(err));
2305 goto out;
2306 }
2307 }
2308
2309 out:
2310 gzclose(file);
2311 return err;
2312 }
2313
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2314 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2315 const char *config, void *data)
2316 {
2317 char buf[PATH_MAX];
2318 int err = 0;
2319 FILE *file;
2320
2321 file = fmemopen((void *)config, strlen(config), "r");
2322 if (!file) {
2323 err = -errno;
2324 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err));
2325 return err;
2326 }
2327
2328 while (fgets(buf, sizeof(buf), file)) {
2329 err = bpf_object__process_kconfig_line(obj, buf, data);
2330 if (err) {
2331 pr_warn("error parsing in-memory Kconfig line '%s': %s\n",
2332 buf, errstr(err));
2333 break;
2334 }
2335 }
2336
2337 fclose(file);
2338 return err;
2339 }
2340
bpf_object__init_kconfig_map(struct bpf_object * obj)2341 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2342 {
2343 struct extern_desc *last_ext = NULL, *ext;
2344 size_t map_sz;
2345 int i, err;
2346
2347 for (i = 0; i < obj->nr_extern; i++) {
2348 ext = &obj->externs[i];
2349 if (ext->type == EXT_KCFG)
2350 last_ext = ext;
2351 }
2352
2353 if (!last_ext)
2354 return 0;
2355
2356 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2357 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2358 ".kconfig", obj->efile.symbols_shndx,
2359 NULL, map_sz);
2360 if (err)
2361 return err;
2362
2363 obj->kconfig_map_idx = obj->nr_maps - 1;
2364
2365 return 0;
2366 }
2367
2368 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2369 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2370 {
2371 const struct btf_type *t = btf__type_by_id(btf, id);
2372
2373 if (res_id)
2374 *res_id = id;
2375
2376 while (btf_is_mod(t) || btf_is_typedef(t)) {
2377 if (res_id)
2378 *res_id = t->type;
2379 t = btf__type_by_id(btf, t->type);
2380 }
2381
2382 return t;
2383 }
2384
2385 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2386 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2387 {
2388 const struct btf_type *t;
2389
2390 t = skip_mods_and_typedefs(btf, id, NULL);
2391 if (!btf_is_ptr(t))
2392 return NULL;
2393
2394 t = skip_mods_and_typedefs(btf, t->type, res_id);
2395
2396 return btf_is_func_proto(t) ? t : NULL;
2397 }
2398
__btf_kind_str(__u16 kind)2399 static const char *__btf_kind_str(__u16 kind)
2400 {
2401 switch (kind) {
2402 case BTF_KIND_UNKN: return "void";
2403 case BTF_KIND_INT: return "int";
2404 case BTF_KIND_PTR: return "ptr";
2405 case BTF_KIND_ARRAY: return "array";
2406 case BTF_KIND_STRUCT: return "struct";
2407 case BTF_KIND_UNION: return "union";
2408 case BTF_KIND_ENUM: return "enum";
2409 case BTF_KIND_FWD: return "fwd";
2410 case BTF_KIND_TYPEDEF: return "typedef";
2411 case BTF_KIND_VOLATILE: return "volatile";
2412 case BTF_KIND_CONST: return "const";
2413 case BTF_KIND_RESTRICT: return "restrict";
2414 case BTF_KIND_FUNC: return "func";
2415 case BTF_KIND_FUNC_PROTO: return "func_proto";
2416 case BTF_KIND_VAR: return "var";
2417 case BTF_KIND_DATASEC: return "datasec";
2418 case BTF_KIND_FLOAT: return "float";
2419 case BTF_KIND_DECL_TAG: return "decl_tag";
2420 case BTF_KIND_TYPE_TAG: return "type_tag";
2421 case BTF_KIND_ENUM64: return "enum64";
2422 default: return "unknown";
2423 }
2424 }
2425
btf_kind_str(const struct btf_type * t)2426 const char *btf_kind_str(const struct btf_type *t)
2427 {
2428 return __btf_kind_str(btf_kind(t));
2429 }
2430
2431 /*
2432 * Fetch integer attribute of BTF map definition. Such attributes are
2433 * represented using a pointer to an array, in which dimensionality of array
2434 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2435 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2436 * type definition, while using only sizeof(void *) space in ELF data section.
2437 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2438 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2439 const struct btf_member *m, __u32 *res)
2440 {
2441 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2442 const char *name = btf__name_by_offset(btf, m->name_off);
2443 const struct btf_array *arr_info;
2444 const struct btf_type *arr_t;
2445
2446 if (!btf_is_ptr(t)) {
2447 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2448 map_name, name, btf_kind_str(t));
2449 return false;
2450 }
2451
2452 arr_t = btf__type_by_id(btf, t->type);
2453 if (!arr_t) {
2454 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2455 map_name, name, t->type);
2456 return false;
2457 }
2458 if (!btf_is_array(arr_t)) {
2459 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2460 map_name, name, btf_kind_str(arr_t));
2461 return false;
2462 }
2463 arr_info = btf_array(arr_t);
2464 *res = arr_info->nelems;
2465 return true;
2466 }
2467
get_map_field_long(const char * map_name,const struct btf * btf,const struct btf_member * m,__u64 * res)2468 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2469 const struct btf_member *m, __u64 *res)
2470 {
2471 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2472 const char *name = btf__name_by_offset(btf, m->name_off);
2473
2474 if (btf_is_ptr(t)) {
2475 __u32 res32;
2476 bool ret;
2477
2478 ret = get_map_field_int(map_name, btf, m, &res32);
2479 if (ret)
2480 *res = (__u64)res32;
2481 return ret;
2482 }
2483
2484 if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2485 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2486 map_name, name, btf_kind_str(t));
2487 return false;
2488 }
2489
2490 if (btf_vlen(t) != 1) {
2491 pr_warn("map '%s': attr '%s': invalid __ulong\n",
2492 map_name, name);
2493 return false;
2494 }
2495
2496 if (btf_is_enum(t)) {
2497 const struct btf_enum *e = btf_enum(t);
2498
2499 *res = e->val;
2500 } else {
2501 const struct btf_enum64 *e = btf_enum64(t);
2502
2503 *res = btf_enum64_value(e);
2504 }
2505 return true;
2506 }
2507
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2508 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2509 {
2510 int len;
2511
2512 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2513 if (len < 0)
2514 return -EINVAL;
2515 if (len >= buf_sz)
2516 return -ENAMETOOLONG;
2517
2518 return 0;
2519 }
2520
build_map_pin_path(struct bpf_map * map,const char * path)2521 static int build_map_pin_path(struct bpf_map *map, const char *path)
2522 {
2523 char buf[PATH_MAX];
2524 int err;
2525
2526 if (!path)
2527 path = BPF_FS_DEFAULT_PATH;
2528
2529 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2530 if (err)
2531 return err;
2532
2533 return bpf_map__set_pin_path(map, buf);
2534 }
2535
2536 /* should match definition in bpf_helpers.h */
2537 enum libbpf_pin_type {
2538 LIBBPF_PIN_NONE,
2539 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2540 LIBBPF_PIN_BY_NAME,
2541 };
2542
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2543 int parse_btf_map_def(const char *map_name, struct btf *btf,
2544 const struct btf_type *def_t, bool strict,
2545 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2546 {
2547 const struct btf_type *t;
2548 const struct btf_member *m;
2549 bool is_inner = inner_def == NULL;
2550 int vlen, i;
2551
2552 vlen = btf_vlen(def_t);
2553 m = btf_members(def_t);
2554 for (i = 0; i < vlen; i++, m++) {
2555 const char *name = btf__name_by_offset(btf, m->name_off);
2556
2557 if (!name) {
2558 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2559 return -EINVAL;
2560 }
2561 if (strcmp(name, "type") == 0) {
2562 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2563 return -EINVAL;
2564 map_def->parts |= MAP_DEF_MAP_TYPE;
2565 } else if (strcmp(name, "max_entries") == 0) {
2566 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2567 return -EINVAL;
2568 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2569 } else if (strcmp(name, "map_flags") == 0) {
2570 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2571 return -EINVAL;
2572 map_def->parts |= MAP_DEF_MAP_FLAGS;
2573 } else if (strcmp(name, "numa_node") == 0) {
2574 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2575 return -EINVAL;
2576 map_def->parts |= MAP_DEF_NUMA_NODE;
2577 } else if (strcmp(name, "key_size") == 0) {
2578 __u32 sz;
2579
2580 if (!get_map_field_int(map_name, btf, m, &sz))
2581 return -EINVAL;
2582 if (map_def->key_size && map_def->key_size != sz) {
2583 pr_warn("map '%s': conflicting key size %u != %u.\n",
2584 map_name, map_def->key_size, sz);
2585 return -EINVAL;
2586 }
2587 map_def->key_size = sz;
2588 map_def->parts |= MAP_DEF_KEY_SIZE;
2589 } else if (strcmp(name, "key") == 0) {
2590 __s64 sz;
2591
2592 t = btf__type_by_id(btf, m->type);
2593 if (!t) {
2594 pr_warn("map '%s': key type [%d] not found.\n",
2595 map_name, m->type);
2596 return -EINVAL;
2597 }
2598 if (!btf_is_ptr(t)) {
2599 pr_warn("map '%s': key spec is not PTR: %s.\n",
2600 map_name, btf_kind_str(t));
2601 return -EINVAL;
2602 }
2603 sz = btf__resolve_size(btf, t->type);
2604 if (sz < 0) {
2605 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2606 map_name, t->type, (ssize_t)sz);
2607 return sz;
2608 }
2609 if (map_def->key_size && map_def->key_size != sz) {
2610 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2611 map_name, map_def->key_size, (ssize_t)sz);
2612 return -EINVAL;
2613 }
2614 map_def->key_size = sz;
2615 map_def->key_type_id = t->type;
2616 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2617 } else if (strcmp(name, "value_size") == 0) {
2618 __u32 sz;
2619
2620 if (!get_map_field_int(map_name, btf, m, &sz))
2621 return -EINVAL;
2622 if (map_def->value_size && map_def->value_size != sz) {
2623 pr_warn("map '%s': conflicting value size %u != %u.\n",
2624 map_name, map_def->value_size, sz);
2625 return -EINVAL;
2626 }
2627 map_def->value_size = sz;
2628 map_def->parts |= MAP_DEF_VALUE_SIZE;
2629 } else if (strcmp(name, "value") == 0) {
2630 __s64 sz;
2631
2632 t = btf__type_by_id(btf, m->type);
2633 if (!t) {
2634 pr_warn("map '%s': value type [%d] not found.\n",
2635 map_name, m->type);
2636 return -EINVAL;
2637 }
2638 if (!btf_is_ptr(t)) {
2639 pr_warn("map '%s': value spec is not PTR: %s.\n",
2640 map_name, btf_kind_str(t));
2641 return -EINVAL;
2642 }
2643 sz = btf__resolve_size(btf, t->type);
2644 if (sz < 0) {
2645 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2646 map_name, t->type, (ssize_t)sz);
2647 return sz;
2648 }
2649 if (map_def->value_size && map_def->value_size != sz) {
2650 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2651 map_name, map_def->value_size, (ssize_t)sz);
2652 return -EINVAL;
2653 }
2654 map_def->value_size = sz;
2655 map_def->value_type_id = t->type;
2656 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2657 }
2658 else if (strcmp(name, "values") == 0) {
2659 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2660 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2661 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2662 char inner_map_name[128];
2663 int err;
2664
2665 if (is_inner) {
2666 pr_warn("map '%s': multi-level inner maps not supported.\n",
2667 map_name);
2668 return -ENOTSUP;
2669 }
2670 if (i != vlen - 1) {
2671 pr_warn("map '%s': '%s' member should be last.\n",
2672 map_name, name);
2673 return -EINVAL;
2674 }
2675 if (!is_map_in_map && !is_prog_array) {
2676 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2677 map_name);
2678 return -ENOTSUP;
2679 }
2680 if (map_def->value_size && map_def->value_size != 4) {
2681 pr_warn("map '%s': conflicting value size %u != 4.\n",
2682 map_name, map_def->value_size);
2683 return -EINVAL;
2684 }
2685 map_def->value_size = 4;
2686 t = btf__type_by_id(btf, m->type);
2687 if (!t) {
2688 pr_warn("map '%s': %s type [%d] not found.\n",
2689 map_name, desc, m->type);
2690 return -EINVAL;
2691 }
2692 if (!btf_is_array(t) || btf_array(t)->nelems) {
2693 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2694 map_name, desc);
2695 return -EINVAL;
2696 }
2697 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2698 if (!btf_is_ptr(t)) {
2699 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2700 map_name, desc, btf_kind_str(t));
2701 return -EINVAL;
2702 }
2703 t = skip_mods_and_typedefs(btf, t->type, NULL);
2704 if (is_prog_array) {
2705 if (!btf_is_func_proto(t)) {
2706 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2707 map_name, btf_kind_str(t));
2708 return -EINVAL;
2709 }
2710 continue;
2711 }
2712 if (!btf_is_struct(t)) {
2713 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2714 map_name, btf_kind_str(t));
2715 return -EINVAL;
2716 }
2717
2718 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2719 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2720 if (err)
2721 return err;
2722
2723 map_def->parts |= MAP_DEF_INNER_MAP;
2724 } else if (strcmp(name, "pinning") == 0) {
2725 __u32 val;
2726
2727 if (is_inner) {
2728 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2729 return -EINVAL;
2730 }
2731 if (!get_map_field_int(map_name, btf, m, &val))
2732 return -EINVAL;
2733 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2734 pr_warn("map '%s': invalid pinning value %u.\n",
2735 map_name, val);
2736 return -EINVAL;
2737 }
2738 map_def->pinning = val;
2739 map_def->parts |= MAP_DEF_PINNING;
2740 } else if (strcmp(name, "map_extra") == 0) {
2741 __u64 map_extra;
2742
2743 if (!get_map_field_long(map_name, btf, m, &map_extra))
2744 return -EINVAL;
2745 map_def->map_extra = map_extra;
2746 map_def->parts |= MAP_DEF_MAP_EXTRA;
2747 } else {
2748 if (strict) {
2749 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2750 return -ENOTSUP;
2751 }
2752 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2753 }
2754 }
2755
2756 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2757 pr_warn("map '%s': map type isn't specified.\n", map_name);
2758 return -EINVAL;
2759 }
2760
2761 return 0;
2762 }
2763
adjust_ringbuf_sz(size_t sz)2764 static size_t adjust_ringbuf_sz(size_t sz)
2765 {
2766 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2767 __u32 mul;
2768
2769 /* if user forgot to set any size, make sure they see error */
2770 if (sz == 0)
2771 return 0;
2772 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2773 * a power-of-2 multiple of kernel's page size. If user diligently
2774 * satisified these conditions, pass the size through.
2775 */
2776 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2777 return sz;
2778
2779 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2780 * user-set size to satisfy both user size request and kernel
2781 * requirements and substitute correct max_entries for map creation.
2782 */
2783 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2784 if (mul * page_sz > sz)
2785 return mul * page_sz;
2786 }
2787
2788 /* if it's impossible to satisfy the conditions (i.e., user size is
2789 * very close to UINT_MAX but is not a power-of-2 multiple of
2790 * page_size) then just return original size and let kernel reject it
2791 */
2792 return sz;
2793 }
2794
map_is_ringbuf(const struct bpf_map * map)2795 static bool map_is_ringbuf(const struct bpf_map *map)
2796 {
2797 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2798 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2799 }
2800
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2801 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2802 {
2803 map->def.type = def->map_type;
2804 map->def.key_size = def->key_size;
2805 map->def.value_size = def->value_size;
2806 map->def.max_entries = def->max_entries;
2807 map->def.map_flags = def->map_flags;
2808 map->map_extra = def->map_extra;
2809
2810 map->numa_node = def->numa_node;
2811 map->btf_key_type_id = def->key_type_id;
2812 map->btf_value_type_id = def->value_type_id;
2813
2814 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2815 if (map_is_ringbuf(map))
2816 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2817
2818 if (def->parts & MAP_DEF_MAP_TYPE)
2819 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2820
2821 if (def->parts & MAP_DEF_KEY_TYPE)
2822 pr_debug("map '%s': found key [%u], sz = %u.\n",
2823 map->name, def->key_type_id, def->key_size);
2824 else if (def->parts & MAP_DEF_KEY_SIZE)
2825 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2826
2827 if (def->parts & MAP_DEF_VALUE_TYPE)
2828 pr_debug("map '%s': found value [%u], sz = %u.\n",
2829 map->name, def->value_type_id, def->value_size);
2830 else if (def->parts & MAP_DEF_VALUE_SIZE)
2831 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2832
2833 if (def->parts & MAP_DEF_MAX_ENTRIES)
2834 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2835 if (def->parts & MAP_DEF_MAP_FLAGS)
2836 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2837 if (def->parts & MAP_DEF_MAP_EXTRA)
2838 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2839 (unsigned long long)def->map_extra);
2840 if (def->parts & MAP_DEF_PINNING)
2841 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2842 if (def->parts & MAP_DEF_NUMA_NODE)
2843 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2844
2845 if (def->parts & MAP_DEF_INNER_MAP)
2846 pr_debug("map '%s': found inner map definition.\n", map->name);
2847 }
2848
btf_var_linkage_str(__u32 linkage)2849 static const char *btf_var_linkage_str(__u32 linkage)
2850 {
2851 switch (linkage) {
2852 case BTF_VAR_STATIC: return "static";
2853 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2854 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2855 default: return "unknown";
2856 }
2857 }
2858
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2859 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2860 const struct btf_type *sec,
2861 int var_idx, int sec_idx,
2862 const Elf_Data *data, bool strict,
2863 const char *pin_root_path)
2864 {
2865 struct btf_map_def map_def = {}, inner_def = {};
2866 const struct btf_type *var, *def;
2867 const struct btf_var_secinfo *vi;
2868 const struct btf_var *var_extra;
2869 const char *map_name;
2870 struct bpf_map *map;
2871 int err;
2872
2873 vi = btf_var_secinfos(sec) + var_idx;
2874 var = btf__type_by_id(obj->btf, vi->type);
2875 var_extra = btf_var(var);
2876 map_name = btf__name_by_offset(obj->btf, var->name_off);
2877
2878 if (map_name == NULL || map_name[0] == '\0') {
2879 pr_warn("map #%d: empty name.\n", var_idx);
2880 return -EINVAL;
2881 }
2882 if ((__u64)vi->offset + vi->size > data->d_size) {
2883 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2884 return -EINVAL;
2885 }
2886 if (!btf_is_var(var)) {
2887 pr_warn("map '%s': unexpected var kind %s.\n",
2888 map_name, btf_kind_str(var));
2889 return -EINVAL;
2890 }
2891 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2892 pr_warn("map '%s': unsupported map linkage %s.\n",
2893 map_name, btf_var_linkage_str(var_extra->linkage));
2894 return -EOPNOTSUPP;
2895 }
2896
2897 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2898 if (!btf_is_struct(def)) {
2899 pr_warn("map '%s': unexpected def kind %s.\n",
2900 map_name, btf_kind_str(var));
2901 return -EINVAL;
2902 }
2903 if (def->size > vi->size) {
2904 pr_warn("map '%s': invalid def size.\n", map_name);
2905 return -EINVAL;
2906 }
2907
2908 map = bpf_object__add_map(obj);
2909 if (IS_ERR(map))
2910 return PTR_ERR(map);
2911 map->name = strdup(map_name);
2912 if (!map->name) {
2913 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2914 return -ENOMEM;
2915 }
2916 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2917 map->def.type = BPF_MAP_TYPE_UNSPEC;
2918 map->sec_idx = sec_idx;
2919 map->sec_offset = vi->offset;
2920 map->btf_var_idx = var_idx;
2921 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2922 map_name, map->sec_idx, map->sec_offset);
2923
2924 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2925 if (err)
2926 return err;
2927
2928 fill_map_from_def(map, &map_def);
2929
2930 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2931 err = build_map_pin_path(map, pin_root_path);
2932 if (err) {
2933 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2934 return err;
2935 }
2936 }
2937
2938 if (map_def.parts & MAP_DEF_INNER_MAP) {
2939 map->inner_map = calloc(1, sizeof(*map->inner_map));
2940 if (!map->inner_map)
2941 return -ENOMEM;
2942 map->inner_map->fd = create_placeholder_fd();
2943 if (map->inner_map->fd < 0)
2944 return map->inner_map->fd;
2945 map->inner_map->sec_idx = sec_idx;
2946 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2947 if (!map->inner_map->name)
2948 return -ENOMEM;
2949 sprintf(map->inner_map->name, "%s.inner", map_name);
2950
2951 fill_map_from_def(map->inner_map, &inner_def);
2952 }
2953
2954 err = map_fill_btf_type_info(obj, map);
2955 if (err)
2956 return err;
2957
2958 return 0;
2959 }
2960
init_arena_map_data(struct bpf_object * obj,struct bpf_map * map,const char * sec_name,int sec_idx,void * data,size_t data_sz)2961 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2962 const char *sec_name, int sec_idx,
2963 void *data, size_t data_sz)
2964 {
2965 const long page_sz = sysconf(_SC_PAGE_SIZE);
2966 size_t mmap_sz;
2967
2968 mmap_sz = bpf_map_mmap_sz(map);
2969 if (roundup(data_sz, page_sz) > mmap_sz) {
2970 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2971 sec_name, mmap_sz, data_sz);
2972 return -E2BIG;
2973 }
2974
2975 obj->arena_data = malloc(data_sz);
2976 if (!obj->arena_data)
2977 return -ENOMEM;
2978 memcpy(obj->arena_data, data, data_sz);
2979 obj->arena_data_sz = data_sz;
2980
2981 /* make bpf_map__init_value() work for ARENA maps */
2982 map->mmaped = obj->arena_data;
2983
2984 return 0;
2985 }
2986
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2987 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2988 const char *pin_root_path)
2989 {
2990 const struct btf_type *sec = NULL;
2991 int nr_types, i, vlen, err;
2992 const struct btf_type *t;
2993 const char *name;
2994 Elf_Data *data;
2995 Elf_Scn *scn;
2996
2997 if (obj->efile.btf_maps_shndx < 0)
2998 return 0;
2999
3000 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
3001 data = elf_sec_data(obj, scn);
3002 if (!scn || !data) {
3003 pr_warn("elf: failed to get %s map definitions for %s\n",
3004 MAPS_ELF_SEC, obj->path);
3005 return -EINVAL;
3006 }
3007
3008 nr_types = btf__type_cnt(obj->btf);
3009 for (i = 1; i < nr_types; i++) {
3010 t = btf__type_by_id(obj->btf, i);
3011 if (!btf_is_datasec(t))
3012 continue;
3013 name = btf__name_by_offset(obj->btf, t->name_off);
3014 if (strcmp(name, MAPS_ELF_SEC) == 0) {
3015 sec = t;
3016 obj->efile.btf_maps_sec_btf_id = i;
3017 break;
3018 }
3019 }
3020
3021 if (!sec) {
3022 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
3023 return -ENOENT;
3024 }
3025
3026 vlen = btf_vlen(sec);
3027 for (i = 0; i < vlen; i++) {
3028 err = bpf_object__init_user_btf_map(obj, sec, i,
3029 obj->efile.btf_maps_shndx,
3030 data, strict,
3031 pin_root_path);
3032 if (err)
3033 return err;
3034 }
3035
3036 for (i = 0; i < obj->nr_maps; i++) {
3037 struct bpf_map *map = &obj->maps[i];
3038
3039 if (map->def.type != BPF_MAP_TYPE_ARENA)
3040 continue;
3041
3042 if (obj->arena_map_idx >= 0) {
3043 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3044 map->name, obj->maps[obj->arena_map_idx].name);
3045 return -EINVAL;
3046 }
3047 obj->arena_map_idx = i;
3048
3049 if (obj->efile.arena_data) {
3050 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3051 obj->efile.arena_data->d_buf,
3052 obj->efile.arena_data->d_size);
3053 if (err)
3054 return err;
3055 }
3056 }
3057 if (obj->efile.arena_data && obj->arena_map_idx < 0) {
3058 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3059 ARENA_SEC);
3060 return -ENOENT;
3061 }
3062
3063 return 0;
3064 }
3065
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)3066 static int bpf_object__init_maps(struct bpf_object *obj,
3067 const struct bpf_object_open_opts *opts)
3068 {
3069 const char *pin_root_path;
3070 bool strict;
3071 int err = 0;
3072
3073 strict = !OPTS_GET(opts, relaxed_maps, false);
3074 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3075
3076 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3077 err = err ?: bpf_object__init_global_data_maps(obj);
3078 err = err ?: bpf_object__init_kconfig_map(obj);
3079 err = err ?: bpf_object_init_struct_ops(obj);
3080
3081 return err;
3082 }
3083
section_have_execinstr(struct bpf_object * obj,int idx)3084 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3085 {
3086 Elf64_Shdr *sh;
3087
3088 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3089 if (!sh)
3090 return false;
3091
3092 return sh->sh_flags & SHF_EXECINSTR;
3093 }
3094
starts_with_qmark(const char * s)3095 static bool starts_with_qmark(const char *s)
3096 {
3097 return s && s[0] == '?';
3098 }
3099
btf_needs_sanitization(struct bpf_object * obj)3100 static bool btf_needs_sanitization(struct bpf_object *obj)
3101 {
3102 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3103 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3104 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3105 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3106 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3107 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3108 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3109 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3110
3111 return !has_func || !has_datasec || !has_func_global || !has_float ||
3112 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3113 }
3114
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)3115 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3116 {
3117 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3118 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3119 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3120 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3121 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3122 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3123 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3124 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3125 int enum64_placeholder_id = 0;
3126 struct btf_type *t;
3127 int i, j, vlen;
3128
3129 for (i = 1; i < btf__type_cnt(btf); i++) {
3130 t = (struct btf_type *)btf__type_by_id(btf, i);
3131
3132 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3133 /* replace VAR/DECL_TAG with INT */
3134 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3135 /*
3136 * using size = 1 is the safest choice, 4 will be too
3137 * big and cause kernel BTF validation failure if
3138 * original variable took less than 4 bytes
3139 */
3140 t->size = 1;
3141 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3142 } else if (!has_datasec && btf_is_datasec(t)) {
3143 /* replace DATASEC with STRUCT */
3144 const struct btf_var_secinfo *v = btf_var_secinfos(t);
3145 struct btf_member *m = btf_members(t);
3146 struct btf_type *vt;
3147 char *name;
3148
3149 name = (char *)btf__name_by_offset(btf, t->name_off);
3150 while (*name) {
3151 if (*name == '.' || *name == '?')
3152 *name = '_';
3153 name++;
3154 }
3155
3156 vlen = btf_vlen(t);
3157 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3158 for (j = 0; j < vlen; j++, v++, m++) {
3159 /* order of field assignments is important */
3160 m->offset = v->offset * 8;
3161 m->type = v->type;
3162 /* preserve variable name as member name */
3163 vt = (void *)btf__type_by_id(btf, v->type);
3164 m->name_off = vt->name_off;
3165 }
3166 } else if (!has_qmark_datasec && btf_is_datasec(t) &&
3167 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3168 /* replace '?' prefix with '_' for DATASEC names */
3169 char *name;
3170
3171 name = (char *)btf__name_by_offset(btf, t->name_off);
3172 if (name[0] == '?')
3173 name[0] = '_';
3174 } else if (!has_func && btf_is_func_proto(t)) {
3175 /* replace FUNC_PROTO with ENUM */
3176 vlen = btf_vlen(t);
3177 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3178 t->size = sizeof(__u32); /* kernel enforced */
3179 } else if (!has_func && btf_is_func(t)) {
3180 /* replace FUNC with TYPEDEF */
3181 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3182 } else if (!has_func_global && btf_is_func(t)) {
3183 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3184 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3185 } else if (!has_float && btf_is_float(t)) {
3186 /* replace FLOAT with an equally-sized empty STRUCT;
3187 * since C compilers do not accept e.g. "float" as a
3188 * valid struct name, make it anonymous
3189 */
3190 t->name_off = 0;
3191 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3192 } else if (!has_type_tag && btf_is_type_tag(t)) {
3193 /* replace TYPE_TAG with a CONST */
3194 t->name_off = 0;
3195 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3196 } else if (!has_enum64 && btf_is_enum(t)) {
3197 /* clear the kflag */
3198 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3199 } else if (!has_enum64 && btf_is_enum64(t)) {
3200 /* replace ENUM64 with a union */
3201 struct btf_member *m;
3202
3203 if (enum64_placeholder_id == 0) {
3204 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3205 if (enum64_placeholder_id < 0)
3206 return enum64_placeholder_id;
3207
3208 t = (struct btf_type *)btf__type_by_id(btf, i);
3209 }
3210
3211 m = btf_members(t);
3212 vlen = btf_vlen(t);
3213 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3214 for (j = 0; j < vlen; j++, m++) {
3215 m->type = enum64_placeholder_id;
3216 m->offset = 0;
3217 }
3218 }
3219 }
3220
3221 return 0;
3222 }
3223
libbpf_needs_btf(const struct bpf_object * obj)3224 static bool libbpf_needs_btf(const struct bpf_object *obj)
3225 {
3226 return obj->efile.btf_maps_shndx >= 0 ||
3227 obj->efile.has_st_ops ||
3228 obj->nr_extern > 0;
3229 }
3230
kernel_needs_btf(const struct bpf_object * obj)3231 static bool kernel_needs_btf(const struct bpf_object *obj)
3232 {
3233 return obj->efile.has_st_ops;
3234 }
3235
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)3236 static int bpf_object__init_btf(struct bpf_object *obj,
3237 Elf_Data *btf_data,
3238 Elf_Data *btf_ext_data)
3239 {
3240 int err = -ENOENT;
3241
3242 if (btf_data) {
3243 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3244 err = libbpf_get_error(obj->btf);
3245 if (err) {
3246 obj->btf = NULL;
3247 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err));
3248 goto out;
3249 }
3250 /* enforce 8-byte pointers for BPF-targeted BTFs */
3251 btf__set_pointer_size(obj->btf, 8);
3252 }
3253 if (btf_ext_data) {
3254 struct btf_ext_info *ext_segs[3];
3255 int seg_num, sec_num;
3256
3257 if (!obj->btf) {
3258 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3259 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3260 goto out;
3261 }
3262 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3263 err = libbpf_get_error(obj->btf_ext);
3264 if (err) {
3265 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n",
3266 BTF_EXT_ELF_SEC, errstr(err));
3267 obj->btf_ext = NULL;
3268 goto out;
3269 }
3270
3271 /* setup .BTF.ext to ELF section mapping */
3272 ext_segs[0] = &obj->btf_ext->func_info;
3273 ext_segs[1] = &obj->btf_ext->line_info;
3274 ext_segs[2] = &obj->btf_ext->core_relo_info;
3275 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3276 struct btf_ext_info *seg = ext_segs[seg_num];
3277 const struct btf_ext_info_sec *sec;
3278 const char *sec_name;
3279 Elf_Scn *scn;
3280
3281 if (seg->sec_cnt == 0)
3282 continue;
3283
3284 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3285 if (!seg->sec_idxs) {
3286 err = -ENOMEM;
3287 goto out;
3288 }
3289
3290 sec_num = 0;
3291 for_each_btf_ext_sec(seg, sec) {
3292 /* preventively increment index to avoid doing
3293 * this before every continue below
3294 */
3295 sec_num++;
3296
3297 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3298 if (str_is_empty(sec_name))
3299 continue;
3300 scn = elf_sec_by_name(obj, sec_name);
3301 if (!scn)
3302 continue;
3303
3304 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3305 }
3306 }
3307 }
3308 out:
3309 if (err && libbpf_needs_btf(obj)) {
3310 pr_warn("BTF is required, but is missing or corrupted.\n");
3311 return err;
3312 }
3313 return 0;
3314 }
3315
compare_vsi_off(const void * _a,const void * _b)3316 static int compare_vsi_off(const void *_a, const void *_b)
3317 {
3318 const struct btf_var_secinfo *a = _a;
3319 const struct btf_var_secinfo *b = _b;
3320
3321 return a->offset - b->offset;
3322 }
3323
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)3324 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3325 struct btf_type *t)
3326 {
3327 __u32 size = 0, i, vars = btf_vlen(t);
3328 const char *sec_name = btf__name_by_offset(btf, t->name_off);
3329 struct btf_var_secinfo *vsi;
3330 bool fixup_offsets = false;
3331 int err;
3332
3333 if (!sec_name) {
3334 pr_debug("No name found in string section for DATASEC kind.\n");
3335 return -ENOENT;
3336 }
3337
3338 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3339 * variable offsets set at the previous step. Further, not every
3340 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3341 * all fixups altogether for such sections and go straight to sorting
3342 * VARs within their DATASEC.
3343 */
3344 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3345 goto sort_vars;
3346
3347 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3348 * fix this up. But BPF static linker already fixes this up and fills
3349 * all the sizes and offsets during static linking. So this step has
3350 * to be optional. But the STV_HIDDEN handling is non-optional for any
3351 * non-extern DATASEC, so the variable fixup loop below handles both
3352 * functions at the same time, paying the cost of BTF VAR <-> ELF
3353 * symbol matching just once.
3354 */
3355 if (t->size == 0) {
3356 err = find_elf_sec_sz(obj, sec_name, &size);
3357 if (err || !size) {
3358 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n",
3359 sec_name, size, errstr(err));
3360 return -ENOENT;
3361 }
3362
3363 t->size = size;
3364 fixup_offsets = true;
3365 }
3366
3367 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3368 const struct btf_type *t_var;
3369 struct btf_var *var;
3370 const char *var_name;
3371 Elf64_Sym *sym;
3372
3373 t_var = btf__type_by_id(btf, vsi->type);
3374 if (!t_var || !btf_is_var(t_var)) {
3375 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3376 return -EINVAL;
3377 }
3378
3379 var = btf_var(t_var);
3380 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3381 continue;
3382
3383 var_name = btf__name_by_offset(btf, t_var->name_off);
3384 if (!var_name) {
3385 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3386 sec_name, i);
3387 return -ENOENT;
3388 }
3389
3390 sym = find_elf_var_sym(obj, var_name);
3391 if (IS_ERR(sym)) {
3392 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3393 sec_name, var_name);
3394 return -ENOENT;
3395 }
3396
3397 if (fixup_offsets)
3398 vsi->offset = sym->st_value;
3399
3400 /* if variable is a global/weak symbol, but has restricted
3401 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3402 * as static. This follows similar logic for functions (BPF
3403 * subprogs) and influences libbpf's further decisions about
3404 * whether to make global data BPF array maps as
3405 * BPF_F_MMAPABLE.
3406 */
3407 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3408 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3409 var->linkage = BTF_VAR_STATIC;
3410 }
3411
3412 sort_vars:
3413 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3414 return 0;
3415 }
3416
bpf_object_fixup_btf(struct bpf_object * obj)3417 static int bpf_object_fixup_btf(struct bpf_object *obj)
3418 {
3419 int i, n, err = 0;
3420
3421 if (!obj->btf)
3422 return 0;
3423
3424 n = btf__type_cnt(obj->btf);
3425 for (i = 1; i < n; i++) {
3426 struct btf_type *t = btf_type_by_id(obj->btf, i);
3427
3428 /* Loader needs to fix up some of the things compiler
3429 * couldn't get its hands on while emitting BTF. This
3430 * is section size and global variable offset. We use
3431 * the info from the ELF itself for this purpose.
3432 */
3433 if (btf_is_datasec(t)) {
3434 err = btf_fixup_datasec(obj, obj->btf, t);
3435 if (err)
3436 return err;
3437 }
3438 }
3439
3440 return 0;
3441 }
3442
prog_needs_vmlinux_btf(struct bpf_program * prog)3443 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3444 {
3445 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3446 prog->type == BPF_PROG_TYPE_LSM)
3447 return true;
3448
3449 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3450 * also need vmlinux BTF
3451 */
3452 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3453 return true;
3454
3455 return false;
3456 }
3457
map_needs_vmlinux_btf(struct bpf_map * map)3458 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3459 {
3460 return bpf_map__is_struct_ops(map);
3461 }
3462
obj_needs_vmlinux_btf(const struct bpf_object * obj)3463 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3464 {
3465 struct bpf_program *prog;
3466 struct bpf_map *map;
3467 int i;
3468
3469 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3470 * is not specified
3471 */
3472 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3473 return true;
3474
3475 /* Support for typed ksyms needs kernel BTF */
3476 for (i = 0; i < obj->nr_extern; i++) {
3477 const struct extern_desc *ext;
3478
3479 ext = &obj->externs[i];
3480 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3481 return true;
3482 }
3483
3484 bpf_object__for_each_program(prog, obj) {
3485 if (!prog->autoload)
3486 continue;
3487 if (prog_needs_vmlinux_btf(prog))
3488 return true;
3489 }
3490
3491 bpf_object__for_each_map(map, obj) {
3492 if (map_needs_vmlinux_btf(map))
3493 return true;
3494 }
3495
3496 return false;
3497 }
3498
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3499 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3500 {
3501 int err;
3502
3503 /* btf_vmlinux could be loaded earlier */
3504 if (obj->btf_vmlinux || obj->gen_loader)
3505 return 0;
3506
3507 if (!force && !obj_needs_vmlinux_btf(obj))
3508 return 0;
3509
3510 obj->btf_vmlinux = btf__load_vmlinux_btf();
3511 err = libbpf_get_error(obj->btf_vmlinux);
3512 if (err) {
3513 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err));
3514 obj->btf_vmlinux = NULL;
3515 return err;
3516 }
3517 return 0;
3518 }
3519
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3520 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3521 {
3522 struct btf *kern_btf = obj->btf;
3523 bool btf_mandatory, sanitize;
3524 int i, err = 0;
3525
3526 if (!obj->btf)
3527 return 0;
3528
3529 if (!kernel_supports(obj, FEAT_BTF)) {
3530 if (kernel_needs_btf(obj)) {
3531 err = -EOPNOTSUPP;
3532 goto report;
3533 }
3534 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3535 return 0;
3536 }
3537
3538 /* Even though some subprogs are global/weak, user might prefer more
3539 * permissive BPF verification process that BPF verifier performs for
3540 * static functions, taking into account more context from the caller
3541 * functions. In such case, they need to mark such subprogs with
3542 * __attribute__((visibility("hidden"))) and libbpf will adjust
3543 * corresponding FUNC BTF type to be marked as static and trigger more
3544 * involved BPF verification process.
3545 */
3546 for (i = 0; i < obj->nr_programs; i++) {
3547 struct bpf_program *prog = &obj->programs[i];
3548 struct btf_type *t;
3549 const char *name;
3550 int j, n;
3551
3552 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3553 continue;
3554
3555 n = btf__type_cnt(obj->btf);
3556 for (j = 1; j < n; j++) {
3557 t = btf_type_by_id(obj->btf, j);
3558 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3559 continue;
3560
3561 name = btf__str_by_offset(obj->btf, t->name_off);
3562 if (strcmp(name, prog->name) != 0)
3563 continue;
3564
3565 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3566 break;
3567 }
3568 }
3569
3570 sanitize = btf_needs_sanitization(obj);
3571 if (sanitize) {
3572 const void *raw_data;
3573 __u32 sz;
3574
3575 /* clone BTF to sanitize a copy and leave the original intact */
3576 raw_data = btf__raw_data(obj->btf, &sz);
3577 kern_btf = btf__new(raw_data, sz);
3578 err = libbpf_get_error(kern_btf);
3579 if (err)
3580 return err;
3581
3582 /* enforce 8-byte pointers for BPF-targeted BTFs */
3583 btf__set_pointer_size(obj->btf, 8);
3584 err = bpf_object__sanitize_btf(obj, kern_btf);
3585 if (err)
3586 return err;
3587 }
3588
3589 if (obj->gen_loader) {
3590 __u32 raw_size = 0;
3591 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3592
3593 if (!raw_data)
3594 return -ENOMEM;
3595 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3596 /* Pretend to have valid FD to pass various fd >= 0 checks.
3597 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3598 */
3599 btf__set_fd(kern_btf, 0);
3600 } else {
3601 /* currently BPF_BTF_LOAD only supports log_level 1 */
3602 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3603 obj->log_level ? 1 : 0, obj->token_fd);
3604 }
3605 if (sanitize) {
3606 if (!err) {
3607 /* move fd to libbpf's BTF */
3608 btf__set_fd(obj->btf, btf__fd(kern_btf));
3609 btf__set_fd(kern_btf, -1);
3610 }
3611 btf__free(kern_btf);
3612 }
3613 report:
3614 if (err) {
3615 btf_mandatory = kernel_needs_btf(obj);
3616 if (btf_mandatory) {
3617 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n",
3618 errstr(err));
3619 } else {
3620 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n",
3621 errstr(err));
3622 err = 0;
3623 }
3624 }
3625 return err;
3626 }
3627
elf_sym_str(const struct bpf_object * obj,size_t off)3628 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3629 {
3630 const char *name;
3631
3632 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3633 if (!name) {
3634 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3635 off, obj->path, elf_errmsg(-1));
3636 return NULL;
3637 }
3638
3639 return name;
3640 }
3641
elf_sec_str(const struct bpf_object * obj,size_t off)3642 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3643 {
3644 const char *name;
3645
3646 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3647 if (!name) {
3648 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3649 off, obj->path, elf_errmsg(-1));
3650 return NULL;
3651 }
3652
3653 return name;
3654 }
3655
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3656 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3657 {
3658 Elf_Scn *scn;
3659
3660 scn = elf_getscn(obj->efile.elf, idx);
3661 if (!scn) {
3662 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3663 idx, obj->path, elf_errmsg(-1));
3664 return NULL;
3665 }
3666 return scn;
3667 }
3668
elf_sec_by_name(const struct bpf_object * obj,const char * name)3669 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3670 {
3671 Elf_Scn *scn = NULL;
3672 Elf *elf = obj->efile.elf;
3673 const char *sec_name;
3674
3675 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3676 sec_name = elf_sec_name(obj, scn);
3677 if (!sec_name)
3678 return NULL;
3679
3680 if (strcmp(sec_name, name) != 0)
3681 continue;
3682
3683 return scn;
3684 }
3685 return NULL;
3686 }
3687
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3688 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3689 {
3690 Elf64_Shdr *shdr;
3691
3692 if (!scn)
3693 return NULL;
3694
3695 shdr = elf64_getshdr(scn);
3696 if (!shdr) {
3697 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3698 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3699 return NULL;
3700 }
3701
3702 return shdr;
3703 }
3704
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3705 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3706 {
3707 const char *name;
3708 Elf64_Shdr *sh;
3709
3710 if (!scn)
3711 return NULL;
3712
3713 sh = elf_sec_hdr(obj, scn);
3714 if (!sh)
3715 return NULL;
3716
3717 name = elf_sec_str(obj, sh->sh_name);
3718 if (!name) {
3719 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3720 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3721 return NULL;
3722 }
3723
3724 return name;
3725 }
3726
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3727 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3728 {
3729 Elf_Data *data;
3730
3731 if (!scn)
3732 return NULL;
3733
3734 data = elf_getdata(scn, 0);
3735 if (!data) {
3736 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3737 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3738 obj->path, elf_errmsg(-1));
3739 return NULL;
3740 }
3741
3742 return data;
3743 }
3744
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3745 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3746 {
3747 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3748 return NULL;
3749
3750 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3751 }
3752
elf_rel_by_idx(Elf_Data * data,size_t idx)3753 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3754 {
3755 if (idx >= data->d_size / sizeof(Elf64_Rel))
3756 return NULL;
3757
3758 return (Elf64_Rel *)data->d_buf + idx;
3759 }
3760
is_sec_name_dwarf(const char * name)3761 static bool is_sec_name_dwarf(const char *name)
3762 {
3763 /* approximation, but the actual list is too long */
3764 return str_has_pfx(name, ".debug_");
3765 }
3766
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3767 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3768 {
3769 /* no special handling of .strtab */
3770 if (hdr->sh_type == SHT_STRTAB)
3771 return true;
3772
3773 /* ignore .llvm_addrsig section as well */
3774 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3775 return true;
3776
3777 /* no subprograms will lead to an empty .text section, ignore it */
3778 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3779 strcmp(name, ".text") == 0)
3780 return true;
3781
3782 /* DWARF sections */
3783 if (is_sec_name_dwarf(name))
3784 return true;
3785
3786 if (str_has_pfx(name, ".rel")) {
3787 name += sizeof(".rel") - 1;
3788 /* DWARF section relocations */
3789 if (is_sec_name_dwarf(name))
3790 return true;
3791
3792 /* .BTF and .BTF.ext don't need relocations */
3793 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3794 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3795 return true;
3796 }
3797
3798 return false;
3799 }
3800
cmp_progs(const void * _a,const void * _b)3801 static int cmp_progs(const void *_a, const void *_b)
3802 {
3803 const struct bpf_program *a = _a;
3804 const struct bpf_program *b = _b;
3805
3806 if (a->sec_idx != b->sec_idx)
3807 return a->sec_idx < b->sec_idx ? -1 : 1;
3808
3809 /* sec_insn_off can't be the same within the section */
3810 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3811 }
3812
bpf_object__elf_collect(struct bpf_object * obj)3813 static int bpf_object__elf_collect(struct bpf_object *obj)
3814 {
3815 struct elf_sec_desc *sec_desc;
3816 Elf *elf = obj->efile.elf;
3817 Elf_Data *btf_ext_data = NULL;
3818 Elf_Data *btf_data = NULL;
3819 int idx = 0, err = 0;
3820 const char *name;
3821 Elf_Data *data;
3822 Elf_Scn *scn;
3823 Elf64_Shdr *sh;
3824
3825 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3826 * section. Since section count retrieved by elf_getshdrnum() does
3827 * include sec #0, it is already the necessary size of an array to keep
3828 * all the sections.
3829 */
3830 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3831 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3832 obj->path, elf_errmsg(-1));
3833 return -LIBBPF_ERRNO__FORMAT;
3834 }
3835 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3836 if (!obj->efile.secs)
3837 return -ENOMEM;
3838
3839 /* a bunch of ELF parsing functionality depends on processing symbols,
3840 * so do the first pass and find the symbol table
3841 */
3842 scn = NULL;
3843 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3844 sh = elf_sec_hdr(obj, scn);
3845 if (!sh)
3846 return -LIBBPF_ERRNO__FORMAT;
3847
3848 if (sh->sh_type == SHT_SYMTAB) {
3849 if (obj->efile.symbols) {
3850 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3851 return -LIBBPF_ERRNO__FORMAT;
3852 }
3853
3854 data = elf_sec_data(obj, scn);
3855 if (!data)
3856 return -LIBBPF_ERRNO__FORMAT;
3857
3858 idx = elf_ndxscn(scn);
3859
3860 obj->efile.symbols = data;
3861 obj->efile.symbols_shndx = idx;
3862 obj->efile.strtabidx = sh->sh_link;
3863 }
3864 }
3865
3866 if (!obj->efile.symbols) {
3867 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3868 obj->path);
3869 return -ENOENT;
3870 }
3871
3872 scn = NULL;
3873 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3874 idx = elf_ndxscn(scn);
3875 sec_desc = &obj->efile.secs[idx];
3876
3877 sh = elf_sec_hdr(obj, scn);
3878 if (!sh)
3879 return -LIBBPF_ERRNO__FORMAT;
3880
3881 name = elf_sec_str(obj, sh->sh_name);
3882 if (!name)
3883 return -LIBBPF_ERRNO__FORMAT;
3884
3885 if (ignore_elf_section(sh, name))
3886 continue;
3887
3888 data = elf_sec_data(obj, scn);
3889 if (!data)
3890 return -LIBBPF_ERRNO__FORMAT;
3891
3892 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3893 idx, name, (unsigned long)data->d_size,
3894 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3895 (int)sh->sh_type);
3896
3897 if (strcmp(name, "license") == 0) {
3898 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3899 if (err)
3900 return err;
3901 } else if (strcmp(name, "version") == 0) {
3902 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3903 if (err)
3904 return err;
3905 } else if (strcmp(name, "maps") == 0) {
3906 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3907 return -ENOTSUP;
3908 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3909 obj->efile.btf_maps_shndx = idx;
3910 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3911 if (sh->sh_type != SHT_PROGBITS)
3912 return -LIBBPF_ERRNO__FORMAT;
3913 btf_data = data;
3914 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3915 if (sh->sh_type != SHT_PROGBITS)
3916 return -LIBBPF_ERRNO__FORMAT;
3917 btf_ext_data = data;
3918 } else if (sh->sh_type == SHT_SYMTAB) {
3919 /* already processed during the first pass above */
3920 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3921 if (sh->sh_flags & SHF_EXECINSTR) {
3922 if (strcmp(name, ".text") == 0)
3923 obj->efile.text_shndx = idx;
3924 err = bpf_object__add_programs(obj, data, name, idx);
3925 if (err)
3926 return err;
3927 } else if (strcmp(name, DATA_SEC) == 0 ||
3928 str_has_pfx(name, DATA_SEC ".")) {
3929 sec_desc->sec_type = SEC_DATA;
3930 sec_desc->shdr = sh;
3931 sec_desc->data = data;
3932 } else if (strcmp(name, RODATA_SEC) == 0 ||
3933 str_has_pfx(name, RODATA_SEC ".")) {
3934 sec_desc->sec_type = SEC_RODATA;
3935 sec_desc->shdr = sh;
3936 sec_desc->data = data;
3937 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3938 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3939 strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3940 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3941 sec_desc->sec_type = SEC_ST_OPS;
3942 sec_desc->shdr = sh;
3943 sec_desc->data = data;
3944 obj->efile.has_st_ops = true;
3945 } else if (strcmp(name, ARENA_SEC) == 0) {
3946 obj->efile.arena_data = data;
3947 obj->efile.arena_data_shndx = idx;
3948 } else {
3949 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3950 idx, name);
3951 }
3952 } else if (sh->sh_type == SHT_REL) {
3953 int targ_sec_idx = sh->sh_info; /* points to other section */
3954
3955 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3956 targ_sec_idx >= obj->efile.sec_cnt)
3957 return -LIBBPF_ERRNO__FORMAT;
3958
3959 /* Only do relo for section with exec instructions */
3960 if (!section_have_execinstr(obj, targ_sec_idx) &&
3961 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3962 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3963 strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3964 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3965 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3966 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3967 idx, name, targ_sec_idx,
3968 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3969 continue;
3970 }
3971
3972 sec_desc->sec_type = SEC_RELO;
3973 sec_desc->shdr = sh;
3974 sec_desc->data = data;
3975 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3976 str_has_pfx(name, BSS_SEC "."))) {
3977 sec_desc->sec_type = SEC_BSS;
3978 sec_desc->shdr = sh;
3979 sec_desc->data = data;
3980 } else {
3981 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3982 (size_t)sh->sh_size);
3983 }
3984 }
3985
3986 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3987 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3988 return -LIBBPF_ERRNO__FORMAT;
3989 }
3990
3991 /* change BPF program insns to native endianness for introspection */
3992 if (!is_native_endianness(obj))
3993 bpf_object_bswap_progs(obj);
3994
3995 /* sort BPF programs by section name and in-section instruction offset
3996 * for faster search
3997 */
3998 if (obj->nr_programs)
3999 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
4000
4001 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
4002 }
4003
sym_is_extern(const Elf64_Sym * sym)4004 static bool sym_is_extern(const Elf64_Sym *sym)
4005 {
4006 int bind = ELF64_ST_BIND(sym->st_info);
4007 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
4008 return sym->st_shndx == SHN_UNDEF &&
4009 (bind == STB_GLOBAL || bind == STB_WEAK) &&
4010 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
4011 }
4012
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)4013 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
4014 {
4015 int bind = ELF64_ST_BIND(sym->st_info);
4016 int type = ELF64_ST_TYPE(sym->st_info);
4017
4018 /* in .text section */
4019 if (sym->st_shndx != text_shndx)
4020 return false;
4021
4022 /* local function */
4023 if (bind == STB_LOCAL && type == STT_SECTION)
4024 return true;
4025
4026 /* global function */
4027 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
4028 }
4029
find_extern_btf_id(const struct btf * btf,const char * ext_name)4030 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
4031 {
4032 const struct btf_type *t;
4033 const char *tname;
4034 int i, n;
4035
4036 if (!btf)
4037 return -ESRCH;
4038
4039 n = btf__type_cnt(btf);
4040 for (i = 1; i < n; i++) {
4041 t = btf__type_by_id(btf, i);
4042
4043 if (!btf_is_var(t) && !btf_is_func(t))
4044 continue;
4045
4046 tname = btf__name_by_offset(btf, t->name_off);
4047 if (strcmp(tname, ext_name))
4048 continue;
4049
4050 if (btf_is_var(t) &&
4051 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4052 return -EINVAL;
4053
4054 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4055 return -EINVAL;
4056
4057 return i;
4058 }
4059
4060 return -ENOENT;
4061 }
4062
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)4063 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4064 const struct btf_var_secinfo *vs;
4065 const struct btf_type *t;
4066 int i, j, n;
4067
4068 if (!btf)
4069 return -ESRCH;
4070
4071 n = btf__type_cnt(btf);
4072 for (i = 1; i < n; i++) {
4073 t = btf__type_by_id(btf, i);
4074
4075 if (!btf_is_datasec(t))
4076 continue;
4077
4078 vs = btf_var_secinfos(t);
4079 for (j = 0; j < btf_vlen(t); j++, vs++) {
4080 if (vs->type == ext_btf_id)
4081 return i;
4082 }
4083 }
4084
4085 return -ENOENT;
4086 }
4087
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)4088 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4089 bool *is_signed)
4090 {
4091 const struct btf_type *t;
4092 const char *name;
4093
4094 t = skip_mods_and_typedefs(btf, id, NULL);
4095 name = btf__name_by_offset(btf, t->name_off);
4096
4097 if (is_signed)
4098 *is_signed = false;
4099 switch (btf_kind(t)) {
4100 case BTF_KIND_INT: {
4101 int enc = btf_int_encoding(t);
4102
4103 if (enc & BTF_INT_BOOL)
4104 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4105 if (is_signed)
4106 *is_signed = enc & BTF_INT_SIGNED;
4107 if (t->size == 1)
4108 return KCFG_CHAR;
4109 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4110 return KCFG_UNKNOWN;
4111 return KCFG_INT;
4112 }
4113 case BTF_KIND_ENUM:
4114 if (t->size != 4)
4115 return KCFG_UNKNOWN;
4116 if (strcmp(name, "libbpf_tristate"))
4117 return KCFG_UNKNOWN;
4118 return KCFG_TRISTATE;
4119 case BTF_KIND_ENUM64:
4120 if (strcmp(name, "libbpf_tristate"))
4121 return KCFG_UNKNOWN;
4122 return KCFG_TRISTATE;
4123 case BTF_KIND_ARRAY:
4124 if (btf_array(t)->nelems == 0)
4125 return KCFG_UNKNOWN;
4126 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4127 return KCFG_UNKNOWN;
4128 return KCFG_CHAR_ARR;
4129 default:
4130 return KCFG_UNKNOWN;
4131 }
4132 }
4133
cmp_externs(const void * _a,const void * _b)4134 static int cmp_externs(const void *_a, const void *_b)
4135 {
4136 const struct extern_desc *a = _a;
4137 const struct extern_desc *b = _b;
4138
4139 if (a->type != b->type)
4140 return a->type < b->type ? -1 : 1;
4141
4142 if (a->type == EXT_KCFG) {
4143 /* descending order by alignment requirements */
4144 if (a->kcfg.align != b->kcfg.align)
4145 return a->kcfg.align > b->kcfg.align ? -1 : 1;
4146 /* ascending order by size, within same alignment class */
4147 if (a->kcfg.sz != b->kcfg.sz)
4148 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4149 }
4150
4151 /* resolve ties by name */
4152 return strcmp(a->name, b->name);
4153 }
4154
find_int_btf_id(const struct btf * btf)4155 static int find_int_btf_id(const struct btf *btf)
4156 {
4157 const struct btf_type *t;
4158 int i, n;
4159
4160 n = btf__type_cnt(btf);
4161 for (i = 1; i < n; i++) {
4162 t = btf__type_by_id(btf, i);
4163
4164 if (btf_is_int(t) && btf_int_bits(t) == 32)
4165 return i;
4166 }
4167
4168 return 0;
4169 }
4170
add_dummy_ksym_var(struct btf * btf)4171 static int add_dummy_ksym_var(struct btf *btf)
4172 {
4173 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4174 const struct btf_var_secinfo *vs;
4175 const struct btf_type *sec;
4176
4177 if (!btf)
4178 return 0;
4179
4180 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4181 BTF_KIND_DATASEC);
4182 if (sec_btf_id < 0)
4183 return 0;
4184
4185 sec = btf__type_by_id(btf, sec_btf_id);
4186 vs = btf_var_secinfos(sec);
4187 for (i = 0; i < btf_vlen(sec); i++, vs++) {
4188 const struct btf_type *vt;
4189
4190 vt = btf__type_by_id(btf, vs->type);
4191 if (btf_is_func(vt))
4192 break;
4193 }
4194
4195 /* No func in ksyms sec. No need to add dummy var. */
4196 if (i == btf_vlen(sec))
4197 return 0;
4198
4199 int_btf_id = find_int_btf_id(btf);
4200 dummy_var_btf_id = btf__add_var(btf,
4201 "dummy_ksym",
4202 BTF_VAR_GLOBAL_ALLOCATED,
4203 int_btf_id);
4204 if (dummy_var_btf_id < 0)
4205 pr_warn("cannot create a dummy_ksym var\n");
4206
4207 return dummy_var_btf_id;
4208 }
4209
bpf_object__collect_externs(struct bpf_object * obj)4210 static int bpf_object__collect_externs(struct bpf_object *obj)
4211 {
4212 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4213 const struct btf_type *t;
4214 struct extern_desc *ext;
4215 int i, n, off, dummy_var_btf_id;
4216 const char *ext_name, *sec_name;
4217 size_t ext_essent_len;
4218 Elf_Scn *scn;
4219 Elf64_Shdr *sh;
4220
4221 if (!obj->efile.symbols)
4222 return 0;
4223
4224 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4225 sh = elf_sec_hdr(obj, scn);
4226 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4227 return -LIBBPF_ERRNO__FORMAT;
4228
4229 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4230 if (dummy_var_btf_id < 0)
4231 return dummy_var_btf_id;
4232
4233 n = sh->sh_size / sh->sh_entsize;
4234 pr_debug("looking for externs among %d symbols...\n", n);
4235
4236 for (i = 0; i < n; i++) {
4237 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4238
4239 if (!sym)
4240 return -LIBBPF_ERRNO__FORMAT;
4241 if (!sym_is_extern(sym))
4242 continue;
4243 ext_name = elf_sym_str(obj, sym->st_name);
4244 if (!ext_name || !ext_name[0])
4245 continue;
4246
4247 ext = obj->externs;
4248 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4249 if (!ext)
4250 return -ENOMEM;
4251 obj->externs = ext;
4252 ext = &ext[obj->nr_extern];
4253 memset(ext, 0, sizeof(*ext));
4254 obj->nr_extern++;
4255
4256 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4257 if (ext->btf_id <= 0) {
4258 pr_warn("failed to find BTF for extern '%s': %d\n",
4259 ext_name, ext->btf_id);
4260 return ext->btf_id;
4261 }
4262 t = btf__type_by_id(obj->btf, ext->btf_id);
4263 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off));
4264 if (!ext->name)
4265 return -ENOMEM;
4266 ext->sym_idx = i;
4267 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4268
4269 ext_essent_len = bpf_core_essential_name_len(ext->name);
4270 ext->essent_name = NULL;
4271 if (ext_essent_len != strlen(ext->name)) {
4272 ext->essent_name = strndup(ext->name, ext_essent_len);
4273 if (!ext->essent_name)
4274 return -ENOMEM;
4275 }
4276
4277 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4278 if (ext->sec_btf_id <= 0) {
4279 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4280 ext_name, ext->btf_id, ext->sec_btf_id);
4281 return ext->sec_btf_id;
4282 }
4283 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4284 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4285
4286 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4287 if (btf_is_func(t)) {
4288 pr_warn("extern function %s is unsupported under %s section\n",
4289 ext->name, KCONFIG_SEC);
4290 return -ENOTSUP;
4291 }
4292 kcfg_sec = sec;
4293 ext->type = EXT_KCFG;
4294 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4295 if (ext->kcfg.sz <= 0) {
4296 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4297 ext_name, ext->kcfg.sz);
4298 return ext->kcfg.sz;
4299 }
4300 ext->kcfg.align = btf__align_of(obj->btf, t->type);
4301 if (ext->kcfg.align <= 0) {
4302 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4303 ext_name, ext->kcfg.align);
4304 return -EINVAL;
4305 }
4306 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4307 &ext->kcfg.is_signed);
4308 if (ext->kcfg.type == KCFG_UNKNOWN) {
4309 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4310 return -ENOTSUP;
4311 }
4312 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4313 ksym_sec = sec;
4314 ext->type = EXT_KSYM;
4315 skip_mods_and_typedefs(obj->btf, t->type,
4316 &ext->ksym.type_id);
4317 } else {
4318 pr_warn("unrecognized extern section '%s'\n", sec_name);
4319 return -ENOTSUP;
4320 }
4321 }
4322 pr_debug("collected %d externs total\n", obj->nr_extern);
4323
4324 if (!obj->nr_extern)
4325 return 0;
4326
4327 /* sort externs by type, for kcfg ones also by (align, size, name) */
4328 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4329
4330 /* for .ksyms section, we need to turn all externs into allocated
4331 * variables in BTF to pass kernel verification; we do this by
4332 * pretending that each extern is a 8-byte variable
4333 */
4334 if (ksym_sec) {
4335 /* find existing 4-byte integer type in BTF to use for fake
4336 * extern variables in DATASEC
4337 */
4338 int int_btf_id = find_int_btf_id(obj->btf);
4339 /* For extern function, a dummy_var added earlier
4340 * will be used to replace the vs->type and
4341 * its name string will be used to refill
4342 * the missing param's name.
4343 */
4344 const struct btf_type *dummy_var;
4345
4346 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4347 for (i = 0; i < obj->nr_extern; i++) {
4348 ext = &obj->externs[i];
4349 if (ext->type != EXT_KSYM)
4350 continue;
4351 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4352 i, ext->sym_idx, ext->name);
4353 }
4354
4355 sec = ksym_sec;
4356 n = btf_vlen(sec);
4357 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4358 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4359 struct btf_type *vt;
4360
4361 vt = (void *)btf__type_by_id(obj->btf, vs->type);
4362 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4363 ext = find_extern_by_name(obj, ext_name);
4364 if (!ext) {
4365 pr_warn("failed to find extern definition for BTF %s '%s'\n",
4366 btf_kind_str(vt), ext_name);
4367 return -ESRCH;
4368 }
4369 if (btf_is_func(vt)) {
4370 const struct btf_type *func_proto;
4371 struct btf_param *param;
4372 int j;
4373
4374 func_proto = btf__type_by_id(obj->btf,
4375 vt->type);
4376 param = btf_params(func_proto);
4377 /* Reuse the dummy_var string if the
4378 * func proto does not have param name.
4379 */
4380 for (j = 0; j < btf_vlen(func_proto); j++)
4381 if (param[j].type && !param[j].name_off)
4382 param[j].name_off =
4383 dummy_var->name_off;
4384 vs->type = dummy_var_btf_id;
4385 vt->info &= ~0xffff;
4386 vt->info |= BTF_FUNC_GLOBAL;
4387 } else {
4388 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4389 vt->type = int_btf_id;
4390 }
4391 vs->offset = off;
4392 vs->size = sizeof(int);
4393 }
4394 sec->size = off;
4395 }
4396
4397 if (kcfg_sec) {
4398 sec = kcfg_sec;
4399 /* for kcfg externs calculate their offsets within a .kconfig map */
4400 off = 0;
4401 for (i = 0; i < obj->nr_extern; i++) {
4402 ext = &obj->externs[i];
4403 if (ext->type != EXT_KCFG)
4404 continue;
4405
4406 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4407 off = ext->kcfg.data_off + ext->kcfg.sz;
4408 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4409 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4410 }
4411 sec->size = off;
4412 n = btf_vlen(sec);
4413 for (i = 0; i < n; i++) {
4414 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4415
4416 t = btf__type_by_id(obj->btf, vs->type);
4417 ext_name = btf__name_by_offset(obj->btf, t->name_off);
4418 ext = find_extern_by_name(obj, ext_name);
4419 if (!ext) {
4420 pr_warn("failed to find extern definition for BTF var '%s'\n",
4421 ext_name);
4422 return -ESRCH;
4423 }
4424 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4425 vs->offset = ext->kcfg.data_off;
4426 }
4427 }
4428 return 0;
4429 }
4430
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)4431 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4432 {
4433 return prog->sec_idx == obj->efile.text_shndx;
4434 }
4435
4436 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)4437 bpf_object__find_program_by_name(const struct bpf_object *obj,
4438 const char *name)
4439 {
4440 struct bpf_program *prog;
4441
4442 bpf_object__for_each_program(prog, obj) {
4443 if (prog_is_subprog(obj, prog))
4444 continue;
4445 if (!strcmp(prog->name, name))
4446 return prog;
4447 }
4448 return errno = ENOENT, NULL;
4449 }
4450
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4451 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4452 int shndx)
4453 {
4454 switch (obj->efile.secs[shndx].sec_type) {
4455 case SEC_BSS:
4456 case SEC_DATA:
4457 case SEC_RODATA:
4458 return true;
4459 default:
4460 return false;
4461 }
4462 }
4463
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4464 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4465 int shndx)
4466 {
4467 return shndx == obj->efile.btf_maps_shndx;
4468 }
4469
4470 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4471 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4472 {
4473 if (shndx == obj->efile.symbols_shndx)
4474 return LIBBPF_MAP_KCONFIG;
4475
4476 switch (obj->efile.secs[shndx].sec_type) {
4477 case SEC_BSS:
4478 return LIBBPF_MAP_BSS;
4479 case SEC_DATA:
4480 return LIBBPF_MAP_DATA;
4481 case SEC_RODATA:
4482 return LIBBPF_MAP_RODATA;
4483 default:
4484 return LIBBPF_MAP_UNSPEC;
4485 }
4486 }
4487
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4488 static int bpf_program__record_reloc(struct bpf_program *prog,
4489 struct reloc_desc *reloc_desc,
4490 __u32 insn_idx, const char *sym_name,
4491 const Elf64_Sym *sym, const Elf64_Rel *rel)
4492 {
4493 struct bpf_insn *insn = &prog->insns[insn_idx];
4494 size_t map_idx, nr_maps = prog->obj->nr_maps;
4495 struct bpf_object *obj = prog->obj;
4496 __u32 shdr_idx = sym->st_shndx;
4497 enum libbpf_map_type type;
4498 const char *sym_sec_name;
4499 struct bpf_map *map;
4500
4501 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4502 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4503 prog->name, sym_name, insn_idx, insn->code);
4504 return -LIBBPF_ERRNO__RELOC;
4505 }
4506
4507 if (sym_is_extern(sym)) {
4508 int sym_idx = ELF64_R_SYM(rel->r_info);
4509 int i, n = obj->nr_extern;
4510 struct extern_desc *ext;
4511
4512 for (i = 0; i < n; i++) {
4513 ext = &obj->externs[i];
4514 if (ext->sym_idx == sym_idx)
4515 break;
4516 }
4517 if (i >= n) {
4518 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4519 prog->name, sym_name, sym_idx);
4520 return -LIBBPF_ERRNO__RELOC;
4521 }
4522 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4523 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4524 if (insn->code == (BPF_JMP | BPF_CALL))
4525 reloc_desc->type = RELO_EXTERN_CALL;
4526 else
4527 reloc_desc->type = RELO_EXTERN_LD64;
4528 reloc_desc->insn_idx = insn_idx;
4529 reloc_desc->ext_idx = i;
4530 return 0;
4531 }
4532
4533 /* sub-program call relocation */
4534 if (is_call_insn(insn)) {
4535 if (insn->src_reg != BPF_PSEUDO_CALL) {
4536 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4537 return -LIBBPF_ERRNO__RELOC;
4538 }
4539 /* text_shndx can be 0, if no default "main" program exists */
4540 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4541 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4542 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4543 prog->name, sym_name, sym_sec_name);
4544 return -LIBBPF_ERRNO__RELOC;
4545 }
4546 if (sym->st_value % BPF_INSN_SZ) {
4547 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4548 prog->name, sym_name, (size_t)sym->st_value);
4549 return -LIBBPF_ERRNO__RELOC;
4550 }
4551 reloc_desc->type = RELO_CALL;
4552 reloc_desc->insn_idx = insn_idx;
4553 reloc_desc->sym_off = sym->st_value;
4554 return 0;
4555 }
4556
4557 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4558 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4559 prog->name, sym_name, shdr_idx);
4560 return -LIBBPF_ERRNO__RELOC;
4561 }
4562
4563 /* loading subprog addresses */
4564 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4565 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4566 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4567 */
4568 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4569 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4570 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4571 return -LIBBPF_ERRNO__RELOC;
4572 }
4573
4574 reloc_desc->type = RELO_SUBPROG_ADDR;
4575 reloc_desc->insn_idx = insn_idx;
4576 reloc_desc->sym_off = sym->st_value;
4577 return 0;
4578 }
4579
4580 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4581 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4582
4583 /* arena data relocation */
4584 if (shdr_idx == obj->efile.arena_data_shndx) {
4585 if (obj->arena_map_idx < 0) {
4586 pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n",
4587 prog->name, insn_idx);
4588 return -LIBBPF_ERRNO__RELOC;
4589 }
4590 reloc_desc->type = RELO_DATA;
4591 reloc_desc->insn_idx = insn_idx;
4592 reloc_desc->map_idx = obj->arena_map_idx;
4593 reloc_desc->sym_off = sym->st_value;
4594
4595 map = &obj->maps[obj->arena_map_idx];
4596 pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n",
4597 prog->name, obj->arena_map_idx, map->name, map->sec_idx,
4598 map->sec_offset, insn_idx);
4599 return 0;
4600 }
4601
4602 /* generic map reference relocation */
4603 if (type == LIBBPF_MAP_UNSPEC) {
4604 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4605 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4606 prog->name, sym_name, sym_sec_name);
4607 return -LIBBPF_ERRNO__RELOC;
4608 }
4609 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4610 map = &obj->maps[map_idx];
4611 if (map->libbpf_type != type ||
4612 map->sec_idx != sym->st_shndx ||
4613 map->sec_offset != sym->st_value)
4614 continue;
4615 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4616 prog->name, map_idx, map->name, map->sec_idx,
4617 map->sec_offset, insn_idx);
4618 break;
4619 }
4620 if (map_idx >= nr_maps) {
4621 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4622 prog->name, sym_sec_name, (size_t)sym->st_value);
4623 return -LIBBPF_ERRNO__RELOC;
4624 }
4625 reloc_desc->type = RELO_LD64;
4626 reloc_desc->insn_idx = insn_idx;
4627 reloc_desc->map_idx = map_idx;
4628 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4629 return 0;
4630 }
4631
4632 /* global data map relocation */
4633 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4634 pr_warn("prog '%s': bad data relo against section '%s'\n",
4635 prog->name, sym_sec_name);
4636 return -LIBBPF_ERRNO__RELOC;
4637 }
4638 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4639 map = &obj->maps[map_idx];
4640 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4641 continue;
4642 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4643 prog->name, map_idx, map->name, map->sec_idx,
4644 map->sec_offset, insn_idx);
4645 break;
4646 }
4647 if (map_idx >= nr_maps) {
4648 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4649 prog->name, sym_sec_name);
4650 return -LIBBPF_ERRNO__RELOC;
4651 }
4652
4653 reloc_desc->type = RELO_DATA;
4654 reloc_desc->insn_idx = insn_idx;
4655 reloc_desc->map_idx = map_idx;
4656 reloc_desc->sym_off = sym->st_value;
4657 return 0;
4658 }
4659
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4660 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4661 {
4662 return insn_idx >= prog->sec_insn_off &&
4663 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4664 }
4665
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4666 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4667 size_t sec_idx, size_t insn_idx)
4668 {
4669 int l = 0, r = obj->nr_programs - 1, m;
4670 struct bpf_program *prog;
4671
4672 if (!obj->nr_programs)
4673 return NULL;
4674
4675 while (l < r) {
4676 m = l + (r - l + 1) / 2;
4677 prog = &obj->programs[m];
4678
4679 if (prog->sec_idx < sec_idx ||
4680 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4681 l = m;
4682 else
4683 r = m - 1;
4684 }
4685 /* matching program could be at index l, but it still might be the
4686 * wrong one, so we need to double check conditions for the last time
4687 */
4688 prog = &obj->programs[l];
4689 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4690 return prog;
4691 return NULL;
4692 }
4693
4694 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4695 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4696 {
4697 const char *relo_sec_name, *sec_name;
4698 size_t sec_idx = shdr->sh_info, sym_idx;
4699 struct bpf_program *prog;
4700 struct reloc_desc *relos;
4701 int err, i, nrels;
4702 const char *sym_name;
4703 __u32 insn_idx;
4704 Elf_Scn *scn;
4705 Elf_Data *scn_data;
4706 Elf64_Sym *sym;
4707 Elf64_Rel *rel;
4708
4709 if (sec_idx >= obj->efile.sec_cnt)
4710 return -EINVAL;
4711
4712 scn = elf_sec_by_idx(obj, sec_idx);
4713 scn_data = elf_sec_data(obj, scn);
4714 if (!scn_data)
4715 return -LIBBPF_ERRNO__FORMAT;
4716
4717 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4718 sec_name = elf_sec_name(obj, scn);
4719 if (!relo_sec_name || !sec_name)
4720 return -EINVAL;
4721
4722 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4723 relo_sec_name, sec_idx, sec_name);
4724 nrels = shdr->sh_size / shdr->sh_entsize;
4725
4726 for (i = 0; i < nrels; i++) {
4727 rel = elf_rel_by_idx(data, i);
4728 if (!rel) {
4729 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4730 return -LIBBPF_ERRNO__FORMAT;
4731 }
4732
4733 sym_idx = ELF64_R_SYM(rel->r_info);
4734 sym = elf_sym_by_idx(obj, sym_idx);
4735 if (!sym) {
4736 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4737 relo_sec_name, sym_idx, i);
4738 return -LIBBPF_ERRNO__FORMAT;
4739 }
4740
4741 if (sym->st_shndx >= obj->efile.sec_cnt) {
4742 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4743 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4744 return -LIBBPF_ERRNO__FORMAT;
4745 }
4746
4747 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4748 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4749 relo_sec_name, (size_t)rel->r_offset, i);
4750 return -LIBBPF_ERRNO__FORMAT;
4751 }
4752
4753 insn_idx = rel->r_offset / BPF_INSN_SZ;
4754 /* relocations against static functions are recorded as
4755 * relocations against the section that contains a function;
4756 * in such case, symbol will be STT_SECTION and sym.st_name
4757 * will point to empty string (0), so fetch section name
4758 * instead
4759 */
4760 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4761 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4762 else
4763 sym_name = elf_sym_str(obj, sym->st_name);
4764 sym_name = sym_name ?: "<?";
4765
4766 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4767 relo_sec_name, i, insn_idx, sym_name);
4768
4769 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4770 if (!prog) {
4771 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4772 relo_sec_name, i, sec_name, insn_idx);
4773 continue;
4774 }
4775
4776 relos = libbpf_reallocarray(prog->reloc_desc,
4777 prog->nr_reloc + 1, sizeof(*relos));
4778 if (!relos)
4779 return -ENOMEM;
4780 prog->reloc_desc = relos;
4781
4782 /* adjust insn_idx to local BPF program frame of reference */
4783 insn_idx -= prog->sec_insn_off;
4784 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4785 insn_idx, sym_name, sym, rel);
4786 if (err)
4787 return err;
4788
4789 prog->nr_reloc++;
4790 }
4791 return 0;
4792 }
4793
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4794 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4795 {
4796 int id;
4797
4798 if (!obj->btf)
4799 return -ENOENT;
4800
4801 /* if it's BTF-defined map, we don't need to search for type IDs.
4802 * For struct_ops map, it does not need btf_key_type_id and
4803 * btf_value_type_id.
4804 */
4805 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4806 return 0;
4807
4808 /*
4809 * LLVM annotates global data differently in BTF, that is,
4810 * only as '.data', '.bss' or '.rodata'.
4811 */
4812 if (!bpf_map__is_internal(map))
4813 return -ENOENT;
4814
4815 id = btf__find_by_name(obj->btf, map->real_name);
4816 if (id < 0)
4817 return id;
4818
4819 map->btf_key_type_id = 0;
4820 map->btf_value_type_id = id;
4821 return 0;
4822 }
4823
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4824 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4825 {
4826 char file[PATH_MAX], buff[4096];
4827 FILE *fp;
4828 __u32 val;
4829 int err;
4830
4831 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4832 memset(info, 0, sizeof(*info));
4833
4834 fp = fopen(file, "re");
4835 if (!fp) {
4836 err = -errno;
4837 pr_warn("failed to open %s: %s. No procfs support?\n", file,
4838 errstr(err));
4839 return err;
4840 }
4841
4842 while (fgets(buff, sizeof(buff), fp)) {
4843 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4844 info->type = val;
4845 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4846 info->key_size = val;
4847 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4848 info->value_size = val;
4849 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4850 info->max_entries = val;
4851 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4852 info->map_flags = val;
4853 }
4854
4855 fclose(fp);
4856
4857 return 0;
4858 }
4859
map_is_created(const struct bpf_map * map)4860 static bool map_is_created(const struct bpf_map *map)
4861 {
4862 return map->obj->state >= OBJ_PREPARED || map->reused;
4863 }
4864
bpf_map__autocreate(const struct bpf_map * map)4865 bool bpf_map__autocreate(const struct bpf_map *map)
4866 {
4867 return map->autocreate;
4868 }
4869
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4870 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4871 {
4872 if (map_is_created(map))
4873 return libbpf_err(-EBUSY);
4874
4875 map->autocreate = autocreate;
4876 return 0;
4877 }
4878
bpf_map__set_autoattach(struct bpf_map * map,bool autoattach)4879 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4880 {
4881 if (!bpf_map__is_struct_ops(map))
4882 return libbpf_err(-EINVAL);
4883
4884 map->autoattach = autoattach;
4885 return 0;
4886 }
4887
bpf_map__autoattach(const struct bpf_map * map)4888 bool bpf_map__autoattach(const struct bpf_map *map)
4889 {
4890 return map->autoattach;
4891 }
4892
bpf_map__reuse_fd(struct bpf_map * map,int fd)4893 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4894 {
4895 struct bpf_map_info info;
4896 __u32 len = sizeof(info), name_len;
4897 int new_fd, err;
4898 char *new_name;
4899
4900 memset(&info, 0, len);
4901 err = bpf_map_get_info_by_fd(fd, &info, &len);
4902 if (err && errno == EINVAL)
4903 err = bpf_get_map_info_from_fdinfo(fd, &info);
4904 if (err)
4905 return libbpf_err(err);
4906
4907 name_len = strlen(info.name);
4908 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4909 new_name = strdup(map->name);
4910 else
4911 new_name = strdup(info.name);
4912
4913 if (!new_name)
4914 return libbpf_err(-errno);
4915
4916 /*
4917 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4918 * This is similar to what we do in ensure_good_fd(), but without
4919 * closing original FD.
4920 */
4921 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4922 if (new_fd < 0) {
4923 err = -errno;
4924 goto err_free_new_name;
4925 }
4926
4927 err = reuse_fd(map->fd, new_fd);
4928 if (err)
4929 goto err_free_new_name;
4930
4931 free(map->name);
4932
4933 map->name = new_name;
4934 map->def.type = info.type;
4935 map->def.key_size = info.key_size;
4936 map->def.value_size = info.value_size;
4937 map->def.max_entries = info.max_entries;
4938 map->def.map_flags = info.map_flags;
4939 map->btf_key_type_id = info.btf_key_type_id;
4940 map->btf_value_type_id = info.btf_value_type_id;
4941 map->reused = true;
4942 map->map_extra = info.map_extra;
4943
4944 return 0;
4945
4946 err_free_new_name:
4947 free(new_name);
4948 return libbpf_err(err);
4949 }
4950
bpf_map__max_entries(const struct bpf_map * map)4951 __u32 bpf_map__max_entries(const struct bpf_map *map)
4952 {
4953 return map->def.max_entries;
4954 }
4955
bpf_map__inner_map(struct bpf_map * map)4956 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4957 {
4958 if (!bpf_map_type__is_map_in_map(map->def.type))
4959 return errno = EINVAL, NULL;
4960
4961 return map->inner_map;
4962 }
4963
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4964 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4965 {
4966 if (map_is_created(map))
4967 return libbpf_err(-EBUSY);
4968
4969 map->def.max_entries = max_entries;
4970
4971 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4972 if (map_is_ringbuf(map))
4973 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4974
4975 return 0;
4976 }
4977
bpf_object_prepare_token(struct bpf_object * obj)4978 static int bpf_object_prepare_token(struct bpf_object *obj)
4979 {
4980 const char *bpffs_path;
4981 int bpffs_fd = -1, token_fd, err;
4982 bool mandatory;
4983 enum libbpf_print_level level;
4984
4985 /* token is explicitly prevented */
4986 if (obj->token_path && obj->token_path[0] == '\0') {
4987 pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4988 return 0;
4989 }
4990
4991 mandatory = obj->token_path != NULL;
4992 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4993
4994 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4995 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4996 if (bpffs_fd < 0) {
4997 err = -errno;
4998 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n",
4999 obj->name, errstr(err), bpffs_path,
5000 mandatory ? "" : ", skipping optional step...");
5001 return mandatory ? err : 0;
5002 }
5003
5004 token_fd = bpf_token_create(bpffs_fd, 0);
5005 close(bpffs_fd);
5006 if (token_fd < 0) {
5007 if (!mandatory && token_fd == -ENOENT) {
5008 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
5009 obj->name, bpffs_path);
5010 return 0;
5011 }
5012 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
5013 obj->name, token_fd, bpffs_path,
5014 mandatory ? "" : ", skipping optional step...");
5015 return mandatory ? token_fd : 0;
5016 }
5017
5018 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
5019 if (!obj->feat_cache) {
5020 close(token_fd);
5021 return -ENOMEM;
5022 }
5023
5024 obj->token_fd = token_fd;
5025 obj->feat_cache->token_fd = token_fd;
5026
5027 return 0;
5028 }
5029
5030 static int
bpf_object__probe_loading(struct bpf_object * obj)5031 bpf_object__probe_loading(struct bpf_object *obj)
5032 {
5033 struct bpf_insn insns[] = {
5034 BPF_MOV64_IMM(BPF_REG_0, 0),
5035 BPF_EXIT_INSN(),
5036 };
5037 int ret, insn_cnt = ARRAY_SIZE(insns);
5038 LIBBPF_OPTS(bpf_prog_load_opts, opts,
5039 .token_fd = obj->token_fd,
5040 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5041 );
5042
5043 if (obj->gen_loader)
5044 return 0;
5045
5046 ret = bump_rlimit_memlock();
5047 if (ret)
5048 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n",
5049 errstr(ret));
5050
5051 /* make sure basic loading works */
5052 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5053 if (ret < 0)
5054 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5055 if (ret < 0) {
5056 ret = errno;
5057 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n",
5058 __func__, errstr(ret));
5059 return -ret;
5060 }
5061 close(ret);
5062
5063 return 0;
5064 }
5065
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)5066 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5067 {
5068 if (obj->gen_loader)
5069 /* To generate loader program assume the latest kernel
5070 * to avoid doing extra prog_load, map_create syscalls.
5071 */
5072 return true;
5073
5074 if (obj->token_fd)
5075 return feat_supported(obj->feat_cache, feat_id);
5076
5077 return feat_supported(NULL, feat_id);
5078 }
5079
map_is_reuse_compat(const struct bpf_map * map,int map_fd)5080 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5081 {
5082 struct bpf_map_info map_info;
5083 __u32 map_info_len = sizeof(map_info);
5084 int err;
5085
5086 memset(&map_info, 0, map_info_len);
5087 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5088 if (err && errno == EINVAL)
5089 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5090 if (err) {
5091 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5092 errstr(err));
5093 return false;
5094 }
5095
5096 return (map_info.type == map->def.type &&
5097 map_info.key_size == map->def.key_size &&
5098 map_info.value_size == map->def.value_size &&
5099 map_info.max_entries == map->def.max_entries &&
5100 map_info.map_flags == map->def.map_flags &&
5101 map_info.map_extra == map->map_extra);
5102 }
5103
5104 static int
bpf_object__reuse_map(struct bpf_map * map)5105 bpf_object__reuse_map(struct bpf_map *map)
5106 {
5107 int err, pin_fd;
5108
5109 pin_fd = bpf_obj_get(map->pin_path);
5110 if (pin_fd < 0) {
5111 err = -errno;
5112 if (err == -ENOENT) {
5113 pr_debug("found no pinned map to reuse at '%s'\n",
5114 map->pin_path);
5115 return 0;
5116 }
5117
5118 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5119 map->pin_path, errstr(err));
5120 return err;
5121 }
5122
5123 if (!map_is_reuse_compat(map, pin_fd)) {
5124 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5125 map->pin_path);
5126 close(pin_fd);
5127 return -EINVAL;
5128 }
5129
5130 err = bpf_map__reuse_fd(map, pin_fd);
5131 close(pin_fd);
5132 if (err)
5133 return err;
5134
5135 map->pinned = true;
5136 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5137
5138 return 0;
5139 }
5140
5141 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5142 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5143 {
5144 enum libbpf_map_type map_type = map->libbpf_type;
5145 int err, zero = 0;
5146 size_t mmap_sz;
5147
5148 if (obj->gen_loader) {
5149 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5150 map->mmaped, map->def.value_size);
5151 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5152 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5153 return 0;
5154 }
5155
5156 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5157 if (err) {
5158 err = -errno;
5159 pr_warn("map '%s': failed to set initial contents: %s\n",
5160 bpf_map__name(map), errstr(err));
5161 return err;
5162 }
5163
5164 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5165 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5166 err = bpf_map_freeze(map->fd);
5167 if (err) {
5168 err = -errno;
5169 pr_warn("map '%s': failed to freeze as read-only: %s\n",
5170 bpf_map__name(map), errstr(err));
5171 return err;
5172 }
5173 }
5174
5175 /* Remap anonymous mmap()-ed "map initialization image" as
5176 * a BPF map-backed mmap()-ed memory, but preserving the same
5177 * memory address. This will cause kernel to change process'
5178 * page table to point to a different piece of kernel memory,
5179 * but from userspace point of view memory address (and its
5180 * contents, being identical at this point) will stay the
5181 * same. This mapping will be released by bpf_object__close()
5182 * as per normal clean up procedure.
5183 */
5184 mmap_sz = bpf_map_mmap_sz(map);
5185 if (map->def.map_flags & BPF_F_MMAPABLE) {
5186 void *mmaped;
5187 int prot;
5188
5189 if (map->def.map_flags & BPF_F_RDONLY_PROG)
5190 prot = PROT_READ;
5191 else
5192 prot = PROT_READ | PROT_WRITE;
5193 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5194 if (mmaped == MAP_FAILED) {
5195 err = -errno;
5196 pr_warn("map '%s': failed to re-mmap() contents: %s\n",
5197 bpf_map__name(map), errstr(err));
5198 return err;
5199 }
5200 map->mmaped = mmaped;
5201 } else if (map->mmaped) {
5202 munmap(map->mmaped, mmap_sz);
5203 map->mmaped = NULL;
5204 }
5205
5206 return 0;
5207 }
5208
5209 static void bpf_map__destroy(struct bpf_map *map);
5210
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5211 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5212 {
5213 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5214 struct bpf_map_def *def = &map->def;
5215 const char *map_name = NULL;
5216 int err = 0, map_fd;
5217
5218 if (kernel_supports(obj, FEAT_PROG_NAME))
5219 map_name = map->name;
5220 create_attr.map_ifindex = map->map_ifindex;
5221 create_attr.map_flags = def->map_flags;
5222 create_attr.numa_node = map->numa_node;
5223 create_attr.map_extra = map->map_extra;
5224 create_attr.token_fd = obj->token_fd;
5225 if (obj->token_fd)
5226 create_attr.map_flags |= BPF_F_TOKEN_FD;
5227
5228 if (bpf_map__is_struct_ops(map)) {
5229 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5230 if (map->mod_btf_fd >= 0) {
5231 create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5232 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5233 }
5234 }
5235
5236 if (obj->btf && btf__fd(obj->btf) >= 0) {
5237 create_attr.btf_fd = btf__fd(obj->btf);
5238 create_attr.btf_key_type_id = map->btf_key_type_id;
5239 create_attr.btf_value_type_id = map->btf_value_type_id;
5240 }
5241
5242 if (bpf_map_type__is_map_in_map(def->type)) {
5243 if (map->inner_map) {
5244 err = map_set_def_max_entries(map->inner_map);
5245 if (err)
5246 return err;
5247 err = bpf_object__create_map(obj, map->inner_map, true);
5248 if (err) {
5249 pr_warn("map '%s': failed to create inner map: %s\n",
5250 map->name, errstr(err));
5251 return err;
5252 }
5253 map->inner_map_fd = map->inner_map->fd;
5254 }
5255 if (map->inner_map_fd >= 0)
5256 create_attr.inner_map_fd = map->inner_map_fd;
5257 }
5258
5259 switch (def->type) {
5260 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5261 case BPF_MAP_TYPE_CGROUP_ARRAY:
5262 case BPF_MAP_TYPE_STACK_TRACE:
5263 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5264 case BPF_MAP_TYPE_HASH_OF_MAPS:
5265 case BPF_MAP_TYPE_DEVMAP:
5266 case BPF_MAP_TYPE_DEVMAP_HASH:
5267 case BPF_MAP_TYPE_CPUMAP:
5268 case BPF_MAP_TYPE_XSKMAP:
5269 case BPF_MAP_TYPE_SOCKMAP:
5270 case BPF_MAP_TYPE_SOCKHASH:
5271 case BPF_MAP_TYPE_QUEUE:
5272 case BPF_MAP_TYPE_STACK:
5273 case BPF_MAP_TYPE_ARENA:
5274 create_attr.btf_fd = 0;
5275 create_attr.btf_key_type_id = 0;
5276 create_attr.btf_value_type_id = 0;
5277 map->btf_key_type_id = 0;
5278 map->btf_value_type_id = 0;
5279 break;
5280 case BPF_MAP_TYPE_STRUCT_OPS:
5281 create_attr.btf_value_type_id = 0;
5282 break;
5283 default:
5284 break;
5285 }
5286
5287 if (obj->gen_loader) {
5288 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5289 def->key_size, def->value_size, def->max_entries,
5290 &create_attr, is_inner ? -1 : map - obj->maps);
5291 /* We keep pretenting we have valid FD to pass various fd >= 0
5292 * checks by just keeping original placeholder FDs in place.
5293 * See bpf_object__add_map() comment.
5294 * This placeholder fd will not be used with any syscall and
5295 * will be reset to -1 eventually.
5296 */
5297 map_fd = map->fd;
5298 } else {
5299 map_fd = bpf_map_create(def->type, map_name,
5300 def->key_size, def->value_size,
5301 def->max_entries, &create_attr);
5302 }
5303 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5304 err = -errno;
5305 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n",
5306 map->name, errstr(err));
5307 create_attr.btf_fd = 0;
5308 create_attr.btf_key_type_id = 0;
5309 create_attr.btf_value_type_id = 0;
5310 map->btf_key_type_id = 0;
5311 map->btf_value_type_id = 0;
5312 map_fd = bpf_map_create(def->type, map_name,
5313 def->key_size, def->value_size,
5314 def->max_entries, &create_attr);
5315 }
5316
5317 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5318 if (obj->gen_loader)
5319 map->inner_map->fd = -1;
5320 bpf_map__destroy(map->inner_map);
5321 zfree(&map->inner_map);
5322 }
5323
5324 if (map_fd < 0)
5325 return map_fd;
5326
5327 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5328 if (map->fd == map_fd)
5329 return 0;
5330
5331 /* Keep placeholder FD value but now point it to the BPF map object.
5332 * This way everything that relied on this map's FD (e.g., relocated
5333 * ldimm64 instructions) will stay valid and won't need adjustments.
5334 * map->fd stays valid but now point to what map_fd points to.
5335 */
5336 return reuse_fd(map->fd, map_fd);
5337 }
5338
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5339 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5340 {
5341 const struct bpf_map *targ_map;
5342 unsigned int i;
5343 int fd, err = 0;
5344
5345 for (i = 0; i < map->init_slots_sz; i++) {
5346 if (!map->init_slots[i])
5347 continue;
5348
5349 targ_map = map->init_slots[i];
5350 fd = targ_map->fd;
5351
5352 if (obj->gen_loader) {
5353 bpf_gen__populate_outer_map(obj->gen_loader,
5354 map - obj->maps, i,
5355 targ_map - obj->maps);
5356 } else {
5357 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5358 }
5359 if (err) {
5360 err = -errno;
5361 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n",
5362 map->name, i, targ_map->name, fd, errstr(err));
5363 return err;
5364 }
5365 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5366 map->name, i, targ_map->name, fd);
5367 }
5368
5369 zfree(&map->init_slots);
5370 map->init_slots_sz = 0;
5371
5372 return 0;
5373 }
5374
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5375 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5376 {
5377 const struct bpf_program *targ_prog;
5378 unsigned int i;
5379 int fd, err;
5380
5381 if (obj->gen_loader)
5382 return -ENOTSUP;
5383
5384 for (i = 0; i < map->init_slots_sz; i++) {
5385 if (!map->init_slots[i])
5386 continue;
5387
5388 targ_prog = map->init_slots[i];
5389 fd = bpf_program__fd(targ_prog);
5390
5391 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5392 if (err) {
5393 err = -errno;
5394 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n",
5395 map->name, i, targ_prog->name, fd, errstr(err));
5396 return err;
5397 }
5398 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5399 map->name, i, targ_prog->name, fd);
5400 }
5401
5402 zfree(&map->init_slots);
5403 map->init_slots_sz = 0;
5404
5405 return 0;
5406 }
5407
bpf_object_init_prog_arrays(struct bpf_object * obj)5408 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5409 {
5410 struct bpf_map *map;
5411 int i, err;
5412
5413 for (i = 0; i < obj->nr_maps; i++) {
5414 map = &obj->maps[i];
5415
5416 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5417 continue;
5418
5419 err = init_prog_array_slots(obj, map);
5420 if (err < 0)
5421 return err;
5422 }
5423 return 0;
5424 }
5425
map_set_def_max_entries(struct bpf_map * map)5426 static int map_set_def_max_entries(struct bpf_map *map)
5427 {
5428 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5429 int nr_cpus;
5430
5431 nr_cpus = libbpf_num_possible_cpus();
5432 if (nr_cpus < 0) {
5433 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5434 map->name, nr_cpus);
5435 return nr_cpus;
5436 }
5437 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5438 map->def.max_entries = nr_cpus;
5439 }
5440
5441 return 0;
5442 }
5443
5444 static int
bpf_object__create_maps(struct bpf_object * obj)5445 bpf_object__create_maps(struct bpf_object *obj)
5446 {
5447 struct bpf_map *map;
5448 unsigned int i, j;
5449 int err;
5450 bool retried;
5451
5452 for (i = 0; i < obj->nr_maps; i++) {
5453 map = &obj->maps[i];
5454
5455 /* To support old kernels, we skip creating global data maps
5456 * (.rodata, .data, .kconfig, etc); later on, during program
5457 * loading, if we detect that at least one of the to-be-loaded
5458 * programs is referencing any global data map, we'll error
5459 * out with program name and relocation index logged.
5460 * This approach allows to accommodate Clang emitting
5461 * unnecessary .rodata.str1.1 sections for string literals,
5462 * but also it allows to have CO-RE applications that use
5463 * global variables in some of BPF programs, but not others.
5464 * If those global variable-using programs are not loaded at
5465 * runtime due to bpf_program__set_autoload(prog, false),
5466 * bpf_object loading will succeed just fine even on old
5467 * kernels.
5468 */
5469 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5470 map->autocreate = false;
5471
5472 if (!map->autocreate) {
5473 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5474 continue;
5475 }
5476
5477 err = map_set_def_max_entries(map);
5478 if (err)
5479 goto err_out;
5480
5481 retried = false;
5482 retry:
5483 if (map->pin_path) {
5484 err = bpf_object__reuse_map(map);
5485 if (err) {
5486 pr_warn("map '%s': error reusing pinned map\n",
5487 map->name);
5488 goto err_out;
5489 }
5490 if (retried && map->fd < 0) {
5491 pr_warn("map '%s': cannot find pinned map\n",
5492 map->name);
5493 err = -ENOENT;
5494 goto err_out;
5495 }
5496 }
5497
5498 if (map->reused) {
5499 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5500 map->name, map->fd);
5501 } else {
5502 err = bpf_object__create_map(obj, map, false);
5503 if (err)
5504 goto err_out;
5505
5506 pr_debug("map '%s': created successfully, fd=%d\n",
5507 map->name, map->fd);
5508
5509 if (bpf_map__is_internal(map)) {
5510 err = bpf_object__populate_internal_map(obj, map);
5511 if (err < 0)
5512 goto err_out;
5513 } else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5514 map->mmaped = mmap((void *)(long)map->map_extra,
5515 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5516 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5517 map->fd, 0);
5518 if (map->mmaped == MAP_FAILED) {
5519 err = -errno;
5520 map->mmaped = NULL;
5521 pr_warn("map '%s': failed to mmap arena: %s\n",
5522 map->name, errstr(err));
5523 return err;
5524 }
5525 if (obj->arena_data) {
5526 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5527 zfree(&obj->arena_data);
5528 }
5529 }
5530 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5531 err = init_map_in_map_slots(obj, map);
5532 if (err < 0)
5533 goto err_out;
5534 }
5535 }
5536
5537 if (map->pin_path && !map->pinned) {
5538 err = bpf_map__pin(map, NULL);
5539 if (err) {
5540 if (!retried && err == -EEXIST) {
5541 retried = true;
5542 goto retry;
5543 }
5544 pr_warn("map '%s': failed to auto-pin at '%s': %s\n",
5545 map->name, map->pin_path, errstr(err));
5546 goto err_out;
5547 }
5548 }
5549 }
5550
5551 return 0;
5552
5553 err_out:
5554 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err));
5555 pr_perm_msg(err);
5556 for (j = 0; j < i; j++)
5557 zclose(obj->maps[j].fd);
5558 return err;
5559 }
5560
bpf_core_is_flavor_sep(const char * s)5561 static bool bpf_core_is_flavor_sep(const char *s)
5562 {
5563 /* check X___Y name pattern, where X and Y are not underscores */
5564 return s[0] != '_' && /* X */
5565 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5566 s[4] != '_'; /* Y */
5567 }
5568
5569 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5570 * before last triple underscore. Struct name part after last triple
5571 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5572 */
bpf_core_essential_name_len(const char * name)5573 size_t bpf_core_essential_name_len(const char *name)
5574 {
5575 size_t n = strlen(name);
5576 int i;
5577
5578 for (i = n - 5; i >= 0; i--) {
5579 if (bpf_core_is_flavor_sep(name + i))
5580 return i + 1;
5581 }
5582 return n;
5583 }
5584
bpf_core_free_cands(struct bpf_core_cand_list * cands)5585 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5586 {
5587 if (!cands)
5588 return;
5589
5590 free(cands->cands);
5591 free(cands);
5592 }
5593
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5594 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5595 size_t local_essent_len,
5596 const struct btf *targ_btf,
5597 const char *targ_btf_name,
5598 int targ_start_id,
5599 struct bpf_core_cand_list *cands)
5600 {
5601 struct bpf_core_cand *new_cands, *cand;
5602 const struct btf_type *t, *local_t;
5603 const char *targ_name, *local_name;
5604 size_t targ_essent_len;
5605 int n, i;
5606
5607 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5608 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5609
5610 n = btf__type_cnt(targ_btf);
5611 for (i = targ_start_id; i < n; i++) {
5612 t = btf__type_by_id(targ_btf, i);
5613 if (!btf_kind_core_compat(t, local_t))
5614 continue;
5615
5616 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5617 if (str_is_empty(targ_name))
5618 continue;
5619
5620 targ_essent_len = bpf_core_essential_name_len(targ_name);
5621 if (targ_essent_len != local_essent_len)
5622 continue;
5623
5624 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5625 continue;
5626
5627 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5628 local_cand->id, btf_kind_str(local_t),
5629 local_name, i, btf_kind_str(t), targ_name,
5630 targ_btf_name);
5631 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5632 sizeof(*cands->cands));
5633 if (!new_cands)
5634 return -ENOMEM;
5635
5636 cand = &new_cands[cands->len];
5637 cand->btf = targ_btf;
5638 cand->id = i;
5639
5640 cands->cands = new_cands;
5641 cands->len++;
5642 }
5643 return 0;
5644 }
5645
load_module_btfs(struct bpf_object * obj)5646 static int load_module_btfs(struct bpf_object *obj)
5647 {
5648 struct bpf_btf_info info;
5649 struct module_btf *mod_btf;
5650 struct btf *btf;
5651 char name[64];
5652 __u32 id = 0, len;
5653 int err, fd;
5654
5655 if (obj->btf_modules_loaded)
5656 return 0;
5657
5658 if (obj->gen_loader)
5659 return 0;
5660
5661 /* don't do this again, even if we find no module BTFs */
5662 obj->btf_modules_loaded = true;
5663
5664 /* kernel too old to support module BTFs */
5665 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5666 return 0;
5667
5668 while (true) {
5669 err = bpf_btf_get_next_id(id, &id);
5670 if (err && errno == ENOENT)
5671 return 0;
5672 if (err && errno == EPERM) {
5673 pr_debug("skipping module BTFs loading, missing privileges\n");
5674 return 0;
5675 }
5676 if (err) {
5677 err = -errno;
5678 pr_warn("failed to iterate BTF objects: %s\n", errstr(err));
5679 return err;
5680 }
5681
5682 fd = bpf_btf_get_fd_by_id(id);
5683 if (fd < 0) {
5684 if (errno == ENOENT)
5685 continue; /* expected race: BTF was unloaded */
5686 err = -errno;
5687 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err));
5688 return err;
5689 }
5690
5691 len = sizeof(info);
5692 memset(&info, 0, sizeof(info));
5693 info.name = ptr_to_u64(name);
5694 info.name_len = sizeof(name);
5695
5696 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5697 if (err) {
5698 err = -errno;
5699 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err));
5700 goto err_out;
5701 }
5702
5703 /* ignore non-module BTFs */
5704 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5705 close(fd);
5706 continue;
5707 }
5708
5709 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5710 err = libbpf_get_error(btf);
5711 if (err) {
5712 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n",
5713 name, id, errstr(err));
5714 goto err_out;
5715 }
5716
5717 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5718 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5719 if (err)
5720 goto err_out;
5721
5722 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5723
5724 mod_btf->btf = btf;
5725 mod_btf->id = id;
5726 mod_btf->fd = fd;
5727 mod_btf->name = strdup(name);
5728 if (!mod_btf->name) {
5729 err = -ENOMEM;
5730 goto err_out;
5731 }
5732 continue;
5733
5734 err_out:
5735 close(fd);
5736 return err;
5737 }
5738
5739 return 0;
5740 }
5741
5742 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5743 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5744 {
5745 struct bpf_core_cand local_cand = {};
5746 struct bpf_core_cand_list *cands;
5747 const struct btf *main_btf;
5748 const struct btf_type *local_t;
5749 const char *local_name;
5750 size_t local_essent_len;
5751 int err, i;
5752
5753 local_cand.btf = local_btf;
5754 local_cand.id = local_type_id;
5755 local_t = btf__type_by_id(local_btf, local_type_id);
5756 if (!local_t)
5757 return ERR_PTR(-EINVAL);
5758
5759 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5760 if (str_is_empty(local_name))
5761 return ERR_PTR(-EINVAL);
5762 local_essent_len = bpf_core_essential_name_len(local_name);
5763
5764 cands = calloc(1, sizeof(*cands));
5765 if (!cands)
5766 return ERR_PTR(-ENOMEM);
5767
5768 /* Attempt to find target candidates in vmlinux BTF first */
5769 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5770 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5771 if (err)
5772 goto err_out;
5773
5774 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5775 if (cands->len)
5776 return cands;
5777
5778 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5779 if (obj->btf_vmlinux_override)
5780 return cands;
5781
5782 /* now look through module BTFs, trying to still find candidates */
5783 err = load_module_btfs(obj);
5784 if (err)
5785 goto err_out;
5786
5787 for (i = 0; i < obj->btf_module_cnt; i++) {
5788 err = bpf_core_add_cands(&local_cand, local_essent_len,
5789 obj->btf_modules[i].btf,
5790 obj->btf_modules[i].name,
5791 btf__type_cnt(obj->btf_vmlinux),
5792 cands);
5793 if (err)
5794 goto err_out;
5795 }
5796
5797 return cands;
5798 err_out:
5799 bpf_core_free_cands(cands);
5800 return ERR_PTR(err);
5801 }
5802
5803 /* Check local and target types for compatibility. This check is used for
5804 * type-based CO-RE relocations and follow slightly different rules than
5805 * field-based relocations. This function assumes that root types were already
5806 * checked for name match. Beyond that initial root-level name check, names
5807 * are completely ignored. Compatibility rules are as follows:
5808 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5809 * kind should match for local and target types (i.e., STRUCT is not
5810 * compatible with UNION);
5811 * - for ENUMs, the size is ignored;
5812 * - for INT, size and signedness are ignored;
5813 * - for ARRAY, dimensionality is ignored, element types are checked for
5814 * compatibility recursively;
5815 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5816 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5817 * - FUNC_PROTOs are compatible if they have compatible signature: same
5818 * number of input args and compatible return and argument types.
5819 * These rules are not set in stone and probably will be adjusted as we get
5820 * more experience with using BPF CO-RE relocations.
5821 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5822 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5823 const struct btf *targ_btf, __u32 targ_id)
5824 {
5825 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5826 }
5827
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5828 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5829 const struct btf *targ_btf, __u32 targ_id)
5830 {
5831 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5832 }
5833
bpf_core_hash_fn(const long key,void * ctx)5834 static size_t bpf_core_hash_fn(const long key, void *ctx)
5835 {
5836 return key;
5837 }
5838
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5839 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5840 {
5841 return k1 == k2;
5842 }
5843
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5844 static int record_relo_core(struct bpf_program *prog,
5845 const struct bpf_core_relo *core_relo, int insn_idx)
5846 {
5847 struct reloc_desc *relos, *relo;
5848
5849 relos = libbpf_reallocarray(prog->reloc_desc,
5850 prog->nr_reloc + 1, sizeof(*relos));
5851 if (!relos)
5852 return -ENOMEM;
5853 relo = &relos[prog->nr_reloc];
5854 relo->type = RELO_CORE;
5855 relo->insn_idx = insn_idx;
5856 relo->core_relo = core_relo;
5857 prog->reloc_desc = relos;
5858 prog->nr_reloc++;
5859 return 0;
5860 }
5861
find_relo_core(struct bpf_program * prog,int insn_idx)5862 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5863 {
5864 struct reloc_desc *relo;
5865 int i;
5866
5867 for (i = 0; i < prog->nr_reloc; i++) {
5868 relo = &prog->reloc_desc[i];
5869 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5870 continue;
5871
5872 return relo->core_relo;
5873 }
5874
5875 return NULL;
5876 }
5877
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5878 static int bpf_core_resolve_relo(struct bpf_program *prog,
5879 const struct bpf_core_relo *relo,
5880 int relo_idx,
5881 const struct btf *local_btf,
5882 struct hashmap *cand_cache,
5883 struct bpf_core_relo_res *targ_res)
5884 {
5885 struct bpf_core_spec specs_scratch[3] = {};
5886 struct bpf_core_cand_list *cands = NULL;
5887 const char *prog_name = prog->name;
5888 const struct btf_type *local_type;
5889 const char *local_name;
5890 __u32 local_id = relo->type_id;
5891 int err;
5892
5893 local_type = btf__type_by_id(local_btf, local_id);
5894 if (!local_type)
5895 return -EINVAL;
5896
5897 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5898 if (!local_name)
5899 return -EINVAL;
5900
5901 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5902 !hashmap__find(cand_cache, local_id, &cands)) {
5903 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5904 if (IS_ERR(cands)) {
5905 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5906 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5907 local_name, PTR_ERR(cands));
5908 return PTR_ERR(cands);
5909 }
5910 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5911 if (err) {
5912 bpf_core_free_cands(cands);
5913 return err;
5914 }
5915 }
5916
5917 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5918 targ_res);
5919 }
5920
5921 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5922 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5923 {
5924 const struct btf_ext_info_sec *sec;
5925 struct bpf_core_relo_res targ_res;
5926 const struct bpf_core_relo *rec;
5927 const struct btf_ext_info *seg;
5928 struct hashmap_entry *entry;
5929 struct hashmap *cand_cache = NULL;
5930 struct bpf_program *prog;
5931 struct bpf_insn *insn;
5932 const char *sec_name;
5933 int i, err = 0, insn_idx, sec_idx, sec_num;
5934
5935 if (obj->btf_ext->core_relo_info.len == 0)
5936 return 0;
5937
5938 if (targ_btf_path) {
5939 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5940 err = libbpf_get_error(obj->btf_vmlinux_override);
5941 if (err) {
5942 pr_warn("failed to parse target BTF: %s\n", errstr(err));
5943 return err;
5944 }
5945 }
5946
5947 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5948 if (IS_ERR(cand_cache)) {
5949 err = PTR_ERR(cand_cache);
5950 goto out;
5951 }
5952
5953 seg = &obj->btf_ext->core_relo_info;
5954 sec_num = 0;
5955 for_each_btf_ext_sec(seg, sec) {
5956 sec_idx = seg->sec_idxs[sec_num];
5957 sec_num++;
5958
5959 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5960 if (str_is_empty(sec_name)) {
5961 err = -EINVAL;
5962 goto out;
5963 }
5964
5965 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5966
5967 for_each_btf_ext_rec(seg, sec, i, rec) {
5968 if (rec->insn_off % BPF_INSN_SZ)
5969 return -EINVAL;
5970 insn_idx = rec->insn_off / BPF_INSN_SZ;
5971 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5972 if (!prog) {
5973 /* When __weak subprog is "overridden" by another instance
5974 * of the subprog from a different object file, linker still
5975 * appends all the .BTF.ext info that used to belong to that
5976 * eliminated subprogram.
5977 * This is similar to what x86-64 linker does for relocations.
5978 * So just ignore such relocations just like we ignore
5979 * subprog instructions when discovering subprograms.
5980 */
5981 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5982 sec_name, i, insn_idx);
5983 continue;
5984 }
5985 /* no need to apply CO-RE relocation if the program is
5986 * not going to be loaded
5987 */
5988 if (!prog->autoload)
5989 continue;
5990
5991 /* adjust insn_idx from section frame of reference to the local
5992 * program's frame of reference; (sub-)program code is not yet
5993 * relocated, so it's enough to just subtract in-section offset
5994 */
5995 insn_idx = insn_idx - prog->sec_insn_off;
5996 if (insn_idx >= prog->insns_cnt)
5997 return -EINVAL;
5998 insn = &prog->insns[insn_idx];
5999
6000 err = record_relo_core(prog, rec, insn_idx);
6001 if (err) {
6002 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n",
6003 prog->name, i, errstr(err));
6004 goto out;
6005 }
6006
6007 if (prog->obj->gen_loader)
6008 continue;
6009
6010 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6011 if (err) {
6012 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n",
6013 prog->name, i, errstr(err));
6014 goto out;
6015 }
6016
6017 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6018 if (err) {
6019 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n",
6020 prog->name, i, insn_idx, errstr(err));
6021 goto out;
6022 }
6023 }
6024 }
6025
6026 out:
6027 /* obj->btf_vmlinux and module BTFs are freed after object load */
6028 btf__free(obj->btf_vmlinux_override);
6029 obj->btf_vmlinux_override = NULL;
6030
6031 if (!IS_ERR_OR_NULL(cand_cache)) {
6032 hashmap__for_each_entry(cand_cache, entry, i) {
6033 bpf_core_free_cands(entry->pvalue);
6034 }
6035 hashmap__free(cand_cache);
6036 }
6037 return err;
6038 }
6039
6040 /* base map load ldimm64 special constant, used also for log fixup logic */
6041 #define POISON_LDIMM64_MAP_BASE 2001000000
6042 #define POISON_LDIMM64_MAP_PFX "200100"
6043
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)6044 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6045 int insn_idx, struct bpf_insn *insn,
6046 int map_idx, const struct bpf_map *map)
6047 {
6048 int i;
6049
6050 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6051 prog->name, relo_idx, insn_idx, map_idx, map->name);
6052
6053 /* we turn single ldimm64 into two identical invalid calls */
6054 for (i = 0; i < 2; i++) {
6055 insn->code = BPF_JMP | BPF_CALL;
6056 insn->dst_reg = 0;
6057 insn->src_reg = 0;
6058 insn->off = 0;
6059 /* if this instruction is reachable (not a dead code),
6060 * verifier will complain with something like:
6061 * invalid func unknown#2001000123
6062 * where lower 123 is map index into obj->maps[] array
6063 */
6064 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6065
6066 insn++;
6067 }
6068 }
6069
6070 /* unresolved kfunc call special constant, used also for log fixup logic */
6071 #define POISON_CALL_KFUNC_BASE 2002000000
6072 #define POISON_CALL_KFUNC_PFX "2002"
6073
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)6074 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6075 int insn_idx, struct bpf_insn *insn,
6076 int ext_idx, const struct extern_desc *ext)
6077 {
6078 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6079 prog->name, relo_idx, insn_idx, ext->name);
6080
6081 /* we turn kfunc call into invalid helper call with identifiable constant */
6082 insn->code = BPF_JMP | BPF_CALL;
6083 insn->dst_reg = 0;
6084 insn->src_reg = 0;
6085 insn->off = 0;
6086 /* if this instruction is reachable (not a dead code),
6087 * verifier will complain with something like:
6088 * invalid func unknown#2001000123
6089 * where lower 123 is extern index into obj->externs[] array
6090 */
6091 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6092 }
6093
6094 /* Relocate data references within program code:
6095 * - map references;
6096 * - global variable references;
6097 * - extern references.
6098 */
6099 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)6100 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6101 {
6102 int i;
6103
6104 for (i = 0; i < prog->nr_reloc; i++) {
6105 struct reloc_desc *relo = &prog->reloc_desc[i];
6106 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6107 const struct bpf_map *map;
6108 struct extern_desc *ext;
6109
6110 switch (relo->type) {
6111 case RELO_LD64:
6112 map = &obj->maps[relo->map_idx];
6113 if (obj->gen_loader) {
6114 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6115 insn[0].imm = relo->map_idx;
6116 } else if (map->autocreate) {
6117 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6118 insn[0].imm = map->fd;
6119 } else {
6120 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6121 relo->map_idx, map);
6122 }
6123 break;
6124 case RELO_DATA:
6125 map = &obj->maps[relo->map_idx];
6126 insn[1].imm = insn[0].imm + relo->sym_off;
6127 if (obj->gen_loader) {
6128 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6129 insn[0].imm = relo->map_idx;
6130 } else if (map->autocreate) {
6131 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6132 insn[0].imm = map->fd;
6133 } else {
6134 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6135 relo->map_idx, map);
6136 }
6137 break;
6138 case RELO_EXTERN_LD64:
6139 ext = &obj->externs[relo->ext_idx];
6140 if (ext->type == EXT_KCFG) {
6141 if (obj->gen_loader) {
6142 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6143 insn[0].imm = obj->kconfig_map_idx;
6144 } else {
6145 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6146 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6147 }
6148 insn[1].imm = ext->kcfg.data_off;
6149 } else /* EXT_KSYM */ {
6150 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6151 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6152 insn[0].imm = ext->ksym.kernel_btf_id;
6153 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6154 } else { /* typeless ksyms or unresolved typed ksyms */
6155 insn[0].imm = (__u32)ext->ksym.addr;
6156 insn[1].imm = ext->ksym.addr >> 32;
6157 }
6158 }
6159 break;
6160 case RELO_EXTERN_CALL:
6161 ext = &obj->externs[relo->ext_idx];
6162 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6163 if (ext->is_set) {
6164 insn[0].imm = ext->ksym.kernel_btf_id;
6165 insn[0].off = ext->ksym.btf_fd_idx;
6166 } else { /* unresolved weak kfunc call */
6167 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6168 relo->ext_idx, ext);
6169 }
6170 break;
6171 case RELO_SUBPROG_ADDR:
6172 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6173 pr_warn("prog '%s': relo #%d: bad insn\n",
6174 prog->name, i);
6175 return -EINVAL;
6176 }
6177 /* handled already */
6178 break;
6179 case RELO_CALL:
6180 /* handled already */
6181 break;
6182 case RELO_CORE:
6183 /* will be handled by bpf_program_record_relos() */
6184 break;
6185 default:
6186 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6187 prog->name, i, relo->type);
6188 return -EINVAL;
6189 }
6190 }
6191
6192 return 0;
6193 }
6194
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6195 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6196 const struct bpf_program *prog,
6197 const struct btf_ext_info *ext_info,
6198 void **prog_info, __u32 *prog_rec_cnt,
6199 __u32 *prog_rec_sz)
6200 {
6201 void *copy_start = NULL, *copy_end = NULL;
6202 void *rec, *rec_end, *new_prog_info;
6203 const struct btf_ext_info_sec *sec;
6204 size_t old_sz, new_sz;
6205 int i, sec_num, sec_idx, off_adj;
6206
6207 sec_num = 0;
6208 for_each_btf_ext_sec(ext_info, sec) {
6209 sec_idx = ext_info->sec_idxs[sec_num];
6210 sec_num++;
6211 if (prog->sec_idx != sec_idx)
6212 continue;
6213
6214 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6215 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6216
6217 if (insn_off < prog->sec_insn_off)
6218 continue;
6219 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6220 break;
6221
6222 if (!copy_start)
6223 copy_start = rec;
6224 copy_end = rec + ext_info->rec_size;
6225 }
6226
6227 if (!copy_start)
6228 return -ENOENT;
6229
6230 /* append func/line info of a given (sub-)program to the main
6231 * program func/line info
6232 */
6233 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6234 new_sz = old_sz + (copy_end - copy_start);
6235 new_prog_info = realloc(*prog_info, new_sz);
6236 if (!new_prog_info)
6237 return -ENOMEM;
6238 *prog_info = new_prog_info;
6239 *prog_rec_cnt = new_sz / ext_info->rec_size;
6240 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6241
6242 /* Kernel instruction offsets are in units of 8-byte
6243 * instructions, while .BTF.ext instruction offsets generated
6244 * by Clang are in units of bytes. So convert Clang offsets
6245 * into kernel offsets and adjust offset according to program
6246 * relocated position.
6247 */
6248 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6249 rec = new_prog_info + old_sz;
6250 rec_end = new_prog_info + new_sz;
6251 for (; rec < rec_end; rec += ext_info->rec_size) {
6252 __u32 *insn_off = rec;
6253
6254 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6255 }
6256 *prog_rec_sz = ext_info->rec_size;
6257 return 0;
6258 }
6259
6260 return -ENOENT;
6261 }
6262
6263 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6264 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6265 struct bpf_program *main_prog,
6266 const struct bpf_program *prog)
6267 {
6268 int err;
6269
6270 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6271 * support func/line info
6272 */
6273 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6274 return 0;
6275
6276 /* only attempt func info relocation if main program's func_info
6277 * relocation was successful
6278 */
6279 if (main_prog != prog && !main_prog->func_info)
6280 goto line_info;
6281
6282 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6283 &main_prog->func_info,
6284 &main_prog->func_info_cnt,
6285 &main_prog->func_info_rec_size);
6286 if (err) {
6287 if (err != -ENOENT) {
6288 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n",
6289 prog->name, errstr(err));
6290 return err;
6291 }
6292 if (main_prog->func_info) {
6293 /*
6294 * Some info has already been found but has problem
6295 * in the last btf_ext reloc. Must have to error out.
6296 */
6297 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6298 return err;
6299 }
6300 /* Have problem loading the very first info. Ignore the rest. */
6301 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6302 prog->name);
6303 }
6304
6305 line_info:
6306 /* don't relocate line info if main program's relocation failed */
6307 if (main_prog != prog && !main_prog->line_info)
6308 return 0;
6309
6310 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6311 &main_prog->line_info,
6312 &main_prog->line_info_cnt,
6313 &main_prog->line_info_rec_size);
6314 if (err) {
6315 if (err != -ENOENT) {
6316 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n",
6317 prog->name, errstr(err));
6318 return err;
6319 }
6320 if (main_prog->line_info) {
6321 /*
6322 * Some info has already been found but has problem
6323 * in the last btf_ext reloc. Must have to error out.
6324 */
6325 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6326 return err;
6327 }
6328 /* Have problem loading the very first info. Ignore the rest. */
6329 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6330 prog->name);
6331 }
6332 return 0;
6333 }
6334
cmp_relo_by_insn_idx(const void * key,const void * elem)6335 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6336 {
6337 size_t insn_idx = *(const size_t *)key;
6338 const struct reloc_desc *relo = elem;
6339
6340 if (insn_idx == relo->insn_idx)
6341 return 0;
6342 return insn_idx < relo->insn_idx ? -1 : 1;
6343 }
6344
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6345 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6346 {
6347 if (!prog->nr_reloc)
6348 return NULL;
6349 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6350 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6351 }
6352
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6353 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6354 {
6355 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6356 struct reloc_desc *relos;
6357 int i;
6358
6359 if (main_prog == subprog)
6360 return 0;
6361 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6362 /* if new count is zero, reallocarray can return a valid NULL result;
6363 * in this case the previous pointer will be freed, so we *have to*
6364 * reassign old pointer to the new value (even if it's NULL)
6365 */
6366 if (!relos && new_cnt)
6367 return -ENOMEM;
6368 if (subprog->nr_reloc)
6369 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6370 sizeof(*relos) * subprog->nr_reloc);
6371
6372 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6373 relos[i].insn_idx += subprog->sub_insn_off;
6374 /* After insn_idx adjustment the 'relos' array is still sorted
6375 * by insn_idx and doesn't break bsearch.
6376 */
6377 main_prog->reloc_desc = relos;
6378 main_prog->nr_reloc = new_cnt;
6379 return 0;
6380 }
6381
6382 static int
bpf_object__append_subprog_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * subprog)6383 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6384 struct bpf_program *subprog)
6385 {
6386 struct bpf_insn *insns;
6387 size_t new_cnt;
6388 int err;
6389
6390 subprog->sub_insn_off = main_prog->insns_cnt;
6391
6392 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6393 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6394 if (!insns) {
6395 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6396 return -ENOMEM;
6397 }
6398 main_prog->insns = insns;
6399 main_prog->insns_cnt = new_cnt;
6400
6401 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6402 subprog->insns_cnt * sizeof(*insns));
6403
6404 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6405 main_prog->name, subprog->insns_cnt, subprog->name);
6406
6407 /* The subprog insns are now appended. Append its relos too. */
6408 err = append_subprog_relos(main_prog, subprog);
6409 if (err)
6410 return err;
6411 return 0;
6412 }
6413
6414 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6415 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6416 struct bpf_program *prog)
6417 {
6418 size_t sub_insn_idx, insn_idx;
6419 struct bpf_program *subprog;
6420 struct reloc_desc *relo;
6421 struct bpf_insn *insn;
6422 int err;
6423
6424 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6425 if (err)
6426 return err;
6427
6428 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6429 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6430 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6431 continue;
6432
6433 relo = find_prog_insn_relo(prog, insn_idx);
6434 if (relo && relo->type == RELO_EXTERN_CALL)
6435 /* kfunc relocations will be handled later
6436 * in bpf_object__relocate_data()
6437 */
6438 continue;
6439 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6440 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6441 prog->name, insn_idx, relo->type);
6442 return -LIBBPF_ERRNO__RELOC;
6443 }
6444 if (relo) {
6445 /* sub-program instruction index is a combination of
6446 * an offset of a symbol pointed to by relocation and
6447 * call instruction's imm field; for global functions,
6448 * call always has imm = -1, but for static functions
6449 * relocation is against STT_SECTION and insn->imm
6450 * points to a start of a static function
6451 *
6452 * for subprog addr relocation, the relo->sym_off + insn->imm is
6453 * the byte offset in the corresponding section.
6454 */
6455 if (relo->type == RELO_CALL)
6456 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6457 else
6458 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6459 } else if (insn_is_pseudo_func(insn)) {
6460 /*
6461 * RELO_SUBPROG_ADDR relo is always emitted even if both
6462 * functions are in the same section, so it shouldn't reach here.
6463 */
6464 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6465 prog->name, insn_idx);
6466 return -LIBBPF_ERRNO__RELOC;
6467 } else {
6468 /* if subprogram call is to a static function within
6469 * the same ELF section, there won't be any relocation
6470 * emitted, but it also means there is no additional
6471 * offset necessary, insns->imm is relative to
6472 * instruction's original position within the section
6473 */
6474 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6475 }
6476
6477 /* we enforce that sub-programs should be in .text section */
6478 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6479 if (!subprog) {
6480 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6481 prog->name);
6482 return -LIBBPF_ERRNO__RELOC;
6483 }
6484
6485 /* if it's the first call instruction calling into this
6486 * subprogram (meaning this subprog hasn't been processed
6487 * yet) within the context of current main program:
6488 * - append it at the end of main program's instructions blog;
6489 * - process is recursively, while current program is put on hold;
6490 * - if that subprogram calls some other not yet processes
6491 * subprogram, same thing will happen recursively until
6492 * there are no more unprocesses subprograms left to append
6493 * and relocate.
6494 */
6495 if (subprog->sub_insn_off == 0) {
6496 err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6497 if (err)
6498 return err;
6499 err = bpf_object__reloc_code(obj, main_prog, subprog);
6500 if (err)
6501 return err;
6502 }
6503
6504 /* main_prog->insns memory could have been re-allocated, so
6505 * calculate pointer again
6506 */
6507 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6508 /* calculate correct instruction position within current main
6509 * prog; each main prog can have a different set of
6510 * subprograms appended (potentially in different order as
6511 * well), so position of any subprog can be different for
6512 * different main programs
6513 */
6514 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6515
6516 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6517 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6518 }
6519
6520 return 0;
6521 }
6522
6523 /*
6524 * Relocate sub-program calls.
6525 *
6526 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6527 * main prog) is processed separately. For each subprog (non-entry functions,
6528 * that can be called from either entry progs or other subprogs) gets their
6529 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6530 * hasn't been yet appended and relocated within current main prog. Once its
6531 * relocated, sub_insn_off will point at the position within current main prog
6532 * where given subprog was appended. This will further be used to relocate all
6533 * the call instructions jumping into this subprog.
6534 *
6535 * We start with main program and process all call instructions. If the call
6536 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6537 * is zero), subprog instructions are appended at the end of main program's
6538 * instruction array. Then main program is "put on hold" while we recursively
6539 * process newly appended subprogram. If that subprogram calls into another
6540 * subprogram that hasn't been appended, new subprogram is appended again to
6541 * the *main* prog's instructions (subprog's instructions are always left
6542 * untouched, as they need to be in unmodified state for subsequent main progs
6543 * and subprog instructions are always sent only as part of a main prog) and
6544 * the process continues recursively. Once all the subprogs called from a main
6545 * prog or any of its subprogs are appended (and relocated), all their
6546 * positions within finalized instructions array are known, so it's easy to
6547 * rewrite call instructions with correct relative offsets, corresponding to
6548 * desired target subprog.
6549 *
6550 * Its important to realize that some subprogs might not be called from some
6551 * main prog and any of its called/used subprogs. Those will keep their
6552 * subprog->sub_insn_off as zero at all times and won't be appended to current
6553 * main prog and won't be relocated within the context of current main prog.
6554 * They might still be used from other main progs later.
6555 *
6556 * Visually this process can be shown as below. Suppose we have two main
6557 * programs mainA and mainB and BPF object contains three subprogs: subA,
6558 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6559 * subC both call subB:
6560 *
6561 * +--------+ +-------+
6562 * | v v |
6563 * +--+---+ +--+-+-+ +---+--+
6564 * | subA | | subB | | subC |
6565 * +--+---+ +------+ +---+--+
6566 * ^ ^
6567 * | |
6568 * +---+-------+ +------+----+
6569 * | mainA | | mainB |
6570 * +-----------+ +-----------+
6571 *
6572 * We'll start relocating mainA, will find subA, append it and start
6573 * processing sub A recursively:
6574 *
6575 * +-----------+------+
6576 * | mainA | subA |
6577 * +-----------+------+
6578 *
6579 * At this point we notice that subB is used from subA, so we append it and
6580 * relocate (there are no further subcalls from subB):
6581 *
6582 * +-----------+------+------+
6583 * | mainA | subA | subB |
6584 * +-----------+------+------+
6585 *
6586 * At this point, we relocate subA calls, then go one level up and finish with
6587 * relocatin mainA calls. mainA is done.
6588 *
6589 * For mainB process is similar but results in different order. We start with
6590 * mainB and skip subA and subB, as mainB never calls them (at least
6591 * directly), but we see subC is needed, so we append and start processing it:
6592 *
6593 * +-----------+------+
6594 * | mainB | subC |
6595 * +-----------+------+
6596 * Now we see subC needs subB, so we go back to it, append and relocate it:
6597 *
6598 * +-----------+------+------+
6599 * | mainB | subC | subB |
6600 * +-----------+------+------+
6601 *
6602 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6603 */
6604 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6605 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6606 {
6607 struct bpf_program *subprog;
6608 int i, err;
6609
6610 /* mark all subprogs as not relocated (yet) within the context of
6611 * current main program
6612 */
6613 for (i = 0; i < obj->nr_programs; i++) {
6614 subprog = &obj->programs[i];
6615 if (!prog_is_subprog(obj, subprog))
6616 continue;
6617
6618 subprog->sub_insn_off = 0;
6619 }
6620
6621 err = bpf_object__reloc_code(obj, prog, prog);
6622 if (err)
6623 return err;
6624
6625 return 0;
6626 }
6627
6628 static void
bpf_object__free_relocs(struct bpf_object * obj)6629 bpf_object__free_relocs(struct bpf_object *obj)
6630 {
6631 struct bpf_program *prog;
6632 int i;
6633
6634 /* free up relocation descriptors */
6635 for (i = 0; i < obj->nr_programs; i++) {
6636 prog = &obj->programs[i];
6637 zfree(&prog->reloc_desc);
6638 prog->nr_reloc = 0;
6639 }
6640 }
6641
cmp_relocs(const void * _a,const void * _b)6642 static int cmp_relocs(const void *_a, const void *_b)
6643 {
6644 const struct reloc_desc *a = _a;
6645 const struct reloc_desc *b = _b;
6646
6647 if (a->insn_idx != b->insn_idx)
6648 return a->insn_idx < b->insn_idx ? -1 : 1;
6649
6650 /* no two relocations should have the same insn_idx, but ... */
6651 if (a->type != b->type)
6652 return a->type < b->type ? -1 : 1;
6653
6654 return 0;
6655 }
6656
bpf_object__sort_relos(struct bpf_object * obj)6657 static void bpf_object__sort_relos(struct bpf_object *obj)
6658 {
6659 int i;
6660
6661 for (i = 0; i < obj->nr_programs; i++) {
6662 struct bpf_program *p = &obj->programs[i];
6663
6664 if (!p->nr_reloc)
6665 continue;
6666
6667 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6668 }
6669 }
6670
bpf_prog_assign_exc_cb(struct bpf_object * obj,struct bpf_program * prog)6671 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6672 {
6673 const char *str = "exception_callback:";
6674 size_t pfx_len = strlen(str);
6675 int i, j, n;
6676
6677 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6678 return 0;
6679
6680 n = btf__type_cnt(obj->btf);
6681 for (i = 1; i < n; i++) {
6682 const char *name;
6683 struct btf_type *t;
6684
6685 t = btf_type_by_id(obj->btf, i);
6686 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6687 continue;
6688
6689 name = btf__str_by_offset(obj->btf, t->name_off);
6690 if (strncmp(name, str, pfx_len) != 0)
6691 continue;
6692
6693 t = btf_type_by_id(obj->btf, t->type);
6694 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6695 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6696 prog->name);
6697 return -EINVAL;
6698 }
6699 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6700 continue;
6701 /* Multiple callbacks are specified for the same prog,
6702 * the verifier will eventually return an error for this
6703 * case, hence simply skip appending a subprog.
6704 */
6705 if (prog->exception_cb_idx >= 0) {
6706 prog->exception_cb_idx = -1;
6707 break;
6708 }
6709
6710 name += pfx_len;
6711 if (str_is_empty(name)) {
6712 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6713 prog->name);
6714 return -EINVAL;
6715 }
6716
6717 for (j = 0; j < obj->nr_programs; j++) {
6718 struct bpf_program *subprog = &obj->programs[j];
6719
6720 if (!prog_is_subprog(obj, subprog))
6721 continue;
6722 if (strcmp(name, subprog->name) != 0)
6723 continue;
6724 /* Enforce non-hidden, as from verifier point of
6725 * view it expects global functions, whereas the
6726 * mark_btf_static fixes up linkage as static.
6727 */
6728 if (!subprog->sym_global || subprog->mark_btf_static) {
6729 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6730 prog->name, subprog->name);
6731 return -EINVAL;
6732 }
6733 /* Let's see if we already saw a static exception callback with the same name */
6734 if (prog->exception_cb_idx >= 0) {
6735 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6736 prog->name, subprog->name);
6737 return -EINVAL;
6738 }
6739 prog->exception_cb_idx = j;
6740 break;
6741 }
6742
6743 if (prog->exception_cb_idx >= 0)
6744 continue;
6745
6746 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6747 return -ENOENT;
6748 }
6749
6750 return 0;
6751 }
6752
6753 static struct {
6754 enum bpf_prog_type prog_type;
6755 const char *ctx_name;
6756 } global_ctx_map[] = {
6757 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" },
6758 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" },
6759 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" },
6760 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" },
6761 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" },
6762 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" },
6763 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" },
6764 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" },
6765 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" },
6766 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" },
6767 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" },
6768 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" },
6769 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" },
6770 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" },
6771 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" },
6772 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6773 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" },
6774 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" },
6775 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" },
6776 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" },
6777 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" },
6778 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" },
6779 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" },
6780 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" },
6781 { BPF_PROG_TYPE_XDP, "xdp_md" },
6782 /* all other program types don't have "named" context structs */
6783 };
6784
6785 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6786 * for below __builtin_types_compatible_p() checks;
6787 * with this approach we don't need any extra arch-specific #ifdef guards
6788 */
6789 struct pt_regs;
6790 struct user_pt_regs;
6791 struct user_regs_struct;
6792
need_func_arg_type_fixup(const struct btf * btf,const struct bpf_program * prog,const char * subprog_name,int arg_idx,int arg_type_id,const char * ctx_name)6793 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6794 const char *subprog_name, int arg_idx,
6795 int arg_type_id, const char *ctx_name)
6796 {
6797 const struct btf_type *t;
6798 const char *tname;
6799
6800 /* check if existing parameter already matches verifier expectations */
6801 t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6802 if (!btf_is_ptr(t))
6803 goto out_warn;
6804
6805 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6806 * and perf_event programs, so check this case early on and forget
6807 * about it for subsequent checks
6808 */
6809 while (btf_is_mod(t))
6810 t = btf__type_by_id(btf, t->type);
6811 if (btf_is_typedef(t) &&
6812 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6813 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6814 if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6815 return false; /* canonical type for kprobe/perf_event */
6816 }
6817
6818 /* now we can ignore typedefs moving forward */
6819 t = skip_mods_and_typedefs(btf, t->type, NULL);
6820
6821 /* if it's `void *`, definitely fix up BTF info */
6822 if (btf_is_void(t))
6823 return true;
6824
6825 /* if it's already proper canonical type, no need to fix up */
6826 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6827 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6828 return false;
6829
6830 /* special cases */
6831 switch (prog->type) {
6832 case BPF_PROG_TYPE_KPROBE:
6833 /* `struct pt_regs *` is expected, but we need to fix up */
6834 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6835 return true;
6836 break;
6837 case BPF_PROG_TYPE_PERF_EVENT:
6838 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6839 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6840 return true;
6841 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6842 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6843 return true;
6844 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6845 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6846 return true;
6847 break;
6848 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6849 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6850 /* allow u64* as ctx */
6851 if (btf_is_int(t) && t->size == 8)
6852 return true;
6853 break;
6854 default:
6855 break;
6856 }
6857
6858 out_warn:
6859 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6860 prog->name, subprog_name, arg_idx, ctx_name);
6861 return false;
6862 }
6863
clone_func_btf_info(struct btf * btf,int orig_fn_id,struct bpf_program * prog)6864 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6865 {
6866 int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6867 int i, err, arg_cnt, fn_name_off, linkage;
6868 struct btf_type *fn_t, *fn_proto_t, *t;
6869 struct btf_param *p;
6870
6871 /* caller already validated FUNC -> FUNC_PROTO validity */
6872 fn_t = btf_type_by_id(btf, orig_fn_id);
6873 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6874
6875 /* Note that each btf__add_xxx() operation invalidates
6876 * all btf_type and string pointers, so we need to be
6877 * very careful when cloning BTF types. BTF type
6878 * pointers have to be always refetched. And to avoid
6879 * problems with invalidated string pointers, we
6880 * add empty strings initially, then just fix up
6881 * name_off offsets in place. Offsets are stable for
6882 * existing strings, so that works out.
6883 */
6884 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6885 linkage = btf_func_linkage(fn_t);
6886 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6887 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6888 arg_cnt = btf_vlen(fn_proto_t);
6889
6890 /* clone FUNC_PROTO and its params */
6891 fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6892 if (fn_proto_id < 0)
6893 return -EINVAL;
6894
6895 for (i = 0; i < arg_cnt; i++) {
6896 int name_off;
6897
6898 /* copy original parameter data */
6899 t = btf_type_by_id(btf, orig_proto_id);
6900 p = &btf_params(t)[i];
6901 name_off = p->name_off;
6902
6903 err = btf__add_func_param(btf, "", p->type);
6904 if (err)
6905 return err;
6906
6907 fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6908 p = &btf_params(fn_proto_t)[i];
6909 p->name_off = name_off; /* use remembered str offset */
6910 }
6911
6912 /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6913 * entry program's name as a placeholder, which we replace immediately
6914 * with original name_off
6915 */
6916 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6917 if (fn_id < 0)
6918 return -EINVAL;
6919
6920 fn_t = btf_type_by_id(btf, fn_id);
6921 fn_t->name_off = fn_name_off; /* reuse original string */
6922
6923 return fn_id;
6924 }
6925
6926 /* Check if main program or global subprog's function prototype has `arg:ctx`
6927 * argument tags, and, if necessary, substitute correct type to match what BPF
6928 * verifier would expect, taking into account specific program type. This
6929 * allows to support __arg_ctx tag transparently on old kernels that don't yet
6930 * have a native support for it in the verifier, making user's life much
6931 * easier.
6932 */
bpf_program_fixup_func_info(struct bpf_object * obj,struct bpf_program * prog)6933 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6934 {
6935 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6936 struct bpf_func_info_min *func_rec;
6937 struct btf_type *fn_t, *fn_proto_t;
6938 struct btf *btf = obj->btf;
6939 const struct btf_type *t;
6940 struct btf_param *p;
6941 int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6942 int i, n, arg_idx, arg_cnt, err, rec_idx;
6943 int *orig_ids;
6944
6945 /* no .BTF.ext, no problem */
6946 if (!obj->btf_ext || !prog->func_info)
6947 return 0;
6948
6949 /* don't do any fix ups if kernel natively supports __arg_ctx */
6950 if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6951 return 0;
6952
6953 /* some BPF program types just don't have named context structs, so
6954 * this fallback mechanism doesn't work for them
6955 */
6956 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6957 if (global_ctx_map[i].prog_type != prog->type)
6958 continue;
6959 ctx_name = global_ctx_map[i].ctx_name;
6960 break;
6961 }
6962 if (!ctx_name)
6963 return 0;
6964
6965 /* remember original func BTF IDs to detect if we already cloned them */
6966 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6967 if (!orig_ids)
6968 return -ENOMEM;
6969 for (i = 0; i < prog->func_info_cnt; i++) {
6970 func_rec = prog->func_info + prog->func_info_rec_size * i;
6971 orig_ids[i] = func_rec->type_id;
6972 }
6973
6974 /* go through each DECL_TAG with "arg:ctx" and see if it points to one
6975 * of our subprogs; if yes and subprog is global and needs adjustment,
6976 * clone and adjust FUNC -> FUNC_PROTO combo
6977 */
6978 for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6979 /* only DECL_TAG with "arg:ctx" value are interesting */
6980 t = btf__type_by_id(btf, i);
6981 if (!btf_is_decl_tag(t))
6982 continue;
6983 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6984 continue;
6985
6986 /* only global funcs need adjustment, if at all */
6987 orig_fn_id = t->type;
6988 fn_t = btf_type_by_id(btf, orig_fn_id);
6989 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6990 continue;
6991
6992 /* sanity check FUNC -> FUNC_PROTO chain, just in case */
6993 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6994 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6995 continue;
6996
6997 /* find corresponding func_info record */
6998 func_rec = NULL;
6999 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
7000 if (orig_ids[rec_idx] == t->type) {
7001 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
7002 break;
7003 }
7004 }
7005 /* current main program doesn't call into this subprog */
7006 if (!func_rec)
7007 continue;
7008
7009 /* some more sanity checking of DECL_TAG */
7010 arg_cnt = btf_vlen(fn_proto_t);
7011 arg_idx = btf_decl_tag(t)->component_idx;
7012 if (arg_idx < 0 || arg_idx >= arg_cnt)
7013 continue;
7014
7015 /* check if we should fix up argument type */
7016 p = &btf_params(fn_proto_t)[arg_idx];
7017 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
7018 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
7019 continue;
7020
7021 /* clone fn/fn_proto, unless we already did it for another arg */
7022 if (func_rec->type_id == orig_fn_id) {
7023 int fn_id;
7024
7025 fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7026 if (fn_id < 0) {
7027 err = fn_id;
7028 goto err_out;
7029 }
7030
7031 /* point func_info record to a cloned FUNC type */
7032 func_rec->type_id = fn_id;
7033 }
7034
7035 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7036 * we do it just once per main BPF program, as all global
7037 * funcs share the same program type, so need only PTR ->
7038 * STRUCT type chain
7039 */
7040 if (ptr_id == 0) {
7041 struct_id = btf__add_struct(btf, ctx_name, 0);
7042 ptr_id = btf__add_ptr(btf, struct_id);
7043 if (ptr_id < 0 || struct_id < 0) {
7044 err = -EINVAL;
7045 goto err_out;
7046 }
7047 }
7048
7049 /* for completeness, clone DECL_TAG and point it to cloned param */
7050 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7051 if (tag_id < 0) {
7052 err = -EINVAL;
7053 goto err_out;
7054 }
7055
7056 /* all the BTF manipulations invalidated pointers, refetch them */
7057 fn_t = btf_type_by_id(btf, func_rec->type_id);
7058 fn_proto_t = btf_type_by_id(btf, fn_t->type);
7059
7060 /* fix up type ID pointed to by param */
7061 p = &btf_params(fn_proto_t)[arg_idx];
7062 p->type = ptr_id;
7063 }
7064
7065 free(orig_ids);
7066 return 0;
7067 err_out:
7068 free(orig_ids);
7069 return err;
7070 }
7071
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)7072 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7073 {
7074 struct bpf_program *prog;
7075 size_t i, j;
7076 int err;
7077
7078 if (obj->btf_ext) {
7079 err = bpf_object__relocate_core(obj, targ_btf_path);
7080 if (err) {
7081 pr_warn("failed to perform CO-RE relocations: %s\n",
7082 errstr(err));
7083 return err;
7084 }
7085 bpf_object__sort_relos(obj);
7086 }
7087
7088 /* Before relocating calls pre-process relocations and mark
7089 * few ld_imm64 instructions that points to subprogs.
7090 * Otherwise bpf_object__reloc_code() later would have to consider
7091 * all ld_imm64 insns as relocation candidates. That would
7092 * reduce relocation speed, since amount of find_prog_insn_relo()
7093 * would increase and most of them will fail to find a relo.
7094 */
7095 for (i = 0; i < obj->nr_programs; i++) {
7096 prog = &obj->programs[i];
7097 for (j = 0; j < prog->nr_reloc; j++) {
7098 struct reloc_desc *relo = &prog->reloc_desc[j];
7099 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7100
7101 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
7102 if (relo->type == RELO_SUBPROG_ADDR)
7103 insn[0].src_reg = BPF_PSEUDO_FUNC;
7104 }
7105 }
7106
7107 /* relocate subprogram calls and append used subprograms to main
7108 * programs; each copy of subprogram code needs to be relocated
7109 * differently for each main program, because its code location might
7110 * have changed.
7111 * Append subprog relos to main programs to allow data relos to be
7112 * processed after text is completely relocated.
7113 */
7114 for (i = 0; i < obj->nr_programs; i++) {
7115 prog = &obj->programs[i];
7116 /* sub-program's sub-calls are relocated within the context of
7117 * its main program only
7118 */
7119 if (prog_is_subprog(obj, prog))
7120 continue;
7121 if (!prog->autoload)
7122 continue;
7123
7124 err = bpf_object__relocate_calls(obj, prog);
7125 if (err) {
7126 pr_warn("prog '%s': failed to relocate calls: %s\n",
7127 prog->name, errstr(err));
7128 return err;
7129 }
7130
7131 err = bpf_prog_assign_exc_cb(obj, prog);
7132 if (err)
7133 return err;
7134 /* Now, also append exception callback if it has not been done already. */
7135 if (prog->exception_cb_idx >= 0) {
7136 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7137
7138 /* Calling exception callback directly is disallowed, which the
7139 * verifier will reject later. In case it was processed already,
7140 * we can skip this step, otherwise for all other valid cases we
7141 * have to append exception callback now.
7142 */
7143 if (subprog->sub_insn_off == 0) {
7144 err = bpf_object__append_subprog_code(obj, prog, subprog);
7145 if (err)
7146 return err;
7147 err = bpf_object__reloc_code(obj, prog, subprog);
7148 if (err)
7149 return err;
7150 }
7151 }
7152 }
7153 for (i = 0; i < obj->nr_programs; i++) {
7154 prog = &obj->programs[i];
7155 if (prog_is_subprog(obj, prog))
7156 continue;
7157 if (!prog->autoload)
7158 continue;
7159
7160 /* Process data relos for main programs */
7161 err = bpf_object__relocate_data(obj, prog);
7162 if (err) {
7163 pr_warn("prog '%s': failed to relocate data references: %s\n",
7164 prog->name, errstr(err));
7165 return err;
7166 }
7167
7168 /* Fix up .BTF.ext information, if necessary */
7169 err = bpf_program_fixup_func_info(obj, prog);
7170 if (err) {
7171 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n",
7172 prog->name, errstr(err));
7173 return err;
7174 }
7175 }
7176
7177 return 0;
7178 }
7179
7180 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7181 Elf64_Shdr *shdr, Elf_Data *data);
7182
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)7183 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7184 Elf64_Shdr *shdr, Elf_Data *data)
7185 {
7186 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7187 int i, j, nrels, new_sz;
7188 const struct btf_var_secinfo *vi = NULL;
7189 const struct btf_type *sec, *var, *def;
7190 struct bpf_map *map = NULL, *targ_map = NULL;
7191 struct bpf_program *targ_prog = NULL;
7192 bool is_prog_array, is_map_in_map;
7193 const struct btf_member *member;
7194 const char *name, *mname, *type;
7195 unsigned int moff;
7196 Elf64_Sym *sym;
7197 Elf64_Rel *rel;
7198 void *tmp;
7199
7200 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7201 return -EINVAL;
7202 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7203 if (!sec)
7204 return -EINVAL;
7205
7206 nrels = shdr->sh_size / shdr->sh_entsize;
7207 for (i = 0; i < nrels; i++) {
7208 rel = elf_rel_by_idx(data, i);
7209 if (!rel) {
7210 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7211 return -LIBBPF_ERRNO__FORMAT;
7212 }
7213
7214 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7215 if (!sym) {
7216 pr_warn(".maps relo #%d: symbol %zx not found\n",
7217 i, (size_t)ELF64_R_SYM(rel->r_info));
7218 return -LIBBPF_ERRNO__FORMAT;
7219 }
7220 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7221
7222 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7223 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7224 (size_t)rel->r_offset, sym->st_name, name);
7225
7226 for (j = 0; j < obj->nr_maps; j++) {
7227 map = &obj->maps[j];
7228 if (map->sec_idx != obj->efile.btf_maps_shndx)
7229 continue;
7230
7231 vi = btf_var_secinfos(sec) + map->btf_var_idx;
7232 if (vi->offset <= rel->r_offset &&
7233 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7234 break;
7235 }
7236 if (j == obj->nr_maps) {
7237 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7238 i, name, (size_t)rel->r_offset);
7239 return -EINVAL;
7240 }
7241
7242 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7243 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7244 type = is_map_in_map ? "map" : "prog";
7245 if (is_map_in_map) {
7246 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7247 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7248 i, name);
7249 return -LIBBPF_ERRNO__RELOC;
7250 }
7251 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7252 map->def.key_size != sizeof(int)) {
7253 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7254 i, map->name, sizeof(int));
7255 return -EINVAL;
7256 }
7257 targ_map = bpf_object__find_map_by_name(obj, name);
7258 if (!targ_map) {
7259 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7260 i, name);
7261 return -ESRCH;
7262 }
7263 } else if (is_prog_array) {
7264 targ_prog = bpf_object__find_program_by_name(obj, name);
7265 if (!targ_prog) {
7266 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7267 i, name);
7268 return -ESRCH;
7269 }
7270 if (targ_prog->sec_idx != sym->st_shndx ||
7271 targ_prog->sec_insn_off * 8 != sym->st_value ||
7272 prog_is_subprog(obj, targ_prog)) {
7273 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7274 i, name);
7275 return -LIBBPF_ERRNO__RELOC;
7276 }
7277 } else {
7278 return -EINVAL;
7279 }
7280
7281 var = btf__type_by_id(obj->btf, vi->type);
7282 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7283 if (btf_vlen(def) == 0)
7284 return -EINVAL;
7285 member = btf_members(def) + btf_vlen(def) - 1;
7286 mname = btf__name_by_offset(obj->btf, member->name_off);
7287 if (strcmp(mname, "values"))
7288 return -EINVAL;
7289
7290 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7291 if (rel->r_offset - vi->offset < moff)
7292 return -EINVAL;
7293
7294 moff = rel->r_offset - vi->offset - moff;
7295 /* here we use BPF pointer size, which is always 64 bit, as we
7296 * are parsing ELF that was built for BPF target
7297 */
7298 if (moff % bpf_ptr_sz)
7299 return -EINVAL;
7300 moff /= bpf_ptr_sz;
7301 if (moff >= map->init_slots_sz) {
7302 new_sz = moff + 1;
7303 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7304 if (!tmp)
7305 return -ENOMEM;
7306 map->init_slots = tmp;
7307 memset(map->init_slots + map->init_slots_sz, 0,
7308 (new_sz - map->init_slots_sz) * host_ptr_sz);
7309 map->init_slots_sz = new_sz;
7310 }
7311 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7312
7313 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7314 i, map->name, moff, type, name);
7315 }
7316
7317 return 0;
7318 }
7319
bpf_object__collect_relos(struct bpf_object * obj)7320 static int bpf_object__collect_relos(struct bpf_object *obj)
7321 {
7322 int i, err;
7323
7324 for (i = 0; i < obj->efile.sec_cnt; i++) {
7325 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7326 Elf64_Shdr *shdr;
7327 Elf_Data *data;
7328 int idx;
7329
7330 if (sec_desc->sec_type != SEC_RELO)
7331 continue;
7332
7333 shdr = sec_desc->shdr;
7334 data = sec_desc->data;
7335 idx = shdr->sh_info;
7336
7337 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7338 pr_warn("internal error at %d\n", __LINE__);
7339 return -LIBBPF_ERRNO__INTERNAL;
7340 }
7341
7342 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7343 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7344 else if (idx == obj->efile.btf_maps_shndx)
7345 err = bpf_object__collect_map_relos(obj, shdr, data);
7346 else
7347 err = bpf_object__collect_prog_relos(obj, shdr, data);
7348 if (err)
7349 return err;
7350 }
7351
7352 bpf_object__sort_relos(obj);
7353 return 0;
7354 }
7355
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)7356 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7357 {
7358 if (BPF_CLASS(insn->code) == BPF_JMP &&
7359 BPF_OP(insn->code) == BPF_CALL &&
7360 BPF_SRC(insn->code) == BPF_K &&
7361 insn->src_reg == 0 &&
7362 insn->dst_reg == 0) {
7363 *func_id = insn->imm;
7364 return true;
7365 }
7366 return false;
7367 }
7368
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)7369 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7370 {
7371 struct bpf_insn *insn = prog->insns;
7372 enum bpf_func_id func_id;
7373 int i;
7374
7375 if (obj->gen_loader)
7376 return 0;
7377
7378 for (i = 0; i < prog->insns_cnt; i++, insn++) {
7379 if (!insn_is_helper_call(insn, &func_id))
7380 continue;
7381
7382 /* on kernels that don't yet support
7383 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7384 * to bpf_probe_read() which works well for old kernels
7385 */
7386 switch (func_id) {
7387 case BPF_FUNC_probe_read_kernel:
7388 case BPF_FUNC_probe_read_user:
7389 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7390 insn->imm = BPF_FUNC_probe_read;
7391 break;
7392 case BPF_FUNC_probe_read_kernel_str:
7393 case BPF_FUNC_probe_read_user_str:
7394 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7395 insn->imm = BPF_FUNC_probe_read_str;
7396 break;
7397 default:
7398 break;
7399 }
7400 }
7401 return 0;
7402 }
7403
7404 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7405 int *btf_obj_fd, int *btf_type_id);
7406
7407 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)7408 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7409 struct bpf_prog_load_opts *opts, long cookie)
7410 {
7411 enum sec_def_flags def = cookie;
7412
7413 /* old kernels might not support specifying expected_attach_type */
7414 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7415 opts->expected_attach_type = 0;
7416
7417 if (def & SEC_SLEEPABLE)
7418 opts->prog_flags |= BPF_F_SLEEPABLE;
7419
7420 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7421 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7422
7423 /* special check for usdt to use uprobe_multi link */
7424 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7425 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7426 * in prog, and expected_attach_type we set in kernel is from opts, so we
7427 * update both.
7428 */
7429 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7430 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7431 }
7432
7433 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7434 int btf_obj_fd = 0, btf_type_id = 0, err;
7435 const char *attach_name;
7436
7437 attach_name = strchr(prog->sec_name, '/');
7438 if (!attach_name) {
7439 /* if BPF program is annotated with just SEC("fentry")
7440 * (or similar) without declaratively specifying
7441 * target, then it is expected that target will be
7442 * specified with bpf_program__set_attach_target() at
7443 * runtime before BPF object load step. If not, then
7444 * there is nothing to load into the kernel as BPF
7445 * verifier won't be able to validate BPF program
7446 * correctness anyways.
7447 */
7448 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7449 prog->name);
7450 return -EINVAL;
7451 }
7452 attach_name++; /* skip over / */
7453
7454 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7455 if (err)
7456 return err;
7457
7458 /* cache resolved BTF FD and BTF type ID in the prog */
7459 prog->attach_btf_obj_fd = btf_obj_fd;
7460 prog->attach_btf_id = btf_type_id;
7461
7462 /* but by now libbpf common logic is not utilizing
7463 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7464 * this callback is called after opts were populated by
7465 * libbpf, so this callback has to update opts explicitly here
7466 */
7467 opts->attach_btf_obj_fd = btf_obj_fd;
7468 opts->attach_btf_id = btf_type_id;
7469 }
7470 return 0;
7471 }
7472
7473 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7474
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)7475 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7476 struct bpf_insn *insns, int insns_cnt,
7477 const char *license, __u32 kern_version, int *prog_fd)
7478 {
7479 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7480 const char *prog_name = NULL;
7481 size_t log_buf_size = 0;
7482 char *log_buf = NULL, *tmp;
7483 bool own_log_buf = true;
7484 __u32 log_level = prog->log_level;
7485 int ret, err;
7486
7487 /* Be more helpful by rejecting programs that can't be validated early
7488 * with more meaningful and actionable error message.
7489 */
7490 switch (prog->type) {
7491 case BPF_PROG_TYPE_UNSPEC:
7492 /*
7493 * The program type must be set. Most likely we couldn't find a proper
7494 * section definition at load time, and thus we didn't infer the type.
7495 */
7496 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7497 prog->name, prog->sec_name);
7498 return -EINVAL;
7499 case BPF_PROG_TYPE_STRUCT_OPS:
7500 if (prog->attach_btf_id == 0) {
7501 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7502 prog->name);
7503 return -EINVAL;
7504 }
7505 break;
7506 default:
7507 break;
7508 }
7509
7510 if (!insns || !insns_cnt)
7511 return -EINVAL;
7512
7513 if (kernel_supports(obj, FEAT_PROG_NAME))
7514 prog_name = prog->name;
7515 load_attr.attach_prog_fd = prog->attach_prog_fd;
7516 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7517 load_attr.attach_btf_id = prog->attach_btf_id;
7518 load_attr.kern_version = kern_version;
7519 load_attr.prog_ifindex = prog->prog_ifindex;
7520 load_attr.expected_attach_type = prog->expected_attach_type;
7521
7522 /* specify func_info/line_info only if kernel supports them */
7523 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7524 load_attr.prog_btf_fd = btf__fd(obj->btf);
7525 load_attr.func_info = prog->func_info;
7526 load_attr.func_info_rec_size = prog->func_info_rec_size;
7527 load_attr.func_info_cnt = prog->func_info_cnt;
7528 load_attr.line_info = prog->line_info;
7529 load_attr.line_info_rec_size = prog->line_info_rec_size;
7530 load_attr.line_info_cnt = prog->line_info_cnt;
7531 }
7532 load_attr.log_level = log_level;
7533 load_attr.prog_flags = prog->prog_flags;
7534 load_attr.fd_array = obj->fd_array;
7535
7536 load_attr.token_fd = obj->token_fd;
7537 if (obj->token_fd)
7538 load_attr.prog_flags |= BPF_F_TOKEN_FD;
7539
7540 /* adjust load_attr if sec_def provides custom preload callback */
7541 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7542 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7543 if (err < 0) {
7544 pr_warn("prog '%s': failed to prepare load attributes: %s\n",
7545 prog->name, errstr(err));
7546 return err;
7547 }
7548 insns = prog->insns;
7549 insns_cnt = prog->insns_cnt;
7550 }
7551
7552 if (obj->gen_loader) {
7553 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7554 license, insns, insns_cnt, &load_attr,
7555 prog - obj->programs);
7556 *prog_fd = -1;
7557 return 0;
7558 }
7559
7560 retry_load:
7561 /* if log_level is zero, we don't request logs initially even if
7562 * custom log_buf is specified; if the program load fails, then we'll
7563 * bump log_level to 1 and use either custom log_buf or we'll allocate
7564 * our own and retry the load to get details on what failed
7565 */
7566 if (log_level) {
7567 if (prog->log_buf) {
7568 log_buf = prog->log_buf;
7569 log_buf_size = prog->log_size;
7570 own_log_buf = false;
7571 } else if (obj->log_buf) {
7572 log_buf = obj->log_buf;
7573 log_buf_size = obj->log_size;
7574 own_log_buf = false;
7575 } else {
7576 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7577 tmp = realloc(log_buf, log_buf_size);
7578 if (!tmp) {
7579 ret = -ENOMEM;
7580 goto out;
7581 }
7582 log_buf = tmp;
7583 log_buf[0] = '\0';
7584 own_log_buf = true;
7585 }
7586 }
7587
7588 load_attr.log_buf = log_buf;
7589 load_attr.log_size = log_buf_size;
7590 load_attr.log_level = log_level;
7591
7592 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7593 if (ret >= 0) {
7594 if (log_level && own_log_buf) {
7595 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7596 prog->name, log_buf);
7597 }
7598
7599 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7600 struct bpf_map *map;
7601 int i;
7602
7603 for (i = 0; i < obj->nr_maps; i++) {
7604 map = &prog->obj->maps[i];
7605 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7606 continue;
7607
7608 if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7609 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7610 prog->name, map->real_name, errstr(errno));
7611 /* Don't fail hard if can't bind rodata. */
7612 }
7613 }
7614 }
7615
7616 *prog_fd = ret;
7617 ret = 0;
7618 goto out;
7619 }
7620
7621 if (log_level == 0) {
7622 log_level = 1;
7623 goto retry_load;
7624 }
7625 /* On ENOSPC, increase log buffer size and retry, unless custom
7626 * log_buf is specified.
7627 * Be careful to not overflow u32, though. Kernel's log buf size limit
7628 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7629 * multiply by 2 unless we are sure we'll fit within 32 bits.
7630 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7631 */
7632 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7633 goto retry_load;
7634
7635 ret = -errno;
7636
7637 /* post-process verifier log to improve error descriptions */
7638 fixup_verifier_log(prog, log_buf, log_buf_size);
7639
7640 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno));
7641 pr_perm_msg(ret);
7642
7643 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7644 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7645 prog->name, log_buf);
7646 }
7647
7648 out:
7649 if (own_log_buf)
7650 free(log_buf);
7651 return ret;
7652 }
7653
find_prev_line(char * buf,char * cur)7654 static char *find_prev_line(char *buf, char *cur)
7655 {
7656 char *p;
7657
7658 if (cur == buf) /* end of a log buf */
7659 return NULL;
7660
7661 p = cur - 1;
7662 while (p - 1 >= buf && *(p - 1) != '\n')
7663 p--;
7664
7665 return p;
7666 }
7667
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7668 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7669 char *orig, size_t orig_sz, const char *patch)
7670 {
7671 /* size of the remaining log content to the right from the to-be-replaced part */
7672 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7673 size_t patch_sz = strlen(patch);
7674
7675 if (patch_sz != orig_sz) {
7676 /* If patch line(s) are longer than original piece of verifier log,
7677 * shift log contents by (patch_sz - orig_sz) bytes to the right
7678 * starting from after to-be-replaced part of the log.
7679 *
7680 * If patch line(s) are shorter than original piece of verifier log,
7681 * shift log contents by (orig_sz - patch_sz) bytes to the left
7682 * starting from after to-be-replaced part of the log
7683 *
7684 * We need to be careful about not overflowing available
7685 * buf_sz capacity. If that's the case, we'll truncate the end
7686 * of the original log, as necessary.
7687 */
7688 if (patch_sz > orig_sz) {
7689 if (orig + patch_sz >= buf + buf_sz) {
7690 /* patch is big enough to cover remaining space completely */
7691 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7692 rem_sz = 0;
7693 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7694 /* patch causes part of remaining log to be truncated */
7695 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7696 }
7697 }
7698 /* shift remaining log to the right by calculated amount */
7699 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7700 }
7701
7702 memcpy(orig, patch, patch_sz);
7703 }
7704
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7705 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7706 char *buf, size_t buf_sz, size_t log_sz,
7707 char *line1, char *line2, char *line3)
7708 {
7709 /* Expected log for failed and not properly guarded CO-RE relocation:
7710 * line1 -> 123: (85) call unknown#195896080
7711 * line2 -> invalid func unknown#195896080
7712 * line3 -> <anything else or end of buffer>
7713 *
7714 * "123" is the index of the instruction that was poisoned. We extract
7715 * instruction index to find corresponding CO-RE relocation and
7716 * replace this part of the log with more relevant information about
7717 * failed CO-RE relocation.
7718 */
7719 const struct bpf_core_relo *relo;
7720 struct bpf_core_spec spec;
7721 char patch[512], spec_buf[256];
7722 int insn_idx, err, spec_len;
7723
7724 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7725 return;
7726
7727 relo = find_relo_core(prog, insn_idx);
7728 if (!relo)
7729 return;
7730
7731 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7732 if (err)
7733 return;
7734
7735 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7736 snprintf(patch, sizeof(patch),
7737 "%d: <invalid CO-RE relocation>\n"
7738 "failed to resolve CO-RE relocation %s%s\n",
7739 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7740
7741 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7742 }
7743
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7744 static void fixup_log_missing_map_load(struct bpf_program *prog,
7745 char *buf, size_t buf_sz, size_t log_sz,
7746 char *line1, char *line2, char *line3)
7747 {
7748 /* Expected log for failed and not properly guarded map reference:
7749 * line1 -> 123: (85) call unknown#2001000345
7750 * line2 -> invalid func unknown#2001000345
7751 * line3 -> <anything else or end of buffer>
7752 *
7753 * "123" is the index of the instruction that was poisoned.
7754 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7755 */
7756 struct bpf_object *obj = prog->obj;
7757 const struct bpf_map *map;
7758 int insn_idx, map_idx;
7759 char patch[128];
7760
7761 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7762 return;
7763
7764 map_idx -= POISON_LDIMM64_MAP_BASE;
7765 if (map_idx < 0 || map_idx >= obj->nr_maps)
7766 return;
7767 map = &obj->maps[map_idx];
7768
7769 snprintf(patch, sizeof(patch),
7770 "%d: <invalid BPF map reference>\n"
7771 "BPF map '%s' is referenced but wasn't created\n",
7772 insn_idx, map->name);
7773
7774 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7775 }
7776
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7777 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7778 char *buf, size_t buf_sz, size_t log_sz,
7779 char *line1, char *line2, char *line3)
7780 {
7781 /* Expected log for failed and not properly guarded kfunc call:
7782 * line1 -> 123: (85) call unknown#2002000345
7783 * line2 -> invalid func unknown#2002000345
7784 * line3 -> <anything else or end of buffer>
7785 *
7786 * "123" is the index of the instruction that was poisoned.
7787 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7788 */
7789 struct bpf_object *obj = prog->obj;
7790 const struct extern_desc *ext;
7791 int insn_idx, ext_idx;
7792 char patch[128];
7793
7794 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7795 return;
7796
7797 ext_idx -= POISON_CALL_KFUNC_BASE;
7798 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7799 return;
7800 ext = &obj->externs[ext_idx];
7801
7802 snprintf(patch, sizeof(patch),
7803 "%d: <invalid kfunc call>\n"
7804 "kfunc '%s' is referenced but wasn't resolved\n",
7805 insn_idx, ext->name);
7806
7807 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7808 }
7809
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7810 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7811 {
7812 /* look for familiar error patterns in last N lines of the log */
7813 const size_t max_last_line_cnt = 10;
7814 char *prev_line, *cur_line, *next_line;
7815 size_t log_sz;
7816 int i;
7817
7818 if (!buf)
7819 return;
7820
7821 log_sz = strlen(buf) + 1;
7822 next_line = buf + log_sz - 1;
7823
7824 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7825 cur_line = find_prev_line(buf, next_line);
7826 if (!cur_line)
7827 return;
7828
7829 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7830 prev_line = find_prev_line(buf, cur_line);
7831 if (!prev_line)
7832 continue;
7833
7834 /* failed CO-RE relocation case */
7835 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7836 prev_line, cur_line, next_line);
7837 return;
7838 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7839 prev_line = find_prev_line(buf, cur_line);
7840 if (!prev_line)
7841 continue;
7842
7843 /* reference to uncreated BPF map */
7844 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7845 prev_line, cur_line, next_line);
7846 return;
7847 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7848 prev_line = find_prev_line(buf, cur_line);
7849 if (!prev_line)
7850 continue;
7851
7852 /* reference to unresolved kfunc */
7853 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7854 prev_line, cur_line, next_line);
7855 return;
7856 }
7857 }
7858 }
7859
bpf_program_record_relos(struct bpf_program * prog)7860 static int bpf_program_record_relos(struct bpf_program *prog)
7861 {
7862 struct bpf_object *obj = prog->obj;
7863 int i;
7864
7865 for (i = 0; i < prog->nr_reloc; i++) {
7866 struct reloc_desc *relo = &prog->reloc_desc[i];
7867 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7868 int kind;
7869
7870 switch (relo->type) {
7871 case RELO_EXTERN_LD64:
7872 if (ext->type != EXT_KSYM)
7873 continue;
7874 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7875 BTF_KIND_VAR : BTF_KIND_FUNC;
7876 bpf_gen__record_extern(obj->gen_loader, ext->name,
7877 ext->is_weak, !ext->ksym.type_id,
7878 true, kind, relo->insn_idx);
7879 break;
7880 case RELO_EXTERN_CALL:
7881 bpf_gen__record_extern(obj->gen_loader, ext->name,
7882 ext->is_weak, false, false, BTF_KIND_FUNC,
7883 relo->insn_idx);
7884 break;
7885 case RELO_CORE: {
7886 struct bpf_core_relo cr = {
7887 .insn_off = relo->insn_idx * 8,
7888 .type_id = relo->core_relo->type_id,
7889 .access_str_off = relo->core_relo->access_str_off,
7890 .kind = relo->core_relo->kind,
7891 };
7892
7893 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7894 break;
7895 }
7896 default:
7897 continue;
7898 }
7899 }
7900 return 0;
7901 }
7902
7903 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7904 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7905 {
7906 struct bpf_program *prog;
7907 size_t i;
7908 int err;
7909
7910 for (i = 0; i < obj->nr_programs; i++) {
7911 prog = &obj->programs[i];
7912 if (prog_is_subprog(obj, prog))
7913 continue;
7914 if (!prog->autoload) {
7915 pr_debug("prog '%s': skipped loading\n", prog->name);
7916 continue;
7917 }
7918 prog->log_level |= log_level;
7919
7920 if (obj->gen_loader)
7921 bpf_program_record_relos(prog);
7922
7923 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7924 obj->license, obj->kern_version, &prog->fd);
7925 if (err) {
7926 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err));
7927 return err;
7928 }
7929 }
7930
7931 bpf_object__free_relocs(obj);
7932 return 0;
7933 }
7934
bpf_object_prepare_progs(struct bpf_object * obj)7935 static int bpf_object_prepare_progs(struct bpf_object *obj)
7936 {
7937 struct bpf_program *prog;
7938 size_t i;
7939 int err;
7940
7941 for (i = 0; i < obj->nr_programs; i++) {
7942 prog = &obj->programs[i];
7943 err = bpf_object__sanitize_prog(obj, prog);
7944 if (err)
7945 return err;
7946 }
7947 return 0;
7948 }
7949
7950 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7951
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7952 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7953 {
7954 struct bpf_program *prog;
7955 int err;
7956
7957 bpf_object__for_each_program(prog, obj) {
7958 prog->sec_def = find_sec_def(prog->sec_name);
7959 if (!prog->sec_def) {
7960 /* couldn't guess, but user might manually specify */
7961 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7962 prog->name, prog->sec_name);
7963 continue;
7964 }
7965
7966 prog->type = prog->sec_def->prog_type;
7967 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7968
7969 /* sec_def can have custom callback which should be called
7970 * after bpf_program is initialized to adjust its properties
7971 */
7972 if (prog->sec_def->prog_setup_fn) {
7973 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7974 if (err < 0) {
7975 pr_warn("prog '%s': failed to initialize: %s\n",
7976 prog->name, errstr(err));
7977 return err;
7978 }
7979 }
7980 }
7981
7982 return 0;
7983 }
7984
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name,const struct bpf_object_open_opts * opts)7985 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7986 const char *obj_name,
7987 const struct bpf_object_open_opts *opts)
7988 {
7989 const char *kconfig, *btf_tmp_path, *token_path;
7990 struct bpf_object *obj;
7991 int err;
7992 char *log_buf;
7993 size_t log_size;
7994 __u32 log_level;
7995
7996 if (obj_buf && !obj_name)
7997 return ERR_PTR(-EINVAL);
7998
7999 if (elf_version(EV_CURRENT) == EV_NONE) {
8000 pr_warn("failed to init libelf for %s\n",
8001 path ? : "(mem buf)");
8002 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
8003 }
8004
8005 if (!OPTS_VALID(opts, bpf_object_open_opts))
8006 return ERR_PTR(-EINVAL);
8007
8008 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
8009 if (obj_buf) {
8010 path = obj_name;
8011 pr_debug("loading object '%s' from buffer\n", obj_name);
8012 } else {
8013 pr_debug("loading object from %s\n", path);
8014 }
8015
8016 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
8017 log_size = OPTS_GET(opts, kernel_log_size, 0);
8018 log_level = OPTS_GET(opts, kernel_log_level, 0);
8019 if (log_size > UINT_MAX)
8020 return ERR_PTR(-EINVAL);
8021 if (log_size && !log_buf)
8022 return ERR_PTR(-EINVAL);
8023
8024 token_path = OPTS_GET(opts, bpf_token_path, NULL);
8025 /* if user didn't specify bpf_token_path explicitly, check if
8026 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
8027 * option
8028 */
8029 if (!token_path)
8030 token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
8031 if (token_path && strlen(token_path) >= PATH_MAX)
8032 return ERR_PTR(-ENAMETOOLONG);
8033
8034 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8035 if (IS_ERR(obj))
8036 return obj;
8037
8038 obj->log_buf = log_buf;
8039 obj->log_size = log_size;
8040 obj->log_level = log_level;
8041
8042 if (token_path) {
8043 obj->token_path = strdup(token_path);
8044 if (!obj->token_path) {
8045 err = -ENOMEM;
8046 goto out;
8047 }
8048 }
8049
8050 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8051 if (btf_tmp_path) {
8052 if (strlen(btf_tmp_path) >= PATH_MAX) {
8053 err = -ENAMETOOLONG;
8054 goto out;
8055 }
8056 obj->btf_custom_path = strdup(btf_tmp_path);
8057 if (!obj->btf_custom_path) {
8058 err = -ENOMEM;
8059 goto out;
8060 }
8061 }
8062
8063 kconfig = OPTS_GET(opts, kconfig, NULL);
8064 if (kconfig) {
8065 obj->kconfig = strdup(kconfig);
8066 if (!obj->kconfig) {
8067 err = -ENOMEM;
8068 goto out;
8069 }
8070 }
8071
8072 err = bpf_object__elf_init(obj);
8073 err = err ? : bpf_object__elf_collect(obj);
8074 err = err ? : bpf_object__collect_externs(obj);
8075 err = err ? : bpf_object_fixup_btf(obj);
8076 err = err ? : bpf_object__init_maps(obj, opts);
8077 err = err ? : bpf_object_init_progs(obj, opts);
8078 err = err ? : bpf_object__collect_relos(obj);
8079 if (err)
8080 goto out;
8081
8082 bpf_object__elf_finish(obj);
8083
8084 return obj;
8085 out:
8086 bpf_object__close(obj);
8087 return ERR_PTR(err);
8088 }
8089
8090 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)8091 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8092 {
8093 if (!path)
8094 return libbpf_err_ptr(-EINVAL);
8095
8096 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8097 }
8098
bpf_object__open(const char * path)8099 struct bpf_object *bpf_object__open(const char *path)
8100 {
8101 return bpf_object__open_file(path, NULL);
8102 }
8103
8104 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)8105 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8106 const struct bpf_object_open_opts *opts)
8107 {
8108 char tmp_name[64];
8109
8110 if (!obj_buf || obj_buf_sz == 0)
8111 return libbpf_err_ptr(-EINVAL);
8112
8113 /* create a (quite useless) default "name" for this memory buffer object */
8114 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8115
8116 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8117 }
8118
bpf_object_unload(struct bpf_object * obj)8119 static int bpf_object_unload(struct bpf_object *obj)
8120 {
8121 size_t i;
8122
8123 if (!obj)
8124 return libbpf_err(-EINVAL);
8125
8126 for (i = 0; i < obj->nr_maps; i++) {
8127 zclose(obj->maps[i].fd);
8128 if (obj->maps[i].st_ops)
8129 zfree(&obj->maps[i].st_ops->kern_vdata);
8130 }
8131
8132 for (i = 0; i < obj->nr_programs; i++)
8133 bpf_program__unload(&obj->programs[i]);
8134
8135 return 0;
8136 }
8137
bpf_object__sanitize_maps(struct bpf_object * obj)8138 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8139 {
8140 struct bpf_map *m;
8141
8142 bpf_object__for_each_map(m, obj) {
8143 if (!bpf_map__is_internal(m))
8144 continue;
8145 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8146 m->def.map_flags &= ~BPF_F_MMAPABLE;
8147 }
8148
8149 return 0;
8150 }
8151
8152 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8153 const char *sym_name, void *ctx);
8154
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)8155 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8156 {
8157 char sym_type, sym_name[500];
8158 unsigned long long sym_addr;
8159 int ret, err = 0;
8160 FILE *f;
8161
8162 f = fopen("/proc/kallsyms", "re");
8163 if (!f) {
8164 err = -errno;
8165 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err));
8166 return err;
8167 }
8168
8169 while (true) {
8170 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8171 &sym_addr, &sym_type, sym_name);
8172 if (ret == EOF && feof(f))
8173 break;
8174 if (ret != 3) {
8175 pr_warn("failed to read kallsyms entry: %d\n", ret);
8176 err = -EINVAL;
8177 break;
8178 }
8179
8180 err = cb(sym_addr, sym_type, sym_name, ctx);
8181 if (err)
8182 break;
8183 }
8184
8185 fclose(f);
8186 return err;
8187 }
8188
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)8189 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8190 const char *sym_name, void *ctx)
8191 {
8192 struct bpf_object *obj = ctx;
8193 const struct btf_type *t;
8194 struct extern_desc *ext;
8195 char *res;
8196
8197 res = strstr(sym_name, ".llvm.");
8198 if (sym_type == 'd' && res)
8199 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8200 else
8201 ext = find_extern_by_name(obj, sym_name);
8202 if (!ext || ext->type != EXT_KSYM)
8203 return 0;
8204
8205 t = btf__type_by_id(obj->btf, ext->btf_id);
8206 if (!btf_is_var(t))
8207 return 0;
8208
8209 if (ext->is_set && ext->ksym.addr != sym_addr) {
8210 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8211 sym_name, ext->ksym.addr, sym_addr);
8212 return -EINVAL;
8213 }
8214 if (!ext->is_set) {
8215 ext->is_set = true;
8216 ext->ksym.addr = sym_addr;
8217 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8218 }
8219 return 0;
8220 }
8221
bpf_object__read_kallsyms_file(struct bpf_object * obj)8222 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8223 {
8224 return libbpf_kallsyms_parse(kallsyms_cb, obj);
8225 }
8226
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)8227 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8228 __u16 kind, struct btf **res_btf,
8229 struct module_btf **res_mod_btf)
8230 {
8231 struct module_btf *mod_btf;
8232 struct btf *btf;
8233 int i, id, err;
8234
8235 btf = obj->btf_vmlinux;
8236 mod_btf = NULL;
8237 id = btf__find_by_name_kind(btf, ksym_name, kind);
8238
8239 if (id == -ENOENT) {
8240 err = load_module_btfs(obj);
8241 if (err)
8242 return err;
8243
8244 for (i = 0; i < obj->btf_module_cnt; i++) {
8245 /* we assume module_btf's BTF FD is always >0 */
8246 mod_btf = &obj->btf_modules[i];
8247 btf = mod_btf->btf;
8248 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8249 if (id != -ENOENT)
8250 break;
8251 }
8252 }
8253 if (id <= 0)
8254 return -ESRCH;
8255
8256 *res_btf = btf;
8257 *res_mod_btf = mod_btf;
8258 return id;
8259 }
8260
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)8261 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8262 struct extern_desc *ext)
8263 {
8264 const struct btf_type *targ_var, *targ_type;
8265 __u32 targ_type_id, local_type_id;
8266 struct module_btf *mod_btf = NULL;
8267 const char *targ_var_name;
8268 struct btf *btf = NULL;
8269 int id, err;
8270
8271 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8272 if (id < 0) {
8273 if (id == -ESRCH && ext->is_weak)
8274 return 0;
8275 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8276 ext->name);
8277 return id;
8278 }
8279
8280 /* find local type_id */
8281 local_type_id = ext->ksym.type_id;
8282
8283 /* find target type_id */
8284 targ_var = btf__type_by_id(btf, id);
8285 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8286 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8287
8288 err = bpf_core_types_are_compat(obj->btf, local_type_id,
8289 btf, targ_type_id);
8290 if (err <= 0) {
8291 const struct btf_type *local_type;
8292 const char *targ_name, *local_name;
8293
8294 local_type = btf__type_by_id(obj->btf, local_type_id);
8295 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8296 targ_name = btf__name_by_offset(btf, targ_type->name_off);
8297
8298 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8299 ext->name, local_type_id,
8300 btf_kind_str(local_type), local_name, targ_type_id,
8301 btf_kind_str(targ_type), targ_name);
8302 return -EINVAL;
8303 }
8304
8305 ext->is_set = true;
8306 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8307 ext->ksym.kernel_btf_id = id;
8308 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8309 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8310
8311 return 0;
8312 }
8313
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)8314 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8315 struct extern_desc *ext)
8316 {
8317 int local_func_proto_id, kfunc_proto_id, kfunc_id;
8318 struct module_btf *mod_btf = NULL;
8319 const struct btf_type *kern_func;
8320 struct btf *kern_btf = NULL;
8321 int ret;
8322
8323 local_func_proto_id = ext->ksym.type_id;
8324
8325 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8326 &mod_btf);
8327 if (kfunc_id < 0) {
8328 if (kfunc_id == -ESRCH && ext->is_weak)
8329 return 0;
8330 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8331 ext->name);
8332 return kfunc_id;
8333 }
8334
8335 kern_func = btf__type_by_id(kern_btf, kfunc_id);
8336 kfunc_proto_id = kern_func->type;
8337
8338 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8339 kern_btf, kfunc_proto_id);
8340 if (ret <= 0) {
8341 if (ext->is_weak)
8342 return 0;
8343
8344 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8345 ext->name, local_func_proto_id,
8346 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8347 return -EINVAL;
8348 }
8349
8350 /* set index for module BTF fd in fd_array, if unset */
8351 if (mod_btf && !mod_btf->fd_array_idx) {
8352 /* insn->off is s16 */
8353 if (obj->fd_array_cnt == INT16_MAX) {
8354 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8355 ext->name, mod_btf->fd_array_idx);
8356 return -E2BIG;
8357 }
8358 /* Cannot use index 0 for module BTF fd */
8359 if (!obj->fd_array_cnt)
8360 obj->fd_array_cnt = 1;
8361
8362 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8363 obj->fd_array_cnt + 1);
8364 if (ret)
8365 return ret;
8366 mod_btf->fd_array_idx = obj->fd_array_cnt;
8367 /* we assume module BTF FD is always >0 */
8368 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8369 }
8370
8371 ext->is_set = true;
8372 ext->ksym.kernel_btf_id = kfunc_id;
8373 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8374 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8375 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8376 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8377 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8378 */
8379 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8380 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8381 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8382
8383 return 0;
8384 }
8385
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)8386 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8387 {
8388 const struct btf_type *t;
8389 struct extern_desc *ext;
8390 int i, err;
8391
8392 for (i = 0; i < obj->nr_extern; i++) {
8393 ext = &obj->externs[i];
8394 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8395 continue;
8396
8397 if (obj->gen_loader) {
8398 ext->is_set = true;
8399 ext->ksym.kernel_btf_obj_fd = 0;
8400 ext->ksym.kernel_btf_id = 0;
8401 continue;
8402 }
8403 t = btf__type_by_id(obj->btf, ext->btf_id);
8404 if (btf_is_var(t))
8405 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8406 else
8407 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8408 if (err)
8409 return err;
8410 }
8411 return 0;
8412 }
8413
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)8414 static int bpf_object__resolve_externs(struct bpf_object *obj,
8415 const char *extra_kconfig)
8416 {
8417 bool need_config = false, need_kallsyms = false;
8418 bool need_vmlinux_btf = false;
8419 struct extern_desc *ext;
8420 void *kcfg_data = NULL;
8421 int err, i;
8422
8423 if (obj->nr_extern == 0)
8424 return 0;
8425
8426 if (obj->kconfig_map_idx >= 0)
8427 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8428
8429 for (i = 0; i < obj->nr_extern; i++) {
8430 ext = &obj->externs[i];
8431
8432 if (ext->type == EXT_KSYM) {
8433 if (ext->ksym.type_id)
8434 need_vmlinux_btf = true;
8435 else
8436 need_kallsyms = true;
8437 continue;
8438 } else if (ext->type == EXT_KCFG) {
8439 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8440 __u64 value = 0;
8441
8442 /* Kconfig externs need actual /proc/config.gz */
8443 if (str_has_pfx(ext->name, "CONFIG_")) {
8444 need_config = true;
8445 continue;
8446 }
8447
8448 /* Virtual kcfg externs are customly handled by libbpf */
8449 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8450 value = get_kernel_version();
8451 if (!value) {
8452 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8453 return -EINVAL;
8454 }
8455 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8456 value = kernel_supports(obj, FEAT_BPF_COOKIE);
8457 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8458 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8459 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8460 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8461 * __kconfig externs, where LINUX_ ones are virtual and filled out
8462 * customly by libbpf (their values don't come from Kconfig).
8463 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8464 * __weak, it defaults to zero value, just like for CONFIG_xxx
8465 * externs.
8466 */
8467 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8468 return -EINVAL;
8469 }
8470
8471 err = set_kcfg_value_num(ext, ext_ptr, value);
8472 if (err)
8473 return err;
8474 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8475 ext->name, (long long)value);
8476 } else {
8477 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8478 return -EINVAL;
8479 }
8480 }
8481 if (need_config && extra_kconfig) {
8482 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8483 if (err)
8484 return -EINVAL;
8485 need_config = false;
8486 for (i = 0; i < obj->nr_extern; i++) {
8487 ext = &obj->externs[i];
8488 if (ext->type == EXT_KCFG && !ext->is_set) {
8489 need_config = true;
8490 break;
8491 }
8492 }
8493 }
8494 if (need_config) {
8495 err = bpf_object__read_kconfig_file(obj, kcfg_data);
8496 if (err)
8497 return -EINVAL;
8498 }
8499 if (need_kallsyms) {
8500 err = bpf_object__read_kallsyms_file(obj);
8501 if (err)
8502 return -EINVAL;
8503 }
8504 if (need_vmlinux_btf) {
8505 err = bpf_object__resolve_ksyms_btf_id(obj);
8506 if (err)
8507 return -EINVAL;
8508 }
8509 for (i = 0; i < obj->nr_extern; i++) {
8510 ext = &obj->externs[i];
8511
8512 if (!ext->is_set && !ext->is_weak) {
8513 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8514 return -ESRCH;
8515 } else if (!ext->is_set) {
8516 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8517 ext->name);
8518 }
8519 }
8520
8521 return 0;
8522 }
8523
bpf_map_prepare_vdata(const struct bpf_map * map)8524 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8525 {
8526 const struct btf_type *type;
8527 struct bpf_struct_ops *st_ops;
8528 __u32 i;
8529
8530 st_ops = map->st_ops;
8531 type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8532 for (i = 0; i < btf_vlen(type); i++) {
8533 struct bpf_program *prog = st_ops->progs[i];
8534 void *kern_data;
8535 int prog_fd;
8536
8537 if (!prog)
8538 continue;
8539
8540 prog_fd = bpf_program__fd(prog);
8541 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8542 *(unsigned long *)kern_data = prog_fd;
8543 }
8544 }
8545
bpf_object_prepare_struct_ops(struct bpf_object * obj)8546 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8547 {
8548 struct bpf_map *map;
8549 int i;
8550
8551 for (i = 0; i < obj->nr_maps; i++) {
8552 map = &obj->maps[i];
8553
8554 if (!bpf_map__is_struct_ops(map))
8555 continue;
8556
8557 if (!map->autocreate)
8558 continue;
8559
8560 bpf_map_prepare_vdata(map);
8561 }
8562
8563 return 0;
8564 }
8565
bpf_object_unpin(struct bpf_object * obj)8566 static void bpf_object_unpin(struct bpf_object *obj)
8567 {
8568 int i;
8569
8570 /* unpin any maps that were auto-pinned during load */
8571 for (i = 0; i < obj->nr_maps; i++)
8572 if (obj->maps[i].pinned && !obj->maps[i].reused)
8573 bpf_map__unpin(&obj->maps[i], NULL);
8574 }
8575
bpf_object_post_load_cleanup(struct bpf_object * obj)8576 static void bpf_object_post_load_cleanup(struct bpf_object *obj)
8577 {
8578 int i;
8579
8580 /* clean up fd_array */
8581 zfree(&obj->fd_array);
8582
8583 /* clean up module BTFs */
8584 for (i = 0; i < obj->btf_module_cnt; i++) {
8585 close(obj->btf_modules[i].fd);
8586 btf__free(obj->btf_modules[i].btf);
8587 free(obj->btf_modules[i].name);
8588 }
8589 obj->btf_module_cnt = 0;
8590 zfree(&obj->btf_modules);
8591
8592 /* clean up vmlinux BTF */
8593 btf__free(obj->btf_vmlinux);
8594 obj->btf_vmlinux = NULL;
8595 }
8596
bpf_object_prepare(struct bpf_object * obj,const char * target_btf_path)8597 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path)
8598 {
8599 int err;
8600
8601 if (obj->state >= OBJ_PREPARED) {
8602 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name);
8603 return -EINVAL;
8604 }
8605
8606 err = bpf_object_prepare_token(obj);
8607 err = err ? : bpf_object__probe_loading(obj);
8608 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8609 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8610 err = err ? : bpf_object__sanitize_maps(obj);
8611 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8612 err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8613 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8614 err = err ? : bpf_object__sanitize_and_load_btf(obj);
8615 err = err ? : bpf_object__create_maps(obj);
8616 err = err ? : bpf_object_prepare_progs(obj);
8617
8618 if (err) {
8619 bpf_object_unpin(obj);
8620 bpf_object_unload(obj);
8621 obj->state = OBJ_LOADED;
8622 return err;
8623 }
8624
8625 obj->state = OBJ_PREPARED;
8626 return 0;
8627 }
8628
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)8629 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8630 {
8631 int err;
8632
8633 if (!obj)
8634 return libbpf_err(-EINVAL);
8635
8636 if (obj->state >= OBJ_LOADED) {
8637 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8638 return libbpf_err(-EINVAL);
8639 }
8640
8641 /* Disallow kernel loading programs of non-native endianness but
8642 * permit cross-endian creation of "light skeleton".
8643 */
8644 if (obj->gen_loader) {
8645 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8646 } else if (!is_native_endianness(obj)) {
8647 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name);
8648 return libbpf_err(-LIBBPF_ERRNO__ENDIAN);
8649 }
8650
8651 if (obj->state < OBJ_PREPARED) {
8652 err = bpf_object_prepare(obj, target_btf_path);
8653 if (err)
8654 return libbpf_err(err);
8655 }
8656 err = bpf_object__load_progs(obj, extra_log_level);
8657 err = err ? : bpf_object_init_prog_arrays(obj);
8658 err = err ? : bpf_object_prepare_struct_ops(obj);
8659
8660 if (obj->gen_loader) {
8661 /* reset FDs */
8662 if (obj->btf)
8663 btf__set_fd(obj->btf, -1);
8664 if (!err)
8665 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8666 }
8667
8668 bpf_object_post_load_cleanup(obj);
8669 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */
8670
8671 if (err) {
8672 bpf_object_unpin(obj);
8673 bpf_object_unload(obj);
8674 pr_warn("failed to load object '%s'\n", obj->path);
8675 return libbpf_err(err);
8676 }
8677
8678 return 0;
8679 }
8680
bpf_object__prepare(struct bpf_object * obj)8681 int bpf_object__prepare(struct bpf_object *obj)
8682 {
8683 return libbpf_err(bpf_object_prepare(obj, NULL));
8684 }
8685
bpf_object__load(struct bpf_object * obj)8686 int bpf_object__load(struct bpf_object *obj)
8687 {
8688 return bpf_object_load(obj, 0, NULL);
8689 }
8690
make_parent_dir(const char * path)8691 static int make_parent_dir(const char *path)
8692 {
8693 char *dname, *dir;
8694 int err = 0;
8695
8696 dname = strdup(path);
8697 if (dname == NULL)
8698 return -ENOMEM;
8699
8700 dir = dirname(dname);
8701 if (mkdir(dir, 0700) && errno != EEXIST)
8702 err = -errno;
8703
8704 free(dname);
8705 if (err) {
8706 pr_warn("failed to mkdir %s: %s\n", path, errstr(err));
8707 }
8708 return err;
8709 }
8710
check_path(const char * path)8711 static int check_path(const char *path)
8712 {
8713 struct statfs st_fs;
8714 char *dname, *dir;
8715 int err = 0;
8716
8717 if (path == NULL)
8718 return -EINVAL;
8719
8720 dname = strdup(path);
8721 if (dname == NULL)
8722 return -ENOMEM;
8723
8724 dir = dirname(dname);
8725 if (statfs(dir, &st_fs)) {
8726 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno));
8727 err = -errno;
8728 }
8729 free(dname);
8730
8731 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8732 pr_warn("specified path %s is not on BPF FS\n", path);
8733 err = -EINVAL;
8734 }
8735
8736 return err;
8737 }
8738
bpf_program__pin(struct bpf_program * prog,const char * path)8739 int bpf_program__pin(struct bpf_program *prog, const char *path)
8740 {
8741 int err;
8742
8743 if (prog->fd < 0) {
8744 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8745 return libbpf_err(-EINVAL);
8746 }
8747
8748 err = make_parent_dir(path);
8749 if (err)
8750 return libbpf_err(err);
8751
8752 err = check_path(path);
8753 if (err)
8754 return libbpf_err(err);
8755
8756 if (bpf_obj_pin(prog->fd, path)) {
8757 err = -errno;
8758 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err));
8759 return libbpf_err(err);
8760 }
8761
8762 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8763 return 0;
8764 }
8765
bpf_program__unpin(struct bpf_program * prog,const char * path)8766 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8767 {
8768 int err;
8769
8770 if (prog->fd < 0) {
8771 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8772 return libbpf_err(-EINVAL);
8773 }
8774
8775 err = check_path(path);
8776 if (err)
8777 return libbpf_err(err);
8778
8779 err = unlink(path);
8780 if (err)
8781 return libbpf_err(-errno);
8782
8783 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8784 return 0;
8785 }
8786
bpf_map__pin(struct bpf_map * map,const char * path)8787 int bpf_map__pin(struct bpf_map *map, const char *path)
8788 {
8789 int err;
8790
8791 if (map == NULL) {
8792 pr_warn("invalid map pointer\n");
8793 return libbpf_err(-EINVAL);
8794 }
8795
8796 if (map->fd < 0) {
8797 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8798 return libbpf_err(-EINVAL);
8799 }
8800
8801 if (map->pin_path) {
8802 if (path && strcmp(path, map->pin_path)) {
8803 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8804 bpf_map__name(map), map->pin_path, path);
8805 return libbpf_err(-EINVAL);
8806 } else if (map->pinned) {
8807 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8808 bpf_map__name(map), map->pin_path);
8809 return 0;
8810 }
8811 } else {
8812 if (!path) {
8813 pr_warn("missing a path to pin map '%s' at\n",
8814 bpf_map__name(map));
8815 return libbpf_err(-EINVAL);
8816 } else if (map->pinned) {
8817 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8818 return libbpf_err(-EEXIST);
8819 }
8820
8821 map->pin_path = strdup(path);
8822 if (!map->pin_path) {
8823 err = -errno;
8824 goto out_err;
8825 }
8826 }
8827
8828 err = make_parent_dir(map->pin_path);
8829 if (err)
8830 return libbpf_err(err);
8831
8832 err = check_path(map->pin_path);
8833 if (err)
8834 return libbpf_err(err);
8835
8836 if (bpf_obj_pin(map->fd, map->pin_path)) {
8837 err = -errno;
8838 goto out_err;
8839 }
8840
8841 map->pinned = true;
8842 pr_debug("pinned map '%s'\n", map->pin_path);
8843
8844 return 0;
8845
8846 out_err:
8847 pr_warn("failed to pin map: %s\n", errstr(err));
8848 return libbpf_err(err);
8849 }
8850
bpf_map__unpin(struct bpf_map * map,const char * path)8851 int bpf_map__unpin(struct bpf_map *map, const char *path)
8852 {
8853 int err;
8854
8855 if (map == NULL) {
8856 pr_warn("invalid map pointer\n");
8857 return libbpf_err(-EINVAL);
8858 }
8859
8860 if (map->pin_path) {
8861 if (path && strcmp(path, map->pin_path)) {
8862 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8863 bpf_map__name(map), map->pin_path, path);
8864 return libbpf_err(-EINVAL);
8865 }
8866 path = map->pin_path;
8867 } else if (!path) {
8868 pr_warn("no path to unpin map '%s' from\n",
8869 bpf_map__name(map));
8870 return libbpf_err(-EINVAL);
8871 }
8872
8873 err = check_path(path);
8874 if (err)
8875 return libbpf_err(err);
8876
8877 err = unlink(path);
8878 if (err != 0)
8879 return libbpf_err(-errno);
8880
8881 map->pinned = false;
8882 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8883
8884 return 0;
8885 }
8886
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8887 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8888 {
8889 char *new = NULL;
8890
8891 if (path) {
8892 new = strdup(path);
8893 if (!new)
8894 return libbpf_err(-errno);
8895 }
8896
8897 free(map->pin_path);
8898 map->pin_path = new;
8899 return 0;
8900 }
8901
8902 __alias(bpf_map__pin_path)
8903 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8904
bpf_map__pin_path(const struct bpf_map * map)8905 const char *bpf_map__pin_path(const struct bpf_map *map)
8906 {
8907 return map->pin_path;
8908 }
8909
bpf_map__is_pinned(const struct bpf_map * map)8910 bool bpf_map__is_pinned(const struct bpf_map *map)
8911 {
8912 return map->pinned;
8913 }
8914
sanitize_pin_path(char * s)8915 static void sanitize_pin_path(char *s)
8916 {
8917 /* bpffs disallows periods in path names */
8918 while (*s) {
8919 if (*s == '.')
8920 *s = '_';
8921 s++;
8922 }
8923 }
8924
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8925 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8926 {
8927 struct bpf_map *map;
8928 int err;
8929
8930 if (!obj)
8931 return libbpf_err(-ENOENT);
8932
8933 if (obj->state < OBJ_PREPARED) {
8934 pr_warn("object not yet loaded; load it first\n");
8935 return libbpf_err(-ENOENT);
8936 }
8937
8938 bpf_object__for_each_map(map, obj) {
8939 char *pin_path = NULL;
8940 char buf[PATH_MAX];
8941
8942 if (!map->autocreate)
8943 continue;
8944
8945 if (path) {
8946 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8947 if (err)
8948 goto err_unpin_maps;
8949 sanitize_pin_path(buf);
8950 pin_path = buf;
8951 } else if (!map->pin_path) {
8952 continue;
8953 }
8954
8955 err = bpf_map__pin(map, pin_path);
8956 if (err)
8957 goto err_unpin_maps;
8958 }
8959
8960 return 0;
8961
8962 err_unpin_maps:
8963 while ((map = bpf_object__prev_map(obj, map))) {
8964 if (!map->pin_path)
8965 continue;
8966
8967 bpf_map__unpin(map, NULL);
8968 }
8969
8970 return libbpf_err(err);
8971 }
8972
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8973 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8974 {
8975 struct bpf_map *map;
8976 int err;
8977
8978 if (!obj)
8979 return libbpf_err(-ENOENT);
8980
8981 bpf_object__for_each_map(map, obj) {
8982 char *pin_path = NULL;
8983 char buf[PATH_MAX];
8984
8985 if (path) {
8986 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8987 if (err)
8988 return libbpf_err(err);
8989 sanitize_pin_path(buf);
8990 pin_path = buf;
8991 } else if (!map->pin_path) {
8992 continue;
8993 }
8994
8995 err = bpf_map__unpin(map, pin_path);
8996 if (err)
8997 return libbpf_err(err);
8998 }
8999
9000 return 0;
9001 }
9002
bpf_object__pin_programs(struct bpf_object * obj,const char * path)9003 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
9004 {
9005 struct bpf_program *prog;
9006 char buf[PATH_MAX];
9007 int err;
9008
9009 if (!obj)
9010 return libbpf_err(-ENOENT);
9011
9012 if (obj->state < OBJ_LOADED) {
9013 pr_warn("object not yet loaded; load it first\n");
9014 return libbpf_err(-ENOENT);
9015 }
9016
9017 bpf_object__for_each_program(prog, obj) {
9018 err = pathname_concat(buf, sizeof(buf), path, prog->name);
9019 if (err)
9020 goto err_unpin_programs;
9021
9022 err = bpf_program__pin(prog, buf);
9023 if (err)
9024 goto err_unpin_programs;
9025 }
9026
9027 return 0;
9028
9029 err_unpin_programs:
9030 while ((prog = bpf_object__prev_program(obj, prog))) {
9031 if (pathname_concat(buf, sizeof(buf), path, prog->name))
9032 continue;
9033
9034 bpf_program__unpin(prog, buf);
9035 }
9036
9037 return libbpf_err(err);
9038 }
9039
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)9040 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
9041 {
9042 struct bpf_program *prog;
9043 int err;
9044
9045 if (!obj)
9046 return libbpf_err(-ENOENT);
9047
9048 bpf_object__for_each_program(prog, obj) {
9049 char buf[PATH_MAX];
9050
9051 err = pathname_concat(buf, sizeof(buf), path, prog->name);
9052 if (err)
9053 return libbpf_err(err);
9054
9055 err = bpf_program__unpin(prog, buf);
9056 if (err)
9057 return libbpf_err(err);
9058 }
9059
9060 return 0;
9061 }
9062
bpf_object__pin(struct bpf_object * obj,const char * path)9063 int bpf_object__pin(struct bpf_object *obj, const char *path)
9064 {
9065 int err;
9066
9067 err = bpf_object__pin_maps(obj, path);
9068 if (err)
9069 return libbpf_err(err);
9070
9071 err = bpf_object__pin_programs(obj, path);
9072 if (err) {
9073 bpf_object__unpin_maps(obj, path);
9074 return libbpf_err(err);
9075 }
9076
9077 return 0;
9078 }
9079
bpf_object__unpin(struct bpf_object * obj,const char * path)9080 int bpf_object__unpin(struct bpf_object *obj, const char *path)
9081 {
9082 int err;
9083
9084 err = bpf_object__unpin_programs(obj, path);
9085 if (err)
9086 return libbpf_err(err);
9087
9088 err = bpf_object__unpin_maps(obj, path);
9089 if (err)
9090 return libbpf_err(err);
9091
9092 return 0;
9093 }
9094
bpf_map__destroy(struct bpf_map * map)9095 static void bpf_map__destroy(struct bpf_map *map)
9096 {
9097 if (map->inner_map) {
9098 bpf_map__destroy(map->inner_map);
9099 zfree(&map->inner_map);
9100 }
9101
9102 zfree(&map->init_slots);
9103 map->init_slots_sz = 0;
9104
9105 if (map->mmaped && map->mmaped != map->obj->arena_data)
9106 munmap(map->mmaped, bpf_map_mmap_sz(map));
9107 map->mmaped = NULL;
9108
9109 if (map->st_ops) {
9110 zfree(&map->st_ops->data);
9111 zfree(&map->st_ops->progs);
9112 zfree(&map->st_ops->kern_func_off);
9113 zfree(&map->st_ops);
9114 }
9115
9116 zfree(&map->name);
9117 zfree(&map->real_name);
9118 zfree(&map->pin_path);
9119
9120 if (map->fd >= 0)
9121 zclose(map->fd);
9122 }
9123
bpf_object__close(struct bpf_object * obj)9124 void bpf_object__close(struct bpf_object *obj)
9125 {
9126 size_t i;
9127
9128 if (IS_ERR_OR_NULL(obj))
9129 return;
9130
9131 /*
9132 * if user called bpf_object__prepare() without ever getting to
9133 * bpf_object__load(), we need to clean up stuff that is normally
9134 * cleaned up at the end of loading step
9135 */
9136 bpf_object_post_load_cleanup(obj);
9137
9138 usdt_manager_free(obj->usdt_man);
9139 obj->usdt_man = NULL;
9140
9141 bpf_gen__free(obj->gen_loader);
9142 bpf_object__elf_finish(obj);
9143 bpf_object_unload(obj);
9144 btf__free(obj->btf);
9145 btf__free(obj->btf_vmlinux);
9146 btf_ext__free(obj->btf_ext);
9147
9148 for (i = 0; i < obj->nr_maps; i++)
9149 bpf_map__destroy(&obj->maps[i]);
9150
9151 zfree(&obj->btf_custom_path);
9152 zfree(&obj->kconfig);
9153
9154 for (i = 0; i < obj->nr_extern; i++) {
9155 zfree(&obj->externs[i].name);
9156 zfree(&obj->externs[i].essent_name);
9157 }
9158
9159 zfree(&obj->externs);
9160 obj->nr_extern = 0;
9161
9162 zfree(&obj->maps);
9163 obj->nr_maps = 0;
9164
9165 if (obj->programs && obj->nr_programs) {
9166 for (i = 0; i < obj->nr_programs; i++)
9167 bpf_program__exit(&obj->programs[i]);
9168 }
9169 zfree(&obj->programs);
9170
9171 zfree(&obj->feat_cache);
9172 zfree(&obj->token_path);
9173 if (obj->token_fd > 0)
9174 close(obj->token_fd);
9175
9176 zfree(&obj->arena_data);
9177
9178 free(obj);
9179 }
9180
bpf_object__name(const struct bpf_object * obj)9181 const char *bpf_object__name(const struct bpf_object *obj)
9182 {
9183 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9184 }
9185
bpf_object__kversion(const struct bpf_object * obj)9186 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9187 {
9188 return obj ? obj->kern_version : 0;
9189 }
9190
bpf_object__token_fd(const struct bpf_object * obj)9191 int bpf_object__token_fd(const struct bpf_object *obj)
9192 {
9193 return obj->token_fd ?: -1;
9194 }
9195
bpf_object__btf(const struct bpf_object * obj)9196 struct btf *bpf_object__btf(const struct bpf_object *obj)
9197 {
9198 return obj ? obj->btf : NULL;
9199 }
9200
bpf_object__btf_fd(const struct bpf_object * obj)9201 int bpf_object__btf_fd(const struct bpf_object *obj)
9202 {
9203 return obj->btf ? btf__fd(obj->btf) : -1;
9204 }
9205
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)9206 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9207 {
9208 if (obj->state >= OBJ_LOADED)
9209 return libbpf_err(-EINVAL);
9210
9211 obj->kern_version = kern_version;
9212
9213 return 0;
9214 }
9215
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)9216 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9217 {
9218 struct bpf_gen *gen;
9219
9220 if (!opts)
9221 return libbpf_err(-EFAULT);
9222 if (!OPTS_VALID(opts, gen_loader_opts))
9223 return libbpf_err(-EINVAL);
9224 gen = calloc(1, sizeof(*gen));
9225 if (!gen)
9226 return libbpf_err(-ENOMEM);
9227 gen->opts = opts;
9228 gen->swapped_endian = !is_native_endianness(obj);
9229 obj->gen_loader = gen;
9230 return 0;
9231 }
9232
9233 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)9234 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9235 bool forward)
9236 {
9237 size_t nr_programs = obj->nr_programs;
9238 ssize_t idx;
9239
9240 if (!nr_programs)
9241 return NULL;
9242
9243 if (!p)
9244 /* Iter from the beginning */
9245 return forward ? &obj->programs[0] :
9246 &obj->programs[nr_programs - 1];
9247
9248 if (p->obj != obj) {
9249 pr_warn("error: program handler doesn't match object\n");
9250 return errno = EINVAL, NULL;
9251 }
9252
9253 idx = (p - obj->programs) + (forward ? 1 : -1);
9254 if (idx >= obj->nr_programs || idx < 0)
9255 return NULL;
9256 return &obj->programs[idx];
9257 }
9258
9259 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)9260 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9261 {
9262 struct bpf_program *prog = prev;
9263
9264 do {
9265 prog = __bpf_program__iter(prog, obj, true);
9266 } while (prog && prog_is_subprog(obj, prog));
9267
9268 return prog;
9269 }
9270
9271 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)9272 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9273 {
9274 struct bpf_program *prog = next;
9275
9276 do {
9277 prog = __bpf_program__iter(prog, obj, false);
9278 } while (prog && prog_is_subprog(obj, prog));
9279
9280 return prog;
9281 }
9282
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)9283 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9284 {
9285 prog->prog_ifindex = ifindex;
9286 }
9287
bpf_program__name(const struct bpf_program * prog)9288 const char *bpf_program__name(const struct bpf_program *prog)
9289 {
9290 return prog->name;
9291 }
9292
bpf_program__section_name(const struct bpf_program * prog)9293 const char *bpf_program__section_name(const struct bpf_program *prog)
9294 {
9295 return prog->sec_name;
9296 }
9297
bpf_program__autoload(const struct bpf_program * prog)9298 bool bpf_program__autoload(const struct bpf_program *prog)
9299 {
9300 return prog->autoload;
9301 }
9302
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)9303 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9304 {
9305 if (prog->obj->state >= OBJ_LOADED)
9306 return libbpf_err(-EINVAL);
9307
9308 prog->autoload = autoload;
9309 return 0;
9310 }
9311
bpf_program__autoattach(const struct bpf_program * prog)9312 bool bpf_program__autoattach(const struct bpf_program *prog)
9313 {
9314 return prog->autoattach;
9315 }
9316
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)9317 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9318 {
9319 prog->autoattach = autoattach;
9320 }
9321
bpf_program__insns(const struct bpf_program * prog)9322 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9323 {
9324 return prog->insns;
9325 }
9326
bpf_program__insn_cnt(const struct bpf_program * prog)9327 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9328 {
9329 return prog->insns_cnt;
9330 }
9331
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)9332 int bpf_program__set_insns(struct bpf_program *prog,
9333 struct bpf_insn *new_insns, size_t new_insn_cnt)
9334 {
9335 struct bpf_insn *insns;
9336
9337 if (prog->obj->state >= OBJ_LOADED)
9338 return libbpf_err(-EBUSY);
9339
9340 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9341 /* NULL is a valid return from reallocarray if the new count is zero */
9342 if (!insns && new_insn_cnt) {
9343 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9344 return libbpf_err(-ENOMEM);
9345 }
9346 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9347
9348 prog->insns = insns;
9349 prog->insns_cnt = new_insn_cnt;
9350 return 0;
9351 }
9352
bpf_program__fd(const struct bpf_program * prog)9353 int bpf_program__fd(const struct bpf_program *prog)
9354 {
9355 if (!prog)
9356 return libbpf_err(-EINVAL);
9357
9358 if (prog->fd < 0)
9359 return libbpf_err(-ENOENT);
9360
9361 return prog->fd;
9362 }
9363
9364 __alias(bpf_program__type)
9365 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9366
bpf_program__type(const struct bpf_program * prog)9367 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9368 {
9369 return prog->type;
9370 }
9371
9372 static size_t custom_sec_def_cnt;
9373 static struct bpf_sec_def *custom_sec_defs;
9374 static struct bpf_sec_def custom_fallback_def;
9375 static bool has_custom_fallback_def;
9376 static int last_custom_sec_def_handler_id;
9377
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)9378 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9379 {
9380 if (prog->obj->state >= OBJ_LOADED)
9381 return libbpf_err(-EBUSY);
9382
9383 /* if type is not changed, do nothing */
9384 if (prog->type == type)
9385 return 0;
9386
9387 prog->type = type;
9388
9389 /* If a program type was changed, we need to reset associated SEC()
9390 * handler, as it will be invalid now. The only exception is a generic
9391 * fallback handler, which by definition is program type-agnostic and
9392 * is a catch-all custom handler, optionally set by the application,
9393 * so should be able to handle any type of BPF program.
9394 */
9395 if (prog->sec_def != &custom_fallback_def)
9396 prog->sec_def = NULL;
9397 return 0;
9398 }
9399
9400 __alias(bpf_program__expected_attach_type)
9401 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9402
bpf_program__expected_attach_type(const struct bpf_program * prog)9403 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9404 {
9405 return prog->expected_attach_type;
9406 }
9407
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)9408 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9409 enum bpf_attach_type type)
9410 {
9411 if (prog->obj->state >= OBJ_LOADED)
9412 return libbpf_err(-EBUSY);
9413
9414 prog->expected_attach_type = type;
9415 return 0;
9416 }
9417
bpf_program__flags(const struct bpf_program * prog)9418 __u32 bpf_program__flags(const struct bpf_program *prog)
9419 {
9420 return prog->prog_flags;
9421 }
9422
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)9423 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9424 {
9425 if (prog->obj->state >= OBJ_LOADED)
9426 return libbpf_err(-EBUSY);
9427
9428 prog->prog_flags = flags;
9429 return 0;
9430 }
9431
bpf_program__log_level(const struct bpf_program * prog)9432 __u32 bpf_program__log_level(const struct bpf_program *prog)
9433 {
9434 return prog->log_level;
9435 }
9436
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)9437 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9438 {
9439 if (prog->obj->state >= OBJ_LOADED)
9440 return libbpf_err(-EBUSY);
9441
9442 prog->log_level = log_level;
9443 return 0;
9444 }
9445
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)9446 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9447 {
9448 *log_size = prog->log_size;
9449 return prog->log_buf;
9450 }
9451
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)9452 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9453 {
9454 if (log_size && !log_buf)
9455 return libbpf_err(-EINVAL);
9456 if (prog->log_size > UINT_MAX)
9457 return libbpf_err(-EINVAL);
9458 if (prog->obj->state >= OBJ_LOADED)
9459 return libbpf_err(-EBUSY);
9460
9461 prog->log_buf = log_buf;
9462 prog->log_size = log_size;
9463 return 0;
9464 }
9465
bpf_program__func_info(const struct bpf_program * prog)9466 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog)
9467 {
9468 if (prog->func_info_rec_size != sizeof(struct bpf_func_info))
9469 return libbpf_err_ptr(-EOPNOTSUPP);
9470 return prog->func_info;
9471 }
9472
bpf_program__func_info_cnt(const struct bpf_program * prog)9473 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog)
9474 {
9475 return prog->func_info_cnt;
9476 }
9477
bpf_program__line_info(const struct bpf_program * prog)9478 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog)
9479 {
9480 if (prog->line_info_rec_size != sizeof(struct bpf_line_info))
9481 return libbpf_err_ptr(-EOPNOTSUPP);
9482 return prog->line_info;
9483 }
9484
bpf_program__line_info_cnt(const struct bpf_program * prog)9485 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog)
9486 {
9487 return prog->line_info_cnt;
9488 }
9489
9490 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
9491 .sec = (char *)sec_pfx, \
9492 .prog_type = BPF_PROG_TYPE_##ptype, \
9493 .expected_attach_type = atype, \
9494 .cookie = (long)(flags), \
9495 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
9496 __VA_ARGS__ \
9497 }
9498
9499 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9500 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9501 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9502 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9503 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9504 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9505 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9506 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9507 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9508 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9509 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9510 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9511
9512 static const struct bpf_sec_def section_defs[] = {
9513 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
9514 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9515 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9516 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9517 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9518 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9519 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9520 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9521 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9522 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9523 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9524 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9525 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9526 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9527 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi),
9528 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9529 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9530 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi),
9531 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9532 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9533 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
9534 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9535 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9536 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
9537 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9538 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9539 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9540 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9541 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9542 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9543 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9544 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9545 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9546 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9547 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9548 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9549 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9550 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9551 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9552 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9553 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9554 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9555 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9556 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9557 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9558 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9559 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9560 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9561 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9562 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9563 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9564 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9565 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9566 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9567 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9568 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9569 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9570 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
9571 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
9572 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
9573 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
9574 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
9575 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9576 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9577 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9578 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9579 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
9580 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9581 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9582 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9583 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9584 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9585 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
9586 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9587 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9588 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9589 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9590 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9591 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9592 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9593 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9594 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9595 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9596 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9597 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9598 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9599 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9600 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9601 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9602 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9603 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9604 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9605 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9606 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9607 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9608 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9609 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9610 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9611 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9612 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9613 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
9614 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9615 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
9616 };
9617
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9618 int libbpf_register_prog_handler(const char *sec,
9619 enum bpf_prog_type prog_type,
9620 enum bpf_attach_type exp_attach_type,
9621 const struct libbpf_prog_handler_opts *opts)
9622 {
9623 struct bpf_sec_def *sec_def;
9624
9625 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9626 return libbpf_err(-EINVAL);
9627
9628 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9629 return libbpf_err(-E2BIG);
9630
9631 if (sec) {
9632 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9633 sizeof(*sec_def));
9634 if (!sec_def)
9635 return libbpf_err(-ENOMEM);
9636
9637 custom_sec_defs = sec_def;
9638 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9639 } else {
9640 if (has_custom_fallback_def)
9641 return libbpf_err(-EBUSY);
9642
9643 sec_def = &custom_fallback_def;
9644 }
9645
9646 sec_def->sec = sec ? strdup(sec) : NULL;
9647 if (sec && !sec_def->sec)
9648 return libbpf_err(-ENOMEM);
9649
9650 sec_def->prog_type = prog_type;
9651 sec_def->expected_attach_type = exp_attach_type;
9652 sec_def->cookie = OPTS_GET(opts, cookie, 0);
9653
9654 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9655 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9656 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9657
9658 sec_def->handler_id = ++last_custom_sec_def_handler_id;
9659
9660 if (sec)
9661 custom_sec_def_cnt++;
9662 else
9663 has_custom_fallback_def = true;
9664
9665 return sec_def->handler_id;
9666 }
9667
libbpf_unregister_prog_handler(int handler_id)9668 int libbpf_unregister_prog_handler(int handler_id)
9669 {
9670 struct bpf_sec_def *sec_defs;
9671 int i;
9672
9673 if (handler_id <= 0)
9674 return libbpf_err(-EINVAL);
9675
9676 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9677 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9678 has_custom_fallback_def = false;
9679 return 0;
9680 }
9681
9682 for (i = 0; i < custom_sec_def_cnt; i++) {
9683 if (custom_sec_defs[i].handler_id == handler_id)
9684 break;
9685 }
9686
9687 if (i == custom_sec_def_cnt)
9688 return libbpf_err(-ENOENT);
9689
9690 free(custom_sec_defs[i].sec);
9691 for (i = i + 1; i < custom_sec_def_cnt; i++)
9692 custom_sec_defs[i - 1] = custom_sec_defs[i];
9693 custom_sec_def_cnt--;
9694
9695 /* try to shrink the array, but it's ok if we couldn't */
9696 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9697 /* if new count is zero, reallocarray can return a valid NULL result;
9698 * in this case the previous pointer will be freed, so we *have to*
9699 * reassign old pointer to the new value (even if it's NULL)
9700 */
9701 if (sec_defs || custom_sec_def_cnt == 0)
9702 custom_sec_defs = sec_defs;
9703
9704 return 0;
9705 }
9706
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)9707 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9708 {
9709 size_t len = strlen(sec_def->sec);
9710
9711 /* "type/" always has to have proper SEC("type/extras") form */
9712 if (sec_def->sec[len - 1] == '/') {
9713 if (str_has_pfx(sec_name, sec_def->sec))
9714 return true;
9715 return false;
9716 }
9717
9718 /* "type+" means it can be either exact SEC("type") or
9719 * well-formed SEC("type/extras") with proper '/' separator
9720 */
9721 if (sec_def->sec[len - 1] == '+') {
9722 len--;
9723 /* not even a prefix */
9724 if (strncmp(sec_name, sec_def->sec, len) != 0)
9725 return false;
9726 /* exact match or has '/' separator */
9727 if (sec_name[len] == '\0' || sec_name[len] == '/')
9728 return true;
9729 return false;
9730 }
9731
9732 return strcmp(sec_name, sec_def->sec) == 0;
9733 }
9734
find_sec_def(const char * sec_name)9735 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9736 {
9737 const struct bpf_sec_def *sec_def;
9738 int i, n;
9739
9740 n = custom_sec_def_cnt;
9741 for (i = 0; i < n; i++) {
9742 sec_def = &custom_sec_defs[i];
9743 if (sec_def_matches(sec_def, sec_name))
9744 return sec_def;
9745 }
9746
9747 n = ARRAY_SIZE(section_defs);
9748 for (i = 0; i < n; i++) {
9749 sec_def = §ion_defs[i];
9750 if (sec_def_matches(sec_def, sec_name))
9751 return sec_def;
9752 }
9753
9754 if (has_custom_fallback_def)
9755 return &custom_fallback_def;
9756
9757 return NULL;
9758 }
9759
9760 #define MAX_TYPE_NAME_SIZE 32
9761
libbpf_get_type_names(bool attach_type)9762 static char *libbpf_get_type_names(bool attach_type)
9763 {
9764 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9765 char *buf;
9766
9767 buf = malloc(len);
9768 if (!buf)
9769 return NULL;
9770
9771 buf[0] = '\0';
9772 /* Forge string buf with all available names */
9773 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9774 const struct bpf_sec_def *sec_def = §ion_defs[i];
9775
9776 if (attach_type) {
9777 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9778 continue;
9779
9780 if (!(sec_def->cookie & SEC_ATTACHABLE))
9781 continue;
9782 }
9783
9784 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9785 free(buf);
9786 return NULL;
9787 }
9788 strcat(buf, " ");
9789 strcat(buf, section_defs[i].sec);
9790 }
9791
9792 return buf;
9793 }
9794
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9795 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9796 enum bpf_attach_type *expected_attach_type)
9797 {
9798 const struct bpf_sec_def *sec_def;
9799 char *type_names;
9800
9801 if (!name)
9802 return libbpf_err(-EINVAL);
9803
9804 sec_def = find_sec_def(name);
9805 if (sec_def) {
9806 *prog_type = sec_def->prog_type;
9807 *expected_attach_type = sec_def->expected_attach_type;
9808 return 0;
9809 }
9810
9811 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9812 type_names = libbpf_get_type_names(false);
9813 if (type_names != NULL) {
9814 pr_debug("supported section(type) names are:%s\n", type_names);
9815 free(type_names);
9816 }
9817
9818 return libbpf_err(-ESRCH);
9819 }
9820
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9821 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9822 {
9823 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9824 return NULL;
9825
9826 return attach_type_name[t];
9827 }
9828
libbpf_bpf_link_type_str(enum bpf_link_type t)9829 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9830 {
9831 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9832 return NULL;
9833
9834 return link_type_name[t];
9835 }
9836
libbpf_bpf_map_type_str(enum bpf_map_type t)9837 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9838 {
9839 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9840 return NULL;
9841
9842 return map_type_name[t];
9843 }
9844
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9845 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9846 {
9847 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9848 return NULL;
9849
9850 return prog_type_name[t];
9851 }
9852
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9853 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9854 int sec_idx,
9855 size_t offset)
9856 {
9857 struct bpf_map *map;
9858 size_t i;
9859
9860 for (i = 0; i < obj->nr_maps; i++) {
9861 map = &obj->maps[i];
9862 if (!bpf_map__is_struct_ops(map))
9863 continue;
9864 if (map->sec_idx == sec_idx &&
9865 map->sec_offset <= offset &&
9866 offset - map->sec_offset < map->def.value_size)
9867 return map;
9868 }
9869
9870 return NULL;
9871 }
9872
9873 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9874 * st_ops->data for shadow type.
9875 */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9876 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9877 Elf64_Shdr *shdr, Elf_Data *data)
9878 {
9879 const struct btf_type *type;
9880 const struct btf_member *member;
9881 struct bpf_struct_ops *st_ops;
9882 struct bpf_program *prog;
9883 unsigned int shdr_idx;
9884 const struct btf *btf;
9885 struct bpf_map *map;
9886 unsigned int moff, insn_idx;
9887 const char *name;
9888 __u32 member_idx;
9889 Elf64_Sym *sym;
9890 Elf64_Rel *rel;
9891 int i, nrels;
9892
9893 btf = obj->btf;
9894 nrels = shdr->sh_size / shdr->sh_entsize;
9895 for (i = 0; i < nrels; i++) {
9896 rel = elf_rel_by_idx(data, i);
9897 if (!rel) {
9898 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9899 return -LIBBPF_ERRNO__FORMAT;
9900 }
9901
9902 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9903 if (!sym) {
9904 pr_warn("struct_ops reloc: symbol %zx not found\n",
9905 (size_t)ELF64_R_SYM(rel->r_info));
9906 return -LIBBPF_ERRNO__FORMAT;
9907 }
9908
9909 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9910 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9911 if (!map) {
9912 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9913 (size_t)rel->r_offset);
9914 return -EINVAL;
9915 }
9916
9917 moff = rel->r_offset - map->sec_offset;
9918 shdr_idx = sym->st_shndx;
9919 st_ops = map->st_ops;
9920 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9921 map->name,
9922 (long long)(rel->r_info >> 32),
9923 (long long)sym->st_value,
9924 shdr_idx, (size_t)rel->r_offset,
9925 map->sec_offset, sym->st_name, name);
9926
9927 if (shdr_idx >= SHN_LORESERVE) {
9928 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9929 map->name, (size_t)rel->r_offset, shdr_idx);
9930 return -LIBBPF_ERRNO__RELOC;
9931 }
9932 if (sym->st_value % BPF_INSN_SZ) {
9933 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9934 map->name, (unsigned long long)sym->st_value);
9935 return -LIBBPF_ERRNO__FORMAT;
9936 }
9937 insn_idx = sym->st_value / BPF_INSN_SZ;
9938
9939 type = btf__type_by_id(btf, st_ops->type_id);
9940 member = find_member_by_offset(type, moff * 8);
9941 if (!member) {
9942 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9943 map->name, moff);
9944 return -EINVAL;
9945 }
9946 member_idx = member - btf_members(type);
9947 name = btf__name_by_offset(btf, member->name_off);
9948
9949 if (!resolve_func_ptr(btf, member->type, NULL)) {
9950 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9951 map->name, name);
9952 return -EINVAL;
9953 }
9954
9955 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9956 if (!prog) {
9957 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9958 map->name, shdr_idx, name);
9959 return -EINVAL;
9960 }
9961
9962 /* prevent the use of BPF prog with invalid type */
9963 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9964 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9965 map->name, prog->name);
9966 return -EINVAL;
9967 }
9968
9969 st_ops->progs[member_idx] = prog;
9970
9971 /* st_ops->data will be exposed to users, being returned by
9972 * bpf_map__initial_value() as a pointer to the shadow
9973 * type. All function pointers in the original struct type
9974 * should be converted to a pointer to struct bpf_program
9975 * in the shadow type.
9976 */
9977 *((struct bpf_program **)(st_ops->data + moff)) = prog;
9978 }
9979
9980 return 0;
9981 }
9982
9983 #define BTF_TRACE_PREFIX "btf_trace_"
9984 #define BTF_LSM_PREFIX "bpf_lsm_"
9985 #define BTF_ITER_PREFIX "bpf_iter_"
9986 #define BTF_MAX_NAME_SIZE 128
9987
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9988 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9989 const char **prefix, int *kind)
9990 {
9991 switch (attach_type) {
9992 case BPF_TRACE_RAW_TP:
9993 *prefix = BTF_TRACE_PREFIX;
9994 *kind = BTF_KIND_TYPEDEF;
9995 break;
9996 case BPF_LSM_MAC:
9997 case BPF_LSM_CGROUP:
9998 *prefix = BTF_LSM_PREFIX;
9999 *kind = BTF_KIND_FUNC;
10000 break;
10001 case BPF_TRACE_ITER:
10002 *prefix = BTF_ITER_PREFIX;
10003 *kind = BTF_KIND_FUNC;
10004 break;
10005 default:
10006 *prefix = "";
10007 *kind = BTF_KIND_FUNC;
10008 }
10009 }
10010
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)10011 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
10012 const char *name, __u32 kind)
10013 {
10014 char btf_type_name[BTF_MAX_NAME_SIZE];
10015 int ret;
10016
10017 ret = snprintf(btf_type_name, sizeof(btf_type_name),
10018 "%s%s", prefix, name);
10019 /* snprintf returns the number of characters written excluding the
10020 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
10021 * indicates truncation.
10022 */
10023 if (ret < 0 || ret >= sizeof(btf_type_name))
10024 return -ENAMETOOLONG;
10025 return btf__find_by_name_kind(btf, btf_type_name, kind);
10026 }
10027
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)10028 static inline int find_attach_btf_id(struct btf *btf, const char *name,
10029 enum bpf_attach_type attach_type)
10030 {
10031 const char *prefix;
10032 int kind;
10033
10034 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
10035 return find_btf_by_prefix_kind(btf, prefix, name, kind);
10036 }
10037
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)10038 int libbpf_find_vmlinux_btf_id(const char *name,
10039 enum bpf_attach_type attach_type)
10040 {
10041 struct btf *btf;
10042 int err;
10043
10044 btf = btf__load_vmlinux_btf();
10045 err = libbpf_get_error(btf);
10046 if (err) {
10047 pr_warn("vmlinux BTF is not found\n");
10048 return libbpf_err(err);
10049 }
10050
10051 err = find_attach_btf_id(btf, name, attach_type);
10052 if (err <= 0)
10053 pr_warn("%s is not found in vmlinux BTF\n", name);
10054
10055 btf__free(btf);
10056 return libbpf_err(err);
10057 }
10058
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd,int token_fd)10059 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd)
10060 {
10061 struct bpf_prog_info info;
10062 __u32 info_len = sizeof(info);
10063 struct btf *btf;
10064 int err;
10065
10066 memset(&info, 0, info_len);
10067 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
10068 if (err) {
10069 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n",
10070 attach_prog_fd, errstr(err));
10071 return err;
10072 }
10073
10074 err = -EINVAL;
10075 if (!info.btf_id) {
10076 pr_warn("The target program doesn't have BTF\n");
10077 goto out;
10078 }
10079 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd);
10080 err = libbpf_get_error(btf);
10081 if (err) {
10082 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err));
10083 goto out;
10084 }
10085 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
10086 btf__free(btf);
10087 if (err <= 0) {
10088 pr_warn("%s is not found in prog's BTF\n", name);
10089 goto out;
10090 }
10091 out:
10092 return err;
10093 }
10094
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)10095 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
10096 enum bpf_attach_type attach_type,
10097 int *btf_obj_fd, int *btf_type_id)
10098 {
10099 int ret, i, mod_len = 0;
10100 const char *fn_name, *mod_name = NULL;
10101
10102 fn_name = strchr(attach_name, ':');
10103 if (fn_name) {
10104 mod_name = attach_name;
10105 mod_len = fn_name - mod_name;
10106 fn_name++;
10107 }
10108
10109 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10110 ret = find_attach_btf_id(obj->btf_vmlinux,
10111 mod_name ? fn_name : attach_name,
10112 attach_type);
10113 if (ret > 0) {
10114 *btf_obj_fd = 0; /* vmlinux BTF */
10115 *btf_type_id = ret;
10116 return 0;
10117 }
10118 if (ret != -ENOENT)
10119 return ret;
10120 }
10121
10122 ret = load_module_btfs(obj);
10123 if (ret)
10124 return ret;
10125
10126 for (i = 0; i < obj->btf_module_cnt; i++) {
10127 const struct module_btf *mod = &obj->btf_modules[i];
10128
10129 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10130 continue;
10131
10132 ret = find_attach_btf_id(mod->btf,
10133 mod_name ? fn_name : attach_name,
10134 attach_type);
10135 if (ret > 0) {
10136 *btf_obj_fd = mod->fd;
10137 *btf_type_id = ret;
10138 return 0;
10139 }
10140 if (ret == -ENOENT)
10141 continue;
10142
10143 return ret;
10144 }
10145
10146 return -ESRCH;
10147 }
10148
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)10149 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10150 int *btf_obj_fd, int *btf_type_id)
10151 {
10152 enum bpf_attach_type attach_type = prog->expected_attach_type;
10153 __u32 attach_prog_fd = prog->attach_prog_fd;
10154 int err = 0;
10155
10156 /* BPF program's BTF ID */
10157 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10158 if (!attach_prog_fd) {
10159 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10160 return -EINVAL;
10161 }
10162 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd);
10163 if (err < 0) {
10164 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n",
10165 prog->name, attach_prog_fd, attach_name, errstr(err));
10166 return err;
10167 }
10168 *btf_obj_fd = 0;
10169 *btf_type_id = err;
10170 return 0;
10171 }
10172
10173 /* kernel/module BTF ID */
10174 if (prog->obj->gen_loader) {
10175 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10176 *btf_obj_fd = 0;
10177 *btf_type_id = 1;
10178 } else {
10179 err = find_kernel_btf_id(prog->obj, attach_name,
10180 attach_type, btf_obj_fd,
10181 btf_type_id);
10182 }
10183 if (err) {
10184 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n",
10185 prog->name, attach_name, errstr(err));
10186 return err;
10187 }
10188 return 0;
10189 }
10190
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)10191 int libbpf_attach_type_by_name(const char *name,
10192 enum bpf_attach_type *attach_type)
10193 {
10194 char *type_names;
10195 const struct bpf_sec_def *sec_def;
10196
10197 if (!name)
10198 return libbpf_err(-EINVAL);
10199
10200 sec_def = find_sec_def(name);
10201 if (!sec_def) {
10202 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10203 type_names = libbpf_get_type_names(true);
10204 if (type_names != NULL) {
10205 pr_debug("attachable section(type) names are:%s\n", type_names);
10206 free(type_names);
10207 }
10208
10209 return libbpf_err(-EINVAL);
10210 }
10211
10212 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10213 return libbpf_err(-EINVAL);
10214 if (!(sec_def->cookie & SEC_ATTACHABLE))
10215 return libbpf_err(-EINVAL);
10216
10217 *attach_type = sec_def->expected_attach_type;
10218 return 0;
10219 }
10220
bpf_map__fd(const struct bpf_map * map)10221 int bpf_map__fd(const struct bpf_map *map)
10222 {
10223 if (!map)
10224 return libbpf_err(-EINVAL);
10225 if (!map_is_created(map))
10226 return -1;
10227 return map->fd;
10228 }
10229
map_uses_real_name(const struct bpf_map * map)10230 static bool map_uses_real_name(const struct bpf_map *map)
10231 {
10232 /* Since libbpf started to support custom .data.* and .rodata.* maps,
10233 * their user-visible name differs from kernel-visible name. Users see
10234 * such map's corresponding ELF section name as a map name.
10235 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10236 * maps to know which name has to be returned to the user.
10237 */
10238 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10239 return true;
10240 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10241 return true;
10242 return false;
10243 }
10244
bpf_map__name(const struct bpf_map * map)10245 const char *bpf_map__name(const struct bpf_map *map)
10246 {
10247 if (!map)
10248 return NULL;
10249
10250 if (map_uses_real_name(map))
10251 return map->real_name;
10252
10253 return map->name;
10254 }
10255
bpf_map__type(const struct bpf_map * map)10256 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10257 {
10258 return map->def.type;
10259 }
10260
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)10261 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10262 {
10263 if (map_is_created(map))
10264 return libbpf_err(-EBUSY);
10265 map->def.type = type;
10266 return 0;
10267 }
10268
bpf_map__map_flags(const struct bpf_map * map)10269 __u32 bpf_map__map_flags(const struct bpf_map *map)
10270 {
10271 return map->def.map_flags;
10272 }
10273
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)10274 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10275 {
10276 if (map_is_created(map))
10277 return libbpf_err(-EBUSY);
10278 map->def.map_flags = flags;
10279 return 0;
10280 }
10281
bpf_map__map_extra(const struct bpf_map * map)10282 __u64 bpf_map__map_extra(const struct bpf_map *map)
10283 {
10284 return map->map_extra;
10285 }
10286
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)10287 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10288 {
10289 if (map_is_created(map))
10290 return libbpf_err(-EBUSY);
10291 map->map_extra = map_extra;
10292 return 0;
10293 }
10294
bpf_map__numa_node(const struct bpf_map * map)10295 __u32 bpf_map__numa_node(const struct bpf_map *map)
10296 {
10297 return map->numa_node;
10298 }
10299
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)10300 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10301 {
10302 if (map_is_created(map))
10303 return libbpf_err(-EBUSY);
10304 map->numa_node = numa_node;
10305 return 0;
10306 }
10307
bpf_map__key_size(const struct bpf_map * map)10308 __u32 bpf_map__key_size(const struct bpf_map *map)
10309 {
10310 return map->def.key_size;
10311 }
10312
bpf_map__set_key_size(struct bpf_map * map,__u32 size)10313 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10314 {
10315 if (map_is_created(map))
10316 return libbpf_err(-EBUSY);
10317 map->def.key_size = size;
10318 return 0;
10319 }
10320
bpf_map__value_size(const struct bpf_map * map)10321 __u32 bpf_map__value_size(const struct bpf_map *map)
10322 {
10323 return map->def.value_size;
10324 }
10325
map_btf_datasec_resize(struct bpf_map * map,__u32 size)10326 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10327 {
10328 struct btf *btf;
10329 struct btf_type *datasec_type, *var_type;
10330 struct btf_var_secinfo *var;
10331 const struct btf_type *array_type;
10332 const struct btf_array *array;
10333 int vlen, element_sz, new_array_id;
10334 __u32 nr_elements;
10335
10336 /* check btf existence */
10337 btf = bpf_object__btf(map->obj);
10338 if (!btf)
10339 return -ENOENT;
10340
10341 /* verify map is datasec */
10342 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10343 if (!btf_is_datasec(datasec_type)) {
10344 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10345 bpf_map__name(map));
10346 return -EINVAL;
10347 }
10348
10349 /* verify datasec has at least one var */
10350 vlen = btf_vlen(datasec_type);
10351 if (vlen == 0) {
10352 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10353 bpf_map__name(map));
10354 return -EINVAL;
10355 }
10356
10357 /* verify last var in the datasec is an array */
10358 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10359 var_type = btf_type_by_id(btf, var->type);
10360 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10361 if (!btf_is_array(array_type)) {
10362 pr_warn("map '%s': cannot be resized, last var must be an array\n",
10363 bpf_map__name(map));
10364 return -EINVAL;
10365 }
10366
10367 /* verify request size aligns with array */
10368 array = btf_array(array_type);
10369 element_sz = btf__resolve_size(btf, array->type);
10370 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10371 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10372 bpf_map__name(map), element_sz, size);
10373 return -EINVAL;
10374 }
10375
10376 /* create a new array based on the existing array, but with new length */
10377 nr_elements = (size - var->offset) / element_sz;
10378 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10379 if (new_array_id < 0)
10380 return new_array_id;
10381
10382 /* adding a new btf type invalidates existing pointers to btf objects,
10383 * so refresh pointers before proceeding
10384 */
10385 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10386 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10387 var_type = btf_type_by_id(btf, var->type);
10388
10389 /* finally update btf info */
10390 datasec_type->size = size;
10391 var->size = size - var->offset;
10392 var_type->type = new_array_id;
10393
10394 return 0;
10395 }
10396
bpf_map__set_value_size(struct bpf_map * map,__u32 size)10397 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10398 {
10399 if (map_is_created(map))
10400 return libbpf_err(-EBUSY);
10401
10402 if (map->mmaped) {
10403 size_t mmap_old_sz, mmap_new_sz;
10404 int err;
10405
10406 if (map->def.type != BPF_MAP_TYPE_ARRAY)
10407 return libbpf_err(-EOPNOTSUPP);
10408
10409 mmap_old_sz = bpf_map_mmap_sz(map);
10410 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10411 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10412 if (err) {
10413 pr_warn("map '%s': failed to resize memory-mapped region: %s\n",
10414 bpf_map__name(map), errstr(err));
10415 return libbpf_err(err);
10416 }
10417 err = map_btf_datasec_resize(map, size);
10418 if (err && err != -ENOENT) {
10419 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n",
10420 bpf_map__name(map), errstr(err));
10421 map->btf_value_type_id = 0;
10422 map->btf_key_type_id = 0;
10423 }
10424 }
10425
10426 map->def.value_size = size;
10427 return 0;
10428 }
10429
bpf_map__btf_key_type_id(const struct bpf_map * map)10430 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10431 {
10432 return map ? map->btf_key_type_id : 0;
10433 }
10434
bpf_map__btf_value_type_id(const struct bpf_map * map)10435 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10436 {
10437 return map ? map->btf_value_type_id : 0;
10438 }
10439
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)10440 int bpf_map__set_initial_value(struct bpf_map *map,
10441 const void *data, size_t size)
10442 {
10443 size_t actual_sz;
10444
10445 if (map_is_created(map))
10446 return libbpf_err(-EBUSY);
10447
10448 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10449 return libbpf_err(-EINVAL);
10450
10451 if (map->def.type == BPF_MAP_TYPE_ARENA)
10452 actual_sz = map->obj->arena_data_sz;
10453 else
10454 actual_sz = map->def.value_size;
10455 if (size != actual_sz)
10456 return libbpf_err(-EINVAL);
10457
10458 memcpy(map->mmaped, data, size);
10459 return 0;
10460 }
10461
bpf_map__initial_value(const struct bpf_map * map,size_t * psize)10462 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10463 {
10464 if (bpf_map__is_struct_ops(map)) {
10465 if (psize)
10466 *psize = map->def.value_size;
10467 return map->st_ops->data;
10468 }
10469
10470 if (!map->mmaped)
10471 return NULL;
10472
10473 if (map->def.type == BPF_MAP_TYPE_ARENA)
10474 *psize = map->obj->arena_data_sz;
10475 else
10476 *psize = map->def.value_size;
10477
10478 return map->mmaped;
10479 }
10480
bpf_map__is_internal(const struct bpf_map * map)10481 bool bpf_map__is_internal(const struct bpf_map *map)
10482 {
10483 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10484 }
10485
bpf_map__ifindex(const struct bpf_map * map)10486 __u32 bpf_map__ifindex(const struct bpf_map *map)
10487 {
10488 return map->map_ifindex;
10489 }
10490
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)10491 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10492 {
10493 if (map_is_created(map))
10494 return libbpf_err(-EBUSY);
10495 map->map_ifindex = ifindex;
10496 return 0;
10497 }
10498
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)10499 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10500 {
10501 if (!bpf_map_type__is_map_in_map(map->def.type)) {
10502 pr_warn("error: unsupported map type\n");
10503 return libbpf_err(-EINVAL);
10504 }
10505 if (map->inner_map_fd != -1) {
10506 pr_warn("error: inner_map_fd already specified\n");
10507 return libbpf_err(-EINVAL);
10508 }
10509 if (map->inner_map) {
10510 bpf_map__destroy(map->inner_map);
10511 zfree(&map->inner_map);
10512 }
10513 map->inner_map_fd = fd;
10514 return 0;
10515 }
10516
10517 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)10518 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10519 {
10520 ssize_t idx;
10521 struct bpf_map *s, *e;
10522
10523 if (!obj || !obj->maps)
10524 return errno = EINVAL, NULL;
10525
10526 s = obj->maps;
10527 e = obj->maps + obj->nr_maps;
10528
10529 if ((m < s) || (m >= e)) {
10530 pr_warn("error in %s: map handler doesn't belong to object\n",
10531 __func__);
10532 return errno = EINVAL, NULL;
10533 }
10534
10535 idx = (m - obj->maps) + i;
10536 if (idx >= obj->nr_maps || idx < 0)
10537 return NULL;
10538 return &obj->maps[idx];
10539 }
10540
10541 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)10542 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10543 {
10544 if (prev == NULL && obj != NULL)
10545 return obj->maps;
10546
10547 return __bpf_map__iter(prev, obj, 1);
10548 }
10549
10550 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)10551 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10552 {
10553 if (next == NULL && obj != NULL) {
10554 if (!obj->nr_maps)
10555 return NULL;
10556 return obj->maps + obj->nr_maps - 1;
10557 }
10558
10559 return __bpf_map__iter(next, obj, -1);
10560 }
10561
10562 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)10563 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10564 {
10565 struct bpf_map *pos;
10566
10567 bpf_object__for_each_map(pos, obj) {
10568 /* if it's a special internal map name (which always starts
10569 * with dot) then check if that special name matches the
10570 * real map name (ELF section name)
10571 */
10572 if (name[0] == '.') {
10573 if (pos->real_name && strcmp(pos->real_name, name) == 0)
10574 return pos;
10575 continue;
10576 }
10577 /* otherwise map name has to be an exact match */
10578 if (map_uses_real_name(pos)) {
10579 if (strcmp(pos->real_name, name) == 0)
10580 return pos;
10581 continue;
10582 }
10583 if (strcmp(pos->name, name) == 0)
10584 return pos;
10585 }
10586 return errno = ENOENT, NULL;
10587 }
10588
10589 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)10590 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10591 {
10592 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10593 }
10594
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)10595 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10596 size_t value_sz, bool check_value_sz)
10597 {
10598 if (!map_is_created(map)) /* map is not yet created */
10599 return -ENOENT;
10600
10601 if (map->def.key_size != key_sz) {
10602 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10603 map->name, key_sz, map->def.key_size);
10604 return -EINVAL;
10605 }
10606
10607 if (map->fd < 0) {
10608 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10609 return -EINVAL;
10610 }
10611
10612 if (!check_value_sz)
10613 return 0;
10614
10615 switch (map->def.type) {
10616 case BPF_MAP_TYPE_PERCPU_ARRAY:
10617 case BPF_MAP_TYPE_PERCPU_HASH:
10618 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10619 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10620 int num_cpu = libbpf_num_possible_cpus();
10621 size_t elem_sz = roundup(map->def.value_size, 8);
10622
10623 if (value_sz != num_cpu * elem_sz) {
10624 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10625 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10626 return -EINVAL;
10627 }
10628 break;
10629 }
10630 default:
10631 if (map->def.value_size != value_sz) {
10632 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10633 map->name, value_sz, map->def.value_size);
10634 return -EINVAL;
10635 }
10636 break;
10637 }
10638 return 0;
10639 }
10640
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10641 int bpf_map__lookup_elem(const struct bpf_map *map,
10642 const void *key, size_t key_sz,
10643 void *value, size_t value_sz, __u64 flags)
10644 {
10645 int err;
10646
10647 err = validate_map_op(map, key_sz, value_sz, true);
10648 if (err)
10649 return libbpf_err(err);
10650
10651 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10652 }
10653
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10654 int bpf_map__update_elem(const struct bpf_map *map,
10655 const void *key, size_t key_sz,
10656 const void *value, size_t value_sz, __u64 flags)
10657 {
10658 int err;
10659
10660 err = validate_map_op(map, key_sz, value_sz, true);
10661 if (err)
10662 return libbpf_err(err);
10663
10664 return bpf_map_update_elem(map->fd, key, value, flags);
10665 }
10666
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10667 int bpf_map__delete_elem(const struct bpf_map *map,
10668 const void *key, size_t key_sz, __u64 flags)
10669 {
10670 int err;
10671
10672 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10673 if (err)
10674 return libbpf_err(err);
10675
10676 return bpf_map_delete_elem_flags(map->fd, key, flags);
10677 }
10678
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10679 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10680 const void *key, size_t key_sz,
10681 void *value, size_t value_sz, __u64 flags)
10682 {
10683 int err;
10684
10685 err = validate_map_op(map, key_sz, value_sz, true);
10686 if (err)
10687 return libbpf_err(err);
10688
10689 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10690 }
10691
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10692 int bpf_map__get_next_key(const struct bpf_map *map,
10693 const void *cur_key, void *next_key, size_t key_sz)
10694 {
10695 int err;
10696
10697 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10698 if (err)
10699 return libbpf_err(err);
10700
10701 return bpf_map_get_next_key(map->fd, cur_key, next_key);
10702 }
10703
libbpf_get_error(const void * ptr)10704 long libbpf_get_error(const void *ptr)
10705 {
10706 if (!IS_ERR_OR_NULL(ptr))
10707 return 0;
10708
10709 if (IS_ERR(ptr))
10710 errno = -PTR_ERR(ptr);
10711
10712 /* If ptr == NULL, then errno should be already set by the failing
10713 * API, because libbpf never returns NULL on success and it now always
10714 * sets errno on error. So no extra errno handling for ptr == NULL
10715 * case.
10716 */
10717 return -errno;
10718 }
10719
10720 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10721 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10722 {
10723 int ret;
10724 int prog_fd = bpf_program__fd(prog);
10725
10726 if (prog_fd < 0) {
10727 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10728 prog->name);
10729 return libbpf_err(-EINVAL);
10730 }
10731
10732 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10733 return libbpf_err_errno(ret);
10734 }
10735
10736 /* Release "ownership" of underlying BPF resource (typically, BPF program
10737 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10738 * link, when destructed through bpf_link__destroy() call won't attempt to
10739 * detach/unregisted that BPF resource. This is useful in situations where,
10740 * say, attached BPF program has to outlive userspace program that attached it
10741 * in the system. Depending on type of BPF program, though, there might be
10742 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10743 * exit of userspace program doesn't trigger automatic detachment and clean up
10744 * inside the kernel.
10745 */
bpf_link__disconnect(struct bpf_link * link)10746 void bpf_link__disconnect(struct bpf_link *link)
10747 {
10748 link->disconnected = true;
10749 }
10750
bpf_link__destroy(struct bpf_link * link)10751 int bpf_link__destroy(struct bpf_link *link)
10752 {
10753 int err = 0;
10754
10755 if (IS_ERR_OR_NULL(link))
10756 return 0;
10757
10758 if (!link->disconnected && link->detach)
10759 err = link->detach(link);
10760 if (link->pin_path)
10761 free(link->pin_path);
10762 if (link->dealloc)
10763 link->dealloc(link);
10764 else
10765 free(link);
10766
10767 return libbpf_err(err);
10768 }
10769
bpf_link__fd(const struct bpf_link * link)10770 int bpf_link__fd(const struct bpf_link *link)
10771 {
10772 return link->fd;
10773 }
10774
bpf_link__pin_path(const struct bpf_link * link)10775 const char *bpf_link__pin_path(const struct bpf_link *link)
10776 {
10777 return link->pin_path;
10778 }
10779
bpf_link__detach_fd(struct bpf_link * link)10780 static int bpf_link__detach_fd(struct bpf_link *link)
10781 {
10782 return libbpf_err_errno(close(link->fd));
10783 }
10784
bpf_link__open(const char * path)10785 struct bpf_link *bpf_link__open(const char *path)
10786 {
10787 struct bpf_link *link;
10788 int fd;
10789
10790 fd = bpf_obj_get(path);
10791 if (fd < 0) {
10792 fd = -errno;
10793 pr_warn("failed to open link at %s: %d\n", path, fd);
10794 return libbpf_err_ptr(fd);
10795 }
10796
10797 link = calloc(1, sizeof(*link));
10798 if (!link) {
10799 close(fd);
10800 return libbpf_err_ptr(-ENOMEM);
10801 }
10802 link->detach = &bpf_link__detach_fd;
10803 link->fd = fd;
10804
10805 link->pin_path = strdup(path);
10806 if (!link->pin_path) {
10807 bpf_link__destroy(link);
10808 return libbpf_err_ptr(-ENOMEM);
10809 }
10810
10811 return link;
10812 }
10813
bpf_link__detach(struct bpf_link * link)10814 int bpf_link__detach(struct bpf_link *link)
10815 {
10816 return bpf_link_detach(link->fd) ? -errno : 0;
10817 }
10818
bpf_link__pin(struct bpf_link * link,const char * path)10819 int bpf_link__pin(struct bpf_link *link, const char *path)
10820 {
10821 int err;
10822
10823 if (link->pin_path)
10824 return libbpf_err(-EBUSY);
10825 err = make_parent_dir(path);
10826 if (err)
10827 return libbpf_err(err);
10828 err = check_path(path);
10829 if (err)
10830 return libbpf_err(err);
10831
10832 link->pin_path = strdup(path);
10833 if (!link->pin_path)
10834 return libbpf_err(-ENOMEM);
10835
10836 if (bpf_obj_pin(link->fd, link->pin_path)) {
10837 err = -errno;
10838 zfree(&link->pin_path);
10839 return libbpf_err(err);
10840 }
10841
10842 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10843 return 0;
10844 }
10845
bpf_link__unpin(struct bpf_link * link)10846 int bpf_link__unpin(struct bpf_link *link)
10847 {
10848 int err;
10849
10850 if (!link->pin_path)
10851 return libbpf_err(-EINVAL);
10852
10853 err = unlink(link->pin_path);
10854 if (err != 0)
10855 return -errno;
10856
10857 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10858 zfree(&link->pin_path);
10859 return 0;
10860 }
10861
10862 struct bpf_link_perf {
10863 struct bpf_link link;
10864 int perf_event_fd;
10865 /* legacy kprobe support: keep track of probe identifier and type */
10866 char *legacy_probe_name;
10867 bool legacy_is_kprobe;
10868 bool legacy_is_retprobe;
10869 };
10870
10871 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10872 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10873
bpf_link_perf_detach(struct bpf_link * link)10874 static int bpf_link_perf_detach(struct bpf_link *link)
10875 {
10876 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10877 int err = 0;
10878
10879 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10880 err = -errno;
10881
10882 if (perf_link->perf_event_fd != link->fd)
10883 close(perf_link->perf_event_fd);
10884 close(link->fd);
10885
10886 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10887 if (perf_link->legacy_probe_name) {
10888 if (perf_link->legacy_is_kprobe) {
10889 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10890 perf_link->legacy_is_retprobe);
10891 } else {
10892 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10893 perf_link->legacy_is_retprobe);
10894 }
10895 }
10896
10897 return err;
10898 }
10899
bpf_link_perf_dealloc(struct bpf_link * link)10900 static void bpf_link_perf_dealloc(struct bpf_link *link)
10901 {
10902 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10903
10904 free(perf_link->legacy_probe_name);
10905 free(perf_link);
10906 }
10907
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10908 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10909 const struct bpf_perf_event_opts *opts)
10910 {
10911 struct bpf_link_perf *link;
10912 int prog_fd, link_fd = -1, err;
10913 bool force_ioctl_attach;
10914
10915 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10916 return libbpf_err_ptr(-EINVAL);
10917
10918 if (pfd < 0) {
10919 pr_warn("prog '%s': invalid perf event FD %d\n",
10920 prog->name, pfd);
10921 return libbpf_err_ptr(-EINVAL);
10922 }
10923 prog_fd = bpf_program__fd(prog);
10924 if (prog_fd < 0) {
10925 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10926 prog->name);
10927 return libbpf_err_ptr(-EINVAL);
10928 }
10929
10930 link = calloc(1, sizeof(*link));
10931 if (!link)
10932 return libbpf_err_ptr(-ENOMEM);
10933 link->link.detach = &bpf_link_perf_detach;
10934 link->link.dealloc = &bpf_link_perf_dealloc;
10935 link->perf_event_fd = pfd;
10936
10937 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10938 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10939 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10940 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10941
10942 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10943 if (link_fd < 0) {
10944 err = -errno;
10945 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n",
10946 prog->name, pfd, errstr(err));
10947 goto err_out;
10948 }
10949 link->link.fd = link_fd;
10950 } else {
10951 if (OPTS_GET(opts, bpf_cookie, 0)) {
10952 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10953 err = -EOPNOTSUPP;
10954 goto err_out;
10955 }
10956
10957 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10958 err = -errno;
10959 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10960 prog->name, pfd, errstr(err));
10961 if (err == -EPROTO)
10962 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10963 prog->name, pfd);
10964 goto err_out;
10965 }
10966 link->link.fd = pfd;
10967 }
10968 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10969 err = -errno;
10970 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10971 prog->name, pfd, errstr(err));
10972 goto err_out;
10973 }
10974
10975 return &link->link;
10976 err_out:
10977 if (link_fd >= 0)
10978 close(link_fd);
10979 free(link);
10980 return libbpf_err_ptr(err);
10981 }
10982
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10983 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10984 {
10985 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10986 }
10987
10988 /*
10989 * this function is expected to parse integer in the range of [0, 2^31-1] from
10990 * given file using scanf format string fmt. If actual parsed value is
10991 * negative, the result might be indistinguishable from error
10992 */
parse_uint_from_file(const char * file,const char * fmt)10993 static int parse_uint_from_file(const char *file, const char *fmt)
10994 {
10995 int err, ret;
10996 FILE *f;
10997
10998 f = fopen(file, "re");
10999 if (!f) {
11000 err = -errno;
11001 pr_debug("failed to open '%s': %s\n", file, errstr(err));
11002 return err;
11003 }
11004 err = fscanf(f, fmt, &ret);
11005 if (err != 1) {
11006 err = err == EOF ? -EIO : -errno;
11007 pr_debug("failed to parse '%s': %s\n", file, errstr(err));
11008 fclose(f);
11009 return err;
11010 }
11011 fclose(f);
11012 return ret;
11013 }
11014
determine_kprobe_perf_type(void)11015 static int determine_kprobe_perf_type(void)
11016 {
11017 const char *file = "/sys/bus/event_source/devices/kprobe/type";
11018
11019 return parse_uint_from_file(file, "%d\n");
11020 }
11021
determine_uprobe_perf_type(void)11022 static int determine_uprobe_perf_type(void)
11023 {
11024 const char *file = "/sys/bus/event_source/devices/uprobe/type";
11025
11026 return parse_uint_from_file(file, "%d\n");
11027 }
11028
determine_kprobe_retprobe_bit(void)11029 static int determine_kprobe_retprobe_bit(void)
11030 {
11031 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
11032
11033 return parse_uint_from_file(file, "config:%d\n");
11034 }
11035
determine_uprobe_retprobe_bit(void)11036 static int determine_uprobe_retprobe_bit(void)
11037 {
11038 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
11039
11040 return parse_uint_from_file(file, "config:%d\n");
11041 }
11042
11043 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
11044 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
11045
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)11046 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
11047 uint64_t offset, int pid, size_t ref_ctr_off)
11048 {
11049 const size_t attr_sz = sizeof(struct perf_event_attr);
11050 struct perf_event_attr attr;
11051 int type, pfd;
11052
11053 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
11054 return -EINVAL;
11055
11056 memset(&attr, 0, attr_sz);
11057
11058 type = uprobe ? determine_uprobe_perf_type()
11059 : determine_kprobe_perf_type();
11060 if (type < 0) {
11061 pr_warn("failed to determine %s perf type: %s\n",
11062 uprobe ? "uprobe" : "kprobe",
11063 errstr(type));
11064 return type;
11065 }
11066 if (retprobe) {
11067 int bit = uprobe ? determine_uprobe_retprobe_bit()
11068 : determine_kprobe_retprobe_bit();
11069
11070 if (bit < 0) {
11071 pr_warn("failed to determine %s retprobe bit: %s\n",
11072 uprobe ? "uprobe" : "kprobe",
11073 errstr(bit));
11074 return bit;
11075 }
11076 attr.config |= 1 << bit;
11077 }
11078 attr.size = attr_sz;
11079 attr.type = type;
11080 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11081 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
11082 attr.config2 = offset; /* kprobe_addr or probe_offset */
11083
11084 /* pid filter is meaningful only for uprobes */
11085 pfd = syscall(__NR_perf_event_open, &attr,
11086 pid < 0 ? -1 : pid /* pid */,
11087 pid == -1 ? 0 : -1 /* cpu */,
11088 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11089 return pfd >= 0 ? pfd : -errno;
11090 }
11091
append_to_file(const char * file,const char * fmt,...)11092 static int append_to_file(const char *file, const char *fmt, ...)
11093 {
11094 int fd, n, err = 0;
11095 va_list ap;
11096 char buf[1024];
11097
11098 va_start(ap, fmt);
11099 n = vsnprintf(buf, sizeof(buf), fmt, ap);
11100 va_end(ap);
11101
11102 if (n < 0 || n >= sizeof(buf))
11103 return -EINVAL;
11104
11105 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
11106 if (fd < 0)
11107 return -errno;
11108
11109 if (write(fd, buf, n) < 0)
11110 err = -errno;
11111
11112 close(fd);
11113 return err;
11114 }
11115
11116 #define DEBUGFS "/sys/kernel/debug/tracing"
11117 #define TRACEFS "/sys/kernel/tracing"
11118
use_debugfs(void)11119 static bool use_debugfs(void)
11120 {
11121 static int has_debugfs = -1;
11122
11123 if (has_debugfs < 0)
11124 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11125
11126 return has_debugfs == 1;
11127 }
11128
tracefs_path(void)11129 static const char *tracefs_path(void)
11130 {
11131 return use_debugfs() ? DEBUGFS : TRACEFS;
11132 }
11133
tracefs_kprobe_events(void)11134 static const char *tracefs_kprobe_events(void)
11135 {
11136 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11137 }
11138
tracefs_uprobe_events(void)11139 static const char *tracefs_uprobe_events(void)
11140 {
11141 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11142 }
11143
tracefs_available_filter_functions(void)11144 static const char *tracefs_available_filter_functions(void)
11145 {
11146 return use_debugfs() ? DEBUGFS"/available_filter_functions"
11147 : TRACEFS"/available_filter_functions";
11148 }
11149
tracefs_available_filter_functions_addrs(void)11150 static const char *tracefs_available_filter_functions_addrs(void)
11151 {
11152 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11153 : TRACEFS"/available_filter_functions_addrs";
11154 }
11155
gen_probe_legacy_event_name(char * buf,size_t buf_sz,const char * name,size_t offset)11156 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz,
11157 const char *name, size_t offset)
11158 {
11159 static int index = 0;
11160 int i;
11161
11162 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(),
11163 __sync_fetch_and_add(&index, 1), name, offset);
11164
11165 /* sanitize name in the probe name */
11166 for (i = 0; buf[i]; i++) {
11167 if (!isalnum(buf[i]))
11168 buf[i] = '_';
11169 }
11170 }
11171
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)11172 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11173 const char *kfunc_name, size_t offset)
11174 {
11175 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11176 retprobe ? 'r' : 'p',
11177 retprobe ? "kretprobes" : "kprobes",
11178 probe_name, kfunc_name, offset);
11179 }
11180
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)11181 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11182 {
11183 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11184 retprobe ? "kretprobes" : "kprobes", probe_name);
11185 }
11186
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)11187 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11188 {
11189 char file[256];
11190
11191 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11192 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11193
11194 return parse_uint_from_file(file, "%d\n");
11195 }
11196
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)11197 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11198 const char *kfunc_name, size_t offset, int pid)
11199 {
11200 const size_t attr_sz = sizeof(struct perf_event_attr);
11201 struct perf_event_attr attr;
11202 int type, pfd, err;
11203
11204 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11205 if (err < 0) {
11206 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11207 kfunc_name, offset,
11208 errstr(err));
11209 return err;
11210 }
11211 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11212 if (type < 0) {
11213 err = type;
11214 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11215 kfunc_name, offset,
11216 errstr(err));
11217 goto err_clean_legacy;
11218 }
11219
11220 memset(&attr, 0, attr_sz);
11221 attr.size = attr_sz;
11222 attr.config = type;
11223 attr.type = PERF_TYPE_TRACEPOINT;
11224
11225 pfd = syscall(__NR_perf_event_open, &attr,
11226 pid < 0 ? -1 : pid, /* pid */
11227 pid == -1 ? 0 : -1, /* cpu */
11228 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11229 if (pfd < 0) {
11230 err = -errno;
11231 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11232 errstr(err));
11233 goto err_clean_legacy;
11234 }
11235 return pfd;
11236
11237 err_clean_legacy:
11238 /* Clear the newly added legacy kprobe_event */
11239 remove_kprobe_event_legacy(probe_name, retprobe);
11240 return err;
11241 }
11242
arch_specific_syscall_pfx(void)11243 static const char *arch_specific_syscall_pfx(void)
11244 {
11245 #if defined(__x86_64__)
11246 return "x64";
11247 #elif defined(__i386__)
11248 return "ia32";
11249 #elif defined(__s390x__)
11250 return "s390x";
11251 #elif defined(__s390__)
11252 return "s390";
11253 #elif defined(__arm__)
11254 return "arm";
11255 #elif defined(__aarch64__)
11256 return "arm64";
11257 #elif defined(__mips__)
11258 return "mips";
11259 #elif defined(__riscv)
11260 return "riscv";
11261 #elif defined(__powerpc__)
11262 return "powerpc";
11263 #elif defined(__powerpc64__)
11264 return "powerpc64";
11265 #else
11266 return NULL;
11267 #endif
11268 }
11269
probe_kern_syscall_wrapper(int token_fd)11270 int probe_kern_syscall_wrapper(int token_fd)
11271 {
11272 char syscall_name[64];
11273 const char *ksys_pfx;
11274
11275 ksys_pfx = arch_specific_syscall_pfx();
11276 if (!ksys_pfx)
11277 return 0;
11278
11279 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11280
11281 if (determine_kprobe_perf_type() >= 0) {
11282 int pfd;
11283
11284 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11285 if (pfd >= 0)
11286 close(pfd);
11287
11288 return pfd >= 0 ? 1 : 0;
11289 } else { /* legacy mode */
11290 char probe_name[MAX_EVENT_NAME_LEN];
11291
11292 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11293 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11294 return 0;
11295
11296 (void)remove_kprobe_event_legacy(probe_name, false);
11297 return 1;
11298 }
11299 }
11300
11301 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)11302 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11303 const char *func_name,
11304 const struct bpf_kprobe_opts *opts)
11305 {
11306 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11307 enum probe_attach_mode attach_mode;
11308 char *legacy_probe = NULL;
11309 struct bpf_link *link;
11310 size_t offset;
11311 bool retprobe, legacy;
11312 int pfd, err;
11313
11314 if (!OPTS_VALID(opts, bpf_kprobe_opts))
11315 return libbpf_err_ptr(-EINVAL);
11316
11317 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11318 retprobe = OPTS_GET(opts, retprobe, false);
11319 offset = OPTS_GET(opts, offset, 0);
11320 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11321
11322 legacy = determine_kprobe_perf_type() < 0;
11323 switch (attach_mode) {
11324 case PROBE_ATTACH_MODE_LEGACY:
11325 legacy = true;
11326 pe_opts.force_ioctl_attach = true;
11327 break;
11328 case PROBE_ATTACH_MODE_PERF:
11329 if (legacy)
11330 return libbpf_err_ptr(-ENOTSUP);
11331 pe_opts.force_ioctl_attach = true;
11332 break;
11333 case PROBE_ATTACH_MODE_LINK:
11334 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11335 return libbpf_err_ptr(-ENOTSUP);
11336 break;
11337 case PROBE_ATTACH_MODE_DEFAULT:
11338 break;
11339 default:
11340 return libbpf_err_ptr(-EINVAL);
11341 }
11342
11343 if (!legacy) {
11344 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11345 func_name, offset,
11346 -1 /* pid */, 0 /* ref_ctr_off */);
11347 } else {
11348 char probe_name[MAX_EVENT_NAME_LEN];
11349
11350 gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
11351 func_name, offset);
11352
11353 legacy_probe = strdup(probe_name);
11354 if (!legacy_probe)
11355 return libbpf_err_ptr(-ENOMEM);
11356
11357 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11358 offset, -1 /* pid */);
11359 }
11360 if (pfd < 0) {
11361 err = -errno;
11362 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11363 prog->name, retprobe ? "kretprobe" : "kprobe",
11364 func_name, offset,
11365 errstr(err));
11366 goto err_out;
11367 }
11368 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11369 err = libbpf_get_error(link);
11370 if (err) {
11371 close(pfd);
11372 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11373 prog->name, retprobe ? "kretprobe" : "kprobe",
11374 func_name, offset,
11375 errstr(err));
11376 goto err_clean_legacy;
11377 }
11378 if (legacy) {
11379 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11380
11381 perf_link->legacy_probe_name = legacy_probe;
11382 perf_link->legacy_is_kprobe = true;
11383 perf_link->legacy_is_retprobe = retprobe;
11384 }
11385
11386 return link;
11387
11388 err_clean_legacy:
11389 if (legacy)
11390 remove_kprobe_event_legacy(legacy_probe, retprobe);
11391 err_out:
11392 free(legacy_probe);
11393 return libbpf_err_ptr(err);
11394 }
11395
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)11396 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11397 bool retprobe,
11398 const char *func_name)
11399 {
11400 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11401 .retprobe = retprobe,
11402 );
11403
11404 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11405 }
11406
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)11407 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11408 const char *syscall_name,
11409 const struct bpf_ksyscall_opts *opts)
11410 {
11411 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11412 char func_name[128];
11413
11414 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11415 return libbpf_err_ptr(-EINVAL);
11416
11417 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11418 /* arch_specific_syscall_pfx() should never return NULL here
11419 * because it is guarded by kernel_supports(). However, since
11420 * compiler does not know that we have an explicit conditional
11421 * as well.
11422 */
11423 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11424 arch_specific_syscall_pfx() ? : "", syscall_name);
11425 } else {
11426 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11427 }
11428
11429 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11430 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11431
11432 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11433 }
11434
11435 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)11436 bool glob_match(const char *str, const char *pat)
11437 {
11438 while (*str && *pat && *pat != '*') {
11439 if (*pat == '?') { /* Matches any single character */
11440 str++;
11441 pat++;
11442 continue;
11443 }
11444 if (*str != *pat)
11445 return false;
11446 str++;
11447 pat++;
11448 }
11449 /* Check wild card */
11450 if (*pat == '*') {
11451 while (*pat == '*')
11452 pat++;
11453 if (!*pat) /* Tail wild card matches all */
11454 return true;
11455 while (*str)
11456 if (glob_match(str++, pat))
11457 return true;
11458 }
11459 return !*str && !*pat;
11460 }
11461
11462 struct kprobe_multi_resolve {
11463 const char *pattern;
11464 unsigned long *addrs;
11465 size_t cap;
11466 size_t cnt;
11467 };
11468
11469 struct avail_kallsyms_data {
11470 char **syms;
11471 size_t cnt;
11472 struct kprobe_multi_resolve *res;
11473 };
11474
avail_func_cmp(const void * a,const void * b)11475 static int avail_func_cmp(const void *a, const void *b)
11476 {
11477 return strcmp(*(const char **)a, *(const char **)b);
11478 }
11479
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)11480 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11481 const char *sym_name, void *ctx)
11482 {
11483 struct avail_kallsyms_data *data = ctx;
11484 struct kprobe_multi_resolve *res = data->res;
11485 int err;
11486
11487 if (!glob_match(sym_name, res->pattern))
11488 return 0;
11489
11490 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) {
11491 /* Some versions of kernel strip out .llvm.<hash> suffix from
11492 * function names reported in available_filter_functions, but
11493 * don't do so for kallsyms. While this is clearly a kernel
11494 * bug (fixed by [0]) we try to accommodate that in libbpf to
11495 * make multi-kprobe usability a bit better: if no match is
11496 * found, we will strip .llvm. suffix and try one more time.
11497 *
11498 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG")
11499 */
11500 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx;
11501
11502 if (!(sym_sfx = strstr(sym_name, ".llvm.")))
11503 return 0;
11504
11505 /* psym_trim vs sym_trim dance is done to avoid pointer vs array
11506 * coercion differences and get proper `const char **` pointer
11507 * which avail_func_cmp() expects
11508 */
11509 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name);
11510 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11511 return 0;
11512 }
11513
11514 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11515 if (err)
11516 return err;
11517
11518 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11519 return 0;
11520 }
11521
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)11522 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11523 {
11524 const char *available_functions_file = tracefs_available_filter_functions();
11525 struct avail_kallsyms_data data;
11526 char sym_name[500];
11527 FILE *f;
11528 int err = 0, ret, i;
11529 char **syms = NULL;
11530 size_t cap = 0, cnt = 0;
11531
11532 f = fopen(available_functions_file, "re");
11533 if (!f) {
11534 err = -errno;
11535 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err));
11536 return err;
11537 }
11538
11539 while (true) {
11540 char *name;
11541
11542 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11543 if (ret == EOF && feof(f))
11544 break;
11545
11546 if (ret != 1) {
11547 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11548 err = -EINVAL;
11549 goto cleanup;
11550 }
11551
11552 if (!glob_match(sym_name, res->pattern))
11553 continue;
11554
11555 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11556 if (err)
11557 goto cleanup;
11558
11559 name = strdup(sym_name);
11560 if (!name) {
11561 err = -errno;
11562 goto cleanup;
11563 }
11564
11565 syms[cnt++] = name;
11566 }
11567
11568 /* no entries found, bail out */
11569 if (cnt == 0) {
11570 err = -ENOENT;
11571 goto cleanup;
11572 }
11573
11574 /* sort available functions */
11575 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11576
11577 data.syms = syms;
11578 data.res = res;
11579 data.cnt = cnt;
11580 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11581
11582 if (res->cnt == 0)
11583 err = -ENOENT;
11584
11585 cleanup:
11586 for (i = 0; i < cnt; i++)
11587 free((char *)syms[i]);
11588 free(syms);
11589
11590 fclose(f);
11591 return err;
11592 }
11593
has_available_filter_functions_addrs(void)11594 static bool has_available_filter_functions_addrs(void)
11595 {
11596 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11597 }
11598
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)11599 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11600 {
11601 const char *available_path = tracefs_available_filter_functions_addrs();
11602 char sym_name[500];
11603 FILE *f;
11604 int ret, err = 0;
11605 unsigned long long sym_addr;
11606
11607 f = fopen(available_path, "re");
11608 if (!f) {
11609 err = -errno;
11610 pr_warn("failed to open %s: %s\n", available_path, errstr(err));
11611 return err;
11612 }
11613
11614 while (true) {
11615 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11616 if (ret == EOF && feof(f))
11617 break;
11618
11619 if (ret != 2) {
11620 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11621 ret);
11622 err = -EINVAL;
11623 goto cleanup;
11624 }
11625
11626 if (!glob_match(sym_name, res->pattern))
11627 continue;
11628
11629 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11630 sizeof(*res->addrs), res->cnt + 1);
11631 if (err)
11632 goto cleanup;
11633
11634 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11635 }
11636
11637 if (res->cnt == 0)
11638 err = -ENOENT;
11639
11640 cleanup:
11641 fclose(f);
11642 return err;
11643 }
11644
11645 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)11646 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11647 const char *pattern,
11648 const struct bpf_kprobe_multi_opts *opts)
11649 {
11650 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11651 struct kprobe_multi_resolve res = {
11652 .pattern = pattern,
11653 };
11654 enum bpf_attach_type attach_type;
11655 struct bpf_link *link = NULL;
11656 const unsigned long *addrs;
11657 int err, link_fd, prog_fd;
11658 bool retprobe, session, unique_match;
11659 const __u64 *cookies;
11660 const char **syms;
11661 size_t cnt;
11662
11663 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11664 return libbpf_err_ptr(-EINVAL);
11665
11666 prog_fd = bpf_program__fd(prog);
11667 if (prog_fd < 0) {
11668 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11669 prog->name);
11670 return libbpf_err_ptr(-EINVAL);
11671 }
11672
11673 syms = OPTS_GET(opts, syms, false);
11674 addrs = OPTS_GET(opts, addrs, false);
11675 cnt = OPTS_GET(opts, cnt, false);
11676 cookies = OPTS_GET(opts, cookies, false);
11677 unique_match = OPTS_GET(opts, unique_match, false);
11678
11679 if (!pattern && !addrs && !syms)
11680 return libbpf_err_ptr(-EINVAL);
11681 if (pattern && (addrs || syms || cookies || cnt))
11682 return libbpf_err_ptr(-EINVAL);
11683 if (!pattern && !cnt)
11684 return libbpf_err_ptr(-EINVAL);
11685 if (!pattern && unique_match)
11686 return libbpf_err_ptr(-EINVAL);
11687 if (addrs && syms)
11688 return libbpf_err_ptr(-EINVAL);
11689
11690 if (pattern) {
11691 if (has_available_filter_functions_addrs())
11692 err = libbpf_available_kprobes_parse(&res);
11693 else
11694 err = libbpf_available_kallsyms_parse(&res);
11695 if (err)
11696 goto error;
11697
11698 if (unique_match && res.cnt != 1) {
11699 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n",
11700 prog->name, pattern, res.cnt);
11701 err = -EINVAL;
11702 goto error;
11703 }
11704
11705 addrs = res.addrs;
11706 cnt = res.cnt;
11707 }
11708
11709 retprobe = OPTS_GET(opts, retprobe, false);
11710 session = OPTS_GET(opts, session, false);
11711
11712 if (retprobe && session)
11713 return libbpf_err_ptr(-EINVAL);
11714
11715 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11716
11717 lopts.kprobe_multi.syms = syms;
11718 lopts.kprobe_multi.addrs = addrs;
11719 lopts.kprobe_multi.cookies = cookies;
11720 lopts.kprobe_multi.cnt = cnt;
11721 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11722
11723 link = calloc(1, sizeof(*link));
11724 if (!link) {
11725 err = -ENOMEM;
11726 goto error;
11727 }
11728 link->detach = &bpf_link__detach_fd;
11729
11730 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11731 if (link_fd < 0) {
11732 err = -errno;
11733 pr_warn("prog '%s': failed to attach: %s\n",
11734 prog->name, errstr(err));
11735 goto error;
11736 }
11737 link->fd = link_fd;
11738 free(res.addrs);
11739 return link;
11740
11741 error:
11742 free(link);
11743 free(res.addrs);
11744 return libbpf_err_ptr(err);
11745 }
11746
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11747 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11748 {
11749 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11750 unsigned long offset = 0;
11751 const char *func_name;
11752 char *func;
11753 int n;
11754
11755 *link = NULL;
11756
11757 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11758 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11759 return 0;
11760
11761 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11762 if (opts.retprobe)
11763 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11764 else
11765 func_name = prog->sec_name + sizeof("kprobe/") - 1;
11766
11767 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11768 if (n < 1) {
11769 pr_warn("kprobe name is invalid: %s\n", func_name);
11770 return -EINVAL;
11771 }
11772 if (opts.retprobe && offset != 0) {
11773 free(func);
11774 pr_warn("kretprobes do not support offset specification\n");
11775 return -EINVAL;
11776 }
11777
11778 opts.offset = offset;
11779 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11780 free(func);
11781 return libbpf_get_error(*link);
11782 }
11783
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11784 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11785 {
11786 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11787 const char *syscall_name;
11788
11789 *link = NULL;
11790
11791 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11792 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11793 return 0;
11794
11795 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11796 if (opts.retprobe)
11797 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11798 else
11799 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11800
11801 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11802 return *link ? 0 : -errno;
11803 }
11804
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11805 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11806 {
11807 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11808 const char *spec;
11809 char *pattern;
11810 int n;
11811
11812 *link = NULL;
11813
11814 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11815 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11816 strcmp(prog->sec_name, "kretprobe.multi") == 0)
11817 return 0;
11818
11819 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11820 if (opts.retprobe)
11821 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11822 else
11823 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11824
11825 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11826 if (n < 1) {
11827 pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11828 return -EINVAL;
11829 }
11830
11831 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11832 free(pattern);
11833 return libbpf_get_error(*link);
11834 }
11835
attach_kprobe_session(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11836 static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11837 struct bpf_link **link)
11838 {
11839 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11840 const char *spec;
11841 char *pattern;
11842 int n;
11843
11844 *link = NULL;
11845
11846 /* no auto-attach for SEC("kprobe.session") */
11847 if (strcmp(prog->sec_name, "kprobe.session") == 0)
11848 return 0;
11849
11850 spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11851 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11852 if (n < 1) {
11853 pr_warn("kprobe session pattern is invalid: %s\n", spec);
11854 return -EINVAL;
11855 }
11856
11857 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11858 free(pattern);
11859 return *link ? 0 : -errno;
11860 }
11861
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11862 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11863 {
11864 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11865 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11866 int n, ret = -EINVAL;
11867
11868 *link = NULL;
11869
11870 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11871 &probe_type, &binary_path, &func_name);
11872 switch (n) {
11873 case 1:
11874 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11875 ret = 0;
11876 break;
11877 case 3:
11878 opts.session = str_has_pfx(probe_type, "uprobe.session");
11879 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
11880
11881 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11882 ret = libbpf_get_error(*link);
11883 break;
11884 default:
11885 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11886 prog->sec_name);
11887 break;
11888 }
11889 free(probe_type);
11890 free(binary_path);
11891 free(func_name);
11892 return ret;
11893 }
11894
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11895 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11896 const char *binary_path, size_t offset)
11897 {
11898 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11899 retprobe ? 'r' : 'p',
11900 retprobe ? "uretprobes" : "uprobes",
11901 probe_name, binary_path, offset);
11902 }
11903
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11904 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11905 {
11906 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11907 retprobe ? "uretprobes" : "uprobes", probe_name);
11908 }
11909
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11910 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11911 {
11912 char file[512];
11913
11914 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11915 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11916
11917 return parse_uint_from_file(file, "%d\n");
11918 }
11919
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11920 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11921 const char *binary_path, size_t offset, int pid)
11922 {
11923 const size_t attr_sz = sizeof(struct perf_event_attr);
11924 struct perf_event_attr attr;
11925 int type, pfd, err;
11926
11927 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11928 if (err < 0) {
11929 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n",
11930 binary_path, (size_t)offset, errstr(err));
11931 return err;
11932 }
11933 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11934 if (type < 0) {
11935 err = type;
11936 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n",
11937 binary_path, offset, errstr(err));
11938 goto err_clean_legacy;
11939 }
11940
11941 memset(&attr, 0, attr_sz);
11942 attr.size = attr_sz;
11943 attr.config = type;
11944 attr.type = PERF_TYPE_TRACEPOINT;
11945
11946 pfd = syscall(__NR_perf_event_open, &attr,
11947 pid < 0 ? -1 : pid, /* pid */
11948 pid == -1 ? 0 : -1, /* cpu */
11949 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11950 if (pfd < 0) {
11951 err = -errno;
11952 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err));
11953 goto err_clean_legacy;
11954 }
11955 return pfd;
11956
11957 err_clean_legacy:
11958 /* Clear the newly added legacy uprobe_event */
11959 remove_uprobe_event_legacy(probe_name, retprobe);
11960 return err;
11961 }
11962
11963 /* Find offset of function name in archive specified by path. Currently
11964 * supported are .zip files that do not compress their contents, as used on
11965 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11966 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11967 * library functions.
11968 *
11969 * An overview of the APK format specifically provided here:
11970 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11971 */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11972 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11973 const char *func_name)
11974 {
11975 struct zip_archive *archive;
11976 struct zip_entry entry;
11977 long ret;
11978 Elf *elf;
11979
11980 archive = zip_archive_open(archive_path);
11981 if (IS_ERR(archive)) {
11982 ret = PTR_ERR(archive);
11983 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11984 return ret;
11985 }
11986
11987 ret = zip_archive_find_entry(archive, file_name, &entry);
11988 if (ret) {
11989 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11990 archive_path, ret);
11991 goto out;
11992 }
11993 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11994 (unsigned long)entry.data_offset);
11995
11996 if (entry.compression) {
11997 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11998 archive_path);
11999 ret = -LIBBPF_ERRNO__FORMAT;
12000 goto out;
12001 }
12002
12003 elf = elf_memory((void *)entry.data, entry.data_length);
12004 if (!elf) {
12005 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
12006 elf_errmsg(-1));
12007 ret = -LIBBPF_ERRNO__LIBELF;
12008 goto out;
12009 }
12010
12011 ret = elf_find_func_offset(elf, file_name, func_name);
12012 if (ret > 0) {
12013 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
12014 func_name, file_name, archive_path, entry.data_offset, ret,
12015 ret + entry.data_offset);
12016 ret += entry.data_offset;
12017 }
12018 elf_end(elf);
12019
12020 out:
12021 zip_archive_close(archive);
12022 return ret;
12023 }
12024
arch_specific_lib_paths(void)12025 static const char *arch_specific_lib_paths(void)
12026 {
12027 /*
12028 * Based on https://packages.debian.org/sid/libc6.
12029 *
12030 * Assume that the traced program is built for the same architecture
12031 * as libbpf, which should cover the vast majority of cases.
12032 */
12033 #if defined(__x86_64__)
12034 return "/lib/x86_64-linux-gnu";
12035 #elif defined(__i386__)
12036 return "/lib/i386-linux-gnu";
12037 #elif defined(__s390x__)
12038 return "/lib/s390x-linux-gnu";
12039 #elif defined(__s390__)
12040 return "/lib/s390-linux-gnu";
12041 #elif defined(__arm__) && defined(__SOFTFP__)
12042 return "/lib/arm-linux-gnueabi";
12043 #elif defined(__arm__) && !defined(__SOFTFP__)
12044 return "/lib/arm-linux-gnueabihf";
12045 #elif defined(__aarch64__)
12046 return "/lib/aarch64-linux-gnu";
12047 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
12048 return "/lib/mips64el-linux-gnuabi64";
12049 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
12050 return "/lib/mipsel-linux-gnu";
12051 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
12052 return "/lib/powerpc64le-linux-gnu";
12053 #elif defined(__sparc__) && defined(__arch64__)
12054 return "/lib/sparc64-linux-gnu";
12055 #elif defined(__riscv) && __riscv_xlen == 64
12056 return "/lib/riscv64-linux-gnu";
12057 #else
12058 return NULL;
12059 #endif
12060 }
12061
12062 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)12063 static int resolve_full_path(const char *file, char *result, size_t result_sz)
12064 {
12065 const char *search_paths[3] = {};
12066 int i, perm;
12067
12068 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
12069 search_paths[0] = getenv("LD_LIBRARY_PATH");
12070 search_paths[1] = "/usr/lib64:/usr/lib";
12071 search_paths[2] = arch_specific_lib_paths();
12072 perm = R_OK;
12073 } else {
12074 search_paths[0] = getenv("PATH");
12075 search_paths[1] = "/usr/bin:/usr/sbin";
12076 perm = R_OK | X_OK;
12077 }
12078
12079 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
12080 const char *s;
12081
12082 if (!search_paths[i])
12083 continue;
12084 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
12085 char *next_path;
12086 int seg_len;
12087
12088 if (s[0] == ':')
12089 s++;
12090 next_path = strchr(s, ':');
12091 seg_len = next_path ? next_path - s : strlen(s);
12092 if (!seg_len)
12093 continue;
12094 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
12095 /* ensure it has required permissions */
12096 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
12097 continue;
12098 pr_debug("resolved '%s' to '%s'\n", file, result);
12099 return 0;
12100 }
12101 }
12102 return -ENOENT;
12103 }
12104
12105 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)12106 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
12107 pid_t pid,
12108 const char *path,
12109 const char *func_pattern,
12110 const struct bpf_uprobe_multi_opts *opts)
12111 {
12112 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
12113 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12114 unsigned long *resolved_offsets = NULL;
12115 enum bpf_attach_type attach_type;
12116 int err = 0, link_fd, prog_fd;
12117 struct bpf_link *link = NULL;
12118 char full_path[PATH_MAX];
12119 bool retprobe, session;
12120 const __u64 *cookies;
12121 const char **syms;
12122 size_t cnt;
12123
12124 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
12125 return libbpf_err_ptr(-EINVAL);
12126
12127 prog_fd = bpf_program__fd(prog);
12128 if (prog_fd < 0) {
12129 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12130 prog->name);
12131 return libbpf_err_ptr(-EINVAL);
12132 }
12133
12134 syms = OPTS_GET(opts, syms, NULL);
12135 offsets = OPTS_GET(opts, offsets, NULL);
12136 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12137 cookies = OPTS_GET(opts, cookies, NULL);
12138 cnt = OPTS_GET(opts, cnt, 0);
12139 retprobe = OPTS_GET(opts, retprobe, false);
12140 session = OPTS_GET(opts, session, false);
12141
12142 /*
12143 * User can specify 2 mutually exclusive set of inputs:
12144 *
12145 * 1) use only path/func_pattern/pid arguments
12146 *
12147 * 2) use path/pid with allowed combinations of:
12148 * syms/offsets/ref_ctr_offsets/cookies/cnt
12149 *
12150 * - syms and offsets are mutually exclusive
12151 * - ref_ctr_offsets and cookies are optional
12152 *
12153 * Any other usage results in error.
12154 */
12155
12156 if (!path)
12157 return libbpf_err_ptr(-EINVAL);
12158 if (!func_pattern && cnt == 0)
12159 return libbpf_err_ptr(-EINVAL);
12160
12161 if (func_pattern) {
12162 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12163 return libbpf_err_ptr(-EINVAL);
12164 } else {
12165 if (!!syms == !!offsets)
12166 return libbpf_err_ptr(-EINVAL);
12167 }
12168
12169 if (retprobe && session)
12170 return libbpf_err_ptr(-EINVAL);
12171
12172 if (func_pattern) {
12173 if (!strchr(path, '/')) {
12174 err = resolve_full_path(path, full_path, sizeof(full_path));
12175 if (err) {
12176 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12177 prog->name, path, errstr(err));
12178 return libbpf_err_ptr(err);
12179 }
12180 path = full_path;
12181 }
12182
12183 err = elf_resolve_pattern_offsets(path, func_pattern,
12184 &resolved_offsets, &cnt);
12185 if (err < 0)
12186 return libbpf_err_ptr(err);
12187 offsets = resolved_offsets;
12188 } else if (syms) {
12189 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12190 if (err < 0)
12191 return libbpf_err_ptr(err);
12192 offsets = resolved_offsets;
12193 }
12194
12195 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI;
12196
12197 lopts.uprobe_multi.path = path;
12198 lopts.uprobe_multi.offsets = offsets;
12199 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12200 lopts.uprobe_multi.cookies = cookies;
12201 lopts.uprobe_multi.cnt = cnt;
12202 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0;
12203
12204 if (pid == 0)
12205 pid = getpid();
12206 if (pid > 0)
12207 lopts.uprobe_multi.pid = pid;
12208
12209 link = calloc(1, sizeof(*link));
12210 if (!link) {
12211 err = -ENOMEM;
12212 goto error;
12213 }
12214 link->detach = &bpf_link__detach_fd;
12215
12216 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12217 if (link_fd < 0) {
12218 err = -errno;
12219 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12220 prog->name, errstr(err));
12221 goto error;
12222 }
12223 link->fd = link_fd;
12224 free(resolved_offsets);
12225 return link;
12226
12227 error:
12228 free(resolved_offsets);
12229 free(link);
12230 return libbpf_err_ptr(err);
12231 }
12232
12233 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)12234 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12235 const char *binary_path, size_t func_offset,
12236 const struct bpf_uprobe_opts *opts)
12237 {
12238 const char *archive_path = NULL, *archive_sep = NULL;
12239 char *legacy_probe = NULL;
12240 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12241 enum probe_attach_mode attach_mode;
12242 char full_path[PATH_MAX];
12243 struct bpf_link *link;
12244 size_t ref_ctr_off;
12245 int pfd, err;
12246 bool retprobe, legacy;
12247 const char *func_name;
12248
12249 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12250 return libbpf_err_ptr(-EINVAL);
12251
12252 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12253 retprobe = OPTS_GET(opts, retprobe, false);
12254 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12255 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12256
12257 if (!binary_path)
12258 return libbpf_err_ptr(-EINVAL);
12259
12260 /* Check if "binary_path" refers to an archive. */
12261 archive_sep = strstr(binary_path, "!/");
12262 if (archive_sep) {
12263 full_path[0] = '\0';
12264 libbpf_strlcpy(full_path, binary_path,
12265 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12266 archive_path = full_path;
12267 binary_path = archive_sep + 2;
12268 } else if (!strchr(binary_path, '/')) {
12269 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12270 if (err) {
12271 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12272 prog->name, binary_path, errstr(err));
12273 return libbpf_err_ptr(err);
12274 }
12275 binary_path = full_path;
12276 }
12277 func_name = OPTS_GET(opts, func_name, NULL);
12278 if (func_name) {
12279 long sym_off;
12280
12281 if (archive_path) {
12282 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12283 func_name);
12284 binary_path = archive_path;
12285 } else {
12286 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12287 }
12288 if (sym_off < 0)
12289 return libbpf_err_ptr(sym_off);
12290 func_offset += sym_off;
12291 }
12292
12293 legacy = determine_uprobe_perf_type() < 0;
12294 switch (attach_mode) {
12295 case PROBE_ATTACH_MODE_LEGACY:
12296 legacy = true;
12297 pe_opts.force_ioctl_attach = true;
12298 break;
12299 case PROBE_ATTACH_MODE_PERF:
12300 if (legacy)
12301 return libbpf_err_ptr(-ENOTSUP);
12302 pe_opts.force_ioctl_attach = true;
12303 break;
12304 case PROBE_ATTACH_MODE_LINK:
12305 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12306 return libbpf_err_ptr(-ENOTSUP);
12307 break;
12308 case PROBE_ATTACH_MODE_DEFAULT:
12309 break;
12310 default:
12311 return libbpf_err_ptr(-EINVAL);
12312 }
12313
12314 if (!legacy) {
12315 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12316 func_offset, pid, ref_ctr_off);
12317 } else {
12318 char probe_name[MAX_EVENT_NAME_LEN];
12319
12320 if (ref_ctr_off)
12321 return libbpf_err_ptr(-EINVAL);
12322
12323 gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
12324 strrchr(binary_path, '/') ? : binary_path,
12325 func_offset);
12326
12327 legacy_probe = strdup(probe_name);
12328 if (!legacy_probe)
12329 return libbpf_err_ptr(-ENOMEM);
12330
12331 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12332 binary_path, func_offset, pid);
12333 }
12334 if (pfd < 0) {
12335 err = -errno;
12336 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12337 prog->name, retprobe ? "uretprobe" : "uprobe",
12338 binary_path, func_offset,
12339 errstr(err));
12340 goto err_out;
12341 }
12342
12343 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12344 err = libbpf_get_error(link);
12345 if (err) {
12346 close(pfd);
12347 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12348 prog->name, retprobe ? "uretprobe" : "uprobe",
12349 binary_path, func_offset,
12350 errstr(err));
12351 goto err_clean_legacy;
12352 }
12353 if (legacy) {
12354 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12355
12356 perf_link->legacy_probe_name = legacy_probe;
12357 perf_link->legacy_is_kprobe = false;
12358 perf_link->legacy_is_retprobe = retprobe;
12359 }
12360 return link;
12361
12362 err_clean_legacy:
12363 if (legacy)
12364 remove_uprobe_event_legacy(legacy_probe, retprobe);
12365 err_out:
12366 free(legacy_probe);
12367 return libbpf_err_ptr(err);
12368 }
12369
12370 /* Format of u[ret]probe section definition supporting auto-attach:
12371 * u[ret]probe/binary:function[+offset]
12372 *
12373 * binary can be an absolute/relative path or a filename; the latter is resolved to a
12374 * full binary path via bpf_program__attach_uprobe_opts.
12375 *
12376 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12377 * specified (and auto-attach is not possible) or the above format is specified for
12378 * auto-attach.
12379 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12380 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12381 {
12382 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12383 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12384 int n, c, ret = -EINVAL;
12385 long offset = 0;
12386
12387 *link = NULL;
12388
12389 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12390 &probe_type, &binary_path, &func_name);
12391 switch (n) {
12392 case 1:
12393 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12394 ret = 0;
12395 break;
12396 case 2:
12397 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12398 prog->name, prog->sec_name);
12399 break;
12400 case 3:
12401 /* check if user specifies `+offset`, if yes, this should be
12402 * the last part of the string, make sure sscanf read to EOL
12403 */
12404 func_off = strrchr(func_name, '+');
12405 if (func_off) {
12406 n = sscanf(func_off, "+%li%n", &offset, &c);
12407 if (n == 1 && *(func_off + c) == '\0')
12408 func_off[0] = '\0';
12409 else
12410 offset = 0;
12411 }
12412 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12413 strcmp(probe_type, "uretprobe.s") == 0;
12414 if (opts.retprobe && offset != 0) {
12415 pr_warn("prog '%s': uretprobes do not support offset specification\n",
12416 prog->name);
12417 break;
12418 }
12419 opts.func_name = func_name;
12420 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12421 ret = libbpf_get_error(*link);
12422 break;
12423 default:
12424 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12425 prog->sec_name);
12426 break;
12427 }
12428 free(probe_type);
12429 free(binary_path);
12430 free(func_name);
12431
12432 return ret;
12433 }
12434
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)12435 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12436 bool retprobe, pid_t pid,
12437 const char *binary_path,
12438 size_t func_offset)
12439 {
12440 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12441
12442 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12443 }
12444
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)12445 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12446 pid_t pid, const char *binary_path,
12447 const char *usdt_provider, const char *usdt_name,
12448 const struct bpf_usdt_opts *opts)
12449 {
12450 char resolved_path[512];
12451 struct bpf_object *obj = prog->obj;
12452 struct bpf_link *link;
12453 __u64 usdt_cookie;
12454 int err;
12455
12456 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12457 return libbpf_err_ptr(-EINVAL);
12458
12459 if (bpf_program__fd(prog) < 0) {
12460 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12461 prog->name);
12462 return libbpf_err_ptr(-EINVAL);
12463 }
12464
12465 if (!binary_path)
12466 return libbpf_err_ptr(-EINVAL);
12467
12468 if (!strchr(binary_path, '/')) {
12469 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12470 if (err) {
12471 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12472 prog->name, binary_path, errstr(err));
12473 return libbpf_err_ptr(err);
12474 }
12475 binary_path = resolved_path;
12476 }
12477
12478 /* USDT manager is instantiated lazily on first USDT attach. It will
12479 * be destroyed together with BPF object in bpf_object__close().
12480 */
12481 if (IS_ERR(obj->usdt_man))
12482 return libbpf_ptr(obj->usdt_man);
12483 if (!obj->usdt_man) {
12484 obj->usdt_man = usdt_manager_new(obj);
12485 if (IS_ERR(obj->usdt_man))
12486 return libbpf_ptr(obj->usdt_man);
12487 }
12488
12489 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12490 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12491 usdt_provider, usdt_name, usdt_cookie);
12492 err = libbpf_get_error(link);
12493 if (err)
12494 return libbpf_err_ptr(err);
12495 return link;
12496 }
12497
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12498 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12499 {
12500 char *path = NULL, *provider = NULL, *name = NULL;
12501 const char *sec_name;
12502 int n, err;
12503
12504 sec_name = bpf_program__section_name(prog);
12505 if (strcmp(sec_name, "usdt") == 0) {
12506 /* no auto-attach for just SEC("usdt") */
12507 *link = NULL;
12508 return 0;
12509 }
12510
12511 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12512 if (n != 3) {
12513 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12514 sec_name);
12515 err = -EINVAL;
12516 } else {
12517 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12518 provider, name, NULL);
12519 err = libbpf_get_error(*link);
12520 }
12521 free(path);
12522 free(provider);
12523 free(name);
12524 return err;
12525 }
12526
determine_tracepoint_id(const char * tp_category,const char * tp_name)12527 static int determine_tracepoint_id(const char *tp_category,
12528 const char *tp_name)
12529 {
12530 char file[PATH_MAX];
12531 int ret;
12532
12533 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12534 tracefs_path(), tp_category, tp_name);
12535 if (ret < 0)
12536 return -errno;
12537 if (ret >= sizeof(file)) {
12538 pr_debug("tracepoint %s/%s path is too long\n",
12539 tp_category, tp_name);
12540 return -E2BIG;
12541 }
12542 return parse_uint_from_file(file, "%d\n");
12543 }
12544
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)12545 static int perf_event_open_tracepoint(const char *tp_category,
12546 const char *tp_name)
12547 {
12548 const size_t attr_sz = sizeof(struct perf_event_attr);
12549 struct perf_event_attr attr;
12550 int tp_id, pfd, err;
12551
12552 tp_id = determine_tracepoint_id(tp_category, tp_name);
12553 if (tp_id < 0) {
12554 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12555 tp_category, tp_name,
12556 errstr(tp_id));
12557 return tp_id;
12558 }
12559
12560 memset(&attr, 0, attr_sz);
12561 attr.type = PERF_TYPE_TRACEPOINT;
12562 attr.size = attr_sz;
12563 attr.config = tp_id;
12564
12565 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12566 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12567 if (pfd < 0) {
12568 err = -errno;
12569 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12570 tp_category, tp_name,
12571 errstr(err));
12572 return err;
12573 }
12574 return pfd;
12575 }
12576
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)12577 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12578 const char *tp_category,
12579 const char *tp_name,
12580 const struct bpf_tracepoint_opts *opts)
12581 {
12582 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12583 struct bpf_link *link;
12584 int pfd, err;
12585
12586 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12587 return libbpf_err_ptr(-EINVAL);
12588
12589 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12590
12591 pfd = perf_event_open_tracepoint(tp_category, tp_name);
12592 if (pfd < 0) {
12593 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12594 prog->name, tp_category, tp_name,
12595 errstr(pfd));
12596 return libbpf_err_ptr(pfd);
12597 }
12598 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12599 err = libbpf_get_error(link);
12600 if (err) {
12601 close(pfd);
12602 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12603 prog->name, tp_category, tp_name,
12604 errstr(err));
12605 return libbpf_err_ptr(err);
12606 }
12607 return link;
12608 }
12609
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)12610 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12611 const char *tp_category,
12612 const char *tp_name)
12613 {
12614 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12615 }
12616
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12617 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12618 {
12619 char *sec_name, *tp_cat, *tp_name;
12620
12621 *link = NULL;
12622
12623 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12624 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12625 return 0;
12626
12627 sec_name = strdup(prog->sec_name);
12628 if (!sec_name)
12629 return -ENOMEM;
12630
12631 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12632 if (str_has_pfx(prog->sec_name, "tp/"))
12633 tp_cat = sec_name + sizeof("tp/") - 1;
12634 else
12635 tp_cat = sec_name + sizeof("tracepoint/") - 1;
12636 tp_name = strchr(tp_cat, '/');
12637 if (!tp_name) {
12638 free(sec_name);
12639 return -EINVAL;
12640 }
12641 *tp_name = '\0';
12642 tp_name++;
12643
12644 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12645 free(sec_name);
12646 return libbpf_get_error(*link);
12647 }
12648
12649 struct bpf_link *
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program * prog,const char * tp_name,struct bpf_raw_tracepoint_opts * opts)12650 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12651 const char *tp_name,
12652 struct bpf_raw_tracepoint_opts *opts)
12653 {
12654 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12655 struct bpf_link *link;
12656 int prog_fd, pfd;
12657
12658 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12659 return libbpf_err_ptr(-EINVAL);
12660
12661 prog_fd = bpf_program__fd(prog);
12662 if (prog_fd < 0) {
12663 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12664 return libbpf_err_ptr(-EINVAL);
12665 }
12666
12667 link = calloc(1, sizeof(*link));
12668 if (!link)
12669 return libbpf_err_ptr(-ENOMEM);
12670 link->detach = &bpf_link__detach_fd;
12671
12672 raw_opts.tp_name = tp_name;
12673 raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12674 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12675 if (pfd < 0) {
12676 pfd = -errno;
12677 free(link);
12678 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12679 prog->name, tp_name, errstr(pfd));
12680 return libbpf_err_ptr(pfd);
12681 }
12682 link->fd = pfd;
12683 return link;
12684 }
12685
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)12686 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12687 const char *tp_name)
12688 {
12689 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12690 }
12691
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12692 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12693 {
12694 static const char *const prefixes[] = {
12695 "raw_tp",
12696 "raw_tracepoint",
12697 "raw_tp.w",
12698 "raw_tracepoint.w",
12699 };
12700 size_t i;
12701 const char *tp_name = NULL;
12702
12703 *link = NULL;
12704
12705 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12706 size_t pfx_len;
12707
12708 if (!str_has_pfx(prog->sec_name, prefixes[i]))
12709 continue;
12710
12711 pfx_len = strlen(prefixes[i]);
12712 /* no auto-attach case of, e.g., SEC("raw_tp") */
12713 if (prog->sec_name[pfx_len] == '\0')
12714 return 0;
12715
12716 if (prog->sec_name[pfx_len] != '/')
12717 continue;
12718
12719 tp_name = prog->sec_name + pfx_len + 1;
12720 break;
12721 }
12722
12723 if (!tp_name) {
12724 pr_warn("prog '%s': invalid section name '%s'\n",
12725 prog->name, prog->sec_name);
12726 return -EINVAL;
12727 }
12728
12729 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12730 return libbpf_get_error(*link);
12731 }
12732
12733 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12734 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12735 const struct bpf_trace_opts *opts)
12736 {
12737 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12738 struct bpf_link *link;
12739 int prog_fd, pfd;
12740
12741 if (!OPTS_VALID(opts, bpf_trace_opts))
12742 return libbpf_err_ptr(-EINVAL);
12743
12744 prog_fd = bpf_program__fd(prog);
12745 if (prog_fd < 0) {
12746 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12747 return libbpf_err_ptr(-EINVAL);
12748 }
12749
12750 link = calloc(1, sizeof(*link));
12751 if (!link)
12752 return libbpf_err_ptr(-ENOMEM);
12753 link->detach = &bpf_link__detach_fd;
12754
12755 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12756 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12757 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12758 if (pfd < 0) {
12759 pfd = -errno;
12760 free(link);
12761 pr_warn("prog '%s': failed to attach: %s\n",
12762 prog->name, errstr(pfd));
12763 return libbpf_err_ptr(pfd);
12764 }
12765 link->fd = pfd;
12766 return link;
12767 }
12768
bpf_program__attach_trace(const struct bpf_program * prog)12769 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12770 {
12771 return bpf_program__attach_btf_id(prog, NULL);
12772 }
12773
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12774 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12775 const struct bpf_trace_opts *opts)
12776 {
12777 return bpf_program__attach_btf_id(prog, opts);
12778 }
12779
bpf_program__attach_lsm(const struct bpf_program * prog)12780 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12781 {
12782 return bpf_program__attach_btf_id(prog, NULL);
12783 }
12784
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12785 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12786 {
12787 *link = bpf_program__attach_trace(prog);
12788 return libbpf_get_error(*link);
12789 }
12790
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12791 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12792 {
12793 *link = bpf_program__attach_lsm(prog);
12794 return libbpf_get_error(*link);
12795 }
12796
12797 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)12798 bpf_program_attach_fd(const struct bpf_program *prog,
12799 int target_fd, const char *target_name,
12800 const struct bpf_link_create_opts *opts)
12801 {
12802 enum bpf_attach_type attach_type;
12803 struct bpf_link *link;
12804 int prog_fd, link_fd;
12805
12806 prog_fd = bpf_program__fd(prog);
12807 if (prog_fd < 0) {
12808 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12809 return libbpf_err_ptr(-EINVAL);
12810 }
12811
12812 link = calloc(1, sizeof(*link));
12813 if (!link)
12814 return libbpf_err_ptr(-ENOMEM);
12815 link->detach = &bpf_link__detach_fd;
12816
12817 attach_type = bpf_program__expected_attach_type(prog);
12818 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12819 if (link_fd < 0) {
12820 link_fd = -errno;
12821 free(link);
12822 pr_warn("prog '%s': failed to attach to %s: %s\n",
12823 prog->name, target_name,
12824 errstr(link_fd));
12825 return libbpf_err_ptr(link_fd);
12826 }
12827 link->fd = link_fd;
12828 return link;
12829 }
12830
12831 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)12832 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12833 {
12834 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12835 }
12836
12837 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)12838 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12839 {
12840 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12841 }
12842
12843 struct bpf_link *
bpf_program__attach_sockmap(const struct bpf_program * prog,int map_fd)12844 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12845 {
12846 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12847 }
12848
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)12849 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12850 {
12851 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12852 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12853 }
12854
12855 struct bpf_link *
bpf_program__attach_cgroup_opts(const struct bpf_program * prog,int cgroup_fd,const struct bpf_cgroup_opts * opts)12856 bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd,
12857 const struct bpf_cgroup_opts *opts)
12858 {
12859 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12860 __u32 relative_id;
12861 int relative_fd;
12862
12863 if (!OPTS_VALID(opts, bpf_cgroup_opts))
12864 return libbpf_err_ptr(-EINVAL);
12865
12866 relative_id = OPTS_GET(opts, relative_id, 0);
12867 relative_fd = OPTS_GET(opts, relative_fd, 0);
12868
12869 if (relative_fd && relative_id) {
12870 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12871 prog->name);
12872 return libbpf_err_ptr(-EINVAL);
12873 }
12874
12875 link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0);
12876 link_create_opts.cgroup.relative_fd = relative_fd;
12877 link_create_opts.cgroup.relative_id = relative_id;
12878 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12879
12880 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts);
12881 }
12882
12883 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)12884 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12885 const struct bpf_tcx_opts *opts)
12886 {
12887 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12888 __u32 relative_id;
12889 int relative_fd;
12890
12891 if (!OPTS_VALID(opts, bpf_tcx_opts))
12892 return libbpf_err_ptr(-EINVAL);
12893
12894 relative_id = OPTS_GET(opts, relative_id, 0);
12895 relative_fd = OPTS_GET(opts, relative_fd, 0);
12896
12897 /* validate we don't have unexpected combinations of non-zero fields */
12898 if (!ifindex) {
12899 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12900 prog->name);
12901 return libbpf_err_ptr(-EINVAL);
12902 }
12903 if (relative_fd && relative_id) {
12904 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12905 prog->name);
12906 return libbpf_err_ptr(-EINVAL);
12907 }
12908
12909 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12910 link_create_opts.tcx.relative_fd = relative_fd;
12911 link_create_opts.tcx.relative_id = relative_id;
12912 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12913
12914 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12915 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12916 }
12917
12918 struct bpf_link *
bpf_program__attach_netkit(const struct bpf_program * prog,int ifindex,const struct bpf_netkit_opts * opts)12919 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12920 const struct bpf_netkit_opts *opts)
12921 {
12922 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12923 __u32 relative_id;
12924 int relative_fd;
12925
12926 if (!OPTS_VALID(opts, bpf_netkit_opts))
12927 return libbpf_err_ptr(-EINVAL);
12928
12929 relative_id = OPTS_GET(opts, relative_id, 0);
12930 relative_fd = OPTS_GET(opts, relative_fd, 0);
12931
12932 /* validate we don't have unexpected combinations of non-zero fields */
12933 if (!ifindex) {
12934 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12935 prog->name);
12936 return libbpf_err_ptr(-EINVAL);
12937 }
12938 if (relative_fd && relative_id) {
12939 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12940 prog->name);
12941 return libbpf_err_ptr(-EINVAL);
12942 }
12943
12944 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12945 link_create_opts.netkit.relative_fd = relative_fd;
12946 link_create_opts.netkit.relative_id = relative_id;
12947 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12948
12949 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12950 }
12951
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12952 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12953 int target_fd,
12954 const char *attach_func_name)
12955 {
12956 int btf_id;
12957
12958 if (!!target_fd != !!attach_func_name) {
12959 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12960 prog->name);
12961 return libbpf_err_ptr(-EINVAL);
12962 }
12963
12964 if (prog->type != BPF_PROG_TYPE_EXT) {
12965 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n",
12966 prog->name);
12967 return libbpf_err_ptr(-EINVAL);
12968 }
12969
12970 if (target_fd) {
12971 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12972
12973 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd);
12974 if (btf_id < 0)
12975 return libbpf_err_ptr(btf_id);
12976
12977 target_opts.target_btf_id = btf_id;
12978
12979 return bpf_program_attach_fd(prog, target_fd, "freplace",
12980 &target_opts);
12981 } else {
12982 /* no target, so use raw_tracepoint_open for compatibility
12983 * with old kernels
12984 */
12985 return bpf_program__attach_trace(prog);
12986 }
12987 }
12988
12989 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12990 bpf_program__attach_iter(const struct bpf_program *prog,
12991 const struct bpf_iter_attach_opts *opts)
12992 {
12993 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12994 struct bpf_link *link;
12995 int prog_fd, link_fd;
12996 __u32 target_fd = 0;
12997
12998 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12999 return libbpf_err_ptr(-EINVAL);
13000
13001 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
13002 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
13003
13004 prog_fd = bpf_program__fd(prog);
13005 if (prog_fd < 0) {
13006 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13007 return libbpf_err_ptr(-EINVAL);
13008 }
13009
13010 link = calloc(1, sizeof(*link));
13011 if (!link)
13012 return libbpf_err_ptr(-ENOMEM);
13013 link->detach = &bpf_link__detach_fd;
13014
13015 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
13016 &link_create_opts);
13017 if (link_fd < 0) {
13018 link_fd = -errno;
13019 free(link);
13020 pr_warn("prog '%s': failed to attach to iterator: %s\n",
13021 prog->name, errstr(link_fd));
13022 return libbpf_err_ptr(link_fd);
13023 }
13024 link->fd = link_fd;
13025 return link;
13026 }
13027
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)13028 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
13029 {
13030 *link = bpf_program__attach_iter(prog, NULL);
13031 return libbpf_get_error(*link);
13032 }
13033
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)13034 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
13035 const struct bpf_netfilter_opts *opts)
13036 {
13037 LIBBPF_OPTS(bpf_link_create_opts, lopts);
13038 struct bpf_link *link;
13039 int prog_fd, link_fd;
13040
13041 if (!OPTS_VALID(opts, bpf_netfilter_opts))
13042 return libbpf_err_ptr(-EINVAL);
13043
13044 prog_fd = bpf_program__fd(prog);
13045 if (prog_fd < 0) {
13046 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13047 return libbpf_err_ptr(-EINVAL);
13048 }
13049
13050 link = calloc(1, sizeof(*link));
13051 if (!link)
13052 return libbpf_err_ptr(-ENOMEM);
13053
13054 link->detach = &bpf_link__detach_fd;
13055
13056 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
13057 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
13058 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
13059 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
13060
13061 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
13062 if (link_fd < 0) {
13063 link_fd = -errno;
13064 free(link);
13065 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
13066 prog->name, errstr(link_fd));
13067 return libbpf_err_ptr(link_fd);
13068 }
13069 link->fd = link_fd;
13070
13071 return link;
13072 }
13073
bpf_program__attach(const struct bpf_program * prog)13074 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
13075 {
13076 struct bpf_link *link = NULL;
13077 int err;
13078
13079 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13080 return libbpf_err_ptr(-EOPNOTSUPP);
13081
13082 if (bpf_program__fd(prog) < 0) {
13083 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
13084 prog->name);
13085 return libbpf_err_ptr(-EINVAL);
13086 }
13087
13088 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
13089 if (err)
13090 return libbpf_err_ptr(err);
13091
13092 /* When calling bpf_program__attach() explicitly, auto-attach support
13093 * is expected to work, so NULL returned link is considered an error.
13094 * This is different for skeleton's attach, see comment in
13095 * bpf_object__attach_skeleton().
13096 */
13097 if (!link)
13098 return libbpf_err_ptr(-EOPNOTSUPP);
13099
13100 return link;
13101 }
13102
13103 struct bpf_link_struct_ops {
13104 struct bpf_link link;
13105 int map_fd;
13106 };
13107
bpf_link__detach_struct_ops(struct bpf_link * link)13108 static int bpf_link__detach_struct_ops(struct bpf_link *link)
13109 {
13110 struct bpf_link_struct_ops *st_link;
13111 __u32 zero = 0;
13112
13113 st_link = container_of(link, struct bpf_link_struct_ops, link);
13114
13115 if (st_link->map_fd < 0)
13116 /* w/o a real link */
13117 return bpf_map_delete_elem(link->fd, &zero);
13118
13119 return close(link->fd);
13120 }
13121
bpf_map__attach_struct_ops(const struct bpf_map * map)13122 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
13123 {
13124 struct bpf_link_struct_ops *link;
13125 __u32 zero = 0;
13126 int err, fd;
13127
13128 if (!bpf_map__is_struct_ops(map)) {
13129 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
13130 return libbpf_err_ptr(-EINVAL);
13131 }
13132
13133 if (map->fd < 0) {
13134 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
13135 return libbpf_err_ptr(-EINVAL);
13136 }
13137
13138 link = calloc(1, sizeof(*link));
13139 if (!link)
13140 return libbpf_err_ptr(-EINVAL);
13141
13142 /* kern_vdata should be prepared during the loading phase. */
13143 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13144 /* It can be EBUSY if the map has been used to create or
13145 * update a link before. We don't allow updating the value of
13146 * a struct_ops once it is set. That ensures that the value
13147 * never changed. So, it is safe to skip EBUSY.
13148 */
13149 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
13150 free(link);
13151 return libbpf_err_ptr(err);
13152 }
13153
13154 link->link.detach = bpf_link__detach_struct_ops;
13155
13156 if (!(map->def.map_flags & BPF_F_LINK)) {
13157 /* w/o a real link */
13158 link->link.fd = map->fd;
13159 link->map_fd = -1;
13160 return &link->link;
13161 }
13162
13163 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13164 if (fd < 0) {
13165 free(link);
13166 return libbpf_err_ptr(fd);
13167 }
13168
13169 link->link.fd = fd;
13170 link->map_fd = map->fd;
13171
13172 return &link->link;
13173 }
13174
13175 /*
13176 * Swap the back struct_ops of a link with a new struct_ops map.
13177 */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)13178 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13179 {
13180 struct bpf_link_struct_ops *st_ops_link;
13181 __u32 zero = 0;
13182 int err;
13183
13184 if (!bpf_map__is_struct_ops(map))
13185 return libbpf_err(-EINVAL);
13186
13187 if (map->fd < 0) {
13188 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13189 return libbpf_err(-EINVAL);
13190 }
13191
13192 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13193 /* Ensure the type of a link is correct */
13194 if (st_ops_link->map_fd < 0)
13195 return libbpf_err(-EINVAL);
13196
13197 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13198 /* It can be EBUSY if the map has been used to create or
13199 * update a link before. We don't allow updating the value of
13200 * a struct_ops once it is set. That ensures that the value
13201 * never changed. So, it is safe to skip EBUSY.
13202 */
13203 if (err && err != -EBUSY)
13204 return err;
13205
13206 err = bpf_link_update(link->fd, map->fd, NULL);
13207 if (err < 0)
13208 return err;
13209
13210 st_ops_link->map_fd = map->fd;
13211
13212 return 0;
13213 }
13214
13215 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13216 void *private_data);
13217
13218 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)13219 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13220 void **copy_mem, size_t *copy_size,
13221 bpf_perf_event_print_t fn, void *private_data)
13222 {
13223 struct perf_event_mmap_page *header = mmap_mem;
13224 __u64 data_head = ring_buffer_read_head(header);
13225 __u64 data_tail = header->data_tail;
13226 void *base = ((__u8 *)header) + page_size;
13227 int ret = LIBBPF_PERF_EVENT_CONT;
13228 struct perf_event_header *ehdr;
13229 size_t ehdr_size;
13230
13231 while (data_head != data_tail) {
13232 ehdr = base + (data_tail & (mmap_size - 1));
13233 ehdr_size = ehdr->size;
13234
13235 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13236 void *copy_start = ehdr;
13237 size_t len_first = base + mmap_size - copy_start;
13238 size_t len_secnd = ehdr_size - len_first;
13239
13240 if (*copy_size < ehdr_size) {
13241 free(*copy_mem);
13242 *copy_mem = malloc(ehdr_size);
13243 if (!*copy_mem) {
13244 *copy_size = 0;
13245 ret = LIBBPF_PERF_EVENT_ERROR;
13246 break;
13247 }
13248 *copy_size = ehdr_size;
13249 }
13250
13251 memcpy(*copy_mem, copy_start, len_first);
13252 memcpy(*copy_mem + len_first, base, len_secnd);
13253 ehdr = *copy_mem;
13254 }
13255
13256 ret = fn(ehdr, private_data);
13257 data_tail += ehdr_size;
13258 if (ret != LIBBPF_PERF_EVENT_CONT)
13259 break;
13260 }
13261
13262 ring_buffer_write_tail(header, data_tail);
13263 return libbpf_err(ret);
13264 }
13265
13266 struct perf_buffer;
13267
13268 struct perf_buffer_params {
13269 struct perf_event_attr *attr;
13270 /* if event_cb is specified, it takes precendence */
13271 perf_buffer_event_fn event_cb;
13272 /* sample_cb and lost_cb are higher-level common-case callbacks */
13273 perf_buffer_sample_fn sample_cb;
13274 perf_buffer_lost_fn lost_cb;
13275 void *ctx;
13276 int cpu_cnt;
13277 int *cpus;
13278 int *map_keys;
13279 };
13280
13281 struct perf_cpu_buf {
13282 struct perf_buffer *pb;
13283 void *base; /* mmap()'ed memory */
13284 void *buf; /* for reconstructing segmented data */
13285 size_t buf_size;
13286 int fd;
13287 int cpu;
13288 int map_key;
13289 };
13290
13291 struct perf_buffer {
13292 perf_buffer_event_fn event_cb;
13293 perf_buffer_sample_fn sample_cb;
13294 perf_buffer_lost_fn lost_cb;
13295 void *ctx; /* passed into callbacks */
13296
13297 size_t page_size;
13298 size_t mmap_size;
13299 struct perf_cpu_buf **cpu_bufs;
13300 struct epoll_event *events;
13301 int cpu_cnt; /* number of allocated CPU buffers */
13302 int epoll_fd; /* perf event FD */
13303 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13304 };
13305
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13306 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13307 struct perf_cpu_buf *cpu_buf)
13308 {
13309 if (!cpu_buf)
13310 return;
13311 if (cpu_buf->base &&
13312 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13313 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13314 if (cpu_buf->fd >= 0) {
13315 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13316 close(cpu_buf->fd);
13317 }
13318 free(cpu_buf->buf);
13319 free(cpu_buf);
13320 }
13321
perf_buffer__free(struct perf_buffer * pb)13322 void perf_buffer__free(struct perf_buffer *pb)
13323 {
13324 int i;
13325
13326 if (IS_ERR_OR_NULL(pb))
13327 return;
13328 if (pb->cpu_bufs) {
13329 for (i = 0; i < pb->cpu_cnt; i++) {
13330 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13331
13332 if (!cpu_buf)
13333 continue;
13334
13335 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13336 perf_buffer__free_cpu_buf(pb, cpu_buf);
13337 }
13338 free(pb->cpu_bufs);
13339 }
13340 if (pb->epoll_fd >= 0)
13341 close(pb->epoll_fd);
13342 free(pb->events);
13343 free(pb);
13344 }
13345
13346 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)13347 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13348 int cpu, int map_key)
13349 {
13350 struct perf_cpu_buf *cpu_buf;
13351 int err;
13352
13353 cpu_buf = calloc(1, sizeof(*cpu_buf));
13354 if (!cpu_buf)
13355 return ERR_PTR(-ENOMEM);
13356
13357 cpu_buf->pb = pb;
13358 cpu_buf->cpu = cpu;
13359 cpu_buf->map_key = map_key;
13360
13361 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13362 -1, PERF_FLAG_FD_CLOEXEC);
13363 if (cpu_buf->fd < 0) {
13364 err = -errno;
13365 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13366 cpu, errstr(err));
13367 goto error;
13368 }
13369
13370 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13371 PROT_READ | PROT_WRITE, MAP_SHARED,
13372 cpu_buf->fd, 0);
13373 if (cpu_buf->base == MAP_FAILED) {
13374 cpu_buf->base = NULL;
13375 err = -errno;
13376 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13377 cpu, errstr(err));
13378 goto error;
13379 }
13380
13381 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13382 err = -errno;
13383 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13384 cpu, errstr(err));
13385 goto error;
13386 }
13387
13388 return cpu_buf;
13389
13390 error:
13391 perf_buffer__free_cpu_buf(pb, cpu_buf);
13392 return (struct perf_cpu_buf *)ERR_PTR(err);
13393 }
13394
13395 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13396 struct perf_buffer_params *p);
13397
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)13398 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13399 perf_buffer_sample_fn sample_cb,
13400 perf_buffer_lost_fn lost_cb,
13401 void *ctx,
13402 const struct perf_buffer_opts *opts)
13403 {
13404 const size_t attr_sz = sizeof(struct perf_event_attr);
13405 struct perf_buffer_params p = {};
13406 struct perf_event_attr attr;
13407 __u32 sample_period;
13408
13409 if (!OPTS_VALID(opts, perf_buffer_opts))
13410 return libbpf_err_ptr(-EINVAL);
13411
13412 sample_period = OPTS_GET(opts, sample_period, 1);
13413 if (!sample_period)
13414 sample_period = 1;
13415
13416 memset(&attr, 0, attr_sz);
13417 attr.size = attr_sz;
13418 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13419 attr.type = PERF_TYPE_SOFTWARE;
13420 attr.sample_type = PERF_SAMPLE_RAW;
13421 attr.wakeup_events = sample_period;
13422
13423 p.attr = &attr;
13424 p.sample_cb = sample_cb;
13425 p.lost_cb = lost_cb;
13426 p.ctx = ctx;
13427
13428 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13429 }
13430
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)13431 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13432 struct perf_event_attr *attr,
13433 perf_buffer_event_fn event_cb, void *ctx,
13434 const struct perf_buffer_raw_opts *opts)
13435 {
13436 struct perf_buffer_params p = {};
13437
13438 if (!attr)
13439 return libbpf_err_ptr(-EINVAL);
13440
13441 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13442 return libbpf_err_ptr(-EINVAL);
13443
13444 p.attr = attr;
13445 p.event_cb = event_cb;
13446 p.ctx = ctx;
13447 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13448 p.cpus = OPTS_GET(opts, cpus, NULL);
13449 p.map_keys = OPTS_GET(opts, map_keys, NULL);
13450
13451 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13452 }
13453
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)13454 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13455 struct perf_buffer_params *p)
13456 {
13457 const char *online_cpus_file = "/sys/devices/system/cpu/online";
13458 struct bpf_map_info map;
13459 struct perf_buffer *pb;
13460 bool *online = NULL;
13461 __u32 map_info_len;
13462 int err, i, j, n;
13463
13464 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13465 pr_warn("page count should be power of two, but is %zu\n",
13466 page_cnt);
13467 return ERR_PTR(-EINVAL);
13468 }
13469
13470 /* best-effort sanity checks */
13471 memset(&map, 0, sizeof(map));
13472 map_info_len = sizeof(map);
13473 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13474 if (err) {
13475 err = -errno;
13476 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13477 * -EBADFD, -EFAULT, or -E2BIG on real error
13478 */
13479 if (err != -EINVAL) {
13480 pr_warn("failed to get map info for map FD %d: %s\n",
13481 map_fd, errstr(err));
13482 return ERR_PTR(err);
13483 }
13484 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13485 map_fd);
13486 } else {
13487 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13488 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13489 map.name);
13490 return ERR_PTR(-EINVAL);
13491 }
13492 }
13493
13494 pb = calloc(1, sizeof(*pb));
13495 if (!pb)
13496 return ERR_PTR(-ENOMEM);
13497
13498 pb->event_cb = p->event_cb;
13499 pb->sample_cb = p->sample_cb;
13500 pb->lost_cb = p->lost_cb;
13501 pb->ctx = p->ctx;
13502
13503 pb->page_size = getpagesize();
13504 pb->mmap_size = pb->page_size * page_cnt;
13505 pb->map_fd = map_fd;
13506
13507 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13508 if (pb->epoll_fd < 0) {
13509 err = -errno;
13510 pr_warn("failed to create epoll instance: %s\n",
13511 errstr(err));
13512 goto error;
13513 }
13514
13515 if (p->cpu_cnt > 0) {
13516 pb->cpu_cnt = p->cpu_cnt;
13517 } else {
13518 pb->cpu_cnt = libbpf_num_possible_cpus();
13519 if (pb->cpu_cnt < 0) {
13520 err = pb->cpu_cnt;
13521 goto error;
13522 }
13523 if (map.max_entries && map.max_entries < pb->cpu_cnt)
13524 pb->cpu_cnt = map.max_entries;
13525 }
13526
13527 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13528 if (!pb->events) {
13529 err = -ENOMEM;
13530 pr_warn("failed to allocate events: out of memory\n");
13531 goto error;
13532 }
13533 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13534 if (!pb->cpu_bufs) {
13535 err = -ENOMEM;
13536 pr_warn("failed to allocate buffers: out of memory\n");
13537 goto error;
13538 }
13539
13540 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13541 if (err) {
13542 pr_warn("failed to get online CPU mask: %s\n", errstr(err));
13543 goto error;
13544 }
13545
13546 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13547 struct perf_cpu_buf *cpu_buf;
13548 int cpu, map_key;
13549
13550 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13551 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13552
13553 /* in case user didn't explicitly requested particular CPUs to
13554 * be attached to, skip offline/not present CPUs
13555 */
13556 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13557 continue;
13558
13559 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13560 if (IS_ERR(cpu_buf)) {
13561 err = PTR_ERR(cpu_buf);
13562 goto error;
13563 }
13564
13565 pb->cpu_bufs[j] = cpu_buf;
13566
13567 err = bpf_map_update_elem(pb->map_fd, &map_key,
13568 &cpu_buf->fd, 0);
13569 if (err) {
13570 err = -errno;
13571 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13572 cpu, map_key, cpu_buf->fd,
13573 errstr(err));
13574 goto error;
13575 }
13576
13577 pb->events[j].events = EPOLLIN;
13578 pb->events[j].data.ptr = cpu_buf;
13579 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13580 &pb->events[j]) < 0) {
13581 err = -errno;
13582 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13583 cpu, cpu_buf->fd,
13584 errstr(err));
13585 goto error;
13586 }
13587 j++;
13588 }
13589 pb->cpu_cnt = j;
13590 free(online);
13591
13592 return pb;
13593
13594 error:
13595 free(online);
13596 if (pb)
13597 perf_buffer__free(pb);
13598 return ERR_PTR(err);
13599 }
13600
13601 struct perf_sample_raw {
13602 struct perf_event_header header;
13603 uint32_t size;
13604 char data[];
13605 };
13606
13607 struct perf_sample_lost {
13608 struct perf_event_header header;
13609 uint64_t id;
13610 uint64_t lost;
13611 uint64_t sample_id;
13612 };
13613
13614 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)13615 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13616 {
13617 struct perf_cpu_buf *cpu_buf = ctx;
13618 struct perf_buffer *pb = cpu_buf->pb;
13619 void *data = e;
13620
13621 /* user wants full control over parsing perf event */
13622 if (pb->event_cb)
13623 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13624
13625 switch (e->type) {
13626 case PERF_RECORD_SAMPLE: {
13627 struct perf_sample_raw *s = data;
13628
13629 if (pb->sample_cb)
13630 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13631 break;
13632 }
13633 case PERF_RECORD_LOST: {
13634 struct perf_sample_lost *s = data;
13635
13636 if (pb->lost_cb)
13637 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13638 break;
13639 }
13640 default:
13641 pr_warn("unknown perf sample type %d\n", e->type);
13642 return LIBBPF_PERF_EVENT_ERROR;
13643 }
13644 return LIBBPF_PERF_EVENT_CONT;
13645 }
13646
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13647 static int perf_buffer__process_records(struct perf_buffer *pb,
13648 struct perf_cpu_buf *cpu_buf)
13649 {
13650 enum bpf_perf_event_ret ret;
13651
13652 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13653 pb->page_size, &cpu_buf->buf,
13654 &cpu_buf->buf_size,
13655 perf_buffer__process_record, cpu_buf);
13656 if (ret != LIBBPF_PERF_EVENT_CONT)
13657 return ret;
13658 return 0;
13659 }
13660
perf_buffer__epoll_fd(const struct perf_buffer * pb)13661 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13662 {
13663 return pb->epoll_fd;
13664 }
13665
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)13666 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13667 {
13668 int i, cnt, err;
13669
13670 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13671 if (cnt < 0)
13672 return -errno;
13673
13674 for (i = 0; i < cnt; i++) {
13675 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13676
13677 err = perf_buffer__process_records(pb, cpu_buf);
13678 if (err) {
13679 pr_warn("error while processing records: %s\n", errstr(err));
13680 return libbpf_err(err);
13681 }
13682 }
13683 return cnt;
13684 }
13685
13686 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13687 * manager.
13688 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)13689 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13690 {
13691 return pb->cpu_cnt;
13692 }
13693
13694 /*
13695 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13696 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13697 * select()/poll()/epoll() Linux syscalls.
13698 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)13699 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13700 {
13701 struct perf_cpu_buf *cpu_buf;
13702
13703 if (buf_idx >= pb->cpu_cnt)
13704 return libbpf_err(-EINVAL);
13705
13706 cpu_buf = pb->cpu_bufs[buf_idx];
13707 if (!cpu_buf)
13708 return libbpf_err(-ENOENT);
13709
13710 return cpu_buf->fd;
13711 }
13712
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)13713 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13714 {
13715 struct perf_cpu_buf *cpu_buf;
13716
13717 if (buf_idx >= pb->cpu_cnt)
13718 return libbpf_err(-EINVAL);
13719
13720 cpu_buf = pb->cpu_bufs[buf_idx];
13721 if (!cpu_buf)
13722 return libbpf_err(-ENOENT);
13723
13724 *buf = cpu_buf->base;
13725 *buf_size = pb->mmap_size;
13726 return 0;
13727 }
13728
13729 /*
13730 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13731 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13732 * consume, do nothing and return success.
13733 * Returns:
13734 * - 0 on success;
13735 * - <0 on failure.
13736 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)13737 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13738 {
13739 struct perf_cpu_buf *cpu_buf;
13740
13741 if (buf_idx >= pb->cpu_cnt)
13742 return libbpf_err(-EINVAL);
13743
13744 cpu_buf = pb->cpu_bufs[buf_idx];
13745 if (!cpu_buf)
13746 return libbpf_err(-ENOENT);
13747
13748 return perf_buffer__process_records(pb, cpu_buf);
13749 }
13750
perf_buffer__consume(struct perf_buffer * pb)13751 int perf_buffer__consume(struct perf_buffer *pb)
13752 {
13753 int i, err;
13754
13755 for (i = 0; i < pb->cpu_cnt; i++) {
13756 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13757
13758 if (!cpu_buf)
13759 continue;
13760
13761 err = perf_buffer__process_records(pb, cpu_buf);
13762 if (err) {
13763 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n",
13764 i, errstr(err));
13765 return libbpf_err(err);
13766 }
13767 }
13768 return 0;
13769 }
13770
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)13771 int bpf_program__set_attach_target(struct bpf_program *prog,
13772 int attach_prog_fd,
13773 const char *attach_func_name)
13774 {
13775 int btf_obj_fd = 0, btf_id = 0, err;
13776
13777 if (!prog || attach_prog_fd < 0)
13778 return libbpf_err(-EINVAL);
13779
13780 if (prog->obj->state >= OBJ_LOADED)
13781 return libbpf_err(-EINVAL);
13782
13783 if (attach_prog_fd && !attach_func_name) {
13784 /* remember attach_prog_fd and let bpf_program__load() find
13785 * BTF ID during the program load
13786 */
13787 prog->attach_prog_fd = attach_prog_fd;
13788 return 0;
13789 }
13790
13791 if (attach_prog_fd) {
13792 btf_id = libbpf_find_prog_btf_id(attach_func_name,
13793 attach_prog_fd, prog->obj->token_fd);
13794 if (btf_id < 0)
13795 return libbpf_err(btf_id);
13796 } else {
13797 if (!attach_func_name)
13798 return libbpf_err(-EINVAL);
13799
13800 /* load btf_vmlinux, if not yet */
13801 err = bpf_object__load_vmlinux_btf(prog->obj, true);
13802 if (err)
13803 return libbpf_err(err);
13804 err = find_kernel_btf_id(prog->obj, attach_func_name,
13805 prog->expected_attach_type,
13806 &btf_obj_fd, &btf_id);
13807 if (err)
13808 return libbpf_err(err);
13809 }
13810
13811 prog->attach_btf_id = btf_id;
13812 prog->attach_btf_obj_fd = btf_obj_fd;
13813 prog->attach_prog_fd = attach_prog_fd;
13814 return 0;
13815 }
13816
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)13817 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13818 {
13819 int err = 0, n, len, start, end = -1;
13820 bool *tmp;
13821
13822 *mask = NULL;
13823 *mask_sz = 0;
13824
13825 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13826 while (*s) {
13827 if (*s == ',' || *s == '\n') {
13828 s++;
13829 continue;
13830 }
13831 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13832 if (n <= 0 || n > 2) {
13833 pr_warn("Failed to get CPU range %s: %d\n", s, n);
13834 err = -EINVAL;
13835 goto cleanup;
13836 } else if (n == 1) {
13837 end = start;
13838 }
13839 if (start < 0 || start > end) {
13840 pr_warn("Invalid CPU range [%d,%d] in %s\n",
13841 start, end, s);
13842 err = -EINVAL;
13843 goto cleanup;
13844 }
13845 tmp = realloc(*mask, end + 1);
13846 if (!tmp) {
13847 err = -ENOMEM;
13848 goto cleanup;
13849 }
13850 *mask = tmp;
13851 memset(tmp + *mask_sz, 0, start - *mask_sz);
13852 memset(tmp + start, 1, end - start + 1);
13853 *mask_sz = end + 1;
13854 s += len;
13855 }
13856 if (!*mask_sz) {
13857 pr_warn("Empty CPU range\n");
13858 return -EINVAL;
13859 }
13860 return 0;
13861 cleanup:
13862 free(*mask);
13863 *mask = NULL;
13864 return err;
13865 }
13866
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)13867 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13868 {
13869 int fd, err = 0, len;
13870 char buf[128];
13871
13872 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13873 if (fd < 0) {
13874 err = -errno;
13875 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err));
13876 return err;
13877 }
13878 len = read(fd, buf, sizeof(buf));
13879 close(fd);
13880 if (len <= 0) {
13881 err = len ? -errno : -EINVAL;
13882 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err));
13883 return err;
13884 }
13885 if (len >= sizeof(buf)) {
13886 pr_warn("CPU mask is too big in file %s\n", fcpu);
13887 return -E2BIG;
13888 }
13889 buf[len] = '\0';
13890
13891 return parse_cpu_mask_str(buf, mask, mask_sz);
13892 }
13893
libbpf_num_possible_cpus(void)13894 int libbpf_num_possible_cpus(void)
13895 {
13896 static const char *fcpu = "/sys/devices/system/cpu/possible";
13897 static int cpus;
13898 int err, n, i, tmp_cpus;
13899 bool *mask;
13900
13901 tmp_cpus = READ_ONCE(cpus);
13902 if (tmp_cpus > 0)
13903 return tmp_cpus;
13904
13905 err = parse_cpu_mask_file(fcpu, &mask, &n);
13906 if (err)
13907 return libbpf_err(err);
13908
13909 tmp_cpus = 0;
13910 for (i = 0; i < n; i++) {
13911 if (mask[i])
13912 tmp_cpus++;
13913 }
13914 free(mask);
13915
13916 WRITE_ONCE(cpus, tmp_cpus);
13917 return tmp_cpus;
13918 }
13919
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt,size_t map_skel_sz)13920 static int populate_skeleton_maps(const struct bpf_object *obj,
13921 struct bpf_map_skeleton *maps,
13922 size_t map_cnt, size_t map_skel_sz)
13923 {
13924 int i;
13925
13926 for (i = 0; i < map_cnt; i++) {
13927 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13928 struct bpf_map **map = map_skel->map;
13929 const char *name = map_skel->name;
13930 void **mmaped = map_skel->mmaped;
13931
13932 *map = bpf_object__find_map_by_name(obj, name);
13933 if (!*map) {
13934 pr_warn("failed to find skeleton map '%s'\n", name);
13935 return -ESRCH;
13936 }
13937
13938 /* externs shouldn't be pre-setup from user code */
13939 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13940 *mmaped = (*map)->mmaped;
13941 }
13942 return 0;
13943 }
13944
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt,size_t prog_skel_sz)13945 static int populate_skeleton_progs(const struct bpf_object *obj,
13946 struct bpf_prog_skeleton *progs,
13947 size_t prog_cnt, size_t prog_skel_sz)
13948 {
13949 int i;
13950
13951 for (i = 0; i < prog_cnt; i++) {
13952 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13953 struct bpf_program **prog = prog_skel->prog;
13954 const char *name = prog_skel->name;
13955
13956 *prog = bpf_object__find_program_by_name(obj, name);
13957 if (!*prog) {
13958 pr_warn("failed to find skeleton program '%s'\n", name);
13959 return -ESRCH;
13960 }
13961 }
13962 return 0;
13963 }
13964
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)13965 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13966 const struct bpf_object_open_opts *opts)
13967 {
13968 struct bpf_object *obj;
13969 int err;
13970
13971 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
13972 if (IS_ERR(obj)) {
13973 err = PTR_ERR(obj);
13974 pr_warn("failed to initialize skeleton BPF object '%s': %s\n",
13975 s->name, errstr(err));
13976 return libbpf_err(err);
13977 }
13978
13979 *s->obj = obj;
13980 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13981 if (err) {
13982 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err));
13983 return libbpf_err(err);
13984 }
13985
13986 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13987 if (err) {
13988 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err));
13989 return libbpf_err(err);
13990 }
13991
13992 return 0;
13993 }
13994
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13995 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13996 {
13997 int err, len, var_idx, i;
13998 const char *var_name;
13999 const struct bpf_map *map;
14000 struct btf *btf;
14001 __u32 map_type_id;
14002 const struct btf_type *map_type, *var_type;
14003 const struct bpf_var_skeleton *var_skel;
14004 struct btf_var_secinfo *var;
14005
14006 if (!s->obj)
14007 return libbpf_err(-EINVAL);
14008
14009 btf = bpf_object__btf(s->obj);
14010 if (!btf) {
14011 pr_warn("subskeletons require BTF at runtime (object %s)\n",
14012 bpf_object__name(s->obj));
14013 return libbpf_err(-errno);
14014 }
14015
14016 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
14017 if (err) {
14018 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14019 return libbpf_err(err);
14020 }
14021
14022 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
14023 if (err) {
14024 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14025 return libbpf_err(err);
14026 }
14027
14028 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
14029 var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
14030 map = *var_skel->map;
14031 map_type_id = bpf_map__btf_value_type_id(map);
14032 map_type = btf__type_by_id(btf, map_type_id);
14033
14034 if (!btf_is_datasec(map_type)) {
14035 pr_warn("type for map '%1$s' is not a datasec: %2$s\n",
14036 bpf_map__name(map),
14037 __btf_kind_str(btf_kind(map_type)));
14038 return libbpf_err(-EINVAL);
14039 }
14040
14041 len = btf_vlen(map_type);
14042 var = btf_var_secinfos(map_type);
14043 for (i = 0; i < len; i++, var++) {
14044 var_type = btf__type_by_id(btf, var->type);
14045 var_name = btf__name_by_offset(btf, var_type->name_off);
14046 if (strcmp(var_name, var_skel->name) == 0) {
14047 *var_skel->addr = map->mmaped + var->offset;
14048 break;
14049 }
14050 }
14051 }
14052 return 0;
14053 }
14054
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)14055 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
14056 {
14057 if (!s)
14058 return;
14059 free(s->maps);
14060 free(s->progs);
14061 free(s->vars);
14062 free(s);
14063 }
14064
bpf_object__load_skeleton(struct bpf_object_skeleton * s)14065 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
14066 {
14067 int i, err;
14068
14069 err = bpf_object__load(*s->obj);
14070 if (err) {
14071 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err));
14072 return libbpf_err(err);
14073 }
14074
14075 for (i = 0; i < s->map_cnt; i++) {
14076 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14077 struct bpf_map *map = *map_skel->map;
14078
14079 if (!map_skel->mmaped)
14080 continue;
14081
14082 *map_skel->mmaped = map->mmaped;
14083 }
14084
14085 return 0;
14086 }
14087
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)14088 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
14089 {
14090 int i, err;
14091
14092 for (i = 0; i < s->prog_cnt; i++) {
14093 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14094 struct bpf_program *prog = *prog_skel->prog;
14095 struct bpf_link **link = prog_skel->link;
14096
14097 if (!prog->autoload || !prog->autoattach)
14098 continue;
14099
14100 /* auto-attaching not supported for this program */
14101 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
14102 continue;
14103
14104 /* if user already set the link manually, don't attempt auto-attach */
14105 if (*link)
14106 continue;
14107
14108 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
14109 if (err) {
14110 pr_warn("prog '%s': failed to auto-attach: %s\n",
14111 bpf_program__name(prog), errstr(err));
14112 return libbpf_err(err);
14113 }
14114
14115 /* It's possible that for some SEC() definitions auto-attach
14116 * is supported in some cases (e.g., if definition completely
14117 * specifies target information), but is not in other cases.
14118 * SEC("uprobe") is one such case. If user specified target
14119 * binary and function name, such BPF program can be
14120 * auto-attached. But if not, it shouldn't trigger skeleton's
14121 * attach to fail. It should just be skipped.
14122 * attach_fn signals such case with returning 0 (no error) and
14123 * setting link to NULL.
14124 */
14125 }
14126
14127
14128 for (i = 0; i < s->map_cnt; i++) {
14129 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14130 struct bpf_map *map = *map_skel->map;
14131 struct bpf_link **link;
14132
14133 if (!map->autocreate || !map->autoattach)
14134 continue;
14135
14136 /* only struct_ops maps can be attached */
14137 if (!bpf_map__is_struct_ops(map))
14138 continue;
14139
14140 /* skeleton is created with earlier version of bpftool, notify user */
14141 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
14142 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
14143 bpf_map__name(map));
14144 continue;
14145 }
14146
14147 link = map_skel->link;
14148 if (!link) {
14149 pr_warn("map '%s': BPF map skeleton link is uninitialized\n",
14150 bpf_map__name(map));
14151 continue;
14152 }
14153
14154 if (*link)
14155 continue;
14156
14157 *link = bpf_map__attach_struct_ops(map);
14158 if (!*link) {
14159 err = -errno;
14160 pr_warn("map '%s': failed to auto-attach: %s\n",
14161 bpf_map__name(map), errstr(err));
14162 return libbpf_err(err);
14163 }
14164 }
14165
14166 return 0;
14167 }
14168
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)14169 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14170 {
14171 int i;
14172
14173 for (i = 0; i < s->prog_cnt; i++) {
14174 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14175 struct bpf_link **link = prog_skel->link;
14176
14177 bpf_link__destroy(*link);
14178 *link = NULL;
14179 }
14180
14181 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14182 return;
14183
14184 for (i = 0; i < s->map_cnt; i++) {
14185 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14186 struct bpf_link **link = map_skel->link;
14187
14188 if (link) {
14189 bpf_link__destroy(*link);
14190 *link = NULL;
14191 }
14192 }
14193 }
14194
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)14195 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14196 {
14197 if (!s)
14198 return;
14199
14200 bpf_object__detach_skeleton(s);
14201 if (s->obj)
14202 bpf_object__close(*s->obj);
14203 free(s->maps);
14204 free(s->progs);
14205 free(s);
14206 }
14207