1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27 #include <linux/uaccess.h>
28 #include <linux/verification.h>
29 #include <linux/task_work.h>
30 #include <linux/irq_work.h>
31 #include <linux/buildid.h>
32
33 #include "../../lib/kstrtox.h"
34
35 /* If kernel subsystem is allowing eBPF programs to call this function,
36 * inside its own verifier_ops->get_func_proto() callback it should return
37 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
38 *
39 * Different map implementations will rely on rcu in map methods
40 * lookup/update/delete, therefore eBPF programs must run under rcu lock
41 * if program is allowed to access maps, so check rcu_read_lock_held() or
42 * rcu_read_lock_trace_held() in all three functions.
43 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)44 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
45 {
46 WARN_ON_ONCE(!bpf_rcu_lock_held());
47 return (unsigned long) map->ops->map_lookup_elem(map, key);
48 }
49
50 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
51 .func = bpf_map_lookup_elem,
52 .gpl_only = false,
53 .pkt_access = true,
54 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
55 .arg1_type = ARG_CONST_MAP_PTR,
56 .arg2_type = ARG_PTR_TO_MAP_KEY,
57 };
58
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)59 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
60 void *, value, u64, flags)
61 {
62 WARN_ON_ONCE(!bpf_rcu_lock_held());
63 return map->ops->map_update_elem(map, key, value, flags);
64 }
65
66 const struct bpf_func_proto bpf_map_update_elem_proto = {
67 .func = bpf_map_update_elem,
68 .gpl_only = false,
69 .pkt_access = true,
70 .ret_type = RET_INTEGER,
71 .arg1_type = ARG_CONST_MAP_PTR,
72 .arg2_type = ARG_PTR_TO_MAP_KEY,
73 .arg3_type = ARG_PTR_TO_MAP_VALUE,
74 .arg4_type = ARG_ANYTHING,
75 };
76
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)77 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
78 {
79 WARN_ON_ONCE(!bpf_rcu_lock_held());
80 return map->ops->map_delete_elem(map, key);
81 }
82
83 const struct bpf_func_proto bpf_map_delete_elem_proto = {
84 .func = bpf_map_delete_elem,
85 .gpl_only = false,
86 .pkt_access = true,
87 .ret_type = RET_INTEGER,
88 .arg1_type = ARG_CONST_MAP_PTR,
89 .arg2_type = ARG_PTR_TO_MAP_KEY,
90 };
91
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)92 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
93 {
94 return map->ops->map_push_elem(map, value, flags);
95 }
96
97 const struct bpf_func_proto bpf_map_push_elem_proto = {
98 .func = bpf_map_push_elem,
99 .gpl_only = false,
100 .pkt_access = true,
101 .ret_type = RET_INTEGER,
102 .arg1_type = ARG_CONST_MAP_PTR,
103 .arg2_type = ARG_PTR_TO_MAP_VALUE,
104 .arg3_type = ARG_ANYTHING,
105 };
106
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)107 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
108 {
109 return map->ops->map_pop_elem(map, value);
110 }
111
112 const struct bpf_func_proto bpf_map_pop_elem_proto = {
113 .func = bpf_map_pop_elem,
114 .gpl_only = false,
115 .ret_type = RET_INTEGER,
116 .arg1_type = ARG_CONST_MAP_PTR,
117 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
118 };
119
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)120 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
121 {
122 return map->ops->map_peek_elem(map, value);
123 }
124
125 const struct bpf_func_proto bpf_map_peek_elem_proto = {
126 .func = bpf_map_peek_elem,
127 .gpl_only = false,
128 .ret_type = RET_INTEGER,
129 .arg1_type = ARG_CONST_MAP_PTR,
130 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
131 };
132
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)133 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
134 {
135 WARN_ON_ONCE(!bpf_rcu_lock_held());
136 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
137 }
138
139 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
140 .func = bpf_map_lookup_percpu_elem,
141 .gpl_only = false,
142 .pkt_access = true,
143 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
144 .arg1_type = ARG_CONST_MAP_PTR,
145 .arg2_type = ARG_PTR_TO_MAP_KEY,
146 .arg3_type = ARG_ANYTHING,
147 };
148
149 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
150 .func = bpf_user_rnd_u32,
151 .gpl_only = false,
152 .ret_type = RET_INTEGER,
153 };
154
BPF_CALL_0(bpf_get_smp_processor_id)155 BPF_CALL_0(bpf_get_smp_processor_id)
156 {
157 return smp_processor_id();
158 }
159
160 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
161 .func = bpf_get_smp_processor_id,
162 .gpl_only = false,
163 .ret_type = RET_INTEGER,
164 .allow_fastcall = true,
165 };
166
BPF_CALL_0(bpf_get_numa_node_id)167 BPF_CALL_0(bpf_get_numa_node_id)
168 {
169 return numa_node_id();
170 }
171
172 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
173 .func = bpf_get_numa_node_id,
174 .gpl_only = false,
175 .ret_type = RET_INTEGER,
176 };
177
BPF_CALL_0(bpf_ktime_get_ns)178 BPF_CALL_0(bpf_ktime_get_ns)
179 {
180 /* NMI safe access to clock monotonic */
181 return ktime_get_mono_fast_ns();
182 }
183
184 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
185 .func = bpf_ktime_get_ns,
186 .gpl_only = false,
187 .ret_type = RET_INTEGER,
188 };
189
BPF_CALL_0(bpf_ktime_get_boot_ns)190 BPF_CALL_0(bpf_ktime_get_boot_ns)
191 {
192 /* NMI safe access to clock boottime */
193 return ktime_get_boot_fast_ns();
194 }
195
196 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
197 .func = bpf_ktime_get_boot_ns,
198 .gpl_only = false,
199 .ret_type = RET_INTEGER,
200 };
201
BPF_CALL_0(bpf_ktime_get_coarse_ns)202 BPF_CALL_0(bpf_ktime_get_coarse_ns)
203 {
204 return ktime_get_coarse_ns();
205 }
206
207 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
208 .func = bpf_ktime_get_coarse_ns,
209 .gpl_only = false,
210 .ret_type = RET_INTEGER,
211 };
212
BPF_CALL_0(bpf_ktime_get_tai_ns)213 BPF_CALL_0(bpf_ktime_get_tai_ns)
214 {
215 /* NMI safe access to clock tai */
216 return ktime_get_tai_fast_ns();
217 }
218
219 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
220 .func = bpf_ktime_get_tai_ns,
221 .gpl_only = false,
222 .ret_type = RET_INTEGER,
223 };
224
BPF_CALL_0(bpf_get_current_pid_tgid)225 BPF_CALL_0(bpf_get_current_pid_tgid)
226 {
227 struct task_struct *task = current;
228
229 if (unlikely(!task))
230 return -EINVAL;
231
232 return (u64) task->tgid << 32 | task->pid;
233 }
234
235 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
236 .func = bpf_get_current_pid_tgid,
237 .gpl_only = false,
238 .ret_type = RET_INTEGER,
239 };
240
BPF_CALL_0(bpf_get_current_uid_gid)241 BPF_CALL_0(bpf_get_current_uid_gid)
242 {
243 struct task_struct *task = current;
244 kuid_t uid;
245 kgid_t gid;
246
247 if (unlikely(!task))
248 return -EINVAL;
249
250 current_uid_gid(&uid, &gid);
251 return (u64) from_kgid(&init_user_ns, gid) << 32 |
252 from_kuid(&init_user_ns, uid);
253 }
254
255 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
256 .func = bpf_get_current_uid_gid,
257 .gpl_only = false,
258 .ret_type = RET_INTEGER,
259 };
260
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)261 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
262 {
263 struct task_struct *task = current;
264
265 if (unlikely(!task))
266 goto err_clear;
267
268 /* Verifier guarantees that size > 0 */
269 strscpy_pad(buf, task->comm, size);
270 return 0;
271 err_clear:
272 memset(buf, 0, size);
273 return -EINVAL;
274 }
275
276 const struct bpf_func_proto bpf_get_current_comm_proto = {
277 .func = bpf_get_current_comm,
278 .gpl_only = false,
279 .ret_type = RET_INTEGER,
280 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
281 .arg2_type = ARG_CONST_SIZE,
282 };
283
284 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
285
__bpf_spin_lock(struct bpf_spin_lock * lock)286 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
287 {
288 arch_spinlock_t *l = (void *)lock;
289 union {
290 __u32 val;
291 arch_spinlock_t lock;
292 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
293
294 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
295 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
296 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
297 preempt_disable();
298 arch_spin_lock(l);
299 }
300
__bpf_spin_unlock(struct bpf_spin_lock * lock)301 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
302 {
303 arch_spinlock_t *l = (void *)lock;
304
305 arch_spin_unlock(l);
306 preempt_enable();
307 }
308
309 #else
310
__bpf_spin_lock(struct bpf_spin_lock * lock)311 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
312 {
313 atomic_t *l = (void *)lock;
314
315 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
316 do {
317 atomic_cond_read_relaxed(l, !VAL);
318 } while (atomic_xchg(l, 1));
319 }
320
__bpf_spin_unlock(struct bpf_spin_lock * lock)321 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
322 {
323 atomic_t *l = (void *)lock;
324
325 atomic_set_release(l, 0);
326 }
327
328 #endif
329
330 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
331
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)332 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
333 {
334 unsigned long flags;
335
336 local_irq_save(flags);
337 __bpf_spin_lock(lock);
338 __this_cpu_write(irqsave_flags, flags);
339 }
340
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)341 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
342 {
343 __bpf_spin_lock_irqsave(lock);
344 return 0;
345 }
346
347 const struct bpf_func_proto bpf_spin_lock_proto = {
348 .func = bpf_spin_lock,
349 .gpl_only = false,
350 .ret_type = RET_VOID,
351 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
352 .arg1_btf_id = BPF_PTR_POISON,
353 };
354
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)355 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
356 {
357 unsigned long flags;
358
359 flags = __this_cpu_read(irqsave_flags);
360 __bpf_spin_unlock(lock);
361 local_irq_restore(flags);
362 }
363
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)364 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
365 {
366 __bpf_spin_unlock_irqrestore(lock);
367 return 0;
368 }
369
370 const struct bpf_func_proto bpf_spin_unlock_proto = {
371 .func = bpf_spin_unlock,
372 .gpl_only = false,
373 .ret_type = RET_VOID,
374 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
375 .arg1_btf_id = BPF_PTR_POISON,
376 };
377
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)378 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
379 bool lock_src)
380 {
381 struct bpf_spin_lock *lock;
382
383 if (lock_src)
384 lock = src + map->record->spin_lock_off;
385 else
386 lock = dst + map->record->spin_lock_off;
387 preempt_disable();
388 __bpf_spin_lock_irqsave(lock);
389 copy_map_value(map, dst, src);
390 __bpf_spin_unlock_irqrestore(lock);
391 preempt_enable();
392 }
393
BPF_CALL_0(bpf_jiffies64)394 BPF_CALL_0(bpf_jiffies64)
395 {
396 return get_jiffies_64();
397 }
398
399 const struct bpf_func_proto bpf_jiffies64_proto = {
400 .func = bpf_jiffies64,
401 .gpl_only = false,
402 .ret_type = RET_INTEGER,
403 };
404
405 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)406 BPF_CALL_0(bpf_get_current_cgroup_id)
407 {
408 struct cgroup *cgrp;
409 u64 cgrp_id;
410
411 rcu_read_lock();
412 cgrp = task_dfl_cgroup(current);
413 cgrp_id = cgroup_id(cgrp);
414 rcu_read_unlock();
415
416 return cgrp_id;
417 }
418
419 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
420 .func = bpf_get_current_cgroup_id,
421 .gpl_only = false,
422 .ret_type = RET_INTEGER,
423 };
424
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)425 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
426 {
427 struct cgroup *cgrp;
428 struct cgroup *ancestor;
429 u64 cgrp_id;
430
431 rcu_read_lock();
432 cgrp = task_dfl_cgroup(current);
433 ancestor = cgroup_ancestor(cgrp, ancestor_level);
434 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
435 rcu_read_unlock();
436
437 return cgrp_id;
438 }
439
440 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
441 .func = bpf_get_current_ancestor_cgroup_id,
442 .gpl_only = false,
443 .ret_type = RET_INTEGER,
444 .arg1_type = ARG_ANYTHING,
445 };
446 #endif /* CONFIG_CGROUPS */
447
448 #define BPF_STRTOX_BASE_MASK 0x1F
449
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)450 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
451 unsigned long long *res, bool *is_negative)
452 {
453 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
454 const char *cur_buf = buf;
455 size_t cur_len = buf_len;
456 unsigned int consumed;
457 size_t val_len;
458 char str[64];
459
460 if (!buf || !buf_len || !res || !is_negative)
461 return -EINVAL;
462
463 if (base != 0 && base != 8 && base != 10 && base != 16)
464 return -EINVAL;
465
466 if (flags & ~BPF_STRTOX_BASE_MASK)
467 return -EINVAL;
468
469 while (cur_buf < buf + buf_len && isspace(*cur_buf))
470 ++cur_buf;
471
472 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
473 if (*is_negative)
474 ++cur_buf;
475
476 consumed = cur_buf - buf;
477 cur_len -= consumed;
478 if (!cur_len)
479 return -EINVAL;
480
481 cur_len = min(cur_len, sizeof(str) - 1);
482 memcpy(str, cur_buf, cur_len);
483 str[cur_len] = '\0';
484 cur_buf = str;
485
486 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
487 val_len = _parse_integer(cur_buf, base, res);
488
489 if (val_len & KSTRTOX_OVERFLOW)
490 return -ERANGE;
491
492 if (val_len == 0)
493 return -EINVAL;
494
495 cur_buf += val_len;
496 consumed += cur_buf - str;
497
498 return consumed;
499 }
500
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)501 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
502 long long *res)
503 {
504 unsigned long long _res;
505 bool is_negative;
506 int err;
507
508 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
509 if (err < 0)
510 return err;
511 if (is_negative) {
512 if ((long long)-_res > 0)
513 return -ERANGE;
514 *res = -_res;
515 } else {
516 if ((long long)_res < 0)
517 return -ERANGE;
518 *res = _res;
519 }
520 return err;
521 }
522
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)523 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
524 s64 *, res)
525 {
526 long long _res;
527 int err;
528
529 *res = 0;
530 err = __bpf_strtoll(buf, buf_len, flags, &_res);
531 if (err < 0)
532 return err;
533 *res = _res;
534 return err;
535 }
536
537 const struct bpf_func_proto bpf_strtol_proto = {
538 .func = bpf_strtol,
539 .gpl_only = false,
540 .ret_type = RET_INTEGER,
541 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
542 .arg2_type = ARG_CONST_SIZE,
543 .arg3_type = ARG_ANYTHING,
544 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
545 .arg4_size = sizeof(s64),
546 };
547
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)548 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
549 u64 *, res)
550 {
551 unsigned long long _res;
552 bool is_negative;
553 int err;
554
555 *res = 0;
556 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
557 if (err < 0)
558 return err;
559 if (is_negative)
560 return -EINVAL;
561 *res = _res;
562 return err;
563 }
564
565 const struct bpf_func_proto bpf_strtoul_proto = {
566 .func = bpf_strtoul,
567 .gpl_only = false,
568 .ret_type = RET_INTEGER,
569 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
570 .arg2_type = ARG_CONST_SIZE,
571 .arg3_type = ARG_ANYTHING,
572 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
573 .arg4_size = sizeof(u64),
574 };
575
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)576 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
577 {
578 return strncmp(s1, s2, s1_sz);
579 }
580
581 static const struct bpf_func_proto bpf_strncmp_proto = {
582 .func = bpf_strncmp,
583 .gpl_only = false,
584 .ret_type = RET_INTEGER,
585 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
586 .arg2_type = ARG_CONST_SIZE,
587 .arg3_type = ARG_PTR_TO_CONST_STR,
588 };
589
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)590 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
591 struct bpf_pidns_info *, nsdata, u32, size)
592 {
593 struct task_struct *task = current;
594 struct pid_namespace *pidns;
595 int err = -EINVAL;
596
597 if (unlikely(size != sizeof(struct bpf_pidns_info)))
598 goto clear;
599
600 if (unlikely((u64)(dev_t)dev != dev))
601 goto clear;
602
603 if (unlikely(!task))
604 goto clear;
605
606 pidns = task_active_pid_ns(task);
607 if (unlikely(!pidns)) {
608 err = -ENOENT;
609 goto clear;
610 }
611
612 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
613 goto clear;
614
615 nsdata->pid = task_pid_nr_ns(task, pidns);
616 nsdata->tgid = task_tgid_nr_ns(task, pidns);
617 return 0;
618 clear:
619 memset((void *)nsdata, 0, (size_t) size);
620 return err;
621 }
622
623 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
624 .func = bpf_get_ns_current_pid_tgid,
625 .gpl_only = false,
626 .ret_type = RET_INTEGER,
627 .arg1_type = ARG_ANYTHING,
628 .arg2_type = ARG_ANYTHING,
629 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
630 .arg4_type = ARG_CONST_SIZE,
631 };
632
633 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
634 .func = bpf_get_raw_cpu_id,
635 .gpl_only = false,
636 .ret_type = RET_INTEGER,
637 };
638
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)639 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
640 u64, flags, void *, data, u64, size)
641 {
642 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
643 return -EINVAL;
644
645 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
646 }
647
648 const struct bpf_func_proto bpf_event_output_data_proto = {
649 .func = bpf_event_output_data,
650 .gpl_only = true,
651 .ret_type = RET_INTEGER,
652 .arg1_type = ARG_PTR_TO_CTX,
653 .arg2_type = ARG_CONST_MAP_PTR,
654 .arg3_type = ARG_ANYTHING,
655 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
656 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
657 };
658
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)659 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
660 const void __user *, user_ptr)
661 {
662 int ret = copy_from_user(dst, user_ptr, size);
663
664 if (unlikely(ret)) {
665 memset(dst, 0, size);
666 ret = -EFAULT;
667 }
668
669 return ret;
670 }
671
672 const struct bpf_func_proto bpf_copy_from_user_proto = {
673 .func = bpf_copy_from_user,
674 .gpl_only = false,
675 .might_sleep = true,
676 .ret_type = RET_INTEGER,
677 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
678 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
679 .arg3_type = ARG_ANYTHING,
680 };
681
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)682 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
683 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
684 {
685 int ret;
686
687 /* flags is not used yet */
688 if (unlikely(flags))
689 return -EINVAL;
690
691 if (unlikely(!size))
692 return 0;
693
694 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
695 if (ret == size)
696 return 0;
697
698 memset(dst, 0, size);
699 /* Return -EFAULT for partial read */
700 return ret < 0 ? ret : -EFAULT;
701 }
702
703 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
704 .func = bpf_copy_from_user_task,
705 .gpl_only = true,
706 .might_sleep = true,
707 .ret_type = RET_INTEGER,
708 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
709 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
710 .arg3_type = ARG_ANYTHING,
711 .arg4_type = ARG_PTR_TO_BTF_ID,
712 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
713 .arg5_type = ARG_ANYTHING
714 };
715
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)716 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
717 {
718 if (cpu >= nr_cpu_ids)
719 return (unsigned long)NULL;
720
721 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
722 }
723
724 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
725 .func = bpf_per_cpu_ptr,
726 .gpl_only = false,
727 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
728 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
729 .arg2_type = ARG_ANYTHING,
730 };
731
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)732 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
733 {
734 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
735 }
736
737 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
738 .func = bpf_this_cpu_ptr,
739 .gpl_only = false,
740 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
741 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
742 };
743
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)744 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
745 size_t bufsz)
746 {
747 void __user *user_ptr = (__force void __user *)unsafe_ptr;
748
749 buf[0] = 0;
750
751 switch (fmt_ptype) {
752 case 's':
753 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
754 if ((unsigned long)unsafe_ptr < TASK_SIZE)
755 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
756 fallthrough;
757 #endif
758 case 'k':
759 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
760 case 'u':
761 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
762 }
763
764 return -EINVAL;
765 }
766
767 /* Support executing three nested bprintf helper calls on a given CPU */
768 #define MAX_BPRINTF_NEST_LEVEL 3
769
770 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
771 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
772
bpf_try_get_buffers(struct bpf_bprintf_buffers ** bufs)773 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
774 {
775 int nest_level;
776
777 preempt_disable();
778 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
779 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
780 this_cpu_dec(bpf_bprintf_nest_level);
781 preempt_enable();
782 return -EBUSY;
783 }
784 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
785
786 return 0;
787 }
788
bpf_put_buffers(void)789 void bpf_put_buffers(void)
790 {
791 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
792 return;
793 this_cpu_dec(bpf_bprintf_nest_level);
794 preempt_enable();
795 }
796
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 if (!data->bin_args && !data->buf)
800 return;
801 bpf_put_buffers();
802 }
803
804 /*
805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806 *
807 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808 *
809 * This can be used in two ways:
810 * - Format string verification only: when data->get_bin_args is false
811 * - Arguments preparation: in addition to the above verification, it writes in
812 * data->bin_args a binary representation of arguments usable by bstr_printf
813 * where pointers from BPF have been sanitized.
814 *
815 * In argument preparation mode, if 0 is returned, safe temporary buffers are
816 * allocated and bpf_bprintf_cleanup should be called to free them after use.
817 */
bpf_bprintf_prepare(const char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819 u32 num_args, struct bpf_bprintf_data *data)
820 {
821 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 struct bpf_bprintf_buffers *buffers = NULL;
824 size_t sizeof_cur_arg, sizeof_cur_ip;
825 int err, i, num_spec = 0;
826 u64 cur_arg;
827 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828
829 fmt_end = strnchr(fmt, fmt_size, 0);
830 if (!fmt_end)
831 return -EINVAL;
832 fmt_size = fmt_end - fmt;
833
834 if (get_buffers && bpf_try_get_buffers(&buffers))
835 return -EBUSY;
836
837 if (data->get_bin_args) {
838 if (num_args)
839 tmp_buf = buffers->bin_args;
840 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 data->bin_args = (u32 *)tmp_buf;
842 }
843
844 if (data->get_buf)
845 data->buf = buffers->buf;
846
847 for (i = 0; i < fmt_size; i++) {
848 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 err = -EINVAL;
850 goto out;
851 }
852
853 if (fmt[i] != '%')
854 continue;
855
856 if (fmt[i + 1] == '%') {
857 i++;
858 continue;
859 }
860
861 if (num_spec >= num_args) {
862 err = -EINVAL;
863 goto out;
864 }
865
866 /* The string is zero-terminated so if fmt[i] != 0, we can
867 * always access fmt[i + 1], in the worst case it will be a 0
868 */
869 i++;
870
871 /* skip optional "[0 +-][num]" width formatting field */
872 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
873 fmt[i] == ' ')
874 i++;
875 if (fmt[i] >= '1' && fmt[i] <= '9') {
876 i++;
877 while (fmt[i] >= '0' && fmt[i] <= '9')
878 i++;
879 }
880
881 if (fmt[i] == 'p') {
882 sizeof_cur_arg = sizeof(long);
883
884 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 ispunct(fmt[i + 1])) {
886 if (tmp_buf)
887 cur_arg = raw_args[num_spec];
888 goto nocopy_fmt;
889 }
890
891 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892 fmt[i + 2] == 's') {
893 fmt_ptype = fmt[i + 1];
894 i += 2;
895 goto fmt_str;
896 }
897
898 if (fmt[i + 1] == 'K' ||
899 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900 fmt[i + 1] == 'S') {
901 if (tmp_buf)
902 cur_arg = raw_args[num_spec];
903 i++;
904 goto nocopy_fmt;
905 }
906
907 if (fmt[i + 1] == 'B') {
908 if (tmp_buf) {
909 err = snprintf(tmp_buf,
910 (tmp_buf_end - tmp_buf),
911 "%pB",
912 (void *)(long)raw_args[num_spec]);
913 tmp_buf += (err + 1);
914 }
915
916 i++;
917 num_spec++;
918 continue;
919 }
920
921 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924 err = -EINVAL;
925 goto out;
926 }
927
928 i += 2;
929 if (!tmp_buf)
930 goto nocopy_fmt;
931
932 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934 err = -ENOSPC;
935 goto out;
936 }
937
938 unsafe_ptr = (char *)(long)raw_args[num_spec];
939 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940 sizeof_cur_ip);
941 if (err < 0)
942 memset(cur_ip, 0, sizeof_cur_ip);
943
944 /* hack: bstr_printf expects IP addresses to be
945 * pre-formatted as strings, ironically, the easiest way
946 * to do that is to call snprintf.
947 */
948 ip_spec[2] = fmt[i - 1];
949 ip_spec[3] = fmt[i];
950 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951 ip_spec, &cur_ip);
952
953 tmp_buf += err + 1;
954 num_spec++;
955
956 continue;
957 } else if (fmt[i] == 's') {
958 fmt_ptype = fmt[i];
959 fmt_str:
960 if (fmt[i + 1] != 0 &&
961 !isspace(fmt[i + 1]) &&
962 !ispunct(fmt[i + 1])) {
963 err = -EINVAL;
964 goto out;
965 }
966
967 if (!tmp_buf)
968 goto nocopy_fmt;
969
970 if (tmp_buf_end == tmp_buf) {
971 err = -ENOSPC;
972 goto out;
973 }
974
975 unsafe_ptr = (char *)(long)raw_args[num_spec];
976 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977 fmt_ptype,
978 tmp_buf_end - tmp_buf);
979 if (err < 0) {
980 tmp_buf[0] = '\0';
981 err = 1;
982 }
983
984 tmp_buf += err;
985 num_spec++;
986
987 continue;
988 } else if (fmt[i] == 'c') {
989 if (!tmp_buf)
990 goto nocopy_fmt;
991
992 if (tmp_buf_end == tmp_buf) {
993 err = -ENOSPC;
994 goto out;
995 }
996
997 *tmp_buf = raw_args[num_spec];
998 tmp_buf++;
999 num_spec++;
1000
1001 continue;
1002 }
1003
1004 sizeof_cur_arg = sizeof(int);
1005
1006 if (fmt[i] == 'l') {
1007 sizeof_cur_arg = sizeof(long);
1008 i++;
1009 }
1010 if (fmt[i] == 'l') {
1011 sizeof_cur_arg = sizeof(long long);
1012 i++;
1013 }
1014
1015 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016 fmt[i] != 'x' && fmt[i] != 'X') {
1017 err = -EINVAL;
1018 goto out;
1019 }
1020
1021 if (tmp_buf)
1022 cur_arg = raw_args[num_spec];
1023 nocopy_fmt:
1024 if (tmp_buf) {
1025 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027 err = -ENOSPC;
1028 goto out;
1029 }
1030
1031 if (sizeof_cur_arg == 8) {
1032 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034 } else {
1035 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1036 }
1037 tmp_buf += sizeof_cur_arg;
1038 }
1039 num_spec++;
1040 }
1041
1042 err = 0;
1043 out:
1044 if (err)
1045 bpf_bprintf_cleanup(data);
1046 return err;
1047 }
1048
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050 const void *, args, u32, data_len)
1051 {
1052 struct bpf_bprintf_data data = {
1053 .get_bin_args = true,
1054 };
1055 int err, num_args;
1056
1057 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058 (data_len && !args))
1059 return -EINVAL;
1060 num_args = data_len / 8;
1061
1062 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063 * can safely give an unbounded size.
1064 */
1065 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066 if (err < 0)
1067 return err;
1068
1069 err = bstr_printf(str, str_size, fmt, data.bin_args);
1070
1071 bpf_bprintf_cleanup(&data);
1072
1073 return err + 1;
1074 }
1075
1076 const struct bpf_func_proto bpf_snprintf_proto = {
1077 .func = bpf_snprintf,
1078 .gpl_only = true,
1079 .ret_type = RET_INTEGER,
1080 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1081 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1082 .arg3_type = ARG_PTR_TO_CONST_STR,
1083 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1085 };
1086
map_key_from_value(struct bpf_map * map,void * value,u32 * arr_idx)1087 static void *map_key_from_value(struct bpf_map *map, void *value, u32 *arr_idx)
1088 {
1089 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1090 struct bpf_array *array = container_of(map, struct bpf_array, map);
1091
1092 *arr_idx = ((char *)value - array->value) / array->elem_size;
1093 return arr_idx;
1094 }
1095 return (void *)value - round_up(map->key_size, 8);
1096 }
1097
1098 struct bpf_async_cb {
1099 struct bpf_map *map;
1100 struct bpf_prog *prog;
1101 void __rcu *callback_fn;
1102 void *value;
1103 union {
1104 struct rcu_head rcu;
1105 struct work_struct delete_work;
1106 };
1107 u64 flags;
1108 };
1109
1110 /* BPF map elements can contain 'struct bpf_timer'.
1111 * Such map owns all of its BPF timers.
1112 * 'struct bpf_timer' is allocated as part of map element allocation
1113 * and it's zero initialized.
1114 * That space is used to keep 'struct bpf_async_kern'.
1115 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1116 * remembers 'struct bpf_map *' pointer it's part of.
1117 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1118 * bpf_timer_start() arms the timer.
1119 * If user space reference to a map goes to zero at this point
1120 * ops->map_release_uref callback is responsible for cancelling the timers,
1121 * freeing their memory, and decrementing prog's refcnts.
1122 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1123 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1124 * freeing the timers when inner map is replaced or deleted by user space.
1125 */
1126 struct bpf_hrtimer {
1127 struct bpf_async_cb cb;
1128 struct hrtimer timer;
1129 atomic_t cancelling;
1130 };
1131
1132 struct bpf_work {
1133 struct bpf_async_cb cb;
1134 struct work_struct work;
1135 struct work_struct delete_work;
1136 };
1137
1138 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1139 struct bpf_async_kern {
1140 union {
1141 struct bpf_async_cb *cb;
1142 struct bpf_hrtimer *timer;
1143 struct bpf_work *work;
1144 };
1145 /* bpf_spin_lock is used here instead of spinlock_t to make
1146 * sure that it always fits into space reserved by struct bpf_timer
1147 * regardless of LOCKDEP and spinlock debug flags.
1148 */
1149 struct bpf_spin_lock lock;
1150 } __attribute__((aligned(8)));
1151
1152 enum bpf_async_type {
1153 BPF_ASYNC_TYPE_TIMER = 0,
1154 BPF_ASYNC_TYPE_WQ,
1155 };
1156
1157 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1158
bpf_timer_cb(struct hrtimer * hrtimer)1159 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1160 {
1161 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1162 struct bpf_map *map = t->cb.map;
1163 void *value = t->cb.value;
1164 bpf_callback_t callback_fn;
1165 void *key;
1166 u32 idx;
1167
1168 BTF_TYPE_EMIT(struct bpf_timer);
1169 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1170 if (!callback_fn)
1171 goto out;
1172
1173 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1174 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1175 * Remember the timer this callback is servicing to prevent
1176 * deadlock if callback_fn() calls bpf_timer_cancel() or
1177 * bpf_map_delete_elem() on the same timer.
1178 */
1179 this_cpu_write(hrtimer_running, t);
1180
1181 key = map_key_from_value(map, value, &idx);
1182
1183 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1184 /* The verifier checked that return value is zero. */
1185
1186 this_cpu_write(hrtimer_running, NULL);
1187 out:
1188 return HRTIMER_NORESTART;
1189 }
1190
bpf_wq_work(struct work_struct * work)1191 static void bpf_wq_work(struct work_struct *work)
1192 {
1193 struct bpf_work *w = container_of(work, struct bpf_work, work);
1194 struct bpf_async_cb *cb = &w->cb;
1195 struct bpf_map *map = cb->map;
1196 bpf_callback_t callback_fn;
1197 void *value = cb->value;
1198 void *key;
1199 u32 idx;
1200
1201 BTF_TYPE_EMIT(struct bpf_wq);
1202
1203 callback_fn = READ_ONCE(cb->callback_fn);
1204 if (!callback_fn)
1205 return;
1206
1207 key = map_key_from_value(map, value, &idx);
1208
1209 rcu_read_lock_trace();
1210 migrate_disable();
1211
1212 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1213
1214 migrate_enable();
1215 rcu_read_unlock_trace();
1216 }
1217
bpf_async_cb_rcu_free(struct rcu_head * rcu)1218 static void bpf_async_cb_rcu_free(struct rcu_head *rcu)
1219 {
1220 struct bpf_async_cb *cb = container_of(rcu, struct bpf_async_cb, rcu);
1221
1222 kfree_nolock(cb);
1223 }
1224
bpf_wq_delete_work(struct work_struct * work)1225 static void bpf_wq_delete_work(struct work_struct *work)
1226 {
1227 struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1228
1229 cancel_work_sync(&w->work);
1230
1231 call_rcu(&w->cb.rcu, bpf_async_cb_rcu_free);
1232 }
1233
bpf_timer_delete_work(struct work_struct * work)1234 static void bpf_timer_delete_work(struct work_struct *work)
1235 {
1236 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1237
1238 /* Cancel the timer and wait for callback to complete if it was running.
1239 * If hrtimer_cancel() can be safely called it's safe to call
1240 * call_rcu() right after for both preallocated and non-preallocated
1241 * maps. The async->cb = NULL was already done and no code path can see
1242 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1243 * bpf_timer_cancel_and_free will have been cancelled.
1244 */
1245 hrtimer_cancel(&t->timer);
1246 call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free);
1247 }
1248
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1249 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1250 enum bpf_async_type type)
1251 {
1252 struct bpf_async_cb *cb;
1253 struct bpf_hrtimer *t;
1254 struct bpf_work *w;
1255 clockid_t clockid;
1256 size_t size;
1257 int ret = 0;
1258
1259 if (in_nmi())
1260 return -EOPNOTSUPP;
1261
1262 switch (type) {
1263 case BPF_ASYNC_TYPE_TIMER:
1264 size = sizeof(struct bpf_hrtimer);
1265 break;
1266 case BPF_ASYNC_TYPE_WQ:
1267 size = sizeof(struct bpf_work);
1268 break;
1269 default:
1270 return -EINVAL;
1271 }
1272
1273 __bpf_spin_lock_irqsave(&async->lock);
1274 t = async->timer;
1275 if (t) {
1276 ret = -EBUSY;
1277 goto out;
1278 }
1279
1280 cb = bpf_map_kmalloc_nolock(map, size, 0, map->numa_node);
1281 if (!cb) {
1282 ret = -ENOMEM;
1283 goto out;
1284 }
1285
1286 switch (type) {
1287 case BPF_ASYNC_TYPE_TIMER:
1288 clockid = flags & (MAX_CLOCKS - 1);
1289 t = (struct bpf_hrtimer *)cb;
1290
1291 atomic_set(&t->cancelling, 0);
1292 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1293 hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1294 cb->value = (void *)async - map->record->timer_off;
1295 break;
1296 case BPF_ASYNC_TYPE_WQ:
1297 w = (struct bpf_work *)cb;
1298
1299 INIT_WORK(&w->work, bpf_wq_work);
1300 INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1301 cb->value = (void *)async - map->record->wq_off;
1302 break;
1303 }
1304 cb->map = map;
1305 cb->prog = NULL;
1306 cb->flags = flags;
1307 rcu_assign_pointer(cb->callback_fn, NULL);
1308
1309 WRITE_ONCE(async->cb, cb);
1310 /* Guarantee the order between async->cb and map->usercnt. So
1311 * when there are concurrent uref release and bpf timer init, either
1312 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1313 * timer or atomic64_read() below returns a zero usercnt.
1314 */
1315 smp_mb();
1316 if (!atomic64_read(&map->usercnt)) {
1317 /* maps with timers must be either held by user space
1318 * or pinned in bpffs.
1319 */
1320 WRITE_ONCE(async->cb, NULL);
1321 kfree_nolock(cb);
1322 ret = -EPERM;
1323 }
1324 out:
1325 __bpf_spin_unlock_irqrestore(&async->lock);
1326 return ret;
1327 }
1328
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1329 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1330 u64, flags)
1331 {
1332 clock_t clockid = flags & (MAX_CLOCKS - 1);
1333
1334 BUILD_BUG_ON(MAX_CLOCKS != 16);
1335 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1336 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1337
1338 if (flags >= MAX_CLOCKS ||
1339 /* similar to timerfd except _ALARM variants are not supported */
1340 (clockid != CLOCK_MONOTONIC &&
1341 clockid != CLOCK_REALTIME &&
1342 clockid != CLOCK_BOOTTIME))
1343 return -EINVAL;
1344
1345 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1346 }
1347
1348 static const struct bpf_func_proto bpf_timer_init_proto = {
1349 .func = bpf_timer_init,
1350 .gpl_only = true,
1351 .ret_type = RET_INTEGER,
1352 .arg1_type = ARG_PTR_TO_TIMER,
1353 .arg2_type = ARG_CONST_MAP_PTR,
1354 .arg3_type = ARG_ANYTHING,
1355 };
1356
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1357 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1358 struct bpf_prog_aux *aux, unsigned int flags,
1359 enum bpf_async_type type)
1360 {
1361 struct bpf_prog *prev, *prog = aux->prog;
1362 struct bpf_async_cb *cb;
1363 int ret = 0;
1364
1365 if (in_nmi())
1366 return -EOPNOTSUPP;
1367 __bpf_spin_lock_irqsave(&async->lock);
1368 cb = async->cb;
1369 if (!cb) {
1370 ret = -EINVAL;
1371 goto out;
1372 }
1373 if (!atomic64_read(&cb->map->usercnt)) {
1374 /* maps with timers must be either held by user space
1375 * or pinned in bpffs. Otherwise timer might still be
1376 * running even when bpf prog is detached and user space
1377 * is gone, since map_release_uref won't ever be called.
1378 */
1379 ret = -EPERM;
1380 goto out;
1381 }
1382 prev = cb->prog;
1383 if (prev != prog) {
1384 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1385 * can pick different callback_fn-s within the same prog.
1386 */
1387 prog = bpf_prog_inc_not_zero(prog);
1388 if (IS_ERR(prog)) {
1389 ret = PTR_ERR(prog);
1390 goto out;
1391 }
1392 if (prev)
1393 /* Drop prev prog refcnt when swapping with new prog */
1394 bpf_prog_put(prev);
1395 cb->prog = prog;
1396 }
1397 rcu_assign_pointer(cb->callback_fn, callback_fn);
1398 out:
1399 __bpf_spin_unlock_irqrestore(&async->lock);
1400 return ret;
1401 }
1402
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1403 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1404 struct bpf_prog_aux *, aux)
1405 {
1406 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1407 }
1408
1409 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1410 .func = bpf_timer_set_callback,
1411 .gpl_only = true,
1412 .ret_type = RET_INTEGER,
1413 .arg1_type = ARG_PTR_TO_TIMER,
1414 .arg2_type = ARG_PTR_TO_FUNC,
1415 };
1416
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1417 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1418 {
1419 struct bpf_hrtimer *t;
1420 int ret = 0;
1421 enum hrtimer_mode mode;
1422
1423 if (in_nmi())
1424 return -EOPNOTSUPP;
1425 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1426 return -EINVAL;
1427 __bpf_spin_lock_irqsave(&timer->lock);
1428 t = timer->timer;
1429 if (!t || !t->cb.prog) {
1430 ret = -EINVAL;
1431 goto out;
1432 }
1433
1434 if (flags & BPF_F_TIMER_ABS)
1435 mode = HRTIMER_MODE_ABS_SOFT;
1436 else
1437 mode = HRTIMER_MODE_REL_SOFT;
1438
1439 if (flags & BPF_F_TIMER_CPU_PIN)
1440 mode |= HRTIMER_MODE_PINNED;
1441
1442 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1443 out:
1444 __bpf_spin_unlock_irqrestore(&timer->lock);
1445 return ret;
1446 }
1447
1448 static const struct bpf_func_proto bpf_timer_start_proto = {
1449 .func = bpf_timer_start,
1450 .gpl_only = true,
1451 .ret_type = RET_INTEGER,
1452 .arg1_type = ARG_PTR_TO_TIMER,
1453 .arg2_type = ARG_ANYTHING,
1454 .arg3_type = ARG_ANYTHING,
1455 };
1456
drop_prog_refcnt(struct bpf_async_cb * async)1457 static void drop_prog_refcnt(struct bpf_async_cb *async)
1458 {
1459 struct bpf_prog *prog = async->prog;
1460
1461 if (prog) {
1462 bpf_prog_put(prog);
1463 async->prog = NULL;
1464 rcu_assign_pointer(async->callback_fn, NULL);
1465 }
1466 }
1467
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1468 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1469 {
1470 struct bpf_hrtimer *t, *cur_t;
1471 bool inc = false;
1472 int ret = 0;
1473
1474 if (in_nmi())
1475 return -EOPNOTSUPP;
1476 rcu_read_lock();
1477 __bpf_spin_lock_irqsave(&timer->lock);
1478 t = timer->timer;
1479 if (!t) {
1480 ret = -EINVAL;
1481 goto out;
1482 }
1483
1484 cur_t = this_cpu_read(hrtimer_running);
1485 if (cur_t == t) {
1486 /* If bpf callback_fn is trying to bpf_timer_cancel()
1487 * its own timer the hrtimer_cancel() will deadlock
1488 * since it waits for callback_fn to finish.
1489 */
1490 ret = -EDEADLK;
1491 goto out;
1492 }
1493
1494 /* Only account in-flight cancellations when invoked from a timer
1495 * callback, since we want to avoid waiting only if other _callbacks_
1496 * are waiting on us, to avoid introducing lockups. Non-callback paths
1497 * are ok, since nobody would synchronously wait for their completion.
1498 */
1499 if (!cur_t)
1500 goto drop;
1501 atomic_inc(&t->cancelling);
1502 /* Need full barrier after relaxed atomic_inc */
1503 smp_mb__after_atomic();
1504 inc = true;
1505 if (atomic_read(&cur_t->cancelling)) {
1506 /* We're cancelling timer t, while some other timer callback is
1507 * attempting to cancel us. In such a case, it might be possible
1508 * that timer t belongs to the other callback, or some other
1509 * callback waiting upon it (creating transitive dependencies
1510 * upon us), and we will enter a deadlock if we continue
1511 * cancelling and waiting for it synchronously, since it might
1512 * do the same. Bail!
1513 */
1514 ret = -EDEADLK;
1515 goto out;
1516 }
1517 drop:
1518 drop_prog_refcnt(&t->cb);
1519 out:
1520 __bpf_spin_unlock_irqrestore(&timer->lock);
1521 /* Cancel the timer and wait for associated callback to finish
1522 * if it was running.
1523 */
1524 ret = ret ?: hrtimer_cancel(&t->timer);
1525 if (inc)
1526 atomic_dec(&t->cancelling);
1527 rcu_read_unlock();
1528 return ret;
1529 }
1530
1531 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1532 .func = bpf_timer_cancel,
1533 .gpl_only = true,
1534 .ret_type = RET_INTEGER,
1535 .arg1_type = ARG_PTR_TO_TIMER,
1536 };
1537
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1538 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1539 {
1540 struct bpf_async_cb *cb;
1541
1542 /* Performance optimization: read async->cb without lock first. */
1543 if (!READ_ONCE(async->cb))
1544 return NULL;
1545
1546 __bpf_spin_lock_irqsave(&async->lock);
1547 /* re-read it under lock */
1548 cb = async->cb;
1549 if (!cb)
1550 goto out;
1551 drop_prog_refcnt(cb);
1552 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1553 * this timer, since it won't be initialized.
1554 */
1555 WRITE_ONCE(async->cb, NULL);
1556 out:
1557 __bpf_spin_unlock_irqrestore(&async->lock);
1558 return cb;
1559 }
1560
1561 /* This function is called by map_delete/update_elem for individual element and
1562 * by ops->map_release_uref when the user space reference to a map reaches zero.
1563 */
bpf_timer_cancel_and_free(void * val)1564 void bpf_timer_cancel_and_free(void *val)
1565 {
1566 struct bpf_hrtimer *t;
1567
1568 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1569
1570 if (!t)
1571 return;
1572 /* We check that bpf_map_delete/update_elem() was called from timer
1573 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1574 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1575 * just return -1). Though callback_fn is still running on this cpu it's
1576 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1577 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1578 * since async->cb = NULL was already done. The timer will be
1579 * effectively cancelled because bpf_timer_cb() will return
1580 * HRTIMER_NORESTART.
1581 *
1582 * However, it is possible the timer callback_fn calling us armed the
1583 * timer _before_ calling us, such that failing to cancel it here will
1584 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1585 * Therefore, we _need_ to cancel any outstanding timers before we do
1586 * call_rcu, even though no more timers can be armed.
1587 *
1588 * Moreover, we need to schedule work even if timer does not belong to
1589 * the calling callback_fn, as on two different CPUs, we can end up in a
1590 * situation where both sides run in parallel, try to cancel one
1591 * another, and we end up waiting on both sides in hrtimer_cancel
1592 * without making forward progress, since timer1 depends on time2
1593 * callback to finish, and vice versa.
1594 *
1595 * CPU 1 (timer1_cb) CPU 2 (timer2_cb)
1596 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1)
1597 *
1598 * To avoid these issues, punt to workqueue context when we are in a
1599 * timer callback.
1600 */
1601 if (this_cpu_read(hrtimer_running)) {
1602 queue_work(system_dfl_wq, &t->cb.delete_work);
1603 return;
1604 }
1605
1606 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1607 /* If the timer is running on other CPU, also use a kworker to
1608 * wait for the completion of the timer instead of trying to
1609 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1610 * completion.
1611 */
1612 if (hrtimer_try_to_cancel(&t->timer) >= 0)
1613 call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free);
1614 else
1615 queue_work(system_dfl_wq, &t->cb.delete_work);
1616 } else {
1617 bpf_timer_delete_work(&t->cb.delete_work);
1618 }
1619 }
1620
1621 /* This function is called by map_delete/update_elem for individual element and
1622 * by ops->map_release_uref when the user space reference to a map reaches zero.
1623 */
bpf_wq_cancel_and_free(void * val)1624 void bpf_wq_cancel_and_free(void *val)
1625 {
1626 struct bpf_work *work;
1627
1628 BTF_TYPE_EMIT(struct bpf_wq);
1629
1630 work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1631 if (!work)
1632 return;
1633 /* Trigger cancel of the sleepable work, but *do not* wait for
1634 * it to finish if it was running as we might not be in a
1635 * sleepable context.
1636 * kfree will be called once the work has finished.
1637 */
1638 schedule_work(&work->delete_work);
1639 }
1640
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1641 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1642 {
1643 unsigned long *kptr = dst;
1644
1645 /* This helper may be inlined by verifier. */
1646 return xchg(kptr, (unsigned long)ptr);
1647 }
1648
1649 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1650 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1651 * denote type that verifier will determine.
1652 */
1653 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1654 .func = bpf_kptr_xchg,
1655 .gpl_only = false,
1656 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1657 .ret_btf_id = BPF_PTR_POISON,
1658 .arg1_type = ARG_KPTR_XCHG_DEST,
1659 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1660 .arg2_btf_id = BPF_PTR_POISON,
1661 };
1662
1663 struct bpf_dynptr_file_impl {
1664 struct freader freader;
1665 /* 64 bit offset and size overriding 32 bit ones in bpf_dynptr_kern */
1666 u64 offset;
1667 u64 size;
1668 };
1669
1670 /* Since the upper 8 bits of dynptr->size is reserved, the
1671 * maximum supported size is 2^24 - 1.
1672 */
1673 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1674 #define DYNPTR_TYPE_SHIFT 28
1675 #define DYNPTR_SIZE_MASK 0xFFFFFF
1676 #define DYNPTR_RDONLY_BIT BIT(31)
1677
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1678 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1679 {
1680 return ptr->size & DYNPTR_RDONLY_BIT;
1681 }
1682
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1683 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1684 {
1685 ptr->size |= DYNPTR_RDONLY_BIT;
1686 }
1687
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1688 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1689 {
1690 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1691 }
1692
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1693 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1694 {
1695 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1696 }
1697
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1698 u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1699 {
1700 if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1701 struct bpf_dynptr_file_impl *df = ptr->data;
1702
1703 return df->size;
1704 }
1705
1706 return ptr->size & DYNPTR_SIZE_MASK;
1707 }
1708
bpf_dynptr_advance_offset(struct bpf_dynptr_kern * ptr,u64 off)1709 static void bpf_dynptr_advance_offset(struct bpf_dynptr_kern *ptr, u64 off)
1710 {
1711 if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1712 struct bpf_dynptr_file_impl *df = ptr->data;
1713
1714 df->offset += off;
1715 return;
1716 }
1717 ptr->offset += off;
1718 }
1719
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u64 new_size)1720 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u64 new_size)
1721 {
1722 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1723
1724 if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1725 struct bpf_dynptr_file_impl *df = ptr->data;
1726
1727 df->size = new_size;
1728 return;
1729 }
1730 ptr->size = (u32)new_size | metadata;
1731 }
1732
bpf_dynptr_check_size(u64 size)1733 int bpf_dynptr_check_size(u64 size)
1734 {
1735 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1736 }
1737
bpf_file_fetch_bytes(struct bpf_dynptr_file_impl * df,u64 offset,void * buf,u64 len)1738 static int bpf_file_fetch_bytes(struct bpf_dynptr_file_impl *df, u64 offset, void *buf, u64 len)
1739 {
1740 const void *ptr;
1741
1742 if (!buf)
1743 return -EINVAL;
1744
1745 df->freader.buf = buf;
1746 df->freader.buf_sz = len;
1747 ptr = freader_fetch(&df->freader, offset + df->offset, len);
1748 if (!ptr)
1749 return df->freader.err;
1750
1751 if (ptr != buf) /* Force copying into the buffer */
1752 memcpy(buf, ptr, len);
1753
1754 return 0;
1755 }
1756
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1757 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1758 enum bpf_dynptr_type type, u32 offset, u32 size)
1759 {
1760 ptr->data = data;
1761 ptr->offset = offset;
1762 ptr->size = size;
1763 bpf_dynptr_set_type(ptr, type);
1764 }
1765
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1766 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1767 {
1768 memset(ptr, 0, sizeof(*ptr));
1769 }
1770
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u64,size,u64,flags,struct bpf_dynptr_kern *,ptr)1771 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u64, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1772 {
1773 int err;
1774
1775 BTF_TYPE_EMIT(struct bpf_dynptr);
1776
1777 err = bpf_dynptr_check_size(size);
1778 if (err)
1779 goto error;
1780
1781 /* flags is currently unsupported */
1782 if (flags) {
1783 err = -EINVAL;
1784 goto error;
1785 }
1786
1787 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1788
1789 return 0;
1790
1791 error:
1792 bpf_dynptr_set_null(ptr);
1793 return err;
1794 }
1795
1796 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1797 .func = bpf_dynptr_from_mem,
1798 .gpl_only = false,
1799 .ret_type = RET_INTEGER,
1800 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1801 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1802 .arg3_type = ARG_ANYTHING,
1803 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1804 };
1805
__bpf_dynptr_read(void * dst,u64 len,const struct bpf_dynptr_kern * src,u64 offset,u64 flags)1806 static int __bpf_dynptr_read(void *dst, u64 len, const struct bpf_dynptr_kern *src,
1807 u64 offset, u64 flags)
1808 {
1809 enum bpf_dynptr_type type;
1810 int err;
1811
1812 if (!src->data || flags)
1813 return -EINVAL;
1814
1815 err = bpf_dynptr_check_off_len(src, offset, len);
1816 if (err)
1817 return err;
1818
1819 type = bpf_dynptr_get_type(src);
1820
1821 switch (type) {
1822 case BPF_DYNPTR_TYPE_LOCAL:
1823 case BPF_DYNPTR_TYPE_RINGBUF:
1824 /* Source and destination may possibly overlap, hence use memmove to
1825 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1826 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1827 */
1828 memmove(dst, src->data + src->offset + offset, len);
1829 return 0;
1830 case BPF_DYNPTR_TYPE_SKB:
1831 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1832 case BPF_DYNPTR_TYPE_XDP:
1833 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1834 case BPF_DYNPTR_TYPE_SKB_META:
1835 memmove(dst, bpf_skb_meta_pointer(src->data, src->offset + offset), len);
1836 return 0;
1837 case BPF_DYNPTR_TYPE_FILE:
1838 return bpf_file_fetch_bytes(src->data, offset, dst, len);
1839 default:
1840 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1841 return -EFAULT;
1842 }
1843 }
1844
BPF_CALL_5(bpf_dynptr_read,void *,dst,u64,len,const struct bpf_dynptr_kern *,src,u64,offset,u64,flags)1845 BPF_CALL_5(bpf_dynptr_read, void *, dst, u64, len, const struct bpf_dynptr_kern *, src,
1846 u64, offset, u64, flags)
1847 {
1848 return __bpf_dynptr_read(dst, len, src, offset, flags);
1849 }
1850
1851 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1852 .func = bpf_dynptr_read,
1853 .gpl_only = false,
1854 .ret_type = RET_INTEGER,
1855 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1856 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1857 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1858 .arg4_type = ARG_ANYTHING,
1859 .arg5_type = ARG_ANYTHING,
1860 };
1861
__bpf_dynptr_write(const struct bpf_dynptr_kern * dst,u64 offset,void * src,u64 len,u64 flags)1862 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset, void *src,
1863 u64 len, u64 flags)
1864 {
1865 enum bpf_dynptr_type type;
1866 int err;
1867
1868 if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1869 return -EINVAL;
1870
1871 err = bpf_dynptr_check_off_len(dst, offset, len);
1872 if (err)
1873 return err;
1874
1875 type = bpf_dynptr_get_type(dst);
1876
1877 switch (type) {
1878 case BPF_DYNPTR_TYPE_LOCAL:
1879 case BPF_DYNPTR_TYPE_RINGBUF:
1880 if (flags)
1881 return -EINVAL;
1882 /* Source and destination may possibly overlap, hence use memmove to
1883 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1884 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1885 */
1886 memmove(dst->data + dst->offset + offset, src, len);
1887 return 0;
1888 case BPF_DYNPTR_TYPE_SKB:
1889 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1890 flags);
1891 case BPF_DYNPTR_TYPE_XDP:
1892 if (flags)
1893 return -EINVAL;
1894 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1895 case BPF_DYNPTR_TYPE_SKB_META:
1896 return __bpf_skb_meta_store_bytes(dst->data, dst->offset + offset, src,
1897 len, flags);
1898 default:
1899 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1900 return -EFAULT;
1901 }
1902 }
1903
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u64,offset,void *,src,u64,len,u64,flags)1904 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u64, offset, void *, src,
1905 u64, len, u64, flags)
1906 {
1907 return __bpf_dynptr_write(dst, offset, src, len, flags);
1908 }
1909
1910 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1911 .func = bpf_dynptr_write,
1912 .gpl_only = false,
1913 .ret_type = RET_INTEGER,
1914 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1915 .arg2_type = ARG_ANYTHING,
1916 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1917 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1918 .arg5_type = ARG_ANYTHING,
1919 };
1920
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u64,offset,u64,len)1921 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u64, offset, u64, len)
1922 {
1923 enum bpf_dynptr_type type;
1924 int err;
1925
1926 if (!ptr->data)
1927 return 0;
1928
1929 err = bpf_dynptr_check_off_len(ptr, offset, len);
1930 if (err)
1931 return 0;
1932
1933 if (__bpf_dynptr_is_rdonly(ptr))
1934 return 0;
1935
1936 type = bpf_dynptr_get_type(ptr);
1937
1938 switch (type) {
1939 case BPF_DYNPTR_TYPE_LOCAL:
1940 case BPF_DYNPTR_TYPE_RINGBUF:
1941 return (unsigned long)(ptr->data + ptr->offset + offset);
1942 case BPF_DYNPTR_TYPE_SKB:
1943 case BPF_DYNPTR_TYPE_XDP:
1944 case BPF_DYNPTR_TYPE_SKB_META:
1945 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1946 return 0;
1947 default:
1948 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1949 return 0;
1950 }
1951 }
1952
1953 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1954 .func = bpf_dynptr_data,
1955 .gpl_only = false,
1956 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1957 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1958 .arg2_type = ARG_ANYTHING,
1959 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1960 };
1961
1962 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1963 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1964 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1965 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1966 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1967 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1968 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1969 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1970 const struct bpf_func_proto bpf_send_signal_proto __weak;
1971 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1972 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1973 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1974 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1975
1976 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1977 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1978 {
1979 switch (func_id) {
1980 case BPF_FUNC_map_lookup_elem:
1981 return &bpf_map_lookup_elem_proto;
1982 case BPF_FUNC_map_update_elem:
1983 return &bpf_map_update_elem_proto;
1984 case BPF_FUNC_map_delete_elem:
1985 return &bpf_map_delete_elem_proto;
1986 case BPF_FUNC_map_push_elem:
1987 return &bpf_map_push_elem_proto;
1988 case BPF_FUNC_map_pop_elem:
1989 return &bpf_map_pop_elem_proto;
1990 case BPF_FUNC_map_peek_elem:
1991 return &bpf_map_peek_elem_proto;
1992 case BPF_FUNC_map_lookup_percpu_elem:
1993 return &bpf_map_lookup_percpu_elem_proto;
1994 case BPF_FUNC_get_prandom_u32:
1995 return &bpf_get_prandom_u32_proto;
1996 case BPF_FUNC_get_smp_processor_id:
1997 return &bpf_get_raw_smp_processor_id_proto;
1998 case BPF_FUNC_get_numa_node_id:
1999 return &bpf_get_numa_node_id_proto;
2000 case BPF_FUNC_tail_call:
2001 return &bpf_tail_call_proto;
2002 case BPF_FUNC_ktime_get_ns:
2003 return &bpf_ktime_get_ns_proto;
2004 case BPF_FUNC_ktime_get_boot_ns:
2005 return &bpf_ktime_get_boot_ns_proto;
2006 case BPF_FUNC_ktime_get_tai_ns:
2007 return &bpf_ktime_get_tai_ns_proto;
2008 case BPF_FUNC_ringbuf_output:
2009 return &bpf_ringbuf_output_proto;
2010 case BPF_FUNC_ringbuf_reserve:
2011 return &bpf_ringbuf_reserve_proto;
2012 case BPF_FUNC_ringbuf_submit:
2013 return &bpf_ringbuf_submit_proto;
2014 case BPF_FUNC_ringbuf_discard:
2015 return &bpf_ringbuf_discard_proto;
2016 case BPF_FUNC_ringbuf_query:
2017 return &bpf_ringbuf_query_proto;
2018 case BPF_FUNC_strncmp:
2019 return &bpf_strncmp_proto;
2020 case BPF_FUNC_strtol:
2021 return &bpf_strtol_proto;
2022 case BPF_FUNC_strtoul:
2023 return &bpf_strtoul_proto;
2024 case BPF_FUNC_get_current_pid_tgid:
2025 return &bpf_get_current_pid_tgid_proto;
2026 case BPF_FUNC_get_ns_current_pid_tgid:
2027 return &bpf_get_ns_current_pid_tgid_proto;
2028 case BPF_FUNC_get_current_uid_gid:
2029 return &bpf_get_current_uid_gid_proto;
2030 default:
2031 break;
2032 }
2033
2034 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
2035 return NULL;
2036
2037 switch (func_id) {
2038 case BPF_FUNC_spin_lock:
2039 return &bpf_spin_lock_proto;
2040 case BPF_FUNC_spin_unlock:
2041 return &bpf_spin_unlock_proto;
2042 case BPF_FUNC_jiffies64:
2043 return &bpf_jiffies64_proto;
2044 case BPF_FUNC_per_cpu_ptr:
2045 return &bpf_per_cpu_ptr_proto;
2046 case BPF_FUNC_this_cpu_ptr:
2047 return &bpf_this_cpu_ptr_proto;
2048 case BPF_FUNC_timer_init:
2049 return &bpf_timer_init_proto;
2050 case BPF_FUNC_timer_set_callback:
2051 return &bpf_timer_set_callback_proto;
2052 case BPF_FUNC_timer_start:
2053 return &bpf_timer_start_proto;
2054 case BPF_FUNC_timer_cancel:
2055 return &bpf_timer_cancel_proto;
2056 case BPF_FUNC_kptr_xchg:
2057 return &bpf_kptr_xchg_proto;
2058 case BPF_FUNC_for_each_map_elem:
2059 return &bpf_for_each_map_elem_proto;
2060 case BPF_FUNC_loop:
2061 return &bpf_loop_proto;
2062 case BPF_FUNC_user_ringbuf_drain:
2063 return &bpf_user_ringbuf_drain_proto;
2064 case BPF_FUNC_ringbuf_reserve_dynptr:
2065 return &bpf_ringbuf_reserve_dynptr_proto;
2066 case BPF_FUNC_ringbuf_submit_dynptr:
2067 return &bpf_ringbuf_submit_dynptr_proto;
2068 case BPF_FUNC_ringbuf_discard_dynptr:
2069 return &bpf_ringbuf_discard_dynptr_proto;
2070 case BPF_FUNC_dynptr_from_mem:
2071 return &bpf_dynptr_from_mem_proto;
2072 case BPF_FUNC_dynptr_read:
2073 return &bpf_dynptr_read_proto;
2074 case BPF_FUNC_dynptr_write:
2075 return &bpf_dynptr_write_proto;
2076 case BPF_FUNC_dynptr_data:
2077 return &bpf_dynptr_data_proto;
2078 #ifdef CONFIG_CGROUPS
2079 case BPF_FUNC_cgrp_storage_get:
2080 return &bpf_cgrp_storage_get_proto;
2081 case BPF_FUNC_cgrp_storage_delete:
2082 return &bpf_cgrp_storage_delete_proto;
2083 case BPF_FUNC_get_current_cgroup_id:
2084 return &bpf_get_current_cgroup_id_proto;
2085 case BPF_FUNC_get_current_ancestor_cgroup_id:
2086 return &bpf_get_current_ancestor_cgroup_id_proto;
2087 case BPF_FUNC_current_task_under_cgroup:
2088 return &bpf_current_task_under_cgroup_proto;
2089 #endif
2090 #ifdef CONFIG_CGROUP_NET_CLASSID
2091 case BPF_FUNC_get_cgroup_classid:
2092 return &bpf_get_cgroup_classid_curr_proto;
2093 #endif
2094 case BPF_FUNC_task_storage_get:
2095 if (bpf_prog_check_recur(prog))
2096 return &bpf_task_storage_get_recur_proto;
2097 return &bpf_task_storage_get_proto;
2098 case BPF_FUNC_task_storage_delete:
2099 if (bpf_prog_check_recur(prog))
2100 return &bpf_task_storage_delete_recur_proto;
2101 return &bpf_task_storage_delete_proto;
2102 default:
2103 break;
2104 }
2105
2106 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2107 return NULL;
2108
2109 switch (func_id) {
2110 case BPF_FUNC_trace_printk:
2111 return bpf_get_trace_printk_proto();
2112 case BPF_FUNC_get_current_task:
2113 return &bpf_get_current_task_proto;
2114 case BPF_FUNC_get_current_task_btf:
2115 return &bpf_get_current_task_btf_proto;
2116 case BPF_FUNC_get_current_comm:
2117 return &bpf_get_current_comm_proto;
2118 case BPF_FUNC_probe_read_user:
2119 return &bpf_probe_read_user_proto;
2120 case BPF_FUNC_probe_read_kernel:
2121 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2122 NULL : &bpf_probe_read_kernel_proto;
2123 case BPF_FUNC_probe_read_user_str:
2124 return &bpf_probe_read_user_str_proto;
2125 case BPF_FUNC_probe_read_kernel_str:
2126 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2127 NULL : &bpf_probe_read_kernel_str_proto;
2128 case BPF_FUNC_copy_from_user:
2129 return &bpf_copy_from_user_proto;
2130 case BPF_FUNC_copy_from_user_task:
2131 return &bpf_copy_from_user_task_proto;
2132 case BPF_FUNC_snprintf_btf:
2133 return &bpf_snprintf_btf_proto;
2134 case BPF_FUNC_snprintf:
2135 return &bpf_snprintf_proto;
2136 case BPF_FUNC_task_pt_regs:
2137 return &bpf_task_pt_regs_proto;
2138 case BPF_FUNC_trace_vprintk:
2139 return bpf_get_trace_vprintk_proto();
2140 case BPF_FUNC_perf_event_read_value:
2141 return bpf_get_perf_event_read_value_proto();
2142 case BPF_FUNC_perf_event_read:
2143 return &bpf_perf_event_read_proto;
2144 case BPF_FUNC_send_signal:
2145 return &bpf_send_signal_proto;
2146 case BPF_FUNC_send_signal_thread:
2147 return &bpf_send_signal_thread_proto;
2148 case BPF_FUNC_get_task_stack:
2149 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2150 : &bpf_get_task_stack_proto;
2151 case BPF_FUNC_get_branch_snapshot:
2152 return &bpf_get_branch_snapshot_proto;
2153 case BPF_FUNC_find_vma:
2154 return &bpf_find_vma_proto;
2155 default:
2156 return NULL;
2157 }
2158 }
2159 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2160
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2161 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2162 struct bpf_spin_lock *spin_lock)
2163 {
2164 struct list_head *head = list_head, *orig_head = list_head;
2165
2166 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2167 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2168
2169 /* Do the actual list draining outside the lock to not hold the lock for
2170 * too long, and also prevent deadlocks if tracing programs end up
2171 * executing on entry/exit of functions called inside the critical
2172 * section, and end up doing map ops that call bpf_list_head_free for
2173 * the same map value again.
2174 */
2175 __bpf_spin_lock_irqsave(spin_lock);
2176 if (!head->next || list_empty(head))
2177 goto unlock;
2178 head = head->next;
2179 unlock:
2180 INIT_LIST_HEAD(orig_head);
2181 __bpf_spin_unlock_irqrestore(spin_lock);
2182
2183 while (head != orig_head) {
2184 void *obj = head;
2185
2186 obj -= field->graph_root.node_offset;
2187 head = head->next;
2188 /* The contained type can also have resources, including a
2189 * bpf_list_head which needs to be freed.
2190 */
2191 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2192 }
2193 }
2194
2195 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2196 * 'rb_node *', so field name of rb_node within containing struct is not
2197 * needed.
2198 *
2199 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2200 * graph_root.node_offset, it's not necessary to know field name
2201 * or type of node struct
2202 */
2203 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2204 for (pos = rb_first_postorder(root); \
2205 pos && ({ n = rb_next_postorder(pos); 1; }); \
2206 pos = n)
2207
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2208 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2209 struct bpf_spin_lock *spin_lock)
2210 {
2211 struct rb_root_cached orig_root, *root = rb_root;
2212 struct rb_node *pos, *n;
2213 void *obj;
2214
2215 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2216 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2217
2218 __bpf_spin_lock_irqsave(spin_lock);
2219 orig_root = *root;
2220 *root = RB_ROOT_CACHED;
2221 __bpf_spin_unlock_irqrestore(spin_lock);
2222
2223 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2224 obj = pos;
2225 obj -= field->graph_root.node_offset;
2226
2227
2228 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2229 }
2230 }
2231
2232 __bpf_kfunc_start_defs();
2233
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2234 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2235 {
2236 struct btf_struct_meta *meta = meta__ign;
2237 u64 size = local_type_id__k;
2238 void *p;
2239
2240 p = bpf_mem_alloc(&bpf_global_ma, size);
2241 if (!p)
2242 return NULL;
2243 if (meta)
2244 bpf_obj_init(meta->record, p);
2245 return p;
2246 }
2247
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2248 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2249 {
2250 u64 size = local_type_id__k;
2251
2252 /* The verifier has ensured that meta__ign must be NULL */
2253 return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2254 }
2255
2256 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2257 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2258 {
2259 struct bpf_mem_alloc *ma;
2260
2261 if (rec && rec->refcount_off >= 0 &&
2262 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2263 /* Object is refcounted and refcount_dec didn't result in 0
2264 * refcount. Return without freeing the object
2265 */
2266 return;
2267 }
2268
2269 if (rec)
2270 bpf_obj_free_fields(rec, p);
2271
2272 if (percpu)
2273 ma = &bpf_global_percpu_ma;
2274 else
2275 ma = &bpf_global_ma;
2276 bpf_mem_free_rcu(ma, p);
2277 }
2278
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2279 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2280 {
2281 struct btf_struct_meta *meta = meta__ign;
2282 void *p = p__alloc;
2283
2284 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2285 }
2286
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2287 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2288 {
2289 /* The verifier has ensured that meta__ign must be NULL */
2290 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2291 }
2292
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2293 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2294 {
2295 struct btf_struct_meta *meta = meta__ign;
2296 struct bpf_refcount *ref;
2297
2298 /* Could just cast directly to refcount_t *, but need some code using
2299 * bpf_refcount type so that it is emitted in vmlinux BTF
2300 */
2301 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2302 if (!refcount_inc_not_zero((refcount_t *)ref))
2303 return NULL;
2304
2305 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2306 * in verifier.c
2307 */
2308 return (void *)p__refcounted_kptr;
2309 }
2310
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2311 static int __bpf_list_add(struct bpf_list_node_kern *node,
2312 struct bpf_list_head *head,
2313 bool tail, struct btf_record *rec, u64 off)
2314 {
2315 struct list_head *n = &node->list_head, *h = (void *)head;
2316
2317 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2318 * called on its fields, so init here
2319 */
2320 if (unlikely(!h->next))
2321 INIT_LIST_HEAD(h);
2322
2323 /* node->owner != NULL implies !list_empty(n), no need to separately
2324 * check the latter
2325 */
2326 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2327 /* Only called from BPF prog, no need to migrate_disable */
2328 __bpf_obj_drop_impl((void *)n - off, rec, false);
2329 return -EINVAL;
2330 }
2331
2332 tail ? list_add_tail(n, h) : list_add(n, h);
2333 WRITE_ONCE(node->owner, head);
2334
2335 return 0;
2336 }
2337
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2338 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2339 struct bpf_list_node *node,
2340 void *meta__ign, u64 off)
2341 {
2342 struct bpf_list_node_kern *n = (void *)node;
2343 struct btf_struct_meta *meta = meta__ign;
2344
2345 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2346 }
2347
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2348 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2349 struct bpf_list_node *node,
2350 void *meta__ign, u64 off)
2351 {
2352 struct bpf_list_node_kern *n = (void *)node;
2353 struct btf_struct_meta *meta = meta__ign;
2354
2355 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2356 }
2357
__bpf_list_del(struct bpf_list_head * head,bool tail)2358 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2359 {
2360 struct list_head *n, *h = (void *)head;
2361 struct bpf_list_node_kern *node;
2362
2363 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2364 * called on its fields, so init here
2365 */
2366 if (unlikely(!h->next))
2367 INIT_LIST_HEAD(h);
2368 if (list_empty(h))
2369 return NULL;
2370
2371 n = tail ? h->prev : h->next;
2372 node = container_of(n, struct bpf_list_node_kern, list_head);
2373 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2374 return NULL;
2375
2376 list_del_init(n);
2377 WRITE_ONCE(node->owner, NULL);
2378 return (struct bpf_list_node *)n;
2379 }
2380
bpf_list_pop_front(struct bpf_list_head * head)2381 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2382 {
2383 return __bpf_list_del(head, false);
2384 }
2385
bpf_list_pop_back(struct bpf_list_head * head)2386 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2387 {
2388 return __bpf_list_del(head, true);
2389 }
2390
bpf_list_front(struct bpf_list_head * head)2391 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2392 {
2393 struct list_head *h = (struct list_head *)head;
2394
2395 if (list_empty(h) || unlikely(!h->next))
2396 return NULL;
2397
2398 return (struct bpf_list_node *)h->next;
2399 }
2400
bpf_list_back(struct bpf_list_head * head)2401 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2402 {
2403 struct list_head *h = (struct list_head *)head;
2404
2405 if (list_empty(h) || unlikely(!h->next))
2406 return NULL;
2407
2408 return (struct bpf_list_node *)h->prev;
2409 }
2410
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2411 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2412 struct bpf_rb_node *node)
2413 {
2414 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2415 struct rb_root_cached *r = (struct rb_root_cached *)root;
2416 struct rb_node *n = &node_internal->rb_node;
2417
2418 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2419 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2420 */
2421 if (READ_ONCE(node_internal->owner) != root)
2422 return NULL;
2423
2424 rb_erase_cached(n, r);
2425 RB_CLEAR_NODE(n);
2426 WRITE_ONCE(node_internal->owner, NULL);
2427 return (struct bpf_rb_node *)n;
2428 }
2429
2430 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2431 * program
2432 */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2433 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2434 struct bpf_rb_node_kern *node,
2435 void *less, struct btf_record *rec, u64 off)
2436 {
2437 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2438 struct rb_node *parent = NULL, *n = &node->rb_node;
2439 bpf_callback_t cb = (bpf_callback_t)less;
2440 bool leftmost = true;
2441
2442 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2443 * check the latter
2444 */
2445 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2446 /* Only called from BPF prog, no need to migrate_disable */
2447 __bpf_obj_drop_impl((void *)n - off, rec, false);
2448 return -EINVAL;
2449 }
2450
2451 while (*link) {
2452 parent = *link;
2453 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2454 link = &parent->rb_left;
2455 } else {
2456 link = &parent->rb_right;
2457 leftmost = false;
2458 }
2459 }
2460
2461 rb_link_node(n, parent, link);
2462 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2463 WRITE_ONCE(node->owner, root);
2464 return 0;
2465 }
2466
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2467 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2468 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2469 void *meta__ign, u64 off)
2470 {
2471 struct btf_struct_meta *meta = meta__ign;
2472 struct bpf_rb_node_kern *n = (void *)node;
2473
2474 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2475 }
2476
bpf_rbtree_first(struct bpf_rb_root * root)2477 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2478 {
2479 struct rb_root_cached *r = (struct rb_root_cached *)root;
2480
2481 return (struct bpf_rb_node *)rb_first_cached(r);
2482 }
2483
bpf_rbtree_root(struct bpf_rb_root * root)2484 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2485 {
2486 struct rb_root_cached *r = (struct rb_root_cached *)root;
2487
2488 return (struct bpf_rb_node *)r->rb_root.rb_node;
2489 }
2490
bpf_rbtree_left(struct bpf_rb_root * root,struct bpf_rb_node * node)2491 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2492 {
2493 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2494
2495 if (READ_ONCE(node_internal->owner) != root)
2496 return NULL;
2497
2498 return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2499 }
2500
bpf_rbtree_right(struct bpf_rb_root * root,struct bpf_rb_node * node)2501 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2502 {
2503 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2504
2505 if (READ_ONCE(node_internal->owner) != root)
2506 return NULL;
2507
2508 return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2509 }
2510
2511 /**
2512 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2513 * kfunc which is not stored in a map as a kptr, must be released by calling
2514 * bpf_task_release().
2515 * @p: The task on which a reference is being acquired.
2516 */
bpf_task_acquire(struct task_struct * p)2517 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2518 {
2519 if (refcount_inc_not_zero(&p->rcu_users))
2520 return p;
2521 return NULL;
2522 }
2523
2524 /**
2525 * bpf_task_release - Release the reference acquired on a task.
2526 * @p: The task on which a reference is being released.
2527 */
bpf_task_release(struct task_struct * p)2528 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2529 {
2530 put_task_struct_rcu_user(p);
2531 }
2532
bpf_task_release_dtor(void * p)2533 __bpf_kfunc void bpf_task_release_dtor(void *p)
2534 {
2535 put_task_struct_rcu_user(p);
2536 }
2537 CFI_NOSEAL(bpf_task_release_dtor);
2538
2539 #ifdef CONFIG_CGROUPS
2540 /**
2541 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2542 * this kfunc which is not stored in a map as a kptr, must be released by
2543 * calling bpf_cgroup_release().
2544 * @cgrp: The cgroup on which a reference is being acquired.
2545 */
bpf_cgroup_acquire(struct cgroup * cgrp)2546 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2547 {
2548 return cgroup_tryget(cgrp) ? cgrp : NULL;
2549 }
2550
2551 /**
2552 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2553 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2554 * not be freed until the current grace period has ended, even if its refcount
2555 * drops to 0.
2556 * @cgrp: The cgroup on which a reference is being released.
2557 */
bpf_cgroup_release(struct cgroup * cgrp)2558 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2559 {
2560 cgroup_put(cgrp);
2561 }
2562
bpf_cgroup_release_dtor(void * cgrp)2563 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2564 {
2565 cgroup_put(cgrp);
2566 }
2567 CFI_NOSEAL(bpf_cgroup_release_dtor);
2568
2569 /**
2570 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2571 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2572 * map, must be released by calling bpf_cgroup_release().
2573 * @cgrp: The cgroup for which we're performing a lookup.
2574 * @level: The level of ancestor to look up.
2575 */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2576 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2577 {
2578 struct cgroup *ancestor;
2579
2580 if (level > cgrp->level || level < 0)
2581 return NULL;
2582
2583 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2584 ancestor = cgrp->ancestors[level];
2585 if (!cgroup_tryget(ancestor))
2586 return NULL;
2587 return ancestor;
2588 }
2589
2590 /**
2591 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2592 * kfunc which is not subsequently stored in a map, must be released by calling
2593 * bpf_cgroup_release().
2594 * @cgid: cgroup id.
2595 */
bpf_cgroup_from_id(u64 cgid)2596 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2597 {
2598 struct cgroup *cgrp;
2599
2600 cgrp = __cgroup_get_from_id(cgid);
2601 if (IS_ERR(cgrp))
2602 return NULL;
2603 return cgrp;
2604 }
2605
2606 /**
2607 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2608 * task's membership of cgroup ancestry.
2609 * @task: the task to be tested
2610 * @ancestor: possible ancestor of @task's cgroup
2611 *
2612 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2613 * It follows all the same rules as cgroup_is_descendant, and only applies
2614 * to the default hierarchy.
2615 */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2616 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2617 struct cgroup *ancestor)
2618 {
2619 long ret;
2620
2621 rcu_read_lock();
2622 ret = task_under_cgroup_hierarchy(task, ancestor);
2623 rcu_read_unlock();
2624 return ret;
2625 }
2626
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2627 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2628 {
2629 struct bpf_array *array = container_of(map, struct bpf_array, map);
2630 struct cgroup *cgrp;
2631
2632 if (unlikely(idx >= array->map.max_entries))
2633 return -E2BIG;
2634
2635 cgrp = READ_ONCE(array->ptrs[idx]);
2636 if (unlikely(!cgrp))
2637 return -EAGAIN;
2638
2639 return task_under_cgroup_hierarchy(current, cgrp);
2640 }
2641
2642 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2643 .func = bpf_current_task_under_cgroup,
2644 .gpl_only = false,
2645 .ret_type = RET_INTEGER,
2646 .arg1_type = ARG_CONST_MAP_PTR,
2647 .arg2_type = ARG_ANYTHING,
2648 };
2649
2650 /**
2651 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2652 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2653 * hierarchy ID.
2654 * @task: The target task
2655 * @hierarchy_id: The ID of a cgroup1 hierarchy
2656 *
2657 * On success, the cgroup is returen. On failure, NULL is returned.
2658 */
2659 __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2660 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2661 {
2662 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2663
2664 if (IS_ERR(cgrp))
2665 return NULL;
2666 return cgrp;
2667 }
2668 #endif /* CONFIG_CGROUPS */
2669
2670 /**
2671 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2672 * in the root pid namespace idr. If a task is returned, it must either be
2673 * stored in a map, or released with bpf_task_release().
2674 * @pid: The pid of the task being looked up.
2675 */
bpf_task_from_pid(s32 pid)2676 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2677 {
2678 struct task_struct *p;
2679
2680 rcu_read_lock();
2681 p = find_task_by_pid_ns(pid, &init_pid_ns);
2682 if (p)
2683 p = bpf_task_acquire(p);
2684 rcu_read_unlock();
2685
2686 return p;
2687 }
2688
2689 /**
2690 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2691 * in the pid namespace of the current task. If a task is returned, it must
2692 * either be stored in a map, or released with bpf_task_release().
2693 * @vpid: The vpid of the task being looked up.
2694 */
bpf_task_from_vpid(s32 vpid)2695 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2696 {
2697 struct task_struct *p;
2698
2699 rcu_read_lock();
2700 p = find_task_by_vpid(vpid);
2701 if (p)
2702 p = bpf_task_acquire(p);
2703 rcu_read_unlock();
2704
2705 return p;
2706 }
2707
2708 /**
2709 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2710 * @p: The dynptr whose data slice to retrieve
2711 * @offset: Offset into the dynptr
2712 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2713 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2714 * length of the requested slice. This must be a constant.
2715 *
2716 * For non-skb and non-xdp type dynptrs, there is no difference between
2717 * bpf_dynptr_slice and bpf_dynptr_data.
2718 *
2719 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2720 *
2721 * If the intention is to write to the data slice, please use
2722 * bpf_dynptr_slice_rdwr.
2723 *
2724 * The user must check that the returned pointer is not null before using it.
2725 *
2726 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2727 * does not change the underlying packet data pointers, so a call to
2728 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2729 * the bpf program.
2730 *
2731 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2732 * data slice (can be either direct pointer to the data or a pointer to the user
2733 * provided buffer, with its contents containing the data, if unable to obtain
2734 * direct pointer)
2735 */
bpf_dynptr_slice(const struct bpf_dynptr * p,u64 offset,void * buffer__opt,u64 buffer__szk)2736 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u64 offset,
2737 void *buffer__opt, u64 buffer__szk)
2738 {
2739 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2740 enum bpf_dynptr_type type;
2741 u64 len = buffer__szk;
2742 int err;
2743
2744 if (!ptr->data)
2745 return NULL;
2746
2747 err = bpf_dynptr_check_off_len(ptr, offset, len);
2748 if (err)
2749 return NULL;
2750
2751 type = bpf_dynptr_get_type(ptr);
2752
2753 switch (type) {
2754 case BPF_DYNPTR_TYPE_LOCAL:
2755 case BPF_DYNPTR_TYPE_RINGBUF:
2756 return ptr->data + ptr->offset + offset;
2757 case BPF_DYNPTR_TYPE_SKB:
2758 if (buffer__opt)
2759 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2760 else
2761 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2762 case BPF_DYNPTR_TYPE_XDP:
2763 {
2764 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2765 if (!IS_ERR_OR_NULL(xdp_ptr))
2766 return xdp_ptr;
2767
2768 if (!buffer__opt)
2769 return NULL;
2770 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2771 return buffer__opt;
2772 }
2773 case BPF_DYNPTR_TYPE_SKB_META:
2774 return bpf_skb_meta_pointer(ptr->data, ptr->offset + offset);
2775 case BPF_DYNPTR_TYPE_FILE:
2776 err = bpf_file_fetch_bytes(ptr->data, offset, buffer__opt, buffer__szk);
2777 return err ? NULL : buffer__opt;
2778 default:
2779 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2780 return NULL;
2781 }
2782 }
2783
2784 /**
2785 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2786 * @p: The dynptr whose data slice to retrieve
2787 * @offset: Offset into the dynptr
2788 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2789 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2790 * length of the requested slice. This must be a constant.
2791 *
2792 * For non-skb and non-xdp type dynptrs, there is no difference between
2793 * bpf_dynptr_slice and bpf_dynptr_data.
2794 *
2795 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2796 *
2797 * The returned pointer is writable and may point to either directly the dynptr
2798 * data at the requested offset or to the buffer if unable to obtain a direct
2799 * data pointer to (example: the requested slice is to the paged area of an skb
2800 * packet). In the case where the returned pointer is to the buffer, the user
2801 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2802 * usually looks something like this pattern:
2803 *
2804 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2805 * if (!eth)
2806 * return TC_ACT_SHOT;
2807 *
2808 * // mutate eth header //
2809 *
2810 * if (eth == buffer)
2811 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2812 *
2813 * Please note that, as in the example above, the user must check that the
2814 * returned pointer is not null before using it.
2815 *
2816 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2817 * does not change the underlying packet data pointers, so a call to
2818 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2819 * the bpf program.
2820 *
2821 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2822 * data slice (can be either direct pointer to the data or a pointer to the user
2823 * provided buffer, with its contents containing the data, if unable to obtain
2824 * direct pointer)
2825 */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u64 offset,void * buffer__opt,u64 buffer__szk)2826 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset,
2827 void *buffer__opt, u64 buffer__szk)
2828 {
2829 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2830
2831 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2832 return NULL;
2833
2834 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2835 *
2836 * For skb-type dynptrs, it is safe to write into the returned pointer
2837 * if the bpf program allows skb data writes. There are two possibilities
2838 * that may occur when calling bpf_dynptr_slice_rdwr:
2839 *
2840 * 1) The requested slice is in the head of the skb. In this case, the
2841 * returned pointer is directly to skb data, and if the skb is cloned, the
2842 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2843 * The pointer can be directly written into.
2844 *
2845 * 2) Some portion of the requested slice is in the paged buffer area.
2846 * In this case, the requested data will be copied out into the buffer
2847 * and the returned pointer will be a pointer to the buffer. The skb
2848 * will not be pulled. To persist the write, the user will need to call
2849 * bpf_dynptr_write(), which will pull the skb and commit the write.
2850 *
2851 * Similarly for xdp programs, if the requested slice is not across xdp
2852 * fragments, then a direct pointer will be returned, otherwise the data
2853 * will be copied out into the buffer and the user will need to call
2854 * bpf_dynptr_write() to commit changes.
2855 */
2856 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2857 }
2858
bpf_dynptr_adjust(const struct bpf_dynptr * p,u64 start,u64 end)2859 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u64 start, u64 end)
2860 {
2861 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2862 u64 size;
2863
2864 if (!ptr->data || start > end)
2865 return -EINVAL;
2866
2867 size = __bpf_dynptr_size(ptr);
2868
2869 if (start > size || end > size)
2870 return -ERANGE;
2871
2872 bpf_dynptr_advance_offset(ptr, start);
2873 bpf_dynptr_set_size(ptr, end - start);
2874
2875 return 0;
2876 }
2877
bpf_dynptr_is_null(const struct bpf_dynptr * p)2878 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2879 {
2880 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2881
2882 return !ptr->data;
2883 }
2884
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2885 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2886 {
2887 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2888
2889 if (!ptr->data)
2890 return false;
2891
2892 return __bpf_dynptr_is_rdonly(ptr);
2893 }
2894
bpf_dynptr_size(const struct bpf_dynptr * p)2895 __bpf_kfunc u64 bpf_dynptr_size(const struct bpf_dynptr *p)
2896 {
2897 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2898
2899 if (!ptr->data)
2900 return -EINVAL;
2901
2902 return __bpf_dynptr_size(ptr);
2903 }
2904
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2905 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2906 struct bpf_dynptr *clone__uninit)
2907 {
2908 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2909 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2910
2911 if (!ptr->data) {
2912 bpf_dynptr_set_null(clone);
2913 return -EINVAL;
2914 }
2915
2916 *clone = *ptr;
2917
2918 return 0;
2919 }
2920
2921 /**
2922 * bpf_dynptr_copy() - Copy data from one dynptr to another.
2923 * @dst_ptr: Destination dynptr - where data should be copied to
2924 * @dst_off: Offset into the destination dynptr
2925 * @src_ptr: Source dynptr - where data should be copied from
2926 * @src_off: Offset into the source dynptr
2927 * @size: Length of the data to copy from source to destination
2928 *
2929 * Copies data from source dynptr to destination dynptr.
2930 * Returns 0 on success; negative error, otherwise.
2931 */
bpf_dynptr_copy(struct bpf_dynptr * dst_ptr,u64 dst_off,struct bpf_dynptr * src_ptr,u64 src_off,u64 size)2932 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u64 dst_off,
2933 struct bpf_dynptr *src_ptr, u64 src_off, u64 size)
2934 {
2935 struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2936 struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2937 void *src_slice, *dst_slice;
2938 char buf[256];
2939 u64 off;
2940
2941 src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2942 dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2943
2944 if (src_slice && dst_slice) {
2945 memmove(dst_slice, src_slice, size);
2946 return 0;
2947 }
2948
2949 if (src_slice)
2950 return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2951
2952 if (dst_slice)
2953 return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2954
2955 if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2956 bpf_dynptr_check_off_len(src, src_off, size))
2957 return -E2BIG;
2958
2959 off = 0;
2960 while (off < size) {
2961 u64 chunk_sz = min_t(u64, sizeof(buf), size - off);
2962 int err;
2963
2964 err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2965 if (err)
2966 return err;
2967 err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2968 if (err)
2969 return err;
2970
2971 off += chunk_sz;
2972 }
2973 return 0;
2974 }
2975
2976 /**
2977 * bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2978 * @p: Destination dynptr - where data will be filled
2979 * @offset: Offset into the dynptr to start filling from
2980 * @size: Number of bytes to fill
2981 * @val: Constant byte to fill the memory with
2982 *
2983 * Fills the @size bytes of the memory area pointed to by @p
2984 * at @offset with the constant byte @val.
2985 * Returns 0 on success; negative error, otherwise.
2986 */
bpf_dynptr_memset(struct bpf_dynptr * p,u64 offset,u64 size,u8 val)2987 __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u64 offset, u64 size, u8 val)
2988 {
2989 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2990 u64 chunk_sz, write_off;
2991 char buf[256];
2992 void* slice;
2993 int err;
2994
2995 slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2996 if (likely(slice)) {
2997 memset(slice, val, size);
2998 return 0;
2999 }
3000
3001 if (__bpf_dynptr_is_rdonly(ptr))
3002 return -EINVAL;
3003
3004 err = bpf_dynptr_check_off_len(ptr, offset, size);
3005 if (err)
3006 return err;
3007
3008 /* Non-linear data under the dynptr, write from a local buffer */
3009 chunk_sz = min_t(u64, sizeof(buf), size);
3010 memset(buf, val, chunk_sz);
3011
3012 for (write_off = 0; write_off < size; write_off += chunk_sz) {
3013 chunk_sz = min_t(u64, sizeof(buf), size - write_off);
3014 err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
3015 if (err)
3016 return err;
3017 }
3018
3019 return 0;
3020 }
3021
bpf_cast_to_kern_ctx(void * obj)3022 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
3023 {
3024 return obj;
3025 }
3026
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)3027 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
3028 {
3029 return (void *)obj__ign;
3030 }
3031
bpf_rcu_read_lock(void)3032 __bpf_kfunc void bpf_rcu_read_lock(void)
3033 {
3034 rcu_read_lock();
3035 }
3036
bpf_rcu_read_unlock(void)3037 __bpf_kfunc void bpf_rcu_read_unlock(void)
3038 {
3039 rcu_read_unlock();
3040 }
3041
3042 struct bpf_throw_ctx {
3043 struct bpf_prog_aux *aux;
3044 u64 sp;
3045 u64 bp;
3046 int cnt;
3047 };
3048
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)3049 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
3050 {
3051 struct bpf_throw_ctx *ctx = cookie;
3052 struct bpf_prog *prog;
3053
3054 /*
3055 * The RCU read lock is held to safely traverse the latch tree, but we
3056 * don't need its protection when accessing the prog, since it has an
3057 * active stack frame on the current stack trace, and won't disappear.
3058 */
3059 rcu_read_lock();
3060 prog = bpf_prog_ksym_find(ip);
3061 rcu_read_unlock();
3062 if (!prog)
3063 return !ctx->cnt;
3064 ctx->cnt++;
3065 if (bpf_is_subprog(prog))
3066 return true;
3067 ctx->aux = prog->aux;
3068 ctx->sp = sp;
3069 ctx->bp = bp;
3070 return false;
3071 }
3072
bpf_throw(u64 cookie)3073 __bpf_kfunc void bpf_throw(u64 cookie)
3074 {
3075 struct bpf_throw_ctx ctx = {};
3076
3077 arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3078 WARN_ON_ONCE(!ctx.aux);
3079 if (ctx.aux)
3080 WARN_ON_ONCE(!ctx.aux->exception_boundary);
3081 WARN_ON_ONCE(!ctx.bp);
3082 WARN_ON_ONCE(!ctx.cnt);
3083 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3084 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
3085 * which skips compiler generated instrumentation to do the same.
3086 */
3087 kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3088 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3089 WARN(1, "A call to BPF exception callback should never return\n");
3090 }
3091
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)3092 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3093 {
3094 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3095 struct bpf_map *map = p__map;
3096
3097 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3098 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3099
3100 if (flags)
3101 return -EINVAL;
3102
3103 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3104 }
3105
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)3106 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3107 {
3108 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3109 struct bpf_work *w;
3110
3111 if (in_nmi())
3112 return -EOPNOTSUPP;
3113 if (flags)
3114 return -EINVAL;
3115 w = READ_ONCE(async->work);
3116 if (!w || !READ_ONCE(w->cb.prog))
3117 return -EINVAL;
3118
3119 schedule_work(&w->work);
3120 return 0;
3121 }
3122
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__prog)3123 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3124 int (callback_fn)(void *map, int *key, void *value),
3125 unsigned int flags,
3126 void *aux__prog)
3127 {
3128 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3129 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3130
3131 if (flags)
3132 return -EINVAL;
3133
3134 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3135 }
3136
bpf_preempt_disable(void)3137 __bpf_kfunc void bpf_preempt_disable(void)
3138 {
3139 preempt_disable();
3140 }
3141
bpf_preempt_enable(void)3142 __bpf_kfunc void bpf_preempt_enable(void)
3143 {
3144 preempt_enable();
3145 }
3146
3147 struct bpf_iter_bits {
3148 __u64 __opaque[2];
3149 } __aligned(8);
3150
3151 #define BITS_ITER_NR_WORDS_MAX 511
3152
3153 struct bpf_iter_bits_kern {
3154 union {
3155 __u64 *bits;
3156 __u64 bits_copy;
3157 };
3158 int nr_bits;
3159 int bit;
3160 } __aligned(8);
3161
3162 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3163 * a u64 pointer and an unsigned long pointer to find_next_bit() will
3164 * return the same result, as both point to the same 8-byte area.
3165 *
3166 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3167 * pointer also makes no difference. This is because the first iterated
3168 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3169 * long is composed of bits 32-63 of the u64.
3170 *
3171 * However, for 32-bit big-endian hosts, this is not the case. The first
3172 * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3173 * ulong values within the u64.
3174 */
swap_ulong_in_u64(u64 * bits,unsigned int nr)3175 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3176 {
3177 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3178 unsigned int i;
3179
3180 for (i = 0; i < nr; i++)
3181 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3182 #endif
3183 }
3184
3185 /**
3186 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3187 * @it: The new bpf_iter_bits to be created
3188 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3189 * @nr_words: The size of the specified memory area, measured in 8-byte units.
3190 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3191 * further reduced by the BPF memory allocator implementation.
3192 *
3193 * This function initializes a new bpf_iter_bits structure for iterating over
3194 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3195 * copies the data of the memory area to the newly created bpf_iter_bits @it for
3196 * subsequent iteration operations.
3197 *
3198 * On success, 0 is returned. On failure, ERR is returned.
3199 */
3200 __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)3201 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3202 {
3203 struct bpf_iter_bits_kern *kit = (void *)it;
3204 u32 nr_bytes = nr_words * sizeof(u64);
3205 u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3206 int err;
3207
3208 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3209 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3210 __alignof__(struct bpf_iter_bits));
3211
3212 kit->nr_bits = 0;
3213 kit->bits_copy = 0;
3214 kit->bit = -1;
3215
3216 if (!unsafe_ptr__ign || !nr_words)
3217 return -EINVAL;
3218 if (nr_words > BITS_ITER_NR_WORDS_MAX)
3219 return -E2BIG;
3220
3221 /* Optimization for u64 mask */
3222 if (nr_bits == 64) {
3223 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3224 if (err)
3225 return -EFAULT;
3226
3227 swap_ulong_in_u64(&kit->bits_copy, nr_words);
3228
3229 kit->nr_bits = nr_bits;
3230 return 0;
3231 }
3232
3233 if (bpf_mem_alloc_check_size(false, nr_bytes))
3234 return -E2BIG;
3235
3236 /* Fallback to memalloc */
3237 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3238 if (!kit->bits)
3239 return -ENOMEM;
3240
3241 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3242 if (err) {
3243 bpf_mem_free(&bpf_global_ma, kit->bits);
3244 return err;
3245 }
3246
3247 swap_ulong_in_u64(kit->bits, nr_words);
3248
3249 kit->nr_bits = nr_bits;
3250 return 0;
3251 }
3252
3253 /**
3254 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3255 * @it: The bpf_iter_bits to be checked
3256 *
3257 * This function returns a pointer to a number representing the value of the
3258 * next bit in the bits.
3259 *
3260 * If there are no further bits available, it returns NULL.
3261 */
bpf_iter_bits_next(struct bpf_iter_bits * it)3262 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3263 {
3264 struct bpf_iter_bits_kern *kit = (void *)it;
3265 int bit = kit->bit, nr_bits = kit->nr_bits;
3266 const void *bits;
3267
3268 if (!nr_bits || bit >= nr_bits)
3269 return NULL;
3270
3271 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3272 bit = find_next_bit(bits, nr_bits, bit + 1);
3273 if (bit >= nr_bits) {
3274 kit->bit = bit;
3275 return NULL;
3276 }
3277
3278 kit->bit = bit;
3279 return &kit->bit;
3280 }
3281
3282 /**
3283 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3284 * @it: The bpf_iter_bits to be destroyed
3285 *
3286 * Destroy the resource associated with the bpf_iter_bits.
3287 */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)3288 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3289 {
3290 struct bpf_iter_bits_kern *kit = (void *)it;
3291
3292 if (kit->nr_bits <= 64)
3293 return;
3294 bpf_mem_free(&bpf_global_ma, kit->bits);
3295 }
3296
3297 /**
3298 * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3299 * @dst: Destination address, in kernel space. This buffer must be
3300 * at least @dst__sz bytes long.
3301 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3302 * @unsafe_ptr__ign: Source address, in user space.
3303 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3304 *
3305 * Copies a NUL-terminated string from userspace to BPF space. If user string is
3306 * too long this will still ensure zero termination in the dst buffer unless
3307 * buffer size is 0.
3308 *
3309 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3310 * memset all of @dst on failure.
3311 */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3312 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3313 {
3314 int ret;
3315
3316 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3317 return -EINVAL;
3318
3319 if (unlikely(!dst__sz))
3320 return 0;
3321
3322 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3323 if (ret < 0) {
3324 if (flags & BPF_F_PAD_ZEROS)
3325 memset((char *)dst, 0, dst__sz);
3326
3327 return ret;
3328 }
3329
3330 if (flags & BPF_F_PAD_ZEROS)
3331 memset((char *)dst + ret, 0, dst__sz - ret);
3332 else
3333 ((char *)dst)[ret] = '\0';
3334
3335 return ret + 1;
3336 }
3337
3338 /**
3339 * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3340 * @dst: Destination address, in kernel space. This buffer must be
3341 * at least @dst__sz bytes long.
3342 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3343 * @unsafe_ptr__ign: Source address in the task's address space.
3344 * @tsk: The task whose address space will be used
3345 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3346 *
3347 * Copies a NUL terminated string from a task's address space to @dst__sz
3348 * buffer. If user string is too long this will still ensure zero termination
3349 * in the @dst__sz buffer unless buffer size is 0.
3350 *
3351 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3352 * and memset all of @dst__sz on failure.
3353 *
3354 * Return: The number of copied bytes on success including the NUL terminator.
3355 * A negative error code on failure.
3356 */
bpf_copy_from_user_task_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,struct task_struct * tsk,u64 flags)3357 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3358 const void __user *unsafe_ptr__ign,
3359 struct task_struct *tsk, u64 flags)
3360 {
3361 int ret;
3362
3363 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3364 return -EINVAL;
3365
3366 if (unlikely(dst__sz == 0))
3367 return 0;
3368
3369 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3370 if (ret < 0) {
3371 if (flags & BPF_F_PAD_ZEROS)
3372 memset(dst, 0, dst__sz);
3373 return ret;
3374 }
3375
3376 if (flags & BPF_F_PAD_ZEROS)
3377 memset(dst + ret, 0, dst__sz - ret);
3378
3379 return ret + 1;
3380 }
3381
3382 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3383 * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3384 * unsigned long always points to 8-byte region on stack, the kernel may only
3385 * read and write the 4-bytes on 32-bit.
3386 */
bpf_local_irq_save(unsigned long * flags__irq_flag)3387 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3388 {
3389 local_irq_save(*flags__irq_flag);
3390 }
3391
bpf_local_irq_restore(unsigned long * flags__irq_flag)3392 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3393 {
3394 local_irq_restore(*flags__irq_flag);
3395 }
3396
__bpf_trap(void)3397 __bpf_kfunc void __bpf_trap(void)
3398 {
3399 }
3400
3401 /*
3402 * Kfuncs for string operations.
3403 *
3404 * Since strings are not necessarily %NUL-terminated, we cannot directly call
3405 * in-kernel implementations. Instead, we open-code the implementations using
3406 * __get_kernel_nofault instead of plain dereference to make them safe.
3407 */
3408
__bpf_strcasecmp(const char * s1,const char * s2,bool ignore_case)3409 static int __bpf_strcasecmp(const char *s1, const char *s2, bool ignore_case)
3410 {
3411 char c1, c2;
3412 int i;
3413
3414 if (!copy_from_kernel_nofault_allowed(s1, 1) ||
3415 !copy_from_kernel_nofault_allowed(s2, 1)) {
3416 return -ERANGE;
3417 }
3418
3419 guard(pagefault)();
3420 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3421 __get_kernel_nofault(&c1, s1, char, err_out);
3422 __get_kernel_nofault(&c2, s2, char, err_out);
3423 if (ignore_case) {
3424 c1 = tolower(c1);
3425 c2 = tolower(c2);
3426 }
3427 if (c1 != c2)
3428 return c1 < c2 ? -1 : 1;
3429 if (c1 == '\0')
3430 return 0;
3431 s1++;
3432 s2++;
3433 }
3434 return -E2BIG;
3435 err_out:
3436 return -EFAULT;
3437 }
3438
3439 /**
3440 * bpf_strcmp - Compare two strings
3441 * @s1__ign: One string
3442 * @s2__ign: Another string
3443 *
3444 * Return:
3445 * * %0 - Strings are equal
3446 * * %-1 - @s1__ign is smaller
3447 * * %1 - @s2__ign is smaller
3448 * * %-EFAULT - Cannot read one of the strings
3449 * * %-E2BIG - One of strings is too large
3450 * * %-ERANGE - One of strings is outside of kernel address space
3451 */
bpf_strcmp(const char * s1__ign,const char * s2__ign)3452 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3453 {
3454 return __bpf_strcasecmp(s1__ign, s2__ign, false);
3455 }
3456
3457 /**
3458 * bpf_strcasecmp - Compare two strings, ignoring the case of the characters
3459 * @s1__ign: One string
3460 * @s2__ign: Another string
3461 *
3462 * Return:
3463 * * %0 - Strings are equal
3464 * * %-1 - @s1__ign is smaller
3465 * * %1 - @s2__ign is smaller
3466 * * %-EFAULT - Cannot read one of the strings
3467 * * %-E2BIG - One of strings is too large
3468 * * %-ERANGE - One of strings is outside of kernel address space
3469 */
bpf_strcasecmp(const char * s1__ign,const char * s2__ign)3470 __bpf_kfunc int bpf_strcasecmp(const char *s1__ign, const char *s2__ign)
3471 {
3472 return __bpf_strcasecmp(s1__ign, s2__ign, true);
3473 }
3474
3475 /**
3476 * bpf_strnchr - Find a character in a length limited string
3477 * @s__ign: The string to be searched
3478 * @count: The number of characters to be searched
3479 * @c: The character to search for
3480 *
3481 * Note that the %NUL-terminator is considered part of the string, and can
3482 * be searched for.
3483 *
3484 * Return:
3485 * * >=0 - Index of the first occurrence of @c within @s__ign
3486 * * %-ENOENT - @c not found in the first @count characters of @s__ign
3487 * * %-EFAULT - Cannot read @s__ign
3488 * * %-E2BIG - @s__ign is too large
3489 * * %-ERANGE - @s__ign is outside of kernel address space
3490 */
bpf_strnchr(const char * s__ign,size_t count,char c)3491 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3492 {
3493 char sc;
3494 int i;
3495
3496 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3497 return -ERANGE;
3498
3499 guard(pagefault)();
3500 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3501 __get_kernel_nofault(&sc, s__ign, char, err_out);
3502 if (sc == c)
3503 return i;
3504 if (sc == '\0')
3505 return -ENOENT;
3506 s__ign++;
3507 }
3508 return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3509 err_out:
3510 return -EFAULT;
3511 }
3512
3513 /**
3514 * bpf_strchr - Find the first occurrence of a character in a string
3515 * @s__ign: The string to be searched
3516 * @c: The character to search for
3517 *
3518 * Note that the %NUL-terminator is considered part of the string, and can
3519 * be searched for.
3520 *
3521 * Return:
3522 * * >=0 - The index of the first occurrence of @c within @s__ign
3523 * * %-ENOENT - @c not found in @s__ign
3524 * * %-EFAULT - Cannot read @s__ign
3525 * * %-E2BIG - @s__ign is too large
3526 * * %-ERANGE - @s__ign is outside of kernel address space
3527 */
bpf_strchr(const char * s__ign,char c)3528 __bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3529 {
3530 return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3531 }
3532
3533 /**
3534 * bpf_strchrnul - Find and return a character in a string, or end of string
3535 * @s__ign: The string to be searched
3536 * @c: The character to search for
3537 *
3538 * Return:
3539 * * >=0 - Index of the first occurrence of @c within @s__ign or index of
3540 * the null byte at the end of @s__ign when @c is not found
3541 * * %-EFAULT - Cannot read @s__ign
3542 * * %-E2BIG - @s__ign is too large
3543 * * %-ERANGE - @s__ign is outside of kernel address space
3544 */
bpf_strchrnul(const char * s__ign,char c)3545 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3546 {
3547 char sc;
3548 int i;
3549
3550 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3551 return -ERANGE;
3552
3553 guard(pagefault)();
3554 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3555 __get_kernel_nofault(&sc, s__ign, char, err_out);
3556 if (sc == '\0' || sc == c)
3557 return i;
3558 s__ign++;
3559 }
3560 return -E2BIG;
3561 err_out:
3562 return -EFAULT;
3563 }
3564
3565 /**
3566 * bpf_strrchr - Find the last occurrence of a character in a string
3567 * @s__ign: The string to be searched
3568 * @c: The character to search for
3569 *
3570 * Return:
3571 * * >=0 - Index of the last occurrence of @c within @s__ign
3572 * * %-ENOENT - @c not found in @s__ign
3573 * * %-EFAULT - Cannot read @s__ign
3574 * * %-E2BIG - @s__ign is too large
3575 * * %-ERANGE - @s__ign is outside of kernel address space
3576 */
bpf_strrchr(const char * s__ign,int c)3577 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3578 {
3579 char sc;
3580 int i, last = -ENOENT;
3581
3582 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3583 return -ERANGE;
3584
3585 guard(pagefault)();
3586 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3587 __get_kernel_nofault(&sc, s__ign, char, err_out);
3588 if (sc == c)
3589 last = i;
3590 if (sc == '\0')
3591 return last;
3592 s__ign++;
3593 }
3594 return -E2BIG;
3595 err_out:
3596 return -EFAULT;
3597 }
3598
3599 /**
3600 * bpf_strnlen - Calculate the length of a length-limited string
3601 * @s__ign: The string
3602 * @count: The maximum number of characters to count
3603 *
3604 * Return:
3605 * * >=0 - The length of @s__ign
3606 * * %-EFAULT - Cannot read @s__ign
3607 * * %-E2BIG - @s__ign is too large
3608 * * %-ERANGE - @s__ign is outside of kernel address space
3609 */
bpf_strnlen(const char * s__ign,size_t count)3610 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3611 {
3612 char c;
3613 int i;
3614
3615 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3616 return -ERANGE;
3617
3618 guard(pagefault)();
3619 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3620 __get_kernel_nofault(&c, s__ign, char, err_out);
3621 if (c == '\0')
3622 return i;
3623 s__ign++;
3624 }
3625 return i == XATTR_SIZE_MAX ? -E2BIG : i;
3626 err_out:
3627 return -EFAULT;
3628 }
3629
3630 /**
3631 * bpf_strlen - Calculate the length of a string
3632 * @s__ign: The string
3633 *
3634 * Return:
3635 * * >=0 - The length of @s__ign
3636 * * %-EFAULT - Cannot read @s__ign
3637 * * %-E2BIG - @s__ign is too large
3638 * * %-ERANGE - @s__ign is outside of kernel address space
3639 */
bpf_strlen(const char * s__ign)3640 __bpf_kfunc int bpf_strlen(const char *s__ign)
3641 {
3642 return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3643 }
3644
3645 /**
3646 * bpf_strspn - Calculate the length of the initial substring of @s__ign which
3647 * only contains letters in @accept__ign
3648 * @s__ign: The string to be searched
3649 * @accept__ign: The string to search for
3650 *
3651 * Return:
3652 * * >=0 - The length of the initial substring of @s__ign which only
3653 * contains letters from @accept__ign
3654 * * %-EFAULT - Cannot read one of the strings
3655 * * %-E2BIG - One of the strings is too large
3656 * * %-ERANGE - One of the strings is outside of kernel address space
3657 */
bpf_strspn(const char * s__ign,const char * accept__ign)3658 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3659 {
3660 char cs, ca;
3661 int i, j;
3662
3663 if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3664 !copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3665 return -ERANGE;
3666 }
3667
3668 guard(pagefault)();
3669 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3670 __get_kernel_nofault(&cs, s__ign, char, err_out);
3671 if (cs == '\0')
3672 return i;
3673 for (j = 0; j < XATTR_SIZE_MAX; j++) {
3674 __get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3675 if (cs == ca || ca == '\0')
3676 break;
3677 }
3678 if (j == XATTR_SIZE_MAX)
3679 return -E2BIG;
3680 if (ca == '\0')
3681 return i;
3682 s__ign++;
3683 }
3684 return -E2BIG;
3685 err_out:
3686 return -EFAULT;
3687 }
3688
3689 /**
3690 * bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3691 * does not contain letters in @reject__ign
3692 * @s__ign: The string to be searched
3693 * @reject__ign: The string to search for
3694 *
3695 * Return:
3696 * * >=0 - The length of the initial substring of @s__ign which does not
3697 * contain letters from @reject__ign
3698 * * %-EFAULT - Cannot read one of the strings
3699 * * %-E2BIG - One of the strings is too large
3700 * * %-ERANGE - One of the strings is outside of kernel address space
3701 */
bpf_strcspn(const char * s__ign,const char * reject__ign)3702 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3703 {
3704 char cs, cr;
3705 int i, j;
3706
3707 if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3708 !copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3709 return -ERANGE;
3710 }
3711
3712 guard(pagefault)();
3713 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3714 __get_kernel_nofault(&cs, s__ign, char, err_out);
3715 if (cs == '\0')
3716 return i;
3717 for (j = 0; j < XATTR_SIZE_MAX; j++) {
3718 __get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3719 if (cs == cr || cr == '\0')
3720 break;
3721 }
3722 if (j == XATTR_SIZE_MAX)
3723 return -E2BIG;
3724 if (cr != '\0')
3725 return i;
3726 s__ign++;
3727 }
3728 return -E2BIG;
3729 err_out:
3730 return -EFAULT;
3731 }
3732
__bpf_strnstr(const char * s1,const char * s2,size_t len,bool ignore_case)3733 static int __bpf_strnstr(const char *s1, const char *s2, size_t len,
3734 bool ignore_case)
3735 {
3736 char c1, c2;
3737 int i, j;
3738
3739 if (!copy_from_kernel_nofault_allowed(s1, 1) ||
3740 !copy_from_kernel_nofault_allowed(s2, 1)) {
3741 return -ERANGE;
3742 }
3743
3744 guard(pagefault)();
3745 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3746 for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) {
3747 __get_kernel_nofault(&c2, s2 + j, char, err_out);
3748 if (c2 == '\0')
3749 return i;
3750 /*
3751 * We allow reading an extra byte from s2 (note the
3752 * `i + j <= len` above) to cover the case when s2 is
3753 * a suffix of the first len chars of s1.
3754 */
3755 if (i + j == len)
3756 break;
3757 __get_kernel_nofault(&c1, s1 + j, char, err_out);
3758
3759 if (ignore_case) {
3760 c1 = tolower(c1);
3761 c2 = tolower(c2);
3762 }
3763
3764 if (c1 == '\0')
3765 return -ENOENT;
3766 if (c1 != c2)
3767 break;
3768 }
3769 if (j == XATTR_SIZE_MAX)
3770 return -E2BIG;
3771 if (i + j == len)
3772 return -ENOENT;
3773 s1++;
3774 }
3775 return -E2BIG;
3776 err_out:
3777 return -EFAULT;
3778 }
3779
3780 /**
3781 * bpf_strstr - Find the first substring in a string
3782 * @s1__ign: The string to be searched
3783 * @s2__ign: The string to search for
3784 *
3785 * Return:
3786 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3787 * within @s1__ign
3788 * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3789 * * %-EFAULT - Cannot read one of the strings
3790 * * %-E2BIG - One of the strings is too large
3791 * * %-ERANGE - One of the strings is outside of kernel address space
3792 */
bpf_strstr(const char * s1__ign,const char * s2__ign)3793 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3794 {
3795 return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, false);
3796 }
3797
3798 /**
3799 * bpf_strcasestr - Find the first substring in a string, ignoring the case of
3800 * the characters
3801 * @s1__ign: The string to be searched
3802 * @s2__ign: The string to search for
3803 *
3804 * Return:
3805 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3806 * within @s1__ign
3807 * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3808 * * %-EFAULT - Cannot read one of the strings
3809 * * %-E2BIG - One of the strings is too large
3810 * * %-ERANGE - One of the strings is outside of kernel address space
3811 */
bpf_strcasestr(const char * s1__ign,const char * s2__ign)3812 __bpf_kfunc int bpf_strcasestr(const char *s1__ign, const char *s2__ign)
3813 {
3814 return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, true);
3815 }
3816
3817 /**
3818 * bpf_strnstr - Find the first substring in a length-limited string
3819 * @s1__ign: The string to be searched
3820 * @s2__ign: The string to search for
3821 * @len: the maximum number of characters to search
3822 *
3823 * Return:
3824 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3825 * within the first @len characters of @s1__ign
3826 * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3827 * * %-EFAULT - Cannot read one of the strings
3828 * * %-E2BIG - One of the strings is too large
3829 * * %-ERANGE - One of the strings is outside of kernel address space
3830 */
bpf_strnstr(const char * s1__ign,const char * s2__ign,size_t len)3831 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign,
3832 size_t len)
3833 {
3834 return __bpf_strnstr(s1__ign, s2__ign, len, false);
3835 }
3836
3837 /**
3838 * bpf_strncasestr - Find the first substring in a length-limited string,
3839 * ignoring the case of the characters
3840 * @s1__ign: The string to be searched
3841 * @s2__ign: The string to search for
3842 * @len: the maximum number of characters to search
3843 *
3844 * Return:
3845 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3846 * within the first @len characters of @s1__ign
3847 * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3848 * * %-EFAULT - Cannot read one of the strings
3849 * * %-E2BIG - One of the strings is too large
3850 * * %-ERANGE - One of the strings is outside of kernel address space
3851 */
bpf_strncasestr(const char * s1__ign,const char * s2__ign,size_t len)3852 __bpf_kfunc int bpf_strncasestr(const char *s1__ign, const char *s2__ign,
3853 size_t len)
3854 {
3855 return __bpf_strnstr(s1__ign, s2__ign, len, true);
3856 }
3857
3858 #ifdef CONFIG_KEYS
3859 /**
3860 * bpf_lookup_user_key - lookup a key by its serial
3861 * @serial: key handle serial number
3862 * @flags: lookup-specific flags
3863 *
3864 * Search a key with a given *serial* and the provided *flags*.
3865 * If found, increment the reference count of the key by one, and
3866 * return it in the bpf_key structure.
3867 *
3868 * The bpf_key structure must be passed to bpf_key_put() when done
3869 * with it, so that the key reference count is decremented and the
3870 * bpf_key structure is freed.
3871 *
3872 * Permission checks are deferred to the time the key is used by
3873 * one of the available key-specific kfuncs.
3874 *
3875 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
3876 * special keyring (e.g. session keyring), if it doesn't yet exist.
3877 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
3878 * for the key construction, and to retrieve uninstantiated keys (keys
3879 * without data attached to them).
3880 *
3881 * Return: a bpf_key pointer with a valid key pointer if the key is found, a
3882 * NULL pointer otherwise.
3883 */
bpf_lookup_user_key(s32 serial,u64 flags)3884 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags)
3885 {
3886 key_ref_t key_ref;
3887 struct bpf_key *bkey;
3888
3889 if (flags & ~KEY_LOOKUP_ALL)
3890 return NULL;
3891
3892 /*
3893 * Permission check is deferred until the key is used, as the
3894 * intent of the caller is unknown here.
3895 */
3896 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
3897 if (IS_ERR(key_ref))
3898 return NULL;
3899
3900 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
3901 if (!bkey) {
3902 key_put(key_ref_to_ptr(key_ref));
3903 return NULL;
3904 }
3905
3906 bkey->key = key_ref_to_ptr(key_ref);
3907 bkey->has_ref = true;
3908
3909 return bkey;
3910 }
3911
3912 /**
3913 * bpf_lookup_system_key - lookup a key by a system-defined ID
3914 * @id: key ID
3915 *
3916 * Obtain a bpf_key structure with a key pointer set to the passed key ID.
3917 * The key pointer is marked as invalid, to prevent bpf_key_put() from
3918 * attempting to decrement the key reference count on that pointer. The key
3919 * pointer set in such way is currently understood only by
3920 * verify_pkcs7_signature().
3921 *
3922 * Set *id* to one of the values defined in include/linux/verification.h:
3923 * 0 for the primary keyring (immutable keyring of system keys);
3924 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
3925 * (where keys can be added only if they are vouched for by existing keys
3926 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
3927 * keyring (primarily used by the integrity subsystem to verify a kexec'ed
3928 * kerned image and, possibly, the initramfs signature).
3929 *
3930 * Return: a bpf_key pointer with an invalid key pointer set from the
3931 * pre-determined ID on success, a NULL pointer otherwise
3932 */
bpf_lookup_system_key(u64 id)3933 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
3934 {
3935 struct bpf_key *bkey;
3936
3937 if (system_keyring_id_check(id) < 0)
3938 return NULL;
3939
3940 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
3941 if (!bkey)
3942 return NULL;
3943
3944 bkey->key = (struct key *)(unsigned long)id;
3945 bkey->has_ref = false;
3946
3947 return bkey;
3948 }
3949
3950 /**
3951 * bpf_key_put - decrement key reference count if key is valid and free bpf_key
3952 * @bkey: bpf_key structure
3953 *
3954 * Decrement the reference count of the key inside *bkey*, if the pointer
3955 * is valid, and free *bkey*.
3956 */
bpf_key_put(struct bpf_key * bkey)3957 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
3958 {
3959 if (bkey->has_ref)
3960 key_put(bkey->key);
3961
3962 kfree(bkey);
3963 }
3964
3965 /**
3966 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
3967 * @data_p: data to verify
3968 * @sig_p: signature of the data
3969 * @trusted_keyring: keyring with keys trusted for signature verification
3970 *
3971 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
3972 * with keys in a keyring referenced by *trusted_keyring*.
3973 *
3974 * Return: 0 on success, a negative value on error.
3975 */
bpf_verify_pkcs7_signature(struct bpf_dynptr * data_p,struct bpf_dynptr * sig_p,struct bpf_key * trusted_keyring)3976 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3977 struct bpf_dynptr *sig_p,
3978 struct bpf_key *trusted_keyring)
3979 {
3980 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
3981 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
3982 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
3983 const void *data, *sig;
3984 u32 data_len, sig_len;
3985 int ret;
3986
3987 if (trusted_keyring->has_ref) {
3988 /*
3989 * Do the permission check deferred in bpf_lookup_user_key().
3990 * See bpf_lookup_user_key() for more details.
3991 *
3992 * A call to key_task_permission() here would be redundant, as
3993 * it is already done by keyring_search() called by
3994 * find_asymmetric_key().
3995 */
3996 ret = key_validate(trusted_keyring->key);
3997 if (ret < 0)
3998 return ret;
3999 }
4000
4001 data_len = __bpf_dynptr_size(data_ptr);
4002 data = __bpf_dynptr_data(data_ptr, data_len);
4003 sig_len = __bpf_dynptr_size(sig_ptr);
4004 sig = __bpf_dynptr_data(sig_ptr, sig_len);
4005
4006 return verify_pkcs7_signature(data, data_len, sig, sig_len,
4007 trusted_keyring->key,
4008 VERIFYING_BPF_SIGNATURE, NULL,
4009 NULL);
4010 #else
4011 return -EOPNOTSUPP;
4012 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
4013 }
4014 #endif /* CONFIG_KEYS */
4015
4016 typedef int (*bpf_task_work_callback_t)(struct bpf_map *map, void *key, void *value);
4017
4018 enum bpf_task_work_state {
4019 /* bpf_task_work is ready to be used */
4020 BPF_TW_STANDBY = 0,
4021 /* irq work scheduling in progress */
4022 BPF_TW_PENDING,
4023 /* task work scheduling in progress */
4024 BPF_TW_SCHEDULING,
4025 /* task work is scheduled successfully */
4026 BPF_TW_SCHEDULED,
4027 /* callback is running */
4028 BPF_TW_RUNNING,
4029 /* associated BPF map value is deleted */
4030 BPF_TW_FREED,
4031 };
4032
4033 struct bpf_task_work_ctx {
4034 enum bpf_task_work_state state;
4035 refcount_t refcnt;
4036 struct callback_head work;
4037 struct irq_work irq_work;
4038 /* bpf_prog that schedules task work */
4039 struct bpf_prog *prog;
4040 /* task for which callback is scheduled */
4041 struct task_struct *task;
4042 /* the map and map value associated with this context */
4043 struct bpf_map *map;
4044 void *map_val;
4045 enum task_work_notify_mode mode;
4046 bpf_task_work_callback_t callback_fn;
4047 struct rcu_head rcu;
4048 } __aligned(8);
4049
4050 /* Actual type for struct bpf_task_work */
4051 struct bpf_task_work_kern {
4052 struct bpf_task_work_ctx *ctx;
4053 };
4054
bpf_task_work_ctx_reset(struct bpf_task_work_ctx * ctx)4055 static void bpf_task_work_ctx_reset(struct bpf_task_work_ctx *ctx)
4056 {
4057 if (ctx->prog) {
4058 bpf_prog_put(ctx->prog);
4059 ctx->prog = NULL;
4060 }
4061 if (ctx->task) {
4062 bpf_task_release(ctx->task);
4063 ctx->task = NULL;
4064 }
4065 }
4066
bpf_task_work_ctx_tryget(struct bpf_task_work_ctx * ctx)4067 static bool bpf_task_work_ctx_tryget(struct bpf_task_work_ctx *ctx)
4068 {
4069 return refcount_inc_not_zero(&ctx->refcnt);
4070 }
4071
bpf_task_work_ctx_put(struct bpf_task_work_ctx * ctx)4072 static void bpf_task_work_ctx_put(struct bpf_task_work_ctx *ctx)
4073 {
4074 if (!refcount_dec_and_test(&ctx->refcnt))
4075 return;
4076
4077 bpf_task_work_ctx_reset(ctx);
4078
4079 /* bpf_mem_free expects migration to be disabled */
4080 migrate_disable();
4081 bpf_mem_free(&bpf_global_ma, ctx);
4082 migrate_enable();
4083 }
4084
bpf_task_work_cancel(struct bpf_task_work_ctx * ctx)4085 static void bpf_task_work_cancel(struct bpf_task_work_ctx *ctx)
4086 {
4087 /*
4088 * Scheduled task_work callback holds ctx ref, so if we successfully
4089 * cancelled, we put that ref on callback's behalf. If we couldn't
4090 * cancel, callback will inevitably run or has already completed
4091 * running, and it would have taken care of its ctx ref itself.
4092 */
4093 if (task_work_cancel(ctx->task, &ctx->work))
4094 bpf_task_work_ctx_put(ctx);
4095 }
4096
bpf_task_work_callback(struct callback_head * cb)4097 static void bpf_task_work_callback(struct callback_head *cb)
4098 {
4099 struct bpf_task_work_ctx *ctx = container_of(cb, struct bpf_task_work_ctx, work);
4100 enum bpf_task_work_state state;
4101 u32 idx;
4102 void *key;
4103
4104 /* Read lock is needed to protect ctx and map key/value access */
4105 guard(rcu_tasks_trace)();
4106 /*
4107 * This callback may start running before bpf_task_work_irq() switched to
4108 * SCHEDULED state, so handle both transition variants SCHEDULING|SCHEDULED -> RUNNING.
4109 */
4110 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_RUNNING);
4111 if (state == BPF_TW_SCHEDULED)
4112 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULED, BPF_TW_RUNNING);
4113 if (state == BPF_TW_FREED) {
4114 bpf_task_work_ctx_put(ctx);
4115 return;
4116 }
4117
4118 key = (void *)map_key_from_value(ctx->map, ctx->map_val, &idx);
4119
4120 migrate_disable();
4121 ctx->callback_fn(ctx->map, key, ctx->map_val);
4122 migrate_enable();
4123
4124 bpf_task_work_ctx_reset(ctx);
4125 (void)cmpxchg(&ctx->state, BPF_TW_RUNNING, BPF_TW_STANDBY);
4126
4127 bpf_task_work_ctx_put(ctx);
4128 }
4129
bpf_task_work_irq(struct irq_work * irq_work)4130 static void bpf_task_work_irq(struct irq_work *irq_work)
4131 {
4132 struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4133 enum bpf_task_work_state state;
4134 int err;
4135
4136 guard(rcu_tasks_trace)();
4137
4138 if (cmpxchg(&ctx->state, BPF_TW_PENDING, BPF_TW_SCHEDULING) != BPF_TW_PENDING) {
4139 bpf_task_work_ctx_put(ctx);
4140 return;
4141 }
4142
4143 err = task_work_add(ctx->task, &ctx->work, ctx->mode);
4144 if (err) {
4145 bpf_task_work_ctx_reset(ctx);
4146 /*
4147 * try to switch back to STANDBY for another task_work reuse, but we might have
4148 * gone to FREED already, which is fine as we already cleaned up after ourselves
4149 */
4150 (void)cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_STANDBY);
4151 bpf_task_work_ctx_put(ctx);
4152 return;
4153 }
4154
4155 /*
4156 * It's technically possible for just scheduled task_work callback to
4157 * complete running by now, going SCHEDULING -> RUNNING and then
4158 * dropping its ctx refcount. Instead of capturing extra ref just to
4159 * protected below ctx->state access, we rely on RCU protection to
4160 * perform below SCHEDULING -> SCHEDULED attempt.
4161 */
4162 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_SCHEDULED);
4163 if (state == BPF_TW_FREED)
4164 bpf_task_work_cancel(ctx); /* clean up if we switched into FREED state */
4165 }
4166
bpf_task_work_fetch_ctx(struct bpf_task_work * tw,struct bpf_map * map)4167 static struct bpf_task_work_ctx *bpf_task_work_fetch_ctx(struct bpf_task_work *tw,
4168 struct bpf_map *map)
4169 {
4170 struct bpf_task_work_kern *twk = (void *)tw;
4171 struct bpf_task_work_ctx *ctx, *old_ctx;
4172
4173 ctx = READ_ONCE(twk->ctx);
4174 if (ctx)
4175 return ctx;
4176
4177 ctx = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_task_work_ctx));
4178 if (!ctx)
4179 return ERR_PTR(-ENOMEM);
4180
4181 memset(ctx, 0, sizeof(*ctx));
4182 refcount_set(&ctx->refcnt, 1); /* map's own ref */
4183 ctx->state = BPF_TW_STANDBY;
4184
4185 old_ctx = cmpxchg(&twk->ctx, NULL, ctx);
4186 if (old_ctx) {
4187 /*
4188 * tw->ctx is set by concurrent BPF program, release allocated
4189 * memory and try to reuse already set context.
4190 */
4191 bpf_mem_free(&bpf_global_ma, ctx);
4192 return old_ctx;
4193 }
4194
4195 return ctx; /* Success */
4196 }
4197
bpf_task_work_acquire_ctx(struct bpf_task_work * tw,struct bpf_map * map)4198 static struct bpf_task_work_ctx *bpf_task_work_acquire_ctx(struct bpf_task_work *tw,
4199 struct bpf_map *map)
4200 {
4201 struct bpf_task_work_ctx *ctx;
4202
4203 ctx = bpf_task_work_fetch_ctx(tw, map);
4204 if (IS_ERR(ctx))
4205 return ctx;
4206
4207 /* try to get ref for task_work callback to hold */
4208 if (!bpf_task_work_ctx_tryget(ctx))
4209 return ERR_PTR(-EBUSY);
4210
4211 if (cmpxchg(&ctx->state, BPF_TW_STANDBY, BPF_TW_PENDING) != BPF_TW_STANDBY) {
4212 /* lost acquiring race or map_release_uref() stole it from us, put ref and bail */
4213 bpf_task_work_ctx_put(ctx);
4214 return ERR_PTR(-EBUSY);
4215 }
4216
4217 /*
4218 * If no process or bpffs is holding a reference to the map, no new callbacks should be
4219 * scheduled. This does not address any race or correctness issue, but rather is a policy
4220 * choice: dropping user references should stop everything.
4221 */
4222 if (!atomic64_read(&map->usercnt)) {
4223 /* drop ref we just got for task_work callback itself */
4224 bpf_task_work_ctx_put(ctx);
4225 /* transfer map's ref into cancel_and_free() */
4226 bpf_task_work_cancel_and_free(tw);
4227 return ERR_PTR(-EBUSY);
4228 }
4229
4230 return ctx;
4231 }
4232
bpf_task_work_schedule(struct task_struct * task,struct bpf_task_work * tw,struct bpf_map * map,bpf_task_work_callback_t callback_fn,struct bpf_prog_aux * aux,enum task_work_notify_mode mode)4233 static int bpf_task_work_schedule(struct task_struct *task, struct bpf_task_work *tw,
4234 struct bpf_map *map, bpf_task_work_callback_t callback_fn,
4235 struct bpf_prog_aux *aux, enum task_work_notify_mode mode)
4236 {
4237 struct bpf_prog *prog;
4238 struct bpf_task_work_ctx *ctx;
4239 int err;
4240
4241 BTF_TYPE_EMIT(struct bpf_task_work);
4242
4243 prog = bpf_prog_inc_not_zero(aux->prog);
4244 if (IS_ERR(prog))
4245 return -EBADF;
4246 task = bpf_task_acquire(task);
4247 if (!task) {
4248 err = -EBADF;
4249 goto release_prog;
4250 }
4251
4252 ctx = bpf_task_work_acquire_ctx(tw, map);
4253 if (IS_ERR(ctx)) {
4254 err = PTR_ERR(ctx);
4255 goto release_all;
4256 }
4257
4258 ctx->task = task;
4259 ctx->callback_fn = callback_fn;
4260 ctx->prog = prog;
4261 ctx->mode = mode;
4262 ctx->map = map;
4263 ctx->map_val = (void *)tw - map->record->task_work_off;
4264 init_task_work(&ctx->work, bpf_task_work_callback);
4265 init_irq_work(&ctx->irq_work, bpf_task_work_irq);
4266
4267 irq_work_queue(&ctx->irq_work);
4268 return 0;
4269
4270 release_all:
4271 bpf_task_release(task);
4272 release_prog:
4273 bpf_prog_put(prog);
4274 return err;
4275 }
4276
4277 /**
4278 * bpf_task_work_schedule_signal_impl - Schedule BPF callback using task_work_add with TWA_SIGNAL
4279 * mode
4280 * @task: Task struct for which callback should be scheduled
4281 * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4282 * @map__map: bpf_map that embeds struct bpf_task_work in the values
4283 * @callback: pointer to BPF subprogram to call
4284 * @aux__prog: user should pass NULL
4285 *
4286 * Return: 0 if task work has been scheduled successfully, negative error code otherwise
4287 */
bpf_task_work_schedule_signal_impl(struct task_struct * task,struct bpf_task_work * tw,void * map__map,bpf_task_work_callback_t callback,void * aux__prog)4288 __bpf_kfunc int bpf_task_work_schedule_signal_impl(struct task_struct *task,
4289 struct bpf_task_work *tw, void *map__map,
4290 bpf_task_work_callback_t callback,
4291 void *aux__prog)
4292 {
4293 return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_SIGNAL);
4294 }
4295
4296 /**
4297 * bpf_task_work_schedule_resume_impl - Schedule BPF callback using task_work_add with TWA_RESUME
4298 * mode
4299 * @task: Task struct for which callback should be scheduled
4300 * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4301 * @map__map: bpf_map that embeds struct bpf_task_work in the values
4302 * @callback: pointer to BPF subprogram to call
4303 * @aux__prog: user should pass NULL
4304 *
4305 * Return: 0 if task work has been scheduled successfully, negative error code otherwise
4306 */
bpf_task_work_schedule_resume_impl(struct task_struct * task,struct bpf_task_work * tw,void * map__map,bpf_task_work_callback_t callback,void * aux__prog)4307 __bpf_kfunc int bpf_task_work_schedule_resume_impl(struct task_struct *task,
4308 struct bpf_task_work *tw, void *map__map,
4309 bpf_task_work_callback_t callback,
4310 void *aux__prog)
4311 {
4312 return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_RESUME);
4313 }
4314
make_file_dynptr(struct file * file,u32 flags,bool may_sleep,struct bpf_dynptr_kern * ptr)4315 static int make_file_dynptr(struct file *file, u32 flags, bool may_sleep,
4316 struct bpf_dynptr_kern *ptr)
4317 {
4318 struct bpf_dynptr_file_impl *state;
4319
4320 /* flags is currently unsupported */
4321 if (flags) {
4322 bpf_dynptr_set_null(ptr);
4323 return -EINVAL;
4324 }
4325
4326 state = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_dynptr_file_impl));
4327 if (!state) {
4328 bpf_dynptr_set_null(ptr);
4329 return -ENOMEM;
4330 }
4331 state->offset = 0;
4332 state->size = U64_MAX; /* Don't restrict size, as file may change anyways */
4333 freader_init_from_file(&state->freader, NULL, 0, file, may_sleep);
4334 bpf_dynptr_init(ptr, state, BPF_DYNPTR_TYPE_FILE, 0, 0);
4335 bpf_dynptr_set_rdonly(ptr);
4336 return 0;
4337 }
4338
bpf_dynptr_from_file(struct file * file,u32 flags,struct bpf_dynptr * ptr__uninit)4339 __bpf_kfunc int bpf_dynptr_from_file(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit)
4340 {
4341 return make_file_dynptr(file, flags, false, (struct bpf_dynptr_kern *)ptr__uninit);
4342 }
4343
bpf_dynptr_from_file_sleepable(struct file * file,u32 flags,struct bpf_dynptr * ptr__uninit)4344 int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit)
4345 {
4346 return make_file_dynptr(file, flags, true, (struct bpf_dynptr_kern *)ptr__uninit);
4347 }
4348
bpf_dynptr_file_discard(struct bpf_dynptr * dynptr)4349 __bpf_kfunc int bpf_dynptr_file_discard(struct bpf_dynptr *dynptr)
4350 {
4351 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)dynptr;
4352 struct bpf_dynptr_file_impl *df = ptr->data;
4353
4354 if (!df)
4355 return 0;
4356
4357 freader_cleanup(&df->freader);
4358 bpf_mem_free(&bpf_global_ma, df);
4359 bpf_dynptr_set_null(ptr);
4360 return 0;
4361 }
4362
4363 __bpf_kfunc_end_defs();
4364
bpf_task_work_cancel_scheduled(struct irq_work * irq_work)4365 static void bpf_task_work_cancel_scheduled(struct irq_work *irq_work)
4366 {
4367 struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4368
4369 bpf_task_work_cancel(ctx); /* this might put task_work callback's ref */
4370 bpf_task_work_ctx_put(ctx); /* and here we put map's own ref that was transferred to us */
4371 }
4372
bpf_task_work_cancel_and_free(void * val)4373 void bpf_task_work_cancel_and_free(void *val)
4374 {
4375 struct bpf_task_work_kern *twk = val;
4376 struct bpf_task_work_ctx *ctx;
4377 enum bpf_task_work_state state;
4378
4379 ctx = xchg(&twk->ctx, NULL);
4380 if (!ctx)
4381 return;
4382
4383 state = xchg(&ctx->state, BPF_TW_FREED);
4384 if (state == BPF_TW_SCHEDULED) {
4385 /* run in irq_work to avoid locks in NMI */
4386 init_irq_work(&ctx->irq_work, bpf_task_work_cancel_scheduled);
4387 irq_work_queue(&ctx->irq_work);
4388 return;
4389 }
4390
4391 bpf_task_work_ctx_put(ctx); /* put bpf map's ref */
4392 }
4393
4394 BTF_KFUNCS_START(generic_btf_ids)
4395 #ifdef CONFIG_CRASH_DUMP
4396 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
4397 #endif
4398 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4399 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4400 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
4401 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
4402 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
4403 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
4404 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
4405 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
4406 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
4407 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
4408 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
4409 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4410 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
4411 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
4412 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
4413 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
4414 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
4415 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
4416 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
4417
4418 #ifdef CONFIG_CGROUPS
4419 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4420 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
4421 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4422 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
4423 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
4424 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4425 #endif
4426 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
4427 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
4428 BTF_ID_FLAGS(func, bpf_throw)
4429 #ifdef CONFIG_BPF_EVENTS
4430 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
4431 #endif
4432 #ifdef CONFIG_KEYS
4433 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
4434 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
4435 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
4436 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
4437 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
4438 #endif
4439 #endif
4440 BTF_KFUNCS_END(generic_btf_ids)
4441
4442 static const struct btf_kfunc_id_set generic_kfunc_set = {
4443 .owner = THIS_MODULE,
4444 .set = &generic_btf_ids,
4445 };
4446
4447
4448 BTF_ID_LIST(generic_dtor_ids)
4449 BTF_ID(struct, task_struct)
4450 BTF_ID(func, bpf_task_release_dtor)
4451 #ifdef CONFIG_CGROUPS
4452 BTF_ID(struct, cgroup)
4453 BTF_ID(func, bpf_cgroup_release_dtor)
4454 #endif
4455
4456 BTF_KFUNCS_START(common_btf_ids)
4457 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
4458 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
4459 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
4460 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
4461 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
4462 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
4463 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
4464 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
4465 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
4466 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
4467 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
4468 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
4469 #ifdef CONFIG_CGROUPS
4470 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
4471 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
4472 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
4473 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4474 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
4475 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
4476 #endif
4477 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4478 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
4479 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
4480 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
4481 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
4482 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
4483 BTF_ID_FLAGS(func, bpf_dynptr_size)
4484 BTF_ID_FLAGS(func, bpf_dynptr_clone)
4485 BTF_ID_FLAGS(func, bpf_dynptr_copy)
4486 BTF_ID_FLAGS(func, bpf_dynptr_memset)
4487 #ifdef CONFIG_NET
4488 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
4489 #endif
4490 BTF_ID_FLAGS(func, bpf_wq_init)
4491 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
4492 BTF_ID_FLAGS(func, bpf_wq_start)
4493 BTF_ID_FLAGS(func, bpf_preempt_disable)
4494 BTF_ID_FLAGS(func, bpf_preempt_enable)
4495 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
4496 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
4497 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
4498 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
4499 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
4500 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
4501 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
4502 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4503 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4504 BTF_ID_FLAGS(func, bpf_local_irq_save)
4505 BTF_ID_FLAGS(func, bpf_local_irq_restore)
4506 #ifdef CONFIG_BPF_EVENTS
4507 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
4508 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
4509 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
4510 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
4511 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
4512 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
4513 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4514 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4515 #endif
4516 #ifdef CONFIG_DMA_SHARED_BUFFER
4517 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
4518 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4519 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4520 #endif
4521 BTF_ID_FLAGS(func, __bpf_trap)
4522 BTF_ID_FLAGS(func, bpf_strcmp);
4523 BTF_ID_FLAGS(func, bpf_strcasecmp);
4524 BTF_ID_FLAGS(func, bpf_strchr);
4525 BTF_ID_FLAGS(func, bpf_strchrnul);
4526 BTF_ID_FLAGS(func, bpf_strnchr);
4527 BTF_ID_FLAGS(func, bpf_strrchr);
4528 BTF_ID_FLAGS(func, bpf_strlen);
4529 BTF_ID_FLAGS(func, bpf_strnlen);
4530 BTF_ID_FLAGS(func, bpf_strspn);
4531 BTF_ID_FLAGS(func, bpf_strcspn);
4532 BTF_ID_FLAGS(func, bpf_strstr);
4533 BTF_ID_FLAGS(func, bpf_strcasestr);
4534 BTF_ID_FLAGS(func, bpf_strnstr);
4535 BTF_ID_FLAGS(func, bpf_strncasestr);
4536 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
4537 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
4538 #endif
4539 BTF_ID_FLAGS(func, bpf_stream_vprintk_impl, KF_TRUSTED_ARGS)
4540 BTF_ID_FLAGS(func, bpf_task_work_schedule_signal_impl, KF_TRUSTED_ARGS)
4541 BTF_ID_FLAGS(func, bpf_task_work_schedule_resume_impl, KF_TRUSTED_ARGS)
4542 BTF_ID_FLAGS(func, bpf_dynptr_from_file, KF_TRUSTED_ARGS)
4543 BTF_ID_FLAGS(func, bpf_dynptr_file_discard)
4544 BTF_KFUNCS_END(common_btf_ids)
4545
4546 static const struct btf_kfunc_id_set common_kfunc_set = {
4547 .owner = THIS_MODULE,
4548 .set = &common_btf_ids,
4549 };
4550
kfunc_init(void)4551 static int __init kfunc_init(void)
4552 {
4553 int ret;
4554 const struct btf_id_dtor_kfunc generic_dtors[] = {
4555 {
4556 .btf_id = generic_dtor_ids[0],
4557 .kfunc_btf_id = generic_dtor_ids[1]
4558 },
4559 #ifdef CONFIG_CGROUPS
4560 {
4561 .btf_id = generic_dtor_ids[2],
4562 .kfunc_btf_id = generic_dtor_ids[3]
4563 },
4564 #endif
4565 };
4566
4567 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
4568 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
4569 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
4570 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
4571 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
4572 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
4573 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
4574 ARRAY_SIZE(generic_dtors),
4575 THIS_MODULE);
4576 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
4577 }
4578
4579 late_initcall(kfunc_init);
4580
4581 /* Get a pointer to dynptr data up to len bytes for read only access. If
4582 * the dynptr doesn't have continuous data up to len bytes, return NULL.
4583 */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u64 len)4584 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len)
4585 {
4586 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
4587
4588 return bpf_dynptr_slice(p, 0, NULL, len);
4589 }
4590
4591 /* Get a pointer to dynptr data up to len bytes for read write access. If
4592 * the dynptr doesn't have continuous data up to len bytes, or the dynptr
4593 * is read only, return NULL.
4594 */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u64 len)4595 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len)
4596 {
4597 if (__bpf_dynptr_is_rdonly(ptr))
4598 return NULL;
4599 return (void *)__bpf_dynptr_data(ptr, len);
4600 }
4601
bpf_map_free_internal_structs(struct bpf_map * map,void * val)4602 void bpf_map_free_internal_structs(struct bpf_map *map, void *val)
4603 {
4604 if (btf_record_has_field(map->record, BPF_TIMER))
4605 bpf_obj_free_timer(map->record, val);
4606 if (btf_record_has_field(map->record, BPF_WORKQUEUE))
4607 bpf_obj_free_workqueue(map->record, val);
4608 if (btf_record_has_field(map->record, BPF_TASK_WORK))
4609 bpf_obj_free_task_work(map->record, val);
4610 }
4611