xref: /linux/kernel/bpf/core.c (revision 1260ed77798502de9c98020040d2995008de10cc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/prandom.h>
25 #include <linux/bpf.h>
26 #include <linux/btf.h>
27 #include <linux/objtool.h>
28 #include <linux/overflow.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 #include <linux/execmem.h>
41 
42 #include <asm/barrier.h>
43 #include <linux/unaligned.h>
44 
45 /* Registers */
46 #define BPF_R0	regs[BPF_REG_0]
47 #define BPF_R1	regs[BPF_REG_1]
48 #define BPF_R2	regs[BPF_REG_2]
49 #define BPF_R3	regs[BPF_REG_3]
50 #define BPF_R4	regs[BPF_REG_4]
51 #define BPF_R5	regs[BPF_REG_5]
52 #define BPF_R6	regs[BPF_REG_6]
53 #define BPF_R7	regs[BPF_REG_7]
54 #define BPF_R8	regs[BPF_REG_8]
55 #define BPF_R9	regs[BPF_REG_9]
56 #define BPF_R10	regs[BPF_REG_10]
57 
58 /* Named registers */
59 #define DST	regs[insn->dst_reg]
60 #define SRC	regs[insn->src_reg]
61 #define FP	regs[BPF_REG_FP]
62 #define AX	regs[BPF_REG_AX]
63 #define ARG1	regs[BPF_REG_ARG1]
64 #define CTX	regs[BPF_REG_CTX]
65 #define OFF	insn->off
66 #define IMM	insn->imm
67 
68 struct bpf_mem_alloc bpf_global_ma;
69 bool bpf_global_ma_set;
70 
71 /* No hurry in this branch
72  *
73  * Exported for the bpf jit load helper.
74  */
75 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
76 {
77 	u8 *ptr = NULL;
78 
79 	if (k >= SKF_NET_OFF) {
80 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
81 	} else if (k >= SKF_LL_OFF) {
82 		if (unlikely(!skb_mac_header_was_set(skb)))
83 			return NULL;
84 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
85 	}
86 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
87 		return ptr;
88 
89 	return NULL;
90 }
91 
92 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
93 enum page_size_enum {
94 	__PAGE_SIZE = PAGE_SIZE
95 };
96 
97 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
98 {
99 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
100 	struct bpf_prog_aux *aux;
101 	struct bpf_prog *fp;
102 
103 	size = round_up(size, __PAGE_SIZE);
104 	fp = __vmalloc(size, gfp_flags);
105 	if (fp == NULL)
106 		return NULL;
107 
108 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
109 	if (aux == NULL) {
110 		vfree(fp);
111 		return NULL;
112 	}
113 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
114 	if (!fp->active) {
115 		vfree(fp);
116 		kfree(aux);
117 		return NULL;
118 	}
119 
120 	fp->pages = size / PAGE_SIZE;
121 	fp->aux = aux;
122 	fp->aux->prog = fp;
123 	fp->jit_requested = ebpf_jit_enabled();
124 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
125 #ifdef CONFIG_CGROUP_BPF
126 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
127 #endif
128 
129 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
130 #ifdef CONFIG_FINEIBT
131 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
132 #endif
133 	mutex_init(&fp->aux->used_maps_mutex);
134 	mutex_init(&fp->aux->ext_mutex);
135 	mutex_init(&fp->aux->dst_mutex);
136 
137 	return fp;
138 }
139 
140 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
141 {
142 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
143 	struct bpf_prog *prog;
144 	int cpu;
145 
146 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
147 	if (!prog)
148 		return NULL;
149 
150 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
151 	if (!prog->stats) {
152 		free_percpu(prog->active);
153 		kfree(prog->aux);
154 		vfree(prog);
155 		return NULL;
156 	}
157 
158 	for_each_possible_cpu(cpu) {
159 		struct bpf_prog_stats *pstats;
160 
161 		pstats = per_cpu_ptr(prog->stats, cpu);
162 		u64_stats_init(&pstats->syncp);
163 	}
164 	return prog;
165 }
166 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
167 
168 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
169 {
170 	if (!prog->aux->nr_linfo || !prog->jit_requested)
171 		return 0;
172 
173 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
174 					  sizeof(*prog->aux->jited_linfo),
175 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
176 	if (!prog->aux->jited_linfo)
177 		return -ENOMEM;
178 
179 	return 0;
180 }
181 
182 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
183 {
184 	if (prog->aux->jited_linfo &&
185 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
186 		kvfree(prog->aux->jited_linfo);
187 		prog->aux->jited_linfo = NULL;
188 	}
189 
190 	kfree(prog->aux->kfunc_tab);
191 	prog->aux->kfunc_tab = NULL;
192 }
193 
194 /* The jit engine is responsible to provide an array
195  * for insn_off to the jited_off mapping (insn_to_jit_off).
196  *
197  * The idx to this array is the insn_off.  Hence, the insn_off
198  * here is relative to the prog itself instead of the main prog.
199  * This array has one entry for each xlated bpf insn.
200  *
201  * jited_off is the byte off to the end of the jited insn.
202  *
203  * Hence, with
204  * insn_start:
205  *      The first bpf insn off of the prog.  The insn off
206  *      here is relative to the main prog.
207  *      e.g. if prog is a subprog, insn_start > 0
208  * linfo_idx:
209  *      The prog's idx to prog->aux->linfo and jited_linfo
210  *
211  * jited_linfo[linfo_idx] = prog->bpf_func
212  *
213  * For i > linfo_idx,
214  *
215  * jited_linfo[i] = prog->bpf_func +
216  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
217  */
218 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
219 			       const u32 *insn_to_jit_off)
220 {
221 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
222 	const struct bpf_line_info *linfo;
223 	void **jited_linfo;
224 
225 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
226 		/* Userspace did not provide linfo */
227 		return;
228 
229 	linfo_idx = prog->aux->linfo_idx;
230 	linfo = &prog->aux->linfo[linfo_idx];
231 	insn_start = linfo[0].insn_off;
232 	insn_end = insn_start + prog->len;
233 
234 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
235 	jited_linfo[0] = prog->bpf_func;
236 
237 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
238 
239 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
240 		/* The verifier ensures that linfo[i].insn_off is
241 		 * strictly increasing
242 		 */
243 		jited_linfo[i] = prog->bpf_func +
244 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
245 }
246 
247 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
248 				  gfp_t gfp_extra_flags)
249 {
250 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
251 	struct bpf_prog *fp;
252 	u32 pages;
253 
254 	size = round_up(size, PAGE_SIZE);
255 	pages = size / PAGE_SIZE;
256 	if (pages <= fp_old->pages)
257 		return fp_old;
258 
259 	fp = __vmalloc(size, gfp_flags);
260 	if (fp) {
261 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
262 		fp->pages = pages;
263 		fp->aux->prog = fp;
264 
265 		/* We keep fp->aux from fp_old around in the new
266 		 * reallocated structure.
267 		 */
268 		fp_old->aux = NULL;
269 		fp_old->stats = NULL;
270 		fp_old->active = NULL;
271 		__bpf_prog_free(fp_old);
272 	}
273 
274 	return fp;
275 }
276 
277 void __bpf_prog_free(struct bpf_prog *fp)
278 {
279 	if (fp->aux) {
280 		mutex_destroy(&fp->aux->used_maps_mutex);
281 		mutex_destroy(&fp->aux->dst_mutex);
282 		kfree(fp->aux->poke_tab);
283 		kfree(fp->aux);
284 	}
285 	free_percpu(fp->stats);
286 	free_percpu(fp->active);
287 	vfree(fp);
288 }
289 
290 int bpf_prog_calc_tag(struct bpf_prog *fp)
291 {
292 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
293 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
294 	u32 digest[SHA1_DIGEST_WORDS];
295 	u32 ws[SHA1_WORKSPACE_WORDS];
296 	u32 i, bsize, psize, blocks;
297 	struct bpf_insn *dst;
298 	bool was_ld_map;
299 	u8 *raw, *todo;
300 	__be32 *result;
301 	__be64 *bits;
302 
303 	raw = vmalloc(raw_size);
304 	if (!raw)
305 		return -ENOMEM;
306 
307 	sha1_init(digest);
308 	memset(ws, 0, sizeof(ws));
309 
310 	/* We need to take out the map fd for the digest calculation
311 	 * since they are unstable from user space side.
312 	 */
313 	dst = (void *)raw;
314 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
315 		dst[i] = fp->insnsi[i];
316 		if (!was_ld_map &&
317 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
318 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
319 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
320 			was_ld_map = true;
321 			dst[i].imm = 0;
322 		} else if (was_ld_map &&
323 			   dst[i].code == 0 &&
324 			   dst[i].dst_reg == 0 &&
325 			   dst[i].src_reg == 0 &&
326 			   dst[i].off == 0) {
327 			was_ld_map = false;
328 			dst[i].imm = 0;
329 		} else {
330 			was_ld_map = false;
331 		}
332 	}
333 
334 	psize = bpf_prog_insn_size(fp);
335 	memset(&raw[psize], 0, raw_size - psize);
336 	raw[psize++] = 0x80;
337 
338 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
339 	blocks = bsize / SHA1_BLOCK_SIZE;
340 	todo   = raw;
341 	if (bsize - psize >= sizeof(__be64)) {
342 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
343 	} else {
344 		bits = (__be64 *)(todo + bsize + bits_offset);
345 		blocks++;
346 	}
347 	*bits = cpu_to_be64((psize - 1) << 3);
348 
349 	while (blocks--) {
350 		sha1_transform(digest, todo, ws);
351 		todo += SHA1_BLOCK_SIZE;
352 	}
353 
354 	result = (__force __be32 *)digest;
355 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
356 		result[i] = cpu_to_be32(digest[i]);
357 	memcpy(fp->tag, result, sizeof(fp->tag));
358 
359 	vfree(raw);
360 	return 0;
361 }
362 
363 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
364 				s32 end_new, s32 curr, const bool probe_pass)
365 {
366 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
367 	s32 delta = end_new - end_old;
368 	s64 imm = insn->imm;
369 
370 	if (curr < pos && curr + imm + 1 >= end_old)
371 		imm += delta;
372 	else if (curr >= end_new && curr + imm + 1 < end_new)
373 		imm -= delta;
374 	if (imm < imm_min || imm > imm_max)
375 		return -ERANGE;
376 	if (!probe_pass)
377 		insn->imm = imm;
378 	return 0;
379 }
380 
381 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
382 				s32 end_new, s32 curr, const bool probe_pass)
383 {
384 	s64 off_min, off_max, off;
385 	s32 delta = end_new - end_old;
386 
387 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
388 		off = insn->imm;
389 		off_min = S32_MIN;
390 		off_max = S32_MAX;
391 	} else {
392 		off = insn->off;
393 		off_min = S16_MIN;
394 		off_max = S16_MAX;
395 	}
396 
397 	if (curr < pos && curr + off + 1 >= end_old)
398 		off += delta;
399 	else if (curr >= end_new && curr + off + 1 < end_new)
400 		off -= delta;
401 	if (off < off_min || off > off_max)
402 		return -ERANGE;
403 	if (!probe_pass) {
404 		if (insn->code == (BPF_JMP32 | BPF_JA))
405 			insn->imm = off;
406 		else
407 			insn->off = off;
408 	}
409 	return 0;
410 }
411 
412 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
413 			    s32 end_new, const bool probe_pass)
414 {
415 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
416 	struct bpf_insn *insn = prog->insnsi;
417 	int ret = 0;
418 
419 	for (i = 0; i < insn_cnt; i++, insn++) {
420 		u8 code;
421 
422 		/* In the probing pass we still operate on the original,
423 		 * unpatched image in order to check overflows before we
424 		 * do any other adjustments. Therefore skip the patchlet.
425 		 */
426 		if (probe_pass && i == pos) {
427 			i = end_new;
428 			insn = prog->insnsi + end_old;
429 		}
430 		if (bpf_pseudo_func(insn)) {
431 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
432 						   end_new, i, probe_pass);
433 			if (ret)
434 				return ret;
435 			continue;
436 		}
437 		code = insn->code;
438 		if ((BPF_CLASS(code) != BPF_JMP &&
439 		     BPF_CLASS(code) != BPF_JMP32) ||
440 		    BPF_OP(code) == BPF_EXIT)
441 			continue;
442 		/* Adjust offset of jmps if we cross patch boundaries. */
443 		if (BPF_OP(code) == BPF_CALL) {
444 			if (insn->src_reg != BPF_PSEUDO_CALL)
445 				continue;
446 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
447 						   end_new, i, probe_pass);
448 		} else {
449 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
450 						   end_new, i, probe_pass);
451 		}
452 		if (ret)
453 			break;
454 	}
455 
456 	return ret;
457 }
458 
459 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
460 {
461 	struct bpf_line_info *linfo;
462 	u32 i, nr_linfo;
463 
464 	nr_linfo = prog->aux->nr_linfo;
465 	if (!nr_linfo || !delta)
466 		return;
467 
468 	linfo = prog->aux->linfo;
469 
470 	for (i = 0; i < nr_linfo; i++)
471 		if (off < linfo[i].insn_off)
472 			break;
473 
474 	/* Push all off < linfo[i].insn_off by delta */
475 	for (; i < nr_linfo; i++)
476 		linfo[i].insn_off += delta;
477 }
478 
479 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
480 				       const struct bpf_insn *patch, u32 len)
481 {
482 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
483 	const u32 cnt_max = S16_MAX;
484 	struct bpf_prog *prog_adj;
485 	int err;
486 
487 	/* Since our patchlet doesn't expand the image, we're done. */
488 	if (insn_delta == 0) {
489 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
490 		return prog;
491 	}
492 
493 	insn_adj_cnt = prog->len + insn_delta;
494 
495 	/* Reject anything that would potentially let the insn->off
496 	 * target overflow when we have excessive program expansions.
497 	 * We need to probe here before we do any reallocation where
498 	 * we afterwards may not fail anymore.
499 	 */
500 	if (insn_adj_cnt > cnt_max &&
501 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
502 		return ERR_PTR(err);
503 
504 	/* Several new instructions need to be inserted. Make room
505 	 * for them. Likely, there's no need for a new allocation as
506 	 * last page could have large enough tailroom.
507 	 */
508 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
509 				    GFP_USER);
510 	if (!prog_adj)
511 		return ERR_PTR(-ENOMEM);
512 
513 	prog_adj->len = insn_adj_cnt;
514 
515 	/* Patching happens in 3 steps:
516 	 *
517 	 * 1) Move over tail of insnsi from next instruction onwards,
518 	 *    so we can patch the single target insn with one or more
519 	 *    new ones (patching is always from 1 to n insns, n > 0).
520 	 * 2) Inject new instructions at the target location.
521 	 * 3) Adjust branch offsets if necessary.
522 	 */
523 	insn_rest = insn_adj_cnt - off - len;
524 
525 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
526 		sizeof(*patch) * insn_rest);
527 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
528 
529 	/* We are guaranteed to not fail at this point, otherwise
530 	 * the ship has sailed to reverse to the original state. An
531 	 * overflow cannot happen at this point.
532 	 */
533 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
534 
535 	bpf_adj_linfo(prog_adj, off, insn_delta);
536 
537 	return prog_adj;
538 }
539 
540 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
541 {
542 	int err;
543 
544 	/* Branch offsets can't overflow when program is shrinking, no need
545 	 * to call bpf_adj_branches(..., true) here
546 	 */
547 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
548 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
549 	prog->len -= cnt;
550 
551 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
552 	WARN_ON_ONCE(err);
553 	return err;
554 }
555 
556 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
557 {
558 	int i;
559 
560 	for (i = 0; i < fp->aux->real_func_cnt; i++)
561 		bpf_prog_kallsyms_del(fp->aux->func[i]);
562 }
563 
564 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
565 {
566 	bpf_prog_kallsyms_del_subprogs(fp);
567 	bpf_prog_kallsyms_del(fp);
568 }
569 
570 #ifdef CONFIG_BPF_JIT
571 /* All BPF JIT sysctl knobs here. */
572 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
573 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
574 int bpf_jit_harden   __read_mostly;
575 long bpf_jit_limit   __read_mostly;
576 long bpf_jit_limit_max __read_mostly;
577 
578 static void
579 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
580 {
581 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
582 
583 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
584 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
585 }
586 
587 static void
588 bpf_prog_ksym_set_name(struct bpf_prog *prog)
589 {
590 	char *sym = prog->aux->ksym.name;
591 	const char *end = sym + KSYM_NAME_LEN;
592 	const struct btf_type *type;
593 	const char *func_name;
594 
595 	BUILD_BUG_ON(sizeof("bpf_prog_") +
596 		     sizeof(prog->tag) * 2 +
597 		     /* name has been null terminated.
598 		      * We should need +1 for the '_' preceding
599 		      * the name.  However, the null character
600 		      * is double counted between the name and the
601 		      * sizeof("bpf_prog_") above, so we omit
602 		      * the +1 here.
603 		      */
604 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
605 
606 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
607 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
608 
609 	/* prog->aux->name will be ignored if full btf name is available */
610 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
611 		type = btf_type_by_id(prog->aux->btf,
612 				      prog->aux->func_info[prog->aux->func_idx].type_id);
613 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
614 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
615 		return;
616 	}
617 
618 	if (prog->aux->name[0])
619 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
620 	else
621 		*sym = 0;
622 }
623 
624 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
625 {
626 	return container_of(n, struct bpf_ksym, tnode)->start;
627 }
628 
629 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
630 					  struct latch_tree_node *b)
631 {
632 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
633 }
634 
635 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
636 {
637 	unsigned long val = (unsigned long)key;
638 	const struct bpf_ksym *ksym;
639 
640 	ksym = container_of(n, struct bpf_ksym, tnode);
641 
642 	if (val < ksym->start)
643 		return -1;
644 	/* Ensure that we detect return addresses as part of the program, when
645 	 * the final instruction is a call for a program part of the stack
646 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
647 	 */
648 	if (val > ksym->end)
649 		return  1;
650 
651 	return 0;
652 }
653 
654 static const struct latch_tree_ops bpf_tree_ops = {
655 	.less	= bpf_tree_less,
656 	.comp	= bpf_tree_comp,
657 };
658 
659 static DEFINE_SPINLOCK(bpf_lock);
660 static LIST_HEAD(bpf_kallsyms);
661 static struct latch_tree_root bpf_tree __cacheline_aligned;
662 
663 void bpf_ksym_add(struct bpf_ksym *ksym)
664 {
665 	spin_lock_bh(&bpf_lock);
666 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
667 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
668 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
669 	spin_unlock_bh(&bpf_lock);
670 }
671 
672 static void __bpf_ksym_del(struct bpf_ksym *ksym)
673 {
674 	if (list_empty(&ksym->lnode))
675 		return;
676 
677 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
678 	list_del_rcu(&ksym->lnode);
679 }
680 
681 void bpf_ksym_del(struct bpf_ksym *ksym)
682 {
683 	spin_lock_bh(&bpf_lock);
684 	__bpf_ksym_del(ksym);
685 	spin_unlock_bh(&bpf_lock);
686 }
687 
688 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
689 {
690 	return fp->jited && !bpf_prog_was_classic(fp);
691 }
692 
693 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
694 {
695 	if (!bpf_prog_kallsyms_candidate(fp) ||
696 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
697 		return;
698 
699 	bpf_prog_ksym_set_addr(fp);
700 	bpf_prog_ksym_set_name(fp);
701 	fp->aux->ksym.prog = true;
702 
703 	bpf_ksym_add(&fp->aux->ksym);
704 
705 #ifdef CONFIG_FINEIBT
706 	/*
707 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
708 	 * and hence unwinder needs help.
709 	 */
710 	if (cfi_mode != CFI_FINEIBT)
711 		return;
712 
713 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
714 		 "__cfi_%s", fp->aux->ksym.name);
715 
716 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
717 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
718 
719 	bpf_ksym_add(&fp->aux->ksym_prefix);
720 #endif
721 }
722 
723 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
724 {
725 	if (!bpf_prog_kallsyms_candidate(fp))
726 		return;
727 
728 	bpf_ksym_del(&fp->aux->ksym);
729 #ifdef CONFIG_FINEIBT
730 	if (cfi_mode != CFI_FINEIBT)
731 		return;
732 	bpf_ksym_del(&fp->aux->ksym_prefix);
733 #endif
734 }
735 
736 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
737 {
738 	struct latch_tree_node *n;
739 
740 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
741 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
742 }
743 
744 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
745 				 unsigned long *off, char *sym)
746 {
747 	struct bpf_ksym *ksym;
748 	int ret = 0;
749 
750 	rcu_read_lock();
751 	ksym = bpf_ksym_find(addr);
752 	if (ksym) {
753 		unsigned long symbol_start = ksym->start;
754 		unsigned long symbol_end = ksym->end;
755 
756 		ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
757 
758 		if (size)
759 			*size = symbol_end - symbol_start;
760 		if (off)
761 			*off  = addr - symbol_start;
762 	}
763 	rcu_read_unlock();
764 
765 	return ret;
766 }
767 
768 bool is_bpf_text_address(unsigned long addr)
769 {
770 	bool ret;
771 
772 	rcu_read_lock();
773 	ret = bpf_ksym_find(addr) != NULL;
774 	rcu_read_unlock();
775 
776 	return ret;
777 }
778 
779 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
780 {
781 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
782 
783 	return ksym && ksym->prog ?
784 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
785 	       NULL;
786 }
787 
788 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
789 {
790 	const struct exception_table_entry *e = NULL;
791 	struct bpf_prog *prog;
792 
793 	rcu_read_lock();
794 	prog = bpf_prog_ksym_find(addr);
795 	if (!prog)
796 		goto out;
797 	if (!prog->aux->num_exentries)
798 		goto out;
799 
800 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
801 out:
802 	rcu_read_unlock();
803 	return e;
804 }
805 
806 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
807 		    char *sym)
808 {
809 	struct bpf_ksym *ksym;
810 	unsigned int it = 0;
811 	int ret = -ERANGE;
812 
813 	if (!bpf_jit_kallsyms_enabled())
814 		return ret;
815 
816 	rcu_read_lock();
817 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
818 		if (it++ != symnum)
819 			continue;
820 
821 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
822 
823 		*value = ksym->start;
824 		*type  = BPF_SYM_ELF_TYPE;
825 
826 		ret = 0;
827 		break;
828 	}
829 	rcu_read_unlock();
830 
831 	return ret;
832 }
833 
834 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
835 				struct bpf_jit_poke_descriptor *poke)
836 {
837 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
838 	static const u32 poke_tab_max = 1024;
839 	u32 slot = prog->aux->size_poke_tab;
840 	u32 size = slot + 1;
841 
842 	if (size > poke_tab_max)
843 		return -ENOSPC;
844 	if (poke->tailcall_target || poke->tailcall_target_stable ||
845 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
846 		return -EINVAL;
847 
848 	switch (poke->reason) {
849 	case BPF_POKE_REASON_TAIL_CALL:
850 		if (!poke->tail_call.map)
851 			return -EINVAL;
852 		break;
853 	default:
854 		return -EINVAL;
855 	}
856 
857 	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
858 	if (!tab)
859 		return -ENOMEM;
860 
861 	memcpy(&tab[slot], poke, sizeof(*poke));
862 	prog->aux->size_poke_tab = size;
863 	prog->aux->poke_tab = tab;
864 
865 	return slot;
866 }
867 
868 /*
869  * BPF program pack allocator.
870  *
871  * Most BPF programs are pretty small. Allocating a hole page for each
872  * program is sometime a waste. Many small bpf program also adds pressure
873  * to instruction TLB. To solve this issue, we introduce a BPF program pack
874  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
875  * to host BPF programs.
876  */
877 #define BPF_PROG_CHUNK_SHIFT	6
878 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
879 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
880 
881 struct bpf_prog_pack {
882 	struct list_head list;
883 	void *ptr;
884 	unsigned long bitmap[];
885 };
886 
887 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
888 {
889 	memset(area, 0, size);
890 }
891 
892 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
893 
894 static DEFINE_MUTEX(pack_mutex);
895 static LIST_HEAD(pack_list);
896 
897 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
898  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
899  */
900 #ifdef PMD_SIZE
901 /* PMD_SIZE is really big for some archs. It doesn't make sense to
902  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
903  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
904  * greater than or equal to 2MB.
905  */
906 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
907 #else
908 #define BPF_PROG_PACK_SIZE PAGE_SIZE
909 #endif
910 
911 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
912 
913 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
914 {
915 	struct bpf_prog_pack *pack;
916 	int err;
917 
918 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
919 		       GFP_KERNEL);
920 	if (!pack)
921 		return NULL;
922 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
923 	if (!pack->ptr)
924 		goto out;
925 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
926 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
927 
928 	set_vm_flush_reset_perms(pack->ptr);
929 	err = set_memory_rox((unsigned long)pack->ptr,
930 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
931 	if (err)
932 		goto out;
933 	list_add_tail(&pack->list, &pack_list);
934 	return pack;
935 
936 out:
937 	bpf_jit_free_exec(pack->ptr);
938 	kfree(pack);
939 	return NULL;
940 }
941 
942 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
943 {
944 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
945 	struct bpf_prog_pack *pack;
946 	unsigned long pos;
947 	void *ptr = NULL;
948 
949 	mutex_lock(&pack_mutex);
950 	if (size > BPF_PROG_PACK_SIZE) {
951 		size = round_up(size, PAGE_SIZE);
952 		ptr = bpf_jit_alloc_exec(size);
953 		if (ptr) {
954 			int err;
955 
956 			bpf_fill_ill_insns(ptr, size);
957 			set_vm_flush_reset_perms(ptr);
958 			err = set_memory_rox((unsigned long)ptr,
959 					     size / PAGE_SIZE);
960 			if (err) {
961 				bpf_jit_free_exec(ptr);
962 				ptr = NULL;
963 			}
964 		}
965 		goto out;
966 	}
967 	list_for_each_entry(pack, &pack_list, list) {
968 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
969 						 nbits, 0);
970 		if (pos < BPF_PROG_CHUNK_COUNT)
971 			goto found_free_area;
972 	}
973 
974 	pack = alloc_new_pack(bpf_fill_ill_insns);
975 	if (!pack)
976 		goto out;
977 
978 	pos = 0;
979 
980 found_free_area:
981 	bitmap_set(pack->bitmap, pos, nbits);
982 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
983 
984 out:
985 	mutex_unlock(&pack_mutex);
986 	return ptr;
987 }
988 
989 void bpf_prog_pack_free(void *ptr, u32 size)
990 {
991 	struct bpf_prog_pack *pack = NULL, *tmp;
992 	unsigned int nbits;
993 	unsigned long pos;
994 
995 	mutex_lock(&pack_mutex);
996 	if (size > BPF_PROG_PACK_SIZE) {
997 		bpf_jit_free_exec(ptr);
998 		goto out;
999 	}
1000 
1001 	list_for_each_entry(tmp, &pack_list, list) {
1002 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
1003 			pack = tmp;
1004 			break;
1005 		}
1006 	}
1007 
1008 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1009 		goto out;
1010 
1011 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1012 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1013 
1014 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1015 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1016 
1017 	bitmap_clear(pack->bitmap, pos, nbits);
1018 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1019 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1020 		list_del(&pack->list);
1021 		bpf_jit_free_exec(pack->ptr);
1022 		kfree(pack);
1023 	}
1024 out:
1025 	mutex_unlock(&pack_mutex);
1026 }
1027 
1028 static atomic_long_t bpf_jit_current;
1029 
1030 /* Can be overridden by an arch's JIT compiler if it has a custom,
1031  * dedicated BPF backend memory area, or if neither of the two
1032  * below apply.
1033  */
1034 u64 __weak bpf_jit_alloc_exec_limit(void)
1035 {
1036 #if defined(MODULES_VADDR)
1037 	return MODULES_END - MODULES_VADDR;
1038 #else
1039 	return VMALLOC_END - VMALLOC_START;
1040 #endif
1041 }
1042 
1043 static int __init bpf_jit_charge_init(void)
1044 {
1045 	/* Only used as heuristic here to derive limit. */
1046 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1047 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1048 					    PAGE_SIZE), LONG_MAX);
1049 	return 0;
1050 }
1051 pure_initcall(bpf_jit_charge_init);
1052 
1053 int bpf_jit_charge_modmem(u32 size)
1054 {
1055 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1056 		if (!bpf_capable()) {
1057 			atomic_long_sub(size, &bpf_jit_current);
1058 			return -EPERM;
1059 		}
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 void bpf_jit_uncharge_modmem(u32 size)
1066 {
1067 	atomic_long_sub(size, &bpf_jit_current);
1068 }
1069 
1070 void *__weak bpf_jit_alloc_exec(unsigned long size)
1071 {
1072 	return execmem_alloc(EXECMEM_BPF, size);
1073 }
1074 
1075 void __weak bpf_jit_free_exec(void *addr)
1076 {
1077 	execmem_free(addr);
1078 }
1079 
1080 struct bpf_binary_header *
1081 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1082 		     unsigned int alignment,
1083 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1084 {
1085 	struct bpf_binary_header *hdr;
1086 	u32 size, hole, start;
1087 
1088 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1089 		     alignment > BPF_IMAGE_ALIGNMENT);
1090 
1091 	/* Most of BPF filters are really small, but if some of them
1092 	 * fill a page, allow at least 128 extra bytes to insert a
1093 	 * random section of illegal instructions.
1094 	 */
1095 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1096 
1097 	if (bpf_jit_charge_modmem(size))
1098 		return NULL;
1099 	hdr = bpf_jit_alloc_exec(size);
1100 	if (!hdr) {
1101 		bpf_jit_uncharge_modmem(size);
1102 		return NULL;
1103 	}
1104 
1105 	/* Fill space with illegal/arch-dep instructions. */
1106 	bpf_fill_ill_insns(hdr, size);
1107 
1108 	hdr->size = size;
1109 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1110 		     PAGE_SIZE - sizeof(*hdr));
1111 	start = get_random_u32_below(hole) & ~(alignment - 1);
1112 
1113 	/* Leave a random number of instructions before BPF code. */
1114 	*image_ptr = &hdr->image[start];
1115 
1116 	return hdr;
1117 }
1118 
1119 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1120 {
1121 	u32 size = hdr->size;
1122 
1123 	bpf_jit_free_exec(hdr);
1124 	bpf_jit_uncharge_modmem(size);
1125 }
1126 
1127 /* Allocate jit binary from bpf_prog_pack allocator.
1128  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1129  * to the memory. To solve this problem, a RW buffer is also allocated at
1130  * as the same time. The JIT engine should calculate offsets based on the
1131  * RO memory address, but write JITed program to the RW buffer. Once the
1132  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1133  * the JITed program to the RO memory.
1134  */
1135 struct bpf_binary_header *
1136 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1137 			  unsigned int alignment,
1138 			  struct bpf_binary_header **rw_header,
1139 			  u8 **rw_image,
1140 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1141 {
1142 	struct bpf_binary_header *ro_header;
1143 	u32 size, hole, start;
1144 
1145 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1146 		     alignment > BPF_IMAGE_ALIGNMENT);
1147 
1148 	/* add 16 bytes for a random section of illegal instructions */
1149 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1150 
1151 	if (bpf_jit_charge_modmem(size))
1152 		return NULL;
1153 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1154 	if (!ro_header) {
1155 		bpf_jit_uncharge_modmem(size);
1156 		return NULL;
1157 	}
1158 
1159 	*rw_header = kvmalloc(size, GFP_KERNEL);
1160 	if (!*rw_header) {
1161 		bpf_prog_pack_free(ro_header, size);
1162 		bpf_jit_uncharge_modmem(size);
1163 		return NULL;
1164 	}
1165 
1166 	/* Fill space with illegal/arch-dep instructions. */
1167 	bpf_fill_ill_insns(*rw_header, size);
1168 	(*rw_header)->size = size;
1169 
1170 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1171 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1172 	start = get_random_u32_below(hole) & ~(alignment - 1);
1173 
1174 	*image_ptr = &ro_header->image[start];
1175 	*rw_image = &(*rw_header)->image[start];
1176 
1177 	return ro_header;
1178 }
1179 
1180 /* Copy JITed text from rw_header to its final location, the ro_header. */
1181 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1182 				 struct bpf_binary_header *rw_header)
1183 {
1184 	void *ptr;
1185 
1186 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1187 
1188 	kvfree(rw_header);
1189 
1190 	if (IS_ERR(ptr)) {
1191 		bpf_prog_pack_free(ro_header, ro_header->size);
1192 		return PTR_ERR(ptr);
1193 	}
1194 	return 0;
1195 }
1196 
1197 /* bpf_jit_binary_pack_free is called in two different scenarios:
1198  *   1) when the program is freed after;
1199  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1200  * For case 2), we need to free both the RO memory and the RW buffer.
1201  *
1202  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1203  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1204  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1205  * bpf_arch_text_copy (when jit fails).
1206  */
1207 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1208 			      struct bpf_binary_header *rw_header)
1209 {
1210 	u32 size = ro_header->size;
1211 
1212 	bpf_prog_pack_free(ro_header, size);
1213 	kvfree(rw_header);
1214 	bpf_jit_uncharge_modmem(size);
1215 }
1216 
1217 struct bpf_binary_header *
1218 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1219 {
1220 	unsigned long real_start = (unsigned long)fp->bpf_func;
1221 	unsigned long addr;
1222 
1223 	addr = real_start & BPF_PROG_CHUNK_MASK;
1224 	return (void *)addr;
1225 }
1226 
1227 static inline struct bpf_binary_header *
1228 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1229 {
1230 	unsigned long real_start = (unsigned long)fp->bpf_func;
1231 	unsigned long addr;
1232 
1233 	addr = real_start & PAGE_MASK;
1234 	return (void *)addr;
1235 }
1236 
1237 /* This symbol is only overridden by archs that have different
1238  * requirements than the usual eBPF JITs, f.e. when they only
1239  * implement cBPF JIT, do not set images read-only, etc.
1240  */
1241 void __weak bpf_jit_free(struct bpf_prog *fp)
1242 {
1243 	if (fp->jited) {
1244 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1245 
1246 		bpf_jit_binary_free(hdr);
1247 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1248 	}
1249 
1250 	bpf_prog_unlock_free(fp);
1251 }
1252 
1253 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1254 			  const struct bpf_insn *insn, bool extra_pass,
1255 			  u64 *func_addr, bool *func_addr_fixed)
1256 {
1257 	s16 off = insn->off;
1258 	s32 imm = insn->imm;
1259 	u8 *addr;
1260 	int err;
1261 
1262 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1263 	if (!*func_addr_fixed) {
1264 		/* Place-holder address till the last pass has collected
1265 		 * all addresses for JITed subprograms in which case we
1266 		 * can pick them up from prog->aux.
1267 		 */
1268 		if (!extra_pass)
1269 			addr = NULL;
1270 		else if (prog->aux->func &&
1271 			 off >= 0 && off < prog->aux->real_func_cnt)
1272 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1273 		else
1274 			return -EINVAL;
1275 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1276 		   bpf_jit_supports_far_kfunc_call()) {
1277 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1278 		if (err)
1279 			return err;
1280 	} else {
1281 		/* Address of a BPF helper call. Since part of the core
1282 		 * kernel, it's always at a fixed location. __bpf_call_base
1283 		 * and the helper with imm relative to it are both in core
1284 		 * kernel.
1285 		 */
1286 		addr = (u8 *)__bpf_call_base + imm;
1287 	}
1288 
1289 	*func_addr = (unsigned long)addr;
1290 	return 0;
1291 }
1292 
1293 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1294 			      const struct bpf_insn *aux,
1295 			      struct bpf_insn *to_buff,
1296 			      bool emit_zext)
1297 {
1298 	struct bpf_insn *to = to_buff;
1299 	u32 imm_rnd = get_random_u32();
1300 	s16 off;
1301 
1302 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1303 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1304 
1305 	/* Constraints on AX register:
1306 	 *
1307 	 * AX register is inaccessible from user space. It is mapped in
1308 	 * all JITs, and used here for constant blinding rewrites. It is
1309 	 * typically "stateless" meaning its contents are only valid within
1310 	 * the executed instruction, but not across several instructions.
1311 	 * There are a few exceptions however which are further detailed
1312 	 * below.
1313 	 *
1314 	 * Constant blinding is only used by JITs, not in the interpreter.
1315 	 * The interpreter uses AX in some occasions as a local temporary
1316 	 * register e.g. in DIV or MOD instructions.
1317 	 *
1318 	 * In restricted circumstances, the verifier can also use the AX
1319 	 * register for rewrites as long as they do not interfere with
1320 	 * the above cases!
1321 	 */
1322 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1323 		goto out;
1324 
1325 	if (from->imm == 0 &&
1326 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1327 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1328 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1329 		goto out;
1330 	}
1331 
1332 	switch (from->code) {
1333 	case BPF_ALU | BPF_ADD | BPF_K:
1334 	case BPF_ALU | BPF_SUB | BPF_K:
1335 	case BPF_ALU | BPF_AND | BPF_K:
1336 	case BPF_ALU | BPF_OR  | BPF_K:
1337 	case BPF_ALU | BPF_XOR | BPF_K:
1338 	case BPF_ALU | BPF_MUL | BPF_K:
1339 	case BPF_ALU | BPF_MOV | BPF_K:
1340 	case BPF_ALU | BPF_DIV | BPF_K:
1341 	case BPF_ALU | BPF_MOD | BPF_K:
1342 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1343 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1344 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1345 		break;
1346 
1347 	case BPF_ALU64 | BPF_ADD | BPF_K:
1348 	case BPF_ALU64 | BPF_SUB | BPF_K:
1349 	case BPF_ALU64 | BPF_AND | BPF_K:
1350 	case BPF_ALU64 | BPF_OR  | BPF_K:
1351 	case BPF_ALU64 | BPF_XOR | BPF_K:
1352 	case BPF_ALU64 | BPF_MUL | BPF_K:
1353 	case BPF_ALU64 | BPF_MOV | BPF_K:
1354 	case BPF_ALU64 | BPF_DIV | BPF_K:
1355 	case BPF_ALU64 | BPF_MOD | BPF_K:
1356 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1357 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1358 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1359 		break;
1360 
1361 	case BPF_JMP | BPF_JEQ  | BPF_K:
1362 	case BPF_JMP | BPF_JNE  | BPF_K:
1363 	case BPF_JMP | BPF_JGT  | BPF_K:
1364 	case BPF_JMP | BPF_JLT  | BPF_K:
1365 	case BPF_JMP | BPF_JGE  | BPF_K:
1366 	case BPF_JMP | BPF_JLE  | BPF_K:
1367 	case BPF_JMP | BPF_JSGT | BPF_K:
1368 	case BPF_JMP | BPF_JSLT | BPF_K:
1369 	case BPF_JMP | BPF_JSGE | BPF_K:
1370 	case BPF_JMP | BPF_JSLE | BPF_K:
1371 	case BPF_JMP | BPF_JSET | BPF_K:
1372 		/* Accommodate for extra offset in case of a backjump. */
1373 		off = from->off;
1374 		if (off < 0)
1375 			off -= 2;
1376 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1377 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1378 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1379 		break;
1380 
1381 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1382 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1383 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1384 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1385 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1386 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1387 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1388 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1389 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1390 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1391 	case BPF_JMP32 | BPF_JSET | BPF_K:
1392 		/* Accommodate for extra offset in case of a backjump. */
1393 		off = from->off;
1394 		if (off < 0)
1395 			off -= 2;
1396 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1397 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1398 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1399 				      off);
1400 		break;
1401 
1402 	case BPF_LD | BPF_IMM | BPF_DW:
1403 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1404 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1405 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1406 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1407 		break;
1408 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1409 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1410 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1411 		if (emit_zext)
1412 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1413 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1414 		break;
1415 
1416 	case BPF_ST | BPF_MEM | BPF_DW:
1417 	case BPF_ST | BPF_MEM | BPF_W:
1418 	case BPF_ST | BPF_MEM | BPF_H:
1419 	case BPF_ST | BPF_MEM | BPF_B:
1420 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1421 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1422 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1423 		break;
1424 	}
1425 out:
1426 	return to - to_buff;
1427 }
1428 
1429 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1430 					      gfp_t gfp_extra_flags)
1431 {
1432 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1433 	struct bpf_prog *fp;
1434 
1435 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1436 	if (fp != NULL) {
1437 		/* aux->prog still points to the fp_other one, so
1438 		 * when promoting the clone to the real program,
1439 		 * this still needs to be adapted.
1440 		 */
1441 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1442 	}
1443 
1444 	return fp;
1445 }
1446 
1447 static void bpf_prog_clone_free(struct bpf_prog *fp)
1448 {
1449 	/* aux was stolen by the other clone, so we cannot free
1450 	 * it from this path! It will be freed eventually by the
1451 	 * other program on release.
1452 	 *
1453 	 * At this point, we don't need a deferred release since
1454 	 * clone is guaranteed to not be locked.
1455 	 */
1456 	fp->aux = NULL;
1457 	fp->stats = NULL;
1458 	fp->active = NULL;
1459 	__bpf_prog_free(fp);
1460 }
1461 
1462 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1463 {
1464 	/* We have to repoint aux->prog to self, as we don't
1465 	 * know whether fp here is the clone or the original.
1466 	 */
1467 	fp->aux->prog = fp;
1468 	bpf_prog_clone_free(fp_other);
1469 }
1470 
1471 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1472 {
1473 	struct bpf_insn insn_buff[16], aux[2];
1474 	struct bpf_prog *clone, *tmp;
1475 	int insn_delta, insn_cnt;
1476 	struct bpf_insn *insn;
1477 	int i, rewritten;
1478 
1479 	if (!prog->blinding_requested || prog->blinded)
1480 		return prog;
1481 
1482 	clone = bpf_prog_clone_create(prog, GFP_USER);
1483 	if (!clone)
1484 		return ERR_PTR(-ENOMEM);
1485 
1486 	insn_cnt = clone->len;
1487 	insn = clone->insnsi;
1488 
1489 	for (i = 0; i < insn_cnt; i++, insn++) {
1490 		if (bpf_pseudo_func(insn)) {
1491 			/* ld_imm64 with an address of bpf subprog is not
1492 			 * a user controlled constant. Don't randomize it,
1493 			 * since it will conflict with jit_subprogs() logic.
1494 			 */
1495 			insn++;
1496 			i++;
1497 			continue;
1498 		}
1499 
1500 		/* We temporarily need to hold the original ld64 insn
1501 		 * so that we can still access the first part in the
1502 		 * second blinding run.
1503 		 */
1504 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1505 		    insn[1].code == 0)
1506 			memcpy(aux, insn, sizeof(aux));
1507 
1508 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1509 						clone->aux->verifier_zext);
1510 		if (!rewritten)
1511 			continue;
1512 
1513 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1514 		if (IS_ERR(tmp)) {
1515 			/* Patching may have repointed aux->prog during
1516 			 * realloc from the original one, so we need to
1517 			 * fix it up here on error.
1518 			 */
1519 			bpf_jit_prog_release_other(prog, clone);
1520 			return tmp;
1521 		}
1522 
1523 		clone = tmp;
1524 		insn_delta = rewritten - 1;
1525 
1526 		/* Walk new program and skip insns we just inserted. */
1527 		insn = clone->insnsi + i + insn_delta;
1528 		insn_cnt += insn_delta;
1529 		i        += insn_delta;
1530 	}
1531 
1532 	clone->blinded = 1;
1533 	return clone;
1534 }
1535 #endif /* CONFIG_BPF_JIT */
1536 
1537 /* Base function for offset calculation. Needs to go into .text section,
1538  * therefore keeping it non-static as well; will also be used by JITs
1539  * anyway later on, so do not let the compiler omit it. This also needs
1540  * to go into kallsyms for correlation from e.g. bpftool, so naming
1541  * must not change.
1542  */
1543 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1544 {
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL_GPL(__bpf_call_base);
1548 
1549 /* All UAPI available opcodes. */
1550 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1551 	/* 32 bit ALU operations. */		\
1552 	/*   Register based. */			\
1553 	INSN_3(ALU, ADD,  X),			\
1554 	INSN_3(ALU, SUB,  X),			\
1555 	INSN_3(ALU, AND,  X),			\
1556 	INSN_3(ALU, OR,   X),			\
1557 	INSN_3(ALU, LSH,  X),			\
1558 	INSN_3(ALU, RSH,  X),			\
1559 	INSN_3(ALU, XOR,  X),			\
1560 	INSN_3(ALU, MUL,  X),			\
1561 	INSN_3(ALU, MOV,  X),			\
1562 	INSN_3(ALU, ARSH, X),			\
1563 	INSN_3(ALU, DIV,  X),			\
1564 	INSN_3(ALU, MOD,  X),			\
1565 	INSN_2(ALU, NEG),			\
1566 	INSN_3(ALU, END, TO_BE),		\
1567 	INSN_3(ALU, END, TO_LE),		\
1568 	/*   Immediate based. */		\
1569 	INSN_3(ALU, ADD,  K),			\
1570 	INSN_3(ALU, SUB,  K),			\
1571 	INSN_3(ALU, AND,  K),			\
1572 	INSN_3(ALU, OR,   K),			\
1573 	INSN_3(ALU, LSH,  K),			\
1574 	INSN_3(ALU, RSH,  K),			\
1575 	INSN_3(ALU, XOR,  K),			\
1576 	INSN_3(ALU, MUL,  K),			\
1577 	INSN_3(ALU, MOV,  K),			\
1578 	INSN_3(ALU, ARSH, K),			\
1579 	INSN_3(ALU, DIV,  K),			\
1580 	INSN_3(ALU, MOD,  K),			\
1581 	/* 64 bit ALU operations. */		\
1582 	/*   Register based. */			\
1583 	INSN_3(ALU64, ADD,  X),			\
1584 	INSN_3(ALU64, SUB,  X),			\
1585 	INSN_3(ALU64, AND,  X),			\
1586 	INSN_3(ALU64, OR,   X),			\
1587 	INSN_3(ALU64, LSH,  X),			\
1588 	INSN_3(ALU64, RSH,  X),			\
1589 	INSN_3(ALU64, XOR,  X),			\
1590 	INSN_3(ALU64, MUL,  X),			\
1591 	INSN_3(ALU64, MOV,  X),			\
1592 	INSN_3(ALU64, ARSH, X),			\
1593 	INSN_3(ALU64, DIV,  X),			\
1594 	INSN_3(ALU64, MOD,  X),			\
1595 	INSN_2(ALU64, NEG),			\
1596 	INSN_3(ALU64, END, TO_LE),		\
1597 	/*   Immediate based. */		\
1598 	INSN_3(ALU64, ADD,  K),			\
1599 	INSN_3(ALU64, SUB,  K),			\
1600 	INSN_3(ALU64, AND,  K),			\
1601 	INSN_3(ALU64, OR,   K),			\
1602 	INSN_3(ALU64, LSH,  K),			\
1603 	INSN_3(ALU64, RSH,  K),			\
1604 	INSN_3(ALU64, XOR,  K),			\
1605 	INSN_3(ALU64, MUL,  K),			\
1606 	INSN_3(ALU64, MOV,  K),			\
1607 	INSN_3(ALU64, ARSH, K),			\
1608 	INSN_3(ALU64, DIV,  K),			\
1609 	INSN_3(ALU64, MOD,  K),			\
1610 	/* Call instruction. */			\
1611 	INSN_2(JMP, CALL),			\
1612 	/* Exit instruction. */			\
1613 	INSN_2(JMP, EXIT),			\
1614 	/* 32-bit Jump instructions. */		\
1615 	/*   Register based. */			\
1616 	INSN_3(JMP32, JEQ,  X),			\
1617 	INSN_3(JMP32, JNE,  X),			\
1618 	INSN_3(JMP32, JGT,  X),			\
1619 	INSN_3(JMP32, JLT,  X),			\
1620 	INSN_3(JMP32, JGE,  X),			\
1621 	INSN_3(JMP32, JLE,  X),			\
1622 	INSN_3(JMP32, JSGT, X),			\
1623 	INSN_3(JMP32, JSLT, X),			\
1624 	INSN_3(JMP32, JSGE, X),			\
1625 	INSN_3(JMP32, JSLE, X),			\
1626 	INSN_3(JMP32, JSET, X),			\
1627 	/*   Immediate based. */		\
1628 	INSN_3(JMP32, JEQ,  K),			\
1629 	INSN_3(JMP32, JNE,  K),			\
1630 	INSN_3(JMP32, JGT,  K),			\
1631 	INSN_3(JMP32, JLT,  K),			\
1632 	INSN_3(JMP32, JGE,  K),			\
1633 	INSN_3(JMP32, JLE,  K),			\
1634 	INSN_3(JMP32, JSGT, K),			\
1635 	INSN_3(JMP32, JSLT, K),			\
1636 	INSN_3(JMP32, JSGE, K),			\
1637 	INSN_3(JMP32, JSLE, K),			\
1638 	INSN_3(JMP32, JSET, K),			\
1639 	/* Jump instructions. */		\
1640 	/*   Register based. */			\
1641 	INSN_3(JMP, JEQ,  X),			\
1642 	INSN_3(JMP, JNE,  X),			\
1643 	INSN_3(JMP, JGT,  X),			\
1644 	INSN_3(JMP, JLT,  X),			\
1645 	INSN_3(JMP, JGE,  X),			\
1646 	INSN_3(JMP, JLE,  X),			\
1647 	INSN_3(JMP, JSGT, X),			\
1648 	INSN_3(JMP, JSLT, X),			\
1649 	INSN_3(JMP, JSGE, X),			\
1650 	INSN_3(JMP, JSLE, X),			\
1651 	INSN_3(JMP, JSET, X),			\
1652 	/*   Immediate based. */		\
1653 	INSN_3(JMP, JEQ,  K),			\
1654 	INSN_3(JMP, JNE,  K),			\
1655 	INSN_3(JMP, JGT,  K),			\
1656 	INSN_3(JMP, JLT,  K),			\
1657 	INSN_3(JMP, JGE,  K),			\
1658 	INSN_3(JMP, JLE,  K),			\
1659 	INSN_3(JMP, JSGT, K),			\
1660 	INSN_3(JMP, JSLT, K),			\
1661 	INSN_3(JMP, JSGE, K),			\
1662 	INSN_3(JMP, JSLE, K),			\
1663 	INSN_3(JMP, JSET, K),			\
1664 	INSN_2(JMP, JA),			\
1665 	INSN_2(JMP32, JA),			\
1666 	/* Atomic operations. */		\
1667 	INSN_3(STX, ATOMIC, B),			\
1668 	INSN_3(STX, ATOMIC, H),			\
1669 	INSN_3(STX, ATOMIC, W),			\
1670 	INSN_3(STX, ATOMIC, DW),		\
1671 	/* Store instructions. */		\
1672 	/*   Register based. */			\
1673 	INSN_3(STX, MEM,  B),			\
1674 	INSN_3(STX, MEM,  H),			\
1675 	INSN_3(STX, MEM,  W),			\
1676 	INSN_3(STX, MEM,  DW),			\
1677 	/*   Immediate based. */		\
1678 	INSN_3(ST, MEM, B),			\
1679 	INSN_3(ST, MEM, H),			\
1680 	INSN_3(ST, MEM, W),			\
1681 	INSN_3(ST, MEM, DW),			\
1682 	/* Load instructions. */		\
1683 	/*   Register based. */			\
1684 	INSN_3(LDX, MEM, B),			\
1685 	INSN_3(LDX, MEM, H),			\
1686 	INSN_3(LDX, MEM, W),			\
1687 	INSN_3(LDX, MEM, DW),			\
1688 	INSN_3(LDX, MEMSX, B),			\
1689 	INSN_3(LDX, MEMSX, H),			\
1690 	INSN_3(LDX, MEMSX, W),			\
1691 	/*   Immediate based. */		\
1692 	INSN_3(LD, IMM, DW)
1693 
1694 bool bpf_opcode_in_insntable(u8 code)
1695 {
1696 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1697 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1698 	static const bool public_insntable[256] = {
1699 		[0 ... 255] = false,
1700 		/* Now overwrite non-defaults ... */
1701 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1702 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1703 		[BPF_LD | BPF_ABS | BPF_B] = true,
1704 		[BPF_LD | BPF_ABS | BPF_H] = true,
1705 		[BPF_LD | BPF_ABS | BPF_W] = true,
1706 		[BPF_LD | BPF_IND | BPF_B] = true,
1707 		[BPF_LD | BPF_IND | BPF_H] = true,
1708 		[BPF_LD | BPF_IND | BPF_W] = true,
1709 		[BPF_JMP | BPF_JCOND] = true,
1710 	};
1711 #undef BPF_INSN_3_TBL
1712 #undef BPF_INSN_2_TBL
1713 	return public_insntable[code];
1714 }
1715 
1716 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1717 /**
1718  *	___bpf_prog_run - run eBPF program on a given context
1719  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1720  *	@insn: is the array of eBPF instructions
1721  *
1722  * Decode and execute eBPF instructions.
1723  *
1724  * Return: whatever value is in %BPF_R0 at program exit
1725  */
1726 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1727 {
1728 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1729 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1730 	static const void * const jumptable[256] __annotate_jump_table = {
1731 		[0 ... 255] = &&default_label,
1732 		/* Now overwrite non-defaults ... */
1733 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1734 		/* Non-UAPI available opcodes. */
1735 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1736 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1737 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1738 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1739 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1740 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1741 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1742 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1743 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1744 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1745 	};
1746 #undef BPF_INSN_3_LBL
1747 #undef BPF_INSN_2_LBL
1748 	u32 tail_call_cnt = 0;
1749 
1750 #define CONT	 ({ insn++; goto select_insn; })
1751 #define CONT_JMP ({ insn++; goto select_insn; })
1752 
1753 select_insn:
1754 	goto *jumptable[insn->code];
1755 
1756 	/* Explicitly mask the register-based shift amounts with 63 or 31
1757 	 * to avoid undefined behavior. Normally this won't affect the
1758 	 * generated code, for example, in case of native 64 bit archs such
1759 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1760 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1761 	 * the BPF shift operations to machine instructions which produce
1762 	 * implementation-defined results in such a case; the resulting
1763 	 * contents of the register may be arbitrary, but program behaviour
1764 	 * as a whole remains defined. In other words, in case of JIT backends,
1765 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1766 	 */
1767 	/* ALU (shifts) */
1768 #define SHT(OPCODE, OP)					\
1769 	ALU64_##OPCODE##_X:				\
1770 		DST = DST OP (SRC & 63);		\
1771 		CONT;					\
1772 	ALU_##OPCODE##_X:				\
1773 		DST = (u32) DST OP ((u32) SRC & 31);	\
1774 		CONT;					\
1775 	ALU64_##OPCODE##_K:				\
1776 		DST = DST OP IMM;			\
1777 		CONT;					\
1778 	ALU_##OPCODE##_K:				\
1779 		DST = (u32) DST OP (u32) IMM;		\
1780 		CONT;
1781 	/* ALU (rest) */
1782 #define ALU(OPCODE, OP)					\
1783 	ALU64_##OPCODE##_X:				\
1784 		DST = DST OP SRC;			\
1785 		CONT;					\
1786 	ALU_##OPCODE##_X:				\
1787 		DST = (u32) DST OP (u32) SRC;		\
1788 		CONT;					\
1789 	ALU64_##OPCODE##_K:				\
1790 		DST = DST OP IMM;			\
1791 		CONT;					\
1792 	ALU_##OPCODE##_K:				\
1793 		DST = (u32) DST OP (u32) IMM;		\
1794 		CONT;
1795 	ALU(ADD,  +)
1796 	ALU(SUB,  -)
1797 	ALU(AND,  &)
1798 	ALU(OR,   |)
1799 	ALU(XOR,  ^)
1800 	ALU(MUL,  *)
1801 	SHT(LSH, <<)
1802 	SHT(RSH, >>)
1803 #undef SHT
1804 #undef ALU
1805 	ALU_NEG:
1806 		DST = (u32) -DST;
1807 		CONT;
1808 	ALU64_NEG:
1809 		DST = -DST;
1810 		CONT;
1811 	ALU_MOV_X:
1812 		switch (OFF) {
1813 		case 0:
1814 			DST = (u32) SRC;
1815 			break;
1816 		case 8:
1817 			DST = (u32)(s8) SRC;
1818 			break;
1819 		case 16:
1820 			DST = (u32)(s16) SRC;
1821 			break;
1822 		}
1823 		CONT;
1824 	ALU_MOV_K:
1825 		DST = (u32) IMM;
1826 		CONT;
1827 	ALU64_MOV_X:
1828 		switch (OFF) {
1829 		case 0:
1830 			DST = SRC;
1831 			break;
1832 		case 8:
1833 			DST = (s8) SRC;
1834 			break;
1835 		case 16:
1836 			DST = (s16) SRC;
1837 			break;
1838 		case 32:
1839 			DST = (s32) SRC;
1840 			break;
1841 		}
1842 		CONT;
1843 	ALU64_MOV_K:
1844 		DST = IMM;
1845 		CONT;
1846 	LD_IMM_DW:
1847 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1848 		insn++;
1849 		CONT;
1850 	ALU_ARSH_X:
1851 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1852 		CONT;
1853 	ALU_ARSH_K:
1854 		DST = (u64) (u32) (((s32) DST) >> IMM);
1855 		CONT;
1856 	ALU64_ARSH_X:
1857 		(*(s64 *) &DST) >>= (SRC & 63);
1858 		CONT;
1859 	ALU64_ARSH_K:
1860 		(*(s64 *) &DST) >>= IMM;
1861 		CONT;
1862 	ALU64_MOD_X:
1863 		switch (OFF) {
1864 		case 0:
1865 			div64_u64_rem(DST, SRC, &AX);
1866 			DST = AX;
1867 			break;
1868 		case 1:
1869 			AX = div64_s64(DST, SRC);
1870 			DST = DST - AX * SRC;
1871 			break;
1872 		}
1873 		CONT;
1874 	ALU_MOD_X:
1875 		switch (OFF) {
1876 		case 0:
1877 			AX = (u32) DST;
1878 			DST = do_div(AX, (u32) SRC);
1879 			break;
1880 		case 1:
1881 			AX = abs((s32)DST);
1882 			AX = do_div(AX, abs((s32)SRC));
1883 			if ((s32)DST < 0)
1884 				DST = (u32)-AX;
1885 			else
1886 				DST = (u32)AX;
1887 			break;
1888 		}
1889 		CONT;
1890 	ALU64_MOD_K:
1891 		switch (OFF) {
1892 		case 0:
1893 			div64_u64_rem(DST, IMM, &AX);
1894 			DST = AX;
1895 			break;
1896 		case 1:
1897 			AX = div64_s64(DST, IMM);
1898 			DST = DST - AX * IMM;
1899 			break;
1900 		}
1901 		CONT;
1902 	ALU_MOD_K:
1903 		switch (OFF) {
1904 		case 0:
1905 			AX = (u32) DST;
1906 			DST = do_div(AX, (u32) IMM);
1907 			break;
1908 		case 1:
1909 			AX = abs((s32)DST);
1910 			AX = do_div(AX, abs((s32)IMM));
1911 			if ((s32)DST < 0)
1912 				DST = (u32)-AX;
1913 			else
1914 				DST = (u32)AX;
1915 			break;
1916 		}
1917 		CONT;
1918 	ALU64_DIV_X:
1919 		switch (OFF) {
1920 		case 0:
1921 			DST = div64_u64(DST, SRC);
1922 			break;
1923 		case 1:
1924 			DST = div64_s64(DST, SRC);
1925 			break;
1926 		}
1927 		CONT;
1928 	ALU_DIV_X:
1929 		switch (OFF) {
1930 		case 0:
1931 			AX = (u32) DST;
1932 			do_div(AX, (u32) SRC);
1933 			DST = (u32) AX;
1934 			break;
1935 		case 1:
1936 			AX = abs((s32)DST);
1937 			do_div(AX, abs((s32)SRC));
1938 			if (((s32)DST < 0) == ((s32)SRC < 0))
1939 				DST = (u32)AX;
1940 			else
1941 				DST = (u32)-AX;
1942 			break;
1943 		}
1944 		CONT;
1945 	ALU64_DIV_K:
1946 		switch (OFF) {
1947 		case 0:
1948 			DST = div64_u64(DST, IMM);
1949 			break;
1950 		case 1:
1951 			DST = div64_s64(DST, IMM);
1952 			break;
1953 		}
1954 		CONT;
1955 	ALU_DIV_K:
1956 		switch (OFF) {
1957 		case 0:
1958 			AX = (u32) DST;
1959 			do_div(AX, (u32) IMM);
1960 			DST = (u32) AX;
1961 			break;
1962 		case 1:
1963 			AX = abs((s32)DST);
1964 			do_div(AX, abs((s32)IMM));
1965 			if (((s32)DST < 0) == ((s32)IMM < 0))
1966 				DST = (u32)AX;
1967 			else
1968 				DST = (u32)-AX;
1969 			break;
1970 		}
1971 		CONT;
1972 	ALU_END_TO_BE:
1973 		switch (IMM) {
1974 		case 16:
1975 			DST = (__force u16) cpu_to_be16(DST);
1976 			break;
1977 		case 32:
1978 			DST = (__force u32) cpu_to_be32(DST);
1979 			break;
1980 		case 64:
1981 			DST = (__force u64) cpu_to_be64(DST);
1982 			break;
1983 		}
1984 		CONT;
1985 	ALU_END_TO_LE:
1986 		switch (IMM) {
1987 		case 16:
1988 			DST = (__force u16) cpu_to_le16(DST);
1989 			break;
1990 		case 32:
1991 			DST = (__force u32) cpu_to_le32(DST);
1992 			break;
1993 		case 64:
1994 			DST = (__force u64) cpu_to_le64(DST);
1995 			break;
1996 		}
1997 		CONT;
1998 	ALU64_END_TO_LE:
1999 		switch (IMM) {
2000 		case 16:
2001 			DST = (__force u16) __swab16(DST);
2002 			break;
2003 		case 32:
2004 			DST = (__force u32) __swab32(DST);
2005 			break;
2006 		case 64:
2007 			DST = (__force u64) __swab64(DST);
2008 			break;
2009 		}
2010 		CONT;
2011 
2012 	/* CALL */
2013 	JMP_CALL:
2014 		/* Function call scratches BPF_R1-BPF_R5 registers,
2015 		 * preserves BPF_R6-BPF_R9, and stores return value
2016 		 * into BPF_R0.
2017 		 */
2018 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2019 						       BPF_R4, BPF_R5);
2020 		CONT;
2021 
2022 	JMP_CALL_ARGS:
2023 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2024 							    BPF_R3, BPF_R4,
2025 							    BPF_R5,
2026 							    insn + insn->off + 1);
2027 		CONT;
2028 
2029 	JMP_TAIL_CALL: {
2030 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2031 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2032 		struct bpf_prog *prog;
2033 		u32 index = BPF_R3;
2034 
2035 		if (unlikely(index >= array->map.max_entries))
2036 			goto out;
2037 
2038 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2039 			goto out;
2040 
2041 		tail_call_cnt++;
2042 
2043 		prog = READ_ONCE(array->ptrs[index]);
2044 		if (!prog)
2045 			goto out;
2046 
2047 		/* ARG1 at this point is guaranteed to point to CTX from
2048 		 * the verifier side due to the fact that the tail call is
2049 		 * handled like a helper, that is, bpf_tail_call_proto,
2050 		 * where arg1_type is ARG_PTR_TO_CTX.
2051 		 */
2052 		insn = prog->insnsi;
2053 		goto select_insn;
2054 out:
2055 		CONT;
2056 	}
2057 	JMP_JA:
2058 		insn += insn->off;
2059 		CONT;
2060 	JMP32_JA:
2061 		insn += insn->imm;
2062 		CONT;
2063 	JMP_EXIT:
2064 		return BPF_R0;
2065 	/* JMP */
2066 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2067 	JMP_##OPCODE##_X:					\
2068 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2069 			insn += insn->off;			\
2070 			CONT_JMP;				\
2071 		}						\
2072 		CONT;						\
2073 	JMP32_##OPCODE##_X:					\
2074 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2075 			insn += insn->off;			\
2076 			CONT_JMP;				\
2077 		}						\
2078 		CONT;						\
2079 	JMP_##OPCODE##_K:					\
2080 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2081 			insn += insn->off;			\
2082 			CONT_JMP;				\
2083 		}						\
2084 		CONT;						\
2085 	JMP32_##OPCODE##_K:					\
2086 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2087 			insn += insn->off;			\
2088 			CONT_JMP;				\
2089 		}						\
2090 		CONT;
2091 	COND_JMP(u, JEQ, ==)
2092 	COND_JMP(u, JNE, !=)
2093 	COND_JMP(u, JGT, >)
2094 	COND_JMP(u, JLT, <)
2095 	COND_JMP(u, JGE, >=)
2096 	COND_JMP(u, JLE, <=)
2097 	COND_JMP(u, JSET, &)
2098 	COND_JMP(s, JSGT, >)
2099 	COND_JMP(s, JSLT, <)
2100 	COND_JMP(s, JSGE, >=)
2101 	COND_JMP(s, JSLE, <=)
2102 #undef COND_JMP
2103 	/* ST, STX and LDX*/
2104 	ST_NOSPEC:
2105 		/* Speculation barrier for mitigating Speculative Store Bypass.
2106 		 * In case of arm64, we rely on the firmware mitigation as
2107 		 * controlled via the ssbd kernel parameter. Whenever the
2108 		 * mitigation is enabled, it works for all of the kernel code
2109 		 * with no need to provide any additional instructions here.
2110 		 * In case of x86, we use 'lfence' insn for mitigation. We
2111 		 * reuse preexisting logic from Spectre v1 mitigation that
2112 		 * happens to produce the required code on x86 for v4 as well.
2113 		 */
2114 		barrier_nospec();
2115 		CONT;
2116 #define LDST(SIZEOP, SIZE)						\
2117 	STX_MEM_##SIZEOP:						\
2118 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2119 		CONT;							\
2120 	ST_MEM_##SIZEOP:						\
2121 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2122 		CONT;							\
2123 	LDX_MEM_##SIZEOP:						\
2124 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2125 		CONT;							\
2126 	LDX_PROBE_MEM_##SIZEOP:						\
2127 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2128 			      (const void *)(long) (SRC + insn->off));	\
2129 		DST = *((SIZE *)&DST);					\
2130 		CONT;
2131 
2132 	LDST(B,   u8)
2133 	LDST(H,  u16)
2134 	LDST(W,  u32)
2135 	LDST(DW, u64)
2136 #undef LDST
2137 
2138 #define LDSX(SIZEOP, SIZE)						\
2139 	LDX_MEMSX_##SIZEOP:						\
2140 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2141 		CONT;							\
2142 	LDX_PROBE_MEMSX_##SIZEOP:					\
2143 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2144 				      (const void *)(long) (SRC + insn->off));	\
2145 		DST = *((SIZE *)&DST);					\
2146 		CONT;
2147 
2148 	LDSX(B,   s8)
2149 	LDSX(H,  s16)
2150 	LDSX(W,  s32)
2151 #undef LDSX
2152 
2153 #define ATOMIC_ALU_OP(BOP, KOP)						\
2154 		case BOP:						\
2155 			if (BPF_SIZE(insn->code) == BPF_W)		\
2156 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2157 					     (DST + insn->off));	\
2158 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2159 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2160 					       (DST + insn->off));	\
2161 			else						\
2162 				goto default_label;			\
2163 			break;						\
2164 		case BOP | BPF_FETCH:					\
2165 			if (BPF_SIZE(insn->code) == BPF_W)		\
2166 				SRC = (u32) atomic_fetch_##KOP(		\
2167 					(u32) SRC,			\
2168 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2169 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2170 				SRC = (u64) atomic64_fetch_##KOP(	\
2171 					(u64) SRC,			\
2172 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2173 			else						\
2174 				goto default_label;			\
2175 			break;
2176 
2177 	STX_ATOMIC_DW:
2178 	STX_ATOMIC_W:
2179 	STX_ATOMIC_H:
2180 	STX_ATOMIC_B:
2181 		switch (IMM) {
2182 		/* Atomic read-modify-write instructions support only W and DW
2183 		 * size modifiers.
2184 		 */
2185 		ATOMIC_ALU_OP(BPF_ADD, add)
2186 		ATOMIC_ALU_OP(BPF_AND, and)
2187 		ATOMIC_ALU_OP(BPF_OR, or)
2188 		ATOMIC_ALU_OP(BPF_XOR, xor)
2189 #undef ATOMIC_ALU_OP
2190 
2191 		case BPF_XCHG:
2192 			if (BPF_SIZE(insn->code) == BPF_W)
2193 				SRC = (u32) atomic_xchg(
2194 					(atomic_t *)(unsigned long) (DST + insn->off),
2195 					(u32) SRC);
2196 			else if (BPF_SIZE(insn->code) == BPF_DW)
2197 				SRC = (u64) atomic64_xchg(
2198 					(atomic64_t *)(unsigned long) (DST + insn->off),
2199 					(u64) SRC);
2200 			else
2201 				goto default_label;
2202 			break;
2203 		case BPF_CMPXCHG:
2204 			if (BPF_SIZE(insn->code) == BPF_W)
2205 				BPF_R0 = (u32) atomic_cmpxchg(
2206 					(atomic_t *)(unsigned long) (DST + insn->off),
2207 					(u32) BPF_R0, (u32) SRC);
2208 			else if (BPF_SIZE(insn->code) == BPF_DW)
2209 				BPF_R0 = (u64) atomic64_cmpxchg(
2210 					(atomic64_t *)(unsigned long) (DST + insn->off),
2211 					(u64) BPF_R0, (u64) SRC);
2212 			else
2213 				goto default_label;
2214 			break;
2215 		/* Atomic load and store instructions support all size
2216 		 * modifiers.
2217 		 */
2218 		case BPF_LOAD_ACQ:
2219 			switch (BPF_SIZE(insn->code)) {
2220 #define LOAD_ACQUIRE(SIZEOP, SIZE)				\
2221 			case BPF_##SIZEOP:			\
2222 				DST = (SIZE)smp_load_acquire(	\
2223 					(SIZE *)(unsigned long)(SRC + insn->off));	\
2224 				break;
2225 			LOAD_ACQUIRE(B,   u8)
2226 			LOAD_ACQUIRE(H,  u16)
2227 			LOAD_ACQUIRE(W,  u32)
2228 #ifdef CONFIG_64BIT
2229 			LOAD_ACQUIRE(DW, u64)
2230 #endif
2231 #undef LOAD_ACQUIRE
2232 			default:
2233 				goto default_label;
2234 			}
2235 			break;
2236 		case BPF_STORE_REL:
2237 			switch (BPF_SIZE(insn->code)) {
2238 #define STORE_RELEASE(SIZEOP, SIZE)			\
2239 			case BPF_##SIZEOP:		\
2240 				smp_store_release(	\
2241 					(SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC);	\
2242 				break;
2243 			STORE_RELEASE(B,   u8)
2244 			STORE_RELEASE(H,  u16)
2245 			STORE_RELEASE(W,  u32)
2246 #ifdef CONFIG_64BIT
2247 			STORE_RELEASE(DW, u64)
2248 #endif
2249 #undef STORE_RELEASE
2250 			default:
2251 				goto default_label;
2252 			}
2253 			break;
2254 
2255 		default:
2256 			goto default_label;
2257 		}
2258 		CONT;
2259 
2260 	default_label:
2261 		/* If we ever reach this, we have a bug somewhere. Die hard here
2262 		 * instead of just returning 0; we could be somewhere in a subprog,
2263 		 * so execution could continue otherwise which we do /not/ want.
2264 		 *
2265 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2266 		 */
2267 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2268 			insn->code, insn->imm);
2269 		BUG_ON(1);
2270 		return 0;
2271 }
2272 
2273 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2274 #define DEFINE_BPF_PROG_RUN(stack_size) \
2275 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2276 { \
2277 	u64 stack[stack_size / sizeof(u64)]; \
2278 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2279 \
2280 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2281 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2282 	ARG1 = (u64) (unsigned long) ctx; \
2283 	return ___bpf_prog_run(regs, insn); \
2284 }
2285 
2286 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2287 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2288 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2289 				      const struct bpf_insn *insn) \
2290 { \
2291 	u64 stack[stack_size / sizeof(u64)]; \
2292 	u64 regs[MAX_BPF_EXT_REG]; \
2293 \
2294 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2295 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2296 	BPF_R1 = r1; \
2297 	BPF_R2 = r2; \
2298 	BPF_R3 = r3; \
2299 	BPF_R4 = r4; \
2300 	BPF_R5 = r5; \
2301 	return ___bpf_prog_run(regs, insn); \
2302 }
2303 
2304 #define EVAL1(FN, X) FN(X)
2305 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2306 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2307 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2308 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2309 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2310 
2311 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2312 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2313 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2314 
2315 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2316 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2317 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2318 
2319 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2320 
2321 static unsigned int (*interpreters[])(const void *ctx,
2322 				      const struct bpf_insn *insn) = {
2323 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2324 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2325 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2326 };
2327 #undef PROG_NAME_LIST
2328 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2329 static __maybe_unused
2330 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2331 			   const struct bpf_insn *insn) = {
2332 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2333 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2334 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2335 };
2336 #undef PROG_NAME_LIST
2337 
2338 #ifdef CONFIG_BPF_SYSCALL
2339 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2340 {
2341 	stack_depth = max_t(u32, stack_depth, 1);
2342 	insn->off = (s16) insn->imm;
2343 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2344 		__bpf_call_base_args;
2345 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2346 }
2347 #endif
2348 #endif
2349 
2350 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2351 					 const struct bpf_insn *insn)
2352 {
2353 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2354 	 * is not working properly, or interpreter is being used when
2355 	 * prog->jit_requested is not 0, so warn about it!
2356 	 */
2357 	WARN_ON_ONCE(1);
2358 	return 0;
2359 }
2360 
2361 bool bpf_prog_map_compatible(struct bpf_map *map,
2362 			     const struct bpf_prog *fp)
2363 {
2364 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2365 	bool ret;
2366 	struct bpf_prog_aux *aux = fp->aux;
2367 
2368 	if (fp->kprobe_override)
2369 		return false;
2370 
2371 	/* XDP programs inserted into maps are not guaranteed to run on
2372 	 * a particular netdev (and can run outside driver context entirely
2373 	 * in the case of devmap and cpumap). Until device checks
2374 	 * are implemented, prohibit adding dev-bound programs to program maps.
2375 	 */
2376 	if (bpf_prog_is_dev_bound(aux))
2377 		return false;
2378 
2379 	spin_lock(&map->owner.lock);
2380 	if (!map->owner.type) {
2381 		/* There's no owner yet where we could check for
2382 		 * compatibility.
2383 		 */
2384 		map->owner.type  = prog_type;
2385 		map->owner.jited = fp->jited;
2386 		map->owner.xdp_has_frags = aux->xdp_has_frags;
2387 		map->owner.attach_func_proto = aux->attach_func_proto;
2388 		ret = true;
2389 	} else {
2390 		ret = map->owner.type  == prog_type &&
2391 		      map->owner.jited == fp->jited &&
2392 		      map->owner.xdp_has_frags == aux->xdp_has_frags;
2393 		if (ret &&
2394 		    map->owner.attach_func_proto != aux->attach_func_proto) {
2395 			switch (prog_type) {
2396 			case BPF_PROG_TYPE_TRACING:
2397 			case BPF_PROG_TYPE_LSM:
2398 			case BPF_PROG_TYPE_EXT:
2399 			case BPF_PROG_TYPE_STRUCT_OPS:
2400 				ret = false;
2401 				break;
2402 			default:
2403 				break;
2404 			}
2405 		}
2406 	}
2407 	spin_unlock(&map->owner.lock);
2408 
2409 	return ret;
2410 }
2411 
2412 static int bpf_check_tail_call(const struct bpf_prog *fp)
2413 {
2414 	struct bpf_prog_aux *aux = fp->aux;
2415 	int i, ret = 0;
2416 
2417 	mutex_lock(&aux->used_maps_mutex);
2418 	for (i = 0; i < aux->used_map_cnt; i++) {
2419 		struct bpf_map *map = aux->used_maps[i];
2420 
2421 		if (!map_type_contains_progs(map))
2422 			continue;
2423 
2424 		if (!bpf_prog_map_compatible(map, fp)) {
2425 			ret = -EINVAL;
2426 			goto out;
2427 		}
2428 	}
2429 
2430 out:
2431 	mutex_unlock(&aux->used_maps_mutex);
2432 	return ret;
2433 }
2434 
2435 static void bpf_prog_select_func(struct bpf_prog *fp)
2436 {
2437 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2438 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2439 	u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2440 
2441 	/* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2442 	 * But for non-JITed programs, we don't need bpf_func, so no bounds
2443 	 * check needed.
2444 	 */
2445 	if (!fp->jit_requested &&
2446 	    !WARN_ON_ONCE(idx >= ARRAY_SIZE(interpreters))) {
2447 		fp->bpf_func = interpreters[idx];
2448 	} else {
2449 		fp->bpf_func = __bpf_prog_ret0_warn;
2450 	}
2451 #else
2452 	fp->bpf_func = __bpf_prog_ret0_warn;
2453 #endif
2454 }
2455 
2456 /**
2457  *	bpf_prog_select_runtime - select exec runtime for BPF program
2458  *	@fp: bpf_prog populated with BPF program
2459  *	@err: pointer to error variable
2460  *
2461  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2462  * The BPF program will be executed via bpf_prog_run() function.
2463  *
2464  * Return: the &fp argument along with &err set to 0 for success or
2465  * a negative errno code on failure
2466  */
2467 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2468 {
2469 	/* In case of BPF to BPF calls, verifier did all the prep
2470 	 * work with regards to JITing, etc.
2471 	 */
2472 	bool jit_needed = false;
2473 
2474 	if (fp->bpf_func)
2475 		goto finalize;
2476 
2477 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2478 	    bpf_prog_has_kfunc_call(fp))
2479 		jit_needed = true;
2480 
2481 	bpf_prog_select_func(fp);
2482 
2483 	/* eBPF JITs can rewrite the program in case constant
2484 	 * blinding is active. However, in case of error during
2485 	 * blinding, bpf_int_jit_compile() must always return a
2486 	 * valid program, which in this case would simply not
2487 	 * be JITed, but falls back to the interpreter.
2488 	 */
2489 	if (!bpf_prog_is_offloaded(fp->aux)) {
2490 		*err = bpf_prog_alloc_jited_linfo(fp);
2491 		if (*err)
2492 			return fp;
2493 
2494 		fp = bpf_int_jit_compile(fp);
2495 		bpf_prog_jit_attempt_done(fp);
2496 		if (!fp->jited && jit_needed) {
2497 			*err = -ENOTSUPP;
2498 			return fp;
2499 		}
2500 	} else {
2501 		*err = bpf_prog_offload_compile(fp);
2502 		if (*err)
2503 			return fp;
2504 	}
2505 
2506 finalize:
2507 	*err = bpf_prog_lock_ro(fp);
2508 	if (*err)
2509 		return fp;
2510 
2511 	/* The tail call compatibility check can only be done at
2512 	 * this late stage as we need to determine, if we deal
2513 	 * with JITed or non JITed program concatenations and not
2514 	 * all eBPF JITs might immediately support all features.
2515 	 */
2516 	*err = bpf_check_tail_call(fp);
2517 
2518 	return fp;
2519 }
2520 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2521 
2522 static unsigned int __bpf_prog_ret1(const void *ctx,
2523 				    const struct bpf_insn *insn)
2524 {
2525 	return 1;
2526 }
2527 
2528 static struct bpf_prog_dummy {
2529 	struct bpf_prog prog;
2530 } dummy_bpf_prog = {
2531 	.prog = {
2532 		.bpf_func = __bpf_prog_ret1,
2533 	},
2534 };
2535 
2536 struct bpf_empty_prog_array bpf_empty_prog_array = {
2537 	.null_prog = NULL,
2538 };
2539 EXPORT_SYMBOL(bpf_empty_prog_array);
2540 
2541 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2542 {
2543 	struct bpf_prog_array *p;
2544 
2545 	if (prog_cnt)
2546 		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2547 	else
2548 		p = &bpf_empty_prog_array.hdr;
2549 
2550 	return p;
2551 }
2552 
2553 void bpf_prog_array_free(struct bpf_prog_array *progs)
2554 {
2555 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2556 		return;
2557 	kfree_rcu(progs, rcu);
2558 }
2559 
2560 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2561 {
2562 	struct bpf_prog_array *progs;
2563 
2564 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2565 	 * no need to call kfree_rcu(), just call kfree() directly.
2566 	 */
2567 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2568 	if (rcu_trace_implies_rcu_gp())
2569 		kfree(progs);
2570 	else
2571 		kfree_rcu(progs, rcu);
2572 }
2573 
2574 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2575 {
2576 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2577 		return;
2578 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2579 }
2580 
2581 int bpf_prog_array_length(struct bpf_prog_array *array)
2582 {
2583 	struct bpf_prog_array_item *item;
2584 	u32 cnt = 0;
2585 
2586 	for (item = array->items; item->prog; item++)
2587 		if (item->prog != &dummy_bpf_prog.prog)
2588 			cnt++;
2589 	return cnt;
2590 }
2591 
2592 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2593 {
2594 	struct bpf_prog_array_item *item;
2595 
2596 	for (item = array->items; item->prog; item++)
2597 		if (item->prog != &dummy_bpf_prog.prog)
2598 			return false;
2599 	return true;
2600 }
2601 
2602 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2603 				     u32 *prog_ids,
2604 				     u32 request_cnt)
2605 {
2606 	struct bpf_prog_array_item *item;
2607 	int i = 0;
2608 
2609 	for (item = array->items; item->prog; item++) {
2610 		if (item->prog == &dummy_bpf_prog.prog)
2611 			continue;
2612 		prog_ids[i] = item->prog->aux->id;
2613 		if (++i == request_cnt) {
2614 			item++;
2615 			break;
2616 		}
2617 	}
2618 
2619 	return !!(item->prog);
2620 }
2621 
2622 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2623 				__u32 __user *prog_ids, u32 cnt)
2624 {
2625 	unsigned long err = 0;
2626 	bool nospc;
2627 	u32 *ids;
2628 
2629 	/* users of this function are doing:
2630 	 * cnt = bpf_prog_array_length();
2631 	 * if (cnt > 0)
2632 	 *     bpf_prog_array_copy_to_user(..., cnt);
2633 	 * so below kcalloc doesn't need extra cnt > 0 check.
2634 	 */
2635 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2636 	if (!ids)
2637 		return -ENOMEM;
2638 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2639 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2640 	kfree(ids);
2641 	if (err)
2642 		return -EFAULT;
2643 	if (nospc)
2644 		return -ENOSPC;
2645 	return 0;
2646 }
2647 
2648 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2649 				struct bpf_prog *old_prog)
2650 {
2651 	struct bpf_prog_array_item *item;
2652 
2653 	for (item = array->items; item->prog; item++)
2654 		if (item->prog == old_prog) {
2655 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2656 			break;
2657 		}
2658 }
2659 
2660 /**
2661  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2662  *                                   index into the program array with
2663  *                                   a dummy no-op program.
2664  * @array: a bpf_prog_array
2665  * @index: the index of the program to replace
2666  *
2667  * Skips over dummy programs, by not counting them, when calculating
2668  * the position of the program to replace.
2669  *
2670  * Return:
2671  * * 0		- Success
2672  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2673  * * -ENOENT	- Index out of range
2674  */
2675 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2676 {
2677 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2678 }
2679 
2680 /**
2681  * bpf_prog_array_update_at() - Updates the program at the given index
2682  *                              into the program array.
2683  * @array: a bpf_prog_array
2684  * @index: the index of the program to update
2685  * @prog: the program to insert into the array
2686  *
2687  * Skips over dummy programs, by not counting them, when calculating
2688  * the position of the program to update.
2689  *
2690  * Return:
2691  * * 0		- Success
2692  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2693  * * -ENOENT	- Index out of range
2694  */
2695 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2696 			     struct bpf_prog *prog)
2697 {
2698 	struct bpf_prog_array_item *item;
2699 
2700 	if (unlikely(index < 0))
2701 		return -EINVAL;
2702 
2703 	for (item = array->items; item->prog; item++) {
2704 		if (item->prog == &dummy_bpf_prog.prog)
2705 			continue;
2706 		if (!index) {
2707 			WRITE_ONCE(item->prog, prog);
2708 			return 0;
2709 		}
2710 		index--;
2711 	}
2712 	return -ENOENT;
2713 }
2714 
2715 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2716 			struct bpf_prog *exclude_prog,
2717 			struct bpf_prog *include_prog,
2718 			u64 bpf_cookie,
2719 			struct bpf_prog_array **new_array)
2720 {
2721 	int new_prog_cnt, carry_prog_cnt = 0;
2722 	struct bpf_prog_array_item *existing, *new;
2723 	struct bpf_prog_array *array;
2724 	bool found_exclude = false;
2725 
2726 	/* Figure out how many existing progs we need to carry over to
2727 	 * the new array.
2728 	 */
2729 	if (old_array) {
2730 		existing = old_array->items;
2731 		for (; existing->prog; existing++) {
2732 			if (existing->prog == exclude_prog) {
2733 				found_exclude = true;
2734 				continue;
2735 			}
2736 			if (existing->prog != &dummy_bpf_prog.prog)
2737 				carry_prog_cnt++;
2738 			if (existing->prog == include_prog)
2739 				return -EEXIST;
2740 		}
2741 	}
2742 
2743 	if (exclude_prog && !found_exclude)
2744 		return -ENOENT;
2745 
2746 	/* How many progs (not NULL) will be in the new array? */
2747 	new_prog_cnt = carry_prog_cnt;
2748 	if (include_prog)
2749 		new_prog_cnt += 1;
2750 
2751 	/* Do we have any prog (not NULL) in the new array? */
2752 	if (!new_prog_cnt) {
2753 		*new_array = NULL;
2754 		return 0;
2755 	}
2756 
2757 	/* +1 as the end of prog_array is marked with NULL */
2758 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2759 	if (!array)
2760 		return -ENOMEM;
2761 	new = array->items;
2762 
2763 	/* Fill in the new prog array */
2764 	if (carry_prog_cnt) {
2765 		existing = old_array->items;
2766 		for (; existing->prog; existing++) {
2767 			if (existing->prog == exclude_prog ||
2768 			    existing->prog == &dummy_bpf_prog.prog)
2769 				continue;
2770 
2771 			new->prog = existing->prog;
2772 			new->bpf_cookie = existing->bpf_cookie;
2773 			new++;
2774 		}
2775 	}
2776 	if (include_prog) {
2777 		new->prog = include_prog;
2778 		new->bpf_cookie = bpf_cookie;
2779 		new++;
2780 	}
2781 	new->prog = NULL;
2782 	*new_array = array;
2783 	return 0;
2784 }
2785 
2786 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2787 			     u32 *prog_ids, u32 request_cnt,
2788 			     u32 *prog_cnt)
2789 {
2790 	u32 cnt = 0;
2791 
2792 	if (array)
2793 		cnt = bpf_prog_array_length(array);
2794 
2795 	*prog_cnt = cnt;
2796 
2797 	/* return early if user requested only program count or nothing to copy */
2798 	if (!request_cnt || !cnt)
2799 		return 0;
2800 
2801 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2802 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2803 								     : 0;
2804 }
2805 
2806 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2807 			  struct bpf_map **used_maps, u32 len)
2808 {
2809 	struct bpf_map *map;
2810 	bool sleepable;
2811 	u32 i;
2812 
2813 	sleepable = aux->prog->sleepable;
2814 	for (i = 0; i < len; i++) {
2815 		map = used_maps[i];
2816 		if (map->ops->map_poke_untrack)
2817 			map->ops->map_poke_untrack(map, aux);
2818 		if (sleepable)
2819 			atomic64_dec(&map->sleepable_refcnt);
2820 		bpf_map_put(map);
2821 	}
2822 }
2823 
2824 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2825 {
2826 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2827 	kfree(aux->used_maps);
2828 }
2829 
2830 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2831 {
2832 #ifdef CONFIG_BPF_SYSCALL
2833 	struct btf_mod_pair *btf_mod;
2834 	u32 i;
2835 
2836 	for (i = 0; i < len; i++) {
2837 		btf_mod = &used_btfs[i];
2838 		if (btf_mod->module)
2839 			module_put(btf_mod->module);
2840 		btf_put(btf_mod->btf);
2841 	}
2842 #endif
2843 }
2844 
2845 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2846 {
2847 	__bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2848 	kfree(aux->used_btfs);
2849 }
2850 
2851 static void bpf_prog_free_deferred(struct work_struct *work)
2852 {
2853 	struct bpf_prog_aux *aux;
2854 	int i;
2855 
2856 	aux = container_of(work, struct bpf_prog_aux, work);
2857 #ifdef CONFIG_BPF_SYSCALL
2858 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2859 #endif
2860 #ifdef CONFIG_CGROUP_BPF
2861 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2862 		bpf_cgroup_atype_put(aux->cgroup_atype);
2863 #endif
2864 	bpf_free_used_maps(aux);
2865 	bpf_free_used_btfs(aux);
2866 	if (bpf_prog_is_dev_bound(aux))
2867 		bpf_prog_dev_bound_destroy(aux->prog);
2868 #ifdef CONFIG_PERF_EVENTS
2869 	if (aux->prog->has_callchain_buf)
2870 		put_callchain_buffers();
2871 #endif
2872 	if (aux->dst_trampoline)
2873 		bpf_trampoline_put(aux->dst_trampoline);
2874 	for (i = 0; i < aux->real_func_cnt; i++) {
2875 		/* We can just unlink the subprog poke descriptor table as
2876 		 * it was originally linked to the main program and is also
2877 		 * released along with it.
2878 		 */
2879 		aux->func[i]->aux->poke_tab = NULL;
2880 		bpf_jit_free(aux->func[i]);
2881 	}
2882 	if (aux->real_func_cnt) {
2883 		kfree(aux->func);
2884 		bpf_prog_unlock_free(aux->prog);
2885 	} else {
2886 		bpf_jit_free(aux->prog);
2887 	}
2888 }
2889 
2890 void bpf_prog_free(struct bpf_prog *fp)
2891 {
2892 	struct bpf_prog_aux *aux = fp->aux;
2893 
2894 	if (aux->dst_prog)
2895 		bpf_prog_put(aux->dst_prog);
2896 	bpf_token_put(aux->token);
2897 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2898 	schedule_work(&aux->work);
2899 }
2900 EXPORT_SYMBOL_GPL(bpf_prog_free);
2901 
2902 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2903 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2904 
2905 void bpf_user_rnd_init_once(void)
2906 {
2907 	prandom_init_once(&bpf_user_rnd_state);
2908 }
2909 
2910 BPF_CALL_0(bpf_user_rnd_u32)
2911 {
2912 	/* Should someone ever have the rather unwise idea to use some
2913 	 * of the registers passed into this function, then note that
2914 	 * this function is called from native eBPF and classic-to-eBPF
2915 	 * transformations. Register assignments from both sides are
2916 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2917 	 */
2918 	struct rnd_state *state;
2919 	u32 res;
2920 
2921 	state = &get_cpu_var(bpf_user_rnd_state);
2922 	res = prandom_u32_state(state);
2923 	put_cpu_var(bpf_user_rnd_state);
2924 
2925 	return res;
2926 }
2927 
2928 BPF_CALL_0(bpf_get_raw_cpu_id)
2929 {
2930 	return raw_smp_processor_id();
2931 }
2932 
2933 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2934 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2935 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2936 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2937 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2938 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2939 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2940 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2941 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2942 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2943 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2944 
2945 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2946 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2947 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2948 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2949 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2950 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2951 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2952 
2953 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2954 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2955 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2956 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2957 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2958 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2959 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2960 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2961 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2962 const struct bpf_func_proto bpf_set_retval_proto __weak;
2963 const struct bpf_func_proto bpf_get_retval_proto __weak;
2964 
2965 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2966 {
2967 	return NULL;
2968 }
2969 
2970 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2971 {
2972 	return NULL;
2973 }
2974 
2975 const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void)
2976 {
2977 	return NULL;
2978 }
2979 
2980 u64 __weak
2981 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2982 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2983 {
2984 	return -ENOTSUPP;
2985 }
2986 EXPORT_SYMBOL_GPL(bpf_event_output);
2987 
2988 /* Always built-in helper functions. */
2989 const struct bpf_func_proto bpf_tail_call_proto = {
2990 	.func		= NULL,
2991 	.gpl_only	= false,
2992 	.ret_type	= RET_VOID,
2993 	.arg1_type	= ARG_PTR_TO_CTX,
2994 	.arg2_type	= ARG_CONST_MAP_PTR,
2995 	.arg3_type	= ARG_ANYTHING,
2996 };
2997 
2998 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2999  * It is encouraged to implement bpf_int_jit_compile() instead, so that
3000  * eBPF and implicitly also cBPF can get JITed!
3001  */
3002 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3003 {
3004 	return prog;
3005 }
3006 
3007 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
3008  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
3009  */
3010 void __weak bpf_jit_compile(struct bpf_prog *prog)
3011 {
3012 }
3013 
3014 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
3015 {
3016 	return false;
3017 }
3018 
3019 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
3020  * analysis code and wants explicit zero extension inserted by verifier.
3021  * Otherwise, return FALSE.
3022  *
3023  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
3024  * you don't override this. JITs that don't want these extra insns can detect
3025  * them using insn_is_zext.
3026  */
3027 bool __weak bpf_jit_needs_zext(void)
3028 {
3029 	return false;
3030 }
3031 
3032 /* Return true if the JIT inlines the call to the helper corresponding to
3033  * the imm.
3034  *
3035  * The verifier will not patch the insn->imm for the call to the helper if
3036  * this returns true.
3037  */
3038 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3039 {
3040 	return false;
3041 }
3042 
3043 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
3044 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3045 {
3046 	return false;
3047 }
3048 
3049 bool __weak bpf_jit_supports_percpu_insn(void)
3050 {
3051 	return false;
3052 }
3053 
3054 bool __weak bpf_jit_supports_kfunc_call(void)
3055 {
3056 	return false;
3057 }
3058 
3059 bool __weak bpf_jit_supports_far_kfunc_call(void)
3060 {
3061 	return false;
3062 }
3063 
3064 bool __weak bpf_jit_supports_arena(void)
3065 {
3066 	return false;
3067 }
3068 
3069 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3070 {
3071 	return false;
3072 }
3073 
3074 u64 __weak bpf_arch_uaddress_limit(void)
3075 {
3076 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3077 	return TASK_SIZE;
3078 #else
3079 	return 0;
3080 #endif
3081 }
3082 
3083 /* Return TRUE if the JIT backend satisfies the following two conditions:
3084  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3085  * 2) Under the specific arch, the implementation of xchg() is the same
3086  *    as atomic_xchg() on pointer-sized words.
3087  */
3088 bool __weak bpf_jit_supports_ptr_xchg(void)
3089 {
3090 	return false;
3091 }
3092 
3093 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3094  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3095  */
3096 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3097 			 int len)
3098 {
3099 	return -EFAULT;
3100 }
3101 
3102 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3103 			      void *addr1, void *addr2)
3104 {
3105 	return -ENOTSUPP;
3106 }
3107 
3108 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3109 {
3110 	return ERR_PTR(-ENOTSUPP);
3111 }
3112 
3113 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3114 {
3115 	return -ENOTSUPP;
3116 }
3117 
3118 bool __weak bpf_jit_supports_exceptions(void)
3119 {
3120 	return false;
3121 }
3122 
3123 bool __weak bpf_jit_supports_private_stack(void)
3124 {
3125 	return false;
3126 }
3127 
3128 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3129 {
3130 }
3131 
3132 bool __weak bpf_jit_supports_timed_may_goto(void)
3133 {
3134 	return false;
3135 }
3136 
3137 u64 __weak arch_bpf_timed_may_goto(void)
3138 {
3139 	return 0;
3140 }
3141 
3142 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p)
3143 {
3144 	u64 time = ktime_get_mono_fast_ns();
3145 
3146 	/* Populate the timestamp for this stack frame, and refresh count. */
3147 	if (!p->timestamp) {
3148 		p->timestamp = time;
3149 		return BPF_MAX_TIMED_LOOPS;
3150 	}
3151 	/* Check if we've exhausted our time slice, and zero count. */
3152 	if (time - p->timestamp >= (NSEC_PER_SEC / 4))
3153 		return 0;
3154 	/* Refresh the count for the stack frame. */
3155 	return BPF_MAX_TIMED_LOOPS;
3156 }
3157 
3158 /* for configs without MMU or 32-bit */
3159 __weak const struct bpf_map_ops arena_map_ops;
3160 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3161 {
3162 	return 0;
3163 }
3164 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3165 {
3166 	return 0;
3167 }
3168 
3169 #ifdef CONFIG_BPF_SYSCALL
3170 static int __init bpf_global_ma_init(void)
3171 {
3172 	int ret;
3173 
3174 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3175 	bpf_global_ma_set = !ret;
3176 	return ret;
3177 }
3178 late_initcall(bpf_global_ma_init);
3179 #endif
3180 
3181 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3182 EXPORT_SYMBOL(bpf_stats_enabled_key);
3183 
3184 /* All definitions of tracepoints related to BPF. */
3185 #define CREATE_TRACE_POINTS
3186 #include <linux/bpf_trace.h>
3187 
3188 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3189 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3190