xref: /linux/net/core/filter.c (revision 1cac38910ecb881b09f61f57545a771bbe57ba68)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <linux/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 #include <net/inet_dscp.h>
88 
89 #include "dev.h"
90 
91 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
92 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
93 
94 static const struct bpf_func_proto *
95 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
96 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)97 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
98 {
99 	if (in_compat_syscall()) {
100 		struct compat_sock_fprog f32;
101 
102 		if (len != sizeof(f32))
103 			return -EINVAL;
104 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
105 			return -EFAULT;
106 		memset(dst, 0, sizeof(*dst));
107 		dst->len = f32.len;
108 		dst->filter = compat_ptr(f32.filter);
109 	} else {
110 		if (len != sizeof(*dst))
111 			return -EINVAL;
112 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
113 			return -EFAULT;
114 	}
115 
116 	return 0;
117 }
118 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
119 
120 /**
121  *	sk_filter_trim_cap - run a packet through a socket filter
122  *	@sk: sock associated with &sk_buff
123  *	@skb: buffer to filter
124  *	@cap: limit on how short the eBPF program may trim the packet
125  *	@reason: record drop reason on errors (negative return value)
126  *
127  * Run the eBPF program and then cut skb->data to correct size returned by
128  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
129  * than pkt_len we keep whole skb->data. This is the socket level
130  * wrapper to bpf_prog_run. It returns 0 if the packet should
131  * be accepted or -EPERM if the packet should be tossed.
132  *
133  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap,enum skb_drop_reason * reason)134 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb,
135 		       unsigned int cap, enum skb_drop_reason *reason)
136 {
137 	int err;
138 	struct sk_filter *filter;
139 
140 	/*
141 	 * If the skb was allocated from pfmemalloc reserves, only
142 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
143 	 * helping free memory
144 	 */
145 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
146 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
147 		*reason = SKB_DROP_REASON_PFMEMALLOC;
148 		return -ENOMEM;
149 	}
150 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
151 	if (err) {
152 		*reason = SKB_DROP_REASON_SOCKET_FILTER;
153 		return err;
154 	}
155 
156 	err = security_sock_rcv_skb(sk, skb);
157 	if (err) {
158 		*reason = SKB_DROP_REASON_SECURITY_HOOK;
159 		return err;
160 	}
161 
162 	rcu_read_lock();
163 	filter = rcu_dereference(sk->sk_filter);
164 	if (filter) {
165 		struct sock *save_sk = skb->sk;
166 		unsigned int pkt_len;
167 
168 		skb->sk = sk;
169 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
170 		skb->sk = save_sk;
171 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
172 		if (err)
173 			*reason = SKB_DROP_REASON_SOCKET_FILTER;
174 	}
175 	rcu_read_unlock();
176 
177 	return err;
178 }
179 EXPORT_SYMBOL(sk_filter_trim_cap);
180 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)181 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
182 {
183 	return skb_get_poff(skb);
184 }
185 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)186 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
200 	if (nla)
201 		return (void *) nla - (void *) skb->data;
202 
203 	return 0;
204 }
205 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)206 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
207 {
208 	struct nlattr *nla;
209 
210 	if (skb_is_nonlinear(skb))
211 		return 0;
212 
213 	if (skb->len < sizeof(struct nlattr))
214 		return 0;
215 
216 	if (a > skb->len - sizeof(struct nlattr))
217 		return 0;
218 
219 	nla = (struct nlattr *) &skb->data[a];
220 	if (!nla_ok(nla, skb->len - a))
221 		return 0;
222 
223 	nla = nla_find_nested(nla, x);
224 	if (nla)
225 		return (void *) nla - (void *) skb->data;
226 
227 	return 0;
228 }
229 
bpf_skb_load_helper_convert_offset(const struct sk_buff * skb,int offset)230 static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset)
231 {
232 	if (likely(offset >= 0))
233 		return offset;
234 
235 	if (offset >= SKF_NET_OFF)
236 		return offset - SKF_NET_OFF + skb_network_offset(skb);
237 
238 	if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb))
239 		return offset - SKF_LL_OFF + skb_mac_offset(skb);
240 
241 	return INT_MIN;
242 }
243 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)244 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
245 	   data, int, headlen, int, offset)
246 {
247 	u8 tmp;
248 	const int len = sizeof(tmp);
249 
250 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
251 	if (offset == INT_MIN)
252 		return -EFAULT;
253 
254 	if (headlen - offset >= len)
255 		return *(u8 *)(data + offset);
256 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
257 		return tmp;
258 	else
259 		return -EFAULT;
260 }
261 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)262 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
263 	   int, offset)
264 {
265 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
266 					 offset);
267 }
268 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)269 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
270 	   data, int, headlen, int, offset)
271 {
272 	__be16 tmp;
273 	const int len = sizeof(tmp);
274 
275 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
276 	if (offset == INT_MIN)
277 		return -EFAULT;
278 
279 	if (headlen - offset >= len)
280 		return get_unaligned_be16(data + offset);
281 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
282 		return be16_to_cpu(tmp);
283 	else
284 		return -EFAULT;
285 }
286 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)287 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
288 	   int, offset)
289 {
290 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
291 					  offset);
292 }
293 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)294 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
295 	   data, int, headlen, int, offset)
296 {
297 	__be32 tmp;
298 	const int len = sizeof(tmp);
299 
300 	offset = bpf_skb_load_helper_convert_offset(skb, offset);
301 	if (offset == INT_MIN)
302 		return -EFAULT;
303 
304 	if (headlen - offset >= len)
305 		return get_unaligned_be32(data + offset);
306 	if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
307 		return be32_to_cpu(tmp);
308 	else
309 		return -EFAULT;
310 }
311 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)312 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
313 	   int, offset)
314 {
315 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
316 					  offset);
317 }
318 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)319 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
320 			      struct bpf_insn *insn_buf)
321 {
322 	struct bpf_insn *insn = insn_buf;
323 
324 	switch (skb_field) {
325 	case SKF_AD_MARK:
326 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
327 
328 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
329 				      offsetof(struct sk_buff, mark));
330 		break;
331 
332 	case SKF_AD_PKTTYPE:
333 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
334 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
335 #ifdef __BIG_ENDIAN_BITFIELD
336 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
337 #endif
338 		break;
339 
340 	case SKF_AD_QUEUE:
341 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
342 
343 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
344 				      offsetof(struct sk_buff, queue_mapping));
345 		break;
346 
347 	case SKF_AD_VLAN_TAG:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
349 
350 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
352 				      offsetof(struct sk_buff, vlan_tci));
353 		break;
354 	case SKF_AD_VLAN_TAG_PRESENT:
355 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
356 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
357 				      offsetof(struct sk_buff, vlan_all));
358 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
359 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
360 		break;
361 	}
362 
363 	return insn - insn_buf;
364 }
365 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)366 static bool convert_bpf_extensions(struct sock_filter *fp,
367 				   struct bpf_insn **insnp)
368 {
369 	struct bpf_insn *insn = *insnp;
370 	u32 cnt;
371 
372 	switch (fp->k) {
373 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
374 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
375 
376 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
377 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
378 				      offsetof(struct sk_buff, protocol));
379 		/* A = ntohs(A) [emitting a nop or swap16] */
380 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
384 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_IFINDEX:
389 	case SKF_AD_OFF + SKF_AD_HATYPE:
390 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
391 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
392 
393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
394 				      BPF_REG_TMP, BPF_REG_CTX,
395 				      offsetof(struct sk_buff, dev));
396 		/* if (tmp != 0) goto pc + 1 */
397 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
398 		*insn++ = BPF_EXIT_INSN();
399 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
400 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
401 					    offsetof(struct net_device, ifindex));
402 		else
403 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
404 					    offsetof(struct net_device, type));
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_MARK:
408 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_RXHASH:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
414 
415 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
416 				    offsetof(struct sk_buff, hash));
417 		break;
418 
419 	case SKF_AD_OFF + SKF_AD_QUEUE:
420 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
421 		insn += cnt - 1;
422 		break;
423 
424 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
425 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
426 					 BPF_REG_A, BPF_REG_CTX, insn);
427 		insn += cnt - 1;
428 		break;
429 
430 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
431 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
432 					 BPF_REG_A, BPF_REG_CTX, insn);
433 		insn += cnt - 1;
434 		break;
435 
436 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
437 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
438 
439 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
440 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
441 				      offsetof(struct sk_buff, vlan_proto));
442 		/* A = ntohs(A) [emitting a nop or swap16] */
443 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
444 		break;
445 
446 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
447 	case SKF_AD_OFF + SKF_AD_NLATTR:
448 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
449 	case SKF_AD_OFF + SKF_AD_CPU:
450 	case SKF_AD_OFF + SKF_AD_RANDOM:
451 		/* arg1 = CTX */
452 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
453 		/* arg2 = A */
454 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
455 		/* arg3 = X */
456 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
457 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
458 		switch (fp->k) {
459 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
460 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
461 			break;
462 		case SKF_AD_OFF + SKF_AD_NLATTR:
463 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
464 			break;
465 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
466 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
467 			break;
468 		case SKF_AD_OFF + SKF_AD_CPU:
469 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
470 			break;
471 		case SKF_AD_OFF + SKF_AD_RANDOM:
472 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
473 			bpf_user_rnd_init_once();
474 			break;
475 		}
476 		break;
477 
478 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
479 		/* A ^= X */
480 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
481 		break;
482 
483 	default:
484 		/* This is just a dummy call to avoid letting the compiler
485 		 * evict __bpf_call_base() as an optimization. Placed here
486 		 * where no-one bothers.
487 		 */
488 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
489 		return false;
490 	}
491 
492 	*insnp = insn;
493 	return true;
494 }
495 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)496 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
497 {
498 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
499 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
500 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
501 		      BPF_SIZE(fp->code) == BPF_W;
502 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
503 	const int ip_align = NET_IP_ALIGN;
504 	struct bpf_insn *insn = *insnp;
505 	int offset = fp->k;
506 
507 	if (!indirect &&
508 	    ((unaligned_ok && offset >= 0) ||
509 	     (!unaligned_ok && offset >= 0 &&
510 	      offset + ip_align >= 0 &&
511 	      offset + ip_align % size == 0))) {
512 		bool ldx_off_ok = offset <= S16_MAX;
513 
514 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
515 		if (offset)
516 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
517 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
518 				      size, 2 + endian + (!ldx_off_ok * 2));
519 		if (ldx_off_ok) {
520 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
521 					      BPF_REG_D, offset);
522 		} else {
523 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
524 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
525 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
526 					      BPF_REG_TMP, 0);
527 		}
528 		if (endian)
529 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
530 		*insn++ = BPF_JMP_A(8);
531 	}
532 
533 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
534 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
535 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
536 	if (!indirect) {
537 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
538 	} else {
539 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
540 		if (fp->k)
541 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
542 	}
543 
544 	switch (BPF_SIZE(fp->code)) {
545 	case BPF_B:
546 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
547 		break;
548 	case BPF_H:
549 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
550 		break;
551 	case BPF_W:
552 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
553 		break;
554 	default:
555 		return false;
556 	}
557 
558 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
559 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
560 	*insn   = BPF_EXIT_INSN();
561 
562 	*insnp = insn;
563 	return true;
564 }
565 
566 /**
567  *	bpf_convert_filter - convert filter program
568  *	@prog: the user passed filter program
569  *	@len: the length of the user passed filter program
570  *	@new_prog: allocated 'struct bpf_prog' or NULL
571  *	@new_len: pointer to store length of converted program
572  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
573  *
574  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
575  * style extended BPF (eBPF).
576  * Conversion workflow:
577  *
578  * 1) First pass for calculating the new program length:
579  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
580  *
581  * 2) 2nd pass to remap in two passes: 1st pass finds new
582  *    jump offsets, 2nd pass remapping:
583  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
584  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)585 static int bpf_convert_filter(struct sock_filter *prog, int len,
586 			      struct bpf_prog *new_prog, int *new_len,
587 			      bool *seen_ld_abs)
588 {
589 	int new_flen = 0, pass = 0, target, i, stack_off;
590 	struct bpf_insn *new_insn, *first_insn = NULL;
591 	struct sock_filter *fp;
592 	int *addrs = NULL;
593 	u8 bpf_src;
594 
595 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
596 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
597 
598 	if (len <= 0 || len > BPF_MAXINSNS)
599 		return -EINVAL;
600 
601 	if (new_prog) {
602 		first_insn = new_prog->insnsi;
603 		addrs = kcalloc(len, sizeof(*addrs),
604 				GFP_KERNEL | __GFP_NOWARN);
605 		if (!addrs)
606 			return -ENOMEM;
607 	}
608 
609 do_pass:
610 	new_insn = first_insn;
611 	fp = prog;
612 
613 	/* Classic BPF related prologue emission. */
614 	if (new_prog) {
615 		/* Classic BPF expects A and X to be reset first. These need
616 		 * to be guaranteed to be the first two instructions.
617 		 */
618 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
619 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
620 
621 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
622 		 * In eBPF case it's done by the compiler, here we need to
623 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
624 		 */
625 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
626 		if (*seen_ld_abs) {
627 			/* For packet access in classic BPF, cache skb->data
628 			 * in callee-saved BPF R8 and skb->len - skb->data_len
629 			 * (headlen) in BPF R9. Since classic BPF is read-only
630 			 * on CTX, we only need to cache it once.
631 			 */
632 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
633 						  BPF_REG_D, BPF_REG_CTX,
634 						  offsetof(struct sk_buff, data));
635 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
636 						  offsetof(struct sk_buff, len));
637 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
638 						  offsetof(struct sk_buff, data_len));
639 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
640 		}
641 	} else {
642 		new_insn += 3;
643 	}
644 
645 	for (i = 0; i < len; fp++, i++) {
646 		struct bpf_insn tmp_insns[32] = { };
647 		struct bpf_insn *insn = tmp_insns;
648 
649 		if (addrs)
650 			addrs[i] = new_insn - first_insn;
651 
652 		switch (fp->code) {
653 		/* All arithmetic insns and skb loads map as-is. */
654 		case BPF_ALU | BPF_ADD | BPF_X:
655 		case BPF_ALU | BPF_ADD | BPF_K:
656 		case BPF_ALU | BPF_SUB | BPF_X:
657 		case BPF_ALU | BPF_SUB | BPF_K:
658 		case BPF_ALU | BPF_AND | BPF_X:
659 		case BPF_ALU | BPF_AND | BPF_K:
660 		case BPF_ALU | BPF_OR | BPF_X:
661 		case BPF_ALU | BPF_OR | BPF_K:
662 		case BPF_ALU | BPF_LSH | BPF_X:
663 		case BPF_ALU | BPF_LSH | BPF_K:
664 		case BPF_ALU | BPF_RSH | BPF_X:
665 		case BPF_ALU | BPF_RSH | BPF_K:
666 		case BPF_ALU | BPF_XOR | BPF_X:
667 		case BPF_ALU | BPF_XOR | BPF_K:
668 		case BPF_ALU | BPF_MUL | BPF_X:
669 		case BPF_ALU | BPF_MUL | BPF_K:
670 		case BPF_ALU | BPF_DIV | BPF_X:
671 		case BPF_ALU | BPF_DIV | BPF_K:
672 		case BPF_ALU | BPF_MOD | BPF_X:
673 		case BPF_ALU | BPF_MOD | BPF_K:
674 		case BPF_ALU | BPF_NEG:
675 		case BPF_LD | BPF_ABS | BPF_W:
676 		case BPF_LD | BPF_ABS | BPF_H:
677 		case BPF_LD | BPF_ABS | BPF_B:
678 		case BPF_LD | BPF_IND | BPF_W:
679 		case BPF_LD | BPF_IND | BPF_H:
680 		case BPF_LD | BPF_IND | BPF_B:
681 			/* Check for overloaded BPF extension and
682 			 * directly convert it if found, otherwise
683 			 * just move on with mapping.
684 			 */
685 			if (BPF_CLASS(fp->code) == BPF_LD &&
686 			    BPF_MODE(fp->code) == BPF_ABS &&
687 			    convert_bpf_extensions(fp, &insn))
688 				break;
689 			if (BPF_CLASS(fp->code) == BPF_LD &&
690 			    convert_bpf_ld_abs(fp, &insn)) {
691 				*seen_ld_abs = true;
692 				break;
693 			}
694 
695 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
696 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
697 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
698 				/* Error with exception code on div/mod by 0.
699 				 * For cBPF programs, this was always return 0.
700 				 */
701 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
702 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
703 				*insn++ = BPF_EXIT_INSN();
704 			}
705 
706 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
707 			break;
708 
709 		/* Jump transformation cannot use BPF block macros
710 		 * everywhere as offset calculation and target updates
711 		 * require a bit more work than the rest, i.e. jump
712 		 * opcodes map as-is, but offsets need adjustment.
713 		 */
714 
715 #define BPF_EMIT_JMP							\
716 	do {								\
717 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
718 		s32 off;						\
719 									\
720 		if (target >= len || target < 0)			\
721 			goto err;					\
722 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
723 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
724 		off -= insn - tmp_insns;				\
725 		/* Reject anything not fitting into insn->off. */	\
726 		if (off < off_min || off > off_max)			\
727 			goto err;					\
728 		insn->off = off;					\
729 	} while (0)
730 
731 		case BPF_JMP | BPF_JA:
732 			target = i + fp->k + 1;
733 			insn->code = fp->code;
734 			BPF_EMIT_JMP;
735 			break;
736 
737 		case BPF_JMP | BPF_JEQ | BPF_K:
738 		case BPF_JMP | BPF_JEQ | BPF_X:
739 		case BPF_JMP | BPF_JSET | BPF_K:
740 		case BPF_JMP | BPF_JSET | BPF_X:
741 		case BPF_JMP | BPF_JGT | BPF_K:
742 		case BPF_JMP | BPF_JGT | BPF_X:
743 		case BPF_JMP | BPF_JGE | BPF_K:
744 		case BPF_JMP | BPF_JGE | BPF_X:
745 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
746 				/* BPF immediates are signed, zero extend
747 				 * immediate into tmp register and use it
748 				 * in compare insn.
749 				 */
750 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
751 
752 				insn->dst_reg = BPF_REG_A;
753 				insn->src_reg = BPF_REG_TMP;
754 				bpf_src = BPF_X;
755 			} else {
756 				insn->dst_reg = BPF_REG_A;
757 				insn->imm = fp->k;
758 				bpf_src = BPF_SRC(fp->code);
759 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
760 			}
761 
762 			/* Common case where 'jump_false' is next insn. */
763 			if (fp->jf == 0) {
764 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 				target = i + fp->jt + 1;
766 				BPF_EMIT_JMP;
767 				break;
768 			}
769 
770 			/* Convert some jumps when 'jump_true' is next insn. */
771 			if (fp->jt == 0) {
772 				switch (BPF_OP(fp->code)) {
773 				case BPF_JEQ:
774 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
775 					break;
776 				case BPF_JGT:
777 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
778 					break;
779 				case BPF_JGE:
780 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
781 					break;
782 				default:
783 					goto jmp_rest;
784 				}
785 
786 				target = i + fp->jf + 1;
787 				BPF_EMIT_JMP;
788 				break;
789 			}
790 jmp_rest:
791 			/* Other jumps are mapped into two insns: Jxx and JA. */
792 			target = i + fp->jt + 1;
793 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
794 			BPF_EMIT_JMP;
795 			insn++;
796 
797 			insn->code = BPF_JMP | BPF_JA;
798 			target = i + fp->jf + 1;
799 			BPF_EMIT_JMP;
800 			break;
801 
802 		/* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
803 		case BPF_LDX | BPF_MSH | BPF_B: {
804 			struct sock_filter tmp = {
805 				.code	= BPF_LD | BPF_ABS | BPF_B,
806 				.k	= fp->k,
807 			};
808 
809 			*seen_ld_abs = true;
810 
811 			/* X = A */
812 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
813 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
814 			convert_bpf_ld_abs(&tmp, &insn);
815 			insn++;
816 			/* A &= 0xf */
817 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
818 			/* A <<= 2 */
819 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
820 			/* tmp = X */
821 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
822 			/* X = A */
823 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			/* A = tmp */
825 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
826 			break;
827 		}
828 		/* RET_K is remapped into 2 insns. RET_A case doesn't need an
829 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
830 		 */
831 		case BPF_RET | BPF_A:
832 		case BPF_RET | BPF_K:
833 			if (BPF_RVAL(fp->code) == BPF_K)
834 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
835 							0, fp->k);
836 			*insn = BPF_EXIT_INSN();
837 			break;
838 
839 		/* Store to stack. */
840 		case BPF_ST:
841 		case BPF_STX:
842 			stack_off = fp->k * 4  + 4;
843 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
844 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
845 					    -stack_off);
846 			/* check_load_and_stores() verifies that classic BPF can
847 			 * load from stack only after write, so tracking
848 			 * stack_depth for ST|STX insns is enough
849 			 */
850 			if (new_prog && new_prog->aux->stack_depth < stack_off)
851 				new_prog->aux->stack_depth = stack_off;
852 			break;
853 
854 		/* Load from stack. */
855 		case BPF_LD | BPF_MEM:
856 		case BPF_LDX | BPF_MEM:
857 			stack_off = fp->k * 4  + 4;
858 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
859 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
860 					    -stack_off);
861 			break;
862 
863 		/* A = K or X = K */
864 		case BPF_LD | BPF_IMM:
865 		case BPF_LDX | BPF_IMM:
866 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
867 					      BPF_REG_A : BPF_REG_X, fp->k);
868 			break;
869 
870 		/* X = A */
871 		case BPF_MISC | BPF_TAX:
872 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
873 			break;
874 
875 		/* A = X */
876 		case BPF_MISC | BPF_TXA:
877 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
878 			break;
879 
880 		/* A = skb->len or X = skb->len */
881 		case BPF_LD | BPF_W | BPF_LEN:
882 		case BPF_LDX | BPF_W | BPF_LEN:
883 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
884 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
885 					    offsetof(struct sk_buff, len));
886 			break;
887 
888 		/* Access seccomp_data fields. */
889 		case BPF_LDX | BPF_ABS | BPF_W:
890 			/* A = *(u32 *) (ctx + K) */
891 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
892 			break;
893 
894 		/* Unknown instruction. */
895 		default:
896 			goto err;
897 		}
898 
899 		insn++;
900 		if (new_prog)
901 			memcpy(new_insn, tmp_insns,
902 			       sizeof(*insn) * (insn - tmp_insns));
903 		new_insn += insn - tmp_insns;
904 	}
905 
906 	if (!new_prog) {
907 		/* Only calculating new length. */
908 		*new_len = new_insn - first_insn;
909 		if (*seen_ld_abs)
910 			*new_len += 4; /* Prologue bits. */
911 		return 0;
912 	}
913 
914 	pass++;
915 	if (new_flen != new_insn - first_insn) {
916 		new_flen = new_insn - first_insn;
917 		if (pass > 2)
918 			goto err;
919 		goto do_pass;
920 	}
921 
922 	kfree(addrs);
923 	BUG_ON(*new_len != new_flen);
924 	return 0;
925 err:
926 	kfree(addrs);
927 	return -EINVAL;
928 }
929 
930 /* Security:
931  *
932  * As we dont want to clear mem[] array for each packet going through
933  * __bpf_prog_run(), we check that filter loaded by user never try to read
934  * a cell if not previously written, and we check all branches to be sure
935  * a malicious user doesn't try to abuse us.
936  */
check_load_and_stores(const struct sock_filter * filter,int flen)937 static int check_load_and_stores(const struct sock_filter *filter, int flen)
938 {
939 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
940 	int pc, ret = 0;
941 
942 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
943 
944 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
945 	if (!masks)
946 		return -ENOMEM;
947 
948 	memset(masks, 0xff, flen * sizeof(*masks));
949 
950 	for (pc = 0; pc < flen; pc++) {
951 		memvalid &= masks[pc];
952 
953 		switch (filter[pc].code) {
954 		case BPF_ST:
955 		case BPF_STX:
956 			memvalid |= (1 << filter[pc].k);
957 			break;
958 		case BPF_LD | BPF_MEM:
959 		case BPF_LDX | BPF_MEM:
960 			if (!(memvalid & (1 << filter[pc].k))) {
961 				ret = -EINVAL;
962 				goto error;
963 			}
964 			break;
965 		case BPF_JMP | BPF_JA:
966 			/* A jump must set masks on target */
967 			masks[pc + 1 + filter[pc].k] &= memvalid;
968 			memvalid = ~0;
969 			break;
970 		case BPF_JMP | BPF_JEQ | BPF_K:
971 		case BPF_JMP | BPF_JEQ | BPF_X:
972 		case BPF_JMP | BPF_JGE | BPF_K:
973 		case BPF_JMP | BPF_JGE | BPF_X:
974 		case BPF_JMP | BPF_JGT | BPF_K:
975 		case BPF_JMP | BPF_JGT | BPF_X:
976 		case BPF_JMP | BPF_JSET | BPF_K:
977 		case BPF_JMP | BPF_JSET | BPF_X:
978 			/* A jump must set masks on targets */
979 			masks[pc + 1 + filter[pc].jt] &= memvalid;
980 			masks[pc + 1 + filter[pc].jf] &= memvalid;
981 			memvalid = ~0;
982 			break;
983 		}
984 	}
985 error:
986 	kfree(masks);
987 	return ret;
988 }
989 
chk_code_allowed(u16 code_to_probe)990 static bool chk_code_allowed(u16 code_to_probe)
991 {
992 	static const bool codes[] = {
993 		/* 32 bit ALU operations */
994 		[BPF_ALU | BPF_ADD | BPF_K] = true,
995 		[BPF_ALU | BPF_ADD | BPF_X] = true,
996 		[BPF_ALU | BPF_SUB | BPF_K] = true,
997 		[BPF_ALU | BPF_SUB | BPF_X] = true,
998 		[BPF_ALU | BPF_MUL | BPF_K] = true,
999 		[BPF_ALU | BPF_MUL | BPF_X] = true,
1000 		[BPF_ALU | BPF_DIV | BPF_K] = true,
1001 		[BPF_ALU | BPF_DIV | BPF_X] = true,
1002 		[BPF_ALU | BPF_MOD | BPF_K] = true,
1003 		[BPF_ALU | BPF_MOD | BPF_X] = true,
1004 		[BPF_ALU | BPF_AND | BPF_K] = true,
1005 		[BPF_ALU | BPF_AND | BPF_X] = true,
1006 		[BPF_ALU | BPF_OR | BPF_K] = true,
1007 		[BPF_ALU | BPF_OR | BPF_X] = true,
1008 		[BPF_ALU | BPF_XOR | BPF_K] = true,
1009 		[BPF_ALU | BPF_XOR | BPF_X] = true,
1010 		[BPF_ALU | BPF_LSH | BPF_K] = true,
1011 		[BPF_ALU | BPF_LSH | BPF_X] = true,
1012 		[BPF_ALU | BPF_RSH | BPF_K] = true,
1013 		[BPF_ALU | BPF_RSH | BPF_X] = true,
1014 		[BPF_ALU | BPF_NEG] = true,
1015 		/* Load instructions */
1016 		[BPF_LD | BPF_W | BPF_ABS] = true,
1017 		[BPF_LD | BPF_H | BPF_ABS] = true,
1018 		[BPF_LD | BPF_B | BPF_ABS] = true,
1019 		[BPF_LD | BPF_W | BPF_LEN] = true,
1020 		[BPF_LD | BPF_W | BPF_IND] = true,
1021 		[BPF_LD | BPF_H | BPF_IND] = true,
1022 		[BPF_LD | BPF_B | BPF_IND] = true,
1023 		[BPF_LD | BPF_IMM] = true,
1024 		[BPF_LD | BPF_MEM] = true,
1025 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1026 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1027 		[BPF_LDX | BPF_IMM] = true,
1028 		[BPF_LDX | BPF_MEM] = true,
1029 		/* Store instructions */
1030 		[BPF_ST] = true,
1031 		[BPF_STX] = true,
1032 		/* Misc instructions */
1033 		[BPF_MISC | BPF_TAX] = true,
1034 		[BPF_MISC | BPF_TXA] = true,
1035 		/* Return instructions */
1036 		[BPF_RET | BPF_K] = true,
1037 		[BPF_RET | BPF_A] = true,
1038 		/* Jump instructions */
1039 		[BPF_JMP | BPF_JA] = true,
1040 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1041 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1042 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1043 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1044 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1045 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1046 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1047 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1048 	};
1049 
1050 	if (code_to_probe >= ARRAY_SIZE(codes))
1051 		return false;
1052 
1053 	return codes[code_to_probe];
1054 }
1055 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1056 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1057 				unsigned int flen)
1058 {
1059 	if (filter == NULL)
1060 		return false;
1061 	if (flen == 0 || flen > BPF_MAXINSNS)
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 /**
1068  *	bpf_check_classic - verify socket filter code
1069  *	@filter: filter to verify
1070  *	@flen: length of filter
1071  *
1072  * Check the user's filter code. If we let some ugly
1073  * filter code slip through kaboom! The filter must contain
1074  * no references or jumps that are out of range, no illegal
1075  * instructions, and must end with a RET instruction.
1076  *
1077  * All jumps are forward as they are not signed.
1078  *
1079  * Returns 0 if the rule set is legal or -EINVAL if not.
1080  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1081 static int bpf_check_classic(const struct sock_filter *filter,
1082 			     unsigned int flen)
1083 {
1084 	bool anc_found;
1085 	int pc;
1086 
1087 	/* Check the filter code now */
1088 	for (pc = 0; pc < flen; pc++) {
1089 		const struct sock_filter *ftest = &filter[pc];
1090 
1091 		/* May we actually operate on this code? */
1092 		if (!chk_code_allowed(ftest->code))
1093 			return -EINVAL;
1094 
1095 		/* Some instructions need special checks */
1096 		switch (ftest->code) {
1097 		case BPF_ALU | BPF_DIV | BPF_K:
1098 		case BPF_ALU | BPF_MOD | BPF_K:
1099 			/* Check for division by zero */
1100 			if (ftest->k == 0)
1101 				return -EINVAL;
1102 			break;
1103 		case BPF_ALU | BPF_LSH | BPF_K:
1104 		case BPF_ALU | BPF_RSH | BPF_K:
1105 			if (ftest->k >= 32)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_MEM:
1109 		case BPF_LDX | BPF_MEM:
1110 		case BPF_ST:
1111 		case BPF_STX:
1112 			/* Check for invalid memory addresses */
1113 			if (ftest->k >= BPF_MEMWORDS)
1114 				return -EINVAL;
1115 			break;
1116 		case BPF_JMP | BPF_JA:
1117 			/* Note, the large ftest->k might cause loops.
1118 			 * Compare this with conditional jumps below,
1119 			 * where offsets are limited. --ANK (981016)
1120 			 */
1121 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1122 				return -EINVAL;
1123 			break;
1124 		case BPF_JMP | BPF_JEQ | BPF_K:
1125 		case BPF_JMP | BPF_JEQ | BPF_X:
1126 		case BPF_JMP | BPF_JGE | BPF_K:
1127 		case BPF_JMP | BPF_JGE | BPF_X:
1128 		case BPF_JMP | BPF_JGT | BPF_K:
1129 		case BPF_JMP | BPF_JGT | BPF_X:
1130 		case BPF_JMP | BPF_JSET | BPF_K:
1131 		case BPF_JMP | BPF_JSET | BPF_X:
1132 			/* Both conditionals must be safe */
1133 			if (pc + ftest->jt + 1 >= flen ||
1134 			    pc + ftest->jf + 1 >= flen)
1135 				return -EINVAL;
1136 			break;
1137 		case BPF_LD | BPF_W | BPF_ABS:
1138 		case BPF_LD | BPF_H | BPF_ABS:
1139 		case BPF_LD | BPF_B | BPF_ABS:
1140 			anc_found = false;
1141 			if (bpf_anc_helper(ftest) & BPF_ANC)
1142 				anc_found = true;
1143 			/* Ancillary operation unknown or unsupported */
1144 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1145 				return -EINVAL;
1146 		}
1147 	}
1148 
1149 	/* Last instruction must be a RET code */
1150 	switch (filter[flen - 1].code) {
1151 	case BPF_RET | BPF_K:
1152 	case BPF_RET | BPF_A:
1153 		return check_load_and_stores(filter, flen);
1154 	}
1155 
1156 	return -EINVAL;
1157 }
1158 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1159 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1160 				      const struct sock_fprog *fprog)
1161 {
1162 	unsigned int fsize = bpf_classic_proglen(fprog);
1163 	struct sock_fprog_kern *fkprog;
1164 
1165 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1166 	if (!fp->orig_prog)
1167 		return -ENOMEM;
1168 
1169 	fkprog = fp->orig_prog;
1170 	fkprog->len = fprog->len;
1171 
1172 	fkprog->filter = kmemdup(fp->insns, fsize,
1173 				 GFP_KERNEL | __GFP_NOWARN);
1174 	if (!fkprog->filter) {
1175 		kfree(fp->orig_prog);
1176 		return -ENOMEM;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
bpf_release_orig_filter(struct bpf_prog * fp)1182 static void bpf_release_orig_filter(struct bpf_prog *fp)
1183 {
1184 	struct sock_fprog_kern *fprog = fp->orig_prog;
1185 
1186 	if (fprog) {
1187 		kfree(fprog->filter);
1188 		kfree(fprog);
1189 	}
1190 }
1191 
__bpf_prog_release(struct bpf_prog * prog)1192 static void __bpf_prog_release(struct bpf_prog *prog)
1193 {
1194 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1195 		bpf_prog_put(prog);
1196 	} else {
1197 		bpf_release_orig_filter(prog);
1198 		bpf_prog_free(prog);
1199 	}
1200 }
1201 
__sk_filter_release(struct sk_filter * fp)1202 static void __sk_filter_release(struct sk_filter *fp)
1203 {
1204 	__bpf_prog_release(fp->prog);
1205 	kfree(fp);
1206 }
1207 
1208 /**
1209  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1210  *	@rcu: rcu_head that contains the sk_filter to free
1211  */
sk_filter_release_rcu(struct rcu_head * rcu)1212 static void sk_filter_release_rcu(struct rcu_head *rcu)
1213 {
1214 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1215 
1216 	__sk_filter_release(fp);
1217 }
1218 
1219 /**
1220  *	sk_filter_release - release a socket filter
1221  *	@fp: filter to remove
1222  *
1223  *	Remove a filter from a socket and release its resources.
1224  */
sk_filter_release(struct sk_filter * fp)1225 static void sk_filter_release(struct sk_filter *fp)
1226 {
1227 	if (refcount_dec_and_test(&fp->refcnt))
1228 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1229 }
1230 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1231 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1232 {
1233 	u32 filter_size = bpf_prog_size(fp->prog->len);
1234 
1235 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1236 	sk_filter_release(fp);
1237 }
1238 
1239 /* try to charge the socket memory if there is space available
1240  * return true on success
1241  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1242 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1243 {
1244 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1245 	u32 filter_size = bpf_prog_size(fp->prog->len);
1246 
1247 	/* same check as in sock_kmalloc() */
1248 	if (filter_size <= optmem_max &&
1249 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1250 		atomic_add(filter_size, &sk->sk_omem_alloc);
1251 		return true;
1252 	}
1253 	return false;
1254 }
1255 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1256 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1257 {
1258 	if (!refcount_inc_not_zero(&fp->refcnt))
1259 		return false;
1260 
1261 	if (!__sk_filter_charge(sk, fp)) {
1262 		sk_filter_release(fp);
1263 		return false;
1264 	}
1265 	return true;
1266 }
1267 
bpf_migrate_filter(struct bpf_prog * fp)1268 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1269 {
1270 	struct sock_filter *old_prog;
1271 	struct bpf_prog *old_fp;
1272 	int err, new_len, old_len = fp->len;
1273 	bool seen_ld_abs = false;
1274 
1275 	/* We are free to overwrite insns et al right here as it won't be used at
1276 	 * this point in time anymore internally after the migration to the eBPF
1277 	 * instruction representation.
1278 	 */
1279 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1280 		     sizeof(struct bpf_insn));
1281 
1282 	/* Conversion cannot happen on overlapping memory areas,
1283 	 * so we need to keep the user BPF around until the 2nd
1284 	 * pass. At this time, the user BPF is stored in fp->insns.
1285 	 */
1286 	old_prog = kmemdup_array(fp->insns, old_len, sizeof(struct sock_filter),
1287 				 GFP_KERNEL | __GFP_NOWARN);
1288 	if (!old_prog) {
1289 		err = -ENOMEM;
1290 		goto out_err;
1291 	}
1292 
1293 	/* 1st pass: calculate the new program length. */
1294 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1295 				 &seen_ld_abs);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	/* Expand fp for appending the new filter representation. */
1300 	old_fp = fp;
1301 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1302 	if (!fp) {
1303 		/* The old_fp is still around in case we couldn't
1304 		 * allocate new memory, so uncharge on that one.
1305 		 */
1306 		fp = old_fp;
1307 		err = -ENOMEM;
1308 		goto out_err_free;
1309 	}
1310 
1311 	fp->len = new_len;
1312 
1313 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1314 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1315 				 &seen_ld_abs);
1316 	if (err)
1317 		/* 2nd bpf_convert_filter() can fail only if it fails
1318 		 * to allocate memory, remapping must succeed. Note,
1319 		 * that at this time old_fp has already been released
1320 		 * by krealloc().
1321 		 */
1322 		goto out_err_free;
1323 
1324 	fp = bpf_prog_select_runtime(fp, &err);
1325 	if (err)
1326 		goto out_err_free;
1327 
1328 	kfree(old_prog);
1329 	return fp;
1330 
1331 out_err_free:
1332 	kfree(old_prog);
1333 out_err:
1334 	__bpf_prog_release(fp);
1335 	return ERR_PTR(err);
1336 }
1337 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1338 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1339 					   bpf_aux_classic_check_t trans)
1340 {
1341 	int err;
1342 
1343 	fp->bpf_func = NULL;
1344 	fp->jited = 0;
1345 
1346 	err = bpf_check_classic(fp->insns, fp->len);
1347 	if (err) {
1348 		__bpf_prog_release(fp);
1349 		return ERR_PTR(err);
1350 	}
1351 
1352 	/* There might be additional checks and transformations
1353 	 * needed on classic filters, f.e. in case of seccomp.
1354 	 */
1355 	if (trans) {
1356 		err = trans(fp->insns, fp->len);
1357 		if (err) {
1358 			__bpf_prog_release(fp);
1359 			return ERR_PTR(err);
1360 		}
1361 	}
1362 
1363 	/* Probe if we can JIT compile the filter and if so, do
1364 	 * the compilation of the filter.
1365 	 */
1366 	bpf_jit_compile(fp);
1367 
1368 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1369 	 * for the optimized interpreter.
1370 	 */
1371 	if (!fp->jited)
1372 		fp = bpf_migrate_filter(fp);
1373 
1374 	return fp;
1375 }
1376 
1377 /**
1378  *	bpf_prog_create - create an unattached filter
1379  *	@pfp: the unattached filter that is created
1380  *	@fprog: the filter program
1381  *
1382  * Create a filter independent of any socket. We first run some
1383  * sanity checks on it to make sure it does not explode on us later.
1384  * If an error occurs or there is insufficient memory for the filter
1385  * a negative errno code is returned. On success the return is zero.
1386  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1387 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1388 {
1389 	unsigned int fsize = bpf_classic_proglen(fprog);
1390 	struct bpf_prog *fp;
1391 
1392 	/* Make sure new filter is there and in the right amounts. */
1393 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1394 		return -EINVAL;
1395 
1396 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1397 	if (!fp)
1398 		return -ENOMEM;
1399 
1400 	memcpy(fp->insns, fprog->filter, fsize);
1401 
1402 	fp->len = fprog->len;
1403 	/* Since unattached filters are not copied back to user
1404 	 * space through sk_get_filter(), we do not need to hold
1405 	 * a copy here, and can spare us the work.
1406 	 */
1407 	fp->orig_prog = NULL;
1408 
1409 	/* bpf_prepare_filter() already takes care of freeing
1410 	 * memory in case something goes wrong.
1411 	 */
1412 	fp = bpf_prepare_filter(fp, NULL);
1413 	if (IS_ERR(fp))
1414 		return PTR_ERR(fp);
1415 
1416 	*pfp = fp;
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(bpf_prog_create);
1420 
1421 /**
1422  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1423  *	@pfp: the unattached filter that is created
1424  *	@fprog: the filter program
1425  *	@trans: post-classic verifier transformation handler
1426  *	@save_orig: save classic BPF program
1427  *
1428  * This function effectively does the same as bpf_prog_create(), only
1429  * that it builds up its insns buffer from user space provided buffer.
1430  * It also allows for passing a bpf_aux_classic_check_t handler.
1431  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1432 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1433 			      bpf_aux_classic_check_t trans, bool save_orig)
1434 {
1435 	unsigned int fsize = bpf_classic_proglen(fprog);
1436 	struct bpf_prog *fp;
1437 	int err;
1438 
1439 	/* Make sure new filter is there and in the right amounts. */
1440 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1441 		return -EINVAL;
1442 
1443 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1444 	if (!fp)
1445 		return -ENOMEM;
1446 
1447 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1448 		__bpf_prog_free(fp);
1449 		return -EFAULT;
1450 	}
1451 
1452 	fp->len = fprog->len;
1453 	fp->orig_prog = NULL;
1454 
1455 	if (save_orig) {
1456 		err = bpf_prog_store_orig_filter(fp, fprog);
1457 		if (err) {
1458 			__bpf_prog_free(fp);
1459 			return -ENOMEM;
1460 		}
1461 	}
1462 
1463 	/* bpf_prepare_filter() already takes care of freeing
1464 	 * memory in case something goes wrong.
1465 	 */
1466 	fp = bpf_prepare_filter(fp, trans);
1467 	if (IS_ERR(fp))
1468 		return PTR_ERR(fp);
1469 
1470 	*pfp = fp;
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1474 
bpf_prog_destroy(struct bpf_prog * fp)1475 void bpf_prog_destroy(struct bpf_prog *fp)
1476 {
1477 	__bpf_prog_release(fp);
1478 }
1479 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1480 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1481 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1482 {
1483 	struct sk_filter *fp, *old_fp;
1484 
1485 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1486 	if (!fp)
1487 		return -ENOMEM;
1488 
1489 	fp->prog = prog;
1490 
1491 	if (!__sk_filter_charge(sk, fp)) {
1492 		kfree(fp);
1493 		return -ENOMEM;
1494 	}
1495 	refcount_set(&fp->refcnt, 1);
1496 
1497 	old_fp = rcu_dereference_protected(sk->sk_filter,
1498 					   lockdep_sock_is_held(sk));
1499 	rcu_assign_pointer(sk->sk_filter, fp);
1500 
1501 	if (old_fp)
1502 		sk_filter_uncharge(sk, old_fp);
1503 
1504 	return 0;
1505 }
1506 
1507 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1508 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1509 {
1510 	unsigned int fsize = bpf_classic_proglen(fprog);
1511 	struct bpf_prog *prog;
1512 	int err;
1513 
1514 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1515 		return ERR_PTR(-EPERM);
1516 
1517 	/* Make sure new filter is there and in the right amounts. */
1518 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1519 		return ERR_PTR(-EINVAL);
1520 
1521 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1522 	if (!prog)
1523 		return ERR_PTR(-ENOMEM);
1524 
1525 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1526 		__bpf_prog_free(prog);
1527 		return ERR_PTR(-EFAULT);
1528 	}
1529 
1530 	prog->len = fprog->len;
1531 
1532 	err = bpf_prog_store_orig_filter(prog, fprog);
1533 	if (err) {
1534 		__bpf_prog_free(prog);
1535 		return ERR_PTR(-ENOMEM);
1536 	}
1537 
1538 	/* bpf_prepare_filter() already takes care of freeing
1539 	 * memory in case something goes wrong.
1540 	 */
1541 	return bpf_prepare_filter(prog, NULL);
1542 }
1543 
1544 /**
1545  *	sk_attach_filter - attach a socket filter
1546  *	@fprog: the filter program
1547  *	@sk: the socket to use
1548  *
1549  * Attach the user's filter code. We first run some sanity checks on
1550  * it to make sure it does not explode on us later. If an error
1551  * occurs or there is insufficient memory for the filter a negative
1552  * errno code is returned. On success the return is zero.
1553  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1554 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1555 {
1556 	struct bpf_prog *prog = __get_filter(fprog, sk);
1557 	int err;
1558 
1559 	if (IS_ERR(prog))
1560 		return PTR_ERR(prog);
1561 
1562 	err = __sk_attach_prog(prog, sk);
1563 	if (err < 0) {
1564 		__bpf_prog_release(prog);
1565 		return err;
1566 	}
1567 
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(sk_attach_filter);
1571 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1572 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1573 {
1574 	struct bpf_prog *prog = __get_filter(fprog, sk);
1575 	int err, optmem_max;
1576 
1577 	if (IS_ERR(prog))
1578 		return PTR_ERR(prog);
1579 
1580 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1581 	if (bpf_prog_size(prog->len) > optmem_max)
1582 		err = -ENOMEM;
1583 	else
1584 		err = reuseport_attach_prog(sk, prog);
1585 
1586 	if (err)
1587 		__bpf_prog_release(prog);
1588 
1589 	return err;
1590 }
1591 
__get_bpf(u32 ufd,struct sock * sk)1592 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595 		return ERR_PTR(-EPERM);
1596 
1597 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598 }
1599 
sk_attach_bpf(u32 ufd,struct sock * sk)1600 int sk_attach_bpf(u32 ufd, struct sock *sk)
1601 {
1602 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1603 	int err;
1604 
1605 	if (IS_ERR(prog))
1606 		return PTR_ERR(prog);
1607 
1608 	err = __sk_attach_prog(prog, sk);
1609 	if (err < 0) {
1610 		bpf_prog_put(prog);
1611 		return err;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1617 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1618 {
1619 	struct bpf_prog *prog;
1620 	int err, optmem_max;
1621 
1622 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1623 		return -EPERM;
1624 
1625 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1626 	if (PTR_ERR(prog) == -EINVAL)
1627 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1628 	if (IS_ERR(prog))
1629 		return PTR_ERR(prog);
1630 
1631 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1632 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1633 		 * bpf prog (e.g. sockmap).  It depends on the
1634 		 * limitation imposed by bpf_prog_load().
1635 		 * Hence, sysctl_optmem_max is not checked.
1636 		 */
1637 		if ((sk->sk_type != SOCK_STREAM &&
1638 		     sk->sk_type != SOCK_DGRAM) ||
1639 		    (sk->sk_protocol != IPPROTO_UDP &&
1640 		     sk->sk_protocol != IPPROTO_TCP) ||
1641 		    (sk->sk_family != AF_INET &&
1642 		     sk->sk_family != AF_INET6)) {
1643 			err = -ENOTSUPP;
1644 			goto err_prog_put;
1645 		}
1646 	} else {
1647 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1648 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1649 		if (bpf_prog_size(prog->len) > optmem_max) {
1650 			err = -ENOMEM;
1651 			goto err_prog_put;
1652 		}
1653 	}
1654 
1655 	err = reuseport_attach_prog(sk, prog);
1656 err_prog_put:
1657 	if (err)
1658 		bpf_prog_put(prog);
1659 
1660 	return err;
1661 }
1662 
sk_reuseport_prog_free(struct bpf_prog * prog)1663 void sk_reuseport_prog_free(struct bpf_prog *prog)
1664 {
1665 	if (!prog)
1666 		return;
1667 
1668 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1669 		bpf_prog_put(prog);
1670 	else
1671 		bpf_prog_destroy(prog);
1672 }
1673 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1674 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1675 					  unsigned int write_len)
1676 {
1677 #ifdef CONFIG_DEBUG_NET
1678 	/* Avoid a splat in pskb_may_pull_reason() */
1679 	if (write_len > INT_MAX)
1680 		return -EINVAL;
1681 #endif
1682 	return skb_ensure_writable(skb, write_len);
1683 }
1684 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1685 static inline int bpf_try_make_writable(struct sk_buff *skb,
1686 					unsigned int write_len)
1687 {
1688 	int err = __bpf_try_make_writable(skb, write_len);
1689 
1690 	bpf_compute_data_pointers(skb);
1691 	return err;
1692 }
1693 
bpf_try_make_head_writable(struct sk_buff * skb)1694 static int bpf_try_make_head_writable(struct sk_buff *skb)
1695 {
1696 	return bpf_try_make_writable(skb, skb_headlen(skb));
1697 }
1698 
bpf_push_mac_rcsum(struct sk_buff * skb)1699 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1700 {
1701 	if (skb_at_tc_ingress(skb))
1702 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1703 }
1704 
bpf_pull_mac_rcsum(struct sk_buff * skb)1705 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1706 {
1707 	if (skb_at_tc_ingress(skb))
1708 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1709 }
1710 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1711 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1712 	   const void *, from, u32, len, u64, flags)
1713 {
1714 	void *ptr;
1715 
1716 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1717 		return -EINVAL;
1718 	if (unlikely(offset > INT_MAX))
1719 		return -EFAULT;
1720 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1721 		return -EFAULT;
1722 
1723 	ptr = skb->data + offset;
1724 	if (flags & BPF_F_RECOMPUTE_CSUM)
1725 		__skb_postpull_rcsum(skb, ptr, len, offset);
1726 
1727 	memcpy(ptr, from, len);
1728 
1729 	if (flags & BPF_F_RECOMPUTE_CSUM)
1730 		__skb_postpush_rcsum(skb, ptr, len, offset);
1731 	if (flags & BPF_F_INVALIDATE_HASH)
1732 		skb_clear_hash(skb);
1733 
1734 	return 0;
1735 }
1736 
1737 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1738 	.func		= bpf_skb_store_bytes,
1739 	.gpl_only	= false,
1740 	.ret_type	= RET_INTEGER,
1741 	.arg1_type	= ARG_PTR_TO_CTX,
1742 	.arg2_type	= ARG_ANYTHING,
1743 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1744 	.arg4_type	= ARG_CONST_SIZE,
1745 	.arg5_type	= ARG_ANYTHING,
1746 };
1747 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1748 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1749 			  u32 len, u64 flags)
1750 {
1751 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1752 }
1753 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1755 	   void *, to, u32, len)
1756 {
1757 	void *ptr;
1758 
1759 	if (unlikely(offset > INT_MAX))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1775 	.func		= bpf_skb_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1784 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1785 {
1786 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1787 }
1788 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1789 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1790 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1791 	   void *, to, u32, len)
1792 {
1793 	void *ptr;
1794 
1795 	if (unlikely(offset > 0xffff))
1796 		goto err_clear;
1797 
1798 	if (unlikely(!ctx->skb))
1799 		goto err_clear;
1800 
1801 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1802 	if (unlikely(!ptr))
1803 		goto err_clear;
1804 	if (ptr != to)
1805 		memcpy(to, ptr, len);
1806 
1807 	return 0;
1808 err_clear:
1809 	memset(to, 0, len);
1810 	return -EFAULT;
1811 }
1812 
1813 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1814 	.func		= bpf_flow_dissector_load_bytes,
1815 	.gpl_only	= false,
1816 	.ret_type	= RET_INTEGER,
1817 	.arg1_type	= ARG_PTR_TO_CTX,
1818 	.arg2_type	= ARG_ANYTHING,
1819 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1820 	.arg4_type	= ARG_CONST_SIZE,
1821 };
1822 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1823 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1824 	   u32, offset, void *, to, u32, len, u32, start_header)
1825 {
1826 	u8 *end = skb_tail_pointer(skb);
1827 	u8 *start, *ptr;
1828 
1829 	if (unlikely(offset > 0xffff))
1830 		goto err_clear;
1831 
1832 	switch (start_header) {
1833 	case BPF_HDR_START_MAC:
1834 		if (unlikely(!skb_mac_header_was_set(skb)))
1835 			goto err_clear;
1836 		start = skb_mac_header(skb);
1837 		break;
1838 	case BPF_HDR_START_NET:
1839 		start = skb_network_header(skb);
1840 		break;
1841 	default:
1842 		goto err_clear;
1843 	}
1844 
1845 	ptr = start + offset;
1846 
1847 	if (likely(ptr + len <= end)) {
1848 		memcpy(to, ptr, len);
1849 		return 0;
1850 	}
1851 
1852 err_clear:
1853 	memset(to, 0, len);
1854 	return -EFAULT;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1858 	.func		= bpf_skb_load_bytes_relative,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_INTEGER,
1861 	.arg1_type	= ARG_PTR_TO_CTX,
1862 	.arg2_type	= ARG_ANYTHING,
1863 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1864 	.arg4_type	= ARG_CONST_SIZE,
1865 	.arg5_type	= ARG_ANYTHING,
1866 };
1867 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1868 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870 	/* Idea is the following: should the needed direct read/write
1871 	 * test fail during runtime, we can pull in more data and redo
1872 	 * again, since implicitly, we invalidate previous checks here.
1873 	 *
1874 	 * Or, since we know how much we need to make read/writeable,
1875 	 * this can be done once at the program beginning for direct
1876 	 * access case. By this we overcome limitations of only current
1877 	 * headroom being accessible.
1878 	 */
1879 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881 
1882 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1883 	.func		= bpf_skb_pull_data,
1884 	.gpl_only	= false,
1885 	.ret_type	= RET_INTEGER,
1886 	.arg1_type	= ARG_PTR_TO_CTX,
1887 	.arg2_type	= ARG_ANYTHING,
1888 };
1889 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1890 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1891 {
1892 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1893 }
1894 
1895 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1896 	.func		= bpf_sk_fullsock,
1897 	.gpl_only	= false,
1898 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1899 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1900 };
1901 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1902 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1903 					   unsigned int write_len)
1904 {
1905 	return __bpf_try_make_writable(skb, write_len);
1906 }
1907 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1908 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1909 {
1910 	/* Idea is the following: should the needed direct read/write
1911 	 * test fail during runtime, we can pull in more data and redo
1912 	 * again, since implicitly, we invalidate previous checks here.
1913 	 *
1914 	 * Or, since we know how much we need to make read/writeable,
1915 	 * this can be done once at the program beginning for direct
1916 	 * access case. By this we overcome limitations of only current
1917 	 * headroom being accessible.
1918 	 */
1919 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1920 }
1921 
1922 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1923 	.func		= sk_skb_pull_data,
1924 	.gpl_only	= false,
1925 	.ret_type	= RET_INTEGER,
1926 	.arg1_type	= ARG_PTR_TO_CTX,
1927 	.arg2_type	= ARG_ANYTHING,
1928 };
1929 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1930 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1931 	   u64, from, u64, to, u64, flags)
1932 {
1933 	__sum16 *ptr;
1934 
1935 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1936 		return -EINVAL;
1937 	if (unlikely(offset > 0xffff || offset & 1))
1938 		return -EFAULT;
1939 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1940 		return -EFAULT;
1941 
1942 	ptr = (__sum16 *)(skb->data + offset);
1943 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1944 	case 0:
1945 		if (unlikely(from != 0))
1946 			return -EINVAL;
1947 
1948 		csum_replace_by_diff(ptr, to);
1949 		break;
1950 	case 2:
1951 		csum_replace2(ptr, from, to);
1952 		break;
1953 	case 4:
1954 		csum_replace4(ptr, from, to);
1955 		break;
1956 	default:
1957 		return -EINVAL;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1964 	.func		= bpf_l3_csum_replace,
1965 	.gpl_only	= false,
1966 	.ret_type	= RET_INTEGER,
1967 	.arg1_type	= ARG_PTR_TO_CTX,
1968 	.arg2_type	= ARG_ANYTHING,
1969 	.arg3_type	= ARG_ANYTHING,
1970 	.arg4_type	= ARG_ANYTHING,
1971 	.arg5_type	= ARG_ANYTHING,
1972 };
1973 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1974 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1975 	   u64, from, u64, to, u64, flags)
1976 {
1977 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1978 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1979 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1980 	bool is_ipv6   = flags & BPF_F_IPV6;
1981 	__sum16 *ptr;
1982 
1983 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1984 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK | BPF_F_IPV6)))
1985 		return -EINVAL;
1986 	if (unlikely(offset > 0xffff || offset & 1))
1987 		return -EFAULT;
1988 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1989 		return -EFAULT;
1990 
1991 	ptr = (__sum16 *)(skb->data + offset);
1992 	if (is_mmzero && !do_mforce && !*ptr)
1993 		return 0;
1994 
1995 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1996 	case 0:
1997 		if (unlikely(from != 0))
1998 			return -EINVAL;
1999 
2000 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo, is_ipv6);
2001 		break;
2002 	case 2:
2003 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
2004 		break;
2005 	case 4:
2006 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2007 		break;
2008 	default:
2009 		return -EINVAL;
2010 	}
2011 
2012 	if (is_mmzero && !*ptr)
2013 		*ptr = CSUM_MANGLED_0;
2014 	return 0;
2015 }
2016 
2017 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2018 	.func		= bpf_l4_csum_replace,
2019 	.gpl_only	= false,
2020 	.ret_type	= RET_INTEGER,
2021 	.arg1_type	= ARG_PTR_TO_CTX,
2022 	.arg2_type	= ARG_ANYTHING,
2023 	.arg3_type	= ARG_ANYTHING,
2024 	.arg4_type	= ARG_ANYTHING,
2025 	.arg5_type	= ARG_ANYTHING,
2026 };
2027 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2028 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2029 	   __be32 *, to, u32, to_size, __wsum, seed)
2030 {
2031 	/* This is quite flexible, some examples:
2032 	 *
2033 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2034 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2035 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2036 	 *
2037 	 * Even for diffing, from_size and to_size don't need to be equal.
2038 	 */
2039 
2040 	__wsum ret = seed;
2041 
2042 	if (from_size && to_size)
2043 		ret = csum_sub(csum_partial(to, to_size, ret),
2044 			       csum_partial(from, from_size, 0));
2045 	else if (to_size)
2046 		ret = csum_partial(to, to_size, ret);
2047 
2048 	else if (from_size)
2049 		ret = ~csum_partial(from, from_size, ~ret);
2050 
2051 	return csum_from32to16((__force unsigned int)ret);
2052 }
2053 
2054 static const struct bpf_func_proto bpf_csum_diff_proto = {
2055 	.func		= bpf_csum_diff,
2056 	.gpl_only	= false,
2057 	.pkt_access	= true,
2058 	.ret_type	= RET_INTEGER,
2059 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2060 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2061 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2062 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2063 	.arg5_type	= ARG_ANYTHING,
2064 };
2065 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2066 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2067 {
2068 	/* The interface is to be used in combination with bpf_csum_diff()
2069 	 * for direct packet writes. csum rotation for alignment as well
2070 	 * as emulating csum_sub() can be done from the eBPF program.
2071 	 */
2072 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2073 		return (skb->csum = csum_add(skb->csum, csum));
2074 
2075 	return -ENOTSUPP;
2076 }
2077 
2078 static const struct bpf_func_proto bpf_csum_update_proto = {
2079 	.func		= bpf_csum_update,
2080 	.gpl_only	= false,
2081 	.ret_type	= RET_INTEGER,
2082 	.arg1_type	= ARG_PTR_TO_CTX,
2083 	.arg2_type	= ARG_ANYTHING,
2084 };
2085 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2086 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2087 {
2088 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2089 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2090 	 * is passed as flags, for example.
2091 	 */
2092 	switch (level) {
2093 	case BPF_CSUM_LEVEL_INC:
2094 		__skb_incr_checksum_unnecessary(skb);
2095 		break;
2096 	case BPF_CSUM_LEVEL_DEC:
2097 		__skb_decr_checksum_unnecessary(skb);
2098 		break;
2099 	case BPF_CSUM_LEVEL_RESET:
2100 		__skb_reset_checksum_unnecessary(skb);
2101 		break;
2102 	case BPF_CSUM_LEVEL_QUERY:
2103 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2104 		       skb->csum_level : -EACCES;
2105 	default:
2106 		return -EINVAL;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static const struct bpf_func_proto bpf_csum_level_proto = {
2113 	.func		= bpf_csum_level,
2114 	.gpl_only	= false,
2115 	.ret_type	= RET_INTEGER,
2116 	.arg1_type	= ARG_PTR_TO_CTX,
2117 	.arg2_type	= ARG_ANYTHING,
2118 };
2119 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2120 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 	return dev_forward_skb_nomtu(dev, skb);
2123 }
2124 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2125 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2126 				      struct sk_buff *skb)
2127 {
2128 	int ret = ____dev_forward_skb(dev, skb, false);
2129 
2130 	if (likely(!ret)) {
2131 		skb->dev = dev;
2132 		ret = netif_rx(skb);
2133 	}
2134 
2135 	return ret;
2136 }
2137 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2138 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2139 {
2140 	int ret;
2141 
2142 	if (dev_xmit_recursion()) {
2143 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2144 		kfree_skb(skb);
2145 		return -ENETDOWN;
2146 	}
2147 
2148 	skb->dev = dev;
2149 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2150 	skb_clear_tstamp(skb);
2151 
2152 	dev_xmit_recursion_inc();
2153 	ret = dev_queue_xmit(skb);
2154 	dev_xmit_recursion_dec();
2155 
2156 	return ret;
2157 }
2158 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2159 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2160 				 u32 flags)
2161 {
2162 	unsigned int mlen = skb_network_offset(skb);
2163 
2164 	if (unlikely(skb->len <= mlen)) {
2165 		kfree_skb(skb);
2166 		return -ERANGE;
2167 	}
2168 
2169 	if (mlen) {
2170 		__skb_pull(skb, mlen);
2171 
2172 		/* At ingress, the mac header has already been pulled once.
2173 		 * At egress, skb_pospull_rcsum has to be done in case that
2174 		 * the skb is originated from ingress (i.e. a forwarded skb)
2175 		 * to ensure that rcsum starts at net header.
2176 		 */
2177 		if (!skb_at_tc_ingress(skb))
2178 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2179 	}
2180 	skb_pop_mac_header(skb);
2181 	skb_reset_mac_len(skb);
2182 	return flags & BPF_F_INGRESS ?
2183 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2184 }
2185 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2186 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2187 				 u32 flags)
2188 {
2189 	/* Verify that a link layer header is carried */
2190 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2191 		kfree_skb(skb);
2192 		return -ERANGE;
2193 	}
2194 
2195 	bpf_push_mac_rcsum(skb);
2196 	return flags & BPF_F_INGRESS ?
2197 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2198 }
2199 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2200 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2201 			  u32 flags)
2202 {
2203 	if (dev_is_mac_header_xmit(dev))
2204 		return __bpf_redirect_common(skb, dev, flags);
2205 	else
2206 		return __bpf_redirect_no_mac(skb, dev, flags);
2207 }
2208 
2209 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2210 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2211 			    struct net_device *dev, struct bpf_nh_params *nh)
2212 {
2213 	u32 hh_len = LL_RESERVED_SPACE(dev);
2214 	const struct in6_addr *nexthop;
2215 	struct dst_entry *dst = NULL;
2216 	struct neighbour *neigh;
2217 
2218 	if (dev_xmit_recursion()) {
2219 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2220 		goto out_drop;
2221 	}
2222 
2223 	skb->dev = dev;
2224 	skb_clear_tstamp(skb);
2225 
2226 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2227 		skb = skb_expand_head(skb, hh_len);
2228 		if (!skb)
2229 			return -ENOMEM;
2230 	}
2231 
2232 	rcu_read_lock();
2233 	if (!nh) {
2234 		dst = skb_dst(skb);
2235 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2236 				      &ipv6_hdr(skb)->daddr);
2237 	} else {
2238 		nexthop = &nh->ipv6_nh;
2239 	}
2240 	neigh = ip_neigh_gw6(dev, nexthop);
2241 	if (likely(!IS_ERR(neigh))) {
2242 		int ret;
2243 
2244 		sock_confirm_neigh(skb, neigh);
2245 		local_bh_disable();
2246 		dev_xmit_recursion_inc();
2247 		ret = neigh_output(neigh, skb, false);
2248 		dev_xmit_recursion_dec();
2249 		local_bh_enable();
2250 		rcu_read_unlock();
2251 		return ret;
2252 	}
2253 	rcu_read_unlock();
2254 	if (dst)
2255 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2256 out_drop:
2257 	kfree_skb(skb);
2258 	return -ENETDOWN;
2259 }
2260 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2261 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2262 				   struct bpf_nh_params *nh)
2263 {
2264 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2265 	struct net *net = dev_net(dev);
2266 	int err, ret = NET_XMIT_DROP;
2267 
2268 	if (!nh) {
2269 		struct dst_entry *dst;
2270 		struct flowi6 fl6 = {
2271 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2272 			.flowi6_mark  = skb->mark,
2273 			.flowlabel    = ip6_flowinfo(ip6h),
2274 			.flowi6_oif   = dev->ifindex,
2275 			.flowi6_proto = ip6h->nexthdr,
2276 			.daddr	      = ip6h->daddr,
2277 			.saddr	      = ip6h->saddr,
2278 		};
2279 
2280 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2281 		if (IS_ERR(dst))
2282 			goto out_drop;
2283 
2284 		skb_dst_drop(skb);
2285 		skb_dst_set(skb, dst);
2286 	} else if (nh->nh_family != AF_INET6) {
2287 		goto out_drop;
2288 	}
2289 
2290 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2291 	if (unlikely(net_xmit_eval(err)))
2292 		DEV_STATS_INC(dev, tx_errors);
2293 	else
2294 		ret = NET_XMIT_SUCCESS;
2295 	goto out_xmit;
2296 out_drop:
2297 	DEV_STATS_INC(dev, tx_errors);
2298 	kfree_skb(skb);
2299 out_xmit:
2300 	return ret;
2301 }
2302 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2303 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2304 				   struct bpf_nh_params *nh)
2305 {
2306 	kfree_skb(skb);
2307 	return NET_XMIT_DROP;
2308 }
2309 #endif /* CONFIG_IPV6 */
2310 
2311 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2312 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2313 			    struct net_device *dev, struct bpf_nh_params *nh)
2314 {
2315 	u32 hh_len = LL_RESERVED_SPACE(dev);
2316 	struct neighbour *neigh;
2317 	bool is_v6gw = false;
2318 
2319 	if (dev_xmit_recursion()) {
2320 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2321 		goto out_drop;
2322 	}
2323 
2324 	skb->dev = dev;
2325 	skb_clear_tstamp(skb);
2326 
2327 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2328 		skb = skb_expand_head(skb, hh_len);
2329 		if (!skb)
2330 			return -ENOMEM;
2331 	}
2332 
2333 	rcu_read_lock();
2334 	if (!nh) {
2335 		struct rtable *rt = skb_rtable(skb);
2336 
2337 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2338 	} else if (nh->nh_family == AF_INET6) {
2339 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2340 		is_v6gw = true;
2341 	} else if (nh->nh_family == AF_INET) {
2342 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2343 	} else {
2344 		rcu_read_unlock();
2345 		goto out_drop;
2346 	}
2347 
2348 	if (likely(!IS_ERR(neigh))) {
2349 		int ret;
2350 
2351 		sock_confirm_neigh(skb, neigh);
2352 		local_bh_disable();
2353 		dev_xmit_recursion_inc();
2354 		ret = neigh_output(neigh, skb, is_v6gw);
2355 		dev_xmit_recursion_dec();
2356 		local_bh_enable();
2357 		rcu_read_unlock();
2358 		return ret;
2359 	}
2360 	rcu_read_unlock();
2361 out_drop:
2362 	kfree_skb(skb);
2363 	return -ENETDOWN;
2364 }
2365 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2366 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2367 				   struct bpf_nh_params *nh)
2368 {
2369 	const struct iphdr *ip4h = ip_hdr(skb);
2370 	struct net *net = dev_net(dev);
2371 	int err, ret = NET_XMIT_DROP;
2372 
2373 	if (!nh) {
2374 		struct flowi4 fl4 = {
2375 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2376 			.flowi4_mark  = skb->mark,
2377 			.flowi4_dscp  = ip4h_dscp(ip4h),
2378 			.flowi4_oif   = dev->ifindex,
2379 			.flowi4_proto = ip4h->protocol,
2380 			.daddr	      = ip4h->daddr,
2381 			.saddr	      = ip4h->saddr,
2382 		};
2383 		struct rtable *rt;
2384 
2385 		rt = ip_route_output_flow(net, &fl4, NULL);
2386 		if (IS_ERR(rt))
2387 			goto out_drop;
2388 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2389 			ip_rt_put(rt);
2390 			goto out_drop;
2391 		}
2392 
2393 		skb_dst_drop(skb);
2394 		skb_dst_set(skb, &rt->dst);
2395 	}
2396 
2397 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2398 	if (unlikely(net_xmit_eval(err)))
2399 		DEV_STATS_INC(dev, tx_errors);
2400 	else
2401 		ret = NET_XMIT_SUCCESS;
2402 	goto out_xmit;
2403 out_drop:
2404 	DEV_STATS_INC(dev, tx_errors);
2405 	kfree_skb(skb);
2406 out_xmit:
2407 	return ret;
2408 }
2409 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2410 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2411 				   struct bpf_nh_params *nh)
2412 {
2413 	kfree_skb(skb);
2414 	return NET_XMIT_DROP;
2415 }
2416 #endif /* CONFIG_INET */
2417 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2418 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2419 				struct bpf_nh_params *nh)
2420 {
2421 	struct ethhdr *ethh = eth_hdr(skb);
2422 
2423 	if (unlikely(skb->mac_header >= skb->network_header))
2424 		goto out;
2425 	bpf_push_mac_rcsum(skb);
2426 	if (is_multicast_ether_addr(ethh->h_dest))
2427 		goto out;
2428 
2429 	skb_pull(skb, sizeof(*ethh));
2430 	skb_unset_mac_header(skb);
2431 	skb_reset_network_header(skb);
2432 
2433 	if (skb->protocol == htons(ETH_P_IP))
2434 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2435 	else if (skb->protocol == htons(ETH_P_IPV6))
2436 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2437 out:
2438 	kfree_skb(skb);
2439 	return -ENOTSUPP;
2440 }
2441 
2442 /* Internal, non-exposed redirect flags. */
2443 enum {
2444 	BPF_F_NEIGH	= (1ULL << 16),
2445 	BPF_F_PEER	= (1ULL << 17),
2446 	BPF_F_NEXTHOP	= (1ULL << 18),
2447 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2448 };
2449 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2450 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2451 {
2452 	struct net_device *dev;
2453 	struct sk_buff *clone;
2454 	int ret;
2455 
2456 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2457 
2458 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2459 		return -EINVAL;
2460 
2461 	/* BPF test infra's convert___skb_to_skb() can create type-less
2462 	 * GSO packets. gso_features_check() will detect this as a bad
2463 	 * offload. However, lets not leak them out in the first place.
2464 	 */
2465 	if (unlikely(skb_is_gso(skb) && !skb_shinfo(skb)->gso_type))
2466 		return -EBADMSG;
2467 
2468 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2469 	if (unlikely(!dev))
2470 		return -EINVAL;
2471 
2472 	clone = skb_clone(skb, GFP_ATOMIC);
2473 	if (unlikely(!clone))
2474 		return -ENOMEM;
2475 
2476 	/* For direct write, we need to keep the invariant that the skbs
2477 	 * we're dealing with need to be uncloned. Should uncloning fail
2478 	 * here, we need to free the just generated clone to unclone once
2479 	 * again.
2480 	 */
2481 	ret = bpf_try_make_head_writable(skb);
2482 	if (unlikely(ret)) {
2483 		kfree_skb(clone);
2484 		return -ENOMEM;
2485 	}
2486 
2487 	return __bpf_redirect(clone, dev, flags);
2488 }
2489 
2490 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2491 	.func           = bpf_clone_redirect,
2492 	.gpl_only       = false,
2493 	.ret_type       = RET_INTEGER,
2494 	.arg1_type      = ARG_PTR_TO_CTX,
2495 	.arg2_type      = ARG_ANYTHING,
2496 	.arg3_type      = ARG_ANYTHING,
2497 };
2498 
skb_get_peer_dev(struct net_device * dev)2499 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2500 {
2501 	const struct net_device_ops *ops = dev->netdev_ops;
2502 
2503 	if (likely(ops->ndo_get_peer_dev))
2504 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2505 				       netkit_peer_dev, dev);
2506 	return NULL;
2507 }
2508 
skb_do_redirect(struct sk_buff * skb)2509 int skb_do_redirect(struct sk_buff *skb)
2510 {
2511 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2512 	struct net *net = dev_net(skb->dev);
2513 	struct net_device *dev;
2514 	u32 flags = ri->flags;
2515 
2516 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2517 	ri->tgt_index = 0;
2518 	ri->flags = 0;
2519 	if (unlikely(!dev))
2520 		goto out_drop;
2521 	if (flags & BPF_F_PEER) {
2522 		if (unlikely(!skb_at_tc_ingress(skb)))
2523 			goto out_drop;
2524 		dev = skb_get_peer_dev(dev);
2525 		if (unlikely(!dev ||
2526 			     !(dev->flags & IFF_UP) ||
2527 			     net_eq(net, dev_net(dev))))
2528 			goto out_drop;
2529 		skb->dev = dev;
2530 		dev_sw_netstats_rx_add(dev, skb->len);
2531 		skb_scrub_packet(skb, false);
2532 		return -EAGAIN;
2533 	}
2534 	return flags & BPF_F_NEIGH ?
2535 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2536 				    &ri->nh : NULL) :
2537 	       __bpf_redirect(skb, dev, flags);
2538 out_drop:
2539 	kfree_skb(skb);
2540 	return -EINVAL;
2541 }
2542 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2543 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2544 {
2545 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2546 
2547 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2548 		return TC_ACT_SHOT;
2549 
2550 	ri->flags = flags;
2551 	ri->tgt_index = ifindex;
2552 
2553 	return TC_ACT_REDIRECT;
2554 }
2555 
2556 static const struct bpf_func_proto bpf_redirect_proto = {
2557 	.func           = bpf_redirect,
2558 	.gpl_only       = false,
2559 	.ret_type       = RET_INTEGER,
2560 	.arg1_type      = ARG_ANYTHING,
2561 	.arg2_type      = ARG_ANYTHING,
2562 };
2563 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2564 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2565 {
2566 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2567 
2568 	if (unlikely(flags))
2569 		return TC_ACT_SHOT;
2570 
2571 	ri->flags = BPF_F_PEER;
2572 	ri->tgt_index = ifindex;
2573 
2574 	return TC_ACT_REDIRECT;
2575 }
2576 
2577 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2578 	.func           = bpf_redirect_peer,
2579 	.gpl_only       = false,
2580 	.ret_type       = RET_INTEGER,
2581 	.arg1_type      = ARG_ANYTHING,
2582 	.arg2_type      = ARG_ANYTHING,
2583 };
2584 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2585 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2586 	   int, plen, u64, flags)
2587 {
2588 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2589 
2590 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2591 		return TC_ACT_SHOT;
2592 
2593 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2594 	ri->tgt_index = ifindex;
2595 
2596 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2597 	if (plen)
2598 		memcpy(&ri->nh, params, sizeof(ri->nh));
2599 
2600 	return TC_ACT_REDIRECT;
2601 }
2602 
2603 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2604 	.func		= bpf_redirect_neigh,
2605 	.gpl_only	= false,
2606 	.ret_type	= RET_INTEGER,
2607 	.arg1_type	= ARG_ANYTHING,
2608 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2609 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2610 	.arg4_type	= ARG_ANYTHING,
2611 };
2612 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2613 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2614 {
2615 	msg->apply_bytes = bytes;
2616 	return 0;
2617 }
2618 
2619 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2620 	.func           = bpf_msg_apply_bytes,
2621 	.gpl_only       = false,
2622 	.ret_type       = RET_INTEGER,
2623 	.arg1_type	= ARG_PTR_TO_CTX,
2624 	.arg2_type      = ARG_ANYTHING,
2625 };
2626 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2627 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2628 {
2629 	msg->cork_bytes = bytes;
2630 	return 0;
2631 }
2632 
sk_msg_reset_curr(struct sk_msg * msg)2633 static void sk_msg_reset_curr(struct sk_msg *msg)
2634 {
2635 	if (!msg->sg.size) {
2636 		msg->sg.curr = msg->sg.start;
2637 		msg->sg.copybreak = 0;
2638 	} else {
2639 		u32 i = msg->sg.end;
2640 
2641 		sk_msg_iter_var_prev(i);
2642 		msg->sg.curr = i;
2643 		msg->sg.copybreak = msg->sg.data[i].length;
2644 	}
2645 }
2646 
2647 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2648 	.func           = bpf_msg_cork_bytes,
2649 	.gpl_only       = false,
2650 	.ret_type       = RET_INTEGER,
2651 	.arg1_type	= ARG_PTR_TO_CTX,
2652 	.arg2_type      = ARG_ANYTHING,
2653 };
2654 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2655 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2656 	   u32, end, u64, flags)
2657 {
2658 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2659 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2660 	struct scatterlist *sge;
2661 	u8 *raw, *to, *from;
2662 	struct page *page;
2663 
2664 	if (unlikely(flags || end <= start))
2665 		return -EINVAL;
2666 
2667 	/* First find the starting scatterlist element */
2668 	i = msg->sg.start;
2669 	do {
2670 		offset += len;
2671 		len = sk_msg_elem(msg, i)->length;
2672 		if (start < offset + len)
2673 			break;
2674 		sk_msg_iter_var_next(i);
2675 	} while (i != msg->sg.end);
2676 
2677 	if (unlikely(start >= offset + len))
2678 		return -EINVAL;
2679 
2680 	first_sge = i;
2681 	/* The start may point into the sg element so we need to also
2682 	 * account for the headroom.
2683 	 */
2684 	bytes_sg_total = start - offset + bytes;
2685 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2686 		goto out;
2687 
2688 	/* At this point we need to linearize multiple scatterlist
2689 	 * elements or a single shared page. Either way we need to
2690 	 * copy into a linear buffer exclusively owned by BPF. Then
2691 	 * place the buffer in the scatterlist and fixup the original
2692 	 * entries by removing the entries now in the linear buffer
2693 	 * and shifting the remaining entries. For now we do not try
2694 	 * to copy partial entries to avoid complexity of running out
2695 	 * of sg_entry slots. The downside is reading a single byte
2696 	 * will copy the entire sg entry.
2697 	 */
2698 	do {
2699 		copy += sk_msg_elem(msg, i)->length;
2700 		sk_msg_iter_var_next(i);
2701 		if (bytes_sg_total <= copy)
2702 			break;
2703 	} while (i != msg->sg.end);
2704 	last_sge = i;
2705 
2706 	if (unlikely(bytes_sg_total > copy))
2707 		return -EINVAL;
2708 
2709 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2710 			   get_order(copy));
2711 	if (unlikely(!page))
2712 		return -ENOMEM;
2713 
2714 	raw = page_address(page);
2715 	i = first_sge;
2716 	do {
2717 		sge = sk_msg_elem(msg, i);
2718 		from = sg_virt(sge);
2719 		len = sge->length;
2720 		to = raw + poffset;
2721 
2722 		memcpy(to, from, len);
2723 		poffset += len;
2724 		sge->length = 0;
2725 		put_page(sg_page(sge));
2726 
2727 		sk_msg_iter_var_next(i);
2728 	} while (i != last_sge);
2729 
2730 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2731 
2732 	/* To repair sg ring we need to shift entries. If we only
2733 	 * had a single entry though we can just replace it and
2734 	 * be done. Otherwise walk the ring and shift the entries.
2735 	 */
2736 	WARN_ON_ONCE(last_sge == first_sge);
2737 	shift = last_sge > first_sge ?
2738 		last_sge - first_sge - 1 :
2739 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2740 	if (!shift)
2741 		goto out;
2742 
2743 	i = first_sge;
2744 	sk_msg_iter_var_next(i);
2745 	do {
2746 		u32 move_from;
2747 
2748 		if (i + shift >= NR_MSG_FRAG_IDS)
2749 			move_from = i + shift - NR_MSG_FRAG_IDS;
2750 		else
2751 			move_from = i + shift;
2752 		if (move_from == msg->sg.end)
2753 			break;
2754 
2755 		msg->sg.data[i] = msg->sg.data[move_from];
2756 		msg->sg.data[move_from].length = 0;
2757 		msg->sg.data[move_from].page_link = 0;
2758 		msg->sg.data[move_from].offset = 0;
2759 		sk_msg_iter_var_next(i);
2760 	} while (1);
2761 
2762 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2763 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2764 		      msg->sg.end - shift;
2765 out:
2766 	sk_msg_reset_curr(msg);
2767 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2768 	msg->data_end = msg->data + bytes;
2769 	return 0;
2770 }
2771 
2772 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2773 	.func		= bpf_msg_pull_data,
2774 	.gpl_only	= false,
2775 	.ret_type	= RET_INTEGER,
2776 	.arg1_type	= ARG_PTR_TO_CTX,
2777 	.arg2_type	= ARG_ANYTHING,
2778 	.arg3_type	= ARG_ANYTHING,
2779 	.arg4_type	= ARG_ANYTHING,
2780 };
2781 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2782 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2783 	   u32, len, u64, flags)
2784 {
2785 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2786 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2787 	u8 *raw, *to, *from;
2788 	struct page *page;
2789 
2790 	if (unlikely(flags))
2791 		return -EINVAL;
2792 
2793 	if (unlikely(len == 0))
2794 		return 0;
2795 
2796 	/* First find the starting scatterlist element */
2797 	i = msg->sg.start;
2798 	do {
2799 		offset += l;
2800 		l = sk_msg_elem(msg, i)->length;
2801 
2802 		if (start < offset + l)
2803 			break;
2804 		sk_msg_iter_var_next(i);
2805 	} while (i != msg->sg.end);
2806 
2807 	if (start > offset + l)
2808 		return -EINVAL;
2809 
2810 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2811 
2812 	/* If no space available will fallback to copy, we need at
2813 	 * least one scatterlist elem available to push data into
2814 	 * when start aligns to the beginning of an element or two
2815 	 * when it falls inside an element. We handle the start equals
2816 	 * offset case because its the common case for inserting a
2817 	 * header.
2818 	 */
2819 	if (!space || (space == 1 && start != offset))
2820 		copy = msg->sg.data[i].length;
2821 
2822 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2823 			   get_order(copy + len));
2824 	if (unlikely(!page))
2825 		return -ENOMEM;
2826 
2827 	if (copy) {
2828 		int front, back;
2829 
2830 		raw = page_address(page);
2831 
2832 		if (i == msg->sg.end)
2833 			sk_msg_iter_var_prev(i);
2834 		psge = sk_msg_elem(msg, i);
2835 		front = start - offset;
2836 		back = psge->length - front;
2837 		from = sg_virt(psge);
2838 
2839 		if (front)
2840 			memcpy(raw, from, front);
2841 
2842 		if (back) {
2843 			from += front;
2844 			to = raw + front + len;
2845 
2846 			memcpy(to, from, back);
2847 		}
2848 
2849 		put_page(sg_page(psge));
2850 		new = i;
2851 		goto place_new;
2852 	}
2853 
2854 	if (start - offset) {
2855 		if (i == msg->sg.end)
2856 			sk_msg_iter_var_prev(i);
2857 		psge = sk_msg_elem(msg, i);
2858 		rsge = sk_msg_elem_cpy(msg, i);
2859 
2860 		psge->length = start - offset;
2861 		rsge.length -= psge->length;
2862 		rsge.offset += start;
2863 
2864 		sk_msg_iter_var_next(i);
2865 		sg_unmark_end(psge);
2866 		sg_unmark_end(&rsge);
2867 	}
2868 
2869 	/* Slot(s) to place newly allocated data */
2870 	sk_msg_iter_next(msg, end);
2871 	new = i;
2872 	sk_msg_iter_var_next(i);
2873 
2874 	if (i == msg->sg.end) {
2875 		if (!rsge.length)
2876 			goto place_new;
2877 		sk_msg_iter_next(msg, end);
2878 		goto place_new;
2879 	}
2880 
2881 	/* Shift one or two slots as needed */
2882 	sge = sk_msg_elem_cpy(msg, new);
2883 	sg_unmark_end(&sge);
2884 
2885 	nsge = sk_msg_elem_cpy(msg, i);
2886 	if (rsge.length) {
2887 		sk_msg_iter_var_next(i);
2888 		nnsge = sk_msg_elem_cpy(msg, i);
2889 		sk_msg_iter_next(msg, end);
2890 	}
2891 
2892 	while (i != msg->sg.end) {
2893 		msg->sg.data[i] = sge;
2894 		sge = nsge;
2895 		sk_msg_iter_var_next(i);
2896 		if (rsge.length) {
2897 			nsge = nnsge;
2898 			nnsge = sk_msg_elem_cpy(msg, i);
2899 		} else {
2900 			nsge = sk_msg_elem_cpy(msg, i);
2901 		}
2902 	}
2903 
2904 place_new:
2905 	/* Place newly allocated data buffer */
2906 	sk_mem_charge(msg->sk, len);
2907 	msg->sg.size += len;
2908 	__clear_bit(new, msg->sg.copy);
2909 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2910 	if (rsge.length) {
2911 		get_page(sg_page(&rsge));
2912 		sk_msg_iter_var_next(new);
2913 		msg->sg.data[new] = rsge;
2914 	}
2915 
2916 	sk_msg_reset_curr(msg);
2917 	sk_msg_compute_data_pointers(msg);
2918 	return 0;
2919 }
2920 
2921 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2922 	.func		= bpf_msg_push_data,
2923 	.gpl_only	= false,
2924 	.ret_type	= RET_INTEGER,
2925 	.arg1_type	= ARG_PTR_TO_CTX,
2926 	.arg2_type	= ARG_ANYTHING,
2927 	.arg3_type	= ARG_ANYTHING,
2928 	.arg4_type	= ARG_ANYTHING,
2929 };
2930 
sk_msg_shift_left(struct sk_msg * msg,int i)2931 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2932 {
2933 	struct scatterlist *sge = sk_msg_elem(msg, i);
2934 	int prev;
2935 
2936 	put_page(sg_page(sge));
2937 	do {
2938 		prev = i;
2939 		sk_msg_iter_var_next(i);
2940 		msg->sg.data[prev] = msg->sg.data[i];
2941 	} while (i != msg->sg.end);
2942 
2943 	sk_msg_iter_prev(msg, end);
2944 }
2945 
sk_msg_shift_right(struct sk_msg * msg,int i)2946 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2947 {
2948 	struct scatterlist tmp, sge;
2949 
2950 	sk_msg_iter_next(msg, end);
2951 	sge = sk_msg_elem_cpy(msg, i);
2952 	sk_msg_iter_var_next(i);
2953 	tmp = sk_msg_elem_cpy(msg, i);
2954 
2955 	while (i != msg->sg.end) {
2956 		msg->sg.data[i] = sge;
2957 		sk_msg_iter_var_next(i);
2958 		sge = tmp;
2959 		tmp = sk_msg_elem_cpy(msg, i);
2960 	}
2961 }
2962 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2963 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2964 	   u32, len, u64, flags)
2965 {
2966 	u32 i = 0, l = 0, space, offset = 0;
2967 	u64 last = start + len;
2968 	int pop;
2969 
2970 	if (unlikely(flags))
2971 		return -EINVAL;
2972 
2973 	if (unlikely(len == 0))
2974 		return 0;
2975 
2976 	/* First find the starting scatterlist element */
2977 	i = msg->sg.start;
2978 	do {
2979 		offset += l;
2980 		l = sk_msg_elem(msg, i)->length;
2981 
2982 		if (start < offset + l)
2983 			break;
2984 		sk_msg_iter_var_next(i);
2985 	} while (i != msg->sg.end);
2986 
2987 	/* Bounds checks: start and pop must be inside message */
2988 	if (start >= offset + l || last > msg->sg.size)
2989 		return -EINVAL;
2990 
2991 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2992 
2993 	pop = len;
2994 	/* --------------| offset
2995 	 * -| start      |-------- len -------|
2996 	 *
2997 	 *  |----- a ----|-------- pop -------|----- b ----|
2998 	 *  |______________________________________________| length
2999 	 *
3000 	 *
3001 	 * a:   region at front of scatter element to save
3002 	 * b:   region at back of scatter element to save when length > A + pop
3003 	 * pop: region to pop from element, same as input 'pop' here will be
3004 	 *      decremented below per iteration.
3005 	 *
3006 	 * Two top-level cases to handle when start != offset, first B is non
3007 	 * zero and second B is zero corresponding to when a pop includes more
3008 	 * than one element.
3009 	 *
3010 	 * Then if B is non-zero AND there is no space allocate space and
3011 	 * compact A, B regions into page. If there is space shift ring to
3012 	 * the right free'ing the next element in ring to place B, leaving
3013 	 * A untouched except to reduce length.
3014 	 */
3015 	if (start != offset) {
3016 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
3017 		int a = start - offset;
3018 		int b = sge->length - pop - a;
3019 
3020 		sk_msg_iter_var_next(i);
3021 
3022 		if (b > 0) {
3023 			if (space) {
3024 				sge->length = a;
3025 				sk_msg_shift_right(msg, i);
3026 				nsge = sk_msg_elem(msg, i);
3027 				get_page(sg_page(sge));
3028 				sg_set_page(nsge,
3029 					    sg_page(sge),
3030 					    b, sge->offset + pop + a);
3031 			} else {
3032 				struct page *page, *orig;
3033 				u8 *to, *from;
3034 
3035 				page = alloc_pages(__GFP_NOWARN |
3036 						   __GFP_COMP   | GFP_ATOMIC,
3037 						   get_order(a + b));
3038 				if (unlikely(!page))
3039 					return -ENOMEM;
3040 
3041 				orig = sg_page(sge);
3042 				from = sg_virt(sge);
3043 				to = page_address(page);
3044 				memcpy(to, from, a);
3045 				memcpy(to + a, from + a + pop, b);
3046 				sg_set_page(sge, page, a + b, 0);
3047 				put_page(orig);
3048 			}
3049 			pop = 0;
3050 		} else {
3051 			pop -= (sge->length - a);
3052 			sge->length = a;
3053 		}
3054 	}
3055 
3056 	/* From above the current layout _must_ be as follows,
3057 	 *
3058 	 * -| offset
3059 	 * -| start
3060 	 *
3061 	 *  |---- pop ---|---------------- b ------------|
3062 	 *  |____________________________________________| length
3063 	 *
3064 	 * Offset and start of the current msg elem are equal because in the
3065 	 * previous case we handled offset != start and either consumed the
3066 	 * entire element and advanced to the next element OR pop == 0.
3067 	 *
3068 	 * Two cases to handle here are first pop is less than the length
3069 	 * leaving some remainder b above. Simply adjust the element's layout
3070 	 * in this case. Or pop >= length of the element so that b = 0. In this
3071 	 * case advance to next element decrementing pop.
3072 	 */
3073 	while (pop) {
3074 		struct scatterlist *sge = sk_msg_elem(msg, i);
3075 
3076 		if (pop < sge->length) {
3077 			sge->length -= pop;
3078 			sge->offset += pop;
3079 			pop = 0;
3080 		} else {
3081 			pop -= sge->length;
3082 			sk_msg_shift_left(msg, i);
3083 		}
3084 	}
3085 
3086 	sk_mem_uncharge(msg->sk, len - pop);
3087 	msg->sg.size -= (len - pop);
3088 	sk_msg_reset_curr(msg);
3089 	sk_msg_compute_data_pointers(msg);
3090 	return 0;
3091 }
3092 
3093 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3094 	.func		= bpf_msg_pop_data,
3095 	.gpl_only	= false,
3096 	.ret_type	= RET_INTEGER,
3097 	.arg1_type	= ARG_PTR_TO_CTX,
3098 	.arg2_type	= ARG_ANYTHING,
3099 	.arg3_type	= ARG_ANYTHING,
3100 	.arg4_type	= ARG_ANYTHING,
3101 };
3102 
3103 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3104 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3105 {
3106 	return __task_get_classid(current);
3107 }
3108 
3109 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3110 	.func		= bpf_get_cgroup_classid_curr,
3111 	.gpl_only	= false,
3112 	.ret_type	= RET_INTEGER,
3113 };
3114 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3115 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3116 {
3117 	struct sock *sk = skb_to_full_sk(skb);
3118 
3119 	if (!sk || !sk_fullsock(sk))
3120 		return 0;
3121 
3122 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3123 }
3124 
3125 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3126 	.func		= bpf_skb_cgroup_classid,
3127 	.gpl_only	= false,
3128 	.ret_type	= RET_INTEGER,
3129 	.arg1_type	= ARG_PTR_TO_CTX,
3130 };
3131 #endif
3132 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3133 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3134 {
3135 	return task_get_classid(skb);
3136 }
3137 
3138 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3139 	.func           = bpf_get_cgroup_classid,
3140 	.gpl_only       = false,
3141 	.ret_type       = RET_INTEGER,
3142 	.arg1_type      = ARG_PTR_TO_CTX,
3143 };
3144 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3145 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3146 {
3147 	return dst_tclassid(skb);
3148 }
3149 
3150 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3151 	.func           = bpf_get_route_realm,
3152 	.gpl_only       = false,
3153 	.ret_type       = RET_INTEGER,
3154 	.arg1_type      = ARG_PTR_TO_CTX,
3155 };
3156 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3157 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3158 {
3159 	/* If skb_clear_hash() was called due to mangling, we can
3160 	 * trigger SW recalculation here. Later access to hash
3161 	 * can then use the inline skb->hash via context directly
3162 	 * instead of calling this helper again.
3163 	 */
3164 	return skb_get_hash(skb);
3165 }
3166 
3167 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3168 	.func		= bpf_get_hash_recalc,
3169 	.gpl_only	= false,
3170 	.ret_type	= RET_INTEGER,
3171 	.arg1_type	= ARG_PTR_TO_CTX,
3172 };
3173 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3174 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3175 {
3176 	/* After all direct packet write, this can be used once for
3177 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3178 	 */
3179 	skb_clear_hash(skb);
3180 	return 0;
3181 }
3182 
3183 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3184 	.func		= bpf_set_hash_invalid,
3185 	.gpl_only	= false,
3186 	.ret_type	= RET_INTEGER,
3187 	.arg1_type	= ARG_PTR_TO_CTX,
3188 };
3189 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3190 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3191 {
3192 	/* Set user specified hash as L4(+), so that it gets returned
3193 	 * on skb_get_hash() call unless BPF prog later on triggers a
3194 	 * skb_clear_hash().
3195 	 */
3196 	__skb_set_sw_hash(skb, hash, true);
3197 	return 0;
3198 }
3199 
3200 static const struct bpf_func_proto bpf_set_hash_proto = {
3201 	.func		= bpf_set_hash,
3202 	.gpl_only	= false,
3203 	.ret_type	= RET_INTEGER,
3204 	.arg1_type	= ARG_PTR_TO_CTX,
3205 	.arg2_type	= ARG_ANYTHING,
3206 };
3207 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3208 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3209 	   u16, vlan_tci)
3210 {
3211 	int ret;
3212 
3213 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3214 		     vlan_proto != htons(ETH_P_8021AD)))
3215 		vlan_proto = htons(ETH_P_8021Q);
3216 
3217 	bpf_push_mac_rcsum(skb);
3218 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3219 	bpf_pull_mac_rcsum(skb);
3220 	skb_reset_mac_len(skb);
3221 
3222 	bpf_compute_data_pointers(skb);
3223 	return ret;
3224 }
3225 
3226 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3227 	.func           = bpf_skb_vlan_push,
3228 	.gpl_only       = false,
3229 	.ret_type       = RET_INTEGER,
3230 	.arg1_type      = ARG_PTR_TO_CTX,
3231 	.arg2_type      = ARG_ANYTHING,
3232 	.arg3_type      = ARG_ANYTHING,
3233 };
3234 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3235 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3236 {
3237 	int ret;
3238 
3239 	bpf_push_mac_rcsum(skb);
3240 	ret = skb_vlan_pop(skb);
3241 	bpf_pull_mac_rcsum(skb);
3242 
3243 	bpf_compute_data_pointers(skb);
3244 	return ret;
3245 }
3246 
3247 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3248 	.func           = bpf_skb_vlan_pop,
3249 	.gpl_only       = false,
3250 	.ret_type       = RET_INTEGER,
3251 	.arg1_type      = ARG_PTR_TO_CTX,
3252 };
3253 
bpf_skb_change_protocol(struct sk_buff * skb,u16 proto)3254 static void bpf_skb_change_protocol(struct sk_buff *skb, u16 proto)
3255 {
3256 	skb->protocol = htons(proto);
3257 	if (skb_valid_dst(skb))
3258 		skb_dst_drop(skb);
3259 }
3260 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3261 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3262 {
3263 	/* Caller already did skb_cow() with meta_len+len as headroom,
3264 	 * so no need to do it here.
3265 	 */
3266 	skb_push(skb, len);
3267 	skb_postpush_data_move(skb, len, off);
3268 	memset(skb->data + off, 0, len);
3269 
3270 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3271 	 * needed here as it does not change the skb->csum
3272 	 * result for checksum complete when summing over
3273 	 * zeroed blocks.
3274 	 */
3275 	return 0;
3276 }
3277 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3278 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3279 {
3280 	void *old_data;
3281 
3282 	/* skb_ensure_writable() is not needed here, as we're
3283 	 * already working on an uncloned skb.
3284 	 */
3285 	if (unlikely(!pskb_may_pull(skb, off + len)))
3286 		return -ENOMEM;
3287 
3288 	old_data = skb->data;
3289 	__skb_pull(skb, len);
3290 	skb_postpull_rcsum(skb, old_data + off, len);
3291 	skb_postpull_data_move(skb, len, off);
3292 
3293 	return 0;
3294 }
3295 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3296 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3297 {
3298 	bool trans_same = skb->transport_header == skb->network_header;
3299 	int ret;
3300 
3301 	/* There's no need for __skb_push()/__skb_pull() pair to
3302 	 * get to the start of the mac header as we're guaranteed
3303 	 * to always start from here under eBPF.
3304 	 */
3305 	ret = bpf_skb_generic_push(skb, off, len);
3306 	if (likely(!ret)) {
3307 		skb->mac_header -= len;
3308 		skb->network_header -= len;
3309 		if (trans_same)
3310 			skb->transport_header = skb->network_header;
3311 	}
3312 
3313 	return ret;
3314 }
3315 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3316 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3317 {
3318 	bool trans_same = skb->transport_header == skb->network_header;
3319 	int ret;
3320 
3321 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3322 	ret = bpf_skb_generic_pop(skb, off, len);
3323 	if (likely(!ret)) {
3324 		skb->mac_header += len;
3325 		skb->network_header += len;
3326 		if (trans_same)
3327 			skb->transport_header = skb->network_header;
3328 	}
3329 
3330 	return ret;
3331 }
3332 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3333 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3334 {
3335 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3336 	const u8 meta_len = skb_metadata_len(skb);
3337 	u32 off = skb_mac_header_len(skb);
3338 	int ret;
3339 
3340 	ret = skb_cow(skb, meta_len + len_diff);
3341 	if (unlikely(ret < 0))
3342 		return ret;
3343 
3344 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3345 	if (unlikely(ret < 0))
3346 		return ret;
3347 
3348 	if (skb_is_gso(skb)) {
3349 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3350 
3351 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3352 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3353 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3354 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3355 		}
3356 		shinfo->gso_type |=  SKB_GSO_DODGY;
3357 	}
3358 
3359 	bpf_skb_change_protocol(skb, ETH_P_IPV6);
3360 	skb_clear_hash(skb);
3361 
3362 	return 0;
3363 }
3364 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3365 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3366 {
3367 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3368 	u32 off = skb_mac_header_len(skb);
3369 	int ret;
3370 
3371 	ret = skb_unclone(skb, GFP_ATOMIC);
3372 	if (unlikely(ret < 0))
3373 		return ret;
3374 
3375 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3376 	if (unlikely(ret < 0))
3377 		return ret;
3378 
3379 	if (skb_is_gso(skb)) {
3380 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3381 
3382 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3383 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3384 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3385 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3386 		}
3387 		shinfo->gso_type |=  SKB_GSO_DODGY;
3388 	}
3389 
3390 	bpf_skb_change_protocol(skb, ETH_P_IP);
3391 	skb_clear_hash(skb);
3392 
3393 	return 0;
3394 }
3395 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3396 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3397 {
3398 	__be16 from_proto = skb->protocol;
3399 
3400 	if (from_proto == htons(ETH_P_IP) &&
3401 	      to_proto == htons(ETH_P_IPV6))
3402 		return bpf_skb_proto_4_to_6(skb);
3403 
3404 	if (from_proto == htons(ETH_P_IPV6) &&
3405 	      to_proto == htons(ETH_P_IP))
3406 		return bpf_skb_proto_6_to_4(skb);
3407 
3408 	return -ENOTSUPP;
3409 }
3410 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3411 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3412 	   u64, flags)
3413 {
3414 	int ret;
3415 
3416 	if (unlikely(flags))
3417 		return -EINVAL;
3418 
3419 	/* General idea is that this helper does the basic groundwork
3420 	 * needed for changing the protocol, and eBPF program fills the
3421 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3422 	 * and other helpers, rather than passing a raw buffer here.
3423 	 *
3424 	 * The rationale is to keep this minimal and without a need to
3425 	 * deal with raw packet data. F.e. even if we would pass buffers
3426 	 * here, the program still needs to call the bpf_lX_csum_replace()
3427 	 * helpers anyway. Plus, this way we keep also separation of
3428 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3429 	 * care of stores.
3430 	 *
3431 	 * Currently, additional options and extension header space are
3432 	 * not supported, but flags register is reserved so we can adapt
3433 	 * that. For offloads, we mark packet as dodgy, so that headers
3434 	 * need to be verified first.
3435 	 */
3436 	ret = bpf_skb_proto_xlat(skb, proto);
3437 	bpf_compute_data_pointers(skb);
3438 	return ret;
3439 }
3440 
3441 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3442 	.func		= bpf_skb_change_proto,
3443 	.gpl_only	= false,
3444 	.ret_type	= RET_INTEGER,
3445 	.arg1_type	= ARG_PTR_TO_CTX,
3446 	.arg2_type	= ARG_ANYTHING,
3447 	.arg3_type	= ARG_ANYTHING,
3448 };
3449 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3450 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3451 {
3452 	/* We only allow a restricted subset to be changed for now. */
3453 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3454 		     !skb_pkt_type_ok(pkt_type)))
3455 		return -EINVAL;
3456 
3457 	skb->pkt_type = pkt_type;
3458 	return 0;
3459 }
3460 
3461 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3462 	.func		= bpf_skb_change_type,
3463 	.gpl_only	= false,
3464 	.ret_type	= RET_INTEGER,
3465 	.arg1_type	= ARG_PTR_TO_CTX,
3466 	.arg2_type	= ARG_ANYTHING,
3467 };
3468 
bpf_skb_net_base_len(const struct sk_buff * skb)3469 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3470 {
3471 	switch (skb->protocol) {
3472 	case htons(ETH_P_IP):
3473 		return sizeof(struct iphdr);
3474 	case htons(ETH_P_IPV6):
3475 		return sizeof(struct ipv6hdr);
3476 	default:
3477 		return ~0U;
3478 	}
3479 }
3480 
3481 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3482 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3483 
3484 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3485 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3486 
3487 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3488 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3489 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3490 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3491 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3492 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3493 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3494 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3495 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3496 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3497 			    u64 flags)
3498 {
3499 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3500 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3501 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3502 	const u8 meta_len = skb_metadata_len(skb);
3503 	unsigned int gso_type = SKB_GSO_DODGY;
3504 	int ret;
3505 
3506 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3507 		/* udp gso_size delineates datagrams, only allow if fixed */
3508 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3509 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3510 			return -ENOTSUPP;
3511 	}
3512 
3513 	ret = skb_cow_head(skb, meta_len + len_diff);
3514 	if (unlikely(ret < 0))
3515 		return ret;
3516 
3517 	if (encap) {
3518 		if (skb->protocol != htons(ETH_P_IP) &&
3519 		    skb->protocol != htons(ETH_P_IPV6))
3520 			return -ENOTSUPP;
3521 
3522 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3523 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3524 			return -EINVAL;
3525 
3526 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3527 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3528 			return -EINVAL;
3529 
3530 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3531 		    inner_mac_len < ETH_HLEN)
3532 			return -EINVAL;
3533 
3534 		if (skb->encapsulation)
3535 			return -EALREADY;
3536 
3537 		mac_len = skb->network_header - skb->mac_header;
3538 		inner_net = skb->network_header;
3539 		if (inner_mac_len > len_diff)
3540 			return -EINVAL;
3541 		inner_trans = skb->transport_header;
3542 	}
3543 
3544 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3545 	if (unlikely(ret < 0))
3546 		return ret;
3547 
3548 	if (encap) {
3549 		skb->inner_mac_header = inner_net - inner_mac_len;
3550 		skb->inner_network_header = inner_net;
3551 		skb->inner_transport_header = inner_trans;
3552 
3553 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3554 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3555 		else
3556 			skb_set_inner_protocol(skb, skb->protocol);
3557 
3558 		skb->encapsulation = 1;
3559 		skb_set_network_header(skb, mac_len);
3560 
3561 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3562 			gso_type |= SKB_GSO_UDP_TUNNEL;
3563 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3564 			gso_type |= SKB_GSO_GRE;
3565 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3566 			gso_type |= SKB_GSO_IPXIP6;
3567 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3568 			gso_type |= SKB_GSO_IPXIP4;
3569 
3570 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3571 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3572 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3573 					sizeof(struct ipv6hdr) :
3574 					sizeof(struct iphdr);
3575 
3576 			skb_set_transport_header(skb, mac_len + nh_len);
3577 		}
3578 
3579 		/* Match skb->protocol to new outer l3 protocol */
3580 		if (skb->protocol == htons(ETH_P_IP) &&
3581 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3582 			bpf_skb_change_protocol(skb, ETH_P_IPV6);
3583 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3584 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3585 			bpf_skb_change_protocol(skb, ETH_P_IP);
3586 	}
3587 
3588 	if (skb_is_gso(skb)) {
3589 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3590 
3591 		/* Header must be checked, and gso_segs recomputed. */
3592 		shinfo->gso_type |= gso_type;
3593 		shinfo->gso_segs = 0;
3594 
3595 		/* Due to header growth, MSS needs to be downgraded.
3596 		 * There is a BUG_ON() when segmenting the frag_list with
3597 		 * head_frag true, so linearize the skb after downgrading
3598 		 * the MSS.
3599 		 */
3600 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3601 			skb_decrease_gso_size(shinfo, len_diff);
3602 			if (shinfo->frag_list)
3603 				return skb_linearize(skb);
3604 		}
3605 	}
3606 
3607 	return 0;
3608 }
3609 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3610 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3611 			      u64 flags)
3612 {
3613 	int ret;
3614 
3615 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3616 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3617 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3618 		return -EINVAL;
3619 
3620 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3621 		/* udp gso_size delineates datagrams, only allow if fixed */
3622 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3623 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3624 			return -ENOTSUPP;
3625 	}
3626 
3627 	ret = skb_unclone(skb, GFP_ATOMIC);
3628 	if (unlikely(ret < 0))
3629 		return ret;
3630 
3631 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3632 	if (unlikely(ret < 0))
3633 		return ret;
3634 
3635 	/* Match skb->protocol to new outer l3 protocol */
3636 	if (skb->protocol == htons(ETH_P_IP) &&
3637 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3638 		bpf_skb_change_protocol(skb, ETH_P_IPV6);
3639 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3640 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3641 		bpf_skb_change_protocol(skb, ETH_P_IP);
3642 
3643 	if (skb_is_gso(skb)) {
3644 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3645 
3646 		/* Due to header shrink, MSS can be upgraded. */
3647 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3648 			skb_increase_gso_size(shinfo, len_diff);
3649 
3650 		/* Header must be checked, and gso_segs recomputed. */
3651 		shinfo->gso_type |= SKB_GSO_DODGY;
3652 		shinfo->gso_segs = 0;
3653 	}
3654 
3655 	return 0;
3656 }
3657 
3658 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3659 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3660 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3661 	   u32, mode, u64, flags)
3662 {
3663 	u32 len_diff_abs = abs(len_diff);
3664 	bool shrink = len_diff < 0;
3665 	int ret = 0;
3666 
3667 	if (unlikely(flags || mode))
3668 		return -EINVAL;
3669 	if (unlikely(len_diff_abs > 0xfffU))
3670 		return -EFAULT;
3671 
3672 	if (!shrink) {
3673 		ret = skb_cow(skb, len_diff);
3674 		if (unlikely(ret < 0))
3675 			return ret;
3676 		__skb_push(skb, len_diff_abs);
3677 		memset(skb->data, 0, len_diff_abs);
3678 	} else {
3679 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3680 			return -ENOMEM;
3681 		__skb_pull(skb, len_diff_abs);
3682 	}
3683 	if (tls_sw_has_ctx_rx(skb->sk)) {
3684 		struct strp_msg *rxm = strp_msg(skb);
3685 
3686 		rxm->full_len += len_diff;
3687 	}
3688 	return ret;
3689 }
3690 
3691 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3692 	.func		= sk_skb_adjust_room,
3693 	.gpl_only	= false,
3694 	.ret_type	= RET_INTEGER,
3695 	.arg1_type	= ARG_PTR_TO_CTX,
3696 	.arg2_type	= ARG_ANYTHING,
3697 	.arg3_type	= ARG_ANYTHING,
3698 	.arg4_type	= ARG_ANYTHING,
3699 };
3700 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3701 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3702 	   u32, mode, u64, flags)
3703 {
3704 	u32 len_cur, len_diff_abs = abs(len_diff);
3705 	u32 len_min = bpf_skb_net_base_len(skb);
3706 	u32 len_max = BPF_SKB_MAX_LEN;
3707 	__be16 proto = skb->protocol;
3708 	bool shrink = len_diff < 0;
3709 	u32 off;
3710 	int ret;
3711 
3712 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3713 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3714 		return -EINVAL;
3715 	if (unlikely(len_diff_abs > 0xfffU))
3716 		return -EFAULT;
3717 	if (unlikely(proto != htons(ETH_P_IP) &&
3718 		     proto != htons(ETH_P_IPV6)))
3719 		return -ENOTSUPP;
3720 
3721 	off = skb_mac_header_len(skb);
3722 	switch (mode) {
3723 	case BPF_ADJ_ROOM_NET:
3724 		off += bpf_skb_net_base_len(skb);
3725 		break;
3726 	case BPF_ADJ_ROOM_MAC:
3727 		break;
3728 	default:
3729 		return -ENOTSUPP;
3730 	}
3731 
3732 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3733 		if (!shrink)
3734 			return -EINVAL;
3735 
3736 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3737 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3738 			len_min = sizeof(struct iphdr);
3739 			break;
3740 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3741 			len_min = sizeof(struct ipv6hdr);
3742 			break;
3743 		default:
3744 			return -EINVAL;
3745 		}
3746 	}
3747 
3748 	len_cur = skb->len - skb_network_offset(skb);
3749 	if ((shrink && (len_diff_abs >= len_cur ||
3750 			len_cur - len_diff_abs < len_min)) ||
3751 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3752 			 !skb_is_gso(skb))))
3753 		return -ENOTSUPP;
3754 
3755 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3756 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3757 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3758 		__skb_reset_checksum_unnecessary(skb);
3759 
3760 	bpf_compute_data_pointers(skb);
3761 	return ret;
3762 }
3763 
3764 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3765 	.func		= bpf_skb_adjust_room,
3766 	.gpl_only	= false,
3767 	.ret_type	= RET_INTEGER,
3768 	.arg1_type	= ARG_PTR_TO_CTX,
3769 	.arg2_type	= ARG_ANYTHING,
3770 	.arg3_type	= ARG_ANYTHING,
3771 	.arg4_type	= ARG_ANYTHING,
3772 };
3773 
__bpf_skb_min_len(const struct sk_buff * skb)3774 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3775 {
3776 	int offset = skb_network_offset(skb);
3777 	u32 min_len = 0;
3778 
3779 	if (offset > 0)
3780 		min_len = offset;
3781 	if (skb_transport_header_was_set(skb)) {
3782 		offset = skb_transport_offset(skb);
3783 		if (offset > 0)
3784 			min_len = offset;
3785 	}
3786 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3787 		offset = skb_checksum_start_offset(skb) +
3788 			 skb->csum_offset + sizeof(__sum16);
3789 		if (offset > 0)
3790 			min_len = offset;
3791 	}
3792 	return min_len;
3793 }
3794 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3795 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3796 {
3797 	unsigned int old_len = skb->len;
3798 	int ret;
3799 
3800 	ret = __skb_grow_rcsum(skb, new_len);
3801 	if (!ret)
3802 		memset(skb->data + old_len, 0, new_len - old_len);
3803 	return ret;
3804 }
3805 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3806 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3807 {
3808 	return __skb_trim_rcsum(skb, new_len);
3809 }
3810 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3811 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3812 					u64 flags)
3813 {
3814 	u32 max_len = BPF_SKB_MAX_LEN;
3815 	u32 min_len = __bpf_skb_min_len(skb);
3816 	int ret;
3817 
3818 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3819 		return -EINVAL;
3820 	if (skb->encapsulation)
3821 		return -ENOTSUPP;
3822 
3823 	/* The basic idea of this helper is that it's performing the
3824 	 * needed work to either grow or trim an skb, and eBPF program
3825 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3826 	 * bpf_lX_csum_replace() and others rather than passing a raw
3827 	 * buffer here. This one is a slow path helper and intended
3828 	 * for replies with control messages.
3829 	 *
3830 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3831 	 * minimal and without protocol specifics so that we are able
3832 	 * to separate concerns as in bpf_skb_store_bytes() should only
3833 	 * be the one responsible for writing buffers.
3834 	 *
3835 	 * It's really expected to be a slow path operation here for
3836 	 * control message replies, so we're implicitly linearizing,
3837 	 * uncloning and drop offloads from the skb by this.
3838 	 */
3839 	ret = __bpf_try_make_writable(skb, skb->len);
3840 	if (!ret) {
3841 		if (new_len > skb->len)
3842 			ret = bpf_skb_grow_rcsum(skb, new_len);
3843 		else if (new_len < skb->len)
3844 			ret = bpf_skb_trim_rcsum(skb, new_len);
3845 		if (!ret && skb_is_gso(skb))
3846 			skb_gso_reset(skb);
3847 	}
3848 	return ret;
3849 }
3850 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3851 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3852 	   u64, flags)
3853 {
3854 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3855 
3856 	bpf_compute_data_pointers(skb);
3857 	return ret;
3858 }
3859 
3860 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3861 	.func		= bpf_skb_change_tail,
3862 	.gpl_only	= false,
3863 	.ret_type	= RET_INTEGER,
3864 	.arg1_type	= ARG_PTR_TO_CTX,
3865 	.arg2_type	= ARG_ANYTHING,
3866 	.arg3_type	= ARG_ANYTHING,
3867 };
3868 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3869 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3870 	   u64, flags)
3871 {
3872 	return __bpf_skb_change_tail(skb, new_len, flags);
3873 }
3874 
3875 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3876 	.func		= sk_skb_change_tail,
3877 	.gpl_only	= false,
3878 	.ret_type	= RET_INTEGER,
3879 	.arg1_type	= ARG_PTR_TO_CTX,
3880 	.arg2_type	= ARG_ANYTHING,
3881 	.arg3_type	= ARG_ANYTHING,
3882 };
3883 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3884 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3885 					u64 flags)
3886 {
3887 	const u8 meta_len = skb_metadata_len(skb);
3888 	u32 max_len = BPF_SKB_MAX_LEN;
3889 	u32 new_len = skb->len + head_room;
3890 	int ret;
3891 
3892 	if (unlikely(flags || (int)head_room < 0 ||
3893 		     (!skb_is_gso(skb) && new_len > max_len) ||
3894 		     new_len < skb->len))
3895 		return -EINVAL;
3896 
3897 	ret = skb_cow(skb, meta_len + head_room);
3898 	if (likely(!ret)) {
3899 		/* Idea for this helper is that we currently only
3900 		 * allow to expand on mac header. This means that
3901 		 * skb->protocol network header, etc, stay as is.
3902 		 * Compared to bpf_skb_change_tail(), we're more
3903 		 * flexible due to not needing to linearize or
3904 		 * reset GSO. Intention for this helper is to be
3905 		 * used by an L3 skb that needs to push mac header
3906 		 * for redirection into L2 device.
3907 		 */
3908 		__skb_push(skb, head_room);
3909 		skb_postpush_data_move(skb, head_room, 0);
3910 		memset(skb->data, 0, head_room);
3911 		skb_reset_mac_header(skb);
3912 		skb_reset_mac_len(skb);
3913 	}
3914 
3915 	return ret;
3916 }
3917 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3918 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3919 	   u64, flags)
3920 {
3921 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3922 
3923 	bpf_compute_data_pointers(skb);
3924 	return ret;
3925 }
3926 
3927 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3928 	.func		= bpf_skb_change_head,
3929 	.gpl_only	= false,
3930 	.ret_type	= RET_INTEGER,
3931 	.arg1_type	= ARG_PTR_TO_CTX,
3932 	.arg2_type	= ARG_ANYTHING,
3933 	.arg3_type	= ARG_ANYTHING,
3934 };
3935 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3936 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3937 	   u64, flags)
3938 {
3939 	return __bpf_skb_change_head(skb, head_room, flags);
3940 }
3941 
3942 static const struct bpf_func_proto sk_skb_change_head_proto = {
3943 	.func		= sk_skb_change_head,
3944 	.gpl_only	= false,
3945 	.ret_type	= RET_INTEGER,
3946 	.arg1_type	= ARG_PTR_TO_CTX,
3947 	.arg2_type	= ARG_ANYTHING,
3948 	.arg3_type	= ARG_ANYTHING,
3949 };
3950 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3951 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3952 {
3953 	return xdp_get_buff_len(xdp);
3954 }
3955 
3956 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3957 	.func		= bpf_xdp_get_buff_len,
3958 	.gpl_only	= false,
3959 	.ret_type	= RET_INTEGER,
3960 	.arg1_type	= ARG_PTR_TO_CTX,
3961 };
3962 
3963 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3964 
3965 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3966 	.func		= bpf_xdp_get_buff_len,
3967 	.gpl_only	= false,
3968 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3969 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3970 };
3971 
xdp_get_metalen(const struct xdp_buff * xdp)3972 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3973 {
3974 	return xdp_data_meta_unsupported(xdp) ? 0 :
3975 	       xdp->data - xdp->data_meta;
3976 }
3977 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3978 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3979 {
3980 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3981 	unsigned long metalen = xdp_get_metalen(xdp);
3982 	void *data_start = xdp_frame_end + metalen;
3983 	void *data = xdp->data + offset;
3984 
3985 	if (unlikely(data < data_start ||
3986 		     data > xdp->data_end - ETH_HLEN))
3987 		return -EINVAL;
3988 
3989 	if (metalen)
3990 		memmove(xdp->data_meta + offset,
3991 			xdp->data_meta, metalen);
3992 	xdp->data_meta += offset;
3993 	xdp->data = data;
3994 
3995 	return 0;
3996 }
3997 
3998 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3999 	.func		= bpf_xdp_adjust_head,
4000 	.gpl_only	= false,
4001 	.ret_type	= RET_INTEGER,
4002 	.arg1_type	= ARG_PTR_TO_CTX,
4003 	.arg2_type	= ARG_ANYTHING,
4004 };
4005 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)4006 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
4007 		      void *buf, unsigned long len, bool flush)
4008 {
4009 	unsigned long ptr_len, ptr_off = 0;
4010 	skb_frag_t *next_frag, *end_frag;
4011 	struct skb_shared_info *sinfo;
4012 	void *src, *dst;
4013 	u8 *ptr_buf;
4014 
4015 	if (likely(xdp->data_end - xdp->data >= off + len)) {
4016 		src = flush ? buf : xdp->data + off;
4017 		dst = flush ? xdp->data + off : buf;
4018 		memcpy(dst, src, len);
4019 		return;
4020 	}
4021 
4022 	sinfo = xdp_get_shared_info_from_buff(xdp);
4023 	end_frag = &sinfo->frags[sinfo->nr_frags];
4024 	next_frag = &sinfo->frags[0];
4025 
4026 	ptr_len = xdp->data_end - xdp->data;
4027 	ptr_buf = xdp->data;
4028 
4029 	while (true) {
4030 		if (off < ptr_off + ptr_len) {
4031 			unsigned long copy_off = off - ptr_off;
4032 			unsigned long copy_len = min(len, ptr_len - copy_off);
4033 
4034 			src = flush ? buf : ptr_buf + copy_off;
4035 			dst = flush ? ptr_buf + copy_off : buf;
4036 			memcpy(dst, src, copy_len);
4037 
4038 			off += copy_len;
4039 			len -= copy_len;
4040 			buf += copy_len;
4041 		}
4042 
4043 		if (!len || next_frag == end_frag)
4044 			break;
4045 
4046 		ptr_off += ptr_len;
4047 		ptr_buf = skb_frag_address(next_frag);
4048 		ptr_len = skb_frag_size(next_frag);
4049 		next_frag++;
4050 	}
4051 }
4052 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)4053 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4054 {
4055 	u32 size = xdp->data_end - xdp->data;
4056 	struct skb_shared_info *sinfo;
4057 	void *addr = xdp->data;
4058 	int i;
4059 
4060 	if (unlikely(offset > 0xffff || len > 0xffff))
4061 		return ERR_PTR(-EFAULT);
4062 
4063 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4064 		return ERR_PTR(-EINVAL);
4065 
4066 	if (likely(offset < size)) /* linear area */
4067 		goto out;
4068 
4069 	sinfo = xdp_get_shared_info_from_buff(xdp);
4070 	offset -= size;
4071 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4072 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4073 
4074 		if  (offset < frag_size) {
4075 			addr = skb_frag_address(&sinfo->frags[i]);
4076 			size = frag_size;
4077 			break;
4078 		}
4079 		offset -= frag_size;
4080 	}
4081 out:
4082 	return offset + len <= size ? addr + offset : NULL;
4083 }
4084 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4085 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4086 	   void *, buf, u32, len)
4087 {
4088 	void *ptr;
4089 
4090 	ptr = bpf_xdp_pointer(xdp, offset, len);
4091 	if (IS_ERR(ptr))
4092 		return PTR_ERR(ptr);
4093 
4094 	if (!ptr)
4095 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4096 	else
4097 		memcpy(buf, ptr, len);
4098 
4099 	return 0;
4100 }
4101 
4102 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4103 	.func		= bpf_xdp_load_bytes,
4104 	.gpl_only	= false,
4105 	.ret_type	= RET_INTEGER,
4106 	.arg1_type	= ARG_PTR_TO_CTX,
4107 	.arg2_type	= ARG_ANYTHING,
4108 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4109 	.arg4_type	= ARG_CONST_SIZE,
4110 };
4111 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4112 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4113 {
4114 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4115 }
4116 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4117 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4118 	   void *, buf, u32, len)
4119 {
4120 	void *ptr;
4121 
4122 	ptr = bpf_xdp_pointer(xdp, offset, len);
4123 	if (IS_ERR(ptr))
4124 		return PTR_ERR(ptr);
4125 
4126 	if (!ptr)
4127 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4128 	else
4129 		memcpy(ptr, buf, len);
4130 
4131 	return 0;
4132 }
4133 
4134 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4135 	.func		= bpf_xdp_store_bytes,
4136 	.gpl_only	= false,
4137 	.ret_type	= RET_INTEGER,
4138 	.arg1_type	= ARG_PTR_TO_CTX,
4139 	.arg2_type	= ARG_ANYTHING,
4140 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4141 	.arg4_type	= ARG_CONST_SIZE,
4142 };
4143 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4144 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4145 {
4146 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4147 }
4148 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4149 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4150 {
4151 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4152 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4153 	struct xdp_rxq_info *rxq = xdp->rxq;
4154 	unsigned int tailroom;
4155 
4156 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4157 		return -EOPNOTSUPP;
4158 
4159 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4160 	if (unlikely(offset > tailroom))
4161 		return -EINVAL;
4162 
4163 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4164 	skb_frag_size_add(frag, offset);
4165 	sinfo->xdp_frags_size += offset;
4166 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4167 		xsk_buff_get_tail(xdp)->data_end += offset;
4168 
4169 	return 0;
4170 }
4171 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,bool tail,bool release)4172 static struct xdp_buff *bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4173 					       bool tail, bool release)
4174 {
4175 	struct xdp_buff *zc_frag = tail ? xsk_buff_get_tail(xdp) :
4176 					  xsk_buff_get_head(xdp);
4177 
4178 	if (release) {
4179 		xsk_buff_del_frag(zc_frag);
4180 	} else {
4181 		if (tail)
4182 			zc_frag->data_end -= shrink;
4183 		else
4184 			zc_frag->data += shrink;
4185 	}
4186 
4187 	return zc_frag;
4188 }
4189 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink,bool tail)4190 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4191 				int shrink, bool tail)
4192 {
4193 	enum xdp_mem_type mem_type = xdp->rxq->mem.type;
4194 	bool release = skb_frag_size(frag) == shrink;
4195 	netmem_ref netmem = skb_frag_netmem(frag);
4196 	struct xdp_buff *zc_frag = NULL;
4197 
4198 	if (mem_type == MEM_TYPE_XSK_BUFF_POOL) {
4199 		netmem = 0;
4200 		zc_frag = bpf_xdp_shrink_data_zc(xdp, shrink, tail, release);
4201 	}
4202 
4203 	if (release) {
4204 		__xdp_return(netmem, mem_type, false, zc_frag);
4205 	} else {
4206 		if (!tail)
4207 			skb_frag_off_add(frag, shrink);
4208 		skb_frag_size_sub(frag, shrink);
4209 	}
4210 
4211 	return release;
4212 }
4213 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4214 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4215 {
4216 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4217 	int i, n_frags_free = 0, len_free = 0;
4218 
4219 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4220 		return -EINVAL;
4221 
4222 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4223 		skb_frag_t *frag = &sinfo->frags[i];
4224 		int shrink = min_t(int, offset, skb_frag_size(frag));
4225 
4226 		len_free += shrink;
4227 		offset -= shrink;
4228 		if (bpf_xdp_shrink_data(xdp, frag, shrink, true))
4229 			n_frags_free++;
4230 	}
4231 	sinfo->nr_frags -= n_frags_free;
4232 	sinfo->xdp_frags_size -= len_free;
4233 
4234 	if (unlikely(!sinfo->nr_frags)) {
4235 		xdp_buff_clear_frags_flag(xdp);
4236 		xdp_buff_clear_frag_pfmemalloc(xdp);
4237 		xdp->data_end -= offset;
4238 	}
4239 
4240 	return 0;
4241 }
4242 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4243 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4244 {
4245 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4246 	void *data_end = xdp->data_end + offset;
4247 
4248 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4249 		if (offset < 0)
4250 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4251 
4252 		return bpf_xdp_frags_increase_tail(xdp, offset);
4253 	}
4254 
4255 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4256 	if (unlikely(data_end > data_hard_end))
4257 		return -EINVAL;
4258 
4259 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4260 		return -EINVAL;
4261 
4262 	/* Clear memory area on grow, can contain uninit kernel memory */
4263 	if (offset > 0)
4264 		memset(xdp->data_end, 0, offset);
4265 
4266 	xdp->data_end = data_end;
4267 
4268 	return 0;
4269 }
4270 
4271 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4272 	.func		= bpf_xdp_adjust_tail,
4273 	.gpl_only	= false,
4274 	.ret_type	= RET_INTEGER,
4275 	.arg1_type	= ARG_PTR_TO_CTX,
4276 	.arg2_type	= ARG_ANYTHING,
4277 };
4278 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4279 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4280 {
4281 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4282 	void *meta = xdp->data_meta + offset;
4283 	unsigned long metalen = xdp->data - meta;
4284 
4285 	if (xdp_data_meta_unsupported(xdp))
4286 		return -ENOTSUPP;
4287 	if (unlikely(meta < xdp_frame_end ||
4288 		     meta > xdp->data))
4289 		return -EINVAL;
4290 	if (unlikely(xdp_metalen_invalid(metalen)))
4291 		return -EACCES;
4292 
4293 	xdp->data_meta = meta;
4294 
4295 	return 0;
4296 }
4297 
4298 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4299 	.func		= bpf_xdp_adjust_meta,
4300 	.gpl_only	= false,
4301 	.ret_type	= RET_INTEGER,
4302 	.arg1_type	= ARG_PTR_TO_CTX,
4303 	.arg2_type	= ARG_ANYTHING,
4304 };
4305 
4306 /**
4307  * DOC: xdp redirect
4308  *
4309  * XDP_REDIRECT works by a three-step process, implemented in the functions
4310  * below:
4311  *
4312  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4313  *    of the redirect and store it (along with some other metadata) in a per-CPU
4314  *    struct bpf_redirect_info.
4315  *
4316  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4317  *    call xdp_do_redirect() which will use the information in struct
4318  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4319  *    bulk queue structure.
4320  *
4321  * 3. Before exiting its NAPI poll loop, the driver will call
4322  *    xdp_do_flush(), which will flush all the different bulk queues,
4323  *    thus completing the redirect. Note that xdp_do_flush() must be
4324  *    called before napi_complete_done() in the driver, as the
4325  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4326  *    through to the xdp_do_flush() call for RCU protection of all
4327  *    in-kernel data structures.
4328  */
4329 /*
4330  * Pointers to the map entries will be kept around for this whole sequence of
4331  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4332  * the core code; instead, the RCU protection relies on everything happening
4333  * inside a single NAPI poll sequence, which means it's between a pair of calls
4334  * to local_bh_disable()/local_bh_enable().
4335  *
4336  * The map entries are marked as __rcu and the map code makes sure to
4337  * dereference those pointers with rcu_dereference_check() in a way that works
4338  * for both sections that to hold an rcu_read_lock() and sections that are
4339  * called from NAPI without a separate rcu_read_lock(). The code below does not
4340  * use RCU annotations, but relies on those in the map code.
4341  */
xdp_do_flush(void)4342 void xdp_do_flush(void)
4343 {
4344 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4345 
4346 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4347 	if (lh_dev)
4348 		__dev_flush(lh_dev);
4349 	if (lh_map)
4350 		__cpu_map_flush(lh_map);
4351 	if (lh_xsk)
4352 		__xsk_map_flush(lh_xsk);
4353 }
4354 EXPORT_SYMBOL_GPL(xdp_do_flush);
4355 
4356 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
xdp_do_check_flushed(struct napi_struct * napi)4357 void xdp_do_check_flushed(struct napi_struct *napi)
4358 {
4359 	struct list_head *lh_map, *lh_dev, *lh_xsk;
4360 	bool missed = false;
4361 
4362 	bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4363 	if (lh_dev) {
4364 		__dev_flush(lh_dev);
4365 		missed = true;
4366 	}
4367 	if (lh_map) {
4368 		__cpu_map_flush(lh_map);
4369 		missed = true;
4370 	}
4371 	if (lh_xsk) {
4372 		__xsk_map_flush(lh_xsk);
4373 		missed = true;
4374 	}
4375 
4376 	WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4377 		  napi->poll);
4378 }
4379 #endif
4380 
4381 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4382 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4383 
xdp_master_redirect(struct xdp_buff * xdp)4384 u32 xdp_master_redirect(struct xdp_buff *xdp)
4385 {
4386 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4387 	struct net_device *master, *slave;
4388 
4389 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4390 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4391 	if (slave && slave != xdp->rxq->dev) {
4392 		/* The target device is different from the receiving device, so
4393 		 * redirect it to the new device.
4394 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4395 		 * drivers to unmap the packet from their rx ring.
4396 		 */
4397 		ri->tgt_index = slave->ifindex;
4398 		ri->map_id = INT_MAX;
4399 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4400 		return XDP_REDIRECT;
4401 	}
4402 	return XDP_TX;
4403 }
4404 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4405 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,const struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4406 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4407 					const struct net_device *dev,
4408 					struct xdp_buff *xdp,
4409 					const struct bpf_prog *xdp_prog)
4410 {
4411 	enum bpf_map_type map_type = ri->map_type;
4412 	void *fwd = ri->tgt_value;
4413 	u32 map_id = ri->map_id;
4414 	int err;
4415 
4416 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4417 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4418 
4419 	err = __xsk_map_redirect(fwd, xdp);
4420 	if (unlikely(err))
4421 		goto err;
4422 
4423 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4424 	return 0;
4425 err:
4426 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4427 	return err;
4428 }
4429 
4430 static __always_inline int
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4431 __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev,
4432 			struct xdp_frame *xdpf,
4433 			const struct bpf_prog *xdp_prog)
4434 {
4435 	enum bpf_map_type map_type = ri->map_type;
4436 	void *fwd = ri->tgt_value;
4437 	u32 map_id = ri->map_id;
4438 	u32 flags = ri->flags;
4439 	struct bpf_map *map;
4440 	int err;
4441 
4442 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4443 	ri->flags = 0;
4444 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4445 
4446 	if (unlikely(!xdpf)) {
4447 		err = -EOVERFLOW;
4448 		goto err;
4449 	}
4450 
4451 	switch (map_type) {
4452 	case BPF_MAP_TYPE_DEVMAP:
4453 		fallthrough;
4454 	case BPF_MAP_TYPE_DEVMAP_HASH:
4455 		if (unlikely(flags & BPF_F_BROADCAST)) {
4456 			map = READ_ONCE(ri->map);
4457 
4458 			/* The map pointer is cleared when the map is being torn
4459 			 * down by dev_map_free()
4460 			 */
4461 			if (unlikely(!map)) {
4462 				err = -ENOENT;
4463 				break;
4464 			}
4465 
4466 			WRITE_ONCE(ri->map, NULL);
4467 			err = dev_map_enqueue_multi(xdpf, dev, map,
4468 						    flags & BPF_F_EXCLUDE_INGRESS);
4469 		} else {
4470 			err = dev_map_enqueue(fwd, xdpf, dev);
4471 		}
4472 		break;
4473 	case BPF_MAP_TYPE_CPUMAP:
4474 		err = cpu_map_enqueue(fwd, xdpf, dev);
4475 		break;
4476 	case BPF_MAP_TYPE_UNSPEC:
4477 		if (map_id == INT_MAX) {
4478 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4479 			if (unlikely(!fwd)) {
4480 				err = -EINVAL;
4481 				break;
4482 			}
4483 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4484 			break;
4485 		}
4486 		fallthrough;
4487 	default:
4488 		err = -EBADRQC;
4489 	}
4490 
4491 	if (unlikely(err))
4492 		goto err;
4493 
4494 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4495 	return 0;
4496 err:
4497 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4498 	return err;
4499 }
4500 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4501 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4502 		    const struct bpf_prog *xdp_prog)
4503 {
4504 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4505 	enum bpf_map_type map_type = ri->map_type;
4506 
4507 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4508 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4509 
4510 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4511 				       xdp_prog);
4512 }
4513 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4514 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,const struct bpf_prog * xdp_prog)4515 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4516 			  struct xdp_frame *xdpf,
4517 			  const struct bpf_prog *xdp_prog)
4518 {
4519 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4520 	enum bpf_map_type map_type = ri->map_type;
4521 
4522 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4523 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4524 
4525 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4526 }
4527 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4528 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4529 static int xdp_do_generic_redirect_map(struct net_device *dev,
4530 				       struct sk_buff *skb,
4531 				       struct xdp_buff *xdp,
4532 				       const struct bpf_prog *xdp_prog,
4533 				       void *fwd, enum bpf_map_type map_type,
4534 				       u32 map_id, u32 flags)
4535 {
4536 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4537 	struct bpf_map *map;
4538 	int err;
4539 
4540 	switch (map_type) {
4541 	case BPF_MAP_TYPE_DEVMAP:
4542 		fallthrough;
4543 	case BPF_MAP_TYPE_DEVMAP_HASH:
4544 		if (unlikely(flags & BPF_F_BROADCAST)) {
4545 			map = READ_ONCE(ri->map);
4546 
4547 			/* The map pointer is cleared when the map is being torn
4548 			 * down by dev_map_free()
4549 			 */
4550 			if (unlikely(!map)) {
4551 				err = -ENOENT;
4552 				break;
4553 			}
4554 
4555 			WRITE_ONCE(ri->map, NULL);
4556 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4557 						     flags & BPF_F_EXCLUDE_INGRESS);
4558 		} else {
4559 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4560 		}
4561 		if (unlikely(err))
4562 			goto err;
4563 		break;
4564 	case BPF_MAP_TYPE_XSKMAP:
4565 		err = xsk_generic_rcv(fwd, xdp);
4566 		if (err)
4567 			goto err;
4568 		consume_skb(skb);
4569 		break;
4570 	case BPF_MAP_TYPE_CPUMAP:
4571 		err = cpu_map_generic_redirect(fwd, skb);
4572 		if (unlikely(err))
4573 			goto err;
4574 		break;
4575 	default:
4576 		err = -EBADRQC;
4577 		goto err;
4578 	}
4579 
4580 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4581 	return 0;
4582 err:
4583 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4584 	return err;
4585 }
4586 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)4587 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4588 			    struct xdp_buff *xdp,
4589 			    const struct bpf_prog *xdp_prog)
4590 {
4591 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4592 	enum bpf_map_type map_type = ri->map_type;
4593 	void *fwd = ri->tgt_value;
4594 	u32 map_id = ri->map_id;
4595 	u32 flags = ri->flags;
4596 	int err;
4597 
4598 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4599 	ri->flags = 0;
4600 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4601 
4602 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4603 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4604 		if (unlikely(!fwd)) {
4605 			err = -EINVAL;
4606 			goto err;
4607 		}
4608 
4609 		err = xdp_ok_fwd_dev(fwd, skb->len);
4610 		if (unlikely(err))
4611 			goto err;
4612 
4613 		skb->dev = fwd;
4614 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4615 		generic_xdp_tx(skb, xdp_prog);
4616 		return 0;
4617 	}
4618 
4619 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4620 err:
4621 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4622 	return err;
4623 }
4624 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4625 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4626 {
4627 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4628 
4629 	if (unlikely(flags))
4630 		return XDP_ABORTED;
4631 
4632 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4633 	 * by map_idr) is used for ifindex based XDP redirect.
4634 	 */
4635 	ri->tgt_index = ifindex;
4636 	ri->map_id = INT_MAX;
4637 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4638 
4639 	return XDP_REDIRECT;
4640 }
4641 
4642 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4643 	.func           = bpf_xdp_redirect,
4644 	.gpl_only       = false,
4645 	.ret_type       = RET_INTEGER,
4646 	.arg1_type      = ARG_ANYTHING,
4647 	.arg2_type      = ARG_ANYTHING,
4648 };
4649 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4650 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4651 	   u64, flags)
4652 {
4653 	return map->ops->map_redirect(map, key, flags);
4654 }
4655 
4656 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4657 	.func           = bpf_xdp_redirect_map,
4658 	.gpl_only       = false,
4659 	.ret_type       = RET_INTEGER,
4660 	.arg1_type      = ARG_CONST_MAP_PTR,
4661 	.arg2_type      = ARG_ANYTHING,
4662 	.arg3_type      = ARG_ANYTHING,
4663 };
4664 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4665 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4666 				  unsigned long off, unsigned long len)
4667 {
4668 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4669 
4670 	if (unlikely(!ptr))
4671 		return len;
4672 	if (ptr != dst_buff)
4673 		memcpy(dst_buff, ptr, len);
4674 
4675 	return 0;
4676 }
4677 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4678 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4679 	   u64, flags, void *, meta, u64, meta_size)
4680 {
4681 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4682 
4683 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4684 		return -EINVAL;
4685 	if (unlikely(!skb || skb_size > skb->len))
4686 		return -EFAULT;
4687 
4688 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4689 				bpf_skb_copy);
4690 }
4691 
4692 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4693 	.func		= bpf_skb_event_output,
4694 	.gpl_only	= true,
4695 	.ret_type	= RET_INTEGER,
4696 	.arg1_type	= ARG_PTR_TO_CTX,
4697 	.arg2_type	= ARG_CONST_MAP_PTR,
4698 	.arg3_type	= ARG_ANYTHING,
4699 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4700 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4701 };
4702 
4703 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4704 
4705 const struct bpf_func_proto bpf_skb_output_proto = {
4706 	.func		= bpf_skb_event_output,
4707 	.gpl_only	= true,
4708 	.ret_type	= RET_INTEGER,
4709 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4710 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4711 	.arg2_type	= ARG_CONST_MAP_PTR,
4712 	.arg3_type	= ARG_ANYTHING,
4713 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4714 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4715 };
4716 
bpf_tunnel_key_af(u64 flags)4717 static unsigned short bpf_tunnel_key_af(u64 flags)
4718 {
4719 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4720 }
4721 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4722 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4723 	   u32, size, u64, flags)
4724 {
4725 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4726 	u8 compat[sizeof(struct bpf_tunnel_key)];
4727 	void *to_orig = to;
4728 	int err;
4729 
4730 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4731 					 BPF_F_TUNINFO_FLAGS)))) {
4732 		err = -EINVAL;
4733 		goto err_clear;
4734 	}
4735 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4736 		err = -EPROTO;
4737 		goto err_clear;
4738 	}
4739 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4740 		err = -EINVAL;
4741 		switch (size) {
4742 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4743 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4744 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4745 			goto set_compat;
4746 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4747 			/* Fixup deprecated structure layouts here, so we have
4748 			 * a common path later on.
4749 			 */
4750 			if (ip_tunnel_info_af(info) != AF_INET)
4751 				goto err_clear;
4752 set_compat:
4753 			to = (struct bpf_tunnel_key *)compat;
4754 			break;
4755 		default:
4756 			goto err_clear;
4757 		}
4758 	}
4759 
4760 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4761 	to->tunnel_tos = info->key.tos;
4762 	to->tunnel_ttl = info->key.ttl;
4763 	if (flags & BPF_F_TUNINFO_FLAGS)
4764 		to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4765 	else
4766 		to->tunnel_ext = 0;
4767 
4768 	if (flags & BPF_F_TUNINFO_IPV6) {
4769 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4770 		       sizeof(to->remote_ipv6));
4771 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4772 		       sizeof(to->local_ipv6));
4773 		to->tunnel_label = be32_to_cpu(info->key.label);
4774 	} else {
4775 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4776 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4777 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4778 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4779 		to->tunnel_label = 0;
4780 	}
4781 
4782 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4783 		memcpy(to_orig, to, size);
4784 
4785 	return 0;
4786 err_clear:
4787 	memset(to_orig, 0, size);
4788 	return err;
4789 }
4790 
4791 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4792 	.func		= bpf_skb_get_tunnel_key,
4793 	.gpl_only	= false,
4794 	.ret_type	= RET_INTEGER,
4795 	.arg1_type	= ARG_PTR_TO_CTX,
4796 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4797 	.arg3_type	= ARG_CONST_SIZE,
4798 	.arg4_type	= ARG_ANYTHING,
4799 };
4800 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4801 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4802 {
4803 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4804 	int err;
4805 
4806 	if (unlikely(!info ||
4807 		     !ip_tunnel_is_options_present(info->key.tun_flags))) {
4808 		err = -ENOENT;
4809 		goto err_clear;
4810 	}
4811 	if (unlikely(size < info->options_len)) {
4812 		err = -ENOMEM;
4813 		goto err_clear;
4814 	}
4815 
4816 	ip_tunnel_info_opts_get(to, info);
4817 	if (size > info->options_len)
4818 		memset(to + info->options_len, 0, size - info->options_len);
4819 
4820 	return info->options_len;
4821 err_clear:
4822 	memset(to, 0, size);
4823 	return err;
4824 }
4825 
4826 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4827 	.func		= bpf_skb_get_tunnel_opt,
4828 	.gpl_only	= false,
4829 	.ret_type	= RET_INTEGER,
4830 	.arg1_type	= ARG_PTR_TO_CTX,
4831 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4832 	.arg3_type	= ARG_CONST_SIZE,
4833 };
4834 
4835 static struct metadata_dst __percpu *md_dst;
4836 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4837 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4838 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4839 {
4840 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4841 	u8 compat[sizeof(struct bpf_tunnel_key)];
4842 	struct ip_tunnel_info *info;
4843 
4844 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4845 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4846 			       BPF_F_NO_TUNNEL_KEY)))
4847 		return -EINVAL;
4848 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4849 		switch (size) {
4850 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4851 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4852 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4853 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4854 			/* Fixup deprecated structure layouts here, so we have
4855 			 * a common path later on.
4856 			 */
4857 			memcpy(compat, from, size);
4858 			memset(compat + size, 0, sizeof(compat) - size);
4859 			from = (const struct bpf_tunnel_key *) compat;
4860 			break;
4861 		default:
4862 			return -EINVAL;
4863 		}
4864 	}
4865 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4866 		     from->tunnel_ext))
4867 		return -EINVAL;
4868 
4869 	skb_dst_drop(skb);
4870 	dst_hold((struct dst_entry *) md);
4871 	skb_dst_set(skb, (struct dst_entry *) md);
4872 
4873 	info = &md->u.tun_info;
4874 	memset(info, 0, sizeof(*info));
4875 	info->mode = IP_TUNNEL_INFO_TX;
4876 
4877 	__set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4878 	__assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4879 		     flags & BPF_F_DONT_FRAGMENT);
4880 	__assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4881 		     !(flags & BPF_F_ZERO_CSUM_TX));
4882 	__assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4883 		     flags & BPF_F_SEQ_NUMBER);
4884 	__assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4885 		     !(flags & BPF_F_NO_TUNNEL_KEY));
4886 
4887 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4888 	info->key.tos = from->tunnel_tos;
4889 	info->key.ttl = from->tunnel_ttl;
4890 
4891 	if (flags & BPF_F_TUNINFO_IPV6) {
4892 		info->mode |= IP_TUNNEL_INFO_IPV6;
4893 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4894 		       sizeof(from->remote_ipv6));
4895 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4896 		       sizeof(from->local_ipv6));
4897 		info->key.label = cpu_to_be32(from->tunnel_label) &
4898 				  IPV6_FLOWLABEL_MASK;
4899 	} else {
4900 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4901 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4902 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4903 	}
4904 
4905 	return 0;
4906 }
4907 
4908 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4909 	.func		= bpf_skb_set_tunnel_key,
4910 	.gpl_only	= false,
4911 	.ret_type	= RET_INTEGER,
4912 	.arg1_type	= ARG_PTR_TO_CTX,
4913 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4914 	.arg3_type	= ARG_CONST_SIZE,
4915 	.arg4_type	= ARG_ANYTHING,
4916 };
4917 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4918 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4919 	   const u8 *, from, u32, size)
4920 {
4921 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4922 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4923 	IP_TUNNEL_DECLARE_FLAGS(present) = { };
4924 
4925 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4926 		return -EINVAL;
4927 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4928 		return -ENOMEM;
4929 
4930 	ip_tunnel_set_options_present(present);
4931 	ip_tunnel_info_opts_set(info, from, size, present);
4932 
4933 	return 0;
4934 }
4935 
4936 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4937 	.func		= bpf_skb_set_tunnel_opt,
4938 	.gpl_only	= false,
4939 	.ret_type	= RET_INTEGER,
4940 	.arg1_type	= ARG_PTR_TO_CTX,
4941 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4942 	.arg3_type	= ARG_CONST_SIZE,
4943 };
4944 
4945 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4946 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4947 {
4948 	if (!md_dst) {
4949 		struct metadata_dst __percpu *tmp;
4950 
4951 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4952 						METADATA_IP_TUNNEL,
4953 						GFP_KERNEL);
4954 		if (!tmp)
4955 			return NULL;
4956 		if (cmpxchg(&md_dst, NULL, tmp))
4957 			metadata_dst_free_percpu(tmp);
4958 	}
4959 
4960 	switch (which) {
4961 	case BPF_FUNC_skb_set_tunnel_key:
4962 		return &bpf_skb_set_tunnel_key_proto;
4963 	case BPF_FUNC_skb_set_tunnel_opt:
4964 		return &bpf_skb_set_tunnel_opt_proto;
4965 	default:
4966 		return NULL;
4967 	}
4968 }
4969 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4970 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4971 	   u32, idx)
4972 {
4973 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4974 	struct cgroup *cgrp;
4975 	struct sock *sk;
4976 
4977 	sk = skb_to_full_sk(skb);
4978 	if (!sk || !sk_fullsock(sk))
4979 		return -ENOENT;
4980 	if (unlikely(idx >= array->map.max_entries))
4981 		return -E2BIG;
4982 
4983 	cgrp = READ_ONCE(array->ptrs[idx]);
4984 	if (unlikely(!cgrp))
4985 		return -EAGAIN;
4986 
4987 	return sk_under_cgroup_hierarchy(sk, cgrp);
4988 }
4989 
4990 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4991 	.func		= bpf_skb_under_cgroup,
4992 	.gpl_only	= false,
4993 	.ret_type	= RET_INTEGER,
4994 	.arg1_type	= ARG_PTR_TO_CTX,
4995 	.arg2_type	= ARG_CONST_MAP_PTR,
4996 	.arg3_type	= ARG_ANYTHING,
4997 };
4998 
4999 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)5000 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
5001 {
5002 	struct cgroup *cgrp;
5003 
5004 	sk = sk_to_full_sk(sk);
5005 	if (!sk || !sk_fullsock(sk))
5006 		return 0;
5007 
5008 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5009 	return cgroup_id(cgrp);
5010 }
5011 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)5012 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
5013 {
5014 	return __bpf_sk_cgroup_id(skb->sk);
5015 }
5016 
5017 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
5018 	.func           = bpf_skb_cgroup_id,
5019 	.gpl_only       = false,
5020 	.ret_type       = RET_INTEGER,
5021 	.arg1_type      = ARG_PTR_TO_CTX,
5022 };
5023 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)5024 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
5025 					      int ancestor_level)
5026 {
5027 	struct cgroup *ancestor;
5028 	struct cgroup *cgrp;
5029 
5030 	sk = sk_to_full_sk(sk);
5031 	if (!sk || !sk_fullsock(sk))
5032 		return 0;
5033 
5034 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
5035 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
5036 	if (!ancestor)
5037 		return 0;
5038 
5039 	return cgroup_id(ancestor);
5040 }
5041 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)5042 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
5043 	   ancestor_level)
5044 {
5045 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
5046 }
5047 
5048 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
5049 	.func           = bpf_skb_ancestor_cgroup_id,
5050 	.gpl_only       = false,
5051 	.ret_type       = RET_INTEGER,
5052 	.arg1_type      = ARG_PTR_TO_CTX,
5053 	.arg2_type      = ARG_ANYTHING,
5054 };
5055 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)5056 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
5057 {
5058 	return __bpf_sk_cgroup_id(sk);
5059 }
5060 
5061 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5062 	.func           = bpf_sk_cgroup_id,
5063 	.gpl_only       = false,
5064 	.ret_type       = RET_INTEGER,
5065 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5066 };
5067 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)5068 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5069 {
5070 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5071 }
5072 
5073 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5074 	.func           = bpf_sk_ancestor_cgroup_id,
5075 	.gpl_only       = false,
5076 	.ret_type       = RET_INTEGER,
5077 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5078 	.arg2_type      = ARG_ANYTHING,
5079 };
5080 #endif
5081 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5082 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5083 				  unsigned long off, unsigned long len)
5084 {
5085 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5086 
5087 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5088 	return 0;
5089 }
5090 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5091 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5092 	   u64, flags, void *, meta, u64, meta_size)
5093 {
5094 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5095 
5096 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5097 		return -EINVAL;
5098 
5099 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5100 		return -EFAULT;
5101 
5102 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5103 				xdp_size, bpf_xdp_copy);
5104 }
5105 
5106 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5107 	.func		= bpf_xdp_event_output,
5108 	.gpl_only	= true,
5109 	.ret_type	= RET_INTEGER,
5110 	.arg1_type	= ARG_PTR_TO_CTX,
5111 	.arg2_type	= ARG_CONST_MAP_PTR,
5112 	.arg3_type	= ARG_ANYTHING,
5113 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5114 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5115 };
5116 
5117 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5118 
5119 const struct bpf_func_proto bpf_xdp_output_proto = {
5120 	.func		= bpf_xdp_event_output,
5121 	.gpl_only	= true,
5122 	.ret_type	= RET_INTEGER,
5123 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5124 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5125 	.arg2_type	= ARG_CONST_MAP_PTR,
5126 	.arg3_type	= ARG_ANYTHING,
5127 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5128 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5129 };
5130 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5131 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5132 {
5133 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5134 }
5135 
5136 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5137 	.func           = bpf_get_socket_cookie,
5138 	.gpl_only       = false,
5139 	.ret_type       = RET_INTEGER,
5140 	.arg1_type      = ARG_PTR_TO_CTX,
5141 };
5142 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5143 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5144 {
5145 	return __sock_gen_cookie(ctx->sk);
5146 }
5147 
5148 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5149 	.func		= bpf_get_socket_cookie_sock_addr,
5150 	.gpl_only	= false,
5151 	.ret_type	= RET_INTEGER,
5152 	.arg1_type	= ARG_PTR_TO_CTX,
5153 };
5154 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5155 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5156 {
5157 	return __sock_gen_cookie(ctx);
5158 }
5159 
5160 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5161 	.func		= bpf_get_socket_cookie_sock,
5162 	.gpl_only	= false,
5163 	.ret_type	= RET_INTEGER,
5164 	.arg1_type	= ARG_PTR_TO_CTX,
5165 };
5166 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5167 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5168 {
5169 	return sk ? sock_gen_cookie(sk) : 0;
5170 }
5171 
5172 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5173 	.func		= bpf_get_socket_ptr_cookie,
5174 	.gpl_only	= false,
5175 	.ret_type	= RET_INTEGER,
5176 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5177 };
5178 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5179 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5180 {
5181 	return __sock_gen_cookie(ctx->sk);
5182 }
5183 
5184 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5185 	.func		= bpf_get_socket_cookie_sock_ops,
5186 	.gpl_only	= false,
5187 	.ret_type	= RET_INTEGER,
5188 	.arg1_type	= ARG_PTR_TO_CTX,
5189 };
5190 
__bpf_get_netns_cookie(struct sock * sk)5191 static u64 __bpf_get_netns_cookie(struct sock *sk)
5192 {
5193 	const struct net *net = sk ? sock_net(sk) : &init_net;
5194 
5195 	return net->net_cookie;
5196 }
5197 
BPF_CALL_1(bpf_get_netns_cookie,struct sk_buff *,skb)5198 BPF_CALL_1(bpf_get_netns_cookie, struct sk_buff *, skb)
5199 {
5200 	return __bpf_get_netns_cookie(skb && skb->sk ? skb->sk : NULL);
5201 }
5202 
5203 static const struct bpf_func_proto bpf_get_netns_cookie_proto = {
5204 	.func           = bpf_get_netns_cookie,
5205 	.ret_type       = RET_INTEGER,
5206 	.arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5207 };
5208 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5209 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5210 {
5211 	return __bpf_get_netns_cookie(ctx);
5212 }
5213 
5214 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5215 	.func		= bpf_get_netns_cookie_sock,
5216 	.gpl_only	= false,
5217 	.ret_type	= RET_INTEGER,
5218 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5219 };
5220 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5221 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5222 {
5223 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5224 }
5225 
5226 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5227 	.func		= bpf_get_netns_cookie_sock_addr,
5228 	.gpl_only	= false,
5229 	.ret_type	= RET_INTEGER,
5230 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5231 };
5232 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5233 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5234 {
5235 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5236 }
5237 
5238 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5239 	.func		= bpf_get_netns_cookie_sock_ops,
5240 	.gpl_only	= false,
5241 	.ret_type	= RET_INTEGER,
5242 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5243 };
5244 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5245 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5246 {
5247 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5248 }
5249 
5250 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5251 	.func		= bpf_get_netns_cookie_sk_msg,
5252 	.gpl_only	= false,
5253 	.ret_type	= RET_INTEGER,
5254 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5255 };
5256 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5257 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5258 {
5259 	struct sock *sk = sk_to_full_sk(skb->sk);
5260 	kuid_t kuid;
5261 
5262 	if (!sk || !sk_fullsock(sk))
5263 		return overflowuid;
5264 	kuid = sock_net_uid(sock_net(sk), sk);
5265 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5266 }
5267 
5268 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5269 	.func           = bpf_get_socket_uid,
5270 	.gpl_only       = false,
5271 	.ret_type       = RET_INTEGER,
5272 	.arg1_type      = ARG_PTR_TO_CTX,
5273 };
5274 
sk_bpf_set_get_cb_flags(struct sock * sk,char * optval,bool getopt)5275 static int sk_bpf_set_get_cb_flags(struct sock *sk, char *optval, bool getopt)
5276 {
5277 	u32 sk_bpf_cb_flags;
5278 
5279 	if (getopt) {
5280 		*(u32 *)optval = sk->sk_bpf_cb_flags;
5281 		return 0;
5282 	}
5283 
5284 	sk_bpf_cb_flags = *(u32 *)optval;
5285 
5286 	if (sk_bpf_cb_flags & ~SK_BPF_CB_MASK)
5287 		return -EINVAL;
5288 
5289 	sk->sk_bpf_cb_flags = sk_bpf_cb_flags;
5290 
5291 	return 0;
5292 }
5293 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5294 static int sol_socket_sockopt(struct sock *sk, int optname,
5295 			      char *optval, int *optlen,
5296 			      bool getopt)
5297 {
5298 	switch (optname) {
5299 	case SO_REUSEADDR:
5300 	case SO_SNDBUF:
5301 	case SO_RCVBUF:
5302 	case SO_KEEPALIVE:
5303 	case SO_PRIORITY:
5304 	case SO_REUSEPORT:
5305 	case SO_RCVLOWAT:
5306 	case SO_MARK:
5307 	case SO_MAX_PACING_RATE:
5308 	case SO_BINDTOIFINDEX:
5309 	case SO_TXREHASH:
5310 	case SK_BPF_CB_FLAGS:
5311 		if (*optlen != sizeof(int))
5312 			return -EINVAL;
5313 		break;
5314 	case SO_BINDTODEVICE:
5315 		break;
5316 	default:
5317 		return -EINVAL;
5318 	}
5319 
5320 	if (optname == SK_BPF_CB_FLAGS)
5321 		return sk_bpf_set_get_cb_flags(sk, optval, getopt);
5322 
5323 	if (getopt) {
5324 		if (optname == SO_BINDTODEVICE)
5325 			return -EINVAL;
5326 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5327 				     KERNEL_SOCKPTR(optval),
5328 				     KERNEL_SOCKPTR(optlen));
5329 	}
5330 
5331 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5332 			     KERNEL_SOCKPTR(optval), *optlen);
5333 }
5334 
bpf_sol_tcp_getsockopt(struct sock * sk,int optname,char * optval,int optlen)5335 static int bpf_sol_tcp_getsockopt(struct sock *sk, int optname,
5336 				  char *optval, int optlen)
5337 {
5338 	if (optlen != sizeof(int))
5339 		return -EINVAL;
5340 
5341 	switch (optname) {
5342 	case TCP_BPF_SOCK_OPS_CB_FLAGS: {
5343 		int cb_flags = tcp_sk(sk)->bpf_sock_ops_cb_flags;
5344 
5345 		memcpy(optval, &cb_flags, optlen);
5346 		break;
5347 	}
5348 	case TCP_BPF_RTO_MIN: {
5349 		int rto_min_us = jiffies_to_usecs(inet_csk(sk)->icsk_rto_min);
5350 
5351 		memcpy(optval, &rto_min_us, optlen);
5352 		break;
5353 	}
5354 	case TCP_BPF_DELACK_MAX: {
5355 		int delack_max_us = jiffies_to_usecs(inet_csk(sk)->icsk_delack_max);
5356 
5357 		memcpy(optval, &delack_max_us, optlen);
5358 		break;
5359 	}
5360 	default:
5361 		return -EINVAL;
5362 	}
5363 
5364 	return 0;
5365 }
5366 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5367 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5368 				  char *optval, int optlen)
5369 {
5370 	struct tcp_sock *tp = tcp_sk(sk);
5371 	unsigned long timeout;
5372 	int val;
5373 
5374 	if (optlen != sizeof(int))
5375 		return -EINVAL;
5376 
5377 	val = *(int *)optval;
5378 
5379 	/* Only some options are supported */
5380 	switch (optname) {
5381 	case TCP_BPF_IW:
5382 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5383 			return -EINVAL;
5384 		tcp_snd_cwnd_set(tp, val);
5385 		break;
5386 	case TCP_BPF_SNDCWND_CLAMP:
5387 		if (val <= 0)
5388 			return -EINVAL;
5389 		tp->snd_cwnd_clamp = val;
5390 		tp->snd_ssthresh = val;
5391 		break;
5392 	case TCP_BPF_DELACK_MAX:
5393 		timeout = usecs_to_jiffies(val);
5394 		if (timeout > TCP_DELACK_MAX ||
5395 		    timeout < TCP_TIMEOUT_MIN)
5396 			return -EINVAL;
5397 		inet_csk(sk)->icsk_delack_max = timeout;
5398 		break;
5399 	case TCP_BPF_RTO_MIN:
5400 		timeout = usecs_to_jiffies(val);
5401 		if (timeout > TCP_RTO_MIN ||
5402 		    timeout < TCP_TIMEOUT_MIN)
5403 			return -EINVAL;
5404 		inet_csk(sk)->icsk_rto_min = timeout;
5405 		break;
5406 	case TCP_BPF_SOCK_OPS_CB_FLAGS:
5407 		if (val & ~(BPF_SOCK_OPS_ALL_CB_FLAGS))
5408 			return -EINVAL;
5409 		tp->bpf_sock_ops_cb_flags = val;
5410 		break;
5411 	default:
5412 		return -EINVAL;
5413 	}
5414 
5415 	return 0;
5416 }
5417 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5418 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5419 				      int *optlen, bool getopt)
5420 {
5421 	struct tcp_sock *tp;
5422 	int ret;
5423 
5424 	if (*optlen < 2)
5425 		return -EINVAL;
5426 
5427 	if (getopt) {
5428 		if (!inet_csk(sk)->icsk_ca_ops)
5429 			return -EINVAL;
5430 		/* BPF expects NULL-terminated tcp-cc string */
5431 		optval[--(*optlen)] = '\0';
5432 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5433 					 KERNEL_SOCKPTR(optval),
5434 					 KERNEL_SOCKPTR(optlen));
5435 	}
5436 
5437 	/* "cdg" is the only cc that alloc a ptr
5438 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5439 	 * overwrite this ptr after switching to cdg.
5440 	 */
5441 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5442 		return -ENOTSUPP;
5443 
5444 	/* It stops this looping
5445 	 *
5446 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5447 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5448 	 *
5449 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5450 	 * in order to break the loop when both .init
5451 	 * are the same bpf prog.
5452 	 *
5453 	 * This applies even the second bpf_setsockopt(tcp_cc)
5454 	 * does not cause a loop.  This limits only the first
5455 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5456 	 * pick a fallback cc (eg. peer does not support ECN)
5457 	 * and the second '.init' cannot fallback to
5458 	 * another.
5459 	 */
5460 	tp = tcp_sk(sk);
5461 	if (tp->bpf_chg_cc_inprogress)
5462 		return -EBUSY;
5463 
5464 	tp->bpf_chg_cc_inprogress = 1;
5465 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5466 				KERNEL_SOCKPTR(optval), *optlen);
5467 	tp->bpf_chg_cc_inprogress = 0;
5468 	return ret;
5469 }
5470 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5471 static int sol_tcp_sockopt(struct sock *sk, int optname,
5472 			   char *optval, int *optlen,
5473 			   bool getopt)
5474 {
5475 	if (sk->sk_protocol != IPPROTO_TCP)
5476 		return -EINVAL;
5477 
5478 	switch (optname) {
5479 	case TCP_NODELAY:
5480 	case TCP_MAXSEG:
5481 	case TCP_KEEPIDLE:
5482 	case TCP_KEEPINTVL:
5483 	case TCP_KEEPCNT:
5484 	case TCP_SYNCNT:
5485 	case TCP_WINDOW_CLAMP:
5486 	case TCP_THIN_LINEAR_TIMEOUTS:
5487 	case TCP_USER_TIMEOUT:
5488 	case TCP_NOTSENT_LOWAT:
5489 	case TCP_SAVE_SYN:
5490 	case TCP_RTO_MAX_MS:
5491 		if (*optlen != sizeof(int))
5492 			return -EINVAL;
5493 		break;
5494 	case TCP_CONGESTION:
5495 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5496 	case TCP_SAVED_SYN:
5497 		if (*optlen < 1)
5498 			return -EINVAL;
5499 		break;
5500 	default:
5501 		if (getopt)
5502 			return bpf_sol_tcp_getsockopt(sk, optname, optval, *optlen);
5503 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5504 	}
5505 
5506 	if (getopt) {
5507 		if (optname == TCP_SAVED_SYN) {
5508 			struct tcp_sock *tp = tcp_sk(sk);
5509 
5510 			if (!tp->saved_syn ||
5511 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5512 				return -EINVAL;
5513 			memcpy(optval, tp->saved_syn->data, *optlen);
5514 			/* It cannot free tp->saved_syn here because it
5515 			 * does not know if the user space still needs it.
5516 			 */
5517 			return 0;
5518 		}
5519 
5520 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5521 					 KERNEL_SOCKPTR(optval),
5522 					 KERNEL_SOCKPTR(optlen));
5523 	}
5524 
5525 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5526 				 KERNEL_SOCKPTR(optval), *optlen);
5527 }
5528 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5529 static int sol_ip_sockopt(struct sock *sk, int optname,
5530 			  char *optval, int *optlen,
5531 			  bool getopt)
5532 {
5533 	if (sk->sk_family != AF_INET)
5534 		return -EINVAL;
5535 
5536 	switch (optname) {
5537 	case IP_TOS:
5538 		if (*optlen != sizeof(int))
5539 			return -EINVAL;
5540 		break;
5541 	default:
5542 		return -EINVAL;
5543 	}
5544 
5545 	if (getopt)
5546 		return do_ip_getsockopt(sk, SOL_IP, optname,
5547 					KERNEL_SOCKPTR(optval),
5548 					KERNEL_SOCKPTR(optlen));
5549 
5550 	return do_ip_setsockopt(sk, SOL_IP, optname,
5551 				KERNEL_SOCKPTR(optval), *optlen);
5552 }
5553 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5554 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5555 			    char *optval, int *optlen,
5556 			    bool getopt)
5557 {
5558 	if (sk->sk_family != AF_INET6)
5559 		return -EINVAL;
5560 
5561 	switch (optname) {
5562 	case IPV6_TCLASS:
5563 	case IPV6_AUTOFLOWLABEL:
5564 		if (*optlen != sizeof(int))
5565 			return -EINVAL;
5566 		break;
5567 	default:
5568 		return -EINVAL;
5569 	}
5570 
5571 	if (getopt)
5572 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5573 						      KERNEL_SOCKPTR(optval),
5574 						      KERNEL_SOCKPTR(optlen));
5575 
5576 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5577 					      KERNEL_SOCKPTR(optval), *optlen);
5578 }
5579 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5580 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5581 			    char *optval, int optlen)
5582 {
5583 	if (!sk_fullsock(sk))
5584 		return -EINVAL;
5585 
5586 	if (level == SOL_SOCKET)
5587 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5588 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5589 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5590 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5591 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5592 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5593 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5594 
5595 	return -EINVAL;
5596 }
5597 
is_locked_tcp_sock_ops(struct bpf_sock_ops_kern * bpf_sock)5598 static bool is_locked_tcp_sock_ops(struct bpf_sock_ops_kern *bpf_sock)
5599 {
5600 	return bpf_sock->op <= BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
5601 }
5602 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5603 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5604 			   char *optval, int optlen)
5605 {
5606 	if (sk_fullsock(sk))
5607 		sock_owned_by_me(sk);
5608 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5609 }
5610 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5611 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5612 			    char *optval, int optlen)
5613 {
5614 	int err, saved_optlen = optlen;
5615 
5616 	if (!sk_fullsock(sk)) {
5617 		err = -EINVAL;
5618 		goto done;
5619 	}
5620 
5621 	if (level == SOL_SOCKET)
5622 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5623 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5624 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5625 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5626 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5627 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5628 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5629 	else
5630 		err = -EINVAL;
5631 
5632 done:
5633 	if (err)
5634 		optlen = 0;
5635 	if (optlen < saved_optlen)
5636 		memset(optval + optlen, 0, saved_optlen - optlen);
5637 	return err;
5638 }
5639 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5640 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5641 			   char *optval, int optlen)
5642 {
5643 	if (sk_fullsock(sk))
5644 		sock_owned_by_me(sk);
5645 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5646 }
5647 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5648 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5649 	   int, optname, char *, optval, int, optlen)
5650 {
5651 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5652 }
5653 
5654 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5655 	.func		= bpf_sk_setsockopt,
5656 	.gpl_only	= false,
5657 	.ret_type	= RET_INTEGER,
5658 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5659 	.arg2_type	= ARG_ANYTHING,
5660 	.arg3_type	= ARG_ANYTHING,
5661 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5662 	.arg5_type	= ARG_CONST_SIZE,
5663 };
5664 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5665 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5666 	   int, optname, char *, optval, int, optlen)
5667 {
5668 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5669 }
5670 
5671 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5672 	.func		= bpf_sk_getsockopt,
5673 	.gpl_only	= false,
5674 	.ret_type	= RET_INTEGER,
5675 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5676 	.arg2_type	= ARG_ANYTHING,
5677 	.arg3_type	= ARG_ANYTHING,
5678 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5679 	.arg5_type	= ARG_CONST_SIZE,
5680 };
5681 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5682 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5683 	   int, optname, char *, optval, int, optlen)
5684 {
5685 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5686 }
5687 
5688 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5689 	.func		= bpf_unlocked_sk_setsockopt,
5690 	.gpl_only	= false,
5691 	.ret_type	= RET_INTEGER,
5692 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5693 	.arg2_type	= ARG_ANYTHING,
5694 	.arg3_type	= ARG_ANYTHING,
5695 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5696 	.arg5_type	= ARG_CONST_SIZE,
5697 };
5698 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5699 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5700 	   int, optname, char *, optval, int, optlen)
5701 {
5702 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5703 }
5704 
5705 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5706 	.func		= bpf_unlocked_sk_getsockopt,
5707 	.gpl_only	= false,
5708 	.ret_type	= RET_INTEGER,
5709 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5710 	.arg2_type	= ARG_ANYTHING,
5711 	.arg3_type	= ARG_ANYTHING,
5712 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5713 	.arg5_type	= ARG_CONST_SIZE,
5714 };
5715 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5716 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5717 	   int, level, int, optname, char *, optval, int, optlen)
5718 {
5719 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5720 }
5721 
5722 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5723 	.func		= bpf_sock_addr_setsockopt,
5724 	.gpl_only	= false,
5725 	.ret_type	= RET_INTEGER,
5726 	.arg1_type	= ARG_PTR_TO_CTX,
5727 	.arg2_type	= ARG_ANYTHING,
5728 	.arg3_type	= ARG_ANYTHING,
5729 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5730 	.arg5_type	= ARG_CONST_SIZE,
5731 };
5732 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5733 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5734 	   int, level, int, optname, char *, optval, int, optlen)
5735 {
5736 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5737 }
5738 
5739 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5740 	.func		= bpf_sock_addr_getsockopt,
5741 	.gpl_only	= false,
5742 	.ret_type	= RET_INTEGER,
5743 	.arg1_type	= ARG_PTR_TO_CTX,
5744 	.arg2_type	= ARG_ANYTHING,
5745 	.arg3_type	= ARG_ANYTHING,
5746 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5747 	.arg5_type	= ARG_CONST_SIZE,
5748 };
5749 
sk_bpf_set_get_bypass_prot_mem(struct sock * sk,char * optval,int optlen,bool getopt)5750 static int sk_bpf_set_get_bypass_prot_mem(struct sock *sk,
5751 					  char *optval, int optlen,
5752 					  bool getopt)
5753 {
5754 	int val;
5755 
5756 	if (optlen != sizeof(int))
5757 		return -EINVAL;
5758 
5759 	if (!sk_has_account(sk))
5760 		return -EOPNOTSUPP;
5761 
5762 	if (getopt) {
5763 		*(int *)optval = sk->sk_bypass_prot_mem;
5764 		return 0;
5765 	}
5766 
5767 	val = *(int *)optval;
5768 	if (val < 0 || val > 1)
5769 		return -EINVAL;
5770 
5771 	sk->sk_bypass_prot_mem = val;
5772 	return 0;
5773 }
5774 
BPF_CALL_5(bpf_sock_create_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5775 BPF_CALL_5(bpf_sock_create_setsockopt, struct sock *, sk, int, level,
5776 	   int, optname, char *, optval, int, optlen)
5777 {
5778 	if (level == SOL_SOCKET && optname == SK_BPF_BYPASS_PROT_MEM)
5779 		return sk_bpf_set_get_bypass_prot_mem(sk, optval, optlen, false);
5780 
5781 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5782 }
5783 
5784 static const struct bpf_func_proto bpf_sock_create_setsockopt_proto = {
5785 	.func		= bpf_sock_create_setsockopt,
5786 	.gpl_only	= false,
5787 	.ret_type	= RET_INTEGER,
5788 	.arg1_type	= ARG_PTR_TO_CTX,
5789 	.arg2_type	= ARG_ANYTHING,
5790 	.arg3_type	= ARG_ANYTHING,
5791 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5792 	.arg5_type	= ARG_CONST_SIZE,
5793 };
5794 
BPF_CALL_5(bpf_sock_create_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5795 BPF_CALL_5(bpf_sock_create_getsockopt, struct sock *, sk, int, level,
5796 	   int, optname, char *, optval, int, optlen)
5797 {
5798 	if (level == SOL_SOCKET && optname == SK_BPF_BYPASS_PROT_MEM) {
5799 		int err = sk_bpf_set_get_bypass_prot_mem(sk, optval, optlen, true);
5800 
5801 		if (err)
5802 			memset(optval, 0, optlen);
5803 
5804 		return err;
5805 	}
5806 
5807 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5808 }
5809 
5810 static const struct bpf_func_proto bpf_sock_create_getsockopt_proto = {
5811 	.func		= bpf_sock_create_getsockopt,
5812 	.gpl_only	= false,
5813 	.ret_type	= RET_INTEGER,
5814 	.arg1_type	= ARG_PTR_TO_CTX,
5815 	.arg2_type	= ARG_ANYTHING,
5816 	.arg3_type	= ARG_ANYTHING,
5817 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5818 	.arg5_type	= ARG_CONST_SIZE,
5819 };
5820 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5821 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5822 	   int, level, int, optname, char *, optval, int, optlen)
5823 {
5824 	if (!is_locked_tcp_sock_ops(bpf_sock))
5825 		return -EOPNOTSUPP;
5826 
5827 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5828 }
5829 
5830 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5831 	.func		= bpf_sock_ops_setsockopt,
5832 	.gpl_only	= false,
5833 	.ret_type	= RET_INTEGER,
5834 	.arg1_type	= ARG_PTR_TO_CTX,
5835 	.arg2_type	= ARG_ANYTHING,
5836 	.arg3_type	= ARG_ANYTHING,
5837 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5838 	.arg5_type	= ARG_CONST_SIZE,
5839 };
5840 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5841 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5842 				int optname, const u8 **start)
5843 {
5844 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5845 	const u8 *hdr_start;
5846 	int ret;
5847 
5848 	if (syn_skb) {
5849 		/* sk is a request_sock here */
5850 
5851 		if (optname == TCP_BPF_SYN) {
5852 			hdr_start = syn_skb->data;
5853 			ret = tcp_hdrlen(syn_skb);
5854 		} else if (optname == TCP_BPF_SYN_IP) {
5855 			hdr_start = skb_network_header(syn_skb);
5856 			ret = skb_network_header_len(syn_skb) +
5857 				tcp_hdrlen(syn_skb);
5858 		} else {
5859 			/* optname == TCP_BPF_SYN_MAC */
5860 			hdr_start = skb_mac_header(syn_skb);
5861 			ret = skb_mac_header_len(syn_skb) +
5862 				skb_network_header_len(syn_skb) +
5863 				tcp_hdrlen(syn_skb);
5864 		}
5865 	} else {
5866 		struct sock *sk = bpf_sock->sk;
5867 		struct saved_syn *saved_syn;
5868 
5869 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5870 			/* synack retransmit. bpf_sock->syn_skb will
5871 			 * not be available.  It has to resort to
5872 			 * saved_syn (if it is saved).
5873 			 */
5874 			saved_syn = inet_reqsk(sk)->saved_syn;
5875 		else
5876 			saved_syn = tcp_sk(sk)->saved_syn;
5877 
5878 		if (!saved_syn)
5879 			return -ENOENT;
5880 
5881 		if (optname == TCP_BPF_SYN) {
5882 			hdr_start = saved_syn->data +
5883 				saved_syn->mac_hdrlen +
5884 				saved_syn->network_hdrlen;
5885 			ret = saved_syn->tcp_hdrlen;
5886 		} else if (optname == TCP_BPF_SYN_IP) {
5887 			hdr_start = saved_syn->data +
5888 				saved_syn->mac_hdrlen;
5889 			ret = saved_syn->network_hdrlen +
5890 				saved_syn->tcp_hdrlen;
5891 		} else {
5892 			/* optname == TCP_BPF_SYN_MAC */
5893 
5894 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5895 			if (!saved_syn->mac_hdrlen)
5896 				return -ENOENT;
5897 
5898 			hdr_start = saved_syn->data;
5899 			ret = saved_syn->mac_hdrlen +
5900 				saved_syn->network_hdrlen +
5901 				saved_syn->tcp_hdrlen;
5902 		}
5903 	}
5904 
5905 	*start = hdr_start;
5906 	return ret;
5907 }
5908 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5909 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5910 	   int, level, int, optname, char *, optval, int, optlen)
5911 {
5912 	if (!is_locked_tcp_sock_ops(bpf_sock))
5913 		return -EOPNOTSUPP;
5914 
5915 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5916 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5917 		int ret, copy_len = 0;
5918 		const u8 *start;
5919 
5920 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5921 		if (ret > 0) {
5922 			copy_len = ret;
5923 			if (optlen < copy_len) {
5924 				copy_len = optlen;
5925 				ret = -ENOSPC;
5926 			}
5927 
5928 			memcpy(optval, start, copy_len);
5929 		}
5930 
5931 		/* Zero out unused buffer at the end */
5932 		memset(optval + copy_len, 0, optlen - copy_len);
5933 
5934 		return ret;
5935 	}
5936 
5937 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5938 }
5939 
5940 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5941 	.func		= bpf_sock_ops_getsockopt,
5942 	.gpl_only	= false,
5943 	.ret_type	= RET_INTEGER,
5944 	.arg1_type	= ARG_PTR_TO_CTX,
5945 	.arg2_type	= ARG_ANYTHING,
5946 	.arg3_type	= ARG_ANYTHING,
5947 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5948 	.arg5_type	= ARG_CONST_SIZE,
5949 };
5950 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5951 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5952 	   int, argval)
5953 {
5954 	struct sock *sk = bpf_sock->sk;
5955 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5956 
5957 	if (!is_locked_tcp_sock_ops(bpf_sock))
5958 		return -EOPNOTSUPP;
5959 
5960 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5961 		return -EINVAL;
5962 
5963 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5964 
5965 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5966 }
5967 
5968 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5969 	.func		= bpf_sock_ops_cb_flags_set,
5970 	.gpl_only	= false,
5971 	.ret_type	= RET_INTEGER,
5972 	.arg1_type	= ARG_PTR_TO_CTX,
5973 	.arg2_type	= ARG_ANYTHING,
5974 };
5975 
5976 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5977 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5978 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5979 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5980 	   int, addr_len)
5981 {
5982 #ifdef CONFIG_INET
5983 	struct sock *sk = ctx->sk;
5984 	u32 flags = BIND_FROM_BPF;
5985 	int err;
5986 
5987 	err = -EINVAL;
5988 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5989 		return err;
5990 	if (addr->sa_family == AF_INET) {
5991 		if (addr_len < sizeof(struct sockaddr_in))
5992 			return err;
5993 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5994 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5995 		return __inet_bind(sk, (struct sockaddr_unsized *)addr, addr_len, flags);
5996 #if IS_ENABLED(CONFIG_IPV6)
5997 	} else if (addr->sa_family == AF_INET6) {
5998 		if (addr_len < SIN6_LEN_RFC2133)
5999 			return err;
6000 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
6001 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
6002 		/* ipv6_bpf_stub cannot be NULL, since it's called from
6003 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
6004 		 */
6005 		return ipv6_bpf_stub->inet6_bind(sk, (struct sockaddr_unsized *)addr,
6006 						 addr_len, flags);
6007 #endif /* CONFIG_IPV6 */
6008 	}
6009 #endif /* CONFIG_INET */
6010 
6011 	return -EAFNOSUPPORT;
6012 }
6013 
6014 static const struct bpf_func_proto bpf_bind_proto = {
6015 	.func		= bpf_bind,
6016 	.gpl_only	= false,
6017 	.ret_type	= RET_INTEGER,
6018 	.arg1_type	= ARG_PTR_TO_CTX,
6019 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6020 	.arg3_type	= ARG_CONST_SIZE,
6021 };
6022 
6023 #ifdef CONFIG_XFRM
6024 
6025 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
6026     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
6027 
6028 struct metadata_dst __percpu *xfrm_bpf_md_dst;
6029 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
6030 
6031 #endif
6032 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)6033 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
6034 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
6035 {
6036 	const struct sec_path *sp = skb_sec_path(skb);
6037 	const struct xfrm_state *x;
6038 
6039 	if (!sp || unlikely(index >= sp->len || flags))
6040 		goto err_clear;
6041 
6042 	x = sp->xvec[index];
6043 
6044 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
6045 		goto err_clear;
6046 
6047 	to->reqid = x->props.reqid;
6048 	to->spi = x->id.spi;
6049 	to->family = x->props.family;
6050 	to->ext = 0;
6051 
6052 	if (to->family == AF_INET6) {
6053 		memcpy(to->remote_ipv6, x->props.saddr.a6,
6054 		       sizeof(to->remote_ipv6));
6055 	} else {
6056 		to->remote_ipv4 = x->props.saddr.a4;
6057 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
6058 	}
6059 
6060 	return 0;
6061 err_clear:
6062 	memset(to, 0, size);
6063 	return -EINVAL;
6064 }
6065 
6066 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
6067 	.func		= bpf_skb_get_xfrm_state,
6068 	.gpl_only	= false,
6069 	.ret_type	= RET_INTEGER,
6070 	.arg1_type	= ARG_PTR_TO_CTX,
6071 	.arg2_type	= ARG_ANYTHING,
6072 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
6073 	.arg4_type	= ARG_CONST_SIZE,
6074 	.arg5_type	= ARG_ANYTHING,
6075 };
6076 #endif
6077 
6078 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)6079 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
6080 {
6081 	params->h_vlan_TCI = 0;
6082 	params->h_vlan_proto = 0;
6083 	if (mtu)
6084 		params->mtu_result = mtu; /* union with tot_len */
6085 
6086 	return 0;
6087 }
6088 #endif
6089 
6090 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6091 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6092 			       u32 flags, bool check_mtu)
6093 {
6094 	struct fib_nh_common *nhc;
6095 	struct in_device *in_dev;
6096 	struct neighbour *neigh;
6097 	struct net_device *dev;
6098 	struct fib_result res;
6099 	struct flowi4 fl4;
6100 	u32 mtu = 0;
6101 	int err;
6102 
6103 	dev = dev_get_by_index_rcu(net, params->ifindex);
6104 	if (unlikely(!dev))
6105 		return -ENODEV;
6106 
6107 	/* verify forwarding is enabled on this interface */
6108 	in_dev = __in_dev_get_rcu(dev);
6109 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
6110 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6111 
6112 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6113 		fl4.flowi4_iif = 1;
6114 		fl4.flowi4_oif = params->ifindex;
6115 	} else {
6116 		fl4.flowi4_iif = params->ifindex;
6117 		fl4.flowi4_oif = 0;
6118 	}
6119 	fl4.flowi4_dscp = inet_dsfield_to_dscp(params->tos);
6120 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
6121 	fl4.flowi4_flags = 0;
6122 
6123 	fl4.flowi4_proto = params->l4_protocol;
6124 	fl4.daddr = params->ipv4_dst;
6125 	fl4.saddr = params->ipv4_src;
6126 	fl4.fl4_sport = params->sport;
6127 	fl4.fl4_dport = params->dport;
6128 	fl4.flowi4_multipath_hash = 0;
6129 
6130 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6131 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6132 		struct fib_table *tb;
6133 
6134 		if (flags & BPF_FIB_LOOKUP_TBID) {
6135 			tbid = params->tbid;
6136 			/* zero out for vlan output */
6137 			params->tbid = 0;
6138 		}
6139 
6140 		tb = fib_get_table(net, tbid);
6141 		if (unlikely(!tb))
6142 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6143 
6144 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
6145 	} else {
6146 		if (flags & BPF_FIB_LOOKUP_MARK)
6147 			fl4.flowi4_mark = params->mark;
6148 		else
6149 			fl4.flowi4_mark = 0;
6150 		fl4.flowi4_secid = 0;
6151 		fl4.flowi4_tun_key.tun_id = 0;
6152 		fl4.flowi4_uid = sock_net_uid(net, NULL);
6153 
6154 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
6155 	}
6156 
6157 	if (err) {
6158 		/* map fib lookup errors to RTN_ type */
6159 		if (err == -EINVAL)
6160 			return BPF_FIB_LKUP_RET_BLACKHOLE;
6161 		if (err == -EHOSTUNREACH)
6162 			return BPF_FIB_LKUP_RET_UNREACHABLE;
6163 		if (err == -EACCES)
6164 			return BPF_FIB_LKUP_RET_PROHIBIT;
6165 
6166 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6167 	}
6168 
6169 	if (res.type != RTN_UNICAST)
6170 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6171 
6172 	if (fib_info_num_path(res.fi) > 1)
6173 		fib_select_path(net, &res, &fl4, NULL);
6174 
6175 	if (check_mtu) {
6176 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
6177 		if (params->tot_len > mtu) {
6178 			params->mtu_result = mtu; /* union with tot_len */
6179 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6180 		}
6181 	}
6182 
6183 	nhc = res.nhc;
6184 
6185 	/* do not handle lwt encaps right now */
6186 	if (nhc->nhc_lwtstate)
6187 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6188 
6189 	dev = nhc->nhc_dev;
6190 
6191 	params->rt_metric = res.fi->fib_priority;
6192 	params->ifindex = dev->ifindex;
6193 
6194 	if (flags & BPF_FIB_LOOKUP_SRC)
6195 		params->ipv4_src = fib_result_prefsrc(net, &res);
6196 
6197 	/* xdp and cls_bpf programs are run in RCU-bh so
6198 	 * rcu_read_lock_bh is not needed here
6199 	 */
6200 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
6201 		if (nhc->nhc_gw_family)
6202 			params->ipv4_dst = nhc->nhc_gw.ipv4;
6203 	} else {
6204 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
6205 
6206 		params->family = AF_INET6;
6207 		*dst = nhc->nhc_gw.ipv6;
6208 	}
6209 
6210 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6211 		goto set_fwd_params;
6212 
6213 	if (likely(nhc->nhc_gw_family != AF_INET6))
6214 		neigh = __ipv4_neigh_lookup_noref(dev,
6215 						  (__force u32)params->ipv4_dst);
6216 	else
6217 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6218 
6219 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6220 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6221 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6222 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6223 
6224 set_fwd_params:
6225 	return bpf_fib_set_fwd_params(params, mtu);
6226 }
6227 #endif
6228 
6229 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)6230 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6231 			       u32 flags, bool check_mtu)
6232 {
6233 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6234 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6235 	struct fib6_result res = {};
6236 	struct neighbour *neigh;
6237 	struct net_device *dev;
6238 	struct inet6_dev *idev;
6239 	struct flowi6 fl6;
6240 	int strict = 0;
6241 	int oif, err;
6242 	u32 mtu = 0;
6243 
6244 	/* link local addresses are never forwarded */
6245 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6246 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6247 
6248 	dev = dev_get_by_index_rcu(net, params->ifindex);
6249 	if (unlikely(!dev))
6250 		return -ENODEV;
6251 
6252 	idev = __in6_dev_get_safely(dev);
6253 	if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6254 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6255 
6256 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6257 		fl6.flowi6_iif = 1;
6258 		oif = fl6.flowi6_oif = params->ifindex;
6259 	} else {
6260 		oif = fl6.flowi6_iif = params->ifindex;
6261 		fl6.flowi6_oif = 0;
6262 		strict = RT6_LOOKUP_F_HAS_SADDR;
6263 	}
6264 	fl6.flowlabel = params->flowinfo;
6265 	fl6.flowi6_scope = 0;
6266 	fl6.flowi6_flags = 0;
6267 	fl6.mp_hash = 0;
6268 
6269 	fl6.flowi6_proto = params->l4_protocol;
6270 	fl6.daddr = *dst;
6271 	fl6.saddr = *src;
6272 	fl6.fl6_sport = params->sport;
6273 	fl6.fl6_dport = params->dport;
6274 
6275 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6276 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6277 		struct fib6_table *tb;
6278 
6279 		if (flags & BPF_FIB_LOOKUP_TBID) {
6280 			tbid = params->tbid;
6281 			/* zero out for vlan output */
6282 			params->tbid = 0;
6283 		}
6284 
6285 		tb = ipv6_stub->fib6_get_table(net, tbid);
6286 		if (unlikely(!tb))
6287 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6288 
6289 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6290 						   strict);
6291 	} else {
6292 		if (flags & BPF_FIB_LOOKUP_MARK)
6293 			fl6.flowi6_mark = params->mark;
6294 		else
6295 			fl6.flowi6_mark = 0;
6296 		fl6.flowi6_secid = 0;
6297 		fl6.flowi6_tun_key.tun_id = 0;
6298 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6299 
6300 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6301 	}
6302 
6303 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6304 		     res.f6i == net->ipv6.fib6_null_entry))
6305 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6306 
6307 	switch (res.fib6_type) {
6308 	/* only unicast is forwarded */
6309 	case RTN_UNICAST:
6310 		break;
6311 	case RTN_BLACKHOLE:
6312 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6313 	case RTN_UNREACHABLE:
6314 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6315 	case RTN_PROHIBIT:
6316 		return BPF_FIB_LKUP_RET_PROHIBIT;
6317 	default:
6318 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6319 	}
6320 
6321 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6322 				    fl6.flowi6_oif != 0, NULL, strict);
6323 
6324 	if (check_mtu) {
6325 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6326 		if (params->tot_len > mtu) {
6327 			params->mtu_result = mtu; /* union with tot_len */
6328 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6329 		}
6330 	}
6331 
6332 	if (res.nh->fib_nh_lws)
6333 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6334 
6335 	if (res.nh->fib_nh_gw_family)
6336 		*dst = res.nh->fib_nh_gw6;
6337 
6338 	dev = res.nh->fib_nh_dev;
6339 	params->rt_metric = res.f6i->fib6_metric;
6340 	params->ifindex = dev->ifindex;
6341 
6342 	if (flags & BPF_FIB_LOOKUP_SRC) {
6343 		if (res.f6i->fib6_prefsrc.plen) {
6344 			*src = res.f6i->fib6_prefsrc.addr;
6345 		} else {
6346 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6347 								&fl6.daddr, 0,
6348 								src);
6349 			if (err)
6350 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6351 		}
6352 	}
6353 
6354 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6355 		goto set_fwd_params;
6356 
6357 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6358 	 * not needed here.
6359 	 */
6360 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6361 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6362 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6363 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6364 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6365 
6366 set_fwd_params:
6367 	return bpf_fib_set_fwd_params(params, mtu);
6368 }
6369 #endif
6370 
6371 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6372 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6373 			     BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6374 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6375 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6376 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6377 {
6378 	if (plen < sizeof(*params))
6379 		return -EINVAL;
6380 
6381 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6382 		return -EINVAL;
6383 
6384 	switch (params->family) {
6385 #if IS_ENABLED(CONFIG_INET)
6386 	case AF_INET:
6387 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6388 					   flags, true);
6389 #endif
6390 #if IS_ENABLED(CONFIG_IPV6)
6391 	case AF_INET6:
6392 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6393 					   flags, true);
6394 #endif
6395 	}
6396 	return -EAFNOSUPPORT;
6397 }
6398 
6399 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6400 	.func		= bpf_xdp_fib_lookup,
6401 	.gpl_only	= true,
6402 	.ret_type	= RET_INTEGER,
6403 	.arg1_type      = ARG_PTR_TO_CTX,
6404 	.arg2_type      = ARG_PTR_TO_MEM,
6405 	.arg3_type      = ARG_CONST_SIZE,
6406 	.arg4_type	= ARG_ANYTHING,
6407 };
6408 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6409 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6410 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6411 {
6412 	struct net *net = dev_net(skb->dev);
6413 	int rc = -EAFNOSUPPORT;
6414 	bool check_mtu = false;
6415 
6416 	if (plen < sizeof(*params))
6417 		return -EINVAL;
6418 
6419 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6420 		return -EINVAL;
6421 
6422 	if (params->tot_len)
6423 		check_mtu = true;
6424 
6425 	switch (params->family) {
6426 #if IS_ENABLED(CONFIG_INET)
6427 	case AF_INET:
6428 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6429 		break;
6430 #endif
6431 #if IS_ENABLED(CONFIG_IPV6)
6432 	case AF_INET6:
6433 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6434 		break;
6435 #endif
6436 	}
6437 
6438 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6439 		struct net_device *dev;
6440 
6441 		/* When tot_len isn't provided by user, check skb
6442 		 * against MTU of FIB lookup resulting net_device
6443 		 */
6444 		dev = dev_get_by_index_rcu(net, params->ifindex);
6445 		if (!is_skb_forwardable(dev, skb))
6446 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6447 
6448 		params->mtu_result = dev->mtu; /* union with tot_len */
6449 	}
6450 
6451 	return rc;
6452 }
6453 
6454 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6455 	.func		= bpf_skb_fib_lookup,
6456 	.gpl_only	= true,
6457 	.ret_type	= RET_INTEGER,
6458 	.arg1_type      = ARG_PTR_TO_CTX,
6459 	.arg2_type      = ARG_PTR_TO_MEM,
6460 	.arg3_type      = ARG_CONST_SIZE,
6461 	.arg4_type	= ARG_ANYTHING,
6462 };
6463 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6464 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6465 					    u32 ifindex)
6466 {
6467 	struct net *netns = dev_net(dev_curr);
6468 
6469 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6470 	if (ifindex == 0)
6471 		return dev_curr;
6472 
6473 	return dev_get_by_index_rcu(netns, ifindex);
6474 }
6475 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6476 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6477 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6478 {
6479 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6480 	struct net_device *dev = skb->dev;
6481 	int mtu, dev_len, skb_len;
6482 
6483 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6484 		return -EINVAL;
6485 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6486 		return -EINVAL;
6487 
6488 	dev = __dev_via_ifindex(dev, ifindex);
6489 	if (unlikely(!dev))
6490 		return -ENODEV;
6491 
6492 	mtu = READ_ONCE(dev->mtu);
6493 	dev_len = mtu + dev->hard_header_len;
6494 
6495 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6496 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6497 
6498 	skb_len += len_diff; /* minus result pass check */
6499 	if (skb_len <= dev_len) {
6500 		ret = BPF_MTU_CHK_RET_SUCCESS;
6501 		goto out;
6502 	}
6503 	/* At this point, skb->len exceed MTU, but as it include length of all
6504 	 * segments, it can still be below MTU.  The SKB can possibly get
6505 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6506 	 * must choose if segs are to be MTU checked.
6507 	 */
6508 	if (skb_is_gso(skb)) {
6509 		ret = BPF_MTU_CHK_RET_SUCCESS;
6510 		if (flags & BPF_MTU_CHK_SEGS) {
6511 			if (!skb_transport_header_was_set(skb))
6512 				return -EINVAL;
6513 			if (!skb_gso_validate_network_len(skb, mtu))
6514 				ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6515 		}
6516 	}
6517 out:
6518 	*mtu_len = mtu;
6519 	return ret;
6520 }
6521 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6522 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6523 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6524 {
6525 	struct net_device *dev = xdp->rxq->dev;
6526 	int xdp_len = xdp->data_end - xdp->data;
6527 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6528 	int mtu, dev_len;
6529 
6530 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6531 	if (unlikely(flags))
6532 		return -EINVAL;
6533 
6534 	dev = __dev_via_ifindex(dev, ifindex);
6535 	if (unlikely(!dev))
6536 		return -ENODEV;
6537 
6538 	mtu = READ_ONCE(dev->mtu);
6539 	dev_len = mtu + dev->hard_header_len;
6540 
6541 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6542 	if (*mtu_len)
6543 		xdp_len = *mtu_len + dev->hard_header_len;
6544 
6545 	xdp_len += len_diff; /* minus result pass check */
6546 	if (xdp_len > dev_len)
6547 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6548 
6549 	*mtu_len = mtu;
6550 	return ret;
6551 }
6552 
6553 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6554 	.func		= bpf_skb_check_mtu,
6555 	.gpl_only	= true,
6556 	.ret_type	= RET_INTEGER,
6557 	.arg1_type      = ARG_PTR_TO_CTX,
6558 	.arg2_type      = ARG_ANYTHING,
6559 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6560 	.arg3_size	= sizeof(u32),
6561 	.arg4_type      = ARG_ANYTHING,
6562 	.arg5_type      = ARG_ANYTHING,
6563 };
6564 
6565 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6566 	.func		= bpf_xdp_check_mtu,
6567 	.gpl_only	= true,
6568 	.ret_type	= RET_INTEGER,
6569 	.arg1_type      = ARG_PTR_TO_CTX,
6570 	.arg2_type      = ARG_ANYTHING,
6571 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6572 	.arg3_size	= sizeof(u32),
6573 	.arg4_type      = ARG_ANYTHING,
6574 	.arg5_type      = ARG_ANYTHING,
6575 };
6576 
6577 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6578 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6579 {
6580 	int err;
6581 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6582 
6583 	if (!seg6_validate_srh(srh, len, false))
6584 		return -EINVAL;
6585 
6586 	switch (type) {
6587 	case BPF_LWT_ENCAP_SEG6_INLINE:
6588 		if (skb->protocol != htons(ETH_P_IPV6))
6589 			return -EBADMSG;
6590 
6591 		err = seg6_do_srh_inline(skb, srh);
6592 		break;
6593 	case BPF_LWT_ENCAP_SEG6:
6594 		skb_reset_inner_headers(skb);
6595 		skb->encapsulation = 1;
6596 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6597 		break;
6598 	default:
6599 		return -EINVAL;
6600 	}
6601 
6602 	bpf_compute_data_pointers(skb);
6603 	if (err)
6604 		return err;
6605 
6606 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6607 
6608 	return seg6_lookup_nexthop(skb, NULL, 0);
6609 }
6610 #endif /* CONFIG_IPV6_SEG6_BPF */
6611 
6612 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6613 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6614 			     bool ingress)
6615 {
6616 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6617 }
6618 #endif
6619 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6620 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6621 	   u32, len)
6622 {
6623 	switch (type) {
6624 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6625 	case BPF_LWT_ENCAP_SEG6:
6626 	case BPF_LWT_ENCAP_SEG6_INLINE:
6627 		return bpf_push_seg6_encap(skb, type, hdr, len);
6628 #endif
6629 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6630 	case BPF_LWT_ENCAP_IP:
6631 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6632 #endif
6633 	default:
6634 		return -EINVAL;
6635 	}
6636 }
6637 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6638 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6639 	   void *, hdr, u32, len)
6640 {
6641 	switch (type) {
6642 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6643 	case BPF_LWT_ENCAP_IP:
6644 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6645 #endif
6646 	default:
6647 		return -EINVAL;
6648 	}
6649 }
6650 
6651 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6652 	.func		= bpf_lwt_in_push_encap,
6653 	.gpl_only	= false,
6654 	.ret_type	= RET_INTEGER,
6655 	.arg1_type	= ARG_PTR_TO_CTX,
6656 	.arg2_type	= ARG_ANYTHING,
6657 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6658 	.arg4_type	= ARG_CONST_SIZE
6659 };
6660 
6661 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6662 	.func		= bpf_lwt_xmit_push_encap,
6663 	.gpl_only	= false,
6664 	.ret_type	= RET_INTEGER,
6665 	.arg1_type	= ARG_PTR_TO_CTX,
6666 	.arg2_type	= ARG_ANYTHING,
6667 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6668 	.arg4_type	= ARG_CONST_SIZE
6669 };
6670 
6671 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6672 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6673 	   const void *, from, u32, len)
6674 {
6675 	struct seg6_bpf_srh_state *srh_state =
6676 		this_cpu_ptr(&seg6_bpf_srh_states);
6677 	struct ipv6_sr_hdr *srh = srh_state->srh;
6678 	void *srh_tlvs, *srh_end, *ptr;
6679 	int srhoff = 0;
6680 
6681 	lockdep_assert_held(&srh_state->bh_lock);
6682 	if (srh == NULL)
6683 		return -EINVAL;
6684 
6685 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6686 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6687 
6688 	ptr = skb->data + offset;
6689 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6690 		srh_state->valid = false;
6691 	else if (ptr < (void *)&srh->flags ||
6692 		 ptr + len > (void *)&srh->segments)
6693 		return -EFAULT;
6694 
6695 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6696 		return -EFAULT;
6697 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6698 		return -EINVAL;
6699 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6700 
6701 	memcpy(skb->data + offset, from, len);
6702 	return 0;
6703 }
6704 
6705 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6706 	.func		= bpf_lwt_seg6_store_bytes,
6707 	.gpl_only	= false,
6708 	.ret_type	= RET_INTEGER,
6709 	.arg1_type	= ARG_PTR_TO_CTX,
6710 	.arg2_type	= ARG_ANYTHING,
6711 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6712 	.arg4_type	= ARG_CONST_SIZE
6713 };
6714 
bpf_update_srh_state(struct sk_buff * skb)6715 static void bpf_update_srh_state(struct sk_buff *skb)
6716 {
6717 	struct seg6_bpf_srh_state *srh_state =
6718 		this_cpu_ptr(&seg6_bpf_srh_states);
6719 	int srhoff = 0;
6720 
6721 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6722 		srh_state->srh = NULL;
6723 	} else {
6724 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6725 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6726 		srh_state->valid = true;
6727 	}
6728 }
6729 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6730 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6731 	   u32, action, void *, param, u32, param_len)
6732 {
6733 	struct seg6_bpf_srh_state *srh_state =
6734 		this_cpu_ptr(&seg6_bpf_srh_states);
6735 	int hdroff = 0;
6736 	int err;
6737 
6738 	lockdep_assert_held(&srh_state->bh_lock);
6739 	switch (action) {
6740 	case SEG6_LOCAL_ACTION_END_X:
6741 		if (!seg6_bpf_has_valid_srh(skb))
6742 			return -EBADMSG;
6743 		if (param_len != sizeof(struct in6_addr))
6744 			return -EINVAL;
6745 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6746 	case SEG6_LOCAL_ACTION_END_T:
6747 		if (!seg6_bpf_has_valid_srh(skb))
6748 			return -EBADMSG;
6749 		if (param_len != sizeof(int))
6750 			return -EINVAL;
6751 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6752 	case SEG6_LOCAL_ACTION_END_DT6:
6753 		if (!seg6_bpf_has_valid_srh(skb))
6754 			return -EBADMSG;
6755 		if (param_len != sizeof(int))
6756 			return -EINVAL;
6757 
6758 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6759 			return -EBADMSG;
6760 		if (!pskb_pull(skb, hdroff))
6761 			return -EBADMSG;
6762 
6763 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6764 		skb_reset_network_header(skb);
6765 		skb_reset_transport_header(skb);
6766 		skb->encapsulation = 0;
6767 
6768 		bpf_compute_data_pointers(skb);
6769 		bpf_update_srh_state(skb);
6770 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6771 	case SEG6_LOCAL_ACTION_END_B6:
6772 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6773 			return -EBADMSG;
6774 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6775 					  param, param_len);
6776 		if (!err)
6777 			bpf_update_srh_state(skb);
6778 
6779 		return err;
6780 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6781 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6782 			return -EBADMSG;
6783 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6784 					  param, param_len);
6785 		if (!err)
6786 			bpf_update_srh_state(skb);
6787 
6788 		return err;
6789 	default:
6790 		return -EINVAL;
6791 	}
6792 }
6793 
6794 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6795 	.func		= bpf_lwt_seg6_action,
6796 	.gpl_only	= false,
6797 	.ret_type	= RET_INTEGER,
6798 	.arg1_type	= ARG_PTR_TO_CTX,
6799 	.arg2_type	= ARG_ANYTHING,
6800 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6801 	.arg4_type	= ARG_CONST_SIZE
6802 };
6803 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6804 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6805 	   s32, len)
6806 {
6807 	struct seg6_bpf_srh_state *srh_state =
6808 		this_cpu_ptr(&seg6_bpf_srh_states);
6809 	struct ipv6_sr_hdr *srh = srh_state->srh;
6810 	void *srh_end, *srh_tlvs, *ptr;
6811 	struct ipv6hdr *hdr;
6812 	int srhoff = 0;
6813 	int ret;
6814 
6815 	lockdep_assert_held(&srh_state->bh_lock);
6816 	if (unlikely(srh == NULL))
6817 		return -EINVAL;
6818 
6819 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6820 			((srh->first_segment + 1) << 4));
6821 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6822 			srh_state->hdrlen);
6823 	ptr = skb->data + offset;
6824 
6825 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6826 		return -EFAULT;
6827 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6828 		return -EFAULT;
6829 
6830 	if (len > 0) {
6831 		ret = skb_cow_head(skb, len);
6832 		if (unlikely(ret < 0))
6833 			return ret;
6834 
6835 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6836 	} else {
6837 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6838 	}
6839 
6840 	bpf_compute_data_pointers(skb);
6841 	if (unlikely(ret < 0))
6842 		return ret;
6843 
6844 	hdr = (struct ipv6hdr *)skb->data;
6845 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6846 
6847 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6848 		return -EINVAL;
6849 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6850 	srh_state->hdrlen += len;
6851 	srh_state->valid = false;
6852 	return 0;
6853 }
6854 
6855 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6856 	.func		= bpf_lwt_seg6_adjust_srh,
6857 	.gpl_only	= false,
6858 	.ret_type	= RET_INTEGER,
6859 	.arg1_type	= ARG_PTR_TO_CTX,
6860 	.arg2_type	= ARG_ANYTHING,
6861 	.arg3_type	= ARG_ANYTHING,
6862 };
6863 #endif /* CONFIG_IPV6_SEG6_BPF */
6864 
6865 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6866 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6867 			      int dif, int sdif, u8 family, u8 proto)
6868 {
6869 	bool refcounted = false;
6870 	struct sock *sk = NULL;
6871 
6872 	if (family == AF_INET) {
6873 		__be32 src4 = tuple->ipv4.saddr;
6874 		__be32 dst4 = tuple->ipv4.daddr;
6875 
6876 		if (proto == IPPROTO_TCP)
6877 			sk = __inet_lookup(net, NULL, 0,
6878 					   src4, tuple->ipv4.sport,
6879 					   dst4, tuple->ipv4.dport,
6880 					   dif, sdif, &refcounted);
6881 		else
6882 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6883 					       dst4, tuple->ipv4.dport,
6884 					       dif, sdif, net->ipv4.udp_table, NULL);
6885 #if IS_ENABLED(CONFIG_IPV6)
6886 	} else {
6887 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6888 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6889 
6890 		if (proto == IPPROTO_TCP)
6891 			sk = __inet6_lookup(net, NULL, 0,
6892 					    src6, tuple->ipv6.sport,
6893 					    dst6, ntohs(tuple->ipv6.dport),
6894 					    dif, sdif, &refcounted);
6895 		else if (likely(ipv6_bpf_stub))
6896 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6897 							    src6, tuple->ipv6.sport,
6898 							    dst6, tuple->ipv6.dport,
6899 							    dif, sdif,
6900 							    net->ipv4.udp_table, NULL);
6901 #endif
6902 	}
6903 
6904 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6905 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6906 		sk = NULL;
6907 	}
6908 	return sk;
6909 }
6910 
6911 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6912  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6913  */
6914 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6915 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6916 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6917 		 u64 flags, int sdif)
6918 {
6919 	struct sock *sk = NULL;
6920 	struct net *net;
6921 	u8 family;
6922 
6923 	if (len == sizeof(tuple->ipv4))
6924 		family = AF_INET;
6925 	else if (len == sizeof(tuple->ipv6))
6926 		family = AF_INET6;
6927 	else
6928 		return NULL;
6929 
6930 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6931 		goto out;
6932 
6933 	if (sdif < 0) {
6934 		if (family == AF_INET)
6935 			sdif = inet_sdif(skb);
6936 		else
6937 			sdif = inet6_sdif(skb);
6938 	}
6939 
6940 	if ((s32)netns_id < 0) {
6941 		net = caller_net;
6942 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6943 	} else {
6944 		net = get_net_ns_by_id(caller_net, netns_id);
6945 		if (unlikely(!net))
6946 			goto out;
6947 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6948 		put_net(net);
6949 	}
6950 
6951 out:
6952 	return sk;
6953 }
6954 
6955 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6956 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6957 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6958 		u64 flags, int sdif)
6959 {
6960 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6961 					   ifindex, proto, netns_id, flags,
6962 					   sdif);
6963 
6964 	if (sk) {
6965 		struct sock *sk2 = sk_to_full_sk(sk);
6966 
6967 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6968 		 * sock refcnt is decremented to prevent a request_sock leak.
6969 		 */
6970 		if (sk2 != sk) {
6971 			sock_gen_put(sk);
6972 			/* Ensure there is no need to bump sk2 refcnt */
6973 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6974 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6975 				return NULL;
6976 			}
6977 			sk = sk2;
6978 		}
6979 	}
6980 
6981 	return sk;
6982 }
6983 
6984 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6985 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6986 	       u8 proto, u64 netns_id, u64 flags)
6987 {
6988 	struct net *caller_net;
6989 	int ifindex;
6990 
6991 	if (skb->dev) {
6992 		caller_net = dev_net(skb->dev);
6993 		ifindex = skb->dev->ifindex;
6994 	} else {
6995 		caller_net = sock_net(skb->sk);
6996 		ifindex = 0;
6997 	}
6998 
6999 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
7000 				netns_id, flags, -1);
7001 }
7002 
7003 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)7004 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
7005 	      u8 proto, u64 netns_id, u64 flags)
7006 {
7007 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
7008 					 flags);
7009 
7010 	if (sk) {
7011 		struct sock *sk2 = sk_to_full_sk(sk);
7012 
7013 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
7014 		 * sock refcnt is decremented to prevent a request_sock leak.
7015 		 */
7016 		if (sk2 != sk) {
7017 			sock_gen_put(sk);
7018 			/* Ensure there is no need to bump sk2 refcnt */
7019 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
7020 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
7021 				return NULL;
7022 			}
7023 			sk = sk2;
7024 		}
7025 	}
7026 
7027 	return sk;
7028 }
7029 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7030 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
7031 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7032 {
7033 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
7034 					     netns_id, flags);
7035 }
7036 
7037 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
7038 	.func		= bpf_skc_lookup_tcp,
7039 	.gpl_only	= false,
7040 	.pkt_access	= true,
7041 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7042 	.arg1_type	= ARG_PTR_TO_CTX,
7043 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7044 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7045 	.arg4_type	= ARG_ANYTHING,
7046 	.arg5_type	= ARG_ANYTHING,
7047 };
7048 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7049 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
7050 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7051 {
7052 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
7053 					    netns_id, flags);
7054 }
7055 
7056 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
7057 	.func		= bpf_sk_lookup_tcp,
7058 	.gpl_only	= false,
7059 	.pkt_access	= true,
7060 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7061 	.arg1_type	= ARG_PTR_TO_CTX,
7062 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7063 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7064 	.arg4_type	= ARG_ANYTHING,
7065 	.arg5_type	= ARG_ANYTHING,
7066 };
7067 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7068 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
7069 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7070 {
7071 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
7072 					    netns_id, flags);
7073 }
7074 
7075 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
7076 	.func		= bpf_sk_lookup_udp,
7077 	.gpl_only	= false,
7078 	.pkt_access	= true,
7079 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7080 	.arg1_type	= ARG_PTR_TO_CTX,
7081 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7082 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7083 	.arg4_type	= ARG_ANYTHING,
7084 	.arg5_type	= ARG_ANYTHING,
7085 };
7086 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7087 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
7088 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7089 {
7090 	struct net_device *dev = skb->dev;
7091 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7092 	struct net *caller_net = dev_net(dev);
7093 
7094 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
7095 					       ifindex, IPPROTO_TCP, netns_id,
7096 					       flags, sdif);
7097 }
7098 
7099 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
7100 	.func		= bpf_tc_skc_lookup_tcp,
7101 	.gpl_only	= false,
7102 	.pkt_access	= true,
7103 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7104 	.arg1_type	= ARG_PTR_TO_CTX,
7105 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7106 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7107 	.arg4_type	= ARG_ANYTHING,
7108 	.arg5_type	= ARG_ANYTHING,
7109 };
7110 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7111 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
7112 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7113 {
7114 	struct net_device *dev = skb->dev;
7115 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7116 	struct net *caller_net = dev_net(dev);
7117 
7118 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7119 					      ifindex, IPPROTO_TCP, netns_id,
7120 					      flags, sdif);
7121 }
7122 
7123 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
7124 	.func		= bpf_tc_sk_lookup_tcp,
7125 	.gpl_only	= false,
7126 	.pkt_access	= true,
7127 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7128 	.arg1_type	= ARG_PTR_TO_CTX,
7129 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7130 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7131 	.arg4_type	= ARG_ANYTHING,
7132 	.arg5_type	= ARG_ANYTHING,
7133 };
7134 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7135 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
7136 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7137 {
7138 	struct net_device *dev = skb->dev;
7139 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7140 	struct net *caller_net = dev_net(dev);
7141 
7142 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
7143 					      ifindex, IPPROTO_UDP, netns_id,
7144 					      flags, sdif);
7145 }
7146 
7147 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
7148 	.func		= bpf_tc_sk_lookup_udp,
7149 	.gpl_only	= false,
7150 	.pkt_access	= true,
7151 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7152 	.arg1_type	= ARG_PTR_TO_CTX,
7153 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7154 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7155 	.arg4_type	= ARG_ANYTHING,
7156 	.arg5_type	= ARG_ANYTHING,
7157 };
7158 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)7159 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
7160 {
7161 	if (sk && sk_is_refcounted(sk))
7162 		sock_gen_put(sk);
7163 	return 0;
7164 }
7165 
7166 static const struct bpf_func_proto bpf_sk_release_proto = {
7167 	.func		= bpf_sk_release,
7168 	.gpl_only	= false,
7169 	.ret_type	= RET_INTEGER,
7170 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
7171 };
7172 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7173 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
7174 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7175 {
7176 	struct net_device *dev = ctx->rxq->dev;
7177 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7178 	struct net *caller_net = dev_net(dev);
7179 
7180 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7181 					      ifindex, IPPROTO_UDP, netns_id,
7182 					      flags, sdif);
7183 }
7184 
7185 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
7186 	.func           = bpf_xdp_sk_lookup_udp,
7187 	.gpl_only       = false,
7188 	.pkt_access     = true,
7189 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7190 	.arg1_type      = ARG_PTR_TO_CTX,
7191 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7192 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7193 	.arg4_type      = ARG_ANYTHING,
7194 	.arg5_type      = ARG_ANYTHING,
7195 };
7196 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7197 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
7198 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7199 {
7200 	struct net_device *dev = ctx->rxq->dev;
7201 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7202 	struct net *caller_net = dev_net(dev);
7203 
7204 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
7205 					       ifindex, IPPROTO_TCP, netns_id,
7206 					       flags, sdif);
7207 }
7208 
7209 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7210 	.func           = bpf_xdp_skc_lookup_tcp,
7211 	.gpl_only       = false,
7212 	.pkt_access     = true,
7213 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7214 	.arg1_type      = ARG_PTR_TO_CTX,
7215 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7216 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7217 	.arg4_type      = ARG_ANYTHING,
7218 	.arg5_type      = ARG_ANYTHING,
7219 };
7220 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)7221 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7222 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7223 {
7224 	struct net_device *dev = ctx->rxq->dev;
7225 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7226 	struct net *caller_net = dev_net(dev);
7227 
7228 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7229 					      ifindex, IPPROTO_TCP, netns_id,
7230 					      flags, sdif);
7231 }
7232 
7233 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7234 	.func           = bpf_xdp_sk_lookup_tcp,
7235 	.gpl_only       = false,
7236 	.pkt_access     = true,
7237 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7238 	.arg1_type      = ARG_PTR_TO_CTX,
7239 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7240 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7241 	.arg4_type      = ARG_ANYTHING,
7242 	.arg5_type      = ARG_ANYTHING,
7243 };
7244 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7245 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7246 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7247 {
7248 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7249 					       sock_net(ctx->sk), 0,
7250 					       IPPROTO_TCP, netns_id, flags,
7251 					       -1);
7252 }
7253 
7254 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7255 	.func		= bpf_sock_addr_skc_lookup_tcp,
7256 	.gpl_only	= false,
7257 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7258 	.arg1_type	= ARG_PTR_TO_CTX,
7259 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7260 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7261 	.arg4_type	= ARG_ANYTHING,
7262 	.arg5_type	= ARG_ANYTHING,
7263 };
7264 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7265 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7266 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7267 {
7268 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7269 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7270 					      netns_id, flags, -1);
7271 }
7272 
7273 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7274 	.func		= bpf_sock_addr_sk_lookup_tcp,
7275 	.gpl_only	= false,
7276 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7277 	.arg1_type	= ARG_PTR_TO_CTX,
7278 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7279 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7280 	.arg4_type	= ARG_ANYTHING,
7281 	.arg5_type	= ARG_ANYTHING,
7282 };
7283 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7284 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7285 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7286 {
7287 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7288 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7289 					      netns_id, flags, -1);
7290 }
7291 
7292 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7293 	.func		= bpf_sock_addr_sk_lookup_udp,
7294 	.gpl_only	= false,
7295 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7296 	.arg1_type	= ARG_PTR_TO_CTX,
7297 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7298 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7299 	.arg4_type	= ARG_ANYTHING,
7300 	.arg5_type	= ARG_ANYTHING,
7301 };
7302 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7303 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7304 				  struct bpf_insn_access_aux *info)
7305 {
7306 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7307 					  icsk_retransmits))
7308 		return false;
7309 
7310 	if (off % size != 0)
7311 		return false;
7312 
7313 	switch (off) {
7314 	case offsetof(struct bpf_tcp_sock, bytes_received):
7315 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7316 		return size == sizeof(__u64);
7317 	default:
7318 		return size == sizeof(__u32);
7319 	}
7320 }
7321 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7322 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7323 				    const struct bpf_insn *si,
7324 				    struct bpf_insn *insn_buf,
7325 				    struct bpf_prog *prog, u32 *target_size)
7326 {
7327 	struct bpf_insn *insn = insn_buf;
7328 
7329 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7330 	do {								\
7331 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7332 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7333 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7334 				      si->dst_reg, si->src_reg,		\
7335 				      offsetof(struct tcp_sock, FIELD)); \
7336 	} while (0)
7337 
7338 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7339 	do {								\
7340 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7341 					  FIELD) >			\
7342 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7343 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7344 					struct inet_connection_sock,	\
7345 					FIELD),				\
7346 				      si->dst_reg, si->src_reg,		\
7347 				      offsetof(				\
7348 					struct inet_connection_sock,	\
7349 					FIELD));			\
7350 	} while (0)
7351 
7352 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7353 
7354 	switch (si->off) {
7355 	case offsetof(struct bpf_tcp_sock, rtt_min):
7356 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7357 			     sizeof(struct minmax));
7358 		BUILD_BUG_ON(sizeof(struct minmax) <
7359 			     sizeof(struct minmax_sample));
7360 
7361 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7362 				      offsetof(struct tcp_sock, rtt_min) +
7363 				      offsetof(struct minmax_sample, v));
7364 		break;
7365 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7366 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7367 		break;
7368 	case offsetof(struct bpf_tcp_sock, srtt_us):
7369 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7370 		break;
7371 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7372 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7373 		break;
7374 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7375 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7376 		break;
7377 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7378 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7379 		break;
7380 	case offsetof(struct bpf_tcp_sock, snd_una):
7381 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7382 		break;
7383 	case offsetof(struct bpf_tcp_sock, mss_cache):
7384 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7385 		break;
7386 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7387 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7388 		break;
7389 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7390 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7391 		break;
7392 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7393 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7394 		break;
7395 	case offsetof(struct bpf_tcp_sock, packets_out):
7396 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7397 		break;
7398 	case offsetof(struct bpf_tcp_sock, retrans_out):
7399 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7400 		break;
7401 	case offsetof(struct bpf_tcp_sock, total_retrans):
7402 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7403 		break;
7404 	case offsetof(struct bpf_tcp_sock, segs_in):
7405 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7406 		break;
7407 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7408 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7409 		break;
7410 	case offsetof(struct bpf_tcp_sock, segs_out):
7411 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7412 		break;
7413 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7414 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7415 		break;
7416 	case offsetof(struct bpf_tcp_sock, lost_out):
7417 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7418 		break;
7419 	case offsetof(struct bpf_tcp_sock, sacked_out):
7420 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7421 		break;
7422 	case offsetof(struct bpf_tcp_sock, bytes_received):
7423 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7424 		break;
7425 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7426 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7427 		break;
7428 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7429 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7430 		break;
7431 	case offsetof(struct bpf_tcp_sock, delivered):
7432 		BPF_TCP_SOCK_GET_COMMON(delivered);
7433 		break;
7434 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7435 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7436 		break;
7437 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7438 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7439 		break;
7440 	}
7441 
7442 	return insn - insn_buf;
7443 }
7444 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7445 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7446 {
7447 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7448 		return (unsigned long)sk;
7449 
7450 	return (unsigned long)NULL;
7451 }
7452 
7453 const struct bpf_func_proto bpf_tcp_sock_proto = {
7454 	.func		= bpf_tcp_sock,
7455 	.gpl_only	= false,
7456 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7457 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7458 };
7459 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7460 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7461 {
7462 	sk = sk_to_full_sk(sk);
7463 
7464 	if (sk && sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7465 		return (unsigned long)sk;
7466 
7467 	return (unsigned long)NULL;
7468 }
7469 
7470 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7471 	.func		= bpf_get_listener_sock,
7472 	.gpl_only	= false,
7473 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7474 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7475 };
7476 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7477 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7478 {
7479 	unsigned int iphdr_len;
7480 
7481 	switch (skb_protocol(skb, true)) {
7482 	case cpu_to_be16(ETH_P_IP):
7483 		iphdr_len = sizeof(struct iphdr);
7484 		break;
7485 	case cpu_to_be16(ETH_P_IPV6):
7486 		iphdr_len = sizeof(struct ipv6hdr);
7487 		break;
7488 	default:
7489 		return 0;
7490 	}
7491 
7492 	if (skb_headlen(skb) < iphdr_len)
7493 		return 0;
7494 
7495 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7496 		return 0;
7497 
7498 	return INET_ECN_set_ce(skb);
7499 }
7500 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7501 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7502 				  struct bpf_insn_access_aux *info)
7503 {
7504 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7505 		return false;
7506 
7507 	if (off % size != 0)
7508 		return false;
7509 
7510 	switch (off) {
7511 	default:
7512 		return size == sizeof(__u32);
7513 	}
7514 }
7515 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7516 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7517 				    const struct bpf_insn *si,
7518 				    struct bpf_insn *insn_buf,
7519 				    struct bpf_prog *prog, u32 *target_size)
7520 {
7521 	struct bpf_insn *insn = insn_buf;
7522 
7523 #define BPF_XDP_SOCK_GET(FIELD)						\
7524 	do {								\
7525 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7526 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7527 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7528 				      si->dst_reg, si->src_reg,		\
7529 				      offsetof(struct xdp_sock, FIELD)); \
7530 	} while (0)
7531 
7532 	BTF_TYPE_EMIT(struct bpf_xdp_sock);
7533 
7534 	switch (si->off) {
7535 	case offsetof(struct bpf_xdp_sock, queue_id):
7536 		BPF_XDP_SOCK_GET(queue_id);
7537 		break;
7538 	}
7539 
7540 	return insn - insn_buf;
7541 }
7542 
7543 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7544 	.func           = bpf_skb_ecn_set_ce,
7545 	.gpl_only       = false,
7546 	.ret_type       = RET_INTEGER,
7547 	.arg1_type      = ARG_PTR_TO_CTX,
7548 };
7549 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7550 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7551 	   struct tcphdr *, th, u32, th_len)
7552 {
7553 #ifdef CONFIG_SYN_COOKIES
7554 	int ret;
7555 
7556 	if (unlikely(!sk || th_len < sizeof(*th)))
7557 		return -EINVAL;
7558 
7559 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7560 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7561 		return -EINVAL;
7562 
7563 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7564 		return -EINVAL;
7565 
7566 	if (!th->ack || th->rst || th->syn)
7567 		return -ENOENT;
7568 
7569 	if (unlikely(iph_len < sizeof(struct iphdr)))
7570 		return -EINVAL;
7571 
7572 	if (tcp_synq_no_recent_overflow(sk))
7573 		return -ENOENT;
7574 
7575 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7576 	 * same offset so we can cast to the shorter header (struct iphdr).
7577 	 */
7578 	switch (((struct iphdr *)iph)->version) {
7579 	case 4:
7580 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7581 			return -EINVAL;
7582 
7583 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7584 		break;
7585 
7586 #if IS_BUILTIN(CONFIG_IPV6)
7587 	case 6:
7588 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7589 			return -EINVAL;
7590 
7591 		if (sk->sk_family != AF_INET6)
7592 			return -EINVAL;
7593 
7594 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7595 		break;
7596 #endif /* CONFIG_IPV6 */
7597 
7598 	default:
7599 		return -EPROTONOSUPPORT;
7600 	}
7601 
7602 	if (ret > 0)
7603 		return 0;
7604 
7605 	return -ENOENT;
7606 #else
7607 	return -ENOTSUPP;
7608 #endif
7609 }
7610 
7611 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7612 	.func		= bpf_tcp_check_syncookie,
7613 	.gpl_only	= true,
7614 	.pkt_access	= true,
7615 	.ret_type	= RET_INTEGER,
7616 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7617 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7618 	.arg3_type	= ARG_CONST_SIZE,
7619 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7620 	.arg5_type	= ARG_CONST_SIZE,
7621 };
7622 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7623 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7624 	   struct tcphdr *, th, u32, th_len)
7625 {
7626 #ifdef CONFIG_SYN_COOKIES
7627 	u32 cookie;
7628 	u16 mss;
7629 
7630 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7631 		return -EINVAL;
7632 
7633 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7634 		return -EINVAL;
7635 
7636 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7637 		return -ENOENT;
7638 
7639 	if (!th->syn || th->ack || th->fin || th->rst)
7640 		return -EINVAL;
7641 
7642 	if (unlikely(iph_len < sizeof(struct iphdr)))
7643 		return -EINVAL;
7644 
7645 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7646 	 * same offset so we can cast to the shorter header (struct iphdr).
7647 	 */
7648 	switch (((struct iphdr *)iph)->version) {
7649 	case 4:
7650 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7651 			return -EINVAL;
7652 
7653 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7654 		break;
7655 
7656 #if IS_BUILTIN(CONFIG_IPV6)
7657 	case 6:
7658 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7659 			return -EINVAL;
7660 
7661 		if (sk->sk_family != AF_INET6)
7662 			return -EINVAL;
7663 
7664 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7665 		break;
7666 #endif /* CONFIG_IPV6 */
7667 
7668 	default:
7669 		return -EPROTONOSUPPORT;
7670 	}
7671 	if (mss == 0)
7672 		return -ENOENT;
7673 
7674 	return cookie | ((u64)mss << 32);
7675 #else
7676 	return -EOPNOTSUPP;
7677 #endif /* CONFIG_SYN_COOKIES */
7678 }
7679 
7680 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7681 	.func		= bpf_tcp_gen_syncookie,
7682 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7683 	.pkt_access	= true,
7684 	.ret_type	= RET_INTEGER,
7685 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7686 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7687 	.arg3_type	= ARG_CONST_SIZE,
7688 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7689 	.arg5_type	= ARG_CONST_SIZE,
7690 };
7691 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7692 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7693 {
7694 	if (!sk || flags != 0)
7695 		return -EINVAL;
7696 	if (!skb_at_tc_ingress(skb))
7697 		return -EOPNOTSUPP;
7698 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7699 		return -ENETUNREACH;
7700 	if (sk_unhashed(sk))
7701 		return -EOPNOTSUPP;
7702 	if (sk_is_refcounted(sk) &&
7703 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7704 		return -ENOENT;
7705 
7706 	skb_orphan(skb);
7707 	skb->sk = sk;
7708 	skb->destructor = sock_pfree;
7709 
7710 	return 0;
7711 }
7712 
7713 static const struct bpf_func_proto bpf_sk_assign_proto = {
7714 	.func		= bpf_sk_assign,
7715 	.gpl_only	= false,
7716 	.ret_type	= RET_INTEGER,
7717 	.arg1_type      = ARG_PTR_TO_CTX,
7718 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7719 	.arg3_type	= ARG_ANYTHING,
7720 };
7721 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7722 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7723 				    u8 search_kind, const u8 *magic,
7724 				    u8 magic_len, bool *eol)
7725 {
7726 	u8 kind, kind_len;
7727 
7728 	*eol = false;
7729 
7730 	while (op < opend) {
7731 		kind = op[0];
7732 
7733 		if (kind == TCPOPT_EOL) {
7734 			*eol = true;
7735 			return ERR_PTR(-ENOMSG);
7736 		} else if (kind == TCPOPT_NOP) {
7737 			op++;
7738 			continue;
7739 		}
7740 
7741 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7742 			/* Something is wrong in the received header.
7743 			 * Follow the TCP stack's tcp_parse_options()
7744 			 * and just bail here.
7745 			 */
7746 			return ERR_PTR(-EFAULT);
7747 
7748 		kind_len = op[1];
7749 		if (search_kind == kind) {
7750 			if (!magic_len)
7751 				return op;
7752 
7753 			if (magic_len > kind_len - 2)
7754 				return ERR_PTR(-ENOMSG);
7755 
7756 			if (!memcmp(&op[2], magic, magic_len))
7757 				return op;
7758 		}
7759 
7760 		op += kind_len;
7761 	}
7762 
7763 	return ERR_PTR(-ENOMSG);
7764 }
7765 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7766 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7767 	   void *, search_res, u32, len, u64, flags)
7768 {
7769 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7770 	const u8 *op, *opend, *magic, *search = search_res;
7771 	u8 search_kind, search_len, copy_len, magic_len;
7772 	int ret;
7773 
7774 	if (!is_locked_tcp_sock_ops(bpf_sock))
7775 		return -EOPNOTSUPP;
7776 
7777 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7778 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7779 	 * and this helper disallow loading them also.
7780 	 */
7781 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7782 		return -EINVAL;
7783 
7784 	search_kind = search[0];
7785 	search_len = search[1];
7786 
7787 	if (search_len > len || search_kind == TCPOPT_NOP ||
7788 	    search_kind == TCPOPT_EOL)
7789 		return -EINVAL;
7790 
7791 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7792 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7793 		if (search_len != 4 && search_len != 6)
7794 			return -EINVAL;
7795 		magic = &search[2];
7796 		magic_len = search_len - 2;
7797 	} else {
7798 		if (search_len)
7799 			return -EINVAL;
7800 		magic = NULL;
7801 		magic_len = 0;
7802 	}
7803 
7804 	if (load_syn) {
7805 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7806 		if (ret < 0)
7807 			return ret;
7808 
7809 		opend = op + ret;
7810 		op += sizeof(struct tcphdr);
7811 	} else {
7812 		if (!bpf_sock->skb ||
7813 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7814 			/* This bpf_sock->op cannot call this helper */
7815 			return -EPERM;
7816 
7817 		opend = bpf_sock->skb_data_end;
7818 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7819 	}
7820 
7821 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7822 				&eol);
7823 	if (IS_ERR(op))
7824 		return PTR_ERR(op);
7825 
7826 	copy_len = op[1];
7827 	ret = copy_len;
7828 	if (copy_len > len) {
7829 		ret = -ENOSPC;
7830 		copy_len = len;
7831 	}
7832 
7833 	memcpy(search_res, op, copy_len);
7834 	return ret;
7835 }
7836 
7837 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7838 	.func		= bpf_sock_ops_load_hdr_opt,
7839 	.gpl_only	= false,
7840 	.ret_type	= RET_INTEGER,
7841 	.arg1_type	= ARG_PTR_TO_CTX,
7842 	.arg2_type	= ARG_PTR_TO_MEM | MEM_WRITE,
7843 	.arg3_type	= ARG_CONST_SIZE,
7844 	.arg4_type	= ARG_ANYTHING,
7845 };
7846 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7847 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7848 	   const void *, from, u32, len, u64, flags)
7849 {
7850 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7851 	const u8 *op, *new_op, *magic = NULL;
7852 	struct sk_buff *skb;
7853 	bool eol;
7854 
7855 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7856 		return -EPERM;
7857 
7858 	if (len < 2 || flags)
7859 		return -EINVAL;
7860 
7861 	new_op = from;
7862 	new_kind = new_op[0];
7863 	new_kind_len = new_op[1];
7864 
7865 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7866 	    new_kind == TCPOPT_EOL)
7867 		return -EINVAL;
7868 
7869 	if (new_kind_len > bpf_sock->remaining_opt_len)
7870 		return -ENOSPC;
7871 
7872 	/* 253 is another experimental kind */
7873 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7874 		if (new_kind_len < 4)
7875 			return -EINVAL;
7876 		/* Match for the 2 byte magic also.
7877 		 * RFC 6994: the magic could be 2 or 4 bytes.
7878 		 * Hence, matching by 2 byte only is on the
7879 		 * conservative side but it is the right
7880 		 * thing to do for the 'search-for-duplication'
7881 		 * purpose.
7882 		 */
7883 		magic = &new_op[2];
7884 		magic_len = 2;
7885 	}
7886 
7887 	/* Check for duplication */
7888 	skb = bpf_sock->skb;
7889 	op = skb->data + sizeof(struct tcphdr);
7890 	opend = bpf_sock->skb_data_end;
7891 
7892 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7893 				&eol);
7894 	if (!IS_ERR(op))
7895 		return -EEXIST;
7896 
7897 	if (PTR_ERR(op) != -ENOMSG)
7898 		return PTR_ERR(op);
7899 
7900 	if (eol)
7901 		/* The option has been ended.  Treat it as no more
7902 		 * header option can be written.
7903 		 */
7904 		return -ENOSPC;
7905 
7906 	/* No duplication found.  Store the header option. */
7907 	memcpy(opend, from, new_kind_len);
7908 
7909 	bpf_sock->remaining_opt_len -= new_kind_len;
7910 	bpf_sock->skb_data_end += new_kind_len;
7911 
7912 	return 0;
7913 }
7914 
7915 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7916 	.func		= bpf_sock_ops_store_hdr_opt,
7917 	.gpl_only	= false,
7918 	.ret_type	= RET_INTEGER,
7919 	.arg1_type	= ARG_PTR_TO_CTX,
7920 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7921 	.arg3_type	= ARG_CONST_SIZE,
7922 	.arg4_type	= ARG_ANYTHING,
7923 };
7924 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7925 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7926 	   u32, len, u64, flags)
7927 {
7928 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7929 		return -EPERM;
7930 
7931 	if (flags || len < 2)
7932 		return -EINVAL;
7933 
7934 	if (len > bpf_sock->remaining_opt_len)
7935 		return -ENOSPC;
7936 
7937 	bpf_sock->remaining_opt_len -= len;
7938 
7939 	return 0;
7940 }
7941 
7942 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7943 	.func		= bpf_sock_ops_reserve_hdr_opt,
7944 	.gpl_only	= false,
7945 	.ret_type	= RET_INTEGER,
7946 	.arg1_type	= ARG_PTR_TO_CTX,
7947 	.arg2_type	= ARG_ANYTHING,
7948 	.arg3_type	= ARG_ANYTHING,
7949 };
7950 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7951 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7952 	   u64, tstamp, u32, tstamp_type)
7953 {
7954 	/* skb_clear_delivery_time() is done for inet protocol */
7955 	if (skb->protocol != htons(ETH_P_IP) &&
7956 	    skb->protocol != htons(ETH_P_IPV6))
7957 		return -EOPNOTSUPP;
7958 
7959 	switch (tstamp_type) {
7960 	case BPF_SKB_CLOCK_REALTIME:
7961 		skb->tstamp = tstamp;
7962 		skb->tstamp_type = SKB_CLOCK_REALTIME;
7963 		break;
7964 	case BPF_SKB_CLOCK_MONOTONIC:
7965 		if (!tstamp)
7966 			return -EINVAL;
7967 		skb->tstamp = tstamp;
7968 		skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7969 		break;
7970 	case BPF_SKB_CLOCK_TAI:
7971 		if (!tstamp)
7972 			return -EINVAL;
7973 		skb->tstamp = tstamp;
7974 		skb->tstamp_type = SKB_CLOCK_TAI;
7975 		break;
7976 	default:
7977 		return -EINVAL;
7978 	}
7979 
7980 	return 0;
7981 }
7982 
7983 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7984 	.func           = bpf_skb_set_tstamp,
7985 	.gpl_only       = false,
7986 	.ret_type       = RET_INTEGER,
7987 	.arg1_type      = ARG_PTR_TO_CTX,
7988 	.arg2_type      = ARG_ANYTHING,
7989 	.arg3_type      = ARG_ANYTHING,
7990 };
7991 
7992 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7993 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7994 	   struct tcphdr *, th, u32, th_len)
7995 {
7996 	u32 cookie;
7997 	u16 mss;
7998 
7999 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
8000 		return -EINVAL;
8001 
8002 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
8003 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
8004 
8005 	return cookie | ((u64)mss << 32);
8006 }
8007 
8008 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
8009 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
8010 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
8011 	.pkt_access	= true,
8012 	.ret_type	= RET_INTEGER,
8013 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8014 	.arg1_size	= sizeof(struct iphdr),
8015 	.arg2_type	= ARG_PTR_TO_MEM,
8016 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
8017 };
8018 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)8019 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
8020 	   struct tcphdr *, th, u32, th_len)
8021 {
8022 #if IS_BUILTIN(CONFIG_IPV6)
8023 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
8024 		sizeof(struct ipv6hdr);
8025 	u32 cookie;
8026 	u16 mss;
8027 
8028 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
8029 		return -EINVAL;
8030 
8031 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
8032 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
8033 
8034 	return cookie | ((u64)mss << 32);
8035 #else
8036 	return -EPROTONOSUPPORT;
8037 #endif
8038 }
8039 
8040 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
8041 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
8042 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
8043 	.pkt_access	= true,
8044 	.ret_type	= RET_INTEGER,
8045 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8046 	.arg1_size	= sizeof(struct ipv6hdr),
8047 	.arg2_type	= ARG_PTR_TO_MEM,
8048 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
8049 };
8050 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)8051 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
8052 	   struct tcphdr *, th)
8053 {
8054 	if (__cookie_v4_check(iph, th) > 0)
8055 		return 0;
8056 
8057 	return -EACCES;
8058 }
8059 
8060 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
8061 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
8062 	.gpl_only	= true, /* __cookie_v4_check is GPL */
8063 	.pkt_access	= true,
8064 	.ret_type	= RET_INTEGER,
8065 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8066 	.arg1_size	= sizeof(struct iphdr),
8067 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8068 	.arg2_size	= sizeof(struct tcphdr),
8069 };
8070 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)8071 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
8072 	   struct tcphdr *, th)
8073 {
8074 #if IS_BUILTIN(CONFIG_IPV6)
8075 	if (__cookie_v6_check(iph, th) > 0)
8076 		return 0;
8077 
8078 	return -EACCES;
8079 #else
8080 	return -EPROTONOSUPPORT;
8081 #endif
8082 }
8083 
8084 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
8085 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
8086 	.gpl_only	= true, /* __cookie_v6_check is GPL */
8087 	.pkt_access	= true,
8088 	.ret_type	= RET_INTEGER,
8089 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8090 	.arg1_size	= sizeof(struct ipv6hdr),
8091 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
8092 	.arg2_size	= sizeof(struct tcphdr),
8093 };
8094 #endif /* CONFIG_SYN_COOKIES */
8095 
8096 #endif /* CONFIG_INET */
8097 
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)8098 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
8099 {
8100 	switch (func_id) {
8101 	case BPF_FUNC_clone_redirect:
8102 	case BPF_FUNC_l3_csum_replace:
8103 	case BPF_FUNC_l4_csum_replace:
8104 	case BPF_FUNC_lwt_push_encap:
8105 	case BPF_FUNC_lwt_seg6_action:
8106 	case BPF_FUNC_lwt_seg6_adjust_srh:
8107 	case BPF_FUNC_lwt_seg6_store_bytes:
8108 	case BPF_FUNC_msg_pop_data:
8109 	case BPF_FUNC_msg_pull_data:
8110 	case BPF_FUNC_msg_push_data:
8111 	case BPF_FUNC_skb_adjust_room:
8112 	case BPF_FUNC_skb_change_head:
8113 	case BPF_FUNC_skb_change_proto:
8114 	case BPF_FUNC_skb_change_tail:
8115 	case BPF_FUNC_skb_pull_data:
8116 	case BPF_FUNC_skb_store_bytes:
8117 	case BPF_FUNC_skb_vlan_pop:
8118 	case BPF_FUNC_skb_vlan_push:
8119 	case BPF_FUNC_store_hdr_opt:
8120 	case BPF_FUNC_xdp_adjust_head:
8121 	case BPF_FUNC_xdp_adjust_meta:
8122 	case BPF_FUNC_xdp_adjust_tail:
8123 	/* tail-called program could call any of the above */
8124 	case BPF_FUNC_tail_call:
8125 		return true;
8126 	default:
8127 		return false;
8128 	}
8129 }
8130 
8131 const struct bpf_func_proto bpf_event_output_data_proto __weak;
8132 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
8133 
8134 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8135 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8136 {
8137 	const struct bpf_func_proto *func_proto;
8138 
8139 	func_proto = cgroup_common_func_proto(func_id, prog);
8140 	if (func_proto)
8141 		return func_proto;
8142 
8143 	switch (func_id) {
8144 	case BPF_FUNC_get_socket_cookie:
8145 		return &bpf_get_socket_cookie_sock_proto;
8146 	case BPF_FUNC_get_netns_cookie:
8147 		return &bpf_get_netns_cookie_sock_proto;
8148 	case BPF_FUNC_perf_event_output:
8149 		return &bpf_event_output_data_proto;
8150 	case BPF_FUNC_sk_storage_get:
8151 		return &bpf_sk_storage_get_cg_sock_proto;
8152 	case BPF_FUNC_ktime_get_coarse_ns:
8153 		return &bpf_ktime_get_coarse_ns_proto;
8154 	case BPF_FUNC_setsockopt:
8155 		switch (prog->expected_attach_type) {
8156 		case BPF_CGROUP_INET_SOCK_CREATE:
8157 			return &bpf_sock_create_setsockopt_proto;
8158 		default:
8159 			return NULL;
8160 		}
8161 	case BPF_FUNC_getsockopt:
8162 		switch (prog->expected_attach_type) {
8163 		case BPF_CGROUP_INET_SOCK_CREATE:
8164 			return &bpf_sock_create_getsockopt_proto;
8165 		default:
8166 			return NULL;
8167 		}
8168 	default:
8169 		return bpf_base_func_proto(func_id, prog);
8170 	}
8171 }
8172 
8173 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8174 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8175 {
8176 	const struct bpf_func_proto *func_proto;
8177 
8178 	func_proto = cgroup_common_func_proto(func_id, prog);
8179 	if (func_proto)
8180 		return func_proto;
8181 
8182 	switch (func_id) {
8183 	case BPF_FUNC_bind:
8184 		switch (prog->expected_attach_type) {
8185 		case BPF_CGROUP_INET4_CONNECT:
8186 		case BPF_CGROUP_INET6_CONNECT:
8187 			return &bpf_bind_proto;
8188 		default:
8189 			return NULL;
8190 		}
8191 	case BPF_FUNC_get_socket_cookie:
8192 		return &bpf_get_socket_cookie_sock_addr_proto;
8193 	case BPF_FUNC_get_netns_cookie:
8194 		return &bpf_get_netns_cookie_sock_addr_proto;
8195 	case BPF_FUNC_perf_event_output:
8196 		return &bpf_event_output_data_proto;
8197 #ifdef CONFIG_INET
8198 	case BPF_FUNC_sk_lookup_tcp:
8199 		return &bpf_sock_addr_sk_lookup_tcp_proto;
8200 	case BPF_FUNC_sk_lookup_udp:
8201 		return &bpf_sock_addr_sk_lookup_udp_proto;
8202 	case BPF_FUNC_sk_release:
8203 		return &bpf_sk_release_proto;
8204 	case BPF_FUNC_skc_lookup_tcp:
8205 		return &bpf_sock_addr_skc_lookup_tcp_proto;
8206 #endif /* CONFIG_INET */
8207 	case BPF_FUNC_sk_storage_get:
8208 		return &bpf_sk_storage_get_proto;
8209 	case BPF_FUNC_sk_storage_delete:
8210 		return &bpf_sk_storage_delete_proto;
8211 	case BPF_FUNC_setsockopt:
8212 		switch (prog->expected_attach_type) {
8213 		case BPF_CGROUP_INET4_BIND:
8214 		case BPF_CGROUP_INET6_BIND:
8215 		case BPF_CGROUP_INET4_CONNECT:
8216 		case BPF_CGROUP_INET6_CONNECT:
8217 		case BPF_CGROUP_UNIX_CONNECT:
8218 		case BPF_CGROUP_UDP4_RECVMSG:
8219 		case BPF_CGROUP_UDP6_RECVMSG:
8220 		case BPF_CGROUP_UNIX_RECVMSG:
8221 		case BPF_CGROUP_UDP4_SENDMSG:
8222 		case BPF_CGROUP_UDP6_SENDMSG:
8223 		case BPF_CGROUP_UNIX_SENDMSG:
8224 		case BPF_CGROUP_INET4_GETPEERNAME:
8225 		case BPF_CGROUP_INET6_GETPEERNAME:
8226 		case BPF_CGROUP_UNIX_GETPEERNAME:
8227 		case BPF_CGROUP_INET4_GETSOCKNAME:
8228 		case BPF_CGROUP_INET6_GETSOCKNAME:
8229 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8230 			return &bpf_sock_addr_setsockopt_proto;
8231 		default:
8232 			return NULL;
8233 		}
8234 	case BPF_FUNC_getsockopt:
8235 		switch (prog->expected_attach_type) {
8236 		case BPF_CGROUP_INET4_BIND:
8237 		case BPF_CGROUP_INET6_BIND:
8238 		case BPF_CGROUP_INET4_CONNECT:
8239 		case BPF_CGROUP_INET6_CONNECT:
8240 		case BPF_CGROUP_UNIX_CONNECT:
8241 		case BPF_CGROUP_UDP4_RECVMSG:
8242 		case BPF_CGROUP_UDP6_RECVMSG:
8243 		case BPF_CGROUP_UNIX_RECVMSG:
8244 		case BPF_CGROUP_UDP4_SENDMSG:
8245 		case BPF_CGROUP_UDP6_SENDMSG:
8246 		case BPF_CGROUP_UNIX_SENDMSG:
8247 		case BPF_CGROUP_INET4_GETPEERNAME:
8248 		case BPF_CGROUP_INET6_GETPEERNAME:
8249 		case BPF_CGROUP_UNIX_GETPEERNAME:
8250 		case BPF_CGROUP_INET4_GETSOCKNAME:
8251 		case BPF_CGROUP_INET6_GETSOCKNAME:
8252 		case BPF_CGROUP_UNIX_GETSOCKNAME:
8253 			return &bpf_sock_addr_getsockopt_proto;
8254 		default:
8255 			return NULL;
8256 		}
8257 	default:
8258 		return bpf_sk_base_func_proto(func_id, prog);
8259 	}
8260 }
8261 
8262 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8263 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8264 {
8265 	switch (func_id) {
8266 	case BPF_FUNC_skb_load_bytes:
8267 		return &bpf_skb_load_bytes_proto;
8268 	case BPF_FUNC_skb_load_bytes_relative:
8269 		return &bpf_skb_load_bytes_relative_proto;
8270 	case BPF_FUNC_get_socket_cookie:
8271 		return &bpf_get_socket_cookie_proto;
8272 	case BPF_FUNC_get_netns_cookie:
8273 		return &bpf_get_netns_cookie_proto;
8274 	case BPF_FUNC_get_socket_uid:
8275 		return &bpf_get_socket_uid_proto;
8276 	case BPF_FUNC_perf_event_output:
8277 		return &bpf_skb_event_output_proto;
8278 	default:
8279 		return bpf_sk_base_func_proto(func_id, prog);
8280 	}
8281 }
8282 
8283 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8284 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8285 
8286 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8287 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8288 {
8289 	const struct bpf_func_proto *func_proto;
8290 
8291 	func_proto = cgroup_common_func_proto(func_id, prog);
8292 	if (func_proto)
8293 		return func_proto;
8294 
8295 	switch (func_id) {
8296 	case BPF_FUNC_sk_fullsock:
8297 		return &bpf_sk_fullsock_proto;
8298 	case BPF_FUNC_sk_storage_get:
8299 		return &bpf_sk_storage_get_proto;
8300 	case BPF_FUNC_sk_storage_delete:
8301 		return &bpf_sk_storage_delete_proto;
8302 	case BPF_FUNC_perf_event_output:
8303 		return &bpf_skb_event_output_proto;
8304 #ifdef CONFIG_SOCK_CGROUP_DATA
8305 	case BPF_FUNC_skb_cgroup_id:
8306 		return &bpf_skb_cgroup_id_proto;
8307 	case BPF_FUNC_skb_ancestor_cgroup_id:
8308 		return &bpf_skb_ancestor_cgroup_id_proto;
8309 	case BPF_FUNC_sk_cgroup_id:
8310 		return &bpf_sk_cgroup_id_proto;
8311 	case BPF_FUNC_sk_ancestor_cgroup_id:
8312 		return &bpf_sk_ancestor_cgroup_id_proto;
8313 #endif
8314 #ifdef CONFIG_INET
8315 	case BPF_FUNC_sk_lookup_tcp:
8316 		return &bpf_sk_lookup_tcp_proto;
8317 	case BPF_FUNC_sk_lookup_udp:
8318 		return &bpf_sk_lookup_udp_proto;
8319 	case BPF_FUNC_sk_release:
8320 		return &bpf_sk_release_proto;
8321 	case BPF_FUNC_skc_lookup_tcp:
8322 		return &bpf_skc_lookup_tcp_proto;
8323 	case BPF_FUNC_tcp_sock:
8324 		return &bpf_tcp_sock_proto;
8325 	case BPF_FUNC_get_listener_sock:
8326 		return &bpf_get_listener_sock_proto;
8327 	case BPF_FUNC_skb_ecn_set_ce:
8328 		return &bpf_skb_ecn_set_ce_proto;
8329 #endif
8330 	default:
8331 		return sk_filter_func_proto(func_id, prog);
8332 	}
8333 }
8334 
8335 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8336 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8337 {
8338 	switch (func_id) {
8339 	case BPF_FUNC_skb_store_bytes:
8340 		return &bpf_skb_store_bytes_proto;
8341 	case BPF_FUNC_skb_load_bytes:
8342 		return &bpf_skb_load_bytes_proto;
8343 	case BPF_FUNC_skb_load_bytes_relative:
8344 		return &bpf_skb_load_bytes_relative_proto;
8345 	case BPF_FUNC_skb_pull_data:
8346 		return &bpf_skb_pull_data_proto;
8347 	case BPF_FUNC_csum_diff:
8348 		return &bpf_csum_diff_proto;
8349 	case BPF_FUNC_csum_update:
8350 		return &bpf_csum_update_proto;
8351 	case BPF_FUNC_csum_level:
8352 		return &bpf_csum_level_proto;
8353 	case BPF_FUNC_l3_csum_replace:
8354 		return &bpf_l3_csum_replace_proto;
8355 	case BPF_FUNC_l4_csum_replace:
8356 		return &bpf_l4_csum_replace_proto;
8357 	case BPF_FUNC_clone_redirect:
8358 		return &bpf_clone_redirect_proto;
8359 	case BPF_FUNC_get_cgroup_classid:
8360 		return &bpf_get_cgroup_classid_proto;
8361 	case BPF_FUNC_skb_vlan_push:
8362 		return &bpf_skb_vlan_push_proto;
8363 	case BPF_FUNC_skb_vlan_pop:
8364 		return &bpf_skb_vlan_pop_proto;
8365 	case BPF_FUNC_skb_change_proto:
8366 		return &bpf_skb_change_proto_proto;
8367 	case BPF_FUNC_skb_change_type:
8368 		return &bpf_skb_change_type_proto;
8369 	case BPF_FUNC_skb_adjust_room:
8370 		return &bpf_skb_adjust_room_proto;
8371 	case BPF_FUNC_skb_change_tail:
8372 		return &bpf_skb_change_tail_proto;
8373 	case BPF_FUNC_skb_change_head:
8374 		return &bpf_skb_change_head_proto;
8375 	case BPF_FUNC_skb_get_tunnel_key:
8376 		return &bpf_skb_get_tunnel_key_proto;
8377 	case BPF_FUNC_skb_set_tunnel_key:
8378 		return bpf_get_skb_set_tunnel_proto(func_id);
8379 	case BPF_FUNC_skb_get_tunnel_opt:
8380 		return &bpf_skb_get_tunnel_opt_proto;
8381 	case BPF_FUNC_skb_set_tunnel_opt:
8382 		return bpf_get_skb_set_tunnel_proto(func_id);
8383 	case BPF_FUNC_redirect:
8384 		return &bpf_redirect_proto;
8385 	case BPF_FUNC_redirect_neigh:
8386 		return &bpf_redirect_neigh_proto;
8387 	case BPF_FUNC_redirect_peer:
8388 		return &bpf_redirect_peer_proto;
8389 	case BPF_FUNC_get_route_realm:
8390 		return &bpf_get_route_realm_proto;
8391 	case BPF_FUNC_get_hash_recalc:
8392 		return &bpf_get_hash_recalc_proto;
8393 	case BPF_FUNC_set_hash_invalid:
8394 		return &bpf_set_hash_invalid_proto;
8395 	case BPF_FUNC_set_hash:
8396 		return &bpf_set_hash_proto;
8397 	case BPF_FUNC_perf_event_output:
8398 		return &bpf_skb_event_output_proto;
8399 	case BPF_FUNC_get_smp_processor_id:
8400 		return &bpf_get_smp_processor_id_proto;
8401 	case BPF_FUNC_skb_under_cgroup:
8402 		return &bpf_skb_under_cgroup_proto;
8403 	case BPF_FUNC_get_socket_cookie:
8404 		return &bpf_get_socket_cookie_proto;
8405 	case BPF_FUNC_get_netns_cookie:
8406 		return &bpf_get_netns_cookie_proto;
8407 	case BPF_FUNC_get_socket_uid:
8408 		return &bpf_get_socket_uid_proto;
8409 	case BPF_FUNC_fib_lookup:
8410 		return &bpf_skb_fib_lookup_proto;
8411 	case BPF_FUNC_check_mtu:
8412 		return &bpf_skb_check_mtu_proto;
8413 	case BPF_FUNC_sk_fullsock:
8414 		return &bpf_sk_fullsock_proto;
8415 	case BPF_FUNC_sk_storage_get:
8416 		return &bpf_sk_storage_get_proto;
8417 	case BPF_FUNC_sk_storage_delete:
8418 		return &bpf_sk_storage_delete_proto;
8419 #ifdef CONFIG_XFRM
8420 	case BPF_FUNC_skb_get_xfrm_state:
8421 		return &bpf_skb_get_xfrm_state_proto;
8422 #endif
8423 #ifdef CONFIG_CGROUP_NET_CLASSID
8424 	case BPF_FUNC_skb_cgroup_classid:
8425 		return &bpf_skb_cgroup_classid_proto;
8426 #endif
8427 #ifdef CONFIG_SOCK_CGROUP_DATA
8428 	case BPF_FUNC_skb_cgroup_id:
8429 		return &bpf_skb_cgroup_id_proto;
8430 	case BPF_FUNC_skb_ancestor_cgroup_id:
8431 		return &bpf_skb_ancestor_cgroup_id_proto;
8432 #endif
8433 #ifdef CONFIG_INET
8434 	case BPF_FUNC_sk_lookup_tcp:
8435 		return &bpf_tc_sk_lookup_tcp_proto;
8436 	case BPF_FUNC_sk_lookup_udp:
8437 		return &bpf_tc_sk_lookup_udp_proto;
8438 	case BPF_FUNC_sk_release:
8439 		return &bpf_sk_release_proto;
8440 	case BPF_FUNC_tcp_sock:
8441 		return &bpf_tcp_sock_proto;
8442 	case BPF_FUNC_get_listener_sock:
8443 		return &bpf_get_listener_sock_proto;
8444 	case BPF_FUNC_skc_lookup_tcp:
8445 		return &bpf_tc_skc_lookup_tcp_proto;
8446 	case BPF_FUNC_tcp_check_syncookie:
8447 		return &bpf_tcp_check_syncookie_proto;
8448 	case BPF_FUNC_skb_ecn_set_ce:
8449 		return &bpf_skb_ecn_set_ce_proto;
8450 	case BPF_FUNC_tcp_gen_syncookie:
8451 		return &bpf_tcp_gen_syncookie_proto;
8452 	case BPF_FUNC_sk_assign:
8453 		return &bpf_sk_assign_proto;
8454 	case BPF_FUNC_skb_set_tstamp:
8455 		return &bpf_skb_set_tstamp_proto;
8456 #ifdef CONFIG_SYN_COOKIES
8457 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8458 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8459 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8460 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8461 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8462 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8463 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8464 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8465 #endif
8466 #endif
8467 	default:
8468 		return bpf_sk_base_func_proto(func_id, prog);
8469 	}
8470 }
8471 
8472 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8473 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8474 {
8475 	switch (func_id) {
8476 	case BPF_FUNC_perf_event_output:
8477 		return &bpf_xdp_event_output_proto;
8478 	case BPF_FUNC_get_smp_processor_id:
8479 		return &bpf_get_smp_processor_id_proto;
8480 	case BPF_FUNC_csum_diff:
8481 		return &bpf_csum_diff_proto;
8482 	case BPF_FUNC_xdp_adjust_head:
8483 		return &bpf_xdp_adjust_head_proto;
8484 	case BPF_FUNC_xdp_adjust_meta:
8485 		return &bpf_xdp_adjust_meta_proto;
8486 	case BPF_FUNC_redirect:
8487 		return &bpf_xdp_redirect_proto;
8488 	case BPF_FUNC_redirect_map:
8489 		return &bpf_xdp_redirect_map_proto;
8490 	case BPF_FUNC_xdp_adjust_tail:
8491 		return &bpf_xdp_adjust_tail_proto;
8492 	case BPF_FUNC_xdp_get_buff_len:
8493 		return &bpf_xdp_get_buff_len_proto;
8494 	case BPF_FUNC_xdp_load_bytes:
8495 		return &bpf_xdp_load_bytes_proto;
8496 	case BPF_FUNC_xdp_store_bytes:
8497 		return &bpf_xdp_store_bytes_proto;
8498 	case BPF_FUNC_fib_lookup:
8499 		return &bpf_xdp_fib_lookup_proto;
8500 	case BPF_FUNC_check_mtu:
8501 		return &bpf_xdp_check_mtu_proto;
8502 #ifdef CONFIG_INET
8503 	case BPF_FUNC_sk_lookup_udp:
8504 		return &bpf_xdp_sk_lookup_udp_proto;
8505 	case BPF_FUNC_sk_lookup_tcp:
8506 		return &bpf_xdp_sk_lookup_tcp_proto;
8507 	case BPF_FUNC_sk_release:
8508 		return &bpf_sk_release_proto;
8509 	case BPF_FUNC_skc_lookup_tcp:
8510 		return &bpf_xdp_skc_lookup_tcp_proto;
8511 	case BPF_FUNC_tcp_check_syncookie:
8512 		return &bpf_tcp_check_syncookie_proto;
8513 	case BPF_FUNC_tcp_gen_syncookie:
8514 		return &bpf_tcp_gen_syncookie_proto;
8515 #ifdef CONFIG_SYN_COOKIES
8516 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8517 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8518 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8519 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8520 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8521 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8522 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8523 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8524 #endif
8525 #endif
8526 	default:
8527 		return bpf_sk_base_func_proto(func_id, prog);
8528 	}
8529 
8530 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8531 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8532 	 * kfuncs are defined in two different modules, and we want to be able
8533 	 * to use them interchangeably with the same BTF type ID. Because modules
8534 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8535 	 * referenced in the vmlinux BTF or the verifier will get confused about
8536 	 * the different types. So we add this dummy type reference which will
8537 	 * be included in vmlinux BTF, allowing both modules to refer to the
8538 	 * same type ID.
8539 	 */
8540 	BTF_TYPE_EMIT(struct nf_conn___init);
8541 #endif
8542 }
8543 
8544 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8545 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8546 
8547 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8548 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8549 {
8550 	const struct bpf_func_proto *func_proto;
8551 
8552 	func_proto = cgroup_common_func_proto(func_id, prog);
8553 	if (func_proto)
8554 		return func_proto;
8555 
8556 	switch (func_id) {
8557 	case BPF_FUNC_setsockopt:
8558 		return &bpf_sock_ops_setsockopt_proto;
8559 	case BPF_FUNC_getsockopt:
8560 		return &bpf_sock_ops_getsockopt_proto;
8561 	case BPF_FUNC_sock_ops_cb_flags_set:
8562 		return &bpf_sock_ops_cb_flags_set_proto;
8563 	case BPF_FUNC_sock_map_update:
8564 		return &bpf_sock_map_update_proto;
8565 	case BPF_FUNC_sock_hash_update:
8566 		return &bpf_sock_hash_update_proto;
8567 	case BPF_FUNC_get_socket_cookie:
8568 		return &bpf_get_socket_cookie_sock_ops_proto;
8569 	case BPF_FUNC_perf_event_output:
8570 		return &bpf_event_output_data_proto;
8571 	case BPF_FUNC_sk_storage_get:
8572 		return &bpf_sk_storage_get_proto;
8573 	case BPF_FUNC_sk_storage_delete:
8574 		return &bpf_sk_storage_delete_proto;
8575 	case BPF_FUNC_get_netns_cookie:
8576 		return &bpf_get_netns_cookie_sock_ops_proto;
8577 #ifdef CONFIG_INET
8578 	case BPF_FUNC_load_hdr_opt:
8579 		return &bpf_sock_ops_load_hdr_opt_proto;
8580 	case BPF_FUNC_store_hdr_opt:
8581 		return &bpf_sock_ops_store_hdr_opt_proto;
8582 	case BPF_FUNC_reserve_hdr_opt:
8583 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8584 	case BPF_FUNC_tcp_sock:
8585 		return &bpf_tcp_sock_proto;
8586 #endif /* CONFIG_INET */
8587 	default:
8588 		return bpf_sk_base_func_proto(func_id, prog);
8589 	}
8590 }
8591 
8592 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8593 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8594 
8595 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8596 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8597 {
8598 	switch (func_id) {
8599 	case BPF_FUNC_msg_redirect_map:
8600 		return &bpf_msg_redirect_map_proto;
8601 	case BPF_FUNC_msg_redirect_hash:
8602 		return &bpf_msg_redirect_hash_proto;
8603 	case BPF_FUNC_msg_apply_bytes:
8604 		return &bpf_msg_apply_bytes_proto;
8605 	case BPF_FUNC_msg_cork_bytes:
8606 		return &bpf_msg_cork_bytes_proto;
8607 	case BPF_FUNC_msg_pull_data:
8608 		return &bpf_msg_pull_data_proto;
8609 	case BPF_FUNC_msg_push_data:
8610 		return &bpf_msg_push_data_proto;
8611 	case BPF_FUNC_msg_pop_data:
8612 		return &bpf_msg_pop_data_proto;
8613 	case BPF_FUNC_perf_event_output:
8614 		return &bpf_event_output_data_proto;
8615 	case BPF_FUNC_sk_storage_get:
8616 		return &bpf_sk_storage_get_proto;
8617 	case BPF_FUNC_sk_storage_delete:
8618 		return &bpf_sk_storage_delete_proto;
8619 	case BPF_FUNC_get_netns_cookie:
8620 		return &bpf_get_netns_cookie_sk_msg_proto;
8621 	default:
8622 		return bpf_sk_base_func_proto(func_id, prog);
8623 	}
8624 }
8625 
8626 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8627 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8628 
8629 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8630 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8631 {
8632 	switch (func_id) {
8633 	case BPF_FUNC_skb_store_bytes:
8634 		return &bpf_skb_store_bytes_proto;
8635 	case BPF_FUNC_skb_load_bytes:
8636 		return &bpf_skb_load_bytes_proto;
8637 	case BPF_FUNC_skb_pull_data:
8638 		return &sk_skb_pull_data_proto;
8639 	case BPF_FUNC_skb_change_tail:
8640 		return &sk_skb_change_tail_proto;
8641 	case BPF_FUNC_skb_change_head:
8642 		return &sk_skb_change_head_proto;
8643 	case BPF_FUNC_skb_adjust_room:
8644 		return &sk_skb_adjust_room_proto;
8645 	case BPF_FUNC_get_socket_cookie:
8646 		return &bpf_get_socket_cookie_proto;
8647 	case BPF_FUNC_get_socket_uid:
8648 		return &bpf_get_socket_uid_proto;
8649 	case BPF_FUNC_sk_redirect_map:
8650 		return &bpf_sk_redirect_map_proto;
8651 	case BPF_FUNC_sk_redirect_hash:
8652 		return &bpf_sk_redirect_hash_proto;
8653 	case BPF_FUNC_perf_event_output:
8654 		return &bpf_skb_event_output_proto;
8655 #ifdef CONFIG_INET
8656 	case BPF_FUNC_sk_lookup_tcp:
8657 		return &bpf_sk_lookup_tcp_proto;
8658 	case BPF_FUNC_sk_lookup_udp:
8659 		return &bpf_sk_lookup_udp_proto;
8660 	case BPF_FUNC_sk_release:
8661 		return &bpf_sk_release_proto;
8662 	case BPF_FUNC_skc_lookup_tcp:
8663 		return &bpf_skc_lookup_tcp_proto;
8664 #endif
8665 	default:
8666 		return bpf_sk_base_func_proto(func_id, prog);
8667 	}
8668 }
8669 
8670 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8671 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8672 {
8673 	switch (func_id) {
8674 	case BPF_FUNC_skb_load_bytes:
8675 		return &bpf_flow_dissector_load_bytes_proto;
8676 	default:
8677 		return bpf_sk_base_func_proto(func_id, prog);
8678 	}
8679 }
8680 
8681 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8682 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8683 {
8684 	switch (func_id) {
8685 	case BPF_FUNC_skb_load_bytes:
8686 		return &bpf_skb_load_bytes_proto;
8687 	case BPF_FUNC_skb_pull_data:
8688 		return &bpf_skb_pull_data_proto;
8689 	case BPF_FUNC_csum_diff:
8690 		return &bpf_csum_diff_proto;
8691 	case BPF_FUNC_get_cgroup_classid:
8692 		return &bpf_get_cgroup_classid_proto;
8693 	case BPF_FUNC_get_route_realm:
8694 		return &bpf_get_route_realm_proto;
8695 	case BPF_FUNC_get_hash_recalc:
8696 		return &bpf_get_hash_recalc_proto;
8697 	case BPF_FUNC_perf_event_output:
8698 		return &bpf_skb_event_output_proto;
8699 	case BPF_FUNC_get_smp_processor_id:
8700 		return &bpf_get_smp_processor_id_proto;
8701 	case BPF_FUNC_skb_under_cgroup:
8702 		return &bpf_skb_under_cgroup_proto;
8703 	default:
8704 		return bpf_sk_base_func_proto(func_id, prog);
8705 	}
8706 }
8707 
8708 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8709 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8710 {
8711 	switch (func_id) {
8712 	case BPF_FUNC_lwt_push_encap:
8713 		return &bpf_lwt_in_push_encap_proto;
8714 	default:
8715 		return lwt_out_func_proto(func_id, prog);
8716 	}
8717 }
8718 
8719 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8720 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8721 {
8722 	switch (func_id) {
8723 	case BPF_FUNC_skb_get_tunnel_key:
8724 		return &bpf_skb_get_tunnel_key_proto;
8725 	case BPF_FUNC_skb_set_tunnel_key:
8726 		return bpf_get_skb_set_tunnel_proto(func_id);
8727 	case BPF_FUNC_skb_get_tunnel_opt:
8728 		return &bpf_skb_get_tunnel_opt_proto;
8729 	case BPF_FUNC_skb_set_tunnel_opt:
8730 		return bpf_get_skb_set_tunnel_proto(func_id);
8731 	case BPF_FUNC_redirect:
8732 		return &bpf_redirect_proto;
8733 	case BPF_FUNC_clone_redirect:
8734 		return &bpf_clone_redirect_proto;
8735 	case BPF_FUNC_skb_change_tail:
8736 		return &bpf_skb_change_tail_proto;
8737 	case BPF_FUNC_skb_change_head:
8738 		return &bpf_skb_change_head_proto;
8739 	case BPF_FUNC_skb_store_bytes:
8740 		return &bpf_skb_store_bytes_proto;
8741 	case BPF_FUNC_csum_update:
8742 		return &bpf_csum_update_proto;
8743 	case BPF_FUNC_csum_level:
8744 		return &bpf_csum_level_proto;
8745 	case BPF_FUNC_l3_csum_replace:
8746 		return &bpf_l3_csum_replace_proto;
8747 	case BPF_FUNC_l4_csum_replace:
8748 		return &bpf_l4_csum_replace_proto;
8749 	case BPF_FUNC_set_hash_invalid:
8750 		return &bpf_set_hash_invalid_proto;
8751 	case BPF_FUNC_lwt_push_encap:
8752 		return &bpf_lwt_xmit_push_encap_proto;
8753 	default:
8754 		return lwt_out_func_proto(func_id, prog);
8755 	}
8756 }
8757 
8758 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8759 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8760 {
8761 	switch (func_id) {
8762 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8763 	case BPF_FUNC_lwt_seg6_store_bytes:
8764 		return &bpf_lwt_seg6_store_bytes_proto;
8765 	case BPF_FUNC_lwt_seg6_action:
8766 		return &bpf_lwt_seg6_action_proto;
8767 	case BPF_FUNC_lwt_seg6_adjust_srh:
8768 		return &bpf_lwt_seg6_adjust_srh_proto;
8769 #endif
8770 	default:
8771 		return lwt_out_func_proto(func_id, prog);
8772 	}
8773 }
8774 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8775 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8776 				    const struct bpf_prog *prog,
8777 				    struct bpf_insn_access_aux *info)
8778 {
8779 	const int size_default = sizeof(__u32);
8780 
8781 	if (off < 0 || off >= sizeof(struct __sk_buff))
8782 		return false;
8783 
8784 	/* The verifier guarantees that size > 0. */
8785 	if (off % size != 0)
8786 		return false;
8787 
8788 	switch (off) {
8789 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8790 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8791 			return false;
8792 		break;
8793 	case bpf_ctx_range(struct __sk_buff, data):
8794 	case bpf_ctx_range(struct __sk_buff, data_meta):
8795 	case bpf_ctx_range(struct __sk_buff, data_end):
8796 		if (info->is_ldsx || size != size_default)
8797 			return false;
8798 		break;
8799 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8800 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8801 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8802 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8803 		if (size != size_default)
8804 			return false;
8805 		break;
8806 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8807 		return false;
8808 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8809 		if (type == BPF_WRITE || size != sizeof(__u64))
8810 			return false;
8811 		break;
8812 	case bpf_ctx_range(struct __sk_buff, tstamp):
8813 		if (size != sizeof(__u64))
8814 			return false;
8815 		break;
8816 	case bpf_ctx_range_ptr(struct __sk_buff, sk):
8817 		if (type == BPF_WRITE || size != sizeof(__u64))
8818 			return false;
8819 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8820 		break;
8821 	case offsetof(struct __sk_buff, tstamp_type):
8822 		return false;
8823 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8824 		/* Explicitly prohibit access to padding in __sk_buff. */
8825 		return false;
8826 	default:
8827 		/* Only narrow read access allowed for now. */
8828 		if (type == BPF_WRITE) {
8829 			if (size != size_default)
8830 				return false;
8831 		} else {
8832 			bpf_ctx_record_field_size(info, size_default);
8833 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8834 				return false;
8835 		}
8836 	}
8837 
8838 	return true;
8839 }
8840 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8841 static bool sk_filter_is_valid_access(int off, int size,
8842 				      enum bpf_access_type type,
8843 				      const struct bpf_prog *prog,
8844 				      struct bpf_insn_access_aux *info)
8845 {
8846 	switch (off) {
8847 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8848 	case bpf_ctx_range(struct __sk_buff, data):
8849 	case bpf_ctx_range(struct __sk_buff, data_meta):
8850 	case bpf_ctx_range(struct __sk_buff, data_end):
8851 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8852 	case bpf_ctx_range(struct __sk_buff, tstamp):
8853 	case bpf_ctx_range(struct __sk_buff, wire_len):
8854 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8855 		return false;
8856 	}
8857 
8858 	if (type == BPF_WRITE) {
8859 		switch (off) {
8860 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8861 			break;
8862 		default:
8863 			return false;
8864 		}
8865 	}
8866 
8867 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8868 }
8869 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8870 static bool cg_skb_is_valid_access(int off, int size,
8871 				   enum bpf_access_type type,
8872 				   const struct bpf_prog *prog,
8873 				   struct bpf_insn_access_aux *info)
8874 {
8875 	switch (off) {
8876 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8877 	case bpf_ctx_range(struct __sk_buff, data_meta):
8878 	case bpf_ctx_range(struct __sk_buff, wire_len):
8879 		return false;
8880 	case bpf_ctx_range(struct __sk_buff, data):
8881 	case bpf_ctx_range(struct __sk_buff, data_end):
8882 		if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8883 			return false;
8884 		break;
8885 	}
8886 
8887 	if (type == BPF_WRITE) {
8888 		switch (off) {
8889 		case bpf_ctx_range(struct __sk_buff, mark):
8890 		case bpf_ctx_range(struct __sk_buff, priority):
8891 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8892 			break;
8893 		case bpf_ctx_range(struct __sk_buff, tstamp):
8894 			if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8895 				return false;
8896 			break;
8897 		default:
8898 			return false;
8899 		}
8900 	}
8901 
8902 	switch (off) {
8903 	case bpf_ctx_range(struct __sk_buff, data):
8904 		info->reg_type = PTR_TO_PACKET;
8905 		break;
8906 	case bpf_ctx_range(struct __sk_buff, data_end):
8907 		info->reg_type = PTR_TO_PACKET_END;
8908 		break;
8909 	}
8910 
8911 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8912 }
8913 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8914 static bool lwt_is_valid_access(int off, int size,
8915 				enum bpf_access_type type,
8916 				const struct bpf_prog *prog,
8917 				struct bpf_insn_access_aux *info)
8918 {
8919 	switch (off) {
8920 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8921 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8922 	case bpf_ctx_range(struct __sk_buff, data_meta):
8923 	case bpf_ctx_range(struct __sk_buff, tstamp):
8924 	case bpf_ctx_range(struct __sk_buff, wire_len):
8925 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8926 		return false;
8927 	}
8928 
8929 	if (type == BPF_WRITE) {
8930 		switch (off) {
8931 		case bpf_ctx_range(struct __sk_buff, mark):
8932 		case bpf_ctx_range(struct __sk_buff, priority):
8933 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8934 			break;
8935 		default:
8936 			return false;
8937 		}
8938 	}
8939 
8940 	switch (off) {
8941 	case bpf_ctx_range(struct __sk_buff, data):
8942 		info->reg_type = PTR_TO_PACKET;
8943 		break;
8944 	case bpf_ctx_range(struct __sk_buff, data_end):
8945 		info->reg_type = PTR_TO_PACKET_END;
8946 		break;
8947 	}
8948 
8949 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8950 }
8951 
8952 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8953 static bool __sock_filter_check_attach_type(int off,
8954 					    enum bpf_access_type access_type,
8955 					    enum bpf_attach_type attach_type)
8956 {
8957 	switch (off) {
8958 	case offsetof(struct bpf_sock, bound_dev_if):
8959 	case offsetof(struct bpf_sock, mark):
8960 	case offsetof(struct bpf_sock, priority):
8961 		switch (attach_type) {
8962 		case BPF_CGROUP_INET_SOCK_CREATE:
8963 		case BPF_CGROUP_INET_SOCK_RELEASE:
8964 			goto full_access;
8965 		default:
8966 			return false;
8967 		}
8968 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8969 		switch (attach_type) {
8970 		case BPF_CGROUP_INET4_POST_BIND:
8971 			goto read_only;
8972 		default:
8973 			return false;
8974 		}
8975 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8976 		switch (attach_type) {
8977 		case BPF_CGROUP_INET6_POST_BIND:
8978 			goto read_only;
8979 		default:
8980 			return false;
8981 		}
8982 	case bpf_ctx_range(struct bpf_sock, src_port):
8983 		switch (attach_type) {
8984 		case BPF_CGROUP_INET4_POST_BIND:
8985 		case BPF_CGROUP_INET6_POST_BIND:
8986 			goto read_only;
8987 		default:
8988 			return false;
8989 		}
8990 	}
8991 read_only:
8992 	return access_type == BPF_READ;
8993 full_access:
8994 	return true;
8995 }
8996 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8997 bool bpf_sock_common_is_valid_access(int off, int size,
8998 				     enum bpf_access_type type,
8999 				     struct bpf_insn_access_aux *info)
9000 {
9001 	switch (off) {
9002 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
9003 		return false;
9004 	default:
9005 		return bpf_sock_is_valid_access(off, size, type, info);
9006 	}
9007 }
9008 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)9009 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
9010 			      struct bpf_insn_access_aux *info)
9011 {
9012 	const int size_default = sizeof(__u32);
9013 	int field_size;
9014 
9015 	if (off < 0 || off >= sizeof(struct bpf_sock))
9016 		return false;
9017 	if (off % size != 0)
9018 		return false;
9019 
9020 	switch (off) {
9021 	case offsetof(struct bpf_sock, state):
9022 	case offsetof(struct bpf_sock, family):
9023 	case offsetof(struct bpf_sock, type):
9024 	case offsetof(struct bpf_sock, protocol):
9025 	case offsetof(struct bpf_sock, src_port):
9026 	case offsetof(struct bpf_sock, rx_queue_mapping):
9027 	case bpf_ctx_range(struct bpf_sock, src_ip4):
9028 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9029 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
9030 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9031 		bpf_ctx_record_field_size(info, size_default);
9032 		return bpf_ctx_narrow_access_ok(off, size, size_default);
9033 	case bpf_ctx_range(struct bpf_sock, dst_port):
9034 		field_size = size == size_default ?
9035 			size_default : sizeof_field(struct bpf_sock, dst_port);
9036 		bpf_ctx_record_field_size(info, field_size);
9037 		return bpf_ctx_narrow_access_ok(off, size, field_size);
9038 	case offsetofend(struct bpf_sock, dst_port) ...
9039 	     offsetof(struct bpf_sock, dst_ip4) - 1:
9040 		return false;
9041 	}
9042 
9043 	return size == size_default;
9044 }
9045 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9046 static bool sock_filter_is_valid_access(int off, int size,
9047 					enum bpf_access_type type,
9048 					const struct bpf_prog *prog,
9049 					struct bpf_insn_access_aux *info)
9050 {
9051 	if (!bpf_sock_is_valid_access(off, size, type, info))
9052 		return false;
9053 	return __sock_filter_check_attach_type(off, type,
9054 					       prog->expected_attach_type);
9055 }
9056 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9057 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
9058 			     const struct bpf_prog *prog)
9059 {
9060 	/* Neither direct read nor direct write requires any preliminary
9061 	 * action.
9062 	 */
9063 	return 0;
9064 }
9065 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)9066 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
9067 				const struct bpf_prog *prog, int drop_verdict)
9068 {
9069 	struct bpf_insn *insn = insn_buf;
9070 
9071 	if (!direct_write)
9072 		return 0;
9073 
9074 	/* if (!skb->cloned)
9075 	 *       goto start;
9076 	 *
9077 	 * (Fast-path, otherwise approximation that we might be
9078 	 *  a clone, do the rest in helper.)
9079 	 */
9080 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
9081 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
9082 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
9083 
9084 	/* ret = bpf_skb_pull_data(skb, 0); */
9085 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
9086 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
9087 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
9088 			       BPF_FUNC_skb_pull_data);
9089 	/* if (!ret)
9090 	 *      goto restore;
9091 	 * return TC_ACT_SHOT;
9092 	 */
9093 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
9094 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
9095 	*insn++ = BPF_EXIT_INSN();
9096 
9097 	/* restore: */
9098 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
9099 	/* start: */
9100 	*insn++ = prog->insnsi[0];
9101 
9102 	return insn - insn_buf;
9103 }
9104 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)9105 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
9106 			  struct bpf_insn *insn_buf)
9107 {
9108 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
9109 	struct bpf_insn *insn = insn_buf;
9110 
9111 	if (!indirect) {
9112 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
9113 	} else {
9114 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
9115 		if (orig->imm)
9116 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
9117 	}
9118 	/* We're guaranteed here that CTX is in R6. */
9119 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
9120 
9121 	switch (BPF_SIZE(orig->code)) {
9122 	case BPF_B:
9123 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
9124 		break;
9125 	case BPF_H:
9126 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
9127 		break;
9128 	case BPF_W:
9129 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
9130 		break;
9131 	}
9132 
9133 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
9134 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
9135 	*insn++ = BPF_EXIT_INSN();
9136 
9137 	return insn - insn_buf;
9138 }
9139 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9140 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
9141 			       const struct bpf_prog *prog)
9142 {
9143 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
9144 }
9145 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9146 static bool tc_cls_act_is_valid_access(int off, int size,
9147 				       enum bpf_access_type type,
9148 				       const struct bpf_prog *prog,
9149 				       struct bpf_insn_access_aux *info)
9150 {
9151 	if (type == BPF_WRITE) {
9152 		switch (off) {
9153 		case bpf_ctx_range(struct __sk_buff, mark):
9154 		case bpf_ctx_range(struct __sk_buff, tc_index):
9155 		case bpf_ctx_range(struct __sk_buff, priority):
9156 		case bpf_ctx_range(struct __sk_buff, tc_classid):
9157 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
9158 		case bpf_ctx_range(struct __sk_buff, tstamp):
9159 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
9160 			break;
9161 		default:
9162 			return false;
9163 		}
9164 	}
9165 
9166 	switch (off) {
9167 	case bpf_ctx_range(struct __sk_buff, data):
9168 		info->reg_type = PTR_TO_PACKET;
9169 		break;
9170 	case bpf_ctx_range(struct __sk_buff, data_meta):
9171 		info->reg_type = PTR_TO_PACKET_META;
9172 		break;
9173 	case bpf_ctx_range(struct __sk_buff, data_end):
9174 		info->reg_type = PTR_TO_PACKET_END;
9175 		break;
9176 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
9177 		return false;
9178 	case offsetof(struct __sk_buff, tstamp_type):
9179 		/* The convert_ctx_access() on reading and writing
9180 		 * __sk_buff->tstamp depends on whether the bpf prog
9181 		 * has used __sk_buff->tstamp_type or not.
9182 		 * Thus, we need to set prog->tstamp_type_access
9183 		 * earlier during is_valid_access() here.
9184 		 */
9185 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
9186 		return size == sizeof(__u8);
9187 	}
9188 
9189 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9190 }
9191 
9192 DEFINE_MUTEX(nf_conn_btf_access_lock);
9193 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
9194 
9195 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
9196 			      const struct bpf_reg_state *reg,
9197 			      int off, int size);
9198 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
9199 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9200 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
9201 					const struct bpf_reg_state *reg,
9202 					int off, int size)
9203 {
9204 	int ret = -EACCES;
9205 
9206 	mutex_lock(&nf_conn_btf_access_lock);
9207 	if (nfct_btf_struct_access)
9208 		ret = nfct_btf_struct_access(log, reg, off, size);
9209 	mutex_unlock(&nf_conn_btf_access_lock);
9210 
9211 	return ret;
9212 }
9213 
__is_valid_xdp_access(int off,int size)9214 static bool __is_valid_xdp_access(int off, int size)
9215 {
9216 	if (off < 0 || off >= sizeof(struct xdp_md))
9217 		return false;
9218 	if (off % size != 0)
9219 		return false;
9220 	if (size != sizeof(__u32))
9221 		return false;
9222 
9223 	return true;
9224 }
9225 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9226 static bool xdp_is_valid_access(int off, int size,
9227 				enum bpf_access_type type,
9228 				const struct bpf_prog *prog,
9229 				struct bpf_insn_access_aux *info)
9230 {
9231 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9232 		switch (off) {
9233 		case offsetof(struct xdp_md, egress_ifindex):
9234 			return false;
9235 		}
9236 	}
9237 
9238 	if (type == BPF_WRITE) {
9239 		if (bpf_prog_is_offloaded(prog->aux)) {
9240 			switch (off) {
9241 			case offsetof(struct xdp_md, rx_queue_index):
9242 				return __is_valid_xdp_access(off, size);
9243 			}
9244 		}
9245 		return false;
9246 	} else {
9247 		switch (off) {
9248 		case offsetof(struct xdp_md, data_meta):
9249 		case offsetof(struct xdp_md, data):
9250 		case offsetof(struct xdp_md, data_end):
9251 			if (info->is_ldsx)
9252 				return false;
9253 		}
9254 	}
9255 
9256 	switch (off) {
9257 	case offsetof(struct xdp_md, data):
9258 		info->reg_type = PTR_TO_PACKET;
9259 		break;
9260 	case offsetof(struct xdp_md, data_meta):
9261 		info->reg_type = PTR_TO_PACKET_META;
9262 		break;
9263 	case offsetof(struct xdp_md, data_end):
9264 		info->reg_type = PTR_TO_PACKET_END;
9265 		break;
9266 	}
9267 
9268 	return __is_valid_xdp_access(off, size);
9269 }
9270 
bpf_warn_invalid_xdp_action(const struct net_device * dev,const struct bpf_prog * prog,u32 act)9271 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
9272 				 const struct bpf_prog *prog, u32 act)
9273 {
9274 	const u32 act_max = XDP_REDIRECT;
9275 
9276 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9277 		     act > act_max ? "Illegal" : "Driver unsupported",
9278 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9279 }
9280 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9281 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9282 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9283 				 const struct bpf_reg_state *reg,
9284 				 int off, int size)
9285 {
9286 	int ret = -EACCES;
9287 
9288 	mutex_lock(&nf_conn_btf_access_lock);
9289 	if (nfct_btf_struct_access)
9290 		ret = nfct_btf_struct_access(log, reg, off, size);
9291 	mutex_unlock(&nf_conn_btf_access_lock);
9292 
9293 	return ret;
9294 }
9295 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9296 static bool sock_addr_is_valid_access(int off, int size,
9297 				      enum bpf_access_type type,
9298 				      const struct bpf_prog *prog,
9299 				      struct bpf_insn_access_aux *info)
9300 {
9301 	const int size_default = sizeof(__u32);
9302 
9303 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9304 		return false;
9305 	if (off % size != 0)
9306 		return false;
9307 
9308 	/* Disallow access to fields not belonging to the attach type's address
9309 	 * family.
9310 	 */
9311 	switch (off) {
9312 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9313 		switch (prog->expected_attach_type) {
9314 		case BPF_CGROUP_INET4_BIND:
9315 		case BPF_CGROUP_INET4_CONNECT:
9316 		case BPF_CGROUP_INET4_GETPEERNAME:
9317 		case BPF_CGROUP_INET4_GETSOCKNAME:
9318 		case BPF_CGROUP_UDP4_SENDMSG:
9319 		case BPF_CGROUP_UDP4_RECVMSG:
9320 			break;
9321 		default:
9322 			return false;
9323 		}
9324 		break;
9325 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9326 		switch (prog->expected_attach_type) {
9327 		case BPF_CGROUP_INET6_BIND:
9328 		case BPF_CGROUP_INET6_CONNECT:
9329 		case BPF_CGROUP_INET6_GETPEERNAME:
9330 		case BPF_CGROUP_INET6_GETSOCKNAME:
9331 		case BPF_CGROUP_UDP6_SENDMSG:
9332 		case BPF_CGROUP_UDP6_RECVMSG:
9333 			break;
9334 		default:
9335 			return false;
9336 		}
9337 		break;
9338 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9339 		switch (prog->expected_attach_type) {
9340 		case BPF_CGROUP_UDP4_SENDMSG:
9341 			break;
9342 		default:
9343 			return false;
9344 		}
9345 		break;
9346 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9347 				msg_src_ip6[3]):
9348 		switch (prog->expected_attach_type) {
9349 		case BPF_CGROUP_UDP6_SENDMSG:
9350 			break;
9351 		default:
9352 			return false;
9353 		}
9354 		break;
9355 	}
9356 
9357 	switch (off) {
9358 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9359 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9360 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9361 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9362 				msg_src_ip6[3]):
9363 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9364 		if (type == BPF_READ) {
9365 			bpf_ctx_record_field_size(info, size_default);
9366 
9367 			if (bpf_ctx_wide_access_ok(off, size,
9368 						   struct bpf_sock_addr,
9369 						   user_ip6))
9370 				return true;
9371 
9372 			if (bpf_ctx_wide_access_ok(off, size,
9373 						   struct bpf_sock_addr,
9374 						   msg_src_ip6))
9375 				return true;
9376 
9377 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9378 				return false;
9379 		} else {
9380 			if (bpf_ctx_wide_access_ok(off, size,
9381 						   struct bpf_sock_addr,
9382 						   user_ip6))
9383 				return true;
9384 
9385 			if (bpf_ctx_wide_access_ok(off, size,
9386 						   struct bpf_sock_addr,
9387 						   msg_src_ip6))
9388 				return true;
9389 
9390 			if (size != size_default)
9391 				return false;
9392 		}
9393 		break;
9394 	case bpf_ctx_range_ptr(struct bpf_sock_addr, sk):
9395 		if (type != BPF_READ)
9396 			return false;
9397 		if (size != sizeof(__u64))
9398 			return false;
9399 		info->reg_type = PTR_TO_SOCKET;
9400 		break;
9401 	case bpf_ctx_range(struct bpf_sock_addr, user_family):
9402 	case bpf_ctx_range(struct bpf_sock_addr, family):
9403 	case bpf_ctx_range(struct bpf_sock_addr, type):
9404 	case bpf_ctx_range(struct bpf_sock_addr, protocol):
9405 		if (type != BPF_READ)
9406 			return false;
9407 		if (size != size_default)
9408 			return false;
9409 		break;
9410 	default:
9411 		return false;
9412 	}
9413 
9414 	return true;
9415 }
9416 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9417 static bool sock_ops_is_valid_access(int off, int size,
9418 				     enum bpf_access_type type,
9419 				     const struct bpf_prog *prog,
9420 				     struct bpf_insn_access_aux *info)
9421 {
9422 	const int size_default = sizeof(__u32);
9423 
9424 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9425 		return false;
9426 
9427 	/* The verifier guarantees that size > 0. */
9428 	if (off % size != 0)
9429 		return false;
9430 
9431 	if (type == BPF_WRITE) {
9432 		switch (off) {
9433 		case offsetof(struct bpf_sock_ops, reply):
9434 		case offsetof(struct bpf_sock_ops, sk_txhash):
9435 			if (size != size_default)
9436 				return false;
9437 			break;
9438 		default:
9439 			return false;
9440 		}
9441 	} else {
9442 		switch (off) {
9443 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9444 					bytes_acked):
9445 			if (size != sizeof(__u64))
9446 				return false;
9447 			break;
9448 		case bpf_ctx_range_ptr(struct bpf_sock_ops, sk):
9449 			if (size != sizeof(__u64))
9450 				return false;
9451 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9452 			break;
9453 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data):
9454 			if (size != sizeof(__u64))
9455 				return false;
9456 			info->reg_type = PTR_TO_PACKET;
9457 			break;
9458 		case bpf_ctx_range_ptr(struct bpf_sock_ops, skb_data_end):
9459 			if (size != sizeof(__u64))
9460 				return false;
9461 			info->reg_type = PTR_TO_PACKET_END;
9462 			break;
9463 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9464 			bpf_ctx_record_field_size(info, size_default);
9465 			return bpf_ctx_narrow_access_ok(off, size,
9466 							size_default);
9467 		case bpf_ctx_range(struct bpf_sock_ops, skb_hwtstamp):
9468 			if (size != sizeof(__u64))
9469 				return false;
9470 			break;
9471 		default:
9472 			if (size != size_default)
9473 				return false;
9474 			break;
9475 		}
9476 	}
9477 
9478 	return true;
9479 }
9480 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9481 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9482 			   const struct bpf_prog *prog)
9483 {
9484 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9485 }
9486 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9487 static bool sk_skb_is_valid_access(int off, int size,
9488 				   enum bpf_access_type type,
9489 				   const struct bpf_prog *prog,
9490 				   struct bpf_insn_access_aux *info)
9491 {
9492 	switch (off) {
9493 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9494 	case bpf_ctx_range(struct __sk_buff, data_meta):
9495 	case bpf_ctx_range(struct __sk_buff, tstamp):
9496 	case bpf_ctx_range(struct __sk_buff, wire_len):
9497 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9498 		return false;
9499 	}
9500 
9501 	if (type == BPF_WRITE) {
9502 		switch (off) {
9503 		case bpf_ctx_range(struct __sk_buff, tc_index):
9504 		case bpf_ctx_range(struct __sk_buff, priority):
9505 			break;
9506 		default:
9507 			return false;
9508 		}
9509 	}
9510 
9511 	switch (off) {
9512 	case bpf_ctx_range(struct __sk_buff, mark):
9513 		return false;
9514 	case bpf_ctx_range(struct __sk_buff, data):
9515 		info->reg_type = PTR_TO_PACKET;
9516 		break;
9517 	case bpf_ctx_range(struct __sk_buff, data_end):
9518 		info->reg_type = PTR_TO_PACKET_END;
9519 		break;
9520 	}
9521 
9522 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9523 }
9524 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9525 static bool sk_msg_is_valid_access(int off, int size,
9526 				   enum bpf_access_type type,
9527 				   const struct bpf_prog *prog,
9528 				   struct bpf_insn_access_aux *info)
9529 {
9530 	if (type == BPF_WRITE)
9531 		return false;
9532 
9533 	if (off % size != 0)
9534 		return false;
9535 
9536 	switch (off) {
9537 	case bpf_ctx_range_ptr(struct sk_msg_md, data):
9538 		info->reg_type = PTR_TO_PACKET;
9539 		if (size != sizeof(__u64))
9540 			return false;
9541 		break;
9542 	case bpf_ctx_range_ptr(struct sk_msg_md, data_end):
9543 		info->reg_type = PTR_TO_PACKET_END;
9544 		if (size != sizeof(__u64))
9545 			return false;
9546 		break;
9547 	case bpf_ctx_range_ptr(struct sk_msg_md, sk):
9548 		if (size != sizeof(__u64))
9549 			return false;
9550 		info->reg_type = PTR_TO_SOCKET;
9551 		break;
9552 	case bpf_ctx_range(struct sk_msg_md, family):
9553 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9554 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9555 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9556 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9557 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9558 	case bpf_ctx_range(struct sk_msg_md, local_port):
9559 	case bpf_ctx_range(struct sk_msg_md, size):
9560 		if (size != sizeof(__u32))
9561 			return false;
9562 		break;
9563 	default:
9564 		return false;
9565 	}
9566 	return true;
9567 }
9568 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9569 static bool flow_dissector_is_valid_access(int off, int size,
9570 					   enum bpf_access_type type,
9571 					   const struct bpf_prog *prog,
9572 					   struct bpf_insn_access_aux *info)
9573 {
9574 	const int size_default = sizeof(__u32);
9575 
9576 	if (off < 0 || off >= sizeof(struct __sk_buff))
9577 		return false;
9578 
9579 	if (off % size != 0)
9580 		return false;
9581 
9582 	if (type == BPF_WRITE)
9583 		return false;
9584 
9585 	switch (off) {
9586 	case bpf_ctx_range(struct __sk_buff, data):
9587 		if (info->is_ldsx || size != size_default)
9588 			return false;
9589 		info->reg_type = PTR_TO_PACKET;
9590 		return true;
9591 	case bpf_ctx_range(struct __sk_buff, data_end):
9592 		if (info->is_ldsx || size != size_default)
9593 			return false;
9594 		info->reg_type = PTR_TO_PACKET_END;
9595 		return true;
9596 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9597 		if (size != sizeof(__u64))
9598 			return false;
9599 		info->reg_type = PTR_TO_FLOW_KEYS;
9600 		return true;
9601 	default:
9602 		return false;
9603 	}
9604 }
9605 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9606 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9607 					     const struct bpf_insn *si,
9608 					     struct bpf_insn *insn_buf,
9609 					     struct bpf_prog *prog,
9610 					     u32 *target_size)
9611 
9612 {
9613 	struct bpf_insn *insn = insn_buf;
9614 
9615 	switch (si->off) {
9616 	case offsetof(struct __sk_buff, data):
9617 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9618 				      si->dst_reg, si->src_reg,
9619 				      offsetof(struct bpf_flow_dissector, data));
9620 		break;
9621 
9622 	case offsetof(struct __sk_buff, data_end):
9623 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9624 				      si->dst_reg, si->src_reg,
9625 				      offsetof(struct bpf_flow_dissector, data_end));
9626 		break;
9627 
9628 	case offsetof(struct __sk_buff, flow_keys):
9629 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9630 				      si->dst_reg, si->src_reg,
9631 				      offsetof(struct bpf_flow_dissector, flow_keys));
9632 		break;
9633 	}
9634 
9635 	return insn - insn_buf;
9636 }
9637 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9638 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9639 						     struct bpf_insn *insn)
9640 {
9641 	__u8 value_reg = si->dst_reg;
9642 	__u8 skb_reg = si->src_reg;
9643 	BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9644 	BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9645 	BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9646 	BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9647 	*insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9648 	*insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9649 #ifdef __BIG_ENDIAN_BITFIELD
9650 	*insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9651 #else
9652 	BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9653 #endif
9654 
9655 	return insn;
9656 }
9657 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9658 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9659 						  struct bpf_insn *insn)
9660 {
9661 	/* si->dst_reg = skb_shinfo(SKB); */
9662 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9663 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9664 			      BPF_REG_AX, skb_reg,
9665 			      offsetof(struct sk_buff, end));
9666 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9667 			      dst_reg, skb_reg,
9668 			      offsetof(struct sk_buff, head));
9669 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9670 #else
9671 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9672 			      dst_reg, skb_reg,
9673 			      offsetof(struct sk_buff, end));
9674 #endif
9675 
9676 	return insn;
9677 }
9678 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9679 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9680 						const struct bpf_insn *si,
9681 						struct bpf_insn *insn)
9682 {
9683 	__u8 value_reg = si->dst_reg;
9684 	__u8 skb_reg = si->src_reg;
9685 
9686 #ifdef CONFIG_NET_XGRESS
9687 	/* If the tstamp_type is read,
9688 	 * the bpf prog is aware the tstamp could have delivery time.
9689 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9690 	 */
9691 	if (!prog->tstamp_type_access) {
9692 		/* AX is needed because src_reg and dst_reg could be the same */
9693 		__u8 tmp_reg = BPF_REG_AX;
9694 
9695 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9696 		/* check if ingress mask bits is set */
9697 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9698 		*insn++ = BPF_JMP_A(4);
9699 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9700 		*insn++ = BPF_JMP_A(2);
9701 		/* skb->tc_at_ingress && skb->tstamp_type,
9702 		 * read 0 as the (rcv) timestamp.
9703 		 */
9704 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9705 		*insn++ = BPF_JMP_A(1);
9706 	}
9707 #endif
9708 
9709 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9710 			      offsetof(struct sk_buff, tstamp));
9711 	return insn;
9712 }
9713 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9714 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9715 						 const struct bpf_insn *si,
9716 						 struct bpf_insn *insn)
9717 {
9718 	__u8 value_reg = si->src_reg;
9719 	__u8 skb_reg = si->dst_reg;
9720 
9721 #ifdef CONFIG_NET_XGRESS
9722 	/* If the tstamp_type is read,
9723 	 * the bpf prog is aware the tstamp could have delivery time.
9724 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9725 	 * Otherwise, writing at ingress will have to clear the
9726 	 * skb->tstamp_type bit also.
9727 	 */
9728 	if (!prog->tstamp_type_access) {
9729 		__u8 tmp_reg = BPF_REG_AX;
9730 
9731 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9732 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9733 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9734 		/* goto <store> */
9735 		*insn++ = BPF_JMP_A(2);
9736 		/* <clear>: skb->tstamp_type */
9737 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9738 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9739 	}
9740 #endif
9741 
9742 	/* <store>: skb->tstamp = tstamp */
9743 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9744 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9745 	return insn;
9746 }
9747 
9748 #define BPF_EMIT_STORE(size, si, off)					\
9749 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9750 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9751 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9752 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9753 				  const struct bpf_insn *si,
9754 				  struct bpf_insn *insn_buf,
9755 				  struct bpf_prog *prog, u32 *target_size)
9756 {
9757 	struct bpf_insn *insn = insn_buf;
9758 	int off;
9759 
9760 	switch (si->off) {
9761 	case offsetof(struct __sk_buff, len):
9762 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9763 				      bpf_target_off(struct sk_buff, len, 4,
9764 						     target_size));
9765 		break;
9766 
9767 	case offsetof(struct __sk_buff, protocol):
9768 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9769 				      bpf_target_off(struct sk_buff, protocol, 2,
9770 						     target_size));
9771 		break;
9772 
9773 	case offsetof(struct __sk_buff, vlan_proto):
9774 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9775 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9776 						     target_size));
9777 		break;
9778 
9779 	case offsetof(struct __sk_buff, priority):
9780 		if (type == BPF_WRITE)
9781 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9782 						 bpf_target_off(struct sk_buff, priority, 4,
9783 								target_size));
9784 		else
9785 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9786 					      bpf_target_off(struct sk_buff, priority, 4,
9787 							     target_size));
9788 		break;
9789 
9790 	case offsetof(struct __sk_buff, ingress_ifindex):
9791 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9792 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9793 						     target_size));
9794 		break;
9795 
9796 	case offsetof(struct __sk_buff, ifindex):
9797 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9798 				      si->dst_reg, si->src_reg,
9799 				      offsetof(struct sk_buff, dev));
9800 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9801 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9802 				      bpf_target_off(struct net_device, ifindex, 4,
9803 						     target_size));
9804 		break;
9805 
9806 	case offsetof(struct __sk_buff, hash):
9807 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9808 				      bpf_target_off(struct sk_buff, hash, 4,
9809 						     target_size));
9810 		break;
9811 
9812 	case offsetof(struct __sk_buff, mark):
9813 		if (type == BPF_WRITE)
9814 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9815 						 bpf_target_off(struct sk_buff, mark, 4,
9816 								target_size));
9817 		else
9818 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9819 					      bpf_target_off(struct sk_buff, mark, 4,
9820 							     target_size));
9821 		break;
9822 
9823 	case offsetof(struct __sk_buff, pkt_type):
9824 		*target_size = 1;
9825 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9826 				      PKT_TYPE_OFFSET);
9827 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9828 #ifdef __BIG_ENDIAN_BITFIELD
9829 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9830 #endif
9831 		break;
9832 
9833 	case offsetof(struct __sk_buff, queue_mapping):
9834 		if (type == BPF_WRITE) {
9835 			u32 offset = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9836 
9837 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9838 				*insn++ = BPF_JMP_A(0); /* noop */
9839 				break;
9840 			}
9841 
9842 			if (BPF_CLASS(si->code) == BPF_STX)
9843 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9844 			*insn++ = BPF_EMIT_STORE(BPF_H, si, offset);
9845 		} else {
9846 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9847 					      bpf_target_off(struct sk_buff,
9848 							     queue_mapping,
9849 							     2, target_size));
9850 		}
9851 		break;
9852 
9853 	case offsetof(struct __sk_buff, vlan_present):
9854 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9855 				      bpf_target_off(struct sk_buff,
9856 						     vlan_all, 4, target_size));
9857 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9858 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9859 		break;
9860 
9861 	case offsetof(struct __sk_buff, vlan_tci):
9862 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9863 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9864 						     target_size));
9865 		break;
9866 
9867 	case offsetof(struct __sk_buff, cb[0]) ...
9868 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9869 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9870 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9871 			      offsetof(struct qdisc_skb_cb, data)) %
9872 			     sizeof(__u64));
9873 
9874 		prog->cb_access = 1;
9875 		off  = si->off;
9876 		off -= offsetof(struct __sk_buff, cb[0]);
9877 		off += offsetof(struct sk_buff, cb);
9878 		off += offsetof(struct qdisc_skb_cb, data);
9879 		if (type == BPF_WRITE)
9880 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9881 		else
9882 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9883 					      si->src_reg, off);
9884 		break;
9885 
9886 	case offsetof(struct __sk_buff, tc_classid):
9887 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9888 
9889 		off  = si->off;
9890 		off -= offsetof(struct __sk_buff, tc_classid);
9891 		off += offsetof(struct sk_buff, cb);
9892 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9893 		*target_size = 2;
9894 		if (type == BPF_WRITE)
9895 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9896 		else
9897 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9898 					      si->src_reg, off);
9899 		break;
9900 
9901 	case offsetof(struct __sk_buff, data):
9902 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9903 				      si->dst_reg, si->src_reg,
9904 				      offsetof(struct sk_buff, data));
9905 		break;
9906 
9907 	case offsetof(struct __sk_buff, data_meta):
9908 		off  = si->off;
9909 		off -= offsetof(struct __sk_buff, data_meta);
9910 		off += offsetof(struct sk_buff, cb);
9911 		off += offsetof(struct bpf_skb_data_end, data_meta);
9912 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9913 				      si->src_reg, off);
9914 		break;
9915 
9916 	case offsetof(struct __sk_buff, data_end):
9917 		off  = si->off;
9918 		off -= offsetof(struct __sk_buff, data_end);
9919 		off += offsetof(struct sk_buff, cb);
9920 		off += offsetof(struct bpf_skb_data_end, data_end);
9921 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9922 				      si->src_reg, off);
9923 		break;
9924 
9925 	case offsetof(struct __sk_buff, tc_index):
9926 #ifdef CONFIG_NET_SCHED
9927 		if (type == BPF_WRITE)
9928 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9929 						 bpf_target_off(struct sk_buff, tc_index, 2,
9930 								target_size));
9931 		else
9932 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9933 					      bpf_target_off(struct sk_buff, tc_index, 2,
9934 							     target_size));
9935 #else
9936 		*target_size = 2;
9937 		if (type == BPF_WRITE)
9938 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9939 		else
9940 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9941 #endif
9942 		break;
9943 
9944 	case offsetof(struct __sk_buff, napi_id):
9945 #if defined(CONFIG_NET_RX_BUSY_POLL)
9946 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9947 				      bpf_target_off(struct sk_buff, napi_id, 4,
9948 						     target_size));
9949 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9950 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9951 #else
9952 		*target_size = 4;
9953 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9954 #endif
9955 		break;
9956 	case offsetof(struct __sk_buff, family):
9957 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9958 
9959 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9960 				      si->dst_reg, si->src_reg,
9961 				      offsetof(struct sk_buff, sk));
9962 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9963 				      bpf_target_off(struct sock_common,
9964 						     skc_family,
9965 						     2, target_size));
9966 		break;
9967 	case offsetof(struct __sk_buff, remote_ip4):
9968 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9969 
9970 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9971 				      si->dst_reg, si->src_reg,
9972 				      offsetof(struct sk_buff, sk));
9973 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9974 				      bpf_target_off(struct sock_common,
9975 						     skc_daddr,
9976 						     4, target_size));
9977 		break;
9978 	case offsetof(struct __sk_buff, local_ip4):
9979 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9980 					  skc_rcv_saddr) != 4);
9981 
9982 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9983 				      si->dst_reg, si->src_reg,
9984 				      offsetof(struct sk_buff, sk));
9985 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9986 				      bpf_target_off(struct sock_common,
9987 						     skc_rcv_saddr,
9988 						     4, target_size));
9989 		break;
9990 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9991 	     offsetof(struct __sk_buff, remote_ip6[3]):
9992 #if IS_ENABLED(CONFIG_IPV6)
9993 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9994 					  skc_v6_daddr.s6_addr32[0]) != 4);
9995 
9996 		off = si->off;
9997 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9998 
9999 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10000 				      si->dst_reg, si->src_reg,
10001 				      offsetof(struct sk_buff, sk));
10002 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10003 				      offsetof(struct sock_common,
10004 					       skc_v6_daddr.s6_addr32[0]) +
10005 				      off);
10006 #else
10007 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10008 #endif
10009 		break;
10010 	case offsetof(struct __sk_buff, local_ip6[0]) ...
10011 	     offsetof(struct __sk_buff, local_ip6[3]):
10012 #if IS_ENABLED(CONFIG_IPV6)
10013 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10014 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10015 
10016 		off = si->off;
10017 		off -= offsetof(struct __sk_buff, local_ip6[0]);
10018 
10019 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10020 				      si->dst_reg, si->src_reg,
10021 				      offsetof(struct sk_buff, sk));
10022 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10023 				      offsetof(struct sock_common,
10024 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10025 				      off);
10026 #else
10027 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10028 #endif
10029 		break;
10030 
10031 	case offsetof(struct __sk_buff, remote_port):
10032 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10033 
10034 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10035 				      si->dst_reg, si->src_reg,
10036 				      offsetof(struct sk_buff, sk));
10037 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10038 				      bpf_target_off(struct sock_common,
10039 						     skc_dport,
10040 						     2, target_size));
10041 #ifndef __BIG_ENDIAN_BITFIELD
10042 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10043 #endif
10044 		break;
10045 
10046 	case offsetof(struct __sk_buff, local_port):
10047 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10048 
10049 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10050 				      si->dst_reg, si->src_reg,
10051 				      offsetof(struct sk_buff, sk));
10052 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10053 				      bpf_target_off(struct sock_common,
10054 						     skc_num, 2, target_size));
10055 		break;
10056 
10057 	case offsetof(struct __sk_buff, tstamp):
10058 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
10059 
10060 		if (type == BPF_WRITE)
10061 			insn = bpf_convert_tstamp_write(prog, si, insn);
10062 		else
10063 			insn = bpf_convert_tstamp_read(prog, si, insn);
10064 		break;
10065 
10066 	case offsetof(struct __sk_buff, tstamp_type):
10067 		insn = bpf_convert_tstamp_type_read(si, insn);
10068 		break;
10069 
10070 	case offsetof(struct __sk_buff, gso_segs):
10071 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10072 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
10073 				      si->dst_reg, si->dst_reg,
10074 				      bpf_target_off(struct skb_shared_info,
10075 						     gso_segs, 2,
10076 						     target_size));
10077 		break;
10078 	case offsetof(struct __sk_buff, gso_size):
10079 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10080 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
10081 				      si->dst_reg, si->dst_reg,
10082 				      bpf_target_off(struct skb_shared_info,
10083 						     gso_size, 2,
10084 						     target_size));
10085 		break;
10086 	case offsetof(struct __sk_buff, wire_len):
10087 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
10088 
10089 		off = si->off;
10090 		off -= offsetof(struct __sk_buff, wire_len);
10091 		off += offsetof(struct sk_buff, cb);
10092 		off += offsetof(struct qdisc_skb_cb, pkt_len);
10093 		*target_size = 4;
10094 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
10095 		break;
10096 
10097 	case offsetof(struct __sk_buff, sk):
10098 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
10099 				      si->dst_reg, si->src_reg,
10100 				      offsetof(struct sk_buff, sk));
10101 		break;
10102 	case offsetof(struct __sk_buff, hwtstamp):
10103 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
10104 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
10105 
10106 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
10107 		*insn++ = BPF_LDX_MEM(BPF_DW,
10108 				      si->dst_reg, si->dst_reg,
10109 				      bpf_target_off(struct skb_shared_info,
10110 						     hwtstamps, 8,
10111 						     target_size));
10112 		break;
10113 	}
10114 
10115 	return insn - insn_buf;
10116 }
10117 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10118 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
10119 				const struct bpf_insn *si,
10120 				struct bpf_insn *insn_buf,
10121 				struct bpf_prog *prog, u32 *target_size)
10122 {
10123 	struct bpf_insn *insn = insn_buf;
10124 	int off;
10125 
10126 	switch (si->off) {
10127 	case offsetof(struct bpf_sock, bound_dev_if):
10128 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
10129 
10130 		if (type == BPF_WRITE)
10131 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10132 						 offsetof(struct sock, sk_bound_dev_if));
10133 		else
10134 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10135 				      offsetof(struct sock, sk_bound_dev_if));
10136 		break;
10137 
10138 	case offsetof(struct bpf_sock, mark):
10139 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
10140 
10141 		if (type == BPF_WRITE)
10142 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10143 						 offsetof(struct sock, sk_mark));
10144 		else
10145 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10146 				      offsetof(struct sock, sk_mark));
10147 		break;
10148 
10149 	case offsetof(struct bpf_sock, priority):
10150 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
10151 
10152 		if (type == BPF_WRITE)
10153 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
10154 						 offsetof(struct sock, sk_priority));
10155 		else
10156 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10157 				      offsetof(struct sock, sk_priority));
10158 		break;
10159 
10160 	case offsetof(struct bpf_sock, family):
10161 		*insn++ = BPF_LDX_MEM(
10162 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
10163 			si->dst_reg, si->src_reg,
10164 			bpf_target_off(struct sock_common,
10165 				       skc_family,
10166 				       sizeof_field(struct sock_common,
10167 						    skc_family),
10168 				       target_size));
10169 		break;
10170 
10171 	case offsetof(struct bpf_sock, type):
10172 		*insn++ = BPF_LDX_MEM(
10173 			BPF_FIELD_SIZEOF(struct sock, sk_type),
10174 			si->dst_reg, si->src_reg,
10175 			bpf_target_off(struct sock, sk_type,
10176 				       sizeof_field(struct sock, sk_type),
10177 				       target_size));
10178 		break;
10179 
10180 	case offsetof(struct bpf_sock, protocol):
10181 		*insn++ = BPF_LDX_MEM(
10182 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
10183 			si->dst_reg, si->src_reg,
10184 			bpf_target_off(struct sock, sk_protocol,
10185 				       sizeof_field(struct sock, sk_protocol),
10186 				       target_size));
10187 		break;
10188 
10189 	case offsetof(struct bpf_sock, src_ip4):
10190 		*insn++ = BPF_LDX_MEM(
10191 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10192 			bpf_target_off(struct sock_common, skc_rcv_saddr,
10193 				       sizeof_field(struct sock_common,
10194 						    skc_rcv_saddr),
10195 				       target_size));
10196 		break;
10197 
10198 	case offsetof(struct bpf_sock, dst_ip4):
10199 		*insn++ = BPF_LDX_MEM(
10200 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10201 			bpf_target_off(struct sock_common, skc_daddr,
10202 				       sizeof_field(struct sock_common,
10203 						    skc_daddr),
10204 				       target_size));
10205 		break;
10206 
10207 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
10208 #if IS_ENABLED(CONFIG_IPV6)
10209 		off = si->off;
10210 		off -= offsetof(struct bpf_sock, src_ip6[0]);
10211 		*insn++ = BPF_LDX_MEM(
10212 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10213 			bpf_target_off(
10214 				struct sock_common,
10215 				skc_v6_rcv_saddr.s6_addr32[0],
10216 				sizeof_field(struct sock_common,
10217 					     skc_v6_rcv_saddr.s6_addr32[0]),
10218 				target_size) + off);
10219 #else
10220 		(void)off;
10221 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10222 #endif
10223 		break;
10224 
10225 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
10226 #if IS_ENABLED(CONFIG_IPV6)
10227 		off = si->off;
10228 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
10229 		*insn++ = BPF_LDX_MEM(
10230 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10231 			bpf_target_off(struct sock_common,
10232 				       skc_v6_daddr.s6_addr32[0],
10233 				       sizeof_field(struct sock_common,
10234 						    skc_v6_daddr.s6_addr32[0]),
10235 				       target_size) + off);
10236 #else
10237 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10238 		*target_size = 4;
10239 #endif
10240 		break;
10241 
10242 	case offsetof(struct bpf_sock, src_port):
10243 		*insn++ = BPF_LDX_MEM(
10244 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10245 			si->dst_reg, si->src_reg,
10246 			bpf_target_off(struct sock_common, skc_num,
10247 				       sizeof_field(struct sock_common,
10248 						    skc_num),
10249 				       target_size));
10250 		break;
10251 
10252 	case offsetof(struct bpf_sock, dst_port):
10253 		*insn++ = BPF_LDX_MEM(
10254 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10255 			si->dst_reg, si->src_reg,
10256 			bpf_target_off(struct sock_common, skc_dport,
10257 				       sizeof_field(struct sock_common,
10258 						    skc_dport),
10259 				       target_size));
10260 		break;
10261 
10262 	case offsetof(struct bpf_sock, state):
10263 		*insn++ = BPF_LDX_MEM(
10264 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10265 			si->dst_reg, si->src_reg,
10266 			bpf_target_off(struct sock_common, skc_state,
10267 				       sizeof_field(struct sock_common,
10268 						    skc_state),
10269 				       target_size));
10270 		break;
10271 	case offsetof(struct bpf_sock, rx_queue_mapping):
10272 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10273 		*insn++ = BPF_LDX_MEM(
10274 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10275 			si->dst_reg, si->src_reg,
10276 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10277 				       sizeof_field(struct sock,
10278 						    sk_rx_queue_mapping),
10279 				       target_size));
10280 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10281 				      1);
10282 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10283 #else
10284 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10285 		*target_size = 2;
10286 #endif
10287 		break;
10288 	}
10289 
10290 	return insn - insn_buf;
10291 }
10292 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10293 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10294 					 const struct bpf_insn *si,
10295 					 struct bpf_insn *insn_buf,
10296 					 struct bpf_prog *prog, u32 *target_size)
10297 {
10298 	struct bpf_insn *insn = insn_buf;
10299 
10300 	switch (si->off) {
10301 	case offsetof(struct __sk_buff, ifindex):
10302 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10303 				      si->dst_reg, si->src_reg,
10304 				      offsetof(struct sk_buff, dev));
10305 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10306 				      bpf_target_off(struct net_device, ifindex, 4,
10307 						     target_size));
10308 		break;
10309 	default:
10310 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10311 					      target_size);
10312 	}
10313 
10314 	return insn - insn_buf;
10315 }
10316 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10317 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10318 				  const struct bpf_insn *si,
10319 				  struct bpf_insn *insn_buf,
10320 				  struct bpf_prog *prog, u32 *target_size)
10321 {
10322 	struct bpf_insn *insn = insn_buf;
10323 
10324 	switch (si->off) {
10325 	case offsetof(struct xdp_md, data):
10326 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10327 				      si->dst_reg, si->src_reg,
10328 				      offsetof(struct xdp_buff, data));
10329 		break;
10330 	case offsetof(struct xdp_md, data_meta):
10331 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10332 				      si->dst_reg, si->src_reg,
10333 				      offsetof(struct xdp_buff, data_meta));
10334 		break;
10335 	case offsetof(struct xdp_md, data_end):
10336 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10337 				      si->dst_reg, si->src_reg,
10338 				      offsetof(struct xdp_buff, data_end));
10339 		break;
10340 	case offsetof(struct xdp_md, ingress_ifindex):
10341 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10342 				      si->dst_reg, si->src_reg,
10343 				      offsetof(struct xdp_buff, rxq));
10344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10345 				      si->dst_reg, si->dst_reg,
10346 				      offsetof(struct xdp_rxq_info, dev));
10347 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10348 				      offsetof(struct net_device, ifindex));
10349 		break;
10350 	case offsetof(struct xdp_md, rx_queue_index):
10351 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10352 				      si->dst_reg, si->src_reg,
10353 				      offsetof(struct xdp_buff, rxq));
10354 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10355 				      offsetof(struct xdp_rxq_info,
10356 					       queue_index));
10357 		break;
10358 	case offsetof(struct xdp_md, egress_ifindex):
10359 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10360 				      si->dst_reg, si->src_reg,
10361 				      offsetof(struct xdp_buff, txq));
10362 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10363 				      si->dst_reg, si->dst_reg,
10364 				      offsetof(struct xdp_txq_info, dev));
10365 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10366 				      offsetof(struct net_device, ifindex));
10367 		break;
10368 	}
10369 
10370 	return insn - insn_buf;
10371 }
10372 
10373 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10374  * context Structure, F is Field in context structure that contains a pointer
10375  * to Nested Structure of type NS that has the field NF.
10376  *
10377  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10378  * sure that SIZE is not greater than actual size of S.F.NF.
10379  *
10380  * If offset OFF is provided, the load happens from that offset relative to
10381  * offset of NF.
10382  */
10383 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10384 	do {								       \
10385 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10386 				      si->src_reg, offsetof(S, F));	       \
10387 		*insn++ = BPF_LDX_MEM(					       \
10388 			SIZE, si->dst_reg, si->dst_reg,			       \
10389 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10390 				       target_size)			       \
10391 				+ OFF);					       \
10392 	} while (0)
10393 
10394 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10395 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10396 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10397 
10398 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10399  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10400  *
10401  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10402  * "register" since two registers available in convert_ctx_access are not
10403  * enough: we can't override neither SRC, since it contains value to store, nor
10404  * DST since it contains pointer to context that may be used by later
10405  * instructions. But we need a temporary place to save pointer to nested
10406  * structure whose field we want to store to.
10407  */
10408 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10409 	do {								       \
10410 		int tmp_reg = BPF_REG_9;				       \
10411 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10412 			--tmp_reg;					       \
10413 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10414 			--tmp_reg;					       \
10415 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10416 				      offsetof(S, TF));			       \
10417 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10418 				      si->dst_reg, offsetof(S, F));	       \
10419 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10420 				       tmp_reg, si->src_reg,		       \
10421 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10422 				       target_size)			       \
10423 				       + OFF,				       \
10424 				       si->imm);			       \
10425 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10426 				      offsetof(S, TF));			       \
10427 	} while (0)
10428 
10429 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10430 						      TF)		       \
10431 	do {								       \
10432 		if (type == BPF_WRITE) {				       \
10433 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10434 							 OFF, TF);	       \
10435 		} else {						       \
10436 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10437 				S, NS, F, NF, SIZE, OFF);  \
10438 		}							       \
10439 	} while (0)
10440 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10441 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10442 					const struct bpf_insn *si,
10443 					struct bpf_insn *insn_buf,
10444 					struct bpf_prog *prog, u32 *target_size)
10445 {
10446 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10447 	struct bpf_insn *insn = insn_buf;
10448 
10449 	switch (si->off) {
10450 	case offsetof(struct bpf_sock_addr, user_family):
10451 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10452 					    struct sockaddr, uaddr, sa_family);
10453 		break;
10454 
10455 	case offsetof(struct bpf_sock_addr, user_ip4):
10456 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10457 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10458 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10459 		break;
10460 
10461 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10462 		off = si->off;
10463 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10464 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10465 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10466 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10467 			tmp_reg);
10468 		break;
10469 
10470 	case offsetof(struct bpf_sock_addr, user_port):
10471 		/* To get port we need to know sa_family first and then treat
10472 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10473 		 * Though we can simplify since port field has same offset and
10474 		 * size in both structures.
10475 		 * Here we check this invariant and use just one of the
10476 		 * structures if it's true.
10477 		 */
10478 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10479 			     offsetof(struct sockaddr_in6, sin6_port));
10480 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10481 			     sizeof_field(struct sockaddr_in6, sin6_port));
10482 		/* Account for sin6_port being smaller than user_port. */
10483 		port_size = min(port_size, BPF_LDST_BYTES(si));
10484 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10485 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10486 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10487 		break;
10488 
10489 	case offsetof(struct bpf_sock_addr, family):
10490 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10491 					    struct sock, sk, sk_family);
10492 		break;
10493 
10494 	case offsetof(struct bpf_sock_addr, type):
10495 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10496 					    struct sock, sk, sk_type);
10497 		break;
10498 
10499 	case offsetof(struct bpf_sock_addr, protocol):
10500 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10501 					    struct sock, sk, sk_protocol);
10502 		break;
10503 
10504 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10505 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10506 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10507 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10508 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10509 		break;
10510 
10511 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10512 				msg_src_ip6[3]):
10513 		off = si->off;
10514 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10515 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10516 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10517 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10518 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10519 		break;
10520 	case offsetof(struct bpf_sock_addr, sk):
10521 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10522 				      si->dst_reg, si->src_reg,
10523 				      offsetof(struct bpf_sock_addr_kern, sk));
10524 		break;
10525 	}
10526 
10527 	return insn - insn_buf;
10528 }
10529 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10530 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10531 				       const struct bpf_insn *si,
10532 				       struct bpf_insn *insn_buf,
10533 				       struct bpf_prog *prog,
10534 				       u32 *target_size)
10535 {
10536 	struct bpf_insn *insn = insn_buf;
10537 	int off;
10538 
10539 /* Helper macro for adding read access to tcp_sock or sock fields. */
10540 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10541 	do {								      \
10542 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10543 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10544 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10545 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10546 			reg--;						      \
10547 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10548 			reg--;						      \
10549 		if (si->dst_reg == si->src_reg) {			      \
10550 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10551 					  offsetof(struct bpf_sock_ops_kern,  \
10552 					  temp));			      \
10553 			fullsock_reg = reg;				      \
10554 			jmp += 2;					      \
10555 		}							      \
10556 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10557 						struct bpf_sock_ops_kern,     \
10558 						is_locked_tcp_sock),	      \
10559 				      fullsock_reg, si->src_reg,	      \
10560 				      offsetof(struct bpf_sock_ops_kern,      \
10561 					       is_locked_tcp_sock));	      \
10562 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10563 		if (si->dst_reg == si->src_reg)				      \
10564 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10565 				      offsetof(struct bpf_sock_ops_kern,      \
10566 				      temp));				      \
10567 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10568 						struct bpf_sock_ops_kern, sk),\
10569 				      si->dst_reg, si->src_reg,		      \
10570 				      offsetof(struct bpf_sock_ops_kern, sk));\
10571 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10572 						       OBJ_FIELD),	      \
10573 				      si->dst_reg, si->dst_reg,		      \
10574 				      offsetof(OBJ, OBJ_FIELD));	      \
10575 		if (si->dst_reg == si->src_reg)	{			      \
10576 			*insn++ = BPF_JMP_A(1);				      \
10577 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10578 				      offsetof(struct bpf_sock_ops_kern,      \
10579 				      temp));				      \
10580 		}							      \
10581 	} while (0)
10582 
10583 #define SOCK_OPS_GET_SK()							      \
10584 	do {								      \
10585 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10586 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10587 			reg--;						      \
10588 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10589 			reg--;						      \
10590 		if (si->dst_reg == si->src_reg) {			      \
10591 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10592 					  offsetof(struct bpf_sock_ops_kern,  \
10593 					  temp));			      \
10594 			fullsock_reg = reg;				      \
10595 			jmp += 2;					      \
10596 		}							      \
10597 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10598 						struct bpf_sock_ops_kern,     \
10599 						is_fullsock),		      \
10600 				      fullsock_reg, si->src_reg,	      \
10601 				      offsetof(struct bpf_sock_ops_kern,      \
10602 					       is_fullsock));		      \
10603 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10604 		if (si->dst_reg == si->src_reg)				      \
10605 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10606 				      offsetof(struct bpf_sock_ops_kern,      \
10607 				      temp));				      \
10608 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10609 						struct bpf_sock_ops_kern, sk),\
10610 				      si->dst_reg, si->src_reg,		      \
10611 				      offsetof(struct bpf_sock_ops_kern, sk));\
10612 		if (si->dst_reg == si->src_reg)	{			      \
10613 			*insn++ = BPF_JMP_A(1);				      \
10614 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10615 				      offsetof(struct bpf_sock_ops_kern,      \
10616 				      temp));				      \
10617 		}							      \
10618 	} while (0)
10619 
10620 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10621 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10622 
10623 /* Helper macro for adding write access to tcp_sock or sock fields.
10624  * The macro is called with two registers, dst_reg which contains a pointer
10625  * to ctx (context) and src_reg which contains the value that should be
10626  * stored. However, we need an additional register since we cannot overwrite
10627  * dst_reg because it may be used later in the program.
10628  * Instead we "borrow" one of the other register. We first save its value
10629  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10630  * it at the end of the macro.
10631  */
10632 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10633 	do {								      \
10634 		int reg = BPF_REG_9;					      \
10635 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10636 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10637 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10638 			reg--;						      \
10639 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10640 			reg--;						      \
10641 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10642 				      offsetof(struct bpf_sock_ops_kern,      \
10643 					       temp));			      \
10644 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10645 						struct bpf_sock_ops_kern,     \
10646 						is_locked_tcp_sock),	      \
10647 				      reg, si->dst_reg,			      \
10648 				      offsetof(struct bpf_sock_ops_kern,      \
10649 					       is_locked_tcp_sock));	      \
10650 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10651 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10652 						struct bpf_sock_ops_kern, sk),\
10653 				      reg, si->dst_reg,			      \
10654 				      offsetof(struct bpf_sock_ops_kern, sk));\
10655 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10656 				       BPF_MEM | BPF_CLASS(si->code),	      \
10657 				       reg, si->src_reg,		      \
10658 				       offsetof(OBJ, OBJ_FIELD),	      \
10659 				       si->imm);			      \
10660 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10661 				      offsetof(struct bpf_sock_ops_kern,      \
10662 					       temp));			      \
10663 	} while (0)
10664 
10665 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10666 	do {								      \
10667 		if (TYPE == BPF_WRITE)					      \
10668 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10669 		else							      \
10670 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10671 	} while (0)
10672 
10673 	switch (si->off) {
10674 	case offsetof(struct bpf_sock_ops, op):
10675 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10676 						       op),
10677 				      si->dst_reg, si->src_reg,
10678 				      offsetof(struct bpf_sock_ops_kern, op));
10679 		break;
10680 
10681 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10682 	     offsetof(struct bpf_sock_ops, replylong[3]):
10683 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10684 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10685 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10686 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10687 		off = si->off;
10688 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10689 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10690 		if (type == BPF_WRITE)
10691 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10692 		else
10693 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10694 					      off);
10695 		break;
10696 
10697 	case offsetof(struct bpf_sock_ops, family):
10698 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10699 
10700 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10701 					      struct bpf_sock_ops_kern, sk),
10702 				      si->dst_reg, si->src_reg,
10703 				      offsetof(struct bpf_sock_ops_kern, sk));
10704 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10705 				      offsetof(struct sock_common, skc_family));
10706 		break;
10707 
10708 	case offsetof(struct bpf_sock_ops, remote_ip4):
10709 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10710 
10711 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10712 						struct bpf_sock_ops_kern, sk),
10713 				      si->dst_reg, si->src_reg,
10714 				      offsetof(struct bpf_sock_ops_kern, sk));
10715 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10716 				      offsetof(struct sock_common, skc_daddr));
10717 		break;
10718 
10719 	case offsetof(struct bpf_sock_ops, local_ip4):
10720 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10721 					  skc_rcv_saddr) != 4);
10722 
10723 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10724 					      struct bpf_sock_ops_kern, sk),
10725 				      si->dst_reg, si->src_reg,
10726 				      offsetof(struct bpf_sock_ops_kern, sk));
10727 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10728 				      offsetof(struct sock_common,
10729 					       skc_rcv_saddr));
10730 		break;
10731 
10732 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10733 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10734 #if IS_ENABLED(CONFIG_IPV6)
10735 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10736 					  skc_v6_daddr.s6_addr32[0]) != 4);
10737 
10738 		off = si->off;
10739 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10740 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10741 						struct bpf_sock_ops_kern, sk),
10742 				      si->dst_reg, si->src_reg,
10743 				      offsetof(struct bpf_sock_ops_kern, sk));
10744 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10745 				      offsetof(struct sock_common,
10746 					       skc_v6_daddr.s6_addr32[0]) +
10747 				      off);
10748 #else
10749 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10750 #endif
10751 		break;
10752 
10753 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10754 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10755 #if IS_ENABLED(CONFIG_IPV6)
10756 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10757 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10758 
10759 		off = si->off;
10760 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10761 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10762 						struct bpf_sock_ops_kern, sk),
10763 				      si->dst_reg, si->src_reg,
10764 				      offsetof(struct bpf_sock_ops_kern, sk));
10765 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10766 				      offsetof(struct sock_common,
10767 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10768 				      off);
10769 #else
10770 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10771 #endif
10772 		break;
10773 
10774 	case offsetof(struct bpf_sock_ops, remote_port):
10775 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10776 
10777 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10778 						struct bpf_sock_ops_kern, sk),
10779 				      si->dst_reg, si->src_reg,
10780 				      offsetof(struct bpf_sock_ops_kern, sk));
10781 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10782 				      offsetof(struct sock_common, skc_dport));
10783 #ifndef __BIG_ENDIAN_BITFIELD
10784 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10785 #endif
10786 		break;
10787 
10788 	case offsetof(struct bpf_sock_ops, local_port):
10789 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10790 
10791 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10792 						struct bpf_sock_ops_kern, sk),
10793 				      si->dst_reg, si->src_reg,
10794 				      offsetof(struct bpf_sock_ops_kern, sk));
10795 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10796 				      offsetof(struct sock_common, skc_num));
10797 		break;
10798 
10799 	case offsetof(struct bpf_sock_ops, is_fullsock):
10800 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10801 						struct bpf_sock_ops_kern,
10802 						is_fullsock),
10803 				      si->dst_reg, si->src_reg,
10804 				      offsetof(struct bpf_sock_ops_kern,
10805 					       is_fullsock));
10806 		break;
10807 
10808 	case offsetof(struct bpf_sock_ops, state):
10809 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10810 
10811 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10812 						struct bpf_sock_ops_kern, sk),
10813 				      si->dst_reg, si->src_reg,
10814 				      offsetof(struct bpf_sock_ops_kern, sk));
10815 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10816 				      offsetof(struct sock_common, skc_state));
10817 		break;
10818 
10819 	case offsetof(struct bpf_sock_ops, rtt_min):
10820 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10821 			     sizeof(struct minmax));
10822 		BUILD_BUG_ON(sizeof(struct minmax) <
10823 			     sizeof(struct minmax_sample));
10824 
10825 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10826 						struct bpf_sock_ops_kern, sk),
10827 				      si->dst_reg, si->src_reg,
10828 				      offsetof(struct bpf_sock_ops_kern, sk));
10829 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10830 				      offsetof(struct tcp_sock, rtt_min) +
10831 				      sizeof_field(struct minmax_sample, t));
10832 		break;
10833 
10834 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10835 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10836 				   struct tcp_sock);
10837 		break;
10838 
10839 	case offsetof(struct bpf_sock_ops, sk_txhash):
10840 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10841 					  struct sock, type);
10842 		break;
10843 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10844 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10845 		break;
10846 	case offsetof(struct bpf_sock_ops, srtt_us):
10847 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10848 		break;
10849 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10850 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10851 		break;
10852 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10853 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10854 		break;
10855 	case offsetof(struct bpf_sock_ops, snd_nxt):
10856 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10857 		break;
10858 	case offsetof(struct bpf_sock_ops, snd_una):
10859 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10860 		break;
10861 	case offsetof(struct bpf_sock_ops, mss_cache):
10862 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10863 		break;
10864 	case offsetof(struct bpf_sock_ops, ecn_flags):
10865 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10866 		break;
10867 	case offsetof(struct bpf_sock_ops, rate_delivered):
10868 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10869 		break;
10870 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10871 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10872 		break;
10873 	case offsetof(struct bpf_sock_ops, packets_out):
10874 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10875 		break;
10876 	case offsetof(struct bpf_sock_ops, retrans_out):
10877 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10878 		break;
10879 	case offsetof(struct bpf_sock_ops, total_retrans):
10880 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10881 		break;
10882 	case offsetof(struct bpf_sock_ops, segs_in):
10883 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10884 		break;
10885 	case offsetof(struct bpf_sock_ops, data_segs_in):
10886 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10887 		break;
10888 	case offsetof(struct bpf_sock_ops, segs_out):
10889 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10890 		break;
10891 	case offsetof(struct bpf_sock_ops, data_segs_out):
10892 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10893 		break;
10894 	case offsetof(struct bpf_sock_ops, lost_out):
10895 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10896 		break;
10897 	case offsetof(struct bpf_sock_ops, sacked_out):
10898 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10899 		break;
10900 	case offsetof(struct bpf_sock_ops, bytes_received):
10901 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10902 		break;
10903 	case offsetof(struct bpf_sock_ops, bytes_acked):
10904 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10905 		break;
10906 	case offsetof(struct bpf_sock_ops, sk):
10907 		SOCK_OPS_GET_SK();
10908 		break;
10909 	case offsetof(struct bpf_sock_ops, skb_data_end):
10910 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10911 						       skb_data_end),
10912 				      si->dst_reg, si->src_reg,
10913 				      offsetof(struct bpf_sock_ops_kern,
10914 					       skb_data_end));
10915 		break;
10916 	case offsetof(struct bpf_sock_ops, skb_data):
10917 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10918 						       skb),
10919 				      si->dst_reg, si->src_reg,
10920 				      offsetof(struct bpf_sock_ops_kern,
10921 					       skb));
10922 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10923 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10924 				      si->dst_reg, si->dst_reg,
10925 				      offsetof(struct sk_buff, data));
10926 		break;
10927 	case offsetof(struct bpf_sock_ops, skb_len):
10928 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10929 						       skb),
10930 				      si->dst_reg, si->src_reg,
10931 				      offsetof(struct bpf_sock_ops_kern,
10932 					       skb));
10933 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10934 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10935 				      si->dst_reg, si->dst_reg,
10936 				      offsetof(struct sk_buff, len));
10937 		break;
10938 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10939 		off = offsetof(struct sk_buff, cb);
10940 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10941 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10942 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10943 						       skb),
10944 				      si->dst_reg, si->src_reg,
10945 				      offsetof(struct bpf_sock_ops_kern,
10946 					       skb));
10947 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10948 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10949 						       tcp_flags),
10950 				      si->dst_reg, si->dst_reg, off);
10951 		break;
10952 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10953 		struct bpf_insn *jmp_on_null_skb;
10954 
10955 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10956 						       skb),
10957 				      si->dst_reg, si->src_reg,
10958 				      offsetof(struct bpf_sock_ops_kern,
10959 					       skb));
10960 		/* Reserve one insn to test skb == NULL */
10961 		jmp_on_null_skb = insn++;
10962 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10963 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10964 				      bpf_target_off(struct skb_shared_info,
10965 						     hwtstamps, 8,
10966 						     target_size));
10967 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10968 					       insn - jmp_on_null_skb - 1);
10969 		break;
10970 	}
10971 	}
10972 	return insn - insn_buf;
10973 }
10974 
10975 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10976 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10977 						    struct bpf_insn *insn)
10978 {
10979 	int reg;
10980 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10981 			   offsetof(struct sk_skb_cb, temp_reg);
10982 
10983 	if (si->src_reg == si->dst_reg) {
10984 		/* We need an extra register, choose and save a register. */
10985 		reg = BPF_REG_9;
10986 		if (si->src_reg == reg || si->dst_reg == reg)
10987 			reg--;
10988 		if (si->src_reg == reg || si->dst_reg == reg)
10989 			reg--;
10990 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10991 	} else {
10992 		reg = si->dst_reg;
10993 	}
10994 
10995 	/* reg = skb->data */
10996 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10997 			      reg, si->src_reg,
10998 			      offsetof(struct sk_buff, data));
10999 	/* AX = skb->len */
11000 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
11001 			      BPF_REG_AX, si->src_reg,
11002 			      offsetof(struct sk_buff, len));
11003 	/* reg = skb->data + skb->len */
11004 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
11005 	/* AX = skb->data_len */
11006 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
11007 			      BPF_REG_AX, si->src_reg,
11008 			      offsetof(struct sk_buff, data_len));
11009 
11010 	/* reg = skb->data + skb->len - skb->data_len */
11011 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
11012 
11013 	if (si->src_reg == si->dst_reg) {
11014 		/* Restore the saved register */
11015 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
11016 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
11017 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
11018 	}
11019 
11020 	return insn;
11021 }
11022 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11023 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
11024 				     const struct bpf_insn *si,
11025 				     struct bpf_insn *insn_buf,
11026 				     struct bpf_prog *prog, u32 *target_size)
11027 {
11028 	struct bpf_insn *insn = insn_buf;
11029 	int off;
11030 
11031 	switch (si->off) {
11032 	case offsetof(struct __sk_buff, data_end):
11033 		insn = bpf_convert_data_end_access(si, insn);
11034 		break;
11035 	case offsetof(struct __sk_buff, cb[0]) ...
11036 	     offsetofend(struct __sk_buff, cb[4]) - 1:
11037 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
11038 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
11039 			      offsetof(struct sk_skb_cb, data)) %
11040 			     sizeof(__u64));
11041 
11042 		prog->cb_access = 1;
11043 		off  = si->off;
11044 		off -= offsetof(struct __sk_buff, cb[0]);
11045 		off += offsetof(struct sk_buff, cb);
11046 		off += offsetof(struct sk_skb_cb, data);
11047 		if (type == BPF_WRITE)
11048 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
11049 		else
11050 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
11051 					      si->src_reg, off);
11052 		break;
11053 
11054 
11055 	default:
11056 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
11057 					      target_size);
11058 	}
11059 
11060 	return insn - insn_buf;
11061 }
11062 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11063 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
11064 				     const struct bpf_insn *si,
11065 				     struct bpf_insn *insn_buf,
11066 				     struct bpf_prog *prog, u32 *target_size)
11067 {
11068 	struct bpf_insn *insn = insn_buf;
11069 #if IS_ENABLED(CONFIG_IPV6)
11070 	int off;
11071 #endif
11072 
11073 	/* convert ctx uses the fact sg element is first in struct */
11074 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
11075 
11076 	switch (si->off) {
11077 	case offsetof(struct sk_msg_md, data):
11078 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
11079 				      si->dst_reg, si->src_reg,
11080 				      offsetof(struct sk_msg, data));
11081 		break;
11082 	case offsetof(struct sk_msg_md, data_end):
11083 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
11084 				      si->dst_reg, si->src_reg,
11085 				      offsetof(struct sk_msg, data_end));
11086 		break;
11087 	case offsetof(struct sk_msg_md, family):
11088 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
11089 
11090 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11091 					      struct sk_msg, sk),
11092 				      si->dst_reg, si->src_reg,
11093 				      offsetof(struct sk_msg, sk));
11094 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11095 				      offsetof(struct sock_common, skc_family));
11096 		break;
11097 
11098 	case offsetof(struct sk_msg_md, remote_ip4):
11099 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
11100 
11101 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11102 						struct sk_msg, sk),
11103 				      si->dst_reg, si->src_reg,
11104 				      offsetof(struct sk_msg, sk));
11105 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11106 				      offsetof(struct sock_common, skc_daddr));
11107 		break;
11108 
11109 	case offsetof(struct sk_msg_md, local_ip4):
11110 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11111 					  skc_rcv_saddr) != 4);
11112 
11113 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11114 					      struct sk_msg, sk),
11115 				      si->dst_reg, si->src_reg,
11116 				      offsetof(struct sk_msg, sk));
11117 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11118 				      offsetof(struct sock_common,
11119 					       skc_rcv_saddr));
11120 		break;
11121 
11122 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
11123 	     offsetof(struct sk_msg_md, remote_ip6[3]):
11124 #if IS_ENABLED(CONFIG_IPV6)
11125 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11126 					  skc_v6_daddr.s6_addr32[0]) != 4);
11127 
11128 		off = si->off;
11129 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
11130 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11131 						struct sk_msg, sk),
11132 				      si->dst_reg, si->src_reg,
11133 				      offsetof(struct sk_msg, sk));
11134 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11135 				      offsetof(struct sock_common,
11136 					       skc_v6_daddr.s6_addr32[0]) +
11137 				      off);
11138 #else
11139 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11140 #endif
11141 		break;
11142 
11143 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
11144 	     offsetof(struct sk_msg_md, local_ip6[3]):
11145 #if IS_ENABLED(CONFIG_IPV6)
11146 		BUILD_BUG_ON(sizeof_field(struct sock_common,
11147 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
11148 
11149 		off = si->off;
11150 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
11151 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11152 						struct sk_msg, sk),
11153 				      si->dst_reg, si->src_reg,
11154 				      offsetof(struct sk_msg, sk));
11155 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
11156 				      offsetof(struct sock_common,
11157 					       skc_v6_rcv_saddr.s6_addr32[0]) +
11158 				      off);
11159 #else
11160 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11161 #endif
11162 		break;
11163 
11164 	case offsetof(struct sk_msg_md, remote_port):
11165 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
11166 
11167 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11168 						struct sk_msg, sk),
11169 				      si->dst_reg, si->src_reg,
11170 				      offsetof(struct sk_msg, sk));
11171 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11172 				      offsetof(struct sock_common, skc_dport));
11173 #ifndef __BIG_ENDIAN_BITFIELD
11174 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
11175 #endif
11176 		break;
11177 
11178 	case offsetof(struct sk_msg_md, local_port):
11179 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
11180 
11181 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
11182 						struct sk_msg, sk),
11183 				      si->dst_reg, si->src_reg,
11184 				      offsetof(struct sk_msg, sk));
11185 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
11186 				      offsetof(struct sock_common, skc_num));
11187 		break;
11188 
11189 	case offsetof(struct sk_msg_md, size):
11190 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
11191 				      si->dst_reg, si->src_reg,
11192 				      offsetof(struct sk_msg_sg, size));
11193 		break;
11194 
11195 	case offsetof(struct sk_msg_md, sk):
11196 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
11197 				      si->dst_reg, si->src_reg,
11198 				      offsetof(struct sk_msg, sk));
11199 		break;
11200 	}
11201 
11202 	return insn - insn_buf;
11203 }
11204 
11205 const struct bpf_verifier_ops sk_filter_verifier_ops = {
11206 	.get_func_proto		= sk_filter_func_proto,
11207 	.is_valid_access	= sk_filter_is_valid_access,
11208 	.convert_ctx_access	= bpf_convert_ctx_access,
11209 	.gen_ld_abs		= bpf_gen_ld_abs,
11210 };
11211 
11212 const struct bpf_prog_ops sk_filter_prog_ops = {
11213 	.test_run		= bpf_prog_test_run_skb,
11214 };
11215 
11216 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
11217 	.get_func_proto		= tc_cls_act_func_proto,
11218 	.is_valid_access	= tc_cls_act_is_valid_access,
11219 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
11220 	.gen_prologue		= tc_cls_act_prologue,
11221 	.gen_ld_abs		= bpf_gen_ld_abs,
11222 	.btf_struct_access	= tc_cls_act_btf_struct_access,
11223 };
11224 
11225 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11226 	.test_run		= bpf_prog_test_run_skb,
11227 };
11228 
11229 const struct bpf_verifier_ops xdp_verifier_ops = {
11230 	.get_func_proto		= xdp_func_proto,
11231 	.is_valid_access	= xdp_is_valid_access,
11232 	.convert_ctx_access	= xdp_convert_ctx_access,
11233 	.gen_prologue		= bpf_noop_prologue,
11234 	.btf_struct_access	= xdp_btf_struct_access,
11235 };
11236 
11237 const struct bpf_prog_ops xdp_prog_ops = {
11238 	.test_run		= bpf_prog_test_run_xdp,
11239 };
11240 
11241 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11242 	.get_func_proto		= cg_skb_func_proto,
11243 	.is_valid_access	= cg_skb_is_valid_access,
11244 	.convert_ctx_access	= bpf_convert_ctx_access,
11245 };
11246 
11247 const struct bpf_prog_ops cg_skb_prog_ops = {
11248 	.test_run		= bpf_prog_test_run_skb,
11249 };
11250 
11251 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11252 	.get_func_proto		= lwt_in_func_proto,
11253 	.is_valid_access	= lwt_is_valid_access,
11254 	.convert_ctx_access	= bpf_convert_ctx_access,
11255 };
11256 
11257 const struct bpf_prog_ops lwt_in_prog_ops = {
11258 	.test_run		= bpf_prog_test_run_skb,
11259 };
11260 
11261 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11262 	.get_func_proto		= lwt_out_func_proto,
11263 	.is_valid_access	= lwt_is_valid_access,
11264 	.convert_ctx_access	= bpf_convert_ctx_access,
11265 };
11266 
11267 const struct bpf_prog_ops lwt_out_prog_ops = {
11268 	.test_run		= bpf_prog_test_run_skb,
11269 };
11270 
11271 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11272 	.get_func_proto		= lwt_xmit_func_proto,
11273 	.is_valid_access	= lwt_is_valid_access,
11274 	.convert_ctx_access	= bpf_convert_ctx_access,
11275 	.gen_prologue		= tc_cls_act_prologue,
11276 };
11277 
11278 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11279 	.test_run		= bpf_prog_test_run_skb,
11280 };
11281 
11282 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11283 	.get_func_proto		= lwt_seg6local_func_proto,
11284 	.is_valid_access	= lwt_is_valid_access,
11285 	.convert_ctx_access	= bpf_convert_ctx_access,
11286 };
11287 
11288 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11289 };
11290 
11291 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11292 	.get_func_proto		= sock_filter_func_proto,
11293 	.is_valid_access	= sock_filter_is_valid_access,
11294 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11295 };
11296 
11297 const struct bpf_prog_ops cg_sock_prog_ops = {
11298 };
11299 
11300 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11301 	.get_func_proto		= sock_addr_func_proto,
11302 	.is_valid_access	= sock_addr_is_valid_access,
11303 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11304 };
11305 
11306 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11307 };
11308 
11309 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11310 	.get_func_proto		= sock_ops_func_proto,
11311 	.is_valid_access	= sock_ops_is_valid_access,
11312 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11313 };
11314 
11315 const struct bpf_prog_ops sock_ops_prog_ops = {
11316 };
11317 
11318 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11319 	.get_func_proto		= sk_skb_func_proto,
11320 	.is_valid_access	= sk_skb_is_valid_access,
11321 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11322 	.gen_prologue		= sk_skb_prologue,
11323 };
11324 
11325 const struct bpf_prog_ops sk_skb_prog_ops = {
11326 };
11327 
11328 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11329 	.get_func_proto		= sk_msg_func_proto,
11330 	.is_valid_access	= sk_msg_is_valid_access,
11331 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11332 	.gen_prologue		= bpf_noop_prologue,
11333 };
11334 
11335 const struct bpf_prog_ops sk_msg_prog_ops = {
11336 };
11337 
11338 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11339 	.get_func_proto		= flow_dissector_func_proto,
11340 	.is_valid_access	= flow_dissector_is_valid_access,
11341 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11342 };
11343 
11344 const struct bpf_prog_ops flow_dissector_prog_ops = {
11345 	.test_run		= bpf_prog_test_run_flow_dissector,
11346 };
11347 
sk_detach_filter(struct sock * sk)11348 int sk_detach_filter(struct sock *sk)
11349 {
11350 	int ret = -ENOENT;
11351 	struct sk_filter *filter;
11352 
11353 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11354 		return -EPERM;
11355 
11356 	filter = rcu_dereference_protected(sk->sk_filter,
11357 					   lockdep_sock_is_held(sk));
11358 	if (filter) {
11359 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11360 		sk_filter_uncharge(sk, filter);
11361 		ret = 0;
11362 	}
11363 
11364 	return ret;
11365 }
11366 EXPORT_SYMBOL_GPL(sk_detach_filter);
11367 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11368 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11369 {
11370 	struct sock_fprog_kern *fprog;
11371 	struct sk_filter *filter;
11372 	int ret = 0;
11373 
11374 	sockopt_lock_sock(sk);
11375 	filter = rcu_dereference_protected(sk->sk_filter,
11376 					   lockdep_sock_is_held(sk));
11377 	if (!filter)
11378 		goto out;
11379 
11380 	/* We're copying the filter that has been originally attached,
11381 	 * so no conversion/decode needed anymore. eBPF programs that
11382 	 * have no original program cannot be dumped through this.
11383 	 */
11384 	ret = -EACCES;
11385 	fprog = filter->prog->orig_prog;
11386 	if (!fprog)
11387 		goto out;
11388 
11389 	ret = fprog->len;
11390 	if (!len)
11391 		/* User space only enquires number of filter blocks. */
11392 		goto out;
11393 
11394 	ret = -EINVAL;
11395 	if (len < fprog->len)
11396 		goto out;
11397 
11398 	ret = -EFAULT;
11399 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11400 		goto out;
11401 
11402 	/* Instead of bytes, the API requests to return the number
11403 	 * of filter blocks.
11404 	 */
11405 	ret = fprog->len;
11406 out:
11407 	sockopt_release_sock(sk);
11408 	return ret;
11409 }
11410 
11411 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11412 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11413 				    struct sock_reuseport *reuse,
11414 				    struct sock *sk, struct sk_buff *skb,
11415 				    struct sock *migrating_sk,
11416 				    u32 hash)
11417 {
11418 	reuse_kern->skb = skb;
11419 	reuse_kern->sk = sk;
11420 	reuse_kern->selected_sk = NULL;
11421 	reuse_kern->migrating_sk = migrating_sk;
11422 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11423 	reuse_kern->hash = hash;
11424 	reuse_kern->reuseport_id = reuse->reuseport_id;
11425 	reuse_kern->bind_inany = reuse->bind_inany;
11426 }
11427 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11428 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11429 				  struct bpf_prog *prog, struct sk_buff *skb,
11430 				  struct sock *migrating_sk,
11431 				  u32 hash)
11432 {
11433 	struct sk_reuseport_kern reuse_kern;
11434 	enum sk_action action;
11435 
11436 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11437 	action = bpf_prog_run(prog, &reuse_kern);
11438 
11439 	if (action == SK_PASS)
11440 		return reuse_kern.selected_sk;
11441 	else
11442 		return ERR_PTR(-ECONNREFUSED);
11443 }
11444 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11445 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11446 	   struct bpf_map *, map, void *, key, u32, flags)
11447 {
11448 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11449 	struct sock_reuseport *reuse;
11450 	struct sock *selected_sk;
11451 	int err;
11452 
11453 	selected_sk = map->ops->map_lookup_elem(map, key);
11454 	if (!selected_sk)
11455 		return -ENOENT;
11456 
11457 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11458 	if (!reuse) {
11459 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11460 		 * The only (!reuse) case here is - the sk has already been
11461 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11462 		 *
11463 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11464 		 * the sk may never be in the reuseport group to begin with.
11465 		 */
11466 		err = is_sockarray ? -ENOENT : -EINVAL;
11467 		goto error;
11468 	}
11469 
11470 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11471 		struct sock *sk = reuse_kern->sk;
11472 
11473 		if (sk->sk_protocol != selected_sk->sk_protocol) {
11474 			err = -EPROTOTYPE;
11475 		} else if (sk->sk_family != selected_sk->sk_family) {
11476 			err = -EAFNOSUPPORT;
11477 		} else {
11478 			/* Catch all. Likely bound to a different sockaddr. */
11479 			err = -EBADFD;
11480 		}
11481 		goto error;
11482 	}
11483 
11484 	reuse_kern->selected_sk = selected_sk;
11485 
11486 	return 0;
11487 error:
11488 	/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11489 	if (sk_is_refcounted(selected_sk))
11490 		sock_put(selected_sk);
11491 
11492 	return err;
11493 }
11494 
11495 static const struct bpf_func_proto sk_select_reuseport_proto = {
11496 	.func           = sk_select_reuseport,
11497 	.gpl_only       = false,
11498 	.ret_type       = RET_INTEGER,
11499 	.arg1_type	= ARG_PTR_TO_CTX,
11500 	.arg2_type      = ARG_CONST_MAP_PTR,
11501 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11502 	.arg4_type	= ARG_ANYTHING,
11503 };
11504 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11505 BPF_CALL_4(sk_reuseport_load_bytes,
11506 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11507 	   void *, to, u32, len)
11508 {
11509 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11510 }
11511 
11512 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11513 	.func		= sk_reuseport_load_bytes,
11514 	.gpl_only	= false,
11515 	.ret_type	= RET_INTEGER,
11516 	.arg1_type	= ARG_PTR_TO_CTX,
11517 	.arg2_type	= ARG_ANYTHING,
11518 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11519 	.arg4_type	= ARG_CONST_SIZE,
11520 };
11521 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11522 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11523 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11524 	   void *, to, u32, len, u32, start_header)
11525 {
11526 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11527 					       len, start_header);
11528 }
11529 
11530 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11531 	.func		= sk_reuseport_load_bytes_relative,
11532 	.gpl_only	= false,
11533 	.ret_type	= RET_INTEGER,
11534 	.arg1_type	= ARG_PTR_TO_CTX,
11535 	.arg2_type	= ARG_ANYTHING,
11536 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11537 	.arg4_type	= ARG_CONST_SIZE,
11538 	.arg5_type	= ARG_ANYTHING,
11539 };
11540 
11541 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11542 sk_reuseport_func_proto(enum bpf_func_id func_id,
11543 			const struct bpf_prog *prog)
11544 {
11545 	switch (func_id) {
11546 	case BPF_FUNC_sk_select_reuseport:
11547 		return &sk_select_reuseport_proto;
11548 	case BPF_FUNC_skb_load_bytes:
11549 		return &sk_reuseport_load_bytes_proto;
11550 	case BPF_FUNC_skb_load_bytes_relative:
11551 		return &sk_reuseport_load_bytes_relative_proto;
11552 	case BPF_FUNC_get_socket_cookie:
11553 		return &bpf_get_socket_ptr_cookie_proto;
11554 	case BPF_FUNC_ktime_get_coarse_ns:
11555 		return &bpf_ktime_get_coarse_ns_proto;
11556 	default:
11557 		return bpf_base_func_proto(func_id, prog);
11558 	}
11559 }
11560 
11561 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11562 sk_reuseport_is_valid_access(int off, int size,
11563 			     enum bpf_access_type type,
11564 			     const struct bpf_prog *prog,
11565 			     struct bpf_insn_access_aux *info)
11566 {
11567 	const u32 size_default = sizeof(__u32);
11568 
11569 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11570 	    off % size || type != BPF_READ)
11571 		return false;
11572 
11573 	switch (off) {
11574 	case offsetof(struct sk_reuseport_md, data):
11575 		info->reg_type = PTR_TO_PACKET;
11576 		return size == sizeof(__u64);
11577 
11578 	case offsetof(struct sk_reuseport_md, data_end):
11579 		info->reg_type = PTR_TO_PACKET_END;
11580 		return size == sizeof(__u64);
11581 
11582 	case offsetof(struct sk_reuseport_md, hash):
11583 		return size == size_default;
11584 
11585 	case offsetof(struct sk_reuseport_md, sk):
11586 		info->reg_type = PTR_TO_SOCKET;
11587 		return size == sizeof(__u64);
11588 
11589 	case offsetof(struct sk_reuseport_md, migrating_sk):
11590 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11591 		return size == sizeof(__u64);
11592 
11593 	/* Fields that allow narrowing */
11594 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11595 		if (size < sizeof_field(struct sk_buff, protocol))
11596 			return false;
11597 		fallthrough;
11598 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11599 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11600 	case bpf_ctx_range(struct sk_reuseport_md, len):
11601 		bpf_ctx_record_field_size(info, size_default);
11602 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11603 
11604 	default:
11605 		return false;
11606 	}
11607 }
11608 
11609 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11610 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11611 			      si->dst_reg, si->src_reg,			\
11612 			      bpf_target_off(struct sk_reuseport_kern, F, \
11613 					     sizeof_field(struct sk_reuseport_kern, F), \
11614 					     target_size));		\
11615 	})
11616 
11617 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11618 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11619 				    struct sk_buff,			\
11620 				    skb,				\
11621 				    SKB_FIELD)
11622 
11623 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11624 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11625 				    struct sock,			\
11626 				    sk,					\
11627 				    SK_FIELD)
11628 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11629 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11630 					   const struct bpf_insn *si,
11631 					   struct bpf_insn *insn_buf,
11632 					   struct bpf_prog *prog,
11633 					   u32 *target_size)
11634 {
11635 	struct bpf_insn *insn = insn_buf;
11636 
11637 	switch (si->off) {
11638 	case offsetof(struct sk_reuseport_md, data):
11639 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11640 		break;
11641 
11642 	case offsetof(struct sk_reuseport_md, len):
11643 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11644 		break;
11645 
11646 	case offsetof(struct sk_reuseport_md, eth_protocol):
11647 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11648 		break;
11649 
11650 	case offsetof(struct sk_reuseport_md, ip_protocol):
11651 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11652 		break;
11653 
11654 	case offsetof(struct sk_reuseport_md, data_end):
11655 		SK_REUSEPORT_LOAD_FIELD(data_end);
11656 		break;
11657 
11658 	case offsetof(struct sk_reuseport_md, hash):
11659 		SK_REUSEPORT_LOAD_FIELD(hash);
11660 		break;
11661 
11662 	case offsetof(struct sk_reuseport_md, bind_inany):
11663 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11664 		break;
11665 
11666 	case offsetof(struct sk_reuseport_md, sk):
11667 		SK_REUSEPORT_LOAD_FIELD(sk);
11668 		break;
11669 
11670 	case offsetof(struct sk_reuseport_md, migrating_sk):
11671 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11672 		break;
11673 	}
11674 
11675 	return insn - insn_buf;
11676 }
11677 
11678 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11679 	.get_func_proto		= sk_reuseport_func_proto,
11680 	.is_valid_access	= sk_reuseport_is_valid_access,
11681 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11682 };
11683 
11684 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11685 };
11686 
11687 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11688 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11689 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11690 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11691 	   struct sock *, sk, u64, flags)
11692 {
11693 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11694 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11695 		return -EINVAL;
11696 	if (unlikely(sk && sk_is_refcounted(sk)))
11697 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11698 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11699 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11700 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11701 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11702 
11703 	/* Check if socket is suitable for packet L3/L4 protocol */
11704 	if (sk && sk->sk_protocol != ctx->protocol)
11705 		return -EPROTOTYPE;
11706 	if (sk && sk->sk_family != ctx->family &&
11707 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11708 		return -EAFNOSUPPORT;
11709 
11710 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11711 		return -EEXIST;
11712 
11713 	/* Select socket as lookup result */
11714 	ctx->selected_sk = sk;
11715 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11716 	return 0;
11717 }
11718 
11719 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11720 	.func		= bpf_sk_lookup_assign,
11721 	.gpl_only	= false,
11722 	.ret_type	= RET_INTEGER,
11723 	.arg1_type	= ARG_PTR_TO_CTX,
11724 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11725 	.arg3_type	= ARG_ANYTHING,
11726 };
11727 
11728 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11729 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11730 {
11731 	switch (func_id) {
11732 	case BPF_FUNC_perf_event_output:
11733 		return &bpf_event_output_data_proto;
11734 	case BPF_FUNC_sk_assign:
11735 		return &bpf_sk_lookup_assign_proto;
11736 	case BPF_FUNC_sk_release:
11737 		return &bpf_sk_release_proto;
11738 	default:
11739 		return bpf_sk_base_func_proto(func_id, prog);
11740 	}
11741 }
11742 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11743 static bool sk_lookup_is_valid_access(int off, int size,
11744 				      enum bpf_access_type type,
11745 				      const struct bpf_prog *prog,
11746 				      struct bpf_insn_access_aux *info)
11747 {
11748 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11749 		return false;
11750 	if (off % size != 0)
11751 		return false;
11752 	if (type != BPF_READ)
11753 		return false;
11754 
11755 	switch (off) {
11756 	case bpf_ctx_range_ptr(struct bpf_sk_lookup, sk):
11757 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11758 		return size == sizeof(__u64);
11759 
11760 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11761 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11762 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11763 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11764 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11765 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11766 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11767 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11768 		bpf_ctx_record_field_size(info, sizeof(__u32));
11769 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11770 
11771 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11772 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11773 		if (size == sizeof(__u32))
11774 			return true;
11775 		bpf_ctx_record_field_size(info, sizeof(__be16));
11776 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11777 
11778 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11779 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11780 		/* Allow access to zero padding for backward compatibility */
11781 		bpf_ctx_record_field_size(info, sizeof(__u16));
11782 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11783 
11784 	default:
11785 		return false;
11786 	}
11787 }
11788 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11789 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11790 					const struct bpf_insn *si,
11791 					struct bpf_insn *insn_buf,
11792 					struct bpf_prog *prog,
11793 					u32 *target_size)
11794 {
11795 	struct bpf_insn *insn = insn_buf;
11796 
11797 	switch (si->off) {
11798 	case offsetof(struct bpf_sk_lookup, sk):
11799 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11800 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11801 		break;
11802 
11803 	case offsetof(struct bpf_sk_lookup, family):
11804 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11805 				      bpf_target_off(struct bpf_sk_lookup_kern,
11806 						     family, 2, target_size));
11807 		break;
11808 
11809 	case offsetof(struct bpf_sk_lookup, protocol):
11810 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11811 				      bpf_target_off(struct bpf_sk_lookup_kern,
11812 						     protocol, 2, target_size));
11813 		break;
11814 
11815 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11816 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11817 				      bpf_target_off(struct bpf_sk_lookup_kern,
11818 						     v4.saddr, 4, target_size));
11819 		break;
11820 
11821 	case offsetof(struct bpf_sk_lookup, local_ip4):
11822 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11823 				      bpf_target_off(struct bpf_sk_lookup_kern,
11824 						     v4.daddr, 4, target_size));
11825 		break;
11826 
11827 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11828 				remote_ip6[0], remote_ip6[3]): {
11829 #if IS_ENABLED(CONFIG_IPV6)
11830 		int off = si->off;
11831 
11832 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11833 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11834 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11835 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11836 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11837 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11838 #else
11839 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11840 #endif
11841 		break;
11842 	}
11843 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11844 				local_ip6[0], local_ip6[3]): {
11845 #if IS_ENABLED(CONFIG_IPV6)
11846 		int off = si->off;
11847 
11848 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11849 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11850 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11851 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11852 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11853 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11854 #else
11855 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11856 #endif
11857 		break;
11858 	}
11859 	case offsetof(struct bpf_sk_lookup, remote_port):
11860 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11861 				      bpf_target_off(struct bpf_sk_lookup_kern,
11862 						     sport, 2, target_size));
11863 		break;
11864 
11865 	case offsetofend(struct bpf_sk_lookup, remote_port):
11866 		*target_size = 2;
11867 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11868 		break;
11869 
11870 	case offsetof(struct bpf_sk_lookup, local_port):
11871 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11872 				      bpf_target_off(struct bpf_sk_lookup_kern,
11873 						     dport, 2, target_size));
11874 		break;
11875 
11876 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11877 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11878 				      bpf_target_off(struct bpf_sk_lookup_kern,
11879 						     ingress_ifindex, 4, target_size));
11880 		break;
11881 	}
11882 
11883 	return insn - insn_buf;
11884 }
11885 
11886 const struct bpf_prog_ops sk_lookup_prog_ops = {
11887 	.test_run = bpf_prog_test_run_sk_lookup,
11888 };
11889 
11890 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11891 	.get_func_proto		= sk_lookup_func_proto,
11892 	.is_valid_access	= sk_lookup_is_valid_access,
11893 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11894 };
11895 
11896 #endif /* CONFIG_INET */
11897 
DEFINE_BPF_DISPATCHER(xdp)11898 DEFINE_BPF_DISPATCHER(xdp)
11899 
11900 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11901 {
11902 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11903 }
11904 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11905 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11906 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11907 BTF_SOCK_TYPE_xxx
11908 #undef BTF_SOCK_TYPE
11909 
11910 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11911 {
11912 	/* tcp6_sock type is not generated in dwarf and hence btf,
11913 	 * trigger an explicit type generation here.
11914 	 */
11915 	BTF_TYPE_EMIT(struct tcp6_sock);
11916 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11917 	    sk->sk_family == AF_INET6)
11918 		return (unsigned long)sk;
11919 
11920 	return (unsigned long)NULL;
11921 }
11922 
11923 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11924 	.func			= bpf_skc_to_tcp6_sock,
11925 	.gpl_only		= false,
11926 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11927 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11928 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11929 };
11930 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11931 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11932 {
11933 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11934 		return (unsigned long)sk;
11935 
11936 	return (unsigned long)NULL;
11937 }
11938 
11939 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11940 	.func			= bpf_skc_to_tcp_sock,
11941 	.gpl_only		= false,
11942 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11943 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11944 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11945 };
11946 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11947 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11948 {
11949 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11950 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11951 	 */
11952 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11953 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11954 
11955 #ifdef CONFIG_INET
11956 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11957 		return (unsigned long)sk;
11958 #endif
11959 
11960 #if IS_BUILTIN(CONFIG_IPV6)
11961 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11962 		return (unsigned long)sk;
11963 #endif
11964 
11965 	return (unsigned long)NULL;
11966 }
11967 
11968 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11969 	.func			= bpf_skc_to_tcp_timewait_sock,
11970 	.gpl_only		= false,
11971 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11972 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11973 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11974 };
11975 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11976 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11977 {
11978 #ifdef CONFIG_INET
11979 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11980 		return (unsigned long)sk;
11981 #endif
11982 
11983 #if IS_BUILTIN(CONFIG_IPV6)
11984 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11985 		return (unsigned long)sk;
11986 #endif
11987 
11988 	return (unsigned long)NULL;
11989 }
11990 
11991 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11992 	.func			= bpf_skc_to_tcp_request_sock,
11993 	.gpl_only		= false,
11994 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11995 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11996 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11997 };
11998 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11999 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
12000 {
12001 	/* udp6_sock type is not generated in dwarf and hence btf,
12002 	 * trigger an explicit type generation here.
12003 	 */
12004 	BTF_TYPE_EMIT(struct udp6_sock);
12005 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
12006 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
12007 		return (unsigned long)sk;
12008 
12009 	return (unsigned long)NULL;
12010 }
12011 
12012 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
12013 	.func			= bpf_skc_to_udp6_sock,
12014 	.gpl_only		= false,
12015 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
12016 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
12017 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
12018 };
12019 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)12020 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
12021 {
12022 	/* unix_sock type is not generated in dwarf and hence btf,
12023 	 * trigger an explicit type generation here.
12024 	 */
12025 	BTF_TYPE_EMIT(struct unix_sock);
12026 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
12027 		return (unsigned long)sk;
12028 
12029 	return (unsigned long)NULL;
12030 }
12031 
12032 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
12033 	.func			= bpf_skc_to_unix_sock,
12034 	.gpl_only		= false,
12035 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
12036 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
12037 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
12038 };
12039 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)12040 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
12041 {
12042 	BTF_TYPE_EMIT(struct mptcp_sock);
12043 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
12044 }
12045 
12046 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
12047 	.func		= bpf_skc_to_mptcp_sock,
12048 	.gpl_only	= false,
12049 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
12050 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
12051 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
12052 };
12053 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)12054 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
12055 {
12056 	return (unsigned long)sock_from_file(file);
12057 }
12058 
12059 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
12060 BTF_ID(struct, socket)
12061 BTF_ID(struct, file)
12062 
12063 const struct bpf_func_proto bpf_sock_from_file_proto = {
12064 	.func		= bpf_sock_from_file,
12065 	.gpl_only	= false,
12066 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
12067 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
12068 	.arg1_type	= ARG_PTR_TO_BTF_ID,
12069 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
12070 };
12071 
12072 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)12073 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
12074 {
12075 	const struct bpf_func_proto *func;
12076 
12077 	switch (func_id) {
12078 	case BPF_FUNC_skc_to_tcp6_sock:
12079 		func = &bpf_skc_to_tcp6_sock_proto;
12080 		break;
12081 	case BPF_FUNC_skc_to_tcp_sock:
12082 		func = &bpf_skc_to_tcp_sock_proto;
12083 		break;
12084 	case BPF_FUNC_skc_to_tcp_timewait_sock:
12085 		func = &bpf_skc_to_tcp_timewait_sock_proto;
12086 		break;
12087 	case BPF_FUNC_skc_to_tcp_request_sock:
12088 		func = &bpf_skc_to_tcp_request_sock_proto;
12089 		break;
12090 	case BPF_FUNC_skc_to_udp6_sock:
12091 		func = &bpf_skc_to_udp6_sock_proto;
12092 		break;
12093 	case BPF_FUNC_skc_to_unix_sock:
12094 		func = &bpf_skc_to_unix_sock_proto;
12095 		break;
12096 	case BPF_FUNC_skc_to_mptcp_sock:
12097 		func = &bpf_skc_to_mptcp_sock_proto;
12098 		break;
12099 	case BPF_FUNC_ktime_get_coarse_ns:
12100 		return &bpf_ktime_get_coarse_ns_proto;
12101 	default:
12102 		return bpf_base_func_proto(func_id, prog);
12103 	}
12104 
12105 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
12106 		return NULL;
12107 
12108 	return func;
12109 }
12110 
12111 /**
12112  * bpf_skb_meta_pointer() - Gets a mutable pointer within the skb metadata area.
12113  * @skb: socket buffer carrying the metadata
12114  * @offset: offset into the metadata area, must be <= skb_metadata_len()
12115  */
bpf_skb_meta_pointer(struct sk_buff * skb,u32 offset)12116 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset)
12117 {
12118 	return skb_metadata_end(skb) - skb_metadata_len(skb) + offset;
12119 }
12120 
__bpf_skb_meta_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)12121 int __bpf_skb_meta_store_bytes(struct sk_buff *skb, u32 offset,
12122 			       const void *from, u32 len, u64 flags)
12123 {
12124 	if (unlikely(flags))
12125 		return -EINVAL;
12126 	if (unlikely(bpf_try_make_writable(skb, 0)))
12127 		return -EFAULT;
12128 
12129 	memmove(bpf_skb_meta_pointer(skb, offset), from, len);
12130 	return 0;
12131 }
12132 
12133 __bpf_kfunc_start_defs();
bpf_dynptr_from_skb(struct __sk_buff * s,u64 flags,struct bpf_dynptr * ptr__uninit)12134 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
12135 				    struct bpf_dynptr *ptr__uninit)
12136 {
12137 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12138 	struct sk_buff *skb = (struct sk_buff *)s;
12139 
12140 	if (flags) {
12141 		bpf_dynptr_set_null(ptr);
12142 		return -EINVAL;
12143 	}
12144 
12145 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
12146 
12147 	return 0;
12148 }
12149 
12150 /**
12151  * bpf_dynptr_from_skb_meta() - Initialize a dynptr to the skb metadata area.
12152  * @skb_: socket buffer carrying the metadata
12153  * @flags: future use, must be zero
12154  * @ptr__uninit: dynptr to initialize
12155  *
12156  * Set up a dynptr for access to the metadata area earlier allocated from the
12157  * XDP context with bpf_xdp_adjust_meta(). Serves as an alternative to
12158  * &__sk_buff->data_meta.
12159  *
12160  * Return:
12161  * * %0         - dynptr ready to use
12162  * * %-EINVAL   - invalid flags, dynptr set to null
12163  */
bpf_dynptr_from_skb_meta(struct __sk_buff * skb_,u64 flags,struct bpf_dynptr * ptr__uninit)12164 __bpf_kfunc int bpf_dynptr_from_skb_meta(struct __sk_buff *skb_, u64 flags,
12165 					 struct bpf_dynptr *ptr__uninit)
12166 {
12167 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12168 	struct sk_buff *skb = (struct sk_buff *)skb_;
12169 
12170 	if (flags) {
12171 		bpf_dynptr_set_null(ptr);
12172 		return -EINVAL;
12173 	}
12174 
12175 	bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB_META, 0, skb_metadata_len(skb));
12176 
12177 	return 0;
12178 }
12179 
bpf_dynptr_from_xdp(struct xdp_md * x,u64 flags,struct bpf_dynptr * ptr__uninit)12180 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
12181 				    struct bpf_dynptr *ptr__uninit)
12182 {
12183 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12184 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12185 
12186 	if (flags) {
12187 		bpf_dynptr_set_null(ptr);
12188 		return -EINVAL;
12189 	}
12190 
12191 	bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
12192 
12193 	return 0;
12194 }
12195 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)12196 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
12197 					   const u8 *sun_path, u32 sun_path__sz)
12198 {
12199 	struct sockaddr_un *un;
12200 
12201 	if (sa_kern->sk->sk_family != AF_UNIX)
12202 		return -EINVAL;
12203 
12204 	/* We do not allow changing the address to unnamed or larger than the
12205 	 * maximum allowed address size for a unix sockaddr.
12206 	 */
12207 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
12208 		return -EINVAL;
12209 
12210 	un = (struct sockaddr_un *)sa_kern->uaddr;
12211 	memcpy(un->sun_path, sun_path, sun_path__sz);
12212 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
12213 
12214 	return 0;
12215 }
12216 
bpf_sk_assign_tcp_reqsk(struct __sk_buff * s,struct sock * sk,struct bpf_tcp_req_attrs * attrs,int attrs__sz)12217 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
12218 					struct bpf_tcp_req_attrs *attrs, int attrs__sz)
12219 {
12220 #if IS_ENABLED(CONFIG_SYN_COOKIES)
12221 	struct sk_buff *skb = (struct sk_buff *)s;
12222 	const struct request_sock_ops *ops;
12223 	struct inet_request_sock *ireq;
12224 	struct tcp_request_sock *treq;
12225 	struct request_sock *req;
12226 	struct net *net;
12227 	__u16 min_mss;
12228 	u32 tsoff = 0;
12229 
12230 	if (attrs__sz != sizeof(*attrs) ||
12231 	    attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
12232 		return -EINVAL;
12233 
12234 	if (!skb_at_tc_ingress(skb))
12235 		return -EINVAL;
12236 
12237 	net = dev_net(skb->dev);
12238 	if (net != sock_net(sk))
12239 		return -ENETUNREACH;
12240 
12241 	switch (skb->protocol) {
12242 	case htons(ETH_P_IP):
12243 		ops = &tcp_request_sock_ops;
12244 		min_mss = 536;
12245 		break;
12246 #if IS_BUILTIN(CONFIG_IPV6)
12247 	case htons(ETH_P_IPV6):
12248 		ops = &tcp6_request_sock_ops;
12249 		min_mss = IPV6_MIN_MTU - 60;
12250 		break;
12251 #endif
12252 	default:
12253 		return -EINVAL;
12254 	}
12255 
12256 	if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
12257 	    sk_is_mptcp(sk))
12258 		return -EINVAL;
12259 
12260 	if (attrs->mss < min_mss)
12261 		return -EINVAL;
12262 
12263 	if (attrs->wscale_ok) {
12264 		if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
12265 			return -EINVAL;
12266 
12267 		if (attrs->snd_wscale > TCP_MAX_WSCALE ||
12268 		    attrs->rcv_wscale > TCP_MAX_WSCALE)
12269 			return -EINVAL;
12270 	}
12271 
12272 	if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
12273 		return -EINVAL;
12274 
12275 	if (attrs->tstamp_ok) {
12276 		if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
12277 			return -EINVAL;
12278 
12279 		tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
12280 	}
12281 
12282 	req = inet_reqsk_alloc(ops, sk, false);
12283 	if (!req)
12284 		return -ENOMEM;
12285 
12286 	ireq = inet_rsk(req);
12287 	treq = tcp_rsk(req);
12288 
12289 	req->rsk_listener = sk;
12290 	req->syncookie = 1;
12291 	req->mss = attrs->mss;
12292 	req->ts_recent = attrs->rcv_tsval;
12293 
12294 	ireq->snd_wscale = attrs->snd_wscale;
12295 	ireq->rcv_wscale = attrs->rcv_wscale;
12296 	ireq->tstamp_ok	= !!attrs->tstamp_ok;
12297 	ireq->sack_ok = !!attrs->sack_ok;
12298 	ireq->wscale_ok = !!attrs->wscale_ok;
12299 	ireq->ecn_ok = !!attrs->ecn_ok;
12300 
12301 	treq->req_usec_ts = !!attrs->usec_ts_ok;
12302 	treq->ts_off = tsoff;
12303 
12304 	skb_orphan(skb);
12305 	skb->sk = req_to_sk(req);
12306 	skb->destructor = sock_pfree;
12307 
12308 	return 0;
12309 #else
12310 	return -EOPNOTSUPP;
12311 #endif
12312 }
12313 
bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern * skops,u64 flags)12314 __bpf_kfunc int bpf_sock_ops_enable_tx_tstamp(struct bpf_sock_ops_kern *skops,
12315 					      u64 flags)
12316 {
12317 	struct sk_buff *skb;
12318 
12319 	if (skops->op != BPF_SOCK_OPS_TSTAMP_SENDMSG_CB)
12320 		return -EOPNOTSUPP;
12321 
12322 	if (flags)
12323 		return -EINVAL;
12324 
12325 	skb = skops->skb;
12326 	skb_shinfo(skb)->tx_flags |= SKBTX_BPF;
12327 	TCP_SKB_CB(skb)->txstamp_ack |= TSTAMP_ACK_BPF;
12328 	skb_shinfo(skb)->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
12329 
12330 	return 0;
12331 }
12332 
12333 /**
12334  * bpf_xdp_pull_data() - Pull in non-linear xdp data.
12335  * @x: &xdp_md associated with the XDP buffer
12336  * @len: length of data to be made directly accessible in the linear part
12337  *
12338  * Pull in data in case the XDP buffer associated with @x is non-linear and
12339  * not all @len are in the linear data area.
12340  *
12341  * Direct packet access allows reading and writing linear XDP data through
12342  * packet pointers (i.e., &xdp_md->data + offsets). The amount of data which
12343  * ends up in the linear part of the xdp_buff depends on the NIC and its
12344  * configuration. When a frag-capable XDP program wants to directly access
12345  * headers that may be in the non-linear area, call this kfunc to make sure
12346  * the data is available in the linear area. Alternatively, use dynptr or
12347  * bpf_xdp_{load,store}_bytes() to access data without pulling.
12348  *
12349  * This kfunc can also be used with bpf_xdp_adjust_head() to decapsulate
12350  * headers in the non-linear data area.
12351  *
12352  * A call to this kfunc may reduce headroom. If there is not enough tailroom
12353  * in the linear data area, metadata and data will be shifted down.
12354  *
12355  * A call to this kfunc is susceptible to change the buffer geometry.
12356  * Therefore, at load time, all checks on pointers previously done by the
12357  * verifier are invalidated and must be performed again, if the kfunc is used
12358  * in combination with direct packet access.
12359  *
12360  * Return:
12361  * * %0         - success
12362  * * %-EINVAL   - invalid len
12363  */
bpf_xdp_pull_data(struct xdp_md * x,u32 len)12364 __bpf_kfunc int bpf_xdp_pull_data(struct xdp_md *x, u32 len)
12365 {
12366 	struct xdp_buff *xdp = (struct xdp_buff *)x;
12367 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
12368 	int i, delta, shift, headroom, tailroom, n_frags_free = 0;
12369 	void *data_hard_end = xdp_data_hard_end(xdp);
12370 	int data_len = xdp->data_end - xdp->data;
12371 	void *start;
12372 
12373 	if (len <= data_len)
12374 		return 0;
12375 
12376 	if (unlikely(len > xdp_get_buff_len(xdp)))
12377 		return -EINVAL;
12378 
12379 	start = xdp_data_meta_unsupported(xdp) ? xdp->data : xdp->data_meta;
12380 
12381 	headroom = start - xdp->data_hard_start - sizeof(struct xdp_frame);
12382 	tailroom = data_hard_end - xdp->data_end;
12383 
12384 	delta = len - data_len;
12385 	if (unlikely(delta > tailroom + headroom))
12386 		return -EINVAL;
12387 
12388 	shift = delta - tailroom;
12389 	if (shift > 0) {
12390 		memmove(start - shift, start, xdp->data_end - start);
12391 
12392 		xdp->data_meta -= shift;
12393 		xdp->data -= shift;
12394 		xdp->data_end -= shift;
12395 	}
12396 
12397 	for (i = 0; i < sinfo->nr_frags && delta; i++) {
12398 		skb_frag_t *frag = &sinfo->frags[i];
12399 		u32 shrink = min_t(u32, delta, skb_frag_size(frag));
12400 
12401 		memcpy(xdp->data_end, skb_frag_address(frag), shrink);
12402 
12403 		xdp->data_end += shrink;
12404 		sinfo->xdp_frags_size -= shrink;
12405 		delta -= shrink;
12406 		if (bpf_xdp_shrink_data(xdp, frag, shrink, false))
12407 			n_frags_free++;
12408 	}
12409 
12410 	if (unlikely(n_frags_free)) {
12411 		memmove(sinfo->frags, sinfo->frags + n_frags_free,
12412 			(sinfo->nr_frags - n_frags_free) * sizeof(skb_frag_t));
12413 
12414 		sinfo->nr_frags -= n_frags_free;
12415 
12416 		if (!sinfo->nr_frags) {
12417 			xdp_buff_clear_frags_flag(xdp);
12418 			xdp_buff_clear_frag_pfmemalloc(xdp);
12419 		}
12420 	}
12421 
12422 	return 0;
12423 }
12424 
12425 __bpf_kfunc_end_defs();
12426 
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr__uninit)12427 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12428 			       struct bpf_dynptr *ptr__uninit)
12429 {
12430 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12431 	int err;
12432 
12433 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12434 	if (err)
12435 		return err;
12436 
12437 	bpf_dynptr_set_rdonly(ptr);
12438 
12439 	return 0;
12440 }
12441 
12442 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12443 BTF_ID_FLAGS(func, bpf_dynptr_from_skb, KF_TRUSTED_ARGS)
12444 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12445 
12446 BTF_KFUNCS_START(bpf_kfunc_check_set_skb_meta)
12447 BTF_ID_FLAGS(func, bpf_dynptr_from_skb_meta, KF_TRUSTED_ARGS)
12448 BTF_KFUNCS_END(bpf_kfunc_check_set_skb_meta)
12449 
12450 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12451 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12452 BTF_ID_FLAGS(func, bpf_xdp_pull_data)
12453 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12454 
12455 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12456 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12457 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12458 
12459 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12460 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12461 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12462 
12463 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_ops)
12464 BTF_ID_FLAGS(func, bpf_sock_ops_enable_tx_tstamp, KF_TRUSTED_ARGS)
12465 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_ops)
12466 
12467 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12468 	.owner = THIS_MODULE,
12469 	.set = &bpf_kfunc_check_set_skb,
12470 };
12471 
12472 static const struct btf_kfunc_id_set bpf_kfunc_set_skb_meta = {
12473 	.owner = THIS_MODULE,
12474 	.set = &bpf_kfunc_check_set_skb_meta,
12475 };
12476 
12477 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12478 	.owner = THIS_MODULE,
12479 	.set = &bpf_kfunc_check_set_xdp,
12480 };
12481 
12482 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12483 	.owner = THIS_MODULE,
12484 	.set = &bpf_kfunc_check_set_sock_addr,
12485 };
12486 
12487 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12488 	.owner = THIS_MODULE,
12489 	.set = &bpf_kfunc_check_set_tcp_reqsk,
12490 };
12491 
12492 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_ops = {
12493 	.owner = THIS_MODULE,
12494 	.set = &bpf_kfunc_check_set_sock_ops,
12495 };
12496 
bpf_kfunc_init(void)12497 static int __init bpf_kfunc_init(void)
12498 {
12499 	int ret;
12500 
12501 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12502 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12503 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12504 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12505 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12506 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12507 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12508 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12509 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12510 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12511 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_kfunc_set_skb);
12512 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb_meta);
12513 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb_meta);
12514 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12515 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12516 					       &bpf_kfunc_set_sock_addr);
12517 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12518 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCK_OPS, &bpf_kfunc_set_sock_ops);
12519 }
12520 late_initcall(bpf_kfunc_init);
12521 
12522 __bpf_kfunc_start_defs();
12523 
12524 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12525  *
12526  * The function expects a non-NULL pointer to a socket, and invokes the
12527  * protocol specific socket destroy handlers.
12528  *
12529  * The helper can only be called from BPF contexts that have acquired the socket
12530  * locks.
12531  *
12532  * Parameters:
12533  * @sock: Pointer to socket to be destroyed
12534  *
12535  * Return:
12536  * On error, may return EPROTONOSUPPORT, EINVAL.
12537  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12538  * 0 otherwise
12539  */
bpf_sock_destroy(struct sock_common * sock)12540 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12541 {
12542 	struct sock *sk = (struct sock *)sock;
12543 
12544 	/* The locking semantics that allow for synchronous execution of the
12545 	 * destroy handlers are only supported for TCP and UDP.
12546 	 * Supporting protocols will need to acquire sock lock in the BPF context
12547 	 * prior to invoking this kfunc.
12548 	 */
12549 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12550 					   sk->sk_protocol != IPPROTO_UDP))
12551 		return -EOPNOTSUPP;
12552 
12553 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12554 }
12555 
12556 __bpf_kfunc_end_defs();
12557 
12558 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
BTF_ID_FLAGS(func,bpf_sock_destroy,KF_TRUSTED_ARGS)12559 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12560 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12561 
12562 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12563 {
12564 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12565 	    prog->expected_attach_type != BPF_TRACE_ITER)
12566 		return -EACCES;
12567 	return 0;
12568 }
12569 
12570 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12571 	.owner = THIS_MODULE,
12572 	.set   = &bpf_sk_iter_kfunc_ids,
12573 	.filter = tracing_iter_filter,
12574 };
12575 
init_subsystem(void)12576 static int init_subsystem(void)
12577 {
12578 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12579 }
12580 late_initcall(init_subsystem);
12581