1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2019 Facebook */
4
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/resource.h>
10 #include <sys/time.h>
11 #include <linux/err.h>
12 #include <linux/list.h>
13 #include <linux/zalloc.h>
14 #include <api/fs/fs.h>
15 #include <bpf/bpf.h>
16 #include <bpf/btf.h>
17 #include <perf/bpf_perf.h>
18
19 #include "bpf_counter.h"
20 #include "bpf-utils.h"
21 #include "counts.h"
22 #include "debug.h"
23 #include "evsel.h"
24 #include "evlist.h"
25 #include "target.h"
26 #include "cgroup.h"
27 #include "cpumap.h"
28 #include "thread_map.h"
29
30 #include "bpf_skel/bpf_prog_profiler.skel.h"
31 #include "bpf_skel/bperf_u.h"
32 #include "bpf_skel/bperf_leader.skel.h"
33 #include "bpf_skel/bperf_follower.skel.h"
34
35 struct bpf_counter {
36 void *skel;
37 struct list_head list;
38 };
39
40 #define ATTR_MAP_SIZE 16
41
u64_to_ptr(__u64 ptr)42 static void *u64_to_ptr(__u64 ptr)
43 {
44 return (void *)(unsigned long)ptr;
45 }
46
47
set_max_rlimit(void)48 void set_max_rlimit(void)
49 {
50 struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
51
52 setrlimit(RLIMIT_MEMLOCK, &rinf);
53 }
54
bpf_link_get_id(int fd)55 static __u32 bpf_link_get_id(int fd)
56 {
57 struct bpf_link_info link_info = { .id = 0, };
58 __u32 link_info_len = sizeof(link_info);
59
60 bpf_obj_get_info_by_fd(fd, &link_info, &link_info_len);
61 return link_info.id;
62 }
63
bpf_link_get_prog_id(int fd)64 static __u32 bpf_link_get_prog_id(int fd)
65 {
66 struct bpf_link_info link_info = { .id = 0, };
67 __u32 link_info_len = sizeof(link_info);
68
69 bpf_obj_get_info_by_fd(fd, &link_info, &link_info_len);
70 return link_info.prog_id;
71 }
72
bpf_map_get_id(int fd)73 static __u32 bpf_map_get_id(int fd)
74 {
75 struct bpf_map_info map_info = { .id = 0, };
76 __u32 map_info_len = sizeof(map_info);
77
78 bpf_obj_get_info_by_fd(fd, &map_info, &map_info_len);
79 return map_info.id;
80 }
81
82 /* trigger the leader program on a cpu */
bperf_trigger_reading(int prog_fd,int cpu)83 int bperf_trigger_reading(int prog_fd, int cpu)
84 {
85 DECLARE_LIBBPF_OPTS(bpf_test_run_opts, opts,
86 .ctx_in = NULL,
87 .ctx_size_in = 0,
88 .flags = BPF_F_TEST_RUN_ON_CPU,
89 .cpu = cpu,
90 .retval = 0,
91 );
92
93 return bpf_prog_test_run_opts(prog_fd, &opts);
94 }
95
bpf_counter_alloc(void)96 static struct bpf_counter *bpf_counter_alloc(void)
97 {
98 struct bpf_counter *counter;
99
100 counter = zalloc(sizeof(*counter));
101 if (counter)
102 INIT_LIST_HEAD(&counter->list);
103 return counter;
104 }
105
bpf_program_profiler__destroy(struct evsel * evsel)106 static int bpf_program_profiler__destroy(struct evsel *evsel)
107 {
108 struct bpf_counter *counter, *tmp;
109
110 list_for_each_entry_safe(counter, tmp,
111 &evsel->bpf_counter_list, list) {
112 list_del_init(&counter->list);
113 bpf_prog_profiler_bpf__destroy(counter->skel);
114 free(counter);
115 }
116 assert(list_empty(&evsel->bpf_counter_list));
117
118 return 0;
119 }
120
bpf_target_prog_name(int tgt_fd)121 static char *bpf_target_prog_name(int tgt_fd)
122 {
123 struct bpf_func_info *func_info;
124 struct perf_bpil *info_linear;
125 const struct btf_type *t;
126 struct btf *btf = NULL;
127 char *name = NULL;
128
129 info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
130 if (IS_ERR_OR_NULL(info_linear)) {
131 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
132 return NULL;
133 }
134
135 if (info_linear->info.btf_id == 0) {
136 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
137 goto out;
138 }
139
140 btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
141 if (libbpf_get_error(btf)) {
142 pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
143 goto out;
144 }
145
146 func_info = u64_to_ptr(info_linear->info.func_info);
147 t = btf__type_by_id(btf, func_info[0].type_id);
148 if (!t) {
149 pr_debug("btf %d doesn't have type %d\n",
150 info_linear->info.btf_id, func_info[0].type_id);
151 goto out;
152 }
153 name = strdup(btf__name_by_offset(btf, t->name_off));
154 out:
155 btf__free(btf);
156 free(info_linear);
157 return name;
158 }
159
bpf_program_profiler_load_one(struct evsel * evsel,u32 prog_id)160 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
161 {
162 struct bpf_prog_profiler_bpf *skel;
163 struct bpf_counter *counter;
164 struct bpf_program *prog;
165 char *prog_name = NULL;
166 int prog_fd;
167 int err;
168
169 prog_fd = bpf_prog_get_fd_by_id(prog_id);
170 if (prog_fd < 0) {
171 pr_err("Failed to open fd for bpf prog %u\n", prog_id);
172 return -1;
173 }
174 counter = bpf_counter_alloc();
175 if (!counter) {
176 close(prog_fd);
177 return -1;
178 }
179
180 skel = bpf_prog_profiler_bpf__open();
181 if (!skel) {
182 pr_err("Failed to open bpf skeleton\n");
183 goto err_out;
184 }
185
186 skel->rodata->num_cpu = evsel__nr_cpus(evsel);
187
188 bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
189 bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
190 bpf_map__set_max_entries(skel->maps.accum_readings, 1);
191
192 prog_name = bpf_target_prog_name(prog_fd);
193 if (!prog_name) {
194 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
195 goto err_out;
196 }
197
198 bpf_object__for_each_program(prog, skel->obj) {
199 err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
200 if (err) {
201 pr_err("bpf_program__set_attach_target failed.\n"
202 "Does bpf prog %u have BTF?\n", prog_id);
203 goto err_out;
204 }
205 }
206 set_max_rlimit();
207 err = bpf_prog_profiler_bpf__load(skel);
208 if (err) {
209 pr_err("bpf_prog_profiler_bpf__load failed\n");
210 goto err_out;
211 }
212
213 assert(skel != NULL);
214 counter->skel = skel;
215 list_add(&counter->list, &evsel->bpf_counter_list);
216 free(prog_name);
217 close(prog_fd);
218 return 0;
219 err_out:
220 bpf_prog_profiler_bpf__destroy(skel);
221 free(prog_name);
222 free(counter);
223 close(prog_fd);
224 return -1;
225 }
226
bpf_program_profiler__load(struct evsel * evsel,struct target * target)227 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
228 {
229 char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
230 u32 prog_id;
231 int ret;
232
233 bpf_str_ = bpf_str = strdup(target->bpf_str);
234 if (!bpf_str)
235 return -1;
236
237 while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
238 prog_id = strtoul(tok, &p, 10);
239 if (prog_id == 0 || prog_id == UINT_MAX ||
240 (*p != '\0' && *p != ',')) {
241 pr_err("Failed to parse bpf prog ids %s\n",
242 target->bpf_str);
243 free(bpf_str_);
244 return -1;
245 }
246
247 ret = bpf_program_profiler_load_one(evsel, prog_id);
248 if (ret) {
249 bpf_program_profiler__destroy(evsel);
250 free(bpf_str_);
251 return -1;
252 }
253 bpf_str = NULL;
254 }
255 free(bpf_str_);
256 return 0;
257 }
258
bpf_program_profiler__enable(struct evsel * evsel)259 static int bpf_program_profiler__enable(struct evsel *evsel)
260 {
261 struct bpf_counter *counter;
262 int ret;
263
264 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
265 assert(counter->skel != NULL);
266 ret = bpf_prog_profiler_bpf__attach(counter->skel);
267 if (ret) {
268 bpf_program_profiler__destroy(evsel);
269 return ret;
270 }
271 }
272 return 0;
273 }
274
bpf_program_profiler__disable(struct evsel * evsel)275 static int bpf_program_profiler__disable(struct evsel *evsel)
276 {
277 struct bpf_counter *counter;
278
279 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
280 assert(counter->skel != NULL);
281 bpf_prog_profiler_bpf__detach(counter->skel);
282 }
283 return 0;
284 }
285
bpf_program_profiler__read(struct evsel * evsel)286 static int bpf_program_profiler__read(struct evsel *evsel)
287 {
288 // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
289 // Sometimes possible > online, like on a Ryzen 3900X that has 24
290 // threads but its possible showed 0-31 -acme
291 int num_cpu_bpf = libbpf_num_possible_cpus();
292 struct bpf_perf_event_value values[num_cpu_bpf];
293 struct bpf_counter *counter;
294 struct perf_counts_values *counts;
295 int reading_map_fd;
296 __u32 key = 0;
297 int err, idx, bpf_cpu;
298
299 if (list_empty(&evsel->bpf_counter_list))
300 return -EAGAIN;
301
302 perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
303 counts = perf_counts(evsel->counts, idx, 0);
304 counts->val = 0;
305 counts->ena = 0;
306 counts->run = 0;
307 }
308 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
309 struct bpf_prog_profiler_bpf *skel = counter->skel;
310
311 assert(skel != NULL);
312 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
313
314 err = bpf_map_lookup_elem(reading_map_fd, &key, values);
315 if (err) {
316 pr_err("failed to read value\n");
317 return err;
318 }
319
320 for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
321 idx = perf_cpu_map__idx(evsel__cpus(evsel),
322 (struct perf_cpu){.cpu = bpf_cpu});
323 if (idx == -1)
324 continue;
325 counts = perf_counts(evsel->counts, idx, 0);
326 counts->val += values[bpf_cpu].counter;
327 counts->ena += values[bpf_cpu].enabled;
328 counts->run += values[bpf_cpu].running;
329 }
330 }
331 return 0;
332 }
333
bpf_program_profiler__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)334 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
335 int fd)
336 {
337 struct bpf_prog_profiler_bpf *skel;
338 struct bpf_counter *counter;
339 int cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx).cpu;
340 int ret;
341
342 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
343 skel = counter->skel;
344 assert(skel != NULL);
345
346 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
347 &cpu, &fd, BPF_ANY);
348 if (ret)
349 return ret;
350 }
351 return 0;
352 }
353
354 struct bpf_counter_ops bpf_program_profiler_ops = {
355 .load = bpf_program_profiler__load,
356 .enable = bpf_program_profiler__enable,
357 .disable = bpf_program_profiler__disable,
358 .read = bpf_program_profiler__read,
359 .destroy = bpf_program_profiler__destroy,
360 .install_pe = bpf_program_profiler__install_pe,
361 };
362
bperf_attr_map_compatible(int attr_map_fd)363 static bool bperf_attr_map_compatible(int attr_map_fd)
364 {
365 struct bpf_map_info map_info = {0};
366 __u32 map_info_len = sizeof(map_info);
367 int err;
368
369 err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
370
371 if (err)
372 return false;
373 return (map_info.key_size == sizeof(struct perf_event_attr)) &&
374 (map_info.value_size == sizeof(struct perf_event_attr_map_entry));
375 }
376
bperf_lock_attr_map(struct target * target)377 static int bperf_lock_attr_map(struct target *target)
378 {
379 char path[PATH_MAX];
380 int map_fd, err;
381
382 if (target->attr_map) {
383 scnprintf(path, PATH_MAX, "%s", target->attr_map);
384 } else {
385 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
386 BPF_PERF_DEFAULT_ATTR_MAP_PATH);
387 }
388
389 if (access(path, F_OK)) {
390 map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
391 sizeof(struct perf_event_attr),
392 sizeof(struct perf_event_attr_map_entry),
393 ATTR_MAP_SIZE, NULL);
394 if (map_fd < 0)
395 return -1;
396
397 err = bpf_obj_pin(map_fd, path);
398 if (err) {
399 /* someone pinned the map in parallel? */
400 close(map_fd);
401 map_fd = bpf_obj_get(path);
402 if (map_fd < 0)
403 return -1;
404 }
405 } else {
406 map_fd = bpf_obj_get(path);
407 if (map_fd < 0)
408 return -1;
409 }
410
411 if (!bperf_attr_map_compatible(map_fd)) {
412 close(map_fd);
413 return -1;
414
415 }
416 err = flock(map_fd, LOCK_EX);
417 if (err) {
418 close(map_fd);
419 return -1;
420 }
421 return map_fd;
422 }
423
bperf_check_target(struct evsel * evsel,struct target * target,enum bperf_filter_type * filter_type,__u32 * filter_entry_cnt)424 static int bperf_check_target(struct evsel *evsel,
425 struct target *target,
426 enum bperf_filter_type *filter_type,
427 __u32 *filter_entry_cnt)
428 {
429 if (evsel->core.leader->nr_members > 1) {
430 pr_err("bpf managed perf events do not yet support groups.\n");
431 return -1;
432 }
433
434 /* determine filter type based on target */
435 if (target->system_wide) {
436 *filter_type = BPERF_FILTER_GLOBAL;
437 *filter_entry_cnt = 1;
438 } else if (target->cpu_list) {
439 *filter_type = BPERF_FILTER_CPU;
440 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
441 } else if (target->tid) {
442 *filter_type = BPERF_FILTER_PID;
443 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
444 } else if (target->pid || evsel->evlist->workload.pid != -1) {
445 *filter_type = BPERF_FILTER_TGID;
446 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
447 } else {
448 pr_err("bpf managed perf events do not yet support these targets.\n");
449 return -1;
450 }
451
452 return 0;
453 }
454
455 static __u32 filter_entry_cnt;
456
bperf_reload_leader_program(struct evsel * evsel,int attr_map_fd,struct perf_event_attr_map_entry * entry)457 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
458 struct perf_event_attr_map_entry *entry)
459 {
460 struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
461 int link_fd, diff_map_fd, err;
462 struct bpf_link *link = NULL;
463 struct perf_thread_map *threads;
464
465 if (!skel) {
466 pr_err("Failed to open leader skeleton\n");
467 return -1;
468 }
469
470 bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
471 err = bperf_leader_bpf__load(skel);
472 if (err) {
473 pr_err("Failed to load leader skeleton\n");
474 goto out;
475 }
476
477 link = bpf_program__attach(skel->progs.on_switch);
478 if (IS_ERR(link)) {
479 pr_err("Failed to attach leader program\n");
480 err = PTR_ERR(link);
481 goto out;
482 }
483
484 link_fd = bpf_link__fd(link);
485 diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
486 entry->link_id = bpf_link_get_id(link_fd);
487 entry->diff_map_id = bpf_map_get_id(diff_map_fd);
488 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
489 assert(err == 0);
490
491 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
492 assert(evsel->bperf_leader_link_fd >= 0);
493
494 /*
495 * save leader_skel for install_pe, which is called within
496 * following evsel__open_per_cpu call
497 */
498 evsel->leader_skel = skel;
499 assert(!perf_cpu_map__has_any_cpu_or_is_empty(evsel->core.cpus));
500 /* Always open system wide. */
501 threads = thread_map__new_by_tid(-1);
502 evsel__open(evsel, evsel->core.cpus, threads);
503 perf_thread_map__put(threads);
504
505 out:
506 bperf_leader_bpf__destroy(skel);
507 bpf_link__destroy(link);
508 return err;
509 }
510
bperf_attach_follower_program(struct bperf_follower_bpf * skel,enum bperf_filter_type filter_type,bool inherit)511 static int bperf_attach_follower_program(struct bperf_follower_bpf *skel,
512 enum bperf_filter_type filter_type,
513 bool inherit)
514 {
515 struct bpf_link *link;
516 int err = 0;
517
518 if ((filter_type == BPERF_FILTER_PID ||
519 filter_type == BPERF_FILTER_TGID) && inherit)
520 /* attach all follower bpf progs to enable event inheritance */
521 err = bperf_follower_bpf__attach(skel);
522 else {
523 link = bpf_program__attach(skel->progs.fexit_XXX);
524 if (IS_ERR(link))
525 err = PTR_ERR(link);
526 }
527
528 return err;
529 }
530
bperf__load(struct evsel * evsel,struct target * target)531 static int bperf__load(struct evsel *evsel, struct target *target)
532 {
533 struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
534 int attr_map_fd, diff_map_fd = -1, err;
535 enum bperf_filter_type filter_type;
536 __u32 i;
537
538 if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
539 return -1;
540
541 evsel->bperf_leader_prog_fd = -1;
542 evsel->bperf_leader_link_fd = -1;
543
544 /*
545 * Step 1: hold a fd on the leader program and the bpf_link, if
546 * the program is not already gone, reload the program.
547 * Use flock() to ensure exclusive access to the perf_event_attr
548 * map.
549 */
550 attr_map_fd = bperf_lock_attr_map(target);
551 if (attr_map_fd < 0) {
552 pr_err("Failed to lock perf_event_attr map\n");
553 return -1;
554 }
555
556 err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
557 if (err) {
558 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
559 if (err)
560 goto out;
561 }
562
563 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
564 if (evsel->bperf_leader_link_fd < 0 &&
565 bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
566 err = -1;
567 goto out;
568 }
569 /*
570 * The bpf_link holds reference to the leader program, and the
571 * leader program holds reference to the maps. Therefore, if
572 * link_id is valid, diff_map_id should also be valid.
573 */
574 evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
575 bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
576 assert(evsel->bperf_leader_prog_fd >= 0);
577
578 diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
579 assert(diff_map_fd >= 0);
580
581 /*
582 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
583 * whether the kernel support it
584 */
585 err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
586 if (err) {
587 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
588 "Therefore, --use-bpf might show inaccurate readings\n");
589 goto out;
590 }
591
592 /* Step 2: load the follower skeleton */
593 evsel->follower_skel = bperf_follower_bpf__open();
594 if (!evsel->follower_skel) {
595 err = -1;
596 pr_err("Failed to open follower skeleton\n");
597 goto out;
598 }
599
600 /* attach fexit program to the leader program */
601 bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
602 evsel->bperf_leader_prog_fd, "on_switch");
603
604 /* connect to leader diff_reading map */
605 bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
606
607 /* set up reading map */
608 bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
609 filter_entry_cnt);
610 err = bperf_follower_bpf__load(evsel->follower_skel);
611 if (err) {
612 pr_err("Failed to load follower skeleton\n");
613 bperf_follower_bpf__destroy(evsel->follower_skel);
614 evsel->follower_skel = NULL;
615 goto out;
616 }
617
618 for (i = 0; i < filter_entry_cnt; i++) {
619 int filter_map_fd;
620 __u32 key;
621 struct bperf_filter_value fval = { i, 0 };
622
623 if (filter_type == BPERF_FILTER_PID ||
624 filter_type == BPERF_FILTER_TGID)
625 key = perf_thread_map__pid(evsel->core.threads, i);
626 else if (filter_type == BPERF_FILTER_CPU)
627 key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
628 else
629 break;
630
631 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
632 bpf_map_update_elem(filter_map_fd, &key, &fval, BPF_ANY);
633 }
634
635 evsel->follower_skel->bss->type = filter_type;
636 evsel->follower_skel->bss->inherit = target->inherit;
637
638 err = bperf_attach_follower_program(evsel->follower_skel, filter_type,
639 target->inherit);
640
641 out:
642 if (err && evsel->bperf_leader_link_fd >= 0)
643 close(evsel->bperf_leader_link_fd);
644 if (err && evsel->bperf_leader_prog_fd >= 0)
645 close(evsel->bperf_leader_prog_fd);
646 if (diff_map_fd >= 0)
647 close(diff_map_fd);
648
649 flock(attr_map_fd, LOCK_UN);
650 close(attr_map_fd);
651
652 return err;
653 }
654
bperf__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)655 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
656 {
657 struct bperf_leader_bpf *skel = evsel->leader_skel;
658 int cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx).cpu;
659
660 return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
661 &cpu, &fd, BPF_ANY);
662 }
663
664 /*
665 * trigger the leader prog on each cpu, so the accum_reading map could get
666 * the latest readings.
667 */
bperf_sync_counters(struct evsel * evsel)668 static int bperf_sync_counters(struct evsel *evsel)
669 {
670 struct perf_cpu cpu;
671 int idx;
672
673 perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus)
674 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu.cpu);
675
676 return 0;
677 }
678
bperf__enable(struct evsel * evsel)679 static int bperf__enable(struct evsel *evsel)
680 {
681 evsel->follower_skel->bss->enabled = 1;
682 return 0;
683 }
684
bperf__disable(struct evsel * evsel)685 static int bperf__disable(struct evsel *evsel)
686 {
687 evsel->follower_skel->bss->enabled = 0;
688 return 0;
689 }
690
bperf__read(struct evsel * evsel)691 static int bperf__read(struct evsel *evsel)
692 {
693 struct bperf_follower_bpf *skel = evsel->follower_skel;
694 __u32 num_cpu_bpf = cpu__max_cpu().cpu;
695 struct bpf_perf_event_value values[num_cpu_bpf];
696 struct perf_counts_values *counts;
697 int reading_map_fd, err = 0;
698 __u32 i;
699 int j;
700
701 bperf_sync_counters(evsel);
702 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
703
704 for (i = 0; i < filter_entry_cnt; i++) {
705 struct perf_cpu entry;
706 __u32 cpu;
707
708 err = bpf_map_lookup_elem(reading_map_fd, &i, values);
709 if (err)
710 goto out;
711 switch (evsel->follower_skel->bss->type) {
712 case BPERF_FILTER_GLOBAL:
713 assert(i == 0);
714
715 perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
716 counts = perf_counts(evsel->counts, j, 0);
717 counts->val = values[entry.cpu].counter;
718 counts->ena = values[entry.cpu].enabled;
719 counts->run = values[entry.cpu].running;
720 }
721 break;
722 case BPERF_FILTER_CPU:
723 cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
724 assert(cpu >= 0);
725 counts = perf_counts(evsel->counts, i, 0);
726 counts->val = values[cpu].counter;
727 counts->ena = values[cpu].enabled;
728 counts->run = values[cpu].running;
729 break;
730 case BPERF_FILTER_PID:
731 case BPERF_FILTER_TGID:
732 counts = perf_counts(evsel->counts, 0, i);
733 counts->val = 0;
734 counts->ena = 0;
735 counts->run = 0;
736
737 for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
738 counts->val += values[cpu].counter;
739 counts->ena += values[cpu].enabled;
740 counts->run += values[cpu].running;
741 }
742 break;
743 default:
744 break;
745 }
746 }
747 out:
748 return err;
749 }
750
bperf__destroy(struct evsel * evsel)751 static int bperf__destroy(struct evsel *evsel)
752 {
753 bperf_follower_bpf__destroy(evsel->follower_skel);
754 close(evsel->bperf_leader_prog_fd);
755 close(evsel->bperf_leader_link_fd);
756 return 0;
757 }
758
759 /*
760 * bperf: share hardware PMCs with BPF
761 *
762 * perf uses performance monitoring counters (PMC) to monitor system
763 * performance. The PMCs are limited hardware resources. For example,
764 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
765 *
766 * Modern data center systems use these PMCs in many different ways:
767 * system level monitoring, (maybe nested) container level monitoring, per
768 * process monitoring, profiling (in sample mode), etc. In some cases,
769 * there are more active perf_events than available hardware PMCs. To allow
770 * all perf_events to have a chance to run, it is necessary to do expensive
771 * time multiplexing of events.
772 *
773 * On the other hand, many monitoring tools count the common metrics
774 * (cycles, instructions). It is a waste to have multiple tools create
775 * multiple perf_events of "cycles" and occupy multiple PMCs.
776 *
777 * bperf tries to reduce such wastes by allowing multiple perf_events of
778 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
779 * of having each perf-stat session to read its own perf_events, bperf uses
780 * BPF programs to read the perf_events and aggregate readings to BPF maps.
781 * Then, the perf-stat session(s) reads the values from these BPF maps.
782 *
783 * ||
784 * shared progs and maps <- || -> per session progs and maps
785 * ||
786 * --------------- ||
787 * | perf_events | ||
788 * --------------- fexit || -----------------
789 * | --------||----> | follower prog |
790 * --------------- / || --- -----------------
791 * cs -> | leader prog |/ ||/ | |
792 * --> --------------- /|| -------------- ------------------
793 * / | | / || | filter map | | accum_readings |
794 * / ------------ ------------ || -------------- ------------------
795 * | | prev map | | diff map | || |
796 * | ------------ ------------ || |
797 * \ || |
798 * = \ ==================================================== | ============
799 * \ / user space
800 * \ /
801 * \ /
802 * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM
803 * \ /
804 * \ /
805 * \------ perf-stat ----------------------/
806 *
807 * The figure above shows the architecture of bperf. Note that the figure
808 * is divided into 3 regions: shared progs and maps (top left), per session
809 * progs and maps (top right), and user space (bottom).
810 *
811 * The leader prog is triggered on each context switch (cs). The leader
812 * prog reads perf_events and stores the difference (current_reading -
813 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
814 * multiple perf-stat sessions share the same leader prog.
815 *
816 * Each perf-stat session creates a follower prog as fexit program to the
817 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
818 * follower progs to the same leader prog. The follower prog checks current
819 * task and processor ID to decide whether to add the value from the diff
820 * map to its accumulated reading map (accum_readings).
821 *
822 * Finally, perf-stat user space reads the value from accum_reading map.
823 *
824 * Besides context switch, it is also necessary to trigger the leader prog
825 * before perf-stat reads the value. Otherwise, the accum_reading map may
826 * not have the latest reading from the perf_events. This is achieved by
827 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
828 *
829 * Comment before the definition of struct perf_event_attr_map_entry
830 * describes how different sessions of perf-stat share information about
831 * the leader prog.
832 */
833
834 struct bpf_counter_ops bperf_ops = {
835 .load = bperf__load,
836 .enable = bperf__enable,
837 .disable = bperf__disable,
838 .read = bperf__read,
839 .install_pe = bperf__install_pe,
840 .destroy = bperf__destroy,
841 };
842
843 extern struct bpf_counter_ops bperf_cgrp_ops;
844
bpf_counter_skip(struct evsel * evsel)845 static bool bpf_counter_skip(struct evsel *evsel)
846 {
847 return evsel->bpf_counter_ops == NULL;
848 }
849
bpf_counter__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)850 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
851 {
852 if (bpf_counter_skip(evsel))
853 return 0;
854 return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
855 }
856
bpf_counter__load(struct evsel * evsel,struct target * target)857 int bpf_counter__load(struct evsel *evsel, struct target *target)
858 {
859 if (target->bpf_str)
860 evsel->bpf_counter_ops = &bpf_program_profiler_ops;
861 else if (cgrp_event_expanded && target->use_bpf)
862 evsel->bpf_counter_ops = &bperf_cgrp_ops;
863 else if (target->use_bpf || evsel->bpf_counter ||
864 evsel__match_bpf_counter_events(evsel->name))
865 evsel->bpf_counter_ops = &bperf_ops;
866
867 if (evsel->bpf_counter_ops)
868 return evsel->bpf_counter_ops->load(evsel, target);
869 return 0;
870 }
871
bpf_counter__enable(struct evsel * evsel)872 int bpf_counter__enable(struct evsel *evsel)
873 {
874 if (bpf_counter_skip(evsel))
875 return 0;
876 return evsel->bpf_counter_ops->enable(evsel);
877 }
878
bpf_counter__disable(struct evsel * evsel)879 int bpf_counter__disable(struct evsel *evsel)
880 {
881 if (bpf_counter_skip(evsel))
882 return 0;
883 return evsel->bpf_counter_ops->disable(evsel);
884 }
885
bpf_counter__read(struct evsel * evsel)886 int bpf_counter__read(struct evsel *evsel)
887 {
888 if (bpf_counter_skip(evsel))
889 return -EAGAIN;
890 return evsel->bpf_counter_ops->read(evsel);
891 }
892
bpf_counter__destroy(struct evsel * evsel)893 void bpf_counter__destroy(struct evsel *evsel)
894 {
895 if (bpf_counter_skip(evsel))
896 return;
897 evsel->bpf_counter_ops->destroy(evsel);
898 evsel->bpf_counter_ops = NULL;
899 evsel->bpf_skel = NULL;
900 }
901