1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2019 Facebook */
4
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/resource.h>
10 #include <sys/time.h>
11 #include <linux/err.h>
12 #include <linux/list.h>
13 #include <linux/zalloc.h>
14 #include <api/fs/fs.h>
15 #include <bpf/bpf.h>
16 #include <bpf/btf.h>
17 #include <perf/bpf_perf.h>
18
19 #include "bpf_counter.h"
20 #include "bpf-utils.h"
21 #include "counts.h"
22 #include "debug.h"
23 #include "evsel.h"
24 #include "evlist.h"
25 #include "target.h"
26 #include "cgroup.h"
27 #include "cpumap.h"
28 #include "thread_map.h"
29
30 #include "bpf_skel/bpf_prog_profiler.skel.h"
31 #include "bpf_skel/bperf_u.h"
32 #include "bpf_skel/bperf_leader.skel.h"
33 #include "bpf_skel/bperf_follower.skel.h"
34
35 struct bpf_counter {
36 void *skel;
37 struct list_head list;
38 };
39
40 #define ATTR_MAP_SIZE 16
41
u64_to_ptr(__u64 ptr)42 static void *u64_to_ptr(__u64 ptr)
43 {
44 return (void *)(unsigned long)ptr;
45 }
46
47
set_max_rlimit(void)48 void set_max_rlimit(void)
49 {
50 struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
51
52 setrlimit(RLIMIT_MEMLOCK, &rinf);
53 }
54
bpf_link_get_id(int fd)55 static __u32 bpf_link_get_id(int fd)
56 {
57 struct bpf_link_info link_info = { .id = 0, };
58 __u32 link_info_len = sizeof(link_info);
59
60 bpf_obj_get_info_by_fd(fd, &link_info, &link_info_len);
61 return link_info.id;
62 }
63
bpf_link_get_prog_id(int fd)64 static __u32 bpf_link_get_prog_id(int fd)
65 {
66 struct bpf_link_info link_info = { .id = 0, };
67 __u32 link_info_len = sizeof(link_info);
68
69 bpf_obj_get_info_by_fd(fd, &link_info, &link_info_len);
70 return link_info.prog_id;
71 }
72
bpf_map_get_id(int fd)73 static __u32 bpf_map_get_id(int fd)
74 {
75 struct bpf_map_info map_info = { .id = 0, };
76 __u32 map_info_len = sizeof(map_info);
77
78 bpf_obj_get_info_by_fd(fd, &map_info, &map_info_len);
79 return map_info.id;
80 }
81
82 /* trigger the leader program on a cpu */
bperf_trigger_reading(int prog_fd,int cpu)83 int bperf_trigger_reading(int prog_fd, int cpu)
84 {
85 DECLARE_LIBBPF_OPTS(bpf_test_run_opts, opts,
86 .ctx_in = NULL,
87 .ctx_size_in = 0,
88 .flags = BPF_F_TEST_RUN_ON_CPU,
89 .cpu = cpu,
90 .retval = 0,
91 );
92
93 return bpf_prog_test_run_opts(prog_fd, &opts);
94 }
95
bpf_counter_alloc(void)96 static struct bpf_counter *bpf_counter_alloc(void)
97 {
98 struct bpf_counter *counter;
99
100 counter = zalloc(sizeof(*counter));
101 if (counter)
102 INIT_LIST_HEAD(&counter->list);
103 return counter;
104 }
105
bpf_program_profiler__destroy(struct evsel * evsel)106 static int bpf_program_profiler__destroy(struct evsel *evsel)
107 {
108 struct bpf_counter *counter, *tmp;
109
110 list_for_each_entry_safe(counter, tmp,
111 &evsel->bpf_counter_list, list) {
112 list_del_init(&counter->list);
113 bpf_prog_profiler_bpf__destroy(counter->skel);
114 free(counter);
115 }
116 assert(list_empty(&evsel->bpf_counter_list));
117
118 return 0;
119 }
120
bpf_target_prog_name(int tgt_fd)121 static char *bpf_target_prog_name(int tgt_fd)
122 {
123 struct bpf_func_info *func_info;
124 struct perf_bpil *info_linear;
125 const struct btf_type *t;
126 struct btf *btf = NULL;
127 char *name = NULL;
128
129 info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
130 if (IS_ERR_OR_NULL(info_linear)) {
131 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
132 return NULL;
133 }
134
135 if (info_linear->info.btf_id == 0) {
136 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
137 goto out;
138 }
139
140 btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
141 if (libbpf_get_error(btf)) {
142 pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
143 goto out;
144 }
145
146 func_info = u64_to_ptr(info_linear->info.func_info);
147 t = btf__type_by_id(btf, func_info[0].type_id);
148 if (!t) {
149 pr_debug("btf %d doesn't have type %d\n",
150 info_linear->info.btf_id, func_info[0].type_id);
151 goto out;
152 }
153 name = strdup(btf__name_by_offset(btf, t->name_off));
154 out:
155 btf__free(btf);
156 free(info_linear);
157 return name;
158 }
159
bpf_program_profiler_load_one(struct evsel * evsel,u32 prog_id)160 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
161 {
162 struct bpf_prog_profiler_bpf *skel;
163 struct bpf_counter *counter;
164 struct bpf_program *prog;
165 char *prog_name = NULL;
166 int prog_fd;
167 int err;
168
169 prog_fd = bpf_prog_get_fd_by_id(prog_id);
170 if (prog_fd < 0) {
171 pr_err("Failed to open fd for bpf prog %u\n", prog_id);
172 return -1;
173 }
174 counter = bpf_counter_alloc();
175 if (!counter) {
176 close(prog_fd);
177 return -1;
178 }
179
180 skel = bpf_prog_profiler_bpf__open();
181 if (!skel) {
182 pr_err("Failed to open bpf skeleton\n");
183 goto err_out;
184 }
185
186 skel->rodata->num_cpu = evsel__nr_cpus(evsel);
187
188 bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
189 bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
190 bpf_map__set_max_entries(skel->maps.accum_readings, 1);
191
192 prog_name = bpf_target_prog_name(prog_fd);
193 if (!prog_name) {
194 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
195 goto err_out;
196 }
197
198 bpf_object__for_each_program(prog, skel->obj) {
199 err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
200 if (err) {
201 pr_err("bpf_program__set_attach_target failed.\n"
202 "Does bpf prog %u have BTF?\n", prog_id);
203 goto err_out;
204 }
205 }
206 set_max_rlimit();
207 err = bpf_prog_profiler_bpf__load(skel);
208 if (err) {
209 pr_err("bpf_prog_profiler_bpf__load failed\n");
210 goto err_out;
211 }
212
213 assert(skel != NULL);
214 counter->skel = skel;
215 list_add(&counter->list, &evsel->bpf_counter_list);
216 free(prog_name);
217 close(prog_fd);
218 return 0;
219 err_out:
220 bpf_prog_profiler_bpf__destroy(skel);
221 free(prog_name);
222 free(counter);
223 close(prog_fd);
224 return -1;
225 }
226
bpf_program_profiler__load(struct evsel * evsel,struct target * target)227 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
228 {
229 char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
230 u32 prog_id;
231 int ret;
232
233 bpf_str_ = bpf_str = strdup(target->bpf_str);
234 if (!bpf_str)
235 return -1;
236
237 while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
238 prog_id = strtoul(tok, &p, 10);
239 if (prog_id == 0 || prog_id == UINT_MAX ||
240 (*p != '\0' && *p != ',')) {
241 pr_err("Failed to parse bpf prog ids %s\n",
242 target->bpf_str);
243 free(bpf_str_);
244 return -1;
245 }
246
247 ret = bpf_program_profiler_load_one(evsel, prog_id);
248 if (ret) {
249 bpf_program_profiler__destroy(evsel);
250 free(bpf_str_);
251 return -1;
252 }
253 bpf_str = NULL;
254 }
255 free(bpf_str_);
256 return 0;
257 }
258
bpf_program_profiler__enable(struct evsel * evsel)259 static int bpf_program_profiler__enable(struct evsel *evsel)
260 {
261 struct bpf_counter *counter;
262 int ret;
263
264 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
265 assert(counter->skel != NULL);
266 ret = bpf_prog_profiler_bpf__attach(counter->skel);
267 if (ret) {
268 bpf_program_profiler__destroy(evsel);
269 return ret;
270 }
271 }
272 return 0;
273 }
274
bpf_program_profiler__disable(struct evsel * evsel)275 static int bpf_program_profiler__disable(struct evsel *evsel)
276 {
277 struct bpf_counter *counter;
278
279 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
280 assert(counter->skel != NULL);
281 bpf_prog_profiler_bpf__detach(counter->skel);
282 }
283 return 0;
284 }
285
bpf_program_profiler__read(struct evsel * evsel)286 static int bpf_program_profiler__read(struct evsel *evsel)
287 {
288 // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
289 // Sometimes possible > online, like on a Ryzen 3900X that has 24
290 // threads but its possible showed 0-31 -acme
291 int num_cpu_bpf = libbpf_num_possible_cpus();
292 struct bpf_perf_event_value values[num_cpu_bpf];
293 struct bpf_counter *counter;
294 struct perf_counts_values *counts;
295 int reading_map_fd;
296 __u32 key = 0;
297 int err, idx, bpf_cpu;
298
299 if (list_empty(&evsel->bpf_counter_list))
300 return -EAGAIN;
301
302 perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
303 counts = perf_counts(evsel->counts, idx, 0);
304 counts->val = 0;
305 counts->ena = 0;
306 counts->run = 0;
307 }
308 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
309 struct bpf_prog_profiler_bpf *skel = counter->skel;
310
311 assert(skel != NULL);
312 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
313
314 err = bpf_map_lookup_elem(reading_map_fd, &key, values);
315 if (err) {
316 pr_err("failed to read value\n");
317 return err;
318 }
319
320 for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
321 idx = perf_cpu_map__idx(evsel__cpus(evsel),
322 (struct perf_cpu){.cpu = bpf_cpu});
323 if (idx == -1)
324 continue;
325 counts = perf_counts(evsel->counts, idx, 0);
326 counts->val += values[bpf_cpu].counter;
327 counts->ena += values[bpf_cpu].enabled;
328 counts->run += values[bpf_cpu].running;
329 }
330 }
331 return 0;
332 }
333
bpf_program_profiler__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)334 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
335 int fd)
336 {
337 struct bpf_prog_profiler_bpf *skel;
338 struct bpf_counter *counter;
339 int cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx).cpu;
340 int ret;
341
342 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
343 skel = counter->skel;
344 assert(skel != NULL);
345
346 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
347 &cpu, &fd, BPF_ANY);
348 if (ret)
349 return ret;
350 }
351 return 0;
352 }
353
354 struct bpf_counter_ops bpf_program_profiler_ops = {
355 .load = bpf_program_profiler__load,
356 .enable = bpf_program_profiler__enable,
357 .disable = bpf_program_profiler__disable,
358 .read = bpf_program_profiler__read,
359 .destroy = bpf_program_profiler__destroy,
360 .install_pe = bpf_program_profiler__install_pe,
361 };
362
bperf_attr_map_compatible(int attr_map_fd)363 static bool bperf_attr_map_compatible(int attr_map_fd)
364 {
365 struct bpf_map_info map_info = {0};
366 __u32 map_info_len = sizeof(map_info);
367 int err;
368
369 err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
370
371 if (err)
372 return false;
373 return (map_info.key_size == sizeof(struct perf_event_attr)) &&
374 (map_info.value_size == sizeof(struct perf_event_attr_map_entry));
375 }
376
bperf_lock_attr_map(struct target * target)377 static int bperf_lock_attr_map(struct target *target)
378 {
379 char path[PATH_MAX];
380 int map_fd, err;
381
382 if (target->attr_map) {
383 scnprintf(path, PATH_MAX, "%s", target->attr_map);
384 } else {
385 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
386 BPF_PERF_DEFAULT_ATTR_MAP_PATH);
387 }
388
389 if (access(path, F_OK)) {
390 map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
391 sizeof(struct perf_event_attr),
392 sizeof(struct perf_event_attr_map_entry),
393 ATTR_MAP_SIZE, NULL);
394 if (map_fd < 0)
395 return -1;
396
397 err = bpf_obj_pin(map_fd, path);
398 if (err) {
399 /* someone pinned the map in parallel? */
400 close(map_fd);
401 map_fd = bpf_obj_get(path);
402 if (map_fd < 0)
403 return -1;
404 }
405 } else {
406 map_fd = bpf_obj_get(path);
407 if (map_fd < 0)
408 return -1;
409 }
410
411 if (!bperf_attr_map_compatible(map_fd)) {
412 close(map_fd);
413 return -1;
414
415 }
416 err = flock(map_fd, LOCK_EX);
417 if (err) {
418 close(map_fd);
419 return -1;
420 }
421 return map_fd;
422 }
423
bperf_check_target(struct evsel * evsel,struct target * target,enum bperf_filter_type * filter_type,__u32 * filter_entry_cnt)424 static int bperf_check_target(struct evsel *evsel,
425 struct target *target,
426 enum bperf_filter_type *filter_type,
427 __u32 *filter_entry_cnt)
428 {
429 if (evsel->core.leader->nr_members > 1) {
430 pr_err("bpf managed perf events do not yet support groups.\n");
431 return -1;
432 }
433
434 /* determine filter type based on target */
435 if (target->system_wide) {
436 *filter_type = BPERF_FILTER_GLOBAL;
437 *filter_entry_cnt = 1;
438 } else if (target->cpu_list) {
439 *filter_type = BPERF_FILTER_CPU;
440 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
441 } else if (target->tid) {
442 *filter_type = BPERF_FILTER_PID;
443 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
444 } else if (target->pid || evsel->evlist->workload.pid != -1) {
445 *filter_type = BPERF_FILTER_TGID;
446 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
447 } else {
448 pr_err("bpf managed perf events do not yet support these targets.\n");
449 return -1;
450 }
451
452 return 0;
453 }
454
455 static __u32 filter_entry_cnt;
456
bperf_reload_leader_program(struct evsel * evsel,int attr_map_fd,struct perf_event_attr_map_entry * entry)457 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
458 struct perf_event_attr_map_entry *entry)
459 {
460 struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
461 int link_fd, diff_map_fd, err;
462 struct bpf_link *link = NULL;
463
464 if (!skel) {
465 pr_err("Failed to open leader skeleton\n");
466 return -1;
467 }
468
469 bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
470 err = bperf_leader_bpf__load(skel);
471 if (err) {
472 pr_err("Failed to load leader skeleton\n");
473 goto out;
474 }
475
476 link = bpf_program__attach(skel->progs.on_switch);
477 if (IS_ERR(link)) {
478 pr_err("Failed to attach leader program\n");
479 err = PTR_ERR(link);
480 goto out;
481 }
482
483 link_fd = bpf_link__fd(link);
484 diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
485 entry->link_id = bpf_link_get_id(link_fd);
486 entry->diff_map_id = bpf_map_get_id(diff_map_fd);
487 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
488 assert(err == 0);
489
490 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
491 assert(evsel->bperf_leader_link_fd >= 0);
492
493 /*
494 * save leader_skel for install_pe, which is called within
495 * following evsel__open_per_cpu call
496 */
497 evsel->leader_skel = skel;
498 evsel__open(evsel, evsel->core.cpus, evsel->core.threads);
499
500 out:
501 bperf_leader_bpf__destroy(skel);
502 bpf_link__destroy(link);
503 return err;
504 }
505
bperf_attach_follower_program(struct bperf_follower_bpf * skel,enum bperf_filter_type filter_type,bool inherit)506 static int bperf_attach_follower_program(struct bperf_follower_bpf *skel,
507 enum bperf_filter_type filter_type,
508 bool inherit)
509 {
510 struct bpf_link *link;
511 int err = 0;
512
513 if ((filter_type == BPERF_FILTER_PID ||
514 filter_type == BPERF_FILTER_TGID) && inherit)
515 /* attach all follower bpf progs to enable event inheritance */
516 err = bperf_follower_bpf__attach(skel);
517 else {
518 link = bpf_program__attach(skel->progs.fexit_XXX);
519 if (IS_ERR(link))
520 err = PTR_ERR(link);
521 }
522
523 return err;
524 }
525
bperf__load(struct evsel * evsel,struct target * target)526 static int bperf__load(struct evsel *evsel, struct target *target)
527 {
528 struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
529 int attr_map_fd, diff_map_fd = -1, err;
530 enum bperf_filter_type filter_type;
531 __u32 i;
532
533 if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
534 return -1;
535
536 evsel->bperf_leader_prog_fd = -1;
537 evsel->bperf_leader_link_fd = -1;
538
539 /*
540 * Step 1: hold a fd on the leader program and the bpf_link, if
541 * the program is not already gone, reload the program.
542 * Use flock() to ensure exclusive access to the perf_event_attr
543 * map.
544 */
545 attr_map_fd = bperf_lock_attr_map(target);
546 if (attr_map_fd < 0) {
547 pr_err("Failed to lock perf_event_attr map\n");
548 return -1;
549 }
550
551 err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
552 if (err) {
553 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
554 if (err)
555 goto out;
556 }
557
558 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
559 if (evsel->bperf_leader_link_fd < 0 &&
560 bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
561 err = -1;
562 goto out;
563 }
564 /*
565 * The bpf_link holds reference to the leader program, and the
566 * leader program holds reference to the maps. Therefore, if
567 * link_id is valid, diff_map_id should also be valid.
568 */
569 evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
570 bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
571 assert(evsel->bperf_leader_prog_fd >= 0);
572
573 diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
574 assert(diff_map_fd >= 0);
575
576 /*
577 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
578 * whether the kernel support it
579 */
580 err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
581 if (err) {
582 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
583 "Therefore, --use-bpf might show inaccurate readings\n");
584 goto out;
585 }
586
587 /* Step 2: load the follower skeleton */
588 evsel->follower_skel = bperf_follower_bpf__open();
589 if (!evsel->follower_skel) {
590 err = -1;
591 pr_err("Failed to open follower skeleton\n");
592 goto out;
593 }
594
595 /* attach fexit program to the leader program */
596 bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
597 evsel->bperf_leader_prog_fd, "on_switch");
598
599 /* connect to leader diff_reading map */
600 bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
601
602 /* set up reading map */
603 bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
604 filter_entry_cnt);
605 err = bperf_follower_bpf__load(evsel->follower_skel);
606 if (err) {
607 pr_err("Failed to load follower skeleton\n");
608 bperf_follower_bpf__destroy(evsel->follower_skel);
609 evsel->follower_skel = NULL;
610 goto out;
611 }
612
613 for (i = 0; i < filter_entry_cnt; i++) {
614 int filter_map_fd;
615 __u32 key;
616 struct bperf_filter_value fval = { i, 0 };
617
618 if (filter_type == BPERF_FILTER_PID ||
619 filter_type == BPERF_FILTER_TGID)
620 key = perf_thread_map__pid(evsel->core.threads, i);
621 else if (filter_type == BPERF_FILTER_CPU)
622 key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
623 else
624 break;
625
626 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
627 bpf_map_update_elem(filter_map_fd, &key, &fval, BPF_ANY);
628 }
629
630 evsel->follower_skel->bss->type = filter_type;
631 evsel->follower_skel->bss->inherit = target->inherit;
632
633 err = bperf_attach_follower_program(evsel->follower_skel, filter_type,
634 target->inherit);
635
636 out:
637 if (err && evsel->bperf_leader_link_fd >= 0)
638 close(evsel->bperf_leader_link_fd);
639 if (err && evsel->bperf_leader_prog_fd >= 0)
640 close(evsel->bperf_leader_prog_fd);
641 if (diff_map_fd >= 0)
642 close(diff_map_fd);
643
644 flock(attr_map_fd, LOCK_UN);
645 close(attr_map_fd);
646
647 return err;
648 }
649
bperf__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)650 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
651 {
652 struct bperf_leader_bpf *skel = evsel->leader_skel;
653 int cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx).cpu;
654
655 return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
656 &cpu, &fd, BPF_ANY);
657 }
658
659 /*
660 * trigger the leader prog on each cpu, so the accum_reading map could get
661 * the latest readings.
662 */
bperf_sync_counters(struct evsel * evsel)663 static int bperf_sync_counters(struct evsel *evsel)
664 {
665 struct perf_cpu cpu;
666 int idx;
667
668 perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus)
669 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu.cpu);
670
671 return 0;
672 }
673
bperf__enable(struct evsel * evsel)674 static int bperf__enable(struct evsel *evsel)
675 {
676 evsel->follower_skel->bss->enabled = 1;
677 return 0;
678 }
679
bperf__disable(struct evsel * evsel)680 static int bperf__disable(struct evsel *evsel)
681 {
682 evsel->follower_skel->bss->enabled = 0;
683 return 0;
684 }
685
bperf__read(struct evsel * evsel)686 static int bperf__read(struct evsel *evsel)
687 {
688 struct bperf_follower_bpf *skel = evsel->follower_skel;
689 __u32 num_cpu_bpf = cpu__max_cpu().cpu;
690 struct bpf_perf_event_value values[num_cpu_bpf];
691 struct perf_counts_values *counts;
692 int reading_map_fd, err = 0;
693 __u32 i;
694 int j;
695
696 bperf_sync_counters(evsel);
697 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
698
699 for (i = 0; i < filter_entry_cnt; i++) {
700 struct perf_cpu entry;
701 __u32 cpu;
702
703 err = bpf_map_lookup_elem(reading_map_fd, &i, values);
704 if (err)
705 goto out;
706 switch (evsel->follower_skel->bss->type) {
707 case BPERF_FILTER_GLOBAL:
708 assert(i == 0);
709
710 perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
711 counts = perf_counts(evsel->counts, j, 0);
712 counts->val = values[entry.cpu].counter;
713 counts->ena = values[entry.cpu].enabled;
714 counts->run = values[entry.cpu].running;
715 }
716 break;
717 case BPERF_FILTER_CPU:
718 cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
719 assert(cpu >= 0);
720 counts = perf_counts(evsel->counts, i, 0);
721 counts->val = values[cpu].counter;
722 counts->ena = values[cpu].enabled;
723 counts->run = values[cpu].running;
724 break;
725 case BPERF_FILTER_PID:
726 case BPERF_FILTER_TGID:
727 counts = perf_counts(evsel->counts, 0, i);
728 counts->val = 0;
729 counts->ena = 0;
730 counts->run = 0;
731
732 for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
733 counts->val += values[cpu].counter;
734 counts->ena += values[cpu].enabled;
735 counts->run += values[cpu].running;
736 }
737 break;
738 default:
739 break;
740 }
741 }
742 out:
743 return err;
744 }
745
bperf__destroy(struct evsel * evsel)746 static int bperf__destroy(struct evsel *evsel)
747 {
748 bperf_follower_bpf__destroy(evsel->follower_skel);
749 close(evsel->bperf_leader_prog_fd);
750 close(evsel->bperf_leader_link_fd);
751 return 0;
752 }
753
754 /*
755 * bperf: share hardware PMCs with BPF
756 *
757 * perf uses performance monitoring counters (PMC) to monitor system
758 * performance. The PMCs are limited hardware resources. For example,
759 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
760 *
761 * Modern data center systems use these PMCs in many different ways:
762 * system level monitoring, (maybe nested) container level monitoring, per
763 * process monitoring, profiling (in sample mode), etc. In some cases,
764 * there are more active perf_events than available hardware PMCs. To allow
765 * all perf_events to have a chance to run, it is necessary to do expensive
766 * time multiplexing of events.
767 *
768 * On the other hand, many monitoring tools count the common metrics
769 * (cycles, instructions). It is a waste to have multiple tools create
770 * multiple perf_events of "cycles" and occupy multiple PMCs.
771 *
772 * bperf tries to reduce such wastes by allowing multiple perf_events of
773 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
774 * of having each perf-stat session to read its own perf_events, bperf uses
775 * BPF programs to read the perf_events and aggregate readings to BPF maps.
776 * Then, the perf-stat session(s) reads the values from these BPF maps.
777 *
778 * ||
779 * shared progs and maps <- || -> per session progs and maps
780 * ||
781 * --------------- ||
782 * | perf_events | ||
783 * --------------- fexit || -----------------
784 * | --------||----> | follower prog |
785 * --------------- / || --- -----------------
786 * cs -> | leader prog |/ ||/ | |
787 * --> --------------- /|| -------------- ------------------
788 * / | | / || | filter map | | accum_readings |
789 * / ------------ ------------ || -------------- ------------------
790 * | | prev map | | diff map | || |
791 * | ------------ ------------ || |
792 * \ || |
793 * = \ ==================================================== | ============
794 * \ / user space
795 * \ /
796 * \ /
797 * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM
798 * \ /
799 * \ /
800 * \------ perf-stat ----------------------/
801 *
802 * The figure above shows the architecture of bperf. Note that the figure
803 * is divided into 3 regions: shared progs and maps (top left), per session
804 * progs and maps (top right), and user space (bottom).
805 *
806 * The leader prog is triggered on each context switch (cs). The leader
807 * prog reads perf_events and stores the difference (current_reading -
808 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
809 * multiple perf-stat sessions share the same leader prog.
810 *
811 * Each perf-stat session creates a follower prog as fexit program to the
812 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
813 * follower progs to the same leader prog. The follower prog checks current
814 * task and processor ID to decide whether to add the value from the diff
815 * map to its accumulated reading map (accum_readings).
816 *
817 * Finally, perf-stat user space reads the value from accum_reading map.
818 *
819 * Besides context switch, it is also necessary to trigger the leader prog
820 * before perf-stat reads the value. Otherwise, the accum_reading map may
821 * not have the latest reading from the perf_events. This is achieved by
822 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
823 *
824 * Comment before the definition of struct perf_event_attr_map_entry
825 * describes how different sessions of perf-stat share information about
826 * the leader prog.
827 */
828
829 struct bpf_counter_ops bperf_ops = {
830 .load = bperf__load,
831 .enable = bperf__enable,
832 .disable = bperf__disable,
833 .read = bperf__read,
834 .install_pe = bperf__install_pe,
835 .destroy = bperf__destroy,
836 };
837
838 extern struct bpf_counter_ops bperf_cgrp_ops;
839
bpf_counter_skip(struct evsel * evsel)840 static bool bpf_counter_skip(struct evsel *evsel)
841 {
842 return evsel->bpf_counter_ops == NULL;
843 }
844
bpf_counter__install_pe(struct evsel * evsel,int cpu_map_idx,int fd)845 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
846 {
847 if (bpf_counter_skip(evsel))
848 return 0;
849 return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
850 }
851
bpf_counter__load(struct evsel * evsel,struct target * target)852 int bpf_counter__load(struct evsel *evsel, struct target *target)
853 {
854 if (target->bpf_str)
855 evsel->bpf_counter_ops = &bpf_program_profiler_ops;
856 else if (cgrp_event_expanded && target->use_bpf)
857 evsel->bpf_counter_ops = &bperf_cgrp_ops;
858 else if (target->use_bpf || evsel->bpf_counter ||
859 evsel__match_bpf_counter_events(evsel->name))
860 evsel->bpf_counter_ops = &bperf_ops;
861
862 if (evsel->bpf_counter_ops)
863 return evsel->bpf_counter_ops->load(evsel, target);
864 return 0;
865 }
866
bpf_counter__enable(struct evsel * evsel)867 int bpf_counter__enable(struct evsel *evsel)
868 {
869 if (bpf_counter_skip(evsel))
870 return 0;
871 return evsel->bpf_counter_ops->enable(evsel);
872 }
873
bpf_counter__disable(struct evsel * evsel)874 int bpf_counter__disable(struct evsel *evsel)
875 {
876 if (bpf_counter_skip(evsel))
877 return 0;
878 return evsel->bpf_counter_ops->disable(evsel);
879 }
880
bpf_counter__read(struct evsel * evsel)881 int bpf_counter__read(struct evsel *evsel)
882 {
883 if (bpf_counter_skip(evsel))
884 return -EAGAIN;
885 return evsel->bpf_counter_ops->read(evsel);
886 }
887
bpf_counter__destroy(struct evsel * evsel)888 void bpf_counter__destroy(struct evsel *evsel)
889 {
890 if (bpf_counter_skip(evsel))
891 return;
892 evsel->bpf_counter_ops->destroy(evsel);
893 evsel->bpf_counter_ops = NULL;
894 evsel->bpf_skel = NULL;
895 }
896