xref: /linux/drivers/gpu/drm/xe/xe_hwmon.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/hwmon.h>
8 #include <linux/jiffies.h>
9 #include <linux/types.h>
10 #include <linux/units.h>
11 
12 #include <drm/drm_managed.h>
13 #include "regs/xe_gt_regs.h"
14 #include "regs/xe_mchbar_regs.h"
15 #include "regs/xe_pcode_regs.h"
16 #include "xe_device.h"
17 #include "xe_hwmon.h"
18 #include "xe_mmio.h"
19 #include "xe_pcode.h"
20 #include "xe_pcode_api.h"
21 #include "xe_sriov.h"
22 #include "xe_pm.h"
23 #include "xe_vsec.h"
24 #include "regs/xe_pmt.h"
25 
26 enum xe_hwmon_reg {
27 	REG_TEMP,
28 	REG_PKG_RAPL_LIMIT,
29 	REG_PKG_POWER_SKU,
30 	REG_PKG_POWER_SKU_UNIT,
31 	REG_GT_PERF_STATUS,
32 	REG_PKG_ENERGY_STATUS,
33 	REG_FAN_SPEED,
34 };
35 
36 enum xe_hwmon_reg_operation {
37 	REG_READ32,
38 	REG_RMW32,
39 	REG_READ64,
40 };
41 
42 enum xe_hwmon_channel {
43 	CHANNEL_CARD,
44 	CHANNEL_PKG,
45 	CHANNEL_VRAM,
46 	CHANNEL_MAX,
47 };
48 
49 enum xe_fan_channel {
50 	FAN_1,
51 	FAN_2,
52 	FAN_3,
53 	FAN_MAX,
54 };
55 
56 /* Attribute index for powerX_xxx_interval sysfs entries */
57 enum sensor_attr_power {
58 	SENSOR_INDEX_PSYS_PL1,
59 	SENSOR_INDEX_PKG_PL1,
60 	SENSOR_INDEX_PSYS_PL2,
61 	SENSOR_INDEX_PKG_PL2,
62 };
63 
64 /*
65  * For platforms that support mailbox commands for power limits, REG_PKG_POWER_SKU_UNIT is
66  * not supported and below are SKU units to be used.
67  */
68 #define PWR_UNIT	0x3
69 #define ENERGY_UNIT	0xe
70 #define TIME_UNIT	0xa
71 
72 /*
73  * SF_* - scale factors for particular quantities according to hwmon spec.
74  */
75 #define SF_POWER	1000000		/* microwatts */
76 #define SF_CURR		1000		/* milliamperes */
77 #define SF_VOLTAGE	1000		/* millivolts */
78 #define SF_ENERGY	1000000		/* microjoules */
79 #define SF_TIME		1000		/* milliseconds */
80 
81 /*
82  * PL*_HWMON_ATTR - mapping of hardware power limits to corresponding hwmon power attribute.
83  */
84 #define PL1_HWMON_ATTR	hwmon_power_max
85 #define PL2_HWMON_ATTR	hwmon_power_cap
86 
87 #define PWR_ATTR_TO_STR(attr)	(((attr) == hwmon_power_max) ? "PL1" : "PL2")
88 
89 /*
90  * Timeout for power limit write mailbox command.
91  */
92 #define PL_WRITE_MBX_TIMEOUT_MS	(1)
93 
94 /**
95  * struct xe_hwmon_energy_info - to accumulate energy
96  */
97 struct xe_hwmon_energy_info {
98 	/** @reg_val_prev: previous energy reg val */
99 	u32 reg_val_prev;
100 	/** @accum_energy: accumulated energy */
101 	long accum_energy;
102 };
103 
104 /**
105  * struct xe_hwmon_fan_info - to cache previous fan reading
106  */
107 struct xe_hwmon_fan_info {
108 	/** @reg_val_prev: previous fan reg val */
109 	u32 reg_val_prev;
110 	/** @time_prev: previous timestamp */
111 	u64 time_prev;
112 };
113 
114 /**
115  * struct xe_hwmon - xe hwmon data structure
116  */
117 struct xe_hwmon {
118 	/** @hwmon_dev: hwmon device for xe */
119 	struct device *hwmon_dev;
120 	/** @xe: Xe device */
121 	struct xe_device *xe;
122 	/** @hwmon_lock: lock for rw attributes*/
123 	struct mutex hwmon_lock;
124 	/** @scl_shift_power: pkg power unit */
125 	int scl_shift_power;
126 	/** @scl_shift_energy: pkg energy unit */
127 	int scl_shift_energy;
128 	/** @scl_shift_time: pkg time unit */
129 	int scl_shift_time;
130 	/** @ei: Energy info for energyN_input */
131 	struct xe_hwmon_energy_info ei[CHANNEL_MAX];
132 	/** @fi: Fan info for fanN_input */
133 	struct xe_hwmon_fan_info fi[FAN_MAX];
134 	/** @boot_power_limit_read: is boot power limits read */
135 	bool boot_power_limit_read;
136 	/** @pl1_on_boot: power limit PL1 on boot */
137 	u32 pl1_on_boot[CHANNEL_MAX];
138 	/** @pl2_on_boot: power limit PL2 on boot */
139 	u32 pl2_on_boot[CHANNEL_MAX];
140 
141 };
142 
143 static int xe_hwmon_pcode_read_power_limit(const struct xe_hwmon *hwmon, u32 attr, int channel,
144 					   u32 *uval)
145 {
146 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
147 	u32 val0 = 0, val1 = 0;
148 	int ret = 0;
149 
150 	ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
151 						  (channel == CHANNEL_CARD) ?
152 						  READ_PSYSGPU_POWER_LIMIT :
153 						  READ_PACKAGE_POWER_LIMIT,
154 						  hwmon->boot_power_limit_read ?
155 						  READ_PL_FROM_PCODE : READ_PL_FROM_FW),
156 						  &val0, &val1);
157 
158 	if (ret) {
159 		drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
160 			channel, val0, val1, ret);
161 		*uval = 0;
162 		return ret;
163 	}
164 
165 	/* return the value only if limit is enabled */
166 	if (attr == PL1_HWMON_ATTR)
167 		*uval = (val0 & PWR_LIM_EN) ? val0 : 0;
168 	else if (attr == PL2_HWMON_ATTR)
169 		*uval = (val1 & PWR_LIM_EN) ? val1 : 0;
170 	else if (attr == hwmon_power_label)
171 		*uval = (val0 & PWR_LIM_EN) ? 1 : (val1 & PWR_LIM_EN) ? 1 : 0;
172 	else
173 		*uval = 0;
174 
175 	return ret;
176 }
177 
178 static int xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon *hwmon, u32 attr, u8 channel,
179 					  u32 clr, u32 set)
180 {
181 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
182 	u32 val0 = 0, val1 = 0;
183 	int ret = 0;
184 
185 	ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
186 						  (channel == CHANNEL_CARD) ?
187 						  READ_PSYSGPU_POWER_LIMIT :
188 						  READ_PACKAGE_POWER_LIMIT,
189 						  hwmon->boot_power_limit_read ?
190 						  READ_PL_FROM_PCODE : READ_PL_FROM_FW),
191 						  &val0, &val1);
192 
193 	if (ret)
194 		drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
195 			channel, val0, val1, ret);
196 
197 	if (attr == PL1_HWMON_ATTR)
198 		val0 = (val0 & ~clr) | set;
199 	else if (attr == PL2_HWMON_ATTR)
200 		val1 = (val1 & ~clr) | set;
201 	else
202 		return -EIO;
203 
204 	ret = xe_pcode_write64_timeout(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
205 							     (channel == CHANNEL_CARD) ?
206 							     WRITE_PSYSGPU_POWER_LIMIT :
207 							     WRITE_PACKAGE_POWER_LIMIT, 0),
208 							     val0, val1, PL_WRITE_MBX_TIMEOUT_MS);
209 	if (ret)
210 		drm_dbg(&hwmon->xe->drm, "write failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
211 			channel, val0, val1, ret);
212 	return ret;
213 }
214 
215 static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
216 				      int channel)
217 {
218 	struct xe_device *xe = hwmon->xe;
219 
220 	switch (hwmon_reg) {
221 	case REG_TEMP:
222 		if (xe->info.platform == XE_BATTLEMAGE) {
223 			if (channel == CHANNEL_PKG)
224 				return BMG_PACKAGE_TEMPERATURE;
225 			else if (channel == CHANNEL_VRAM)
226 				return BMG_VRAM_TEMPERATURE;
227 		} else if (xe->info.platform == XE_DG2) {
228 			if (channel == CHANNEL_PKG)
229 				return PCU_CR_PACKAGE_TEMPERATURE;
230 			else if (channel == CHANNEL_VRAM)
231 				return BMG_VRAM_TEMPERATURE;
232 		}
233 		break;
234 	case REG_PKG_RAPL_LIMIT:
235 		if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
236 			return PVC_GT0_PACKAGE_RAPL_LIMIT;
237 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
238 			return PCU_CR_PACKAGE_RAPL_LIMIT;
239 		break;
240 	case REG_PKG_POWER_SKU:
241 		if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
242 			return PVC_GT0_PACKAGE_POWER_SKU;
243 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
244 			return PCU_CR_PACKAGE_POWER_SKU;
245 		break;
246 	case REG_PKG_POWER_SKU_UNIT:
247 		if (xe->info.platform == XE_PVC)
248 			return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
249 		else if (xe->info.platform == XE_DG2)
250 			return PCU_CR_PACKAGE_POWER_SKU_UNIT;
251 		break;
252 	case REG_GT_PERF_STATUS:
253 		if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
254 			return GT_PERF_STATUS;
255 		break;
256 	case REG_PKG_ENERGY_STATUS:
257 		if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
258 			return PVC_GT0_PLATFORM_ENERGY_STATUS;
259 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
260 			return PCU_CR_PACKAGE_ENERGY_STATUS;
261 		}
262 		break;
263 	case REG_FAN_SPEED:
264 		if (channel == FAN_1)
265 			return BMG_FAN_1_SPEED;
266 		else if (channel == FAN_2)
267 			return BMG_FAN_2_SPEED;
268 		else if (channel == FAN_3)
269 			return BMG_FAN_3_SPEED;
270 		break;
271 	default:
272 		drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
273 		break;
274 	}
275 
276 	return XE_REG(0);
277 }
278 
279 #define PL_DISABLE 0
280 
281 /*
282  * HW allows arbitrary PL1 limits to be set but silently clamps these values to
283  * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
284  * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
285  * clamped values when read.
286  */
287 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *value)
288 {
289 	u32 reg_val = 0;
290 	struct xe_device *xe = hwmon->xe;
291 	struct xe_reg rapl_limit, pkg_power_sku;
292 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
293 
294 	mutex_lock(&hwmon->hwmon_lock);
295 
296 	if (hwmon->xe->info.has_mbx_power_limits) {
297 		xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &reg_val);
298 	} else {
299 		rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
300 		pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
301 		reg_val = xe_mmio_read32(mmio, rapl_limit);
302 	}
303 
304 	/* Check if PL limits are disabled. */
305 	if (!(reg_val & PWR_LIM_EN)) {
306 		*value = PL_DISABLE;
307 		drm_info(&hwmon->xe->drm, "%s disabled for channel %d, val 0x%08x\n",
308 			 PWR_ATTR_TO_STR(attr), channel, reg_val);
309 		goto unlock;
310 	}
311 
312 	reg_val = REG_FIELD_GET(PWR_LIM_VAL, reg_val);
313 	*value = mul_u32_u32(reg_val, SF_POWER) >> hwmon->scl_shift_power;
314 
315 	/* For platforms with mailbox power limit support clamping would be done by pcode. */
316 	if (!hwmon->xe->info.has_mbx_power_limits) {
317 		u64 pkg_pwr, min, max;
318 
319 		pkg_pwr = xe_mmio_read64_2x32(mmio, pkg_power_sku);
320 		min = REG_FIELD_GET(PKG_MIN_PWR, pkg_pwr);
321 		max = REG_FIELD_GET(PKG_MAX_PWR, pkg_pwr);
322 		min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
323 		max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
324 		if (min && max)
325 			*value = clamp_t(u64, *value, min, max);
326 	}
327 unlock:
328 	mutex_unlock(&hwmon->hwmon_lock);
329 }
330 
331 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, u32 attr, int channel, long value)
332 {
333 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
334 	int ret = 0;
335 	u32 reg_val, max;
336 	struct xe_reg rapl_limit;
337 	u64 max_supp_power_limit = 0;
338 
339 	mutex_lock(&hwmon->hwmon_lock);
340 
341 	rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
342 
343 	/* Disable Power Limit and verify, as limit cannot be disabled on all platforms. */
344 	if (value == PL_DISABLE) {
345 		if (hwmon->xe->info.has_mbx_power_limits) {
346 			drm_dbg(&hwmon->xe->drm, "disabling %s on channel %d\n",
347 				PWR_ATTR_TO_STR(attr), channel);
348 			xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM_EN, 0);
349 			xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &reg_val);
350 		} else {
351 			reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM_EN, 0);
352 			reg_val = xe_mmio_read32(mmio, rapl_limit);
353 		}
354 
355 		if (reg_val & PWR_LIM_EN) {
356 			drm_warn(&hwmon->xe->drm, "Power limit disable is not supported!\n");
357 			ret = -EOPNOTSUPP;
358 		}
359 		goto unlock;
360 	}
361 
362 	/*
363 	 * If the sysfs value exceeds the maximum pcode supported power limit value, clamp it to
364 	 * the supported maximum (U12.3 format).
365 	 * This is to avoid truncation during reg_val calculation below and ensure the valid
366 	 * power limit is sent for pcode which would clamp it to card-supported value.
367 	 */
368 	max_supp_power_limit = ((PWR_LIM_VAL) >> hwmon->scl_shift_power) * SF_POWER;
369 	if (value > max_supp_power_limit) {
370 		value = max_supp_power_limit;
371 		drm_info(&hwmon->xe->drm,
372 			 "Power limit clamped as selected %s exceeds channel %d limit\n",
373 			 PWR_ATTR_TO_STR(attr), channel);
374 	}
375 
376 	/* Computation in 64-bits to avoid overflow. Round to nearest. */
377 	reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
378 
379 	/*
380 	 * Clamp power limit to GPU firmware default as maximum, as an additional protection to
381 	 * pcode clamp.
382 	 */
383 	if (hwmon->xe->info.has_mbx_power_limits) {
384 		max = (attr == PL1_HWMON_ATTR) ?
385 		       hwmon->pl1_on_boot[channel] : hwmon->pl2_on_boot[channel];
386 		max = REG_FIELD_PREP(PWR_LIM_VAL, max);
387 		if (reg_val > max) {
388 			reg_val = max;
389 			drm_dbg(&hwmon->xe->drm,
390 				"Clamping power limit to GPU firmware default 0x%x\n",
391 				reg_val);
392 		}
393 	}
394 
395 	reg_val = PWR_LIM_EN | REG_FIELD_PREP(PWR_LIM_VAL, reg_val);
396 
397 	if (hwmon->xe->info.has_mbx_power_limits)
398 		ret = xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM, reg_val);
399 	else
400 		reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM, reg_val);
401 unlock:
402 	mutex_unlock(&hwmon->hwmon_lock);
403 	return ret;
404 }
405 
406 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, u32 attr, int channel,
407 					  long *value)
408 {
409 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
410 	u32 reg_val;
411 
412 	if (hwmon->xe->info.has_mbx_power_limits) {
413 		/* PL1 is rated max if supported. */
414 		xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, channel, &reg_val);
415 	} else {
416 		/*
417 		 * This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
418 		 * for this register can be skipped.
419 		 * See xe_hwmon_power_is_visible.
420 		 */
421 		struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
422 
423 		reg_val = xe_mmio_read32(mmio, reg);
424 	}
425 
426 	reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
427 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
428 }
429 
430 /*
431  * xe_hwmon_energy_get - Obtain energy value
432  *
433  * The underlying energy hardware register is 32-bits and is subject to
434  * overflow. How long before overflow? For example, with an example
435  * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
436  * a power draw of 1000 watts, the 32-bit counter will overflow in
437  * approximately 4.36 minutes.
438  *
439  * Examples:
440  *    1 watt:  (2^32 >> 14) /    1 W / (60 * 60 * 24) secs/day -> 3 days
441  * 1000 watts: (2^32 >> 14) / 1000 W / 60             secs/min -> 4.36 minutes
442  *
443  * The function significantly increases overflow duration (from 4.36
444  * minutes) by accumulating the energy register into a 'long' as allowed by
445  * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
446  * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
447  * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
448  * energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
449  */
450 static void
451 xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
452 {
453 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
454 	struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
455 	u32 reg_val;
456 	int ret = 0;
457 
458 	/* Energy is supported only for card and pkg */
459 	if (channel > CHANNEL_PKG) {
460 		*energy = 0;
461 		return;
462 	}
463 
464 	if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
465 		u64 pmt_val;
466 
467 		ret = xe_pmt_telem_read(to_pci_dev(hwmon->xe->drm.dev),
468 					xe_mmio_read32(mmio, PUNIT_TELEMETRY_GUID),
469 					&pmt_val, BMG_ENERGY_STATUS_PMT_OFFSET,	sizeof(pmt_val));
470 		if (ret != sizeof(pmt_val)) {
471 			drm_warn(&hwmon->xe->drm, "energy read from pmt failed, ret %d\n", ret);
472 			*energy = 0;
473 			return;
474 		}
475 
476 		if (channel == CHANNEL_PKG)
477 			reg_val = REG_FIELD_GET64(ENERGY_PKG, pmt_val);
478 		else
479 			reg_val = REG_FIELD_GET64(ENERGY_CARD, pmt_val);
480 	} else {
481 		reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
482 								channel));
483 	}
484 
485 	ei->accum_energy += reg_val - ei->reg_val_prev;
486 	ei->reg_val_prev = reg_val;
487 
488 	*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
489 				  hwmon->scl_shift_energy);
490 }
491 
492 static ssize_t
493 xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
494 				 char *buf)
495 {
496 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
497 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
498 	u32 reg_val, x, y, x_w = 2; /* 2 bits */
499 	u64 tau4, out;
500 	int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
501 	u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
502 
503 	int ret = 0;
504 
505 	xe_pm_runtime_get(hwmon->xe);
506 
507 	mutex_lock(&hwmon->hwmon_lock);
508 
509 	if (hwmon->xe->info.has_mbx_power_limits) {
510 		ret = xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, &reg_val);
511 		if (ret) {
512 			drm_err(&hwmon->xe->drm,
513 				"power interval read fail, ch %d, attr %d, val 0x%08x, ret %d\n",
514 				channel, power_attr, reg_val, ret);
515 			reg_val = 0;
516 		}
517 	} else {
518 		reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT,
519 								channel));
520 	}
521 
522 	mutex_unlock(&hwmon->hwmon_lock);
523 
524 	xe_pm_runtime_put(hwmon->xe);
525 
526 	x = REG_FIELD_GET(PWR_LIM_TIME_X, reg_val);
527 	y = REG_FIELD_GET(PWR_LIM_TIME_Y, reg_val);
528 
529 	/*
530 	 * tau = (1 + (x / 4)) * power(2,y), x = bits(23:22), y = bits(21:17)
531 	 *     = (4 | x) << (y - 2)
532 	 *
533 	 * Here (y - 2) ensures a 1.x fixed point representation of 1.x
534 	 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
535 	 *
536 	 * As y can be < 2, we compute tau4 = (4 | x) << y
537 	 * and then add 2 when doing the final right shift to account for units
538 	 */
539 	tau4 = (u64)((1 << x_w) | x) << y;
540 
541 	/* val in hwmon interface units (millisec) */
542 	out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
543 
544 	return sysfs_emit(buf, "%llu\n", out);
545 }
546 
547 static ssize_t
548 xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
549 				  const char *buf, size_t count)
550 {
551 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
552 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
553 	u32 x, y, rxy, x_w = 2; /* 2 bits */
554 	u64 tau4, r, max_win;
555 	unsigned long val;
556 	int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
557 	u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
558 	int ret;
559 
560 	ret = kstrtoul(buf, 0, &val);
561 	if (ret)
562 		return ret;
563 
564 	/*
565 	 * Max HW supported tau in '(1 + (x / 4)) * power(2,y)' format, x = 0, y = 0x12.
566 	 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
567 	 *
568 	 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
569 	 * However, it is observed that existing discrete GPUs does not provide correct
570 	 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
571 	 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
572 	 */
573 #define PKG_MAX_WIN_DEFAULT 0x12ull
574 
575 	/*
576 	 * val must be < max in hwmon interface units. The steps below are
577 	 * explained in xe_hwmon_power_max_interval_show()
578 	 */
579 	r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
580 	x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
581 	y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
582 	tau4 = (u64)((1 << x_w) | x) << y;
583 	max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
584 
585 	if (val > max_win)
586 		return -EINVAL;
587 
588 	/* val in hw units */
589 	val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME) + 1;
590 
591 	/*
592 	 * Convert val to 1.x * power(2,y)
593 	 * y = ilog2(val)
594 	 * x = (val - (1 << y)) >> (y - 2)
595 	 */
596 	if (!val) {
597 		y = 0;
598 		x = 0;
599 	} else {
600 		y = ilog2(val);
601 		x = (val - (1ul << y)) << x_w >> y;
602 	}
603 
604 	rxy = REG_FIELD_PREP(PWR_LIM_TIME_X, x) |
605 			       REG_FIELD_PREP(PWR_LIM_TIME_Y, y);
606 
607 	xe_pm_runtime_get(hwmon->xe);
608 
609 	mutex_lock(&hwmon->hwmon_lock);
610 
611 	if (hwmon->xe->info.has_mbx_power_limits)
612 		xe_hwmon_pcode_rmw_power_limit(hwmon, power_attr, channel, PWR_LIM_TIME, rxy);
613 	else
614 		r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel),
615 				  PWR_LIM_TIME, rxy);
616 
617 	mutex_unlock(&hwmon->hwmon_lock);
618 
619 	xe_pm_runtime_put(hwmon->xe);
620 
621 	return count;
622 }
623 
624 /* PSYS PL1 */
625 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
626 			  xe_hwmon_power_max_interval_show,
627 			  xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL1);
628 /* PKG PL1 */
629 static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
630 			  xe_hwmon_power_max_interval_show,
631 			  xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL1);
632 /* PSYS PL2 */
633 static SENSOR_DEVICE_ATTR(power1_cap_interval, 0664,
634 			  xe_hwmon_power_max_interval_show,
635 			  xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL2);
636 /* PKG PL2 */
637 static SENSOR_DEVICE_ATTR(power2_cap_interval, 0664,
638 			  xe_hwmon_power_max_interval_show,
639 			  xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL2);
640 
641 static struct attribute *hwmon_attributes[] = {
642 	&sensor_dev_attr_power1_max_interval.dev_attr.attr,
643 	&sensor_dev_attr_power2_max_interval.dev_attr.attr,
644 	&sensor_dev_attr_power1_cap_interval.dev_attr.attr,
645 	&sensor_dev_attr_power2_cap_interval.dev_attr.attr,
646 	NULL
647 };
648 
649 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
650 					   struct attribute *attr, int index)
651 {
652 	struct device *dev = kobj_to_dev(kobj);
653 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
654 	int ret = 0;
655 	int channel = (index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
656 	u32 power_attr = (index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
657 	u32 uval = 0;
658 	struct xe_reg rapl_limit;
659 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
660 
661 	if (hwmon->xe->info.has_mbx_power_limits) {
662 		xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, &uval);
663 	} else if (power_attr != PL2_HWMON_ATTR) {
664 		rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
665 		if (xe_reg_is_valid(rapl_limit))
666 			uval = xe_mmio_read32(mmio, rapl_limit);
667 	}
668 	ret = (uval & PWR_LIM_EN) ? attr->mode : 0;
669 
670 	return ret;
671 }
672 
673 static const struct attribute_group hwmon_attrgroup = {
674 	.attrs = hwmon_attributes,
675 	.is_visible = xe_hwmon_attributes_visible,
676 };
677 
678 static const struct attribute_group *hwmon_groups[] = {
679 	&hwmon_attrgroup,
680 	NULL
681 };
682 
683 static const struct hwmon_channel_info * const hwmon_info[] = {
684 	HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL,
685 			   HWMON_T_INPUT | HWMON_T_LABEL),
686 	HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CRIT |
687 			   HWMON_P_CAP,
688 			   HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CAP),
689 	HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
690 	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
691 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
692 	HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT, HWMON_F_INPUT, HWMON_F_INPUT),
693 	NULL
694 };
695 
696 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
697 static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval)
698 {
699 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
700 
701 	/* Avoid Illegal Subcommand error */
702 	if (hwmon->xe->info.platform == XE_DG2)
703 		return -ENXIO;
704 
705 	return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
706 			     POWER_SETUP_SUBCOMMAND_READ_I1, 0),
707 			     uval, NULL);
708 }
709 
710 static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval)
711 {
712 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
713 
714 	return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
715 			      POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
716 			      (uval & POWER_SETUP_I1_DATA_MASK));
717 }
718 
719 static int xe_hwmon_pcode_read_fan_control(const struct xe_hwmon *hwmon, u32 subcmd, u32 *uval)
720 {
721 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
722 
723 	/* Platforms that don't return correct value */
724 	if (hwmon->xe->info.platform == XE_DG2 && subcmd == FSC_READ_NUM_FANS) {
725 		*uval = 2;
726 		return 0;
727 	}
728 
729 	return xe_pcode_read(root_tile, PCODE_MBOX(FAN_SPEED_CONTROL, subcmd, 0), uval, NULL);
730 }
731 
732 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
733 					 long *value, u32 scale_factor)
734 {
735 	int ret;
736 	u32 uval = 0;
737 
738 	mutex_lock(&hwmon->hwmon_lock);
739 
740 	ret = xe_hwmon_pcode_read_i1(hwmon, &uval);
741 	if (ret)
742 		goto unlock;
743 
744 	*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
745 				 scale_factor, POWER_SETUP_I1_SHIFT);
746 unlock:
747 	mutex_unlock(&hwmon->hwmon_lock);
748 	return ret;
749 }
750 
751 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
752 					  long value, u32 scale_factor)
753 {
754 	int ret;
755 	u32 uval;
756 	u64 max_crit_power_curr = 0;
757 
758 	mutex_lock(&hwmon->hwmon_lock);
759 
760 	/*
761 	 * If the sysfs value exceeds the pcode mailbox cmd POWER_SETUP_SUBCOMMAND_WRITE_I1
762 	 * max supported value, clamp it to the command's max (U10.6 format).
763 	 * This is to avoid truncation during uval calculation below and ensure the valid power
764 	 * limit is sent for pcode which would clamp it to card-supported value.
765 	 */
766 	max_crit_power_curr = (POWER_SETUP_I1_DATA_MASK >> POWER_SETUP_I1_SHIFT) * scale_factor;
767 	if (value > max_crit_power_curr) {
768 		value = max_crit_power_curr;
769 		drm_info(&hwmon->xe->drm,
770 			 "Power limit clamped as selected exceeds channel %d limit\n",
771 			 channel);
772 	}
773 	uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
774 	ret = xe_hwmon_pcode_write_i1(hwmon, uval);
775 
776 	mutex_unlock(&hwmon->hwmon_lock);
777 	return ret;
778 }
779 
780 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
781 {
782 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
783 	u64 reg_val;
784 
785 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
786 	/* HW register value in units of 2.5 millivolt */
787 	*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
788 }
789 
790 static umode_t
791 xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
792 {
793 	switch (attr) {
794 	case hwmon_temp_input:
795 	case hwmon_temp_label:
796 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0;
797 	default:
798 		return 0;
799 	}
800 }
801 
802 static int
803 xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
804 {
805 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
806 	u64 reg_val;
807 
808 	switch (attr) {
809 	case hwmon_temp_input:
810 		reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel));
811 
812 		/* HW register value is in degrees Celsius, convert to millidegrees. */
813 		*val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
814 		return 0;
815 	default:
816 		return -EOPNOTSUPP;
817 	}
818 }
819 
820 static umode_t
821 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
822 {
823 	u32 uval = 0;
824 	struct xe_reg reg;
825 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
826 
827 	switch (attr) {
828 	case hwmon_power_max:
829 	case hwmon_power_cap:
830 		if (hwmon->xe->info.has_mbx_power_limits) {
831 			xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
832 		} else if (attr != PL2_HWMON_ATTR) {
833 			reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
834 			if (xe_reg_is_valid(reg))
835 				uval = xe_mmio_read32(mmio, reg);
836 		}
837 		if (uval & PWR_LIM_EN) {
838 			drm_info(&hwmon->xe->drm, "%s is supported on channel %d\n",
839 				 PWR_ATTR_TO_STR(attr), channel);
840 			return 0664;
841 		}
842 		drm_dbg(&hwmon->xe->drm, "%s is unsupported on channel %d\n",
843 			PWR_ATTR_TO_STR(attr), channel);
844 		return 0;
845 	case hwmon_power_rated_max:
846 		if (hwmon->xe->info.has_mbx_power_limits) {
847 			return 0;
848 		} else {
849 			reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
850 			if (xe_reg_is_valid(reg))
851 				uval = xe_mmio_read32(mmio, reg);
852 			return uval ? 0444 : 0;
853 		}
854 	case hwmon_power_crit:
855 		if (channel == CHANNEL_CARD) {
856 			xe_hwmon_pcode_read_i1(hwmon, &uval);
857 			return (uval & POWER_SETUP_I1_WATTS) ? 0644 : 0;
858 		}
859 		break;
860 	case hwmon_power_label:
861 		if (hwmon->xe->info.has_mbx_power_limits) {
862 			xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
863 		} else {
864 			reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
865 			if (xe_reg_is_valid(reg))
866 				uval = xe_mmio_read32(mmio, reg);
867 
868 			if (!uval) {
869 				reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
870 				if (xe_reg_is_valid(reg))
871 					uval = xe_mmio_read32(mmio, reg);
872 			}
873 		}
874 		if ((!(uval & PWR_LIM_EN)) && channel == CHANNEL_CARD) {
875 			xe_hwmon_pcode_read_i1(hwmon, &uval);
876 			return (uval & POWER_SETUP_I1_WATTS) ? 0444 : 0;
877 		}
878 		return (uval) ? 0444 : 0;
879 	default:
880 		return 0;
881 	}
882 	return 0;
883 }
884 
885 static int
886 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
887 {
888 	switch (attr) {
889 	case hwmon_power_max:
890 	case hwmon_power_cap:
891 		xe_hwmon_power_max_read(hwmon, attr, channel, val);
892 		return 0;
893 	case hwmon_power_rated_max:
894 		xe_hwmon_power_rated_max_read(hwmon, attr, channel, val);
895 		return 0;
896 	case hwmon_power_crit:
897 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
898 	default:
899 		return -EOPNOTSUPP;
900 	}
901 }
902 
903 static int
904 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
905 {
906 	switch (attr) {
907 	case hwmon_power_cap:
908 	case hwmon_power_max:
909 		return xe_hwmon_power_max_write(hwmon, attr, channel, val);
910 	case hwmon_power_crit:
911 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
912 	default:
913 		return -EOPNOTSUPP;
914 	}
915 }
916 
917 static umode_t
918 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
919 {
920 	u32 uval = 0;
921 
922 	/* hwmon sysfs attribute of current available only for package */
923 	if (channel != CHANNEL_PKG)
924 		return 0;
925 
926 	switch (attr) {
927 	case hwmon_curr_crit:
928 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
929 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
930 	case hwmon_curr_label:
931 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
932 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
933 		break;
934 	default:
935 		return 0;
936 	}
937 	return 0;
938 }
939 
940 static int
941 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
942 {
943 	switch (attr) {
944 	case hwmon_curr_crit:
945 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
946 	default:
947 		return -EOPNOTSUPP;
948 	}
949 }
950 
951 static int
952 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
953 {
954 	switch (attr) {
955 	case hwmon_curr_crit:
956 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
957 	default:
958 		return -EOPNOTSUPP;
959 	}
960 }
961 
962 static umode_t
963 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
964 {
965 	switch (attr) {
966 	case hwmon_in_input:
967 	case hwmon_in_label:
968 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
969 				       channel)) ? 0444 : 0;
970 	default:
971 		return 0;
972 	}
973 }
974 
975 static int
976 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
977 {
978 	switch (attr) {
979 	case hwmon_in_input:
980 		xe_hwmon_get_voltage(hwmon, channel, val);
981 		return 0;
982 	default:
983 		return -EOPNOTSUPP;
984 	}
985 }
986 
987 static umode_t
988 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
989 {
990 	long energy = 0;
991 
992 	switch (attr) {
993 	case hwmon_energy_input:
994 	case hwmon_energy_label:
995 		if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
996 			xe_hwmon_energy_get(hwmon, channel, &energy);
997 			return energy ? 0444 : 0;
998 		} else {
999 			return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
1000 					       channel)) ? 0444 : 0;
1001 		}
1002 	default:
1003 		return 0;
1004 	}
1005 }
1006 
1007 static int
1008 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
1009 {
1010 	switch (attr) {
1011 	case hwmon_energy_input:
1012 		xe_hwmon_energy_get(hwmon, channel, val);
1013 		return 0;
1014 	default:
1015 		return -EOPNOTSUPP;
1016 	}
1017 }
1018 
1019 static umode_t
1020 xe_hwmon_fan_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
1021 {
1022 	u32 uval = 0;
1023 
1024 	if (!hwmon->xe->info.has_fan_control)
1025 		return 0;
1026 
1027 	switch (attr) {
1028 	case hwmon_fan_input:
1029 		if (xe_hwmon_pcode_read_fan_control(hwmon, FSC_READ_NUM_FANS, &uval))
1030 			return 0;
1031 
1032 		return channel < uval ? 0444 : 0;
1033 	default:
1034 		return 0;
1035 	}
1036 }
1037 
1038 static int
1039 xe_hwmon_fan_input_read(struct xe_hwmon *hwmon, int channel, long *val)
1040 {
1041 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
1042 	struct xe_hwmon_fan_info *fi = &hwmon->fi[channel];
1043 	u64 rotations, time_now, time;
1044 	u32 reg_val;
1045 	int ret = 0;
1046 
1047 	mutex_lock(&hwmon->hwmon_lock);
1048 
1049 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_FAN_SPEED, channel));
1050 	time_now = get_jiffies_64();
1051 
1052 	/*
1053 	 * HW register value is accumulated count of pulses from PWM fan with the scale
1054 	 * of 2 pulses per rotation.
1055 	 */
1056 	rotations = (reg_val - fi->reg_val_prev) / 2;
1057 
1058 	time = jiffies_delta_to_msecs(time_now - fi->time_prev);
1059 	if (unlikely(!time)) {
1060 		ret = -EAGAIN;
1061 		goto unlock;
1062 	}
1063 
1064 	/*
1065 	 * Calculate fan speed in RPM by time averaging two subsequent readings in minutes.
1066 	 * RPM = number of rotations * msecs per minute / time in msecs
1067 	 */
1068 	*val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
1069 
1070 	fi->reg_val_prev = reg_val;
1071 	fi->time_prev = time_now;
1072 unlock:
1073 	mutex_unlock(&hwmon->hwmon_lock);
1074 	return ret;
1075 }
1076 
1077 static int
1078 xe_hwmon_fan_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
1079 {
1080 	switch (attr) {
1081 	case hwmon_fan_input:
1082 		return xe_hwmon_fan_input_read(hwmon, channel, val);
1083 	default:
1084 		return -EOPNOTSUPP;
1085 	}
1086 }
1087 
1088 static umode_t
1089 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1090 		    u32 attr, int channel)
1091 {
1092 	struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
1093 	int ret;
1094 
1095 	switch (type) {
1096 	case hwmon_temp:
1097 		ret = xe_hwmon_temp_is_visible(hwmon, attr, channel);
1098 		break;
1099 	case hwmon_power:
1100 		ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
1101 		break;
1102 	case hwmon_curr:
1103 		ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
1104 		break;
1105 	case hwmon_in:
1106 		ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
1107 		break;
1108 	case hwmon_energy:
1109 		ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
1110 		break;
1111 	case hwmon_fan:
1112 		ret = xe_hwmon_fan_is_visible(hwmon, attr, channel);
1113 		break;
1114 	default:
1115 		ret = 0;
1116 		break;
1117 	}
1118 
1119 	return ret;
1120 }
1121 
1122 static int
1123 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
1124 	      int channel, long *val)
1125 {
1126 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
1127 	int ret;
1128 
1129 	xe_pm_runtime_get(hwmon->xe);
1130 
1131 	switch (type) {
1132 	case hwmon_temp:
1133 		ret = xe_hwmon_temp_read(hwmon, attr, channel, val);
1134 		break;
1135 	case hwmon_power:
1136 		ret = xe_hwmon_power_read(hwmon, attr, channel, val);
1137 		break;
1138 	case hwmon_curr:
1139 		ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
1140 		break;
1141 	case hwmon_in:
1142 		ret = xe_hwmon_in_read(hwmon, attr, channel, val);
1143 		break;
1144 	case hwmon_energy:
1145 		ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
1146 		break;
1147 	case hwmon_fan:
1148 		ret = xe_hwmon_fan_read(hwmon, attr, channel, val);
1149 		break;
1150 	default:
1151 		ret = -EOPNOTSUPP;
1152 		break;
1153 	}
1154 
1155 	xe_pm_runtime_put(hwmon->xe);
1156 
1157 	return ret;
1158 }
1159 
1160 static int
1161 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
1162 	       int channel, long val)
1163 {
1164 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
1165 	int ret;
1166 
1167 	xe_pm_runtime_get(hwmon->xe);
1168 
1169 	switch (type) {
1170 	case hwmon_power:
1171 		ret = xe_hwmon_power_write(hwmon, attr, channel, val);
1172 		break;
1173 	case hwmon_curr:
1174 		ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
1175 		break;
1176 	default:
1177 		ret = -EOPNOTSUPP;
1178 		break;
1179 	}
1180 
1181 	xe_pm_runtime_put(hwmon->xe);
1182 
1183 	return ret;
1184 }
1185 
1186 static int xe_hwmon_read_label(struct device *dev,
1187 			       enum hwmon_sensor_types type,
1188 			       u32 attr, int channel, const char **str)
1189 {
1190 	switch (type) {
1191 	case hwmon_temp:
1192 		if (channel == CHANNEL_PKG)
1193 			*str = "pkg";
1194 		else if (channel == CHANNEL_VRAM)
1195 			*str = "vram";
1196 		return 0;
1197 	case hwmon_power:
1198 	case hwmon_energy:
1199 	case hwmon_curr:
1200 	case hwmon_in:
1201 		if (channel == CHANNEL_CARD)
1202 			*str = "card";
1203 		else if (channel == CHANNEL_PKG)
1204 			*str = "pkg";
1205 		return 0;
1206 	default:
1207 		return -EOPNOTSUPP;
1208 	}
1209 }
1210 
1211 static const struct hwmon_ops hwmon_ops = {
1212 	.is_visible = xe_hwmon_is_visible,
1213 	.read = xe_hwmon_read,
1214 	.write = xe_hwmon_write,
1215 	.read_string = xe_hwmon_read_label,
1216 };
1217 
1218 static const struct hwmon_chip_info hwmon_chip_info = {
1219 	.ops = &hwmon_ops,
1220 	.info = hwmon_info,
1221 };
1222 
1223 static void
1224 xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon)
1225 {
1226 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
1227 	long energy, fan_speed;
1228 	u64 val_sku_unit = 0;
1229 	int channel;
1230 	struct xe_reg pkg_power_sku_unit;
1231 
1232 	if (hwmon->xe->info.has_mbx_power_limits) {
1233 		/* Check if GPU firmware support mailbox power limits commands. */
1234 		if (xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_CARD,
1235 						    &hwmon->pl1_on_boot[CHANNEL_CARD]) |
1236 		    xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_PKG,
1237 						    &hwmon->pl1_on_boot[CHANNEL_PKG]) |
1238 		    xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_CARD,
1239 						    &hwmon->pl2_on_boot[CHANNEL_CARD]) |
1240 		    xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_PKG,
1241 						    &hwmon->pl2_on_boot[CHANNEL_PKG])) {
1242 			drm_warn(&hwmon->xe->drm,
1243 				 "Failed to read power limits, check GPU firmware !\n");
1244 		} else {
1245 			drm_info(&hwmon->xe->drm, "Using mailbox commands for power limits\n");
1246 			/* Write default limits to read from pcode from now on. */
1247 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
1248 						       CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
1249 						       hwmon->pl1_on_boot[CHANNEL_CARD]);
1250 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
1251 						       CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
1252 						       hwmon->pl1_on_boot[CHANNEL_PKG]);
1253 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
1254 						       CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
1255 						       hwmon->pl2_on_boot[CHANNEL_CARD]);
1256 			xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
1257 						       CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
1258 						       hwmon->pl2_on_boot[CHANNEL_PKG]);
1259 			hwmon->scl_shift_power = PWR_UNIT;
1260 			hwmon->scl_shift_energy = ENERGY_UNIT;
1261 			hwmon->scl_shift_time = TIME_UNIT;
1262 			hwmon->boot_power_limit_read = true;
1263 		}
1264 	} else {
1265 		drm_info(&hwmon->xe->drm, "Using register for power limits\n");
1266 		/*
1267 		 * The contents of register PKG_POWER_SKU_UNIT do not change,
1268 		 * so read it once and store the shift values.
1269 		 */
1270 		pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
1271 		if (xe_reg_is_valid(pkg_power_sku_unit)) {
1272 			val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit);
1273 			hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
1274 			hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
1275 			hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
1276 		}
1277 	}
1278 	/*
1279 	 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
1280 	 * first value of the energy register read
1281 	 */
1282 	for (channel = 0; channel < CHANNEL_MAX; channel++)
1283 		if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
1284 			xe_hwmon_energy_get(hwmon, channel, &energy);
1285 
1286 	/* Initialize 'struct xe_hwmon_fan_info' with initial fan register reading. */
1287 	for (channel = 0; channel < FAN_MAX; channel++)
1288 		if (xe_hwmon_is_visible(hwmon, hwmon_fan, hwmon_fan_input, channel))
1289 			xe_hwmon_fan_input_read(hwmon, channel, &fan_speed);
1290 }
1291 
1292 int xe_hwmon_register(struct xe_device *xe)
1293 {
1294 	struct device *dev = xe->drm.dev;
1295 	struct xe_hwmon *hwmon;
1296 	int ret;
1297 
1298 	/* hwmon is available only for dGfx */
1299 	if (!IS_DGFX(xe))
1300 		return 0;
1301 
1302 	/* hwmon is not available on VFs */
1303 	if (IS_SRIOV_VF(xe))
1304 		return 0;
1305 
1306 	hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
1307 	if (!hwmon)
1308 		return -ENOMEM;
1309 
1310 	ret = devm_mutex_init(dev, &hwmon->hwmon_lock);
1311 	if (ret)
1312 		return ret;
1313 
1314 	/* There's only one instance of hwmon per device */
1315 	hwmon->xe = xe;
1316 	xe->hwmon = hwmon;
1317 
1318 	xe_hwmon_get_preregistration_info(hwmon);
1319 
1320 	drm_dbg(&xe->drm, "Register xe hwmon interface\n");
1321 
1322 	/*  hwmon_dev points to device hwmon<i> */
1323 	hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
1324 								&hwmon_chip_info,
1325 								hwmon_groups);
1326 	if (IS_ERR(hwmon->hwmon_dev)) {
1327 		drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
1328 		xe->hwmon = NULL;
1329 		return PTR_ERR(hwmon->hwmon_dev);
1330 	}
1331 
1332 	return 0;
1333 }
1334 MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");
1335