1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Common boot and setup code for both 32-bit and 64-bit.
4 * Extracted from arch/powerpc/kernel/setup_64.c.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9 #undef DEBUG
10
11 #include <linux/export.h>
12 #include <linux/panic_notifier.h>
13 #include <linux/string.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/reboot.h>
18 #include <linux/delay.h>
19 #include <linux/initrd.h>
20 #include <linux/platform_device.h>
21 #include <linux/printk.h>
22 #include <linux/seq_file.h>
23 #include <linux/ioport.h>
24 #include <linux/console.h>
25 #include <linux/root_dev.h>
26 #include <linux/cpu.h>
27 #include <linux/unistd.h>
28 #include <linux/seq_buf.h>
29 #include <linux/serial.h>
30 #include <linux/serial_8250.h>
31 #include <linux/percpu.h>
32 #include <linux/memblock.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/of_irq.h>
36 #include <linux/hugetlb.h>
37 #include <linux/pgtable.h>
38 #include <asm/kexec.h>
39 #include <asm/io.h>
40 #include <asm/paca.h>
41 #include <asm/processor.h>
42 #include <asm/vdso_datapage.h>
43 #include <asm/smp.h>
44 #include <asm/elf.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/cputable.h>
48 #include <asm/sections.h>
49 #include <asm/firmware.h>
50 #include <asm/btext.h>
51 #include <asm/nvram.h>
52 #include <asm/setup.h>
53 #include <asm/rtas.h>
54 #include <asm/iommu.h>
55 #include <asm/serial.h>
56 #include <asm/cache.h>
57 #include <asm/page.h>
58 #include <asm/mmu.h>
59 #include <asm/xmon.h>
60 #include <asm/cputhreads.h>
61 #include <mm/mmu_decl.h>
62 #include <asm/archrandom.h>
63 #include <asm/fadump.h>
64 #include <asm/udbg.h>
65 #include <asm/hugetlb.h>
66 #include <asm/livepatch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/cpu_has_feature.h>
69 #include <asm/kasan.h>
70 #include <asm/mce.h>
71 #include <asm/systemcfg.h>
72
73 #include "setup.h"
74
75 #ifdef DEBUG
76 #define DBG(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG(fmt...)
79 #endif
80
81 /* The main machine-dep calls structure
82 */
83 struct machdep_calls ppc_md;
84 EXPORT_SYMBOL(ppc_md);
85 struct machdep_calls *machine_id;
86 EXPORT_SYMBOL(machine_id);
87
88 int boot_cpuid = -1;
89 EXPORT_SYMBOL_GPL(boot_cpuid);
90 int __initdata boot_core_hwid = -1;
91
92 #ifdef CONFIG_PPC64
93 int boot_cpu_hwid = -1;
94 #endif
95
96 /*
97 * These are used in binfmt_elf.c to put aux entries on the stack
98 * for each elf executable being started.
99 */
100 int dcache_bsize;
101 int icache_bsize;
102
103 /* Variables required to store legacy IO irq routing */
104 int of_i8042_kbd_irq;
105 EXPORT_SYMBOL_GPL(of_i8042_kbd_irq);
106 int of_i8042_aux_irq;
107 EXPORT_SYMBOL_GPL(of_i8042_aux_irq);
108
109 #ifdef __DO_IRQ_CANON
110 /* XXX should go elsewhere eventually */
111 int ppc_do_canonicalize_irqs;
112 EXPORT_SYMBOL(ppc_do_canonicalize_irqs);
113 #endif
114
115 #ifdef CONFIG_CRASH_DUMP
116 /* This keeps a track of which one is the crashing cpu. */
117 int crashing_cpu = -1;
118 #endif
119
120 /* also used by kexec */
machine_shutdown(void)121 void machine_shutdown(void)
122 {
123 /*
124 * if fadump is active, cleanup the fadump registration before we
125 * shutdown.
126 */
127 fadump_cleanup();
128
129 if (ppc_md.machine_shutdown)
130 ppc_md.machine_shutdown();
131 }
132
machine_hang(void)133 static void machine_hang(void)
134 {
135 pr_emerg("System Halted, OK to turn off power\n");
136 local_irq_disable();
137 while (1)
138 ;
139 }
140
machine_restart(char * cmd)141 void machine_restart(char *cmd)
142 {
143 machine_shutdown();
144 if (ppc_md.restart)
145 ppc_md.restart(cmd);
146
147 smp_send_stop();
148
149 do_kernel_restart(cmd);
150 mdelay(1000);
151
152 machine_hang();
153 }
154
machine_power_off(void)155 void machine_power_off(void)
156 {
157 machine_shutdown();
158 do_kernel_power_off();
159 smp_send_stop();
160 machine_hang();
161 }
162 /* Used by the G5 thermal driver */
163 EXPORT_SYMBOL_GPL(machine_power_off);
164
165 void (*pm_power_off)(void);
166 EXPORT_SYMBOL_GPL(pm_power_off);
167
arch_get_random_seed_longs(unsigned long * v,size_t max_longs)168 size_t __must_check arch_get_random_seed_longs(unsigned long *v, size_t max_longs)
169 {
170 if (max_longs && ppc_md.get_random_seed && ppc_md.get_random_seed(v))
171 return 1;
172 return 0;
173 }
174 EXPORT_SYMBOL(arch_get_random_seed_longs);
175
machine_halt(void)176 void machine_halt(void)
177 {
178 machine_shutdown();
179 if (ppc_md.halt)
180 ppc_md.halt();
181
182 smp_send_stop();
183 machine_hang();
184 }
185
186 #ifdef CONFIG_SMP
187 DEFINE_PER_CPU(unsigned int, cpu_pvr);
188 #endif
189
show_cpuinfo_summary(struct seq_file * m)190 static void show_cpuinfo_summary(struct seq_file *m)
191 {
192 struct device_node *root;
193 const char *model = NULL;
194 unsigned long bogosum = 0;
195 int i;
196
197 if (IS_ENABLED(CONFIG_SMP) && IS_ENABLED(CONFIG_PPC32)) {
198 for_each_online_cpu(i)
199 bogosum += loops_per_jiffy;
200 seq_printf(m, "total bogomips\t: %lu.%02lu\n",
201 bogosum / (500000 / HZ), bogosum / (5000 / HZ) % 100);
202 }
203 seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
204 if (ppc_md.name)
205 seq_printf(m, "platform\t: %s\n", ppc_md.name);
206 root = of_find_node_by_path("/");
207 if (root)
208 model = of_get_property(root, "model", NULL);
209 if (model)
210 seq_printf(m, "model\t\t: %s\n", model);
211 of_node_put(root);
212
213 if (ppc_md.show_cpuinfo != NULL)
214 ppc_md.show_cpuinfo(m);
215
216 /* Display the amount of memory */
217 if (IS_ENABLED(CONFIG_PPC32))
218 seq_printf(m, "Memory\t\t: %d MB\n",
219 (unsigned int)(total_memory / (1024 * 1024)));
220 }
221
show_cpuinfo(struct seq_file * m,void * v)222 static int show_cpuinfo(struct seq_file *m, void *v)
223 {
224 unsigned long cpu_id = (unsigned long)v - 1;
225 unsigned int pvr;
226 unsigned long proc_freq;
227 unsigned short maj;
228 unsigned short min;
229
230 #ifdef CONFIG_SMP
231 pvr = per_cpu(cpu_pvr, cpu_id);
232 #else
233 pvr = mfspr(SPRN_PVR);
234 #endif
235 maj = (pvr >> 8) & 0xFF;
236 min = pvr & 0xFF;
237
238 seq_printf(m, "processor\t: %lu\ncpu\t\t: ", cpu_id);
239
240 if (cur_cpu_spec->pvr_mask && cur_cpu_spec->cpu_name)
241 seq_puts(m, cur_cpu_spec->cpu_name);
242 else
243 seq_printf(m, "unknown (%08x)", pvr);
244
245 if (cpu_has_feature(CPU_FTR_ALTIVEC))
246 seq_puts(m, ", altivec supported");
247
248 seq_putc(m, '\n');
249
250 #ifdef CONFIG_TAU
251 if (cpu_has_feature(CPU_FTR_TAU)) {
252 if (IS_ENABLED(CONFIG_TAU_AVERAGE)) {
253 /* more straightforward, but potentially misleading */
254 seq_printf(m, "temperature \t: %u C (uncalibrated)\n",
255 cpu_temp(cpu_id));
256 } else {
257 /* show the actual temp sensor range */
258 u32 temp;
259 temp = cpu_temp_both(cpu_id);
260 seq_printf(m, "temperature \t: %u-%u C (uncalibrated)\n",
261 temp & 0xff, temp >> 16);
262 }
263 }
264 #endif /* CONFIG_TAU */
265
266 /*
267 * Platforms that have variable clock rates, should implement
268 * the method ppc_md.get_proc_freq() that reports the clock
269 * rate of a given cpu. The rest can use ppc_proc_freq to
270 * report the clock rate that is same across all cpus.
271 */
272 if (ppc_md.get_proc_freq)
273 proc_freq = ppc_md.get_proc_freq(cpu_id);
274 else
275 proc_freq = ppc_proc_freq;
276
277 if (proc_freq)
278 seq_printf(m, "clock\t\t: %lu.%06luMHz\n",
279 proc_freq / 1000000, proc_freq % 1000000);
280
281 /* If we are a Freescale core do a simple check so
282 * we don't have to keep adding cases in the future */
283 if (PVR_VER(pvr) & 0x8000) {
284 switch (PVR_VER(pvr)) {
285 case 0x8000: /* 7441/7450/7451, Voyager */
286 case 0x8001: /* 7445/7455, Apollo 6 */
287 case 0x8002: /* 7447/7457, Apollo 7 */
288 case 0x8003: /* 7447A, Apollo 7 PM */
289 case 0x8004: /* 7448, Apollo 8 */
290 case 0x800c: /* 7410, Nitro */
291 maj = ((pvr >> 8) & 0xF);
292 min = PVR_MIN(pvr);
293 break;
294 default: /* e500/book-e */
295 maj = PVR_MAJ(pvr);
296 min = PVR_MIN(pvr);
297 break;
298 }
299 } else {
300 switch (PVR_VER(pvr)) {
301 case 0x1008: /* 740P/750P ?? */
302 maj = ((pvr >> 8) & 0xFF) - 1;
303 min = pvr & 0xFF;
304 break;
305 case 0x004e: /* POWER9 bits 12-15 give chip type */
306 case 0x0080: /* POWER10 bit 12 gives SMT8/4 */
307 maj = (pvr >> 8) & 0x0F;
308 min = pvr & 0xFF;
309 break;
310 default:
311 maj = (pvr >> 8) & 0xFF;
312 min = pvr & 0xFF;
313 break;
314 }
315 }
316
317 seq_printf(m, "revision\t: %hd.%hd (pvr %04x %04x)\n",
318 maj, min, PVR_VER(pvr), PVR_REV(pvr));
319
320 if (IS_ENABLED(CONFIG_PPC32))
321 seq_printf(m, "bogomips\t: %lu.%02lu\n", loops_per_jiffy / (500000 / HZ),
322 (loops_per_jiffy / (5000 / HZ)) % 100);
323
324 seq_putc(m, '\n');
325
326 /* If this is the last cpu, print the summary */
327 if (cpumask_next(cpu_id, cpu_online_mask) >= nr_cpu_ids)
328 show_cpuinfo_summary(m);
329
330 return 0;
331 }
332
c_start(struct seq_file * m,loff_t * pos)333 static void *c_start(struct seq_file *m, loff_t *pos)
334 {
335 if (*pos == 0) /* just in case, cpu 0 is not the first */
336 *pos = cpumask_first(cpu_online_mask);
337 else
338 *pos = cpumask_next(*pos - 1, cpu_online_mask);
339 if ((*pos) < nr_cpu_ids)
340 return (void *)(unsigned long)(*pos + 1);
341 return NULL;
342 }
343
c_next(struct seq_file * m,void * v,loff_t * pos)344 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
345 {
346 (*pos)++;
347 return c_start(m, pos);
348 }
349
c_stop(struct seq_file * m,void * v)350 static void c_stop(struct seq_file *m, void *v)
351 {
352 }
353
354 const struct seq_operations cpuinfo_op = {
355 .start = c_start,
356 .next = c_next,
357 .stop = c_stop,
358 .show = show_cpuinfo,
359 };
360
check_for_initrd(void)361 void __init check_for_initrd(void)
362 {
363 #ifdef CONFIG_BLK_DEV_INITRD
364 DBG(" -> check_for_initrd() initrd_start=0x%lx initrd_end=0x%lx\n",
365 initrd_start, initrd_end);
366
367 /* If we were passed an initrd, set the ROOT_DEV properly if the values
368 * look sensible. If not, clear initrd reference.
369 */
370 if (is_kernel_addr(initrd_start) && is_kernel_addr(initrd_end) &&
371 initrd_end > initrd_start)
372 ROOT_DEV = Root_RAM0;
373 else
374 initrd_start = initrd_end = 0;
375
376 if (initrd_start)
377 pr_info("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
378
379 DBG(" <- check_for_initrd()\n");
380 #endif /* CONFIG_BLK_DEV_INITRD */
381 }
382
383 #ifdef CONFIG_SMP
384
385 int threads_per_core, threads_per_subcore, threads_shift __read_mostly;
386 cpumask_t threads_core_mask __read_mostly;
387 EXPORT_SYMBOL_GPL(threads_per_core);
388 EXPORT_SYMBOL_GPL(threads_per_subcore);
389 EXPORT_SYMBOL_GPL(threads_shift);
390 EXPORT_SYMBOL_GPL(threads_core_mask);
391
cpu_init_thread_core_maps(int tpc)392 static void __init cpu_init_thread_core_maps(int tpc)
393 {
394 int i;
395
396 threads_per_core = tpc;
397 threads_per_subcore = tpc;
398 cpumask_clear(&threads_core_mask);
399
400 /* This implementation only supports power of 2 number of threads
401 * for simplicity and performance
402 */
403 threads_shift = ilog2(tpc);
404 BUG_ON(tpc != (1 << threads_shift));
405
406 for (i = 0; i < tpc; i++)
407 cpumask_set_cpu(i, &threads_core_mask);
408
409 printk(KERN_INFO "CPU maps initialized for %d thread%s per core\n",
410 tpc, str_plural(tpc));
411 printk(KERN_DEBUG " (thread shift is %d)\n", threads_shift);
412 }
413
414
415 u32 *cpu_to_phys_id = NULL;
416
assign_threads(unsigned int cpu,unsigned int nthreads,bool present,const __be32 * hw_ids)417 static int assign_threads(unsigned int cpu, unsigned int nthreads, bool present,
418 const __be32 *hw_ids)
419 {
420 for (int i = 0; i < nthreads && cpu < nr_cpu_ids; i++) {
421 __be32 hwid;
422
423 hwid = be32_to_cpu(hw_ids[i]);
424
425 DBG(" thread %d -> cpu %d (hard id %d)\n", i, cpu, hwid);
426
427 set_cpu_present(cpu, present);
428 set_cpu_possible(cpu, true);
429 cpu_to_phys_id[cpu] = hwid;
430 cpu++;
431 }
432
433 return cpu;
434 }
435
436 /**
437 * setup_cpu_maps - initialize the following cpu maps:
438 * cpu_possible_mask
439 * cpu_present_mask
440 *
441 * Having the possible map set up early allows us to restrict allocations
442 * of things like irqstacks to nr_cpu_ids rather than NR_CPUS.
443 *
444 * We do not initialize the online map here; cpus set their own bits in
445 * cpu_online_mask as they come up.
446 *
447 * This function is valid only for Open Firmware systems. finish_device_tree
448 * must be called before using this.
449 *
450 * While we're here, we may as well set the "physical" cpu ids in the paca.
451 *
452 * NOTE: This must match the parsing done in early_init_dt_scan_cpus.
453 */
smp_setup_cpu_maps(void)454 void __init smp_setup_cpu_maps(void)
455 {
456 struct device_node *dn;
457 int cpu = 0;
458 int nthreads = 1;
459
460 DBG("smp_setup_cpu_maps()\n");
461
462 cpu_to_phys_id = memblock_alloc_or_panic(nr_cpu_ids * sizeof(u32),
463 __alignof__(u32));
464
465 for_each_node_by_type(dn, "cpu") {
466 const __be32 *intserv;
467 __be32 cpu_be;
468 int len;
469
470 DBG(" * %pOF...\n", dn);
471
472 intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s",
473 &len);
474 if (intserv) {
475 DBG(" ibm,ppc-interrupt-server#s -> %lu threads\n",
476 (len / sizeof(int)));
477 } else {
478 DBG(" no ibm,ppc-interrupt-server#s -> 1 thread\n");
479 intserv = of_get_property(dn, "reg", &len);
480 if (!intserv) {
481 cpu_be = cpu_to_be32(cpu);
482 /* XXX: what is this? uninitialized?? */
483 intserv = &cpu_be; /* assume logical == phys */
484 len = 4;
485 }
486 }
487
488 nthreads = len / sizeof(int);
489
490 bool avail = of_device_is_available(dn);
491 if (!avail)
492 avail = !of_property_match_string(dn,
493 "enable-method", "spin-table");
494
495 if (boot_core_hwid >= 0) {
496 if (cpu == 0) {
497 pr_info("Skipping CPU node %pOF to allow for boot core.\n", dn);
498 cpu = nthreads;
499 continue;
500 }
501
502 if (be32_to_cpu(intserv[0]) == boot_core_hwid) {
503 pr_info("Renumbered boot core %pOF to logical 0\n", dn);
504 assign_threads(0, nthreads, avail, intserv);
505 of_node_put(dn);
506 break;
507 }
508 } else if (cpu >= nr_cpu_ids) {
509 of_node_put(dn);
510 break;
511 }
512
513 if (cpu < nr_cpu_ids)
514 cpu = assign_threads(cpu, nthreads, avail, intserv);
515 }
516
517 /* If no SMT supported, nthreads is forced to 1 */
518 if (!cpu_has_feature(CPU_FTR_SMT)) {
519 DBG(" SMT disabled ! nthreads forced to 1\n");
520 nthreads = 1;
521 }
522
523 #ifdef CONFIG_PPC64
524 /*
525 * On pSeries LPAR, we need to know how many cpus
526 * could possibly be added to this partition.
527 */
528 if (firmware_has_feature(FW_FEATURE_LPAR) &&
529 (dn = of_find_node_by_path("/rtas"))) {
530 int num_addr_cell, num_size_cell, maxcpus;
531 const __be32 *ireg;
532
533 num_addr_cell = of_n_addr_cells(dn);
534 num_size_cell = of_n_size_cells(dn);
535
536 ireg = of_get_property(dn, "ibm,lrdr-capacity", NULL);
537
538 if (!ireg)
539 goto out;
540
541 maxcpus = be32_to_cpup(ireg + num_addr_cell + num_size_cell);
542
543 /* Double maxcpus for processors which have SMT capability */
544 if (cpu_has_feature(CPU_FTR_SMT))
545 maxcpus *= nthreads;
546
547 if (maxcpus > nr_cpu_ids) {
548 printk(KERN_WARNING
549 "Partition configured for %d cpus, "
550 "operating system maximum is %u.\n",
551 maxcpus, nr_cpu_ids);
552 maxcpus = nr_cpu_ids;
553 } else
554 printk(KERN_INFO "Partition configured for %d cpus.\n",
555 maxcpus);
556
557 for (cpu = 0; cpu < maxcpus; cpu++)
558 set_cpu_possible(cpu, true);
559 out:
560 of_node_put(dn);
561 }
562 #endif
563 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
564 systemcfg->processorCount = num_present_cpus();
565 #endif /* CONFIG_PPC64 */
566
567 /* Initialize CPU <=> thread mapping/
568 *
569 * WARNING: We assume that the number of threads is the same for
570 * every CPU in the system. If that is not the case, then some code
571 * here will have to be reworked
572 */
573 cpu_init_thread_core_maps(nthreads);
574
575 /* Now that possible cpus are set, set nr_cpu_ids for later use */
576 setup_nr_cpu_ids();
577
578 free_unused_pacas();
579 }
580 #endif /* CONFIG_SMP */
581
582 #ifdef CONFIG_PCSPKR_PLATFORM
add_pcspkr(void)583 static __init int add_pcspkr(void)
584 {
585 struct device_node *np;
586 struct platform_device *pd;
587 int ret;
588
589 np = of_find_compatible_node(NULL, NULL, "pnpPNP,100");
590 of_node_put(np);
591 if (!np)
592 return -ENODEV;
593
594 pd = platform_device_alloc("pcspkr", -1);
595 if (!pd)
596 return -ENOMEM;
597
598 ret = platform_device_add(pd);
599 if (ret)
600 platform_device_put(pd);
601
602 return ret;
603 }
604 device_initcall(add_pcspkr);
605 #endif /* CONFIG_PCSPKR_PLATFORM */
606
607 static char ppc_hw_desc_buf[128] __initdata;
608
609 struct seq_buf ppc_hw_desc __initdata = {
610 .buffer = ppc_hw_desc_buf,
611 .size = sizeof(ppc_hw_desc_buf),
612 .len = 0,
613 };
614
probe_machine(void)615 static __init void probe_machine(void)
616 {
617 extern struct machdep_calls __machine_desc_start;
618 extern struct machdep_calls __machine_desc_end;
619 unsigned int i;
620
621 /*
622 * Iterate all ppc_md structures until we find the proper
623 * one for the current machine type
624 */
625 DBG("Probing machine type ...\n");
626
627 /*
628 * Check ppc_md is empty, if not we have a bug, ie, we setup an
629 * entry before probe_machine() which will be overwritten
630 */
631 for (i = 0; i < (sizeof(ppc_md) / sizeof(void *)); i++) {
632 if (((void **)&ppc_md)[i]) {
633 printk(KERN_ERR "Entry %d in ppc_md non empty before"
634 " machine probe !\n", i);
635 }
636 }
637
638 for (machine_id = &__machine_desc_start;
639 machine_id < &__machine_desc_end;
640 machine_id++) {
641 DBG(" %s ...\n", machine_id->name);
642 if (machine_id->compatible && !of_machine_is_compatible(machine_id->compatible))
643 continue;
644 if (machine_id->compatibles && !of_machine_compatible_match(machine_id->compatibles))
645 continue;
646 memcpy(&ppc_md, machine_id, sizeof(struct machdep_calls));
647 if (ppc_md.probe && !ppc_md.probe())
648 continue;
649 DBG(" %s match !\n", machine_id->name);
650 break;
651 }
652 /* What can we do if we didn't find ? */
653 if (machine_id >= &__machine_desc_end) {
654 pr_err("No suitable machine description found !\n");
655 for (;;);
656 }
657
658 // Append the machine name to other info we've gathered
659 seq_buf_puts(&ppc_hw_desc, ppc_md.name);
660
661 // Set the generic hardware description shown in oopses
662 dump_stack_set_arch_desc(ppc_hw_desc.buffer);
663
664 pr_info("Hardware name: %s\n", ppc_hw_desc.buffer);
665 }
666
667 /* Match a class of boards, not a specific device configuration. */
check_legacy_ioport(unsigned long base_port)668 int check_legacy_ioport(unsigned long base_port)
669 {
670 struct device_node *parent, *np = NULL;
671 int ret = -ENODEV;
672
673 switch(base_port) {
674 case I8042_DATA_REG:
675 if (!(np = of_find_compatible_node(NULL, NULL, "pnpPNP,303")))
676 np = of_find_compatible_node(NULL, NULL, "pnpPNP,f03");
677 if (np) {
678 parent = of_get_parent(np);
679
680 of_i8042_kbd_irq = irq_of_parse_and_map(parent, 0);
681 if (!of_i8042_kbd_irq)
682 of_i8042_kbd_irq = 1;
683
684 of_i8042_aux_irq = irq_of_parse_and_map(parent, 1);
685 if (!of_i8042_aux_irq)
686 of_i8042_aux_irq = 12;
687
688 of_node_put(np);
689 np = parent;
690 break;
691 }
692 np = of_find_node_by_type(NULL, "8042");
693 /* Pegasos has no device_type on its 8042 node, look for the
694 * name instead */
695 if (!np)
696 np = of_find_node_by_name(NULL, "8042");
697 if (np) {
698 of_i8042_kbd_irq = 1;
699 of_i8042_aux_irq = 12;
700 }
701 break;
702 case FDC_BASE: /* FDC1 */
703 np = of_find_node_by_type(NULL, "fdc");
704 break;
705 default:
706 /* ipmi is supposed to fail here */
707 break;
708 }
709 if (!np)
710 return ret;
711 parent = of_get_parent(np);
712 if (parent) {
713 if (of_node_is_type(parent, "isa"))
714 ret = 0;
715 of_node_put(parent);
716 }
717 of_node_put(np);
718 return ret;
719 }
720 EXPORT_SYMBOL(check_legacy_ioport);
721
722 /*
723 * Panic notifiers setup
724 *
725 * We have 3 notifiers for powerpc, each one from a different "nature":
726 *
727 * - ppc_panic_fadump_handler() is a hypervisor notifier, which hard-disables
728 * IRQs and deal with the Firmware-Assisted dump, when it is configured;
729 * should run early in the panic path.
730 *
731 * - dump_kernel_offset() is an informative notifier, just showing the KASLR
732 * offset if we have RANDOMIZE_BASE set.
733 *
734 * - ppc_panic_platform_handler() is a low-level handler that's registered
735 * only if the platform wishes to perform final actions in the panic path,
736 * hence it should run late and might not even return. Currently, only
737 * pseries and ps3 platforms register callbacks.
738 */
ppc_panic_fadump_handler(struct notifier_block * this,unsigned long event,void * ptr)739 static int ppc_panic_fadump_handler(struct notifier_block *this,
740 unsigned long event, void *ptr)
741 {
742 /*
743 * panic does a local_irq_disable, but we really
744 * want interrupts to be hard disabled.
745 */
746 hard_irq_disable();
747
748 /*
749 * If firmware-assisted dump has been registered then trigger
750 * its callback and let the firmware handles everything else.
751 */
752 crash_fadump(NULL, ptr);
753
754 return NOTIFY_DONE;
755 }
756
dump_kernel_offset(struct notifier_block * self,unsigned long v,void * p)757 static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
758 void *p)
759 {
760 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
761 kaslr_offset(), KERNELBASE);
762
763 return NOTIFY_DONE;
764 }
765
ppc_panic_platform_handler(struct notifier_block * this,unsigned long event,void * ptr)766 static int ppc_panic_platform_handler(struct notifier_block *this,
767 unsigned long event, void *ptr)
768 {
769 /*
770 * This handler is only registered if we have a panic callback
771 * on ppc_md, hence NULL check is not needed.
772 * Also, it may not return, so it runs really late on panic path.
773 */
774 ppc_md.panic(ptr);
775
776 return NOTIFY_DONE;
777 }
778
779 static struct notifier_block ppc_fadump_block = {
780 .notifier_call = ppc_panic_fadump_handler,
781 .priority = INT_MAX, /* run early, to notify the firmware ASAP */
782 };
783
784 static struct notifier_block kernel_offset_notifier = {
785 .notifier_call = dump_kernel_offset,
786 };
787
788 static struct notifier_block ppc_panic_block = {
789 .notifier_call = ppc_panic_platform_handler,
790 .priority = INT_MIN, /* may not return; must be done last */
791 };
792
setup_panic(void)793 void __init setup_panic(void)
794 {
795 /* Hard-disables IRQs + deal with FW-assisted dump (fadump) */
796 atomic_notifier_chain_register(&panic_notifier_list,
797 &ppc_fadump_block);
798
799 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0)
800 atomic_notifier_chain_register(&panic_notifier_list,
801 &kernel_offset_notifier);
802
803 /* Low-level platform-specific routines that should run on panic */
804 if (ppc_md.panic)
805 atomic_notifier_chain_register(&panic_notifier_list,
806 &ppc_panic_block);
807 }
808
809 #ifdef CONFIG_CHECK_CACHE_COHERENCY
810 /*
811 * For platforms that have configurable cache-coherency. This function
812 * checks that the cache coherency setting of the kernel matches the setting
813 * left by the firmware, as indicated in the device tree. Since a mismatch
814 * will eventually result in DMA failures, we print * and error and call
815 * BUG() in that case.
816 */
817
818 #define KERNEL_COHERENCY (!IS_ENABLED(CONFIG_NOT_COHERENT_CACHE))
819
check_cache_coherency(void)820 static int __init check_cache_coherency(void)
821 {
822 struct device_node *np;
823 const void *prop;
824 bool devtree_coherency;
825
826 np = of_find_node_by_path("/");
827 prop = of_get_property(np, "coherency-off", NULL);
828 of_node_put(np);
829
830 devtree_coherency = prop ? false : true;
831
832 if (devtree_coherency != KERNEL_COHERENCY) {
833 printk(KERN_ERR
834 "kernel coherency:%s != device tree_coherency:%s\n",
835 str_on_off(KERNEL_COHERENCY),
836 str_on_off(devtree_coherency));
837 BUG();
838 }
839
840 return 0;
841 }
842
843 late_initcall(check_cache_coherency);
844 #endif /* CONFIG_CHECK_CACHE_COHERENCY */
845
ppc_printk_progress(char * s,unsigned short hex)846 void ppc_printk_progress(char *s, unsigned short hex)
847 {
848 pr_info("%s\n", s);
849 }
850
print_system_info(void)851 static __init void print_system_info(void)
852 {
853 pr_info("-----------------------------------------------------\n");
854 pr_info("phys_mem_size = 0x%llx\n",
855 (unsigned long long)memblock_phys_mem_size());
856
857 pr_info("dcache_bsize = 0x%x\n", dcache_bsize);
858 pr_info("icache_bsize = 0x%x\n", icache_bsize);
859
860 pr_info("cpu_features = 0x%016lx\n", cur_cpu_spec->cpu_features);
861 pr_info(" possible = 0x%016lx\n",
862 (unsigned long)CPU_FTRS_POSSIBLE);
863 pr_info(" always = 0x%016lx\n",
864 (unsigned long)CPU_FTRS_ALWAYS);
865 pr_info("cpu_user_features = 0x%08x 0x%08x\n",
866 cur_cpu_spec->cpu_user_features,
867 cur_cpu_spec->cpu_user_features2);
868 pr_info("mmu_features = 0x%08x\n", cur_cpu_spec->mmu_features);
869 #ifdef CONFIG_PPC64
870 pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
871 #ifdef CONFIG_PPC_BOOK3S
872 pr_info("vmalloc start = 0x%lx\n", KERN_VIRT_START);
873 pr_info("IO start = 0x%lx\n", KERN_IO_START);
874 pr_info("vmemmap start = 0x%lx\n", (unsigned long)vmemmap);
875 #endif
876 #endif
877
878 if (!early_radix_enabled())
879 print_system_hash_info();
880
881 if (PHYSICAL_START > 0)
882 pr_info("physical_start = 0x%llx\n",
883 (unsigned long long)PHYSICAL_START);
884 pr_info("-----------------------------------------------------\n");
885 }
886
887 #ifdef CONFIG_SMP
smp_setup_pacas(void)888 static void __init smp_setup_pacas(void)
889 {
890 int cpu;
891
892 for_each_possible_cpu(cpu) {
893 if (cpu == smp_processor_id())
894 continue;
895 allocate_paca(cpu);
896 set_hard_smp_processor_id(cpu, cpu_to_phys_id[cpu]);
897 }
898
899 memblock_free(cpu_to_phys_id, nr_cpu_ids * sizeof(u32));
900 cpu_to_phys_id = NULL;
901 }
902 #endif
903
904 /*
905 * Called into from start_kernel this initializes memblock, which is used
906 * to manage page allocation until mem_init is called.
907 */
setup_arch(char ** cmdline_p)908 void __init setup_arch(char **cmdline_p)
909 {
910 kasan_init();
911
912 *cmdline_p = boot_command_line;
913
914 /* Set a half-reasonable default so udelay does something sensible */
915 loops_per_jiffy = 500000000 / HZ;
916
917 /* Unflatten the device-tree passed by prom_init or kexec */
918 unflatten_device_tree();
919
920 /*
921 * Initialize cache line/block info from device-tree (on ppc64) or
922 * just cputable (on ppc32).
923 */
924 initialize_cache_info();
925
926 /* Initialize RTAS if available. */
927 rtas_initialize();
928
929 /* Check if we have an initrd provided via the device-tree. */
930 check_for_initrd();
931
932 /* Probe the machine type, establish ppc_md. */
933 probe_machine();
934
935 /* Setup panic notifier if requested by the platform. */
936 setup_panic();
937
938 /*
939 * Configure ppc_md.power_save (ppc32 only, 64-bit machines do
940 * it from their respective probe() function.
941 */
942 setup_power_save();
943
944 /* Discover standard serial ports. */
945 find_legacy_serial_ports();
946
947 /* Register early console with the printk subsystem. */
948 register_early_udbg_console();
949
950 /* Setup the various CPU maps based on the device-tree. */
951 smp_setup_cpu_maps();
952
953 /* Initialize xmon. */
954 xmon_setup();
955
956 /* Check the SMT related command line arguments (ppc64). */
957 check_smt_enabled();
958
959 /* Parse memory topology */
960 mem_topology_setup();
961 high_memory = (void *)__va(max_low_pfn * PAGE_SIZE);
962
963 /*
964 * Release secondary cpus out of their spinloops at 0x60 now that
965 * we can map physical -> logical CPU ids.
966 *
967 * Freescale Book3e parts spin in a loop provided by firmware,
968 * so smp_release_cpus() does nothing for them.
969 */
970 #ifdef CONFIG_SMP
971 smp_setup_pacas();
972
973 /* On BookE, setup per-core TLB data structures. */
974 setup_tlb_core_data();
975 #endif
976
977 /* Print various info about the machine that has been gathered so far. */
978 print_system_info();
979
980 klp_init_thread_info(&init_task);
981
982 setup_initial_init_mm(_stext, _etext, _edata, _end);
983 /* sched_init() does the mmgrab(&init_mm) for the primary CPU */
984 VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
985 cpumask_set_cpu(smp_processor_id(), mm_cpumask(&init_mm));
986 inc_mm_active_cpus(&init_mm);
987 mm_iommu_init(&init_mm);
988
989 irqstack_early_init();
990 exc_lvl_early_init();
991 emergency_stack_init();
992
993 mce_init();
994 smp_release_cpus();
995
996 initmem_init();
997
998 /*
999 * Reserve large chunks of memory for use by CMA for kdump, fadump, KVM and
1000 * hugetlb. These must be called after initmem_init(), so that
1001 * pageblock_order is initialised.
1002 */
1003 fadump_cma_init();
1004 kdump_cma_reserve();
1005 kvm_cma_reserve();
1006 gigantic_hugetlb_cma_reserve();
1007
1008 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1009
1010 if (ppc_md.setup_arch)
1011 ppc_md.setup_arch();
1012
1013 setup_barrier_nospec();
1014 setup_spectre_v2();
1015
1016 paging_init();
1017
1018 /* Initialize the MMU context management stuff. */
1019 mmu_context_init();
1020
1021 /* Interrupt code needs to be 64K-aligned. */
1022 if (IS_ENABLED(CONFIG_PPC64) && (unsigned long)_stext & 0xffff)
1023 panic("Kernelbase not 64K-aligned (0x%lx)!\n",
1024 (unsigned long)_stext);
1025 }
1026