xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision 43dfc13ca972988e620a6edb72956981b75ab6b0)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/init.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/bitops.h>
38 #include <linux/irq.h>
39 #include <linux/delay.h>
40 #include <asm/byteorder.h>
41 #include <linux/time.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/crash_dump.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/tcp.h>
49 #include <net/vxlan.h>
50 #include <net/checksum.h>
51 #include <net/ip6_checksum.h>
52 #include <linux/workqueue.h>
53 #include <linux/crc32.h>
54 #include <linux/crc32c.h>
55 #include <linux/prefetch.h>
56 #include <linux/zlib.h>
57 #include <linux/io.h>
58 #include <linux/semaphore.h>
59 #include <linux/stringify.h>
60 #include <linux/vmalloc.h>
61 #include "bnx2x.h"
62 #include "bnx2x_init.h"
63 #include "bnx2x_init_ops.h"
64 #include "bnx2x_cmn.h"
65 #include "bnx2x_vfpf.h"
66 #include "bnx2x_dcb.h"
67 #include "bnx2x_sp.h"
68 #include <linux/firmware.h>
69 #include "bnx2x_fw_file_hdr.h"
70 /* FW files */
71 #define FW_FILE_VERSION					\
72 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
73 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
75 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
76 
77 #define FW_FILE_VERSION_V15				\
78 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
79 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
80 	__stringify(BCM_5710_FW_REVISION_VERSION_V15) "."	\
81 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
82 
83 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
84 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E1_V15	"bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
87 #define FW_FILE_NAME_E1H_V15	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E2_V15	"bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
89 
90 /* Time in jiffies before concluding the transmitter is hung */
91 #define TX_TIMEOUT		(5*HZ)
92 
93 MODULE_AUTHOR("Eliezer Tamir");
94 MODULE_DESCRIPTION("QLogic "
95 		   "BCM57710/57711/57711E/"
96 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
97 		   "57840/57840_MF Driver");
98 MODULE_LICENSE("GPL");
99 MODULE_FIRMWARE(FW_FILE_NAME_E1);
100 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
101 MODULE_FIRMWARE(FW_FILE_NAME_E2);
102 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
105 
106 int bnx2x_num_queues;
107 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
108 MODULE_PARM_DESC(num_queues,
109 		 " Set number of queues (default is as a number of CPUs)");
110 
111 static int disable_tpa;
112 module_param(disable_tpa, int, 0444);
113 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
114 
115 static int int_mode;
116 module_param(int_mode, int, 0444);
117 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
118 				"(1 INT#x; 2 MSI)");
119 
120 static int dropless_fc;
121 module_param(dropless_fc, int, 0444);
122 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
123 
124 static int mrrs = -1;
125 module_param(mrrs, int, 0444);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127 
128 static int debug;
129 module_param(debug, int, 0444);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131 
132 static struct workqueue_struct *bnx2x_wq;
133 struct workqueue_struct *bnx2x_iov_wq;
134 
135 struct bnx2x_mac_vals {
136 	u32 xmac_addr;
137 	u32 xmac_val;
138 	u32 emac_addr;
139 	u32 emac_val;
140 	u32 umac_addr[2];
141 	u32 umac_val[2];
142 	u32 bmac_addr;
143 	u32 bmac_val[2];
144 };
145 
146 enum bnx2x_board_type {
147 	BCM57710 = 0,
148 	BCM57711,
149 	BCM57711E,
150 	BCM57712,
151 	BCM57712_MF,
152 	BCM57712_VF,
153 	BCM57800,
154 	BCM57800_MF,
155 	BCM57800_VF,
156 	BCM57810,
157 	BCM57810_MF,
158 	BCM57810_VF,
159 	BCM57840_4_10,
160 	BCM57840_2_20,
161 	BCM57840_MF,
162 	BCM57840_VF,
163 	BCM57811,
164 	BCM57811_MF,
165 	BCM57840_O,
166 	BCM57840_MFO,
167 	BCM57811_VF
168 };
169 
170 /* indexed by board_type, above */
171 static struct {
172 	char *name;
173 } board_info[] = {
174 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
175 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
176 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
177 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
178 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
179 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
180 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
181 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
182 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
183 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
184 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
185 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
186 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
187 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
188 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
189 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
190 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
191 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
192 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
193 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
194 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
195 };
196 
197 #ifndef PCI_DEVICE_ID_NX2_57710
198 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57711
201 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57711E
204 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57712
207 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57712_MF
210 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57712_VF
213 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57800
216 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57800_MF
219 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57800_VF
222 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810
225 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57810_MF
228 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_O
231 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57810_VF
234 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
237 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
240 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
243 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57840_MF
246 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57840_VF
249 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
250 #endif
251 #ifndef PCI_DEVICE_ID_NX2_57811
252 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
253 #endif
254 #ifndef PCI_DEVICE_ID_NX2_57811_MF
255 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
256 #endif
257 #ifndef PCI_DEVICE_ID_NX2_57811_VF
258 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
259 #endif
260 
261 static const struct pci_device_id bnx2x_pci_tbl[] = {
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
275 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
279 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
280 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
282 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
284 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
285 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
286 	{ 0 }
287 };
288 
289 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
290 
291 const u32 dmae_reg_go_c[] = {
292 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
293 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
294 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
295 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
296 };
297 
298 /* Global resources for unloading a previously loaded device */
299 #define BNX2X_PREV_WAIT_NEEDED 1
300 static DEFINE_SEMAPHORE(bnx2x_prev_sem, 1);
301 static LIST_HEAD(bnx2x_prev_list);
302 
303 /* Forward declaration */
304 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
305 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
306 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
307 
308 /****************************************************************************
309 * General service functions
310 ****************************************************************************/
311 static int bnx2x_hwtstamp_set(struct net_device *dev,
312 			      struct kernel_hwtstamp_config *config,
313 			      struct netlink_ext_ack *extack);
314 static int bnx2x_hwtstamp_get(struct net_device *dev,
315 			      struct kernel_hwtstamp_config *config);
316 
317 static void __storm_memset_dma_mapping(struct bnx2x *bp,
318 				       u32 addr, dma_addr_t mapping)
319 {
320 	REG_WR(bp,  addr, U64_LO(mapping));
321 	REG_WR(bp,  addr + 4, U64_HI(mapping));
322 }
323 
324 static void storm_memset_spq_addr(struct bnx2x *bp,
325 				  dma_addr_t mapping, u16 abs_fid)
326 {
327 	u32 addr = XSEM_REG_FAST_MEMORY +
328 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
329 
330 	__storm_memset_dma_mapping(bp, addr, mapping);
331 }
332 
333 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
334 				  u16 pf_id)
335 {
336 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
337 		pf_id);
338 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
339 		pf_id);
340 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
341 		pf_id);
342 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
343 		pf_id);
344 }
345 
346 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
347 				 u8 enable)
348 {
349 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
350 		enable);
351 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
352 		enable);
353 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
354 		enable);
355 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
356 		enable);
357 }
358 
359 static void storm_memset_eq_data(struct bnx2x *bp,
360 				 struct event_ring_data *eq_data,
361 				u16 pfid)
362 {
363 	size_t size = sizeof(struct event_ring_data);
364 
365 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
366 
367 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
368 }
369 
370 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
371 				 u16 pfid)
372 {
373 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
374 	REG_WR16(bp, addr, eq_prod);
375 }
376 
377 /* used only at init
378  * locking is done by mcp
379  */
380 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
381 {
382 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
383 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
384 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
385 			       PCICFG_VENDOR_ID_OFFSET);
386 }
387 
388 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
389 {
390 	u32 val;
391 
392 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
393 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
394 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
395 			       PCICFG_VENDOR_ID_OFFSET);
396 
397 	return val;
398 }
399 
400 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
401 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
402 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
403 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
404 #define DMAE_DP_DST_NONE	"dst_addr [none]"
405 
406 static void bnx2x_dp_dmae(struct bnx2x *bp,
407 			  struct dmae_command *dmae, int msglvl)
408 {
409 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
410 	int i;
411 
412 	switch (dmae->opcode & DMAE_COMMAND_DST) {
413 	case DMAE_CMD_DST_PCI:
414 		if (src_type == DMAE_CMD_SRC_PCI)
415 			DP(msglvl, "DMAE: opcode 0x%08x\n"
416 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
417 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
418 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
419 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
420 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
421 			   dmae->comp_val);
422 		else
423 			DP(msglvl, "DMAE: opcode 0x%08x\n"
424 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
425 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
426 			   dmae->opcode, dmae->src_addr_lo >> 2,
427 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
428 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
429 			   dmae->comp_val);
430 		break;
431 	case DMAE_CMD_DST_GRC:
432 		if (src_type == DMAE_CMD_SRC_PCI)
433 			DP(msglvl, "DMAE: opcode 0x%08x\n"
434 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
435 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
436 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
437 			   dmae->len, dmae->dst_addr_lo >> 2,
438 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
439 			   dmae->comp_val);
440 		else
441 			DP(msglvl, "DMAE: opcode 0x%08x\n"
442 			   "src [%08x], len [%d*4], dst [%08x]\n"
443 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
444 			   dmae->opcode, dmae->src_addr_lo >> 2,
445 			   dmae->len, dmae->dst_addr_lo >> 2,
446 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
447 			   dmae->comp_val);
448 		break;
449 	default:
450 		if (src_type == DMAE_CMD_SRC_PCI)
451 			DP(msglvl, "DMAE: opcode 0x%08x\n"
452 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
453 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
454 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
455 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
456 			   dmae->comp_val);
457 		else
458 			DP(msglvl, "DMAE: opcode 0x%08x\n"
459 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
460 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
461 			   dmae->opcode, dmae->src_addr_lo >> 2,
462 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
463 			   dmae->comp_val);
464 		break;
465 	}
466 
467 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
468 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
469 		   i, *(((u32 *)dmae) + i));
470 }
471 
472 /* copy command into DMAE command memory and set DMAE command go */
473 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
474 {
475 	u32 cmd_offset;
476 	int i;
477 
478 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
479 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
480 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
481 	}
482 	REG_WR(bp, dmae_reg_go_c[idx], 1);
483 }
484 
485 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
486 {
487 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
488 			   DMAE_CMD_C_ENABLE);
489 }
490 
491 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
492 {
493 	return opcode & ~DMAE_CMD_SRC_RESET;
494 }
495 
496 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
497 			     bool with_comp, u8 comp_type)
498 {
499 	u32 opcode = 0;
500 
501 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
502 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
503 
504 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
505 
506 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
507 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
508 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
509 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
510 
511 #ifdef __BIG_ENDIAN
512 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
513 #else
514 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
515 #endif
516 	if (with_comp)
517 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
518 	return opcode;
519 }
520 
521 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
522 				      struct dmae_command *dmae,
523 				      u8 src_type, u8 dst_type)
524 {
525 	memset(dmae, 0, sizeof(struct dmae_command));
526 
527 	/* set the opcode */
528 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
529 					 true, DMAE_COMP_PCI);
530 
531 	/* fill in the completion parameters */
532 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
533 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
534 	dmae->comp_val = DMAE_COMP_VAL;
535 }
536 
537 /* issue a dmae command over the init-channel and wait for completion */
538 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
539 			       u32 *comp)
540 {
541 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
542 	int rc = 0;
543 
544 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
545 
546 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
547 	 * as long as this code is called both from syscall context and
548 	 * from ndo_set_rx_mode() flow that may be called from BH.
549 	 */
550 
551 	spin_lock_bh(&bp->dmae_lock);
552 
553 	/* reset completion */
554 	*comp = 0;
555 
556 	/* post the command on the channel used for initializations */
557 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
558 
559 	/* wait for completion */
560 	udelay(5);
561 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
562 
563 		if (!cnt ||
564 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
565 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
566 			BNX2X_ERR("DMAE timeout!\n");
567 			rc = DMAE_TIMEOUT;
568 			goto unlock;
569 		}
570 		cnt--;
571 		udelay(50);
572 	}
573 	if (*comp & DMAE_PCI_ERR_FLAG) {
574 		BNX2X_ERR("DMAE PCI error!\n");
575 		rc = DMAE_PCI_ERROR;
576 	}
577 
578 unlock:
579 
580 	spin_unlock_bh(&bp->dmae_lock);
581 
582 	return rc;
583 }
584 
585 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
586 		      u32 len32)
587 {
588 	int rc;
589 	struct dmae_command dmae;
590 
591 	if (!bp->dmae_ready) {
592 		u32 *data = bnx2x_sp(bp, wb_data[0]);
593 
594 		if (CHIP_IS_E1(bp))
595 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
596 		else
597 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
598 		return;
599 	}
600 
601 	/* set opcode and fixed command fields */
602 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
603 
604 	/* fill in addresses and len */
605 	dmae.src_addr_lo = U64_LO(dma_addr);
606 	dmae.src_addr_hi = U64_HI(dma_addr);
607 	dmae.dst_addr_lo = dst_addr >> 2;
608 	dmae.dst_addr_hi = 0;
609 	dmae.len = len32;
610 
611 	/* issue the command and wait for completion */
612 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
613 	if (rc) {
614 		BNX2X_ERR("DMAE returned failure %d\n", rc);
615 #ifdef BNX2X_STOP_ON_ERROR
616 		bnx2x_panic();
617 #endif
618 	}
619 }
620 
621 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
622 {
623 	int rc;
624 	struct dmae_command dmae;
625 
626 	if (!bp->dmae_ready) {
627 		u32 *data = bnx2x_sp(bp, wb_data[0]);
628 		int i;
629 
630 		if (CHIP_IS_E1(bp))
631 			for (i = 0; i < len32; i++)
632 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
633 		else
634 			for (i = 0; i < len32; i++)
635 				data[i] = REG_RD(bp, src_addr + i*4);
636 
637 		return;
638 	}
639 
640 	/* set opcode and fixed command fields */
641 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
642 
643 	/* fill in addresses and len */
644 	dmae.src_addr_lo = src_addr >> 2;
645 	dmae.src_addr_hi = 0;
646 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
647 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
648 	dmae.len = len32;
649 
650 	/* issue the command and wait for completion */
651 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
652 	if (rc) {
653 		BNX2X_ERR("DMAE returned failure %d\n", rc);
654 #ifdef BNX2X_STOP_ON_ERROR
655 		bnx2x_panic();
656 #endif
657 	}
658 }
659 
660 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
661 				      u32 addr, u32 len)
662 {
663 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
664 	int offset = 0;
665 
666 	while (len > dmae_wr_max) {
667 		bnx2x_write_dmae(bp, phys_addr + offset,
668 				 addr + offset, dmae_wr_max);
669 		offset += dmae_wr_max * 4;
670 		len -= dmae_wr_max;
671 	}
672 
673 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
674 }
675 
676 enum storms {
677 	   XSTORM,
678 	   TSTORM,
679 	   CSTORM,
680 	   USTORM,
681 	   MAX_STORMS
682 };
683 
684 #define STORMS_NUM 4
685 #define REGS_IN_ENTRY 4
686 
687 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
688 					      enum storms storm,
689 					      int entry)
690 {
691 	switch (storm) {
692 	case XSTORM:
693 		return XSTORM_ASSERT_LIST_OFFSET(entry);
694 	case TSTORM:
695 		return TSTORM_ASSERT_LIST_OFFSET(entry);
696 	case CSTORM:
697 		return CSTORM_ASSERT_LIST_OFFSET(entry);
698 	case USTORM:
699 		return USTORM_ASSERT_LIST_OFFSET(entry);
700 	case MAX_STORMS:
701 	default:
702 		BNX2X_ERR("unknown storm\n");
703 	}
704 	return -EINVAL;
705 }
706 
707 static int bnx2x_mc_assert(struct bnx2x *bp)
708 {
709 	char last_idx;
710 	int i, j, rc = 0;
711 	enum storms storm;
712 	u32 regs[REGS_IN_ENTRY];
713 	u32 bar_storm_intmem[STORMS_NUM] = {
714 		BAR_XSTRORM_INTMEM,
715 		BAR_TSTRORM_INTMEM,
716 		BAR_CSTRORM_INTMEM,
717 		BAR_USTRORM_INTMEM
718 	};
719 	u32 storm_assert_list_index[STORMS_NUM] = {
720 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
721 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
722 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
723 		USTORM_ASSERT_LIST_INDEX_OFFSET
724 	};
725 	char *storms_string[STORMS_NUM] = {
726 		"XSTORM",
727 		"TSTORM",
728 		"CSTORM",
729 		"USTORM"
730 	};
731 
732 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
733 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
734 				   storm_assert_list_index[storm]);
735 		if (last_idx)
736 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
737 				  storms_string[storm], last_idx);
738 
739 		/* print the asserts */
740 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
741 			/* read a single assert entry */
742 			for (j = 0; j < REGS_IN_ENTRY; j++)
743 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
744 					  bnx2x_get_assert_list_entry(bp,
745 								      storm,
746 								      i) +
747 					  sizeof(u32) * j);
748 
749 			/* log entry if it contains a valid assert */
750 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
751 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
752 					  storms_string[storm], i, regs[3],
753 					  regs[2], regs[1], regs[0]);
754 				rc++;
755 			} else {
756 				break;
757 			}
758 		}
759 	}
760 
761 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
762 		  CHIP_IS_E1(bp) ? "everest1" :
763 		  CHIP_IS_E1H(bp) ? "everest1h" :
764 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
765 		  bp->fw_major, bp->fw_minor, bp->fw_rev);
766 
767 	return rc;
768 }
769 
770 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
771 #define SCRATCH_BUFFER_SIZE(bp)	\
772 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
773 
774 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
775 {
776 	u32 addr, val;
777 	u32 mark, offset;
778 	__be32 data[9];
779 	int word;
780 	u32 trace_shmem_base;
781 	if (BP_NOMCP(bp)) {
782 		BNX2X_ERR("NO MCP - can not dump\n");
783 		return;
784 	}
785 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
786 		(bp->common.bc_ver & 0xff0000) >> 16,
787 		(bp->common.bc_ver & 0xff00) >> 8,
788 		(bp->common.bc_ver & 0xff));
789 
790 	if (pci_channel_offline(bp->pdev)) {
791 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
792 		return;
793 	}
794 
795 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
796 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
797 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
798 
799 	if (BP_PATH(bp) == 0)
800 		trace_shmem_base = bp->common.shmem_base;
801 	else
802 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
803 
804 	/* sanity */
805 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
806 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
807 				SCRATCH_BUFFER_SIZE(bp)) {
808 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
809 			  trace_shmem_base);
810 		return;
811 	}
812 
813 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
814 
815 	/* validate TRCB signature */
816 	mark = REG_RD(bp, addr);
817 	if (mark != MFW_TRACE_SIGNATURE) {
818 		BNX2X_ERR("Trace buffer signature is missing.");
819 		return ;
820 	}
821 
822 	/* read cyclic buffer pointer */
823 	addr += 4;
824 	mark = REG_RD(bp, addr);
825 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
826 	if (mark >= trace_shmem_base || mark < addr + 4) {
827 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
828 		return;
829 	}
830 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
831 
832 	printk("%s", lvl);
833 
834 	/* dump buffer after the mark */
835 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
836 		for (word = 0; word < 8; word++)
837 			data[word] = htonl(REG_RD(bp, offset + 4*word));
838 		data[8] = 0x0;
839 		pr_cont("%s", (char *)data);
840 	}
841 
842 	/* dump buffer before the mark */
843 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
844 		for (word = 0; word < 8; word++)
845 			data[word] = htonl(REG_RD(bp, offset + 4*word));
846 		data[8] = 0x0;
847 		pr_cont("%s", (char *)data);
848 	}
849 	printk("%s" "end of fw dump\n", lvl);
850 }
851 
852 static void bnx2x_fw_dump(struct bnx2x *bp)
853 {
854 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
855 }
856 
857 static void bnx2x_hc_int_disable(struct bnx2x *bp)
858 {
859 	int port = BP_PORT(bp);
860 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
861 	u32 val = REG_RD(bp, addr);
862 
863 	/* in E1 we must use only PCI configuration space to disable
864 	 * MSI/MSIX capability
865 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
866 	 */
867 	if (CHIP_IS_E1(bp)) {
868 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
869 		 * Use mask register to prevent from HC sending interrupts
870 		 * after we exit the function
871 		 */
872 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
873 
874 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
875 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
876 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
877 	} else
878 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
879 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
880 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
881 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
882 
883 	DP(NETIF_MSG_IFDOWN,
884 	   "write %x to HC %d (addr 0x%x)\n",
885 	   val, port, addr);
886 
887 	REG_WR(bp, addr, val);
888 	if (REG_RD(bp, addr) != val)
889 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
890 }
891 
892 static void bnx2x_igu_int_disable(struct bnx2x *bp)
893 {
894 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
895 
896 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
897 		 IGU_PF_CONF_INT_LINE_EN |
898 		 IGU_PF_CONF_ATTN_BIT_EN);
899 
900 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
901 
902 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
903 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
904 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
905 }
906 
907 static void bnx2x_int_disable(struct bnx2x *bp)
908 {
909 	if (bp->common.int_block == INT_BLOCK_HC)
910 		bnx2x_hc_int_disable(bp);
911 	else
912 		bnx2x_igu_int_disable(bp);
913 }
914 
915 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
916 {
917 	int i;
918 	u16 j;
919 	struct hc_sp_status_block_data sp_sb_data;
920 	int func = BP_FUNC(bp);
921 #ifdef BNX2X_STOP_ON_ERROR
922 	u16 start = 0, end = 0;
923 	u8 cos;
924 #endif
925 	if (IS_PF(bp) && disable_int)
926 		bnx2x_int_disable(bp);
927 
928 	bp->stats_state = STATS_STATE_DISABLED;
929 	bp->eth_stats.unrecoverable_error++;
930 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
931 
932 	BNX2X_ERR("begin crash dump -----------------\n");
933 
934 	/* Indices */
935 	/* Common */
936 	if (IS_PF(bp)) {
937 		struct host_sp_status_block *def_sb = bp->def_status_blk;
938 		int data_size, cstorm_offset;
939 
940 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
941 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
942 			  bp->spq_prod_idx, bp->stats_counter);
943 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
944 			  def_sb->atten_status_block.attn_bits,
945 			  def_sb->atten_status_block.attn_bits_ack,
946 			  def_sb->atten_status_block.status_block_id,
947 			  def_sb->atten_status_block.attn_bits_index);
948 		BNX2X_ERR("     def (");
949 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
950 			pr_cont("0x%x%s",
951 				def_sb->sp_sb.index_values[i],
952 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
953 
954 		data_size = sizeof(struct hc_sp_status_block_data) /
955 			    sizeof(u32);
956 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
957 		for (i = 0; i < data_size; i++)
958 			*((u32 *)&sp_sb_data + i) =
959 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
960 					   i * sizeof(u32));
961 
962 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
963 			sp_sb_data.igu_sb_id,
964 			sp_sb_data.igu_seg_id,
965 			sp_sb_data.p_func.pf_id,
966 			sp_sb_data.p_func.vnic_id,
967 			sp_sb_data.p_func.vf_id,
968 			sp_sb_data.p_func.vf_valid,
969 			sp_sb_data.state);
970 	}
971 
972 	for_each_eth_queue(bp, i) {
973 		struct bnx2x_fastpath *fp = &bp->fp[i];
974 		int loop;
975 		struct hc_status_block_data_e2 sb_data_e2;
976 		struct hc_status_block_data_e1x sb_data_e1x;
977 		struct hc_status_block_sm  *hc_sm_p =
978 			CHIP_IS_E1x(bp) ?
979 			sb_data_e1x.common.state_machine :
980 			sb_data_e2.common.state_machine;
981 		struct hc_index_data *hc_index_p =
982 			CHIP_IS_E1x(bp) ?
983 			sb_data_e1x.index_data :
984 			sb_data_e2.index_data;
985 		u8 data_size, cos;
986 		u32 *sb_data_p;
987 		struct bnx2x_fp_txdata txdata;
988 
989 		if (!bp->fp)
990 			break;
991 
992 		if (!fp->rx_cons_sb)
993 			continue;
994 
995 		/* Rx */
996 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
997 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
998 			  fp->rx_comp_prod,
999 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
1000 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
1001 			  fp->rx_sge_prod, fp->last_max_sge,
1002 			  le16_to_cpu(fp->fp_hc_idx));
1003 
1004 		/* Tx */
1005 		for_each_cos_in_tx_queue(fp, cos)
1006 		{
1007 			if (!fp->txdata_ptr[cos])
1008 				break;
1009 
1010 			txdata = *fp->txdata_ptr[cos];
1011 
1012 			if (!txdata.tx_cons_sb)
1013 				continue;
1014 
1015 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1016 				  i, txdata.tx_pkt_prod,
1017 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1018 				  txdata.tx_bd_cons,
1019 				  le16_to_cpu(*txdata.tx_cons_sb));
1020 		}
1021 
1022 		loop = CHIP_IS_E1x(bp) ?
1023 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1024 
1025 		/* host sb data */
1026 
1027 		if (IS_FCOE_FP(fp))
1028 			continue;
1029 
1030 		BNX2X_ERR("     run indexes (");
1031 		for (j = 0; j < HC_SB_MAX_SM; j++)
1032 			pr_cont("0x%x%s",
1033 			       fp->sb_running_index[j],
1034 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1035 
1036 		BNX2X_ERR("     indexes (");
1037 		for (j = 0; j < loop; j++)
1038 			pr_cont("0x%x%s",
1039 			       fp->sb_index_values[j],
1040 			       (j == loop - 1) ? ")" : " ");
1041 
1042 		/* VF cannot access FW refelection for status block */
1043 		if (IS_VF(bp))
1044 			continue;
1045 
1046 		/* fw sb data */
1047 		data_size = CHIP_IS_E1x(bp) ?
1048 			sizeof(struct hc_status_block_data_e1x) :
1049 			sizeof(struct hc_status_block_data_e2);
1050 		data_size /= sizeof(u32);
1051 		sb_data_p = CHIP_IS_E1x(bp) ?
1052 			(u32 *)&sb_data_e1x :
1053 			(u32 *)&sb_data_e2;
1054 		/* copy sb data in here */
1055 		for (j = 0; j < data_size; j++)
1056 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1057 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1058 				j * sizeof(u32));
1059 
1060 		if (!CHIP_IS_E1x(bp)) {
1061 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1062 				sb_data_e2.common.p_func.pf_id,
1063 				sb_data_e2.common.p_func.vf_id,
1064 				sb_data_e2.common.p_func.vf_valid,
1065 				sb_data_e2.common.p_func.vnic_id,
1066 				sb_data_e2.common.same_igu_sb_1b,
1067 				sb_data_e2.common.state);
1068 		} else {
1069 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1070 				sb_data_e1x.common.p_func.pf_id,
1071 				sb_data_e1x.common.p_func.vf_id,
1072 				sb_data_e1x.common.p_func.vf_valid,
1073 				sb_data_e1x.common.p_func.vnic_id,
1074 				sb_data_e1x.common.same_igu_sb_1b,
1075 				sb_data_e1x.common.state);
1076 		}
1077 
1078 		/* SB_SMs data */
1079 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1080 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1081 				j, hc_sm_p[j].__flags,
1082 				hc_sm_p[j].igu_sb_id,
1083 				hc_sm_p[j].igu_seg_id,
1084 				hc_sm_p[j].time_to_expire,
1085 				hc_sm_p[j].timer_value);
1086 		}
1087 
1088 		/* Indices data */
1089 		for (j = 0; j < loop; j++) {
1090 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1091 			       hc_index_p[j].flags,
1092 			       hc_index_p[j].timeout);
1093 		}
1094 	}
1095 
1096 #ifdef BNX2X_STOP_ON_ERROR
1097 	if (IS_PF(bp)) {
1098 		/* event queue */
1099 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1100 		for (i = 0; i < NUM_EQ_DESC; i++) {
1101 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1102 
1103 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1104 				  i, bp->eq_ring[i].message.opcode,
1105 				  bp->eq_ring[i].message.error);
1106 			BNX2X_ERR("data: %x %x %x\n",
1107 				  data[0], data[1], data[2]);
1108 		}
1109 	}
1110 
1111 	/* Rings */
1112 	/* Rx */
1113 	for_each_valid_rx_queue(bp, i) {
1114 		struct bnx2x_fastpath *fp = &bp->fp[i];
1115 
1116 		if (!bp->fp)
1117 			break;
1118 
1119 		if (!fp->rx_cons_sb)
1120 			continue;
1121 
1122 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1123 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1124 		for (j = start; j != end; j = RX_BD(j + 1)) {
1125 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1126 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1127 
1128 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1129 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1130 		}
1131 
1132 		start = RX_SGE(fp->rx_sge_prod);
1133 		end = RX_SGE(fp->last_max_sge);
1134 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1135 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1136 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1137 
1138 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1139 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1140 		}
1141 
1142 		start = RCQ_BD(fp->rx_comp_cons - 10);
1143 		end = RCQ_BD(fp->rx_comp_cons + 503);
1144 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1145 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1146 
1147 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1148 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1149 		}
1150 	}
1151 
1152 	/* Tx */
1153 	for_each_valid_tx_queue(bp, i) {
1154 		struct bnx2x_fastpath *fp = &bp->fp[i];
1155 
1156 		if (!bp->fp)
1157 			break;
1158 
1159 		for_each_cos_in_tx_queue(fp, cos) {
1160 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1161 
1162 			if (!fp->txdata_ptr[cos])
1163 				break;
1164 
1165 			if (!txdata->tx_cons_sb)
1166 				continue;
1167 
1168 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1169 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1170 			for (j = start; j != end; j = TX_BD(j + 1)) {
1171 				struct sw_tx_bd *sw_bd =
1172 					&txdata->tx_buf_ring[j];
1173 
1174 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1175 					  i, cos, j, sw_bd->skb,
1176 					  sw_bd->first_bd);
1177 			}
1178 
1179 			start = TX_BD(txdata->tx_bd_cons - 10);
1180 			end = TX_BD(txdata->tx_bd_cons + 254);
1181 			for (j = start; j != end; j = TX_BD(j + 1)) {
1182 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1183 
1184 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1185 					  i, cos, j, tx_bd[0], tx_bd[1],
1186 					  tx_bd[2], tx_bd[3]);
1187 			}
1188 		}
1189 	}
1190 #endif
1191 	if (IS_PF(bp)) {
1192 		int tmp_msg_en = bp->msg_enable;
1193 
1194 		bnx2x_fw_dump(bp);
1195 		bp->msg_enable |= NETIF_MSG_HW;
1196 		BNX2X_ERR("Idle check (1st round) ----------\n");
1197 		bnx2x_idle_chk(bp);
1198 		BNX2X_ERR("Idle check (2nd round) ----------\n");
1199 		bnx2x_idle_chk(bp);
1200 		bp->msg_enable = tmp_msg_en;
1201 		bnx2x_mc_assert(bp);
1202 	}
1203 
1204 	BNX2X_ERR("end crash dump -----------------\n");
1205 }
1206 
1207 /*
1208  * FLR Support for E2
1209  *
1210  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1211  * initialization.
1212  */
1213 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1214 #define FLR_WAIT_INTERVAL	50	/* usec */
1215 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1216 
1217 struct pbf_pN_buf_regs {
1218 	int pN;
1219 	u32 init_crd;
1220 	u32 crd;
1221 	u32 crd_freed;
1222 };
1223 
1224 struct pbf_pN_cmd_regs {
1225 	int pN;
1226 	u32 lines_occup;
1227 	u32 lines_freed;
1228 };
1229 
1230 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1231 				     struct pbf_pN_buf_regs *regs,
1232 				     u32 poll_count)
1233 {
1234 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1235 	u32 cur_cnt = poll_count;
1236 
1237 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1238 	crd = crd_start = REG_RD(bp, regs->crd);
1239 	init_crd = REG_RD(bp, regs->init_crd);
1240 
1241 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1242 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1243 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1244 
1245 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1246 	       (init_crd - crd_start))) {
1247 		if (cur_cnt--) {
1248 			udelay(FLR_WAIT_INTERVAL);
1249 			crd = REG_RD(bp, regs->crd);
1250 			crd_freed = REG_RD(bp, regs->crd_freed);
1251 		} else {
1252 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1253 			   regs->pN);
1254 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1255 			   regs->pN, crd);
1256 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1257 			   regs->pN, crd_freed);
1258 			break;
1259 		}
1260 	}
1261 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1262 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1263 }
1264 
1265 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1266 				     struct pbf_pN_cmd_regs *regs,
1267 				     u32 poll_count)
1268 {
1269 	u32 occup, to_free, freed, freed_start;
1270 	u32 cur_cnt = poll_count;
1271 
1272 	occup = to_free = REG_RD(bp, regs->lines_occup);
1273 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1274 
1275 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1276 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1277 
1278 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1279 		if (cur_cnt--) {
1280 			udelay(FLR_WAIT_INTERVAL);
1281 			occup = REG_RD(bp, regs->lines_occup);
1282 			freed = REG_RD(bp, regs->lines_freed);
1283 		} else {
1284 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1285 			   regs->pN);
1286 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1287 			   regs->pN, occup);
1288 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1289 			   regs->pN, freed);
1290 			break;
1291 		}
1292 	}
1293 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1294 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1295 }
1296 
1297 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1298 				    u32 expected, u32 poll_count)
1299 {
1300 	u32 cur_cnt = poll_count;
1301 	u32 val;
1302 
1303 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1304 		udelay(FLR_WAIT_INTERVAL);
1305 
1306 	return val;
1307 }
1308 
1309 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1310 				    char *msg, u32 poll_cnt)
1311 {
1312 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1313 	if (val != 0) {
1314 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1315 		return 1;
1316 	}
1317 	return 0;
1318 }
1319 
1320 /* Common routines with VF FLR cleanup */
1321 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1322 {
1323 	/* adjust polling timeout */
1324 	if (CHIP_REV_IS_EMUL(bp))
1325 		return FLR_POLL_CNT * 2000;
1326 
1327 	if (CHIP_REV_IS_FPGA(bp))
1328 		return FLR_POLL_CNT * 120;
1329 
1330 	return FLR_POLL_CNT;
1331 }
1332 
1333 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1334 {
1335 	struct pbf_pN_cmd_regs cmd_regs[] = {
1336 		{0, (CHIP_IS_E3B0(bp)) ?
1337 			PBF_REG_TQ_OCCUPANCY_Q0 :
1338 			PBF_REG_P0_TQ_OCCUPANCY,
1339 		    (CHIP_IS_E3B0(bp)) ?
1340 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1341 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1342 		{1, (CHIP_IS_E3B0(bp)) ?
1343 			PBF_REG_TQ_OCCUPANCY_Q1 :
1344 			PBF_REG_P1_TQ_OCCUPANCY,
1345 		    (CHIP_IS_E3B0(bp)) ?
1346 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1347 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1348 		{4, (CHIP_IS_E3B0(bp)) ?
1349 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1350 			PBF_REG_P4_TQ_OCCUPANCY,
1351 		    (CHIP_IS_E3B0(bp)) ?
1352 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1353 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1354 	};
1355 
1356 	struct pbf_pN_buf_regs buf_regs[] = {
1357 		{0, (CHIP_IS_E3B0(bp)) ?
1358 			PBF_REG_INIT_CRD_Q0 :
1359 			PBF_REG_P0_INIT_CRD ,
1360 		    (CHIP_IS_E3B0(bp)) ?
1361 			PBF_REG_CREDIT_Q0 :
1362 			PBF_REG_P0_CREDIT,
1363 		    (CHIP_IS_E3B0(bp)) ?
1364 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1365 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1366 		{1, (CHIP_IS_E3B0(bp)) ?
1367 			PBF_REG_INIT_CRD_Q1 :
1368 			PBF_REG_P1_INIT_CRD,
1369 		    (CHIP_IS_E3B0(bp)) ?
1370 			PBF_REG_CREDIT_Q1 :
1371 			PBF_REG_P1_CREDIT,
1372 		    (CHIP_IS_E3B0(bp)) ?
1373 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1374 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1375 		{4, (CHIP_IS_E3B0(bp)) ?
1376 			PBF_REG_INIT_CRD_LB_Q :
1377 			PBF_REG_P4_INIT_CRD,
1378 		    (CHIP_IS_E3B0(bp)) ?
1379 			PBF_REG_CREDIT_LB_Q :
1380 			PBF_REG_P4_CREDIT,
1381 		    (CHIP_IS_E3B0(bp)) ?
1382 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1383 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1384 	};
1385 
1386 	int i;
1387 
1388 	/* Verify the command queues are flushed P0, P1, P4 */
1389 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1390 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1391 
1392 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1393 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1394 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1395 }
1396 
1397 #define OP_GEN_PARAM(param) \
1398 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1399 
1400 #define OP_GEN_TYPE(type) \
1401 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1402 
1403 #define OP_GEN_AGG_VECT(index) \
1404 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1405 
1406 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1407 {
1408 	u32 op_gen_command = 0;
1409 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1410 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1411 
1412 	if (REG_RD(bp, comp_addr)) {
1413 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1414 		return 1;
1415 	}
1416 
1417 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1418 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1419 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1420 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1421 
1422 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1423 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1424 
1425 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1426 		BNX2X_ERR("FW final cleanup did not succeed\n");
1427 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1428 		   (REG_RD(bp, comp_addr)));
1429 		bnx2x_panic();
1430 		return 1;
1431 	}
1432 	/* Zero completion for next FLR */
1433 	REG_WR(bp, comp_addr, 0);
1434 
1435 	return 0;
1436 }
1437 
1438 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1439 {
1440 	u16 status;
1441 
1442 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1443 	return status & PCI_EXP_DEVSTA_TRPND;
1444 }
1445 
1446 /* PF FLR specific routines
1447 */
1448 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1449 {
1450 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1451 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1453 			"CFC PF usage counter timed out",
1454 			poll_cnt))
1455 		return 1;
1456 
1457 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1458 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459 			DORQ_REG_PF_USAGE_CNT,
1460 			"DQ PF usage counter timed out",
1461 			poll_cnt))
1462 		return 1;
1463 
1464 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1465 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1466 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1467 			"QM PF usage counter timed out",
1468 			poll_cnt))
1469 		return 1;
1470 
1471 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1472 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1473 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1474 			"Timers VNIC usage counter timed out",
1475 			poll_cnt))
1476 		return 1;
1477 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1478 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1479 			"Timers NUM_SCANS usage counter timed out",
1480 			poll_cnt))
1481 		return 1;
1482 
1483 	/* Wait DMAE PF usage counter to zero */
1484 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1485 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1486 			"DMAE command register timed out",
1487 			poll_cnt))
1488 		return 1;
1489 
1490 	return 0;
1491 }
1492 
1493 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1494 {
1495 	u32 val;
1496 
1497 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1498 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1499 
1500 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1501 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1502 
1503 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1504 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1505 
1506 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1507 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1508 
1509 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1510 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1511 
1512 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1513 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1514 
1515 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1516 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1517 
1518 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1519 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1520 	   val);
1521 }
1522 
1523 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1524 {
1525 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1526 
1527 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1528 
1529 	/* Re-enable PF target read access */
1530 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1531 
1532 	/* Poll HW usage counters */
1533 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1534 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1535 		return -EBUSY;
1536 
1537 	/* Zero the igu 'trailing edge' and 'leading edge' */
1538 
1539 	/* Send the FW cleanup command */
1540 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1541 		return -EBUSY;
1542 
1543 	/* ATC cleanup */
1544 
1545 	/* Verify TX hw is flushed */
1546 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1547 
1548 	/* Wait 100ms (not adjusted according to platform) */
1549 	msleep(100);
1550 
1551 	/* Verify no pending pci transactions */
1552 	if (bnx2x_is_pcie_pending(bp->pdev))
1553 		BNX2X_ERR("PCIE Transactions still pending\n");
1554 
1555 	/* Debug */
1556 	bnx2x_hw_enable_status(bp);
1557 
1558 	/*
1559 	 * Master enable - Due to WB DMAE writes performed before this
1560 	 * register is re-initialized as part of the regular function init
1561 	 */
1562 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1563 
1564 	return 0;
1565 }
1566 
1567 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1568 {
1569 	int port = BP_PORT(bp);
1570 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1571 	u32 val = REG_RD(bp, addr);
1572 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1573 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1574 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1575 
1576 	if (msix) {
1577 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1578 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1579 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1580 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1581 		if (single_msix)
1582 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1583 	} else if (msi) {
1584 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1585 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1586 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1587 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1588 	} else {
1589 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1590 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1591 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1592 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1593 
1594 		if (!CHIP_IS_E1(bp)) {
1595 			DP(NETIF_MSG_IFUP,
1596 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1597 
1598 			REG_WR(bp, addr, val);
1599 
1600 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1601 		}
1602 	}
1603 
1604 	if (CHIP_IS_E1(bp))
1605 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1606 
1607 	DP(NETIF_MSG_IFUP,
1608 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1609 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1610 
1611 	REG_WR(bp, addr, val);
1612 	/*
1613 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1614 	 */
1615 	barrier();
1616 
1617 	if (!CHIP_IS_E1(bp)) {
1618 		/* init leading/trailing edge */
1619 		if (IS_MF(bp)) {
1620 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1621 			if (bp->port.pmf)
1622 				/* enable nig and gpio3 attention */
1623 				val |= 0x1100;
1624 		} else
1625 			val = 0xffff;
1626 
1627 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1628 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1629 	}
1630 }
1631 
1632 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1633 {
1634 	u32 val;
1635 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1636 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1637 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1638 
1639 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1640 
1641 	if (msix) {
1642 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1643 			 IGU_PF_CONF_SINGLE_ISR_EN);
1644 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1645 			IGU_PF_CONF_ATTN_BIT_EN);
1646 
1647 		if (single_msix)
1648 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1649 	} else if (msi) {
1650 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1651 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1652 			IGU_PF_CONF_ATTN_BIT_EN |
1653 			IGU_PF_CONF_SINGLE_ISR_EN);
1654 	} else {
1655 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1656 		val |= (IGU_PF_CONF_INT_LINE_EN |
1657 			IGU_PF_CONF_ATTN_BIT_EN |
1658 			IGU_PF_CONF_SINGLE_ISR_EN);
1659 	}
1660 
1661 	/* Clean previous status - need to configure igu prior to ack*/
1662 	if ((!msix) || single_msix) {
1663 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1664 		bnx2x_ack_int(bp);
1665 	}
1666 
1667 	val |= IGU_PF_CONF_FUNC_EN;
1668 
1669 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1670 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1671 
1672 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1673 
1674 	if (val & IGU_PF_CONF_INT_LINE_EN)
1675 		pci_intx(bp->pdev, true);
1676 
1677 	barrier();
1678 
1679 	/* init leading/trailing edge */
1680 	if (IS_MF(bp)) {
1681 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1682 		if (bp->port.pmf)
1683 			/* enable nig and gpio3 attention */
1684 			val |= 0x1100;
1685 	} else
1686 		val = 0xffff;
1687 
1688 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1689 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1690 }
1691 
1692 void bnx2x_int_enable(struct bnx2x *bp)
1693 {
1694 	if (bp->common.int_block == INT_BLOCK_HC)
1695 		bnx2x_hc_int_enable(bp);
1696 	else
1697 		bnx2x_igu_int_enable(bp);
1698 }
1699 
1700 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1701 {
1702 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1703 	int i, offset;
1704 
1705 	if (disable_hw)
1706 		/* prevent the HW from sending interrupts */
1707 		bnx2x_int_disable(bp);
1708 
1709 	/* make sure all ISRs are done */
1710 	if (msix) {
1711 		synchronize_irq(bp->msix_table[0].vector);
1712 		offset = 1;
1713 		if (CNIC_SUPPORT(bp))
1714 			offset++;
1715 		for_each_eth_queue(bp, i)
1716 			synchronize_irq(bp->msix_table[offset++].vector);
1717 	} else
1718 		synchronize_irq(bp->pdev->irq);
1719 
1720 	/* make sure sp_task is not running */
1721 	cancel_delayed_work(&bp->sp_task);
1722 	cancel_delayed_work(&bp->period_task);
1723 	flush_workqueue(bnx2x_wq);
1724 }
1725 
1726 /* fast path */
1727 
1728 /*
1729  * General service functions
1730  */
1731 
1732 /* Return true if succeeded to acquire the lock */
1733 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1734 {
1735 	u32 lock_status;
1736 	u32 resource_bit = (1 << resource);
1737 	int func = BP_FUNC(bp);
1738 	u32 hw_lock_control_reg;
1739 
1740 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1741 	   "Trying to take a lock on resource %d\n", resource);
1742 
1743 	/* Validating that the resource is within range */
1744 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1745 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1746 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1747 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1748 		return false;
1749 	}
1750 
1751 	if (func <= 5)
1752 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1753 	else
1754 		hw_lock_control_reg =
1755 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1756 
1757 	/* Try to acquire the lock */
1758 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1759 	lock_status = REG_RD(bp, hw_lock_control_reg);
1760 	if (lock_status & resource_bit)
1761 		return true;
1762 
1763 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1764 	   "Failed to get a lock on resource %d\n", resource);
1765 	return false;
1766 }
1767 
1768 /**
1769  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1770  *
1771  * @bp:	driver handle
1772  *
1773  * Returns the recovery leader resource id according to the engine this function
1774  * belongs to. Currently only 2 engines is supported.
1775  */
1776 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1777 {
1778 	if (BP_PATH(bp))
1779 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1780 	else
1781 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1782 }
1783 
1784 /**
1785  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1786  *
1787  * @bp: driver handle
1788  *
1789  * Tries to acquire a leader lock for current engine.
1790  */
1791 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1792 {
1793 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1794 }
1795 
1796 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1797 
1798 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1799 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1800 {
1801 	/* Set the interrupt occurred bit for the sp-task to recognize it
1802 	 * must ack the interrupt and transition according to the IGU
1803 	 * state machine.
1804 	 */
1805 	atomic_set(&bp->interrupt_occurred, 1);
1806 
1807 	/* The sp_task must execute only after this bit
1808 	 * is set, otherwise we will get out of sync and miss all
1809 	 * further interrupts. Hence, the barrier.
1810 	 */
1811 	smp_wmb();
1812 
1813 	/* schedule sp_task to workqueue */
1814 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1815 }
1816 
1817 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1818 {
1819 	struct bnx2x *bp = fp->bp;
1820 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1821 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1822 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1823 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1824 
1825 	DP(BNX2X_MSG_SP,
1826 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1827 	   fp->index, cid, command, bp->state,
1828 	   rr_cqe->ramrod_cqe.ramrod_type);
1829 
1830 	/* If cid is within VF range, replace the slowpath object with the
1831 	 * one corresponding to this VF
1832 	 */
1833 	if (cid >= BNX2X_FIRST_VF_CID  &&
1834 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1835 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1836 
1837 	switch (command) {
1838 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1839 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1840 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1841 		break;
1842 
1843 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1844 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1845 		drv_cmd = BNX2X_Q_CMD_SETUP;
1846 		break;
1847 
1848 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1849 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1850 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1851 		break;
1852 
1853 	case (RAMROD_CMD_ID_ETH_HALT):
1854 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1855 		drv_cmd = BNX2X_Q_CMD_HALT;
1856 		break;
1857 
1858 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1859 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1860 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1861 		break;
1862 
1863 	case (RAMROD_CMD_ID_ETH_EMPTY):
1864 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1865 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1866 		break;
1867 
1868 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1869 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1870 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1871 		break;
1872 
1873 	default:
1874 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1875 			  command, fp->index);
1876 		return;
1877 	}
1878 
1879 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1880 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1881 		/* q_obj->complete_cmd() failure means that this was
1882 		 * an unexpected completion.
1883 		 *
1884 		 * In this case we don't want to increase the bp->spq_left
1885 		 * because apparently we haven't sent this command the first
1886 		 * place.
1887 		 */
1888 #ifdef BNX2X_STOP_ON_ERROR
1889 		bnx2x_panic();
1890 #else
1891 		return;
1892 #endif
1893 
1894 	smp_mb__before_atomic();
1895 	atomic_inc(&bp->cq_spq_left);
1896 	/* push the change in bp->spq_left and towards the memory */
1897 	smp_mb__after_atomic();
1898 
1899 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1900 
1901 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1902 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1903 		/* if Q update ramrod is completed for last Q in AFEX vif set
1904 		 * flow, then ACK MCP at the end
1905 		 *
1906 		 * mark pending ACK to MCP bit.
1907 		 * prevent case that both bits are cleared.
1908 		 * At the end of load/unload driver checks that
1909 		 * sp_state is cleared, and this order prevents
1910 		 * races
1911 		 */
1912 		smp_mb__before_atomic();
1913 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1914 		wmb();
1915 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1916 		smp_mb__after_atomic();
1917 
1918 		/* schedule the sp task as mcp ack is required */
1919 		bnx2x_schedule_sp_task(bp);
1920 	}
1921 
1922 	return;
1923 }
1924 
1925 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1926 {
1927 	struct bnx2x *bp = netdev_priv(dev_instance);
1928 	u16 status = bnx2x_ack_int(bp);
1929 	u16 mask;
1930 	int i;
1931 	u8 cos;
1932 
1933 	/* Return here if interrupt is shared and it's not for us */
1934 	if (unlikely(status == 0)) {
1935 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1936 		return IRQ_NONE;
1937 	}
1938 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1939 
1940 #ifdef BNX2X_STOP_ON_ERROR
1941 	if (unlikely(bp->panic))
1942 		return IRQ_HANDLED;
1943 #endif
1944 
1945 	for_each_eth_queue(bp, i) {
1946 		struct bnx2x_fastpath *fp = &bp->fp[i];
1947 
1948 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1949 		if (status & mask) {
1950 			/* Handle Rx or Tx according to SB id */
1951 			for_each_cos_in_tx_queue(fp, cos)
1952 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1953 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1954 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1955 			status &= ~mask;
1956 		}
1957 	}
1958 
1959 	if (CNIC_SUPPORT(bp)) {
1960 		mask = 0x2;
1961 		if (status & (mask | 0x1)) {
1962 			struct cnic_ops *c_ops = NULL;
1963 
1964 			rcu_read_lock();
1965 			c_ops = rcu_dereference(bp->cnic_ops);
1966 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1967 				      CNIC_DRV_STATE_HANDLES_IRQ))
1968 				c_ops->cnic_handler(bp->cnic_data, NULL);
1969 			rcu_read_unlock();
1970 
1971 			status &= ~mask;
1972 		}
1973 	}
1974 
1975 	if (unlikely(status & 0x1)) {
1976 
1977 		/* schedule sp task to perform default status block work, ack
1978 		 * attentions and enable interrupts.
1979 		 */
1980 		bnx2x_schedule_sp_task(bp);
1981 
1982 		status &= ~0x1;
1983 		if (!status)
1984 			return IRQ_HANDLED;
1985 	}
1986 
1987 	if (unlikely(status))
1988 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1989 		   status);
1990 
1991 	return IRQ_HANDLED;
1992 }
1993 
1994 /* Link */
1995 
1996 /*
1997  * General service functions
1998  */
1999 
2000 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
2001 {
2002 	u32 lock_status;
2003 	u32 resource_bit = (1 << resource);
2004 	int func = BP_FUNC(bp);
2005 	u32 hw_lock_control_reg;
2006 	int cnt;
2007 
2008 	/* Validating that the resource is within range */
2009 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2010 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2011 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2012 		return -EINVAL;
2013 	}
2014 
2015 	if (func <= 5) {
2016 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2017 	} else {
2018 		hw_lock_control_reg =
2019 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2020 	}
2021 
2022 	/* Validating that the resource is not already taken */
2023 	lock_status = REG_RD(bp, hw_lock_control_reg);
2024 	if (lock_status & resource_bit) {
2025 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2026 		   lock_status, resource_bit);
2027 		return -EEXIST;
2028 	}
2029 
2030 	/* Try for 5 second every 5ms */
2031 	for (cnt = 0; cnt < 1000; cnt++) {
2032 		/* Try to acquire the lock */
2033 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2034 		lock_status = REG_RD(bp, hw_lock_control_reg);
2035 		if (lock_status & resource_bit)
2036 			return 0;
2037 
2038 		usleep_range(5000, 10000);
2039 	}
2040 	BNX2X_ERR("Timeout\n");
2041 	return -EAGAIN;
2042 }
2043 
2044 int bnx2x_release_leader_lock(struct bnx2x *bp)
2045 {
2046 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2047 }
2048 
2049 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2050 {
2051 	u32 lock_status;
2052 	u32 resource_bit = (1 << resource);
2053 	int func = BP_FUNC(bp);
2054 	u32 hw_lock_control_reg;
2055 
2056 	/* Validating that the resource is within range */
2057 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2058 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2059 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2060 		return -EINVAL;
2061 	}
2062 
2063 	if (func <= 5) {
2064 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2065 	} else {
2066 		hw_lock_control_reg =
2067 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2068 	}
2069 
2070 	/* Validating that the resource is currently taken */
2071 	lock_status = REG_RD(bp, hw_lock_control_reg);
2072 	if (!(lock_status & resource_bit)) {
2073 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2074 			  lock_status, resource_bit);
2075 		return -EFAULT;
2076 	}
2077 
2078 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2079 	return 0;
2080 }
2081 
2082 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2083 {
2084 	/* The GPIO should be swapped if swap register is set and active */
2085 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2086 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2087 	int gpio_shift = gpio_num +
2088 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2089 	u32 gpio_mask = (1 << gpio_shift);
2090 	u32 gpio_reg;
2091 	int value;
2092 
2093 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2094 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2095 		return -EINVAL;
2096 	}
2097 
2098 	/* read GPIO value */
2099 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2100 
2101 	/* get the requested pin value */
2102 	if ((gpio_reg & gpio_mask) == gpio_mask)
2103 		value = 1;
2104 	else
2105 		value = 0;
2106 
2107 	return value;
2108 }
2109 
2110 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2111 {
2112 	/* The GPIO should be swapped if swap register is set and active */
2113 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2114 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2115 	int gpio_shift = gpio_num +
2116 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2117 	u32 gpio_mask = (1 << gpio_shift);
2118 	u32 gpio_reg;
2119 
2120 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2121 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2122 		return -EINVAL;
2123 	}
2124 
2125 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2126 	/* read GPIO and mask except the float bits */
2127 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2128 
2129 	switch (mode) {
2130 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2131 		DP(NETIF_MSG_LINK,
2132 		   "Set GPIO %d (shift %d) -> output low\n",
2133 		   gpio_num, gpio_shift);
2134 		/* clear FLOAT and set CLR */
2135 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2136 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2137 		break;
2138 
2139 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2140 		DP(NETIF_MSG_LINK,
2141 		   "Set GPIO %d (shift %d) -> output high\n",
2142 		   gpio_num, gpio_shift);
2143 		/* clear FLOAT and set SET */
2144 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2145 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2146 		break;
2147 
2148 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2149 		DP(NETIF_MSG_LINK,
2150 		   "Set GPIO %d (shift %d) -> input\n",
2151 		   gpio_num, gpio_shift);
2152 		/* set FLOAT */
2153 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2154 		break;
2155 
2156 	default:
2157 		break;
2158 	}
2159 
2160 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2161 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2162 
2163 	return 0;
2164 }
2165 
2166 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2167 {
2168 	u32 gpio_reg = 0;
2169 	int rc = 0;
2170 
2171 	/* Any port swapping should be handled by caller. */
2172 
2173 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2174 	/* read GPIO and mask except the float bits */
2175 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2176 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2177 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2178 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2179 
2180 	switch (mode) {
2181 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2182 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2183 		/* set CLR */
2184 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2185 		break;
2186 
2187 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2188 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2189 		/* set SET */
2190 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2191 		break;
2192 
2193 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2194 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2195 		/* set FLOAT */
2196 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2197 		break;
2198 
2199 	default:
2200 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2201 		rc = -EINVAL;
2202 		break;
2203 	}
2204 
2205 	if (rc == 0)
2206 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2207 
2208 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2209 
2210 	return rc;
2211 }
2212 
2213 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2214 {
2215 	/* The GPIO should be swapped if swap register is set and active */
2216 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2217 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2218 	int gpio_shift = gpio_num +
2219 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2220 	u32 gpio_mask = (1 << gpio_shift);
2221 	u32 gpio_reg;
2222 
2223 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2224 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2225 		return -EINVAL;
2226 	}
2227 
2228 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2229 	/* read GPIO int */
2230 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2231 
2232 	switch (mode) {
2233 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2234 		DP(NETIF_MSG_LINK,
2235 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2236 		   gpio_num, gpio_shift);
2237 		/* clear SET and set CLR */
2238 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2239 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2240 		break;
2241 
2242 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2243 		DP(NETIF_MSG_LINK,
2244 		   "Set GPIO INT %d (shift %d) -> output high\n",
2245 		   gpio_num, gpio_shift);
2246 		/* clear CLR and set SET */
2247 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2248 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2249 		break;
2250 
2251 	default:
2252 		break;
2253 	}
2254 
2255 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2256 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2257 
2258 	return 0;
2259 }
2260 
2261 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2262 {
2263 	u32 spio_reg;
2264 
2265 	/* Only 2 SPIOs are configurable */
2266 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2267 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2268 		return -EINVAL;
2269 	}
2270 
2271 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2272 	/* read SPIO and mask except the float bits */
2273 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2274 
2275 	switch (mode) {
2276 	case MISC_SPIO_OUTPUT_LOW:
2277 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2278 		/* clear FLOAT and set CLR */
2279 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2280 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2281 		break;
2282 
2283 	case MISC_SPIO_OUTPUT_HIGH:
2284 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2285 		/* clear FLOAT and set SET */
2286 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2287 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2288 		break;
2289 
2290 	case MISC_SPIO_INPUT_HI_Z:
2291 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2292 		/* set FLOAT */
2293 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2294 		break;
2295 
2296 	default:
2297 		break;
2298 	}
2299 
2300 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2301 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2302 
2303 	return 0;
2304 }
2305 
2306 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2307 {
2308 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2309 
2310 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2311 					   ADVERTISED_Pause);
2312 	switch (bp->link_vars.ieee_fc &
2313 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2314 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2315 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2316 						  ADVERTISED_Pause);
2317 		break;
2318 
2319 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2320 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2321 		break;
2322 
2323 	default:
2324 		break;
2325 	}
2326 }
2327 
2328 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2329 {
2330 	/* Initialize link parameters structure variables
2331 	 * It is recommended to turn off RX FC for jumbo frames
2332 	 *  for better performance
2333 	 */
2334 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2335 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2336 	else
2337 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2338 }
2339 
2340 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2341 {
2342 	u32 pause_enabled = 0;
2343 
2344 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2345 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2346 			pause_enabled = 1;
2347 
2348 		REG_WR(bp, BAR_USTRORM_INTMEM +
2349 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2350 		       pause_enabled);
2351 	}
2352 
2353 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2354 	   pause_enabled ? "enabled" : "disabled");
2355 }
2356 
2357 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2358 {
2359 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2360 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2361 
2362 	if (!BP_NOMCP(bp)) {
2363 		bnx2x_set_requested_fc(bp);
2364 		bnx2x_acquire_phy_lock(bp);
2365 
2366 		if (load_mode == LOAD_DIAG) {
2367 			struct link_params *lp = &bp->link_params;
2368 			lp->loopback_mode = LOOPBACK_XGXS;
2369 			/* Prefer doing PHY loopback at highest speed */
2370 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2371 				if (lp->speed_cap_mask[cfx_idx] &
2372 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2373 					lp->req_line_speed[cfx_idx] =
2374 					SPEED_20000;
2375 				else if (lp->speed_cap_mask[cfx_idx] &
2376 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2377 						lp->req_line_speed[cfx_idx] =
2378 						SPEED_10000;
2379 				else
2380 					lp->req_line_speed[cfx_idx] =
2381 					SPEED_1000;
2382 			}
2383 		}
2384 
2385 		if (load_mode == LOAD_LOOPBACK_EXT) {
2386 			struct link_params *lp = &bp->link_params;
2387 			lp->loopback_mode = LOOPBACK_EXT;
2388 		}
2389 
2390 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2391 
2392 		bnx2x_release_phy_lock(bp);
2393 
2394 		bnx2x_init_dropless_fc(bp);
2395 
2396 		bnx2x_calc_fc_adv(bp);
2397 
2398 		if (bp->link_vars.link_up) {
2399 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2400 			bnx2x_link_report(bp);
2401 		}
2402 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2403 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2404 		return rc;
2405 	}
2406 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2407 	return -EINVAL;
2408 }
2409 
2410 void bnx2x_link_set(struct bnx2x *bp)
2411 {
2412 	if (!BP_NOMCP(bp)) {
2413 		bnx2x_acquire_phy_lock(bp);
2414 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2415 		bnx2x_release_phy_lock(bp);
2416 
2417 		bnx2x_init_dropless_fc(bp);
2418 
2419 		bnx2x_calc_fc_adv(bp);
2420 	} else
2421 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2422 }
2423 
2424 static void bnx2x__link_reset(struct bnx2x *bp)
2425 {
2426 	if (!BP_NOMCP(bp)) {
2427 		bnx2x_acquire_phy_lock(bp);
2428 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2429 		bnx2x_release_phy_lock(bp);
2430 	} else
2431 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2432 }
2433 
2434 void bnx2x_force_link_reset(struct bnx2x *bp)
2435 {
2436 	bnx2x_acquire_phy_lock(bp);
2437 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2438 	bnx2x_release_phy_lock(bp);
2439 }
2440 
2441 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2442 {
2443 	u8 rc = 0;
2444 
2445 	if (!BP_NOMCP(bp)) {
2446 		bnx2x_acquire_phy_lock(bp);
2447 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2448 				     is_serdes);
2449 		bnx2x_release_phy_lock(bp);
2450 	} else
2451 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2452 
2453 	return rc;
2454 }
2455 
2456 /* Calculates the sum of vn_min_rates.
2457    It's needed for further normalizing of the min_rates.
2458    Returns:
2459      sum of vn_min_rates.
2460        or
2461      0 - if all the min_rates are 0.
2462      In the later case fairness algorithm should be deactivated.
2463      If not all min_rates are zero then those that are zeroes will be set to 1.
2464  */
2465 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2466 				      struct cmng_init_input *input)
2467 {
2468 	int all_zero = 1;
2469 	int vn;
2470 
2471 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2472 		u32 vn_cfg = bp->mf_config[vn];
2473 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2474 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2475 
2476 		/* Skip hidden vns */
2477 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2478 			vn_min_rate = 0;
2479 		/* If min rate is zero - set it to 1 */
2480 		else if (!vn_min_rate)
2481 			vn_min_rate = DEF_MIN_RATE;
2482 		else
2483 			all_zero = 0;
2484 
2485 		input->vnic_min_rate[vn] = vn_min_rate;
2486 	}
2487 
2488 	/* if ETS or all min rates are zeros - disable fairness */
2489 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2490 		input->flags.cmng_enables &=
2491 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2492 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2493 	} else if (all_zero) {
2494 		input->flags.cmng_enables &=
2495 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2496 		DP(NETIF_MSG_IFUP,
2497 		   "All MIN values are zeroes fairness will be disabled\n");
2498 	} else
2499 		input->flags.cmng_enables |=
2500 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2501 }
2502 
2503 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2504 				    struct cmng_init_input *input)
2505 {
2506 	u16 vn_max_rate;
2507 	u32 vn_cfg = bp->mf_config[vn];
2508 
2509 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2510 		vn_max_rate = 0;
2511 	else {
2512 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2513 
2514 		if (IS_MF_PERCENT_BW(bp)) {
2515 			/* maxCfg in percents of linkspeed */
2516 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2517 		} else /* SD modes */
2518 			/* maxCfg is absolute in 100Mb units */
2519 			vn_max_rate = maxCfg * 100;
2520 	}
2521 
2522 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2523 
2524 	input->vnic_max_rate[vn] = vn_max_rate;
2525 }
2526 
2527 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2528 {
2529 	if (CHIP_REV_IS_SLOW(bp))
2530 		return CMNG_FNS_NONE;
2531 	if (IS_MF(bp))
2532 		return CMNG_FNS_MINMAX;
2533 
2534 	return CMNG_FNS_NONE;
2535 }
2536 
2537 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2538 {
2539 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2540 
2541 	if (BP_NOMCP(bp))
2542 		return; /* what should be the default value in this case */
2543 
2544 	/* For 2 port configuration the absolute function number formula
2545 	 * is:
2546 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2547 	 *
2548 	 *      and there are 4 functions per port
2549 	 *
2550 	 * For 4 port configuration it is
2551 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2552 	 *
2553 	 *      and there are 2 functions per port
2554 	 */
2555 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2556 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2557 
2558 		if (func >= E1H_FUNC_MAX)
2559 			break;
2560 
2561 		bp->mf_config[vn] =
2562 			MF_CFG_RD(bp, func_mf_config[func].config);
2563 	}
2564 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2565 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2566 		bp->flags |= MF_FUNC_DIS;
2567 	} else {
2568 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2569 		bp->flags &= ~MF_FUNC_DIS;
2570 	}
2571 }
2572 
2573 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2574 {
2575 	struct cmng_init_input input;
2576 	memset(&input, 0, sizeof(struct cmng_init_input));
2577 
2578 	input.port_rate = bp->link_vars.line_speed;
2579 
2580 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2581 		int vn;
2582 
2583 		/* read mf conf from shmem */
2584 		if (read_cfg)
2585 			bnx2x_read_mf_cfg(bp);
2586 
2587 		/* vn_weight_sum and enable fairness if not 0 */
2588 		bnx2x_calc_vn_min(bp, &input);
2589 
2590 		/* calculate and set min-max rate for each vn */
2591 		if (bp->port.pmf)
2592 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2593 				bnx2x_calc_vn_max(bp, vn, &input);
2594 
2595 		/* always enable rate shaping and fairness */
2596 		input.flags.cmng_enables |=
2597 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2598 
2599 		bnx2x_init_cmng(&input, &bp->cmng);
2600 		return;
2601 	}
2602 
2603 	/* rate shaping and fairness are disabled */
2604 	DP(NETIF_MSG_IFUP,
2605 	   "rate shaping and fairness are disabled\n");
2606 }
2607 
2608 static void storm_memset_cmng(struct bnx2x *bp,
2609 			      struct cmng_init *cmng,
2610 			      u8 port)
2611 {
2612 	int vn;
2613 	size_t size = sizeof(struct cmng_struct_per_port);
2614 
2615 	u32 addr = BAR_XSTRORM_INTMEM +
2616 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2617 
2618 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2619 
2620 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2621 		int func = func_by_vn(bp, vn);
2622 
2623 		addr = BAR_XSTRORM_INTMEM +
2624 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2625 		size = sizeof(struct rate_shaping_vars_per_vn);
2626 		__storm_memset_struct(bp, addr, size,
2627 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2628 
2629 		addr = BAR_XSTRORM_INTMEM +
2630 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2631 		size = sizeof(struct fairness_vars_per_vn);
2632 		__storm_memset_struct(bp, addr, size,
2633 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2634 	}
2635 }
2636 
2637 /* init cmng mode in HW according to local configuration */
2638 void bnx2x_set_local_cmng(struct bnx2x *bp)
2639 {
2640 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2641 
2642 	if (cmng_fns != CMNG_FNS_NONE) {
2643 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2644 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2645 	} else {
2646 		/* rate shaping and fairness are disabled */
2647 		DP(NETIF_MSG_IFUP,
2648 		   "single function mode without fairness\n");
2649 	}
2650 }
2651 
2652 /* This function is called upon link interrupt */
2653 static void bnx2x_link_attn(struct bnx2x *bp)
2654 {
2655 	/* Make sure that we are synced with the current statistics */
2656 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2657 
2658 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2659 
2660 	bnx2x_init_dropless_fc(bp);
2661 
2662 	if (bp->link_vars.link_up) {
2663 
2664 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2665 			struct host_port_stats *pstats;
2666 
2667 			pstats = bnx2x_sp(bp, port_stats);
2668 			/* reset old mac stats */
2669 			memset(&(pstats->mac_stx[0]), 0,
2670 			       sizeof(struct mac_stx));
2671 		}
2672 		if (bp->state == BNX2X_STATE_OPEN)
2673 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2674 	}
2675 
2676 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2677 		bnx2x_set_local_cmng(bp);
2678 
2679 	__bnx2x_link_report(bp);
2680 
2681 	if (IS_MF(bp))
2682 		bnx2x_link_sync_notify(bp);
2683 }
2684 
2685 void bnx2x__link_status_update(struct bnx2x *bp)
2686 {
2687 	if (bp->state != BNX2X_STATE_OPEN)
2688 		return;
2689 
2690 	/* read updated dcb configuration */
2691 	if (IS_PF(bp)) {
2692 		bnx2x_dcbx_pmf_update(bp);
2693 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2694 		if (bp->link_vars.link_up)
2695 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2696 		else
2697 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2698 			/* indicate link status */
2699 		bnx2x_link_report(bp);
2700 
2701 	} else { /* VF */
2702 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2703 					  SUPPORTED_10baseT_Full |
2704 					  SUPPORTED_100baseT_Half |
2705 					  SUPPORTED_100baseT_Full |
2706 					  SUPPORTED_1000baseT_Full |
2707 					  SUPPORTED_2500baseX_Full |
2708 					  SUPPORTED_10000baseT_Full |
2709 					  SUPPORTED_TP |
2710 					  SUPPORTED_FIBRE |
2711 					  SUPPORTED_Autoneg |
2712 					  SUPPORTED_Pause |
2713 					  SUPPORTED_Asym_Pause);
2714 		bp->port.advertising[0] = bp->port.supported[0];
2715 
2716 		bp->link_params.bp = bp;
2717 		bp->link_params.port = BP_PORT(bp);
2718 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2719 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2720 		bp->link_params.req_line_speed[0] = SPEED_10000;
2721 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2722 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2723 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2724 		bp->link_vars.line_speed = SPEED_10000;
2725 		bp->link_vars.link_status =
2726 			(LINK_STATUS_LINK_UP |
2727 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2728 		bp->link_vars.link_up = 1;
2729 		bp->link_vars.duplex = DUPLEX_FULL;
2730 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2731 		__bnx2x_link_report(bp);
2732 
2733 		bnx2x_sample_bulletin(bp);
2734 
2735 		/* if bulletin board did not have an update for link status
2736 		 * __bnx2x_link_report will report current status
2737 		 * but it will NOT duplicate report in case of already reported
2738 		 * during sampling bulletin board.
2739 		 */
2740 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2741 	}
2742 }
2743 
2744 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2745 				  u16 vlan_val, u8 allowed_prio)
2746 {
2747 	struct bnx2x_func_state_params func_params = {NULL};
2748 	struct bnx2x_func_afex_update_params *f_update_params =
2749 		&func_params.params.afex_update;
2750 
2751 	func_params.f_obj = &bp->func_obj;
2752 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2753 
2754 	/* no need to wait for RAMROD completion, so don't
2755 	 * set RAMROD_COMP_WAIT flag
2756 	 */
2757 
2758 	f_update_params->vif_id = vifid;
2759 	f_update_params->afex_default_vlan = vlan_val;
2760 	f_update_params->allowed_priorities = allowed_prio;
2761 
2762 	/* if ramrod can not be sent, response to MCP immediately */
2763 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2764 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2765 
2766 	return 0;
2767 }
2768 
2769 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2770 					  u16 vif_index, u8 func_bit_map)
2771 {
2772 	struct bnx2x_func_state_params func_params = {NULL};
2773 	struct bnx2x_func_afex_viflists_params *update_params =
2774 		&func_params.params.afex_viflists;
2775 	int rc;
2776 	u32 drv_msg_code;
2777 
2778 	/* validate only LIST_SET and LIST_GET are received from switch */
2779 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2780 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2781 			  cmd_type);
2782 
2783 	func_params.f_obj = &bp->func_obj;
2784 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2785 
2786 	/* set parameters according to cmd_type */
2787 	update_params->afex_vif_list_command = cmd_type;
2788 	update_params->vif_list_index = vif_index;
2789 	update_params->func_bit_map =
2790 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2791 	update_params->func_to_clear = 0;
2792 	drv_msg_code =
2793 		(cmd_type == VIF_LIST_RULE_GET) ?
2794 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2795 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2796 
2797 	/* if ramrod can not be sent, respond to MCP immediately for
2798 	 * SET and GET requests (other are not triggered from MCP)
2799 	 */
2800 	rc = bnx2x_func_state_change(bp, &func_params);
2801 	if (rc < 0)
2802 		bnx2x_fw_command(bp, drv_msg_code, 0);
2803 
2804 	return 0;
2805 }
2806 
2807 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2808 {
2809 	struct afex_stats afex_stats;
2810 	u32 func = BP_ABS_FUNC(bp);
2811 	u32 mf_config;
2812 	u16 vlan_val;
2813 	u32 vlan_prio;
2814 	u16 vif_id;
2815 	u8 allowed_prio;
2816 	u8 vlan_mode;
2817 	u32 addr_to_write, vifid, addrs, stats_type, i;
2818 
2819 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2820 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2821 		DP(BNX2X_MSG_MCP,
2822 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2823 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2824 	}
2825 
2826 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2827 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2828 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2829 		DP(BNX2X_MSG_MCP,
2830 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2831 		   vifid, addrs);
2832 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2833 					       addrs);
2834 	}
2835 
2836 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2837 		addr_to_write = SHMEM2_RD(bp,
2838 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2839 		stats_type = SHMEM2_RD(bp,
2840 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2841 
2842 		DP(BNX2X_MSG_MCP,
2843 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2844 		   addr_to_write);
2845 
2846 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2847 
2848 		/* write response to scratchpad, for MCP */
2849 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2850 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2851 			       *(((u32 *)(&afex_stats))+i));
2852 
2853 		/* send ack message to MCP */
2854 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2855 	}
2856 
2857 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2858 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2859 		bp->mf_config[BP_VN(bp)] = mf_config;
2860 		DP(BNX2X_MSG_MCP,
2861 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2862 		   mf_config);
2863 
2864 		/* if VIF_SET is "enabled" */
2865 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2866 			/* set rate limit directly to internal RAM */
2867 			struct cmng_init_input cmng_input;
2868 			struct rate_shaping_vars_per_vn m_rs_vn;
2869 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2870 			u32 addr = BAR_XSTRORM_INTMEM +
2871 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2872 
2873 			bp->mf_config[BP_VN(bp)] = mf_config;
2874 
2875 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2876 			m_rs_vn.vn_counter.rate =
2877 				cmng_input.vnic_max_rate[BP_VN(bp)];
2878 			m_rs_vn.vn_counter.quota =
2879 				(m_rs_vn.vn_counter.rate *
2880 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2881 
2882 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2883 
2884 			/* read relevant values from mf_cfg struct in shmem */
2885 			vif_id =
2886 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2887 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2888 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2889 			vlan_val =
2890 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2891 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2892 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2893 			vlan_prio = (mf_config &
2894 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2895 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2896 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2897 			vlan_mode =
2898 				(MF_CFG_RD(bp,
2899 					   func_mf_config[func].afex_config) &
2900 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2901 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2902 			allowed_prio =
2903 				(MF_CFG_RD(bp,
2904 					   func_mf_config[func].afex_config) &
2905 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2906 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2907 
2908 			/* send ramrod to FW, return in case of failure */
2909 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2910 						   allowed_prio))
2911 				return;
2912 
2913 			bp->afex_def_vlan_tag = vlan_val;
2914 			bp->afex_vlan_mode = vlan_mode;
2915 		} else {
2916 			/* notify link down because BP->flags is disabled */
2917 			bnx2x_link_report(bp);
2918 
2919 			/* send INVALID VIF ramrod to FW */
2920 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2921 
2922 			/* Reset the default afex VLAN */
2923 			bp->afex_def_vlan_tag = -1;
2924 		}
2925 	}
2926 }
2927 
2928 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2929 {
2930 	struct bnx2x_func_switch_update_params *switch_update_params;
2931 	struct bnx2x_func_state_params func_params;
2932 
2933 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2934 	switch_update_params = &func_params.params.switch_update;
2935 	func_params.f_obj = &bp->func_obj;
2936 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2937 
2938 	/* Prepare parameters for function state transitions */
2939 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2940 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2941 
2942 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2943 		int func = BP_ABS_FUNC(bp);
2944 		u32 val;
2945 
2946 		/* Re-learn the S-tag from shmem */
2947 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2948 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2949 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2950 			bp->mf_ov = val;
2951 		} else {
2952 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2953 			goto fail;
2954 		}
2955 
2956 		/* Configure new S-tag in LLH */
2957 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2958 		       bp->mf_ov);
2959 
2960 		/* Send Ramrod to update FW of change */
2961 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2962 			  &switch_update_params->changes);
2963 		switch_update_params->vlan = bp->mf_ov;
2964 
2965 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2966 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2967 				  bp->mf_ov);
2968 			goto fail;
2969 		} else {
2970 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2971 			   bp->mf_ov);
2972 		}
2973 	} else {
2974 		goto fail;
2975 	}
2976 
2977 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2978 	return;
2979 fail:
2980 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2981 }
2982 
2983 static void bnx2x_pmf_update(struct bnx2x *bp)
2984 {
2985 	int port = BP_PORT(bp);
2986 	u32 val;
2987 
2988 	bp->port.pmf = 1;
2989 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2990 
2991 	/*
2992 	 * We need the mb() to ensure the ordering between the writing to
2993 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2994 	 */
2995 	smp_mb();
2996 
2997 	/* queue a periodic task */
2998 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2999 
3000 	bnx2x_dcbx_pmf_update(bp);
3001 
3002 	/* enable nig attention */
3003 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3004 	if (bp->common.int_block == INT_BLOCK_HC) {
3005 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3006 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3007 	} else if (!CHIP_IS_E1x(bp)) {
3008 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3009 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3010 	}
3011 
3012 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3013 }
3014 
3015 /* end of Link */
3016 
3017 /* slow path */
3018 
3019 /*
3020  * General service functions
3021  */
3022 
3023 /* send the MCP a request, block until there is a reply */
3024 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3025 {
3026 	int mb_idx = BP_FW_MB_IDX(bp);
3027 	u32 seq;
3028 	u32 rc = 0;
3029 	u32 cnt = 1;
3030 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3031 
3032 	mutex_lock(&bp->fw_mb_mutex);
3033 	seq = ++bp->fw_seq;
3034 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3035 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3036 
3037 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3038 			(command | seq), param);
3039 
3040 	do {
3041 		/* let the FW do it's magic ... */
3042 		msleep(delay);
3043 
3044 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3045 
3046 		/* Give the FW up to 5 second (500*10ms) */
3047 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3048 
3049 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3050 	   cnt*delay, rc, seq);
3051 
3052 	/* is this a reply to our command? */
3053 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3054 		rc &= FW_MSG_CODE_MASK;
3055 	else {
3056 		/* FW BUG! */
3057 		BNX2X_ERR("FW failed to respond!\n");
3058 		bnx2x_fw_dump(bp);
3059 		rc = 0;
3060 	}
3061 	mutex_unlock(&bp->fw_mb_mutex);
3062 
3063 	return rc;
3064 }
3065 
3066 static void storm_memset_func_cfg(struct bnx2x *bp,
3067 				 struct tstorm_eth_function_common_config *tcfg,
3068 				 u16 abs_fid)
3069 {
3070 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3071 
3072 	u32 addr = BAR_TSTRORM_INTMEM +
3073 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3074 
3075 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3076 }
3077 
3078 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3079 {
3080 	if (CHIP_IS_E1x(bp)) {
3081 		struct tstorm_eth_function_common_config tcfg = {0};
3082 
3083 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3084 	}
3085 
3086 	/* Enable the function in the FW */
3087 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3088 	storm_memset_func_en(bp, p->func_id, 1);
3089 
3090 	/* spq */
3091 	if (p->spq_active) {
3092 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3093 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3094 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3095 	}
3096 }
3097 
3098 /**
3099  * bnx2x_get_common_flags - Return common flags
3100  *
3101  * @bp:		device handle
3102  * @fp:		queue handle
3103  * @zero_stats:	TRUE if statistics zeroing is needed
3104  *
3105  * Return the flags that are common for the Tx-only and not normal connections.
3106  */
3107 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3108 					    struct bnx2x_fastpath *fp,
3109 					    bool zero_stats)
3110 {
3111 	unsigned long flags = 0;
3112 
3113 	/* PF driver will always initialize the Queue to an ACTIVE state */
3114 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3115 
3116 	/* tx only connections collect statistics (on the same index as the
3117 	 * parent connection). The statistics are zeroed when the parent
3118 	 * connection is initialized.
3119 	 */
3120 
3121 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3122 	if (zero_stats)
3123 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3124 
3125 	if (bp->flags & TX_SWITCHING)
3126 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3127 
3128 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3129 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3130 
3131 #ifdef BNX2X_STOP_ON_ERROR
3132 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3133 #endif
3134 
3135 	return flags;
3136 }
3137 
3138 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3139 				       struct bnx2x_fastpath *fp,
3140 				       bool leading)
3141 {
3142 	unsigned long flags = 0;
3143 
3144 	/* calculate other queue flags */
3145 	if (IS_MF_SD(bp))
3146 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3147 
3148 	if (IS_FCOE_FP(fp)) {
3149 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3150 		/* For FCoE - force usage of default priority (for afex) */
3151 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3152 	}
3153 
3154 	if (fp->mode != TPA_MODE_DISABLED) {
3155 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3156 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3157 		if (fp->mode == TPA_MODE_GRO)
3158 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3159 	}
3160 
3161 	if (leading) {
3162 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3163 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3164 	}
3165 
3166 	/* Always set HW VLAN stripping */
3167 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3168 
3169 	/* configure silent vlan removal */
3170 	if (IS_MF_AFEX(bp))
3171 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3172 
3173 	return flags | bnx2x_get_common_flags(bp, fp, true);
3174 }
3175 
3176 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3177 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3178 	u8 cos)
3179 {
3180 	gen_init->stat_id = bnx2x_stats_id(fp);
3181 	gen_init->spcl_id = fp->cl_id;
3182 
3183 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3184 	if (IS_FCOE_FP(fp))
3185 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3186 	else
3187 		gen_init->mtu = bp->dev->mtu;
3188 
3189 	gen_init->cos = cos;
3190 
3191 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3192 }
3193 
3194 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3195 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3196 	struct bnx2x_rxq_setup_params *rxq_init)
3197 {
3198 	u8 max_sge = 0;
3199 	u16 sge_sz = 0;
3200 	u16 tpa_agg_size = 0;
3201 
3202 	if (fp->mode != TPA_MODE_DISABLED) {
3203 		pause->sge_th_lo = SGE_TH_LO(bp);
3204 		pause->sge_th_hi = SGE_TH_HI(bp);
3205 
3206 		/* validate SGE ring has enough to cross high threshold */
3207 		WARN_ON(bp->dropless_fc &&
3208 				pause->sge_th_hi + FW_PREFETCH_CNT >
3209 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3210 
3211 		tpa_agg_size = TPA_AGG_SIZE;
3212 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3213 			SGE_PAGE_SHIFT;
3214 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3215 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3216 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3217 	}
3218 
3219 	/* pause - not for e1 */
3220 	if (!CHIP_IS_E1(bp)) {
3221 		pause->bd_th_lo = BD_TH_LO(bp);
3222 		pause->bd_th_hi = BD_TH_HI(bp);
3223 
3224 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3225 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3226 		/*
3227 		 * validate that rings have enough entries to cross
3228 		 * high thresholds
3229 		 */
3230 		WARN_ON(bp->dropless_fc &&
3231 				pause->bd_th_hi + FW_PREFETCH_CNT >
3232 				bp->rx_ring_size);
3233 		WARN_ON(bp->dropless_fc &&
3234 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3235 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3236 
3237 		pause->pri_map = 1;
3238 	}
3239 
3240 	/* rxq setup */
3241 	rxq_init->dscr_map = fp->rx_desc_mapping;
3242 	rxq_init->sge_map = fp->rx_sge_mapping;
3243 	rxq_init->rcq_map = fp->rx_comp_mapping;
3244 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3245 
3246 	/* This should be a maximum number of data bytes that may be
3247 	 * placed on the BD (not including paddings).
3248 	 */
3249 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3250 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3251 
3252 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3253 	rxq_init->tpa_agg_sz = tpa_agg_size;
3254 	rxq_init->sge_buf_sz = sge_sz;
3255 	rxq_init->max_sges_pkt = max_sge;
3256 	rxq_init->rss_engine_id = BP_FUNC(bp);
3257 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3258 
3259 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3260 	 *
3261 	 * For PF Clients it should be the maximum available number.
3262 	 * VF driver(s) may want to define it to a smaller value.
3263 	 */
3264 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3265 
3266 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3267 	rxq_init->fw_sb_id = fp->fw_sb_id;
3268 
3269 	if (IS_FCOE_FP(fp))
3270 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3271 	else
3272 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3273 	/* configure silent vlan removal
3274 	 * if multi function mode is afex, then mask default vlan
3275 	 */
3276 	if (IS_MF_AFEX(bp)) {
3277 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3278 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3279 	}
3280 }
3281 
3282 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3283 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3284 	u8 cos)
3285 {
3286 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3287 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3288 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3289 	txq_init->fw_sb_id = fp->fw_sb_id;
3290 
3291 	/*
3292 	 * set the tss leading client id for TX classification ==
3293 	 * leading RSS client id
3294 	 */
3295 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3296 
3297 	if (IS_FCOE_FP(fp)) {
3298 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3299 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3300 	}
3301 }
3302 
3303 static void bnx2x_pf_init(struct bnx2x *bp)
3304 {
3305 	struct bnx2x_func_init_params func_init = {0};
3306 	struct event_ring_data eq_data = { {0} };
3307 
3308 	if (!CHIP_IS_E1x(bp)) {
3309 		/* reset IGU PF statistics: MSIX + ATTN */
3310 		/* PF */
3311 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3312 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3313 			   (CHIP_MODE_IS_4_PORT(bp) ?
3314 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3315 		/* ATTN */
3316 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3317 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3318 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3319 			   (CHIP_MODE_IS_4_PORT(bp) ?
3320 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3321 	}
3322 
3323 	func_init.spq_active = true;
3324 	func_init.pf_id = BP_FUNC(bp);
3325 	func_init.func_id = BP_FUNC(bp);
3326 	func_init.spq_map = bp->spq_mapping;
3327 	func_init.spq_prod = bp->spq_prod_idx;
3328 
3329 	bnx2x_func_init(bp, &func_init);
3330 
3331 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3332 
3333 	/*
3334 	 * Congestion management values depend on the link rate
3335 	 * There is no active link so initial link rate is set to 10 Gbps.
3336 	 * When the link comes up The congestion management values are
3337 	 * re-calculated according to the actual link rate.
3338 	 */
3339 	bp->link_vars.line_speed = SPEED_10000;
3340 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3341 
3342 	/* Only the PMF sets the HW */
3343 	if (bp->port.pmf)
3344 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3345 
3346 	/* init Event Queue - PCI bus guarantees correct endianity*/
3347 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3348 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3349 	eq_data.producer = bp->eq_prod;
3350 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3351 	eq_data.sb_id = DEF_SB_ID;
3352 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3353 }
3354 
3355 static void bnx2x_e1h_disable(struct bnx2x *bp)
3356 {
3357 	int port = BP_PORT(bp);
3358 
3359 	bnx2x_tx_disable(bp);
3360 
3361 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3362 }
3363 
3364 static void bnx2x_e1h_enable(struct bnx2x *bp)
3365 {
3366 	int port = BP_PORT(bp);
3367 
3368 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3369 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3370 
3371 	/* Tx queue should be only re-enabled */
3372 	netif_tx_wake_all_queues(bp->dev);
3373 
3374 	/*
3375 	 * Should not call netif_carrier_on since it will be called if the link
3376 	 * is up when checking for link state
3377 	 */
3378 }
3379 
3380 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3381 
3382 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3383 {
3384 	struct eth_stats_info *ether_stat =
3385 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3386 	struct bnx2x_vlan_mac_obj *mac_obj =
3387 		&bp->sp_objs->mac_obj;
3388 	int i;
3389 
3390 	strscpy(ether_stat->version, DRV_MODULE_VERSION,
3391 		ETH_STAT_INFO_VERSION_LEN);
3392 
3393 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3394 	 * mac_local field in ether_stat struct. The base address is offset by 2
3395 	 * bytes to account for the field being 8 bytes but a mac address is
3396 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3397 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3398 	 * allocated by the ether_stat struct, so the macs will land in their
3399 	 * proper positions.
3400 	 */
3401 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3402 		memset(ether_stat->mac_local + i, 0,
3403 		       sizeof(ether_stat->mac_local[0]));
3404 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3405 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3406 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3407 				ETH_ALEN);
3408 	ether_stat->mtu_size = bp->dev->mtu;
3409 	if (bp->dev->features & NETIF_F_RXCSUM)
3410 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3411 	if (bp->dev->features & NETIF_F_TSO)
3412 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3413 	ether_stat->feature_flags |= bp->common.boot_mode;
3414 
3415 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3416 
3417 	ether_stat->txq_size = bp->tx_ring_size;
3418 	ether_stat->rxq_size = bp->rx_ring_size;
3419 
3420 #ifdef CONFIG_BNX2X_SRIOV
3421 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3422 #endif
3423 }
3424 
3425 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3426 {
3427 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3428 	struct fcoe_stats_info *fcoe_stat =
3429 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3430 
3431 	if (!CNIC_LOADED(bp))
3432 		return;
3433 
3434 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3435 
3436 	fcoe_stat->qos_priority =
3437 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3438 
3439 	/* insert FCoE stats from ramrod response */
3440 	if (!NO_FCOE(bp)) {
3441 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3442 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3443 			tstorm_queue_statistics;
3444 
3445 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3446 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3447 			xstorm_queue_statistics;
3448 
3449 		struct fcoe_statistics_params *fw_fcoe_stat =
3450 			&bp->fw_stats_data->fcoe;
3451 
3452 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3453 			  fcoe_stat->rx_bytes_lo,
3454 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3455 
3456 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3457 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3458 			  fcoe_stat->rx_bytes_lo,
3459 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3460 
3461 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3462 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3463 			  fcoe_stat->rx_bytes_lo,
3464 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3465 
3466 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3467 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3468 			  fcoe_stat->rx_bytes_lo,
3469 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3470 
3471 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3472 			  fcoe_stat->rx_frames_lo,
3473 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3474 
3475 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3476 			  fcoe_stat->rx_frames_lo,
3477 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3478 
3479 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3480 			  fcoe_stat->rx_frames_lo,
3481 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3482 
3483 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3484 			  fcoe_stat->rx_frames_lo,
3485 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3486 
3487 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3488 			  fcoe_stat->tx_bytes_lo,
3489 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3490 
3491 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3492 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3493 			  fcoe_stat->tx_bytes_lo,
3494 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3495 
3496 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3497 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3498 			  fcoe_stat->tx_bytes_lo,
3499 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3500 
3501 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3502 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3503 			  fcoe_stat->tx_bytes_lo,
3504 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3505 
3506 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3507 			  fcoe_stat->tx_frames_lo,
3508 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3509 
3510 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3511 			  fcoe_stat->tx_frames_lo,
3512 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3513 
3514 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3515 			  fcoe_stat->tx_frames_lo,
3516 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3517 
3518 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3519 			  fcoe_stat->tx_frames_lo,
3520 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3521 	}
3522 
3523 	/* ask L5 driver to add data to the struct */
3524 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3525 }
3526 
3527 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3528 {
3529 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3530 	struct iscsi_stats_info *iscsi_stat =
3531 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3532 
3533 	if (!CNIC_LOADED(bp))
3534 		return;
3535 
3536 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3537 	       ETH_ALEN);
3538 
3539 	iscsi_stat->qos_priority =
3540 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3541 
3542 	/* ask L5 driver to add data to the struct */
3543 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3544 }
3545 
3546 /* called due to MCP event (on pmf):
3547  *	reread new bandwidth configuration
3548  *	configure FW
3549  *	notify others function about the change
3550  */
3551 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3552 {
3553 	/* Workaround for MFW bug.
3554 	 * MFW is not supposed to generate BW attention in
3555 	 * single function mode.
3556 	 */
3557 	if (!IS_MF(bp)) {
3558 		DP(BNX2X_MSG_MCP,
3559 		   "Ignoring MF BW config in single function mode\n");
3560 		return;
3561 	}
3562 
3563 	if (bp->link_vars.link_up) {
3564 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3565 		bnx2x_link_sync_notify(bp);
3566 	}
3567 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3568 }
3569 
3570 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3571 {
3572 	bnx2x_config_mf_bw(bp);
3573 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3574 }
3575 
3576 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3577 {
3578 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3579 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3580 }
3581 
3582 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3583 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3584 
3585 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3586 {
3587 	enum drv_info_opcode op_code;
3588 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3589 	bool release = false;
3590 	int wait;
3591 
3592 	/* if drv_info version supported by MFW doesn't match - send NACK */
3593 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3594 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3595 		return;
3596 	}
3597 
3598 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3599 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3600 
3601 	/* Must prevent other flows from accessing drv_info_to_mcp */
3602 	mutex_lock(&bp->drv_info_mutex);
3603 
3604 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3605 	       sizeof(union drv_info_to_mcp));
3606 
3607 	switch (op_code) {
3608 	case ETH_STATS_OPCODE:
3609 		bnx2x_drv_info_ether_stat(bp);
3610 		break;
3611 	case FCOE_STATS_OPCODE:
3612 		bnx2x_drv_info_fcoe_stat(bp);
3613 		break;
3614 	case ISCSI_STATS_OPCODE:
3615 		bnx2x_drv_info_iscsi_stat(bp);
3616 		break;
3617 	default:
3618 		/* if op code isn't supported - send NACK */
3619 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3620 		goto out;
3621 	}
3622 
3623 	/* if we got drv_info attn from MFW then these fields are defined in
3624 	 * shmem2 for sure
3625 	 */
3626 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3627 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3628 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3629 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3630 
3631 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3632 
3633 	/* Since possible management wants both this and get_driver_version
3634 	 * need to wait until management notifies us it finished utilizing
3635 	 * the buffer.
3636 	 */
3637 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3638 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3639 	} else if (!bp->drv_info_mng_owner) {
3640 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3641 
3642 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3643 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3644 
3645 			/* Management is done; need to clear indication */
3646 			if (indication & bit) {
3647 				SHMEM2_WR(bp, mfw_drv_indication,
3648 					  indication & ~bit);
3649 				release = true;
3650 				break;
3651 			}
3652 
3653 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3654 		}
3655 	}
3656 	if (!release) {
3657 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3658 		bp->drv_info_mng_owner = true;
3659 	}
3660 
3661 out:
3662 	mutex_unlock(&bp->drv_info_mutex);
3663 }
3664 
3665 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3666 {
3667 	u8 vals[4];
3668 	int i = 0;
3669 
3670 	if (bnx2x_format) {
3671 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3672 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3673 		if (i > 0)
3674 			vals[0] -= '0';
3675 	} else {
3676 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3677 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3678 	}
3679 
3680 	while (i < 4)
3681 		vals[i++] = 0;
3682 
3683 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3684 }
3685 
3686 void bnx2x_update_mng_version(struct bnx2x *bp)
3687 {
3688 	u32 iscsiver = DRV_VER_NOT_LOADED;
3689 	u32 fcoever = DRV_VER_NOT_LOADED;
3690 	u32 ethver = DRV_VER_NOT_LOADED;
3691 	int idx = BP_FW_MB_IDX(bp);
3692 	u8 *version;
3693 
3694 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3695 		return;
3696 
3697 	mutex_lock(&bp->drv_info_mutex);
3698 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3699 	if (bp->drv_info_mng_owner)
3700 		goto out;
3701 
3702 	if (bp->state != BNX2X_STATE_OPEN)
3703 		goto out;
3704 
3705 	/* Parse ethernet driver version */
3706 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3707 	if (!CNIC_LOADED(bp))
3708 		goto out;
3709 
3710 	/* Try getting storage driver version via cnic */
3711 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3712 	       sizeof(union drv_info_to_mcp));
3713 	bnx2x_drv_info_iscsi_stat(bp);
3714 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3715 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3716 
3717 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3718 	       sizeof(union drv_info_to_mcp));
3719 	bnx2x_drv_info_fcoe_stat(bp);
3720 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3721 	fcoever = bnx2x_update_mng_version_utility(version, false);
3722 
3723 out:
3724 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3725 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3726 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3727 
3728 	mutex_unlock(&bp->drv_info_mutex);
3729 
3730 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3731 	   ethver, iscsiver, fcoever);
3732 }
3733 
3734 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3735 {
3736 	u32 drv_ver;
3737 	u32 valid_dump;
3738 
3739 	if (!SHMEM2_HAS(bp, drv_info))
3740 		return;
3741 
3742 	/* Update Driver load time, possibly broken in y2038 */
3743 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3744 
3745 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3746 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3747 
3748 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3749 
3750 	/* Check & notify On-Chip dump. */
3751 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3752 
3753 	if (valid_dump & FIRST_DUMP_VALID)
3754 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3755 
3756 	if (valid_dump & SECOND_DUMP_VALID)
3757 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3758 }
3759 
3760 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3761 {
3762 	u32 cmd_ok, cmd_fail;
3763 
3764 	/* sanity */
3765 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3766 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3767 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3768 		return;
3769 	}
3770 
3771 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3772 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3773 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3774 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3775 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3776 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3777 	}
3778 
3779 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3780 
3781 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3782 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3783 		/* This is the only place besides the function initialization
3784 		 * where the bp->flags can change so it is done without any
3785 		 * locks
3786 		 */
3787 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3788 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3789 			bp->flags |= MF_FUNC_DIS;
3790 
3791 			bnx2x_e1h_disable(bp);
3792 		} else {
3793 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3794 			bp->flags &= ~MF_FUNC_DIS;
3795 
3796 			bnx2x_e1h_enable(bp);
3797 		}
3798 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3799 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3800 	}
3801 
3802 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3803 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3804 		bnx2x_config_mf_bw(bp);
3805 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3806 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3807 	}
3808 
3809 	/* Report results to MCP */
3810 	if (event)
3811 		bnx2x_fw_command(bp, cmd_fail, 0);
3812 	else
3813 		bnx2x_fw_command(bp, cmd_ok, 0);
3814 }
3815 
3816 /* must be called under the spq lock */
3817 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3818 {
3819 	struct eth_spe *next_spe = bp->spq_prod_bd;
3820 
3821 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3822 		bp->spq_prod_bd = bp->spq;
3823 		bp->spq_prod_idx = 0;
3824 		DP(BNX2X_MSG_SP, "end of spq\n");
3825 	} else {
3826 		bp->spq_prod_bd++;
3827 		bp->spq_prod_idx++;
3828 	}
3829 	return next_spe;
3830 }
3831 
3832 /* must be called under the spq lock */
3833 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3834 {
3835 	int func = BP_FUNC(bp);
3836 
3837 	/*
3838 	 * Make sure that BD data is updated before writing the producer:
3839 	 * BD data is written to the memory, the producer is read from the
3840 	 * memory, thus we need a full memory barrier to ensure the ordering.
3841 	 */
3842 	mb();
3843 
3844 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3845 			 bp->spq_prod_idx);
3846 }
3847 
3848 /**
3849  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3850  *
3851  * @cmd:	command to check
3852  * @cmd_type:	command type
3853  */
3854 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3855 {
3856 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3857 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3858 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3859 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3860 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3861 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3862 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3863 		return true;
3864 	else
3865 		return false;
3866 }
3867 
3868 /**
3869  * bnx2x_sp_post - place a single command on an SP ring
3870  *
3871  * @bp:		driver handle
3872  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3873  * @cid:	SW CID the command is related to
3874  * @data_hi:	command private data address (high 32 bits)
3875  * @data_lo:	command private data address (low 32 bits)
3876  * @cmd_type:	command type (e.g. NONE, ETH)
3877  *
3878  * SP data is handled as if it's always an address pair, thus data fields are
3879  * not swapped to little endian in upper functions. Instead this function swaps
3880  * data as if it's two u32 fields.
3881  */
3882 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3883 		  u32 data_hi, u32 data_lo, int cmd_type)
3884 {
3885 	struct eth_spe *spe;
3886 	u16 type;
3887 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3888 
3889 #ifdef BNX2X_STOP_ON_ERROR
3890 	if (unlikely(bp->panic)) {
3891 		BNX2X_ERR("Can't post SP when there is panic\n");
3892 		return -EIO;
3893 	}
3894 #endif
3895 
3896 	spin_lock_bh(&bp->spq_lock);
3897 
3898 	if (common) {
3899 		if (!atomic_read(&bp->eq_spq_left)) {
3900 			BNX2X_ERR("BUG! EQ ring full!\n");
3901 			spin_unlock_bh(&bp->spq_lock);
3902 			bnx2x_panic();
3903 			return -EBUSY;
3904 		}
3905 	} else if (!atomic_read(&bp->cq_spq_left)) {
3906 			BNX2X_ERR("BUG! SPQ ring full!\n");
3907 			spin_unlock_bh(&bp->spq_lock);
3908 			bnx2x_panic();
3909 			return -EBUSY;
3910 	}
3911 
3912 	spe = bnx2x_sp_get_next(bp);
3913 
3914 	/* CID needs port number to be encoded int it */
3915 	spe->hdr.conn_and_cmd_data =
3916 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3917 				    HW_CID(bp, cid));
3918 
3919 	/* In some cases, type may already contain the func-id
3920 	 * mainly in SRIOV related use cases, so we add it here only
3921 	 * if it's not already set.
3922 	 */
3923 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3924 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3925 			SPE_HDR_CONN_TYPE;
3926 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3927 			 SPE_HDR_FUNCTION_ID);
3928 	} else {
3929 		type = cmd_type;
3930 	}
3931 
3932 	spe->hdr.type = cpu_to_le16(type);
3933 
3934 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3935 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3936 
3937 	/*
3938 	 * It's ok if the actual decrement is issued towards the memory
3939 	 * somewhere between the spin_lock and spin_unlock. Thus no
3940 	 * more explicit memory barrier is needed.
3941 	 */
3942 	if (common)
3943 		atomic_dec(&bp->eq_spq_left);
3944 	else
3945 		atomic_dec(&bp->cq_spq_left);
3946 
3947 	DP(BNX2X_MSG_SP,
3948 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3949 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3950 	   (u32)(U64_LO(bp->spq_mapping) +
3951 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3952 	   HW_CID(bp, cid), data_hi, data_lo, type,
3953 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3954 
3955 	bnx2x_sp_prod_update(bp);
3956 	spin_unlock_bh(&bp->spq_lock);
3957 	return 0;
3958 }
3959 
3960 /* acquire split MCP access lock register */
3961 static int bnx2x_acquire_alr(struct bnx2x *bp)
3962 {
3963 	u32 j, val;
3964 	int rc = 0;
3965 
3966 	might_sleep();
3967 	for (j = 0; j < 1000; j++) {
3968 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3969 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3970 		if (val & MCPR_ACCESS_LOCK_LOCK)
3971 			break;
3972 
3973 		usleep_range(5000, 10000);
3974 	}
3975 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3976 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3977 		rc = -EBUSY;
3978 	}
3979 
3980 	return rc;
3981 }
3982 
3983 /* release split MCP access lock register */
3984 static void bnx2x_release_alr(struct bnx2x *bp)
3985 {
3986 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3987 }
3988 
3989 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3990 #define BNX2X_DEF_SB_IDX	0x0002
3991 
3992 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3993 {
3994 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3995 	u16 rc = 0;
3996 
3997 	barrier(); /* status block is written to by the chip */
3998 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3999 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4000 		rc |= BNX2X_DEF_SB_ATT_IDX;
4001 	}
4002 
4003 	if (bp->def_idx != def_sb->sp_sb.running_index) {
4004 		bp->def_idx = def_sb->sp_sb.running_index;
4005 		rc |= BNX2X_DEF_SB_IDX;
4006 	}
4007 
4008 	/* Do not reorder: indices reading should complete before handling */
4009 	barrier();
4010 	return rc;
4011 }
4012 
4013 /*
4014  * slow path service functions
4015  */
4016 
4017 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4018 {
4019 	int port = BP_PORT(bp);
4020 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4021 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4022 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4023 				       NIG_REG_MASK_INTERRUPT_PORT0;
4024 	u32 aeu_mask;
4025 	u32 nig_mask = 0;
4026 	u32 reg_addr;
4027 
4028 	if (bp->attn_state & asserted)
4029 		BNX2X_ERR("IGU ERROR\n");
4030 
4031 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4032 	aeu_mask = REG_RD(bp, aeu_addr);
4033 
4034 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4035 	   aeu_mask, asserted);
4036 	aeu_mask &= ~(asserted & 0x3ff);
4037 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4038 
4039 	REG_WR(bp, aeu_addr, aeu_mask);
4040 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4041 
4042 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4043 	bp->attn_state |= asserted;
4044 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4045 
4046 	if (asserted & ATTN_HARD_WIRED_MASK) {
4047 		if (asserted & ATTN_NIG_FOR_FUNC) {
4048 
4049 			bnx2x_acquire_phy_lock(bp);
4050 
4051 			/* save nig interrupt mask */
4052 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4053 
4054 			/* If nig_mask is not set, no need to call the update
4055 			 * function.
4056 			 */
4057 			if (nig_mask) {
4058 				REG_WR(bp, nig_int_mask_addr, 0);
4059 
4060 				bnx2x_link_attn(bp);
4061 			}
4062 
4063 			/* handle unicore attn? */
4064 		}
4065 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4066 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4067 
4068 		if (asserted & GPIO_2_FUNC)
4069 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4070 
4071 		if (asserted & GPIO_3_FUNC)
4072 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4073 
4074 		if (asserted & GPIO_4_FUNC)
4075 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4076 
4077 		if (port == 0) {
4078 			if (asserted & ATTN_GENERAL_ATTN_1) {
4079 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4080 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4081 			}
4082 			if (asserted & ATTN_GENERAL_ATTN_2) {
4083 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4084 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4085 			}
4086 			if (asserted & ATTN_GENERAL_ATTN_3) {
4087 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4088 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4089 			}
4090 		} else {
4091 			if (asserted & ATTN_GENERAL_ATTN_4) {
4092 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4093 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4094 			}
4095 			if (asserted & ATTN_GENERAL_ATTN_5) {
4096 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4097 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4098 			}
4099 			if (asserted & ATTN_GENERAL_ATTN_6) {
4100 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4101 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4102 			}
4103 		}
4104 
4105 	} /* if hardwired */
4106 
4107 	if (bp->common.int_block == INT_BLOCK_HC)
4108 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4109 			    COMMAND_REG_ATTN_BITS_SET);
4110 	else
4111 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4112 
4113 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4114 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4115 	REG_WR(bp, reg_addr, asserted);
4116 
4117 	/* now set back the mask */
4118 	if (asserted & ATTN_NIG_FOR_FUNC) {
4119 		/* Verify that IGU ack through BAR was written before restoring
4120 		 * NIG mask. This loop should exit after 2-3 iterations max.
4121 		 */
4122 		if (bp->common.int_block != INT_BLOCK_HC) {
4123 			u32 cnt = 0, igu_acked;
4124 			do {
4125 				igu_acked = REG_RD(bp,
4126 						   IGU_REG_ATTENTION_ACK_BITS);
4127 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4128 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4129 			if (!igu_acked)
4130 				DP(NETIF_MSG_HW,
4131 				   "Failed to verify IGU ack on time\n");
4132 			barrier();
4133 		}
4134 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4135 		bnx2x_release_phy_lock(bp);
4136 	}
4137 }
4138 
4139 static void bnx2x_fan_failure(struct bnx2x *bp)
4140 {
4141 	int port = BP_PORT(bp);
4142 	u32 ext_phy_config;
4143 	/* mark the failure */
4144 	ext_phy_config =
4145 		SHMEM_RD(bp,
4146 			 dev_info.port_hw_config[port].external_phy_config);
4147 
4148 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4149 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4150 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4151 		 ext_phy_config);
4152 
4153 	/* log the failure */
4154 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4155 			    "Please contact OEM Support for assistance\n");
4156 
4157 	/* Schedule device reset (unload)
4158 	 * This is due to some boards consuming sufficient power when driver is
4159 	 * up to overheat if fan fails.
4160 	 */
4161 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4162 }
4163 
4164 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4165 {
4166 	int port = BP_PORT(bp);
4167 	int reg_offset;
4168 	u32 val;
4169 
4170 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4171 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4172 
4173 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4174 
4175 		val = REG_RD(bp, reg_offset);
4176 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4177 		REG_WR(bp, reg_offset, val);
4178 
4179 		BNX2X_ERR("SPIO5 hw attention\n");
4180 
4181 		/* Fan failure attention */
4182 		bnx2x_hw_reset_phy(&bp->link_params);
4183 		bnx2x_fan_failure(bp);
4184 	}
4185 
4186 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4187 		bnx2x_acquire_phy_lock(bp);
4188 		bnx2x_handle_module_detect_int(&bp->link_params);
4189 		bnx2x_release_phy_lock(bp);
4190 	}
4191 
4192 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4193 
4194 		val = REG_RD(bp, reg_offset);
4195 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4196 		REG_WR(bp, reg_offset, val);
4197 
4198 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4199 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4200 		bnx2x_panic();
4201 	}
4202 }
4203 
4204 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4205 {
4206 	u32 val;
4207 
4208 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4209 
4210 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4211 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4212 		/* DORQ discard attention */
4213 		if (val & 0x2)
4214 			BNX2X_ERR("FATAL error from DORQ\n");
4215 	}
4216 
4217 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4218 
4219 		int port = BP_PORT(bp);
4220 		int reg_offset;
4221 
4222 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4223 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4224 
4225 		val = REG_RD(bp, reg_offset);
4226 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4227 		REG_WR(bp, reg_offset, val);
4228 
4229 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4230 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4231 		bnx2x_panic();
4232 	}
4233 }
4234 
4235 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4236 {
4237 	u32 val;
4238 
4239 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4240 
4241 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4242 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4243 		/* CFC error attention */
4244 		if (val & 0x2)
4245 			BNX2X_ERR("FATAL error from CFC\n");
4246 	}
4247 
4248 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4249 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4250 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4251 		/* RQ_USDMDP_FIFO_OVERFLOW */
4252 		if (val & 0x18000)
4253 			BNX2X_ERR("FATAL error from PXP\n");
4254 
4255 		if (!CHIP_IS_E1x(bp)) {
4256 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4257 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4258 		}
4259 	}
4260 
4261 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4262 
4263 		int port = BP_PORT(bp);
4264 		int reg_offset;
4265 
4266 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4267 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4268 
4269 		val = REG_RD(bp, reg_offset);
4270 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4271 		REG_WR(bp, reg_offset, val);
4272 
4273 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4274 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4275 		bnx2x_panic();
4276 	}
4277 }
4278 
4279 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4280 {
4281 	u32 val;
4282 
4283 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4284 
4285 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4286 			int func = BP_FUNC(bp);
4287 
4288 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4289 			bnx2x_read_mf_cfg(bp);
4290 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4291 					func_mf_config[BP_ABS_FUNC(bp)].config);
4292 			val = SHMEM_RD(bp,
4293 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4294 
4295 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4296 				   DRV_STATUS_OEM_EVENT_MASK))
4297 				bnx2x_oem_event(bp,
4298 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4299 						DRV_STATUS_OEM_EVENT_MASK)));
4300 
4301 			if (val & DRV_STATUS_SET_MF_BW)
4302 				bnx2x_set_mf_bw(bp);
4303 
4304 			if (val & DRV_STATUS_DRV_INFO_REQ)
4305 				bnx2x_handle_drv_info_req(bp);
4306 
4307 			if (val & DRV_STATUS_VF_DISABLED)
4308 				bnx2x_schedule_iov_task(bp,
4309 							BNX2X_IOV_HANDLE_FLR);
4310 
4311 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4312 				bnx2x_pmf_update(bp);
4313 
4314 			if (bp->port.pmf &&
4315 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4316 				bp->dcbx_enabled > 0)
4317 				/* start dcbx state machine */
4318 				bnx2x_dcbx_set_params(bp,
4319 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4320 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4321 				bnx2x_handle_afex_cmd(bp,
4322 					val & DRV_STATUS_AFEX_EVENT_MASK);
4323 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4324 				bnx2x_handle_eee_event(bp);
4325 
4326 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4327 				bnx2x_schedule_sp_rtnl(bp,
4328 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4329 
4330 			if (bp->link_vars.periodic_flags &
4331 			    PERIODIC_FLAGS_LINK_EVENT) {
4332 				/*  sync with link */
4333 				bnx2x_acquire_phy_lock(bp);
4334 				bp->link_vars.periodic_flags &=
4335 					~PERIODIC_FLAGS_LINK_EVENT;
4336 				bnx2x_release_phy_lock(bp);
4337 				if (IS_MF(bp))
4338 					bnx2x_link_sync_notify(bp);
4339 				bnx2x_link_report(bp);
4340 			}
4341 			/* Always call it here: bnx2x_link_report() will
4342 			 * prevent the link indication duplication.
4343 			 */
4344 			bnx2x__link_status_update(bp);
4345 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4346 
4347 			BNX2X_ERR("MC assert!\n");
4348 			bnx2x_mc_assert(bp);
4349 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4350 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4351 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4352 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4353 			bnx2x_panic();
4354 
4355 		} else if (attn & BNX2X_MCP_ASSERT) {
4356 
4357 			BNX2X_ERR("MCP assert!\n");
4358 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4359 			bnx2x_fw_dump(bp);
4360 
4361 		} else
4362 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4363 	}
4364 
4365 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4366 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4367 		if (attn & BNX2X_GRC_TIMEOUT) {
4368 			val = CHIP_IS_E1(bp) ? 0 :
4369 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4370 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4371 		}
4372 		if (attn & BNX2X_GRC_RSV) {
4373 			val = CHIP_IS_E1(bp) ? 0 :
4374 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4375 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4376 		}
4377 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4378 	}
4379 }
4380 
4381 /*
4382  * Bits map:
4383  * 0-7   - Engine0 load counter.
4384  * 8-15  - Engine1 load counter.
4385  * 16    - Engine0 RESET_IN_PROGRESS bit.
4386  * 17    - Engine1 RESET_IN_PROGRESS bit.
4387  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4388  *         on the engine
4389  * 19    - Engine1 ONE_IS_LOADED.
4390  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4391  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4392  *         just the one belonging to its engine).
4393  *
4394  */
4395 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4396 
4397 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4398 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4399 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4400 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4401 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4402 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4403 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4404 
4405 /*
4406  * Set the GLOBAL_RESET bit.
4407  *
4408  * Should be run under rtnl lock
4409  */
4410 void bnx2x_set_reset_global(struct bnx2x *bp)
4411 {
4412 	u32 val;
4413 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4415 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4416 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4417 }
4418 
4419 /*
4420  * Clear the GLOBAL_RESET bit.
4421  *
4422  * Should be run under rtnl lock
4423  */
4424 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4425 {
4426 	u32 val;
4427 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4428 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4429 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4430 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4431 }
4432 
4433 /*
4434  * Checks the GLOBAL_RESET bit.
4435  *
4436  * should be run under rtnl lock
4437  */
4438 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4439 {
4440 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4441 
4442 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4443 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4444 }
4445 
4446 /*
4447  * Clear RESET_IN_PROGRESS bit for the current engine.
4448  *
4449  * Should be run under rtnl lock
4450  */
4451 static void bnx2x_set_reset_done(struct bnx2x *bp)
4452 {
4453 	u32 val;
4454 	u32 bit = BP_PATH(bp) ?
4455 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4456 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4457 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4458 
4459 	/* Clear the bit */
4460 	val &= ~bit;
4461 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4462 
4463 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4464 }
4465 
4466 /*
4467  * Set RESET_IN_PROGRESS for the current engine.
4468  *
4469  * should be run under rtnl lock
4470  */
4471 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4472 {
4473 	u32 val;
4474 	u32 bit = BP_PATH(bp) ?
4475 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4476 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4477 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4478 
4479 	/* Set the bit */
4480 	val |= bit;
4481 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4482 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4483 }
4484 
4485 /*
4486  * Checks the RESET_IN_PROGRESS bit for the given engine.
4487  * should be run under rtnl lock
4488  */
4489 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4490 {
4491 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4492 	u32 bit = engine ?
4493 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4494 
4495 	/* return false if bit is set */
4496 	return (val & bit) ? false : true;
4497 }
4498 
4499 /*
4500  * set pf load for the current pf.
4501  *
4502  * should be run under rtnl lock
4503  */
4504 void bnx2x_set_pf_load(struct bnx2x *bp)
4505 {
4506 	u32 val1, val;
4507 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4508 			     BNX2X_PATH0_LOAD_CNT_MASK;
4509 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4510 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4511 
4512 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4513 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4514 
4515 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4516 
4517 	/* get the current counter value */
4518 	val1 = (val & mask) >> shift;
4519 
4520 	/* set bit of that PF */
4521 	val1 |= (1 << bp->pf_num);
4522 
4523 	/* clear the old value */
4524 	val &= ~mask;
4525 
4526 	/* set the new one */
4527 	val |= ((val1 << shift) & mask);
4528 
4529 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4530 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4531 }
4532 
4533 /**
4534  * bnx2x_clear_pf_load - clear pf load mark
4535  *
4536  * @bp:		driver handle
4537  *
4538  * Should be run under rtnl lock.
4539  * Decrements the load counter for the current engine. Returns
4540  * whether other functions are still loaded
4541  */
4542 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4543 {
4544 	u32 val1, val;
4545 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4546 			     BNX2X_PATH0_LOAD_CNT_MASK;
4547 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4548 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4549 
4550 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4551 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4552 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4553 
4554 	/* get the current counter value */
4555 	val1 = (val & mask) >> shift;
4556 
4557 	/* clear bit of that PF */
4558 	val1 &= ~(1 << bp->pf_num);
4559 
4560 	/* clear the old value */
4561 	val &= ~mask;
4562 
4563 	/* set the new one */
4564 	val |= ((val1 << shift) & mask);
4565 
4566 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4567 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4568 	return val1 != 0;
4569 }
4570 
4571 /*
4572  * Read the load status for the current engine.
4573  *
4574  * should be run under rtnl lock
4575  */
4576 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4577 {
4578 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4579 			     BNX2X_PATH0_LOAD_CNT_MASK);
4580 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4581 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4582 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4583 
4584 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4585 
4586 	val = (val & mask) >> shift;
4587 
4588 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4589 	   engine, val);
4590 
4591 	return val != 0;
4592 }
4593 
4594 static void _print_parity(struct bnx2x *bp, u32 reg)
4595 {
4596 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4597 }
4598 
4599 static void _print_next_block(int idx, const char *blk)
4600 {
4601 	pr_cont("%s%s", idx ? ", " : "", blk);
4602 }
4603 
4604 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4605 					    int *par_num, bool print)
4606 {
4607 	u32 cur_bit;
4608 	bool res;
4609 	int i;
4610 
4611 	res = false;
4612 
4613 	for (i = 0; sig; i++) {
4614 		cur_bit = (0x1UL << i);
4615 		if (sig & cur_bit) {
4616 			res |= true; /* Each bit is real error! */
4617 
4618 			if (print) {
4619 				switch (cur_bit) {
4620 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4621 					_print_next_block((*par_num)++, "BRB");
4622 					_print_parity(bp,
4623 						      BRB1_REG_BRB1_PRTY_STS);
4624 					break;
4625 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4626 					_print_next_block((*par_num)++,
4627 							  "PARSER");
4628 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4629 					break;
4630 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4631 					_print_next_block((*par_num)++, "TSDM");
4632 					_print_parity(bp,
4633 						      TSDM_REG_TSDM_PRTY_STS);
4634 					break;
4635 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4636 					_print_next_block((*par_num)++,
4637 							  "SEARCHER");
4638 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4639 					break;
4640 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4641 					_print_next_block((*par_num)++, "TCM");
4642 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4643 					break;
4644 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4645 					_print_next_block((*par_num)++,
4646 							  "TSEMI");
4647 					_print_parity(bp,
4648 						      TSEM_REG_TSEM_PRTY_STS_0);
4649 					_print_parity(bp,
4650 						      TSEM_REG_TSEM_PRTY_STS_1);
4651 					break;
4652 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4653 					_print_next_block((*par_num)++, "XPB");
4654 					_print_parity(bp, GRCBASE_XPB +
4655 							  PB_REG_PB_PRTY_STS);
4656 					break;
4657 				}
4658 			}
4659 
4660 			/* Clear the bit */
4661 			sig &= ~cur_bit;
4662 		}
4663 	}
4664 
4665 	return res;
4666 }
4667 
4668 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4669 					    int *par_num, bool *global,
4670 					    bool print)
4671 {
4672 	u32 cur_bit;
4673 	bool res;
4674 	int i;
4675 
4676 	res = false;
4677 
4678 	for (i = 0; sig; i++) {
4679 		cur_bit = (0x1UL << i);
4680 		if (sig & cur_bit) {
4681 			res |= true; /* Each bit is real error! */
4682 			switch (cur_bit) {
4683 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4684 				if (print) {
4685 					_print_next_block((*par_num)++, "PBF");
4686 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4687 				}
4688 				break;
4689 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4690 				if (print) {
4691 					_print_next_block((*par_num)++, "QM");
4692 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4693 				}
4694 				break;
4695 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4696 				if (print) {
4697 					_print_next_block((*par_num)++, "TM");
4698 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4699 				}
4700 				break;
4701 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4702 				if (print) {
4703 					_print_next_block((*par_num)++, "XSDM");
4704 					_print_parity(bp,
4705 						      XSDM_REG_XSDM_PRTY_STS);
4706 				}
4707 				break;
4708 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4709 				if (print) {
4710 					_print_next_block((*par_num)++, "XCM");
4711 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4712 				}
4713 				break;
4714 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4715 				if (print) {
4716 					_print_next_block((*par_num)++,
4717 							  "XSEMI");
4718 					_print_parity(bp,
4719 						      XSEM_REG_XSEM_PRTY_STS_0);
4720 					_print_parity(bp,
4721 						      XSEM_REG_XSEM_PRTY_STS_1);
4722 				}
4723 				break;
4724 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4725 				if (print) {
4726 					_print_next_block((*par_num)++,
4727 							  "DOORBELLQ");
4728 					_print_parity(bp,
4729 						      DORQ_REG_DORQ_PRTY_STS);
4730 				}
4731 				break;
4732 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4733 				if (print) {
4734 					_print_next_block((*par_num)++, "NIG");
4735 					if (CHIP_IS_E1x(bp)) {
4736 						_print_parity(bp,
4737 							NIG_REG_NIG_PRTY_STS);
4738 					} else {
4739 						_print_parity(bp,
4740 							NIG_REG_NIG_PRTY_STS_0);
4741 						_print_parity(bp,
4742 							NIG_REG_NIG_PRTY_STS_1);
4743 					}
4744 				}
4745 				break;
4746 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4747 				if (print)
4748 					_print_next_block((*par_num)++,
4749 							  "VAUX PCI CORE");
4750 				*global = true;
4751 				break;
4752 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4753 				if (print) {
4754 					_print_next_block((*par_num)++,
4755 							  "DEBUG");
4756 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4757 				}
4758 				break;
4759 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4760 				if (print) {
4761 					_print_next_block((*par_num)++, "USDM");
4762 					_print_parity(bp,
4763 						      USDM_REG_USDM_PRTY_STS);
4764 				}
4765 				break;
4766 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4767 				if (print) {
4768 					_print_next_block((*par_num)++, "UCM");
4769 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4770 				}
4771 				break;
4772 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4773 				if (print) {
4774 					_print_next_block((*par_num)++,
4775 							  "USEMI");
4776 					_print_parity(bp,
4777 						      USEM_REG_USEM_PRTY_STS_0);
4778 					_print_parity(bp,
4779 						      USEM_REG_USEM_PRTY_STS_1);
4780 				}
4781 				break;
4782 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4783 				if (print) {
4784 					_print_next_block((*par_num)++, "UPB");
4785 					_print_parity(bp, GRCBASE_UPB +
4786 							  PB_REG_PB_PRTY_STS);
4787 				}
4788 				break;
4789 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4790 				if (print) {
4791 					_print_next_block((*par_num)++, "CSDM");
4792 					_print_parity(bp,
4793 						      CSDM_REG_CSDM_PRTY_STS);
4794 				}
4795 				break;
4796 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4797 				if (print) {
4798 					_print_next_block((*par_num)++, "CCM");
4799 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4800 				}
4801 				break;
4802 			}
4803 
4804 			/* Clear the bit */
4805 			sig &= ~cur_bit;
4806 		}
4807 	}
4808 
4809 	return res;
4810 }
4811 
4812 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4813 					    int *par_num, bool print)
4814 {
4815 	u32 cur_bit;
4816 	bool res;
4817 	int i;
4818 
4819 	res = false;
4820 
4821 	for (i = 0; sig; i++) {
4822 		cur_bit = (0x1UL << i);
4823 		if (sig & cur_bit) {
4824 			res = true; /* Each bit is real error! */
4825 			if (print) {
4826 				switch (cur_bit) {
4827 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4828 					_print_next_block((*par_num)++,
4829 							  "CSEMI");
4830 					_print_parity(bp,
4831 						      CSEM_REG_CSEM_PRTY_STS_0);
4832 					_print_parity(bp,
4833 						      CSEM_REG_CSEM_PRTY_STS_1);
4834 					break;
4835 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4836 					_print_next_block((*par_num)++, "PXP");
4837 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4838 					_print_parity(bp,
4839 						      PXP2_REG_PXP2_PRTY_STS_0);
4840 					_print_parity(bp,
4841 						      PXP2_REG_PXP2_PRTY_STS_1);
4842 					break;
4843 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4844 					_print_next_block((*par_num)++,
4845 							  "PXPPCICLOCKCLIENT");
4846 					break;
4847 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4848 					_print_next_block((*par_num)++, "CFC");
4849 					_print_parity(bp,
4850 						      CFC_REG_CFC_PRTY_STS);
4851 					break;
4852 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4853 					_print_next_block((*par_num)++, "CDU");
4854 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4855 					break;
4856 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4857 					_print_next_block((*par_num)++, "DMAE");
4858 					_print_parity(bp,
4859 						      DMAE_REG_DMAE_PRTY_STS);
4860 					break;
4861 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4862 					_print_next_block((*par_num)++, "IGU");
4863 					if (CHIP_IS_E1x(bp))
4864 						_print_parity(bp,
4865 							HC_REG_HC_PRTY_STS);
4866 					else
4867 						_print_parity(bp,
4868 							IGU_REG_IGU_PRTY_STS);
4869 					break;
4870 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4871 					_print_next_block((*par_num)++, "MISC");
4872 					_print_parity(bp,
4873 						      MISC_REG_MISC_PRTY_STS);
4874 					break;
4875 				}
4876 			}
4877 
4878 			/* Clear the bit */
4879 			sig &= ~cur_bit;
4880 		}
4881 	}
4882 
4883 	return res;
4884 }
4885 
4886 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4887 					    int *par_num, bool *global,
4888 					    bool print)
4889 {
4890 	bool res = false;
4891 	u32 cur_bit;
4892 	int i;
4893 
4894 	for (i = 0; sig; i++) {
4895 		cur_bit = (0x1UL << i);
4896 		if (sig & cur_bit) {
4897 			switch (cur_bit) {
4898 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4899 				if (print)
4900 					_print_next_block((*par_num)++,
4901 							  "MCP ROM");
4902 				*global = true;
4903 				res = true;
4904 				break;
4905 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4906 				if (print)
4907 					_print_next_block((*par_num)++,
4908 							  "MCP UMP RX");
4909 				*global = true;
4910 				res = true;
4911 				break;
4912 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4913 				if (print)
4914 					_print_next_block((*par_num)++,
4915 							  "MCP UMP TX");
4916 				*global = true;
4917 				res = true;
4918 				break;
4919 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4920 				(*par_num)++;
4921 				/* clear latched SCPAD PATIRY from MCP */
4922 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4923 				       1UL << 10);
4924 				break;
4925 			}
4926 
4927 			/* Clear the bit */
4928 			sig &= ~cur_bit;
4929 		}
4930 	}
4931 
4932 	return res;
4933 }
4934 
4935 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4936 					    int *par_num, bool print)
4937 {
4938 	u32 cur_bit;
4939 	bool res;
4940 	int i;
4941 
4942 	res = false;
4943 
4944 	for (i = 0; sig; i++) {
4945 		cur_bit = (0x1UL << i);
4946 		if (sig & cur_bit) {
4947 			res = true; /* Each bit is real error! */
4948 			if (print) {
4949 				switch (cur_bit) {
4950 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4951 					_print_next_block((*par_num)++,
4952 							  "PGLUE_B");
4953 					_print_parity(bp,
4954 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4955 					break;
4956 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4957 					_print_next_block((*par_num)++, "ATC");
4958 					_print_parity(bp,
4959 						      ATC_REG_ATC_PRTY_STS);
4960 					break;
4961 				}
4962 			}
4963 			/* Clear the bit */
4964 			sig &= ~cur_bit;
4965 		}
4966 	}
4967 
4968 	return res;
4969 }
4970 
4971 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4972 			      u32 *sig)
4973 {
4974 	bool res = false;
4975 
4976 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4977 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4978 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4979 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4980 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4981 		int par_num = 0;
4982 
4983 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4984 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4985 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4986 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4987 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4988 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4989 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4990 		if (print) {
4991 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4992 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4993 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4994 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4995 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4996 				netdev_err(bp->dev,
4997 					   "Parity errors detected in blocks: ");
4998 			} else {
4999 				print = false;
5000 			}
5001 		}
5002 		res |= bnx2x_check_blocks_with_parity0(bp,
5003 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5004 		res |= bnx2x_check_blocks_with_parity1(bp,
5005 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5006 		res |= bnx2x_check_blocks_with_parity2(bp,
5007 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5008 		res |= bnx2x_check_blocks_with_parity3(bp,
5009 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5010 		res |= bnx2x_check_blocks_with_parity4(bp,
5011 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5012 
5013 		if (print)
5014 			pr_cont("\n");
5015 	}
5016 
5017 	return res;
5018 }
5019 
5020 /**
5021  * bnx2x_chk_parity_attn - checks for parity attentions.
5022  *
5023  * @bp:		driver handle
5024  * @global:	true if there was a global attention
5025  * @print:	show parity attention in syslog
5026  */
5027 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5028 {
5029 	struct attn_route attn = { {0} };
5030 	int port = BP_PORT(bp);
5031 
5032 	attn.sig[0] = REG_RD(bp,
5033 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5034 			     port*4);
5035 	attn.sig[1] = REG_RD(bp,
5036 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5037 			     port*4);
5038 	attn.sig[2] = REG_RD(bp,
5039 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5040 			     port*4);
5041 	attn.sig[3] = REG_RD(bp,
5042 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5043 			     port*4);
5044 	/* Since MCP attentions can't be disabled inside the block, we need to
5045 	 * read AEU registers to see whether they're currently disabled
5046 	 */
5047 	attn.sig[3] &= ((REG_RD(bp,
5048 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5049 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5050 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5051 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5052 
5053 	if (!CHIP_IS_E1x(bp))
5054 		attn.sig[4] = REG_RD(bp,
5055 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5056 				     port*4);
5057 
5058 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5059 }
5060 
5061 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5062 {
5063 	u32 val;
5064 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5065 
5066 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5067 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5068 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5069 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5070 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5071 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5072 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5073 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5074 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5075 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5076 		if (val &
5077 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5078 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5079 		if (val &
5080 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5081 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5082 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5083 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5084 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5085 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5086 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5087 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5088 	}
5089 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5090 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5091 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5092 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5093 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5094 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5095 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5096 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5097 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5098 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5099 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5100 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5101 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5102 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5103 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5104 	}
5105 
5106 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5107 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5108 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5109 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5110 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5111 	}
5112 }
5113 
5114 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5115 {
5116 	struct attn_route attn, *group_mask;
5117 	int port = BP_PORT(bp);
5118 	int index;
5119 	u32 reg_addr;
5120 	u32 val;
5121 	u32 aeu_mask;
5122 	bool global = false;
5123 
5124 	/* need to take HW lock because MCP or other port might also
5125 	   try to handle this event */
5126 	bnx2x_acquire_alr(bp);
5127 
5128 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5129 #ifndef BNX2X_STOP_ON_ERROR
5130 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5131 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5132 		/* Disable HW interrupts */
5133 		bnx2x_int_disable(bp);
5134 		/* In case of parity errors don't handle attentions so that
5135 		 * other function would "see" parity errors.
5136 		 */
5137 #else
5138 		bnx2x_panic();
5139 #endif
5140 		bnx2x_release_alr(bp);
5141 		return;
5142 	}
5143 
5144 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5145 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5146 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5147 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5148 	if (!CHIP_IS_E1x(bp))
5149 		attn.sig[4] =
5150 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5151 	else
5152 		attn.sig[4] = 0;
5153 
5154 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5155 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5156 
5157 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5158 		if (deasserted & (1 << index)) {
5159 			group_mask = &bp->attn_group[index];
5160 
5161 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5162 			   index,
5163 			   group_mask->sig[0], group_mask->sig[1],
5164 			   group_mask->sig[2], group_mask->sig[3],
5165 			   group_mask->sig[4]);
5166 
5167 			bnx2x_attn_int_deasserted4(bp,
5168 					attn.sig[4] & group_mask->sig[4]);
5169 			bnx2x_attn_int_deasserted3(bp,
5170 					attn.sig[3] & group_mask->sig[3]);
5171 			bnx2x_attn_int_deasserted1(bp,
5172 					attn.sig[1] & group_mask->sig[1]);
5173 			bnx2x_attn_int_deasserted2(bp,
5174 					attn.sig[2] & group_mask->sig[2]);
5175 			bnx2x_attn_int_deasserted0(bp,
5176 					attn.sig[0] & group_mask->sig[0]);
5177 		}
5178 	}
5179 
5180 	bnx2x_release_alr(bp);
5181 
5182 	if (bp->common.int_block == INT_BLOCK_HC)
5183 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5184 			    COMMAND_REG_ATTN_BITS_CLR);
5185 	else
5186 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5187 
5188 	val = ~deasserted;
5189 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5190 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5191 	REG_WR(bp, reg_addr, val);
5192 
5193 	if (~bp->attn_state & deasserted)
5194 		BNX2X_ERR("IGU ERROR\n");
5195 
5196 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5197 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5198 
5199 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5200 	aeu_mask = REG_RD(bp, reg_addr);
5201 
5202 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5203 	   aeu_mask, deasserted);
5204 	aeu_mask |= (deasserted & 0x3ff);
5205 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5206 
5207 	REG_WR(bp, reg_addr, aeu_mask);
5208 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5209 
5210 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5211 	bp->attn_state &= ~deasserted;
5212 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5213 }
5214 
5215 static void bnx2x_attn_int(struct bnx2x *bp)
5216 {
5217 	/* read local copy of bits */
5218 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5219 								attn_bits);
5220 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5221 								attn_bits_ack);
5222 	u32 attn_state = bp->attn_state;
5223 
5224 	/* look for changed bits */
5225 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5226 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5227 
5228 	DP(NETIF_MSG_HW,
5229 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5230 	   attn_bits, attn_ack, asserted, deasserted);
5231 
5232 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5233 		BNX2X_ERR("BAD attention state\n");
5234 
5235 	/* handle bits that were raised */
5236 	if (asserted)
5237 		bnx2x_attn_int_asserted(bp, asserted);
5238 
5239 	if (deasserted)
5240 		bnx2x_attn_int_deasserted(bp, deasserted);
5241 }
5242 
5243 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5244 		      u16 index, u8 op, u8 update)
5245 {
5246 	u32 igu_addr = bp->igu_base_addr;
5247 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5248 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5249 			     igu_addr);
5250 }
5251 
5252 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5253 {
5254 	/* No memory barriers */
5255 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5256 }
5257 
5258 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5259 				      union event_ring_elem *elem)
5260 {
5261 	u8 err = elem->message.error;
5262 
5263 	if (!bp->cnic_eth_dev.starting_cid  ||
5264 	    (cid < bp->cnic_eth_dev.starting_cid &&
5265 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5266 		return 1;
5267 
5268 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5269 
5270 	if (unlikely(err)) {
5271 
5272 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5273 			  cid);
5274 		bnx2x_panic_dump(bp, false);
5275 	}
5276 	bnx2x_cnic_cfc_comp(bp, cid, err);
5277 	return 0;
5278 }
5279 
5280 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5281 {
5282 	struct bnx2x_mcast_ramrod_params rparam;
5283 	int rc;
5284 
5285 	memset(&rparam, 0, sizeof(rparam));
5286 
5287 	rparam.mcast_obj = &bp->mcast_obj;
5288 
5289 	netif_addr_lock_bh(bp->dev);
5290 
5291 	/* Clear pending state for the last command */
5292 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5293 
5294 	/* If there are pending mcast commands - send them */
5295 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5296 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5297 		if (rc < 0)
5298 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5299 				  rc);
5300 	}
5301 
5302 	netif_addr_unlock_bh(bp->dev);
5303 }
5304 
5305 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5306 					    union event_ring_elem *elem)
5307 {
5308 	unsigned long ramrod_flags = 0;
5309 	int rc = 0;
5310 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5311 	u32 cid = echo & BNX2X_SWCID_MASK;
5312 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5313 
5314 	/* Always push next commands out, don't wait here */
5315 	__set_bit(RAMROD_CONT, &ramrod_flags);
5316 
5317 	switch (echo >> BNX2X_SWCID_SHIFT) {
5318 	case BNX2X_FILTER_MAC_PENDING:
5319 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5320 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5321 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5322 		else
5323 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5324 
5325 		break;
5326 	case BNX2X_FILTER_VLAN_PENDING:
5327 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5328 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5329 		break;
5330 	case BNX2X_FILTER_MCAST_PENDING:
5331 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5332 		/* This is only relevant for 57710 where multicast MACs are
5333 		 * configured as unicast MACs using the same ramrod.
5334 		 */
5335 		bnx2x_handle_mcast_eqe(bp);
5336 		return;
5337 	default:
5338 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5339 		return;
5340 	}
5341 
5342 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5343 
5344 	if (rc < 0)
5345 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5346 	else if (rc > 0)
5347 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5348 }
5349 
5350 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5351 
5352 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5353 {
5354 	netif_addr_lock_bh(bp->dev);
5355 
5356 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5357 
5358 	/* Send rx_mode command again if was requested */
5359 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5360 		bnx2x_set_storm_rx_mode(bp);
5361 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5362 				    &bp->sp_state))
5363 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5364 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5365 				    &bp->sp_state))
5366 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5367 
5368 	netif_addr_unlock_bh(bp->dev);
5369 }
5370 
5371 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5372 					      union event_ring_elem *elem)
5373 {
5374 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5375 		DP(BNX2X_MSG_SP,
5376 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5377 		   elem->message.data.vif_list_event.func_bit_map);
5378 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5379 			elem->message.data.vif_list_event.func_bit_map);
5380 	} else if (elem->message.data.vif_list_event.echo ==
5381 		   VIF_LIST_RULE_SET) {
5382 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5383 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5384 	}
5385 }
5386 
5387 /* called with rtnl_lock */
5388 static void bnx2x_after_function_update(struct bnx2x *bp)
5389 {
5390 	int q, rc;
5391 	struct bnx2x_fastpath *fp;
5392 	struct bnx2x_queue_state_params queue_params = {NULL};
5393 	struct bnx2x_queue_update_params *q_update_params =
5394 		&queue_params.params.update;
5395 
5396 	/* Send Q update command with afex vlan removal values for all Qs */
5397 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5398 
5399 	/* set silent vlan removal values according to vlan mode */
5400 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5401 		  &q_update_params->update_flags);
5402 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5403 		  &q_update_params->update_flags);
5404 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5405 
5406 	/* in access mode mark mask and value are 0 to strip all vlans */
5407 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5408 		q_update_params->silent_removal_value = 0;
5409 		q_update_params->silent_removal_mask = 0;
5410 	} else {
5411 		q_update_params->silent_removal_value =
5412 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5413 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5414 	}
5415 
5416 	for_each_eth_queue(bp, q) {
5417 		/* Set the appropriate Queue object */
5418 		fp = &bp->fp[q];
5419 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5420 
5421 		/* send the ramrod */
5422 		rc = bnx2x_queue_state_change(bp, &queue_params);
5423 		if (rc < 0)
5424 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5425 				  q);
5426 	}
5427 
5428 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5429 		fp = &bp->fp[FCOE_IDX(bp)];
5430 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5431 
5432 		/* clear pending completion bit */
5433 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5434 
5435 		/* mark latest Q bit */
5436 		smp_mb__before_atomic();
5437 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5438 		smp_mb__after_atomic();
5439 
5440 		/* send Q update ramrod for FCoE Q */
5441 		rc = bnx2x_queue_state_change(bp, &queue_params);
5442 		if (rc < 0)
5443 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5444 				  q);
5445 	} else {
5446 		/* If no FCoE ring - ACK MCP now */
5447 		bnx2x_link_report(bp);
5448 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5449 	}
5450 }
5451 
5452 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5453 	struct bnx2x *bp, u32 cid)
5454 {
5455 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5456 
5457 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5458 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5459 	else
5460 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5461 }
5462 
5463 static void bnx2x_eq_int(struct bnx2x *bp)
5464 {
5465 	u16 hw_cons, sw_cons, sw_prod;
5466 	union event_ring_elem *elem;
5467 	u8 echo;
5468 	u32 cid;
5469 	u8 opcode;
5470 	int rc, spqe_cnt = 0;
5471 	struct bnx2x_queue_sp_obj *q_obj;
5472 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5473 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5474 
5475 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5476 
5477 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5478 	 * when we get the next-page we need to adjust so the loop
5479 	 * condition below will be met. The next element is the size of a
5480 	 * regular element and hence incrementing by 1
5481 	 */
5482 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5483 		hw_cons++;
5484 
5485 	/* This function may never run in parallel with itself for a
5486 	 * specific bp, thus there is no need in "paired" read memory
5487 	 * barrier here.
5488 	 */
5489 	sw_cons = bp->eq_cons;
5490 	sw_prod = bp->eq_prod;
5491 
5492 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5493 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5494 
5495 	for (; sw_cons != hw_cons;
5496 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5497 
5498 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5499 
5500 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5501 		if (!rc) {
5502 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5503 			   rc);
5504 			goto next_spqe;
5505 		}
5506 
5507 		opcode = elem->message.opcode;
5508 
5509 		/* handle eq element */
5510 		switch (opcode) {
5511 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5512 			bnx2x_vf_mbx_schedule(bp,
5513 					      &elem->message.data.vf_pf_event);
5514 			continue;
5515 
5516 		case EVENT_RING_OPCODE_STAT_QUERY:
5517 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5518 			       "got statistics comp event %d\n",
5519 			       bp->stats_comp++);
5520 			/* nothing to do with stats comp */
5521 			goto next_spqe;
5522 
5523 		case EVENT_RING_OPCODE_CFC_DEL:
5524 			/* handle according to cid range */
5525 			/*
5526 			 * we may want to verify here that the bp state is
5527 			 * HALTING
5528 			 */
5529 
5530 			/* elem CID originates from FW; actually LE */
5531 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5532 
5533 			DP(BNX2X_MSG_SP,
5534 			   "got delete ramrod for MULTI[%d]\n", cid);
5535 
5536 			if (CNIC_LOADED(bp) &&
5537 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5538 				goto next_spqe;
5539 
5540 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5541 
5542 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5543 				break;
5544 
5545 			goto next_spqe;
5546 
5547 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5548 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5549 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5550 			if (f_obj->complete_cmd(bp, f_obj,
5551 						BNX2X_F_CMD_TX_STOP))
5552 				break;
5553 			goto next_spqe;
5554 
5555 		case EVENT_RING_OPCODE_START_TRAFFIC:
5556 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5557 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5558 			if (f_obj->complete_cmd(bp, f_obj,
5559 						BNX2X_F_CMD_TX_START))
5560 				break;
5561 			goto next_spqe;
5562 
5563 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5564 			echo = elem->message.data.function_update_event.echo;
5565 			if (echo == SWITCH_UPDATE) {
5566 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5567 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5568 				if (f_obj->complete_cmd(
5569 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5570 					break;
5571 
5572 			} else {
5573 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5574 
5575 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5576 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5577 				f_obj->complete_cmd(bp, f_obj,
5578 						    BNX2X_F_CMD_AFEX_UPDATE);
5579 
5580 				/* We will perform the Queues update from
5581 				 * sp_rtnl task as all Queue SP operations
5582 				 * should run under rtnl_lock.
5583 				 */
5584 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5585 			}
5586 
5587 			goto next_spqe;
5588 
5589 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5590 			f_obj->complete_cmd(bp, f_obj,
5591 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5592 			bnx2x_after_afex_vif_lists(bp, elem);
5593 			goto next_spqe;
5594 		case EVENT_RING_OPCODE_FUNCTION_START:
5595 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5596 			   "got FUNC_START ramrod\n");
5597 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5598 				break;
5599 
5600 			goto next_spqe;
5601 
5602 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5603 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5604 			   "got FUNC_STOP ramrod\n");
5605 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5606 				break;
5607 
5608 			goto next_spqe;
5609 
5610 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5611 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5612 			   "got set_timesync ramrod completion\n");
5613 			if (f_obj->complete_cmd(bp, f_obj,
5614 						BNX2X_F_CMD_SET_TIMESYNC))
5615 				break;
5616 			goto next_spqe;
5617 		}
5618 
5619 		switch (opcode | bp->state) {
5620 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5621 		      BNX2X_STATE_OPEN):
5622 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5623 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5624 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5625 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5626 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5627 			   SW_CID(elem->message.data.eth_event.echo));
5628 			rss_raw->clear_pending(rss_raw);
5629 			break;
5630 
5631 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5632 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5633 		case (EVENT_RING_OPCODE_SET_MAC |
5634 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5635 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5636 		      BNX2X_STATE_OPEN):
5637 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5638 		      BNX2X_STATE_DIAG):
5639 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5640 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5641 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5642 			bnx2x_handle_classification_eqe(bp, elem);
5643 			break;
5644 
5645 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5646 		      BNX2X_STATE_OPEN):
5647 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5648 		      BNX2X_STATE_DIAG):
5649 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5650 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5651 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5652 			bnx2x_handle_mcast_eqe(bp);
5653 			break;
5654 
5655 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5656 		      BNX2X_STATE_OPEN):
5657 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5658 		      BNX2X_STATE_DIAG):
5659 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5660 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5661 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5662 			bnx2x_handle_rx_mode_eqe(bp);
5663 			break;
5664 		default:
5665 			/* unknown event log error and continue */
5666 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5667 				  elem->message.opcode, bp->state);
5668 		}
5669 next_spqe:
5670 		spqe_cnt++;
5671 	} /* for */
5672 
5673 	smp_mb__before_atomic();
5674 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5675 
5676 	bp->eq_cons = sw_cons;
5677 	bp->eq_prod = sw_prod;
5678 	/* Make sure that above mem writes were issued towards the memory */
5679 	smp_wmb();
5680 
5681 	/* update producer */
5682 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5683 }
5684 
5685 static void bnx2x_sp_task(struct work_struct *work)
5686 {
5687 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5688 
5689 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5690 
5691 	/* make sure the atomic interrupt_occurred has been written */
5692 	smp_rmb();
5693 	if (atomic_read(&bp->interrupt_occurred)) {
5694 
5695 		/* what work needs to be performed? */
5696 		u16 status = bnx2x_update_dsb_idx(bp);
5697 
5698 		DP(BNX2X_MSG_SP, "status %x\n", status);
5699 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5700 		atomic_set(&bp->interrupt_occurred, 0);
5701 
5702 		/* HW attentions */
5703 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5704 			bnx2x_attn_int(bp);
5705 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5706 		}
5707 
5708 		/* SP events: STAT_QUERY and others */
5709 		if (status & BNX2X_DEF_SB_IDX) {
5710 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5711 
5712 			if (FCOE_INIT(bp) &&
5713 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5714 				/* Prevent local bottom-halves from running as
5715 				 * we are going to change the local NAPI list.
5716 				 */
5717 				local_bh_disable();
5718 				napi_schedule(&bnx2x_fcoe(bp, napi));
5719 				local_bh_enable();
5720 			}
5721 
5722 			/* Handle EQ completions */
5723 			bnx2x_eq_int(bp);
5724 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5725 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5726 
5727 			status &= ~BNX2X_DEF_SB_IDX;
5728 		}
5729 
5730 		/* if status is non zero then perhaps something went wrong */
5731 		if (unlikely(status))
5732 			DP(BNX2X_MSG_SP,
5733 			   "got an unknown interrupt! (status 0x%x)\n", status);
5734 
5735 		/* ack status block only if something was actually handled */
5736 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5737 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5738 	}
5739 
5740 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5741 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5742 			       &bp->sp_state)) {
5743 		bnx2x_link_report(bp);
5744 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5745 	}
5746 }
5747 
5748 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5749 {
5750 	struct net_device *dev = dev_instance;
5751 	struct bnx2x *bp = netdev_priv(dev);
5752 
5753 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5754 		     IGU_INT_DISABLE, 0);
5755 
5756 #ifdef BNX2X_STOP_ON_ERROR
5757 	if (unlikely(bp->panic))
5758 		return IRQ_HANDLED;
5759 #endif
5760 
5761 	if (CNIC_LOADED(bp)) {
5762 		struct cnic_ops *c_ops;
5763 
5764 		rcu_read_lock();
5765 		c_ops = rcu_dereference(bp->cnic_ops);
5766 		if (c_ops)
5767 			c_ops->cnic_handler(bp->cnic_data, NULL);
5768 		rcu_read_unlock();
5769 	}
5770 
5771 	/* schedule sp task to perform default status block work, ack
5772 	 * attentions and enable interrupts.
5773 	 */
5774 	bnx2x_schedule_sp_task(bp);
5775 
5776 	return IRQ_HANDLED;
5777 }
5778 
5779 /* end of slow path */
5780 
5781 void bnx2x_drv_pulse(struct bnx2x *bp)
5782 {
5783 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5784 		 bp->fw_drv_pulse_wr_seq);
5785 }
5786 
5787 static void bnx2x_timer(struct timer_list *t)
5788 {
5789 	struct bnx2x *bp = timer_container_of(bp, t, timer);
5790 
5791 	if (!netif_running(bp->dev))
5792 		return;
5793 
5794 	if (IS_PF(bp) &&
5795 	    !BP_NOMCP(bp)) {
5796 		int mb_idx = BP_FW_MB_IDX(bp);
5797 		u16 drv_pulse;
5798 		u16 mcp_pulse;
5799 
5800 		++bp->fw_drv_pulse_wr_seq;
5801 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5802 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5803 		bnx2x_drv_pulse(bp);
5804 
5805 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5806 			     MCP_PULSE_SEQ_MASK);
5807 		/* The delta between driver pulse and mcp response
5808 		 * should not get too big. If the MFW is more than 5 pulses
5809 		 * behind, we should worry about it enough to generate an error
5810 		 * log.
5811 		 */
5812 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5813 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5814 				  drv_pulse, mcp_pulse);
5815 	}
5816 
5817 	if (bp->state == BNX2X_STATE_OPEN)
5818 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5819 
5820 	/* sample pf vf bulletin board for new posts from pf */
5821 	if (IS_VF(bp))
5822 		bnx2x_timer_sriov(bp);
5823 
5824 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5825 }
5826 
5827 /* end of Statistics */
5828 
5829 /* nic init */
5830 
5831 /*
5832  * nic init service functions
5833  */
5834 
5835 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5836 {
5837 	u32 i;
5838 	if (!(len%4) && !(addr%4))
5839 		for (i = 0; i < len; i += 4)
5840 			REG_WR(bp, addr + i, fill);
5841 	else
5842 		for (i = 0; i < len; i++)
5843 			REG_WR8(bp, addr + i, fill);
5844 }
5845 
5846 /* helper: writes FP SP data to FW - data_size in dwords */
5847 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5848 				int fw_sb_id,
5849 				u32 *sb_data_p,
5850 				u32 data_size)
5851 {
5852 	int index;
5853 	for (index = 0; index < data_size; index++)
5854 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5855 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5856 			sizeof(u32)*index,
5857 			*(sb_data_p + index));
5858 }
5859 
5860 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5861 {
5862 	u32 *sb_data_p;
5863 	u32 data_size = 0;
5864 	struct hc_status_block_data_e2 sb_data_e2;
5865 	struct hc_status_block_data_e1x sb_data_e1x;
5866 
5867 	/* disable the function first */
5868 	if (!CHIP_IS_E1x(bp)) {
5869 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5870 		sb_data_e2.common.state = SB_DISABLED;
5871 		sb_data_e2.common.p_func.vf_valid = false;
5872 		sb_data_p = (u32 *)&sb_data_e2;
5873 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5874 	} else {
5875 		memset(&sb_data_e1x, 0,
5876 		       sizeof(struct hc_status_block_data_e1x));
5877 		sb_data_e1x.common.state = SB_DISABLED;
5878 		sb_data_e1x.common.p_func.vf_valid = false;
5879 		sb_data_p = (u32 *)&sb_data_e1x;
5880 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5881 	}
5882 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5883 
5884 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5885 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5886 			CSTORM_STATUS_BLOCK_SIZE);
5887 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5888 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5889 			CSTORM_SYNC_BLOCK_SIZE);
5890 }
5891 
5892 /* helper:  writes SP SB data to FW */
5893 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5894 		struct hc_sp_status_block_data *sp_sb_data)
5895 {
5896 	int func = BP_FUNC(bp);
5897 	int i;
5898 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5899 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5900 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5901 			i*sizeof(u32),
5902 			*((u32 *)sp_sb_data + i));
5903 }
5904 
5905 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5906 {
5907 	int func = BP_FUNC(bp);
5908 	struct hc_sp_status_block_data sp_sb_data;
5909 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5910 
5911 	sp_sb_data.state = SB_DISABLED;
5912 	sp_sb_data.p_func.vf_valid = false;
5913 
5914 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5915 
5916 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5917 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5918 			CSTORM_SP_STATUS_BLOCK_SIZE);
5919 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5920 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5921 			CSTORM_SP_SYNC_BLOCK_SIZE);
5922 }
5923 
5924 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5925 					   int igu_sb_id, int igu_seg_id)
5926 {
5927 	hc_sm->igu_sb_id = igu_sb_id;
5928 	hc_sm->igu_seg_id = igu_seg_id;
5929 	hc_sm->timer_value = 0xFF;
5930 	hc_sm->time_to_expire = 0xFFFFFFFF;
5931 }
5932 
5933 /* allocates state machine ids. */
5934 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5935 {
5936 	/* zero out state machine indices */
5937 	/* rx indices */
5938 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5939 
5940 	/* tx indices */
5941 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5942 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5943 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5944 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5945 
5946 	/* map indices */
5947 	/* rx indices */
5948 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5949 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5950 
5951 	/* tx indices */
5952 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5953 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5954 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5955 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5956 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5957 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5958 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5959 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5960 }
5961 
5962 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5963 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5964 {
5965 	int igu_seg_id;
5966 
5967 	struct hc_status_block_data_e2 sb_data_e2;
5968 	struct hc_status_block_data_e1x sb_data_e1x;
5969 	struct hc_status_block_sm  *hc_sm_p;
5970 	int data_size;
5971 	u32 *sb_data_p;
5972 
5973 	if (CHIP_INT_MODE_IS_BC(bp))
5974 		igu_seg_id = HC_SEG_ACCESS_NORM;
5975 	else
5976 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5977 
5978 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5979 
5980 	if (!CHIP_IS_E1x(bp)) {
5981 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5982 		sb_data_e2.common.state = SB_ENABLED;
5983 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5984 		sb_data_e2.common.p_func.vf_id = vfid;
5985 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5986 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5987 		sb_data_e2.common.same_igu_sb_1b = true;
5988 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5989 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5990 		hc_sm_p = sb_data_e2.common.state_machine;
5991 		sb_data_p = (u32 *)&sb_data_e2;
5992 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5993 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5994 	} else {
5995 		memset(&sb_data_e1x, 0,
5996 		       sizeof(struct hc_status_block_data_e1x));
5997 		sb_data_e1x.common.state = SB_ENABLED;
5998 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5999 		sb_data_e1x.common.p_func.vf_id = 0xff;
6000 		sb_data_e1x.common.p_func.vf_valid = false;
6001 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
6002 		sb_data_e1x.common.same_igu_sb_1b = true;
6003 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6004 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6005 		hc_sm_p = sb_data_e1x.common.state_machine;
6006 		sb_data_p = (u32 *)&sb_data_e1x;
6007 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6008 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6009 	}
6010 
6011 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6012 				       igu_sb_id, igu_seg_id);
6013 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6014 				       igu_sb_id, igu_seg_id);
6015 
6016 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6017 
6018 	/* write indices to HW - PCI guarantees endianity of regpairs */
6019 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6020 }
6021 
6022 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6023 				     u16 tx_usec, u16 rx_usec)
6024 {
6025 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6026 				    false, rx_usec);
6027 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6028 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6029 				       tx_usec);
6030 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6031 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6032 				       tx_usec);
6033 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6034 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6035 				       tx_usec);
6036 }
6037 
6038 static void bnx2x_init_def_sb(struct bnx2x *bp)
6039 {
6040 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6041 	dma_addr_t mapping = bp->def_status_blk_mapping;
6042 	int igu_sp_sb_index;
6043 	int igu_seg_id;
6044 	int port = BP_PORT(bp);
6045 	int func = BP_FUNC(bp);
6046 	int reg_offset, reg_offset_en5;
6047 	u64 section;
6048 	int index;
6049 	struct hc_sp_status_block_data sp_sb_data;
6050 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6051 
6052 	if (CHIP_INT_MODE_IS_BC(bp)) {
6053 		igu_sp_sb_index = DEF_SB_IGU_ID;
6054 		igu_seg_id = HC_SEG_ACCESS_DEF;
6055 	} else {
6056 		igu_sp_sb_index = bp->igu_dsb_id;
6057 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6058 	}
6059 
6060 	/* ATTN */
6061 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6062 					    atten_status_block);
6063 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6064 
6065 	bp->attn_state = 0;
6066 
6067 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6068 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6069 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6070 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6071 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6072 		int sindex;
6073 		/* take care of sig[0]..sig[4] */
6074 		for (sindex = 0; sindex < 4; sindex++)
6075 			bp->attn_group[index].sig[sindex] =
6076 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6077 
6078 		if (!CHIP_IS_E1x(bp))
6079 			/*
6080 			 * enable5 is separate from the rest of the registers,
6081 			 * and therefore the address skip is 4
6082 			 * and not 16 between the different groups
6083 			 */
6084 			bp->attn_group[index].sig[4] = REG_RD(bp,
6085 					reg_offset_en5 + 0x4*index);
6086 		else
6087 			bp->attn_group[index].sig[4] = 0;
6088 	}
6089 
6090 	if (bp->common.int_block == INT_BLOCK_HC) {
6091 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6092 				     HC_REG_ATTN_MSG0_ADDR_L);
6093 
6094 		REG_WR(bp, reg_offset, U64_LO(section));
6095 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6096 	} else if (!CHIP_IS_E1x(bp)) {
6097 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6098 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6099 	}
6100 
6101 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6102 					    sp_sb);
6103 
6104 	bnx2x_zero_sp_sb(bp);
6105 
6106 	/* PCI guarantees endianity of regpairs */
6107 	sp_sb_data.state		= SB_ENABLED;
6108 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6109 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6110 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6111 	sp_sb_data.igu_seg_id		= igu_seg_id;
6112 	sp_sb_data.p_func.pf_id		= func;
6113 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6114 	sp_sb_data.p_func.vf_id		= 0xff;
6115 
6116 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6117 
6118 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6119 }
6120 
6121 void bnx2x_update_coalesce(struct bnx2x *bp)
6122 {
6123 	int i;
6124 
6125 	for_each_eth_queue(bp, i)
6126 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6127 					 bp->tx_ticks, bp->rx_ticks);
6128 }
6129 
6130 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6131 {
6132 	spin_lock_init(&bp->spq_lock);
6133 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6134 
6135 	bp->spq_prod_idx = 0;
6136 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6137 	bp->spq_prod_bd = bp->spq;
6138 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6139 }
6140 
6141 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6142 {
6143 	int i;
6144 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6145 		union event_ring_elem *elem =
6146 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6147 
6148 		elem->next_page.addr.hi =
6149 			cpu_to_le32(U64_HI(bp->eq_mapping +
6150 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6151 		elem->next_page.addr.lo =
6152 			cpu_to_le32(U64_LO(bp->eq_mapping +
6153 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6154 	}
6155 	bp->eq_cons = 0;
6156 	bp->eq_prod = NUM_EQ_DESC;
6157 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6158 	/* we want a warning message before it gets wrought... */
6159 	atomic_set(&bp->eq_spq_left,
6160 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6161 }
6162 
6163 /* called with netif_addr_lock_bh() */
6164 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6165 			       unsigned long rx_mode_flags,
6166 			       unsigned long rx_accept_flags,
6167 			       unsigned long tx_accept_flags,
6168 			       unsigned long ramrod_flags)
6169 {
6170 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6171 	int rc;
6172 
6173 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6174 
6175 	/* Prepare ramrod parameters */
6176 	ramrod_param.cid = 0;
6177 	ramrod_param.cl_id = cl_id;
6178 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6179 	ramrod_param.func_id = BP_FUNC(bp);
6180 
6181 	ramrod_param.pstate = &bp->sp_state;
6182 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6183 
6184 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6185 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6186 
6187 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6188 
6189 	ramrod_param.ramrod_flags = ramrod_flags;
6190 	ramrod_param.rx_mode_flags = rx_mode_flags;
6191 
6192 	ramrod_param.rx_accept_flags = rx_accept_flags;
6193 	ramrod_param.tx_accept_flags = tx_accept_flags;
6194 
6195 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6196 	if (rc < 0) {
6197 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6198 		return rc;
6199 	}
6200 
6201 	return 0;
6202 }
6203 
6204 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6205 				   unsigned long *rx_accept_flags,
6206 				   unsigned long *tx_accept_flags)
6207 {
6208 	/* Clear the flags first */
6209 	*rx_accept_flags = 0;
6210 	*tx_accept_flags = 0;
6211 
6212 	switch (rx_mode) {
6213 	case BNX2X_RX_MODE_NONE:
6214 		/*
6215 		 * 'drop all' supersedes any accept flags that may have been
6216 		 * passed to the function.
6217 		 */
6218 		break;
6219 	case BNX2X_RX_MODE_NORMAL:
6220 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6221 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6222 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6223 
6224 		/* internal switching mode */
6225 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6226 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6227 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6228 
6229 		if (bp->accept_any_vlan) {
6230 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6231 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6232 		}
6233 
6234 		break;
6235 	case BNX2X_RX_MODE_ALLMULTI:
6236 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6237 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6238 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6239 
6240 		/* internal switching mode */
6241 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6242 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6243 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6244 
6245 		if (bp->accept_any_vlan) {
6246 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6247 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6248 		}
6249 
6250 		break;
6251 	case BNX2X_RX_MODE_PROMISC:
6252 		/* According to definition of SI mode, iface in promisc mode
6253 		 * should receive matched and unmatched (in resolution of port)
6254 		 * unicast packets.
6255 		 */
6256 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6257 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6258 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6259 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6260 
6261 		/* internal switching mode */
6262 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6263 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6264 
6265 		if (IS_MF_SI(bp))
6266 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6267 		else
6268 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6269 
6270 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6271 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6272 
6273 		break;
6274 	default:
6275 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6276 		return -EINVAL;
6277 	}
6278 
6279 	return 0;
6280 }
6281 
6282 /* called with netif_addr_lock_bh() */
6283 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6284 {
6285 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6286 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6287 	int rc;
6288 
6289 	if (!NO_FCOE(bp))
6290 		/* Configure rx_mode of FCoE Queue */
6291 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6292 
6293 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6294 				     &tx_accept_flags);
6295 	if (rc)
6296 		return rc;
6297 
6298 	__set_bit(RAMROD_RX, &ramrod_flags);
6299 	__set_bit(RAMROD_TX, &ramrod_flags);
6300 
6301 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6302 				   rx_accept_flags, tx_accept_flags,
6303 				   ramrod_flags);
6304 }
6305 
6306 static void bnx2x_init_internal_common(struct bnx2x *bp)
6307 {
6308 	int i;
6309 
6310 	/* Zero this manually as its initialization is
6311 	   currently missing in the initTool */
6312 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6313 		REG_WR(bp, BAR_USTRORM_INTMEM +
6314 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6315 	if (!CHIP_IS_E1x(bp)) {
6316 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6317 			CHIP_INT_MODE_IS_BC(bp) ?
6318 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6319 	}
6320 }
6321 
6322 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6323 {
6324 	switch (load_code) {
6325 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6326 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6327 		bnx2x_init_internal_common(bp);
6328 		fallthrough;
6329 
6330 	case FW_MSG_CODE_DRV_LOAD_PORT:
6331 		/* nothing to do */
6332 		fallthrough;
6333 
6334 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6335 		/* internal memory per function is
6336 		   initialized inside bnx2x_pf_init */
6337 		break;
6338 
6339 	default:
6340 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6341 		break;
6342 	}
6343 }
6344 
6345 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6346 {
6347 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6348 }
6349 
6350 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6351 {
6352 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6353 }
6354 
6355 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6356 {
6357 	if (CHIP_IS_E1x(fp->bp))
6358 		return BP_L_ID(fp->bp) + fp->index;
6359 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6360 		return bnx2x_fp_igu_sb_id(fp);
6361 }
6362 
6363 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6364 {
6365 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6366 	u8 cos;
6367 	unsigned long q_type = 0;
6368 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6369 	fp->rx_queue = fp_idx;
6370 	fp->cid = fp_idx;
6371 	fp->cl_id = bnx2x_fp_cl_id(fp);
6372 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6373 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6374 	/* qZone id equals to FW (per path) client id */
6375 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6376 
6377 	/* init shortcut */
6378 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6379 
6380 	/* Setup SB indices */
6381 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6382 
6383 	/* Configure Queue State object */
6384 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6385 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6386 
6387 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6388 
6389 	/* init tx data */
6390 	for_each_cos_in_tx_queue(fp, cos) {
6391 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6392 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6393 				  FP_COS_TO_TXQ(fp, cos, bp),
6394 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6395 		cids[cos] = fp->txdata_ptr[cos]->cid;
6396 	}
6397 
6398 	/* nothing more for vf to do here */
6399 	if (IS_VF(bp))
6400 		return;
6401 
6402 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6403 		      fp->fw_sb_id, fp->igu_sb_id);
6404 	bnx2x_update_fpsb_idx(fp);
6405 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6406 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6407 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6408 
6409 	/**
6410 	 * Configure classification DBs: Always enable Tx switching
6411 	 */
6412 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6413 
6414 	DP(NETIF_MSG_IFUP,
6415 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6416 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6417 	   fp->igu_sb_id);
6418 }
6419 
6420 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6421 {
6422 	int i;
6423 
6424 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6425 		struct eth_tx_next_bd *tx_next_bd =
6426 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6427 
6428 		tx_next_bd->addr_hi =
6429 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6430 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6431 		tx_next_bd->addr_lo =
6432 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6433 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6434 	}
6435 
6436 	*txdata->tx_cons_sb = cpu_to_le16(0);
6437 
6438 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6439 	txdata->tx_db.data.zero_fill1 = 0;
6440 	txdata->tx_db.data.prod = 0;
6441 
6442 	txdata->tx_pkt_prod = 0;
6443 	txdata->tx_pkt_cons = 0;
6444 	txdata->tx_bd_prod = 0;
6445 	txdata->tx_bd_cons = 0;
6446 	txdata->tx_pkt = 0;
6447 }
6448 
6449 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6450 {
6451 	int i;
6452 
6453 	for_each_tx_queue_cnic(bp, i)
6454 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6455 }
6456 
6457 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6458 {
6459 	int i;
6460 	u8 cos;
6461 
6462 	for_each_eth_queue(bp, i)
6463 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6464 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6465 }
6466 
6467 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6468 {
6469 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6470 	unsigned long q_type = 0;
6471 
6472 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6473 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6474 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6475 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6476 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6477 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6478 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6479 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6480 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6481 			  fp);
6482 
6483 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6484 
6485 	/* qZone id equals to FW (per path) client id */
6486 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6487 	/* init shortcut */
6488 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6489 		bnx2x_rx_ustorm_prods_offset(fp);
6490 
6491 	/* Configure Queue State object */
6492 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6493 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6494 
6495 	/* No multi-CoS for FCoE L2 client */
6496 	BUG_ON(fp->max_cos != 1);
6497 
6498 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6499 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6500 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6501 
6502 	DP(NETIF_MSG_IFUP,
6503 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6504 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6505 	   fp->igu_sb_id);
6506 }
6507 
6508 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6509 {
6510 	if (!NO_FCOE(bp))
6511 		bnx2x_init_fcoe_fp(bp);
6512 
6513 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6514 		      BNX2X_VF_ID_INVALID, false,
6515 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6516 
6517 	/* ensure status block indices were read */
6518 	rmb();
6519 	bnx2x_init_rx_rings_cnic(bp);
6520 	bnx2x_init_tx_rings_cnic(bp);
6521 
6522 	/* flush all */
6523 	mb();
6524 }
6525 
6526 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6527 {
6528 	int i;
6529 
6530 	/* Setup NIC internals and enable interrupts */
6531 	for_each_eth_queue(bp, i)
6532 		bnx2x_init_eth_fp(bp, i);
6533 
6534 	/* ensure status block indices were read */
6535 	rmb();
6536 	bnx2x_init_rx_rings(bp);
6537 	bnx2x_init_tx_rings(bp);
6538 
6539 	if (IS_PF(bp)) {
6540 		/* Initialize MOD_ABS interrupts */
6541 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6542 				       bp->common.shmem_base,
6543 				       bp->common.shmem2_base, BP_PORT(bp));
6544 
6545 		/* initialize the default status block and sp ring */
6546 		bnx2x_init_def_sb(bp);
6547 		bnx2x_update_dsb_idx(bp);
6548 		bnx2x_init_sp_ring(bp);
6549 	} else {
6550 		bnx2x_memset_stats(bp);
6551 	}
6552 }
6553 
6554 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6555 {
6556 	bnx2x_init_eq_ring(bp);
6557 	bnx2x_init_internal(bp, load_code);
6558 	bnx2x_pf_init(bp);
6559 	bnx2x_stats_init(bp);
6560 
6561 	/* flush all before enabling interrupts */
6562 	mb();
6563 
6564 	bnx2x_int_enable(bp);
6565 
6566 	/* Check for SPIO5 */
6567 	bnx2x_attn_int_deasserted0(bp,
6568 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6569 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6570 }
6571 
6572 /* gzip service functions */
6573 static int bnx2x_gunzip_init(struct bnx2x *bp)
6574 {
6575 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6576 					    &bp->gunzip_mapping, GFP_KERNEL);
6577 	if (bp->gunzip_buf  == NULL)
6578 		goto gunzip_nomem1;
6579 
6580 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6581 	if (bp->strm  == NULL)
6582 		goto gunzip_nomem2;
6583 
6584 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6585 	if (bp->strm->workspace == NULL)
6586 		goto gunzip_nomem3;
6587 
6588 	return 0;
6589 
6590 gunzip_nomem3:
6591 	kfree(bp->strm);
6592 	bp->strm = NULL;
6593 
6594 gunzip_nomem2:
6595 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6596 			  bp->gunzip_mapping);
6597 	bp->gunzip_buf = NULL;
6598 
6599 gunzip_nomem1:
6600 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6601 	return -ENOMEM;
6602 }
6603 
6604 static void bnx2x_gunzip_end(struct bnx2x *bp)
6605 {
6606 	if (bp->strm) {
6607 		vfree(bp->strm->workspace);
6608 		kfree(bp->strm);
6609 		bp->strm = NULL;
6610 	}
6611 
6612 	if (bp->gunzip_buf) {
6613 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6614 				  bp->gunzip_mapping);
6615 		bp->gunzip_buf = NULL;
6616 	}
6617 }
6618 
6619 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6620 {
6621 	int n, rc;
6622 
6623 	/* check gzip header */
6624 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6625 		BNX2X_ERR("Bad gzip header\n");
6626 		return -EINVAL;
6627 	}
6628 
6629 	n = 10;
6630 
6631 #define FNAME				0x8
6632 
6633 	if (zbuf[3] & FNAME)
6634 		while ((zbuf[n++] != 0) && (n < len));
6635 
6636 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6637 	bp->strm->avail_in = len - n;
6638 	bp->strm->next_out = bp->gunzip_buf;
6639 	bp->strm->avail_out = FW_BUF_SIZE;
6640 
6641 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6642 	if (rc != Z_OK)
6643 		return rc;
6644 
6645 	rc = zlib_inflate(bp->strm, Z_FINISH);
6646 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6647 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6648 			   bp->strm->msg);
6649 
6650 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6651 	if (bp->gunzip_outlen & 0x3)
6652 		netdev_err(bp->dev,
6653 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6654 				bp->gunzip_outlen);
6655 	bp->gunzip_outlen >>= 2;
6656 
6657 	zlib_inflateEnd(bp->strm);
6658 
6659 	if (rc == Z_STREAM_END)
6660 		return 0;
6661 
6662 	return rc;
6663 }
6664 
6665 /* nic load/unload */
6666 
6667 /*
6668  * General service functions
6669  */
6670 
6671 /* send a NIG loopback debug packet */
6672 static void bnx2x_lb_pckt(struct bnx2x *bp)
6673 {
6674 	u32 wb_write[3];
6675 
6676 	/* Ethernet source and destination addresses */
6677 	wb_write[0] = 0x55555555;
6678 	wb_write[1] = 0x55555555;
6679 	wb_write[2] = 0x20;		/* SOP */
6680 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6681 
6682 	/* NON-IP protocol */
6683 	wb_write[0] = 0x09000000;
6684 	wb_write[1] = 0x55555555;
6685 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6686 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6687 }
6688 
6689 /* some of the internal memories
6690  * are not directly readable from the driver
6691  * to test them we send debug packets
6692  */
6693 static int bnx2x_int_mem_test(struct bnx2x *bp)
6694 {
6695 	int factor;
6696 	int count, i;
6697 	u32 val = 0;
6698 
6699 	if (CHIP_REV_IS_FPGA(bp))
6700 		factor = 120;
6701 	else if (CHIP_REV_IS_EMUL(bp))
6702 		factor = 200;
6703 	else
6704 		factor = 1;
6705 
6706 	/* Disable inputs of parser neighbor blocks */
6707 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6708 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6709 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6710 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6711 
6712 	/*  Write 0 to parser credits for CFC search request */
6713 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6714 
6715 	/* send Ethernet packet */
6716 	bnx2x_lb_pckt(bp);
6717 
6718 	/* TODO do i reset NIG statistic? */
6719 	/* Wait until NIG register shows 1 packet of size 0x10 */
6720 	count = 1000 * factor;
6721 	while (count) {
6722 
6723 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6724 		val = *bnx2x_sp(bp, wb_data[0]);
6725 		if (val == 0x10)
6726 			break;
6727 
6728 		usleep_range(10000, 20000);
6729 		count--;
6730 	}
6731 	if (val != 0x10) {
6732 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6733 		return -1;
6734 	}
6735 
6736 	/* Wait until PRS register shows 1 packet */
6737 	count = 1000 * factor;
6738 	while (count) {
6739 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6740 		if (val == 1)
6741 			break;
6742 
6743 		usleep_range(10000, 20000);
6744 		count--;
6745 	}
6746 	if (val != 0x1) {
6747 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6748 		return -2;
6749 	}
6750 
6751 	/* Reset and init BRB, PRS */
6752 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6753 	msleep(50);
6754 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6755 	msleep(50);
6756 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6757 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6758 
6759 	DP(NETIF_MSG_HW, "part2\n");
6760 
6761 	/* Disable inputs of parser neighbor blocks */
6762 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6763 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6764 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6765 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6766 
6767 	/* Write 0 to parser credits for CFC search request */
6768 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6769 
6770 	/* send 10 Ethernet packets */
6771 	for (i = 0; i < 10; i++)
6772 		bnx2x_lb_pckt(bp);
6773 
6774 	/* Wait until NIG register shows 10 + 1
6775 	   packets of size 11*0x10 = 0xb0 */
6776 	count = 1000 * factor;
6777 	while (count) {
6778 
6779 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6780 		val = *bnx2x_sp(bp, wb_data[0]);
6781 		if (val == 0xb0)
6782 			break;
6783 
6784 		usleep_range(10000, 20000);
6785 		count--;
6786 	}
6787 	if (val != 0xb0) {
6788 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6789 		return -3;
6790 	}
6791 
6792 	/* Wait until PRS register shows 2 packets */
6793 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6794 	if (val != 2)
6795 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6796 
6797 	/* Write 1 to parser credits for CFC search request */
6798 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6799 
6800 	/* Wait until PRS register shows 3 packets */
6801 	msleep(10 * factor);
6802 	/* Wait until NIG register shows 1 packet of size 0x10 */
6803 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6804 	if (val != 3)
6805 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6806 
6807 	/* clear NIG EOP FIFO */
6808 	for (i = 0; i < 11; i++)
6809 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6810 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6811 	if (val != 1) {
6812 		BNX2X_ERR("clear of NIG failed\n");
6813 		return -4;
6814 	}
6815 
6816 	/* Reset and init BRB, PRS, NIG */
6817 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6818 	msleep(50);
6819 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6820 	msleep(50);
6821 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6822 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6823 	if (!CNIC_SUPPORT(bp))
6824 		/* set NIC mode */
6825 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6826 
6827 	/* Enable inputs of parser neighbor blocks */
6828 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6829 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6830 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6831 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6832 
6833 	DP(NETIF_MSG_HW, "done\n");
6834 
6835 	return 0; /* OK */
6836 }
6837 
6838 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6839 {
6840 	u32 val;
6841 
6842 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6843 	if (!CHIP_IS_E1x(bp))
6844 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6845 	else
6846 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6847 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6848 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6849 	/*
6850 	 * mask read length error interrupts in brb for parser
6851 	 * (parsing unit and 'checksum and crc' unit)
6852 	 * these errors are legal (PU reads fixed length and CAC can cause
6853 	 * read length error on truncated packets)
6854 	 */
6855 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6856 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6857 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6858 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6859 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6860 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6861 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6862 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6863 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6864 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6865 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6866 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6867 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6868 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6869 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6870 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6871 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6872 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6873 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6874 
6875 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6876 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6877 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6878 	if (!CHIP_IS_E1x(bp))
6879 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6880 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6881 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6882 
6883 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6884 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6885 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6886 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6887 
6888 	if (!CHIP_IS_E1x(bp))
6889 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6890 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6891 
6892 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6893 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6894 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6895 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6896 }
6897 
6898 static void bnx2x_reset_common(struct bnx2x *bp)
6899 {
6900 	u32 val = 0x1400;
6901 
6902 	/* reset_common */
6903 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6904 	       0xd3ffff7f);
6905 
6906 	if (CHIP_IS_E3(bp)) {
6907 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6908 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6909 	}
6910 
6911 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6912 }
6913 
6914 static void bnx2x_setup_dmae(struct bnx2x *bp)
6915 {
6916 	bp->dmae_ready = 0;
6917 	spin_lock_init(&bp->dmae_lock);
6918 }
6919 
6920 static void bnx2x_init_pxp(struct bnx2x *bp)
6921 {
6922 	u16 devctl;
6923 	int r_order, w_order;
6924 
6925 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6926 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6927 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6928 	if (bp->mrrs == -1)
6929 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6930 	else {
6931 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6932 		r_order = bp->mrrs;
6933 	}
6934 
6935 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6936 }
6937 
6938 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6939 {
6940 	int is_required;
6941 	u32 val;
6942 	int port;
6943 
6944 	if (BP_NOMCP(bp))
6945 		return;
6946 
6947 	is_required = 0;
6948 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6949 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6950 
6951 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6952 		is_required = 1;
6953 
6954 	/*
6955 	 * The fan failure mechanism is usually related to the PHY type since
6956 	 * the power consumption of the board is affected by the PHY. Currently,
6957 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6958 	 */
6959 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6960 		for (port = PORT_0; port < PORT_MAX; port++) {
6961 			is_required |=
6962 				bnx2x_fan_failure_det_req(
6963 					bp,
6964 					bp->common.shmem_base,
6965 					bp->common.shmem2_base,
6966 					port);
6967 		}
6968 
6969 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6970 
6971 	if (is_required == 0)
6972 		return;
6973 
6974 	/* Fan failure is indicated by SPIO 5 */
6975 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6976 
6977 	/* set to active low mode */
6978 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6979 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6980 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6981 
6982 	/* enable interrupt to signal the IGU */
6983 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6984 	val |= MISC_SPIO_SPIO5;
6985 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6986 }
6987 
6988 void bnx2x_pf_disable(struct bnx2x *bp)
6989 {
6990 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6991 	val &= ~IGU_PF_CONF_FUNC_EN;
6992 
6993 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6994 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6995 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6996 }
6997 
6998 static void bnx2x__common_init_phy(struct bnx2x *bp)
6999 {
7000 	u32 shmem_base[2], shmem2_base[2];
7001 	/* Avoid common init in case MFW supports LFA */
7002 	if (SHMEM2_RD(bp, size) >
7003 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7004 		return;
7005 	shmem_base[0] =  bp->common.shmem_base;
7006 	shmem2_base[0] = bp->common.shmem2_base;
7007 	if (!CHIP_IS_E1x(bp)) {
7008 		shmem_base[1] =
7009 			SHMEM2_RD(bp, other_shmem_base_addr);
7010 		shmem2_base[1] =
7011 			SHMEM2_RD(bp, other_shmem2_base_addr);
7012 	}
7013 	bnx2x_acquire_phy_lock(bp);
7014 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7015 			      bp->common.chip_id);
7016 	bnx2x_release_phy_lock(bp);
7017 }
7018 
7019 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7020 {
7021 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7022 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7023 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7024 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7025 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7026 
7027 	/* make sure this value is 0 */
7028 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7029 
7030 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7031 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7032 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7033 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7034 }
7035 
7036 static void bnx2x_set_endianity(struct bnx2x *bp)
7037 {
7038 #ifdef __BIG_ENDIAN
7039 	bnx2x_config_endianity(bp, 1);
7040 #else
7041 	bnx2x_config_endianity(bp, 0);
7042 #endif
7043 }
7044 
7045 static void bnx2x_reset_endianity(struct bnx2x *bp)
7046 {
7047 	bnx2x_config_endianity(bp, 0);
7048 }
7049 
7050 /**
7051  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7052  *
7053  * @bp:		driver handle
7054  */
7055 static int bnx2x_init_hw_common(struct bnx2x *bp)
7056 {
7057 	u32 val;
7058 
7059 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7060 
7061 	/*
7062 	 * take the RESET lock to protect undi_unload flow from accessing
7063 	 * registers while we're resetting the chip
7064 	 */
7065 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7066 
7067 	bnx2x_reset_common(bp);
7068 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7069 
7070 	val = 0xfffc;
7071 	if (CHIP_IS_E3(bp)) {
7072 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7073 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7074 	}
7075 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7076 
7077 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7078 
7079 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7080 
7081 	if (!CHIP_IS_E1x(bp)) {
7082 		u8 abs_func_id;
7083 
7084 		/**
7085 		 * 4-port mode or 2-port mode we need to turn of master-enable
7086 		 * for everyone, after that, turn it back on for self.
7087 		 * so, we disregard multi-function or not, and always disable
7088 		 * for all functions on the given path, this means 0,2,4,6 for
7089 		 * path 0 and 1,3,5,7 for path 1
7090 		 */
7091 		for (abs_func_id = BP_PATH(bp);
7092 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7093 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7094 				REG_WR(bp,
7095 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7096 				    1);
7097 				continue;
7098 			}
7099 
7100 			bnx2x_pretend_func(bp, abs_func_id);
7101 			/* clear pf enable */
7102 			bnx2x_pf_disable(bp);
7103 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7104 		}
7105 	}
7106 
7107 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7108 	if (CHIP_IS_E1(bp)) {
7109 		/* enable HW interrupt from PXP on USDM overflow
7110 		   bit 16 on INT_MASK_0 */
7111 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7112 	}
7113 
7114 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7115 	bnx2x_init_pxp(bp);
7116 	bnx2x_set_endianity(bp);
7117 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7118 
7119 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7120 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7121 
7122 	/* let the HW do it's magic ... */
7123 	msleep(100);
7124 	/* finish PXP init */
7125 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7126 	if (val != 1) {
7127 		BNX2X_ERR("PXP2 CFG failed\n");
7128 		return -EBUSY;
7129 	}
7130 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7131 	if (val != 1) {
7132 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7133 		return -EBUSY;
7134 	}
7135 
7136 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7137 	 * have entries with value "0" and valid bit on.
7138 	 * This needs to be done by the first PF that is loaded in a path
7139 	 * (i.e. common phase)
7140 	 */
7141 	if (!CHIP_IS_E1x(bp)) {
7142 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7143  * (i.e. vnic3) to start even if it is marked as "scan-off".
7144  * This occurs when a different function (func2,3) is being marked
7145  * as "scan-off". Real-life scenario for example: if a driver is being
7146  * load-unloaded while func6,7 are down. This will cause the timer to access
7147  * the ilt, translate to a logical address and send a request to read/write.
7148  * Since the ilt for the function that is down is not valid, this will cause
7149  * a translation error which is unrecoverable.
7150  * The Workaround is intended to make sure that when this happens nothing fatal
7151  * will occur. The workaround:
7152  *	1.  First PF driver which loads on a path will:
7153  *		a.  After taking the chip out of reset, by using pretend,
7154  *		    it will write "0" to the following registers of
7155  *		    the other vnics.
7156  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7157  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7158  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7159  *		    And for itself it will write '1' to
7160  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7161  *		    dmae-operations (writing to pram for example.)
7162  *		    note: can be done for only function 6,7 but cleaner this
7163  *			  way.
7164  *		b.  Write zero+valid to the entire ILT.
7165  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7166  *		    VNIC3 (of that port). The range allocated will be the
7167  *		    entire ILT. This is needed to prevent  ILT range error.
7168  *	2.  Any PF driver load flow:
7169  *		a.  ILT update with the physical addresses of the allocated
7170  *		    logical pages.
7171  *		b.  Wait 20msec. - note that this timeout is needed to make
7172  *		    sure there are no requests in one of the PXP internal
7173  *		    queues with "old" ILT addresses.
7174  *		c.  PF enable in the PGLC.
7175  *		d.  Clear the was_error of the PF in the PGLC. (could have
7176  *		    occurred while driver was down)
7177  *		e.  PF enable in the CFC (WEAK + STRONG)
7178  *		f.  Timers scan enable
7179  *	3.  PF driver unload flow:
7180  *		a.  Clear the Timers scan_en.
7181  *		b.  Polling for scan_on=0 for that PF.
7182  *		c.  Clear the PF enable bit in the PXP.
7183  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7184  *		e.  Write zero+valid to all ILT entries (The valid bit must
7185  *		    stay set)
7186  *		f.  If this is VNIC 3 of a port then also init
7187  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7188  *		    to the last entry in the ILT.
7189  *
7190  *	Notes:
7191  *	Currently the PF error in the PGLC is non recoverable.
7192  *	In the future the there will be a recovery routine for this error.
7193  *	Currently attention is masked.
7194  *	Having an MCP lock on the load/unload process does not guarantee that
7195  *	there is no Timer disable during Func6/7 enable. This is because the
7196  *	Timers scan is currently being cleared by the MCP on FLR.
7197  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7198  *	there is error before clearing it. But the flow above is simpler and
7199  *	more general.
7200  *	All ILT entries are written by zero+valid and not just PF6/7
7201  *	ILT entries since in the future the ILT entries allocation for
7202  *	PF-s might be dynamic.
7203  */
7204 		struct ilt_client_info ilt_cli;
7205 		struct bnx2x_ilt ilt;
7206 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7207 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7208 
7209 		/* initialize dummy TM client */
7210 		ilt_cli.start = 0;
7211 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7212 		ilt_cli.client_num = ILT_CLIENT_TM;
7213 
7214 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7215 		 * Step 2: set the timers first/last ilt entry to point
7216 		 * to the entire range to prevent ILT range error for 3rd/4th
7217 		 * vnic	(this code assumes existence of the vnic)
7218 		 *
7219 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7220 		 * with dummy TM client
7221 		 *
7222 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7223 		 * and his brother are split registers
7224 		 */
7225 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7226 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7227 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7228 
7229 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7230 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7231 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7232 	}
7233 
7234 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7235 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7236 
7237 	if (!CHIP_IS_E1x(bp)) {
7238 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7239 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7240 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7241 
7242 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7243 
7244 		/* let the HW do it's magic ... */
7245 		do {
7246 			msleep(200);
7247 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7248 		} while (factor-- && (val != 1));
7249 
7250 		if (val != 1) {
7251 			BNX2X_ERR("ATC_INIT failed\n");
7252 			return -EBUSY;
7253 		}
7254 	}
7255 
7256 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7257 
7258 	bnx2x_iov_init_dmae(bp);
7259 
7260 	/* clean the DMAE memory */
7261 	bp->dmae_ready = 1;
7262 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7263 
7264 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7265 
7266 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7267 
7268 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7269 
7270 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7271 
7272 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7273 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7274 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7275 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7276 
7277 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7278 
7279 	/* QM queues pointers table */
7280 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7281 
7282 	/* soft reset pulse */
7283 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7284 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7285 
7286 	if (CNIC_SUPPORT(bp))
7287 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7288 
7289 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7290 
7291 	if (!CHIP_REV_IS_SLOW(bp))
7292 		/* enable hw interrupt from doorbell Q */
7293 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7294 
7295 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7296 
7297 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7298 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7299 
7300 	if (!CHIP_IS_E1(bp))
7301 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7302 
7303 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7304 		if (IS_MF_AFEX(bp)) {
7305 			/* configure that VNTag and VLAN headers must be
7306 			 * received in afex mode
7307 			 */
7308 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7309 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7310 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7311 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7312 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7313 		} else {
7314 			/* Bit-map indicating which L2 hdrs may appear
7315 			 * after the basic Ethernet header
7316 			 */
7317 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7318 			       bp->path_has_ovlan ? 7 : 6);
7319 		}
7320 	}
7321 
7322 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7323 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7324 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7325 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7326 
7327 	if (!CHIP_IS_E1x(bp)) {
7328 		/* reset VFC memories */
7329 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7330 			   VFC_MEMORIES_RST_REG_CAM_RST |
7331 			   VFC_MEMORIES_RST_REG_RAM_RST);
7332 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7333 			   VFC_MEMORIES_RST_REG_CAM_RST |
7334 			   VFC_MEMORIES_RST_REG_RAM_RST);
7335 
7336 		msleep(20);
7337 	}
7338 
7339 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7340 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7341 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7342 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7343 
7344 	/* sync semi rtc */
7345 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7346 	       0x80000000);
7347 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7348 	       0x80000000);
7349 
7350 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7351 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7352 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7353 
7354 	if (!CHIP_IS_E1x(bp)) {
7355 		if (IS_MF_AFEX(bp)) {
7356 			/* configure that VNTag and VLAN headers must be
7357 			 * sent in afex mode
7358 			 */
7359 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7360 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7361 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7362 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7363 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7364 		} else {
7365 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7366 			       bp->path_has_ovlan ? 7 : 6);
7367 		}
7368 	}
7369 
7370 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7371 
7372 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7373 
7374 	if (CNIC_SUPPORT(bp)) {
7375 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7376 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7377 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7378 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7379 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7380 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7381 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7382 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7383 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7384 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7385 	}
7386 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7387 
7388 	if (sizeof(union cdu_context) != 1024)
7389 		/* we currently assume that a context is 1024 bytes */
7390 		dev_alert(&bp->pdev->dev,
7391 			  "please adjust the size of cdu_context(%ld)\n",
7392 			  (long)sizeof(union cdu_context));
7393 
7394 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7395 	val = (4 << 24) + (0 << 12) + 1024;
7396 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7397 
7398 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7399 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7400 	/* enable context validation interrupt from CFC */
7401 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7402 
7403 	/* set the thresholds to prevent CFC/CDU race */
7404 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7405 
7406 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7407 
7408 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7409 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7410 
7411 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7412 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7413 
7414 	/* Reset PCIE errors for debug */
7415 	REG_WR(bp, 0x2814, 0xffffffff);
7416 	REG_WR(bp, 0x3820, 0xffffffff);
7417 
7418 	if (!CHIP_IS_E1x(bp)) {
7419 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7420 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7421 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7422 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7423 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7424 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7425 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7426 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7427 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7428 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7429 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7430 	}
7431 
7432 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7433 	if (!CHIP_IS_E1(bp)) {
7434 		/* in E3 this done in per-port section */
7435 		if (!CHIP_IS_E3(bp))
7436 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7437 	}
7438 	if (CHIP_IS_E1H(bp))
7439 		/* not applicable for E2 (and above ...) */
7440 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7441 
7442 	if (CHIP_REV_IS_SLOW(bp))
7443 		msleep(200);
7444 
7445 	/* finish CFC init */
7446 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7447 	if (val != 1) {
7448 		BNX2X_ERR("CFC LL_INIT failed\n");
7449 		return -EBUSY;
7450 	}
7451 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7452 	if (val != 1) {
7453 		BNX2X_ERR("CFC AC_INIT failed\n");
7454 		return -EBUSY;
7455 	}
7456 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7457 	if (val != 1) {
7458 		BNX2X_ERR("CFC CAM_INIT failed\n");
7459 		return -EBUSY;
7460 	}
7461 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7462 
7463 	if (CHIP_IS_E1(bp)) {
7464 		/* read NIG statistic
7465 		   to see if this is our first up since powerup */
7466 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7467 		val = *bnx2x_sp(bp, wb_data[0]);
7468 
7469 		/* do internal memory self test */
7470 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7471 			BNX2X_ERR("internal mem self test failed\n");
7472 			return -EBUSY;
7473 		}
7474 	}
7475 
7476 	bnx2x_setup_fan_failure_detection(bp);
7477 
7478 	/* clear PXP2 attentions */
7479 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7480 
7481 	bnx2x_enable_blocks_attention(bp);
7482 	bnx2x_enable_blocks_parity(bp);
7483 
7484 	if (!BP_NOMCP(bp)) {
7485 		if (CHIP_IS_E1x(bp))
7486 			bnx2x__common_init_phy(bp);
7487 	} else
7488 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7489 
7490 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7491 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7492 
7493 	return 0;
7494 }
7495 
7496 /**
7497  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7498  *
7499  * @bp:		driver handle
7500  */
7501 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7502 {
7503 	int rc = bnx2x_init_hw_common(bp);
7504 
7505 	if (rc)
7506 		return rc;
7507 
7508 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7509 	if (!BP_NOMCP(bp))
7510 		bnx2x__common_init_phy(bp);
7511 
7512 	return 0;
7513 }
7514 
7515 static int bnx2x_init_hw_port(struct bnx2x *bp)
7516 {
7517 	int port = BP_PORT(bp);
7518 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7519 	u32 low, high;
7520 	u32 val, reg;
7521 
7522 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7523 
7524 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7525 
7526 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7527 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7528 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7529 
7530 	/* Timers bug workaround: disables the pf_master bit in pglue at
7531 	 * common phase, we need to enable it here before any dmae access are
7532 	 * attempted. Therefore we manually added the enable-master to the
7533 	 * port phase (it also happens in the function phase)
7534 	 */
7535 	if (!CHIP_IS_E1x(bp))
7536 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7537 
7538 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7539 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7540 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7541 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7542 
7543 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7544 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7545 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7546 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7547 
7548 	/* QM cid (connection) count */
7549 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7550 
7551 	if (CNIC_SUPPORT(bp)) {
7552 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7553 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7554 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7555 	}
7556 
7557 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7558 
7559 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7560 
7561 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7562 
7563 		if (IS_MF(bp))
7564 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7565 		else if (bp->dev->mtu > 4096) {
7566 			if (bp->flags & ONE_PORT_FLAG)
7567 				low = 160;
7568 			else {
7569 				val = bp->dev->mtu;
7570 				/* (24*1024 + val*4)/256 */
7571 				low = 96 + (val/64) +
7572 						((val % 64) ? 1 : 0);
7573 			}
7574 		} else
7575 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7576 		high = low + 56;	/* 14*1024/256 */
7577 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7578 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7579 	}
7580 
7581 	if (CHIP_MODE_IS_4_PORT(bp))
7582 		REG_WR(bp, (BP_PORT(bp) ?
7583 			    BRB1_REG_MAC_GUARANTIED_1 :
7584 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7585 
7586 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7587 	if (CHIP_IS_E3B0(bp)) {
7588 		if (IS_MF_AFEX(bp)) {
7589 			/* configure headers for AFEX mode */
7590 			REG_WR(bp, BP_PORT(bp) ?
7591 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7592 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7593 			REG_WR(bp, BP_PORT(bp) ?
7594 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7595 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7596 			REG_WR(bp, BP_PORT(bp) ?
7597 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7598 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7599 		} else {
7600 			/* Ovlan exists only if we are in multi-function +
7601 			 * switch-dependent mode, in switch-independent there
7602 			 * is no ovlan headers
7603 			 */
7604 			REG_WR(bp, BP_PORT(bp) ?
7605 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7606 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7607 			       (bp->path_has_ovlan ? 7 : 6));
7608 		}
7609 	}
7610 
7611 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7612 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7613 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7614 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7615 
7616 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7617 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7618 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7619 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7620 
7621 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7622 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7623 
7624 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7625 
7626 	if (CHIP_IS_E1x(bp)) {
7627 		/* configure PBF to work without PAUSE mtu 9000 */
7628 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7629 
7630 		/* update threshold */
7631 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7632 		/* update init credit */
7633 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7634 
7635 		/* probe changes */
7636 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7637 		udelay(50);
7638 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7639 	}
7640 
7641 	if (CNIC_SUPPORT(bp))
7642 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7643 
7644 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7645 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7646 
7647 	if (CHIP_IS_E1(bp)) {
7648 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7649 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7650 	}
7651 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7652 
7653 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7654 
7655 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7656 	/* init aeu_mask_attn_func_0/1:
7657 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7658 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7659 	 *             bits 4-7 are used for "per vn group attention" */
7660 	val = IS_MF(bp) ? 0xF7 : 0x7;
7661 	/* Enable DCBX attention for all but E1 */
7662 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7663 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7664 
7665 	/* SCPAD_PARITY should NOT trigger close the gates */
7666 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7667 	REG_WR(bp, reg,
7668 	       REG_RD(bp, reg) &
7669 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7670 
7671 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7672 	REG_WR(bp, reg,
7673 	       REG_RD(bp, reg) &
7674 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7675 
7676 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7677 
7678 	if (!CHIP_IS_E1x(bp)) {
7679 		/* Bit-map indicating which L2 hdrs may appear after the
7680 		 * basic Ethernet header
7681 		 */
7682 		if (IS_MF_AFEX(bp))
7683 			REG_WR(bp, BP_PORT(bp) ?
7684 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7685 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7686 		else
7687 			REG_WR(bp, BP_PORT(bp) ?
7688 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7689 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7690 			       IS_MF_SD(bp) ? 7 : 6);
7691 
7692 		if (CHIP_IS_E3(bp))
7693 			REG_WR(bp, BP_PORT(bp) ?
7694 				   NIG_REG_LLH1_MF_MODE :
7695 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7696 	}
7697 	if (!CHIP_IS_E3(bp))
7698 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7699 
7700 	if (!CHIP_IS_E1(bp)) {
7701 		/* 0x2 disable mf_ov, 0x1 enable */
7702 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7703 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7704 
7705 		if (!CHIP_IS_E1x(bp)) {
7706 			val = 0;
7707 			switch (bp->mf_mode) {
7708 			case MULTI_FUNCTION_SD:
7709 				val = 1;
7710 				break;
7711 			case MULTI_FUNCTION_SI:
7712 			case MULTI_FUNCTION_AFEX:
7713 				val = 2;
7714 				break;
7715 			}
7716 
7717 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7718 						  NIG_REG_LLH0_CLS_TYPE), val);
7719 		}
7720 		{
7721 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7722 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7723 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7724 		}
7725 	}
7726 
7727 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7728 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7729 	if (val & MISC_SPIO_SPIO5) {
7730 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7731 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7732 		val = REG_RD(bp, reg_addr);
7733 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7734 		REG_WR(bp, reg_addr, val);
7735 	}
7736 
7737 	if (CHIP_IS_E3B0(bp))
7738 		bp->flags |= PTP_SUPPORTED;
7739 
7740 	return 0;
7741 }
7742 
7743 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7744 {
7745 	int reg;
7746 	u32 wb_write[2];
7747 
7748 	if (CHIP_IS_E1(bp))
7749 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7750 	else
7751 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7752 
7753 	wb_write[0] = ONCHIP_ADDR1(addr);
7754 	wb_write[1] = ONCHIP_ADDR2(addr);
7755 	REG_WR_DMAE(bp, reg, wb_write, 2);
7756 }
7757 
7758 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7759 {
7760 	u32 data, ctl, cnt = 100;
7761 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7762 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7763 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7764 	u32 sb_bit =  1 << (idu_sb_id%32);
7765 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7766 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7767 
7768 	/* Not supported in BC mode */
7769 	if (CHIP_INT_MODE_IS_BC(bp))
7770 		return;
7771 
7772 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7773 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7774 		IGU_REGULAR_CLEANUP_SET				|
7775 		IGU_REGULAR_BCLEANUP;
7776 
7777 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7778 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7779 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7780 
7781 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7782 			 data, igu_addr_data);
7783 	REG_WR(bp, igu_addr_data, data);
7784 	barrier();
7785 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7786 			  ctl, igu_addr_ctl);
7787 	REG_WR(bp, igu_addr_ctl, ctl);
7788 	barrier();
7789 
7790 	/* wait for clean up to finish */
7791 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7792 		msleep(20);
7793 
7794 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7795 		DP(NETIF_MSG_HW,
7796 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7797 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7798 	}
7799 }
7800 
7801 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7802 {
7803 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7804 }
7805 
7806 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7807 {
7808 	u32 i, base = FUNC_ILT_BASE(func);
7809 	for (i = base; i < base + ILT_PER_FUNC; i++)
7810 		bnx2x_ilt_wr(bp, i, 0);
7811 }
7812 
7813 static void bnx2x_init_searcher(struct bnx2x *bp)
7814 {
7815 	int port = BP_PORT(bp);
7816 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7817 	/* T1 hash bits value determines the T1 number of entries */
7818 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7819 }
7820 
7821 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7822 {
7823 	int rc;
7824 	struct bnx2x_func_state_params func_params = {NULL};
7825 	struct bnx2x_func_switch_update_params *switch_update_params =
7826 		&func_params.params.switch_update;
7827 
7828 	/* Prepare parameters for function state transitions */
7829 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7830 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7831 
7832 	func_params.f_obj = &bp->func_obj;
7833 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7834 
7835 	/* Function parameters */
7836 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7837 		  &switch_update_params->changes);
7838 	if (suspend)
7839 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7840 			  &switch_update_params->changes);
7841 
7842 	rc = bnx2x_func_state_change(bp, &func_params);
7843 
7844 	return rc;
7845 }
7846 
7847 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7848 {
7849 	int rc, i, port = BP_PORT(bp);
7850 	int vlan_en = 0, mac_en[NUM_MACS];
7851 
7852 	/* Close input from network */
7853 	if (bp->mf_mode == SINGLE_FUNCTION) {
7854 		bnx2x_set_rx_filter(&bp->link_params, 0);
7855 	} else {
7856 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7857 				   NIG_REG_LLH0_FUNC_EN);
7858 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7859 			  NIG_REG_LLH0_FUNC_EN, 0);
7860 		for (i = 0; i < NUM_MACS; i++) {
7861 			mac_en[i] = REG_RD(bp, port ?
7862 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7863 					      4 * i) :
7864 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7865 					      4 * i));
7866 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7867 					      4 * i) :
7868 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7869 		}
7870 	}
7871 
7872 	/* Close BMC to host */
7873 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7874 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7875 
7876 	/* Suspend Tx switching to the PF. Completion of this ramrod
7877 	 * further guarantees that all the packets of that PF / child
7878 	 * VFs in BRB were processed by the Parser, so it is safe to
7879 	 * change the NIC_MODE register.
7880 	 */
7881 	rc = bnx2x_func_switch_update(bp, 1);
7882 	if (rc) {
7883 		BNX2X_ERR("Can't suspend tx-switching!\n");
7884 		return rc;
7885 	}
7886 
7887 	/* Change NIC_MODE register */
7888 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7889 
7890 	/* Open input from network */
7891 	if (bp->mf_mode == SINGLE_FUNCTION) {
7892 		bnx2x_set_rx_filter(&bp->link_params, 1);
7893 	} else {
7894 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7895 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7896 		for (i = 0; i < NUM_MACS; i++) {
7897 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7898 					      4 * i) :
7899 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7900 				  mac_en[i]);
7901 		}
7902 	}
7903 
7904 	/* Enable BMC to host */
7905 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7906 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7907 
7908 	/* Resume Tx switching to the PF */
7909 	rc = bnx2x_func_switch_update(bp, 0);
7910 	if (rc) {
7911 		BNX2X_ERR("Can't resume tx-switching!\n");
7912 		return rc;
7913 	}
7914 
7915 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7916 	return 0;
7917 }
7918 
7919 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7920 {
7921 	int rc;
7922 
7923 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7924 
7925 	if (CONFIGURE_NIC_MODE(bp)) {
7926 		/* Configure searcher as part of function hw init */
7927 		bnx2x_init_searcher(bp);
7928 
7929 		/* Reset NIC mode */
7930 		rc = bnx2x_reset_nic_mode(bp);
7931 		if (rc)
7932 			BNX2X_ERR("Can't change NIC mode!\n");
7933 		return rc;
7934 	}
7935 
7936 	return 0;
7937 }
7938 
7939 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7940  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7941  * the addresses of the transaction, resulting in was-error bit set in the pci
7942  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7943  * to clear the interrupt which detected this from the pglueb and the was done
7944  * bit
7945  */
7946 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7947 {
7948 	if (!CHIP_IS_E1x(bp))
7949 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7950 		       1 << BP_ABS_FUNC(bp));
7951 }
7952 
7953 static int bnx2x_init_hw_func(struct bnx2x *bp)
7954 {
7955 	int port = BP_PORT(bp);
7956 	int func = BP_FUNC(bp);
7957 	int init_phase = PHASE_PF0 + func;
7958 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7959 	u16 cdu_ilt_start;
7960 	u32 addr, val;
7961 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7962 	int i, main_mem_width, rc;
7963 
7964 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7965 
7966 	/* FLR cleanup - hmmm */
7967 	if (!CHIP_IS_E1x(bp)) {
7968 		rc = bnx2x_pf_flr_clnup(bp);
7969 		if (rc) {
7970 			bnx2x_fw_dump(bp);
7971 			return rc;
7972 		}
7973 	}
7974 
7975 	/* set MSI reconfigure capability */
7976 	if (bp->common.int_block == INT_BLOCK_HC) {
7977 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7978 		val = REG_RD(bp, addr);
7979 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7980 		REG_WR(bp, addr, val);
7981 	}
7982 
7983 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7984 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7985 
7986 	ilt = BP_ILT(bp);
7987 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7988 
7989 	if (IS_SRIOV(bp))
7990 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7991 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7992 
7993 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7994 	 * those of the VFs, so start line should be reset
7995 	 */
7996 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7997 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7998 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7999 		ilt->lines[cdu_ilt_start + i].page_mapping =
8000 			bp->context[i].cxt_mapping;
8001 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8002 	}
8003 
8004 	bnx2x_ilt_init_op(bp, INITOP_SET);
8005 
8006 	if (!CONFIGURE_NIC_MODE(bp)) {
8007 		bnx2x_init_searcher(bp);
8008 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
8009 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8010 	} else {
8011 		/* Set NIC mode */
8012 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8013 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8014 	}
8015 
8016 	if (!CHIP_IS_E1x(bp)) {
8017 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8018 
8019 		/* Turn on a single ISR mode in IGU if driver is going to use
8020 		 * INT#x or MSI
8021 		 */
8022 		if (!(bp->flags & USING_MSIX_FLAG))
8023 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8024 		/*
8025 		 * Timers workaround bug: function init part.
8026 		 * Need to wait 20msec after initializing ILT,
8027 		 * needed to make sure there are no requests in
8028 		 * one of the PXP internal queues with "old" ILT addresses
8029 		 */
8030 		msleep(20);
8031 		/*
8032 		 * Master enable - Due to WB DMAE writes performed before this
8033 		 * register is re-initialized as part of the regular function
8034 		 * init
8035 		 */
8036 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8037 		/* Enable the function in IGU */
8038 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8039 	}
8040 
8041 	bp->dmae_ready = 1;
8042 
8043 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8044 
8045 	bnx2x_clean_pglue_errors(bp);
8046 
8047 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8048 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8049 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8050 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8051 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8052 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8053 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8054 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8056 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8057 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8058 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8059 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8060 
8061 	if (!CHIP_IS_E1x(bp))
8062 		REG_WR(bp, QM_REG_PF_EN, 1);
8063 
8064 	if (!CHIP_IS_E1x(bp)) {
8065 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8068 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8069 	}
8070 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8071 
8072 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8073 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8074 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8075 
8076 	bnx2x_iov_init_dq(bp);
8077 
8078 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8079 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8080 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8081 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8082 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8083 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8084 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8085 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8086 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8087 	if (!CHIP_IS_E1x(bp))
8088 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8089 
8090 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8091 
8092 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8093 
8094 	if (!CHIP_IS_E1x(bp))
8095 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8096 
8097 	if (IS_MF(bp)) {
8098 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8099 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8100 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8101 			       bp->mf_ov);
8102 		}
8103 	}
8104 
8105 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8106 
8107 	/* HC init per function */
8108 	if (bp->common.int_block == INT_BLOCK_HC) {
8109 		if (CHIP_IS_E1H(bp)) {
8110 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8111 
8112 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8113 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8114 		}
8115 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8116 
8117 	} else {
8118 		int num_segs, sb_idx, prod_offset;
8119 
8120 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8121 
8122 		if (!CHIP_IS_E1x(bp)) {
8123 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8124 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8125 		}
8126 
8127 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8128 
8129 		if (!CHIP_IS_E1x(bp)) {
8130 			int dsb_idx = 0;
8131 			/**
8132 			 * Producer memory:
8133 			 * E2 mode: address 0-135 match to the mapping memory;
8134 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8135 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8136 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8137 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8138 			 * 144-147 reserved.
8139 			 *
8140 			 * E1.5 mode - In backward compatible mode;
8141 			 * for non default SB; each even line in the memory
8142 			 * holds the U producer and each odd line hold
8143 			 * the C producer. The first 128 producers are for
8144 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8145 			 * producers are for the DSB for each PF.
8146 			 * Each PF has five segments: (the order inside each
8147 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8148 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8149 			 * 144-147 attn prods;
8150 			 */
8151 			/* non-default-status-blocks */
8152 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8153 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8154 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8155 				prod_offset = (bp->igu_base_sb + sb_idx) *
8156 					num_segs;
8157 
8158 				for (i = 0; i < num_segs; i++) {
8159 					addr = IGU_REG_PROD_CONS_MEMORY +
8160 							(prod_offset + i) * 4;
8161 					REG_WR(bp, addr, 0);
8162 				}
8163 				/* send consumer update with value 0 */
8164 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8165 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8166 				bnx2x_igu_clear_sb(bp,
8167 						   bp->igu_base_sb + sb_idx);
8168 			}
8169 
8170 			/* default-status-blocks */
8171 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8172 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8173 
8174 			if (CHIP_MODE_IS_4_PORT(bp))
8175 				dsb_idx = BP_FUNC(bp);
8176 			else
8177 				dsb_idx = BP_VN(bp);
8178 
8179 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8180 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8181 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8182 
8183 			/*
8184 			 * igu prods come in chunks of E1HVN_MAX (4) -
8185 			 * does not matters what is the current chip mode
8186 			 */
8187 			for (i = 0; i < (num_segs * E1HVN_MAX);
8188 			     i += E1HVN_MAX) {
8189 				addr = IGU_REG_PROD_CONS_MEMORY +
8190 							(prod_offset + i)*4;
8191 				REG_WR(bp, addr, 0);
8192 			}
8193 			/* send consumer update with 0 */
8194 			if (CHIP_INT_MODE_IS_BC(bp)) {
8195 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8197 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8198 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8199 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8201 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8202 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8203 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8204 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8205 			} else {
8206 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8207 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8208 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8209 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8210 			}
8211 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8212 
8213 			/* !!! These should become driver const once
8214 			   rf-tool supports split-68 const */
8215 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8216 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8217 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8218 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8219 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8220 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8221 		}
8222 	}
8223 
8224 	/* Reset PCIE errors for debug */
8225 	REG_WR(bp, 0x2114, 0xffffffff);
8226 	REG_WR(bp, 0x2120, 0xffffffff);
8227 
8228 	if (CHIP_IS_E1x(bp)) {
8229 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8230 		main_mem_base = HC_REG_MAIN_MEMORY +
8231 				BP_PORT(bp) * (main_mem_size * 4);
8232 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8233 		main_mem_width = 8;
8234 
8235 		val = REG_RD(bp, main_mem_prty_clr);
8236 		if (val)
8237 			DP(NETIF_MSG_HW,
8238 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8239 			   val);
8240 
8241 		/* Clear "false" parity errors in MSI-X table */
8242 		for (i = main_mem_base;
8243 		     i < main_mem_base + main_mem_size * 4;
8244 		     i += main_mem_width) {
8245 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8246 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8247 					 i, main_mem_width / 4);
8248 		}
8249 		/* Clear HC parity attention */
8250 		REG_RD(bp, main_mem_prty_clr);
8251 	}
8252 
8253 #ifdef BNX2X_STOP_ON_ERROR
8254 	/* Enable STORMs SP logging */
8255 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8256 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8257 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8258 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8259 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8260 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8261 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8262 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8263 #endif
8264 
8265 	bnx2x_phy_probe(&bp->link_params);
8266 
8267 	return 0;
8268 }
8269 
8270 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8271 {
8272 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8273 
8274 	if (!CHIP_IS_E1x(bp))
8275 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8276 			       sizeof(struct host_hc_status_block_e2));
8277 	else
8278 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8279 			       sizeof(struct host_hc_status_block_e1x));
8280 
8281 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8282 }
8283 
8284 void bnx2x_free_mem(struct bnx2x *bp)
8285 {
8286 	int i;
8287 
8288 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8289 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8290 
8291 	if (IS_VF(bp))
8292 		return;
8293 
8294 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8295 		       sizeof(struct host_sp_status_block));
8296 
8297 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8298 		       sizeof(struct bnx2x_slowpath));
8299 
8300 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8301 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8302 			       bp->context[i].size);
8303 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8304 
8305 	BNX2X_FREE(bp->ilt->lines);
8306 
8307 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8308 
8309 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8310 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8311 
8312 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8313 
8314 	bnx2x_iov_free_mem(bp);
8315 }
8316 
8317 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8318 {
8319 	if (!CHIP_IS_E1x(bp)) {
8320 		/* size = the status block + ramrod buffers */
8321 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8322 						    sizeof(struct host_hc_status_block_e2));
8323 		if (!bp->cnic_sb.e2_sb)
8324 			goto alloc_mem_err;
8325 	} else {
8326 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8327 						     sizeof(struct host_hc_status_block_e1x));
8328 		if (!bp->cnic_sb.e1x_sb)
8329 			goto alloc_mem_err;
8330 	}
8331 
8332 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8333 		/* allocate searcher T2 table, as it wasn't allocated before */
8334 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8335 		if (!bp->t2)
8336 			goto alloc_mem_err;
8337 	}
8338 
8339 	/* write address to which L5 should insert its values */
8340 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8341 		&bp->slowpath->drv_info_to_mcp;
8342 
8343 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8344 		goto alloc_mem_err;
8345 
8346 	return 0;
8347 
8348 alloc_mem_err:
8349 	bnx2x_free_mem_cnic(bp);
8350 	BNX2X_ERR("Can't allocate memory\n");
8351 	return -ENOMEM;
8352 }
8353 
8354 int bnx2x_alloc_mem(struct bnx2x *bp)
8355 {
8356 	int i, allocated, context_size;
8357 
8358 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8359 		/* allocate searcher T2 table */
8360 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8361 		if (!bp->t2)
8362 			goto alloc_mem_err;
8363 	}
8364 
8365 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8366 					     sizeof(struct host_sp_status_block));
8367 	if (!bp->def_status_blk)
8368 		goto alloc_mem_err;
8369 
8370 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8371 				       sizeof(struct bnx2x_slowpath));
8372 	if (!bp->slowpath)
8373 		goto alloc_mem_err;
8374 
8375 	/* Allocate memory for CDU context:
8376 	 * This memory is allocated separately and not in the generic ILT
8377 	 * functions because CDU differs in few aspects:
8378 	 * 1. There are multiple entities allocating memory for context -
8379 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8380 	 * its own ILT lines.
8381 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8382 	 * for the other ILT clients), to be efficient we want to support
8383 	 * allocation of sub-page-size in the last entry.
8384 	 * 3. Context pointers are used by the driver to pass to FW / update
8385 	 * the context (for the other ILT clients the pointers are used just to
8386 	 * free the memory during unload).
8387 	 */
8388 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8389 
8390 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8391 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8392 					  (context_size - allocated));
8393 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8394 						      bp->context[i].size);
8395 		if (!bp->context[i].vcxt)
8396 			goto alloc_mem_err;
8397 		allocated += bp->context[i].size;
8398 	}
8399 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8400 				 GFP_KERNEL);
8401 	if (!bp->ilt->lines)
8402 		goto alloc_mem_err;
8403 
8404 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8405 		goto alloc_mem_err;
8406 
8407 	if (bnx2x_iov_alloc_mem(bp))
8408 		goto alloc_mem_err;
8409 
8410 	/* Slow path ring */
8411 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8412 	if (!bp->spq)
8413 		goto alloc_mem_err;
8414 
8415 	/* EQ */
8416 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8417 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8418 	if (!bp->eq_ring)
8419 		goto alloc_mem_err;
8420 
8421 	return 0;
8422 
8423 alloc_mem_err:
8424 	bnx2x_free_mem(bp);
8425 	BNX2X_ERR("Can't allocate memory\n");
8426 	return -ENOMEM;
8427 }
8428 
8429 /*
8430  * Init service functions
8431  */
8432 
8433 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8434 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8435 		      int mac_type, unsigned long *ramrod_flags)
8436 {
8437 	int rc;
8438 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8439 
8440 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8441 
8442 	/* Fill general parameters */
8443 	ramrod_param.vlan_mac_obj = obj;
8444 	ramrod_param.ramrod_flags = *ramrod_flags;
8445 
8446 	/* Fill a user request section if needed */
8447 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8448 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8449 
8450 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8451 
8452 		/* Set the command: ADD or DEL */
8453 		if (set)
8454 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8455 		else
8456 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8457 	}
8458 
8459 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8460 
8461 	if (rc == -EEXIST) {
8462 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8463 		/* do not treat adding same MAC as error */
8464 		rc = 0;
8465 	} else if (rc < 0)
8466 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8467 
8468 	return rc;
8469 }
8470 
8471 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8472 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8473 		       unsigned long *ramrod_flags)
8474 {
8475 	int rc;
8476 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8477 
8478 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8479 
8480 	/* Fill general parameters */
8481 	ramrod_param.vlan_mac_obj = obj;
8482 	ramrod_param.ramrod_flags = *ramrod_flags;
8483 
8484 	/* Fill a user request section if needed */
8485 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8486 		ramrod_param.user_req.u.vlan.vlan = vlan;
8487 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8488 		/* Set the command: ADD or DEL */
8489 		if (set)
8490 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8491 		else
8492 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8493 	}
8494 
8495 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8496 
8497 	if (rc == -EEXIST) {
8498 		/* Do not treat adding same vlan as error. */
8499 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8500 		rc = 0;
8501 	} else if (rc < 0) {
8502 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8503 	}
8504 
8505 	return rc;
8506 }
8507 
8508 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8509 {
8510 	struct bnx2x_vlan_entry *vlan;
8511 
8512 	/* Mark that hw forgot all entries */
8513 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8514 		vlan->hw = false;
8515 
8516 	bp->vlan_cnt = 0;
8517 }
8518 
8519 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8520 {
8521 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8522 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8523 	int rc;
8524 
8525 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8526 	__set_bit(BNX2X_VLAN, &vlan_flags);
8527 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8528 	if (rc)
8529 		return rc;
8530 
8531 	bnx2x_clear_vlan_info(bp);
8532 
8533 	return 0;
8534 }
8535 
8536 int bnx2x_del_all_macs(struct bnx2x *bp,
8537 		       struct bnx2x_vlan_mac_obj *mac_obj,
8538 		       int mac_type, bool wait_for_comp)
8539 {
8540 	int rc;
8541 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8542 
8543 	/* Wait for completion of requested */
8544 	if (wait_for_comp)
8545 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8546 
8547 	/* Set the mac type of addresses we want to clear */
8548 	__set_bit(mac_type, &vlan_mac_flags);
8549 
8550 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8551 	if (rc < 0)
8552 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8553 
8554 	return rc;
8555 }
8556 
8557 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8558 {
8559 	if (IS_PF(bp)) {
8560 		unsigned long ramrod_flags = 0;
8561 
8562 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8563 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8564 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8565 					 &bp->sp_objs->mac_obj, set,
8566 					 BNX2X_ETH_MAC, &ramrod_flags);
8567 	} else { /* vf */
8568 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8569 					     bp->fp->index, set);
8570 	}
8571 }
8572 
8573 int bnx2x_setup_leading(struct bnx2x *bp)
8574 {
8575 	if (IS_PF(bp))
8576 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8577 	else /* VF */
8578 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8579 }
8580 
8581 /**
8582  * bnx2x_set_int_mode - configure interrupt mode
8583  *
8584  * @bp:		driver handle
8585  *
8586  * In case of MSI-X it will also try to enable MSI-X.
8587  */
8588 int bnx2x_set_int_mode(struct bnx2x *bp)
8589 {
8590 	int rc = 0;
8591 
8592 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8593 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8594 		return -EINVAL;
8595 	}
8596 
8597 	switch (int_mode) {
8598 	case BNX2X_INT_MODE_MSIX:
8599 		/* attempt to enable msix */
8600 		rc = bnx2x_enable_msix(bp);
8601 
8602 		/* msix attained */
8603 		if (!rc)
8604 			return 0;
8605 
8606 		/* vfs use only msix */
8607 		if (rc && IS_VF(bp))
8608 			return rc;
8609 
8610 		/* failed to enable multiple MSI-X */
8611 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8612 			       bp->num_queues,
8613 			       1 + bp->num_cnic_queues);
8614 
8615 		fallthrough;
8616 	case BNX2X_INT_MODE_MSI:
8617 		bnx2x_enable_msi(bp);
8618 
8619 		fallthrough;
8620 	case BNX2X_INT_MODE_INTX:
8621 		bp->num_ethernet_queues = 1;
8622 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8623 		BNX2X_DEV_INFO("set number of queues to 1\n");
8624 		break;
8625 	default:
8626 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8627 		return -EINVAL;
8628 	}
8629 	return 0;
8630 }
8631 
8632 /* must be called prior to any HW initializations */
8633 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8634 {
8635 	if (IS_SRIOV(bp))
8636 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8637 	return L2_ILT_LINES(bp);
8638 }
8639 
8640 void bnx2x_ilt_set_info(struct bnx2x *bp)
8641 {
8642 	struct ilt_client_info *ilt_client;
8643 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8644 	u16 line = 0;
8645 
8646 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8647 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8648 
8649 	/* CDU */
8650 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8651 	ilt_client->client_num = ILT_CLIENT_CDU;
8652 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8653 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8654 	ilt_client->start = line;
8655 	line += bnx2x_cid_ilt_lines(bp);
8656 
8657 	if (CNIC_SUPPORT(bp))
8658 		line += CNIC_ILT_LINES;
8659 	ilt_client->end = line - 1;
8660 
8661 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8662 	   ilt_client->start,
8663 	   ilt_client->end,
8664 	   ilt_client->page_size,
8665 	   ilt_client->flags,
8666 	   ilog2(ilt_client->page_size >> 12));
8667 
8668 	/* QM */
8669 	if (QM_INIT(bp->qm_cid_count)) {
8670 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8671 		ilt_client->client_num = ILT_CLIENT_QM;
8672 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8673 		ilt_client->flags = 0;
8674 		ilt_client->start = line;
8675 
8676 		/* 4 bytes for each cid */
8677 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8678 							 QM_ILT_PAGE_SZ);
8679 
8680 		ilt_client->end = line - 1;
8681 
8682 		DP(NETIF_MSG_IFUP,
8683 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8684 		   ilt_client->start,
8685 		   ilt_client->end,
8686 		   ilt_client->page_size,
8687 		   ilt_client->flags,
8688 		   ilog2(ilt_client->page_size >> 12));
8689 	}
8690 
8691 	if (CNIC_SUPPORT(bp)) {
8692 		/* SRC */
8693 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8694 		ilt_client->client_num = ILT_CLIENT_SRC;
8695 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8696 		ilt_client->flags = 0;
8697 		ilt_client->start = line;
8698 		line += SRC_ILT_LINES;
8699 		ilt_client->end = line - 1;
8700 
8701 		DP(NETIF_MSG_IFUP,
8702 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8703 		   ilt_client->start,
8704 		   ilt_client->end,
8705 		   ilt_client->page_size,
8706 		   ilt_client->flags,
8707 		   ilog2(ilt_client->page_size >> 12));
8708 
8709 		/* TM */
8710 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8711 		ilt_client->client_num = ILT_CLIENT_TM;
8712 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8713 		ilt_client->flags = 0;
8714 		ilt_client->start = line;
8715 		line += TM_ILT_LINES;
8716 		ilt_client->end = line - 1;
8717 
8718 		DP(NETIF_MSG_IFUP,
8719 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8720 		   ilt_client->start,
8721 		   ilt_client->end,
8722 		   ilt_client->page_size,
8723 		   ilt_client->flags,
8724 		   ilog2(ilt_client->page_size >> 12));
8725 	}
8726 
8727 	BUG_ON(line > ILT_MAX_LINES);
8728 }
8729 
8730 /**
8731  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8732  *
8733  * @bp:			driver handle
8734  * @fp:			pointer to fastpath
8735  * @init_params:	pointer to parameters structure
8736  *
8737  * parameters configured:
8738  *      - HC configuration
8739  *      - Queue's CDU context
8740  */
8741 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8742 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8743 {
8744 	u8 cos;
8745 	int cxt_index, cxt_offset;
8746 
8747 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8748 	if (!IS_FCOE_FP(fp)) {
8749 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8750 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8751 
8752 		/* If HC is supported, enable host coalescing in the transition
8753 		 * to INIT state.
8754 		 */
8755 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8756 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8757 
8758 		/* HC rate */
8759 		init_params->rx.hc_rate = bp->rx_ticks ?
8760 			(1000000 / bp->rx_ticks) : 0;
8761 		init_params->tx.hc_rate = bp->tx_ticks ?
8762 			(1000000 / bp->tx_ticks) : 0;
8763 
8764 		/* FW SB ID */
8765 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8766 			fp->fw_sb_id;
8767 
8768 		/*
8769 		 * CQ index among the SB indices: FCoE clients uses the default
8770 		 * SB, therefore it's different.
8771 		 */
8772 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8773 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8774 	}
8775 
8776 	/* set maximum number of COSs supported by this queue */
8777 	init_params->max_cos = fp->max_cos;
8778 
8779 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8780 	    fp->index, init_params->max_cos);
8781 
8782 	/* set the context pointers queue object */
8783 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8784 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8785 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8786 				ILT_PAGE_CIDS);
8787 		init_params->cxts[cos] =
8788 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8789 	}
8790 }
8791 
8792 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8793 			struct bnx2x_queue_state_params *q_params,
8794 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8795 			int tx_index, bool leading)
8796 {
8797 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8798 
8799 	/* Set the command */
8800 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8801 
8802 	/* Set tx-only QUEUE flags: don't zero statistics */
8803 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8804 
8805 	/* choose the index of the cid to send the slow path on */
8806 	tx_only_params->cid_index = tx_index;
8807 
8808 	/* Set general TX_ONLY_SETUP parameters */
8809 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8810 
8811 	/* Set Tx TX_ONLY_SETUP parameters */
8812 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8813 
8814 	DP(NETIF_MSG_IFUP,
8815 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8816 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8817 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8818 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8819 
8820 	/* send the ramrod */
8821 	return bnx2x_queue_state_change(bp, q_params);
8822 }
8823 
8824 /**
8825  * bnx2x_setup_queue - setup queue
8826  *
8827  * @bp:		driver handle
8828  * @fp:		pointer to fastpath
8829  * @leading:	is leading
8830  *
8831  * This function performs 2 steps in a Queue state machine
8832  *      actually: 1) RESET->INIT 2) INIT->SETUP
8833  */
8834 
8835 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8836 		       bool leading)
8837 {
8838 	struct bnx2x_queue_state_params q_params = {NULL};
8839 	struct bnx2x_queue_setup_params *setup_params =
8840 						&q_params.params.setup;
8841 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8842 						&q_params.params.tx_only;
8843 	int rc;
8844 	u8 tx_index;
8845 
8846 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8847 
8848 	/* reset IGU state skip FCoE L2 queue */
8849 	if (!IS_FCOE_FP(fp))
8850 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8851 			     IGU_INT_ENABLE, 0);
8852 
8853 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8854 	/* We want to wait for completion in this context */
8855 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8856 
8857 	/* Prepare the INIT parameters */
8858 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8859 
8860 	/* Set the command */
8861 	q_params.cmd = BNX2X_Q_CMD_INIT;
8862 
8863 	/* Change the state to INIT */
8864 	rc = bnx2x_queue_state_change(bp, &q_params);
8865 	if (rc) {
8866 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8867 		return rc;
8868 	}
8869 
8870 	DP(NETIF_MSG_IFUP, "init complete\n");
8871 
8872 	/* Now move the Queue to the SETUP state... */
8873 	memset(setup_params, 0, sizeof(*setup_params));
8874 
8875 	/* Set QUEUE flags */
8876 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8877 
8878 	/* Set general SETUP parameters */
8879 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8880 				FIRST_TX_COS_INDEX);
8881 
8882 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8883 			    &setup_params->rxq_params);
8884 
8885 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8886 			   FIRST_TX_COS_INDEX);
8887 
8888 	/* Set the command */
8889 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8890 
8891 	if (IS_FCOE_FP(fp))
8892 		bp->fcoe_init = true;
8893 
8894 	/* Change the state to SETUP */
8895 	rc = bnx2x_queue_state_change(bp, &q_params);
8896 	if (rc) {
8897 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8898 		return rc;
8899 	}
8900 
8901 	/* loop through the relevant tx-only indices */
8902 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8903 	      tx_index < fp->max_cos;
8904 	      tx_index++) {
8905 
8906 		/* prepare and send tx-only ramrod*/
8907 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8908 					  tx_only_params, tx_index, leading);
8909 		if (rc) {
8910 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8911 				  fp->index, tx_index);
8912 			return rc;
8913 		}
8914 	}
8915 
8916 	return rc;
8917 }
8918 
8919 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8920 {
8921 	struct bnx2x_fastpath *fp = &bp->fp[index];
8922 	struct bnx2x_fp_txdata *txdata;
8923 	struct bnx2x_queue_state_params q_params = {NULL};
8924 	int rc, tx_index;
8925 
8926 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8927 
8928 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8929 	/* We want to wait for completion in this context */
8930 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8931 
8932 	/* close tx-only connections */
8933 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8934 	     tx_index < fp->max_cos;
8935 	     tx_index++){
8936 
8937 		/* ascertain this is a normal queue*/
8938 		txdata = fp->txdata_ptr[tx_index];
8939 
8940 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8941 							txdata->txq_index);
8942 
8943 		/* send halt terminate on tx-only connection */
8944 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8945 		memset(&q_params.params.terminate, 0,
8946 		       sizeof(q_params.params.terminate));
8947 		q_params.params.terminate.cid_index = tx_index;
8948 
8949 		rc = bnx2x_queue_state_change(bp, &q_params);
8950 		if (rc)
8951 			return rc;
8952 
8953 		/* send halt terminate on tx-only connection */
8954 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8955 		memset(&q_params.params.cfc_del, 0,
8956 		       sizeof(q_params.params.cfc_del));
8957 		q_params.params.cfc_del.cid_index = tx_index;
8958 		rc = bnx2x_queue_state_change(bp, &q_params);
8959 		if (rc)
8960 			return rc;
8961 	}
8962 	/* Stop the primary connection: */
8963 	/* ...halt the connection */
8964 	q_params.cmd = BNX2X_Q_CMD_HALT;
8965 	rc = bnx2x_queue_state_change(bp, &q_params);
8966 	if (rc)
8967 		return rc;
8968 
8969 	/* ...terminate the connection */
8970 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8971 	memset(&q_params.params.terminate, 0,
8972 	       sizeof(q_params.params.terminate));
8973 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8974 	rc = bnx2x_queue_state_change(bp, &q_params);
8975 	if (rc)
8976 		return rc;
8977 	/* ...delete cfc entry */
8978 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8979 	memset(&q_params.params.cfc_del, 0,
8980 	       sizeof(q_params.params.cfc_del));
8981 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8982 	return bnx2x_queue_state_change(bp, &q_params);
8983 }
8984 
8985 static void bnx2x_reset_func(struct bnx2x *bp)
8986 {
8987 	int port = BP_PORT(bp);
8988 	int func = BP_FUNC(bp);
8989 	int i;
8990 
8991 	/* Disable the function in the FW */
8992 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8993 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8994 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8995 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8996 
8997 	/* FP SBs */
8998 	for_each_eth_queue(bp, i) {
8999 		struct bnx2x_fastpath *fp = &bp->fp[i];
9000 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9001 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9002 			   SB_DISABLED);
9003 	}
9004 
9005 	if (CNIC_LOADED(bp))
9006 		/* CNIC SB */
9007 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9008 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9009 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9010 
9011 	/* SP SB */
9012 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9013 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9014 		SB_DISABLED);
9015 
9016 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9017 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9018 		       0);
9019 
9020 	/* Configure IGU */
9021 	if (bp->common.int_block == INT_BLOCK_HC) {
9022 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9023 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9024 	} else {
9025 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9026 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9027 	}
9028 
9029 	if (CNIC_LOADED(bp)) {
9030 		/* Disable Timer scan */
9031 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9032 		/*
9033 		 * Wait for at least 10ms and up to 2 second for the timers
9034 		 * scan to complete
9035 		 */
9036 		for (i = 0; i < 200; i++) {
9037 			usleep_range(10000, 20000);
9038 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9039 				break;
9040 		}
9041 	}
9042 	/* Clear ILT */
9043 	bnx2x_clear_func_ilt(bp, func);
9044 
9045 	/* Timers workaround bug for E2: if this is vnic-3,
9046 	 * we need to set the entire ilt range for this timers.
9047 	 */
9048 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9049 		struct ilt_client_info ilt_cli;
9050 		/* use dummy TM client */
9051 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9052 		ilt_cli.start = 0;
9053 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9054 		ilt_cli.client_num = ILT_CLIENT_TM;
9055 
9056 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9057 	}
9058 
9059 	/* this assumes that reset_port() called before reset_func()*/
9060 	if (!CHIP_IS_E1x(bp))
9061 		bnx2x_pf_disable(bp);
9062 
9063 	bp->dmae_ready = 0;
9064 }
9065 
9066 static void bnx2x_reset_port(struct bnx2x *bp)
9067 {
9068 	int port = BP_PORT(bp);
9069 	u32 val;
9070 
9071 	/* Reset physical Link */
9072 	bnx2x__link_reset(bp);
9073 
9074 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9075 
9076 	/* Do not rcv packets to BRB */
9077 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9078 	/* Do not direct rcv packets that are not for MCP to the BRB */
9079 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9080 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9081 
9082 	/* Configure AEU */
9083 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9084 
9085 	msleep(100);
9086 	/* Check for BRB port occupancy */
9087 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9088 	if (val)
9089 		DP(NETIF_MSG_IFDOWN,
9090 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9091 
9092 	/* TODO: Close Doorbell port? */
9093 }
9094 
9095 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9096 {
9097 	struct bnx2x_func_state_params func_params = {NULL};
9098 
9099 	/* Prepare parameters for function state transitions */
9100 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9101 
9102 	func_params.f_obj = &bp->func_obj;
9103 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9104 
9105 	func_params.params.hw_init.load_phase = load_code;
9106 
9107 	return bnx2x_func_state_change(bp, &func_params);
9108 }
9109 
9110 static int bnx2x_func_stop(struct bnx2x *bp)
9111 {
9112 	struct bnx2x_func_state_params func_params = {NULL};
9113 	int rc;
9114 
9115 	/* Prepare parameters for function state transitions */
9116 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9117 	func_params.f_obj = &bp->func_obj;
9118 	func_params.cmd = BNX2X_F_CMD_STOP;
9119 
9120 	/*
9121 	 * Try to stop the function the 'good way'. If fails (in case
9122 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9123 	 * not in a debug mode, perform a state transaction in order to
9124 	 * enable further HW_RESET transaction.
9125 	 */
9126 	rc = bnx2x_func_state_change(bp, &func_params);
9127 	if (rc) {
9128 #ifdef BNX2X_STOP_ON_ERROR
9129 		return rc;
9130 #else
9131 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9132 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9133 		return bnx2x_func_state_change(bp, &func_params);
9134 #endif
9135 	}
9136 
9137 	return 0;
9138 }
9139 
9140 /**
9141  * bnx2x_send_unload_req - request unload mode from the MCP.
9142  *
9143  * @bp:			driver handle
9144  * @unload_mode:	requested function's unload mode
9145  *
9146  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9147  */
9148 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9149 {
9150 	u32 reset_code = 0;
9151 	int port = BP_PORT(bp);
9152 
9153 	/* Select the UNLOAD request mode */
9154 	if (unload_mode == UNLOAD_NORMAL)
9155 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9156 
9157 	else if (bp->flags & NO_WOL_FLAG)
9158 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9159 
9160 	else if (bp->wol) {
9161 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9162 		const u8 *mac_addr = bp->dev->dev_addr;
9163 		struct pci_dev *pdev = bp->pdev;
9164 		u32 val;
9165 		u16 pmc;
9166 
9167 		/* The mac address is written to entries 1-4 to
9168 		 * preserve entry 0 which is used by the PMF
9169 		 */
9170 		u8 entry = (BP_VN(bp) + 1)*8;
9171 
9172 		val = (mac_addr[0] << 8) | mac_addr[1];
9173 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9174 
9175 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9176 		      (mac_addr[4] << 8) | mac_addr[5];
9177 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9178 
9179 		/* Enable the PME and clear the status */
9180 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9181 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9182 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9183 
9184 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9185 
9186 	} else
9187 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9188 
9189 	/* Send the request to the MCP */
9190 	if (!BP_NOMCP(bp))
9191 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9192 	else {
9193 		int path = BP_PATH(bp);
9194 
9195 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9196 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9197 		   bnx2x_load_count[path][2]);
9198 		bnx2x_load_count[path][0]--;
9199 		bnx2x_load_count[path][1 + port]--;
9200 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9201 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9202 		   bnx2x_load_count[path][2]);
9203 		if (bnx2x_load_count[path][0] == 0)
9204 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9205 		else if (bnx2x_load_count[path][1 + port] == 0)
9206 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9207 		else
9208 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9209 	}
9210 
9211 	return reset_code;
9212 }
9213 
9214 /**
9215  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9216  *
9217  * @bp:		driver handle
9218  * @keep_link:		true iff link should be kept up
9219  */
9220 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9221 {
9222 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9223 
9224 	/* Report UNLOAD_DONE to MCP */
9225 	if (!BP_NOMCP(bp))
9226 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9227 }
9228 
9229 static int bnx2x_func_wait_started(struct bnx2x *bp)
9230 {
9231 	int tout = 50;
9232 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9233 
9234 	if (!bp->port.pmf)
9235 		return 0;
9236 
9237 	/*
9238 	 * (assumption: No Attention from MCP at this stage)
9239 	 * PMF probably in the middle of TX disable/enable transaction
9240 	 * 1. Sync IRS for default SB
9241 	 * 2. Sync SP queue - this guarantees us that attention handling started
9242 	 * 3. Wait, that TX disable/enable transaction completes
9243 	 *
9244 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9245 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9246 	 * received completion for the transaction the state is TX_STOPPED.
9247 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9248 	 * transaction.
9249 	 */
9250 
9251 	/* make sure default SB ISR is done */
9252 	if (msix)
9253 		synchronize_irq(bp->msix_table[0].vector);
9254 	else
9255 		synchronize_irq(bp->pdev->irq);
9256 
9257 	flush_workqueue(bnx2x_wq);
9258 	flush_workqueue(bnx2x_iov_wq);
9259 
9260 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9261 				BNX2X_F_STATE_STARTED && tout--)
9262 		msleep(20);
9263 
9264 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9265 						BNX2X_F_STATE_STARTED) {
9266 #ifdef BNX2X_STOP_ON_ERROR
9267 		BNX2X_ERR("Wrong function state\n");
9268 		return -EBUSY;
9269 #else
9270 		/*
9271 		 * Failed to complete the transaction in a "good way"
9272 		 * Force both transactions with CLR bit
9273 		 */
9274 		struct bnx2x_func_state_params func_params = {NULL};
9275 
9276 		DP(NETIF_MSG_IFDOWN,
9277 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9278 
9279 		func_params.f_obj = &bp->func_obj;
9280 		__set_bit(RAMROD_DRV_CLR_ONLY,
9281 					&func_params.ramrod_flags);
9282 
9283 		/* STARTED-->TX_ST0PPED */
9284 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9285 		bnx2x_func_state_change(bp, &func_params);
9286 
9287 		/* TX_ST0PPED-->STARTED */
9288 		func_params.cmd = BNX2X_F_CMD_TX_START;
9289 		return bnx2x_func_state_change(bp, &func_params);
9290 #endif
9291 	}
9292 
9293 	return 0;
9294 }
9295 
9296 static void bnx2x_disable_ptp(struct bnx2x *bp)
9297 {
9298 	int port = BP_PORT(bp);
9299 
9300 	/* Disable sending PTP packets to host */
9301 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9302 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9303 
9304 	/* Reset PTP event detection rules */
9305 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9306 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9307 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9308 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9309 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9310 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9311 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9312 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9313 
9314 	/* Disable the PTP feature */
9315 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9316 	       NIG_REG_P0_PTP_EN, 0x0);
9317 }
9318 
9319 /* Called during unload, to stop PTP-related stuff */
9320 static void bnx2x_stop_ptp(struct bnx2x *bp)
9321 {
9322 	/* Cancel PTP work queue. Should be done after the Tx queues are
9323 	 * drained to prevent additional scheduling.
9324 	 */
9325 	cancel_work_sync(&bp->ptp_task);
9326 
9327 	if (bp->ptp_tx_skb) {
9328 		dev_kfree_skb_any(bp->ptp_tx_skb);
9329 		bp->ptp_tx_skb = NULL;
9330 	}
9331 
9332 	/* Disable PTP in HW */
9333 	bnx2x_disable_ptp(bp);
9334 
9335 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9336 }
9337 
9338 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9339 {
9340 	int port = BP_PORT(bp);
9341 	int i, rc = 0;
9342 	u8 cos;
9343 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9344 	u32 reset_code;
9345 
9346 	/* Wait until tx fastpath tasks complete */
9347 	for_each_tx_queue(bp, i) {
9348 		struct bnx2x_fastpath *fp = &bp->fp[i];
9349 
9350 		for_each_cos_in_tx_queue(fp, cos)
9351 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9352 #ifdef BNX2X_STOP_ON_ERROR
9353 		if (rc)
9354 			return;
9355 #endif
9356 	}
9357 
9358 	/* Give HW time to discard old tx messages */
9359 	usleep_range(1000, 2000);
9360 
9361 	/* Clean all ETH MACs */
9362 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9363 				false);
9364 	if (rc < 0)
9365 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9366 
9367 	/* Clean up UC list  */
9368 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9369 				true);
9370 	if (rc < 0)
9371 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9372 			  rc);
9373 
9374 	/* The whole *vlan_obj structure may be not initialized if VLAN
9375 	 * filtering offload is not supported by hardware. Currently this is
9376 	 * true for all hardware covered by CHIP_IS_E1x().
9377 	 */
9378 	if (!CHIP_IS_E1x(bp)) {
9379 		/* Remove all currently configured VLANs */
9380 		rc = bnx2x_del_all_vlans(bp);
9381 		if (rc < 0)
9382 			BNX2X_ERR("Failed to delete all VLANs\n");
9383 	}
9384 
9385 	/* Disable LLH */
9386 	if (!CHIP_IS_E1(bp))
9387 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9388 
9389 	/* Set "drop all" (stop Rx).
9390 	 * We need to take a netif_addr_lock() here in order to prevent
9391 	 * a race between the completion code and this code.
9392 	 */
9393 	netif_addr_lock_bh(bp->dev);
9394 	/* Schedule the rx_mode command */
9395 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9396 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9397 	else if (bp->slowpath)
9398 		bnx2x_set_storm_rx_mode(bp);
9399 
9400 	/* Cleanup multicast configuration */
9401 	rparam.mcast_obj = &bp->mcast_obj;
9402 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9403 	if (rc < 0)
9404 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9405 
9406 	netif_addr_unlock_bh(bp->dev);
9407 
9408 	bnx2x_iov_chip_cleanup(bp);
9409 
9410 	/*
9411 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9412 	 * this function should perform FUNC, PORT or COMMON HW
9413 	 * reset.
9414 	 */
9415 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9416 
9417 	/*
9418 	 * (assumption: No Attention from MCP at this stage)
9419 	 * PMF probably in the middle of TX disable/enable transaction
9420 	 */
9421 	rc = bnx2x_func_wait_started(bp);
9422 	if (rc) {
9423 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9424 #ifdef BNX2X_STOP_ON_ERROR
9425 		return;
9426 #endif
9427 	}
9428 
9429 	/* Close multi and leading connections
9430 	 * Completions for ramrods are collected in a synchronous way
9431 	 */
9432 	for_each_eth_queue(bp, i)
9433 		if (bnx2x_stop_queue(bp, i))
9434 #ifdef BNX2X_STOP_ON_ERROR
9435 			return;
9436 #else
9437 			goto unload_error;
9438 #endif
9439 
9440 	if (CNIC_LOADED(bp)) {
9441 		for_each_cnic_queue(bp, i)
9442 			if (bnx2x_stop_queue(bp, i))
9443 #ifdef BNX2X_STOP_ON_ERROR
9444 				return;
9445 #else
9446 				goto unload_error;
9447 #endif
9448 	}
9449 
9450 	/* If SP settings didn't get completed so far - something
9451 	 * very wrong has happen.
9452 	 */
9453 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9454 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9455 
9456 #ifndef BNX2X_STOP_ON_ERROR
9457 unload_error:
9458 #endif
9459 	rc = bnx2x_func_stop(bp);
9460 	if (rc) {
9461 		BNX2X_ERR("Function stop failed!\n");
9462 #ifdef BNX2X_STOP_ON_ERROR
9463 		return;
9464 #endif
9465 	}
9466 
9467 	/* stop_ptp should be after the Tx queues are drained to prevent
9468 	 * scheduling to the cancelled PTP work queue. It should also be after
9469 	 * function stop ramrod is sent, since as part of this ramrod FW access
9470 	 * PTP registers.
9471 	 */
9472 	if (bp->flags & PTP_SUPPORTED) {
9473 		bnx2x_stop_ptp(bp);
9474 		if (bp->ptp_clock) {
9475 			ptp_clock_unregister(bp->ptp_clock);
9476 			bp->ptp_clock = NULL;
9477 		}
9478 	}
9479 
9480 	if (!bp->nic_stopped) {
9481 		/* Disable HW interrupts, NAPI */
9482 		bnx2x_netif_stop(bp, 1);
9483 		/* Delete all NAPI objects */
9484 		bnx2x_del_all_napi(bp);
9485 		if (CNIC_LOADED(bp))
9486 			bnx2x_del_all_napi_cnic(bp);
9487 
9488 		/* Release IRQs */
9489 		bnx2x_free_irq(bp);
9490 		bp->nic_stopped = true;
9491 	}
9492 
9493 	/* Reset the chip, unless PCI function is offline. If we reach this
9494 	 * point following a PCI error handling, it means device is really
9495 	 * in a bad state and we're about to remove it, so reset the chip
9496 	 * is not a good idea.
9497 	 */
9498 	if (!pci_channel_offline(bp->pdev)) {
9499 		rc = bnx2x_reset_hw(bp, reset_code);
9500 		if (rc)
9501 			BNX2X_ERR("HW_RESET failed\n");
9502 	}
9503 
9504 	/* Report UNLOAD_DONE to MCP */
9505 	bnx2x_send_unload_done(bp, keep_link);
9506 }
9507 
9508 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9509 {
9510 	u32 val;
9511 
9512 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9513 
9514 	if (CHIP_IS_E1(bp)) {
9515 		int port = BP_PORT(bp);
9516 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9517 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9518 
9519 		val = REG_RD(bp, addr);
9520 		val &= ~(0x300);
9521 		REG_WR(bp, addr, val);
9522 	} else {
9523 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9524 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9525 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9526 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9527 	}
9528 }
9529 
9530 /* Close gates #2, #3 and #4: */
9531 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9532 {
9533 	u32 val;
9534 
9535 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9536 	if (!CHIP_IS_E1(bp)) {
9537 		/* #4 */
9538 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9539 		/* #2 */
9540 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9541 	}
9542 
9543 	/* #3 */
9544 	if (CHIP_IS_E1x(bp)) {
9545 		/* Prevent interrupts from HC on both ports */
9546 		val = REG_RD(bp, HC_REG_CONFIG_1);
9547 		REG_WR(bp, HC_REG_CONFIG_1,
9548 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9549 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9550 
9551 		val = REG_RD(bp, HC_REG_CONFIG_0);
9552 		REG_WR(bp, HC_REG_CONFIG_0,
9553 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9554 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9555 	} else {
9556 		/* Prevent incoming interrupts in IGU */
9557 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9558 
9559 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9560 		       (!close) ?
9561 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9562 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9563 	}
9564 
9565 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9566 		close ? "closing" : "opening");
9567 }
9568 
9569 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9570 
9571 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9572 {
9573 	/* Do some magic... */
9574 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9575 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9576 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9577 }
9578 
9579 /**
9580  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9581  *
9582  * @bp:		driver handle
9583  * @magic_val:	old value of the `magic' bit.
9584  */
9585 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9586 {
9587 	/* Restore the `magic' bit value... */
9588 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9589 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9590 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9591 }
9592 
9593 /**
9594  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9595  *
9596  * @bp:		driver handle
9597  * @magic_val:	old value of 'magic' bit.
9598  *
9599  * Takes care of CLP configurations.
9600  */
9601 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9602 {
9603 	u32 shmem;
9604 	u32 validity_offset;
9605 
9606 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9607 
9608 	/* Set `magic' bit in order to save MF config */
9609 	if (!CHIP_IS_E1(bp))
9610 		bnx2x_clp_reset_prep(bp, magic_val);
9611 
9612 	/* Get shmem offset */
9613 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9614 	validity_offset =
9615 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9616 
9617 	/* Clear validity map flags */
9618 	if (shmem > 0)
9619 		REG_WR(bp, shmem + validity_offset, 0);
9620 }
9621 
9622 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9623 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9624 
9625 /**
9626  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9627  *
9628  * @bp:	driver handle
9629  */
9630 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9631 {
9632 	/* special handling for emulation and FPGA,
9633 	   wait 10 times longer */
9634 	if (CHIP_REV_IS_SLOW(bp))
9635 		msleep(MCP_ONE_TIMEOUT*10);
9636 	else
9637 		msleep(MCP_ONE_TIMEOUT);
9638 }
9639 
9640 /*
9641  * initializes bp->common.shmem_base and waits for validity signature to appear
9642  */
9643 static int bnx2x_init_shmem(struct bnx2x *bp)
9644 {
9645 	int cnt = 0;
9646 	u32 val = 0;
9647 
9648 	do {
9649 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9650 
9651 		/* If we read all 0xFFs, means we are in PCI error state and
9652 		 * should bail out to avoid crashes on adapter's FW reads.
9653 		 */
9654 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9655 			bp->flags |= NO_MCP_FLAG;
9656 			return -ENODEV;
9657 		}
9658 
9659 		if (bp->common.shmem_base) {
9660 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9661 			if (val & SHR_MEM_VALIDITY_MB)
9662 				return 0;
9663 		}
9664 
9665 		bnx2x_mcp_wait_one(bp);
9666 
9667 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9668 
9669 	BNX2X_ERR("BAD MCP validity signature\n");
9670 
9671 	return -ENODEV;
9672 }
9673 
9674 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9675 {
9676 	int rc = bnx2x_init_shmem(bp);
9677 
9678 	/* Restore the `magic' bit value */
9679 	if (!CHIP_IS_E1(bp))
9680 		bnx2x_clp_reset_done(bp, magic_val);
9681 
9682 	return rc;
9683 }
9684 
9685 static void bnx2x_pxp_prep(struct bnx2x *bp)
9686 {
9687 	if (!CHIP_IS_E1(bp)) {
9688 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9689 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9690 	}
9691 }
9692 
9693 /*
9694  * Reset the whole chip except for:
9695  *      - PCIE core
9696  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9697  *              one reset bit)
9698  *      - IGU
9699  *      - MISC (including AEU)
9700  *      - GRC
9701  *      - RBCN, RBCP
9702  */
9703 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9704 {
9705 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9706 	u32 global_bits2, stay_reset2;
9707 
9708 	/*
9709 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9710 	 * (per chip) blocks.
9711 	 */
9712 	global_bits2 =
9713 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9714 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9715 
9716 	/* Don't reset the following blocks.
9717 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9718 	 *            reset, as in 4 port device they might still be owned
9719 	 *            by the MCP (there is only one leader per path).
9720 	 */
9721 	not_reset_mask1 =
9722 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9723 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9724 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9725 
9726 	not_reset_mask2 =
9727 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9728 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9729 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9730 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9731 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9732 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9733 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9734 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9735 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9736 		MISC_REGISTERS_RESET_REG_2_PGLC |
9737 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9738 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9739 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9740 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9741 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9742 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9743 
9744 	/*
9745 	 * Keep the following blocks in reset:
9746 	 *  - all xxMACs are handled by the bnx2x_link code.
9747 	 */
9748 	stay_reset2 =
9749 		MISC_REGISTERS_RESET_REG_2_XMAC |
9750 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9751 
9752 	/* Full reset masks according to the chip */
9753 	reset_mask1 = 0xffffffff;
9754 
9755 	if (CHIP_IS_E1(bp))
9756 		reset_mask2 = 0xffff;
9757 	else if (CHIP_IS_E1H(bp))
9758 		reset_mask2 = 0x1ffff;
9759 	else if (CHIP_IS_E2(bp))
9760 		reset_mask2 = 0xfffff;
9761 	else /* CHIP_IS_E3 */
9762 		reset_mask2 = 0x3ffffff;
9763 
9764 	/* Don't reset global blocks unless we need to */
9765 	if (!global)
9766 		reset_mask2 &= ~global_bits2;
9767 
9768 	/*
9769 	 * In case of attention in the QM, we need to reset PXP
9770 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9771 	 * because otherwise QM reset would release 'close the gates' shortly
9772 	 * before resetting the PXP, then the PSWRQ would send a write
9773 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9774 	 * read the payload data from PSWWR, but PSWWR would not
9775 	 * respond. The write queue in PGLUE would stuck, dmae commands
9776 	 * would not return. Therefore it's important to reset the second
9777 	 * reset register (containing the
9778 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9779 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9780 	 * bit).
9781 	 */
9782 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9783 	       reset_mask2 & (~not_reset_mask2));
9784 
9785 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9786 	       reset_mask1 & (~not_reset_mask1));
9787 
9788 	barrier();
9789 
9790 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9791 	       reset_mask2 & (~stay_reset2));
9792 
9793 	barrier();
9794 
9795 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9796 }
9797 
9798 /**
9799  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9800  * It should get cleared in no more than 1s.
9801  *
9802  * @bp:	driver handle
9803  *
9804  * It should get cleared in no more than 1s. Returns 0 if
9805  * pending writes bit gets cleared.
9806  */
9807 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9808 {
9809 	u32 cnt = 1000;
9810 	u32 pend_bits = 0;
9811 
9812 	do {
9813 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9814 
9815 		if (pend_bits == 0)
9816 			break;
9817 
9818 		usleep_range(1000, 2000);
9819 	} while (cnt-- > 0);
9820 
9821 	if (cnt <= 0) {
9822 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9823 			  pend_bits);
9824 		return -EBUSY;
9825 	}
9826 
9827 	return 0;
9828 }
9829 
9830 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9831 {
9832 	int cnt = 1000;
9833 	u32 val = 0;
9834 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9835 	u32 tags_63_32 = 0;
9836 
9837 	/* Empty the Tetris buffer, wait for 1s */
9838 	do {
9839 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9840 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9841 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9842 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9843 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9844 		if (CHIP_IS_E3(bp))
9845 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9846 
9847 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9848 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9849 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9850 		    (pgl_exp_rom2 == 0xffffffff) &&
9851 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9852 			break;
9853 		usleep_range(1000, 2000);
9854 	} while (cnt-- > 0);
9855 
9856 	if (cnt <= 0) {
9857 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9858 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9859 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9860 			  pgl_exp_rom2);
9861 		return -EAGAIN;
9862 	}
9863 
9864 	barrier();
9865 
9866 	/* Close gates #2, #3 and #4 */
9867 	bnx2x_set_234_gates(bp, true);
9868 
9869 	/* Poll for IGU VQs for 57712 and newer chips */
9870 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9871 		return -EAGAIN;
9872 
9873 	/* TBD: Indicate that "process kill" is in progress to MCP */
9874 
9875 	/* Clear "unprepared" bit */
9876 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9877 	barrier();
9878 
9879 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9880 	 * PSWHST, GRC and PSWRD Tetris buffer.
9881 	 */
9882 	usleep_range(1000, 2000);
9883 
9884 	/* Prepare to chip reset: */
9885 	/* MCP */
9886 	if (global)
9887 		bnx2x_reset_mcp_prep(bp, &val);
9888 
9889 	/* PXP */
9890 	bnx2x_pxp_prep(bp);
9891 	barrier();
9892 
9893 	/* reset the chip */
9894 	bnx2x_process_kill_chip_reset(bp, global);
9895 	barrier();
9896 
9897 	/* clear errors in PGB */
9898 	if (!CHIP_IS_E1x(bp))
9899 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9900 
9901 	/* Recover after reset: */
9902 	/* MCP */
9903 	if (global && bnx2x_reset_mcp_comp(bp, val))
9904 		return -EAGAIN;
9905 
9906 	/* TBD: Add resetting the NO_MCP mode DB here */
9907 
9908 	/* Open the gates #2, #3 and #4 */
9909 	bnx2x_set_234_gates(bp, false);
9910 
9911 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9912 	 * reset state, re-enable attentions. */
9913 
9914 	return 0;
9915 }
9916 
9917 static int bnx2x_leader_reset(struct bnx2x *bp)
9918 {
9919 	int rc = 0;
9920 	bool global = bnx2x_reset_is_global(bp);
9921 	u32 load_code;
9922 
9923 	/* if not going to reset MCP - load "fake" driver to reset HW while
9924 	 * driver is owner of the HW
9925 	 */
9926 	if (!global && !BP_NOMCP(bp)) {
9927 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9928 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9929 		if (!load_code) {
9930 			BNX2X_ERR("MCP response failure, aborting\n");
9931 			rc = -EAGAIN;
9932 			goto exit_leader_reset;
9933 		}
9934 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9935 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9936 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9937 			rc = -EAGAIN;
9938 			goto exit_leader_reset2;
9939 		}
9940 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9941 		if (!load_code) {
9942 			BNX2X_ERR("MCP response failure, aborting\n");
9943 			rc = -EAGAIN;
9944 			goto exit_leader_reset2;
9945 		}
9946 	}
9947 
9948 	/* Try to recover after the failure */
9949 	if (bnx2x_process_kill(bp, global)) {
9950 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9951 			  BP_PATH(bp));
9952 		rc = -EAGAIN;
9953 		goto exit_leader_reset2;
9954 	}
9955 
9956 	/*
9957 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9958 	 * state.
9959 	 */
9960 	bnx2x_set_reset_done(bp);
9961 	if (global)
9962 		bnx2x_clear_reset_global(bp);
9963 
9964 exit_leader_reset2:
9965 	/* unload "fake driver" if it was loaded */
9966 	if (!global && !BP_NOMCP(bp)) {
9967 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9968 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9969 	}
9970 exit_leader_reset:
9971 	bp->is_leader = 0;
9972 	bnx2x_release_leader_lock(bp);
9973 	smp_mb();
9974 	return rc;
9975 }
9976 
9977 static void bnx2x_recovery_failed(struct bnx2x *bp)
9978 {
9979 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9980 
9981 	/* Disconnect this device */
9982 	netif_device_detach(bp->dev);
9983 
9984 	/*
9985 	 * Block ifup for all function on this engine until "process kill"
9986 	 * or power cycle.
9987 	 */
9988 	bnx2x_set_reset_in_progress(bp);
9989 
9990 	/* Shut down the power */
9991 	bnx2x_set_power_state(bp, PCI_D3hot);
9992 
9993 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9994 
9995 	smp_mb();
9996 }
9997 
9998 /*
9999  * Assumption: runs under rtnl lock. This together with the fact
10000  * that it's called only from bnx2x_sp_rtnl() ensure that it
10001  * will never be called when netif_running(bp->dev) is false.
10002  */
10003 static void bnx2x_parity_recover(struct bnx2x *bp)
10004 {
10005 	u32 error_recovered, error_unrecovered;
10006 	bool is_parity, global = false;
10007 #ifdef CONFIG_BNX2X_SRIOV
10008 	int vf_idx;
10009 
10010 	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10011 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10012 
10013 		if (vf)
10014 			vf->state = VF_LOST;
10015 	}
10016 #endif
10017 	DP(NETIF_MSG_HW, "Handling parity\n");
10018 	while (1) {
10019 		switch (bp->recovery_state) {
10020 		case BNX2X_RECOVERY_INIT:
10021 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10022 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10023 			WARN_ON(!is_parity);
10024 
10025 			/* Try to get a LEADER_LOCK HW lock */
10026 			if (bnx2x_trylock_leader_lock(bp)) {
10027 				bnx2x_set_reset_in_progress(bp);
10028 				/*
10029 				 * Check if there is a global attention and if
10030 				 * there was a global attention, set the global
10031 				 * reset bit.
10032 				 */
10033 
10034 				if (global)
10035 					bnx2x_set_reset_global(bp);
10036 
10037 				bp->is_leader = 1;
10038 			}
10039 
10040 			/* Stop the driver */
10041 			/* If interface has been removed - break */
10042 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10043 				return;
10044 
10045 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10046 
10047 			/* Ensure "is_leader", MCP command sequence and
10048 			 * "recovery_state" update values are seen on other
10049 			 * CPUs.
10050 			 */
10051 			smp_mb();
10052 			break;
10053 
10054 		case BNX2X_RECOVERY_WAIT:
10055 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10056 			if (bp->is_leader) {
10057 				int other_engine = BP_PATH(bp) ? 0 : 1;
10058 				bool other_load_status =
10059 					bnx2x_get_load_status(bp, other_engine);
10060 				bool load_status =
10061 					bnx2x_get_load_status(bp, BP_PATH(bp));
10062 				global = bnx2x_reset_is_global(bp);
10063 
10064 				/*
10065 				 * In case of a parity in a global block, let
10066 				 * the first leader that performs a
10067 				 * leader_reset() reset the global blocks in
10068 				 * order to clear global attentions. Otherwise
10069 				 * the gates will remain closed for that
10070 				 * engine.
10071 				 */
10072 				if (load_status ||
10073 				    (global && other_load_status)) {
10074 					/* Wait until all other functions get
10075 					 * down.
10076 					 */
10077 					schedule_delayed_work(&bp->sp_rtnl_task,
10078 								HZ/10);
10079 					return;
10080 				} else {
10081 					/* If all other functions got down -
10082 					 * try to bring the chip back to
10083 					 * normal. In any case it's an exit
10084 					 * point for a leader.
10085 					 */
10086 					if (bnx2x_leader_reset(bp)) {
10087 						bnx2x_recovery_failed(bp);
10088 						return;
10089 					}
10090 
10091 					/* If we are here, means that the
10092 					 * leader has succeeded and doesn't
10093 					 * want to be a leader any more. Try
10094 					 * to continue as a none-leader.
10095 					 */
10096 					break;
10097 				}
10098 			} else { /* non-leader */
10099 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10100 					/* Try to get a LEADER_LOCK HW lock as
10101 					 * long as a former leader may have
10102 					 * been unloaded by the user or
10103 					 * released a leadership by another
10104 					 * reason.
10105 					 */
10106 					if (bnx2x_trylock_leader_lock(bp)) {
10107 						/* I'm a leader now! Restart a
10108 						 * switch case.
10109 						 */
10110 						bp->is_leader = 1;
10111 						break;
10112 					}
10113 
10114 					schedule_delayed_work(&bp->sp_rtnl_task,
10115 								HZ/10);
10116 					return;
10117 
10118 				} else {
10119 					/*
10120 					 * If there was a global attention, wait
10121 					 * for it to be cleared.
10122 					 */
10123 					if (bnx2x_reset_is_global(bp)) {
10124 						schedule_delayed_work(
10125 							&bp->sp_rtnl_task,
10126 							HZ/10);
10127 						return;
10128 					}
10129 
10130 					error_recovered =
10131 					  bp->eth_stats.recoverable_error;
10132 					error_unrecovered =
10133 					  bp->eth_stats.unrecoverable_error;
10134 					bp->recovery_state =
10135 						BNX2X_RECOVERY_NIC_LOADING;
10136 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10137 						error_unrecovered++;
10138 						netdev_err(bp->dev,
10139 							   "Recovery failed. Power cycle needed\n");
10140 						/* Disconnect this device */
10141 						netif_device_detach(bp->dev);
10142 						/* Shut down the power */
10143 						bnx2x_set_power_state(
10144 							bp, PCI_D3hot);
10145 						smp_mb();
10146 					} else {
10147 						bp->recovery_state =
10148 							BNX2X_RECOVERY_DONE;
10149 						error_recovered++;
10150 						smp_mb();
10151 					}
10152 					bp->eth_stats.recoverable_error =
10153 						error_recovered;
10154 					bp->eth_stats.unrecoverable_error =
10155 						error_unrecovered;
10156 
10157 					return;
10158 				}
10159 			}
10160 		default:
10161 			return;
10162 		}
10163 	}
10164 }
10165 
10166 static int bnx2x_udp_port_update(struct bnx2x *bp)
10167 {
10168 	struct bnx2x_func_switch_update_params *switch_update_params;
10169 	struct bnx2x_func_state_params func_params = {NULL};
10170 	u16 vxlan_port = 0, geneve_port = 0;
10171 	int rc;
10172 
10173 	switch_update_params = &func_params.params.switch_update;
10174 
10175 	/* Prepare parameters for function state transitions */
10176 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10177 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10178 
10179 	func_params.f_obj = &bp->func_obj;
10180 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10181 
10182 	/* Function parameters */
10183 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10184 		  &switch_update_params->changes);
10185 
10186 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10187 		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10188 		switch_update_params->geneve_dst_port = geneve_port;
10189 	}
10190 
10191 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10192 		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10193 		switch_update_params->vxlan_dst_port = vxlan_port;
10194 	}
10195 
10196 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10197 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10198 		  &switch_update_params->changes);
10199 
10200 	rc = bnx2x_func_state_change(bp, &func_params);
10201 	if (rc)
10202 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10203 			  vxlan_port, geneve_port, rc);
10204 	else
10205 		DP(BNX2X_MSG_SP,
10206 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10207 		   vxlan_port, geneve_port);
10208 
10209 	return rc;
10210 }
10211 
10212 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10213 {
10214 	struct bnx2x *bp = netdev_priv(netdev);
10215 	struct udp_tunnel_info ti;
10216 
10217 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10218 	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10219 
10220 	return bnx2x_udp_port_update(bp);
10221 }
10222 
10223 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10224 	.sync_table	= bnx2x_udp_tunnel_sync,
10225 	.flags		= UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10226 	.tables		= {
10227 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10228 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10229 	},
10230 };
10231 
10232 static int bnx2x_close(struct net_device *dev);
10233 
10234 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10235  * scheduled on a general queue in order to prevent a dead lock.
10236  */
10237 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10238 {
10239 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10240 
10241 	rtnl_lock();
10242 
10243 	if (!netif_running(bp->dev)) {
10244 		rtnl_unlock();
10245 		return;
10246 	}
10247 
10248 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10249 #ifdef BNX2X_STOP_ON_ERROR
10250 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10251 			  "you will need to reboot when done\n");
10252 		goto sp_rtnl_not_reset;
10253 #endif
10254 		/*
10255 		 * Clear all pending SP commands as we are going to reset the
10256 		 * function anyway.
10257 		 */
10258 		bp->sp_rtnl_state = 0;
10259 		smp_mb();
10260 
10261 		bnx2x_parity_recover(bp);
10262 
10263 		rtnl_unlock();
10264 		return;
10265 	}
10266 
10267 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10268 #ifdef BNX2X_STOP_ON_ERROR
10269 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10270 			  "you will need to reboot when done\n");
10271 		goto sp_rtnl_not_reset;
10272 #endif
10273 
10274 		/*
10275 		 * Clear all pending SP commands as we are going to reset the
10276 		 * function anyway.
10277 		 */
10278 		bp->sp_rtnl_state = 0;
10279 		smp_mb();
10280 
10281 		/* Immediately indicate link as down */
10282 		bp->link_vars.link_up = 0;
10283 		bp->force_link_down = true;
10284 		netif_carrier_off(bp->dev);
10285 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10286 
10287 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10288 		/* When ret value shows failure of allocation failure,
10289 		 * the nic is rebooted again. If open still fails, a error
10290 		 * message to notify the user.
10291 		 */
10292 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10293 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10294 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10295 				BNX2X_ERR("Open the NIC fails again!\n");
10296 		}
10297 		rtnl_unlock();
10298 		return;
10299 	}
10300 #ifdef BNX2X_STOP_ON_ERROR
10301 sp_rtnl_not_reset:
10302 #endif
10303 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10304 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10305 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10306 		bnx2x_after_function_update(bp);
10307 	/*
10308 	 * in case of fan failure we need to reset id if the "stop on error"
10309 	 * debug flag is set, since we trying to prevent permanent overheating
10310 	 * damage
10311 	 */
10312 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10313 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10314 		netif_device_detach(bp->dev);
10315 		bnx2x_close(bp->dev);
10316 		rtnl_unlock();
10317 		return;
10318 	}
10319 
10320 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10321 		DP(BNX2X_MSG_SP,
10322 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10323 		bnx2x_vfpf_set_mcast(bp->dev);
10324 	}
10325 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10326 			       &bp->sp_rtnl_state)){
10327 		if (netif_carrier_ok(bp->dev)) {
10328 			bnx2x_tx_disable(bp);
10329 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10330 		}
10331 	}
10332 
10333 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10334 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10335 		bnx2x_set_rx_mode_inner(bp);
10336 	}
10337 
10338 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10339 			       &bp->sp_rtnl_state))
10340 		bnx2x_pf_set_vfs_vlan(bp);
10341 
10342 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10343 		bnx2x_dcbx_stop_hw_tx(bp);
10344 		bnx2x_dcbx_resume_hw_tx(bp);
10345 	}
10346 
10347 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10348 			       &bp->sp_rtnl_state))
10349 		bnx2x_update_mng_version(bp);
10350 
10351 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10352 		bnx2x_handle_update_svid_cmd(bp);
10353 
10354 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10355 	 * can be called from other contexts as well)
10356 	 */
10357 	rtnl_unlock();
10358 
10359 	/* enable SR-IOV if applicable */
10360 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10361 					       &bp->sp_rtnl_state)) {
10362 		bnx2x_disable_sriov(bp);
10363 		bnx2x_enable_sriov(bp);
10364 	}
10365 }
10366 
10367 static void bnx2x_period_task(struct work_struct *work)
10368 {
10369 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10370 
10371 	if (!netif_running(bp->dev))
10372 		goto period_task_exit;
10373 
10374 	if (CHIP_REV_IS_SLOW(bp)) {
10375 		BNX2X_ERR("period task called on emulation, ignoring\n");
10376 		goto period_task_exit;
10377 	}
10378 
10379 	bnx2x_acquire_phy_lock(bp);
10380 	/*
10381 	 * The barrier is needed to ensure the ordering between the writing to
10382 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10383 	 * the reading here.
10384 	 */
10385 	smp_mb();
10386 	if (bp->port.pmf) {
10387 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10388 
10389 		/* Re-queue task in 1 sec */
10390 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10391 	}
10392 
10393 	bnx2x_release_phy_lock(bp);
10394 period_task_exit:
10395 	return;
10396 }
10397 
10398 /*
10399  * Init service functions
10400  */
10401 
10402 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10403 {
10404 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10405 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10406 	return base + (BP_ABS_FUNC(bp)) * stride;
10407 }
10408 
10409 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10410 					 u8 port, u32 reset_reg,
10411 					 struct bnx2x_mac_vals *vals)
10412 {
10413 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10414 	u32 base_addr;
10415 
10416 	if (!(mask & reset_reg))
10417 		return false;
10418 
10419 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10420 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10421 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10422 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10423 	REG_WR(bp, vals->umac_addr[port], 0);
10424 
10425 	return true;
10426 }
10427 
10428 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10429 					struct bnx2x_mac_vals *vals)
10430 {
10431 	u32 val, base_addr, offset, mask, reset_reg;
10432 	bool mac_stopped = false;
10433 	u8 port = BP_PORT(bp);
10434 
10435 	/* reset addresses as they also mark which values were changed */
10436 	memset(vals, 0, sizeof(*vals));
10437 
10438 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10439 
10440 	if (!CHIP_IS_E3(bp)) {
10441 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10442 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10443 		if ((mask & reset_reg) && val) {
10444 			u32 wb_data[2];
10445 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10446 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10447 						: NIG_REG_INGRESS_BMAC0_MEM;
10448 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10449 						: BIGMAC_REGISTER_BMAC_CONTROL;
10450 
10451 			/*
10452 			 * use rd/wr since we cannot use dmae. This is safe
10453 			 * since MCP won't access the bus due to the request
10454 			 * to unload, and no function on the path can be
10455 			 * loaded at this time.
10456 			 */
10457 			wb_data[0] = REG_RD(bp, base_addr + offset);
10458 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10459 			vals->bmac_addr = base_addr + offset;
10460 			vals->bmac_val[0] = wb_data[0];
10461 			vals->bmac_val[1] = wb_data[1];
10462 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10463 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10464 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10465 		}
10466 		BNX2X_DEV_INFO("Disable emac Rx\n");
10467 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10468 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10469 		REG_WR(bp, vals->emac_addr, 0);
10470 		mac_stopped = true;
10471 	} else {
10472 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10473 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10474 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10475 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10476 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10477 			       val & ~(1 << 1));
10478 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10479 			       val | (1 << 1));
10480 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10481 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10482 			REG_WR(bp, vals->xmac_addr, 0);
10483 			mac_stopped = true;
10484 		}
10485 
10486 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10487 							    reset_reg, vals);
10488 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10489 							    reset_reg, vals);
10490 	}
10491 
10492 	if (mac_stopped)
10493 		msleep(20);
10494 }
10495 
10496 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10497 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10498 					0x1848 + ((f) << 4))
10499 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10500 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10501 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10502 
10503 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10504 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10505 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10506 
10507 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10508 {
10509 	/* UNDI marks its presence in DORQ -
10510 	 * it initializes CID offset for normal bell to 0x7
10511 	 */
10512 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10513 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10514 		return false;
10515 
10516 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10517 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10518 		return true;
10519 	}
10520 
10521 	return false;
10522 }
10523 
10524 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10525 {
10526 	u16 rcq, bd;
10527 	u32 addr, tmp_reg;
10528 
10529 	if (BP_FUNC(bp) < 2)
10530 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10531 	else
10532 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10533 
10534 	tmp_reg = REG_RD(bp, addr);
10535 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10536 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10537 
10538 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10539 	REG_WR(bp, addr, tmp_reg);
10540 
10541 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10542 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10543 }
10544 
10545 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10546 {
10547 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10548 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10549 	if (!rc) {
10550 		BNX2X_ERR("MCP response failure, aborting\n");
10551 		return -EBUSY;
10552 	}
10553 
10554 	return 0;
10555 }
10556 
10557 static struct bnx2x_prev_path_list *
10558 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10559 {
10560 	struct bnx2x_prev_path_list *tmp_list;
10561 
10562 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10563 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10564 		    bp->pdev->bus->number == tmp_list->bus &&
10565 		    BP_PATH(bp) == tmp_list->path)
10566 			return tmp_list;
10567 
10568 	return NULL;
10569 }
10570 
10571 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10572 {
10573 	struct bnx2x_prev_path_list *tmp_list;
10574 	int rc;
10575 
10576 	rc = down_interruptible(&bnx2x_prev_sem);
10577 	if (rc) {
10578 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10579 		return rc;
10580 	}
10581 
10582 	tmp_list = bnx2x_prev_path_get_entry(bp);
10583 	if (tmp_list) {
10584 		tmp_list->aer = 1;
10585 		rc = 0;
10586 	} else {
10587 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10588 			  BP_PATH(bp));
10589 	}
10590 
10591 	up(&bnx2x_prev_sem);
10592 
10593 	return rc;
10594 }
10595 
10596 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10597 {
10598 	struct bnx2x_prev_path_list *tmp_list;
10599 	bool rc = false;
10600 
10601 	if (down_trylock(&bnx2x_prev_sem))
10602 		return false;
10603 
10604 	tmp_list = bnx2x_prev_path_get_entry(bp);
10605 	if (tmp_list) {
10606 		if (tmp_list->aer) {
10607 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10608 			   BP_PATH(bp));
10609 		} else {
10610 			rc = true;
10611 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10612 				       BP_PATH(bp));
10613 		}
10614 	}
10615 
10616 	up(&bnx2x_prev_sem);
10617 
10618 	return rc;
10619 }
10620 
10621 bool bnx2x_port_after_undi(struct bnx2x *bp)
10622 {
10623 	struct bnx2x_prev_path_list *entry;
10624 	bool val;
10625 
10626 	down(&bnx2x_prev_sem);
10627 
10628 	entry = bnx2x_prev_path_get_entry(bp);
10629 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10630 
10631 	up(&bnx2x_prev_sem);
10632 
10633 	return val;
10634 }
10635 
10636 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10637 {
10638 	struct bnx2x_prev_path_list *tmp_list;
10639 	int rc;
10640 
10641 	rc = down_interruptible(&bnx2x_prev_sem);
10642 	if (rc) {
10643 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10644 		return rc;
10645 	}
10646 
10647 	/* Check whether the entry for this path already exists */
10648 	tmp_list = bnx2x_prev_path_get_entry(bp);
10649 	if (tmp_list) {
10650 		if (!tmp_list->aer) {
10651 			BNX2X_ERR("Re-Marking the path.\n");
10652 		} else {
10653 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10654 			   BP_PATH(bp));
10655 			tmp_list->aer = 0;
10656 		}
10657 		up(&bnx2x_prev_sem);
10658 		return 0;
10659 	}
10660 	up(&bnx2x_prev_sem);
10661 
10662 	/* Create an entry for this path and add it */
10663 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10664 	if (!tmp_list) {
10665 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10666 		return -ENOMEM;
10667 	}
10668 
10669 	tmp_list->bus = bp->pdev->bus->number;
10670 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10671 	tmp_list->path = BP_PATH(bp);
10672 	tmp_list->aer = 0;
10673 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10674 
10675 	rc = down_interruptible(&bnx2x_prev_sem);
10676 	if (rc) {
10677 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10678 		kfree(tmp_list);
10679 	} else {
10680 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10681 		   BP_PATH(bp));
10682 		list_add(&tmp_list->list, &bnx2x_prev_list);
10683 		up(&bnx2x_prev_sem);
10684 	}
10685 
10686 	return rc;
10687 }
10688 
10689 static int bnx2x_do_flr(struct bnx2x *bp)
10690 {
10691 	struct pci_dev *dev = bp->pdev;
10692 
10693 	if (CHIP_IS_E1x(bp)) {
10694 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10695 		return -EINVAL;
10696 	}
10697 
10698 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10699 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10700 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10701 			  bp->common.bc_ver);
10702 		return -EINVAL;
10703 	}
10704 
10705 	if (!pci_wait_for_pending_transaction(dev))
10706 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10707 
10708 	BNX2X_DEV_INFO("Initiating FLR\n");
10709 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10710 
10711 	return 0;
10712 }
10713 
10714 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10715 {
10716 	int rc;
10717 
10718 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10719 
10720 	/* Test if previous unload process was already finished for this path */
10721 	if (bnx2x_prev_is_path_marked(bp))
10722 		return bnx2x_prev_mcp_done(bp);
10723 
10724 	BNX2X_DEV_INFO("Path is unmarked\n");
10725 
10726 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10727 	if (bnx2x_prev_is_after_undi(bp))
10728 		goto out;
10729 
10730 	/* If function has FLR capabilities, and existing FW version matches
10731 	 * the one required, then FLR will be sufficient to clean any residue
10732 	 * left by previous driver
10733 	 */
10734 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10735 
10736 	if (!rc) {
10737 		/* fw version is good */
10738 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10739 		rc = bnx2x_do_flr(bp);
10740 	}
10741 
10742 	if (!rc) {
10743 		/* FLR was performed */
10744 		BNX2X_DEV_INFO("FLR successful\n");
10745 		return 0;
10746 	}
10747 
10748 	BNX2X_DEV_INFO("Could not FLR\n");
10749 
10750 out:
10751 	/* Close the MCP request, return failure*/
10752 	rc = bnx2x_prev_mcp_done(bp);
10753 	if (!rc)
10754 		rc = BNX2X_PREV_WAIT_NEEDED;
10755 
10756 	return rc;
10757 }
10758 
10759 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10760 {
10761 	u32 reset_reg, tmp_reg = 0, rc;
10762 	bool prev_undi = false;
10763 	struct bnx2x_mac_vals mac_vals;
10764 
10765 	/* It is possible a previous function received 'common' answer,
10766 	 * but hasn't loaded yet, therefore creating a scenario of
10767 	 * multiple functions receiving 'common' on the same path.
10768 	 */
10769 	BNX2X_DEV_INFO("Common unload Flow\n");
10770 
10771 	memset(&mac_vals, 0, sizeof(mac_vals));
10772 
10773 	if (bnx2x_prev_is_path_marked(bp))
10774 		return bnx2x_prev_mcp_done(bp);
10775 
10776 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10777 
10778 	/* Reset should be performed after BRB is emptied */
10779 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10780 		u32 timer_count = 1000;
10781 
10782 		/* Close the MAC Rx to prevent BRB from filling up */
10783 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10784 
10785 		/* close LLH filters for both ports towards the BRB */
10786 		bnx2x_set_rx_filter(&bp->link_params, 0);
10787 		bp->link_params.port ^= 1;
10788 		bnx2x_set_rx_filter(&bp->link_params, 0);
10789 		bp->link_params.port ^= 1;
10790 
10791 		/* Check if the UNDI driver was previously loaded */
10792 		if (bnx2x_prev_is_after_undi(bp)) {
10793 			prev_undi = true;
10794 			/* clear the UNDI indication */
10795 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10796 			/* clear possible idle check errors */
10797 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10798 		}
10799 		if (!CHIP_IS_E1x(bp))
10800 			/* block FW from writing to host */
10801 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10802 
10803 		/* wait until BRB is empty */
10804 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10805 		while (timer_count) {
10806 			u32 prev_brb = tmp_reg;
10807 
10808 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10809 			if (!tmp_reg)
10810 				break;
10811 
10812 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10813 
10814 			/* reset timer as long as BRB actually gets emptied */
10815 			if (prev_brb > tmp_reg)
10816 				timer_count = 1000;
10817 			else
10818 				timer_count--;
10819 
10820 			/* If UNDI resides in memory, manually increment it */
10821 			if (prev_undi)
10822 				bnx2x_prev_unload_undi_inc(bp, 1);
10823 
10824 			udelay(10);
10825 		}
10826 
10827 		if (!timer_count)
10828 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10829 	}
10830 
10831 	/* No packets are in the pipeline, path is ready for reset */
10832 	bnx2x_reset_common(bp);
10833 
10834 	if (mac_vals.xmac_addr)
10835 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10836 	if (mac_vals.umac_addr[0])
10837 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10838 	if (mac_vals.umac_addr[1])
10839 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10840 	if (mac_vals.emac_addr)
10841 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10842 	if (mac_vals.bmac_addr) {
10843 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10844 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10845 	}
10846 
10847 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10848 	if (rc) {
10849 		bnx2x_prev_mcp_done(bp);
10850 		return rc;
10851 	}
10852 
10853 	return bnx2x_prev_mcp_done(bp);
10854 }
10855 
10856 static int bnx2x_prev_unload(struct bnx2x *bp)
10857 {
10858 	int time_counter = 10;
10859 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10860 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10861 
10862 	/* clear hw from errors which may have resulted from an interrupted
10863 	 * dmae transaction.
10864 	 */
10865 	bnx2x_clean_pglue_errors(bp);
10866 
10867 	/* Release previously held locks */
10868 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10869 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10870 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10871 
10872 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10873 	if (hw_lock_val) {
10874 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10875 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10876 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10877 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10878 		}
10879 
10880 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10881 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10882 	} else
10883 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10884 
10885 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10886 		BNX2X_DEV_INFO("Release previously held alr\n");
10887 		bnx2x_release_alr(bp);
10888 	}
10889 
10890 	do {
10891 		int aer = 0;
10892 		/* Lock MCP using an unload request */
10893 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10894 		if (!fw) {
10895 			BNX2X_ERR("MCP response failure, aborting\n");
10896 			rc = -EBUSY;
10897 			break;
10898 		}
10899 
10900 		rc = down_interruptible(&bnx2x_prev_sem);
10901 		if (rc) {
10902 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10903 				  rc);
10904 		} else {
10905 			/* If Path is marked by EEH, ignore unload status */
10906 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10907 				 bnx2x_prev_path_get_entry(bp)->aer);
10908 			up(&bnx2x_prev_sem);
10909 		}
10910 
10911 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10912 			rc = bnx2x_prev_unload_common(bp);
10913 			break;
10914 		}
10915 
10916 		/* non-common reply from MCP might require looping */
10917 		rc = bnx2x_prev_unload_uncommon(bp);
10918 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10919 			break;
10920 
10921 		msleep(20);
10922 	} while (--time_counter);
10923 
10924 	if (!time_counter || rc) {
10925 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10926 		rc = -EPROBE_DEFER;
10927 	}
10928 
10929 	/* Mark function if its port was used to boot from SAN */
10930 	if (bnx2x_port_after_undi(bp))
10931 		bp->link_params.feature_config_flags |=
10932 			FEATURE_CONFIG_BOOT_FROM_SAN;
10933 
10934 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10935 
10936 	return rc;
10937 }
10938 
10939 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10940 {
10941 	u32 val, val2, val3, val4, id, boot_mode;
10942 	u16 pmc;
10943 
10944 	/* Get the chip revision id and number. */
10945 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10946 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10947 	id = ((val & 0xffff) << 16);
10948 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10949 	id |= ((val & 0xf) << 12);
10950 
10951 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10952 	 * the configuration space (so we need to reg_rd)
10953 	 */
10954 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10955 	id |= (((val >> 24) & 0xf) << 4);
10956 	val = REG_RD(bp, MISC_REG_BOND_ID);
10957 	id |= (val & 0xf);
10958 	bp->common.chip_id = id;
10959 
10960 	/* force 57811 according to MISC register */
10961 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10962 		if (CHIP_IS_57810(bp))
10963 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10964 				(bp->common.chip_id & 0x0000FFFF);
10965 		else if (CHIP_IS_57810_MF(bp))
10966 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10967 				(bp->common.chip_id & 0x0000FFFF);
10968 		bp->common.chip_id |= 0x1;
10969 	}
10970 
10971 	/* Set doorbell size */
10972 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10973 
10974 	if (!CHIP_IS_E1x(bp)) {
10975 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10976 		if ((val & 1) == 0)
10977 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10978 		else
10979 			val = (val >> 1) & 1;
10980 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10981 						       "2_PORT_MODE");
10982 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10983 						 CHIP_2_PORT_MODE;
10984 
10985 		if (CHIP_MODE_IS_4_PORT(bp))
10986 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10987 		else
10988 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10989 	} else {
10990 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10991 		bp->pfid = bp->pf_num;			/* 0..7 */
10992 	}
10993 
10994 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10995 
10996 	bp->link_params.chip_id = bp->common.chip_id;
10997 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10998 
10999 	val = (REG_RD(bp, 0x2874) & 0x55);
11000 	if ((bp->common.chip_id & 0x1) ||
11001 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11002 		bp->flags |= ONE_PORT_FLAG;
11003 		BNX2X_DEV_INFO("single port device\n");
11004 	}
11005 
11006 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11007 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11008 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11009 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11010 		       bp->common.flash_size, bp->common.flash_size);
11011 
11012 	bnx2x_init_shmem(bp);
11013 
11014 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11015 					MISC_REG_GENERIC_CR_1 :
11016 					MISC_REG_GENERIC_CR_0));
11017 
11018 	bp->link_params.shmem_base = bp->common.shmem_base;
11019 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11020 	if (SHMEM2_RD(bp, size) >
11021 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11022 		bp->link_params.lfa_base =
11023 		REG_RD(bp, bp->common.shmem2_base +
11024 		       (u32)offsetof(struct shmem2_region,
11025 				     lfa_host_addr[BP_PORT(bp)]));
11026 	else
11027 		bp->link_params.lfa_base = 0;
11028 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11029 		       bp->common.shmem_base, bp->common.shmem2_base);
11030 
11031 	if (!bp->common.shmem_base) {
11032 		BNX2X_DEV_INFO("MCP not active\n");
11033 		bp->flags |= NO_MCP_FLAG;
11034 		return;
11035 	}
11036 
11037 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11038 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11039 
11040 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11041 					SHARED_HW_CFG_LED_MODE_MASK) >>
11042 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11043 
11044 	bp->link_params.feature_config_flags = 0;
11045 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11046 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11047 		bp->link_params.feature_config_flags |=
11048 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11049 	else
11050 		bp->link_params.feature_config_flags &=
11051 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11052 
11053 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11054 	bp->common.bc_ver = val;
11055 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11056 	if (val < BNX2X_BC_VER) {
11057 		/* for now only warn
11058 		 * later we might need to enforce this */
11059 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11060 			  BNX2X_BC_VER, val);
11061 	}
11062 	bp->link_params.feature_config_flags |=
11063 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11064 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11065 
11066 	bp->link_params.feature_config_flags |=
11067 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11068 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11069 	bp->link_params.feature_config_flags |=
11070 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11071 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11072 	bp->link_params.feature_config_flags |=
11073 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11074 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11075 
11076 	bp->link_params.feature_config_flags |=
11077 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11078 		FEATURE_CONFIG_MT_SUPPORT : 0;
11079 
11080 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11081 			BC_SUPPORTS_PFC_STATS : 0;
11082 
11083 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11084 			BC_SUPPORTS_FCOE_FEATURES : 0;
11085 
11086 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11087 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11088 
11089 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11090 			BC_SUPPORTS_RMMOD_CMD : 0;
11091 
11092 	boot_mode = SHMEM_RD(bp,
11093 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11094 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11095 	switch (boot_mode) {
11096 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11097 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11098 		break;
11099 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11100 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11101 		break;
11102 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11103 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11104 		break;
11105 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11106 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11107 		break;
11108 	}
11109 
11110 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11111 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11112 
11113 	BNX2X_DEV_INFO("%sWoL capable\n",
11114 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11115 
11116 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11117 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11118 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11119 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11120 
11121 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11122 		 val, val2, val3, val4);
11123 }
11124 
11125 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11126 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11127 
11128 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11129 {
11130 	int pfid = BP_FUNC(bp);
11131 	int igu_sb_id;
11132 	u32 val;
11133 	u8 fid, igu_sb_cnt = 0;
11134 
11135 	bp->igu_base_sb = 0xff;
11136 	if (CHIP_INT_MODE_IS_BC(bp)) {
11137 		int vn = BP_VN(bp);
11138 		igu_sb_cnt = bp->igu_sb_cnt;
11139 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11140 			FP_SB_MAX_E1x;
11141 
11142 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11143 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11144 
11145 		return 0;
11146 	}
11147 
11148 	/* IGU in normal mode - read CAM */
11149 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11150 	     igu_sb_id++) {
11151 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11152 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11153 			continue;
11154 		fid = IGU_FID(val);
11155 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11156 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11157 				continue;
11158 			if (IGU_VEC(val) == 0)
11159 				/* default status block */
11160 				bp->igu_dsb_id = igu_sb_id;
11161 			else {
11162 				if (bp->igu_base_sb == 0xff)
11163 					bp->igu_base_sb = igu_sb_id;
11164 				igu_sb_cnt++;
11165 			}
11166 		}
11167 	}
11168 
11169 #ifdef CONFIG_PCI_MSI
11170 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11171 	 * optional that number of CAM entries will not be equal to the value
11172 	 * advertised in PCI.
11173 	 * Driver should use the minimal value of both as the actual status
11174 	 * block count
11175 	 */
11176 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11177 #endif
11178 
11179 	if (igu_sb_cnt == 0) {
11180 		BNX2X_ERR("CAM configuration error\n");
11181 		return -EINVAL;
11182 	}
11183 
11184 	return 0;
11185 }
11186 
11187 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11188 {
11189 	int cfg_size = 0, idx, port = BP_PORT(bp);
11190 
11191 	/* Aggregation of supported attributes of all external phys */
11192 	bp->port.supported[0] = 0;
11193 	bp->port.supported[1] = 0;
11194 	switch (bp->link_params.num_phys) {
11195 	case 1:
11196 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11197 		cfg_size = 1;
11198 		break;
11199 	case 2:
11200 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11201 		cfg_size = 1;
11202 		break;
11203 	case 3:
11204 		if (bp->link_params.multi_phy_config &
11205 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11206 			bp->port.supported[1] =
11207 				bp->link_params.phy[EXT_PHY1].supported;
11208 			bp->port.supported[0] =
11209 				bp->link_params.phy[EXT_PHY2].supported;
11210 		} else {
11211 			bp->port.supported[0] =
11212 				bp->link_params.phy[EXT_PHY1].supported;
11213 			bp->port.supported[1] =
11214 				bp->link_params.phy[EXT_PHY2].supported;
11215 		}
11216 		cfg_size = 2;
11217 		break;
11218 	}
11219 
11220 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11221 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11222 			   SHMEM_RD(bp,
11223 			   dev_info.port_hw_config[port].external_phy_config),
11224 			   SHMEM_RD(bp,
11225 			   dev_info.port_hw_config[port].external_phy_config2));
11226 		return;
11227 	}
11228 
11229 	if (CHIP_IS_E3(bp))
11230 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11231 	else {
11232 		switch (switch_cfg) {
11233 		case SWITCH_CFG_1G:
11234 			bp->port.phy_addr = REG_RD(
11235 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11236 			break;
11237 		case SWITCH_CFG_10G:
11238 			bp->port.phy_addr = REG_RD(
11239 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11240 			break;
11241 		default:
11242 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11243 				  bp->port.link_config[0]);
11244 			return;
11245 		}
11246 	}
11247 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11248 	/* mask what we support according to speed_cap_mask per configuration */
11249 	for (idx = 0; idx < cfg_size; idx++) {
11250 		if (!(bp->link_params.speed_cap_mask[idx] &
11251 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11252 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11253 
11254 		if (!(bp->link_params.speed_cap_mask[idx] &
11255 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11256 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11257 
11258 		if (!(bp->link_params.speed_cap_mask[idx] &
11259 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11260 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11261 
11262 		if (!(bp->link_params.speed_cap_mask[idx] &
11263 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11264 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11265 
11266 		if (!(bp->link_params.speed_cap_mask[idx] &
11267 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11268 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11269 						     SUPPORTED_1000baseT_Full);
11270 
11271 		if (!(bp->link_params.speed_cap_mask[idx] &
11272 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11273 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11274 
11275 		if (!(bp->link_params.speed_cap_mask[idx] &
11276 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11277 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11278 
11279 		if (!(bp->link_params.speed_cap_mask[idx] &
11280 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11281 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11282 	}
11283 
11284 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11285 		       bp->port.supported[1]);
11286 }
11287 
11288 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11289 {
11290 	u32 link_config, idx, cfg_size = 0;
11291 	bp->port.advertising[0] = 0;
11292 	bp->port.advertising[1] = 0;
11293 	switch (bp->link_params.num_phys) {
11294 	case 1:
11295 	case 2:
11296 		cfg_size = 1;
11297 		break;
11298 	case 3:
11299 		cfg_size = 2;
11300 		break;
11301 	}
11302 	for (idx = 0; idx < cfg_size; idx++) {
11303 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11304 		link_config = bp->port.link_config[idx];
11305 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11306 		case PORT_FEATURE_LINK_SPEED_AUTO:
11307 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11308 				bp->link_params.req_line_speed[idx] =
11309 					SPEED_AUTO_NEG;
11310 				bp->port.advertising[idx] |=
11311 					bp->port.supported[idx];
11312 				if (bp->link_params.phy[EXT_PHY1].type ==
11313 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11314 					bp->port.advertising[idx] |=
11315 					(SUPPORTED_100baseT_Half |
11316 					 SUPPORTED_100baseT_Full);
11317 			} else {
11318 				/* force 10G, no AN */
11319 				bp->link_params.req_line_speed[idx] =
11320 					SPEED_10000;
11321 				bp->port.advertising[idx] |=
11322 					(ADVERTISED_10000baseT_Full |
11323 					 ADVERTISED_FIBRE);
11324 				continue;
11325 			}
11326 			break;
11327 
11328 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11329 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11330 				bp->link_params.req_line_speed[idx] =
11331 					SPEED_10;
11332 				bp->port.advertising[idx] |=
11333 					(ADVERTISED_10baseT_Full |
11334 					 ADVERTISED_TP);
11335 			} else {
11336 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11337 					    link_config,
11338 				    bp->link_params.speed_cap_mask[idx]);
11339 				return;
11340 			}
11341 			break;
11342 
11343 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11344 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11345 				bp->link_params.req_line_speed[idx] =
11346 					SPEED_10;
11347 				bp->link_params.req_duplex[idx] =
11348 					DUPLEX_HALF;
11349 				bp->port.advertising[idx] |=
11350 					(ADVERTISED_10baseT_Half |
11351 					 ADVERTISED_TP);
11352 			} else {
11353 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11354 					    link_config,
11355 					  bp->link_params.speed_cap_mask[idx]);
11356 				return;
11357 			}
11358 			break;
11359 
11360 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11361 			if (bp->port.supported[idx] &
11362 			    SUPPORTED_100baseT_Full) {
11363 				bp->link_params.req_line_speed[idx] =
11364 					SPEED_100;
11365 				bp->port.advertising[idx] |=
11366 					(ADVERTISED_100baseT_Full |
11367 					 ADVERTISED_TP);
11368 			} else {
11369 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11370 					    link_config,
11371 					  bp->link_params.speed_cap_mask[idx]);
11372 				return;
11373 			}
11374 			break;
11375 
11376 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11377 			if (bp->port.supported[idx] &
11378 			    SUPPORTED_100baseT_Half) {
11379 				bp->link_params.req_line_speed[idx] =
11380 								SPEED_100;
11381 				bp->link_params.req_duplex[idx] =
11382 								DUPLEX_HALF;
11383 				bp->port.advertising[idx] |=
11384 					(ADVERTISED_100baseT_Half |
11385 					 ADVERTISED_TP);
11386 			} else {
11387 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11388 				    link_config,
11389 				    bp->link_params.speed_cap_mask[idx]);
11390 				return;
11391 			}
11392 			break;
11393 
11394 		case PORT_FEATURE_LINK_SPEED_1G:
11395 			if (bp->port.supported[idx] &
11396 			    SUPPORTED_1000baseT_Full) {
11397 				bp->link_params.req_line_speed[idx] =
11398 					SPEED_1000;
11399 				bp->port.advertising[idx] |=
11400 					(ADVERTISED_1000baseT_Full |
11401 					 ADVERTISED_TP);
11402 			} else if (bp->port.supported[idx] &
11403 				   SUPPORTED_1000baseKX_Full) {
11404 				bp->link_params.req_line_speed[idx] =
11405 					SPEED_1000;
11406 				bp->port.advertising[idx] |=
11407 					ADVERTISED_1000baseKX_Full;
11408 			} else {
11409 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11410 				    link_config,
11411 				    bp->link_params.speed_cap_mask[idx]);
11412 				return;
11413 			}
11414 			break;
11415 
11416 		case PORT_FEATURE_LINK_SPEED_2_5G:
11417 			if (bp->port.supported[idx] &
11418 			    SUPPORTED_2500baseX_Full) {
11419 				bp->link_params.req_line_speed[idx] =
11420 					SPEED_2500;
11421 				bp->port.advertising[idx] |=
11422 					(ADVERTISED_2500baseX_Full |
11423 						ADVERTISED_TP);
11424 			} else {
11425 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11426 				    link_config,
11427 				    bp->link_params.speed_cap_mask[idx]);
11428 				return;
11429 			}
11430 			break;
11431 
11432 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11433 			if (bp->port.supported[idx] &
11434 			    SUPPORTED_10000baseT_Full) {
11435 				bp->link_params.req_line_speed[idx] =
11436 					SPEED_10000;
11437 				bp->port.advertising[idx] |=
11438 					(ADVERTISED_10000baseT_Full |
11439 						ADVERTISED_FIBRE);
11440 			} else if (bp->port.supported[idx] &
11441 				   SUPPORTED_10000baseKR_Full) {
11442 				bp->link_params.req_line_speed[idx] =
11443 					SPEED_10000;
11444 				bp->port.advertising[idx] |=
11445 					(ADVERTISED_10000baseKR_Full |
11446 						ADVERTISED_FIBRE);
11447 			} else {
11448 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11449 				    link_config,
11450 				    bp->link_params.speed_cap_mask[idx]);
11451 				return;
11452 			}
11453 			break;
11454 		case PORT_FEATURE_LINK_SPEED_20G:
11455 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11456 
11457 			break;
11458 		default:
11459 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11460 				  link_config);
11461 				bp->link_params.req_line_speed[idx] =
11462 							SPEED_AUTO_NEG;
11463 				bp->port.advertising[idx] =
11464 						bp->port.supported[idx];
11465 			break;
11466 		}
11467 
11468 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11469 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11470 		if (bp->link_params.req_flow_ctrl[idx] ==
11471 		    BNX2X_FLOW_CTRL_AUTO) {
11472 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11473 				bp->link_params.req_flow_ctrl[idx] =
11474 							BNX2X_FLOW_CTRL_NONE;
11475 			else
11476 				bnx2x_set_requested_fc(bp);
11477 		}
11478 
11479 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11480 			       bp->link_params.req_line_speed[idx],
11481 			       bp->link_params.req_duplex[idx],
11482 			       bp->link_params.req_flow_ctrl[idx],
11483 			       bp->port.advertising[idx]);
11484 	}
11485 }
11486 
11487 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11488 {
11489 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11490 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11491 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11492 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11493 }
11494 
11495 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11496 {
11497 	int port = BP_PORT(bp);
11498 	u32 config;
11499 	u32 ext_phy_type, ext_phy_config, eee_mode;
11500 
11501 	bp->link_params.bp = bp;
11502 	bp->link_params.port = port;
11503 
11504 	bp->link_params.lane_config =
11505 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11506 
11507 	bp->link_params.speed_cap_mask[0] =
11508 		SHMEM_RD(bp,
11509 			 dev_info.port_hw_config[port].speed_capability_mask) &
11510 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11511 	bp->link_params.speed_cap_mask[1] =
11512 		SHMEM_RD(bp,
11513 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11514 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11515 	bp->port.link_config[0] =
11516 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11517 
11518 	bp->port.link_config[1] =
11519 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11520 
11521 	bp->link_params.multi_phy_config =
11522 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11523 	/* If the device is capable of WoL, set the default state according
11524 	 * to the HW
11525 	 */
11526 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11527 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11528 		   (config & PORT_FEATURE_WOL_ENABLED));
11529 
11530 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11531 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11532 		bp->flags |= NO_ISCSI_FLAG;
11533 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11534 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11535 		bp->flags |= NO_FCOE_FLAG;
11536 
11537 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11538 		       bp->link_params.lane_config,
11539 		       bp->link_params.speed_cap_mask[0],
11540 		       bp->port.link_config[0]);
11541 
11542 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11543 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11544 	bnx2x_phy_probe(&bp->link_params);
11545 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11546 
11547 	bnx2x_link_settings_requested(bp);
11548 
11549 	/*
11550 	 * If connected directly, work with the internal PHY, otherwise, work
11551 	 * with the external PHY
11552 	 */
11553 	ext_phy_config =
11554 		SHMEM_RD(bp,
11555 			 dev_info.port_hw_config[port].external_phy_config);
11556 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11557 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11558 		bp->mdio.prtad = bp->port.phy_addr;
11559 
11560 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11561 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11562 		bp->mdio.prtad =
11563 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11564 
11565 	/* Configure link feature according to nvram value */
11566 	eee_mode = (((SHMEM_RD(bp, dev_info.
11567 		      port_feature_config[port].eee_power_mode)) &
11568 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11569 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11570 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11571 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11572 					   EEE_MODE_ENABLE_LPI |
11573 					   EEE_MODE_OUTPUT_TIME;
11574 	} else {
11575 		bp->link_params.eee_mode = 0;
11576 	}
11577 }
11578 
11579 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11580 {
11581 	u32 no_flags = NO_ISCSI_FLAG;
11582 	int port = BP_PORT(bp);
11583 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11584 				drv_lic_key[port].max_iscsi_conn);
11585 
11586 	if (!CNIC_SUPPORT(bp)) {
11587 		bp->flags |= no_flags;
11588 		return;
11589 	}
11590 
11591 	/* Get the number of maximum allowed iSCSI connections */
11592 	bp->cnic_eth_dev.max_iscsi_conn =
11593 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11594 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11595 
11596 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11597 		       bp->cnic_eth_dev.max_iscsi_conn);
11598 
11599 	/*
11600 	 * If maximum allowed number of connections is zero -
11601 	 * disable the feature.
11602 	 */
11603 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11604 		bp->flags |= no_flags;
11605 }
11606 
11607 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11608 {
11609 	/* Port info */
11610 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11611 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11612 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11613 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11614 
11615 	/* Node info */
11616 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11617 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11618 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11619 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11620 }
11621 
11622 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11623 {
11624 	u8 count = 0;
11625 
11626 	if (IS_MF(bp)) {
11627 		u8 fid;
11628 
11629 		/* iterate over absolute function ids for this path: */
11630 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11631 			if (IS_MF_SD(bp)) {
11632 				u32 cfg = MF_CFG_RD(bp,
11633 						    func_mf_config[fid].config);
11634 
11635 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11636 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11637 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11638 					count++;
11639 			} else {
11640 				u32 cfg = MF_CFG_RD(bp,
11641 						    func_ext_config[fid].
11642 								      func_cfg);
11643 
11644 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11645 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11646 					count++;
11647 			}
11648 		}
11649 	} else { /* SF */
11650 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11651 
11652 		for (port = 0; port < port_cnt; port++) {
11653 			u32 lic = SHMEM_RD(bp,
11654 					   drv_lic_key[port].max_fcoe_conn) ^
11655 				  FW_ENCODE_32BIT_PATTERN;
11656 			if (lic)
11657 				count++;
11658 		}
11659 	}
11660 
11661 	return count;
11662 }
11663 
11664 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11665 {
11666 	int port = BP_PORT(bp);
11667 	int func = BP_ABS_FUNC(bp);
11668 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11669 				drv_lic_key[port].max_fcoe_conn);
11670 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11671 
11672 	if (!CNIC_SUPPORT(bp)) {
11673 		bp->flags |= NO_FCOE_FLAG;
11674 		return;
11675 	}
11676 
11677 	/* Get the number of maximum allowed FCoE connections */
11678 	bp->cnic_eth_dev.max_fcoe_conn =
11679 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11680 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11681 
11682 	/* Calculate the number of maximum allowed FCoE tasks */
11683 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11684 
11685 	/* check if FCoE resources must be shared between different functions */
11686 	if (num_fcoe_func)
11687 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11688 
11689 	/* Read the WWN: */
11690 	if (!IS_MF(bp)) {
11691 		/* Port info */
11692 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11693 			SHMEM_RD(bp,
11694 				 dev_info.port_hw_config[port].
11695 				 fcoe_wwn_port_name_upper);
11696 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11697 			SHMEM_RD(bp,
11698 				 dev_info.port_hw_config[port].
11699 				 fcoe_wwn_port_name_lower);
11700 
11701 		/* Node info */
11702 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11703 			SHMEM_RD(bp,
11704 				 dev_info.port_hw_config[port].
11705 				 fcoe_wwn_node_name_upper);
11706 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11707 			SHMEM_RD(bp,
11708 				 dev_info.port_hw_config[port].
11709 				 fcoe_wwn_node_name_lower);
11710 	} else if (!IS_MF_SD(bp)) {
11711 		/* Read the WWN info only if the FCoE feature is enabled for
11712 		 * this function.
11713 		 */
11714 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11715 			bnx2x_get_ext_wwn_info(bp, func);
11716 	} else {
11717 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11718 			bnx2x_get_ext_wwn_info(bp, func);
11719 	}
11720 
11721 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11722 
11723 	/*
11724 	 * If maximum allowed number of connections is zero -
11725 	 * disable the feature.
11726 	 */
11727 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11728 		bp->flags |= NO_FCOE_FLAG;
11729 		eth_zero_addr(bp->fip_mac);
11730 	}
11731 }
11732 
11733 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11734 {
11735 	/*
11736 	 * iSCSI may be dynamically disabled but reading
11737 	 * info here we will decrease memory usage by driver
11738 	 * if the feature is disabled for good
11739 	 */
11740 	bnx2x_get_iscsi_info(bp);
11741 	bnx2x_get_fcoe_info(bp);
11742 }
11743 
11744 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11745 {
11746 	u32 val, val2;
11747 	int func = BP_ABS_FUNC(bp);
11748 	int port = BP_PORT(bp);
11749 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11750 	u8 *fip_mac = bp->fip_mac;
11751 
11752 	if (IS_MF(bp)) {
11753 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11754 		 * FCoE MAC then the appropriate feature should be disabled.
11755 		 * In non SD mode features configuration comes from struct
11756 		 * func_ext_config.
11757 		 */
11758 		if (!IS_MF_SD(bp)) {
11759 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11760 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11761 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11762 						 iscsi_mac_addr_upper);
11763 				val = MF_CFG_RD(bp, func_ext_config[func].
11764 						iscsi_mac_addr_lower);
11765 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11766 				BNX2X_DEV_INFO
11767 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11768 			} else {
11769 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11770 			}
11771 
11772 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11773 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11774 						 fcoe_mac_addr_upper);
11775 				val = MF_CFG_RD(bp, func_ext_config[func].
11776 						fcoe_mac_addr_lower);
11777 				bnx2x_set_mac_buf(fip_mac, val, val2);
11778 				BNX2X_DEV_INFO
11779 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11780 			} else {
11781 				bp->flags |= NO_FCOE_FLAG;
11782 			}
11783 
11784 			bp->mf_ext_config = cfg;
11785 
11786 		} else { /* SD MODE */
11787 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11788 				/* use primary mac as iscsi mac */
11789 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11790 
11791 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11792 				BNX2X_DEV_INFO
11793 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11794 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11795 				/* use primary mac as fip mac */
11796 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11797 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11798 				BNX2X_DEV_INFO
11799 					("Read FIP MAC: %pM\n", fip_mac);
11800 			}
11801 		}
11802 
11803 		/* If this is a storage-only interface, use SAN mac as
11804 		 * primary MAC. Notice that for SD this is already the case,
11805 		 * as the SAN mac was copied from the primary MAC.
11806 		 */
11807 		if (IS_MF_FCOE_AFEX(bp))
11808 			eth_hw_addr_set(bp->dev, fip_mac);
11809 	} else {
11810 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11811 				iscsi_mac_upper);
11812 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11813 			       iscsi_mac_lower);
11814 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11815 
11816 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11817 				fcoe_fip_mac_upper);
11818 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11819 			       fcoe_fip_mac_lower);
11820 		bnx2x_set_mac_buf(fip_mac, val, val2);
11821 	}
11822 
11823 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11824 	if (!is_valid_ether_addr(iscsi_mac)) {
11825 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11826 		eth_zero_addr(iscsi_mac);
11827 	}
11828 
11829 	/* Disable FCoE if MAC configuration is invalid. */
11830 	if (!is_valid_ether_addr(fip_mac)) {
11831 		bp->flags |= NO_FCOE_FLAG;
11832 		eth_zero_addr(bp->fip_mac);
11833 	}
11834 }
11835 
11836 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11837 {
11838 	u32 val, val2;
11839 	int func = BP_ABS_FUNC(bp);
11840 	int port = BP_PORT(bp);
11841 	u8 addr[ETH_ALEN] = {};
11842 
11843 	/* Zero primary MAC configuration */
11844 	eth_hw_addr_set(bp->dev, addr);
11845 
11846 	if (BP_NOMCP(bp)) {
11847 		BNX2X_ERROR("warning: random MAC workaround active\n");
11848 		eth_hw_addr_random(bp->dev);
11849 	} else if (IS_MF(bp)) {
11850 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11851 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11852 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11853 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11854 			bnx2x_set_mac_buf(addr, val, val2);
11855 			eth_hw_addr_set(bp->dev, addr);
11856 		}
11857 
11858 		if (CNIC_SUPPORT(bp))
11859 			bnx2x_get_cnic_mac_hwinfo(bp);
11860 	} else {
11861 		/* in SF read MACs from port configuration */
11862 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11863 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11864 		bnx2x_set_mac_buf(addr, val, val2);
11865 		eth_hw_addr_set(bp->dev, addr);
11866 
11867 		if (CNIC_SUPPORT(bp))
11868 			bnx2x_get_cnic_mac_hwinfo(bp);
11869 	}
11870 
11871 	if (!BP_NOMCP(bp)) {
11872 		/* Read physical port identifier from shmem */
11873 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11874 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11875 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11876 		bp->flags |= HAS_PHYS_PORT_ID;
11877 	}
11878 
11879 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11880 
11881 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11882 		dev_err(&bp->pdev->dev,
11883 			"bad Ethernet MAC address configuration: %pM\n"
11884 			"change it manually before bringing up the appropriate network interface\n",
11885 			bp->dev->dev_addr);
11886 }
11887 
11888 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11889 {
11890 	int tmp;
11891 	u32 cfg;
11892 
11893 	if (IS_VF(bp))
11894 		return false;
11895 
11896 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11897 		/* Take function: tmp = func */
11898 		tmp = BP_ABS_FUNC(bp);
11899 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11900 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11901 	} else {
11902 		/* Take port: tmp = port */
11903 		tmp = BP_PORT(bp);
11904 		cfg = SHMEM_RD(bp,
11905 			       dev_info.port_hw_config[tmp].generic_features);
11906 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11907 	}
11908 	return cfg;
11909 }
11910 
11911 static void validate_set_si_mode(struct bnx2x *bp)
11912 {
11913 	u8 func = BP_ABS_FUNC(bp);
11914 	u32 val;
11915 
11916 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11917 
11918 	/* check for legal mac (upper bytes) */
11919 	if (val != 0xffff) {
11920 		bp->mf_mode = MULTI_FUNCTION_SI;
11921 		bp->mf_config[BP_VN(bp)] =
11922 			MF_CFG_RD(bp, func_mf_config[func].config);
11923 	} else
11924 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11925 }
11926 
11927 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11928 {
11929 	int /*abs*/func = BP_ABS_FUNC(bp);
11930 	int vn;
11931 	u32 val = 0, val2 = 0;
11932 	int rc = 0;
11933 
11934 	/* Validate that chip access is feasible */
11935 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11936 		dev_err(&bp->pdev->dev,
11937 			"Chip read returns all Fs. Preventing probe from continuing\n");
11938 		return -EINVAL;
11939 	}
11940 
11941 	bnx2x_get_common_hwinfo(bp);
11942 
11943 	/*
11944 	 * initialize IGU parameters
11945 	 */
11946 	if (CHIP_IS_E1x(bp)) {
11947 		bp->common.int_block = INT_BLOCK_HC;
11948 
11949 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11950 		bp->igu_base_sb = 0;
11951 	} else {
11952 		bp->common.int_block = INT_BLOCK_IGU;
11953 
11954 		/* do not allow device reset during IGU info processing */
11955 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11956 
11957 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11958 
11959 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11960 			int tout = 5000;
11961 
11962 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11963 
11964 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11965 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11966 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11967 
11968 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11969 				tout--;
11970 				usleep_range(1000, 2000);
11971 			}
11972 
11973 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11974 				dev_err(&bp->pdev->dev,
11975 					"FORCING Normal Mode failed!!!\n");
11976 				bnx2x_release_hw_lock(bp,
11977 						      HW_LOCK_RESOURCE_RESET);
11978 				return -EPERM;
11979 			}
11980 		}
11981 
11982 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11983 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11984 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11985 		} else
11986 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11987 
11988 		rc = bnx2x_get_igu_cam_info(bp);
11989 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11990 		if (rc)
11991 			return rc;
11992 	}
11993 
11994 	/*
11995 	 * set base FW non-default (fast path) status block id, this value is
11996 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11997 	 * determine the id used by the FW.
11998 	 */
11999 	if (CHIP_IS_E1x(bp))
12000 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12001 	else /*
12002 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12003 	      * the same queue are indicated on the same IGU SB). So we prefer
12004 	      * FW and IGU SBs to be the same value.
12005 	      */
12006 		bp->base_fw_ndsb = bp->igu_base_sb;
12007 
12008 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12009 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12010 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12011 
12012 	/*
12013 	 * Initialize MF configuration
12014 	 */
12015 	bp->mf_ov = 0;
12016 	bp->mf_mode = 0;
12017 	bp->mf_sub_mode = 0;
12018 	vn = BP_VN(bp);
12019 
12020 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12021 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12022 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12023 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12024 
12025 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12026 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12027 		else
12028 			bp->common.mf_cfg_base = bp->common.shmem_base +
12029 				offsetof(struct shmem_region, func_mb) +
12030 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12031 		/*
12032 		 * get mf configuration:
12033 		 * 1. Existence of MF configuration
12034 		 * 2. MAC address must be legal (check only upper bytes)
12035 		 *    for  Switch-Independent mode;
12036 		 *    OVLAN must be legal for Switch-Dependent mode
12037 		 * 3. SF_MODE configures specific MF mode
12038 		 */
12039 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12040 			/* get mf configuration */
12041 			val = SHMEM_RD(bp,
12042 				       dev_info.shared_feature_config.config);
12043 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12044 
12045 			switch (val) {
12046 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12047 				validate_set_si_mode(bp);
12048 				break;
12049 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12050 				if ((!CHIP_IS_E1x(bp)) &&
12051 				    (MF_CFG_RD(bp, func_mf_config[func].
12052 					       mac_upper) != 0xffff) &&
12053 				    (SHMEM2_HAS(bp,
12054 						afex_driver_support))) {
12055 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12056 					bp->mf_config[vn] = MF_CFG_RD(bp,
12057 						func_mf_config[func].config);
12058 				} else {
12059 					BNX2X_DEV_INFO("can not configure afex mode\n");
12060 				}
12061 				break;
12062 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12063 				/* get OV configuration */
12064 				val = MF_CFG_RD(bp,
12065 					func_mf_config[FUNC_0].e1hov_tag);
12066 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12067 
12068 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12069 					bp->mf_mode = MULTI_FUNCTION_SD;
12070 					bp->mf_config[vn] = MF_CFG_RD(bp,
12071 						func_mf_config[func].config);
12072 				} else
12073 					BNX2X_DEV_INFO("illegal OV for SD\n");
12074 				break;
12075 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12076 				bp->mf_mode = MULTI_FUNCTION_SD;
12077 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12078 				bp->mf_config[vn] =
12079 					MF_CFG_RD(bp,
12080 						  func_mf_config[func].config);
12081 
12082 				if (SHMEM2_HAS(bp, mtu_size)) {
12083 					int mtu_idx = BP_FW_MB_IDX(bp);
12084 					u16 mtu_size;
12085 					u32 mtu;
12086 
12087 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12088 					mtu_size = (u16)mtu;
12089 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12090 					   mtu_size, mtu);
12091 
12092 					/* if valid: update device mtu */
12093 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12094 					    (mtu_size <=
12095 					     ETH_MAX_JUMBO_PACKET_SIZE))
12096 						bp->dev->mtu = mtu_size;
12097 				}
12098 				break;
12099 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12100 				bp->mf_mode = MULTI_FUNCTION_SD;
12101 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12102 				bp->mf_config[vn] =
12103 					MF_CFG_RD(bp,
12104 						  func_mf_config[func].config);
12105 				break;
12106 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12107 				bp->mf_config[vn] = 0;
12108 				break;
12109 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12110 				val2 = SHMEM_RD(bp,
12111 					dev_info.shared_hw_config.config_3);
12112 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12113 				switch (val2) {
12114 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12115 					validate_set_si_mode(bp);
12116 					bp->mf_sub_mode =
12117 							SUB_MF_MODE_NPAR1_DOT_5;
12118 					break;
12119 				default:
12120 					/* Unknown configuration */
12121 					bp->mf_config[vn] = 0;
12122 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12123 						       val);
12124 				}
12125 				break;
12126 			default:
12127 				/* Unknown configuration: reset mf_config */
12128 				bp->mf_config[vn] = 0;
12129 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12130 			}
12131 		}
12132 
12133 		BNX2X_DEV_INFO("%s function mode\n",
12134 			       IS_MF(bp) ? "multi" : "single");
12135 
12136 		switch (bp->mf_mode) {
12137 		case MULTI_FUNCTION_SD:
12138 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12139 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12140 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12141 				bp->mf_ov = val;
12142 				bp->path_has_ovlan = true;
12143 
12144 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12145 					       func, bp->mf_ov, bp->mf_ov);
12146 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12147 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12148 				dev_err(&bp->pdev->dev,
12149 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12150 					func);
12151 				bp->path_has_ovlan = true;
12152 			} else {
12153 				dev_err(&bp->pdev->dev,
12154 					"No valid MF OV for func %d, aborting\n",
12155 					func);
12156 				return -EPERM;
12157 			}
12158 			break;
12159 		case MULTI_FUNCTION_AFEX:
12160 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12161 			break;
12162 		case MULTI_FUNCTION_SI:
12163 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12164 				       func);
12165 			break;
12166 		default:
12167 			if (vn) {
12168 				dev_err(&bp->pdev->dev,
12169 					"VN %d is in a single function mode, aborting\n",
12170 					vn);
12171 				return -EPERM;
12172 			}
12173 			break;
12174 		}
12175 
12176 		/* check if other port on the path needs ovlan:
12177 		 * Since MF configuration is shared between ports
12178 		 * Possible mixed modes are only
12179 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12180 		 */
12181 		if (CHIP_MODE_IS_4_PORT(bp) &&
12182 		    !bp->path_has_ovlan &&
12183 		    !IS_MF(bp) &&
12184 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12185 			u8 other_port = !BP_PORT(bp);
12186 			u8 other_func = BP_PATH(bp) + 2*other_port;
12187 			val = MF_CFG_RD(bp,
12188 					func_mf_config[other_func].e1hov_tag);
12189 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12190 				bp->path_has_ovlan = true;
12191 		}
12192 	}
12193 
12194 	/* adjust igu_sb_cnt to MF for E1H */
12195 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12196 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12197 
12198 	/* port info */
12199 	bnx2x_get_port_hwinfo(bp);
12200 
12201 	/* Get MAC addresses */
12202 	bnx2x_get_mac_hwinfo(bp);
12203 
12204 	bnx2x_get_cnic_info(bp);
12205 
12206 	return rc;
12207 }
12208 
12209 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12210 {
12211 	char str_id[VENDOR_ID_LEN + 1];
12212 	unsigned int vpd_len, kw_len;
12213 	u8 *vpd_data;
12214 	int rodi;
12215 
12216 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12217 
12218 	vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12219 	if (IS_ERR(vpd_data))
12220 		return;
12221 
12222 	rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12223 					    PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12224 	if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12225 		goto out_not_found;
12226 
12227 	/* vendor specific info */
12228 	snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12229 	if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12230 		rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12231 						    PCI_VPD_RO_KEYWORD_VENDOR0,
12232 						    &kw_len);
12233 		if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12234 			memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12235 			bp->fw_ver[kw_len] = ' ';
12236 		}
12237 	}
12238 out_not_found:
12239 	kfree(vpd_data);
12240 }
12241 
12242 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12243 {
12244 	u32 flags = 0;
12245 
12246 	if (CHIP_REV_IS_FPGA(bp))
12247 		SET_FLAGS(flags, MODE_FPGA);
12248 	else if (CHIP_REV_IS_EMUL(bp))
12249 		SET_FLAGS(flags, MODE_EMUL);
12250 	else
12251 		SET_FLAGS(flags, MODE_ASIC);
12252 
12253 	if (CHIP_MODE_IS_4_PORT(bp))
12254 		SET_FLAGS(flags, MODE_PORT4);
12255 	else
12256 		SET_FLAGS(flags, MODE_PORT2);
12257 
12258 	if (CHIP_IS_E2(bp))
12259 		SET_FLAGS(flags, MODE_E2);
12260 	else if (CHIP_IS_E3(bp)) {
12261 		SET_FLAGS(flags, MODE_E3);
12262 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12263 			SET_FLAGS(flags, MODE_E3_A0);
12264 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12265 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12266 	}
12267 
12268 	if (IS_MF(bp)) {
12269 		SET_FLAGS(flags, MODE_MF);
12270 		switch (bp->mf_mode) {
12271 		case MULTI_FUNCTION_SD:
12272 			SET_FLAGS(flags, MODE_MF_SD);
12273 			break;
12274 		case MULTI_FUNCTION_SI:
12275 			SET_FLAGS(flags, MODE_MF_SI);
12276 			break;
12277 		case MULTI_FUNCTION_AFEX:
12278 			SET_FLAGS(flags, MODE_MF_AFEX);
12279 			break;
12280 		}
12281 	} else
12282 		SET_FLAGS(flags, MODE_SF);
12283 
12284 #if defined(__LITTLE_ENDIAN)
12285 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12286 #else /*(__BIG_ENDIAN)*/
12287 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12288 #endif
12289 	INIT_MODE_FLAGS(bp) = flags;
12290 }
12291 
12292 static int bnx2x_init_bp(struct bnx2x *bp)
12293 {
12294 	int func;
12295 	int rc;
12296 
12297 	mutex_init(&bp->port.phy_mutex);
12298 	mutex_init(&bp->fw_mb_mutex);
12299 	mutex_init(&bp->drv_info_mutex);
12300 	sema_init(&bp->stats_lock, 1);
12301 	bp->drv_info_mng_owner = false;
12302 	INIT_LIST_HEAD(&bp->vlan_reg);
12303 
12304 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12305 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12306 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12307 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12308 	if (IS_PF(bp)) {
12309 		rc = bnx2x_get_hwinfo(bp);
12310 		if (rc)
12311 			return rc;
12312 	} else {
12313 		static const u8 zero_addr[ETH_ALEN] = {};
12314 
12315 		eth_hw_addr_set(bp->dev, zero_addr);
12316 	}
12317 
12318 	bnx2x_set_modes_bitmap(bp);
12319 
12320 	rc = bnx2x_alloc_mem_bp(bp);
12321 	if (rc)
12322 		return rc;
12323 
12324 	bnx2x_read_fwinfo(bp);
12325 
12326 	func = BP_FUNC(bp);
12327 
12328 	/* need to reset chip if undi was active */
12329 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12330 		/* init fw_seq */
12331 		bp->fw_seq =
12332 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12333 							DRV_MSG_SEQ_NUMBER_MASK;
12334 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12335 
12336 		rc = bnx2x_prev_unload(bp);
12337 		if (rc) {
12338 			bnx2x_free_mem_bp(bp);
12339 			return rc;
12340 		}
12341 	}
12342 
12343 	if (CHIP_REV_IS_FPGA(bp))
12344 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12345 
12346 	if (BP_NOMCP(bp) && (func == 0))
12347 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12348 
12349 	bp->disable_tpa = disable_tpa;
12350 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12351 	/* Reduce memory usage in kdump environment by disabling TPA */
12352 	bp->disable_tpa |= is_kdump_kernel();
12353 
12354 	/* Set TPA flags */
12355 	if (bp->disable_tpa) {
12356 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12357 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12358 	}
12359 
12360 	if (CHIP_IS_E1(bp))
12361 		bp->dropless_fc = false;
12362 	else
12363 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12364 
12365 	bp->mrrs = mrrs;
12366 
12367 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12368 	if (IS_VF(bp))
12369 		bp->rx_ring_size = MAX_RX_AVAIL;
12370 
12371 	/* make sure that the numbers are in the right granularity */
12372 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12373 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12374 
12375 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12376 
12377 	timer_setup(&bp->timer, bnx2x_timer, 0);
12378 	bp->timer.expires = jiffies + bp->current_interval;
12379 
12380 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12381 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12382 	    SHMEM2_HAS(bp, dcbx_en) &&
12383 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12384 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12385 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12386 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12387 		bnx2x_dcbx_init_params(bp);
12388 	} else {
12389 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12390 	}
12391 
12392 	if (CHIP_IS_E1x(bp))
12393 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12394 	else
12395 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12396 
12397 	/* multiple tx priority */
12398 	if (IS_VF(bp))
12399 		bp->max_cos = 1;
12400 	else if (CHIP_IS_E1x(bp))
12401 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12402 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12403 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12404 	else if (CHIP_IS_E3B0(bp))
12405 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12406 	else
12407 		BNX2X_ERR("unknown chip %x revision %x\n",
12408 			  CHIP_NUM(bp), CHIP_REV(bp));
12409 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12410 
12411 	/* We need at least one default status block for slow-path events,
12412 	 * second status block for the L2 queue, and a third status block for
12413 	 * CNIC if supported.
12414 	 */
12415 	if (IS_VF(bp))
12416 		bp->min_msix_vec_cnt = 1;
12417 	else if (CNIC_SUPPORT(bp))
12418 		bp->min_msix_vec_cnt = 3;
12419 	else /* PF w/o cnic */
12420 		bp->min_msix_vec_cnt = 2;
12421 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12422 
12423 	bp->dump_preset_idx = 1;
12424 
12425 	return rc;
12426 }
12427 
12428 /****************************************************************************
12429 * General service functions
12430 ****************************************************************************/
12431 
12432 /*
12433  * net_device service functions
12434  */
12435 
12436 /* called with rtnl_lock */
12437 static int bnx2x_open(struct net_device *dev)
12438 {
12439 	struct bnx2x *bp = netdev_priv(dev);
12440 	int rc;
12441 
12442 	bp->stats_init = true;
12443 
12444 	netif_carrier_off(dev);
12445 
12446 	bnx2x_set_power_state(bp, PCI_D0);
12447 
12448 	/* If parity had happen during the unload, then attentions
12449 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12450 	 * want the first function loaded on the current engine to
12451 	 * complete the recovery.
12452 	 * Parity recovery is only relevant for PF driver.
12453 	 */
12454 	if (IS_PF(bp)) {
12455 		int other_engine = BP_PATH(bp) ? 0 : 1;
12456 		bool other_load_status, load_status;
12457 		bool global = false;
12458 
12459 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12460 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12461 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12462 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12463 			do {
12464 				/* If there are attentions and they are in a
12465 				 * global blocks, set the GLOBAL_RESET bit
12466 				 * regardless whether it will be this function
12467 				 * that will complete the recovery or not.
12468 				 */
12469 				if (global)
12470 					bnx2x_set_reset_global(bp);
12471 
12472 				/* Only the first function on the current
12473 				 * engine should try to recover in open. In case
12474 				 * of attentions in global blocks only the first
12475 				 * in the chip should try to recover.
12476 				 */
12477 				if ((!load_status &&
12478 				     (!global || !other_load_status)) &&
12479 				      bnx2x_trylock_leader_lock(bp) &&
12480 				      !bnx2x_leader_reset(bp)) {
12481 					netdev_info(bp->dev,
12482 						    "Recovered in open\n");
12483 					break;
12484 				}
12485 
12486 				/* recovery has failed... */
12487 				bnx2x_set_power_state(bp, PCI_D3hot);
12488 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12489 
12490 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12491 					  "If you still see this message after a few retries then power cycle is required.\n");
12492 
12493 				return -EAGAIN;
12494 			} while (0);
12495 		}
12496 	}
12497 
12498 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12499 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12500 	if (rc)
12501 		return rc;
12502 
12503 	return 0;
12504 }
12505 
12506 /* called with rtnl_lock */
12507 static int bnx2x_close(struct net_device *dev)
12508 {
12509 	struct bnx2x *bp = netdev_priv(dev);
12510 
12511 	/* Unload the driver, release IRQs */
12512 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12513 
12514 	return 0;
12515 }
12516 
12517 struct bnx2x_mcast_list_elem_group
12518 {
12519 	struct list_head mcast_group_link;
12520 	struct bnx2x_mcast_list_elem mcast_elems[];
12521 };
12522 
12523 #define MCAST_ELEMS_PER_PG \
12524 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12525 	sizeof(struct bnx2x_mcast_list_elem))
12526 
12527 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12528 {
12529 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12530 
12531 	while (!list_empty(mcast_group_list)) {
12532 		current_mcast_group = list_first_entry(mcast_group_list,
12533 				      struct bnx2x_mcast_list_elem_group,
12534 				      mcast_group_link);
12535 		list_del(&current_mcast_group->mcast_group_link);
12536 		free_page((unsigned long)current_mcast_group);
12537 	}
12538 }
12539 
12540 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12541 				      struct bnx2x_mcast_ramrod_params *p,
12542 				      struct list_head *mcast_group_list)
12543 {
12544 	struct bnx2x_mcast_list_elem *mc_mac;
12545 	struct netdev_hw_addr *ha;
12546 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12547 	int mc_count = netdev_mc_count(bp->dev);
12548 	int offset = 0;
12549 
12550 	INIT_LIST_HEAD(&p->mcast_list);
12551 	netdev_for_each_mc_addr(ha, bp->dev) {
12552 		if (!offset) {
12553 			current_mcast_group =
12554 				(struct bnx2x_mcast_list_elem_group *)
12555 				__get_free_page(GFP_ATOMIC);
12556 			if (!current_mcast_group) {
12557 				bnx2x_free_mcast_macs_list(mcast_group_list);
12558 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12559 				return -ENOMEM;
12560 			}
12561 			list_add(&current_mcast_group->mcast_group_link,
12562 				 mcast_group_list);
12563 		}
12564 		mc_mac = &current_mcast_group->mcast_elems[offset];
12565 		mc_mac->mac = bnx2x_mc_addr(ha);
12566 		list_add_tail(&mc_mac->link, &p->mcast_list);
12567 		offset++;
12568 		if (offset == MCAST_ELEMS_PER_PG)
12569 			offset = 0;
12570 	}
12571 	p->mcast_list_len = mc_count;
12572 	return 0;
12573 }
12574 
12575 /**
12576  * bnx2x_set_uc_list - configure a new unicast MACs list.
12577  *
12578  * @bp: driver handle
12579  *
12580  * We will use zero (0) as a MAC type for these MACs.
12581  */
12582 static int bnx2x_set_uc_list(struct bnx2x *bp)
12583 {
12584 	int rc;
12585 	struct net_device *dev = bp->dev;
12586 	struct netdev_hw_addr *ha;
12587 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12588 	unsigned long ramrod_flags = 0;
12589 
12590 	/* First schedule a cleanup up of old configuration */
12591 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12592 	if (rc < 0) {
12593 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12594 		return rc;
12595 	}
12596 
12597 	netdev_for_each_uc_addr(ha, dev) {
12598 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12599 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12600 		if (rc == -EEXIST) {
12601 			DP(BNX2X_MSG_SP,
12602 			   "Failed to schedule ADD operations: %d\n", rc);
12603 			/* do not treat adding same MAC as error */
12604 			rc = 0;
12605 
12606 		} else if (rc < 0) {
12607 
12608 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12609 				  rc);
12610 			return rc;
12611 		}
12612 	}
12613 
12614 	/* Execute the pending commands */
12615 	__set_bit(RAMROD_CONT, &ramrod_flags);
12616 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12617 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12618 }
12619 
12620 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12621 {
12622 	LIST_HEAD(mcast_group_list);
12623 	struct net_device *dev = bp->dev;
12624 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12625 	int rc = 0;
12626 
12627 	rparam.mcast_obj = &bp->mcast_obj;
12628 
12629 	/* first, clear all configured multicast MACs */
12630 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12631 	if (rc < 0) {
12632 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12633 		return rc;
12634 	}
12635 
12636 	/* then, configure a new MACs list */
12637 	if (netdev_mc_count(dev)) {
12638 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12639 		if (rc)
12640 			return rc;
12641 
12642 		/* Now add the new MACs */
12643 		rc = bnx2x_config_mcast(bp, &rparam,
12644 					BNX2X_MCAST_CMD_ADD);
12645 		if (rc < 0)
12646 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12647 				  rc);
12648 
12649 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12650 	}
12651 
12652 	return rc;
12653 }
12654 
12655 static int bnx2x_set_mc_list(struct bnx2x *bp)
12656 {
12657 	LIST_HEAD(mcast_group_list);
12658 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12659 	struct net_device *dev = bp->dev;
12660 	int rc = 0;
12661 
12662 	/* On older adapters, we need to flush and re-add filters */
12663 	if (CHIP_IS_E1x(bp))
12664 		return bnx2x_set_mc_list_e1x(bp);
12665 
12666 	rparam.mcast_obj = &bp->mcast_obj;
12667 
12668 	if (netdev_mc_count(dev)) {
12669 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12670 		if (rc)
12671 			return rc;
12672 
12673 		/* Override the curently configured set of mc filters */
12674 		rc = bnx2x_config_mcast(bp, &rparam,
12675 					BNX2X_MCAST_CMD_SET);
12676 		if (rc < 0)
12677 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12678 				  rc);
12679 
12680 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12681 	} else {
12682 		/* If no mc addresses are required, flush the configuration */
12683 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12684 		if (rc < 0)
12685 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12686 				  rc);
12687 	}
12688 
12689 	return rc;
12690 }
12691 
12692 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12693 static void bnx2x_set_rx_mode(struct net_device *dev)
12694 {
12695 	struct bnx2x *bp = netdev_priv(dev);
12696 
12697 	if (bp->state != BNX2X_STATE_OPEN) {
12698 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12699 		return;
12700 	} else {
12701 		/* Schedule an SP task to handle rest of change */
12702 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12703 				       NETIF_MSG_IFUP);
12704 	}
12705 }
12706 
12707 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12708 {
12709 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12710 
12711 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12712 
12713 	netif_addr_lock_bh(bp->dev);
12714 
12715 	if (bp->dev->flags & IFF_PROMISC) {
12716 		rx_mode = BNX2X_RX_MODE_PROMISC;
12717 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12718 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12719 		    CHIP_IS_E1(bp))) {
12720 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12721 	} else {
12722 		if (IS_PF(bp)) {
12723 			/* some multicasts */
12724 			if (bnx2x_set_mc_list(bp) < 0)
12725 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12726 
12727 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12728 			netif_addr_unlock_bh(bp->dev);
12729 			if (bnx2x_set_uc_list(bp) < 0)
12730 				rx_mode = BNX2X_RX_MODE_PROMISC;
12731 			netif_addr_lock_bh(bp->dev);
12732 		} else {
12733 			/* configuring mcast to a vf involves sleeping (when we
12734 			 * wait for the pf's response).
12735 			 */
12736 			bnx2x_schedule_sp_rtnl(bp,
12737 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12738 		}
12739 	}
12740 
12741 	bp->rx_mode = rx_mode;
12742 	/* handle ISCSI SD mode */
12743 	if (IS_MF_ISCSI_ONLY(bp))
12744 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12745 
12746 	/* Schedule the rx_mode command */
12747 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12748 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12749 		netif_addr_unlock_bh(bp->dev);
12750 		return;
12751 	}
12752 
12753 	if (IS_PF(bp)) {
12754 		bnx2x_set_storm_rx_mode(bp);
12755 		netif_addr_unlock_bh(bp->dev);
12756 	} else {
12757 		/* VF will need to request the PF to make this change, and so
12758 		 * the VF needs to release the bottom-half lock prior to the
12759 		 * request (as it will likely require sleep on the VF side)
12760 		 */
12761 		netif_addr_unlock_bh(bp->dev);
12762 		bnx2x_vfpf_storm_rx_mode(bp);
12763 	}
12764 }
12765 
12766 /* called with rtnl_lock */
12767 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12768 			   int devad, u16 addr)
12769 {
12770 	struct bnx2x *bp = netdev_priv(netdev);
12771 	u16 value;
12772 	int rc;
12773 
12774 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12775 	   prtad, devad, addr);
12776 
12777 	/* The HW expects different devad if CL22 is used */
12778 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12779 
12780 	bnx2x_acquire_phy_lock(bp);
12781 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12782 	bnx2x_release_phy_lock(bp);
12783 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12784 
12785 	if (!rc)
12786 		rc = value;
12787 	return rc;
12788 }
12789 
12790 /* called with rtnl_lock */
12791 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12792 			    u16 addr, u16 value)
12793 {
12794 	struct bnx2x *bp = netdev_priv(netdev);
12795 	int rc;
12796 
12797 	DP(NETIF_MSG_LINK,
12798 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12799 	   prtad, devad, addr, value);
12800 
12801 	/* The HW expects different devad if CL22 is used */
12802 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12803 
12804 	bnx2x_acquire_phy_lock(bp);
12805 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12806 	bnx2x_release_phy_lock(bp);
12807 	return rc;
12808 }
12809 
12810 /* called with rtnl_lock */
12811 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12812 {
12813 	struct bnx2x *bp = netdev_priv(dev);
12814 	struct mii_ioctl_data *mdio = if_mii(ifr);
12815 
12816 	if (!netif_running(dev))
12817 		return -EAGAIN;
12818 
12819 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12820 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
12821 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12822 }
12823 
12824 static int bnx2x_validate_addr(struct net_device *dev)
12825 {
12826 	struct bnx2x *bp = netdev_priv(dev);
12827 
12828 	/* query the bulletin board for mac address configured by the PF */
12829 	if (IS_VF(bp))
12830 		bnx2x_sample_bulletin(bp);
12831 
12832 	if (!is_valid_ether_addr(dev->dev_addr)) {
12833 		BNX2X_ERR("Non-valid Ethernet address\n");
12834 		return -EADDRNOTAVAIL;
12835 	}
12836 	return 0;
12837 }
12838 
12839 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12840 				  struct netdev_phys_item_id *ppid)
12841 {
12842 	struct bnx2x *bp = netdev_priv(netdev);
12843 
12844 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12845 		return -EOPNOTSUPP;
12846 
12847 	ppid->id_len = sizeof(bp->phys_port_id);
12848 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12849 
12850 	return 0;
12851 }
12852 
12853 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12854 					      struct net_device *dev,
12855 					      netdev_features_t features)
12856 {
12857 	/*
12858 	 * A skb with gso_size + header length > 9700 will cause a
12859 	 * firmware panic. Drop GSO support.
12860 	 *
12861 	 * Eventually the upper layer should not pass these packets down.
12862 	 *
12863 	 * For speed, if the gso_size is <= 9000, assume there will
12864 	 * not be 700 bytes of headers and pass it through. Only do a
12865 	 * full (slow) validation if the gso_size is > 9000.
12866 	 *
12867 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12868 	 * validation in that case.)
12869 	 */
12870 	if (unlikely(skb_is_gso(skb) &&
12871 		     (skb_shinfo(skb)->gso_size > 9000) &&
12872 		     !skb_gso_validate_mac_len(skb, 9700)))
12873 		features &= ~NETIF_F_GSO_MASK;
12874 
12875 	features = vlan_features_check(skb, features);
12876 	return vxlan_features_check(skb, features);
12877 }
12878 
12879 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12880 {
12881 	int rc;
12882 
12883 	if (IS_PF(bp)) {
12884 		unsigned long ramrod_flags = 0;
12885 
12886 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12887 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12888 					add, &ramrod_flags);
12889 	} else {
12890 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12891 	}
12892 
12893 	return rc;
12894 }
12895 
12896 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12897 {
12898 	struct bnx2x_vlan_entry *vlan;
12899 	int rc = 0;
12900 
12901 	/* Configure all non-configured entries */
12902 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12903 		if (vlan->hw)
12904 			continue;
12905 
12906 		if (bp->vlan_cnt >= bp->vlan_credit)
12907 			return -ENOBUFS;
12908 
12909 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12910 		if (rc) {
12911 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12912 			return rc;
12913 		}
12914 
12915 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12916 		vlan->hw = true;
12917 		bp->vlan_cnt++;
12918 	}
12919 
12920 	return 0;
12921 }
12922 
12923 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12924 {
12925 	bool need_accept_any_vlan;
12926 
12927 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12928 
12929 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12930 		bp->accept_any_vlan = need_accept_any_vlan;
12931 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12932 		   bp->accept_any_vlan ? "raised" : "cleared");
12933 		if (set_rx_mode) {
12934 			if (IS_PF(bp))
12935 				bnx2x_set_rx_mode_inner(bp);
12936 			else
12937 				bnx2x_vfpf_storm_rx_mode(bp);
12938 		}
12939 	}
12940 }
12941 
12942 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12943 {
12944 	/* Don't set rx mode here. Our caller will do it. */
12945 	bnx2x_vlan_configure(bp, false);
12946 
12947 	return 0;
12948 }
12949 
12950 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12951 {
12952 	struct bnx2x *bp = netdev_priv(dev);
12953 	struct bnx2x_vlan_entry *vlan;
12954 
12955 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12956 
12957 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12958 	if (!vlan)
12959 		return -ENOMEM;
12960 
12961 	vlan->vid = vid;
12962 	vlan->hw = false;
12963 	list_add_tail(&vlan->link, &bp->vlan_reg);
12964 
12965 	if (netif_running(dev))
12966 		bnx2x_vlan_configure(bp, true);
12967 
12968 	return 0;
12969 }
12970 
12971 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12972 {
12973 	struct bnx2x *bp = netdev_priv(dev);
12974 	struct bnx2x_vlan_entry *vlan;
12975 	bool found = false;
12976 	int rc = 0;
12977 
12978 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12979 
12980 	list_for_each_entry(vlan, &bp->vlan_reg, link)
12981 		if (vlan->vid == vid) {
12982 			found = true;
12983 			break;
12984 		}
12985 
12986 	if (!found) {
12987 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12988 		return -EINVAL;
12989 	}
12990 
12991 	if (netif_running(dev) && vlan->hw) {
12992 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12993 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12994 		bp->vlan_cnt--;
12995 	}
12996 
12997 	list_del(&vlan->link);
12998 	kfree(vlan);
12999 
13000 	if (netif_running(dev))
13001 		bnx2x_vlan_configure(bp, true);
13002 
13003 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13004 
13005 	return rc;
13006 }
13007 
13008 static const struct net_device_ops bnx2x_netdev_ops = {
13009 	.ndo_open		= bnx2x_open,
13010 	.ndo_stop		= bnx2x_close,
13011 	.ndo_start_xmit		= bnx2x_start_xmit,
13012 	.ndo_select_queue	= bnx2x_select_queue,
13013 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13014 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13015 	.ndo_validate_addr	= bnx2x_validate_addr,
13016 	.ndo_eth_ioctl		= bnx2x_ioctl,
13017 	.ndo_change_mtu		= bnx2x_change_mtu,
13018 	.ndo_fix_features	= bnx2x_fix_features,
13019 	.ndo_set_features	= bnx2x_set_features,
13020 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13021 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13022 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13023 	.ndo_setup_tc		= __bnx2x_setup_tc,
13024 #ifdef CONFIG_BNX2X_SRIOV
13025 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13026 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13027 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13028 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13029 #endif
13030 #ifdef NETDEV_FCOE_WWNN
13031 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13032 #endif
13033 
13034 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13035 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13036 	.ndo_features_check	= bnx2x_features_check,
13037 	.ndo_hwtstamp_get	= bnx2x_hwtstamp_get,
13038 	.ndo_hwtstamp_set	= bnx2x_hwtstamp_set,
13039 };
13040 
13041 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13042 			  struct net_device *dev, unsigned long board_type)
13043 {
13044 	int rc;
13045 	u32 pci_cfg_dword;
13046 	bool chip_is_e1x = (board_type == BCM57710 ||
13047 			    board_type == BCM57711 ||
13048 			    board_type == BCM57711E);
13049 
13050 	SET_NETDEV_DEV(dev, &pdev->dev);
13051 
13052 	bp->dev = dev;
13053 	bp->pdev = pdev;
13054 
13055 	rc = pci_enable_device(pdev);
13056 	if (rc) {
13057 		dev_err(&bp->pdev->dev,
13058 			"Cannot enable PCI device, aborting\n");
13059 		goto err_out;
13060 	}
13061 
13062 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13063 		dev_err(&bp->pdev->dev,
13064 			"Cannot find PCI device base address, aborting\n");
13065 		rc = -ENODEV;
13066 		goto err_out_disable;
13067 	}
13068 
13069 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13070 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13071 		rc = -ENODEV;
13072 		goto err_out_disable;
13073 	}
13074 
13075 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13076 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13077 	    PCICFG_REVESION_ID_ERROR_VAL) {
13078 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13079 		rc = -ENODEV;
13080 		goto err_out_disable;
13081 	}
13082 
13083 	if (atomic_read(&pdev->enable_cnt) == 1) {
13084 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13085 		if (rc) {
13086 			dev_err(&bp->pdev->dev,
13087 				"Cannot obtain PCI resources, aborting\n");
13088 			goto err_out_disable;
13089 		}
13090 
13091 		pci_set_master(pdev);
13092 		pci_save_state(pdev);
13093 	}
13094 
13095 	if (IS_PF(bp)) {
13096 		if (!pdev->pm_cap) {
13097 			dev_err(&bp->pdev->dev,
13098 				"Cannot find power management capability, aborting\n");
13099 			rc = -EIO;
13100 			goto err_out_release;
13101 		}
13102 	}
13103 
13104 	if (!pci_is_pcie(pdev)) {
13105 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13106 		rc = -EIO;
13107 		goto err_out_release;
13108 	}
13109 
13110 	rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13111 	if (rc) {
13112 		dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13113 		goto err_out_release;
13114 	}
13115 
13116 	dev->mem_start = pci_resource_start(pdev, 0);
13117 	dev->base_addr = dev->mem_start;
13118 	dev->mem_end = pci_resource_end(pdev, 0);
13119 
13120 	dev->irq = pdev->irq;
13121 
13122 	bp->regview = pci_ioremap_bar(pdev, 0);
13123 	if (!bp->regview) {
13124 		dev_err(&bp->pdev->dev,
13125 			"Cannot map register space, aborting\n");
13126 		rc = -ENOMEM;
13127 		goto err_out_release;
13128 	}
13129 
13130 	/* In E1/E1H use pci device function given by kernel.
13131 	 * In E2/E3 read physical function from ME register since these chips
13132 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13133 	 * (depending on hypervisor).
13134 	 */
13135 	if (chip_is_e1x) {
13136 		bp->pf_num = PCI_FUNC(pdev->devfn);
13137 	} else {
13138 		/* chip is E2/3*/
13139 		pci_read_config_dword(bp->pdev,
13140 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13141 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13142 				  ME_REG_ABS_PF_NUM_SHIFT);
13143 	}
13144 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13145 
13146 	/* clean indirect addresses */
13147 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13148 			       PCICFG_VENDOR_ID_OFFSET);
13149 
13150 	/* Set PCIe reset type to fundamental for EEH recovery */
13151 	pdev->needs_freset = 1;
13152 
13153 	/*
13154 	 * Clean the following indirect addresses for all functions since it
13155 	 * is not used by the driver.
13156 	 */
13157 	if (IS_PF(bp)) {
13158 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13159 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13160 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13161 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13162 
13163 		if (chip_is_e1x) {
13164 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13165 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13166 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13167 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13168 		}
13169 
13170 		/* Enable internal target-read (in case we are probed after PF
13171 		 * FLR). Must be done prior to any BAR read access. Only for
13172 		 * 57712 and up
13173 		 */
13174 		if (!chip_is_e1x)
13175 			REG_WR(bp,
13176 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13177 	}
13178 
13179 	dev->watchdog_timeo = TX_TIMEOUT;
13180 
13181 	dev->netdev_ops = &bnx2x_netdev_ops;
13182 	bnx2x_set_ethtool_ops(bp, dev);
13183 
13184 	dev->priv_flags |= IFF_UNICAST_FLT;
13185 
13186 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13187 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13188 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13189 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13190 	if (!chip_is_e1x) {
13191 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13192 				    NETIF_F_GSO_IPXIP4 |
13193 				    NETIF_F_GSO_UDP_TUNNEL |
13194 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13195 				    NETIF_F_GSO_PARTIAL;
13196 
13197 		dev->hw_enc_features =
13198 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13199 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13200 			NETIF_F_GSO_IPXIP4 |
13201 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13202 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13203 			NETIF_F_GSO_PARTIAL;
13204 
13205 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13206 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13207 
13208 		if (IS_PF(bp))
13209 			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13210 	}
13211 
13212 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13213 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13214 
13215 	if (IS_PF(bp)) {
13216 		if (chip_is_e1x)
13217 			bp->accept_any_vlan = true;
13218 		else
13219 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13220 	}
13221 	/* For VF we'll know whether to enable VLAN filtering after
13222 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13223 	 */
13224 
13225 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13226 	dev->features |= NETIF_F_HIGHDMA;
13227 	if (dev->features & NETIF_F_LRO)
13228 		dev->features &= ~NETIF_F_GRO_HW;
13229 
13230 	/* Add Loopback capability to the device */
13231 	dev->hw_features |= NETIF_F_LOOPBACK;
13232 
13233 #ifdef BCM_DCBNL
13234 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13235 #endif
13236 
13237 	/* MTU range, 46 - 9600 */
13238 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13239 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13240 
13241 	/* get_port_hwinfo() will set prtad and mmds properly */
13242 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13243 	bp->mdio.mmds = 0;
13244 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13245 	bp->mdio.dev = dev;
13246 	bp->mdio.mdio_read = bnx2x_mdio_read;
13247 	bp->mdio.mdio_write = bnx2x_mdio_write;
13248 
13249 	return 0;
13250 
13251 err_out_release:
13252 	if (atomic_read(&pdev->enable_cnt) == 1)
13253 		pci_release_regions(pdev);
13254 
13255 err_out_disable:
13256 	pci_disable_device(pdev);
13257 
13258 err_out:
13259 	return rc;
13260 }
13261 
13262 static int bnx2x_check_firmware(struct bnx2x *bp)
13263 {
13264 	const struct firmware *firmware = bp->firmware;
13265 	struct bnx2x_fw_file_hdr *fw_hdr;
13266 	struct bnx2x_fw_file_section *sections;
13267 	u32 offset, len, num_ops;
13268 	__be16 *ops_offsets;
13269 	int i;
13270 	const u8 *fw_ver;
13271 
13272 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13273 		BNX2X_ERR("Wrong FW size\n");
13274 		return -EINVAL;
13275 	}
13276 
13277 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13278 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13279 
13280 	/* Make sure none of the offsets and sizes make us read beyond
13281 	 * the end of the firmware data */
13282 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13283 		offset = be32_to_cpu(sections[i].offset);
13284 		len = be32_to_cpu(sections[i].len);
13285 		if (offset + len > firmware->size) {
13286 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13287 			return -EINVAL;
13288 		}
13289 	}
13290 
13291 	/* Likewise for the init_ops offsets */
13292 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13293 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13294 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13295 
13296 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13297 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13298 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13299 			return -EINVAL;
13300 		}
13301 	}
13302 
13303 	/* Check FW version */
13304 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13305 	fw_ver = firmware->data + offset;
13306 	if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13307 	    fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13308 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13309 			  fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13310 			  bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13311 		return -EINVAL;
13312 	}
13313 
13314 	return 0;
13315 }
13316 
13317 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13318 {
13319 	const __be32 *source = (const __be32 *)_source;
13320 	u32 *target = (u32 *)_target;
13321 	u32 i;
13322 
13323 	for (i = 0; i < n/4; i++)
13324 		target[i] = be32_to_cpu(source[i]);
13325 }
13326 
13327 /*
13328    Ops array is stored in the following format:
13329    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13330  */
13331 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13332 {
13333 	const __be32 *source = (const __be32 *)_source;
13334 	struct raw_op *target = (struct raw_op *)_target;
13335 	u32 i, j, tmp;
13336 
13337 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13338 		tmp = be32_to_cpu(source[j]);
13339 		target[i].op = (tmp >> 24) & 0xff;
13340 		target[i].offset = tmp & 0xffffff;
13341 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13342 	}
13343 }
13344 
13345 /* IRO array is stored in the following format:
13346  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13347  */
13348 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13349 {
13350 	const __be32 *source = (const __be32 *)_source;
13351 	struct iro *target = (struct iro *)_target;
13352 	u32 i, j, tmp;
13353 
13354 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13355 		target[i].base = be32_to_cpu(source[j]);
13356 		j++;
13357 		tmp = be32_to_cpu(source[j]);
13358 		target[i].m1 = (tmp >> 16) & 0xffff;
13359 		target[i].m2 = tmp & 0xffff;
13360 		j++;
13361 		tmp = be32_to_cpu(source[j]);
13362 		target[i].m3 = (tmp >> 16) & 0xffff;
13363 		target[i].size = tmp & 0xffff;
13364 		j++;
13365 	}
13366 }
13367 
13368 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13369 {
13370 	const __be16 *source = (const __be16 *)_source;
13371 	u16 *target = (u16 *)_target;
13372 	u32 i;
13373 
13374 	for (i = 0; i < n/2; i++)
13375 		target[i] = be16_to_cpu(source[i]);
13376 }
13377 
13378 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13379 do {									\
13380 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13381 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13382 	if (!bp->arr)							\
13383 		goto lbl;						\
13384 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13385 	     (u8 *)bp->arr, len);					\
13386 } while (0)
13387 
13388 static int bnx2x_init_firmware(struct bnx2x *bp)
13389 {
13390 	const char *fw_file_name, *fw_file_name_v15;
13391 	struct bnx2x_fw_file_hdr *fw_hdr;
13392 	int rc;
13393 
13394 	if (bp->firmware)
13395 		return 0;
13396 
13397 	if (CHIP_IS_E1(bp)) {
13398 		fw_file_name = FW_FILE_NAME_E1;
13399 		fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13400 	} else if (CHIP_IS_E1H(bp)) {
13401 		fw_file_name = FW_FILE_NAME_E1H;
13402 		fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13403 	} else if (!CHIP_IS_E1x(bp)) {
13404 		fw_file_name = FW_FILE_NAME_E2;
13405 		fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13406 	} else {
13407 		BNX2X_ERR("Unsupported chip revision\n");
13408 		return -EINVAL;
13409 	}
13410 
13411 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13412 
13413 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13414 	if (rc) {
13415 		BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13416 
13417 		/* try to load prev version */
13418 		rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13419 
13420 		if (rc)
13421 			goto request_firmware_exit;
13422 
13423 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13424 	} else {
13425 		bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13426 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13427 	}
13428 
13429 	bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13430 	bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13431 	bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13432 
13433 	rc = bnx2x_check_firmware(bp);
13434 	if (rc) {
13435 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13436 		goto request_firmware_exit;
13437 	}
13438 
13439 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13440 
13441 	/* Initialize the pointers to the init arrays */
13442 	/* Blob */
13443 	rc = -ENOMEM;
13444 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13445 
13446 	/* Opcodes */
13447 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13448 
13449 	/* Offsets */
13450 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13451 			    be16_to_cpu_n);
13452 
13453 	/* STORMs firmware */
13454 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13455 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13456 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13457 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13458 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13459 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13460 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13461 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13462 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13463 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13464 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13465 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13466 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13467 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13468 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13469 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13470 	/* IRO */
13471 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13472 
13473 	return 0;
13474 
13475 iro_alloc_err:
13476 	kfree(bp->init_ops_offsets);
13477 init_offsets_alloc_err:
13478 	kfree(bp->init_ops);
13479 init_ops_alloc_err:
13480 	kfree(bp->init_data);
13481 request_firmware_exit:
13482 	release_firmware(bp->firmware);
13483 	bp->firmware = NULL;
13484 
13485 	return rc;
13486 }
13487 
13488 static void bnx2x_release_firmware(struct bnx2x *bp)
13489 {
13490 	kfree(bp->init_ops_offsets);
13491 	kfree(bp->init_ops);
13492 	kfree(bp->init_data);
13493 	release_firmware(bp->firmware);
13494 	bp->firmware = NULL;
13495 }
13496 
13497 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13498 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13499 	.init_hw_cmn      = bnx2x_init_hw_common,
13500 	.init_hw_port     = bnx2x_init_hw_port,
13501 	.init_hw_func     = bnx2x_init_hw_func,
13502 
13503 	.reset_hw_cmn     = bnx2x_reset_common,
13504 	.reset_hw_port    = bnx2x_reset_port,
13505 	.reset_hw_func    = bnx2x_reset_func,
13506 
13507 	.gunzip_init      = bnx2x_gunzip_init,
13508 	.gunzip_end       = bnx2x_gunzip_end,
13509 
13510 	.init_fw          = bnx2x_init_firmware,
13511 	.release_fw       = bnx2x_release_firmware,
13512 };
13513 
13514 void bnx2x__init_func_obj(struct bnx2x *bp)
13515 {
13516 	/* Prepare DMAE related driver resources */
13517 	bnx2x_setup_dmae(bp);
13518 
13519 	bnx2x_init_func_obj(bp, &bp->func_obj,
13520 			    bnx2x_sp(bp, func_rdata),
13521 			    bnx2x_sp_mapping(bp, func_rdata),
13522 			    bnx2x_sp(bp, func_afex_rdata),
13523 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13524 			    &bnx2x_func_sp_drv);
13525 }
13526 
13527 /* must be called after sriov-enable */
13528 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13529 {
13530 	int cid_count = BNX2X_L2_MAX_CID(bp);
13531 
13532 	if (IS_SRIOV(bp))
13533 		cid_count += BNX2X_VF_CIDS;
13534 
13535 	if (CNIC_SUPPORT(bp))
13536 		cid_count += CNIC_CID_MAX;
13537 
13538 	return roundup(cid_count, QM_CID_ROUND);
13539 }
13540 
13541 /**
13542  * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13543  * @pdev: pci device
13544  * @cnic_cnt: count
13545  *
13546  */
13547 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13548 {
13549 	int index;
13550 	u16 control = 0;
13551 
13552 	/*
13553 	 * If MSI-X is not supported - return number of SBs needed to support
13554 	 * one fast path queue: one FP queue + SB for CNIC
13555 	 */
13556 	if (!pdev->msix_cap) {
13557 		dev_info(&pdev->dev, "no msix capability found\n");
13558 		return 1 + cnic_cnt;
13559 	}
13560 	dev_info(&pdev->dev, "msix capability found\n");
13561 
13562 	/*
13563 	 * The value in the PCI configuration space is the index of the last
13564 	 * entry, namely one less than the actual size of the table, which is
13565 	 * exactly what we want to return from this function: number of all SBs
13566 	 * without the default SB.
13567 	 * For VFs there is no default SB, then we return (index+1).
13568 	 */
13569 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13570 
13571 	index = control & PCI_MSIX_FLAGS_QSIZE;
13572 
13573 	return index;
13574 }
13575 
13576 static int set_max_cos_est(int chip_id)
13577 {
13578 	switch (chip_id) {
13579 	case BCM57710:
13580 	case BCM57711:
13581 	case BCM57711E:
13582 		return BNX2X_MULTI_TX_COS_E1X;
13583 	case BCM57712:
13584 	case BCM57712_MF:
13585 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13586 	case BCM57800:
13587 	case BCM57800_MF:
13588 	case BCM57810:
13589 	case BCM57810_MF:
13590 	case BCM57840_4_10:
13591 	case BCM57840_2_20:
13592 	case BCM57840_O:
13593 	case BCM57840_MFO:
13594 	case BCM57840_MF:
13595 	case BCM57811:
13596 	case BCM57811_MF:
13597 		return BNX2X_MULTI_TX_COS_E3B0;
13598 	case BCM57712_VF:
13599 	case BCM57800_VF:
13600 	case BCM57810_VF:
13601 	case BCM57840_VF:
13602 	case BCM57811_VF:
13603 		return 1;
13604 	default:
13605 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13606 		return -ENODEV;
13607 	}
13608 }
13609 
13610 static int set_is_vf(int chip_id)
13611 {
13612 	switch (chip_id) {
13613 	case BCM57712_VF:
13614 	case BCM57800_VF:
13615 	case BCM57810_VF:
13616 	case BCM57840_VF:
13617 	case BCM57811_VF:
13618 		return true;
13619 	default:
13620 		return false;
13621 	}
13622 }
13623 
13624 /* nig_tsgen registers relative address */
13625 #define tsgen_ctrl 0x0
13626 #define tsgen_freecount 0x10
13627 #define tsgen_synctime_t0 0x20
13628 #define tsgen_offset_t0 0x28
13629 #define tsgen_drift_t0 0x30
13630 #define tsgen_synctime_t1 0x58
13631 #define tsgen_offset_t1 0x60
13632 #define tsgen_drift_t1 0x68
13633 
13634 /* FW workaround for setting drift */
13635 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13636 					  int best_val, int best_period)
13637 {
13638 	struct bnx2x_func_state_params func_params = {NULL};
13639 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13640 		&func_params.params.set_timesync;
13641 
13642 	/* Prepare parameters for function state transitions */
13643 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13644 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13645 
13646 	func_params.f_obj = &bp->func_obj;
13647 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13648 
13649 	/* Function parameters */
13650 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13651 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13652 	set_timesync_params->add_sub_drift_adjust_value =
13653 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13654 	set_timesync_params->drift_adjust_value = best_val;
13655 	set_timesync_params->drift_adjust_period = best_period;
13656 
13657 	return bnx2x_func_state_change(bp, &func_params);
13658 }
13659 
13660 static int bnx2x_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
13661 {
13662 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13663 	int rc;
13664 	int drift_dir = 1;
13665 	int val, period, period1, period2, dif, dif1, dif2;
13666 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13667 	s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
13668 
13669 	DP(BNX2X_MSG_PTP, "PTP adjfine called, ppb = %d\n", ppb);
13670 
13671 	if (!netif_running(bp->dev)) {
13672 		DP(BNX2X_MSG_PTP,
13673 		   "PTP adjfine called while the interface is down\n");
13674 		return -ENETDOWN;
13675 	}
13676 
13677 	if (ppb < 0) {
13678 		ppb = -ppb;
13679 		drift_dir = 0;
13680 	}
13681 
13682 	if (ppb == 0) {
13683 		best_val = 1;
13684 		best_period = 0x1FFFFFF;
13685 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13686 		best_val = 31;
13687 		best_period = 1;
13688 	} else {
13689 		/* Changed not to allow val = 8, 16, 24 as these values
13690 		 * are not supported in workaround.
13691 		 */
13692 		for (val = 0; val <= 31; val++) {
13693 			if ((val & 0x7) == 0)
13694 				continue;
13695 			period1 = val * 1000000 / ppb;
13696 			period2 = period1 + 1;
13697 			if (period1 != 0)
13698 				dif1 = ppb - (val * 1000000 / period1);
13699 			else
13700 				dif1 = BNX2X_MAX_PHC_DRIFT;
13701 			if (dif1 < 0)
13702 				dif1 = -dif1;
13703 			dif2 = ppb - (val * 1000000 / period2);
13704 			if (dif2 < 0)
13705 				dif2 = -dif2;
13706 			dif = (dif1 < dif2) ? dif1 : dif2;
13707 			period = (dif1 < dif2) ? period1 : period2;
13708 			if (dif < best_dif) {
13709 				best_dif = dif;
13710 				best_val = val;
13711 				best_period = period;
13712 			}
13713 		}
13714 	}
13715 
13716 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13717 					    best_period);
13718 	if (rc) {
13719 		BNX2X_ERR("Failed to set drift\n");
13720 		return -EFAULT;
13721 	}
13722 
13723 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13724 	   best_period);
13725 
13726 	return 0;
13727 }
13728 
13729 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13730 {
13731 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13732 
13733 	if (!netif_running(bp->dev)) {
13734 		DP(BNX2X_MSG_PTP,
13735 		   "PTP adjtime called while the interface is down\n");
13736 		return -ENETDOWN;
13737 	}
13738 
13739 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13740 
13741 	timecounter_adjtime(&bp->timecounter, delta);
13742 
13743 	return 0;
13744 }
13745 
13746 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13747 {
13748 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13749 	u64 ns;
13750 
13751 	if (!netif_running(bp->dev)) {
13752 		DP(BNX2X_MSG_PTP,
13753 		   "PTP gettime called while the interface is down\n");
13754 		return -ENETDOWN;
13755 	}
13756 
13757 	ns = timecounter_read(&bp->timecounter);
13758 
13759 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13760 
13761 	*ts = ns_to_timespec64(ns);
13762 
13763 	return 0;
13764 }
13765 
13766 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13767 			     const struct timespec64 *ts)
13768 {
13769 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13770 	u64 ns;
13771 
13772 	if (!netif_running(bp->dev)) {
13773 		DP(BNX2X_MSG_PTP,
13774 		   "PTP settime called while the interface is down\n");
13775 		return -ENETDOWN;
13776 	}
13777 
13778 	ns = timespec64_to_ns(ts);
13779 
13780 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13781 
13782 	/* Re-init the timecounter */
13783 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13784 
13785 	return 0;
13786 }
13787 
13788 /* Enable (or disable) ancillary features of the phc subsystem */
13789 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13790 			    struct ptp_clock_request *rq, int on)
13791 {
13792 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13793 
13794 	BNX2X_ERR("PHC ancillary features are not supported\n");
13795 	return -ENOTSUPP;
13796 }
13797 
13798 void bnx2x_register_phc(struct bnx2x *bp)
13799 {
13800 	/* Fill the ptp_clock_info struct and register PTP clock*/
13801 	bp->ptp_clock_info.owner = THIS_MODULE;
13802 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13803 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13804 	bp->ptp_clock_info.n_alarm = 0;
13805 	bp->ptp_clock_info.n_ext_ts = 0;
13806 	bp->ptp_clock_info.n_per_out = 0;
13807 	bp->ptp_clock_info.pps = 0;
13808 	bp->ptp_clock_info.adjfine = bnx2x_ptp_adjfine;
13809 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13810 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13811 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13812 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13813 
13814 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13815 	if (IS_ERR(bp->ptp_clock)) {
13816 		bp->ptp_clock = NULL;
13817 		BNX2X_ERR("PTP clock registration failed\n");
13818 	}
13819 }
13820 
13821 static int bnx2x_init_one(struct pci_dev *pdev,
13822 				    const struct pci_device_id *ent)
13823 {
13824 	struct net_device *dev = NULL;
13825 	struct bnx2x *bp;
13826 	int rc, max_non_def_sbs;
13827 	int rx_count, tx_count, rss_count, doorbell_size;
13828 	int max_cos_est;
13829 	bool is_vf;
13830 	int cnic_cnt;
13831 
13832 	/* Management FW 'remembers' living interfaces. Allow it some time
13833 	 * to forget previously living interfaces, allowing a proper re-load.
13834 	 */
13835 	if (is_kdump_kernel()) {
13836 		ktime_t now = ktime_get_boottime();
13837 		ktime_t fw_ready_time = ktime_set(5, 0);
13838 
13839 		if (ktime_before(now, fw_ready_time))
13840 			msleep(ktime_ms_delta(fw_ready_time, now));
13841 	}
13842 
13843 	/* An estimated maximum supported CoS number according to the chip
13844 	 * version.
13845 	 * We will try to roughly estimate the maximum number of CoSes this chip
13846 	 * may support in order to minimize the memory allocated for Tx
13847 	 * netdev_queue's. This number will be accurately calculated during the
13848 	 * initialization of bp->max_cos based on the chip versions AND chip
13849 	 * revision in the bnx2x_init_bp().
13850 	 */
13851 	max_cos_est = set_max_cos_est(ent->driver_data);
13852 	if (max_cos_est < 0)
13853 		return max_cos_est;
13854 	is_vf = set_is_vf(ent->driver_data);
13855 	cnic_cnt = is_vf ? 0 : 1;
13856 
13857 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13858 
13859 	/* add another SB for VF as it has no default SB */
13860 	max_non_def_sbs += is_vf ? 1 : 0;
13861 
13862 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13863 	rss_count = max_non_def_sbs - cnic_cnt;
13864 
13865 	if (rss_count < 1)
13866 		return -EINVAL;
13867 
13868 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13869 	rx_count = rss_count + cnic_cnt;
13870 
13871 	/* Maximum number of netdev Tx queues:
13872 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13873 	 */
13874 	tx_count = rss_count * max_cos_est + cnic_cnt;
13875 
13876 	/* dev zeroed in init_etherdev */
13877 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13878 	if (!dev)
13879 		return -ENOMEM;
13880 
13881 	bp = netdev_priv(dev);
13882 
13883 	bp->flags = 0;
13884 	if (is_vf)
13885 		bp->flags |= IS_VF_FLAG;
13886 
13887 	bp->igu_sb_cnt = max_non_def_sbs;
13888 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13889 	bp->msg_enable = debug;
13890 	bp->cnic_support = cnic_cnt;
13891 	bp->cnic_probe = bnx2x_cnic_probe;
13892 
13893 	pci_set_drvdata(pdev, dev);
13894 
13895 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13896 	if (rc < 0) {
13897 		free_netdev(dev);
13898 		return rc;
13899 	}
13900 
13901 	BNX2X_DEV_INFO("This is a %s function\n",
13902 		       IS_PF(bp) ? "physical" : "virtual");
13903 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13904 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13905 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13906 		       tx_count, rx_count);
13907 
13908 	rc = bnx2x_init_bp(bp);
13909 	if (rc)
13910 		goto init_one_exit;
13911 
13912 	/* Map doorbells here as we need the real value of bp->max_cos which
13913 	 * is initialized in bnx2x_init_bp() to determine the number of
13914 	 * l2 connections.
13915 	 */
13916 	if (IS_VF(bp)) {
13917 		bp->doorbells = bnx2x_vf_doorbells(bp);
13918 		rc = bnx2x_vf_pci_alloc(bp);
13919 		if (rc)
13920 			goto init_one_freemem;
13921 	} else {
13922 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13923 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13924 			dev_err(&bp->pdev->dev,
13925 				"Cannot map doorbells, bar size too small, aborting\n");
13926 			rc = -ENOMEM;
13927 			goto init_one_freemem;
13928 		}
13929 		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13930 						doorbell_size);
13931 	}
13932 	if (!bp->doorbells) {
13933 		dev_err(&bp->pdev->dev,
13934 			"Cannot map doorbell space, aborting\n");
13935 		rc = -ENOMEM;
13936 		goto init_one_freemem;
13937 	}
13938 
13939 	if (IS_VF(bp)) {
13940 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13941 		if (rc)
13942 			goto init_one_freemem;
13943 
13944 #ifdef CONFIG_BNX2X_SRIOV
13945 		/* VF with OLD Hypervisor or old PF do not support filtering */
13946 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13947 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13948 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13949 		}
13950 #endif
13951 	}
13952 
13953 	/* Enable SRIOV if capability found in configuration space */
13954 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13955 	if (rc)
13956 		goto init_one_freemem;
13957 
13958 	/* calc qm_cid_count */
13959 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13960 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13961 
13962 	/* disable FCOE L2 queue for E1x*/
13963 	if (CHIP_IS_E1x(bp))
13964 		bp->flags |= NO_FCOE_FLAG;
13965 
13966 	/* Set bp->num_queues for MSI-X mode*/
13967 	bnx2x_set_num_queues(bp);
13968 
13969 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13970 	 * needed.
13971 	 */
13972 	rc = bnx2x_set_int_mode(bp);
13973 	if (rc) {
13974 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13975 		goto init_one_freemem;
13976 	}
13977 	BNX2X_DEV_INFO("set interrupts successfully\n");
13978 
13979 	/* register the net device */
13980 	rc = register_netdev(dev);
13981 	if (rc) {
13982 		dev_err(&pdev->dev, "Cannot register net device\n");
13983 		goto init_one_freemem;
13984 	}
13985 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13986 
13987 	if (!NO_FCOE(bp)) {
13988 		/* Add storage MAC address */
13989 		rtnl_lock();
13990 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13991 		rtnl_unlock();
13992 	}
13993 	BNX2X_DEV_INFO(
13994 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
13995 	       board_info[ent->driver_data].name,
13996 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13997 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13998 	pcie_print_link_status(bp->pdev);
13999 
14000 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14001 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14002 
14003 	return 0;
14004 
14005 init_one_freemem:
14006 	bnx2x_free_mem_bp(bp);
14007 
14008 init_one_exit:
14009 	if (bp->regview)
14010 		iounmap(bp->regview);
14011 
14012 	if (IS_PF(bp) && bp->doorbells)
14013 		iounmap(bp->doorbells);
14014 
14015 	free_netdev(dev);
14016 
14017 	if (atomic_read(&pdev->enable_cnt) == 1)
14018 		pci_release_regions(pdev);
14019 
14020 	pci_disable_device(pdev);
14021 
14022 	return rc;
14023 }
14024 
14025 static void __bnx2x_remove(struct pci_dev *pdev,
14026 			   struct net_device *dev,
14027 			   struct bnx2x *bp,
14028 			   bool remove_netdev)
14029 {
14030 	/* Delete storage MAC address */
14031 	if (!NO_FCOE(bp)) {
14032 		rtnl_lock();
14033 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14034 		rtnl_unlock();
14035 	}
14036 
14037 #ifdef BCM_DCBNL
14038 	/* Delete app tlvs from dcbnl */
14039 	bnx2x_dcbnl_update_applist(bp, true);
14040 #endif
14041 
14042 	if (IS_PF(bp) &&
14043 	    !BP_NOMCP(bp) &&
14044 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14045 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14046 
14047 	/* Close the interface - either directly or implicitly */
14048 	if (remove_netdev) {
14049 		unregister_netdev(dev);
14050 	} else {
14051 		rtnl_lock();
14052 		dev_close(dev);
14053 		rtnl_unlock();
14054 	}
14055 
14056 	bnx2x_iov_remove_one(bp);
14057 
14058 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14059 	if (IS_PF(bp)) {
14060 		bnx2x_set_power_state(bp, PCI_D0);
14061 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14062 
14063 		/* Set endianity registers to reset values in case next driver
14064 		 * boots in different endianty environment.
14065 		 */
14066 		bnx2x_reset_endianity(bp);
14067 	}
14068 
14069 	/* Disable MSI/MSI-X */
14070 	bnx2x_disable_msi(bp);
14071 
14072 	/* Power off */
14073 	if (IS_PF(bp))
14074 		bnx2x_set_power_state(bp, PCI_D3hot);
14075 
14076 	/* Make sure RESET task is not scheduled before continuing */
14077 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14078 
14079 	/* send message via vfpf channel to release the resources of this vf */
14080 	if (IS_VF(bp))
14081 		bnx2x_vfpf_release(bp);
14082 
14083 	/* Assumes no further PCIe PM changes will occur */
14084 	if (system_state == SYSTEM_POWER_OFF) {
14085 		pci_wake_from_d3(pdev, bp->wol);
14086 		pci_set_power_state(pdev, PCI_D3hot);
14087 	}
14088 
14089 	if (remove_netdev) {
14090 		if (bp->regview)
14091 			iounmap(bp->regview);
14092 
14093 		/* For vfs, doorbells are part of the regview and were unmapped
14094 		 * along with it. FW is only loaded by PF.
14095 		 */
14096 		if (IS_PF(bp)) {
14097 			if (bp->doorbells)
14098 				iounmap(bp->doorbells);
14099 
14100 			bnx2x_release_firmware(bp);
14101 		} else {
14102 			bnx2x_vf_pci_dealloc(bp);
14103 		}
14104 		bnx2x_free_mem_bp(bp);
14105 
14106 		free_netdev(dev);
14107 
14108 		if (atomic_read(&pdev->enable_cnt) == 1)
14109 			pci_release_regions(pdev);
14110 
14111 		pci_disable_device(pdev);
14112 	}
14113 }
14114 
14115 static void bnx2x_remove_one(struct pci_dev *pdev)
14116 {
14117 	struct net_device *dev = pci_get_drvdata(pdev);
14118 	struct bnx2x *bp;
14119 
14120 	if (!dev) {
14121 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14122 		return;
14123 	}
14124 	bp = netdev_priv(dev);
14125 
14126 	__bnx2x_remove(pdev, dev, bp, true);
14127 }
14128 
14129 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14130 {
14131 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14132 
14133 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14134 
14135 	if (CNIC_LOADED(bp))
14136 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14137 
14138 	/* Stop Tx */
14139 	bnx2x_tx_disable(bp);
14140 	netdev_reset_tc(bp->dev);
14141 
14142 	timer_delete_sync(&bp->timer);
14143 	cancel_delayed_work_sync(&bp->sp_task);
14144 	cancel_delayed_work_sync(&bp->period_task);
14145 
14146 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14147 		bp->stats_state = STATS_STATE_DISABLED;
14148 		up(&bp->stats_lock);
14149 	}
14150 
14151 	bnx2x_save_statistics(bp);
14152 
14153 	netif_carrier_off(bp->dev);
14154 
14155 	return 0;
14156 }
14157 
14158 /**
14159  * bnx2x_io_error_detected - called when PCI error is detected
14160  * @pdev: Pointer to PCI device
14161  * @state: The current pci connection state
14162  *
14163  * This function is called after a PCI bus error affecting
14164  * this device has been detected.
14165  */
14166 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14167 						pci_channel_state_t state)
14168 {
14169 	struct net_device *dev = pci_get_drvdata(pdev);
14170 	struct bnx2x *bp = netdev_priv(dev);
14171 
14172 	rtnl_lock();
14173 
14174 	BNX2X_ERR("IO error detected\n");
14175 
14176 	netif_device_detach(dev);
14177 
14178 	if (state == pci_channel_io_perm_failure) {
14179 		rtnl_unlock();
14180 		return PCI_ERS_RESULT_DISCONNECT;
14181 	}
14182 
14183 	if (netif_running(dev))
14184 		bnx2x_eeh_nic_unload(bp);
14185 
14186 	bnx2x_prev_path_mark_eeh(bp);
14187 
14188 	pci_disable_device(pdev);
14189 
14190 	rtnl_unlock();
14191 
14192 	/* Request a slot reset */
14193 	return PCI_ERS_RESULT_NEED_RESET;
14194 }
14195 
14196 /**
14197  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14198  * @pdev: Pointer to PCI device
14199  *
14200  * Restart the card from scratch, as if from a cold-boot.
14201  */
14202 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14203 {
14204 	struct net_device *dev = pci_get_drvdata(pdev);
14205 	struct bnx2x *bp = netdev_priv(dev);
14206 	int i;
14207 
14208 	rtnl_lock();
14209 	BNX2X_ERR("IO slot reset initializing...\n");
14210 	if (pci_enable_device(pdev)) {
14211 		dev_err(&pdev->dev,
14212 			"Cannot re-enable PCI device after reset\n");
14213 		rtnl_unlock();
14214 		return PCI_ERS_RESULT_DISCONNECT;
14215 	}
14216 
14217 	pci_set_master(pdev);
14218 	pci_restore_state(pdev);
14219 
14220 	if (netif_running(dev))
14221 		bnx2x_set_power_state(bp, PCI_D0);
14222 
14223 	if (netif_running(dev)) {
14224 		BNX2X_ERR("IO slot reset --> driver unload\n");
14225 
14226 		/* MCP should have been reset; Need to wait for validity */
14227 		if (bnx2x_init_shmem(bp)) {
14228 			rtnl_unlock();
14229 			return PCI_ERS_RESULT_DISCONNECT;
14230 		}
14231 
14232 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14233 			u32 v;
14234 
14235 			v = SHMEM2_RD(bp,
14236 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14237 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14238 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14239 		}
14240 		bnx2x_drain_tx_queues(bp);
14241 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14242 		if (!bp->nic_stopped) {
14243 			bnx2x_netif_stop(bp, 1);
14244 			bnx2x_del_all_napi(bp);
14245 
14246 			if (CNIC_LOADED(bp))
14247 				bnx2x_del_all_napi_cnic(bp);
14248 
14249 			bnx2x_free_irq(bp);
14250 			bp->nic_stopped = true;
14251 		}
14252 
14253 		/* Report UNLOAD_DONE to MCP */
14254 		bnx2x_send_unload_done(bp, true);
14255 
14256 		bp->sp_state = 0;
14257 		bp->port.pmf = 0;
14258 
14259 		bnx2x_prev_unload(bp);
14260 
14261 		/* We should have reseted the engine, so It's fair to
14262 		 * assume the FW will no longer write to the bnx2x driver.
14263 		 */
14264 		bnx2x_squeeze_objects(bp);
14265 		bnx2x_free_skbs(bp);
14266 		for_each_rx_queue(bp, i)
14267 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14268 		bnx2x_free_fp_mem(bp);
14269 		bnx2x_free_mem(bp);
14270 
14271 		bp->state = BNX2X_STATE_CLOSED;
14272 	}
14273 
14274 	rtnl_unlock();
14275 
14276 	return PCI_ERS_RESULT_RECOVERED;
14277 }
14278 
14279 /**
14280  * bnx2x_io_resume - called when traffic can start flowing again
14281  * @pdev: Pointer to PCI device
14282  *
14283  * This callback is called when the error recovery driver tells us that
14284  * its OK to resume normal operation.
14285  */
14286 static void bnx2x_io_resume(struct pci_dev *pdev)
14287 {
14288 	struct net_device *dev = pci_get_drvdata(pdev);
14289 	struct bnx2x *bp = netdev_priv(dev);
14290 
14291 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14292 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14293 		return;
14294 	}
14295 
14296 	rtnl_lock();
14297 
14298 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14299 							DRV_MSG_SEQ_NUMBER_MASK;
14300 
14301 	if (netif_running(dev)) {
14302 		if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
14303 			netdev_err(bp->dev, "Error during driver initialization, try unloading/reloading the driver\n");
14304 			goto done;
14305 		}
14306 	}
14307 
14308 	netif_device_attach(dev);
14309 
14310 done:
14311 	rtnl_unlock();
14312 }
14313 
14314 static const struct pci_error_handlers bnx2x_err_handler = {
14315 	.error_detected = bnx2x_io_error_detected,
14316 	.slot_reset     = bnx2x_io_slot_reset,
14317 	.resume         = bnx2x_io_resume,
14318 };
14319 
14320 static void bnx2x_shutdown(struct pci_dev *pdev)
14321 {
14322 	struct net_device *dev = pci_get_drvdata(pdev);
14323 	struct bnx2x *bp;
14324 
14325 	if (!dev)
14326 		return;
14327 
14328 	bp = netdev_priv(dev);
14329 	if (!bp)
14330 		return;
14331 
14332 	rtnl_lock();
14333 	netif_device_detach(dev);
14334 	rtnl_unlock();
14335 
14336 	/* Don't remove the netdevice, as there are scenarios which will cause
14337 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14338 	 * rootfs is mounted from SAN.
14339 	 */
14340 	__bnx2x_remove(pdev, dev, bp, false);
14341 }
14342 
14343 static struct pci_driver bnx2x_pci_driver = {
14344 	.name        = DRV_MODULE_NAME,
14345 	.id_table    = bnx2x_pci_tbl,
14346 	.probe       = bnx2x_init_one,
14347 	.remove      = bnx2x_remove_one,
14348 	.driver.pm   = &bnx2x_pm_ops,
14349 	.err_handler = &bnx2x_err_handler,
14350 #ifdef CONFIG_BNX2X_SRIOV
14351 	.sriov_configure = bnx2x_sriov_configure,
14352 #endif
14353 	.shutdown    = bnx2x_shutdown,
14354 };
14355 
14356 static int __init bnx2x_init(void)
14357 {
14358 	int ret;
14359 
14360 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14361 	if (bnx2x_wq == NULL) {
14362 		pr_err("Cannot create workqueue\n");
14363 		return -ENOMEM;
14364 	}
14365 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14366 	if (!bnx2x_iov_wq) {
14367 		pr_err("Cannot create iov workqueue\n");
14368 		destroy_workqueue(bnx2x_wq);
14369 		return -ENOMEM;
14370 	}
14371 
14372 	ret = pci_register_driver(&bnx2x_pci_driver);
14373 	if (ret) {
14374 		pr_err("Cannot register driver\n");
14375 		destroy_workqueue(bnx2x_wq);
14376 		destroy_workqueue(bnx2x_iov_wq);
14377 	}
14378 	return ret;
14379 }
14380 
14381 static void __exit bnx2x_cleanup(void)
14382 {
14383 	struct list_head *pos, *q;
14384 
14385 	pci_unregister_driver(&bnx2x_pci_driver);
14386 
14387 	destroy_workqueue(bnx2x_wq);
14388 	destroy_workqueue(bnx2x_iov_wq);
14389 
14390 	/* Free globally allocated resources */
14391 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14392 		struct bnx2x_prev_path_list *tmp =
14393 			list_entry(pos, struct bnx2x_prev_path_list, list);
14394 		list_del(pos);
14395 		kfree(tmp);
14396 	}
14397 }
14398 
14399 void bnx2x_notify_link_changed(struct bnx2x *bp)
14400 {
14401 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14402 }
14403 
14404 module_init(bnx2x_init);
14405 module_exit(bnx2x_cleanup);
14406 
14407 /**
14408  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14409  * @bp:		driver handle
14410  *
14411  * This function will wait until the ramrod completion returns.
14412  * Return 0 if success, -ENODEV if ramrod doesn't return.
14413  */
14414 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14415 {
14416 	unsigned long ramrod_flags = 0;
14417 
14418 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14419 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14420 				 &bp->iscsi_l2_mac_obj, true,
14421 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14422 }
14423 
14424 /* count denotes the number of new completions we have seen */
14425 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14426 {
14427 	struct eth_spe *spe;
14428 	int cxt_index, cxt_offset;
14429 
14430 #ifdef BNX2X_STOP_ON_ERROR
14431 	if (unlikely(bp->panic))
14432 		return;
14433 #endif
14434 
14435 	spin_lock_bh(&bp->spq_lock);
14436 	BUG_ON(bp->cnic_spq_pending < count);
14437 	bp->cnic_spq_pending -= count;
14438 
14439 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14440 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14441 				& SPE_HDR_CONN_TYPE) >>
14442 				SPE_HDR_CONN_TYPE_SHIFT;
14443 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14444 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14445 
14446 		/* Set validation for iSCSI L2 client before sending SETUP
14447 		 *  ramrod
14448 		 */
14449 		if (type == ETH_CONNECTION_TYPE) {
14450 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14451 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14452 					ILT_PAGE_CIDS;
14453 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14454 					(cxt_index * ILT_PAGE_CIDS);
14455 				bnx2x_set_ctx_validation(bp,
14456 					&bp->context[cxt_index].
14457 							 vcxt[cxt_offset].eth,
14458 					BNX2X_ISCSI_ETH_CID(bp));
14459 			}
14460 		}
14461 
14462 		/*
14463 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14464 		 * and in the air. We also check that number of outstanding
14465 		 * COMMON ramrods is not more than the EQ and SPQ can
14466 		 * accommodate.
14467 		 */
14468 		if (type == ETH_CONNECTION_TYPE) {
14469 			if (!atomic_read(&bp->cq_spq_left))
14470 				break;
14471 			else
14472 				atomic_dec(&bp->cq_spq_left);
14473 		} else if (type == NONE_CONNECTION_TYPE) {
14474 			if (!atomic_read(&bp->eq_spq_left))
14475 				break;
14476 			else
14477 				atomic_dec(&bp->eq_spq_left);
14478 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14479 			   (type == FCOE_CONNECTION_TYPE)) {
14480 			if (bp->cnic_spq_pending >=
14481 			    bp->cnic_eth_dev.max_kwqe_pending)
14482 				break;
14483 			else
14484 				bp->cnic_spq_pending++;
14485 		} else {
14486 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14487 			bnx2x_panic();
14488 			break;
14489 		}
14490 
14491 		spe = bnx2x_sp_get_next(bp);
14492 		*spe = *bp->cnic_kwq_cons;
14493 
14494 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14495 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14496 
14497 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14498 			bp->cnic_kwq_cons = bp->cnic_kwq;
14499 		else
14500 			bp->cnic_kwq_cons++;
14501 	}
14502 	bnx2x_sp_prod_update(bp);
14503 	spin_unlock_bh(&bp->spq_lock);
14504 }
14505 
14506 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14507 			       struct kwqe_16 *kwqes[], u32 count)
14508 {
14509 	struct bnx2x *bp = netdev_priv(dev);
14510 	int i;
14511 
14512 #ifdef BNX2X_STOP_ON_ERROR
14513 	if (unlikely(bp->panic)) {
14514 		BNX2X_ERR("Can't post to SP queue while panic\n");
14515 		return -EIO;
14516 	}
14517 #endif
14518 
14519 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14520 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14521 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14522 		return -EAGAIN;
14523 	}
14524 
14525 	spin_lock_bh(&bp->spq_lock);
14526 
14527 	for (i = 0; i < count; i++) {
14528 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14529 
14530 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14531 			break;
14532 
14533 		*bp->cnic_kwq_prod = *spe;
14534 
14535 		bp->cnic_kwq_pending++;
14536 
14537 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14538 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14539 		   spe->data.update_data_addr.hi,
14540 		   spe->data.update_data_addr.lo,
14541 		   bp->cnic_kwq_pending);
14542 
14543 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14544 			bp->cnic_kwq_prod = bp->cnic_kwq;
14545 		else
14546 			bp->cnic_kwq_prod++;
14547 	}
14548 
14549 	spin_unlock_bh(&bp->spq_lock);
14550 
14551 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14552 		bnx2x_cnic_sp_post(bp, 0);
14553 
14554 	return i;
14555 }
14556 
14557 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14558 {
14559 	struct cnic_ops *c_ops;
14560 	int rc = 0;
14561 
14562 	mutex_lock(&bp->cnic_mutex);
14563 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14564 					  lockdep_is_held(&bp->cnic_mutex));
14565 	if (c_ops)
14566 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14567 	mutex_unlock(&bp->cnic_mutex);
14568 
14569 	return rc;
14570 }
14571 
14572 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14573 {
14574 	struct cnic_ops *c_ops;
14575 	int rc = 0;
14576 
14577 	rcu_read_lock();
14578 	c_ops = rcu_dereference(bp->cnic_ops);
14579 	if (c_ops)
14580 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14581 	rcu_read_unlock();
14582 
14583 	return rc;
14584 }
14585 
14586 /*
14587  * for commands that have no data
14588  */
14589 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14590 {
14591 	struct cnic_ctl_info ctl = {0};
14592 
14593 	ctl.cmd = cmd;
14594 
14595 	return bnx2x_cnic_ctl_send(bp, &ctl);
14596 }
14597 
14598 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14599 {
14600 	struct cnic_ctl_info ctl = {0};
14601 
14602 	/* first we tell CNIC and only then we count this as a completion */
14603 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14604 	ctl.data.comp.cid = cid;
14605 	ctl.data.comp.error = err;
14606 
14607 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14608 	bnx2x_cnic_sp_post(bp, 0);
14609 }
14610 
14611 /* Called with netif_addr_lock_bh() taken.
14612  * Sets an rx_mode config for an iSCSI ETH client.
14613  * Doesn't block.
14614  * Completion should be checked outside.
14615  */
14616 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14617 {
14618 	unsigned long accept_flags = 0, ramrod_flags = 0;
14619 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14620 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14621 
14622 	if (start) {
14623 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14624 		 * because it's the only way for UIO Queue to accept
14625 		 * multicasts (in non-promiscuous mode only one Queue per
14626 		 * function will receive multicast packets (leading in our
14627 		 * case).
14628 		 */
14629 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14630 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14631 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14632 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14633 
14634 		/* Clear STOP_PENDING bit if START is requested */
14635 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14636 
14637 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14638 	} else
14639 		/* Clear START_PENDING bit if STOP is requested */
14640 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14641 
14642 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14643 		set_bit(sched_state, &bp->sp_state);
14644 	else {
14645 		__set_bit(RAMROD_RX, &ramrod_flags);
14646 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14647 				    ramrod_flags);
14648 	}
14649 }
14650 
14651 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14652 {
14653 	struct bnx2x *bp = netdev_priv(dev);
14654 	int rc = 0;
14655 
14656 	switch (ctl->cmd) {
14657 	case DRV_CTL_CTXTBL_WR_CMD: {
14658 		u32 index = ctl->data.io.offset;
14659 		dma_addr_t addr = ctl->data.io.dma_addr;
14660 
14661 		bnx2x_ilt_wr(bp, index, addr);
14662 		break;
14663 	}
14664 
14665 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14666 		int count = ctl->data.credit.credit_count;
14667 
14668 		bnx2x_cnic_sp_post(bp, count);
14669 		break;
14670 	}
14671 
14672 	/* rtnl_lock is held.  */
14673 	case DRV_CTL_START_L2_CMD: {
14674 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14675 		unsigned long sp_bits = 0;
14676 
14677 		/* Configure the iSCSI classification object */
14678 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14679 				   cp->iscsi_l2_client_id,
14680 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14681 				   bnx2x_sp(bp, mac_rdata),
14682 				   bnx2x_sp_mapping(bp, mac_rdata),
14683 				   BNX2X_FILTER_MAC_PENDING,
14684 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14685 				   &bp->macs_pool);
14686 
14687 		/* Set iSCSI MAC address */
14688 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14689 		if (rc)
14690 			break;
14691 
14692 		barrier();
14693 
14694 		/* Start accepting on iSCSI L2 ring */
14695 
14696 		netif_addr_lock_bh(dev);
14697 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14698 		netif_addr_unlock_bh(dev);
14699 
14700 		/* bits to wait on */
14701 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14702 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14703 
14704 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14705 			BNX2X_ERR("rx_mode completion timed out!\n");
14706 
14707 		break;
14708 	}
14709 
14710 	/* rtnl_lock is held.  */
14711 	case DRV_CTL_STOP_L2_CMD: {
14712 		unsigned long sp_bits = 0;
14713 
14714 		/* Stop accepting on iSCSI L2 ring */
14715 		netif_addr_lock_bh(dev);
14716 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14717 		netif_addr_unlock_bh(dev);
14718 
14719 		/* bits to wait on */
14720 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14721 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14722 
14723 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14724 			BNX2X_ERR("rx_mode completion timed out!\n");
14725 
14726 		barrier();
14727 
14728 		/* Unset iSCSI L2 MAC */
14729 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14730 					BNX2X_ISCSI_ETH_MAC, true);
14731 		break;
14732 	}
14733 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14734 		int count = ctl->data.credit.credit_count;
14735 
14736 		smp_mb__before_atomic();
14737 		atomic_add(count, &bp->cq_spq_left);
14738 		smp_mb__after_atomic();
14739 		break;
14740 	}
14741 	case DRV_CTL_ULP_REGISTER_CMD: {
14742 		int ulp_type = ctl->data.register_data.ulp_type;
14743 
14744 		if (CHIP_IS_E3(bp)) {
14745 			int idx = BP_FW_MB_IDX(bp);
14746 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14747 			int path = BP_PATH(bp);
14748 			int port = BP_PORT(bp);
14749 			int i;
14750 			u32 scratch_offset;
14751 			u32 *host_addr;
14752 
14753 			/* first write capability to shmem2 */
14754 			if (ulp_type == CNIC_ULP_ISCSI)
14755 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14756 			else if (ulp_type == CNIC_ULP_FCOE)
14757 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14758 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14759 
14760 			if ((ulp_type != CNIC_ULP_FCOE) ||
14761 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14762 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14763 				break;
14764 
14765 			/* if reached here - should write fcoe capabilities */
14766 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14767 			if (!scratch_offset)
14768 				break;
14769 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14770 						   fcoe_features[path][port]);
14771 			host_addr = (u32 *) &(ctl->data.register_data.
14772 					      fcoe_features);
14773 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14774 			     i += 4)
14775 				REG_WR(bp, scratch_offset + i,
14776 				       *(host_addr + i/4));
14777 		}
14778 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14779 		break;
14780 	}
14781 
14782 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14783 		int ulp_type = ctl->data.ulp_type;
14784 
14785 		if (CHIP_IS_E3(bp)) {
14786 			int idx = BP_FW_MB_IDX(bp);
14787 			u32 cap;
14788 
14789 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14790 			if (ulp_type == CNIC_ULP_ISCSI)
14791 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14792 			else if (ulp_type == CNIC_ULP_FCOE)
14793 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14794 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14795 		}
14796 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14797 		break;
14798 	}
14799 
14800 	default:
14801 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14802 		rc = -EINVAL;
14803 	}
14804 
14805 	/* For storage-only interfaces, change driver state */
14806 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14807 		switch (ctl->drv_state) {
14808 		case DRV_NOP:
14809 			break;
14810 		case DRV_ACTIVE:
14811 			bnx2x_set_os_driver_state(bp,
14812 						  OS_DRIVER_STATE_ACTIVE);
14813 			break;
14814 		case DRV_INACTIVE:
14815 			bnx2x_set_os_driver_state(bp,
14816 						  OS_DRIVER_STATE_DISABLED);
14817 			break;
14818 		case DRV_UNLOADED:
14819 			bnx2x_set_os_driver_state(bp,
14820 						  OS_DRIVER_STATE_NOT_LOADED);
14821 			break;
14822 		default:
14823 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14824 		}
14825 	}
14826 
14827 	return rc;
14828 }
14829 
14830 static int bnx2x_get_fc_npiv(struct net_device *dev,
14831 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14832 {
14833 	struct bnx2x *bp = netdev_priv(dev);
14834 	struct bdn_fc_npiv_tbl *tbl = NULL;
14835 	u32 offset, entries;
14836 	int rc = -EINVAL;
14837 	int i;
14838 
14839 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14840 		goto out;
14841 
14842 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14843 
14844 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14845 	if (!tbl) {
14846 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14847 		goto out;
14848 	}
14849 
14850 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14851 	if (!offset) {
14852 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14853 		goto out;
14854 	}
14855 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14856 
14857 	/* Read the table contents from nvram */
14858 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14859 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14860 		goto out;
14861 	}
14862 
14863 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14864 	 * the number of entries back to cpu endianness.
14865 	 */
14866 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14867 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14868 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14869 
14870 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14871 		DP(BNX2X_MSG_MCP,
14872 		   "No FC-NPIV table [valid, simply not present]\n");
14873 		goto out;
14874 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14875 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14876 			  tbl->fc_npiv_cfg.num_of_npiv);
14877 		goto out;
14878 	} else {
14879 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14880 		   tbl->fc_npiv_cfg.num_of_npiv);
14881 	}
14882 
14883 	/* Copy the data into cnic-provided struct */
14884 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14885 	for (i = 0; i < cnic_tbl->count; i++) {
14886 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14887 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14888 	}
14889 
14890 	rc = 0;
14891 out:
14892 	kfree(tbl);
14893 	return rc;
14894 }
14895 
14896 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14897 {
14898 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14899 
14900 	if (bp->flags & USING_MSIX_FLAG) {
14901 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14902 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14903 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14904 	} else {
14905 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14906 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14907 	}
14908 	if (!CHIP_IS_E1x(bp))
14909 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14910 	else
14911 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14912 
14913 	cp->irq_arr[0].status_blk_map = bp->cnic_sb_mapping;
14914 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14915 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14916 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14917 	cp->irq_arr[1].status_blk_map = bp->def_status_blk_mapping;
14918 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14919 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14920 
14921 	cp->num_irq = 2;
14922 }
14923 
14924 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14925 {
14926 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14927 
14928 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14929 			     bnx2x_cid_ilt_lines(bp);
14930 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14931 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14932 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14933 
14934 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14935 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14936 	   cp->iscsi_l2_cid);
14937 
14938 	if (NO_ISCSI_OOO(bp))
14939 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14940 }
14941 
14942 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14943 			       void *data)
14944 {
14945 	struct bnx2x *bp = netdev_priv(dev);
14946 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14947 	int rc;
14948 
14949 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14950 
14951 	if (ops == NULL) {
14952 		BNX2X_ERR("NULL ops received\n");
14953 		return -EINVAL;
14954 	}
14955 
14956 	if (!CNIC_SUPPORT(bp)) {
14957 		BNX2X_ERR("Can't register CNIC when not supported\n");
14958 		return -EOPNOTSUPP;
14959 	}
14960 
14961 	if (!CNIC_LOADED(bp)) {
14962 		rc = bnx2x_load_cnic(bp);
14963 		if (rc) {
14964 			BNX2X_ERR("CNIC-related load failed\n");
14965 			return rc;
14966 		}
14967 	}
14968 
14969 	bp->cnic_enabled = true;
14970 
14971 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14972 	if (!bp->cnic_kwq)
14973 		return -ENOMEM;
14974 
14975 	bp->cnic_kwq_cons = bp->cnic_kwq;
14976 	bp->cnic_kwq_prod = bp->cnic_kwq;
14977 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14978 
14979 	bp->cnic_spq_pending = 0;
14980 	bp->cnic_kwq_pending = 0;
14981 
14982 	bp->cnic_data = data;
14983 
14984 	cp->num_irq = 0;
14985 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14986 	cp->iro_arr = bp->iro_arr;
14987 
14988 	bnx2x_setup_cnic_irq_info(bp);
14989 
14990 	rcu_assign_pointer(bp->cnic_ops, ops);
14991 
14992 	/* Schedule driver to read CNIC driver versions */
14993 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14994 
14995 	return 0;
14996 }
14997 
14998 static int bnx2x_unregister_cnic(struct net_device *dev)
14999 {
15000 	struct bnx2x *bp = netdev_priv(dev);
15001 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15002 
15003 	mutex_lock(&bp->cnic_mutex);
15004 	cp->drv_state = 0;
15005 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15006 	mutex_unlock(&bp->cnic_mutex);
15007 	synchronize_rcu();
15008 	bp->cnic_enabled = false;
15009 	kfree(bp->cnic_kwq);
15010 	bp->cnic_kwq = NULL;
15011 
15012 	return 0;
15013 }
15014 
15015 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15016 {
15017 	struct bnx2x *bp = netdev_priv(dev);
15018 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15019 
15020 	/* If both iSCSI and FCoE are disabled - return NULL in
15021 	 * order to indicate CNIC that it should not try to work
15022 	 * with this device.
15023 	 */
15024 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15025 		return NULL;
15026 
15027 	cp->drv_owner = THIS_MODULE;
15028 	cp->chip_id = CHIP_ID(bp);
15029 	cp->pdev = bp->pdev;
15030 	cp->io_base = bp->regview;
15031 	cp->io_base2 = bp->doorbells;
15032 	cp->max_kwqe_pending = 8;
15033 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15034 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15035 			     bnx2x_cid_ilt_lines(bp);
15036 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15037 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15038 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15039 	cp->drv_ctl = bnx2x_drv_ctl;
15040 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15041 	cp->drv_register_cnic = bnx2x_register_cnic;
15042 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15043 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15044 	cp->iscsi_l2_client_id =
15045 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15046 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15047 
15048 	if (NO_ISCSI_OOO(bp))
15049 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15050 
15051 	if (NO_ISCSI(bp))
15052 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15053 
15054 	if (NO_FCOE(bp))
15055 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15056 
15057 	BNX2X_DEV_INFO(
15058 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15059 	   cp->ctx_blk_size,
15060 	   cp->ctx_tbl_offset,
15061 	   cp->ctx_tbl_len,
15062 	   cp->starting_cid);
15063 	return cp;
15064 }
15065 
15066 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15067 {
15068 	struct bnx2x *bp = fp->bp;
15069 	u32 offset = BAR_USTRORM_INTMEM;
15070 
15071 	if (IS_VF(bp))
15072 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15073 	else if (!CHIP_IS_E1x(bp))
15074 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15075 	else
15076 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15077 
15078 	return offset;
15079 }
15080 
15081 /* called only on E1H or E2.
15082  * When pretending to be PF, the pretend value is the function number 0...7
15083  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15084  * combination
15085  */
15086 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15087 {
15088 	u32 pretend_reg;
15089 
15090 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15091 		return -1;
15092 
15093 	/* get my own pretend register */
15094 	pretend_reg = bnx2x_get_pretend_reg(bp);
15095 	REG_WR(bp, pretend_reg, pretend_func_val);
15096 	REG_RD(bp, pretend_reg);
15097 	return 0;
15098 }
15099 
15100 static void bnx2x_ptp_task(struct work_struct *work)
15101 {
15102 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15103 	int port = BP_PORT(bp);
15104 	u32 val_seq;
15105 	u64 timestamp, ns;
15106 	struct skb_shared_hwtstamps shhwtstamps;
15107 	bool bail = true;
15108 	int i;
15109 
15110 	/* FW may take a while to complete timestamping; try a bit and if it's
15111 	 * still not complete, may indicate an error state - bail out then.
15112 	 */
15113 	for (i = 0; i < 10; i++) {
15114 		/* Read Tx timestamp registers */
15115 		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15116 				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15117 		if (val_seq & 0x10000) {
15118 			bail = false;
15119 			break;
15120 		}
15121 		msleep(1 << i);
15122 	}
15123 
15124 	if (!bail) {
15125 		/* There is a valid timestamp value */
15126 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15127 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15128 		timestamp <<= 32;
15129 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15130 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15131 		/* Reset timestamp register to allow new timestamp */
15132 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15133 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15134 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15135 
15136 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15137 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15138 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15139 
15140 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15141 		   timestamp, ns);
15142 	} else {
15143 		DP(BNX2X_MSG_PTP,
15144 		   "Tx timestamp is not recorded (register read=%u)\n",
15145 		   val_seq);
15146 		bp->eth_stats.ptp_skip_tx_ts++;
15147 	}
15148 
15149 	dev_kfree_skb_any(bp->ptp_tx_skb);
15150 	bp->ptp_tx_skb = NULL;
15151 }
15152 
15153 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15154 {
15155 	int port = BP_PORT(bp);
15156 	u64 timestamp, ns;
15157 
15158 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15159 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15160 	timestamp <<= 32;
15161 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15162 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15163 
15164 	/* Reset timestamp register to allow new timestamp */
15165 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15166 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15167 
15168 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15169 
15170 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15171 
15172 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15173 	   timestamp, ns);
15174 }
15175 
15176 /* Read the PHC */
15177 static u64 bnx2x_cyclecounter_read(struct cyclecounter *cc)
15178 {
15179 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15180 	int port = BP_PORT(bp);
15181 	u32 wb_data[2];
15182 	u64 phc_cycles;
15183 
15184 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15185 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15186 	phc_cycles = wb_data[1];
15187 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15188 
15189 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15190 
15191 	return phc_cycles;
15192 }
15193 
15194 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15195 {
15196 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15197 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15198 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15199 	bp->cyclecounter.shift = 0;
15200 	bp->cyclecounter.mult = 1;
15201 }
15202 
15203 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15204 {
15205 	struct bnx2x_func_state_params func_params = {NULL};
15206 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15207 		&func_params.params.set_timesync;
15208 
15209 	/* Prepare parameters for function state transitions */
15210 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15211 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15212 
15213 	func_params.f_obj = &bp->func_obj;
15214 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15215 
15216 	/* Function parameters */
15217 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15218 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15219 
15220 	return bnx2x_func_state_change(bp, &func_params);
15221 }
15222 
15223 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15224 {
15225 	struct bnx2x_queue_state_params q_params;
15226 	int rc, i;
15227 
15228 	/* send queue update ramrod to enable PTP packets */
15229 	memset(&q_params, 0, sizeof(q_params));
15230 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15231 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15232 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15233 		  &q_params.params.update.update_flags);
15234 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15235 		  &q_params.params.update.update_flags);
15236 
15237 	/* send the ramrod on all the queues of the PF */
15238 	for_each_eth_queue(bp, i) {
15239 		struct bnx2x_fastpath *fp = &bp->fp[i];
15240 
15241 		/* Set the appropriate Queue object */
15242 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15243 
15244 		/* Update the Queue state */
15245 		rc = bnx2x_queue_state_change(bp, &q_params);
15246 		if (rc) {
15247 			BNX2X_ERR("Failed to enable PTP packets\n");
15248 			return rc;
15249 		}
15250 	}
15251 
15252 	return 0;
15253 }
15254 
15255 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15256 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15257 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15258 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15259 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15260 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15261 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15262 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15263 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15264 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15265 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15266 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15267 
15268 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15269 {
15270 	int port = BP_PORT(bp);
15271 	u32 param, rule;
15272 	int rc;
15273 
15274 	if (!bp->hwtstamp_ioctl_called)
15275 		return 0;
15276 
15277 	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15278 		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15279 	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15280 		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15281 	switch (bp->tx_type) {
15282 	case HWTSTAMP_TX_ON:
15283 		bp->flags |= TX_TIMESTAMPING_EN;
15284 		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15285 		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15286 		break;
15287 	case HWTSTAMP_TX_ONESTEP_SYNC:
15288 	case HWTSTAMP_TX_ONESTEP_P2P:
15289 		BNX2X_ERR("One-step timestamping is not supported\n");
15290 		return -ERANGE;
15291 	}
15292 
15293 	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15294 		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15295 	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15296 		NIG_REG_P0_LLH_PTP_RULE_MASK;
15297 	switch (bp->rx_filter) {
15298 	case HWTSTAMP_FILTER_NONE:
15299 		break;
15300 	case HWTSTAMP_FILTER_ALL:
15301 	case HWTSTAMP_FILTER_SOME:
15302 	case HWTSTAMP_FILTER_NTP_ALL:
15303 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15304 		break;
15305 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15306 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15307 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15308 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15309 		/* Initialize PTP detection for UDP/IPv4 events */
15310 		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15311 		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15312 		break;
15313 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15314 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15315 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15316 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15317 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15318 		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15319 		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15320 		break;
15321 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15322 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15323 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15324 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15325 		/* Initialize PTP detection L2 events */
15326 		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15327 		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15328 
15329 		break;
15330 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15331 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15332 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15333 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15334 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15335 		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15336 		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15337 		break;
15338 	}
15339 
15340 	/* Indicate to FW that this PF expects recorded PTP packets */
15341 	rc = bnx2x_enable_ptp_packets(bp);
15342 	if (rc)
15343 		return rc;
15344 
15345 	/* Enable sending PTP packets to host */
15346 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15347 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15348 
15349 	return 0;
15350 }
15351 
15352 static int bnx2x_hwtstamp_set(struct net_device *dev,
15353 			      struct kernel_hwtstamp_config *config,
15354 			      struct netlink_ext_ack *extack)
15355 {
15356 	struct bnx2x *bp = netdev_priv(dev);
15357 	int rc;
15358 
15359 	DP(BNX2X_MSG_PTP, "HWTSTAMP SET called\n");
15360 
15361 	if (!netif_running(dev)) {
15362 		NL_SET_ERR_MSG_MOD(extack, "Device is down");
15363 		return -EAGAIN;
15364 	}
15365 
15366 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15367 	   config->tx_type, config->rx_filter);
15368 
15369 	switch (config->tx_type) {
15370 	case HWTSTAMP_TX_ON:
15371 	case HWTSTAMP_TX_OFF:
15372 		break;
15373 	default:
15374 		NL_SET_ERR_MSG_MOD(extack,
15375 				   "One-step timestamping is not supported");
15376 		return -ERANGE;
15377 	}
15378 
15379 	bp->hwtstamp_ioctl_called = true;
15380 	bp->tx_type = config->tx_type;
15381 	bp->rx_filter = config->rx_filter;
15382 
15383 	rc = bnx2x_configure_ptp_filters(bp);
15384 	if (rc) {
15385 		NL_SET_ERR_MSG_MOD(extack, "HW configuration failure");
15386 		return rc;
15387 	}
15388 
15389 	config->rx_filter = bp->rx_filter;
15390 
15391 	return 0;
15392 }
15393 
15394 static int bnx2x_hwtstamp_get(struct net_device *dev,
15395 			      struct kernel_hwtstamp_config *config)
15396 {
15397 	struct bnx2x *bp = netdev_priv(dev);
15398 
15399 	config->rx_filter = bp->rx_filter;
15400 	config->tx_type = bp->tx_type;
15401 
15402 	return 0;
15403 }
15404 
15405 /* Configures HW for PTP */
15406 static int bnx2x_configure_ptp(struct bnx2x *bp)
15407 {
15408 	int rc, port = BP_PORT(bp);
15409 	u32 wb_data[2];
15410 
15411 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15412 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15413 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15414 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15415 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15416 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15417 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15418 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15419 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15420 
15421 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15422 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15423 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15424 
15425 	/* Enable the PTP feature */
15426 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15427 	       NIG_REG_P0_PTP_EN, 0x3F);
15428 
15429 	/* Enable the free-running counter */
15430 	wb_data[0] = 0;
15431 	wb_data[1] = 0;
15432 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15433 
15434 	/* Reset drift register (offset register is not reset) */
15435 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15436 	if (rc) {
15437 		BNX2X_ERR("Failed to reset PHC drift register\n");
15438 		return -EFAULT;
15439 	}
15440 
15441 	/* Reset possibly old timestamps */
15442 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15443 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15444 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15445 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15446 
15447 	return 0;
15448 }
15449 
15450 /* Called during load, to initialize PTP-related stuff */
15451 void bnx2x_init_ptp(struct bnx2x *bp)
15452 {
15453 	int rc;
15454 
15455 	/* Configure PTP in HW */
15456 	rc = bnx2x_configure_ptp(bp);
15457 	if (rc) {
15458 		BNX2X_ERR("Stopping PTP initialization\n");
15459 		return;
15460 	}
15461 
15462 	/* Init work queue for Tx timestamping */
15463 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15464 
15465 	/* Init cyclecounter and timecounter. This is done only in the first
15466 	 * load. If done in every load, PTP application will fail when doing
15467 	 * unload / load (e.g. MTU change) while it is running.
15468 	 */
15469 	if (!bp->timecounter_init_done) {
15470 		bnx2x_init_cyclecounter(bp);
15471 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15472 				 ktime_to_ns(ktime_get_real()));
15473 		bp->timecounter_init_done = true;
15474 	}
15475 
15476 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15477 }
15478