1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IIO driver for Bosch BNO055 IMU
4 *
5 * Copyright (C) 2021-2022 Istituto Italiano di Tecnologia
6 * Electronic Design Laboratory
7 * Written by Andrea Merello <andrea.merello@iit.it>
8 *
9 * Portions of this driver are taken from the BNO055 driver patch
10 * from Vlad Dogaru which is Copyright (c) 2016, Intel Corporation.
11 *
12 * This driver is also based on BMI160 driver, which is:
13 * Copyright (c) 2016, Intel Corporation.
14 * Copyright (c) 2019, Martin Kelly.
15 */
16
17 #include <linux/bitfield.h>
18 #include <linux/bitmap.h>
19 #include <linux/clk.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/firmware.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/regmap.h>
27 #include <linux/util_macros.h>
28
29 #include <linux/iio/buffer.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34
35 #include "bno055.h"
36
37 #define BNO055_FW_UID_FMT "bno055-caldata-%*phN.dat"
38 #define BNO055_FW_GENERIC_NAME "bno055-caldata.dat"
39
40 /* common registers */
41 #define BNO055_PAGESEL_REG 0x7
42
43 /* page 0 registers */
44 #define BNO055_CHIP_ID_REG 0x0
45 #define BNO055_CHIP_ID_MAGIC 0xA0
46 #define BNO055_SW_REV_LSB_REG 0x4
47 #define BNO055_SW_REV_MSB_REG 0x5
48 #define BNO055_ACC_DATA_X_LSB_REG 0x8
49 #define BNO055_ACC_DATA_Y_LSB_REG 0xA
50 #define BNO055_ACC_DATA_Z_LSB_REG 0xC
51 #define BNO055_MAG_DATA_X_LSB_REG 0xE
52 #define BNO055_MAG_DATA_Y_LSB_REG 0x10
53 #define BNO055_MAG_DATA_Z_LSB_REG 0x12
54 #define BNO055_GYR_DATA_X_LSB_REG 0x14
55 #define BNO055_GYR_DATA_Y_LSB_REG 0x16
56 #define BNO055_GYR_DATA_Z_LSB_REG 0x18
57 #define BNO055_EUL_DATA_X_LSB_REG 0x1A
58 #define BNO055_EUL_DATA_Y_LSB_REG 0x1C
59 #define BNO055_EUL_DATA_Z_LSB_REG 0x1E
60 #define BNO055_QUAT_DATA_W_LSB_REG 0x20
61 #define BNO055_LIA_DATA_X_LSB_REG 0x28
62 #define BNO055_LIA_DATA_Y_LSB_REG 0x2A
63 #define BNO055_LIA_DATA_Z_LSB_REG 0x2C
64 #define BNO055_GRAVITY_DATA_X_LSB_REG 0x2E
65 #define BNO055_GRAVITY_DATA_Y_LSB_REG 0x30
66 #define BNO055_GRAVITY_DATA_Z_LSB_REG 0x32
67 #define BNO055_SCAN_CH_COUNT ((BNO055_GRAVITY_DATA_Z_LSB_REG - BNO055_ACC_DATA_X_LSB_REG) / 2)
68 #define BNO055_TEMP_REG 0x34
69 #define BNO055_CALIB_STAT_REG 0x35
70 #define BNO055_CALIB_STAT_MAGN_SHIFT 0
71 #define BNO055_CALIB_STAT_ACCEL_SHIFT 2
72 #define BNO055_CALIB_STAT_GYRO_SHIFT 4
73 #define BNO055_CALIB_STAT_SYS_SHIFT 6
74 #define BNO055_SYS_ERR_REG 0x3A
75 #define BNO055_POWER_MODE_REG 0x3E
76 #define BNO055_POWER_MODE_NORMAL 0
77 #define BNO055_SYS_TRIGGER_REG 0x3F
78 #define BNO055_SYS_TRIGGER_RST_SYS BIT(5)
79 #define BNO055_SYS_TRIGGER_CLK_SEL BIT(7)
80 #define BNO055_OPR_MODE_REG 0x3D
81 #define BNO055_OPR_MODE_CONFIG 0x0
82 #define BNO055_OPR_MODE_AMG 0x7
83 #define BNO055_OPR_MODE_FUSION_FMC_OFF 0xB
84 #define BNO055_OPR_MODE_FUSION 0xC
85 #define BNO055_UNIT_SEL_REG 0x3B
86 /* Android orientation mode means: pitch value decreases turning clockwise */
87 #define BNO055_UNIT_SEL_ANDROID BIT(7)
88 #define BNO055_UNIT_SEL_GYR_RPS BIT(1)
89 #define BNO055_CALDATA_START 0x55
90 #define BNO055_CALDATA_END 0x6A
91 #define BNO055_CALDATA_LEN 22
92
93 /*
94 * The difference in address between the register that contains the
95 * value and the register that contains the offset. This applies for
96 * accel, gyro and magn channels.
97 */
98 #define BNO055_REG_OFFSET_ADDR 0x4D
99
100 /* page 1 registers */
101 #define BNO055_PG1(x) ((x) | 0x80)
102 #define BNO055_ACC_CONFIG_REG BNO055_PG1(0x8)
103 #define BNO055_ACC_CONFIG_LPF_MASK GENMASK(4, 2)
104 #define BNO055_ACC_CONFIG_RANGE_MASK GENMASK(1, 0)
105 #define BNO055_MAG_CONFIG_REG BNO055_PG1(0x9)
106 #define BNO055_MAG_CONFIG_HIGHACCURACY 0x18
107 #define BNO055_MAG_CONFIG_ODR_MASK GENMASK(2, 0)
108 #define BNO055_GYR_CONFIG_REG BNO055_PG1(0xA)
109 #define BNO055_GYR_CONFIG_RANGE_MASK GENMASK(2, 0)
110 #define BNO055_GYR_CONFIG_LPF_MASK GENMASK(5, 3)
111 #define BNO055_GYR_AM_SET_REG BNO055_PG1(0x1F)
112 #define BNO055_UID_LOWER_REG BNO055_PG1(0x50)
113 #define BNO055_UID_HIGHER_REG BNO055_PG1(0x5F)
114 #define BNO055_UID_LEN 16
115
116 struct bno055_sysfs_attr {
117 int *vals;
118 int len;
119 int *fusion_vals;
120 int *hw_xlate;
121 int type;
122 };
123
124 static int bno055_acc_lpf_vals[] = {
125 7, 810000, 15, 630000, 31, 250000, 62, 500000,
126 125, 0, 250, 0, 500, 0, 1000, 0,
127 };
128
129 static struct bno055_sysfs_attr bno055_acc_lpf = {
130 .vals = bno055_acc_lpf_vals,
131 .len = ARRAY_SIZE(bno055_acc_lpf_vals),
132 .fusion_vals = (int[]){62, 500000},
133 .type = IIO_VAL_INT_PLUS_MICRO,
134 };
135
136 static int bno055_acc_range_vals[] = {
137 /* G: 2, 4, 8, 16 */
138 1962, 3924, 7848, 15696
139 };
140
141 static struct bno055_sysfs_attr bno055_acc_range = {
142 .vals = bno055_acc_range_vals,
143 .len = ARRAY_SIZE(bno055_acc_range_vals),
144 .fusion_vals = (int[]){3924}, /* 4G */
145 .type = IIO_VAL_INT,
146 };
147
148 /*
149 * Theoretically the IMU should return data in a given (i.e. fixed) unit
150 * regardless of the range setting. This happens for the accelerometer, but not
151 * for the gyroscope; the gyroscope range setting affects the scale.
152 * This is probably due to this[0] bug.
153 * For this reason we map the internal range setting onto the standard IIO scale
154 * attribute for gyro.
155 * Since the bug[0] may be fixed in future, we check for the IMU FW version and
156 * eventually warn the user.
157 * Currently we just don't care about "range" attributes for gyro.
158 *
159 * [0] https://community.bosch-sensortec.com/t5/MEMS-sensors-forum/BNO055-Wrong-sensitivity-resolution-in-datasheet/td-p/10266
160 */
161
162 /*
163 * dps = hwval * (dps_range/2^15)
164 * rps = hwval * (rps_range/2^15)
165 * = hwval * (dps_range/(2^15 * k))
166 * where k is rad-to-deg factor
167 */
168 static int bno055_gyr_scale_vals[] = {
169 125, 1877467, 250, 1877467, 500, 1877467,
170 1000, 1877467, 2000, 1877467,
171 };
172
173 static struct bno055_sysfs_attr bno055_gyr_scale = {
174 .vals = bno055_gyr_scale_vals,
175 .len = ARRAY_SIZE(bno055_gyr_scale_vals),
176 .fusion_vals = (int[]){1, 900},
177 .hw_xlate = (int[]){4, 3, 2, 1, 0},
178 .type = IIO_VAL_FRACTIONAL,
179 };
180
181 static int bno055_gyr_lpf_vals[] = {12, 23, 32, 47, 64, 116, 230, 523};
182 static struct bno055_sysfs_attr bno055_gyr_lpf = {
183 .vals = bno055_gyr_lpf_vals,
184 .len = ARRAY_SIZE(bno055_gyr_lpf_vals),
185 .fusion_vals = (int[]){32},
186 .hw_xlate = (int[]){5, 4, 7, 3, 6, 2, 1, 0},
187 .type = IIO_VAL_INT,
188 };
189
190 static int bno055_mag_odr_vals[] = {2, 6, 8, 10, 15, 20, 25, 30};
191 static struct bno055_sysfs_attr bno055_mag_odr = {
192 .vals = bno055_mag_odr_vals,
193 .len = ARRAY_SIZE(bno055_mag_odr_vals),
194 .fusion_vals = (int[]){20},
195 .type = IIO_VAL_INT,
196 };
197
198 struct bno055_priv {
199 struct regmap *regmap;
200 struct device *dev;
201 struct clk *clk;
202 int operation_mode;
203 int xfer_burst_break_thr;
204 struct mutex lock;
205 u8 uid[BNO055_UID_LEN];
206 struct gpio_desc *reset_gpio;
207 bool sw_reset;
208 struct {
209 __le16 chans[BNO055_SCAN_CH_COUNT];
210 s64 timestamp __aligned(8);
211 } buf;
212 struct dentry *debugfs;
213 };
214
bno055_regmap_volatile(struct device * dev,unsigned int reg)215 static bool bno055_regmap_volatile(struct device *dev, unsigned int reg)
216 {
217 /* data and status registers */
218 if (reg >= BNO055_ACC_DATA_X_LSB_REG && reg <= BNO055_SYS_ERR_REG)
219 return true;
220
221 /* when in fusion mode, config is updated by chip */
222 if (reg == BNO055_MAG_CONFIG_REG ||
223 reg == BNO055_ACC_CONFIG_REG ||
224 reg == BNO055_GYR_CONFIG_REG)
225 return true;
226
227 /* calibration data may be updated by the IMU */
228 if (reg >= BNO055_CALDATA_START && reg <= BNO055_CALDATA_END)
229 return true;
230
231 return false;
232 }
233
bno055_regmap_readable(struct device * dev,unsigned int reg)234 static bool bno055_regmap_readable(struct device *dev, unsigned int reg)
235 {
236 /* unnamed PG0 reserved areas */
237 if ((reg < BNO055_PG1(0) && reg > BNO055_CALDATA_END) ||
238 reg == 0x3C)
239 return false;
240
241 /* unnamed PG1 reserved areas */
242 if (reg > BNO055_PG1(BNO055_UID_HIGHER_REG) ||
243 (reg < BNO055_PG1(BNO055_UID_LOWER_REG) && reg > BNO055_PG1(BNO055_GYR_AM_SET_REG)) ||
244 reg == BNO055_PG1(0xE) ||
245 (reg < BNO055_PG1(BNO055_PAGESEL_REG) && reg >= BNO055_PG1(0x0)))
246 return false;
247 return true;
248 }
249
bno055_regmap_writeable(struct device * dev,unsigned int reg)250 static bool bno055_regmap_writeable(struct device *dev, unsigned int reg)
251 {
252 /*
253 * Unreadable registers are indeed reserved; there are no WO regs
254 * (except for a single bit in SYS_TRIGGER register)
255 */
256 if (!bno055_regmap_readable(dev, reg))
257 return false;
258
259 /* data and status registers */
260 if (reg >= BNO055_ACC_DATA_X_LSB_REG && reg <= BNO055_SYS_ERR_REG)
261 return false;
262
263 /* ID areas */
264 if (reg < BNO055_PAGESEL_REG ||
265 (reg <= BNO055_UID_HIGHER_REG && reg >= BNO055_UID_LOWER_REG))
266 return false;
267
268 return true;
269 }
270
271 static const struct regmap_range_cfg bno055_regmap_ranges[] = {
272 {
273 .range_min = 0,
274 .range_max = 0x7f * 2,
275 .selector_reg = BNO055_PAGESEL_REG,
276 .selector_mask = GENMASK(7, 0),
277 .selector_shift = 0,
278 .window_start = 0,
279 .window_len = 0x80,
280 },
281 };
282
283 const struct regmap_config bno055_regmap_config = {
284 .name = "bno055",
285 .reg_bits = 8,
286 .val_bits = 8,
287 .ranges = bno055_regmap_ranges,
288 .num_ranges = 1,
289 .volatile_reg = bno055_regmap_volatile,
290 .max_register = 0x80 * 2,
291 .writeable_reg = bno055_regmap_writeable,
292 .readable_reg = bno055_regmap_readable,
293 .cache_type = REGCACHE_RBTREE,
294 };
295 EXPORT_SYMBOL_NS_GPL(bno055_regmap_config, "IIO_BNO055");
296
297 /* must be called in configuration mode */
bno055_calibration_load(struct bno055_priv * priv,const u8 * data,int len)298 static int bno055_calibration_load(struct bno055_priv *priv, const u8 *data, int len)
299 {
300 if (len != BNO055_CALDATA_LEN) {
301 dev_dbg(priv->dev, "Invalid calibration file size %d (expected %d)",
302 len, BNO055_CALDATA_LEN);
303 return -EINVAL;
304 }
305
306 dev_dbg(priv->dev, "loading cal data: %*ph", BNO055_CALDATA_LEN, data);
307 return regmap_bulk_write(priv->regmap, BNO055_CALDATA_START,
308 data, BNO055_CALDATA_LEN);
309 }
310
bno055_operation_mode_do_set(struct bno055_priv * priv,int operation_mode)311 static int bno055_operation_mode_do_set(struct bno055_priv *priv,
312 int operation_mode)
313 {
314 int ret;
315
316 ret = regmap_write(priv->regmap, BNO055_OPR_MODE_REG,
317 operation_mode);
318 if (ret)
319 return ret;
320
321 /* Following datasheet specifications: sensor takes 7mS up to 19 mS to switch mode */
322 msleep(20);
323
324 return 0;
325 }
326
bno055_system_reset(struct bno055_priv * priv)327 static int bno055_system_reset(struct bno055_priv *priv)
328 {
329 int ret;
330
331 if (priv->reset_gpio) {
332 gpiod_set_value_cansleep(priv->reset_gpio, 0);
333 usleep_range(5000, 10000);
334 gpiod_set_value_cansleep(priv->reset_gpio, 1);
335 } else if (priv->sw_reset) {
336 ret = regmap_write(priv->regmap, BNO055_SYS_TRIGGER_REG,
337 BNO055_SYS_TRIGGER_RST_SYS);
338 if (ret)
339 return ret;
340 } else {
341 return 0;
342 }
343
344 regcache_drop_region(priv->regmap, 0x0, 0xff);
345 usleep_range(650000, 700000);
346
347 return 0;
348 }
349
bno055_init(struct bno055_priv * priv,const u8 * caldata,int len)350 static int bno055_init(struct bno055_priv *priv, const u8 *caldata, int len)
351 {
352 int ret;
353
354 ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
355 if (ret)
356 return ret;
357
358 ret = regmap_write(priv->regmap, BNO055_POWER_MODE_REG,
359 BNO055_POWER_MODE_NORMAL);
360 if (ret)
361 return ret;
362
363 ret = regmap_write(priv->regmap, BNO055_SYS_TRIGGER_REG,
364 priv->clk ? BNO055_SYS_TRIGGER_CLK_SEL : 0);
365 if (ret)
366 return ret;
367
368 /* use standard SI units */
369 ret = regmap_write(priv->regmap, BNO055_UNIT_SEL_REG,
370 BNO055_UNIT_SEL_ANDROID | BNO055_UNIT_SEL_GYR_RPS);
371 if (ret)
372 return ret;
373
374 if (caldata) {
375 ret = bno055_calibration_load(priv, caldata, len);
376 if (ret)
377 dev_warn(priv->dev, "failed to load calibration data with error %d\n",
378 ret);
379 }
380
381 return 0;
382 }
383
bno055_operation_mode_set(struct bno055_priv * priv,int operation_mode)384 static ssize_t bno055_operation_mode_set(struct bno055_priv *priv,
385 int operation_mode)
386 {
387 u8 caldata[BNO055_CALDATA_LEN];
388 int ret;
389
390 mutex_lock(&priv->lock);
391
392 ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
393 if (ret)
394 goto exit_unlock;
395
396 if (operation_mode == BNO055_OPR_MODE_FUSION ||
397 operation_mode == BNO055_OPR_MODE_FUSION_FMC_OFF) {
398 /* for entering fusion mode, reset the chip to clear the algo state */
399 ret = regmap_bulk_read(priv->regmap, BNO055_CALDATA_START, caldata,
400 BNO055_CALDATA_LEN);
401 if (ret)
402 goto exit_unlock;
403
404 ret = bno055_system_reset(priv);
405 if (ret)
406 goto exit_unlock;
407
408 ret = bno055_init(priv, caldata, BNO055_CALDATA_LEN);
409 if (ret)
410 goto exit_unlock;
411 }
412
413 ret = bno055_operation_mode_do_set(priv, operation_mode);
414 if (ret)
415 goto exit_unlock;
416
417 priv->operation_mode = operation_mode;
418
419 exit_unlock:
420 mutex_unlock(&priv->lock);
421 return ret;
422 }
423
bno055_uninit(void * arg)424 static void bno055_uninit(void *arg)
425 {
426 struct bno055_priv *priv = arg;
427
428 /* stop the IMU */
429 bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
430 }
431
432 #define BNO055_CHANNEL(_type, _axis, _index, _address, _sep, _sh, _avail) { \
433 .address = _address, \
434 .type = _type, \
435 .modified = 1, \
436 .channel2 = IIO_MOD_##_axis, \
437 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | (_sep), \
438 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | (_sh), \
439 .info_mask_shared_by_type_available = _avail, \
440 .scan_index = _index, \
441 .scan_type = { \
442 .sign = 's', \
443 .realbits = 16, \
444 .storagebits = 16, \
445 .endianness = IIO_LE, \
446 .repeat = IIO_MOD_##_axis == IIO_MOD_QUATERNION ? 4 : 0, \
447 }, \
448 }
449
450 /* scan indexes follow DATA register order */
451 enum bno055_scan_axis {
452 BNO055_SCAN_ACCEL_X,
453 BNO055_SCAN_ACCEL_Y,
454 BNO055_SCAN_ACCEL_Z,
455 BNO055_SCAN_MAGN_X,
456 BNO055_SCAN_MAGN_Y,
457 BNO055_SCAN_MAGN_Z,
458 BNO055_SCAN_GYRO_X,
459 BNO055_SCAN_GYRO_Y,
460 BNO055_SCAN_GYRO_Z,
461 BNO055_SCAN_YAW,
462 BNO055_SCAN_ROLL,
463 BNO055_SCAN_PITCH,
464 BNO055_SCAN_QUATERNION,
465 BNO055_SCAN_LIA_X,
466 BNO055_SCAN_LIA_Y,
467 BNO055_SCAN_LIA_Z,
468 BNO055_SCAN_GRAVITY_X,
469 BNO055_SCAN_GRAVITY_Y,
470 BNO055_SCAN_GRAVITY_Z,
471 BNO055_SCAN_TIMESTAMP,
472 _BNO055_SCAN_MAX
473 };
474
475 static const struct iio_chan_spec bno055_channels[] = {
476 /* accelerometer */
477 BNO055_CHANNEL(IIO_ACCEL, X, BNO055_SCAN_ACCEL_X,
478 BNO055_ACC_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
479 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
480 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
481 BNO055_CHANNEL(IIO_ACCEL, Y, BNO055_SCAN_ACCEL_Y,
482 BNO055_ACC_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
483 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
484 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
485 BNO055_CHANNEL(IIO_ACCEL, Z, BNO055_SCAN_ACCEL_Z,
486 BNO055_ACC_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
487 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
488 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY)),
489 /* gyroscope */
490 BNO055_CHANNEL(IIO_ANGL_VEL, X, BNO055_SCAN_GYRO_X,
491 BNO055_GYR_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
492 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
493 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
494 BIT(IIO_CHAN_INFO_SCALE)),
495 BNO055_CHANNEL(IIO_ANGL_VEL, Y, BNO055_SCAN_GYRO_Y,
496 BNO055_GYR_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
497 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
498 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
499 BIT(IIO_CHAN_INFO_SCALE)),
500 BNO055_CHANNEL(IIO_ANGL_VEL, Z, BNO055_SCAN_GYRO_Z,
501 BNO055_GYR_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
502 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
503 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
504 BIT(IIO_CHAN_INFO_SCALE)),
505 /* magnetometer */
506 BNO055_CHANNEL(IIO_MAGN, X, BNO055_SCAN_MAGN_X,
507 BNO055_MAG_DATA_X_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
508 BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
509 BNO055_CHANNEL(IIO_MAGN, Y, BNO055_SCAN_MAGN_Y,
510 BNO055_MAG_DATA_Y_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
511 BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
512 BNO055_CHANNEL(IIO_MAGN, Z, BNO055_SCAN_MAGN_Z,
513 BNO055_MAG_DATA_Z_LSB_REG, BIT(IIO_CHAN_INFO_OFFSET),
514 BIT(IIO_CHAN_INFO_SAMP_FREQ), BIT(IIO_CHAN_INFO_SAMP_FREQ)),
515 /* euler angle */
516 BNO055_CHANNEL(IIO_ROT, YAW, BNO055_SCAN_YAW,
517 BNO055_EUL_DATA_X_LSB_REG, 0, 0, 0),
518 BNO055_CHANNEL(IIO_ROT, ROLL, BNO055_SCAN_ROLL,
519 BNO055_EUL_DATA_Y_LSB_REG, 0, 0, 0),
520 BNO055_CHANNEL(IIO_ROT, PITCH, BNO055_SCAN_PITCH,
521 BNO055_EUL_DATA_Z_LSB_REG, 0, 0, 0),
522 /* quaternion */
523 BNO055_CHANNEL(IIO_ROT, QUATERNION, BNO055_SCAN_QUATERNION,
524 BNO055_QUAT_DATA_W_LSB_REG, 0, 0, 0),
525
526 /* linear acceleration */
527 BNO055_CHANNEL(IIO_ACCEL, LINEAR_X, BNO055_SCAN_LIA_X,
528 BNO055_LIA_DATA_X_LSB_REG, 0, 0, 0),
529 BNO055_CHANNEL(IIO_ACCEL, LINEAR_Y, BNO055_SCAN_LIA_Y,
530 BNO055_LIA_DATA_Y_LSB_REG, 0, 0, 0),
531 BNO055_CHANNEL(IIO_ACCEL, LINEAR_Z, BNO055_SCAN_LIA_Z,
532 BNO055_LIA_DATA_Z_LSB_REG, 0, 0, 0),
533
534 /* gravity vector */
535 BNO055_CHANNEL(IIO_GRAVITY, X, BNO055_SCAN_GRAVITY_X,
536 BNO055_GRAVITY_DATA_X_LSB_REG, 0, 0, 0),
537 BNO055_CHANNEL(IIO_GRAVITY, Y, BNO055_SCAN_GRAVITY_Y,
538 BNO055_GRAVITY_DATA_Y_LSB_REG, 0, 0, 0),
539 BNO055_CHANNEL(IIO_GRAVITY, Z, BNO055_SCAN_GRAVITY_Z,
540 BNO055_GRAVITY_DATA_Z_LSB_REG, 0, 0, 0),
541
542 {
543 .type = IIO_TEMP,
544 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
545 .scan_index = -1,
546 },
547 IIO_CHAN_SOFT_TIMESTAMP(BNO055_SCAN_TIMESTAMP),
548 };
549
bno055_get_regmask(struct bno055_priv * priv,int * val,int * val2,int reg,int mask,struct bno055_sysfs_attr * attr)550 static int bno055_get_regmask(struct bno055_priv *priv, int *val, int *val2,
551 int reg, int mask, struct bno055_sysfs_attr *attr)
552 {
553 const int shift = __ffs(mask);
554 int hwval, idx;
555 int ret;
556 int i;
557
558 ret = regmap_read(priv->regmap, reg, &hwval);
559 if (ret)
560 return ret;
561
562 idx = (hwval & mask) >> shift;
563 if (attr->hw_xlate)
564 for (i = 0; i < attr->len; i++)
565 if (attr->hw_xlate[i] == idx) {
566 idx = i;
567 break;
568 }
569 if (attr->type == IIO_VAL_INT) {
570 *val = attr->vals[idx];
571 } else { /* IIO_VAL_INT_PLUS_MICRO or IIO_VAL_FRACTIONAL */
572 *val = attr->vals[idx * 2];
573 *val2 = attr->vals[idx * 2 + 1];
574 }
575
576 return attr->type;
577 }
578
bno055_set_regmask(struct bno055_priv * priv,int val,int val2,int reg,int mask,struct bno055_sysfs_attr * attr)579 static int bno055_set_regmask(struct bno055_priv *priv, int val, int val2,
580 int reg, int mask, struct bno055_sysfs_attr *attr)
581 {
582 const int shift = __ffs(mask);
583 int best_delta;
584 int req_val;
585 int tbl_val;
586 bool first;
587 int delta;
588 int hwval;
589 int ret;
590 int len;
591 int i;
592
593 /*
594 * The closest value the HW supports is only one in fusion mode,
595 * and it is autoselected, so don't do anything, just return OK,
596 * as the closest possible value has been (virtually) selected
597 */
598 if (priv->operation_mode != BNO055_OPR_MODE_AMG)
599 return 0;
600
601 len = attr->len;
602
603 /*
604 * We always get a request in INT_PLUS_MICRO, but we
605 * take care of the micro part only when we really have
606 * non-integer tables. This prevents 32-bit overflow with
607 * larger integers contained in integer tables.
608 */
609 req_val = val;
610 if (attr->type != IIO_VAL_INT) {
611 len /= 2;
612 req_val = min(val, 2147) * 1000000 + val2;
613 }
614
615 first = true;
616 for (i = 0; i < len; i++) {
617 switch (attr->type) {
618 case IIO_VAL_INT:
619 tbl_val = attr->vals[i];
620 break;
621 case IIO_VAL_INT_PLUS_MICRO:
622 WARN_ON(attr->vals[i * 2] > 2147);
623 tbl_val = attr->vals[i * 2] * 1000000 +
624 attr->vals[i * 2 + 1];
625 break;
626 case IIO_VAL_FRACTIONAL:
627 WARN_ON(attr->vals[i * 2] > 4294);
628 tbl_val = attr->vals[i * 2] * 1000000 /
629 attr->vals[i * 2 + 1];
630 break;
631 default:
632 return -EINVAL;
633 }
634 delta = abs(tbl_val - req_val);
635 if (first || delta < best_delta) {
636 best_delta = delta;
637 hwval = i;
638 first = false;
639 }
640 }
641
642 if (attr->hw_xlate)
643 hwval = attr->hw_xlate[hwval];
644
645 ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
646 if (ret)
647 return ret;
648
649 ret = regmap_update_bits(priv->regmap, reg, mask, hwval << shift);
650 if (ret)
651 return ret;
652
653 return bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_AMG);
654 }
655
bno055_read_simple_chan(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)656 static int bno055_read_simple_chan(struct iio_dev *indio_dev,
657 struct iio_chan_spec const *chan,
658 int *val, int *val2, long mask)
659 {
660 struct bno055_priv *priv = iio_priv(indio_dev);
661 __le16 raw_val;
662 int ret;
663
664 switch (mask) {
665 case IIO_CHAN_INFO_RAW:
666 ret = regmap_bulk_read(priv->regmap, chan->address,
667 &raw_val, sizeof(raw_val));
668 if (ret < 0)
669 return ret;
670 *val = sign_extend32(le16_to_cpu(raw_val), 15);
671 return IIO_VAL_INT;
672 case IIO_CHAN_INFO_OFFSET:
673 if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
674 *val = 0;
675 } else {
676 ret = regmap_bulk_read(priv->regmap,
677 chan->address +
678 BNO055_REG_OFFSET_ADDR,
679 &raw_val, sizeof(raw_val));
680 if (ret < 0)
681 return ret;
682 /*
683 * IMU reports sensor offsets; IIO wants correction
684 * offsets, thus we need the 'minus' here.
685 */
686 *val = -sign_extend32(le16_to_cpu(raw_val), 15);
687 }
688 return IIO_VAL_INT;
689 case IIO_CHAN_INFO_SCALE:
690 *val = 1;
691 switch (chan->type) {
692 case IIO_GRAVITY:
693 /* Table 3-35: 1 m/s^2 = 100 LSB */
694 case IIO_ACCEL:
695 /* Table 3-17: 1 m/s^2 = 100 LSB */
696 *val2 = 100;
697 break;
698 case IIO_MAGN:
699 /*
700 * Table 3-19: 1 uT = 16 LSB. But we need
701 * Gauss: 1G = 0.1 uT.
702 */
703 *val2 = 160;
704 break;
705 case IIO_ANGL_VEL:
706 /*
707 * Table 3-22: 1 Rps = 900 LSB
708 * .. but this is not exactly true. See comment at the
709 * beginning of this file.
710 */
711 if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
712 *val = bno055_gyr_scale.fusion_vals[0];
713 *val2 = bno055_gyr_scale.fusion_vals[1];
714 return IIO_VAL_FRACTIONAL;
715 }
716
717 return bno055_get_regmask(priv, val, val2,
718 BNO055_GYR_CONFIG_REG,
719 BNO055_GYR_CONFIG_RANGE_MASK,
720 &bno055_gyr_scale);
721 break;
722 case IIO_ROT:
723 /* Table 3-28: 1 degree = 16 LSB */
724 *val2 = 16;
725 break;
726 default:
727 return -EINVAL;
728 }
729 return IIO_VAL_FRACTIONAL;
730
731 case IIO_CHAN_INFO_SAMP_FREQ:
732 if (chan->type != IIO_MAGN)
733 return -EINVAL;
734
735 return bno055_get_regmask(priv, val, val2,
736 BNO055_MAG_CONFIG_REG,
737 BNO055_MAG_CONFIG_ODR_MASK,
738 &bno055_mag_odr);
739
740 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
741 switch (chan->type) {
742 case IIO_ANGL_VEL:
743 return bno055_get_regmask(priv, val, val2,
744 BNO055_GYR_CONFIG_REG,
745 BNO055_GYR_CONFIG_LPF_MASK,
746 &bno055_gyr_lpf);
747 case IIO_ACCEL:
748 return bno055_get_regmask(priv, val, val2,
749 BNO055_ACC_CONFIG_REG,
750 BNO055_ACC_CONFIG_LPF_MASK,
751 &bno055_acc_lpf);
752 default:
753 return -EINVAL;
754 }
755
756 default:
757 return -EINVAL;
758 }
759 }
760
bno055_sysfs_attr_avail(struct bno055_priv * priv,struct bno055_sysfs_attr * attr,const int ** vals,int * length)761 static int bno055_sysfs_attr_avail(struct bno055_priv *priv, struct bno055_sysfs_attr *attr,
762 const int **vals, int *length)
763 {
764 if (priv->operation_mode != BNO055_OPR_MODE_AMG) {
765 /* locked when fusion enabled */
766 *vals = attr->fusion_vals;
767 if (attr->type == IIO_VAL_INT)
768 *length = 1;
769 else
770 *length = 2; /* IIO_VAL_INT_PLUS_MICRO or IIO_VAL_FRACTIONAL*/
771 } else {
772 *vals = attr->vals;
773 *length = attr->len;
774 }
775
776 return attr->type;
777 }
778
bno055_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)779 static int bno055_read_avail(struct iio_dev *indio_dev,
780 struct iio_chan_spec const *chan,
781 const int **vals, int *type, int *length,
782 long mask)
783 {
784 struct bno055_priv *priv = iio_priv(indio_dev);
785
786 switch (mask) {
787 case IIO_CHAN_INFO_SCALE:
788 switch (chan->type) {
789 case IIO_ANGL_VEL:
790 *type = bno055_sysfs_attr_avail(priv, &bno055_gyr_scale,
791 vals, length);
792 return IIO_AVAIL_LIST;
793 default:
794 return -EINVAL;
795 }
796 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
797 switch (chan->type) {
798 case IIO_ANGL_VEL:
799 *type = bno055_sysfs_attr_avail(priv, &bno055_gyr_lpf,
800 vals, length);
801 return IIO_AVAIL_LIST;
802 case IIO_ACCEL:
803 *type = bno055_sysfs_attr_avail(priv, &bno055_acc_lpf,
804 vals, length);
805 return IIO_AVAIL_LIST;
806 default:
807 return -EINVAL;
808 }
809
810 break;
811 case IIO_CHAN_INFO_SAMP_FREQ:
812 switch (chan->type) {
813 case IIO_MAGN:
814 *type = bno055_sysfs_attr_avail(priv, &bno055_mag_odr,
815 vals, length);
816 return IIO_AVAIL_LIST;
817 default:
818 return -EINVAL;
819 }
820 default:
821 return -EINVAL;
822 }
823 }
824
bno055_read_temp_chan(struct iio_dev * indio_dev,int * val)825 static int bno055_read_temp_chan(struct iio_dev *indio_dev, int *val)
826 {
827 struct bno055_priv *priv = iio_priv(indio_dev);
828 unsigned int raw_val;
829 int ret;
830
831 ret = regmap_read(priv->regmap, BNO055_TEMP_REG, &raw_val);
832 if (ret < 0)
833 return ret;
834
835 /*
836 * Tables 3-36 and 3-37: one byte of priv, signed, 1 LSB = 1C.
837 * ABI wants milliC.
838 */
839 *val = raw_val * 1000;
840
841 return IIO_VAL_INT;
842 }
843
bno055_read_quaternion(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int size,int * vals,int * val_len,long mask)844 static int bno055_read_quaternion(struct iio_dev *indio_dev,
845 struct iio_chan_spec const *chan,
846 int size, int *vals, int *val_len,
847 long mask)
848 {
849 struct bno055_priv *priv = iio_priv(indio_dev);
850 __le16 raw_vals[4];
851 int i, ret;
852
853 switch (mask) {
854 case IIO_CHAN_INFO_RAW:
855 if (size < 4)
856 return -EINVAL;
857 ret = regmap_bulk_read(priv->regmap,
858 BNO055_QUAT_DATA_W_LSB_REG,
859 raw_vals, sizeof(raw_vals));
860 if (ret < 0)
861 return ret;
862 for (i = 0; i < 4; i++)
863 vals[i] = sign_extend32(le16_to_cpu(raw_vals[i]), 15);
864 *val_len = 4;
865 return IIO_VAL_INT_MULTIPLE;
866 case IIO_CHAN_INFO_SCALE:
867 /* Table 3-31: 1 quaternion = 2^14 LSB */
868 if (size < 2)
869 return -EINVAL;
870 vals[0] = 1;
871 vals[1] = 14;
872 return IIO_VAL_FRACTIONAL_LOG2;
873 default:
874 return -EINVAL;
875 }
876 }
877
bno055_is_chan_readable(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)878 static bool bno055_is_chan_readable(struct iio_dev *indio_dev,
879 struct iio_chan_spec const *chan)
880 {
881 struct bno055_priv *priv = iio_priv(indio_dev);
882
883 if (priv->operation_mode != BNO055_OPR_MODE_AMG)
884 return true;
885
886 switch (chan->type) {
887 case IIO_GRAVITY:
888 case IIO_ROT:
889 return false;
890 case IIO_ACCEL:
891 if (chan->channel2 == IIO_MOD_LINEAR_X ||
892 chan->channel2 == IIO_MOD_LINEAR_Y ||
893 chan->channel2 == IIO_MOD_LINEAR_Z)
894 return false;
895 return true;
896 default:
897 return true;
898 }
899 }
900
_bno055_read_raw_multi(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int size,int * vals,int * val_len,long mask)901 static int _bno055_read_raw_multi(struct iio_dev *indio_dev,
902 struct iio_chan_spec const *chan,
903 int size, int *vals, int *val_len,
904 long mask)
905 {
906 if (!bno055_is_chan_readable(indio_dev, chan))
907 return -EBUSY;
908
909 switch (chan->type) {
910 case IIO_MAGN:
911 case IIO_ACCEL:
912 case IIO_ANGL_VEL:
913 case IIO_GRAVITY:
914 if (size < 2)
915 return -EINVAL;
916 *val_len = 2;
917 return bno055_read_simple_chan(indio_dev, chan,
918 &vals[0], &vals[1],
919 mask);
920 case IIO_TEMP:
921 *val_len = 1;
922 return bno055_read_temp_chan(indio_dev, &vals[0]);
923 case IIO_ROT:
924 /*
925 * Rotation is exposed as either a quaternion or three
926 * Euler angles.
927 */
928 if (chan->channel2 == IIO_MOD_QUATERNION)
929 return bno055_read_quaternion(indio_dev, chan,
930 size, vals,
931 val_len, mask);
932 if (size < 2)
933 return -EINVAL;
934 *val_len = 2;
935 return bno055_read_simple_chan(indio_dev, chan,
936 &vals[0], &vals[1],
937 mask);
938 default:
939 return -EINVAL;
940 }
941 }
942
bno055_read_raw_multi(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int size,int * vals,int * val_len,long mask)943 static int bno055_read_raw_multi(struct iio_dev *indio_dev,
944 struct iio_chan_spec const *chan,
945 int size, int *vals, int *val_len,
946 long mask)
947 {
948 struct bno055_priv *priv = iio_priv(indio_dev);
949 int ret;
950
951 mutex_lock(&priv->lock);
952 ret = _bno055_read_raw_multi(indio_dev, chan, size,
953 vals, val_len, mask);
954 mutex_unlock(&priv->lock);
955 return ret;
956 }
957
_bno055_write_raw(struct iio_dev * iio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)958 static int _bno055_write_raw(struct iio_dev *iio_dev,
959 struct iio_chan_spec const *chan,
960 int val, int val2, long mask)
961 {
962 struct bno055_priv *priv = iio_priv(iio_dev);
963
964 switch (chan->type) {
965 case IIO_MAGN:
966 switch (mask) {
967 case IIO_CHAN_INFO_SAMP_FREQ:
968 return bno055_set_regmask(priv, val, val2,
969 BNO055_MAG_CONFIG_REG,
970 BNO055_MAG_CONFIG_ODR_MASK,
971 &bno055_mag_odr);
972 default:
973 return -EINVAL;
974 }
975 case IIO_ACCEL:
976 switch (mask) {
977 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
978 return bno055_set_regmask(priv, val, val2,
979 BNO055_ACC_CONFIG_REG,
980 BNO055_ACC_CONFIG_LPF_MASK,
981 &bno055_acc_lpf);
982
983 default:
984 return -EINVAL;
985 }
986 case IIO_ANGL_VEL:
987 switch (mask) {
988 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
989 return bno055_set_regmask(priv, val, val2,
990 BNO055_GYR_CONFIG_REG,
991 BNO055_GYR_CONFIG_LPF_MASK,
992 &bno055_gyr_lpf);
993 case IIO_CHAN_INFO_SCALE:
994 return bno055_set_regmask(priv, val, val2,
995 BNO055_GYR_CONFIG_REG,
996 BNO055_GYR_CONFIG_RANGE_MASK,
997 &bno055_gyr_scale);
998 default:
999 return -EINVAL;
1000 }
1001 default:
1002 return -EINVAL;
1003 }
1004 }
1005
bno055_write_raw(struct iio_dev * iio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1006 static int bno055_write_raw(struct iio_dev *iio_dev,
1007 struct iio_chan_spec const *chan,
1008 int val, int val2, long mask)
1009 {
1010 struct bno055_priv *priv = iio_priv(iio_dev);
1011 int ret;
1012
1013 mutex_lock(&priv->lock);
1014 ret = _bno055_write_raw(iio_dev, chan, val, val2, mask);
1015 mutex_unlock(&priv->lock);
1016
1017 return ret;
1018 }
1019
in_accel_range_raw_available_show(struct device * dev,struct device_attribute * attr,char * buf)1020 static ssize_t in_accel_range_raw_available_show(struct device *dev,
1021 struct device_attribute *attr,
1022 char *buf)
1023 {
1024 struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1025 int len = 0;
1026 int i;
1027
1028 if (priv->operation_mode != BNO055_OPR_MODE_AMG)
1029 return sysfs_emit(buf, "%d\n", bno055_acc_range.fusion_vals[0]);
1030
1031 for (i = 0; i < bno055_acc_range.len; i++)
1032 len += sysfs_emit_at(buf, len, "%d ", bno055_acc_range.vals[i]);
1033 buf[len - 1] = '\n';
1034
1035 return len;
1036 }
1037
fusion_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1038 static ssize_t fusion_enable_show(struct device *dev,
1039 struct device_attribute *attr,
1040 char *buf)
1041 {
1042 struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1043
1044 return sysfs_emit(buf, "%d\n",
1045 priv->operation_mode != BNO055_OPR_MODE_AMG);
1046 }
1047
fusion_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1048 static ssize_t fusion_enable_store(struct device *dev,
1049 struct device_attribute *attr,
1050 const char *buf, size_t len)
1051 {
1052 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1053 struct bno055_priv *priv = iio_priv(indio_dev);
1054 bool en;
1055 int ret;
1056
1057 if (indio_dev->active_scan_mask &&
1058 !bitmap_empty(indio_dev->active_scan_mask, _BNO055_SCAN_MAX))
1059 return -EBUSY;
1060
1061 ret = kstrtobool(buf, &en);
1062 if (ret)
1063 return -EINVAL;
1064
1065 if (!en)
1066 return bno055_operation_mode_set(priv, BNO055_OPR_MODE_AMG) ?: len;
1067
1068 /*
1069 * Coming from AMG means the FMC was off, just switch to fusion but
1070 * don't change anything that doesn't belong to us (i.e let FMC stay off).
1071 * Coming from any other fusion mode means we don't need to do anything.
1072 */
1073 if (priv->operation_mode == BNO055_OPR_MODE_AMG)
1074 return bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION_FMC_OFF) ?: len;
1075
1076 return len;
1077 }
1078
in_magn_calibration_fast_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1079 static ssize_t in_magn_calibration_fast_enable_show(struct device *dev,
1080 struct device_attribute *attr,
1081 char *buf)
1082 {
1083 struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1084
1085 return sysfs_emit(buf, "%d\n",
1086 priv->operation_mode == BNO055_OPR_MODE_FUSION);
1087 }
1088
in_magn_calibration_fast_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1089 static ssize_t in_magn_calibration_fast_enable_store(struct device *dev,
1090 struct device_attribute *attr,
1091 const char *buf, size_t len)
1092 {
1093 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1094 struct bno055_priv *priv = iio_priv(indio_dev);
1095 int ret;
1096
1097 if (indio_dev->active_scan_mask &&
1098 !bitmap_empty(indio_dev->active_scan_mask, _BNO055_SCAN_MAX))
1099 return -EBUSY;
1100
1101 if (sysfs_streq(buf, "0")) {
1102 if (priv->operation_mode == BNO055_OPR_MODE_FUSION) {
1103 ret = bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION_FMC_OFF);
1104 if (ret)
1105 return ret;
1106 }
1107 } else {
1108 if (priv->operation_mode == BNO055_OPR_MODE_AMG)
1109 return -EINVAL;
1110
1111 if (priv->operation_mode != BNO055_OPR_MODE_FUSION) {
1112 ret = bno055_operation_mode_set(priv, BNO055_OPR_MODE_FUSION);
1113 if (ret)
1114 return ret;
1115 }
1116 }
1117
1118 return len;
1119 }
1120
in_accel_range_raw_show(struct device * dev,struct device_attribute * attr,char * buf)1121 static ssize_t in_accel_range_raw_show(struct device *dev,
1122 struct device_attribute *attr,
1123 char *buf)
1124 {
1125 struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1126 int val;
1127 int ret;
1128
1129 ret = bno055_get_regmask(priv, &val, NULL,
1130 BNO055_ACC_CONFIG_REG,
1131 BNO055_ACC_CONFIG_RANGE_MASK,
1132 &bno055_acc_range);
1133 if (ret < 0)
1134 return ret;
1135
1136 return sysfs_emit(buf, "%d\n", val);
1137 }
1138
in_accel_range_raw_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1139 static ssize_t in_accel_range_raw_store(struct device *dev,
1140 struct device_attribute *attr,
1141 const char *buf, size_t len)
1142 {
1143 struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1144 unsigned long val;
1145 int ret;
1146
1147 ret = kstrtoul(buf, 10, &val);
1148 if (ret)
1149 return ret;
1150
1151 mutex_lock(&priv->lock);
1152 ret = bno055_set_regmask(priv, val, 0,
1153 BNO055_ACC_CONFIG_REG,
1154 BNO055_ACC_CONFIG_RANGE_MASK,
1155 &bno055_acc_range);
1156 mutex_unlock(&priv->lock);
1157
1158 return ret ?: len;
1159 }
1160
bno055_get_calib_status(struct device * dev,char * buf,int which)1161 static ssize_t bno055_get_calib_status(struct device *dev, char *buf, int which)
1162 {
1163 struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1164 int calib;
1165 int ret;
1166 int val;
1167
1168 if (priv->operation_mode == BNO055_OPR_MODE_AMG ||
1169 (priv->operation_mode == BNO055_OPR_MODE_FUSION_FMC_OFF &&
1170 which == BNO055_CALIB_STAT_MAGN_SHIFT)) {
1171 calib = 0;
1172 } else {
1173 mutex_lock(&priv->lock);
1174 ret = regmap_read(priv->regmap, BNO055_CALIB_STAT_REG, &val);
1175 mutex_unlock(&priv->lock);
1176
1177 if (ret)
1178 return -EIO;
1179
1180 calib = ((val >> which) & GENMASK(1, 0)) + 1;
1181 }
1182
1183 return sysfs_emit(buf, "%d\n", calib);
1184 }
1185
serialnumber_show(struct device * dev,struct device_attribute * attr,char * buf)1186 static ssize_t serialnumber_show(struct device *dev,
1187 struct device_attribute *attr,
1188 char *buf)
1189 {
1190 struct bno055_priv *priv = iio_priv(dev_to_iio_dev(dev));
1191
1192 return sysfs_emit(buf, "%*ph\n", BNO055_UID_LEN, priv->uid);
1193 }
1194
calibration_data_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1195 static ssize_t calibration_data_read(struct file *filp, struct kobject *kobj,
1196 struct bin_attribute *bin_attr, char *buf,
1197 loff_t pos, size_t count)
1198 {
1199 struct bno055_priv *priv = iio_priv(dev_to_iio_dev(kobj_to_dev(kobj)));
1200 u8 data[BNO055_CALDATA_LEN];
1201 int ret;
1202
1203 /*
1204 * Calibration data is volatile; reading it in chunks will possibly
1205 * results in inconsistent data. We require the user to read the whole
1206 * blob in a single chunk
1207 */
1208 if (count < BNO055_CALDATA_LEN || pos)
1209 return -EINVAL;
1210
1211 mutex_lock(&priv->lock);
1212 ret = bno055_operation_mode_do_set(priv, BNO055_OPR_MODE_CONFIG);
1213 if (ret)
1214 goto exit_unlock;
1215
1216 ret = regmap_bulk_read(priv->regmap, BNO055_CALDATA_START, data,
1217 BNO055_CALDATA_LEN);
1218 if (ret)
1219 goto exit_unlock;
1220
1221 ret = bno055_operation_mode_do_set(priv, priv->operation_mode);
1222 if (ret)
1223 goto exit_unlock;
1224
1225 memcpy(buf, data, BNO055_CALDATA_LEN);
1226
1227 ret = BNO055_CALDATA_LEN;
1228 exit_unlock:
1229 mutex_unlock(&priv->lock);
1230 return ret;
1231 }
1232
sys_calibration_auto_status_show(struct device * dev,struct device_attribute * a,char * buf)1233 static ssize_t sys_calibration_auto_status_show(struct device *dev,
1234 struct device_attribute *a,
1235 char *buf)
1236 {
1237 return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_SYS_SHIFT);
1238 }
1239
in_accel_calibration_auto_status_show(struct device * dev,struct device_attribute * a,char * buf)1240 static ssize_t in_accel_calibration_auto_status_show(struct device *dev,
1241 struct device_attribute *a,
1242 char *buf)
1243 {
1244 return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_ACCEL_SHIFT);
1245 }
1246
in_gyro_calibration_auto_status_show(struct device * dev,struct device_attribute * a,char * buf)1247 static ssize_t in_gyro_calibration_auto_status_show(struct device *dev,
1248 struct device_attribute *a,
1249 char *buf)
1250 {
1251 return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_GYRO_SHIFT);
1252 }
1253
in_magn_calibration_auto_status_show(struct device * dev,struct device_attribute * a,char * buf)1254 static ssize_t in_magn_calibration_auto_status_show(struct device *dev,
1255 struct device_attribute *a,
1256 char *buf)
1257 {
1258 return bno055_get_calib_status(dev, buf, BNO055_CALIB_STAT_MAGN_SHIFT);
1259 }
1260
bno055_debugfs_reg_access(struct iio_dev * iio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)1261 static int bno055_debugfs_reg_access(struct iio_dev *iio_dev, unsigned int reg,
1262 unsigned int writeval, unsigned int *readval)
1263 {
1264 struct bno055_priv *priv = iio_priv(iio_dev);
1265
1266 if (readval)
1267 return regmap_read(priv->regmap, reg, readval);
1268 else
1269 return regmap_write(priv->regmap, reg, writeval);
1270 }
1271
bno055_show_fw_version(struct file * file,char __user * userbuf,size_t count,loff_t * ppos)1272 static ssize_t bno055_show_fw_version(struct file *file, char __user *userbuf,
1273 size_t count, loff_t *ppos)
1274 {
1275 struct bno055_priv *priv = file->private_data;
1276 int rev, ver;
1277 char *buf;
1278 int ret;
1279
1280 ret = regmap_read(priv->regmap, BNO055_SW_REV_LSB_REG, &rev);
1281 if (ret)
1282 return ret;
1283
1284 ret = regmap_read(priv->regmap, BNO055_SW_REV_MSB_REG, &ver);
1285 if (ret)
1286 return ret;
1287
1288 buf = kasprintf(GFP_KERNEL, "ver: 0x%x, rev: 0x%x\n", ver, rev);
1289 if (!buf)
1290 return -ENOMEM;
1291
1292 ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1293 kfree(buf);
1294
1295 return ret;
1296 }
1297
1298 static const struct file_operations bno055_fw_version_ops = {
1299 .open = simple_open,
1300 .read = bno055_show_fw_version,
1301 .llseek = default_llseek,
1302 .owner = THIS_MODULE,
1303 };
1304
bno055_debugfs_remove(void * _priv)1305 static void bno055_debugfs_remove(void *_priv)
1306 {
1307 struct bno055_priv *priv = _priv;
1308
1309 debugfs_remove(priv->debugfs);
1310 priv->debugfs = NULL;
1311 }
1312
bno055_debugfs_init(struct iio_dev * iio_dev)1313 static void bno055_debugfs_init(struct iio_dev *iio_dev)
1314 {
1315 struct bno055_priv *priv = iio_priv(iio_dev);
1316
1317 priv->debugfs = debugfs_create_file("firmware_version", 0400,
1318 iio_get_debugfs_dentry(iio_dev),
1319 priv, &bno055_fw_version_ops);
1320 if (!IS_ERR(priv->debugfs))
1321 devm_add_action_or_reset(priv->dev, bno055_debugfs_remove,
1322 priv);
1323 if (IS_ERR_OR_NULL(priv->debugfs))
1324 dev_warn(priv->dev, "failed to setup debugfs");
1325 }
1326
1327 static IIO_DEVICE_ATTR_RW(fusion_enable, 0);
1328 static IIO_DEVICE_ATTR_RW(in_magn_calibration_fast_enable, 0);
1329 static IIO_DEVICE_ATTR_RW(in_accel_range_raw, 0);
1330
1331 static IIO_DEVICE_ATTR_RO(in_accel_range_raw_available, 0);
1332 static IIO_DEVICE_ATTR_RO(sys_calibration_auto_status, 0);
1333 static IIO_DEVICE_ATTR_RO(in_accel_calibration_auto_status, 0);
1334 static IIO_DEVICE_ATTR_RO(in_gyro_calibration_auto_status, 0);
1335 static IIO_DEVICE_ATTR_RO(in_magn_calibration_auto_status, 0);
1336 static IIO_DEVICE_ATTR_RO(serialnumber, 0);
1337
1338 static struct attribute *bno055_attrs[] = {
1339 &iio_dev_attr_in_accel_range_raw_available.dev_attr.attr,
1340 &iio_dev_attr_in_accel_range_raw.dev_attr.attr,
1341 &iio_dev_attr_fusion_enable.dev_attr.attr,
1342 &iio_dev_attr_in_magn_calibration_fast_enable.dev_attr.attr,
1343 &iio_dev_attr_sys_calibration_auto_status.dev_attr.attr,
1344 &iio_dev_attr_in_accel_calibration_auto_status.dev_attr.attr,
1345 &iio_dev_attr_in_gyro_calibration_auto_status.dev_attr.attr,
1346 &iio_dev_attr_in_magn_calibration_auto_status.dev_attr.attr,
1347 &iio_dev_attr_serialnumber.dev_attr.attr,
1348 NULL
1349 };
1350
1351 static BIN_ATTR_RO(calibration_data, BNO055_CALDATA_LEN);
1352
1353 static struct bin_attribute *bno055_bin_attrs[] = {
1354 &bin_attr_calibration_data,
1355 NULL
1356 };
1357
1358 static const struct attribute_group bno055_attrs_group = {
1359 .attrs = bno055_attrs,
1360 .bin_attrs = bno055_bin_attrs,
1361 };
1362
1363 static const struct iio_info bno055_info = {
1364 .read_raw_multi = bno055_read_raw_multi,
1365 .read_avail = bno055_read_avail,
1366 .write_raw = bno055_write_raw,
1367 .attrs = &bno055_attrs_group,
1368 .debugfs_reg_access = bno055_debugfs_reg_access,
1369 };
1370
1371 /*
1372 * Reads len samples from the HW, stores them in buf starting from buf_idx,
1373 * and applies mask to cull (skip) unneeded samples.
1374 * Updates buf_idx incrementing with the number of stored samples.
1375 * Samples from HW are transferred into buf, then in-place copy on buf is
1376 * performed in order to cull samples that need to be skipped.
1377 * This avoids copies of the first samples until we hit the 1st sample to skip,
1378 * and also avoids having an extra bounce buffer.
1379 * buf must be able to contain len elements in spite of how many samples we are
1380 * going to cull.
1381 */
bno055_scan_xfer(struct bno055_priv * priv,int start_ch,int len,unsigned long mask,__le16 * buf,int * buf_idx)1382 static int bno055_scan_xfer(struct bno055_priv *priv,
1383 int start_ch, int len, unsigned long mask,
1384 __le16 *buf, int *buf_idx)
1385 {
1386 const int base = BNO055_ACC_DATA_X_LSB_REG;
1387 bool quat_in_read = false;
1388 int buf_base = *buf_idx;
1389 __le16 *dst, *src;
1390 int offs_fixup = 0;
1391 int xfer_len = len;
1392 int ret;
1393 int i, n;
1394
1395 if (!mask)
1396 return 0;
1397
1398 /*
1399 * All channels are made up 1 16-bit sample, except for quaternion that
1400 * is made up 4 16-bit values.
1401 * For us the quaternion CH is just like 4 regular CHs.
1402 * If our read starts past the quaternion make sure to adjust the
1403 * starting offset; if the quaternion is contained in our scan then make
1404 * sure to adjust the read len.
1405 */
1406 if (start_ch > BNO055_SCAN_QUATERNION) {
1407 start_ch += 3;
1408 } else if ((start_ch <= BNO055_SCAN_QUATERNION) &&
1409 ((start_ch + len) > BNO055_SCAN_QUATERNION)) {
1410 quat_in_read = true;
1411 xfer_len += 3;
1412 }
1413
1414 ret = regmap_bulk_read(priv->regmap,
1415 base + start_ch * sizeof(__le16),
1416 buf + buf_base,
1417 xfer_len * sizeof(__le16));
1418 if (ret)
1419 return ret;
1420
1421 for_each_set_bit(i, &mask, len) {
1422 if (quat_in_read && ((start_ch + i) > BNO055_SCAN_QUATERNION))
1423 offs_fixup = 3;
1424
1425 dst = buf + *buf_idx;
1426 src = buf + buf_base + offs_fixup + i;
1427
1428 n = (start_ch + i == BNO055_SCAN_QUATERNION) ? 4 : 1;
1429
1430 if (dst != src)
1431 memcpy(dst, src, n * sizeof(__le16));
1432
1433 *buf_idx += n;
1434 }
1435 return 0;
1436 }
1437
bno055_trigger_handler(int irq,void * p)1438 static irqreturn_t bno055_trigger_handler(int irq, void *p)
1439 {
1440 struct iio_poll_func *pf = p;
1441 struct iio_dev *iio_dev = pf->indio_dev;
1442 struct bno055_priv *priv = iio_priv(iio_dev);
1443 int xfer_start, start, end, prev_end;
1444 unsigned long mask;
1445 int quat_extra_len;
1446 bool first = true;
1447 int buf_idx = 0;
1448 bool thr_hit;
1449 int ret;
1450
1451 mutex_lock(&priv->lock);
1452
1453 /*
1454 * Walk the bitmap and eventually perform several transfers.
1455 * Bitmap ones-fields that are separated by gaps <= xfer_burst_break_thr
1456 * will be included in same transfer.
1457 * Every time the bitmap contains a gap wider than xfer_burst_break_thr
1458 * then we split the transfer, skipping the gap.
1459 */
1460 for_each_set_bitrange(start, end, iio_dev->active_scan_mask,
1461 iio_get_masklength(iio_dev)) {
1462 /*
1463 * First transfer will start from the beginning of the first
1464 * ones-field in the bitmap
1465 */
1466 if (first) {
1467 xfer_start = start;
1468 } else {
1469 /*
1470 * We found the next ones-field; check whether to
1471 * include it in * the current transfer or not (i.e.
1472 * let's perform the current * transfer and prepare for
1473 * another one).
1474 */
1475
1476 /*
1477 * In case the zeros-gap contains the quaternion bit,
1478 * then its length is actually 4 words instead of 1
1479 * (i.e. +3 wrt other channels).
1480 */
1481 quat_extra_len = ((start > BNO055_SCAN_QUATERNION) &&
1482 (prev_end <= BNO055_SCAN_QUATERNION)) ? 3 : 0;
1483
1484 /* If the gap is wider than xfer_burst_break_thr then.. */
1485 thr_hit = (start - prev_end + quat_extra_len) >
1486 priv->xfer_burst_break_thr;
1487
1488 /*
1489 * .. transfer all the data up to the gap. Then set the
1490 * next transfer start index at right after the gap
1491 * (i.e. at the start of this ones-field).
1492 */
1493 if (thr_hit) {
1494 mask = *iio_dev->active_scan_mask >> xfer_start;
1495 ret = bno055_scan_xfer(priv, xfer_start,
1496 prev_end - xfer_start,
1497 mask, priv->buf.chans, &buf_idx);
1498 if (ret)
1499 goto done;
1500 xfer_start = start;
1501 }
1502 }
1503 first = false;
1504 prev_end = end;
1505 }
1506
1507 /*
1508 * We finished walking the bitmap; no more gaps to check for. Just
1509 * perform the current transfer.
1510 */
1511 mask = *iio_dev->active_scan_mask >> xfer_start;
1512 ret = bno055_scan_xfer(priv, xfer_start,
1513 prev_end - xfer_start,
1514 mask, priv->buf.chans, &buf_idx);
1515
1516 if (!ret)
1517 iio_push_to_buffers_with_timestamp(iio_dev,
1518 &priv->buf, pf->timestamp);
1519 done:
1520 mutex_unlock(&priv->lock);
1521 iio_trigger_notify_done(iio_dev->trig);
1522 return IRQ_HANDLED;
1523 }
1524
bno055_buffer_preenable(struct iio_dev * indio_dev)1525 static int bno055_buffer_preenable(struct iio_dev *indio_dev)
1526 {
1527 struct bno055_priv *priv = iio_priv(indio_dev);
1528 const unsigned long fusion_mask =
1529 BIT(BNO055_SCAN_YAW) |
1530 BIT(BNO055_SCAN_ROLL) |
1531 BIT(BNO055_SCAN_PITCH) |
1532 BIT(BNO055_SCAN_QUATERNION) |
1533 BIT(BNO055_SCAN_LIA_X) |
1534 BIT(BNO055_SCAN_LIA_Y) |
1535 BIT(BNO055_SCAN_LIA_Z) |
1536 BIT(BNO055_SCAN_GRAVITY_X) |
1537 BIT(BNO055_SCAN_GRAVITY_Y) |
1538 BIT(BNO055_SCAN_GRAVITY_Z);
1539
1540 if (priv->operation_mode == BNO055_OPR_MODE_AMG &&
1541 bitmap_intersects(indio_dev->active_scan_mask, &fusion_mask,
1542 _BNO055_SCAN_MAX))
1543 return -EBUSY;
1544 return 0;
1545 }
1546
1547 static const struct iio_buffer_setup_ops bno055_buffer_setup_ops = {
1548 .preenable = bno055_buffer_preenable,
1549 };
1550
bno055_probe(struct device * dev,struct regmap * regmap,int xfer_burst_break_thr,bool sw_reset)1551 int bno055_probe(struct device *dev, struct regmap *regmap,
1552 int xfer_burst_break_thr, bool sw_reset)
1553 {
1554 const struct firmware *caldata = NULL;
1555 struct bno055_priv *priv;
1556 struct iio_dev *iio_dev;
1557 char *fw_name_buf;
1558 unsigned int val;
1559 int rev, ver;
1560 int ret;
1561
1562 iio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
1563 if (!iio_dev)
1564 return -ENOMEM;
1565
1566 iio_dev->name = "bno055";
1567 priv = iio_priv(iio_dev);
1568 mutex_init(&priv->lock);
1569 priv->regmap = regmap;
1570 priv->dev = dev;
1571 priv->xfer_burst_break_thr = xfer_burst_break_thr;
1572 priv->sw_reset = sw_reset;
1573
1574 priv->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
1575 if (IS_ERR(priv->reset_gpio))
1576 return dev_err_probe(dev, PTR_ERR(priv->reset_gpio), "Failed to get reset GPIO\n");
1577
1578 priv->clk = devm_clk_get_optional_enabled(dev, "clk");
1579 if (IS_ERR(priv->clk))
1580 return dev_err_probe(dev, PTR_ERR(priv->clk), "Failed to get CLK\n");
1581
1582 if (priv->reset_gpio) {
1583 usleep_range(5000, 10000);
1584 gpiod_set_value_cansleep(priv->reset_gpio, 1);
1585 usleep_range(650000, 750000);
1586 } else if (!sw_reset) {
1587 dev_warn(dev, "No usable reset method; IMU may be unreliable\n");
1588 }
1589
1590 ret = regmap_read(priv->regmap, BNO055_CHIP_ID_REG, &val);
1591 if (ret)
1592 return ret;
1593
1594 if (val != BNO055_CHIP_ID_MAGIC)
1595 dev_warn(dev, "Unrecognized chip ID 0x%x\n", val);
1596
1597 /*
1598 * In case we haven't a HW reset pin, we can still reset the chip via
1599 * register write. This is probably nonsense in case we can't even
1600 * communicate with the chip or the chip isn't the one we expect (i.e.
1601 * we don't write to unknown chips), so we perform SW reset only after
1602 * chip magic ID check
1603 */
1604 if (!priv->reset_gpio) {
1605 ret = bno055_system_reset(priv);
1606 if (ret)
1607 return ret;
1608 }
1609
1610 ret = regmap_read(priv->regmap, BNO055_SW_REV_LSB_REG, &rev);
1611 if (ret)
1612 return ret;
1613
1614 ret = regmap_read(priv->regmap, BNO055_SW_REV_MSB_REG, &ver);
1615 if (ret)
1616 return ret;
1617
1618 /*
1619 * The stock FW version contains a bug (see comment at the beginning of
1620 * this file) that causes the anglvel scale to be changed depending on
1621 * the chip range setting. We workaround this, but we don't know what
1622 * other FW versions might do.
1623 */
1624 if (ver != 0x3 || rev != 0x11)
1625 dev_warn(dev, "Untested firmware version. Anglvel scale may not work as expected\n");
1626
1627 ret = regmap_bulk_read(priv->regmap, BNO055_UID_LOWER_REG,
1628 priv->uid, BNO055_UID_LEN);
1629 if (ret)
1630 return ret;
1631
1632 /* Sensor calibration data */
1633 fw_name_buf = kasprintf(GFP_KERNEL, BNO055_FW_UID_FMT,
1634 BNO055_UID_LEN, priv->uid);
1635 if (!fw_name_buf)
1636 return -ENOMEM;
1637
1638 ret = request_firmware(&caldata, fw_name_buf, dev);
1639 kfree(fw_name_buf);
1640 if (ret)
1641 ret = request_firmware(&caldata, BNO055_FW_GENERIC_NAME, dev);
1642 if (ret) {
1643 dev_notice(dev, "Calibration file load failed. See instruction in kernel Documentation/iio/bno055.rst\n");
1644 ret = bno055_init(priv, NULL, 0);
1645 } else {
1646 ret = bno055_init(priv, caldata->data, caldata->size);
1647 release_firmware(caldata);
1648 }
1649 if (ret)
1650 return ret;
1651
1652 priv->operation_mode = BNO055_OPR_MODE_FUSION;
1653 ret = bno055_operation_mode_do_set(priv, priv->operation_mode);
1654 if (ret)
1655 return ret;
1656
1657 ret = devm_add_action_or_reset(dev, bno055_uninit, priv);
1658 if (ret)
1659 return ret;
1660
1661 iio_dev->channels = bno055_channels;
1662 iio_dev->num_channels = ARRAY_SIZE(bno055_channels);
1663 iio_dev->info = &bno055_info;
1664 iio_dev->modes = INDIO_DIRECT_MODE;
1665
1666 ret = devm_iio_triggered_buffer_setup(dev, iio_dev,
1667 iio_pollfunc_store_time,
1668 bno055_trigger_handler,
1669 &bno055_buffer_setup_ops);
1670 if (ret)
1671 return ret;
1672
1673 ret = devm_iio_device_register(dev, iio_dev);
1674 if (ret)
1675 return ret;
1676
1677 bno055_debugfs_init(iio_dev);
1678
1679 return 0;
1680 }
1681 EXPORT_SYMBOL_NS_GPL(bno055_probe, "IIO_BNO055");
1682
1683 MODULE_AUTHOR("Andrea Merello <andrea.merello@iit.it>");
1684 MODULE_DESCRIPTION("Bosch BNO055 driver");
1685 MODULE_LICENSE("GPL");
1686