xref: /linux/fs/xfs/scrub/repair.c (revision b477ff98d903618a1ab8247861f2ea6e70c0f0f8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_rtbitmap.h"
25 #include "xfs_extent_busy.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_quota.h"
29 #include "xfs_qm.h"
30 #include "xfs_defer.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_reflink.h"
34 #include "xfs_health.h"
35 #include "xfs_buf_mem.h"
36 #include "xfs_da_format.h"
37 #include "xfs_da_btree.h"
38 #include "xfs_attr.h"
39 #include "xfs_dir2.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtbitmap.h"
42 #include "xfs_rtgroup.h"
43 #include "xfs_rtalloc.h"
44 #include "xfs_metafile.h"
45 #include "xfs_rtrefcount_btree.h"
46 #include "scrub/scrub.h"
47 #include "scrub/common.h"
48 #include "scrub/trace.h"
49 #include "scrub/repair.h"
50 #include "scrub/bitmap.h"
51 #include "scrub/stats.h"
52 #include "scrub/xfile.h"
53 #include "scrub/attr_repair.h"
54 
55 /*
56  * Attempt to repair some metadata, if the metadata is corrupt and userspace
57  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
58  * and will set *fixed to true if it thinks it repaired anything.
59  */
60 int
xrep_attempt(struct xfs_scrub * sc,struct xchk_stats_run * run)61 xrep_attempt(
62 	struct xfs_scrub	*sc,
63 	struct xchk_stats_run	*run)
64 {
65 	u64			repair_start;
66 	int			error = 0;
67 
68 	trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
69 
70 	xchk_ag_btcur_free(&sc->sa);
71 	xchk_rtgroup_btcur_free(&sc->sr);
72 
73 	/* Repair whatever's broken. */
74 	ASSERT(sc->ops->repair);
75 	run->repair_attempted = true;
76 	repair_start = xchk_stats_now();
77 	error = sc->ops->repair(sc);
78 	trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
79 	run->repair_ns += xchk_stats_elapsed_ns(repair_start);
80 	switch (error) {
81 	case 0:
82 		/*
83 		 * Repair succeeded.  Commit the fixes and perform a second
84 		 * scrub so that we can tell userspace if we fixed the problem.
85 		 */
86 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
87 		sc->flags |= XREP_ALREADY_FIXED;
88 		run->repair_succeeded = true;
89 		return -EAGAIN;
90 	case -ECHRNG:
91 		sc->flags |= XCHK_NEED_DRAIN;
92 		run->retries++;
93 		return -EAGAIN;
94 	case -EDEADLOCK:
95 		/* Tell the caller to try again having grabbed all the locks. */
96 		if (!(sc->flags & XCHK_TRY_HARDER)) {
97 			sc->flags |= XCHK_TRY_HARDER;
98 			run->retries++;
99 			return -EAGAIN;
100 		}
101 		/*
102 		 * We tried harder but still couldn't grab all the resources
103 		 * we needed to fix it.  The corruption has not been fixed,
104 		 * so exit to userspace with the scan's output flags unchanged.
105 		 */
106 		return 0;
107 	default:
108 		/*
109 		 * EAGAIN tells the caller to re-scrub, so we cannot return
110 		 * that here.
111 		 */
112 		ASSERT(error != -EAGAIN);
113 		return error;
114 	}
115 }
116 
117 /*
118  * Complain about unfixable problems in the filesystem.  We don't log
119  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
120  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
121  * administrator isn't running xfs_scrub in no-repairs mode.
122  *
123  * Use this helper function because _ratelimited silently declares a static
124  * structure to track rate limiting information.
125  */
126 void
xrep_failure(struct xfs_mount * mp)127 xrep_failure(
128 	struct xfs_mount	*mp)
129 {
130 	xfs_alert_ratelimited(mp,
131 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
132 }
133 
134 /*
135  * Repair probe -- userspace uses this to probe if we're willing to repair a
136  * given mountpoint.
137  */
138 int
xrep_probe(struct xfs_scrub * sc)139 xrep_probe(
140 	struct xfs_scrub	*sc)
141 {
142 	int			error = 0;
143 
144 	if (xchk_should_terminate(sc, &error))
145 		return error;
146 
147 	return 0;
148 }
149 
150 /*
151  * Roll a transaction, keeping the AG headers locked and reinitializing
152  * the btree cursors.
153  */
154 int
xrep_roll_ag_trans(struct xfs_scrub * sc)155 xrep_roll_ag_trans(
156 	struct xfs_scrub	*sc)
157 {
158 	int			error;
159 
160 	/*
161 	 * Keep the AG header buffers locked while we roll the transaction.
162 	 * Ensure that both AG buffers are dirty and held when we roll the
163 	 * transaction so that they move forward in the log without losing the
164 	 * bli (and hence the bli type) when the transaction commits.
165 	 *
166 	 * Normal code would never hold clean buffers across a roll, but repair
167 	 * needs both buffers to maintain a total lock on the AG.
168 	 */
169 	if (sc->sa.agi_bp) {
170 		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
171 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
172 	}
173 
174 	if (sc->sa.agf_bp) {
175 		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
176 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
177 	}
178 
179 	/*
180 	 * Roll the transaction.  We still hold the AG header buffers locked
181 	 * regardless of whether or not that succeeds.  On failure, the buffers
182 	 * will be released during teardown on our way out of the kernel.  If
183 	 * successful, join the buffers to the new transaction and move on.
184 	 */
185 	error = xfs_trans_roll(&sc->tp);
186 	if (error)
187 		return error;
188 
189 	/* Join the AG headers to the new transaction. */
190 	if (sc->sa.agi_bp)
191 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
192 	if (sc->sa.agf_bp)
193 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
194 
195 	return 0;
196 }
197 
198 /* Roll the scrub transaction, holding the primary metadata locked. */
199 int
xrep_roll_trans(struct xfs_scrub * sc)200 xrep_roll_trans(
201 	struct xfs_scrub	*sc)
202 {
203 	if (!sc->ip)
204 		return xrep_roll_ag_trans(sc);
205 	return xfs_trans_roll_inode(&sc->tp, sc->ip);
206 }
207 
208 /* Finish all deferred work attached to the repair transaction. */
209 int
xrep_defer_finish(struct xfs_scrub * sc)210 xrep_defer_finish(
211 	struct xfs_scrub	*sc)
212 {
213 	int			error;
214 
215 	/*
216 	 * Keep the AG header buffers locked while we complete deferred work
217 	 * items.  Ensure that both AG buffers are dirty and held when we roll
218 	 * the transaction so that they move forward in the log without losing
219 	 * the bli (and hence the bli type) when the transaction commits.
220 	 *
221 	 * Normal code would never hold clean buffers across a roll, but repair
222 	 * needs both buffers to maintain a total lock on the AG.
223 	 */
224 	if (sc->sa.agi_bp) {
225 		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
226 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
227 	}
228 
229 	if (sc->sa.agf_bp) {
230 		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
231 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
232 	}
233 
234 	/*
235 	 * Finish all deferred work items.  We still hold the AG header buffers
236 	 * locked regardless of whether or not that succeeds.  On failure, the
237 	 * buffers will be released during teardown on our way out of the
238 	 * kernel.  If successful, join the buffers to the new transaction
239 	 * and move on.
240 	 */
241 	error = xfs_defer_finish(&sc->tp);
242 	if (error)
243 		return error;
244 
245 	/*
246 	 * Release the hold that we set above because defer_finish won't do
247 	 * that for us.  The defer roll code redirties held buffers after each
248 	 * roll, so the AG header buffers should be ready for logging.
249 	 */
250 	if (sc->sa.agi_bp)
251 		xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
252 	if (sc->sa.agf_bp)
253 		xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
254 
255 	return 0;
256 }
257 
258 /*
259  * Does the given AG have enough space to rebuild a btree?  Neither AG
260  * reservation can be critical, and we must have enough space (factoring
261  * in AG reservations) to construct a whole btree.
262  */
263 bool
xrep_ag_has_space(struct xfs_perag * pag,xfs_extlen_t nr_blocks,enum xfs_ag_resv_type type)264 xrep_ag_has_space(
265 	struct xfs_perag	*pag,
266 	xfs_extlen_t		nr_blocks,
267 	enum xfs_ag_resv_type	type)
268 {
269 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
270 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
271 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
272 }
273 
274 /*
275  * Figure out how many blocks to reserve for an AG repair.  We calculate the
276  * worst case estimate for the number of blocks we'd need to rebuild one of
277  * any type of per-AG btree.
278  */
279 xfs_extlen_t
xrep_calc_ag_resblks(struct xfs_scrub * sc)280 xrep_calc_ag_resblks(
281 	struct xfs_scrub		*sc)
282 {
283 	struct xfs_mount		*mp = sc->mp;
284 	struct xfs_scrub_metadata	*sm = sc->sm;
285 	struct xfs_perag		*pag;
286 	struct xfs_buf			*bp;
287 	xfs_agino_t			icount = NULLAGINO;
288 	xfs_extlen_t			aglen = NULLAGBLOCK;
289 	xfs_extlen_t			usedlen;
290 	xfs_extlen_t			freelen;
291 	xfs_extlen_t			bnobt_sz;
292 	xfs_extlen_t			inobt_sz;
293 	xfs_extlen_t			rmapbt_sz;
294 	xfs_extlen_t			refcbt_sz;
295 	int				error;
296 
297 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
298 		return 0;
299 
300 	pag = xfs_perag_get(mp, sm->sm_agno);
301 	if (xfs_perag_initialised_agi(pag)) {
302 		/* Use in-core icount if possible. */
303 		icount = pag->pagi_count;
304 	} else {
305 		/* Try to get the actual counters from disk. */
306 		error = xfs_ialloc_read_agi(pag, NULL, 0, &bp);
307 		if (!error) {
308 			icount = pag->pagi_count;
309 			xfs_buf_relse(bp);
310 		}
311 	}
312 
313 	/* Now grab the block counters from the AGF. */
314 	error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
315 	if (error) {
316 		aglen = pag_group(pag)->xg_block_count;
317 		freelen = aglen;
318 		usedlen = aglen;
319 	} else {
320 		struct xfs_agf	*agf = bp->b_addr;
321 
322 		aglen = be32_to_cpu(agf->agf_length);
323 		freelen = be32_to_cpu(agf->agf_freeblks);
324 		usedlen = aglen - freelen;
325 		xfs_buf_relse(bp);
326 	}
327 
328 	/* If the icount is impossible, make some worst-case assumptions. */
329 	if (icount == NULLAGINO ||
330 	    !xfs_verify_agino(pag, icount)) {
331 		icount = pag->agino_max - pag->agino_min + 1;
332 	}
333 
334 	/* If the block counts are impossible, make worst-case assumptions. */
335 	if (aglen == NULLAGBLOCK ||
336 	    aglen != pag_group(pag)->xg_block_count ||
337 	    freelen >= aglen) {
338 		aglen = pag_group(pag)->xg_block_count;
339 		freelen = aglen;
340 		usedlen = aglen;
341 	}
342 
343 	trace_xrep_calc_ag_resblks(pag, icount, aglen, freelen, usedlen);
344 
345 	/*
346 	 * Figure out how many blocks we'd need worst case to rebuild
347 	 * each type of btree.  Note that we can only rebuild the
348 	 * bnobt/cntbt or inobt/finobt as pairs.
349 	 */
350 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
351 	if (xfs_has_sparseinodes(mp))
352 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
353 				XFS_INODES_PER_HOLEMASK_BIT);
354 	else
355 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
356 				XFS_INODES_PER_CHUNK);
357 	if (xfs_has_finobt(mp))
358 		inobt_sz *= 2;
359 	if (xfs_has_reflink(mp))
360 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
361 	else
362 		refcbt_sz = 0;
363 	if (xfs_has_rmapbt(mp)) {
364 		/*
365 		 * Guess how many blocks we need to rebuild the rmapbt.
366 		 * For non-reflink filesystems we can't have more records than
367 		 * used blocks.  However, with reflink it's possible to have
368 		 * more than one rmap record per AG block.  We don't know how
369 		 * many rmaps there could be in the AG, so we start off with
370 		 * what we hope is an generous over-estimation.
371 		 */
372 		if (xfs_has_reflink(mp))
373 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
374 					(unsigned long long)aglen * 2);
375 		else
376 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
377 	} else {
378 		rmapbt_sz = 0;
379 	}
380 
381 	trace_xrep_calc_ag_resblks_btsize(pag, bnobt_sz, inobt_sz, rmapbt_sz,
382 			refcbt_sz);
383 	xfs_perag_put(pag);
384 
385 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
386 }
387 
388 #ifdef CONFIG_XFS_RT
389 /*
390  * Figure out how many blocks to reserve for a rtgroup repair.  We calculate
391  * the worst case estimate for the number of blocks we'd need to rebuild one of
392  * any type of per-rtgroup btree.
393  */
394 xfs_extlen_t
xrep_calc_rtgroup_resblks(struct xfs_scrub * sc)395 xrep_calc_rtgroup_resblks(
396 	struct xfs_scrub		*sc)
397 {
398 	struct xfs_mount		*mp = sc->mp;
399 	struct xfs_scrub_metadata	*sm = sc->sm;
400 	uint64_t			usedlen;
401 	xfs_extlen_t			rmapbt_sz = 0;
402 
403 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
404 		return 0;
405 	if (!xfs_has_rtgroups(mp)) {
406 		ASSERT(0);
407 		return -EFSCORRUPTED;
408 	}
409 
410 	usedlen = xfs_rtbxlen_to_blen(mp, xfs_rtgroup_extents(mp, sm->sm_agno));
411 	ASSERT(usedlen <= XFS_MAX_RGBLOCKS);
412 
413 	if (xfs_has_rmapbt(mp))
414 		rmapbt_sz = xfs_rtrmapbt_calc_size(mp, usedlen);
415 
416 	trace_xrep_calc_rtgroup_resblks_btsize(mp, sm->sm_agno, usedlen,
417 			rmapbt_sz);
418 
419 	return rmapbt_sz;
420 }
421 #endif /* CONFIG_XFS_RT */
422 
423 /*
424  * Reconstructing per-AG Btrees
425  *
426  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
427  * we scan secondary space metadata to derive the records that should be in
428  * the damaged btree, initialize a fresh btree root, and insert the records.
429  * Note that for rebuilding the rmapbt we scan all the primary data to
430  * generate the new records.
431  *
432  * However, that leaves the matter of removing all the metadata describing the
433  * old broken structure.  For primary metadata we use the rmap data to collect
434  * every extent with a matching rmap owner (bitmap); we then iterate all other
435  * metadata structures with the same rmap owner to collect the extents that
436  * cannot be removed (sublist).  We then subtract sublist from bitmap to
437  * derive the blocks that were used by the old btree.  These blocks can be
438  * reaped.
439  *
440  * For rmapbt reconstructions we must use different tactics for extent
441  * collection.  First we iterate all primary metadata (this excludes the old
442  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
443  * records are collected as bitmap.  The bnobt records are collected as
444  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
445  * result (since the rmapbt lives in the free space) are the blocks from the
446  * old rmapbt.
447  */
448 
449 /* Ensure the freelist is the correct size. */
450 int
xrep_fix_freelist(struct xfs_scrub * sc,int alloc_flags)451 xrep_fix_freelist(
452 	struct xfs_scrub	*sc,
453 	int			alloc_flags)
454 {
455 	struct xfs_alloc_arg	args = {0};
456 
457 	args.mp = sc->mp;
458 	args.tp = sc->tp;
459 	args.agno = pag_agno(sc->sa.pag);
460 	args.alignment = 1;
461 	args.pag = sc->sa.pag;
462 
463 	return xfs_alloc_fix_freelist(&args, alloc_flags);
464 }
465 
466 /*
467  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
468  *
469  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
470  * the AG headers by using the rmap data to rummage through the AG looking for
471  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
472  * or the rmap data are corrupt.
473  *
474  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
475  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
476  * AGI is being rebuilt.  It must maintain these locks until it's safe for
477  * other threads to change the btrees' shapes.  The caller provides
478  * information about the btrees to look for by passing in an array of
479  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
480  * The (root, height) fields will be set on return if anything is found.  The
481  * last element of the array should have a NULL buf_ops to mark the end of the
482  * array.
483  *
484  * For every rmapbt record matching any of the rmap owners in btree_info,
485  * read each block referenced by the rmap record.  If the block is a btree
486  * block from this filesystem matching any of the magic numbers and has a
487  * level higher than what we've already seen, remember the block and the
488  * height of the tree required to have such a block.  When the call completes,
489  * we return the highest block we've found for each btree description; those
490  * should be the roots.
491  */
492 
493 struct xrep_findroot {
494 	struct xfs_scrub		*sc;
495 	struct xfs_buf			*agfl_bp;
496 	struct xfs_agf			*agf;
497 	struct xrep_find_ag_btree	*btree_info;
498 };
499 
500 /* See if our block is in the AGFL. */
501 STATIC int
xrep_findroot_agfl_walk(struct xfs_mount * mp,xfs_agblock_t bno,void * priv)502 xrep_findroot_agfl_walk(
503 	struct xfs_mount	*mp,
504 	xfs_agblock_t		bno,
505 	void			*priv)
506 {
507 	xfs_agblock_t		*agbno = priv;
508 
509 	return (*agbno == bno) ? -ECANCELED : 0;
510 }
511 
512 /* Does this block match the btree information passed in? */
513 STATIC int
xrep_findroot_block(struct xrep_findroot * ri,struct xrep_find_ag_btree * fab,uint64_t owner,xfs_agblock_t agbno,bool * done_with_block)514 xrep_findroot_block(
515 	struct xrep_findroot		*ri,
516 	struct xrep_find_ag_btree	*fab,
517 	uint64_t			owner,
518 	xfs_agblock_t			agbno,
519 	bool				*done_with_block)
520 {
521 	struct xfs_mount		*mp = ri->sc->mp;
522 	struct xfs_buf			*bp;
523 	struct xfs_btree_block		*btblock;
524 	xfs_daddr_t			daddr;
525 	int				block_level;
526 	int				error = 0;
527 
528 	daddr = xfs_agbno_to_daddr(ri->sc->sa.pag, agbno);
529 
530 	/*
531 	 * Blocks in the AGFL have stale contents that might just happen to
532 	 * have a matching magic and uuid.  We don't want to pull these blocks
533 	 * in as part of a tree root, so we have to filter out the AGFL stuff
534 	 * here.  If the AGFL looks insane we'll just refuse to repair.
535 	 */
536 	if (owner == XFS_RMAP_OWN_AG) {
537 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
538 				xrep_findroot_agfl_walk, &agbno);
539 		if (error == -ECANCELED)
540 			return 0;
541 		if (error)
542 			return error;
543 	}
544 
545 	/*
546 	 * Read the buffer into memory so that we can see if it's a match for
547 	 * our btree type.  We have no clue if it is beforehand, and we want to
548 	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
549 	 * will cause needless disk reads in subsequent calls to this function)
550 	 * and logging metadata verifier failures.
551 	 *
552 	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
553 	 * memory from some other caller it will already have b_ops assigned.
554 	 * If it was in memory from a previous unsuccessful findroot_block
555 	 * call, the buffer won't have b_ops but it should be clean and ready
556 	 * for us to try to verify if the read call succeeds.  The same applies
557 	 * if the buffer wasn't in memory at all.
558 	 *
559 	 * Note: If we never match a btree type with this buffer, it will be
560 	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
561 	 * the buffer gets written.
562 	 */
563 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
564 			mp->m_bsize, 0, &bp, NULL);
565 	if (error)
566 		return error;
567 
568 	/* Ensure the block magic matches the btree type we're looking for. */
569 	btblock = XFS_BUF_TO_BLOCK(bp);
570 	ASSERT(fab->buf_ops->magic[1] != 0);
571 	if (btblock->bb_magic != fab->buf_ops->magic[1])
572 		goto out;
573 
574 	/*
575 	 * If the buffer already has ops applied and they're not the ones for
576 	 * this btree type, we know this block doesn't match the btree and we
577 	 * can bail out.
578 	 *
579 	 * If the buffer ops match ours, someone else has already validated
580 	 * the block for us, so we can move on to checking if this is a root
581 	 * block candidate.
582 	 *
583 	 * If the buffer does not have ops, nobody has successfully validated
584 	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
585 	 * and structure match this btree type then we'll move on to checking
586 	 * if it's a root block candidate.  If there is no match, bail out.
587 	 */
588 	if (bp->b_ops) {
589 		if (bp->b_ops != fab->buf_ops)
590 			goto out;
591 	} else {
592 		ASSERT(!xfs_trans_buf_is_dirty(bp));
593 		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
594 				&mp->m_sb.sb_meta_uuid))
595 			goto out;
596 		/*
597 		 * Read verifiers can reference b_ops, so we set the pointer
598 		 * here.  If the verifier fails we'll reset the buffer state
599 		 * to what it was before we touched the buffer.
600 		 */
601 		bp->b_ops = fab->buf_ops;
602 		fab->buf_ops->verify_read(bp);
603 		if (bp->b_error) {
604 			bp->b_ops = NULL;
605 			bp->b_error = 0;
606 			goto out;
607 		}
608 
609 		/*
610 		 * Some read verifiers will (re)set b_ops, so we must be
611 		 * careful not to change b_ops after running the verifier.
612 		 */
613 	}
614 
615 	/*
616 	 * This block passes the magic/uuid and verifier tests for this btree
617 	 * type.  We don't need the caller to try the other tree types.
618 	 */
619 	*done_with_block = true;
620 
621 	/*
622 	 * Compare this btree block's level to the height of the current
623 	 * candidate root block.
624 	 *
625 	 * If the level matches the root we found previously, throw away both
626 	 * blocks because there can't be two candidate roots.
627 	 *
628 	 * If level is lower in the tree than the root we found previously,
629 	 * ignore this block.
630 	 */
631 	block_level = xfs_btree_get_level(btblock);
632 	if (block_level + 1 == fab->height) {
633 		fab->root = NULLAGBLOCK;
634 		goto out;
635 	} else if (block_level < fab->height) {
636 		goto out;
637 	}
638 
639 	/*
640 	 * This is the highest block in the tree that we've found so far.
641 	 * Update the btree height to reflect what we've learned from this
642 	 * block.
643 	 */
644 	fab->height = block_level + 1;
645 
646 	/*
647 	 * If this block doesn't have sibling pointers, then it's the new root
648 	 * block candidate.  Otherwise, the root will be found farther up the
649 	 * tree.
650 	 */
651 	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
652 	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
653 		fab->root = agbno;
654 	else
655 		fab->root = NULLAGBLOCK;
656 
657 	trace_xrep_findroot_block(ri->sc->sa.pag, agbno,
658 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
659 out:
660 	xfs_trans_brelse(ri->sc->tp, bp);
661 	return error;
662 }
663 
664 /*
665  * Do any of the blocks in this rmap record match one of the btrees we're
666  * looking for?
667  */
668 STATIC int
xrep_findroot_rmap(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)669 xrep_findroot_rmap(
670 	struct xfs_btree_cur		*cur,
671 	const struct xfs_rmap_irec	*rec,
672 	void				*priv)
673 {
674 	struct xrep_findroot		*ri = priv;
675 	struct xrep_find_ag_btree	*fab;
676 	xfs_agblock_t			b;
677 	bool				done;
678 	int				error = 0;
679 
680 	/* Ignore anything that isn't AG metadata. */
681 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
682 		return 0;
683 
684 	/* Otherwise scan each block + btree type. */
685 	for (b = 0; b < rec->rm_blockcount; b++) {
686 		done = false;
687 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
688 			if (rec->rm_owner != fab->rmap_owner)
689 				continue;
690 			error = xrep_findroot_block(ri, fab,
691 					rec->rm_owner, rec->rm_startblock + b,
692 					&done);
693 			if (error)
694 				return error;
695 			if (done)
696 				break;
697 		}
698 	}
699 
700 	return 0;
701 }
702 
703 /* Find the roots of the per-AG btrees described in btree_info. */
704 int
xrep_find_ag_btree_roots(struct xfs_scrub * sc,struct xfs_buf * agf_bp,struct xrep_find_ag_btree * btree_info,struct xfs_buf * agfl_bp)705 xrep_find_ag_btree_roots(
706 	struct xfs_scrub		*sc,
707 	struct xfs_buf			*agf_bp,
708 	struct xrep_find_ag_btree	*btree_info,
709 	struct xfs_buf			*agfl_bp)
710 {
711 	struct xfs_mount		*mp = sc->mp;
712 	struct xrep_findroot		ri;
713 	struct xrep_find_ag_btree	*fab;
714 	struct xfs_btree_cur		*cur;
715 	int				error;
716 
717 	ASSERT(xfs_buf_islocked(agf_bp));
718 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
719 
720 	ri.sc = sc;
721 	ri.btree_info = btree_info;
722 	ri.agf = agf_bp->b_addr;
723 	ri.agfl_bp = agfl_bp;
724 	for (fab = btree_info; fab->buf_ops; fab++) {
725 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
726 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
727 		fab->root = NULLAGBLOCK;
728 		fab->height = 0;
729 	}
730 
731 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
732 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
733 	xfs_btree_del_cursor(cur, error);
734 
735 	return error;
736 }
737 
738 #ifdef CONFIG_XFS_QUOTA
739 /* Update some quota flags in the superblock. */
740 void
xrep_update_qflags(struct xfs_scrub * sc,unsigned int clear_flags,unsigned int set_flags)741 xrep_update_qflags(
742 	struct xfs_scrub	*sc,
743 	unsigned int		clear_flags,
744 	unsigned int		set_flags)
745 {
746 	struct xfs_mount	*mp = sc->mp;
747 	struct xfs_buf		*bp;
748 
749 	mutex_lock(&mp->m_quotainfo->qi_quotaofflock);
750 	if ((mp->m_qflags & clear_flags) == 0 &&
751 	    (mp->m_qflags & set_flags) == set_flags)
752 		goto no_update;
753 
754 	mp->m_qflags &= ~clear_flags;
755 	mp->m_qflags |= set_flags;
756 
757 	spin_lock(&mp->m_sb_lock);
758 	mp->m_sb.sb_qflags &= ~clear_flags;
759 	mp->m_sb.sb_qflags |= set_flags;
760 	spin_unlock(&mp->m_sb_lock);
761 
762 	/*
763 	 * Update the quota flags in the ondisk superblock without touching
764 	 * the summary counters.  We have not quiesced inode chunk allocation,
765 	 * so we cannot coordinate with updates to the icount and ifree percpu
766 	 * counters.
767 	 */
768 	bp = xfs_trans_getsb(sc->tp);
769 	xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
770 	xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
771 	xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1);
772 
773 no_update:
774 	mutex_unlock(&mp->m_quotainfo->qi_quotaofflock);
775 }
776 
777 /* Force a quotacheck the next time we mount. */
778 void
xrep_force_quotacheck(struct xfs_scrub * sc,xfs_dqtype_t type)779 xrep_force_quotacheck(
780 	struct xfs_scrub	*sc,
781 	xfs_dqtype_t		type)
782 {
783 	uint			flag;
784 
785 	flag = xfs_quota_chkd_flag(type);
786 	if (!(flag & sc->mp->m_qflags))
787 		return;
788 
789 	xrep_update_qflags(sc, flag, 0);
790 }
791 
792 /*
793  * Attach dquots to this inode, or schedule quotacheck to fix them.
794  *
795  * This function ensures that the appropriate dquots are attached to an inode.
796  * We cannot allow the dquot code to allocate an on-disk dquot block here
797  * because we're already in transaction context.  The on-disk dquot should
798  * already exist anyway.  If the quota code signals corruption or missing quota
799  * information, schedule quotacheck, which will repair corruptions in the quota
800  * metadata.
801  */
802 int
xrep_ino_dqattach(struct xfs_scrub * sc)803 xrep_ino_dqattach(
804 	struct xfs_scrub	*sc)
805 {
806 	int			error;
807 
808 	ASSERT(sc->tp != NULL);
809 	ASSERT(sc->ip != NULL);
810 
811 	error = xfs_qm_dqattach(sc->ip);
812 	switch (error) {
813 	case -EFSBADCRC:
814 	case -EFSCORRUPTED:
815 	case -ENOENT:
816 		xfs_err_ratelimited(sc->mp,
817 "inode %llu repair encountered quota error %d, quotacheck forced.",
818 				(unsigned long long)sc->ip->i_ino, error);
819 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
820 			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
821 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
822 			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
823 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
824 			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
825 		fallthrough;
826 	case -ESRCH:
827 		error = 0;
828 		break;
829 	default:
830 		break;
831 	}
832 
833 	return error;
834 }
835 #endif /* CONFIG_XFS_QUOTA */
836 
837 /*
838  * Ensure that the inode being repaired is ready to handle a certain number of
839  * extents, or return EFSCORRUPTED.  Caller must hold the ILOCK of the inode
840  * being repaired and have joined it to the scrub transaction.
841  */
842 int
xrep_ino_ensure_extent_count(struct xfs_scrub * sc,int whichfork,xfs_extnum_t nextents)843 xrep_ino_ensure_extent_count(
844 	struct xfs_scrub	*sc,
845 	int			whichfork,
846 	xfs_extnum_t		nextents)
847 {
848 	xfs_extnum_t		max_extents;
849 	bool			inode_has_nrext64;
850 
851 	inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip);
852 	max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork);
853 	if (nextents <= max_extents)
854 		return 0;
855 	if (inode_has_nrext64)
856 		return -EFSCORRUPTED;
857 	if (!xfs_has_large_extent_counts(sc->mp))
858 		return -EFSCORRUPTED;
859 
860 	max_extents = xfs_iext_max_nextents(true, whichfork);
861 	if (nextents > max_extents)
862 		return -EFSCORRUPTED;
863 
864 	sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
865 	xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
866 	return 0;
867 }
868 
869 /*
870  * Initialize all the btree cursors for an AG repair except for the btree that
871  * we're rebuilding.
872  */
873 void
xrep_ag_btcur_init(struct xfs_scrub * sc,struct xchk_ag * sa)874 xrep_ag_btcur_init(
875 	struct xfs_scrub	*sc,
876 	struct xchk_ag		*sa)
877 {
878 	struct xfs_mount	*mp = sc->mp;
879 
880 	/* Set up a bnobt cursor for cross-referencing. */
881 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
882 	    sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
883 		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
884 				sc->sa.pag);
885 		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
886 				sc->sa.pag);
887 	}
888 
889 	/* Set up a inobt cursor for cross-referencing. */
890 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
891 	    sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
892 		sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
893 				sa->agi_bp);
894 		if (xfs_has_finobt(mp))
895 			sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag,
896 					sc->tp, sa->agi_bp);
897 	}
898 
899 	/* Set up a rmapbt cursor for cross-referencing. */
900 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
901 	    xfs_has_rmapbt(mp))
902 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
903 				sc->sa.pag);
904 
905 	/* Set up a refcountbt cursor for cross-referencing. */
906 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
907 	    xfs_has_reflink(mp))
908 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
909 				sa->agf_bp, sc->sa.pag);
910 }
911 
912 /*
913  * Reinitialize the in-core AG state after a repair by rereading the AGF
914  * buffer.  We had better get the same AGF buffer as the one that's attached
915  * to the scrub context.
916  */
917 int
xrep_reinit_pagf(struct xfs_scrub * sc)918 xrep_reinit_pagf(
919 	struct xfs_scrub	*sc)
920 {
921 	struct xfs_perag	*pag = sc->sa.pag;
922 	struct xfs_buf		*bp;
923 	int			error;
924 
925 	ASSERT(pag);
926 	ASSERT(xfs_perag_initialised_agf(pag));
927 
928 	clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
929 	error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
930 	if (error)
931 		return error;
932 
933 	if (bp != sc->sa.agf_bp) {
934 		ASSERT(bp == sc->sa.agf_bp);
935 		return -EFSCORRUPTED;
936 	}
937 
938 	return 0;
939 }
940 
941 /*
942  * Reinitialize the in-core AG state after a repair by rereading the AGI
943  * buffer.  We had better get the same AGI buffer as the one that's attached
944  * to the scrub context.
945  */
946 int
xrep_reinit_pagi(struct xfs_scrub * sc)947 xrep_reinit_pagi(
948 	struct xfs_scrub	*sc)
949 {
950 	struct xfs_perag	*pag = sc->sa.pag;
951 	struct xfs_buf		*bp;
952 	int			error;
953 
954 	ASSERT(pag);
955 	ASSERT(xfs_perag_initialised_agi(pag));
956 
957 	clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
958 	error = xfs_ialloc_read_agi(pag, sc->tp, 0, &bp);
959 	if (error)
960 		return error;
961 
962 	if (bp != sc->sa.agi_bp) {
963 		ASSERT(bp == sc->sa.agi_bp);
964 		return -EFSCORRUPTED;
965 	}
966 
967 	return 0;
968 }
969 
970 /*
971  * Given an active reference to a perag structure, load AG headers and cursors.
972  * This should only be called to scan an AG while repairing file-based metadata.
973  */
974 int
xrep_ag_init(struct xfs_scrub * sc,struct xfs_perag * pag,struct xchk_ag * sa)975 xrep_ag_init(
976 	struct xfs_scrub	*sc,
977 	struct xfs_perag	*pag,
978 	struct xchk_ag		*sa)
979 {
980 	int			error;
981 
982 	ASSERT(!sa->pag);
983 
984 	error = xfs_ialloc_read_agi(pag, sc->tp, 0, &sa->agi_bp);
985 	if (error)
986 		return error;
987 
988 	error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp);
989 	if (error)
990 		return error;
991 
992 	/* Grab our own passive reference from the caller's ref. */
993 	sa->pag = xfs_perag_hold(pag);
994 	xrep_ag_btcur_init(sc, sa);
995 	return 0;
996 }
997 
998 #ifdef CONFIG_XFS_RT
999 /* Initialize all the btree cursors for a RT repair. */
1000 void
xrep_rtgroup_btcur_init(struct xfs_scrub * sc,struct xchk_rt * sr)1001 xrep_rtgroup_btcur_init(
1002 	struct xfs_scrub	*sc,
1003 	struct xchk_rt		*sr)
1004 {
1005 	struct xfs_mount	*mp = sc->mp;
1006 
1007 	ASSERT(sr->rtg != NULL);
1008 
1009 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTRMAPBT &&
1010 	    (sr->rtlock_flags & XFS_RTGLOCK_RMAP) &&
1011 	    xfs_has_rtrmapbt(mp))
1012 		sr->rmap_cur = xfs_rtrmapbt_init_cursor(sc->tp, sr->rtg);
1013 
1014 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RTREFCBT &&
1015 	    (sr->rtlock_flags & XFS_RTGLOCK_REFCOUNT) &&
1016 	    xfs_has_rtreflink(mp))
1017 		sr->refc_cur = xfs_rtrefcountbt_init_cursor(sc->tp, sr->rtg);
1018 }
1019 
1020 /*
1021  * Given a reference to a rtgroup structure, lock rtgroup btree inodes and
1022  * create btree cursors.  Must only be called to repair a regular rt file.
1023  */
1024 int
xrep_rtgroup_init(struct xfs_scrub * sc,struct xfs_rtgroup * rtg,struct xchk_rt * sr,unsigned int rtglock_flags)1025 xrep_rtgroup_init(
1026 	struct xfs_scrub	*sc,
1027 	struct xfs_rtgroup	*rtg,
1028 	struct xchk_rt		*sr,
1029 	unsigned int		rtglock_flags)
1030 {
1031 	ASSERT(sr->rtg == NULL);
1032 
1033 	xfs_rtgroup_lock(rtg, rtglock_flags);
1034 	sr->rtlock_flags = rtglock_flags;
1035 
1036 	/* Grab our own passive reference from the caller's ref. */
1037 	sr->rtg = xfs_rtgroup_hold(rtg);
1038 	xrep_rtgroup_btcur_init(sc, sr);
1039 	return 0;
1040 }
1041 
1042 /* Ensure that all rt blocks in the given range are not marked free. */
1043 int
xrep_require_rtext_inuse(struct xfs_scrub * sc,xfs_rgblock_t rgbno,xfs_filblks_t len)1044 xrep_require_rtext_inuse(
1045 	struct xfs_scrub	*sc,
1046 	xfs_rgblock_t		rgbno,
1047 	xfs_filblks_t		len)
1048 {
1049 	struct xfs_mount	*mp = sc->mp;
1050 	xfs_rtxnum_t		startrtx;
1051 	xfs_rtxnum_t		endrtx;
1052 	bool			is_free = false;
1053 	int			error;
1054 
1055 	startrtx = xfs_rgbno_to_rtx(mp, rgbno);
1056 	endrtx = xfs_rgbno_to_rtx(mp, rgbno + len - 1);
1057 
1058 	error = xfs_rtalloc_extent_is_free(sc->sr.rtg, sc->tp, startrtx,
1059 			endrtx - startrtx + 1, &is_free);
1060 	if (error)
1061 		return error;
1062 	if (is_free)
1063 		return -EFSCORRUPTED;
1064 
1065 	return 0;
1066 }
1067 #endif /* CONFIG_XFS_RT */
1068 
1069 /* Reinitialize the per-AG block reservation for the AG we just fixed. */
1070 int
xrep_reset_perag_resv(struct xfs_scrub * sc)1071 xrep_reset_perag_resv(
1072 	struct xfs_scrub	*sc)
1073 {
1074 	int			error;
1075 
1076 	if (!(sc->flags & XREP_RESET_PERAG_RESV))
1077 		return 0;
1078 
1079 	ASSERT(sc->sa.pag != NULL);
1080 	ASSERT(sc->ops->type == ST_PERAG);
1081 	ASSERT(sc->tp);
1082 
1083 	sc->flags &= ~XREP_RESET_PERAG_RESV;
1084 	xfs_ag_resv_free(sc->sa.pag);
1085 	error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
1086 	if (error == -ENOSPC) {
1087 		xfs_err(sc->mp,
1088 "Insufficient free space to reset per-AG reservation for AG %u after repair.",
1089 				pag_agno(sc->sa.pag));
1090 		error = 0;
1091 	}
1092 
1093 	return error;
1094 }
1095 
1096 /* Decide if we are going to call the repair function for a scrub type. */
1097 bool
xrep_will_attempt(struct xfs_scrub * sc)1098 xrep_will_attempt(
1099 	struct xfs_scrub	*sc)
1100 {
1101 	/* Userspace asked us to rebuild the structure regardless. */
1102 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD)
1103 		return true;
1104 
1105 	/* Let debug users force us into the repair routines. */
1106 	if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
1107 		return true;
1108 
1109 	/* Metadata is corrupt or failed cross-referencing. */
1110 	if (xchk_needs_repair(sc->sm))
1111 		return true;
1112 
1113 	return false;
1114 }
1115 
1116 /* Try to fix some part of a metadata inode by calling another scrubber. */
1117 STATIC int
xrep_metadata_inode_subtype(struct xfs_scrub * sc,unsigned int scrub_type)1118 xrep_metadata_inode_subtype(
1119 	struct xfs_scrub	*sc,
1120 	unsigned int		scrub_type)
1121 {
1122 	struct xfs_scrub_subord	*sub;
1123 	int			error;
1124 
1125 	/*
1126 	 * Let's see if the inode needs repair.  Use a subordinate scrub context
1127 	 * to call the scrub and repair functions so that we can hang on to the
1128 	 * resources that we already acquired instead of using the standard
1129 	 * setup/teardown routines.
1130 	 */
1131 	sub = xchk_scrub_create_subord(sc, scrub_type);
1132 	error = sub->sc.ops->scrub(&sub->sc);
1133 	if (error)
1134 		goto out;
1135 	if (!xrep_will_attempt(&sub->sc))
1136 		goto out;
1137 
1138 	/*
1139 	 * Repair some part of the inode.  This will potentially join the inode
1140 	 * to the transaction.
1141 	 */
1142 	error = sub->sc.ops->repair(&sub->sc);
1143 	if (error)
1144 		goto out;
1145 
1146 	/*
1147 	 * Finish all deferred intent items and then roll the transaction so
1148 	 * that the inode will not be joined to the transaction when we exit
1149 	 * the function.
1150 	 */
1151 	error = xfs_defer_finish(&sub->sc.tp);
1152 	if (error)
1153 		goto out;
1154 	error = xfs_trans_roll(&sub->sc.tp);
1155 	if (error)
1156 		goto out;
1157 
1158 	/*
1159 	 * Clear the corruption flags and re-check the metadata that we just
1160 	 * repaired.
1161 	 */
1162 	sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1163 	error = sub->sc.ops->scrub(&sub->sc);
1164 	if (error)
1165 		goto out;
1166 
1167 	/* If corruption persists, the repair has failed. */
1168 	if (xchk_needs_repair(sub->sc.sm)) {
1169 		error = -EFSCORRUPTED;
1170 		goto out;
1171 	}
1172 out:
1173 	xchk_scrub_free_subord(sub);
1174 	return error;
1175 }
1176 
1177 /*
1178  * Repair the ondisk forks of a metadata inode.  The caller must ensure that
1179  * sc->ip points to the metadata inode and the ILOCK is held on that inode.
1180  * The inode must not be joined to the transaction before the call, and will
1181  * not be afterwards.
1182  */
1183 int
xrep_metadata_inode_forks(struct xfs_scrub * sc)1184 xrep_metadata_inode_forks(
1185 	struct xfs_scrub	*sc)
1186 {
1187 	bool			dirty = false;
1188 	int			error;
1189 
1190 	/* Repair the inode record and the data fork. */
1191 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1192 	if (error)
1193 		return error;
1194 
1195 	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1196 	if (error)
1197 		return error;
1198 
1199 	/*
1200 	 * Metadata files can only have extended attributes on metadir
1201 	 * filesystems, either for parent pointers or for actual xattr data.
1202 	 * For a non-metadir filesystem, make sure the attr fork looks ok
1203 	 * before we delete it.
1204 	 */
1205 	if (xfs_inode_hasattr(sc->ip)) {
1206 		error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1207 		if (error)
1208 			return error;
1209 	}
1210 
1211 	/* Clear the reflink flag since metadata never shares. */
1212 	if (xfs_is_reflink_inode(sc->ip)) {
1213 		dirty = true;
1214 		xfs_trans_ijoin(sc->tp, sc->ip, 0);
1215 		error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
1216 		if (error)
1217 			return error;
1218 	}
1219 
1220 	/*
1221 	 * Metadata files on non-metadir filesystems cannot have attr forks,
1222 	 * so clear them now.
1223 	 */
1224 	if (xfs_inode_hasattr(sc->ip) && !xfs_has_metadir(sc->mp)) {
1225 		if (!dirty) {
1226 			dirty = true;
1227 			xfs_trans_ijoin(sc->tp, sc->ip, 0);
1228 		}
1229 		error = xrep_xattr_reset_fork(sc);
1230 		if (error)
1231 			return error;
1232 	}
1233 
1234 	/*
1235 	 * If we modified the inode, roll the transaction but don't rejoin the
1236 	 * inode to the new transaction because xrep_bmap_data can do that.
1237 	 */
1238 	if (dirty) {
1239 		error = xfs_trans_roll(&sc->tp);
1240 		if (error)
1241 			return error;
1242 		dirty = false;
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 /*
1249  * Set up an in-memory buffer cache so that we can use the xfbtree.  Allocating
1250  * a shmem file might take loks, so we cannot be in transaction context.  Park
1251  * our resources in the scrub context and let the teardown function take care
1252  * of them at the right time.
1253  */
1254 int
xrep_setup_xfbtree(struct xfs_scrub * sc,const char * descr)1255 xrep_setup_xfbtree(
1256 	struct xfs_scrub	*sc,
1257 	const char		*descr)
1258 {
1259 	ASSERT(sc->tp == NULL);
1260 
1261 	return xmbuf_alloc(sc->mp, descr, &sc->xmbtp);
1262 }
1263 
1264 /*
1265  * Create a dummy transaction for use in a live update hook function.  This
1266  * function MUST NOT be called from regular repair code because the current
1267  * process' transaction is saved via the cookie.
1268  */
1269 int
xrep_trans_alloc_hook_dummy(struct xfs_mount * mp,void ** cookiep,struct xfs_trans ** tpp)1270 xrep_trans_alloc_hook_dummy(
1271 	struct xfs_mount	*mp,
1272 	void			**cookiep,
1273 	struct xfs_trans	**tpp)
1274 {
1275 	int			error;
1276 
1277 	*cookiep = current->journal_info;
1278 	current->journal_info = NULL;
1279 
1280 	error = xfs_trans_alloc_empty(mp, tpp);
1281 	if (!error)
1282 		return 0;
1283 
1284 	current->journal_info = *cookiep;
1285 	*cookiep = NULL;
1286 	return error;
1287 }
1288 
1289 /* Cancel a dummy transaction used by a live update hook function. */
1290 void
xrep_trans_cancel_hook_dummy(void ** cookiep,struct xfs_trans * tp)1291 xrep_trans_cancel_hook_dummy(
1292 	void			**cookiep,
1293 	struct xfs_trans	*tp)
1294 {
1295 	xfs_trans_cancel(tp);
1296 	current->journal_info = *cookiep;
1297 	*cookiep = NULL;
1298 }
1299 
1300 /*
1301  * See if this buffer can pass the given ->verify_struct() function.
1302  *
1303  * If the buffer already has ops attached and they're not the ones that were
1304  * passed in, we reject the buffer.  Otherwise, we perform the structure test
1305  * (note that we do not check CRCs) and return the outcome of the test.  The
1306  * buffer ops and error state are left unchanged.
1307  */
1308 bool
xrep_buf_verify_struct(struct xfs_buf * bp,const struct xfs_buf_ops * ops)1309 xrep_buf_verify_struct(
1310 	struct xfs_buf			*bp,
1311 	const struct xfs_buf_ops	*ops)
1312 {
1313 	const struct xfs_buf_ops	*old_ops = bp->b_ops;
1314 	xfs_failaddr_t			fa;
1315 	int				old_error;
1316 
1317 	if (old_ops) {
1318 		if (old_ops != ops)
1319 			return false;
1320 	}
1321 
1322 	old_error = bp->b_error;
1323 	bp->b_ops = ops;
1324 	fa = bp->b_ops->verify_struct(bp);
1325 	bp->b_ops = old_ops;
1326 	bp->b_error = old_error;
1327 
1328 	return fa == NULL;
1329 }
1330 
1331 /* Check the sanity of a rmap record for a metadata btree inode. */
1332 int
xrep_check_ino_btree_mapping(struct xfs_scrub * sc,const struct xfs_rmap_irec * rec)1333 xrep_check_ino_btree_mapping(
1334 	struct xfs_scrub		*sc,
1335 	const struct xfs_rmap_irec	*rec)
1336 {
1337 	enum xbtree_recpacking		outcome;
1338 	int				error;
1339 
1340 	/*
1341 	 * Metadata btree inodes never have extended attributes, and all blocks
1342 	 * should have the bmbt block flag set.
1343 	 */
1344 	if ((rec->rm_flags & XFS_RMAP_ATTR_FORK) ||
1345 	    !(rec->rm_flags & XFS_RMAP_BMBT_BLOCK))
1346 		return -EFSCORRUPTED;
1347 
1348 	/* Make sure the block is within the AG. */
1349 	if (!xfs_verify_agbext(sc->sa.pag, rec->rm_startblock,
1350 				rec->rm_blockcount))
1351 		return -EFSCORRUPTED;
1352 
1353 	/* Make sure this isn't free space. */
1354 	error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock,
1355 			rec->rm_blockcount, &outcome);
1356 	if (error)
1357 		return error;
1358 	if (outcome != XBTREE_RECPACKING_EMPTY)
1359 		return -EFSCORRUPTED;
1360 
1361 	return 0;
1362 }
1363 
1364 /*
1365  * Reset the block count of the inode being repaired, and adjust the dquot
1366  * block usage to match.  The inode must not have an xattr fork.
1367  */
1368 void
xrep_inode_set_nblocks(struct xfs_scrub * sc,int64_t new_blocks)1369 xrep_inode_set_nblocks(
1370 	struct xfs_scrub	*sc,
1371 	int64_t			new_blocks)
1372 {
1373 	int64_t			delta =
1374 		new_blocks - sc->ip->i_nblocks;
1375 
1376 	sc->ip->i_nblocks = new_blocks;
1377 
1378 	xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
1379 	if (delta != 0)
1380 		xfs_trans_mod_dquot_byino(sc->tp, sc->ip, XFS_TRANS_DQ_BCOUNT,
1381 				delta);
1382 }
1383 
1384 /* Reset the block reservation for a metadata inode. */
1385 int
xrep_reset_metafile_resv(struct xfs_scrub * sc)1386 xrep_reset_metafile_resv(
1387 	struct xfs_scrub	*sc)
1388 {
1389 	struct xfs_inode	*ip = sc->ip;
1390 	int64_t			delta;
1391 	int			error;
1392 
1393 	delta = ip->i_nblocks + ip->i_delayed_blks - ip->i_meta_resv_asked;
1394 	if (delta == 0)
1395 		return 0;
1396 
1397 	/*
1398 	 * Too many blocks have been reserved, transfer some from the incore
1399 	 * reservation back to the filesystem.
1400 	 */
1401 	if (delta > 0) {
1402 		int64_t		give_back;
1403 
1404 		give_back = min_t(uint64_t, delta, ip->i_delayed_blks);
1405 		if (give_back > 0) {
1406 			xfs_mod_delalloc(ip, 0, -give_back);
1407 			xfs_add_fdblocks(ip->i_mount, give_back);
1408 			ip->i_delayed_blks -= give_back;
1409 		}
1410 
1411 		return 0;
1412 	}
1413 
1414 	/*
1415 	 * Not enough reservation; try to take some blocks from the filesystem
1416 	 * to the metadata inode.  @delta is negative here, so invert the sign.
1417 	 */
1418 	delta = -delta;
1419 	error = xfs_dec_fdblocks(sc->mp, delta, true);
1420 	while (error == -ENOSPC) {
1421 		delta--;
1422 		if (delta == 0) {
1423 			xfs_warn(sc->mp,
1424 "Insufficient free space to reset space reservation for inode 0x%llx after repair.",
1425 					ip->i_ino);
1426 			return 0;
1427 		}
1428 		error = xfs_dec_fdblocks(sc->mp, delta, true);
1429 	}
1430 	if (error)
1431 		return error;
1432 
1433 	xfs_mod_delalloc(ip, 0, delta);
1434 	ip->i_delayed_blks += delta;
1435 	return 0;
1436 }
1437